
by Ed Tittel and Jeff Noble

HTML, XHTML
& CSS

FOR

DUMmIES
‰

6th Edition

01_238479 ffirs.indd i01_238479 ffirs.indd i 4/10/08 8:57:40 PM4/10/08 8:57:40 PM

HTML, XHTML & CSS For Dummies®, 6th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008924086

ISBN: 978-0-470-23847-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_238479 ffirs.indd ii01_238479 ffirs.indd ii 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

by Ed Tittel and Jeff Noble

HTML, XHTML
& CSS

FOR

DUMmIES
‰

6th Edition

01_238479 ffirs.indd i01_238479 ffirs.indd i 4/10/08 8:57:40 PM4/10/08 8:57:40 PM

HTML, XHTML & CSS For Dummies®, 6th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008924086

ISBN: 978-0-470-23847-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_238479 ffirs.indd ii01_238479 ffirs.indd ii 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

www.wiley.com

About the Authors
Ed Tittel is a full-time independent writer, trainer, and consultant who works
out of his home near beautiful Austin, Texas. Ed has been writing for the
trade press since 1986 and has worked on more than 140 books. In addi-
tion to this title, Ed has worked on more than 35 books for Wiley, including
Windows Server 2008 For Dummies, XML For Dummies, and Networking with
NetWare For Dummies.

Ed is a Contributing Editor at Tomshardware.com, writes for half-a-dozen dif-
ferent TechTarget.com Web sites, including WhatIs.com, SearchNetworking.
com, and SearchWindows.com, and also writes occasionally for other Web
sites and magazines. When he’s not busy doing all that work stuff, Ed likes to
travel, shoot pool, spend time with his family (especially taking walks with
young Gregory), and turn the tables on his Mom, who now makes her home
with the rest of the Texas Tittels.

You can contact Ed Tittel by e-mail at etittel@yahoo.com.

Jeff Noble runs a small Web design and multimedia company called
Conquest Media (www.conquestmedia.com) in Austin, Texas. Jeff has been
working on, in, and around the Web for nearly 10 years, and he specializes in
designing and creating unique, easy to use, functional Web sites. When he’s
away from his computer, Jeff is often far from the madding crowd, choosing
instead to hike and camp in wild places as far away from a wall socket as he
can get.

Jeff is available for Web site design, implementation, and consulting work.
You can contact him by e-mail at jeff@conquestmedia.com.

01_238479 ffirs.indd iii01_238479 ffirs.indd iii 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

Authors’ Acknowledgments
Now that we’ve made it into the twelfth go-round for HTML For Dummies, we
must once again thank our many readers for keeping this book alive. We’d
also like to thank them and the Wiley editors for providing the feedback that
drives the continuing improvement of this book. Please don’t stop now — tell
us what you want to do, and what you like and don’t like about this book.
Especially, please tell us what you liked and didn’t like about this, our fi rst
full-color edition of our book.

Let me also thank the many people who’ve also worked on this book over
the years, including James Michael Stewart, Natanya Anderson, Dori Smith,
Tom Negrino, Mary Burmeister, Rich Wagner, Brock Kyle, Chelsea Valentine,
and Kim Lindros. Of course, for this edition, I’m especially indebted to my
co-author and friend, Jeff Noble, for infusing insight and enthusiasm into this
book. I am eternally grateful to you for your ideas, your hard work, and your
experience in reaching an audience of budding Web experts.

Next, I’d like to thank the Wiley team for their efforts on this title. At Wiley,
I must thank Bob Woerner and Paul Levesque for their outstanding efforts,
and Barry Childs-Helton and Sue Jenkins for their editorial efforts in design,
layout, contents, and coverage. A special shout out should go to the friendly
folks in Composition Services for their artful page layouts, especially when it
came to keeping all the color-coded code straight.

I’d like to thank my lovely wife, Dina Kutueva-Tittel, and periodically pugna-
cious 4-year-old son, Gregory, for putting up with the usual rhythm of making
books happen. I know I’m not always as easy to live with as I should be, but
hopefully, I’ll get to keep working on that. Also, I’d like to thank my parents,
Al and Ceil, for all the great things they did for me, and for hanging in there
well into their ninth decades on this planet. I hope you’re both still around to
see the thirteenth edition come to print as well! Finally, profound thanks to
you again, Mom, for cultivating and encouraging my love of words, writing,
and banter.

Ed Tittel

01_238479 ffirs.indd iv01_238479 ffirs.indd iv 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

First and foremost, I’d like to thank my mom, Sheryl, for always believing in
me. I’d like to thank my older brother Chris, even though he once shot me
with his BB gun when we were kids. (I’d also like to mention that one year
for Christmas he gave me a used Skid Row tape made to look semi-new cov-
ered with Saran Wrap. But I’ve moved past that.) Thanks again, bro. To my
“adopted” family, The Elizondos, I appreciate everything you have done for
me over the years and I promise to never sing Christmas carols in the house.
“Shut up Jeff!”

I’d certainly like to thank Ed Tittel for giving a semi-literate guy such as
myself this opportunity: you’re a good friend, a great writer, and defi nitely
know a thing or two about local Austin eateries.

I want to give special thanks to the following friends and colleagues: Slade
Deliberto for teaching me how to design Web sites, Matt “Softball” Douglass
for convincing me CSS is a lot better than old school HTML tags, Justin
Haworth for bailing me out of many confusing Flash scripting problems,
Peter “3D Pete” Vogel for his mentoring and assistance creating the Conquest
Media logo, Jason “GodLikeMouse” Graves for teaching me almost everything
I know about JavaScript, XML and CSS layout, and Russell Wilson for his
usability lessons and expert advice. Thanks to the whole gang at Conquest
Media, too!

Jeff Noble

01_238479 ffirs.indd v01_238479 ffirs.indd v 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our Dummies Online Registration
Form located at www.dummies.com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Paul Levesque

Acquisitions Editor: Bob Woerner

Copy Editor: Barry Childs-Helton

Technical Editor: Sue Jenkins

Editorial Manager: Leah Cameron

Media Development Supervisor: Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Production

Project Coordinator: Katie Key

Layout and Graphics: Kathie Rickard,
Erin Zeltner

Proofreaders: Betty Kish, Dwight Ramsey,
Toni Settle

Indexer: Ty Koontz

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_238479 ffirs.indd vi01_238479 ffirs.indd vi 4/10/08 8:57:41 PM4/10/08 8:57:41 PM

www.dummies.com

Contents at a Glance
Introduction .. 1

Part I: Getting to Know (X)HTML and CSS 7
Chapter 1: The Least You Need to Know about HTML, CSS, and the Web................. 9
Chapter 2: Creating and Viewing a Web Page .. 29
Chapter 3: Proper Planning Prevents Poor Page Performance 41

Part II: Formatting Web Pages with (X)HTML 57
Chapter 4: Creating (X)HTML Document Structure .. 59
Chapter 5: Text and Lists .. 69
Chapter 6: Linking to Online Resources ... 91
Chapter 7: Finding and Using Images .. 103

Part III: Taking Precise Control Over Web Pages
and Styles .. 119
Chapter 8: Introducing Cascading Style Sheets ... 121
Chapter 9: Using Cascading Style Sheets .. 137
Chapter 10: Getting Creative with Colors and Fonts ... 157
Chapter 11: Using Tables to Jazz Up Your Pages .. 175

Part IV: Integrating Scripts with (X)HTML 211
Chapter 12: Scripting Web Pages ... 213
Chapter 13: The Nuts and Bolts of JavaScript .. 223
Chapter 14: Working with Forms ... 247
Chapter 15: Fun with Client-Side Scripts... 271

Part V: (X)HTML Projects .. 289
Chapter 16: The About Me Page .. 291
Chapter 17: The eBay Auction Page .. 299
Chapter 18: A Company Site ... 307
Chapter 19: A Product Catalog ... 319

02_238479 ftoc.indd vii02_238479 ftoc.indd vii 4/10/08 9:09:26 PM4/10/08 9:09:26 PM

Part VI: The Part of Tens .. 329
Chapter 20: Ten HTML Dos and Don’ts ... 331
Chapter 21: Ten Ways to Exterminate Web Bugs .. 339
Chapter 22: Ten Cool HTML Tools and Technologies .. 347
Chapter 23: Ten Tip-Top Online HTML References ... 357

Index .. 367

02_238479 ftoc.indd viii02_238479 ftoc.indd viii 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

Table of Contents
Introduction .. 1

About This Book .. 1
How to Use This Book ... 2
Three Presumptuous Assumptions ... 3
How This Book Is Organized .. 3

Part I: Getting to Know (X)HTML and CSS .. 4
Part II: Formatting Web Pages with (X)HTML 4
Part III: Taking Precise Control Over Web Pages and Styles 4
Part IV: Integrating Scripts with (X)HTML .. 5
Part V: (X)HTML Projects ... 5
Part VI: The Part of Tens ... 5

Icons Used in This Book ... 6
Where to Go from Here ... 6

Part I: Getting to Know (X)HTML and CSS 7

Chapter 1: The Least You Need to Know about HTML,
CSS, and the Web. .9

Web Pages in Their Natural Habitat .. 9
Hypertext .. 10
Markup .. 11
Browsers ... 13
Web servers .. 13

Anatomy of a URL .. 14
HTML and XHTML: What’s the difference? 16
Syntax and rules ... 17
Elements .. 18
Attributes .. 20
Entities .. 21

Parts Is Parts: What Web Pages Are Made Of .. 23
Organizing HTML text ... 24
Images in HTML documents ... 25
Links and navigation tools .. 26

Listing 1-1: Meet an Author! .. 26

02_238479 ftoc.indd ix02_238479 ftoc.indd ix 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

HTML, XHTML & CSS For Dummies, 6th Edition xx
Chapter 2: Creating and Viewing a Web Page .29

Before You Get Started ... 29
Creating a Page from Scratch ... 30

Step 1: Planning a simple design .. 31
Step 2: Writing some HTML .. 32
Step 3: Saving your page ... 34
Step 4: Viewing your page ... 36

Editing an Existing Web Page ... 37
Posting Your Page Online ... 39

Chapter 3: Proper Planning Prevents Poor Page Performance41
Planning Your Site ... 42

Mapping your site .. 44
Building solid navigation .. 47
Planning outside links ... 49

Hosting Your Web Site .. 51
Hosting your own Web site... 52
Using a hosting provider ... 53
Obtaining your own domain ... 53
Moving fi les to your Web server .. 54

Part II: Formatting Web Pages with (X)HTML 57

Chapter 4: Creating (X)HTML Document Structure 59
Establishing a Document Structure ... 59
Labeling Your (X)HTML Document ... 60

Adding an HTML DOCTYPE declaration ... 60
Adding an XHTML DOCTYPE declaration... 60
The <html> element ... 61
Adding the XHTML namespace .. 61

Adding a Document Header ... 62
Giving your page a title ... 62
Defi ning metadata .. 63
Automatically redirecting users to another page 65

Creating the (X)HTML Document Body .. 67

Chapter 5: Text and Lists .69
Formatting Text ... 69

Paragraphs .. 70
Headings.. 72

Controlling Text Blocks ... 74
Block quotes ... 74
Preformatted text ... 75
Line breaks ... 77
Horizontal rules.. 78

02_238479 ftoc.indd x02_238479 ftoc.indd x 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

xi Table of Contents xi
Organizing Information ... 81

Numbered lists ... 81
Bulleted lists ... 84
Defi nition lists .. 87
Nesting lists .. 89

Chapter 6: Linking to Online Resources. .91
Basic Links .. 91

Link options .. 92
Common mistakes ... 95

Customizing Links ... 96
New windows.. 96
Locations in Web pages .. 98
Non-HTML resources... 100

Chapter 7: Finding and Using Images .103
The Role of Images in a Web Page ... 103
Creating Web-Friendly Images ... 104
Adding an Image to a Web Page ... 106

Image location .. 106
Using the element .. 106
Adding alternative text .. 108
Specifying image size ... 110
Setting an image border .. 112
Controlling image alignment .. 113
Setting image spacing .. 114

Images That Link .. 115
Triggering links .. 115
Building image maps ... 117

Part III: Taking Precise Control Over Web Pages
and Styles .. 119

Chapter 8: Introducing Cascading Style Sheets121
Advantages of Style Sheets ... 122

What CSS can do for a Web page ... 123
What you can do with CSS .. 124

CSS Structure and Syntax ... 126
Selectors and declarations ... 128
Working with style classes ... 129
Inheriting styles ... 131

Using Different Kinds of Style Sheets .. 133
Internal style sheets .. 133
External style sheets ... 134

Understanding the Cascade ... 136

02_238479 ftoc.indd xi02_238479 ftoc.indd xi 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

HTML, XHTML & CSS For Dummies, 6th Edition xiixii
Chapter 9: Using Cascading Style Sheets .137

Managing Layout, Positioning, and Appearance 138
Developing specifi c styles .. 138
Externalizing style sheets ... 146

Multimedia .. 148
Visual media styles .. 148
Paged media styles .. 153

Chapter 10: Getting Creative with Colors and Fonts 157
Color Values ... 158

Color names .. 158
Color numbers.. 159

Color Defi nitions .. 160
Text .. 161
Links .. 161
Backgrounds ... 163

Fonts .. 164
Font family .. 164
Sizing ... 166
Positioning .. 168
Text treatments .. 170
The catchall font property.. 174

Chapter 11: Using Tables to Jazz Up Your Pages175
What Tables Can Do for You .. 176
Table Basics ... 178
Sketching Your Table .. 179

Developing layout ideas .. 179
Drafting the table ... 180

Constructing Basic Tables .. 181
Components ... 181
Layout .. 182
Adding borders .. 186
Adjusting height and width .. 189
Padding and spacing ... 192
Shifting alignment .. 195

Adding Spans .. 198
Column spans ... 198
Row spans ... 200

Populating Table Cells .. 201
Testing Your Table .. 205
Table-Making Tips ... 205

Following the standards .. 205
Sanitizing markup .. 206
Nesting tables within tables ... 206
Avoiding dense tables ... 208
Adding color to table cells .. 208

Other Table Markup of Interest ... 209

02_238479 ftoc.indd xii02_238479 ftoc.indd xii 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

xiii Table of Contents xiii
Part IV: Integrating Scripts with (X)HTML 211

Chapter 12: Scripting Web Pages .213
What JavaScript Can Do for Your Pages ... 214

Arrange content dynamically ... 215
Work with browser windows.. 218
Solicit and verify user input ... 219
But wait . . . there’s more! ... 221

Chapter 13: The Nuts and Bolts of JavaScript 223
Including Scripts in Web Pages .. 224
Using the Same Script on Multiple Pages ... 225
Exploring the JavaScript Language ... 227

Basic syntax rules .. 228
Variables and data types ... 229
Operating on expressions ... 231
Working with statements .. 234
Loops ... 236
Functions .. 239
Arrays .. 241
Objects .. 243

Events and Event Handling ... 243
Document Object Model (DOM) .. 245
Other JavaScript Items of Interest ... 246
References and Resources ... 246

Chapter 14: Working with Forms .247
Uses for Forms ... 247

Searches .. 248
Data collection ... 249

Creating Forms ... 251
Structure ... 251
Input tags .. 252
Validation .. 264

Processing Data ... 264
Using CGI scripts and other programs .. 265
Sending data by e-mail .. 266

Designing User-Friendly Forms .. 267
Other Noteworthy Forms-Related Markup ... 269

Chapter 15: Fun with Client-Side Scripts. .271
Adding Rollovers to Your Pages .. 272

Image rollovers with JavaScript ... 272
Text rollovers with CSS ... 275

Displaying Dynamic Content on Your Page ... 278
HTML and JavaScript .. 278
JavaScript and DOM .. 280

02_238479 ftoc.indd xiii02_238479 ftoc.indd xiii 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

HTML, XHTML & CSS For Dummies, 6th Edition xivxiv
Displaying Pop-up Windows ... 281
Working with Cookies ... 284
Using the XHTML Object Element ... 287

Part V: (X)HTML Projects .. 289

Chapter 16: The About Me Page .291
Overview and Design Considerations ... 291

Audience analysis .. 292
Component elements .. 292

Page Markup ... 292
Your home page ... 292
Looking good .. 295

Chapter 17: The eBay Auction Page .299
Designing Your Auction Page ... 300
Presentation Issues to Consider .. 303
Using a Template for Presenting Your Auction Item 303

Chapter 18: A Company Site .307
Issues to Consider When Designing Your Site ... 307
Basic Elements of a Company Web Site .. 308

The home page ... 309
The Web Design page .. 312
The Contact Us page ... 314
The style sheet ... 316

Give Your Visitors What They Need ... 318

Chapter 19: A Product Catalog .319
Dissecting a Product Catalog ... 319
Choosing a Shopping Cart .. 322

PayPal .. 323
Other e-commerce solutions .. 323
Incorporating a PayPal shopping cart ... 324

Page Markup ... 326

Part VI: The Part of Tens ... 329

Chapter 20: Ten HTML Dos and Don’ts .331
Concentrate on Content ... 331

Never lose sight of your content.. 332
Structure your documents and your site.. 332

02_238479 ftoc.indd xiv02_238479 ftoc.indd xiv 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

xv Table of Contents

Go Easy on the Graphics, Bells, Whistles, and Hungry Dinosaurs 333
Make the most from the least ... 333
Build attractive pages ... 333

Create Well-Formulated HTML and Test .. 334
Keep track of those tags ... 334
Avoid browser dependencies ... 335
Navigating your wild and woolly Web ... 336

Keep It Interesting After It’s Built! ... 336
Think evolution, not revolution ... 337
Beating the two-dimensional-text trap .. 337
Overcoming inertia takes vigilance ... 338

Chapter 21: Ten Ways to Exterminate Web Bugs.339
Avoid Dead Ends and Spelling Faux Pas ... 339

Make a list and check it — twice ... 340
Master text mechanics .. 340

Keep Your Perishables Fresh! .. 341
Lack of live links — a loathsome legacy ... 341
When old links must linger ... 342
Make your content mirror your world .. 342

Check Your Site, and Then Check It Again! .. 343
Look for trouble in all the right places ... 343
Cover all the bases with peer reviews .. 344
Use the best tools of the testing trade .. 344
Schedule site reviews .. 344

Let User Feedback Feed Your Site ... 345
Foster feedback .. 345
If you give to them, they’ll give to you! ... 346

Chapter 22: Ten Cool HTML Tools and Technologies 347
HTML Editors .. 348

Helper editors... 348
WYSIWYG editors .. 350

Graphics Tools ... 351
Photoshop Elements: The amateur champ 352
Professional contenders ... 352

Link Checkers ... 353
HTML Link Validator: The champ .. 354
Contenders ... 354

HTML Validators .. 355
W3C validator ... 355
Built-in validators... 355

FTP Clients .. 356
Swiss Army Knives .. 356

02_238479 ftoc.indd xv02_238479 ftoc.indd xv 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

HTML, XHTML & CSS For Dummies, 6th Edition xvi
Chapter 23: Ten Tip-Top Online HTML References 357

Nothing But the Specs, Please! .. 357
The HTML and XHTML DTDs ... 358
Character Codes Come In Many Flavors .. 360
Deprecated (X)HTML Elements and Attributes 361
Magnifi cent HTML Resource Sites ... 364

Index ... 367

02_238479 ftoc.indd xvi02_238479 ftoc.indd xvi 4/10/08 9:09:27 PM4/10/08 9:09:27 PM

Introduction

Welcome to the wild, wacky, and wonderful possibilities of the
World Wide Web, more simply called the Web. In this book, we

reveal the mysteries of the markup languages that are the lifeblood of
the Web — the Hypertext Markup Language (HTML) and its successor,
XHTML, along with the Cascading Style Sheet (CSS) language widely
used to make the other stuff look good. Because HTML and XHTML (we
use (X)HTML in this book to refer to both versions at once) and CSS
may be used to build Web pages, learning how to use them brings you
into the fold of Web authors and content developers.

If you’ve tried to build your own Web pages but found it too forbidding,
now you can relax. If you can dial a telephone or find your keys in the
morning, you too can become an (X)HTML author. No kidding!

This book keeps the technobabble to a minimum and sticks with
plain English whenever possible. Besides plain talk about hypertext,
(X)HTML, and the Web, we include lots of examples, plus tag-by-tag
instructions to help you build your very own Web pages with minimum
muss and fuss. We also provide more examples about what to do with
your Web pages after they’re created so you can share them with the
world. We also explain the differences between HTML 4 and XHTML,
so you can decide whether you want to stick with the best-known and
longest-lived Web markup language (HTML) or its later and greater
successor (XHTML).

We also have a companion Web site for this book that contains (X)
HTML and CSS examples from the chapters in usable form — plus
pointers to interesting widgets that you can use to embellish your
own documents and astound your friends. Visit www.edtittel.com/
html4d6e and start browsing from there.

About This Book
Think of this book as a friendly, approachable guide to taking up the
tools of (X)HTML and CSS, and building readable, attractive pages
for the Web. These things aren’t hard to learn, but they pack a lot of
details. You must handle at least some of these details as you build
your own Web pages. Topics you find in this book include

03_238479 intro.indd 103_238479 intro.indd 1 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

2 HTML, XHTML & CSS For Dummies, 6th Edition

 � Designing and building Web pages

 � Uploading and publishing Web pages for the world to see

 � Testing and debugging your Web pages

You can build Web pages without years of arduous training, advanced aes-
thetic capabilities, or ritual ablutions in ice-cold streams. If you can tell
somebody how to drive across town to your house, you can build a useful
Web document. The purpose of this book isn’t to turn you into a rocket sci-
entist (or, for that matter, a rocket scientist into a Web site). The purpose is
to show you the design and technical elements you need for a good-looking,
readable Web page and to give you the confidence to do it!

How to Use This Book
This book tells you how to use (X)HTML and CSS to get your Web pages up
and running on the World Wide Web. We tell you what’s involved in designing
and building effective Web documents that can bring your ideas and informa-
tion to the whole online world — if that’s what you want to do — and maybe
have some high-tech fun communicating them.

All (X)HTML and CSS code appears in monospaced type like this:

<head><title>What’s in a Title?</title></head>...

When you type (X)HTML tags, CSS, or other related information, be sure to
copy the information exactly as you see it between the angle brackets (< and >),
including the angle brackets themselves, because that’s part of the magic
that makes (X)HTML and CSS work. Other than that, you find out how to mar-
shal and manage the content that makes your pages special, and we tell you
exactly what you need to do to mix the elements of (X)HTML and CSS with
your own work.

The margins of a book don’t give us the same room as the vast reaches of
cyberspace. Therefore, some long lines of (X)HTML and CSS markup, or
designations for Web sites (called URLs, for Uniform Resource Locators), may
wrap to the next line. Remember that your computer shows such wrapped
lines as a single line of (X)HTML or CSS, or as a single URL — so if you type
that hunk of code, keep it as one line. Don’t insert a hard return if you see
one of these wrapped lines. We clue you in that the (X)HTML or CSS markup
is supposed to be all one line by breaking the line at a slash or other appro-
priate character (to imply “but wait, there’s more!”) and by slightly indenting
the overage, as in the following silly example:

http://www.infocadabra.transylvania.com/nexus/plexus/lexus/
 praxis/okay/this/is/a/make-believe/URL/but/some/real/
 ones/are/SERIOUSLY/long.html

03_238479 intro.indd 203_238479 intro.indd 2 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

3 Introduction

HTML doesn’t care whether you type tag text in uppercase, lowercase, or
both (except for character entities, also known as character codes). XHTML
and CSS, however, want tag text only in lowercase to be perfectly correct.
Thus, to make your own work look like ours as much as possible, enter all (X)
HTML and CSS tag text, and all other code, in lowercase only. (If you have a
prior edition of the book, this reverses our earlier instructions. The keepers
of the eternal and ever-magnanimous standard of HTML, the World Wide Web
Consortium (W3C), have restated the rules, so we follow their lead. We don’t
make the rules, but we do know how to play the game!)

You’ll also find that our code listings are color coded, where we assign spe-
cific colors to various types of markup. This is explained in Chapter 1 in a
sidebar titled “Markup Color Coding.” (You might notice that all the illustra-
tions have nice, pretty colors, too!)

Three Presumptuous Assumptions
They say that making assumptions makes a fool out of the person who makes
them and the person who is subject to those assumptions (and just who are
they, anyway? We assume we know, but . . . never mind).

You don’t need to be a master logician or a wizard in the arcane arts of pro-
gramming, nor do you need a Ph.D. in computer science. You don’t even need
a detailed sense of what’s going on in the innards of your computer to deal
with the material in this book.

Even so, practicality demands that we make a few assumptions about you,
gentle reader: You can turn your computer on and off; you know how to use
a mouse and a keyboard; and you want to build your own Web pages for fun,
profit, or your job. We also assume that you already have a working connec-
tion to the Internet and a Web browser.

If you can write a sentence and know the difference between a heading and a
paragraph, you can build and publish your own documents on the Web. The
rest consists of details — and we help you with those!

How This Book Is Organized
This book contains six major parts, arranged like Russian Matrioshka (nesting
dolls). Parts contain at least three chapters, and each chapter contains sev-
eral modular sections. That way you can use this book to

03_238479 intro.indd 303_238479 intro.indd 3 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

4 HTML, XHTML & CSS For Dummies, 6th Edition

 � Jump around.

 � Find topics or keywords in the Index or in the Table of Contents.

 � Read the whole book from cover to cover.

Part I: Getting to Know (X)HTML and CSS
This part sets the stage and includes an overview of and introduction to the
Web and the software that people use to mine its treasures. This section also
explains how the Web works, including the (X)HTML and CSS that this book
covers, and the server-side software and services that deliver the goods to
end users (when we aren’t preoccupied with the innards of our systems).

(X)HTML documents, also called Web pages, are the fundamental units of
information organization and delivery on the Web. Here you also discover
what HTML is about, how hypertext can enrich ordinary text, and what CSS
does to modify and manage how that text looks on display. Next you take a
walk on the Web side and build your very first (X)HTML document.

Part II: Formatting Web Pages
with (X)HTML
HTML mixes ordinary text with special strings of characters called markup,
used to instruct browsers how to display (X)HTML documents. In this part
of the book, you find out about markup in general and (X)HTML in particular.
We start with a fascinating discussion of (X)HTML document organization
and structure. (Well . . . we think it’s fascinating, and hope you do, too.) Next
we explain how text can be organized into blocks and lists. Then we tackle
how the hyperlinks that put the H into (X)HTML work. After that, we discuss
how you can find and use graphical images in your Web pages and make
some fancy formatting maneuvers to spruce up those pages.

Throughout this part of the book, we include discussion of (X)HTML markup
elements (tags) and how they work. By the time you finish Part II, expect to
have a good overall idea of what HTML is and how you can use it.

Part III: Taking Precise Control
Over Web Pages and Styles
Part III starts with a discussion of Cascading Style Sheets (CSS) — another
form of markup language that lets (X)HTML deal purely with content while
it deals with how Web pages look when they’re displayed in a Web browser

03_238479 intro.indd 403_238479 intro.indd 4 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

5 Introduction

or as rendered on other devices (PDAs, mobile phones, and special so-called
assistive devices for print-handicapped users). After exploring CSS syntax
and structures and discovering how to use them, you find out how to manipu-
late the color and typefaces of text, backgrounds, and more on your Web
pages. You also learn about more complex collections of markup — specifi-
cally tables — as you explore and observe their capabilities in detail. We give
you lots of examples to help you design and build commercial-grade (X)HTML
documents. You can get started working with related (X)HTML tag syntax and
structures that you need to know so you can build complex Web pages.

Part IV: Integrating Scripts with (X)HTML
(X)HTML isn’t good at snazzing up text and graphics when they’re on display
(that’s where CSS excels). And (X)HTML really can’t do much by itself. Web
designers often build interactive, dynamic Web pages by using scripting tools
to add interactivity to an (X)HTML framework.

In this part of the book, you find out about scripting languages that enable
Web pages to interact with users and that also provide ways to respond to
user input or actions and to grab and massage data along the way. You get
introduced to general scripting languages, and we jump directly into the most
popular of such languages — JavaScript. You can discover the basic elements
of this scripting language and how to add interactivity to Web pages. You
can also explore typical uses for scripting that you can extend and add to
your own Web site. We go on to explore how to create and extract data from
Web-based data input forms and how to create and use scripts that react to a
user’s actions while she visits your Web pages.

Throughout this part of the book, examples, advice, and details show you
how these scripting components can enhance and improve your Web site’s
capabilities — and your users’ experiences when visiting your pages.

Part V: (X)HTML Projects
This part tackles typical complex Web pages. You can use these as models
for similar capabilities in your own Web pages. These projects include per-
sonal and company pages, an eBay auction page, and even a product catalog
page with its own shopping cart!

Part VI: The Part of Tens
We sum up and distill the very essence of the mystic secrets of (X)HTML.
Here you can read further about cool Web tools, get a second chance to
review top dos and don’ts for HTML markup, and review how to catch and

03_238479 intro.indd 503_238479 intro.indd 5 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

6 HTML, XHTML & CSS For Dummies, 6th Edition

kill potential bugs and errors in your pages before anybody else sees them.
You also get a collection of killer online resources you can use to further
your own ongoing education in HTML, XHTML, and CSS over time.

Icons Used in This Book

This icon signals technical details that are informative and interesting but
aren’t absolutely critical to writing HTML.

This icon flags useful information that makes HTML markup or other impor-
tant stuff even less complicated than you feared it might be.

This icon points out information you shouldn’t pass by — don’t overlook
these gentle reminders (the life, sanity, or page you save could be your own).

Be cautious when you see this icon. It warns you of things you shouldn’t do;
consequences can be severe if you ignore the accompanying bit of wisdom.

Text marked with this icon contains information about something that can be
found on this book’s companion Web site. You can find all the code examples
in this book, for starters. Simply visit our Web site for this book at www.
edtittel.com/html4d6e, and look for pointers to examples, templates, and
more. We also use this icon to point out some great and useful Web resources.

The information highlighted with this icon gives best practices — advice that
we wish we’d had when we first started out! These techniques can save you
time and money on migraine medication.

Where to Go from Here
This is where you pick a direction and hit the road! Where you start out
doesn’t matter. Don’t worry. You can handle it. Who cares whether anybody
else thinks you’re just goofing around? We know you’re getting ready to have
the time of your life. Enjoy!

03_238479 intro.indd 603_238479 intro.indd 6 4/10/08 9:10:24 PM4/10/08 9:10:24 PM

Part I
Getting to Know

(X)HTML and CSS

04_238479 pp01.indd 704_238479 pp01.indd 7 4/10/08 11:24:48 PM4/10/08 11:24:48 PM

In this part . . .

In this part of the book, we explore and explain basic
HTML document links and structures. We also explain

the key role that Web browsers play in delivering all this
stuff to people’s desktops. We even explain where the
(X) comes from — namely, a reworking of the original
description of HTML markup using XML syntax to create
XHTML — and go on to help you understand what makes
XHTML different (and possibly better, according to some)
than plain old HTML. We also take a look at general Web-
page anatomy, at the various pieces and parts that make
up a Web page, and at how CSS helps to manage their pre-
sentation, placement, and even color when they appear
on somebody’s display.

Next, we take you through the exercise of creating and
viewing a simple Web page so you can understand what’s
involved in doing this for yourself. We also explain what’s
involved in making changes to an existing Web page and
how to post your changes (or a new page) online.

This part concludes with a rousing exhortation to figure
out what you’re doing before making too much markup
happen. Just as a well-built house starts with a set of
blueprints and architectural drawings, so should a Web
page (and site) start with a plan or a map, with some idea
of where your pages will reside in cyberspace and how
hordes of users can find their way to them.

04_238479 pp01.indd 804_238479 pp01.indd 8 4/10/08 11:24:50 PM4/10/08 11:24:50 PM

Chapter 1

The Least You Need to Know about
HTML, CSS, and the Web

In This Chapter
� Creating HTML in text files

� Serving and browsing Web pages

� Understanding links and URLs

� Understanding basic HTML syntax

� Understanding basic CSS

Welcome to the wonderful world of the Web, (X)HTML, and CSS. With
just a little knowledge, some practice, and something to say, you can

either build your own little piece of cyberspace or expand on work you’ve
already done.

This book is your down-and-dirty guide to putting together your first Web
page, sprucing up an existing Web page, or creating complex and exciting
pages that integrate intricate designs, multimedia, and scripting.

The best way to start working with HTML is to jump right in, so that’s what
this chapter does: It brings you up to speed on the basics of how (X)HTML
and CSS work behind the scenes of Web pages, introducing you to their
underlying building blocks. When you’re done with this chapter, you’ll know
how (X)HTML and CSS work so you can start creating Web pages right now.

Web Pages in Their Natural Habitat
Web pages can accommodate many kinds of content, such as text, graphics,
forms, audio and video files, and interactive games.

Browse the Web for just a little while and you see a buffet of information and
content displayed in many ways. Every Web site is different, but most have

05_238479 ch01.indd 905_238479 ch01.indd 9 4/10/08 9:23:50 PM4/10/08 9:23:50 PM

10 Part I: Getting to Know (X)HTML and CSS

one thing in common: Hypertext Markup Language (HTML). You’ll also run
into XHTML and Cascading Style Sheets (CSS) pretty regularly too.

Whatever information a Web page contains, every Web page is created in
HTML (or some reasonable facsimile). HTML is the mortar that holds a Web
page together; the graphics, content, and other information are the bricks;
CSS tells Web pages how they should look when on display.

HTML files that produce Web pages are just text documents, as are XHTML
and CSS files. That’s why the Web works as well as it does. Text is a universal
language for computers. Any text file you create on a Windows computer —
including any HTML, XHTML, or CSS file — works equally well on a Mac or any
other operating system.

But Web pages aren’t merely text documents. They’re made with special,
attention-deprived, sugar-loaded text called HTML, XHTML, or CSS. Each uses
its own specific set of instructions that you include (along with your content)
inside text files that specify how a page should look and behave.

Stick with us to discover all the details you need to know about (X)HTML and
CSS!

When we say (X)HTML, we’re really talking about HTML and XHTML together.
Although they’re not identical, they’re enough like each other for this kind of
reference to make sense.

Hypertext
Special instructions in HTML permit lines of text to point (that is, link) to
something else in cyberspace. Such pointers are called hyperlinks. Hyperlinks
are the glue that holds the World Wide Web together. In your Web browser,
hyperlinks usually appear in blue and are underlined. When you click one, it
takes you somewhere else.

Hypertext or not, a Web page is a text file, which means you can create and
edit a Web page in any application that creates plain text (such as Notepad or
TextEdit). Some software tools offer fancy options and applications (covered
in Chapter 22) to help you create Web pages, but they generate the same text
files that you create with plain-text editors. We’re of the opinion, though, that
those just getting started with HTML are best served by a simple text editor.
Just break out Notepad on the PC (or TextEdit on the Mac) and you’re ready
to go.

Steer clear of word processors like WordPad or MS Word for creating HTML
because they introduce all kinds of extra code on Web pages that you may nei-
ther want nor need.

05_238479 ch01.indd 1005_238479 ch01.indd 10 4/10/08 9:23:50 PM4/10/08 9:23:50 PM

11 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

The World Wide Web comes by its name honestly. It’s quite literally a web of
online pages hosted on Web servers around the world, connected in trillions
of ways by hyperlinks that tie one page to another. Without such links, the
Web would be just a bunch of standalone pages.

Much of the Web’s value comes from its ability to link to pages and other
resources (such as images, downloadable files, and media presentations)
on either the same Web site or at another site. For example, FirstGov (www.
firstgov.gov) is a gateway Web site — its sole function is to provide
access to other Web sites. If you aren’t sure which government agency
handles first-time loans for homebuyers, or if want to know how to arrange
a tour of the Capitol, visit the site shown in Figure 1-1 to find out.

Figure 1-1:
USA.gov

uses hyper-
links to help
visitors find
government
information.

Markup
Web browsers were created specifically for the purpose of reading HTML
instructions (known as markup) and displaying the resulting Web page.

Markup lives in a text file (with your content) to give orders to a browser.

For example, look at the page shown in Figure 1-2. You can see how the page
is made up and how it is formatted by examining its underlying HTML.

05_238479 ch01.indd 1105_238479 ch01.indd 11 4/10/08 9:23:50 PM4/10/08 9:23:50 PM

12 Part I: Getting to Know (X)HTML and CSS

Figure 1-2:
This Web

page incor-
porates
multiple

parts and
numerous

bits of HTML
and CSS
markup.

This page includes an image, a heading that describes the page, several para-
graphs of text about one of your authors, and an address block with links to a
résumé and a list of publications.

However, different components of the page use different formatting:

 � The heading at the top of the page is larger than text in the paragraphs.

 � Blocks of text are separated by more blank space than between contigu-
ous lines of text within blocks.

 � Some text is in white, some orange, and some light blue.

The browser knows to display these components of the page in specific ways
thanks to the HTML markup, shown in Listing 1-1. (You’ll see Listing 1-1 in all
its glory at the end of the chapter.)

Any text enclosed between less-than and greater-than signs (< >) is an HTML
tag (often called the markup). For example, a p within brackets (<p>…</p>
tags) identifies the text in paragraphs. The markup between the <style>
and </style> tags at the head of the file uses CSS to define the look and feel
for various HTML elements used on this page. That’s really all there is to it.
You embed the markup in a text file, along with text for readers to view, to
tell the browser how to display your Web page.

05_238479 ch01.indd 1205_238479 ch01.indd 12 4/10/08 9:23:51 PM4/10/08 9:23:51 PM

13 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Tags and the content between (and within) the tags are collectively called
elements. Angle brackets < > enclose HTML and XHTML markup, curly braces
{ } enclose CSS markup.

Browsers
The user’s piece in the Web puzzle is a Web browser. Web browsers read
instructions written in HTML and use those instructions to display a Web
page’s content on your screen.

You should always write your HTML with the idea that people will view the
content using a Web browser. Just remember that there’s more than one kind
of browser out there, and each one comes in several versions.

Usually, Web browsers request and display Web pages available via the
Internet from a Web server. You can also display HTML pages you’ve saved
on your own computer before making them available on a Web server on
the Internet. When you’re developing your own HTML pages, you view these
pages (called local pages) in your browser. You can use local pages to get a
good idea of what people see after the page goes live on the Internet.

Each Web browser interprets HTML in its own way. The same HTML may not
look exactly the same from one browser to the next. When you work with
basic HTML, variations will be minor, but as you integrate other elements
(such as scripting and multimedia), rendering markup gets hairy.

Chapter 2 shows how to use a Web browser to view a local copy of your first
Web page.

Some people use text-only Web browsers, such as Lynx, because either

 � They’re visually impaired and can’t use a graphical display.

 � They like a lean, fast Web browser that displays only text.

Web servers
Your HTML pages aren’t much good if you can’t share them with the world.
Web servers make that possible. A Web server is a computer that

 � Connects to the Internet

 � Runs Web-server software

 � Responds to requests from Web browsers for Web pages

05_238479 ch01.indd 1305_238479 ch01.indd 13 4/10/08 9:23:51 PM4/10/08 9:23:51 PM

14 Part I: Getting to Know (X)HTML and CSS

Almost any computer can be a Web server, including your home computer.
But Web servers generally are computers dedicated to the task. You don’t
need to be an Internet or computer guru to publish your Web pages, but you
must find a Web server to serve your pages:

 � If you’re building pages for a company Web site, your IT department
may have a Web server. (Ask your IT guru for the information.)

 � If you’re starting a new site, you need a host for your pages.

Finding an inexpensive host is easy. Chapter 3 shows how to determine your
hosting needs and find the perfect provider.

Anatomy of a URL
The Web is made up of billions of resources, each of them linkable. A
resource’s exact location is the key to linking to it. Without an exact address
(a Uniform Resource Locator, or URL), you can’t use the Address bar in a Web
browser to visit a Web page directly.

URLs are the standard addressing system for Web resources. Each resource
(Web page, site, or individual file) has a unique URL. URLs work a lot like your
postal address. Figure 1-3 identifies the components of a URL.

A bevy of browsers
The Web world is full of browsers of many shapes and sizes — or rather versions and feature
sets. Two of the more popular browsers are Microsoft Internet Explorer and Mozilla Firefox. Other
browsers, such as Apple Safari and Opera, are also widely used. As an HTML developer, you
must think beyond your own browser experience and preferences. Every user has his or her own
browser preferences and settings.

Each browser renders HTML a bit differently. Every browser handles JavaScript, multimedia, style
sheets, and other HTML add-ins differently too. Throw different operating systems into the mix,
and things get really fun.

Usually the differences between browsers are minor. But sometimes a combination of HTML, text,
and media brings a specific browser to its knees. When you work with HTML, test your pages on as
many different browsers as you can. Install at least three different browsers on your own system
for testing. We recommend the latest versions of Internet Explorer, Firefox, and Opera.

Yahoo! has a fairly complete list of browsers at

http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Browsers

05_238479 ch01.indd 1405_238479 ch01.indd 14 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

15 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Figure 1-3:
The com-

ponents of
a URL help

it define the
exact loca-
tion of a file
on the Web.

Protocol

Domain

http://www.sun.com/developers/evengcentral/bios.html

Path

Filename

Each URL component helps define the location of a Web page or resource:

 � Protocol: Specifies the protocol the browser follows to request the file.

 The Web page protocol is http:// (the usual start to most URLs).

 � Domain: Points to the general Web site (such as www.sun.com) where
the file resides. A domain may host a few files (like a personal Web site)
or millions of files (like a corporate site, such as www.sun.com).

 � Path: Names the sequence of folders through which you must navigate
to get to a specific file.

 For example, to get to a file in the evangcentral folder that resides in
the developers folder, you use the /developers/evangcentral/
path.

 � Filename: Specifies which file in a directory path the browser accesses.

Although the URL shown in Figure 1-3 is no longer publicly accessible, it
points to the Sun domain and offers a path that leads to a specific file named
bios.html:

http://www.sun.com/developers/evangcentral/bios.html

Chapter 6 provides the complete details on how you use HTML and URLs to
add hyperlinks to your Web pages, and Chapter 3 shows how to obtain a URL
for your own Web site after you’re ready move it to a Web server.

(X)HTML’s Component Parts
The following section removes the mystery from the X. This section shows

 � The differences between HTML and XHTML

 � How HTML is written (its syntax)

 � Rules that govern its use

05_238479 ch01.indd 1505_238479 ch01.indd 15 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

16 Part I: Getting to Know (X)HTML and CSS

 � Names for important pieces and parts of HTML (and XHTML) markup

 � How to make the best, most correct use of (X)HTML capabilities

HTML and XHTML: What’s the difference?
HTML is Hypertext Markup Language, a notation developed in the late
1980s and early 1990s for describing Web pages. HTML is now enshrined in
numerous standard descriptions (specifications) from the World Wide Web
Consortium (W3C). The last HTML specification was finalized in 1999.

When you put an X in front of HTML to get XHTML, you get a new, improved
version of HTML based on the eXtensible Markup Language (XML). XML
is designed to work and behave well with computers, software, and the
Internet.

The original formulation of HTML has some irregularities that can cause
heartburn for software that reads HTML documents. XHTML, on the other
hand, uses an extremely regular and predictable syntax that’s easier for soft-
ware to handle. XHTML will replace HTML someday, but HTML keeps on tick-
ing. This book covers both varieties and shows you the steps to put the X in
front of your own HTML documents and turn them into XHTML.

Introducing Internet protocols
Interactions between browsers and servers are made possible by a set of computer-communication
instructions: Hypertext Transfer Protocol (HTTP). This protocol defines how browsers should
request Web pages and how Web servers should respond to those requests.

HTTP isn’t the only protocol at work on the Internet. The Simple Mail Transfer Protocol (SMTP) and
Post Office Protocol (POP) make e-mail exchange possible, and the File Transfer Protocol (FTP)
allows you to upload, download, move, copy, and delete files and folders across the Internet. The
good news is that Web browsers and servers do all the HTTP work for you, so you only have to put
your pages on a server or type a Web address into a browser.

To see how HTTP works, check out David Gourley and Brian Totty’s chapter on HTTP messages,
available through Google book search with “understanding http transactions” as the search string.
Start your search at http://google.books.com, then scroll down until you see the link to
“HTTP: The Definitive Guide – Page 80.”

05_238479 ch01.indd 1605_238479 ch01.indd 16 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

17 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

 � Most HTML and XHTML markup are identical.

 � In a few cases, HTML and XHTML markup look a little different.

 � In a few cases, HTML and XHTML markup must be used differently.

This book shows how to create code that works in both HTML and XHTML.

Syntax and rules
HTML is a straightforward language for describing Web page contents.
XHTML is even less demanding. Their components are easy to use — when
you know how to use a little bit of (X)HTML. Both HTML and XHTML markup
have three types of components:

 � Elements: Identify different parts of an HTML page by using tags

 � Attributes: Information about an instance of an element

 � Entities: Non-ASCII text characters, such as copyright symbols (©)
and accented letters (É). Entities originate from the Standard Generic
Markup Language, or SGML.

Every bit of HTML and/or XHTML markup that describes a Web page’s con-
tent includes some combination of elements, attributes, and entities.

Markup color coding
As we present HTML, XHTML, and CSS information in our code samples, we use color coding to
help you distinguish what’s what by way of markup. Here is a color key that you should keep in
mind as you read all of our code listings.

Purple: indicates the DOCTYPE declaration used in (X)HTML documents. This is
actually a totally different markup language known as the Standard
Generalized Markup Language, or SGML. It ís used to identify what specific
set of rules that (X)HTML documents follow in their construction and
content. It also applies to codes for character entities, which take the
form &pos; or &123;.

Light Green: indicates ordinary garden variety XHTML and HTML markup
Dark Green: indicates XML markup
Orange: indicates Cascading Style Sheet, or CSS, markup
Blue: indicates JavaScript

We only colorize markup in code listings, because it affects readability too much when code
appears in body copy. In that case, we simply use a different, monospaced font — as you’ll see
in the discussions of the <html>, <head>, and <title> elements in our first paragraph that
discusses HTML markup here.

05_238479 ch01.indd 1705_238479 ch01.indd 17 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

18 Part I: Getting to Know (X)HTML and CSS

This chapter covers the basic form and syntax for elements, attributes, and
entities. Parts II and III of the book detail how elements and attributes:

 � Describe kinds of text (such as paragraphs or tables)

 � Create an effect on the page (such as changing a font style)

 � Add images and links to a page

Elements
Elements are the building blocks of (X)HTML. You use them to describe
every piece of text on your page. Elements are made up of tags and the con-
tent within those tags. There are two main types of elements:

 � Elements with content made up of a tag pair and whatever content sits
between the opening and closing tag in the pair

 � Elements that insert something into the page, using a single tag

Tag pairs
Elements that describe content use a tag pair to mark the beginning and the
end of the element. Start and end tag pairs look like this:

<tag>...</tag>

Content — such as paragraphs, headings, tables, and lists — always uses a tag
pair:

 � The start tag (<tag>) tells the browser, “The element begins here.”

 � The end tag (</tag>) tells the browser, “The element ends here.”

The actual content is what occurs between the start tag and end tag. For
example, the Ed Tittel page in Listing 1-1 uses the paragraph element (<p>) to
surround the text of a paragraph (we omit CSS inline markup for clarity):

<p>Ed started writing about computing subjects in 1986 for a
 Macintosh oriented monthly magazine. By 1989 he had contributed to such
publications as LAN Times, Network World, Mac World, and LAN Magazine. He worked
on his first book in 1991, and by 1994 had contributed to over a dozen different
titles.</p>

Single tags
Elements that insert something into the page are called empty elements
(because they enclose no content) and use just a single tag, like this:

<tag />

05_238479 ch01.indd 1805_238479 ch01.indd 18 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

19 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Images and line breaks insert something into the HTML file, so they use one
tag.

One key difference between XHTML and HTML is that, in XHTML, all empty
elements must end with a slash before the closing greater-than symbol. This
is because XHTML is based on XML, and the XML rule is that you close empty
elements with a slash, like this:

<tag/>

However, to make this kind of markup readable inside older browsers, you
must insert a space before the closing slash, like this:

<tag />

This space allows older browsers to ignore the closing slash (since they
don’t know about XHTML). Newer browsers that understand XHTML ignore
the space and interpret the tag exactly, which is <tag/> (as per the XML
rules).

HTML doesn’t require a slash with empty elements, but this markup is depre-
cated (that is, identified as obsolete even though it still occurs in some
markup). An HTML empty element looks like this:

<tag />

Listing 1-1 uses the image element () to include an image on the
page:

The element references an image. When the browser displays the
page, it replaces the element with the file that it points to (it uses
an attribute to do the pointing, which is shown in the next section). Following
the XHTML rule introduced earlier, what appears in HTML as appears
in XHTML as (and this applies to all single tag elements).

You can’t make up HTML or XHTML elements. Elements that are legal in (X)
HTML are a very specific set — if you use elements that aren’t part of the (X)
HTML set, every browser ignores them. The elements you can use are defined
in the HTML 4.01 or XHTML 1.0 specifications. (The specs for HTML 4.01 can
be found at www.w3.org/TR/html4, while the specs for XHTML 1.0 can be
found at www.w3.org/TR/xhtml1/.)

05_238479 ch01.indd 1905_238479 ch01.indd 19 4/10/08 9:23:52 PM4/10/08 9:23:52 PM

20 Part I: Getting to Know (X)HTML and CSS

Nesting
Many page structures combine nested elements. Think of your nested ele-
ments as suitcases that fit neatly inside one another.

For example, a bulleted list uses two kinds of elements:

 � The element specifies that the list is unordered (bulleted).

 � The elements mark each item in the list.

When you combine elements by using this method, be sure you close the
inside element completely before you close the outside element:

 Item 1
 Item 2

Attributes
Attributes allow variety in how an element describes content or works.
Attributes let you use elements differently depending on the circumstances.
For example, the element uses the src attribute to specify the loca-
tion of the image you want to include on your page:

In this bit of HTML, the element itself is a general flag to the
browser that you want to include an image; the src attribute provides the
specifics on the image you want to include — header.gif in this instance.
Other attributes (such as width and height) provide information about
how to display the image, while the alt attribute provides a text alternative
to the image that a text-only browser can display (or a text-to-speech reader
can say, for the visually impaired).

Chapter 7 describes the element and its attributes in detail.

You include attributes within the start tag of the element you want them
with — after the element name but before the ending sign, like this:

<tag attribute=”value” attribute=”value”>

XML syntax rules decree that attribute values must always appear in quota-
tion marks, but you can include the attributes and their values in any order
within the start tag or within a single tag.

05_238479 ch01.indd 2005_238479 ch01.indd 20 4/10/08 9:23:53 PM4/10/08 9:23:53 PM

21 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

Every (X)HTML element has a collection of attributes that can be used with
it, and you can’t mix and match attributes and elements. Some attributes can
take any text as a value because the value could be anything, like the location
of an image or a page you want to link to. Others have a specific list of values
the attribute can take, such as your options for aligning text in a table cell.

The HTML 4.01 and XHTML 1.0 specifications define exactly which attributes
you can use with any given element and which values (if explicitly defined)
each attribute can take.

Each chapter in Parts II and III covers which attributes you can use with each
(X)HTML element. Also, see our online content for complete lists of depre-
cated (X)HTML tags and attributes.

Entities
Text makes the Web possible, but it has limitations. Entities are special char-
acters that you can display on your Web page.

Non-ASCII characters
Basic American Standard Code for Information Interchange (ASCII) text
defines a fairly small number of characters. It doesn’t include some special
characters, such as trademark symbols, fractions, and accented characters.

For example, if we translate a paragraph of text for the page in Figure 1-4 into
German, the result includes three u characters with umlauts (ü).

Figure 1-4:
ASCII text

can’t repre-
sent all text
characters,

so HTML
entities do

instead.

ASCII text doesn’t include an umlauted u, so HTML uses entities to represent
such characters. The browser replaces the entity with the character it refer-
ences. Each entity begins with an ampersand (&) and ends with a semicolon
(;); entities come originally from SGML, so we color-code them in purple to
reflect their origins. The following markup shows the entities in bold:

05_238479 ch01.indd 2105_238479 ch01.indd 21 4/10/08 9:23:53 PM4/10/08 9:23:53 PM

22 Part I: Getting to Know (X)HTML and CSS

<html>
<head>
<style>
 body {
 font-family: sans-serif;
 font-size: large;
 }
</style>
<title>Ed auf Deutsch</title>
</head>
<body>
<p>Ed Tittel hat seinen technischen Schriften im Jahre 1986 angefangen, als er
für einen Macintosh monatlichen Zeitschrift Artikeln schrieb. In drei mehr
Jahren, hat er auch für anderen Journalen wie <cite>LAN Times</cite>,
<cite>Network World</cite>, und <cite>LAN Magazine</cite> merhrere Artikeln
beigetragen. Er fertigte seinen ersten Buch im Jarhe 1991, und beim Ende des
Jahres 1994 hat er auf ein Dutzend Bücher gearbeitet.</p>
</body>
</html>

The entity that represents the umlauted u is ü.

(X)HTML character codes
The encodings for the ISO-Latin-1 character set are supplied by default, and
related entities (a pointer to a complete table appears in Chapter 23) can be
invoked and used without special contortions. But using the other encodings
mentioned in Table 1-1 requires inclusion of special markup to tell the browser
it must be ready to interpret Unicode character codes. (Unicode is an interna-
tional standard — ISO standard 10646, in fact — that embraces enough charac-
ter codes to handle most unique alphabets, plus plenty of other symbols and
nonalphabetic characters as well.) This special markup takes the form <meta
http-equiv=”Content-Type” content=”text/html; charset=UTF
8”>; when the value for charset is changed to UTF-8, you can reference the
common Unicode code charts that appear in Chapter 23 of this book.

Tag characters
HTML-savvy software assumes that some HTML characters, such as the
greater-than and less-than signs, are meant to be hidden and not displayed
on your finished Web page. If you actually want to show a greater-than or
less-than sign on your page, you’re going to have to make your wishes clear
to the browser. The following entities let you display characters that nor-
mally are part of the hidden HTML markup:

 � less-than sign (<): <

 � greater-than sign (>): >

 � ampersand (&): &

The < and > signs are used in markup, but these symbols are instructions to
the browser and won’t show up on the page. If you need these symbols on the
Web page, include the entities for them in your markup, like this:

05_238479 ch01.indd 2205_238479 ch01.indd 22 4/10/08 9:23:53 PM4/10/08 9:23:53 PM

23 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

<p>The paragraph element identifies some text as a paragraph:</p>
<p><p>This is a paragraph.</p></p>

In the preceding markup, the first line uses tags to describe a paragraph, and
the second line shows how entities describe the < and > symbols.

Figure 1-5 shows these entities as characters in a browser window.

Figure 1-5:
Entities let
<, >, or &

symbols
appear in

a browser
window.

Parts Is Parts: What Web
Pages Are Made Of

Comments include text in (X)HTML files that isn’t displayed in the final page.
Each comment is identified with two special sequences of markup characters:

 � Begin each comment with the string <!--

 � End each comment with the string -->

In the following code, comments explain how each markup element functions
and where it fits into the HTML markup hierarchy.

Elements are organized into a structure:

 � Some elements can occur only inside other elements.

 � Some elements are required for a well-structured (X)HTML document.

<html> <!-- This tag should always occur at or near the beginning of any
 well-formed HTML document -->
<head> <!-- The head element supplies information to label the whole HTML
 document -->
<title>Welcome to Ed Tittel.com</title> <!-- The text in the title element
 appears in the title bar of the browser window when the page
 is viewed -->
</head> <!-- closes the head element -->

05_238479 ch01.indd 2305_238479 ch01.indd 23 4/10/08 9:23:53 PM4/10/08 9:23:53 PM

24 Part I: Getting to Know (X)HTML and CSS

<body> <!-- The content that appears on any Web page appears or is
 invoked from inside the body element -->
 <!-- Skip a bunch of copy here . . . -->
<h1>Contact:</h1> <!óinsert level 1 head to set off the header text -->
<!-- The next four lines of text are explicitly broken at their ends using
 the break element
, and each line begins with identifying text
 in bold set off between and tags. -->
<p>Email: etittel at yahoo dot com

Address: 2443 Arbor Drive, Round Rock, TX 78681-2160

Phone: 512-252-7497 (No solicitors, please)

List of publications available in: MS
 Word

Resume available in: MS
 Word
</p> <!-- End of contact info paragraph -->
</body> <!-- End of the body section -->
</html> <!-- End of the HTML document -->

The preceding document is broken into a head and a body. Within each sec-
tion, certain kinds of elements appear. Many combinations are possible —
and that’s what you see throughout this book!

Organizing HTML text
Beyond the division into head and body sections, text can be organized in
plenty of ways in HTML documents.

Document heads
Inside the head section, you can define all kinds of labels and information
besides a title, primarily to describe the document that follows, such as the
character sets used, meta data about the current document, scripts to be
invoked, and style information. The body section is where real content lives
and most (X)HTML elements appear.

Document headings
Headings (denoted using elements h1 through h6) are different from the
HTML document head. Individual headings structure the text that follows
them, whereas the head identifies or describes the whole document.

In the Ed Tittel page example, the h1 element sets off the Contact block at
the bottom of the page.

Paragraphs and more
When you want running text on a Web page, the paragraph element, p (which
includes the <p> and </p> tags), breaks text into paragraphs. You can also

05_238479 ch01.indd 2405_238479 ch01.indd 24 4/10/08 9:23:54 PM4/10/08 9:23:54 PM

25 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

 � Force line breaks by using the break element

 � Create horizontal rules (lines) by using the <hr /> element

HTML also includes all kinds of ways to emphasize or identify text inside
paragraphs; Parts II and III of this book show a few of them.

Lists
HTML permits easy definition of unordered or bulleted lists. Various mecha-
nisms to create other kinds of lists, including numbered lists, are also avail-
able. Lists can be nested within lists to create as many levels of hierarchy as
your list might need (perhaps when outlining a complex subject or model-
ing a table of contents with several heading levels you want to represent).
Chapter 5 covers creating lists in more detail.

Tables
In addition to providing a variety of listing mechanisms, HTML also includes
markup for defining tables. (Chapter 11 has more on tables.) Structure is part
of how markup works, so within the definition of a table, you can

 � Distinguish between column heads and table data

 � Manage how rows and columns are laid out

Cascading Style Sheet markup
CSS markup can occur in separate style-sheet documents, in a block of text
in the head of an HTML document, or appended in the style attribute within
individual HTML elements — and even in some combination of all three such
forms! What CSS does is provide much more detailed control over font selec-
tion, use of color for text and backgrounds, positioning of text and other ele-
ments on the page, and (as the old Ronco ad intones) “much, much more.”

You’ll delve into CSS in detail in Part III of this book, but we cover bits and
pieces of CSS throughout the book as appropriate for the subject matter at
hand. You can build a Web site without using CSS, and using CSS makes more
work, but it’s the right tool for precise control over look and layout!

Images in HTML documents
Adding an image to any HTML document is easy. Careful and well-planned
use of images adds a lot to Web pages. Chapter 7 shows how to grab images
from files. Chapter 9 shows how to use complex markup to position and
flow text around graphics. You also discover how to select and use interest-
ing and compelling images to add both allure and information to your Web
pages.

05_238479 ch01.indd 2505_238479 ch01.indd 25 4/10/08 9:23:54 PM4/10/08 9:23:54 PM

26 Part I: Getting to Know (X)HTML and CSS

Links and navigation tools
A Web page’s structure should help visitors find their way around collections
of Web pages, look for (and hopefully, find) items of interest, and get where
they most want to go quickly and easily. Links provide the mechanism to
bring people into your Web pages, so Chapter 6 shows how to

 � Reference external items or resources

 � Jump from one page to the next

 � Jump around inside a page

 � Add structure and organization to your pages

 The importance of structure and organization goes up as the amount of
information that you want to present to your visitors goes up.

Navigation tools, (which establish standard mechanisms and tools for moving
around inside a Web site) provide ways to create and present your Web page
(and site) structure to visitors as well as mechanisms for users to grab and
use organized menus of choices

When you add everything up, your result should be a well-organized set of
information and images that’s easy to understand, use, and navigate.

Listing 1-1: Meet an Author!
Listing 1-1 is reproduced in its entirety here, color-coded to distinguish the
various types of markup it uses. Lest you think this is mere vanity on Ed’s
part, we also hasten to point out that this is the basis for the “About Me”
page described in Chapter 16 of this book, which we hope only makes it the
more interesting, rather than the reverse!

Listing 1-1: Ed Tittel’s “About Me” Web page
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>
<title>Ed Tittel - Edtittel.com</title>
<style type=”text/css”>

body {
 background-image: url(images/background_page.gif);
 }

.white_text {

05_238479 ch01.indd 2605_238479 ch01.indd 26 4/10/08 9:23:54 PM4/10/08 9:23:54 PM

27 Chapter 1: The Least You Need to Know about HTML, CSS, and the Web

 color: #FFFFFF;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 12px;
 }

.bold_text {
 font-weight: bold;
 }

h1 {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-weight: bold;
 font-size: 17px;
 color:#96CDFF;
 }

a:link {
 font-weight : bold;
 text-decoration : none;
 color: #FF7A00;
 background: transparent;
 }
a:visited {
 font-weight : bold;
 text-decoration : none;
 color: #91a3b4;
 background: transparent;
 }

a:hover {
 color: #FA0000;
 background: transparent;
 text-decoration : underline;
 }

a:active {
 color: #494949;
 background: transparent;
 font-weight : bold;
 text-decoration : underline;
 }

</style>
</head>

<body>
<table width=”794” border=”0” align=”center” cellpadding=”0” cellspacing=”0”>
 <tr>
 <td>
<!-- Top graphic of Ed and title -->
 <img src=”images/header.gif” alt=”header graphic” width=”794”
 height=”160”></td>
 </tr>
 <tr>

(continued)

05_238479 ch01.indd 2705_238479 ch01.indd 27 4/10/08 9:23:54 PM4/10/08 9:23:54 PM

28 Part I: Getting to Know (X)HTML and CSS

Listing 1-1 (continued)
<!-- Text about Ed -->
 <td class=”white_text”><h1>About me: </h1>
 <p class=”white_text”>
 Ed Tittel has been working in and around the computer industry since the
 early 1980s, at which point he left academia to work as a programmer. After
 seven years of writing code and managing development projects, he switched
 to the softer side of the industry in pre-sales technical and marketing
 roles. In the period from 1981 to 1994 he worked for 6 companies that
 included Information Research Associates, Burroughs, Schlumberger, and
 Novell.</p>
 <p class=”white_text”>Ed started writing about computing subjects in 1986
 for a Macintosh oriented monthly magazine. By 1989 he had contributed to
 such publications as LAN Times, Network World, Mac World, and LAN Magazine.
 He worked on his first book in 1991, and by 1994 had contributed to over a
 dozen different titles.</p>
 <p class=”white_text”>Ed has been freelancing full-time since 1994, with two
 brief stints of other employment interspersed therein (1987-8 at Tivoli,

 and 2006 at NetQoS, Inc.). He has contributed to over 140 computer
 books, including numerous ...For Dummies titles, college textbooks,
 certification preparation materials, and more. These days, Ed revises an
 occasional book, writes for Tom’s Hardware, TechTarget, and Digital Landing,
 and teaches online courses for large corporations including AOL, HP, Sony,
 and Motorola.</p>
 <p class=”white_text”>To learn more about Ed’s professional history, please
 read his professional bio.</p>
 <h1>Contact:</h1>
 <p class=”white_text”>Email: etittel at yahoo
 dot com

 Address: 2443 Arbor Drive, Round Rock, TX
 78681-2160

 Phone: 512-252-7497 (No solicitors,
 please)

 List of publications available in:
 MS Word

 Resume available in:
 MS Word
 </p>
 </td>
 </tr>
</table>
</body>
</html>

That’s a huge amount of HTML to pore over at the very beginning of this
book. Please take our word for it, though: If you read enough of this book’s
contents, all of it will make perfect sense!

05_238479 ch01.indd 2805_238479 ch01.indd 28 4/10/08 9:23:54 PM4/10/08 9:23:54 PM

Chapter 2

Creating and Viewing
a Web Page

In This Chapter
� Planning your Web page

� Writing some HTML

� Saving your page

� Viewing your page offline and online

Creating your very own Web page may seem daunting, but it’s
definitely fun, and our experience tells us that the best way to get

started is to jump right in with both feet. You might splash around a
bit at first, but you can keep your head above water without too much
thrashing.

This chapter walks you through four basic steps to create a Web page.
We don’t stop and explain every nuance of the markup you use — we
save that for other chapters. Instead, we want to make you comfortable
working with markup, and content to create and view a suitably simple
Web page.

Before You Get Started
Creating HTML documents differs from creating word-processor docu-
ments using an application like Microsoft Word because you end up
having to use two applications:

 � You create the Web pages in your text or HTML editor.

 � You view the results in your Web browser.

Even though many HTML editors, such as Dreamweaver and HTML-Kit,
provide a browser preview, it’s still important to preview your Web

06_238479 ch02.indd 2906_238479 ch02.indd 29 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

30 Part I: Getting to Know (X)HTML and CSS

pages inside actual Web browsers (such as Internet Explorer, Firefox, or
Safari) so you can see them as your end users do. It might feel a bit unwieldy
to edit inside one application and then switch to another to look at your
work, but you’ll be switching from text editor to browser and back like a pro
in (almost) no time.

To get started on your first Web page, you need two types of software:

 � A text editor, such as Notepad, TextPad, or SimpleText

 We discuss these tools in more detail in Chapter 22, but here’s the
thumbnail sketch. Notepad is the native text editor in Windows. TextPad
is a shareware text editor available from www.textpad.com.
SimpleText is the native text editor in the Macintosh operating system.

 � A Web browser

We’re going to recommend that you use a plain text editor for your first Web
page and here’s why:

 � An advanced HTML editor, such as HotDog Professional or
Dreamweaver, often hides your HTML from you. For your first page, you
want to see your HTML in all of its (limited) glory.

 You can make a smooth transition to a more advanced editor after you
become familiar with (X)HTML and CSS markup, syntax, and document
structure.

 � Word processors decked out with all the bells and whistles (such as
Microsoft Word, in other words) usually insert lots of extra file informa-
tion behind the scenes (for example, formatting instructions to display
or print files). You can’t see or change that extra information while
you’re editing, but what’s worse, it interferes with your (X)HTML.

Creating a Page from Scratch
Using HTML to create a Web page from scratch involves four straightforward
steps:

 1. Plan your page design.

 2. Combine HTML and text in a text editor to make that design a reality.

 3. Save your page.

 4. View your page in a Web browser.

So break out your text editor and Web browser — and roll up your sleeves.

06_238479 ch02.indd 3006_238479 ch02.indd 30 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

31Chapter 2: Creating and Viewing a Web Page

Step 1: Planning a simple design
We’ve discovered that a few minutes spent planning your general approach to
a page at the outset of work makes the page-creation process faster and easier.

You don’t have to create a complicated diagram or elaborate graphical dis-
play in this step. Just jot down some ideas for what you want on the page and
how you want it arranged.

You don’t even have to be at your desk to plan a simple design. Take a note-
pad and pencil outside and design in the sun, or scribble on a napkin while
you’re having lunch. Remember, this is supposed to be fun.

The example in this chapter is our take on the traditional “Hello World” exer-
cise used in just about every existing programming language: The first thing
you learn when tackling a new programming language is how to display the
phrase Hello World on-screen. In our example, we create a short letter to
the world instead, so the page is a bit more substantial and gives you more
text to work with. Figure 2-1 shows our basic design for this page.

Figure 2-1:
Taking a

few minutes
to sketch

your page
design

makes writ-
ing HTML

easier.

Title – Hello World

Notes: Teal background
White text

Letter Paragraphs

Sincerely,
Jeff Noble
Ed Tittel

06_238479 ch02.indd 3106_238479 ch02.indd 31 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

32 Part I: Getting to Know (X)HTML and CSS

The basic design for the page includes four basic components:

 � A serviceable title: “Hello World!”

 � A few paragraphs explaining how HTML can help you communicate with
the whole world

 � A closing of “Sincerely”

 � A signature

Jot down some notes about the color scheme you want to use on the page. For
our example page we use a teal background and white text, and its title should
be “HTML Makes the Web Go Round.”

When you know what kind of information you want on the page, you can
move on to Step 2 — writing the markup.

Step 2: Writing some HTML
You have a couple of different options when you’re ready to create your
HTML. In the end, you’ll probably use some combination of these:

 � If you already have some text that you just want to describe with HTML,
save that text as a plain-text file and add HTML markup around it.

 � Start creating markup and add the content as you go.

Our example in this chapter starts with some text in Word document format.
We saved the content as a text file, opened the text file in our text editor, and
added markup around the text.

To save a Word file as a text document, choose File➪Save As. In the dialog box
that appears, choose Text Only (*.txt) from the Save As Type drop-down list.

Figure 2-2 shows how our draft letter appears in Microsoft Word before we
convert it to text for our page.

Figure 2-2:
The letter
that is the

text for
our page,
in word-

processing
form.

06_238479 ch02.indd 3206_238479 ch02.indd 32 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

33Chapter 2: Creating and Viewing a Web Page

Listing 2-1 shows you what you must add to the prose from Microsoft Word
to turn it into a fully functional HTML file.

Listing 2-1: The Complete HTML Page for the ‘Hello World!’ Letter
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

 <head>
 <title>HTML Makes the Web Go Round</title>
 </head>

 <body type=”text/css”
 style=”color: white;
 background-color: teal;
 font-size: 1.2;
 font-family: sans-serif”>

 <h1>Hello World!</h1>

 <p>We sincerely believe that basic HTML knowledge is essential to
 designing, building, and maintaining readable and workable Web
 pages. Our goal in this book is to explain what HTML, XHTML, and
 CSS are and how they work, and then to show you exactly how to
 use them to best advantage.
 </p>

 <p>Along the way, we will examine the principles and best practices
 that govern Web page design and construction, and help you
 understand how to make your content accessible to the broadest
 possible audience.
 </p>

 <p>By the time you work your way through this book’s contents, you
 should feel comfortable with creating and managing your own Web
 site. You should also understand what it takes to identify your
 audience, communicate with that audience, and keep your content
 fresh and interesting to keep them coming back for more.
 </p>

 <p>Sincerely,

 Jeff Noble and Ed Tittel, your humble authors
 </p>

 </body>
</html>

06_238479 ch02.indd 3306_238479 ch02.indd 33 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

34 Part I: Getting to Know (X)HTML and CSS

The HTML markup includes a collection of markup elements and attributes
that describe the letter’s contents:

 � The <html> element defines the document as an HTML document.

 � The <head> element creates a header section for the document.

 � The <title> element defines a document title that is displayed in the
browser’s title bar.

 The <title> element is inside the <head> element.

� The <body> element holds the text that appears in the browser window.

 The markup that follows the style=” “ attribute inside the <body>
element is CSS, otherwise known as the Cascading Style Sheet markup
language. It says we want white text on a teal background, where the
text is larger than usual, and in a sans-serif font. (You’ll find out all about
styles and attributes in Chapters 8 and 9.)

 � The <h1> element marks the Hello World text as a first-level heading.

 � The <p> elements identify each paragraph of the document.

 � The
 element adds a manual line break after Sincerely.

Don’t worry about the ins and outs of how the HTML elements work. They are
covered in detail in Chapters 4 and 5. Also, please note that a Web page can
include graphics, scripts, and other elements that we deliberately avoid in this
contrived and simple example to keep things . . . well . . . simple! We will cover
all these extras in profuse detail later in the book, though.

After you create a complete HTML page (or the first chunk of it that you want
to review), you must save it before you can see your work in a browser.

Step 3: Saving your page
You use a text editor to create HTML documents and a Web browser to view
them, but before you can let your browser loose on your HTML page, you
must save that page. When you’re just building a page, you should save a
copy of it to your local hard drive and view it locally with your browser.

Choosing a location and name for your file
When you save your file to your hard drive, keep the following in mind:

 � You need to be able to find it again.

Create a folder on your hard drive especially for your Web pages. Call it
Web Pages or HTML (or any other name that makes sense to you), and
be sure to put it somewhere easy to find.

06_238479 ch02.indd 3406_238479 ch02.indd 34 4/10/08 9:25:12 PM4/10/08 9:25:12 PM

35Chapter 2: Creating and Viewing a Web Page

� The name should make sense to you so you can identify file contents
without actually opening the file.

 � The name should work well in a Web browser.

 Don’t use spaces in the name. Some operating systems — most notably
Unix and Linux (the most popular Web-hosting operating systems
around) — don’t tolerate spaces in filenames; use an underscore (_)
or hyphen (-) instead. It’s also a good idea to avoid other punctuation
characters in filenames, and in general, to keep them as short as
you can.

In our example, we saved our file in a folder called Web Pages and named it
(drum roll, please) html_letter.html, as shown in Figure 2-3.

Figure 2-3:
Use a handy
location and

a logical
filename

for HTML
pages.

.htm or .html
You can actually choose from one of two suffixes for your pages: .html or
.htm. (Our example filename, html_letter.html, uses the .html suffix.)

The shorter .htm is a relic from the “8.3” DOS days when filenames could only
include eight characters plus a three-character suffix that described the file’s
type. Today, operating systems can support long filenames and suffixes that
are longer than three letters, so we suggest you stick with .html.

Web servers and Web browsers handle both .htm and .html equally well.

Stick with one filename option. .html and .htm files are treated the same
by browsers and servers, but they’re actually different suffixes, so they create
different filenames. (The name html_letter.html is different from html_
letter.htm.) This difference matters a lot when you create hyperlinks (cov-
ered in Chapter 6).

06_238479 ch02.indd 3506_238479 ch02.indd 35 4/10/08 9:25:13 PM4/10/08 9:25:13 PM

36 Part I: Getting to Know (X)HTML and CSS

Step 4: Viewing your page
After you save a copy of your page, you’re ready to view it in a Web browser.
Follow these steps to view your Web page in Internet Explorer. (Steps may be
different if you’re using a different browser.)

 1. If you haven’t opened your browser, do that now.

 2. Choose File➪Open.

 3. In the Open dialog box that appears, click the Browse button.

 4. In the new dialog that appears, navigate your file system until you
find your HTML file, and then select it so it appears in the File name
area.

 Figure 2-4 shows a highlighted HTML file, ready to be opened.

Figure 2-4:
Use Internet

Explorer to
navigate to

your Web
pages.

 5. Click the Open button,

 You are brought back to the Open dialog box. (Note: Newer versions of
IE will warn you they must open a new browser window for your local
file, for security reasons, if you’re already connected to the Internet; this
is perfectly OK.)

 6. Click OK.

 The page appears in your Web browser in all its glory, as shown in
Figure 2-5.

06_238479 ch02.indd 3606_238479 ch02.indd 36 4/10/08 9:25:13 PM4/10/08 9:25:13 PM

37Chapter 2: Creating and Viewing a Web Page

Figure 2-5:
Viewing a

local file in
your Web
browser.

You aren’t actually viewing this file on the Web just yet; you’re just viewing a
copy of it saved on your local hard drive. So don’t give anyone the URL for this
file yet — but do feel free to edit the HTML source file and view any changes
you make.

An even faster way to view a Web page locally in a browser is to drag and drop
the HTML file into an open browser window. You can do this from Windows
Explorer or any other program that gives you file-level access.

Editing an Existing Web Page
Chances are you’ll want to change one thing (at least) about your page after
you view it in a Web browser for the first time. After all, you can’t really
see how the page is going to look when you’re creating the markup, and
you might decide that a first-level heading is too big or that you really want
purple text on a green background (horrible idea, actually).

To make changes to the Web page you’ve created in a text editor and are
viewing in a browser, repeat these steps until you’re happy with the final
appearance of your page:

06_238479 ch02.indd 3706_238479 ch02.indd 37 4/10/08 9:25:13 PM4/10/08 9:25:13 PM

38 Part I: Getting to Know (X)HTML and CSS

 1. Leave the browser window with the HTML page display open, and go
back to the text editor.

 2. If the HTML page isn’t open in the text editor, open it.

 You should have the same file open in both the browser and the text
editor, as shown in Figure 2-6.

 3. Make your changes to the HTML and its content in the text editor.

 4. Save the changes.

 This is an important step. If you don’t save your changes, you won’t see
them in the Web browser.

 5. Move back to the Web browser and click the Refresh button.

If you keep the HTML file open in both the text editor and the browser while
you work, checking changes is a breeze. You can quickly save a change in the
editor, flip to the browser and refresh, flip back to the editor to make more
changes, flip back to the browser and refresh, and so on.

In our example letter, we decided — after our initial draft of the HTML
page — that we should add a date to the letter. Figure 2-7 shows the change
we made to the HTML to add the date, and the resulting display in the
Web browser.

Figure 2-6:
Viewing

an HTML
file in your
text editor
and Web

browser at
the same

time.

06_238479 ch02.indd 3806_238479 ch02.indd 38 4/10/08 9:25:14 PM4/10/08 9:25:14 PM

39Chapter 2: Creating and Viewing a Web Page

Figure 2-7:
A change in
the HTML is
displayed in

a browser
after a quick

save and
refresh.

This approach to editing an HTML page applies only to pages saved on your
local hard drive. If you want to edit a page that you’ve already stored on a
Web server, you have to save a copy of the page to your hard drive, edit it,
verify your changes, and then upload the file again to the server, as discussed
in the following section.

Posting Your Page Online
After you’re happy with your Web page, it’s time to put it online. Chapter
3 includes a detailed discussion of what you need to do to put your page
online, but to sum it up in a few quick steps:

 1. Find a Web hosting provider to hold your Web pages.

 Your Web host might be a company Web server or space that you
pay an Internet service provider (ISP) for. If you don’t have a host
yet, double-check with the ISP you use for Internet access — find
out whether you get some Web-server space along with your access.
Regardless of where you find space, get details from the provider on
where to move your site’s files and what your URL will be.

06_238479 ch02.indd 3906_238479 ch02.indd 39 4/10/08 9:25:15 PM4/10/08 9:25:15 PM

40 Part I: Getting to Know (X)HTML and CSS

 2. Use an FTP client or a Web browser to make a connection to your
Web server.

 Use the username and password, as specified in the information from
your hosting provider, to open an FTP session on the Web server.

 3. Copy the HTML file from your hard drive to the Web server.

 4. Use your Web browser to view the file via the Internet.

For example, to host our letter online at www.edtittel.com/examples/
ch02, we used Internet Explorer to access the site and provided the appro-
priate name and password, which you get from your ISP. A collection of fold-
ers and files appeared.

We copied the file to the server with a simple drag-and-drop operation from
Windows Explorer to Internet Explorer.

The URL for this page is http://www.edtittel.com/examples/ch02/
html_letter.html, and the page is now served from the Web browser
instead of from a local file system, as shown in Figure 2-8.

Chapter 3 has details on how to serve your Web pages to the world.

Figure 2-8:
A file on a

Web server
is available

to anyone
with an
Internet

connection.

06_238479 ch02.indd 4006_238479 ch02.indd 40 4/10/08 9:25:15 PM4/10/08 9:25:15 PM

Chapter 3

Proper Planning Prevents Poor
Page Performance

In This Chapter
� Planning your Web page

� Defining your Web site hierarchy

� Creating user-friendly navigation

� Hosting your site

� Uploading and editing your Web site

The overall design of your site is its user interface (UI). When you
design a good UI, you give users tools to move through your site

with minimum fuss. This chapter outlines standard Web-site design
principles for your (X)HTML and CSS. These principles can ensure a
usable and effective UI.

The UI is the mechanism that gives a user access to the information
on your Web site. Each UI is unique, but they’re all made from the
same components (text, graphics, and media files), and they’re all held
together with (X)HTML.

Visitors probably won’t return to your site if

 � It’s hard to navigate

 � It’s cluttered with flashing text and clashing colors

 � It doesn’t help people find what they’re looking for

You’ve created a solid UI if

 � Your site’s navigation is intuitive.

 � Images and media accent your design without overpowering it.

 � You do all you can to help people find the information they want.

07_238479 ch03.indd 4107_238479 ch03.indd 41 4/10/08 10:50:55 PM4/10/08 10:50:55 PM

42 Part I: Getting to Know (X)HTML and CSS

This chapter walks you through simple steps to design a Web site and your
basic Web page. (Other chapters explain every nuance of the markup.)

Planning Your Site
An important first step in creating an effective UI for a site has nothing to do
with markup, but has everything to do with planning. Before your site grows
too large (or before you even build your site if you haven’t yet started),
scope out your site’s exact purpose and goals. When you know your site’s
scope and goals, you can better create an interface to embody them.

Before designing your site, ask yourself these questions:

 � Why are you creating this site?

 � What do you want to convey to users?

 � Who is your target audience? For example

 • What’s the average age of your users?

 • How well does your audience work with the Internet?

 � How many pages do you need in your site?

 � What type of hierarchy will you use to organize your pages? For exam-
ple, you can create your site so users go through it linearly, or you can
allow them to jump around from topic to topic.

If you can answer these questions, you can better understand your site’s
goals and needs. For example, an online store might have these goals:

 � Let visitors browse an online catalog and put items in a shopping cart.

 � Provide visitors a way to purchase the items in their cart online.

 � Help users make smart purchasing decisions.

 � Ease merchandise returns and exchanges.

 � Solicit feedback from users about products they want to see in the
catalog or ways to make the site better.

Stating clear goals will help you get a better sense of what you must do on
your Web site to fulfill these goals. To do the things an online store does, for
example, your site is going to need the following:

 � An online catalog, complete with shopping cart

 � Buying guides or other information that can help users make better
purchasing decisions

07_238479 ch03.indd 4207_238479 ch03.indd 42 4/10/08 10:50:55 PM4/10/08 10:50:55 PM

43Chapter 3: Proper Planning Prevents Poor Page Performance

 � A help-and-feedback section, perhaps with message forums to let users
and experts interact

 � A set of tools to expedite returns and exchanges

When you establish goals for your site, you can identify those elements best
suited for inclusion, such as

 � A navigation system that identifies the major areas of the site, to help
users

 • Quickly identify what part they’re in

 • Move from one part of the site to others without getting lost

 � A set of standard design elements, such as buttons, page-title styles, and
color specifications, to keep users oriented as they move from page to
page in the same site

 � A standard display for catalog items, including product-related informa-
tion, such as product images and descriptions, prices, and availability
data

 � Well-designed forms to help users find products in the catalog, purchase
items to put in their shopping carts, request a refund or help returning
an item, and submit comments to the site

 � Long text pages that offer extensive information on purchasing options,
product returns, and other helpful information — but are still easy to
read and to navigate

Your site’s goals should dictate your site’s

 � UI elements

 When you add to an existing site, identify UI elements that

 • Meet the goals of the new section of the site

 • Complement the overall site UI design

 � Design

 � Organization

07_238479 ch03.indd 4307_238479 ch03.indd 43 4/10/08 10:50:55 PM4/10/08 10:50:55 PM

44 Part I: Getting to Know (X)HTML and CSS

Mapping your site
It’s easier to get where you’re going if you know how to get there. Mapping
your Web site can be a vital step in planning — and later running — that site.
This process involves two creative phases:

 � Creating a visual guide on paper or electronically that you can use to
guide the development of your site

 � Creating a visual guide on your Web site to help visitors find their
way around once it’s built

Both have a place in good UI design, so each gets its own section.

Using a map for site development
When you use a site map during the development of a Web site — even a
Web site that includes only a few pages — you can identify

 � Pages that you need to build

 � How pages relate to each other

 � Navigation elements that you need

Design matters
This chapter recommends good design princi-
ples, but it’s up to you to choose color schemes
and the overall look and feel. What looks great
to one person may be ugly to someone else.

If you’re building a site for your business, that
site can provide a first impression for potential
customers or clients. The site should reflect
your business style. If you run an architecture
firm, for example, strong lines and a clean look
may be the best way to present your company
image. If you run a flower shop, your site may
be a bit more organic and decorated (okay,
flowery) to remind visitors what to expect if they
walk into your store.

If you’re new to Web design or graphics and
you need a site that marks your business pres-

ence on the Web, consider getting help from a
Web-design professional. Use the images, lay-
outs, and navigational aids they create to build
and manage the site yourself. Once established,
a distinctive and consistent look and feel for
your site is easy to maintain.

Regardless of who designs your site, take the
time to get a critique from peers, friends, family
members, and anyone else who is willing to be
honest about how good (and even how bad) it
looks. A negative-but-constructive critique from
someone who knows and respects you beats a
“Gee, that’s ugly” from someone whose busi-
ness you are trying to acquire.

07_238479 ch03.indd 4407_238479 ch03.indd 44 4/10/08 10:50:55 PM4/10/08 10:50:55 PM

45Chapter 3: Proper Planning Prevents Poor Page Performance

As a bonus, a map provides you with a checklist of pages.

For example, Figure 3-1 shows part of the site map for the Citrixxperience
Web site (www.citrixxperience.com/map.php).

This map shows that the site has several main sections. Three of those sec-
tions — product list, product information, and study materials — are each
further divided into subsections. Each subsection page offers links that are
pertinent to that particular subsection.

Figure 3-1:
The site
map for
the Citr-

ixxperience
Web site.

Don’t create under construction sections that don’t include much of anything
except the hint that something will appear someday. Users are disappointed if
your site merely hints at information it doesn’t really offer. Instead, consider
using a small section of your home page to highlight “coming soon” items so
visitors know new information will be available later on, but don’t integrate
anything that’s not yet accessible into your navigation bar or buttons.

Using a map as a visual guide for your users
A site map can be a supplemental navigational tool that gives users a differ-
ent way to find what they’re looking for. A site map lays out all contents of
your site so visitors can see all their options at once.

People have many approaches to finding information. Give visitors as many
options as you can (realistically) to help them navigate within your site:

07_238479 ch03.indd 4507_238479 ch03.indd 45 4/10/08 10:50:55 PM4/10/08 10:50:55 PM

46 Part I: Getting to Know (X)HTML and CSS

 � Some people like to be led.

 � Some people like to rummage around.

 � Some people like to see every possible option and choose one.

Site maps grow as your site grows. If your site is large and complex, your map
may take several screens to display. When you surf the Web, massive sites
such as Microsoft.com, HP.com, and Amazon.com don’t offer site maps
because maps of their sites would be huge and unwieldy. But smaller Web
sites (such as Symantec.com) use site maps effectively.

You need to decide whether a site map is a good navigation tool for your site.
Here are some points to ponder as you make this decision:

 � A site map may be unnecessary if you have only a few pages.

 � A site map may be the best choice if

 • Your site has several sections.

 • You can’t think of other ways to access your content.

Many experts believe that sitemap pages are always good. They’re especially
good for visitors who surf the Web using assistive devices (screen readers,
Braille printers, and so forth). They’re also handy for navigating a site that
lacks footer links or that uses graphics instead of HTML markup as its
primary navigation technique. It also helps users who have turned their
browser’s JavaScript function off find their way around (sites that use
rollover images for navigation become unusable in that case). As an added
bonus, sitemaps also help search engines map out all the pages on a site.

If you build your site one piece at a time . . .
If you plan to build your Web site a page or
section at a time, you can create a map of the
final site and then decide which pages make
the most sense to build first. When you have a
good working idea of how your site will expand,
you can plan for further expansion during each
stage. For example, suppose you create a site
map for your company’s Web site, and the site
needs a FAQ. If that section isn’t quite finished
when the site launches, disaster need not ensue
— provided someone planned ahead to accom-
modate new sections and built that capability
into the site. Just leave out links to (and men-
tions of) the FAQ when you launch the site.

When the FAQ section is ready, you

 � Add the section to the site.

 � Add a link to the main navigation elements.

If you know the resources are coming, you can
create a navigation scheme that easily accom-
modates the FAQ when it’s ready to go. Without
a site map and a complete plan for the site,
however, integrating new sections can suck up
lots of time and effort.

07_238479 ch03.indd 4607_238479 ch03.indd 46 4/10/08 10:50:56 PM4/10/08 10:50:56 PM

47Chapter 3: Proper Planning Prevents Poor Page Performance

Building solid navigation
The navigation you use on your site can make it or break it. If visitors can’t
find what they’re looking for on your site, they’ll probably leave and never
come back. The type of navigation you use on your site depends on

 � How many pages are on your site

 If you have only a few pages, your navigation might be a simple list of
links on the home page to help users jump to each of the other pages.

 � How you organize your pages

 If your site has many pages organized into different sections, your home
page might link only to those sections (not to each page).

For example, the Dummies.com site houses a large collection of pages orga-
nized as a variety of sections; it would be impractical to link to all the pages
in any navigation scheme. Also, the site includes articles on a wide variety of
topics, as well as book information. The site could be organized into books
and articles, but visitors are more likely to look for information on a specific
subject, so the site is organized by topic. The home page, shown in Figure
3-2, prominently displays these different topic areas on the left.

Figure 3-2:
The

Dummies.
com site is
organized

by topic.

07_238479 ch03.indd 4707_238479 ch03.indd 47 4/10/08 10:50:56 PM4/10/08 10:50:56 PM

48 Part I: Getting to Know (X)HTML and CSS

When you click one of these topic areas, the remaining topic areas stay avail-
able in a navigation bar across the top of the page (as shown in Figure 3-3).
You don’t have to return to the home page to jump from topic to topic.

Figure 3-3 shows that each topic has its own sub-navigation area (at left,
echoing the layout of the home page) that lists subtopics within the topic.
The links are different, but the general navigation scheme is consistent
throughout the site. That tells visitors what to expect as they move around
the site.

The topmost navigation area of each page includes a regular collection of
links that appears on every page of the site to help visitors quickly access
important areas from anywhere: a search box, account information, a shop-
ping cart, and help. At the bottom, every page has the same set of links to
information on the For Dummies Web site, a form to register for eTips, a
sign up for RSS feeds, book registration, a contact link, the site copyright
statement, and the site privacy policy. (Sorry, you’ll have to look at that for
yourself; I couldn’t fit the bottom part of the page into Figure 3-3.) Like the
shopping cart and help links, these links have to be on every page, but they
need not be displayed prominently. Adding them to a consistent site footer
keeps them accessible to visitors without obscuring key content for any
given topic or subtopic.

Figure 3-3:
The main

topic areas
on this site
are acces-
sible from

the top navi-
gation bar.

07_238479 ch03.indd 4807_238479 ch03.indd 48 4/10/08 10:50:56 PM4/10/08 10:50:56 PM

49Chapter 3: Proper Planning Prevents Poor Page Performance

If you create a map to aid site development, it can also help you choose the
navigational tools to create for your site. Consider each page on the map in
turn; list the links that each page has to include. Normally a pattern emerges
that can help you identify the main navigation elements your site needs (such
as links to all main topic areas and copyright information, as on the For
Dummies site), as well as sub-navigation tools (such as links to subtopics on
the topic pages).

After you know what tools you need, you can begin to design a visual scheme
for your UI. Do you want to use buttons across the top, buttons down the
side, or both? Do you need a footer that links to copyright or privacy infor-
mation? If you have sections within sections within sections, how can you
best help people navigate through them? Answering questions like these is
the route to a solid navigation system that helps users find their way around
your site — letting them focus on what they came for, and not on how to
get there.

Whatever navigation scheme you devise, always give your visitors a way to
get back to your home page from wherever they are on the site. Your site’s
home page is the gateway to the rest of the site. If visitors get lost or want to
start again, make sure they can get back to Square One with no trouble.

After you design a site navigation scheme and put together a few pages, ask
someone who isn’t familiar with your site to use it. To help them along, give
them a list of three or four tasks you’d like them to complete — pages to visit
or a form to fill out, for example. If your test visitor gets lost or has lots of
questions about how to navigate, you should rework your scheme. Your
reviewer might also have suggestions on ways to make navigation features
clearer and easier to use. You might know your site and its content too well to
find navigation issues that a first-time user will discover immediately.

Planning outside links
The Web wouldn’t be the Web without hyperlinks — after all, hyperlinks
connect your site to the rest of the Web, and turn a collection of pages into
a cohesive site. But overusing or misusing links can detract from your site —
and even cost you some business.

Choose off-site links wisely
Internal linking is almost a walk in the park compared to external linking —
after all, when you link to pages on your own site, the pages those links point
to are under your control. You know what’s on them today and what will be on
them tomorrow, and even whether they will exist tomorrow. When you link
to resources on someone else’s site, however, all bets are off:

07_238479 ch03.indd 4907_238479 ch03.indd 49 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

50 Part I: Getting to Know (X)HTML and CSS

 � You don’t maintain those pages.

 � You can’t modify their content.

 � You certainly won’t know when they will disappear.

 Neither will your visitors — until they slam into a 404 File or
directory not found message (the usual sign of a broken link that
now goes nowhere). The text in 404 messages varies depending on the
server that hosts the Web site with the broken link.

Links to other sites are more useful when they’re stable and have less chance
of breaking. We recommend these guidelines:

 � Link to a section of a site, not to a specific page.

 Pages come and go, but the general organization usually stays the same.

 � Link to corporate Web sites.

 Corporate sites have more staying power than sites maintained by an
individual.

 � Don’t link directly to media files such as PDFs and images.

 If you want to link to resources on another Web site, link to the Web
page that links to the resources instead of the actual media files. Sites
often update resources or give them new names. The page that links to
the resource, however, is almost always certain to be updated to reflect
new names. Therefore the resource page is a safer linking bet.

Linking to other sites implies your support or endorsement of those sites. When
visitors follow links from your site to other sites, they assume you approve of
that new site. That makes a couple of guidelines necessary:

 � If you don’t want to be associated with content on another site, don’t
link to the site.

 The only way to find out whether you approve of a seemingly relevant
site is to visit it and check it out before you link.

 � Periodically review your links. Be sure that

 • The sites’ owners are the same.

 • The content is appropriate.

 When domain names expire, new owners may take them over and post
new content that’s either

 • Completely irrelevant

 • Damaging to your image, as with pornography

07_238479 ch03.indd 5007_238479 ch03.indd 50 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

51Chapter 3: Proper Planning Prevents Poor Page Performance

Craft useful link text
The text you associate with links is as important as the links you use on your
site. That text gives users a hint about where the link takes them so they
can decide whether to go along for the ride. For example, Visit Dummies.
com to read more about this book is more helpful than Read more
about this book.

The first example tells visitors that they’re going to leave the current site to
visit Dummies.com and read more about a book there. The second just tells
them they’re going to read more about the book — and they may be sur-
prised to find themselves flung off one site and onto another.

Generally, when you create link text, let users know the following:

 � Whether they’re leaving your site or not

 � What kind of information the page they’re linking to contains

 � How the linked site relates to the current content or page

The goal of your link text should be to inform users and build their trust. If
your link text doesn’t give them solid clues about what to expect from your
links, they just won’t trust your links — and won’t follow them.

Avoid the use of click here in any link you create. If your link text is well-
crafted, you don’t need the extra words to prompt the user to click a link. Link
text should speak for itself: let it invite a click, rather than demanding one.

Hosting Your Web Site
The first (and most important) step in putting your pages online is finding
someplace on the Web to put them on display — a host. In general, you have
two choices for hosting your pages:

 � Host them yourself.

 � Pay someone else to host them.

The word host is used in the Web industry to mean a Web server set up to
hold Web pages (and related files) so they can be accessed by the rest of the
world. This chapter uses host as both

 � Noun: The host is the physical machine that holds the Web pages

 � Verb: Hosting is the act of serving up the Web pages

07_238479 ch03.indd 5107_238479 ch03.indd 51 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

52 Part I: Getting to Know (X)HTML and CSS

You have to decide whether to host your own pages or to pay someone else
to host them for you. This chapter describes both approaches — and gives
you the skinny on each one. You can decide which option is best for you.

You aren’t stuck with a hosting decision for life. If you find hosting your own
pages overwhelming, you can move your files to a service provider (or vice
versa, if the provider’s service is underwhelming). To decide which hosting
option is best for you, consider your needs for the next year, but plan to
review your needs in no more than six months.

Hosting your own Web site
This section illustrates an average-size site (up to about 100 pages) that
doesn’t include more than a couple of multimedia files and doesn’t have any
special security or electronic commerce (e-commerce) applications.

If you need to run a complex site, such as a large corporate site or an online
store, you need more expertise, equipment, and software than this section
outlines. The following resources can help:

 � Books such as E-Commerce For Dummies and Webmastering For
Dummies, 2nd Edition (both from Wiley Publishing) can get you started
setting up e-commerce and other complex sites.

 � Consult a Web professional who has practical experience building and
maintaining complex Web sites.

You can set up your own Web server and host your Web pages yourself. To
do this, you need:

 � A computer designated as your Web server: Web servers are often
dedicated to this task, leaving word-processing and other activities to a
different computer.

 � Web-server software: Common Web-server software packages include
Apache and Microsoft Internet Information Server (IIS), called Internet
Information Services in Windows 2000 and later.

 In the Web world, the term Web server refers to both

 • A dedicated computer (the actual hardware)

 • Web-server software

 You can’t use one without the other.

 � A dedicated Internet connection: Your Web server isn’t useful or reli-
able if it connects to the Internet only when you fire up a dialup link.

07_238479 ch03.indd 5207_238479 ch03.indd 52 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

53Chapter 3: Proper Planning Prevents Poor Page Performance

If hosting a Web site yourself sounds complicated and expensive, you’re
right. Not only do you have to pay for the equipment and an Internet connec-
tion, but you also have to know how to set up and administer a Web server
and keep all its pieces working 24/7. Whenever possible, consider a hosting
provider first.

Using a hosting provider
A hosting provider manages all the technical aspects of Web hosting, from
hardware to software to Internet connections. You just manage your Web
pages. Back when the Web was young, hosting-provider options were
scarce, and what was available was expensive. Times have changed — and
needs have grown — so reasonably priced hosting providers are abundant
nowadays.

If you pay someone else to host your pages, two choices cover all costs:

 � Nothing: Some services actually host your pages for free. That’s it; you
pay zip, zero, nada to put pages on the Web. What’s the catch? You have
to “pay” in other ways, usually by letting advertising appear on your
site.

 � Something: Most Web-hosting services, however, do charge a fee, from
a few dollars to triple digits per month. The trick to making the most of
your hosting budget is to find just the right service to meet your needs.

Read more about inexpensive Web hosting options at:

http://www-thehostingchart.com

Obtaining your own domain
A domain name is the high-level address for any given Web site. Examples of
domain names are microsoft.com, apple.com, w3c.org, and dummies.com.

You might want your own domain name (hence your own domain) to reflect
your business name (or even your personality). If you don’t get a domain
name of your own, your pages will be part of someone else’s domain name —
usually your hosting provider’s. For example, a hypothetical personal Web
site hosted without a domain name at io.com would use this URL

http://www.io.com/~edtittel

07_238479 ch03.indd 5307_238479 ch03.indd 53 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

54 Part I: Getting to Know (X)HTML and CSS

With a domain name of edtittel.com, the same Web site would be hosted at

http://www.edtittel.com

One’s easier to remember than the other. Is that a good enough reason to
have your own domain? Maybe . . . maybe not. The bottom line is that busi-
nesses or other entities that want to maintain a constant Web presence
should probably invest in a domain name; hobbyists or enthusiasts don’t
need one.

Any good hosting provider can give you detailed instructions on how to regis-
ter a domain name in the provider’s system or attach your domain name to
your Web site on its computers. If you’re changing over from one hosting pro-
vider to another, your new provider should help you transfer your domain.
Most providers either give you this information up front or have online help to
walk you through the process. If it isn’t immediately clear how to set up your
domain, ask for help. If you don’t get it, change providers.

Moving files to your Web server
After you secure a Web site host or decide to put up your own Web server,
you need a way to move the Web pages you create on your local computer
to the Web server. This isn’t a one-time activity, either. As you maintain your
Web site, you need to move files you’ve built on your local computer to the
Web server to refresh your site.

How you move files to your Web server depends entirely on how your Web
server is set up. Normally, you have a couple of transfer options:

 � The File Transfer Protocol (FTP)

 � A Web interface, provided by your hosting provider, for moving and
managing files

Via FTP
Of these two options, FTP is almost always a possibility. FTP is a standard
way of transferring files on the Internet, and any hosting provider should
offer FTP access to your Web server. When you set up your site with your
provider, it usually gives you written documentation (either on paper or
on the Web) to tell you exactly how to transfer files to your Web server.
Included in that information will be an FTP URL that usually takes the form
ftp://ftp.domain.com.

07_238479 ch03.indd 5407_238479 ch03.indd 54 4/10/08 10:50:57 PM4/10/08 10:50:57 PM

55Chapter 3: Proper Planning Prevents Poor Page Performance

You can use an FTP client such as SmartFTP (www.smartftp.com), WS_FTP
(www.ipswitch.com/Products/WS_FTP/) or CuteFTP (www.globalscape
.com/cuteftp/) to open a connection to this URL (Macintosh users will
probably prefer Fetch at www.fetchsoftworks.com or Cyberduck at
cyberduck.ch). Your provider will give you a username and password to
use to access your Web-server directory on the FTP site. Then you can move
files to your Web site using the client interface. It’s really that easy. If you
want to grab a copy of a file from your Web site and modify it, you can do
that in three steps:

 1. Use the FTP client’s interface to download a copy.

 2. Make your modification.

 3. Use the FTP client’s interface to upload the file.

Each FTP client’s interface is different, but they’re all pretty straightforward.
Chapter 22 includes more information on finding a good FTP client; so when
you find one, spend a few minutes reading its documentation.

You might not need FTP client software to move files to your Web server:

 � Many browsers, such as current versions of Internet Explorer and
Firefox, include basic, built-in FTP support. You can upload or download
files, but you may be unable to create or delete directories.

 � Many Web utilities, such as Dreamweaver, include file-management
capabilities.

Via your hosting provider’s Web site
To enhance usability and reduce technical support calls, many Web hosting
providers offer Web pages to help you upload and manage your Web-site files
without using a separate FTP utility or even the FTP tools inside (X)HTML
editors. Most of these tools let you manage your site in various ways, such as

 � Uploading and downloading files

 � Creating and deleting directories

 � Moving files around

 � Deleting files

If you work with a hosting provider, find out whether it has a set of Web-
based tools for managing your site.

07_238479 ch03.indd 5507_238479 ch03.indd 55 4/10/08 10:50:58 PM4/10/08 10:50:58 PM

56 Part I: Getting to Know (X)HTML and CSS

UI design resources
We recommend these Web sites and books on site and interface design if you want to create
great UIs:

 � For a crash course on Web design basics, read the “Basics” and “Design Process” sections
in “Your Complete Guide to Web Design” at

http://www.webdesignfromscratch.com/

 Webmonkey’s “Site Redesign Tutorial” offers an interesting perspective on what it takes to
rework a site’s design. Read it at

http://hotwired.lycos.com/webmonkey/design/site_building/tutorials/tutorial4.html

 � Jakob Nielsen is committed to creating accessible Web content, which means that all content
is available to all visitors, including those with various handicaps that might prevent them
from following visual or audible cues for navigation. His Web site, http://useit.com, is
chock-full of resources and articles on creating accessible sites.

 � Hey, negative examples are useful too. Web Pages That Suck guides you to good design
by evaluating bad design. Be sure your site doesn’t look like any of those featured at
www.webpagesthatsuck.com.

 � Web Design For Dummies, by Lisa Lopuck (Wiley), is another step in the direction of a sophis-
ticated Web site with a knockout look.

 � Web Usability For Dummies, by Richard Mander and Bud Smith (Wiley), can help you fine-tune
your site to make it amazingly easy to use, which is a great help in keeping your visitors coming
back for more.

Keep these thoughts in mind while you decide on a provider:

 � Read the provider’s documentation before you start to transfer your
files. Every provider’s interface is different.

 � Most providers who offer Web interfaces won’t stop you from managing
your site with FTP.

 Use FTP if the provider’s interface is cumbersome or if you prefer FTP.

07_238479 ch03.indd 5607_238479 ch03.indd 56 4/10/08 10:50:58 PM4/10/08 10:50:58 PM

Part II
Formatting Web

Pages with
(X)HTML

08_238479 pp02.indd 5708_238479 pp02.indd 57 4/10/08 11:45:20 PM4/10/08 11:45:20 PM

In this part . . .

In this part of the book, we describe the markup and
document structures that make Web pages workable

and attractive. To begin with, we examine gross HTML
document structure, including document headers and
bodies, and how to put the right pieces together. After
that, we talk about organizing text in blocks and lists.
Next, we explain how linking works in (X)HTML and how
it provides the glue that ties the entire World Wide Web
together. To wrap things up, we also explain how to add
graphics to your pages. Thus, we cover the basic building
blocks for well-constructed, properly proportioned Web
pages — and not by coincidence, either

08_238479 pp02.indd 5808_238479 pp02.indd 58 4/10/08 11:45:22 PM4/10/08 11:45:22 PM

Chapter 4

Creating (X)HTML Document
Structure

In This Chapter
� Creating a basic (X)HTML document structure

� Defining the (X)HTML document header

� Creating a full-bodied (X)HTML document

The framework for a simple (X)HTML document consists of a head
and body. The head provides information about the document to the

browser, and the body contains information that appears in the browser
window. The first step toward creating any (X)HTML document is defining its
framework.

This chapter covers the major elements needed to set up the basic struc-
ture of an (X)HTML document — including its head and body. We also show
you how to tell the browser which version of HTML or XHTML you’re using.
Although version information isn’t necessary for users, browsers use it to
make sure they display document content correctly for your users.

Establishing a Document Structure
Although no two (X)HTML pages are alike — each employs a unique com-
bination of content and elements to define a page — every properly con-
structed (X)HTML page follows the same basic document structure:

 � A statement that identifies the document as an (X)HTML
document

 � A document header

 � A document body

09_238479 ch04.indd 5909_238479 ch04.indd 59 4/10/08 9:28:54 PM4/10/08 9:28:54 PM

60 Part II: Formatting Web Pages with (X)HTML

Each time you create an (X)HTML document, you start with these three ele-
ments; then you fill in the rest of your content and markup to create an indi-
vidual page.

Although a basic document structure is a requirement for every (X)HTML
document, creating it over and over again gets a little monotonous. Most
(X)HTML-editing tools set up basic document structure automatically when-
ever you open a new document.

Labeling Your (X)HTML Document
At the top of your (X)HTML document sits the Document Type Declaration,
or DOCTYPE declaration. This line of code specifies which version of HTML
or XHTML you’re using, and in turn lets browsers know how to interpret the
document. We use the XHTML 1.0 specification in this chapter because it’s
widely used, and what most browsers and editing tools expect to see.

Adding an HTML DOCTYPE declaration
If you choose to create an HTML 4.01 document instead of an XHTML docu-
ment, you can pick from three possible DOCTYPE declarations:

 � HTML 4.01 Transitional: This is the most inclusive version of HTML
4.01, and it incorporates all HTML structural elements, as well as all
presentation elements:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>

 � HTML 4.01 Strict: This streamlined version of HTML excludes all
presentation-related elements in favor of style sheets as a mechanism
for driving display:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

 � HTML 4.01 Frameset: This version begins with HTML 4.01 Transitional
and adds all the elements that make frames possible:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
 “http://www.w3.org/TR/html4/frameset.dtd”>

Adding an XHTML DOCTYPE declaration
To create an XHTML document, use one of the following DOCTYPE
declarations:

09_238479 ch04.indd 6009_238479 ch04.indd 60 4/10/08 9:28:54 PM4/10/08 9:28:54 PM

61Chapter 4: Creating (X)HTML Document Structure

 � XHTML 1.0 Transitional:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 � XHTML 1.0 Strict:

<!DOCTYPE html “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

 � XHTML 1.0 Frameset:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

The XHTML DTD descriptions are similar to the HTML DTD descriptions
defined in Chapter 1.

The <html> element
After you specify which version of (X)HTML the document follows, add an
<html> element to contain all other (X)HTML elements in your page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

</html>

Adding the XHTML namespace
A namespace is a collection of names used by the elements and attributes in
an XML document. XHTML uses a special collection of names; therefore it
needs a namespace that looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

</html>

09_238479 ch04.indd 6109_238479 ch04.indd 61 4/10/08 9:28:54 PM4/10/08 9:28:54 PM

62 Part II: Formatting Web Pages with (X)HTML

Don’t get bogged down by the meaning of namespaces. If you work with other
XML vocabularies, you need to know about namespaces. For simple XHTML
documents, you just need to remember to include the XHTML namespace. The
preceding code snippet shows you exactly how to do so!

Adding a Document Header
The head of an (X)HTML document is one of two main components in a docu-
ment. (The body of the document is the other main component.) The head, or
header, provides basic information about the document, including its title and
metadata (or information about information), such as keywords, author infor-
mation, and a description. If you wish to use a style sheet with your page, you
also include information about that style sheet in the header.

Chapter 8 provides a complete overview of creating Cascading Style Sheets
(CSS) and shows you how to include them in (X)HTML documents.

The <head> element, which defines the page header, immediately follows the
<html> opening tag:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>

 </head>
</html>

Giving your page a title
Every (X)HTML page needs a descriptive title to tell visitors what the page is
about. This text appears in the title bar at the very top of the browser window,
as shown in Figure 4-1. A page title should be concise yet informative. (For
example, My home page isn’t as informative as Jeff’s Web Design Services.)

Define a page title by using the <title> element inside the <head> element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 </head>

</html>

09_238479 ch04.indd 6209_238479 ch04.indd 62 4/10/08 9:28:54 PM4/10/08 9:28:54 PM

63Chapter 4: Creating (X)HTML Document Structure

Figure 4-1:
(X)HTML

page titles
appear in a

Web brows-
er’s window

title bar.

Search engines use <title> contents when they list Web pages in response
to a query. The page title may be the first thing a Web surfer reads about your
page, especially if she finds it using a search engine. In fact, a search engine
will probably list your page title with many others on a search results page,
which gives you only one chance to grab the Web surfer’s attention and con-
vince her to choose your page. A well-crafted title can do just that.

The title is also used for Bookmarks and in a browser’s History; therefore
keep your titles short and sweet.

Defining metadata
The term metadata refers to data about data. In the context of the Web, that
means data that describes your Web page. Metadata for a page may include

 � Keywords

 � A description of your page

 � Information about the page author

 � The software application you used to create the page

Elements and attributes
You define each piece of metadata for your (X)HTML page with

 � The <meta /> element

 � The name and content attributes

For example, the following elements create a list of keywords and a descrip-
tion for a consulting-service page:

09_238479 ch04.indd 6309_238479 ch04.indd 63 4/10/08 9:28:54 PM4/10/08 9:28:54 PM

64 Part II: Formatting Web Pages with (X)HTML

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 <meta name=”keywords”
 content=”Web consulting, page design, site construction” />
 <meta name=”description”
 content=”Synopsis of Jeff’s skills and services” />
 </head>
</html>

Custom names
The (X)HTML specification doesn’t

 � Predefine the kinds of metadata you can include in your page

 � Specify how to name different pieces of metadata, such as keywords and
descriptions

So (for example) instead of using keywords and description as names
for keyword and description metadata, you can just as easily use kwrd and
desc, as in the following markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 <meta name=”kwrd”
 content=” Web consulting, page design, site construction “ />
 <meta name=”desc” content=”Synopsis of Jeff’s skills and services” />
 </head>
</html>

If you can use just any old values for the <meta> element’s name and con-
tent attributes, how do systems know what to do with your metadata? The
answer is — they don’t. Each search engine works differently. Although key-
words and description are commonly used metadata names, many search
engines may not recognize or use other metadata elements that you include.

Many developers use metadata to either

 � Leave messages for others who may look at the source code of the page

 � Prepare for future browsers and search engines that use the metadata

09_238479 ch04.indd 6409_238479 ch04.indd 64 4/10/08 9:28:55 PM4/10/08 9:28:55 PM

65Chapter 4: Creating (X)HTML Document Structure

Although keywords and page descriptions are optional, search engines use
them to collect information about your Web site. Be sure to include detailed
and concise information in your <meta /> tag if you want your Web site dis-
covered by search-engine robots.

Automatically redirecting
users to another page
You can use metadata in your header to send messages to Web browsers
about how they should display (or otherwise handle) your Web page. Web
builders commonly use the <meta /> element this way to redirect page
visitors from one page to another automatically. For example, if you’ve ever
come across a page that says This page has moved. Please wait 10
seconds to be automatically sent to the new location. (or
something similar), you’ve seen this trick at work.

To use the <meta /> element to send messages to the browser, here are the
general steps you need to follow:

 1. Use the http-equiv attribute in place of the name attribute.

 2. Choose from a predefined list of values that represents instructions
for the browser.

 These values are based on instructions that you can send to a browser
in the HTTP header, but changing an HTTP header for a document is
harder than embedding the instructions into the Web page itself.

To instruct a browser to redirect users from one page to another, here’s what
you need to do in particular:

 1. Use the <meta /> element with http-equiv=”refresh”.

 2. Adjust the value of content to specify how many seconds before the
refresh happens and what URL you want to jump to.

For example, the <meta /> element line in the following markup creates a
refresh that jumps to www.w3.org after 15 seconds:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

09_238479 ch04.indd 6509_238479 ch04.indd 65 4/10/08 9:28:55 PM4/10/08 9:28:55 PM

66 Part II: Formatting Web Pages with (X)HTML

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>All About Markup</title>
 <meta http-equiv=”refresh” content=”15; url= http://www.w3.org/” />
 </head>

 <body>
 <p>This page is still in development. Until we are done, please visit
 the W3C Website for the definitive
 collection of markup-related resources.
 </p>

 <p>Please wait 10 seconds to be automatically redirected to the W3C.</p>
 </body>
</html>

Older Web browsers may not know what to do with <meta /> elements that
use the http-equiv element to create a redirector page. Be sure to include
some text and a link on your page to enable a visitor to link manually to your
redirector page if your <meta /> element fails to do its job. (Linking is dis-
cussed in Chapter 2, and uses the anchor (<a>) element.)

If a user’s browser doesn’t know what to do with your redirect, the user
simply clicks a link on the page to go to the new page, as in Figure 4-2.

Figure 4-2:
When you

use a
<meta />
element

to create
a page

redirector,
include a

link in case
the redirec-

tor fails.

You can use the http-equiv attribute with the <meta /> element for a vari-
ety of purposes, such as setting an expiration date for a page and specifying a
character set (the language) for the page to use. To find out what your http-
equiv options are (and how to use them), check out the Dictionary of HTML
META Tags at the following URL:

http://vancouver-webpages.com/META/metatags.detail.html

09_238479 ch04.indd 6609_238479 ch04.indd 66 4/10/08 9:28:55 PM4/10/08 9:28:55 PM

67Chapter 4: Creating (X)HTML Document Structure

Creating the (X)HTML Document Body
After you set up your page header, create a title, and define some metadata,
you’re ready to create the (X)HTML markup and content that will show up in
a browser window. The <body> element holds the content of your document.

If you want to see something in your browser window, put it in the <body>
element, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Jeff’s Web Design Services</title>
 <meta name=”kwrd”
 content=” Web consulting, page design, site construction “ />
 <meta name=”desc” content=”Synopsis of Jeff’s skills and services” />
 </head>

<body type=”text/css”
 style=”color: white;
 background-color: teal;
 font-size: 1.2;
 font-family: sans-serif”> <h1>Jeff’s Web Design Services</h1>
 <p>Jeff has helped many Texas clients, large and small, to design and
 publish their company and professional Web sites. He specializes in
 cutting-edge Web designs, dynamic multimedia, and companion print-
 design solutions to suit all business needs.</p>

 <p>For more information, e-mail at jeff@conquestmedia.com or
 by phone at 512.506.1959.</p>
 </body>
</html>

Figure 4-3 shows how a browser displays this complete (X)HTML page:

 � The content of the <title> element is in the window’s title bar.

 � The <meta /> elements don’t affect the page appearance at all.

 � Only the paragraph text contained in the heading (<h1>) and <p> ele-
ments (in the <body> element) actually appears in the browser window.

09_238479 ch04.indd 6709_238479 ch04.indd 67 4/10/08 9:28:55 PM4/10/08 9:28:55 PM

68 Part II: Formatting Web Pages with (X)HTML

Figure 4-3:
Only content

in the body.
element

appers in
the browser

window

09_238479 ch04.indd 6809_238479 ch04.indd 68 4/10/08 9:28:55 PM4/10/08 9:28:55 PM

Chapter 5

Text and Lists
In This Chapter
� Working with basic blocks of text

� Manipulating text blocks

� Creating bulleted, numbered, and definition lists

HTML documents consist of text, images, multimedia files, links, and other
bits of content that you meld together into a page by using markup ele-

ments and attributes. You use blocks of text to create such things as headings,
paragraphs, and lists. The first step in creating a solid HTML document is
laying a firm foundation that establishes the document’s structure.

Formatting Text
Here’s a plus-ultra-technical definition of a block of text: some chunk of con-
tent that wraps from one line to another inside an HTML element.

In fact, your HTML page is a giant collection of blocks of text:

 � Every bit of content on your page must be part of some block element.

 � Every block element sits within the <body> element on your page.

HTML recognizes several kinds of text blocks that you can use in your docu-
ment, including (but not limited to)

 � Paragraphs

 � Headings

 � Block quotes

 � Lists

 � Tables

 � Forms

10_238479 ch05.indd 6910_238479 ch05.indd 69 4/10/08 9:29:46 PM4/10/08 9:29:46 PM

70 Part II: Formatting Web Pages with (X)HTML

Paragraphs
Paragraphs appear more often in Web pages than any other kind of text block.

HTML browsers don’t recognize hard returns that you enter when you create
your page inside an editor. You must use a <p> element to tell the browser to
separate all contained text up to the closing </p> as a paragraph.

Formatting
To create a paragraph, follow these steps:

 1. Add <p> in the body of the document.

 2. Type the content of the paragraph.

 3. Add </p> to close that paragraph.

Here’s what it looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>All About Blocks</title>
 </head>

 <body>
 <p>This is a paragraph. It’s a very simple structure that you will use
 time and again in your Web pages.</p>
 <p>This is another paragraph. What could be simpler to create?</p>
 </body>
</html>

Inline elements versus text blocks
The difference between inline elements and a
block of text is important. HTML elements in this
chapter describe blocks of text. An inline element
is a word or string of words inside a block ele-
ment (for example, text emphasis elements such
as or). Inline elements must
be nested within a block element; otherwise, your
HTML document isn’t syntactically correct.

Inline elements, such as linking and formatting
elements, are designed to link from (or change
the appearance of) a few words or lines of con-
tent found inside those blocks.

10_238479 ch05.indd 7010_238479 ch05.indd 70 4/10/08 9:29:46 PM4/10/08 9:29:46 PM

71Chapter 5: Text and Lists

This HTML page includes two paragraphs, each marked with a separate <p>
element. Most Web browsers add a line break and a full line of white space
after every paragraph on your page, as shown in Figure 5-1.

Figure 5-1:
Web

browsers
delineate

paragraphs
with line
breaks.

Sloppy HTML coders don’t use the closing </p> tag when they create para-
graphs. Although some browsers permit this dubious practice without yelling,
omitting the closing tag

 � Isn’t correct syntax

 � Causes problems with style sheets

 � Can cause a page to appear inconsistently from one browser to another

You can control paragraph formatting (color, style, size, and alignment) by
using Cascading Style Sheets (CSS), which we cover in Chapters 8 and 9.

Alignment
By default, the paragraph aligns to the left. You can use the align attribute
with a value of left, center, right, or justify to control its alignment
explicitly.

<p align=”center”>This paragraph is centered.</p>
<p align=”right”>This paragraph is right-justified.</p>
<p align=”justify”>This paragraph is left- and right-justified; to show
 this effect at work, we need several lines of text. Notice that
 both right and left margins end up flush when you use this particular
 value for the align attribute. In particular, the second and third
 lines of text show extra space between the words.</p>

Figure 5-2 shows how a Web browser aligns each paragraph according to the
value of the align attribute.

The align attribute has been deprecated (made obsolete) in favor of using
CSS (see Chapter 8).

10_238479 ch05.indd 7110_238479 ch05.indd 71 4/10/08 9:29:46 PM4/10/08 9:29:46 PM

72 Part II: Formatting Web Pages with (X)HTML

Figure 5-2:
Use the
align
attribute

with a
paragraph
to specify
horizontal

alignment.

Headings
Headings break a document into sections. This book uses headings and sub-
headings to divide every chapter into sections, and you can do the same with
your Web page. Headings

 � Create an organizational structure

 � Break up the visual appearance of the page

 � Give visual clues about how pieces of content are grouped

HTML includes six elements for up to six different heading levels in your
documents:

 � <h1> is the most prominent heading (Heading 1)

 � <h6> is the least prominent heading (Heading 6)

Follow order from highest to lowest as you use HTML heading levels. That is,
don’t use a second-level heading until you’ve used a first-level heading, don’t
use a third-level heading until you’ve used a second, and so on. If you want to
change how headings look, Chapter 8 and Chapter 9 show you how to use
style sheets for that purpose.

Formatting
To create a heading, follow these steps:

 1. Add <hn> in the body of your document.

 2. Type the content for the heading.

 3. Add </hn>.

Browser displays
Every browser has a different way of displaying heading levels, as you see in
the next two sections.

10_238479 ch05.indd 7210_238479 ch05.indd 72 4/10/08 9:29:46 PM4/10/08 9:29:46 PM

73Chapter 5: Text and Lists

Graphical browsers
Most graphical browsers use a distinctive size and typeface for headings:

 � First-level headings (<h1>) are the largest (usually two or three font
sizes larger than the default text size for paragraphs).

 � All headings use boldface type by default, whereas paragraph text uses
plain (non-bold) type by default.

 � Sixth-level headings (<h6>) are the smallest and may be two or three
font sizes smaller than the default paragraph text.

The following snippet of HTML markup shows all six headings at work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>All About Blocks</title>
 </head>

 <body>
 <h1>First-level heading</h1>
 <h2>Second-level heading</h2>
 <h3>Third-level heading</h3>
 <h4>Fourth-level heading</h4>
 <h5>Fifth-level heading</h5>
 <h6>Sixth-level heading</h6>
 </body>
</html>

Figure 5-3 shows this HTML page as rendered in a browser.

Figure 5-3:
Web

browsers
display

headings in
decreasing

size from
level one to

level six.

10_238479 ch05.indd 7310_238479 ch05.indd 73 4/10/08 9:29:47 PM4/10/08 9:29:47 PM

74 Part II: Formatting Web Pages with (X)HTML

Use CSS to control the display of headings, including color, size, spacing, and
alignment.

By default, most browsers use Times Roman fonts for headings. The font size
decreases as heading level increases. (Default sizes for first- through sixth-
level headings are, respectively, 24, 18, 14, 12, 10, and 8.) You can override any
of this formatting by using CSS.

Text browsers
Text-only browsers use heading conventions different from those of graphi-
cal browsers because text-only browsers use a single character size and font
to display all content.

Controlling Text Blocks
Blocks of text build the foundation for your page. You can break those blocks
into smaller pieces to better guide readers through your content.

Block quotes
A block quote is a long quotation or excerpt from a printed source that you
set apart on your page. Use the <blockquote> element to identify block
quotes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Famous Quotations</title>
 </head>

 <body>
 <h1>An Inspiring Quote</h1>
 <p>When I need a little inspiration to remind me of why I spend my days
 in the classroom, I just remember what Lee Iococca said:</p>
 <blockquote>
 In a completely rational society, the best of us would be teachers
 and the rest of us would have to settle for something else.
 </blockquote>
 </body>
</html>

10_238479 ch05.indd 7410_238479 ch05.indd 74 4/10/08 9:29:47 PM4/10/08 9:29:47 PM

75Chapter 5: Text and Lists

Most Web browsers display block-quote content with a slight left indent, as
shown in Figure 5-4.

Figure 5-4:
Web

browsers
typically
indent a

block quote
to separate

it from
paragraphs.

Preformatted text
Ordinarily, HTML ignores white space inside documents. A browser won’t
display a block element’s

 � Hard returns

 � Line breaks

 � Large white spaces

The following markup includes several hard returns, line breaks, and a lot of
space characters. Figure 5-5 shows that the Web browser ignores all of this.

<p>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).</p>

Figure 5-5:
Web

browsers
routinely

ignore white
space.

10_238479 ch05.indd 7510_238479 ch05.indd 75 4/10/08 9:29:47 PM4/10/08 9:29:47 PM

76 Part II: Formatting Web Pages with (X)HTML

The preformatted text element (<pre>) instructs browsers to keep all white
space intact as it displays your content (like the following sample). Use the
<pre> element in place of the <p> element to make the browser apply all
your white space, as shown in Figure 5-6.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>White space</title>
 </head>

 <body>
 <pre>This is a paragraph

 with a lot of white space

 thrown in for fun (and as a test of course).
 </pre>
 </body>
</html>

Figure 5-6:
Use pre-

formatted
text to force

browsers
to recog-

nize white
space.

You may want the browser to display white spaces in an HTML page where
proper spacing is important, such as for

 � Code samples

 � Text tables

You can nest <pre> elements inside <blockquote> elements to carefully
control how lines of quoted text appear on the page. Or better still, forget
about these tags and use CSS to position text blocks inside <div> elements.

10_238479 ch05.indd 7610_238479 ch05.indd 76 4/10/08 9:29:48 PM4/10/08 9:29:48 PM

77Chapter 5: Text and Lists

Line breaks
By default, browsers usually wrap text that appears in block elements, such
as paragraphs, headings, and block quotes. If a line reaches the end of the
browser window, the next word automatically starts on a new line. Use a line
break to force an end to any line of text (denoted by the
 element).

Function
The
 element is the HTML equivalent of the manual line break that
you enter after paragraphs and other blocks of text when you’re using a
word-processing program. When a browser sees a
, it ends the line
there and starts the next line.

The difference between a line break and a paragraph is that a line break
doesn’t use any special formatting that you can apply at the end or beginning
of a paragraph, such as

 � Extra vertical space

 � First-line indenting

Formatting
The following markup formats lines of text in a poem using line breaks. The
entire poem is a single paragraph, where
 marks the end of each line:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title> Shakespeare in HTML</title>
 </head>

 <body>
 <h1>Shakespeare’s Sonnets XVIII: Shall I compare thee to a summer’s day? </h1>
 <p>
 Shall I compare thee to a summer’s day?

 Thou art more lovely and more temperate.

 Rough winds do shake the darling buds of May,

 And summer’s lease hath all too short a date.

 Sometime too hot the eye of heaven shines,

 And often is his gold complexion dimm’d;

 And every fair from fair sometime declines,

 By chance or nature’s changing course untrimm’d;

 But thy eternal summer shall not fade

10_238479 ch05.indd 7710_238479 ch05.indd 77 4/10/08 9:29:48 PM4/10/08 9:29:48 PM

78 Part II: Formatting Web Pages with (X)HTML

 Nor lose possession of that fair thou ow’st;

 Nor shall Death brag thou wander’st in his shade,

 When in eternal lines to time thou grow’st:

 So long as men can breathe or eyes can see,

 So long lives this, and this gives life to thee.

 </p>
 </body>
</html>

Figure 5-7 shows how a browser handles each line break. Here, the poem isn’t
left-indented because a <p> element replaces the <blockquote> element.

Figure 5-7:
Using the

element

to specify
where lines

in block
elements

should
break.

Horizontal rules
The horizontal rule element (<hr />) helps you include solid straight lines
(rules) on your page.

The browser creates the rule based on the <hr /> element, so users don’t
wait for a graphic to download. A horizontal rule is a good option to

 � Break a page into logical sections.

 � Separate headers and footers from the rest of the page.

10_238479 ch05.indd 7810_238479 ch05.indd 78 4/10/08 9:29:48 PM4/10/08 9:29:48 PM

79Chapter 5: Text and Lists

Formatting
When you include an <hr /> element on your page, as in the following
XHTML, the browser replaces it with a line, as shown in Figure 5-8.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Horizontal Rules</title>
 </head>

 <body>
 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr />

 </p>This is a paragraph preceded by a horizontal rule.</p>
 </body>
</html>

Figure 5-8:
Use the

<hr />
element

to add
horizontal

lines to
your page.

A horizontal rule always sits on a line by itself; you can’t add the <hr /> ele-
ment in the middle of a paragraph (or other block element) and expect the
rule to appear in the middle of the block.

Attributes
Four different attributes control the appearance of each horizontal rule:

 � width: Specifies line width either in pixels or by percentage of display
area width (which we call “the page” in discussion that follows).

 For example, a rule can be 50 pixels wide or take 75 percent of the page.

 � size: Specifies the height of the line in pixels. The default is 1 pixel.

10_238479 ch05.indd 7910_238479 ch05.indd 79 4/10/08 9:29:49 PM4/10/08 9:29:49 PM

80 Part II: Formatting Web Pages with (X)HTML

 � align: Specifies the horizontal alignment of the rule as either left (the
default), center, or right.

 If you don’t define a width for your rule, it takes the entire width of the
page. The alignment won’t make any difference.

 � noshade: Specifies a solid line with no shading.

 By default, most browsers display hard rules with a shade.

These formatting attributes are deprecated in favor of CSS.

This bit of HTML creates a horizontal rule that takes up 45 percent of the
page, is 4 pixels high, aligned to the center, and has shading turned off:

 <p>This is a paragraph followed by a horizontal rule.</p>

 <hr width=”45%” size=”4” align=”center” noshade=”noshade” />

 <p>This is a paragraph preceded by a horizontal rule.</p>

Figure 5-9 shows how adding these attributes alters how the rule is displayed.

Figure 5-9:
Use the

<hr />
attributes
to better

control how
a browser

displays the
rule.

Figure 5-10 shows how you can use horizontal rules in the real world to high-
light important content. The EdTittel.com home page uses a colored hard
rule to separate the footer from the rest of the page.

CSS gives you much more control over the placement of horizontal rules; you
can even fancy them up with more advanced color and shading options.

10_238479 ch05.indd 8010_238479 ch05.indd 80 4/10/08 9:29:49 PM4/10/08 9:29:49 PM

81Chapter 5: Text and Lists

Figure 5-10:
The EdTittel.

com home
page uses
a colored

rule to
separate

page
content

from
page-footer
information.

Organizing Information
Lists are powerful tools for arranging similar elements together, and they give
visitors to your site an easy way to zoom in on groups of information. Just
about anything fits in a list, from sets of instructions to collections of links.

Lists use a combination of elements — at least two components:

 � A markup element that says “Hey browser! The following items go in a list.”

 � Markup elements that say “Hey browser! This is an item in the list.”

HTML supports three different types of lists:

 � Numbered lists

 � Bulleted lists

 � Definition lists

Numbered lists
A numbered list consists of at least two items, each prefaced by a number.
Usually, a person numbers a list when the order of items is important.

You use two kinds of elements for a numbered list:

 � The ordered list element () specifies that this is a numbered list.

 � List item elements () mark each item in the list.

10_238479 ch05.indd 8110_238479 ch05.indd 81 4/10/08 9:29:49 PM4/10/08 9:29:49 PM

82 Part II: Formatting Web Pages with (X)HTML

Formatting
A numbered list with three items requires elements and content in the follow-
ing order:

 1.

 2.

 3. Content for the first list item

 4.

 5.

 6. Content for the second list item

 7.

 8.

 9. Content for the third list item

 10.

 11.

The following markup defines a three-item numbered list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Numbered Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-11 shows how a browser renders this markup. You don’t actually
have to specify a number for each item in the list; the browser identifies the
list items from the markup and adds the numbers.

10_238479 ch05.indd 8210_238479 ch05.indd 82 4/10/08 9:29:50 PM4/10/08 9:29:50 PM

83Chapter 5: Text and Lists

Figure 5-11:
Use the

 and
 tags

to create a
numbered

list.

If you swap the first two items in the list, they’re still numbered in order
when the page appears, as shown in Figure 5-12.

 Wash car
 Feed cat
 Grocery shopping

Figure 5-12:
Web

browsers
set numbers

for your list
according
to order of

appearance.

Numbering
Two different attributes control the appearance of a numbered list:

 � start: Specifies the first number in the list.

 • The default starting number is 1.

 • You can specify any number as the start number for the new list.

 Specify a start number when you resume a list after an unnum-
bered paragraph or some other block element.

10_238479 ch05.indd 8310_238479 ch05.indd 83 4/10/08 9:29:50 PM4/10/08 9:29:50 PM

84 Part II: Formatting Web Pages with (X)HTML

 � type: Specifies the numbering style from the list. You can choose from
five predefined numbering styles:

 • 1: Decimal numbers.

 • a: Lowercase letters.

 • A: Uppercase letters.

 • i: Lowercase Roman numerals.

 • I: Uppercase Roman numerals.

The following markup uses ordered elements and attributes to build a list
that uses uppercase Roman numerals that begin at 5 (V in Roman numerals):

 <ol start=”5” type=”I”>
 Wash car
 Feed cat
 Grocery shopping

Figure 5-13 shows how attributes affect the list’s appearance in a browser.

Figure 5-13:
The start
and type

attributes
guide the

appearance
of a

numbered
list in a

browser.

You have more control over your lists if you use CSS to define formatting.
That’s why the start and type attributes for list markup are deprecated
(that is, abandoned as outmoded in the current version).

Bulleted lists
A bulleted list consists of one or more items each prefaced by a bullet (often a
big dot; this book uses check marks as bullets).

You use this type of list if the items’ order of presentation isn’t necessary for
understanding the information presented.

10_238479 ch05.indd 8410_238479 ch05.indd 84 4/10/08 9:29:50 PM4/10/08 9:29:50 PM

85Chapter 5: Text and Lists

Formatting
A bulleted list requires the following:

 � The unordered list element () specifies a bulleted list.

 � A list item element () marks each item in the list.

 � The closing tag for the unordered list element () indicates that the
list has come to its end.

An unordered list (another name for bulleted list) with three items requires
elements and content in the following order:

 1.

 2.

 3. Content for the first list item

 4.

 5.

 6. Content for the second list item

 7.

 8.

 9. Content for the third list item

 10.

 11.

The following markup formats a three-item list as a bulleted list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Bulleted Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat
 Wash car
 Grocery shopping

 </body>
</html>

Figure 5-14 shows how a browser renders this with bullets.

10_238479 ch05.indd 8510_238479 ch05.indd 85 4/10/08 9:29:51 PM4/10/08 9:29:51 PM

86 Part II: Formatting Web Pages with (X)HTML

Figure 5-14:
An

unordered
list uses

bullets
instead of

numbers to
mark items.

Styles
You can use the type attribute (deprecated) with the element to
specify what kind of bullet you want the list to use.

 � disc: Solid circle bullets (the default)

 � square: Solid square bullets

 � circle: Hollow circle bullets

The addition of the type attribute to the bulleted-list markup just given
changes bullets from discs to squares, as shown in Figure 5-15. Here’s what
that markup looks like:

 <ul type=”square”>
 Feed cat
 Wash car
 Grocery shopping

Figure 5-15:
Use the type

attribute to
change

the bullet
style for an
unordered

list.

10_238479 ch05.indd 8610_238479 ch05.indd 86 4/10/08 9:29:51 PM4/10/08 9:29:51 PM

87Chapter 5: Text and Lists

Use CSS if you want more control over the formatting of your lists, including
the ability to use your own graphics as bullet symbols.

Definition lists
Definition lists group terms and definitions into a single list and require three
different elements to complete the list:

 � <dl>: Holds the list definitions.

 � <dt>: Defines a term in the list.

 � <dd>: Defines a definition for a term.

You can have as many terms (defined by <dt>) in a list as you need. Each
term can have one or more definitions (defined by <dd>).

To create a definition list with two items requires elements and content in
the following order:

 1. <dl>

 2. <dt>

 3. First term name

 4. </dt>

 5. <dd>

 6. Content for the definition of the first item

 7. </dd>

 8. <dt>

 9. Second term name

 10. </dt>

 11. <dd>

 12. Content for the definition of the second item

 13. </dd>

 14. </dl>

The following definition list includes three terms, one of which has two
definitions:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>

10_238479 ch05.indd 8710_238479 ch05.indd 87 4/10/08 9:29:51 PM4/10/08 9:29:51 PM

88 Part II: Formatting Web Pages with (X)HTML

 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Definition Lists</title>
 </head>

 <body>
 <h1>Markup Language Definitions</h1>
 <dl>
 <dt>SGML</dt>
 <dd>The Standard Generalized Markup Language</dd>
 <dt>HTML</dt>
 <dd>The Hypertext Markup Language</dd>
 <dd>The markup language you use to create Web pages.</dd>
 <dt>XML</dt>
 <dd>The Extensible Markup Language</dd>
 </dl>
 </body>
</html>

Figure 5-16 shows how a browser displays this HTML.

Figure 5-16:
Definition

lists group
terms and

their related
definitions

into one list.

If you think the items in a list are too close together, you can take one of two
actions:

 � Put two
 elements before each or </dd> element to add
more white space.

 � Use CSS styles to carefully control all aspects of list appearance, as
shown in Chapter 8.

Note that definition lists often display differently inside different browsers,
and aren’t always handled the same by search engines or text-to-speech
translators. Alas, this means definition lists may not be the best choice of

10_238479 ch05.indd 8810_238479 ch05.indd 88 4/10/08 9:29:51 PM4/10/08 9:29:51 PM

89Chapter 5: Text and Lists

formatting for lists you create (even lists of definitions). See the excellent
coverage of this topic at www.maxdesign.com/au/presentation/
definition for a more detailed discussion.

Nesting lists
You can create subcategories by nesting lists within lists. Some common uses
for nested lists include

 � Site maps and other navigation tools

 � Tables of contents for online books and papers

 � Outlines

You can combine any of the three kinds of lists to create nested lists, such as
a multilevel table of contents or an outline that mixes numbered headings
with bulleted list items as the lowest outline level.

The following example starts with a numbered list that defines a list of things
to do for the day, and uses three bulleted lists to break down those items fur-
ther, into specific tasks:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Nested Lists</title>
 </head>

 <body>
 <h1>Things to do today</h1>

 Feed cat

 Rinse bowl
 Open cat food
 Mix dry and wet food in bowl
 Deliver on a silver platter to Fluffy

 Wash car

 Vacuum interior
 Wash exterior
 Wax exterior

 Grocery shopping

 Plan meals

10_238479 ch05.indd 8910_238479 ch05.indd 89 4/10/08 9:29:51 PM4/10/08 9:29:51 PM

90 Part II: Formatting Web Pages with (X)HTML

 Clean out fridge
 Make list
 Go to store

 </body>
</html>

All nested lists follow the same markup pattern:

 � Each list item in the top-level ordered list is followed by a complete
second-level list.

 � The second-level lists sit inside the top-level list, not in the list items.

Figure 5-17 shows how a browser reflects this nesting in its display.

Figure 5-17:
Nested lists

combine
lists for a
multilevel
organiza-

tion of
information.

As you build nested lists, watch opening and closing tags carefully. Close first
what you opened last is an important axiom. If you don’t open and close tags
properly, lists might not use consistent indents or numbers, or text might be
indented incorrectly because a list somewhere was never properly closed.

10_238479 ch05.indd 9010_238479 ch05.indd 90 4/10/08 9:29:52 PM4/10/08 9:29:52 PM

Chapter 6

Linking to Online Resources
In This Chapter
� Creating simple links

� Opening linked pages in new windows

� Setting up links to locations within a Web page

� Creating links to things other than Web pages

Hyperlinks, or simply links, connect (X)HTML pages and other resources
on the Web. When you include a link on your page, you enable visitors

to travel from your page to another Web site, another page on your site, or
even another location on the same page. Without links, a page stands alone,
disconnected from the rest of the Web. With links, that page becomes part of
an almost boundless collection of information.

Basic Links
To create a link, you need

 � The Web address (called a Uniform Resource Locator, or URL) for the
Web site or file that’s your link target. This usually starts with http://.

 � Some text in your Web page to label or describe the link.

 Try to ensure that the text you use says something useful about the
resource being linked.

 � An anchor element (<a>) with href attribute to bring it all together.

 The element to create links is called an anchor element because you use
it to anchor a URL to some text on your page. When users view your
page in a browser, they can click the text to activate the link and visit
the page whose URL you specified in that link. You insert the full URL in
the href attribute. This tells the link where to go.

11_238479 ch06.indd 9111_238479 ch06.indd 91 4/10/08 9:30:49 PM4/10/08 9:30:49 PM

92 Part II: Formatting Web Pages with (X)HTML

You can think of the structure of a basic link as a cheeseburger (or your pre-
ferred vegan substitute). The URL is the cheese, the patty is the link text, and
the anchor tags are the buns. Tasty, yes?

For example, if you have a Web page that describes HTML standards, you may
want to refer Web surfers to the World Wide Web Consortium (W3C) — the
organization that governs all things related to (X)HTML standards. A basic link
to the W3C’s Web site, www.w3.org, looks like this:

<p>The World Wide Web Consortium is the
 standards body that oversees the ongoing development of the XHTML
 specification.</p>

You specify the link URL (http://www.w3.org) in the anchor element’s href
attribute. The text (World Wide Web Consortium) between the anchor ele-
ment’s open and close tags (<a> and) labels or describes the link.

Figure 6-1 shows how a browser displays this bit of markup.

Figure 6-1:
A paragraph
with a link to

the W3C.

You can also anchor URLs to images so users can click an image to activate a
link. (For more about creating images that link, see Chapter 7.)

For a detailed discussion of the ins and outs of URLs, see Chapter 1.

Link options
You can link to a variety of online resources:

 � Other (X)HTML pages (either on your Web site or on another Web site)

 � Different locations on the same (X)HTML page

 � Resources that aren’t even (X)HTML pages at all, such as e-mail
addresses, pictures, and text files

11_238479 ch06.indd 9211_238479 ch06.indd 92 4/10/08 9:30:49 PM4/10/08 9:30:49 PM

93Chapter 6: Linking to Online Resources

Anchor elements aren’t block elements
Anchor elements are inline elements — they
apply to a few words or characters within a
block of text (the text that you want to use as a
link) instead of defining formatting for blocks of
text. The anchor element typically sits inside a
paragraph (<p>) or other block element, such
as a paragraph or list item. When you create a
link, you should always create it within a block
element, such as a paragraph, list item, head-
ing, or even a table cell. Turn to Chapter 5 for
more information on block elements.

Although many Web browsers display anchors
just fine even if you don’t nest them in block

elements, some browsers don’t handle this
breach of (X)HTML syntax very well — these,
for example:

 � Text-only browsers for Palm devices and
mobile phones

 � Text-to-speech readers for the visually
impaired

Text-based browsers rely on block elements
to properly divide the sections of your page.
Without a block element, these browsers might
display your links in the wrong places.

Link locations, captions, and destinations have a big impact on how site visitors
perceive links. Chapter 3 covers best practices for using links in your site design.

The kind of link you create is determined by where you link.

Absolute links
An absolute link uses a complete URL to connect browsers to a Web page or
online resource.

Links that use a complete URL to point to a resource are called absolute
because they provide a complete, stand-alone path to another Web resource.
When you link to a page on someone else’s Web site, the Web browser needs
every bit of information in the URL to find the page. The browser starts with
the domain in the URL and works its way through the path to a specific file.

When you link to files on someone else’s site, you must always use absolute
URLs in the href attribute of the anchor element. Here’s an example:

http://www.website.com/directory/page.html

Relative links
A relative link uses a kind of shorthand to specify the URL for the resource
where you’re pointing.

11_238479 ch06.indd 9311_238479 ch06.indd 93 4/10/08 9:30:49 PM4/10/08 9:30:49 PM

94 Part II: Formatting Web Pages with (X)HTML

Use the following guidelines with relative links in your (X)HTML pages:

 � You create relative links between resources in the same domain.

 � Because both resources are in the same domain, you can omit domain
information from the URL.

 A relative URL uses the location of the resource you’re linking from
to identify the location of the resource you’re linking to (for example,
page.html).

A relative link is similar to telling someone that he or she needs to go to the
Eastside Mall. If the person already knows where the Eastside Mall is, he or
she doesn’t need additional directions. Web browsers behave the same way.

If you use relative links on your site, your links still work if you change either

 � Servers

 � Domain names

Simple links
You can take advantage of relative URLs when you create a link between
pages on the same Web site. If you want to make a link from http://www.
mysite.com/home.html to http://www.mysite.com/about.html, you
can use this simplified, relative URL in an anchor element on home.html:

<p>Learn more about our company.</p>

When a browser sees a link without a domain name, the browser assumes the
link is relative — and uses the domain and path from the linking page to find
the linked page.

Site links
As your site grows more complex and you organize your files into various
folders, you can still use relative links. But you must provide additional infor-
mation in the URL to help the browser find files that don’t reside in the same
directory as the file from which you’re linking.

Use ../ (two periods and a slash) before the filename to indicate that the
browser should move up one level in the directory structure.

The markup for this process looks like this:

Documentation home

11_238479 ch06.indd 9411_238479 ch06.indd 94 4/10/08 9:30:49 PM4/10/08 9:30:49 PM

95Chapter 6: Linking to Online Resources

The notation in this anchor element instructs the browser to:

 1. Move up one folder from the folder the linking document is stored in.

 2. Find a folder called docs.

 3. Find a file called home.html.

When you create a relative link, the location of the file to which you link is
always relative to the file from which you link. As you create a relative URL,
trace the path a browser takes if it starts on the page you’re linking from to get
to the page to which you’re linking. That path defines the URL you need.

Common mistakes
Every Web resource — whether it’s a site, page, or image — has a unique URL.
Even one incorrect letter in your URL can lead to a broken link. Broken links lead
to an error page (often the HTTP error 404 File or directory not found).

URLs are so finicky that a simple typo breaks a link.

If a URL doesn’t work, try these tactics:

 � Check the capitalization. Some Web servers (Linux and UNIX most
notably) are case-sensitive (meaning they distinguish between capital
and lowercase letters). These servers treat the filenames Bios.html
and bios.html as different files on the Web server. That means any
browser looking for a particular URL must use uppercase and lowercase
letters when necessary. Be sure the capitalization in the link matches
the capitalization of the URL.

 To avoid problems with files on your Web site, follow a standard naming
convention. Often, using only lowercase letters can simplify your life.

 � Check the extension. Bios.htm and Bios.html are two different
files. If your link’s URL uses one extension and the actual filename uses
another, your link won’t work.

 To avoid problems with extensions on your Web site, pick either .html
or .htm and stick to that extension.

 � Check the filename. bio.html and bios.html are two different files.

 � Cut and paste. Avoid retyping a URL if you can copy it. The best and
most foolproof way to create a URL that works is as follows:

 1. Load a page in your browser.

 2. Copy the URL from the browser’s address or link text box.

 3. Paste the URL into your (X)HTML markup.

11_238479 ch06.indd 9511_238479 ch06.indd 95 4/10/08 9:30:50 PM4/10/08 9:30:50 PM

96 Part II: Formatting Web Pages with (X)HTML

The importance of http:// in (X)HTML links
Browsers make surfing the Web as easy as
possible. If you type www.sun.com, sun.
com, or often even just sun, in your browser’s
address window, the browser obligingly brings
up http://www.sun.com. Although this
technique works when you type URLs into your
browser window, it doesn’t work when you’re
writing markup.

The URLs that you use in your HTML markup
must be fully formed. Browsers won’t interpret
URLs that don’t include the page protocol. If you
forget the http://, your link may not work!

The cut and paste method for grabbing URLs presumes you’re grabbing them
from a Web site somewhere. If you open a local file on your PC in a browser,
you’ll see something that looks like this: file:\\\I:\H4D6e\html_
letter.html. The file:\\\ is an Internet Explorer convention used to
identify the document as a file in your local file system, I:\ is a drive letter,
the H4D6e\ is a folder or directory on that drive, and the rightmost text ele-
ment (html_letter.html in this case) is the name of the HTML file you’ve
opened. You can’t use URLs like this on a Web site, so please — don’t try to!

Customizing Links
You can customize links to

 � Open linked documents in new windows

 � Link to specific locations within a Web page of your own

 � Link to items other than (X)HTML pages, such as

 • Portable Document Format (PDF) files

 • Compressed files

 • Word-processing documents

New windows
The Web works because you can link pages on your Web site to pages on
other people’s Web sites by using a simple anchor element. But when you
link to someone else’s site, you send users away from your own site.

11_238479 ch06.indd 9611_238479 ch06.indd 96 4/10/08 9:30:50 PM4/10/08 9:30:50 PM

97Chapter 6: Linking to Online Resources

To keep users on your site, HTML can open the linked page in a new window.
The simple addition of the target attribute to an anchor element opens that
link in a new browser window instead of opening it in the current window:

<p>The World Wide Web Consortium
is the standards body that oversees the ongoing development of the XHTML
specification.</p>

When you give a target attribute a _blank value, this tells the browser to

 1. Keep the linking page open in the current window.

 2. Open the linked page in a new window.

The result of the target=”_blank” attribute is shown in Figure 6-2.

Figure 6-2:
Use the

target
attribute to

open a new
window for

a linked file.

Pop-up windows irritate some users.

You can use JavaScript to control the size, location, and appearance of
pop-up windows, as well as put buttons on them to help users close them
quickly. Chapter 12 covers pop-up windows in more detail — including
JavaScript details.

11_238479 ch06.indd 9711_238479 ch06.indd 97 4/10/08 9:30:50 PM4/10/08 9:30:50 PM

98 Part II: Formatting Web Pages with (X)HTML

Locations in Web pages
Locations within Web pages can be marked for direct access by links on

 � The same page

 � The same Web site

 � Other Web sites

Keep these considerations in mind when adding links to Web pages:

 � Several short pages may present information more conveniently for
readers than one long page with internal links.

 Links within large pages work nicely for quick access to directories,
tables of contents, and glossaries.

 � Intradocument linking works best on your own Web site, where you can
create and control the markup.

 When you link to spots on someone else’s Web site, you’re at its man-
ager’s mercy. That person controls linkable spots. Your links will break
if the site designer removes or renames any spot to which you link.

Naming link locations
To identify and create a location within a page for direct access from other
links, use an empty anchor element with the name attribute, like this:

The anchor element that marks the spot doesn’t affect the appearance of any
surrounding content. You can mark spots wherever you need them without
worrying about how your pages look (or change) as a result.

Linking to named locations
As we mention earlier, you can mark locations for direct access by links

 � Within the same page

 � Within the same Web site

 � On other Web sites

Within the same page
Links can help users navigate a single Web page. Intradocument hyperlinks
include such familiar features as

 � Back to Top links

 � Tables of contents

11_238479 ch06.indd 9811_238479 ch06.indd 98 4/10/08 9:30:50 PM4/10/08 9:30:50 PM

99Chapter 6: Linking to Online Resources

An intradocument hyperlink, also known as a named document link, uses a
URL like this:

Back to top

The pound sign (#) indicates that you’re pointing to a spot on the same page,
not on another page.

Listing 6-1 shows how two anchor elements combine to link to a spot on the
same page. (Documents that use intradocument links are usually longer. This
document is short so you can easily see how to use the top anchor element.)

Listing 6-1: Intradocument Hyperlinks
<html>
 <head>
 <title>Intradocument hyperlinks at work</title>
 </head>

 <body>
 <h1>Web-Based Training</h1>

 <p>Given the importance of the Web to businesses and
 other organizations, individuals who seek to improve
 job skills, or fulfill essential job functions, are
 turning to HTML and XML for training. We believe
 this provides an outstanding opportunity for
 participation in an active and lucrative adult and
 continuing education market.</p>

 <p>Back to top</p>

 </body>
</html>

Figure 6-3 shows how this HTML markup appears in a Web browser. If the
user clicks the Back to Top link, the browser jumps back to the top spot —
marked by .

Within the same Web site
You can combine intradocument and interdocument links to send visitors
to a spot on a different Web page on your site. Thus, to link to a spot named
descriptions on a page named home.html on your site, use this markup:

<p>Review the document descriptions
 to find the documentation for your particular product.</p>

11_238479 ch06.indd 9911_238479 ch06.indd 99 4/10/08 9:30:50 PM4/10/08 9:30:50 PM

100 Part II: Formatting Web Pages with (X)HTML

Figure 6-3:
Use anchor
elements to

mark and
link spots on

a page.

On other Web sites
If you know that a page on another site has spots marked, you can use an
absolute URL to point to a particular spot on that page, like this:

<p>Find out how to

register for upcoming training courses led by our instructors.</p>

Be sure to check all links regularly to catch and fix the broken ones.

The Open Directory Project provides a laundry list of free and commercial
tools you can use to make finding and fixing broken links easier:

http://dmoz.org/Computers/Software/Internet/Site_Management/Link_Management/

Non-HTML resources
Links can connect to virtually any kind of file, such as

 � Word-processing documents

 � Spreadsheets

 � PDFs

 � Compressed files

 � Multimedia

A great use for non-HTML links is for software and PDF download pages.

11_238479 ch06.indd 10011_238479 ch06.indd 100 4/10/08 9:30:51 PM4/10/08 9:30:51 PM

101Chapter 6: Linking to Online Resources

File downloads
Non-Web files must nevertheless be accessed via the Internet, so they pos-
sess unique URLs, just like HTML pages. Any file on a Web server (regardless
of its type) can be linked using a URL.

For instance, if you want your users to download a PDF file named doc.pdf and
a .zip archive called software.zip from a Web page, you use this HTML:

<h1>Download the new version of our software</h1>
<p>Software</p>
<p>Documentation</p>

You can’t know how any user’s browser will respond to a click on a link that
leads to a non-Web file. The browser may

 � Prompt the user to save the file

 � Display the file without downloading it (this is common for PDFs)

 � Display an error message (if the browser can’t handle or doesn’t recog-
nize the type of file involved)

To help users download files successfully, you should provide your users with

 � As much information as possible about the file formats in use.

 � Any special tools they need to work with the files.

 • To work with the contents of a Zip file, the users need a compres-
sion utility, such as WinZip or ZipIt, if their operating systems do
not natively support Zip files.

 • To view a PDF file, users need the free Adobe Acrobat Reader.

You can make download markup more user-friendly by adding supporting
text and links, like this:

<h1>Download our new software</h1>
<p> Software

 Note:
 You need a zip utility such as
WinZip (Windows) or
ZipIt (Macintosh)
 to open this file.</p>
<p>Documentation

 Note:You need the free
<a href=”http://www.adobe.com/products/
acrobat/readstep2.html”>Adobe Reader
 to view this file.</p>

Figure 6-4 shows how a browser renders this HTML — and the dialog box it
displays when you click the software link.

11_238479 ch06.indd 10111_238479 ch06.indd 101 4/10/08 9:30:51 PM4/10/08 9:30:51 PM

102 Part II: Formatting Web Pages with (X)HTML

Figure 6-4:
This

browser
prompts you

to save or
view the Zip

file.

E-mail addresses
A link to an e-mail address can automatically open a new e-mail addressed to
exactly the right person.

This is a great way to help users send you e-mail with comments and requests.

An e-mail link uses the standard anchor element and href attribute. The value
of the href attribute is the receiving e-mail address prefaced with mailto:

<p>Send us your
 comments.</p>

The user’s browser configuration controls how the browser handles an e-mail
link. Most browsers follow these two basic steps automatically:

 1. Open a new message window in the default e-mail program.

 2. Insert the address from the href attribute into the To field of the message.

Unfortunately, Web page mailto: links are a prime source of e-mail addresses
for spammers. Creating a form to receive feedback is often a better idea; better
still, use JavaScript encryption on the e-mail address (for more info, see Steven
Chapman’s great article “Hiding Your Email Address” at http://javascript.
about.com/library/blemail1.htm). We generally tend to provide our
e-mail addresses in the form: jeff at conquestmedia dot com, knowing
that people are smart enough to substitute @ for at and . for dot, but that
address-harvesters usually aren’t that canny.

11_238479 ch06.indd 10211_238479 ch06.indd 102 4/10/08 9:30:51 PM4/10/08 9:30:51 PM

Chapter 7

Finding and Using Images
In This Chapter
� Determining the right format for your images

� Adding images to Web pages

� Creating images and image maps that trigger links

Web-page designers use images to deliver important information,
direct site navigation, and contribute to the overall look and feel of

a Web page. But you have to use images properly or you risk reducing their
effectiveness.

When used well, images are a key element of page design. When used poorly,
they can make a page unreadable or inaccessible.

This chapter is a crash course in using images on Web pages. You find out
which image formats are Web-friendly and how to use (X)HTML elements to
add images to your Web pages. You also discover how to attach links to your
images and how to create image maps for your Web page.

The Role of Images in a Web Page
Images in Web sites may be logos, clickable navigation aids, or display con-
tent; they may also make a page look prettier, or serve to unify or illustrate
a page’s theme. A perfect example of the many different ways images can
enhance and contribute to Web pages is the White House home page at www.
whitehouse.gov, shown in Figure 7-1, where you see the Presidential seal
and photos used to good effect.

12_238479 ch07.indd 10312_238479 ch07.indd 103 4/10/08 11:50:18 PM4/10/08 11:50:18 PM

104 Part II: Formatting Web Pages with (X)HTML

Figure 7-1:
The White

House Web
page uses
images in

a variety of
ways.

Creating Web-Friendly Images
You can create and save graphics in many ways, but only a few formats are
actually appropriate for images that you intend to use on the Web. As you
create Web-friendly images, you must account for file formats and sizes.

Often, graphics file formats are specific to operating systems or software
applications. But you can’t predict a visitor’s computer and software (other
than a Web browser). So you need images that anyone can view with any
browser. This means you need to use cross-platform file formats that users
can view with any version of Microsoft Windows, the Mac OS, or Linux.

Optimizing images
As you build graphics for your Web page, main-
tain a healthy balance between file quality and
size. Webmonkey has two good tutorials on
trimming image file sizes and optimizing entire
sites for fast download. For tips and tricks that
can help you build pages that download quickly,
review these handy resources:

 � Optimizing Images

http://www.yourhtmlsource.com/
optimisation/image
optimisation.html

 � Optimizing Web Graphics

http://www.websiteoptimization.com/
speed/12

12_238479 ch07.indd 10412_238479 ch07.indd 104 4/10/08 11:50:19 PM4/10/08 11:50:19 PM

105Chapter 7: Finding and Using Images

Only these three compressed formats are suitable for general use on the Web:

 � Graphics Interchange Format (GIF): Images saved as GIFs often are
smaller than those saved in other file formats. GIF supports up to 256
colors only, so if you try to save an image created with millions of colors
as a GIF, you lose image quality. GIF is the best format for less-complex,
nonphotographic images, such as line art and clip art.

 � Joint Photographic Experts Group (JPEG): The JPEG file format sup-
ports 24-bit color (millions of colors) and complex images, such as pho-
tographs. JPEG is cross-platform and application-independent. A good
image-editing tool can help you tweak the compression so you can strike
an optimum balance between image quality and image-file size.

 � Portable Network Graphics (PNG): PNG is the latest cross-platform and
application-independent image file format. It was developed to bring
together the best of GIF and JPEG. PNG has the same compression as GIF
but supports 24-bit color (and even 32-bit color) like that of JPEG.

Any good graphics-editing tool, such as those mentioned in Chapter 22, lets
you save images in any of these formats. Experiment with them to see how
converting a graphic from one format to another changes its appearance and
file size, then choose whichever format produces the best results.

Table 7-1 shows guidelines for choosing a file format for images by type.

Table 7-1 Choosing the Right File Format
File Format Best Used For Watch Out

GIF Line art and other images with
few colors and less detail.

Don’t use this format if you
have a complex image or
photo.

JPEG Photos and other images with
millions of colors and lots of
detail.

Don’t use with line art. This
format compromises too
much quality when you com-
press the file.

PNG Photos and other images with
millions of colors and lots of
detail.

Don’t use with line art. PNG
offers the best balance
between quality and file size.

For a complete overview of graphics formats, visit

 � Builder.com’s “Examine Graphic Channels and Space”

http://builder.cnet.com/webbuilding/0-3883-8-4892140-1.html

 � Webmonkey’s “Web Graphics Overview”

http://www.webmonkey.com/01/28/index1a.html

12_238479 ch07.indd 10512_238479 ch07.indd 105 4/10/08 11:50:19 PM4/10/08 11:50:19 PM

106 Part II: Formatting Web Pages with (X)HTML

Adding an Image to a Web Page
When an image is ready for the Web, you need to use the correct markup to
add it to your page. But you need to know where to store your image as well.

Image location
You can store images for your Web site in several places. Image storage
works best if it uses relative URLs (stored somewhere on the Web site with
your other (X)HTML files). You can store images in the same root file as
your (X)HTML files, which gets confusing if you have a lot of files, or you can
create a graphics or images directory in the root file of your Web site.

Relative links connect resources from the same Web site. You use absolute
links between resources on two different Web sites. Turn to Chapter 6 for
a complete discussion of the differences between relative and absolute
links.

Three compelling reasons to store images on your own site are

 � Control: When the images are stored on your site, you have complete
control over them. You know that your images aren’t going to disappear
or change, and you can work to optimize them.

 � Speed: If you link to images on someone else’s site, you never know
when that site may go down or be unbelievably slow. Linking to images
on someone else’s site also causes the other site owner to pay for the
bandwidth required to display it on your site.

 � Copyright: If you link to images on another Web site to display them on
your site, you may violate copyright law. (In this case, obtain permission
from the copyright holder to store and display the images on your site.)

Using the element
The image () element is an empty element (sometimes called a
singleton tag) that you place on the page where you want your image to go.

An empty element has only one tag, with neither a distinct opening nor
closing tag.

12_238479 ch07.indd 10612_238479 ch07.indd 106 4/10/08 11:50:19 PM4/10/08 11:50:19 PM

107Chapter 7: Finding and Using Images

The following markup places an image named 07fg02-cd.jpg, which is
saved in the same directory as the (X)HTML file, between two paragraphs:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>CDs at Work</title>
</head>
 <body>
 <h1>CD as a Storage Medium</h1>
 <p>CD-ROMs have become a standard storage option in today’s computing world
 because they are inexpensive and easy to use.</p>

 <p>To read from a CD, you only need a standard CD-ROM drive, but to create
 CDs, you need either a CD-R or a CD-R/W drive.</p>
 </body>
</html>

A Web browser replaces the element with the image file provided
as the value for the src attribute, as shown in Figure 7-2.

Figure 7-2:
Use the

element
to place

graphics in
a Web page.

The src attribute is like the href attribute that you use with an anchor
(<a>) element. The src attribute specifies the location for the image you
want to display on your page. The preceding example points to an image file
in the same folder as the HTML file referencing it.

12_238479 ch07.indd 10712_238479 ch07.indd 107 4/10/08 11:50:19 PM4/10/08 11:50:19 PM

108 Part II: Formatting Web Pages with (X)HTML

Adding alternative text
Alternative text describes an image so those who can’t see the images for
some reason can access that text to learn more about the image. Adding
alternative text (often referred to by HTMLers as “alt text”) is a good practice
because it accounts for

 � Visually impaired users who may not be able to see images and must
rely on alternative text for a text-to-speech reader to read to them.

 � Users who access the Web site from a phone browser with limited
graphics capabilities.

 � Users with slow modem connections who don’t display images.

Some search engines and cataloguing tools use alternative text to index
images.

Most of your users will see your images, but be prepared for those who
won’t. The (X)HTML specifications require that you provide alternative text
to describe each image on a Web page. Use the alt attribute with the
 element to add this information to your markup, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Inside the Orchestra</title>
</head>

<body>
 <p>Among the different sections of the orchestra you will find:</p>
 <p> Strings</p>
 <p> Brass</p>
 <p>
 Woodwinds</p>
</body>
</html>

When browsers don’t display an image (or can’t, as in text-only browsers
such as Lynx), they display the alternative text instead, as shown in Figure
7-3. (We turned pictures off in IE to produce the screenshot.)

12_238479 ch07.indd 10812_238479 ch07.indd 108 4/10/08 11:50:20 PM4/10/08 11:50:20 PM

109Chapter 7: Finding and Using Images

Figure 7-3:
When a
browser
doesn’t

show an
image, it

shows alter-
native text.

When browsers show an image, some browsers — including Internet
Explorer, Netscape, and Opera — show alternative text as pop-up tooltips
when you hover your mouse pointer over an image for a few seconds, as
shown in Figure 7-4. Firefox, however, does not.

Figure 7-4:
A browser

may display
alternative

text as a
pop-up tip.

This means you can use alternative text either to describe the image to those
who can’t see it or to provide useful (or amusing) information about the
image.

The W3C’s Web Accessibility Initiative (WAI) includes helpful tips for creating
useful and usable alternatives to visual content at

www.w3.org/TR/WCAG10-TECHS/#gl-provide-equivalents

12_238479 ch07.indd 10912_238479 ch07.indd 109 4/10/08 11:50:20 PM4/10/08 11:50:20 PM

110 Part II: Formatting Web Pages with (X)HTML

Specifying image size
You can use the height and width attributes with the element to
let the browser know just how tall and wide an image is (in pixels):

<p><img src=”07fg03-trumpet.jpg” width=”50” height=”70” alt=”trumpet”
 />Brass</p>

Most browsers download the HTML and text associated with a page before
they download the page graphics. Instead of making users wait for the whole
page to download, browsers typically display the text first and then fill in
graphics as they become available. If you tell the browser how big a graphic
is, the browser can reserve a spot for it in the page display. This smooths the
process of adding graphics to the Web page.

You can check the width and height of an image in pixels in any image-editing
program, or in the image viewers built into Windows and the Mac OS. (You
might be able simply to view the properties of the image in either Windows or
the Mac OS to see its height and width.)

Another good use of the height and width attributes is to create colored
lines on a page by using just a small colored square. For example, this
markup adds a 10x10-pixel blue box to a Web page:

Use the element height and width attributes to set image height
and width. Thus we use these values to create 10x10 pixel blue box in a
browser window (shown in Figure 7-5), even though the original image is
100x100 pixels in size. In general it’s safe to reduce image dimensions using
these attributes, though you’ll always want to check the results carefully
during testing (and with any kind of aspect sensitive image, you’ll want
to maintain its aspect ratio by dividing the original dimensions by some
common value, as we did in going from 100x100 to 10x10, by dividing by 10).

Figure 7-5:
A small box.

12_238479 ch07.indd 11012_238479 ch07.indd 110 4/10/08 11:50:20 PM4/10/08 11:50:20 PM

111Chapter 7: Finding and Using Images

However, a change to the values for height and width in the markup turns
this small blue box into a line 20 pixels high and 200 pixels wide:

The browser expands the image to fit the height and width specifics in the
markup, as shown in Figure 7-6.

Figure 7-6:
A small box
becomes a

short line.

Using this technique, you can turn a single image like the blue box (only 1K in
size) into a variety of lines — and even boxes:

 � This can ensure that all dividers and other border elements on your
page use the same color — they’re all based on the same graphic.

 � If you decide you want to change all your blue lines to green, you just
change the image. Every line you’ve created changes colors.

When you specify a height and width for an image that are different from the
image’s actual height and width, you rely on the browser to scale the image
display. This works great for single-color images such as the blue box, but it
doesn’t work well for images with multiple colors or images that display actual
pictures. The browser doesn’t size images well, and you wind up with a dis-
torted picture. Figure 7-7 shows how badly a browser handles enlarging a
trumpet image when the markup doubles the image height and width (note
the jaggies on the trumpet bell, for example):

<p>
Brass</p>

If you need several sizes for the same image — as for a logo or navigation
button — use a large image as the master for that graphic, and make smaller
versions; doing so gives you better control over the final look and feel of each
image.

12_238479 ch07.indd 11112_238479 ch07.indd 111 4/10/08 11:50:21 PM4/10/08 11:50:21 PM

112 Part II: Formatting Web Pages with (X)HTML

Figure 7-7:
Don’t use a
browser to

resize
complex
images.

Setting an image border
By default, every image has a border of 1 — which doesn’t show up in most
browsers until you turn that image into a link (as shown in the “Images That
Link” section later). You can use the border attribute with the
element to better control the border the browser displays around your
image. This markup sets the border for the clarinet image to 10 pixels:

<img src=”07fg03-woodwinds.jpg” width=”100” height=”83” alt=”clarinet and
saxophone” border=”10” />

The browser uses this border on all four sides of the image, as in Figure 7-8.

Figure 7-8:
Use the bor-
der attribute

to create
a border

around your
image.

In Figure 7-8, the border is black and applies to all four sides of the image. If
you want to control the color of the border or make the border appear differ-
ently on each side of the image, you have two options:

 � Build the border into the image in an image-editing tool.

 � Use Cascading Style Sheets (CSS), which we cover in Chapters 8 and 9.

12_238479 ch07.indd 11212_238479 ch07.indd 112 4/10/08 11:50:21 PM4/10/08 11:50:21 PM

113Chapter 7: Finding and Using Images

If you use an image-editing tool to create your border, use its features to
create a patterned border or apply a unique effect. However, the extra infor-
mation in the image may make it bigger. Carefully balance your image size
and its appearance so it doesn’t take too long to download.

If you use CSS to apply a border, your image won’t get any bigger, but your
border may not show up in older browsers that don’t support CSS well. The
choice you make depends on how crucial the border is to your image (if it’s
very important, embed it in the image) and what browser you think your visi-
tors use (newer browsers have better support for style sheets).

Controlling image alignment
The align attribute works with the element to control how your
image appears relative to the text around it. The possible values for this attri-
bute are

 � top: Aligns the text around the image with the top of the image.

 � middle: Aligns the text around the image with the middle of the image.

 � bottom: Aligns the text around the image with the bottom of the image.

 � left: The image sits on the left, and text floats to the right of the image.

 � right: The image sits on the right, and text floats to the left of the image.

By default, most browsers align images to the left and float all text to the
right. The following markup shows how five different elements use
the align attribute to change how text floats around an image — in this
case, the 07fg09-mouse.jpg image:

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with top-aligned text”
 height=”63” width=”100” align=”top” />
 This text is aligned with the top of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with middle-aligned text”
 height=”63” width=”100” align=”middle” />
 This text is aligned with the middle of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with bottom-aligned text”
 height=”63” width=”100” align=”bottom” />
 This text is aligned with the bottom of the image.
</p>

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with left-aligned text”
 height=”63” width=”100” align=”left” />
 This image floats to the left of the text.
</p>

12_238479 ch07.indd 11312_238479 ch07.indd 113 4/10/08 11:50:21 PM4/10/08 11:50:21 PM

114 Part II: Formatting Web Pages with (X)HTML

<p> <img src=”07fg09-mouse.jpg” alt=”mouse with right-aligned text”
 height=”63” width=”100” align=”right” />
 This image floats to the right of the text, and overlaps with
 the image to the left.
</p>

Figure 7-9 shows how a browser interprets different alignment attributes.

Figure 7-9:
You can

vary image
alignment
to control

image
placement

on the page.

The attributes may not give you all the control you want of image
alignment. Chapter 11 shows how tables and images can be used together to
fine-tune image alignments, while Chapter 9 shows how you can use CSS prop-
erties to better control how images sit on the page.

Setting image spacing
Most browsers leave about one pixel of white space between images and text
or other images next to them. You can give your images breathing room with

 � The vspace (vertical space) attribute for top and bottom

 � The hspace (horizontal space) attribute for left and right

The following HTML gives the mouse graphic 20 pixels of white space on
either side and 25 pixels on the top and bottom:

12_238479 ch07.indd 11412_238479 ch07.indd 114 4/10/08 11:50:21 PM4/10/08 11:50:21 PM

115Chapter 7: Finding and Using Images

<p>
 This text doesn’t crowd the image on top.

 <img src=”07fg09-mouse.jpg”
 height=”63” width=”100” hspace=”20” vspace=”25”
 alt=”mouse on a white background” />
 And this text is a little further away from the sides. </p>

Figure 7-10 shows how a browser adds space around the image.

Figure 7-10:
The

hspace
and

vspace
attributes

control the
white space

around an
image.

The default value for hspace and vspace is 1. If you want images so close
together that their sides touch (like for a set of navigation buttons), set the
value for these attributes to 0 to eliminate that extra 1 pixel of space.

You can use CSS to position images on a page. You can position images with
accuracy and with control over placement, spacing, white space, and how text
flows around the graphic. Chapter 9 has the details on positioning items.

Images That Link
Web pages often use images for navigation. They’re prettier than plain-text
links, and you can add both form and function on your page with one element.

Triggering links
To create an image that triggers a link, you substitute an element in
place of text to which you would anchor your link. This markup links text:

<p>Visit the W3C</p>

12_238479 ch07.indd 11512_238479 ch07.indd 115 4/10/08 11:50:22 PM4/10/08 11:50:22 PM

116 Part II: Formatting Web Pages with (X)HTML

This markup replaces the text Visit the W3C with an appropriate icon:

<p><img src=”w3.jpg”
 alt=”Visit the W3C Web Site” height=”48” width=”315” border=”1” />

</p>

The preceding markup creates a linked image to http://www.w3.org. In
the preceding example, the alternative text now reads Visit the W3C Web
Site so users who can’t see the image know where the link goes. When a
user moves the mouse pointer over the image, the cursor changes from an
arrow into a pointing hand (or any icon the browser uses for a link).

We include a border around this image as a visual cue to let users know it also
serves as a link; it appears as a light blue outline (as shown in Figure 7-11) until
the link is followed. After that, the blue outline turns purple to let users know
this link has been visited.

Figure 7-11:
Combine

image and
anchor

elements
to create

a linked
image.

A quick click of the image launches the W3C Web site. It’s as simple as that.

As shown earlier in the chapter, you should set the border of any image you
use in a link to 0 if you want to keep the browser from surrounding your image
with a blue line. Without the line, however, users need other visual (or alterna-
tive text) clues so they know an image is a link. Be sure images that serve as
links scream to the user (tastefully, of course) “I’m a link!” In all cases, if the
automatic outline is eliminated, you should build an outline into the graphic
itself or add a caption that indicates the image serves as a link.

12_238479 ch07.indd 11612_238479 ch07.indd 116 4/10/08 11:50:22 PM4/10/08 11:50:22 PM

117Chapter 7: Finding and Using Images

Building image maps
When you use an element with an anchor element to create a linking
image, you can attach only one link to that image. To create a larger image that
connects links to different regions on the page, you need an image map.

To create an image map, you need two things:

 � An image with distinct areas obvious to users. (For example, an image of
a park might show a playground, a picnic area, and a pond area.)

 � Markup to map the different regions on the map to different URLs.

Elements and attributes
Use the element to add the map image into your page, just as you
would any other image. In addition, include the usemap attribute to let the
browser know that there’s image map information to go with that image. The
value of the usemap attribute is the name of your map.

You use two elements and a collection of attributes to define the image map:

 � <map> holds the map information. The <map> element uses the name
attribute to identify the map. The value of name should match the value
of usemap in the element that goes with the map.

 � <area /> links specific parts of the map to URLs. The <area /> element
takes these attributes to define the specifics for each section of the map:

 • shape: Specifies the shape of the region (a clickable hot spot that
makes the image map work). You can choose from rect (rectan-
gle), circle, and poly (a triangle or polygon).

 • coords: Define the region’s coordinates. A rectangle’s coordinates
include the left, right, top, and bottom points. A circle’s coordinates
include the x and y coordinates for the center of the circle as well as
the circle’s radius. A polygon’s coordinates are a collection of x and
y coordinates for every vertex in the polygon. (You can use an image
map editor like Mapedit from www.boutell.com/mapedit, or a
graphics editor such as PaintShop Pro from www.corel.com, to
determine image coordinates; Mapedit also records them for you.)

 • href: Specifies the URL to which the region links (can be absolute
or relative).

 • alt: Provides alternative text for the image region.

12_238479 ch07.indd 11712_238479 ch07.indd 117 4/10/08 11:50:22 PM4/10/08 11:50:22 PM

118 Part II: Formatting Web Pages with (X)HTML

Markup
This defines a three-region map called NavMap linked to the navigation.gif:

<img src=”07fg12-navmap.gif” width=”302” height=”30” usemap=”#NavMap” border=”0”
/>

<map name=”NavMap” />
 <area shape=”rect” coords=”0,0,99,30” href=”home.html” alt=”Home” />
 <area shape=”rect” coords=”102,0,202,30” href=”about.html” alt=”About” />
 <area shape=”rect” coords=”202,0,301,30” href=”products.html”
 alt=”Products” />
</map>

Figure 7-12 shows how a browser displays this markup.

When the mouse sits over a region in the map, the cursor turns into a pointing
hand (just as it changes over any other hyperlink). So take advantage of the
alternative text to include useful information about the link.

Figure 7-12:
Image maps

turn differ-
ent areas

of an image
into linking

regions.

A common use for image maps is to turn maps of places (states, countries,
cities, and such) into linkable maps. About.com’s image map tutorial at
http://webdesign.about.com/od/imagemaps/a/aabg051899a.htm
provides more details on building image maps by hand. HTML Goodies has a
great collection of image map tutorials and information at www.htmlgoodies.
com/tutorials/image_maps/index.php.

Creating image maps by hand can be tricky. Use an image editor to identify
each point in your map, and then create the proper markup for it. Most (X)
HTML tools include utilities to help you make image maps. If you take advan-
tage of such a tool, you can create image maps quickly and with few errors.
Find out more about (X)HTML tools in Chapter 22.

12_238479 ch07.indd 11812_238479 ch07.indd 118 4/10/08 11:50:22 PM4/10/08 11:50:22 PM

Part III
Taking Precise

Control Over Web
Pages and Styles

13_238479 pp03.indd 11913_238479 pp03.indd 119 4/11/08 12:11:49 AM4/11/08 12:11:49 AM

In this part . . .

In this part of the book, we introduce and describe
Cascading Style Sheets (CSS), a powerful markup lan-

guage that is often used to supplement (X)HTML and to
manage the way it looks inside a Web browser. (X)HTML
can reference CSS by including either an external style
sheet or inline CSS markup within an (X)HTML document.

Here you start out by familiarizing yourself with the many
and various capabilities of CSS, get a look at different
kinds of style sheets, and get acquainted with the rules for
handling multiple style sheets when they’re applied to a
single Web page (that’s where the Cascading in CSS comes
from). Of course, you also find out how to build and use
CSS for things like creating visual layouts, positioning
individual items, and handling fonts. Because CSS also
provides controls over color and modifying the way text
appears on the page, you find out how to deal with these
capabilities as well.

Tables are an important way to organize and represent
data in (X)HTML. No surprise that this part of the book
shows basic table setup, structure, and syntax, and also
explains how you can use CSS to manage table appearance.

13_238479 pp03.indd 12013_238479 pp03.indd 120 4/11/08 12:11:51 AM4/11/08 12:11:51 AM

Chapter 8

Introducing Cascading
Style Sheets

In This Chapter
� Understanding CSS

� Creating style rules

� Linking style rules to Web pages

� Introducing CSS properties

� Understanding inheritance and the style cascade

The goal of Cascading Style Sheets (CSS) is to separate a Web page’s style
from its structure and to make it easier to maintain Web pages you’ve

created. The structural elements of a page, such as headings (<h1> through
<h6>) and body text, don’t affect the look of those elements. By applying
styles to those elements, you can specify the element’s layout on the page and
add design attributes (such as fonts, colors, and text indentation).

Style sheets give you precise control over how structural elements appear
on a Web page. What’s even better is that you can create one style sheet for
an entire Web site to keep the layout and look of your content consistent
from page to page. And here’s the icing on this cake: Style sheets are easy
to build and even easier to integrate into Web pages. In fact, you can add
style markup to individual (X)HTML elements (called inline style), create
sequences of style instructions in the head of an (X)HTML document (called
an internal style sheet), or refer to a separate stand-alone style sheet using
some kind of link or other reference (called an external style sheet) inside
your (X)HTML document. In short, there are lots of ways to add style to a
Web page!

As more Web sites transition to XHTML, the goal of the markup powers-that-
be is to eventually deprecate (make obsolete) all formatting markup, such as
the element, from HTML’s collection of elements. Someday, all pre-
sentation will belong to CSS.

14_238479 ch08.indd 12114_238479 ch08.indd 121 4/10/08 9:37:59 PM4/10/08 9:37:59 PM

122 Part III: Taking Precise Control Over Web Pages and Styles

When you want tight control over the display of your Web pages, style sheets
are the way to go:

 � Generally, style sheets give you more flexibility than markup can.

 � Future HTML and XHTML elements will no longer include display-
oriented tags.

Most modern browsers handle CSS well. However, some older browsers —
such as Internet Explorer 4.0 and Netscape Navigator — have trouble display-
ing CSS correctly. Earlier browsers can’t display CSS at all. If you know that
many of your site’s users still use one or more of these obsolete browsers, test
your pages in these browsers; make sure they can read your pages.

Advantages of Style Sheets
HTML’s formatting capabilities are limited, to say the least. When you design
a page layout in HTML, you’re limited to tables, font controls, and a few inline
styles, such as bold and italic. Style sheets supply lots of tools to format Web
pages with precise controls. With style sheets you can

 � Carefully control every aspect of page display: Specify the amount of
space between lines, character spacing, page margins, image placement,
and more. You can also specify positioning of elements on your pages.

 � Apply changes globally: You can guarantee consistent design across an
entire Web site by applying the same style sheet to every Web page.

 You can modify the look and feel of an entire site by changing just one
document (the style sheet) instead of the markup on every page. Need
to change the look of a heading? Redefine that heading’s style attributes
in the style sheet and save the sheet. The heading’s look changes
throughout your site. You can imagine one page after rapidly adopting
the new look in a “cascade” of changes (hence the name) but that’s just
a metaphor; the cascade is instantaneous.

 � Instruct browsers to control appearance: Provide Web browsers with
more information about how you want your pages to appear than you
can communicate using HTML.

 � Create dynamic pages: Use JavaScript or another scripting language
along with style sheets to create text and other content that moves,
appears, or hides in response to user actions.

14_238479 ch08.indd 12214_238479 ch08.indd 122 4/10/08 9:37:59 PM4/10/08 9:37:59 PM

123Chapter 8: Introducing Cascading Style Sheets

What CSS can do for a Web page
The gist of how style sheets work is as follows:

 1. You define rules in a style sheet that specify how you want content
described by a set of markup to appear.

 For example, you could specify that every first-level heading (<h1>) be
displayed in purple Garamond 24-point type with a yellow background
(not that you would, but you could).

 2. You link style rules and markup.

 3. The browser does the rest.

The current specification, CSS2.1, can

 � Specify font type, size, color, and effects

 � Set background colors and images

 � Control many aspects of text layout, including alignment and spacing

 � Set margins and borders

 � Control list display

 � Define table layout and display

 � Automatically generate content for such standard page elements as
counters and footers

 � Control cursor display

 � Define aural style sheets for text-to-speech browsers

CSS3: Next-generation style sheets
The next generation of CSS — CSS3 — is
a collection of modules that address differ-
ent aspects of Web-page formatting, such as
fonts, background colors, lists, and text colors.
The first of these modules became standards
(officially called Candidate Recommendations)
in mid-2004. But the majority of CSS3 mod-
ules aren’t expected to become Candidate
Recommendations until mid-2008 or later, and
few browsers implement CSS3 features. In short,
you don’t need to worry about CSS3 — yet.

The W3C has devoted an entire section of
its Web site to this topic at www.w3.org/
style/css. You can find general CSS infor-
mation there, as well as keep up with the status
of CSS3. The site links to good CSS references
and tutorials, and includes information on soft-
ware packages that can make your style-sheet
endeavors easier.

14_238479 ch08.indd 12314_238479 ch08.indd 123 4/10/08 9:38:00 PM4/10/08 9:38:00 PM

124 Part III: Taking Precise Control Over Web Pages and Styles

What you can do with CSS
You have a healthy collection of properties to work with as you write your
style rules. You can control just about every aspect of a page’s display —
from borders to font sizes and everything in-between:

 � Background properties control the background colors associated with
blocks of text and with images. You can also use these properties to
attach background colors to your page or to individual elements.

 � Border properties control borders associated with the page, lists,
tables, images, and block elements (such as paragraphs). You can
specify border width, color, style, and distance from the element’s
content.

Property measurement values
Many HTML properties use measurement
values. We tell you which measurement values
go with which properties throughout this book.
Standard property measurements dictate the
size of a property in two ways.

Absolute value measurements can dictate a spe-
cific length or height with one of these values:

 � inches, such as .5in

 � centimeters, such as 3cm

 � millimeters, such as 4mm

 � picas, such as 1pc

 There are about six picas in an inch.

 � points, such as 16pt

 There are 12 points in a pica.

 � pixels, such as 13px (these match up to
individual dots on your computer display).

Relative value measurements base length
or height on a parent element value in the
document:

 � p%: A percentage of the current font-
size value, such as 150%.

 For example, you can define a font size of
80% for all paragraphs. If your document
body is defined with a 15-point font, the font
size of the paragraphs is 12 points (80 per-
cent of 15).

 � ex: A value that is relative to the x-height of
the current font. An x-height is the equiva-
lent of the height of the lowercase charac-
ter of a font, such as 1.5ex.

 � em: A value that is relative to the current
font size, such as 2em.

 Both 1em and 100% equal the current
size.

Be careful when using these values; some prop-
erties support only some measurement values —
length values, say, but not relative values. Don’t
let this jargon scare you. Just define the size in a
value you’re familiar with.

14_238479 ch08.indd 12414_238479 ch08.indd 124 4/10/08 9:38:00 PM4/10/08 9:38:00 PM

125Chapter 8: Introducing Cascading Style Sheets

 � Classification properties control how elements such as images flow on
the page relative to other elements. You can use these properties to
integrate images and tables with the text on your page.

 � List properties control how lists appear on your page, such as

 • Managing list markers

 • Using images in place of bullets

 � Margin properties control the margins of the page and margins around
block elements, tables, and images. These properties extend ultimate
control over the white space on your page.

 � Padding properties control the amount of white space around any block
element on the page. When you use these with margin and border prop-
erties, you can create some complex layouts.

 � Positioning properties control where elements sit on the page; you can
use them to put elements in specific places on the page.

 � Size properties control how much space (in height and width) your ele-
ments (both text and images) take up on your page. They’re especially
handy for limiting the size of text boxes and images.

 � Table properties control the layout of tables. You can use them to con-
trol cell spacing and other table-layout specifics.

 � Text properties control how text appears on the page. You can set such
properties as font size, font family, height, text color, letter and line spac-
ing, alignment, and white space. These properties give you more control
over your text with style sheets than the font HTML element can.

Entire books and Web sites are devoted to the fine details of using each and
every property in these categories. We suggest one of these references:

 � CSS Web Design For Dummies by Richard Mansfield, published by Wiley
Publishing.

 � Westciv’s CSS2 reference on the Web:

www.westciv.com/style_master/academy/css_tutorial/index.html

Although CSS syntax is straightforward, combining CSS styles with markup to
fine-tune a page layout can get a little complicated. But to become a CSS guru,
you just need to

 � Know the details of how the different properties work.

 � Experiment with how browsers handle CSS.

 Practice shows how to convey your message on the Web using CSS.

14_238479 ch08.indd 12514_238479 ch08.indd 125 4/10/08 9:38:00 PM4/10/08 9:38:00 PM

126 Part III: Taking Precise Control Over Web Pages and Styles

CSS Structure and Syntax
A style sheet is made of style rules. Each style rule has two parts:

 � Selector: Specifies the markup element to which style rules apply.

 � Declaration: Specifies how the content described by the markup looks.

You use a set of punctuation marks and special characters to define a style
rule. The syntax for a style rule always follows this pattern:

selector {declaration;}

A declaration breaks down further into two items:

 � Properties are aspects of how the computer displays text and graphics
(for example, font size or background color).

 � Values are the data that specify how you want text and images to look
on your page (for example, a 24-point font size or a yellow background).

You separate the property from the value in a declaration with a colon (and
each declaration ends with a semi-colon):

selector {property: value;}

For example, these three style rules set the colors for first-, second-, and
third-level headings:

h1 {color: teal;}
h2 {color: maroon;}
h3 {color: black;}

The CSS specification lists exactly which properties you can work with in
your style rules and the different values they can take. Most are pretty self-
explanatory (color and border, for example). See “What you can do with
CSS,” earlier in this chapter, for a quick rundown of properties included in
the CSS2 specification.

Style sheets override a browser’s internal display rules; your formatting
specifications affect the final appearance of the page in the user’s browser.
This means you can better control how your content looks and create a more
consistent and appropriate experience for visitors.

For example, the following style rules specify the font sizes (in pixels) for
first-, second-, and third-level headings:

h1 {font-size: 16px;}
h2 {font-size: 12px;}
h3 {font-size: 10px;}

14_238479 ch08.indd 12614_238479 ch08.indd 126 4/10/08 9:38:00 PM4/10/08 9:38:00 PM

127Chapter 8: Introducing Cascading Style Sheets

Figure 8-1 shows a simple HTML page with all three heading levels (plus
some body text) without the style sheet applied. The browser uses its default
settings to display the headings in different font sizes.

Figure 8-1:
An HTML

page
without

style
specifica-

tions.

Figure 8-2 shows the same Web page with a style sheet applied. The headings
are significantly smaller than in the preceding figure. That’s because the style
sheet rules override the browser’s defaults.

Figure 8-2:
An HTML
page with

style speci-
fications in

effect.

14_238479 ch08.indd 12714_238479 ch08.indd 127 4/10/08 9:38:00 PM4/10/08 9:38:00 PM

128 Part III: Taking Precise Control Over Web Pages and Styles

Users can change their preferences so their browsers ignore your style sheets.
(Most users will use your sheets.) Test your Web page with style sheets turned
off to be sure it looks good (or acceptable) without your style sheets. (For
detailed instructions on disabling or altering style sheets, see Jim Hatcher’s dis-
cussion entitled “Reading Web Pages without CSS” at www.jimthatcher.com/
webcourseb.htm; instructions vary depending on your Web browser, but you
can use accessibility plug-ins to manage or disable style sheets as well.)

Selectors and declarations
You probably want a style rule to affect the display of more than one prop-
erty for any given selector. You can create several style rules for a single
selector, each with one declaration, like this:

h1 {color: teal;}
h1 {font-family: Arial;}
h1 {font-size: 36px;}

However, such a large collection of style rules becomes hard to manage. CSS
lets you combine several declarations in a single style rule that affects the
display characteristics of a single selector, like this:

h1 {color: teal;
 font-family: Arial;
 font-size: 36px;}

All the declarations for the h1 selector are within the same set of brackets
({}) and are separated by semicolons (;). You can put as many declarations
as you want in a style rule; just end each declaration with a semicolon.

 The semicolon at the end of the last declaration is optional. Some people
include it to be consistent and end every declaration with a semicolon, but it’s
not necessary. We use it both ways throughout this book.

From a purely technical standpoint, white space is irrelevant in style sheets
(just as it is in HTML), but you should use a consistent spacing scheme to
make it easy to read and edit your style sheets. One exception to this white-
space rule occurs when you declare multiple font names in the font-family
declaration. See the “Font family” sidebar for more information.

You can make the same set of declarations apply to a collection of selectors,
too: You just separate the selectors with commas. The following style rule
applies the declarations for text color, font family, and font size to the h1, h2,
and h3 selectors:

h1, h2, h3 {color: teal;
 font-family: Arial;
 font-size: 36px;}

14_238479 ch08.indd 12814_238479 ch08.indd 128 4/10/08 9:38:01 PM4/10/08 9:38:01 PM

129Chapter 8: Introducing Cascading Style Sheets

Font family
When assigning values to the font-family
property, you can provide a list of comma-
separated font names. These names must match
fonts available to the user’s Web browser. If a
font name — such as “Times New Roman” —
includes spaces, it must be enclosed in quota-
tion marks.

h1 {font-family: Verdana; “Times New
Roman”, serif;}

The browser seeks to use Verdana first, and if
that’s not available, it looks for Times New Roman
next, and then uses a generic serif font as its last
option. Chapter 10 covers fonts in CSS.

The sample style rules in this section show that style-sheet syntax relies heav-
ily on punctuation. When a style rule doesn’t work exactly as you anticipate,
make sure your syntax doesn’t use a semicolon where you need a colon, and
doesn’t use a parenthesis where you need a bracket. Watch out for commas
and semicolons, too!

The W3C’s validation service can help you find problems in your style sheets:

http://jigsaw.w3.org/css-validator/

Working with style classes
Sometimes you need style rules that apply only to specific instances of an
HTML markup element. For example, if you want a style rule that applies only
to paragraphs that hold copyright information, you need a way to tell the
browser that the rule has a limited scope.

To target a style rule more closely, combine the class attribute with a markup
element. The following examples show HTML for two kinds of paragraphs:

 � A regular paragraph (without a class attribute)

<p>This is a regular paragraph.</p>

 � A class attribute with the value of copyright

<p class=”copyright”>This is a paragraph of class copyright.</p>

To create a style rule that applies only to the copyright paragraph, follow the
paragraph selector in the style rule with

 � A period (.)

 � The value of the class attribute, such as copyright

14_238479 ch08.indd 12914_238479 ch08.indd 129 4/10/08 9:38:01 PM4/10/08 9:38:01 PM

130 Part III: Taking Precise Control Over Web Pages and Styles

The resulting rule looks like this:

p.copyright {font-family: Arial;
 font-size: 12px;
 color: white;
 background: teal;}

This style rule specifies that all paragraphs of class copyright display white
text on a teal background in 12-pixel Arial font. Figure 8-3 shows how a browser
applies this style rule only to the paragraph with the copyright attribute.

Figure 8-3:
Classes

can target
your style

rules more
precisely.

You can also create style-rule classes that aren’t associated with any ele-
ment, like the following example:

.warning {font-family: Arial;
 font-size: 14px;
 background: blue;
 color: white;}

You can use this style class with any element by adding class=”warning”
to that element. Figure 8-4 shows how a browser applies the warning style to
the paragraph and heading, but not the block quote, in this HTML:

<p>This is a paragraph without the warning class applied.</p>
<blockquote>This is a block quote without a defined class.</blockquote>
<h1 class=”warning”>Warnings</h1>
<p class=”warning”>This is a paragraph with the warning class applied.</p>

14_238479 ch08.indd 13014_238479 ch08.indd 130 4/10/08 9:38:01 PM4/10/08 9:38:01 PM

131Chapter 8: Introducing Cascading Style Sheets

You can also use the span element to selectively apply custom styles to
inline content (or to create arbitrary content containers that extend from the
opening tag to its closing counterpart):

<p>This is a paragraph without the warning class
 applied only to the words “warning class.”</p>

Figure 8-4:
You can

use classes
to create

style rules
that work
with any
element.

Inheriting styles
One of the basic concepts in HTML (and markup in general) is nesting tags:

 � Your entire HTML document is nested within <html> and </html> tags.

 � Everything a browser displays in a window is nested within <body> and
</body> tags. (That’s just the beginning, really.)

The CSS specification recognizes that you often nest one element inside
another and wants to be sure that styles associated with the parent element
find their way to the child element. This mechanism is called inheritance.

Pay attention to inheritance!
When you build complex style sheets that guide
the appearance of every aspect of a page, keep
inheritance in mind. For instance, if you set mar-
gins for the page in a body style rule, all margins
you set for every other element on the page are
based on margins set for the body. If you know
how your style rules work together, you can use
inheritance to minimize style rule repetition and
create a cohesive display for your page.

This chapter covers basic CSS syntax, but you
can fine-tune your style rules with advanced
techniques. A complete overview of CSS
syntax rules is available in the “CSS Structure
and Rules” tutorial by the Web Design Group at
www.htmlhelp.com/reference/css/
structure.html.

14_238479 ch08.indd 13114_238479 ch08.indd 131 4/10/08 9:38:02 PM4/10/08 9:38:02 PM

132 Part III: Taking Precise Control Over Web Pages and Styles

When you assign a style to an element, the same style is applied to all the
elements nested inside the element. For example, a style rule for the body
element that sets the page background, text color, font size, font family, and
margins looks like this:

body {background: teal;
 color: white;
 font-size: 18px;
 font-family: Garamond;
 margin-left: 72px;
 margin-right: 72px;
 margin-top: 72px;}

If you want to set style rules for the entire document, set them in the body ele-
ment. Changing the font for the entire page, for example, is much easier to do
that way; it beats changing every single element one at a time.

When you link the following HTML to the preceding style rule, which applies
only to the body element, that formatting is inherited by all subordinate ele-
ments (as shown in Figure 8-5):

<body>
 <p>This paragraph inherits the page styles.</p>
 <h1>As does this heading</h1>

 As do the items in this list
 Item
 Item

</body>

Figure 8-5:
Inheritance
means style
rules apply

to nested
elements.

14_238479 ch08.indd 13214_238479 ch08.indd 132 4/10/08 9:38:02 PM4/10/08 9:38:02 PM

133Chapter 8: Introducing Cascading Style Sheets

Using Different Kinds of Style Sheets
When you finish creating your style rules, you’re ready to connect them to
your HTML page with one of these options:

 � Insert style information into your document. You can either

 • Use the <style> element to build a style sheet into a Web page.

 This is an internal style sheet.

 • Use the style attribute to add style information directly to a tag.

 This is an inline style.

 � Use an external style sheet. You can either

 • Use the <link> tag to link your Web page to an external style sheet.

 • Use the CSS @import statement to import an external style sheet
into the Web page.

Internal style sheets
An internal style sheet lives within your HTML page. Just add style rules to
the <style> element in the document header. You can include as many (or
as few) style rules as you want in an internal style sheet. (See Listing 8-1.)

Listing 8-1: Adding an Internal Style Sheet to an HTML Document
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Internal Style Sheet Example</title>
 <style type=”text/css”>
 body {background: black;
 color: white;
 font-size: 16px;
 font-family: Garamond;
 margin-left: 72px;
 margin-right: 72px;
 margin-top: 72px;}

 h1, h2, h3 {color: teal;
 font-family: Arial;
 font-size: 36px;}

 p.copyright {font-family: Arial;

(continued)

14_238479 ch08.indd 13314_238479 ch08.indd 133 4/10/08 9:38:02 PM4/10/08 9:38:02 PM

134 Part III: Taking Precise Control Over Web Pages and Styles

Listing 8-1 (continued)
 font-size: 12px;
 font-color: white;
 background: black;}

 .warning {font-family: Arial;
 font-size: 16px;
 font-color: red;}
 </style>
</head>
<body>

<!-- Document content goes here -->

</body>
</html>

The benefit of an internal style sheet is convenience: Your style rules are on
the same page as your markup so you can tweak both quickly. But if you want
the same style rules to control the appearance of more than one HTML page,
move those styles from individual Web pages to an external style sheet.

External style sheets
An external style sheet holds all your style rules in a separate text document
you can reference from any HTML file on your site. You must maintain a sepa-
rate style sheet file, but an external style sheet offers benefits for overall site
maintenance. If your site’s pages use the same style sheet, you can change
any formatting characteristic on all pages with a change to the style sheet.

We recommend using external style sheets on your sites.

Linking
To reference an external style sheet, use the link element in the Web page
header, like this:

<html>
<head>
 <title>External Style Sheet Example</title>
 <link rel=”stylesheet” type=”text/css” href=”styles.css” />
<head>
<body>

<!-- Document content goes here -->

</body>
</html>

14_238479 ch08.indd 13414_238479 ch08.indd 134 4/10/08 9:38:02 PM4/10/08 9:38:02 PM

135Chapter 8: Introducing Cascading Style Sheets

The href attribute in the <link> element can take either

 � A relative link (a style sheet on your own site)

 � An absolute link (a style sheet that doesn’t reside on your own site)

 Usually, you shouldn’t use a style sheet that doesn’t reside on your Web
site — you want control of your site’s look and feel.

 If you want to quickly add style to your Web page (or experiment to see
how browsers handle different styles), use an absolute URL to point to
one of the W3C’s Core style sheets. Read more about them at

www.w3.org/StyleSheets/Core/

Chapter 6 covers the difference between relative and absolute links.

Importing
The @import statement instructs the browser to load an external style sheet
and use its styles. You use it within the <style> element but before any of
the individual style rules, like so:

<style>
 @import “http://www.somesite.edu/stylesheet.css”;
</style>

Style rules in an imported style sheet take precedence over any rules that
come before the @import statement. So if you have multiple external style
sheets referenced with more than one @import statement on your page, rules
apply from the later style sheets (the ones farther down on the page).

Use inline styles carefully
You can attach individual style rules, called an
inline style, to individual elements in an HTML
document. An inline style rule attached to an
element looks like this:

<p style=”color: green;”>Green text.</p>

Adding style rules to an element isn’t really
the best approach. We generally recommend
that you choose either internal or (preferably)
external style sheets for your rules instead of
attaching the rules to individual elements in
your document. Here are a few reasons:

 � Your style rules get mixed up in the page
and are hard to find.

 � You must place the entire rule in the value
of the style attribute, which makes com-
plex rules hard to write and edit.

 � You lose all the benefits that come with
grouping selectors and reusing style rules
in external style sheets.

14_238479 ch08.indd 13514_238479 ch08.indd 135 4/10/08 9:38:02 PM4/10/08 9:38:02 PM

136 Part III: Taking Precise Control Over Web Pages and Styles

Understanding the Cascade
Multiple style sheets can affect page elements and build upon one another.
It’s like inheriting styles within a Web page. This is the cascading part of CSS.

Here’s a real-world example: a Web site for a university’s English department.
The English department is part of the School of Humanities, which is just one
school in the university. Each of these entities — the university, the school,
and the English department — has its own style sheet.

 1. The university’s style sheet provides style rules for all pages in the site.

 2. The school’s style sheet links to the university’s style sheet (using an
@import statement), and adds more style rules specific to the look the
school wants for its own site.

 3. The English department’s style sheet links to the school’s style sheet.

 So the department’s pages both have their own style rules and inherit the
style rules from both the school and the university’s style sheet.

But what if multiple style sheets define rules for the same element? What if,
for example, all three style sheets specify a rule for the h1 element? In that
case, the nearest rule to the page or element you’re working on wins out:

 � If an h1 rule exists on the department’s style sheet, it takes precedence
over the school and university h1 styles.

 � If an individual page within the department applies a style rule to h1 in a
<style> tag, that rule applies.

14_238479 ch08.indd 13614_238479 ch08.indd 136 4/10/08 9:38:03 PM4/10/08 9:38:03 PM

Chapter 9

Using Cascading Style Sheets
In This Chapter
� Getting a handle on using CSS

� Positioning objects on a page

� Creating font rules

� Creating style sheets for print

� Understanding aural style sheets

Understanding the structure and syntax of CSS is easy. Learning about
the properties that CSS can apply to (X)HTML documents takes a little

more time and effort. However, where the learning curve really gets interest-
ing is when it comes to learning how to use CSS to take a plain or ordinary
Web page and “kick it up a notch.” This chapter deals with how to put CSS to
work, rather than focusing on its structure and inner workings.

If you need a refresher of CSS style rules and properties, read Chapter 8 (a
high-level overview of CSS and how it works). Then you can return to this
chapter and put CSS into action.

Now it’s time to make a page and give it some style!

To use CSS efficiently, follow these general guidelines:

 � When you test how a page looks, use internal styles so you can tweak
to your heart’s delight. (This chapter shows internal style sheets, but
Chapter 8 covers internal and external style sheets in greater detail.)

 � When your test page looks just right, move those internal styles to an
external sheet, and then apply them throughout your site.

15_238479 ch09.indd 13715_238479 ch09.indd 137 4/10/08 9:38:27 PM4/10/08 9:38:27 PM

138 Part III: Taking Precise Control Over Web Pages and Styles

Managing Layout, Positioning,
and Appearance

You can use CSS to lay out your pages so that images and blocks of text

 � Appear exactly where you want them to.

 � Fit exactly within the amount of space you want them to occupy.

After you create styles within a document, you can create an external style
sheet to apply the same styles to any page.

Developing specific styles
Listing 9-1 shows a Web page without any defined styles (see Figure 9-1).

Listing 9-1: A Fairly Dull Page
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Pixel’s Page</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
 <body>
 <h1>I’m Pixel the Cat. Welcome to my page.</h1>
 <div class=”navbar”>
 Links of interest:

 Google

 Amazon

 Yahoo
 </div>
 <img src=”/images/pixel1.jpg” alt=”The Cat” width=”320” height=”240”
 id=”theCat” />
 </body>
</html>

The cat looks great, but the page certainly doesn’t show off his possibilities.
The addition of some styles improves this page immensely. Here’s how!

15_238479 ch09.indd 13815_238479 ch09.indd 138 4/10/08 9:38:27 PM4/10/08 9:38:27 PM

139Chapter 9: Using Cascading Style Sheets

Figure 9-1:
This style-
free page

doesn’t
maximize
this cat’s

possibilities.

Visual layouts
Instead of the links appearing above the image, as they are in Figure 9-1, we
want them on the left, a typical location for navigation tools. The following
markup floats the text for the search site links to the left of the image:

<style type=”text/css”>
 .navbar {
 background-color: #CCC;
 border-bottom: #999;
 border-left: #999;
 border-width: 0 0 thin thin;
 border-style: none none groove groove;
 display: block;
 float: left;
 margin: 0 0 0 10px;
 padding: 0 10px 0 10px;
 width: 100px;
 }
</style>

15_238479 ch09.indd 13915_238479 ch09.indd 139 4/10/08 9:38:27 PM4/10/08 9:38:27 PM

140 Part III: Taking Precise Control Over Web Pages and Styles

In the preceding rules, we

 � Added a <style> element

 � Defined the navbar class inside the <style> element

 � Used the navbar class to instruct the content to float to the left of
images, which causes them to appear in the same part of the page to the
left, rather than above the graphic.

This rule says that anything on the page that belongs to the navbar class (as
shown in Figure 9-2) should display with

 � A light-gray background

 � A thin grooved-line border at bottom and left, in a darker gray

 � No top or right border

 � A block that floats to the left (so everything else on the page moves
right, as with the image in Figure 9-2)

 � A left margin of 10 pixels

 � Padding at top and bottom of 10 pixels each

 � A navbar area 100 total pixels wide

Figure 9-2:
The naviga-

tion bar
now looks
more like
standard
left-hand

navigation.

Note that several properties in the declaration, called shorthand properties,
take multiple values, such as margin and padding. Shorthand properties col-
lect values from multiple related CSS properties (such as margin-height,
margin-width, and so forth). See our online materials for a complete list.

15_238479 ch09.indd 14015_238479 ch09.indd 140 4/10/08 9:38:28 PM4/10/08 9:38:28 PM

141Chapter 9: Using Cascading Style Sheets

Those values correspond to settings for the top, right, bottom, and left edges
of the navbar’s box. margin creates an empty zone around the box, and pad-
ding defines the space between the edges or borders of the box and the con-
tent inside the box. Here are the rules that explain how to associate values
with properties that deal with margins, borders, padding, and so forth:

 � If all the sides have the same value, a single value works.

 � If any side is different from the others, every side needs a separate value.
It’s okay to set some or all of these values to zero as you see fit; this
can often help to ensure that pages display consistently across a wider
range of browsers (and browser versions).

To remember what’s what, think of the edges of an element box in clockwise
order, starting with the top edge: top, right, bottom, and then left.

Positioning
CSS provides several ways to specify exactly where an element should
appear on a page. These controls use various kinds of positioning based on
the relationships between an element’s box and its parent element’s box
to help page designers put page elements where they want them to go. The
kinds of properties involved are discussed in the following sections.

Location
You can control the horizontal and vertical location of an image. But when
you use absolute positioning with any page element, you instruct that
element exactly where it must sit, relative to the upper left corner of the
browser window. Thus, instead of letting it be drawn automatically to the
right of the navigation bar, you can place an image down and to the left, as
in Figure 9-3:

#theCat {position: absolute; top: 100px; left: 100px;}

You might be wondering why the navbar rule starts with a period, and the
theCat rule starts with a pound symbol (also known as a hash mark or
octothorpe). That’s because the period applies to a class attribute, but the
pound symbol applies to an id attribute. You can apply either a class or an
id to specific elements; the difference between these two is that a class can
be used repeatedly, but an id can appear only once on a page. You can’t have
anything else on the page that uses theCat as its id. The difference, quite
simply, is that a class lets you refer to some entire kind of element with a
single reference, but an id can address only a single instance of an element.

Overlapping
Two objects can be assigned to the same position in a Web page. When that
happens, the browser must decide the display order and which objects to
show and which ones to hide.

15_238479 ch09.indd 14115_238479 ch09.indd 141 4/10/08 9:38:28 PM4/10/08 9:38:28 PM

142 Part III: Taking Precise Control Over Web Pages and Styles

Figure 9-3:
The image

is more
striking

in this
location.

The z-index, added to any rule, tells CSS how you want any object stacked
over and under other objects that occupy the same space on the page:

 � Lower numbers move down the stack.

 � Higher numbers move up the stack.

 � The default value for z-index is auto, which means it’s the same as for
its parent element.

Giving theCat a z-index value of -1 automatically puts it behind everything
else on the page (as shown in Figure 9-4) for which the z-index isn’t set.

Fonts
You can make a page more interesting by replacing old boring default fonts.
Start by specifying a generic body font as well as setting some other default
rules, such as background color and text color.

Body text
Here’s an example that sets the style for text within the body tag:

body {font-family: verdana, geneva, arial, helvetica, sans-serif;
 font-size: 12px; line-height: 16px; background-color: white;
 color: teal;}

15_238479 ch09.indd 14215_238479 ch09.indd 142 4/10/08 9:38:28 PM4/10/08 9:38:28 PM

143Chapter 9: Using Cascading Style Sheets

Figure 9-4:
The cat’s

peeking out
from behind
the naviga-

tion bar.

Because the body element holds all content for any Web page, this affects
everything on the page. The preceding rule instructs the browser to show all
text that appears within the body element as follows:

 � The text is rendered using one of the fonts listed. We placed Verdana
at the head of the list because it is the preferred choice, and browsers
check for available fonts in the order listed. (Note that a generic font, in
this case sans-serif, almost always appears last in such lists because
the browser can almost always supply such a font itself.)

 You can list more than one font. The browser uses the first font in your
list that’s available in the browser. For example, the browser looks for
fonts from our list in this order:

 1. Verdana

 2. Geneva

 3. Arial

 4. Helvetica

 5. The browser’s default sans-serif font

 � 12-pixel font size

 � 16-pixel line height

 The lines are spaced as though the fonts are 16 pixels high, so there’s
more vertical space between lines.

15_238479 ch09.indd 14315_238479 ch09.indd 143 4/10/08 9:38:29 PM4/10/08 9:38:29 PM

144 Part III: Taking Precise Control Over Web Pages and Styles

Figure 9-5 shows that

 � All changes apply to the entire page, including the navigation bar.

 � The font-family changes in the h1 heading, but neither the font-size
nor line-height changes for that heading.

 Because headers have specific defaults for font-size and line-height,
another rule is needed to modify them.

In shooting Figure 9-5, the HTML used for our screen capture includes an addi-
tional tweak for IE. That’s because a bug in Internet Explorer for Windows that
doesn’t occur in other browsers causes heading (h1) text to get truncated at
the top. (Try the source (X)HTML for Figure 9-5 in IE to see what we mean; we
had to add CSS markup that set line-height: 105%; for h1 to create this
display.) Unfortunately, CSS rendering can be unpredictable enough that you
must test style rules in various browsers to see how they look — and then
tweak accordingly.

Figure 9-5:
The fonts
are nicer,

but they
could still

use a little
more work.

Headings
If we explicitly assign style properties to the h1 element, display results are
more predictable. Here’s a sample set of styles:

h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica, sans-serif;
 font-size: 24px; line-height: 26px;}

15_238479 ch09.indd 14415_238479 ch09.indd 144 4/10/08 9:38:29 PM4/10/08 9:38:29 PM

145Chapter 9: Using Cascading Style Sheets

Figure 9-6 shows a first-level heading using the font family and type size that
we want: 24-pixel Trebuchet MS, with a 26-pixel line height. If we didn’t have
the Trebuchet MS font on our system, the heading would appear in Verdana.

When a font name includes spaces (like trebuchet ms or times new
roman), the full name must be within quotation marks. (See Chapter 8 for
more information.)

Figure 9-6:
Declaring
a rule for
h1 makes
it appear

just how we
like it.

Hyperlinks
We think that having the hyperlinks underlined — which is normal — makes
the menu look a little cluttered. Luckily, we can turn underlines off with CSS,
but we still want the hyperlinks to look like hyperlinks, so we tell CSS to

 � Make links bold.

 � Make underlines appear when the cursor is over a link.

 � Show links in certain colors.

The following style rules define how a browser should display hyperlinks:

a {text-decoration: none; font-weight: bold}
a:link {color: blue}
a:visited {color: #93C}
a:hover {text-decoration: underline}

15_238479 ch09.indd 14515_238479 ch09.indd 145 4/10/08 9:38:29 PM4/10/08 9:38:29 PM

146 Part III: Taking Precise Control Over Web Pages and Styles

What’s going on here? Starting from the top, we’re setting two rules for the
<a> tag that apply to all links on the page:

 � The text-decoration declaration sets its value to none.

 This gets rid of the underlining for all the links.

 � The font-weight declaration has a value of bold.

 This makes all the links on the page appear in bold.

The remaining rules in the preceding code are pseudo class selectors. Their
most common usage is to modify how links appear in their different states.
(For more information on pseudo classes, see Chapter 10.) Here we change
the color when a link has been visited, and we turn underlining on when the
mouse pointer hovers over link text — doing so identifies hyperlinks when
the cursor is in clicking range. Figure 9-7 shows how the page appears when
the previous style rules are applied.

Figure 9-7:
The final

version of
our page.

Externalizing style sheets
When the final page is the way you want it, you’re ready to cut and paste
your tested, approved, internal style sheet into an external style sheet.

 � Every page of the site can use the whole style sheet with the addition of
only one line of code to each page.

 � Changes can be made site-wide with one change in the external style sheet.

15_238479 ch09.indd 14615_238479 ch09.indd 146 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

147Chapter 9: Using Cascading Style Sheets

To create an external style sheet from a well-tested, internal style sheet,
follow these steps:

 1. Copy all text that sits between the <style> and </style> tags.

 2. Paste that text into its own new document.

 This text should include only CSS markup, without any HTML tags or
markup.

 3. Add a .css suffix to the document’s name (for example, myStyles.
css) when saving.

 The suffix shows at a glance that it’s a CSS file.

So you’ve got your external style sheet. Time now to link your HTML file to
said external style sheet. You have two options available to you:

 � Use the <link> tag.

 All CSS-capable browsers understand the link tag.

 � Use the <style> tag with the @import keyword.

 Only newer browsers understand the <style> and @import combination.

See Chapter 8 for more on these two methods.

Style sheets for old and new browsers
To include rules that both old and new browsers can handle, you can create two style sheets for
a site:

 � A basic style sheet that contains only the simplest of styles

 � A complex style sheet that uses the capabilities of the most powerful new browsers

The following code uses two style sheets:

<link href=”simpleStyles.css” rel=”stylesheet” type=”text/css” />
<style type=”text/css”>
 @import “complexStyles.css”;
</style>

Here’s how that works:

 � A <link> tag brings in simpleStyles.css, a basic style sheet for old browsers.

 � The <style> tag and @import keyword combination brings in complexStyles.css,
a complex style sheet for new browsers, which overrides the styles in simpleStyles.
css.

Both old and new browsers get exactly the rules they can handle.

15_238479 ch09.indd 14715_238479 ch09.indd 147 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

148 Part III: Taking Precise Control Over Web Pages and Styles

Multimedia
You can specify how you want your Web pages to look or behave on different
media types depending on the medium.

Table 9-1 lists all the media types and their uses.

Table 9-1 Recognized Media Types
Media Type Description

all Suitable for all devices

aural For speech synthesizers

braille For Braille tactile-feedback devices

embossed For paged Braille printers

handheld For handheld devices (such as those with a small screen, mono-
chrome monitor, and limited bandwidth)

print For paged, opaque material and for documents viewed on-
screen but in Print Preview mode

projection For projected presentations such as projectors or transparencies

screen For color computer screens

tty For media that use a fixed-pitch character grid such as teletypes,
terminals, or portable devices with limited display capabilities

tv For television-type devices (such as those with low resolution,
color capability, limited-scrollability screens, and some sound
available)

CSS can make changes to customize how the same pages

 � Render on a computer screen

 � Print on paper

 A nifty color background might make your page a mess when it’s printed
on a black-and-white laser printer, but proper use of print-media styles
can keep this sort of thing from happening!

 � Sound when read out loud

Visual media styles
Table 9-2 lists the CSS properties that you’re most likely to use in a typical
Web page. Our online content for this book includes brief descriptions of the
most commonly used CSS properties and (X)HTML tags and attributes.

15_238479 ch09.indd 14815_238479 ch09.indd 148 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

149Chapter 9: Using Cascading Style Sheets

Table 9-2 Visual Media Styles

Property Values Default Value Description

back-
ground-
color

Any color, by
name or hex
code

transpar-
ent

Background color of
the page

back-
ground-
image

URL none URL of an image to
display in a page
background

color Any color, by
name or hex
code

Up to you! Color of the fore-
ground text

font-family Any named font
cursive
fantasy
monospace
sans-serif
serif

Up to you! Font to display

font-size Number + unit
xx-small
x-small
small
medium
large
x-large
xx-large

medium Size of the font to be
displayed

font-
weight

normal
bold
bolder
lighter

normal Weight (how bold or
light) the font should
appear

line-
height

normal
number + unit

normal Vertical spacing
between lines of text

text-align left
right
center
justify

Up to you +
normal text
direction

Which way the text
on the page should be
aligned

continued

15_238479 ch09.indd 14915_238479 ch09.indd 149 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

150 Part III: Taking Precise Control Over Web Pages and Styles

Table 9-2 (continued)
Property Values Default Value Description

list-
style-
image

URL none URL of an image to
display as the bullets
for a list

list-
style-
position

inside
outside

outside Wrapping the list text
inside or outside of
bullet points

list-
style-type

disc
circle
square
decimal
decimal-
leading-
zero
lower-alpha
upper-alpha
none

disc Bullet type on lists

display block
inline
none

inline Format of a defined
section of the page

top Percentage
number + unit
auto

auto For absolutely posi-
tioned objects, the
offset from the top
edge of the positioning
context

right Percentage
number + unit
auto

auto For absolutely posi-
tioned objects, the
offset from the right
edge of the positioning
context

bottom Percentage
number + unit
auto

auto For absolutely posi-
tioned objects, the
offset from the bottom
edge of the positioning
context

left Percentage
number + unit
auto

auto For absolutely posi-
tioned objects, the
offset from the left
edge of the positioning
context

15_238479 ch09.indd 15015_238479 ch09.indd 150 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

151Chapter 9: Using Cascading Style Sheets

Property Values Default Value Description

position static
absolute
relative
fixed

static Method by which an
element box is laid out,
relative to positioning
context

visibility collapse
visible
hidden
inherit

inherit Indicates whether
an object will be dis-
played on the page

z-index Number
auto

auto Stacking order of an
object

border-
style

none
dotted
dashed
solid
double
groove
ridge
inset
outset

Not defined The displayed style of
an object’s borders
Can be broken out
into border-top-
style, border-
right-style,
border-bottom-
style, and
border-left-
style

border-
width

thin
medium
thick
Number

Not defined Width of the border
around an object
Can be broken out
into border-top-
width, border-
right-width,
border-bottom-
width, and
border-left-
width

border-
color

Any color, by
name or hex
code
transparent

Not defined Color of an object’s
border
Can be broken out
into border-top-
color, border-
right-color,
border-bottom-
color, and
border-left-
color

continued

15_238479 ch09.indd 15115_238479 ch09.indd 151 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

152 Part III: Taking Precise Control Over Web Pages and Styles

Table 9-2 (continued)
Property Values Default Value Description

float left
right
none

none Specifies whether
the object should be
floated to one side of
the document

height Percentage
number + unit
auto

auto Displayed height of an
object

width Percentage
number + unit
auto

auto Displayed width of an
object

margin Percentage
number + unit
auto

Not defined Displayed margins of
an object

Can be broken out
into margin-top,
margin-right,
margin-bottom,
and margin-left

padding Percentage
number + unit
auto

Not defined Displayed blank space
around an object

Can be broken out
into padding-top,
padding-right,
padding-bottom,
and padding-
left

cursor auto
crosshair
default
pointer
move
text
help

auto Cursor appearance in
the browser window

Some browsers don’t support all CSS properties. If you’re using CSS features,
test your pages with the browsers that you expect your visitors will use.

15_238479 ch09.indd 15215_238479 ch09.indd 152 4/10/08 9:38:30 PM4/10/08 9:38:30 PM

153Chapter 9: Using Cascading Style Sheets

If you want to take an extremely thorough guide to CSS everywhere you go,
put it on your iPod! Westciv’s free podGuide is a folder of small text files.
Download the zipped file and follow the instructions on how to install it, and
you have complete documentation with you at all times. (You also win the title
of “World’s Biggest CSS Geek.”) The podGuide is at

www.westciv.com/news/podguide.html

Paged media styles
CSS can customize how a page looks when it’s printed. We recommend these
guidelines:

 � Replace sans-serif fonts with serif fonts.

 Serif fonts are easier to read in print than sans-serif fonts.

 � Insert advertisements that

 • Make sense when they aren’t animated

 • Are useful without clicking

Aural (speech-sound) styles
Aural browsers and styles aren’t just for the
visually impaired. They’re also useful for Web
users who

 � Have reading problems

 � Need information while driving

The following example recommends voices to
be played using male and female characters to
make it clear which characters are speaking:

<style>
 @media aural {
 p.stanley {voice-family: male;}
 p.stella {voice-family: female;}
 }
</style>

Usually you don’t have to worry much about
adding aural styles to your page. The default
readers should work just fine if

 � Your page is mostly text.

 � You don’t have a strong opinion about how
it sounds, so that any clearly male or female
voice will do.

That said, you can find a complete listing of all
aural style properties on this book’s companion
Web site.

15_238479 ch09.indd 15315_238479 ch09.indd 153 4/10/08 9:38:31 PM4/10/08 9:38:31 PM

154 Part III: Taking Precise Control Over Web Pages and Styles

In general, paged media styles help ensure that text looks as good when it’s
printed as it does in a Web browser. Paged media styles also help you hide
irrelevant content when pages are printed (banners, ads, and so forth), thus
reducing wasted paper and user frustration. See Table 9-3 for an explanation
of paged media properties in CSS that you can use to help your users make
the most when printing Web pages.

Table 9-3 Paged Media Styles
Property Values Default

Value
Description

orphans Number 2 The minimum number of lines in
a paragraph that must be left at
the bottom of a page

page-
break-
after

auto
always
avoid
left
right

auto The page-breaking behavior
after an element

page-
break-
before

auto
always
avoid
left
right

auto The page-breaking behavior
before an element

page-
break-
inside

auto
avoid

auto The page-breaking behavior
inside an element

widows Number 2 The minimum number of lines in
a paragraph that must be left at
the top of a page

The example in Listing 9-2 uses these options for paged media styles:

 � Make the output black text on a white background.

 � Replace sans-serif fonts with serif fonts.

15_238479 ch09.indd 15415_238479 ch09.indd 154 4/10/08 9:38:31 PM4/10/08 9:38:31 PM

155Chapter 9: Using Cascading Style Sheets

Listing 9-2: Adding a Print Style Sheet
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>This is my page</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
<style>
 body {background-color: black; color: white; font-family: sans-serif;}

 @media print {
 body {background-color: white; color: black; font-family: serif}
 }
</style>
</head>
<body>
 This page will look very different when sent to the printer.
</body>
</html>

If you’re now wondering why none of the properties in Table 9-3 were set, but
other properties were, it’s because (in this example) their defaults worked
fine. And just because those page properties can be set doesn’t mean that
you can’t set other properties also — it isn’t an either/or.

15_238479 ch09.indd 15515_238479 ch09.indd 155 4/10/08 9:38:31 PM4/10/08 9:38:31 PM

156 Part III: Taking Precise Control Over Web Pages and Styles

15_238479 ch09.indd 15615_238479 ch09.indd 156 4/10/08 9:38:31 PM4/10/08 9:38:31 PM

Chapter 10

Getting Creative with Colors
and Fonts

In This Chapter
� Using CSS to define text formatting

� Working with page colors and backgrounds

� Changing font display

� Adding text treatments

B efore style sheets came along, you had to rely on HTML markup to con-
trol backgrounds, colors, fonts, and text sizes on Web pages. With style

sheets on the scene, however, designers could now separate style informa-
tion from content — meaning they could use Cascading Style Sheets (CSS) to
control font, color, and other style information.

Why bother? Simple. When you use CSS, you get the following:

 � Better control when updating or editing formatting information.

 � No more HTML documents cluttered with tags.

 � More options for formatting text, such as defining line height, font
weight, and text alignment, and converting text to uppercase (capital
letters) or lowercase characters.

(X)HTML still includes a few formatting elements, such as <tt>, <i>, <big>,
, and <small>; however, the remaining formatting elements, such as
, are deprecated. That means they’re no longer recommended for use
(although they still work, and most browsers recognize them). We don’t think
you should use them anymore, but that decision is yours to make.

16_238479 ch10.indd 15716_238479 ch10.indd 157 4/10/08 9:41:37 PM4/10/08 9:41:37 PM

158 Part III: Taking Precise Control Over Web Pages and Styles

Color Values
(X)HTML defines color values in two ways:

 � By name (you choose from a limited list)

 � By number (harder to remember, but you have many more options)

Color names
The HTML specification includes 16 color names that you can use to define
colors in your pages. Table 10-1 shows these colors below (the numbers that
start with the hash mark # are in hexadecimal notation, a mix of the letters
A–F (for 10 through 15) and the more typical 0–9 we all know and love from
decimal numbers.

Table 10-1: Named color values in (X)HTML
Color name #RGB code color

Black #000000

Silver #C0C0C0

Gray #808080

White #FFFFF

Maroon #800000

Red #FF0000

Purple #800080

Fuchsia #FF00FF

Green #008000

Lime #00FF00

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

16_238479 ch10.indd 15816_238479 ch10.indd 158 4/10/08 9:41:38 PM4/10/08 9:41:38 PM

159Chapter 10: Getting Creative with Colors and Fonts

You can safely use color names in your CSS markup and be confident that
browsers will recognize them and use the correct colors in your Web pages.
You can also compare the colors you see on the screen to those you see on
this printed page to see how print and digital displays can sometimes differ.
(In some cases, it may be the color balance on your screen that’s off; in
others, the color the printer tried to match on the page may not be precisely
correct — it’s not as easy as you might think!)

Visit www.htmlhelp.com/reference/html40/values.html#color to
see how your browser displays these colors. If you can, view this page on two
or three different computers to see how a different browser, operating system,
graphics card, and monitor can subtly change the display.

This CSS style declaration says all text within <p> tags should be blue:

p {color: blue;}

If you’re looking for burnt umber, chartreuse, or salmon, you’re out of luck.
A box of 64 crayons this list is not. You can, however, also find hex codes
for Web-safe colors, along with color swatches, on the Cheat Sheet. These
colors, though unnamed, are Web-safe because they reproduce pretty reliably
on most color computer display devices and printers.

Color numbers
Color numbers allow you to use any color (even salmon) on your Web page.

 Hexadecimal color codes

Hexadecimal notation uses six characters — a combination of numbers and
letters — to define color. If you know a color’s hexadecimal code (often called
its hex code for short), you have all you need to use that color in your HTML
page.

When you use hexadecimal code to define a color, you should always precede
it with a pound sign (#). Otherwise, it may not display properly in some Web
browsers.

This CSS style declaration makes all text contained by <p> tags blue:

p {color: #0000FF;}

16_238479 ch10.indd 15916_238479 ch10.indd 159 4/10/08 9:41:38 PM4/10/08 9:41:38 PM

160 Part III: Taking Precise Control Over Web Pages and Styles

RGB values
You can use two decimal RGB values to define color. These value types aren’t
as common as hexadecimal values, but they’re just as effective:

 � rgb(r,g,b): The r, g, and b are integers between 0 and 255 that repre-
sent the red, green, and blue of the color.

 � rgb(r%,g%,b%): The r%, g%, and b% represent the percentage of red,
green, and blue of the color.

Every color can be defined as a mixture of red, green, and blue (RGB). You can
use either an RGB value or the equivalent hex code to describe a color’s RGB
value to a Web browser.

Color Definitions
You can define individual colors for any text on the Web page, as well as
define a background color for the entire Web page or some portion thereof.

Finding any color’s hex code
You can’t just wave your magic wand and come
up with the hex code for any color. But that
doesn’t mean that you can’t find out through
less magical means. Color converters follow
a precise formula that changes a color’s stan-
dard RGB notation into hexadecimal notation.
Because you have better things to do with your
time than compute hex codes, you have several
options for finding out the code for your color
of choice, including Web-safe colors on this
book’s Cheat Sheet. None of these make you
use a calculator:

 � On the Web: Some good sources for hexa-
decimal color charts are

www.colorschemer.com/online.html
www.webmonkey.com/reference/color_

codes

 You simply find a color you like and type the
hex code listed next to it into your HTML.

 � Using image-editing software: Many
image-editing applications, such as Adobe
Photoshop or Jasc Paint Shop Pro, display
the hexadecimal notation for any color.
Even Microsoft Word’s color picker shows
you hex codes for colors in an image. If you
have an image you like that you want to use
as a color source for your Web page, open
the image in your favorite editor and find
out what the colors’ hex codes are.

16_238479 ch10.indd 16016_238479 ch10.indd 160 4/10/08 9:41:38 PM4/10/08 9:41:38 PM

161Chapter 10: Getting Creative with Colors and Fonts

CSS uses the following properties to define color:

 � color defines the font color and is also used to define colors for links
in their various states (link, active, focus, visited, and hover; all of these
states are described later in this chapter).

 � background or background-color defines the background color for
the entire page or defines the background for a particular element (for
example, a background color for all first-level headings, similar to the
idea of highlighting something in a Word document).

Text
You can change the color of text on your Web page with three steps:

 1. Determine the selector.

 For example, will the color apply to all first-level headings, to all para-
graphs, or to a specific paragraph?

 2. Use the color property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is:

selector {color: value;}

Here is a collection of style declarations that use the color property:

body {color: olive; font-family: Verdana, sans-serif;
 background-color: #FFFFFF; font-size: 85%;}
hr {text-align: center;}
.navbar {font-size: 75%; text-align: center;}
h1 {color: #808000;}
p.chapternav {text-align: center;}
.footer {font-size: 80%;}

In the preceding CSS rules, the color for all text on the page is defined by
using the body selector. The color is applied to all text in the body of the
document unless otherwise defined. For example, the first-level heading is
defined as forest green by using hexadecimal notation.

Links
Pseudo classes allow you to define style rules based on information outside
the document tree.

16_238479 ch10.indd 16116_238479 ch10.indd 161 4/10/08 9:41:38 PM4/10/08 9:41:38 PM

162 Part III: Taking Precise Control Over Web Pages and Styles

The most common CSS use of pseudo classes is to define a style rule for a
given element in the document tree — a technical term that just means that the
browser builds a hierarchical representation of all elements in a document,
much like a family tree, where every element has a parent and may contain a
child. For example, :link is a pseudo class that defines style rules for any
link that hasn’t yet been visited.

There are five common pseudo classes that you can use with hyperlinks:

 � :link defines formatting for links that haven’t been visited.

 � :visited defines formatting for links that have been visited.

 � :focus defines formatting for links that are selected by the keyboard
(for example, by using the Tab key) and are about to be activated by
using the Enter key.

 � :hover defines formatting for links when the mouse cursor hovers over
them.

 � :active defines formatting for links when they are selected (clicked by
the mouse, or activated by using the Enter key).

The pseudo class name is preceded by a colon (:).

Pseudo classes can be used with

 � Elements (such as the <a> element that defines hyperlinks)

 � Classes

 � IDs

For example, to define the style rules for visited and unvisited links, use the
following syntax:

 � This sets the color of any hyperlink pointing to an unvisited URL to red
by using its hexadecimal value:

a:link {color: #FF0000;}

 � This sets any hyperlink that points to a visited URL to appear in the
named color green:

a:visited {color: green;}

 � This designates unvisited links with a class of internal to appear in
(named color) yellow: (See Chapter 8 for a discussion of CSS classes.)

a.internal:link {color: yellow;}

Links can occupy multiple states at one time. For example, a link can be vis-
ited and hovered over at the same time. Always define link style rules in the
following order: :link, :visited, :visible, :focus, :hover, :active.

16_238479 ch10.indd 16216_238479 ch10.indd 162 4/10/08 9:41:38 PM4/10/08 9:41:38 PM

163Chapter 10: Getting Creative with Colors and Fonts

CSS applies last rule seen to display your page. In this case, if you put the
pseudo class selectors in the wrong order, your results may not be what you
want. For example, if visited follows hover, and the two have overlapping
rules, then hover effects apply only to links that haven’t yet been visited.

The following CSS rules render the document with olive as the color for links
that haven’t been visited and yellow as the color of visited links:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive;}
a:visited {color: yellow;}

Some browsers don’t support pseudo classes with elements such as input or
select (these are forms elements). Current browsers support their use with
the a element. Test your results if you want to use pseudo classes with an ele-
ment other than <a>.

The CSS specification defines :link and :visited as mutually exclusive,
and it is up to the browser application to determine when to change the state
(visited versus unvisited) for any given link. For example, a browser might
determine that a link is unvisited if you clear your history data.

Backgrounds
To change the background color for your Web page, or a section of that page,
follow these steps:

 1. Determine the selector. For example, will the color apply to the entire
background, or will it apply only to a specific section?

 2. Use the background-color or background property.

 3. Identify the color name or hexadecimal value.

The basic syntax for the style declaration is:

selector {background-color: value;}

In the following collection of style declarations, the first style declaration
uses the background-color property and sets it to light green by using
hexadecimal notation:

body {color: #808000; font-family: Verdana, sans-serif;
 background-color: #EAF3DA; font-size: 85%;}

 You can apply a background color to a block of text — for example, a
paragraph — just like you define a background color for the entire page.

16_238479 ch10.indd 16316_238479 ch10.indd 163 4/10/08 9:41:39 PM4/10/08 9:41:39 PM

164 Part III: Taking Precise Control Over Web Pages and Styles

You use background as a shorthand property for all individual background
properties or background-color to set just the color, like this:

selector {background: value value value;}

See Chapter 8 or “The Shorthand Property” section of Webmonkey’s
“Mulder’s Stylesheets Tutorial” for more information (here’s the link):

http://www.webmonkey.com/98/15/index3a_page6.html?tw=authoring

Fonts
You can define individual font properties for different HTML elements with

 � Individual CSS properties, such as font-family, line-height, and
font-size

 � A group of font properties in the catchall shorthand font property

Font family
To define the font face (a named and often copyrighted set of specific char-
acter designs, such as Times-Roman, Bodoni, or Helvetica) by using the CSS
font-family property:

 1. Identify the selector for the style declaration.

 For example, making p the selector defines a font family for all <p> tags.

 2. Add the property name font-family.

 Not all font families are supported by every browser. CSS allows you to
specify multiple font families in case a browser doesn’t support the font
family you prefer. You can list multiple font family names, separated by
commas. The browser uses the first name in the list that is available on
the computer on which it’s running.

 3. Define a value for the property (the name of the font family).

 Use single or double quotation marks around any font family names that
include spaces.

To format all first-level headings to use the Verdana font, use a style declara-
tion like this:

h1 {font-family: Verdana, Helvetica, sans-serif;}

16_238479 ch10.indd 16416_238479 ch10.indd 164 4/10/08 9:41:39 PM4/10/08 9:41:39 PM

165Chapter 10: Getting Creative with Colors and Fonts

In the preceding declaration, two more font families appear in case some-
one’s browser doesn’t support the Verdana font family.

We recommend including these font families in your style declarations:

 � At least one of these common font families:

 • Arial: Sample SAMPLE

 • Helvetica: Sample SAMPLE

 • Times New Roman: Sample SAMPLE

 • Verdana: Sample SAMPLE

 � At least one of these generic font families:

 • serif: Sample SAMPLE

 • sans-serif: Sample SAMPLE

 • cursive: Sample SAMPLE

 • fantasy: Sample SAMPLE

 • monospace: Sample SAMPLE

Different elements may be formatted using different font families. These rules
define a different font family for hyperlinks (see Figure 10-1):

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
hr {text-align: center;}
a {font-family: Courier, “Courier New”, monospace;}

Figure 10-1:
The font

family for
hyperlinks

differs from
the font

family for
the rest of

the text.

16_238479 ch10.indd 16516_238479 ch10.indd 165 4/10/08 9:41:39 PM4/10/08 9:41:39 PM

166 Part III: Taking Precise Control Over Web Pages and Styles

Sizing
The following properties allow you to control the dimensions of your text.

Font size
The style declaration to specify the size of text is

selector {font-size: value;}

The value of the declaration can be

 � One of the standard font-property measurement values (listed in Chapter 8)

 � One of these user-defined keywords:

 xx-small, x-small, small, medium, large, x-large, or xx-large

 The value of each keyword is determined by the browser, not by the
style rule.

The rules listed in upcoming subsections define

 � A relative font value for all text

 � An absolute value for the font size for all first-level headings

body {color: #808000; font-family: Arial, sans-serif; font-size: 85%;}
h1 {font-family: “trebuchet ms”, verdana, geneva, arial, helvetica,
sans-serif; font-size: 24pt; line-height: 28pt; color: teal;}

The result appears in Figure 10-2.

Figure 10-2:
First-level
headings

are 24 points
tall; font size

for other
text is

relative.

16_238479 ch10.indd 16616_238479 ch10.indd 166 4/10/08 9:41:39 PM4/10/08 9:41:39 PM

167Chapter 10: Getting Creative with Colors and Fonts

Line height
The line height of a paragraph is the amount of space between each line
within the paragraph.

Line height is like line spacing in a word processor.

To alter the amount of space between lines of a paragraph, use the line-
height property:

selector {line-height: value;}

The value of the line-height property can be either

 � One of the standard font property measurement values (listed in Chapter 8)

 � A number that multiplies the element’s font size, such as 1.5

We assign a quotation class to the first paragraph throughout this chapter
so you can see the changes. This allows us to apply these styles to the first
paragraph by using

<p class=”quotation”>

in the HTML document.

The following rules style the first paragraph in italics, indent that paragraph,
and increase the line height to increase readability (see Figure 10-3):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt; line-height: 150%;}

Figure 10-3:
Any element
that belongs

to the
quota-

tion class
gets the

same
formatting.

16_238479 ch10.indd 16716_238479 ch10.indd 167 4/10/08 9:41:40 PM4/10/08 9:41:40 PM

168 Part III: Taking Precise Control Over Web Pages and Styles

Character spacing
You can increase or reduce the amount of spacing between letters or words
by using these properties:

 � word-spacing: The style declaration for word-spacing is

selector {word-spacing: value;}

 Designers call the space between words tracking.

 � letter-spacing: The style declaration for letter-spacing is

selector {letter-spacing: value;}

Designers call the space between letters kerning.

The value of either spacing property must be a length defined by a standard
font property measurement value (listed in Chapter 8).

The following code increases the letter spacing (kerning) of the first para-
graph (see Figure 10-4):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt; letter-spacing: 6px;}

Figure 10-4:
Kerning can
be larger or

smaller than
the font’s

normal
spacing.

Positioning
Alignment properties allow you to control how the edges of text blocks line
up against one another (otherwise known as “edge alignment”).

16_238479 ch10.indd 16816_238479 ch10.indd 168 4/10/08 9:41:40 PM4/10/08 9:41:40 PM

169Chapter 10: Getting Creative with Colors and Fonts

Alignment
Alignment determines whether the left and right sides of a text block are

 � Flush: Starting or ending together

 � Ragged: Starting or ending at different points

Syntax
Alignment is defined with the text-align property. The style declaration to
align text is as follows:

selector {text-align: value;}

The value of the text-align property must be one of the following
keywords:

 � left aligns the text to the left. The right side of the text block is ragged.

 � right aligns the text to the right. The left side of the text block is
ragged.

 � center centers the text in the middle of the window. Both sides of the
text block are ragged.

 � justify aligns the text for both the left and right side. The spacing
within the text in each line is adjusted so both sides of the text block are
flush.

 Justifying text affects letter or word spacing in the paragraph. Test the
results before displaying your Web pages to the world.

Markup
The following example defines the alignment for the first-level heading and
the first paragraph (see Figure 10-5):

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: teal; font-family: “Trebuchet MS”, Arial, Helvetica, sans-serif;
 font-weight: 800; font-size: 24pt; line-height: 30 pt; text-align: center}
.quotation {font-style: italic; text-indent: 10pt; text-align: left;}

Indent
You can define the amount of space that should precede the first line of a
paragraph by using the text-indent property.

This doesn’t indent the whole paragraph. That requires CSS box properties,
such as margin-left and margin-right (see Chapter 9).

16_238479 ch10.indd 16916_238479 ch10.indd 169 4/10/08 9:41:40 PM4/10/08 9:41:40 PM

170 Part III: Taking Precise Control Over Web Pages and Styles

Figure 10-5:
The first-

level
heading is
centered;

the first
paragraph

is aligned to
the left.

Syntax
The style declaration used to indent text is

selector {text-indent: value;}

Here value must be one of the standard length-property measurement
values (listed in Chapter 8).

Markup
As seen in this chapter, the quotation class has a text-indent of 10
points.

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
.quotation {font-style: italic; text-indent: 10pt;}

Text treatments
CSS allows you to decorate your text by using boldface, italics, underline,
overline, or line-through, and even allows your text to blink (when that’s
supported by browsers).

Bold
Using a boldface font is one of the more common text embellishments a
designer uses. To apply boldface in HTML, use the tag. However, CSS
provides you with more control over the font weight of the bolded text.

16_238479 ch10.indd 17016_238479 ch10.indd 170 4/10/08 9:41:40 PM4/10/08 9:41:40 PM

171Chapter 10: Getting Creative with Colors and Fonts

Syntax
This style declaration uses the font-weight property:

selector {font-weight: value;}

The value of the font-weight property may be one of the following:

 � bold: Renders the text in an average bold weight

 � bolder: Relative value that renders a font weight bolder than the cur-
rent weight (possibly assigned by a parent element)

 � lighter: Relative value that renders a font weight lighter than the cur-
rent weight (possibly assigned by a parent element)

 � normal: Removes any bold formatting

 � One of these integer values: 100 (lightest), 200, 300, 400 (normal), 500,
600, 700 (standard bold), 800, 900 (darkest)

Markup
The following example bolds hyperlinks (see Figure 10-6), and turns the
underline off and changes the color to green once a link is visited (we did this
to the Company History item to show you what it looks like):

body {color: black; font-family: Arial, Verdana, sans-serif; font-size: 85%;}
a {font-weight: bold;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: green; text-decoration: none;}

Figure 10-6:
All

hyperlinks
are bolded.

16_238479 ch10.indd 17116_238479 ch10.indd 171 4/10/08 9:41:41 PM4/10/08 9:41:41 PM

172 Part III: Taking Precise Control Over Web Pages and Styles

Italic
Italics are commonly used to set off quotations or to emphasize text. To
apply italics in HTML, use the <i> tag. However, CSS provides you with more
control over the font style of text through the font-style property.

Syntax
This style declaration uses the font-style property:

selector {font-style: value;}

The value of the font-style property may be one of the following:

 � italic: Renders the text in italics (a special font that usually slants).

 � oblique: Renders the text as oblique (a slanted version of the normal font).

 � normal: Removes any italic or oblique formatting.

Markup
The following example assigns an italic font style to the first-level heading:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: teal; font-family: “MS Trebuchet”, Arial, Helvetica, sans-serif;

text-transform: uppercase;
 font-style: italic; font-weight: 800; font-size: 24pt; line-height: 30pt;

text-align: center;}

Capitalization
You use the text-transform property to set capitalization in your document.

Syntax
This style declaration uses the text-transform property:

selector {text-transform: value;}

The value of the text-transform property may be one of the following:

 � capitalize: Capitalizes the first character in every word.

 � uppercase: Renders all letters of the text of the specified element in
uppercase.

 � lowercase: Renders all letters of the text of the specified element in
lowercase.

 � none: Keeps the value of the inherited element.

Markup
The following example renders the first-level heading in uppercase (shown in
Figure 10-7):

16_238479 ch10.indd 17216_238479 ch10.indd 172 4/10/08 9:41:41 PM4/10/08 9:41:41 PM

173Chapter 10: Getting Creative with Colors and Fonts

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
h1 {color: #808000; font-family: Arial, Helvetica, sans-serif;
 font-weight: 800; font-size: 24pt;
 text-align: center; text-transform: uppercase;}

Figure 10-7:
The first-

level
heading is
rendered

in all
uppercase.

The text-decoration property
The text-decoration property allows for text formatting that’s a tad cra-
zier. It isn’t used often.

Syntax
This style declaration uses the text-decoration property:

selector {text-decoration: value;}

The value of the text-decoration property may be one of the following:

 � underline: Underlines text.

 � overline: Renders the text with a line over it.

 � line-through: Renders the text with a line through it.

 � blink: Blinks the text on the screen.

 Are you sure you want blinking text?

 • blink isn’t supported by all browsers.

 • blink can be dreadfully annoying and distracting.

 � none: Removes any text decoration.

16_238479 ch10.indd 17316_238479 ch10.indd 173 4/10/08 9:41:41 PM4/10/08 9:41:41 PM

174 Part III: Taking Precise Control Over Web Pages and Styles

Markup
The following example changes the link when the mouse hovers over it. In
this case, it turns off any underlining for a link:

body {color: #808000; font-family: Verdana, sans-serif; font-size: 85%;}
a:link {color: olive; text-decoration: underline;}
a:visited {color: olive; text-decoration: underline;}
a:hover {color: olive; text-decoration: none;}

The catchall font property
Many font properties can be summarized in one style declaration by using
the shorthand font property. When it’s used, only one style rule is needed
to define a combination of font properties:

selector {font: value value value;}

The value of the font property is a list of any values that correspond to the
various font properties:

 � The following values must be defined in the following order, though they
need not be consecutive:

 • font-size (required)

 • line-height (optional)

 • font-family (required)

 � The font-family value list must end with a semicolon.

 � Use commas to separate multiple font family names.

 � The following values are optional and may occur in any order within the
declaration. Individual values are separated by spaces:

 • font-style

 • font-variant

 • font-weight

For example, you can use the following style declaration to create a specific
style for a first-level heading:

h1 {font: italic bold 150% Arial, Helvetica, sans-serif;}

16_238479 ch10.indd 17416_238479 ch10.indd 174 4/10/08 9:41:41 PM4/10/08 9:41:41 PM

Chapter 11

Using Tables to Jazz Up
Your Pages

In This Chapter
� Understanding table benefits

� Mapping a table design

� Building simple tables

� Stretching items across multiple cells

� Adding images, hyperlinks, or text to table cells

� Table tips and techniques

Historically, tables contain and lay out data in a grid to make analysis
easier. In (X)HTML, however, they serve an entirely different purpose —

to control Web-page layout. Most Web pages contain at least one table — some
even nest tables within tables. (X)HTML tables can present everything from
text to images on your pages efficiently and attractively.

Also, CSS provides ample positioning power to give designers flexibility and
precision when working with tables — a killer combination!

This chapter provides step-by-step instructions for building and using
(X)HTML tables and then using CSS to control their presentation. Use our
best tried-and-true tips and techniques to speed up and simplify your efforts.

17_238479 ch11.indd 17517_238479 ch11.indd 175 4/10/08 10:51:21 PM4/10/08 10:51:21 PM

176 Part III: Taking Precise Control Over Web Pages and Styles

What Tables Can Do for You
Putter around the Internet for a while and you’ll soon discover that lots of
sites — such as Amazon.com, eBay, Yahoo!, and Google, to name a few —
use tables to display their content, even if you can’t see them in an obvious
way. In fact, such invisible tables dominate the Web. Two ideas drive all this
usage:

 � Using tables to arrange items on your Web page.

 � Turning borders off so users can’t see these tables.

By nature, Web pages start out linear (that is, they proceed from start to end
in a straight line of paragraphs and other text). Tables allow you to step out of
linear mode and put text and images in more interesting places on a page.

You can use tables in a couple of ways:

 � Traditional (ho-hum) method: You can define table or individual cell
widths by using absolute numbers. This type of table doesn’t resize
when users resize their browser windows.

 Some designers prefer to use tables for traditional purposes — to
present data — a straightforward approach that’s easily tackled.

 � Presentation-focused (wow) method: You can define table and cell
width by using percentages. This table resizes itself when users resize
their browser windows.

 Many designers perform creative, complex tricks with their tables.

Use (X)HTML and CSS in tables
(X)HTML tables can require some finesse to make
them do just what you need. Only three percent
of Internet surfers use browsers that don’t sup-
port CSS. This means tables make a safe basis
for page design. We recommend using

 � (X)HTML tables to lay the basic foundation
for your page

 � CSS to provide additional table formatting

If you know your target users use updated
browsers, you can use CSS for all your posi-
tioning needs. For example, if you’re designing
an intranet Web site for a group of computer
programmers, you can require that its viewers
use only a newer browser and eliminate table
elements completely, if you like.

17_238479 ch11.indd 17617_238479 ch11.indd 176 4/10/08 10:51:21 PM4/10/08 10:51:21 PM

177Chapter 11: Using Tables to Jazz Up Your Pages

Although this chapter covers all aspects of HTML tables, it focuses on layout
tips and techniques.

When you use tables for layout, they can result in a couple of outcomes:

 � Tables can produce complex layout structures, as shown in Figure 11-1.
(Some other examples of complex tables are viewable at www.amazon.
com and www.yahoo.com.)

 After you open these Web pages in your Web browser, look at each
page’s HTML source code (try View➪Source from your menu bar).
Observe how complex the markup is, and mark ye well when the markup
looks haphazardly arranged (alas, if only they’d asked us . . .).

 � Some Web-page design models keep the interface simple with the less-is-
more approach — and therefore they’re easy to use. Figure 11-2 shows
the simple approach.

 www.google.com uses a simple table to arrange navigation.

Figure 11-1:
This Web

page uses
various

tables for
layout.

17_238479 ch11.indd 17717_238479 ch11.indd 177 4/10/08 10:51:21 PM4/10/08 10:51:21 PM

178 Part III: Taking Precise Control Over Web Pages and Styles

Figure 11-2:
This Web

page uses
one simple
table with

three cells
for its

layout.

Table Basics
All the complexity of HTML tables builds from three basic elements:

 � Borders: Every basic table must always have exactly four borders that
make up a rectangle.

 � Cells: These are individual areas (spaces) inside the borders of a table.

 � Cell span: Within that four-walled structure, you can delete or add cell
walls (as shown with the cells on the right side of the table in Figure 11-3).
When you delete cell walls, you make a cell span multiple rows or
columns — and that’s exactly what makes tables flexible tools for layout.

Cell spanning and cell width work differently:

 � When you span cells, you change cell space by combining, or merging,
cells. This step removes cell walls.

 � When you increase the width of a cell, you only change the space within
that cell.

17_238479 ch11.indd 17817_238479 ch11.indd 178 4/10/08 10:51:22 PM4/10/08 10:51:22 PM

179Chapter 11: Using Tables to Jazz Up Your Pages

Figure 11-3:
You can use

an HTML
table to lay

out Web
pages.

Sketching Your Table
Tables can become complex. You need to plan them carefully. Mapping to
the nearest pixel can grow tedious and can take several attempts, but it’s an
essential step in designing a well laid-out page.

Developing layout ideas
Start with a general idea and slowly plan your layout until it becomes more
solid and specific. Follow these basic steps:

 1. Grab (believe it or not) a sheet of paper and a pencil so you can
sketch out your ideas.

 Start with a general idea of where you want everything to go on
your page.

17_238479 ch11.indd 17917_238479 ch11.indd 179 4/10/08 10:51:22 PM4/10/08 10:51:22 PM

180 Part III: Taking Precise Control Over Web Pages and Styles

 2. Evaluate what to include in your Web page and decide on the overall
layout.

 This way, you can begin to determine

 • How many columns and rows you need

 • The width of the table and cells

 • Whether to make any cells span rows or columns

 The following design choices are yours to make:

 • Whether the table will be centered, left-aligned, or right-aligned
(relative to the browser window within which it appears).

 • Whether you want to include hyperlinks — and where you might
want to include them.

 For example, many Web sites, such as the one in Figure 11-1,
include a logo image that provides a hyperlink to the site’s home
page, so no matter what page you’re on, you can always get back
to the front door.

 3. Figure out the pixel dimensions of images you want to use. Make sure
that the table fills a browser window nicely without forcing the user to
scroll left and right to see everything.

 Decide between using text or images for navigation, as follows:

 • If you want more font control over your navigation, consider using
images for your navigational items.

 The font is embedded in the image; therefore the user’s browser
settings can’t override the font you choose.

 • If you don’t need additional font controls, use textual navigation.

 • Decide where the main logo should go and what size it should be.

 In Figure 11-2, the logo is the main focal point. Its dimensions are
276 pixels wide by 110 pixels tall.

 Concentrate on managing the width of the table. Let the contents of your
table determine the cell height. Height is less important because users
are familiar with scrolling up and down Web pages. However, they may
get frustrated by scrolling left and right to read content.

Drafting the table
When you know how big and how numerous your design elements are, you
can sketch a rough table on paper.

17_238479 ch11.indd 18017_238479 ch11.indd 180 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

181Chapter 11: Using Tables to Jazz Up Your Pages

If you opt for a simple approach, each main element (logo, hyperlink image,
and navigation) gets its own cell. In Figure 11-4, that means three cells. If you
have only a few cells, you’ll probably have to span some so their contents
fills the width of your page.

 � A complex design may need several rows.

 � A simple, clean design (such as the one in Figure 11-4) may require only
two rows.

 Figure 11-4 shows the final sketch for your table:

 • The first row spans both columns.

 • The second row contains two separate columns.

Figure 11-4:
Start by

sketching
the table

dimensions,
even before

opening a
text editor.

contents

contents contents

The author of our sample Web site uses images in place of text for the naviga-
tional elements; however, for usability reasons, try using text in place of
images when possible. Even so, if you want complete control of the font(s) in
which your text appears, you may have to use images — and create an image
of the text written in your chosen font.

Constructing Basic Tables
When you have a sketch that gives a solid indication of page and table layout,
you can open your HTML editor and create a skeleton for your table.

Components
The markup building blocks for your table’s framework are the three basic
components for any table:

17_238479 ch11.indd 18117_238479 ch11.indd 181 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

182 Part III: Taking Precise Control Over Web Pages and Styles

 � Table: <table>

 � Table row: <tr>

 <tr> is always enclosed within <table>.

 � Table (data) cell: <td>

 <td> is always enclosed within <tr>.

With these three elements, you can build a simple table. Think of their rela-
tionship and composition like this: Each table contains one or more table
rows, and each table row contains one or more table cells. Usually, a table will
contain at least two rows, often more, and at least two cells — nearly always
more — why else would you need or want to use a table?

The <table>, <tr>, and <td> opening and closing tags are required. If you
forget to include any, your table won’t display correctly in most browsers.

Layout
Tables come in many forms and at varying levels of complexity. A simple
two-dimensional data table that’s part of a Web page is easier to design and
implement than a more complex table layout that contains an entire Web
page. As you read through the following sections, you will see and appreciate
this distinction clearly.

Creating a simple table
The <table> tag and its markup typically appear between the <body> tags
in your document. However, you can also use them within most block ele-
ments and within the <td> and <th> tags to nest tables. (See the “Nesting
tables within tables” section later in this chapter.) Use the following markup
to create a simple table with two rows and two columns (four data cells) —
replacing cell 1, cell 2, and so on with your text:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table>
 <tr>
 <td> cell 1 </td>
 <td> cell 2 </td>
 </tr>
 <tr>
 <td> cell 3 </td>
 <td> cell 4 </td>

17_238479 ch11.indd 18217_238479 ch11.indd 182 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

183Chapter 11: Using Tables to Jazz Up Your Pages

 </tr>
 </table>
</body>
</html>

The preceding example creates a table with two rows based on the sketch in
Figure 11-4. The first table row encloses cells 1 and 2; the second table row
encloses cells 3 and 4.

Table rows always run horizontally, and the contents of each cell — in this
case, cell 1, cell 2, and so on — are contained within their own <td> ele-
ment. Don’t forget that you must close your table tags, or your table will not
display correctly.

Creating a table-based Web page
To create the shell of your table-based Web page (for example, one based on
the sketch from the preceding section, Figure 11-4), follow these steps:

 1. Start with the <table> element:

<table>
 ...
</table>

 The <table> element can have a number of optional attributes (for
example, border=”1” or bgcolor=”black”) — for now, however,
keep it simple.

 2. Decide how many rows you want the table to have:

 The following markup creates a table with two rows:

<table>
 <tr>...</tr>
 <tr>...</tr>
</table>

 3. Create cells in each row with the table data cell (<td>) element.

 Each <td> element creates a cell, so the number of <td> elements in a
row is the number of columns.

 The sketch in Figure 11-4 shows a two-column table with three cells: the
first row contains one cell, and the second row contains two cells. The
markup for this arrangement looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>

17_238479 ch11.indd 18317_238479 ch11.indd 183 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

184 Part III: Taking Precise Control Over Web Pages and Styles

<table>
 <tr>
 <td> contents </td>
 </tr>
 <tr>
 <td> contents </td>
 <td> contents </td>
 </tr>
</table>
</body>
</html>

Here’s where tables can get a bit tricky. A simple table with an even number
of rows and columns (say two rows and two columns) is a piece of cake —
but as you get handier at designing your own pages, you’ll discover that your
needs aren’t likely to produce such symmetrical tables very often. If your cell
will span more than one row or column (such as the first cell in the preceding
example), you have to add an attribute that tells the browser which cell does
the spanning.

The number in the attribute corresponds to the number of columns or rows
you want the cell to span, which means if you’re creating a table like the one
in our example, you have to add the colspan=”2” attribute to the first <td>
element. (The first cell in the table spans two columns.)

See the section, “Adding Spans,” later in this chapter for more information.
But for now, assume that you’re creating a table like ours. The markup looks
like this:

<table>
 <tr>
 <td colspan=”2”> contents </td>
 </tr>
 <tr>
 <td> contents </td>
 <td> contents </td>
 </tr>
</table>

Congratulations — you’re done with your first table. Well, sort of. To effec-
tively use tables for layout, you need to know how to control several display
issues, such as borders, table widths, and the handling of white space within
your table. (For example, without borders, you can’t really tell the table is
there — it won’t show up in your browser. This isn’t a bad thing or a good
thing per se, but something that you can change if you want your borders to
show up in browsers.) Keep reading for more information on completing your
table and integrating it into your page.

17_238479 ch11.indd 18417_238479 ch11.indd 184 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

185Chapter 11: Using Tables to Jazz Up Your Pages

Other table elements
Although tables were invented to contain and
display data, they may also be used to control
Web-page layout, though many professionals
now prefer to use <div> tags with CSS and
classes or IDs to really tweak and customize
layouts. This chapter focuses on the table ele-
ments that you can use to control layout, if you
like. If you want to create a traditional table, you
can use the following table elements:

 � <th>: The table header element displays
text in boldface with a default center
alignment.

 You can use the <th> element within any
row of a table, but you most often find and
use it in the first row at the top — or head —
of a table. Except for their position and ego-
tism, they act just like table data (<td>) tags
and should be treated as such.

 � <caption>: This is the table caption ele-
ment. It is designed to exist anywhere inside
the <table> . . . </table> tags
but not inside table rows or cells (because
then they wouldn’t be captioning anything).
This element can occur only once per
table.

 Similar to table cells, captions accommo-
date any HTML elements that can appear
in the body of a document (in other words,
inline elements), but only those. By default,
captions are horizontally centered with the
table, and their lines wrap to fit within the
table’s width. The <caption> element
accepts the align attribute.

 � <tbody>: You can group table rows into
a table body section with the table body
(<tbody>) element.

 A newer element in the HTML 4 speci-
fication, <tbody> allows table bodies
to scroll independently of the table head

(<thead>) and table foot (<tfoot>).
The table body should contain rows of table
data. The <tbody> element must contain
at least one table row (<tr>).

 � <thead>: You can group table rows into
a table head section by using the table
head (<thead>) element. The table head
contains information about the table’s
columns.

 The <thead> element must contain at
least one table row.

 � <tfoot>: Much like the <thead> ele-
ment, you can group table rows into a table
footer section by using the table footer
(<tfoot>) element. The table footer con-
tains information about the table’s columns
and must contain at least one table row.

 Include your footer information before the
first instance of the <tbody> element so
that the browser renders that information
before taking a stab at all the content data
cells.

 � <colgroup>: This element creates an
explicit column group. You specify the
number of columns by using the span attri-
bute or by using the <col> element, which
we define shortly.

 You use the span attribute to specify a uni-
form width for a group of columns.

 � <col>: The <col> element is an empty
element. You use the <col> element
to further define column structure. The
<col> element shouldn’t be used to group
columns — that’s the <colgroup> ele-
ment’s job. You use the <col> element
after you define a column group and set a
uniform width; it specifies a uniform width
for a subset of columns.

17_238479 ch11.indd 18517_238479 ch11.indd 185 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

186 Part III: Taking Precise Control Over Web Pages and Styles

Adding borders
A table border defines the outer edge of the table.

When the table is used to arrange elements on a page, you don’t want a visible
border. There are two ways you can turn a table border on or off:

 � Set the border attribute within the <table> element. The value of the
border attribute must be an integer that defines the border thickness in
pixels.

 To turn the border off, set the border attribute equal to 0: <table
border=”0”>

 � Define a border using the CSS border properties.

 You may define the border style, width, or color by using CSS. (See the
later section, “Using CSS border properties.”)

Using the (X)HTML border attribute
For an (X)HTML table, border refers to both

 � Outside borders

 � Individual cell borders

You use the border attribute to turn all these table borders on or off.

To turn on the table (and cell) border, add the border attribute to the
<table> start tag, as shown in the following bold markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table border=”1”>
 <tr>
 <td colspan=”2”> contents </td>
 </tr>
 <tr>
 <td> contents </td>
 <td> contents </td>
 </tr>
 </table>
</body>
</html>

17_238479 ch11.indd 18617_238479 ch11.indd 186 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

187Chapter 11: Using Tables to Jazz Up Your Pages

The value of the border attribute defines the thickness of the border in
pixels. For example, border=”5” produces a 5-pixel border. If you leave this
attribute off, most browsers don’t display a border. If you don’t want your
border visible, however, then we suggest that you add border=”0” to turn
off the border for sure.

Where clear delineation between cell contents is desirable (as with price
charts, real data tables, and other collections of text or numerical data),
borders help visitors break what they’re seeing into separate bits of informa-
tion. But when a table is used to organize a Web page that all hangs together
nicely, turning borders off can help to reinforce this cohesiveness.

By default, most browsers use an invisible 2-pixel border on tables. When you
design your table, you should do one of the following:

 � Allow for those invisible 2-pixel borders in your design.

 � Configure your own borders.

 � Eliminate the border by setting the border attribute to equal 0
(border=”0”).

Turn on the table border when you’re first creating and tweaking your table.
Sometimes it’s difficult to see just what is going on without a border. After
you’ve finished tweaking your table, you can turn off the border.

Using CSS border properties
Unlike the (X)HTML border attribute, CSS lets you define border styles for
any or all border edges. For example, you can define a dotted gray border for
the left side of the table and leave the rest of the table’s border invisible.

Style
As you might expect, the border-style property allows you to define the
style (such as dotted or solid) of the border.

The style declaration used to add a border style is as follows:

selector {border-style: value;}

The value for the border-style property must be one of the predefined
keywords:

 � dotted

 � dashed

 � solid

 � double

17_238479 ch11.indd 18717_238479 ch11.indd 187 4/10/08 10:51:23 PM4/10/08 10:51:23 PM

188 Part III: Taking Precise Control Over Web Pages and Styles

 � groove

 � ridge

 � inset

 � outset

To create a solid border (for example), use the following style declaration:

table {border-style: solid;}

Width
Similar to using the (X)HTML border attribute, you can define the border
width in pixels. However, CSS provides you with additional width value data
types to choose from. Here’s the style declaration used to add a border width:

selector {border-width: value;}

The value for the border-width property can be

 � A predefined keyword: thin, medium, or thick.

 � An absolute or relative length: See the Chapter 8 sidebar, “Property
measurement values,” for more information. The values described in
that sidebar are relevant to HTML as well as to CSS.

To set the width of a border to 1pixel, use the following style declaration:

table {border-width: 1px;}

Color
The style declaration used to define a border color is:

selector {border-color: value;}

The value for the border-color property must be defined using a pre-
defined color name or a hexadecimal value:

 � Color name: aqua, black, blue, fuchsia, gray, green, lime,
maroon, navy, olive, purple, red, silver, teal, white, or yellow.

 � Hexadecimal value: See Chapter 10.

To set the color of a border to black, use the following style declaration:

table {border-color: black;}

17_238479 ch11.indd 18817_238479 ch11.indd 188 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

189Chapter 11: Using Tables to Jazz Up Your Pages

Using the catchall border property
Similar to defining font properties, you can use the shorthand border prop-
erty to define multiple style rules at once:

table {border: 1px solid gray;}

There are five catchall border properties that you can use for a table or a box:

 � border: Defines formatting for all four sides.

 � border-left: Defines formatting for the left side.

 � border-right: Defines formatting for the right side.

 � border-top: Defines formatting for the top.

 � border-bottom: Defines formatting for the bottom.

The border properties aren’t only for use with tables, they’re part of the CSS
box model (which identifies the area on the page to which declarations apply,
including edge, margin, border, and padding values for their top, right,
bottom, and left edges). They can define borders for almost any (X)HTML
element, as long as it isn’t an inline element.

Adjusting height and width
Most browsers determine the width of the table cells by judging the content
of the cells (images and/or text).

The browser provides as much space as possible to contain the content.
However, there are limits for both images and text:

 � Side-by-side images must fit in the width of the browser window.

 For example, if you have an image that is 200 pixels wide, the cell
expands to accommodate the image. However, if you have several cells
in a row, each with images over 400 pixels wide, the cells only expand as
far as the browser window allows.

 � Text may expand and distort the layout.

 If a cell contains a lot of text, the cell expands as far as it can until the
first line break or the end of the text. That might make for a very unat-
tractive table.

17_238479 ch11.indd 18917_238479 ch11.indd 189 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

190 Part III: Taking Precise Control Over Web Pages and Styles

Where tables are used to help control layout, controlling the width of cells
and the table is important. You have two ways to control width:

 � Use the (X)HTML width attribute within the <table> or <td> element.

 � Assign a width value to a <table> or <td> element using the CSS
width property.

The (X)HTML width attribute
If you don’t set table and cell width, the user’s browser determines the width
of every cell according to the width of its contents — no more, no less.

For example, suppose you want to put a logo in the first cell and navigational
items in the cell to its left. If you don’t assign the width to the first cell (con-
taining the logo), the navigational items are placed right beside the logo, with
no or almost no space between the two. To avoid that cramped look, you
can use the width attribute to strategically define an exact number of pixels
between the logo and navigational items.

If you’re using tables for layout purposes, we recommend that you set the
width for the table and cells.

Syntax
Defining width is easy when you use the width attribute. For example, you
can set the width of your table at 630 pixels like this:

<table border=”1” width=”630”>
…
</table>

The value of the width attribute can be defined in either

 � Pixels (a positive integer, such as 630)

 This is an absolute value.

 � Percentage of the display area’s width (a positive integer followed by a
percent sign, such as 95%)

 This is a relative value that allows your table to be resized depending on
the size of the browser window.

These values can also set the width of individual cells.

Markup
To add widths to the table built earlier in this chapter (and to set width for
its individual cells), add the following markup shown in bold text:

17_238479 ch11.indd 19017_238479 ch11.indd 190 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

191Chapter 11: Using Tables to Jazz Up Your Pages

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table border=”1” width=”630”>
 <tr>
 <td colspan=”2” width=”630”> contents </td>
 </tr>
 <tr>
 <td width=”400”> contents </td>
 <td width=”230”> contents </td>
 </tr>
 </table>
</body>
</html>

Figures 11-5 and 11-6 show the difference between a site that doesn’t define
table and cell widths and one that uses the width attribute.

Figure 11-5:
This image

doesn’t
define width

properties.

Figure 11-6:
This image

defines
width

properties.

If you set the pixel width smaller than the content’s pixel size, the browser
ignores the width attribute and defaults to display all cell contents. So please:
check all your dimensions!

17_238479 ch11.indd 19117_238479 ch11.indd 191 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

192 Part III: Taking Precise Control Over Web Pages and Styles

The CSS width property
The style declaration used to define width is:

selector {width: value;}

The value for the width property must be either

 � auto

 This keyword allows the browser to determine the necessary width.

 � An absolute or relative length:

 See the Chapter 8 sidebar “Property measurement values” for more
information.

To set the width of the table displayed in Figure 11-6, use the following style
declarations:

table {width: 630px;}
td.cellone {width: 630px;}
td.celltwo {width: 630px;}

td.cellthree {width: 630px;}

Padding and spacing
Determining the white space between cells is essential for proper layout.
Keeping in mind the sketch from Figure 11-4, you have to determine — to the
pixel — how space will be used in your table.

(X)HTML attributes
Two attributes can help you define white space by putting some space
between cells: cellpadding and cellspacing. These attributes use two
different techniques to put some space between cells:

 � cellspacing adds space between cells (the border width is adjusted).

 � cellpadding adds space inside a cell (within the cell walls).

The value for either attribute is defined in pixels. For example,
cellpadding=”5” adds 5 pixels’ worth of padding to each cell.

To define either attribute, add it to the <table> start tag, as follows:

<table cellpadding=”5” cellspacing=”5”>

17_238479 ch11.indd 19217_238479 ch11.indd 192 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

193Chapter 11: Using Tables to Jazz Up Your Pages

When using tables for layout, without visible borders, it doesn’t matter much
which attribute you use. However, if you add color to your tables — or use a
border for any reason — you can see a considerable difference. That’s because
cellpadding increases the space within the border, and cellspacing
increases the width of the border itself, as shown clearly in Figures 11-7 and 11-8.

The default value for cellpadding is 1; the default for cellspacing is 2. If
you don’t define cellpadding and cellspacing, your users’ browsers
assume the defaults. Accounting for those pixels in your sketch is a good idea,
unless you set those values explicitly to zero.

Figure 11-7:
The cell-
padding
attribute

increases
the space

within each
cell (here

it’s set
to 20).

Figure 11-8:
The cell-
spacing
attribute

increases
the width of

the border
(here it’s
also set

to 20).

17_238479 ch11.indd 19317_238479 ch11.indd 193 4/10/08 10:51:24 PM4/10/08 10:51:24 PM

194 Part III: Taking Precise Control Over Web Pages and Styles

Working with cellpadding and cellspacing to get your table layout just
right can be a bit of a headache. Sometimes you need to create empty cells to
help control layout. Although this trick is a bit of a workaround, many design-
ers use it. You just

 1. Create a cell.

 2. Fill the cell with either one of these:

 •

 • A spacer image (a transparent .gif that is 1×1 pixel) with which
you can manipulate the width

CSS
You can use CSS to control cell padding and spacing between cells.

Within cells
To control the padding within cells, you use the padding property, like so:

selector {padding: value;}

The value for the padding property must be defined by an absolute or rela-
tive length, or percentage.

To set the padding of a table cell, use the following style declaration:

td {padding: 10px;}

The padding property can be used with most (X)HTML elements. For
example, if you created a footer and assigned it a class name, you can
define padding for the element using the following style rule:

.footer { padding: 5px;}

Between cells
You can control the spacing between your cells using the border-spacing
property:

selector {border-spacing: value;}

The value for the border-spacing property must be defined by an absolute
or relative length, or percentage:

To set the padding of a table cell, use the following style declaration:

td {padding: 10px;}

17_238479 ch11.indd 19417_238479 ch11.indd 194 4/10/08 10:51:25 PM4/10/08 10:51:25 PM

195Chapter 11: Using Tables to Jazz Up Your Pages

The border-spacing property can be used only in conjunction with the
<td> element.

Shifting alignment
If you use tables to define your layout, you need to control their placement in
the browser window. You can do this by using (X)HTML or CSS.

You use attributes that are part of the HTML standard to align your tables
(horizontally) and your table contents (horizontally and vertically).

Aligning tables is similar to aligning images.

Horizontal alignment
You can horizontally align cell contents using the align attribute in various
table elements.

 � To align your table horizontally, use the align attribute with the
<table> element.

 The align attribute, when used with the <table> element, has the fol-
lowing possible values: left, right, or center of the document.

 � You can use the align attribute with the <td> (cell) or <tr> (row) ele-
ments to align text within the cell or row.

 The values that can be used with the align attribute in the <td> or
<tr> elements are

 • align=”right”: Aligns the table or cell contents against the right
side.

 • align=”left”: Aligns the table or cell contents against the left
side. (This is the default setting.)

 • align=”center”: Centers the table or cell contents. When
applied to the <table>element, it centers the table, when applied
to table cells it centers their contents.

 • align=”justify”: Justifies cell contents in the middle (not
widely supported).

 • align=”char”: Aligns cell contents around a specific character
(not widely supported).

The following example aligns a table in the center of the page, with centered
text in each cell (see Figure 11-9):

17_238479 ch11.indd 19517_238479 ch11.indd 195 4/10/08 10:51:25 PM4/10/08 10:51:25 PM

196 Part III: Taking Precise Control Over Web Pages and Styles

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table border=”2” width=”430” align=”center” cellpadding=”20”>
 <tr>
 <td width=”630” colspan=”2” align=”center”> contents </td>
 </tr>
 <tr>
 <td width=”230” align=”center”> contents </td>
 <td width=”200” align=”center”> contents </td>
 </tr>
 </table>
</body>
</html>

Vertical alignment
You can vertically align cell contents by using the valign attribute. It can
only be used with the <tr> (cell) and <td> (row) elements.

Figure 11-9:
A simple

table
centered.

The possible values are

 � valign=”top”: Vertically aligns cell contents to the top of the cell.

 � valign=”bottom”: Vertically aligns cell contents to the bottom of the
cell.

 � valign=”middle”: Vertically centers the cell contents. (This is the
default.)

 � valign=”baseline”: Defines a baseline for all other cells in the same
row, so alignment is the same for all cells.

17_238479 ch11.indd 19617_238479 ch11.indd 196 4/10/08 10:51:25 PM4/10/08 10:51:25 PM

197Chapter 11: Using Tables to Jazz Up Your Pages

You can also use the align and valign attributes with the following table
elements: <col>, <colgroup>, <tbody>, <tfoot>, <th>, and <thead>.

If you set alignment for a row (<tr>) and then set alignment for a cell within
that row (<td>), the setting for the cell overrides the setting for the row.

You might as well get used to hearing that most X(HTML) formatting attri-
butes are deprecated in favor of CSS. However, even though the align
attribute is deprecated for most (X)HTML elements, it is still OK when used
with table elements.

You can’t use the valign attribute with the <table> tag.

Using CSS to define alignment
There are two CSS properties you can use to control table alignment using
CSS: text-align and vertical-align. They function just like the preced-
ing align and valign attributes.

To use the text-align property, assign it one of the following values:

 � right: Aligns the table or cell contents against the right side.

 � left: Aligns the table or cell contents against the left side. (This is the
default.)

 � center: Centers the table or cell contents.

 � justify: Justifies cell contents in the middle.

To use the vertical-align property, assign it one of the following values:

 � top: Vertically aligns cell contents to the top of the cell.

 � bottom: Vertically aligns cell contents to the bottom of the cell.

 � middle: Vertically centers the cell contents. (This is the default.)

 � baseline: Defines a baseline for all other cells in the same row, so
alignment is the same for all cells.

You can control the alignment of an entire row by assigning alignment proper-
ties to the <tr> element.

You can’t center a table by using the text-align property — it’s only for
text alignment. Currently, you have a few options for centering the entire
table. None of them is ideal, but they all work:

17_238479 ch11.indd 19717_238479 ch11.indd 197 4/10/08 10:51:25 PM4/10/08 10:51:25 PM

198 Part III: Taking Precise Control Over Web Pages and Styles

 � Use the deprecated <center> tags around the table (not advised).

 � Use the deprecated align attribute within the table: <table
align=”center”>. (Not all browsers handle this the same way, so
check this markup in all of them!)

 � Enclose the table in a <div> element and use the text-align prop-
erty to center its contents: div.mytable {text-align: center;}.
(Recommended.)

The <div> element is discussed further in Chapters 8 and 9.

Adding Spans
Spanning is one of the reasons tables may be useful when arranging elements
in your Web page.

Spanning enables you to stretch items across multiple cells; you essentially
tear down a cell wall. Whether you need to span rows or columns, you can use
the concept of spanning to wrangle your table into almost any arrangement.

Spanning columns and rows takes careful planning. That planning should
occur during the sketching phase (as we describe earlier in this chapter, in the
section “Sketching Your Table”).

To span cells, you add one of these attributes to the <td> (that is, cell)
element:

 � colspan extends a cell horizontally (across multiple columns).

 � rowspan extends a cell vertically (across multiple rows).

Spanning cells works using only (X)HTML attributes; CSS doesn’t provide
equivalent functionality. That said, the <div> element lets you do just about
anything without even using a table that you can do with spanning inside a
table (and explains why it’s become the preferred approach for professional
page designers).

Column spans
To span columns, use the colspan attribute in the <td> element and set its
value equal to the number of cells you wish to span. Here we set the span-
ning column background to blue, and make text white and extra bold so it
matches the appearance of plain black text on a white background in the two
cells below.

17_238479 ch11.indd 19817_238479 ch11.indd 198 4/10/08 10:51:26 PM4/10/08 10:51:26 PM

199Chapter 11: Using Tables to Jazz Up Your Pages

Figure 11-10 illustrates a cell that spans two columns.

Figure 11-10:
The cell

spans two
columns.

In this example, a single blue cell in the first row spans the white cells in
the two columns of the next row. You use the colspan attribute set to 2,
as shown in the following markup, because the cell in the first row spans
two columns:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table border=”2” width=”430” align=”center” cellpadding=”20”
 type=”text/css” style=”font-family: Arial, sans-serif; font-size: 18pt;”>
 <tr>
 <td width=”430” colspan=”2” align=”center”
 type=”text/css”
 style=”background-color: blue; color: white; font-weight: bolder;”>
 contents </td>
 </tr>
 <tr>
 <td width=”230” align=”center”> contents </td>
 <td width=”200” align=”center”> contents </td>
 </tr>
 </table>
</body>
</html>

Note in the preceding example, and in the next one, we use incline CSS code
to keep the style information together with the table markup. In production
markup, you’d want to put your CSS markup into an external style-sheet file.

After you add a colspan attribute

17_238479 ch11.indd 19917_238479 ch11.indd 199 4/10/08 10:51:26 PM4/10/08 10:51:26 PM

200 Part III: Taking Precise Control Over Web Pages and Styles

 � Verify that you have the appropriate number of <td> cells in the first
row. For example, if you define a cell to span two columns, you should
have one less <td> in that row. If you use colspan=”3”, there should
be two fewer <td> cells in that row.

 � Make sure that the other rows have the appropriate number of <td> cells.
For example, if you define a cell to span two columns, the other rows in
that table should have two <td> cells to fill out the two columns.

Row spans
You use the rowspan attribute with the <td> tag. Figure 11-11 illustrates a
cell that spans two rows.

Figure 11-11:
The last cell

containing
navigational
items spans

two rows.

To span rows, you use the rowspan attribute in the <td> element and set
the value equal to the number of cells you want to span.

Sketch your table first so you know which cells should span which columns
and rows. The example design we use throughout most of this chapter uses
the colspan attribute with the first cell. However, the design could have been
just as simple if we used a rowspan with the last cell that contains the naviga-
tional items. Either way, the table is efficiently laid out.

The modified table comes from the following markup (note the bold rowspan):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables</title>
</head>
<body>
 <table border=”2” width=”430” align=”center” cellpadding=”20”
 type=”text/css” style=”font-family: Arial, sans-serif; font-size: 18pt;”>

17_238479 ch11.indd 20017_238479 ch11.indd 200 4/10/08 10:51:26 PM4/10/08 10:51:26 PM

201Chapter 11: Using Tables to Jazz Up Your Pages

 <tr>
 <td width=”230” align=”center”> contents </td>
 <td width=”200” align=”center” rowspan=”2”
 type=”text/css”
 style=”background-color: blue; color: white; font-weight: bolder;”>
 contents </td>
 </tr>
 <tr>
 <td width=”230” align=”center”>
 contents </td>
 </tr>
 </table>
</body>
</html>

Populating Table Cells
After you sketch your table and define table properties (such as width, cell
padding and spacing, and cell spanning), you’re ready to populate the table
cells with images, hyperlinks, text, and almost any other (X)HTML element.
This is a simple process: You add images, hyperlinks, and text to the <td>
element in much the same way you add them to the <body> element.

The following markup shows a populated table, with data added in bold:

The following markup shows a populated table, with data added in bold:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Tables: Recommended Albums</title>
 <meta http-equiv=”Content-type” content=”text/html;charset=UTF-8” />
 <style type=”text/css”>
 h1 {
 font-size: 200%;
 font-family: Verdana, Tahoma, Arial, sans-serif;
 }
 p {
 font-size: 90%;
 font-family: Verdana, Tahoma, Arial, sans-serif;
 }
 #footer {
 font-size: 70%;
 font-family: Arial, sans-serif;
 color: orange;
 }
 </style>

17_238479 ch11.indd 20117_238479 ch11.indd 201 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

202 Part III: Taking Precise Control Over Web Pages and Styles

</head>
<body>
 <table border=”1” width=”800” align=”center” cellpadding=”5” cellspacing=”5”>
 <tr>
 <td colspan=”2” valign=”bottom” align=”center”>

 <img src=”arclight-header.jpg” width=”640” height=”203”
 alt=”arclight header art” border=”0” />

 </td>
 </tr>
 <tr>
 <td colspan=”2” valign=”center” align=”center”>
 <h1>This week’s top picks:</h1>

 </td>
</tr>
 <tr>
 <td valign=”center” align=”center” width=”111”>
 <img src=”releases-ar22.gif” width=”107” height=”99”
 alt=”magnet school cover” border=”0” />
 </td>
 <td valign=”top” align=”left” width=”689”>
 Magnet School
 Catalog ID: <tt>AR22</tt>
 Tonight We Drink...Tomorrow We Battle The Evil CD

 <p>Magnet School conducts a brilliant experiment by capturing and amplifying

the
 electrifying presence of U2 from their song <cite>Bullet the Blue Sky</cite>
 and building an entire album around its sounds and ideas. You’ll hear the

blues,
 rock, psychedelia, angst, and commitment that are hallmarks of this U2

classic
 carried to entertaining and thought-provoking extremes.</p>
 </td>
 </tr>
 <tr>
 <td valign=”center” align=”center” width=”111”>
 <img src=”releases-ar17.gif” width=”107” height=”99”
 alt=”Phonograph Phonograph cover” border=”0” />
 </td>
 <td valign=”top” align=”left” width=”680”>
 Phonograph
 Catalog ID: <tt>AR17</tt>
 Phonograph

 <p>Those who hear Phonograph must first clear their ears of inevitable

echoes of
 others; Tom Petty references inevitably attach to Matthew Welsh’s voice and
 songwriting, while Wilco reminders speak to how well Phonograph plays

against
 standard acoustic American rock cliches. Beyond that, Phonograph manages to
 question every rock song premise while remaining solidly at home within the
 genre. Acoustic and electronic sources blend in a soundscape that is beautiful

17_238479 ch11.indd 20217_238479 ch11.indd 202 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

203Chapter 11: Using Tables to Jazz Up Your Pages

 and absorbing.</p>
 </td>
 </tr>
 <tr>
 <td valign=”center” align=”center” width=”111”>
 <img src=”releases-ar04.gif” width=”107” height=”99”
 alt=”Hognose Longhandle cover” border=”0” />
 </td>
 <td valign=”top” align=”left” width=”689”>
 Hognose
 Catalog ID: <tt>AR04</tt>
 Longhandle

 <p>Hognose is a heavy metal band whose driving, straightforward rhythm and

lyrics
 hark back to Black Sabbath, Motorhead, or Metallica. Call it “stoner rock,” or
 call it “thrash metal,” those who care for such music can’t help but like what
 they’ll hear. Several standout tunes include “Sneech” whose cymbal/guitar

intro
 really gets things moving, where “Black Angus” is a two-minute paean to

totally
 engaging power rock. Those who listen while driving had better keep an eye on
 the speedo, or find themselves pulled over trying to keep up with the

beat.</p>
 </td>
 </tr>
 </table>
<table width=”800” border=”0” align=”center” cellpadding=”0” cellspacing=”0”

id=”footer”>
 <tr>
 <td width=”18”> </td>
 <td width=”382”>News | About

Us |
 Releases | Tours |
 Press | Store |
 Links | Contact </td>
 <td width=”18”> </td>
 <td width=”382”>All Images and Content © 2006 Arclight Records. All

rights reserved.

 Website by Conquest Media</td>
 </tr>
</table>
</body>
</html>

There are numerous interesting things to observe about this Web page. We sized
it for 800 pixels in width (a pretty standard page size nowadays that will accom-
modate all but the oldest computer displays), and used the colspan attribute
to enable the header image and the title to center themselves across the entire
page. We also carefully divided the album cover and text display areas using a
common thumbnail size for the artwork (107 × 99 pixels as it turned out); with 2

17_238479 ch11.indd 20317_238479 ch11.indd 203 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

204 Part III: Taking Precise Control Over Web Pages and Styles

extra pixels on each side that left 689 pixels over for the text area, which we used
to accommodate the artist name, catalog number and title on a single line of text,
followed by up to 7 lines of text to describe the album and its music. It’s depicted
in Figure 11-12, where we leave borders turned on so you can see them (for pro-
duction use, you’d turn some or all of them off).

Notice also the use of the non-breaking-space character entity (): In the
album listings we use it to force a little white space between artist name, cata-
log number and album title on the first line in each listing; in the footer area at
the bottom of the page, we use it to force an 18-pixel margin between the footer
menu on the left and the copyright notice on the right. We also make use of the
h1 style to choose text for the page headline, paragraph (p) style to select text
for the album copy, and use the footer ID to change things up a little for the
page footer. All of this should give you, our readers, plenty of ideas for using
tables and styles to help manage layouts where that makes sense.

Figure 11-12:
The Arclight

Records
Recom-
mended

Titles page
uses tables
to organize
album list-

ings and
thumbnails.

17_238479 ch11.indd 20417_238479 ch11.indd 204 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

205Chapter 11: Using Tables to Jazz Up Your Pages

Testing Your Table
Testing is the final step before your table goes live. You must test your tables
in all the popular browsers — including Internet Explorer, Firefox, Safari, and
Opera. If you don’t, your users might have to squint at your pages, or they
might see your tables as one big mess.

As you’re creating your table, keep a browser window open at the same time.
Each time you change the width of a cell or add an item to a cell, save the doc-
ument and view it in the browser window. That way, when you test your table,
you probably won’t have too much tweaking to do.

Always test your site using any browser that your users might employ. For
example, if your table is aligned with align=”center” but in an old version
of Internet Explorer the table remains flush with the left side, you might want
to surround the table with div tags and include the align=”center” attri-
bute inside the opening <div>. However, you won’t have too many problems
with tables if you stick to the standard.

Table-Making Tips
We’ve spent years of building, maintaining, and troubleshooting tables, and
in that time we’ve discovered some neat tricks. The following tips are a head
start toward creating effective tables.

Following the standards
The first — and (we think) most important — tip is to keep with the estab-
lished standards. The folks involved with the Web Standards Project have
campaigned for full standard support in browsers and HTML authoring appli-
cations since 1998. Their hard work should make your life easier.

A long time ago, if you built an HTML table, you’d be forced to create differ-
ent versions of your Web page (each version containing browser-specific
elements and attributes) just to define some basic table properties. As you
might imagine, creating and maintaining different versions of the same Web
page drove development costs sky-high. To get around those costs, many
developers carefully crafted their tables with specific markup that worked in
Internet Explorer and Netscape — but what about Opera? Well, happily those
are problems of the past. The newest versions of Internet Explorer, Firefox,
Safari, and Opera all support HTML, as well as CSS and XHTML. To find out
more about Web standards, visit www.webstandards.org.

17_238479 ch11.indd 20517_238479 ch11.indd 205 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

206 Part III: Taking Precise Control Over Web Pages and Styles

Sanitizing markup
Efficiently written markup is easier to troubleshoot and maintain. To that
end, many designers use white space to separate elements. For example, the
following markup doesn’t use much white space and is hard to read:

<table border=”1” width=”630”>
<tr><td width=”630” colspan=”2”> contents </td></tr>
<tr><td width=”400”> contents </td>
<td width=”230”> contents </td></tr></table>

Check out this cleaner version:

<table border=”1” width=”630”>
 <tr>
 <td width=”630” colspan=”2”> contents </td>
 </tr>
 <tr>
 <td width=”400”> contents </td>
 <td width=”230”> contents </td>
 </tr>
</table>

The white space we include in our markup is between elements — not within
elements. If, for example, you add white space between the <td> and </td>
tags, it affects how a cell’s content is displayed, which isn’t generally some-
thing you want to do.

Nesting tables within tables
Many designers are forced to nest tables within tables to achieve a desired
effect. This is both legal and common.

A few nested tables won’t affect your users too badly. But nesting many tables
within tables can lengthen download time.

To nest a table, simply add the <table> element within a <td> element
as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Nesting Tables</title>
</head>
<body>
 <table border=”1” cellpadding=”20” align=”center”>

17_238479 ch11.indd 20617_238479 ch11.indd 206 4/10/08 10:51:27 PM4/10/08 10:51:27 PM

207Chapter 11: Using Tables to Jazz Up Your Pages

 <tr align=”center”>
 <td> contents </td>
 <td> contents </td>
 </tr>
 <tr>
 <td>
 <table border=”1”>
 <tr>
 <td> contents </td>
 <td> contents </td>
 </tr>
 <tr>
 <td> contents </td>
 <td> contents </td>
 </tr>
 </table>
 </td>
 <td> contents </td>
 </tr>
 </table>
</body>
</html>

This markup produces the tables shown in Figure 11-13.

Figure 11-13:
Nested
tables.

When using nested tables . . .

 � Check cell widths — the width of the third cell should match the width
of the nested table.

 � Create and test the table you intend to nest — separately, before you
add it to your primary table.

17_238479 ch11.indd 20717_238479 ch11.indd 207 4/10/08 10:51:28 PM4/10/08 10:51:28 PM

208 Part III: Taking Precise Control Over Web Pages and Styles

Avoiding dense tables
We recommend creativity, but be careful — don’t pack a screen full of dense,
impenetrable information — especially numbers. A long, unbroken list of
numbers quickly drives away all but the truly masochistic — pretty much
negating the purpose of the table to begin with. Put those numbers into an
attractive table (better yet, several tables interspersed with a few well-chosen
images). Watch your page’s attractiveness and readability soar; hear visitors
sigh with relief.

Individual table cells can be surprisingly roomy. You can position graphics in
them precisely. If you’re moved to put graphics in a table, be sure to

 � Select images that are similar in size and looks.

 � Measure those images to determine their heights and widths in pixels.
(Shareware programs such as Paint Shop Pro and GraphicConverter do
this automatically.)

 � Use HTML markup to position these images within their table cells.

A short-and-sweet table keeps the graphics in check and guarantees that the
text always sits nicely to its right.

Two more handy graphics-placement tips produce a consistent, coherent
image layout:

 � Size your rows and columns of cells that contain images to accommo-
date the largest graphic.

 � Center all graphics in each cell (both vertically and horizontally).

Adding color to table cells
You can use either CSS or (X)HTML to change the background color of a
cell or table. Before CSS was around, designers used the bgcolor attribute
to change the background of table cells in much the same way it affects the
background of an entire HTML document. Simply add the bgcolor attribute
to any table cell to change its background color:

<td bgcolor=”teal”>...</td>

17_238479 ch11.indd 20817_238479 ch11.indd 208 4/10/08 10:51:28 PM4/10/08 10:51:28 PM

209Chapter 11: Using Tables to Jazz Up Your Pages

However, now you have a bit more flexibility to use CSS to add some color:

td {background-color: red;}

We cover the background-color property in Chapter 10.

The bgcolor attribute may be used with any of the table elements. However,
the bgcolor of a cell overrides any bgcolor defined for a row or table. Note
that bgcolor is also deprecated, and that most Web experts use CSS markup
instead, using the aforementioned background-color property as well as
the color property to set text or foreground color.

Other Table Markup of Interest
Table 11-1 lists other table-related (X)HTML attributes that you might find in
HTML files.

17_238479 ch11.indd 20917_238479 ch11.indd 209 4/10/08 10:51:28 PM4/10/08 10:51:28 PM

210 Part III: Taking Precise Control Over Web Pages and Styles

Table 11-1 Additional Table-related (X)HTML Attributes
Name Function/Value

Equals
Value Types Related

Element(s)

abbr Abbreviates table
header cell name

Text <td> <th>

axis Sets a comma-
separated list of
related table
headers

CDATA <td> <th>

char Defines alignment
character for table
elements

ISO 10646 char <col />
<colgroup>
<tbody> <td>
<tfoot> <th>
<thead> <tr>

charoff Defines offset when
alignment char is
used

Length (p/%) <col />
<colgroup>
<tbody> <td>
<tfoot>
<th> <thead>
<tr>

frame Identifies visible
components in a
table structure

{“above”|”below
”|”border”|”box
”| ”hsides”|”lh
s”|”rhs”|”void”
|”vsides”}

<table>

rules Governs the display
of rule bars in a
table

{“all”|”cols”|”
groups”|”none”|
”rows”}

<table>

scope Describes scope for
table-header cells

{“col”|”colgroup”|
”row”|”rowgroup”}

<td><th>

summary Describes a table’s
purposes for ren-
dering as speech

Text <table>

span Sets the number of
table columns to
which col
attributes apply

Number <col />

17_238479 ch11.indd 21017_238479 ch11.indd 210 4/10/08 10:51:28 PM4/10/08 10:51:28 PM

Part IV
Integrating Scripts

with (X)HTML

18_238479 pp04.indd 21118_238479 pp04.indd 211 4/11/08 12:11:20 AM4/11/08 12:11:20 AM

In this part . . .

In this part of the book, we introduce and describe the
types of scripting languages that work on Web pages,

and we dig into JavaScript — by far the most popular of all
Web-scripting languages in use. Scripting languages help
turn static, unchanging Web pages into active, dynamic
documents that can solicit and respond to user input. You
start by learning basic JavaScript elements, data types,
and values, and progress to topics that include rearrang-
ing Web-page content on the fly, performing calculations
and displaying their results, requesting and checking user
input, and a whole bunch more.

Next, you dig more deeply into JavaScript so you can
understand it — and use it — in your Web pages. You also
learn how to incorporate JavaScript into Web pages and
how it handles and changes Web page contents on the
fly. You also learn about checking your work and using
cookies (those interesting but elusive data packages that
adhere to Web users as they flit about online).

The last two chapters in this part show you ways to put
JavaScript to work in your Web pages. You explore how
to define and use a navigation bar, which presents users
with dynamic menus of options and information to make
it easier for them to move around your Web site. You
find out how to use JavaScript to create and use various
data-entry forms in your Web pages to solicit, check, and
respond to user input. You also pick up the basic con-
cepts and techniques for creating dynamic HTML (some-
times called DHTML) and using client-side JavaScripts and
prefabricated code to perform basic tasks, such as dis-
playing date and time information, counting site visitors,
or tabulating current statistics.

18_238479 pp04.indd 21218_238479 pp04.indd 212 4/11/08 12:11:22 AM4/11/08 12:11:22 AM

Chapter 12

Scripting Web Pages
In This Chapter
� Understanding what JavaScript is

� Exploring what JavaScript can do for your Web pages

� Dissecting three sample scripts

W hen used in conjunction with your HTML markup, scripts — small
programs that you add to your Web page — help your Web pages

respond to user actions. Scripts create the interactive and dynamic effects
you see on the Web, such as images that automatically change when visitors
move mouse pointers over them, additional browser windows that pop up
when a page loads, and animated navigation bars.

Because scripts are mini-programs, they’re often written in a programming
language called JavaScript. If you are unfamiliar with the term, JavaScript
may sound like a Hollywood screenplay doused with coffee. However, it is
actually a scripting language built right into all popular Web browsers.

Fortunately, because of the Nobel-Prize-worthy invention of “copy and
paste,” you don’t need to be a technoguru to add scripting to your Web sites.
The Web has many sites that feature canned JavaScript scripts that you can
freely copy and then paste right into your Web page. (Chapter 13 lists several
of the best JavaScript sites.)

In this chapter, you explore how scripting works inside your Web page by
dissecting three sample scripts written in JavaScript. Chapter 13 continues
this discussion by diving deeper into the JavaScript language itself.

Many good Web-page editors (such as Adobe Dreamweaver and GoLive) have
built-in tools to help you create scripts — even if you don’t know anything
about programming.

19_238479 ch12.indd 21319_238479 ch12.indd 213 4/10/08 9:43:21 PM4/10/08 9:43:21 PM

214 Part IV: Integrating Scripts with (X)HTML

What JavaScript Can Do for Your Pages
Adding scripts to your Web site is much like those reality-TV makeover
shows that transform a house or a person’s appearance into something com-
pletely new and wonderful. So too with JavaScript. You can transform a plain
and dull Web page into an interactive and dynamic Web extravaganza to
bring joy to your visitors for years to come. (Okay, maybe we’re exaggerating
just a tad, but you get the point.)

For example, if you visit Dummies.com (www.dummies.com) and click the
red button next to the search box without entering a term to search on, the
browser displays a nice warning box that reminds you to enter a search term
before you actually search, as shown in Figure 12-1.

A short script verifies whether you’ve entered a search term before the
engine runs the query:

 � If you enter a search term, you don’t see the warning.

 � If you don’t enter a search term, the script built into the page prompts
the warning dialog box to appear.

This bit of scripting makes the page dynamic, which means it adds pro-
grammed functionality to your Web pages — and allows them to respond
to what users do on the page (for example, filling out a form or moving the
mouse pointer over an image). When you add scripts to your page, the page
interacts with users and changes its display or its behavior in response to
what users do.

JavaScript is not Java
In the late 1990s, the originators of the
JavaScript scripting language wanted to ride
the coattails of the massive popularity of the
Java programming language, so they gave it a
catchy name — JavaScript. However, when
they made this decision, they also introduced
a lot of confusion given the similarity of the two
names. To clarify, the full-featured Java pro-
gramming language isn’t a scripting language
on the Web. Java is a descendent of the C and
C++ programming languages. Programmers
can create Java applications that can run on

Windows, Macintosh, Linux, and other com-
puter platforms:

 � On the client side, Java is used to create
applets (small programs that download
over the Net and run inside Web browsers).
Because Java is designed to be cross-
platform, these applets should run identi-
cally on any Java-enabled browser.

 � On the server side, Java is used to create
many Web-based applications.

19_238479 ch12.indd 21419_238479 ch12.indd 214 4/10/08 9:43:21 PM4/10/08 9:43:21 PM

215Chapter 12: Scripting Web Pages

Figure 12-1:
A script

pops up a
dialog box
telling you
what you

did wrong.

The page URL doesn’t change and another browser window doesn’t open
when you try to search on nothing. The page responds to what you do without
sending a request back to the Web server for a new page. This is why the page
is considered dynamic.

If you tried this trick without using a script (that is, without dynamic func-
tionality), the browser would send the empty search string back to the Web
server. Then the server would return a warning page reminding the user to
enter a search term. All the work would be done on the Web server instead
of in the Web browser. This would be slower (because the request must first
go to the server, and then the server must transmit the warning page back
to your browser) — which would feel much less fluid to the user. It’s much
better to just click a button on the page and have an alert pop up instantly to
help the user.

In the following sections, we showcase three common ways in which
JavaScript can be used in your Web pages.

Don’t worry about the details of the JavaScript code in the following examples.
Just focus on how JavaScript scripts can be pasted into your Web page and
work alongside your HTML markup.

Arrange content dynamically
JavaScript can be used with CSS (covered in Chapters 8 and 9) to change the
look of a page’s content in response to a user action. Here’s an example: Two
authors share a Weblog, Backup Brain (www.backupbrain.com). One of

19_238479 ch12.indd 21519_238479 ch12.indd 215 4/10/08 9:43:22 PM4/10/08 9:43:22 PM

216 Part IV: Integrating Scripts with (X)HTML

the authors prefers small, sans-serif type, and the other one finds it easier to
read larger, serif type. So the Weblog has buttons that change the look of the
site to match each person’s preference. Of course, the site’s visitors can use
the buttons to switch the look of the type, too, and the site remembers the
visitor’s choice for future visits by setting a cookie (a small preference file
written to the user’s computer). Figure 12-2 shows the two looks for the page.

Figure 12-2:
Clicking the

“Change
your font”

buttons
changes

how the text
displays.

JavaScript and CSS create this effect by switching between two style sheets:

 � The sans-serif style sheet, sansStyle.css

 � The serif style sheet, serifStyle.css

19_238479 ch12.indd 21619_238479 ch12.indd 216 4/10/08 9:43:22 PM4/10/08 9:43:22 PM

217Chapter 12: Scripting Web Pages

Listing 12-1 shows the source code for an example page that contains this
switching mechanism.

 � When a user clicks the Sm Sans button on the page, a script runs
(styleSwitcher.js, referenced in the <head> element) and switches
the active style sheet to sansStyle.css. (Chapter 13 covers .js files.)

 � When the user clicks the Lg Serif button, the same script switches to the
serifStyle.css style sheet.

Listing 12-1: Style Switching
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Style Changer</title>
 <link href=”simpleStyle.css” rel=”stylesheet” rev=”stylesheet” />
 <link href=”sansStyle.css” rel=”stylesheet” rev=”stylesheet”
 title=”default” />
 <link href=”serifStyle.css” rel=”alternate stylesheet”
 rev=”alternate stylesheet” title=”serif” />
 <style type=”text/css” media=”all”>@import url(“complexStyle.css”);</style>
 <script src=”styleSwitcher.js” language=”javascript1.5”
 type=”text/javascript”></script>
</head>
<body>
<div class=”navBar”>

Change your font:
<form action=”none”>
 <input type=”button” class=”typeBtn” value=”Sm Sans”
 onclick=”setActiveStylesheet(‘default’)” />
 <input type=”button” class=”typeBtn2” value=”Lg Serif”
 onclick=”setActiveStylesheet(‘serif’)” />
</form>
</div>

<div class=”content” id=”headContent”>
<p>Replace this paragraph with your own content.</p>
</div>
</body>
</html>

You can see the example page for yourself at

www.javascriptworld.com/chap11-3.html

This example relies on several different files (HTML, CSS, and JavaScript). You
can download all 2.6 MB of these files if you’d like, from

www.javascriptworld.com/JavaScript6eScripts.zip

19_238479 ch12.indd 21719_238479 ch12.indd 217 4/10/08 9:43:22 PM4/10/08 9:43:22 PM

218 Part IV: Integrating Scripts with (X)HTML

Work with browser windows
JavaScript can tell your browser to open and close windows.

You’ve probably seen an annoying version of this trick: advertising pop-up
windows that appear when you try to leave a site. (Let’s not go there.) But this
technology can be used for good as well as evil. For example, you can preview
a set of big image files with small thumbnail versions. Clicking a thumbnail
image can perform such actions as

 � Opening a window with a larger version of the image.

 � Opening a page with a text link that opens a window with an illustration
of that text, as shown in Figure 12-3.

Figure 12-3:
When you

click the
link, a

pop-up
window
appears

with a
picture in it.

The code required to do this sort of pop-up window is fairly straightforward,
as Listing 12-2 shows.

Listing 12-2: Pop-up Windows
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Opening a Window</title>
 <script language=”Javascript” type=”text/javascript”>

19_238479 ch12.indd 21819_238479 ch12.indd 218 4/10/08 9:43:22 PM4/10/08 9:43:22 PM

219Chapter 12: Scripting Web Pages

 function newWindow() {
 catWindow = window.open(“images/pixel2.jpg”, “catWin”,
 “width=330,height=250”)
 }
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h1>The Master of the House</h1>
 <h2>Click on His name to behold He Who Must Be Adored

 Pixel</h2>
</body>
</html>

Pop-up windows can backfire on you if you use them too much. Many Web
sites use pop-up windows to deliver ads, so users are becoming desensitized
(or hostile) to them, and simply ignore them (or install software that prevents
them). Before you add a pop-up window to your site, be sure it’s absolutely
necessary.

Chapter 13 has more details on creating pop-up windows with JavaScript.

Solicit and verify user input
A common use for JavaScript is to verify that users have filled out all the
required fields in a form before the browser actually submits the form to
the form-processing program on the Web server. Listing 12-3 places a form-
checking function, checkSubmit, in the <script> element of the HTML
page and references it in the onsubmit attribute of the <form> element.

Listing 12-3: Form Validation
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Linking scripts to HTML pages</title>
 <script type=”text/javascript” language=”javascript”>
 function checkSubmit (thisForm) {
 if (thisForm.FirstName.value == ‘’) {
 alert(‘Please enter your First Name.’);
 return false;
 }

 if (thisForm.LastName.value == ‘’) {
 alert(‘Please enter your Last Name.’);
 return false;
 }

 return true;

(continued)

19_238479 ch12.indd 21919_238479 ch12.indd 219 4/10/08 9:43:23 PM4/10/08 9:43:23 PM

220 Part IV: Integrating Scripts with (X)HTML

Listing 12-3 (continued)
 }
</script>
</head>

<body>
 <form method=”POST” action=”/cgi-bin/form_processor.cgi”
 onsubmit=”return checkSubmit(this);”>
 <p>
 First Name: <input type=”text” name=”FirstName” />

 Last Name: <input type=”text” name=”LastName” />

 <input type=”submit” />
 </p>
 </form>
</body>
</html>

This script performs one of two operations if either form field isn’t filled in
when the user clicks the Submit button:

 � It instructs the browser to display a warning to let the user know he or
she forgot to fill in a field.

 � It returns a value of false to the browser, which prevents the browser
from actually submitting the form to the form-processing application.

If the fields are filled in correctly, the browser displays no alerts and returns
a value of true, which tells the browser the form is ready for the Web server.
Figure 12-4 shows how the browser displays an alert if the first name field is
empty.

Figure 12-4:
A good
use of

JavaScript
is to validate

form data.

Although this example only verifies whether users filled out the form fields,
you can create more advanced scripts that check for specific data formats
(such as @ signs in e-mail addresses and only numbers in phone number
fields).

19_238479 ch12.indd 22019_238479 ch12.indd 220 4/10/08 9:43:23 PM4/10/08 9:43:23 PM

221Chapter 12: Scripting Web Pages

When you create forms that include required fields, we recommend that you
always include JavaScript field validation to catch missing data before the
script finds its way back to the server. Visitors get frustrated when they take
the time to fill out a form only to be told to click the Back button to provide
missing information. When you use JavaScript, the script catches any missing
information before the form page disappears so users can quickly make
changes and try to submit again.

But wait . . . there’s more!
You can do much more with JavaScript. The following list highlights several
common uses of the scripting language:

 � Detect whether a user has a browser plug-in installed that handles multi-
media content

 � Build slide shows of images

 � Automatically redirect the user to a different Web page

 � Add conditional logic to your page, so that if the user performs a certain
action, other actions are triggered

 � Create, position, and scroll new browser windows

 � Create navigation bars and change the menus on those bars dynamically

 � Automatically put the current date and time on your page

 � Combine JavaScript and CSS to animate page elements

Server-side scripting
JavaScript is a scripting language that runs
inside the browser, but there are other scripting
languages that run on the server side — such as
Perl, ASP (Active Server Pages), PHP, Python,
.NET, ColdFusion, and others. Programs written
in these languages reside on the server and are
called by the Web page, usually in response to
a form filled out by the user. People who write
these Web pages may include small snippets
of code that pass bits of information from the
HTML page to the program on the server. When

called, the program runs and then returns a
result of some sort to the user.

Amazon.com is a familiar e-commerce Web
application that runs mostly on the server side,
using server scripts. Therefore Web pages dis-
played by the browser when you visit Amazon are
the result of processing server-side scripts — all
of which takes place before the page ever gets
to your browser.

19_238479 ch12.indd 22119_238479 ch12.indd 221 4/10/08 9:43:23 PM4/10/08 9:43:23 PM

222 Part IV: Integrating Scripts with (X)HTML

An innovative use of JavaScript occurs in Gmail, the free Web-based e-mail
service from Google, which you can find at www.gmail.com. Gmail uses
JavaScript to load an entire e-mail user interface into the user’s browser,
which makes Gmail much more responsive to user actions than most other
Web-based mail programs. Gmail uses JavaScript to keep to an absolute mini-
mum the number of times the page has to fetch additional information from
the servers. By doing much of the processing in the user’s browser, the Gmail
Web application feels more like an e-mail program that runs on your com-
puter. Figure 12-5 shows the JavaScript-powered Gmail interface. It’s a great
example of the power of JavaScript.

Figure 12-5:
The Gmail

interface is
powered by
JavaScript.

19_238479 ch12.indd 22219_238479 ch12.indd 222 4/10/08 9:43:24 PM4/10/08 9:43:24 PM

Chapter 13

The Nuts and Bolts of JavaScript
In This Chapter
� Putting scripts in your pages

� Using external script pages

� Delving into the JavaScript language

� Checking out more JavaScript Resources

A lot of good “canned JavaScript” is available for free on the Web; you
know what we mean — scripts written by someone else that you

simply copy and paste into your HTML page. But as good as canned scripts
can be, copy-and-paste goes only so far. Sooner or later, you’re going to
encounter unique needs that can’t be fulfilled with a free script.

Canned JavaScript is much like canned Spam (the meat product, not the
e-mail affliction): Great for convenience, but you probably don’t want to
make it an exclusive diet. Instead, knowing how to script — or at least how to
tweak a prewritten script — is as important as knowing how to fix some good
ol’ fashioned home cooking.

In this chapter, you “open the can” of the JavaScript language and have a
look at what’s inside. (Don’t worry; you won’t encounter any meaty pink sub-
stances along the way.) You discover how to plug scripts into your pages,
how to bundle your scripts into external JavaScript files to save time and
effort, and how the nuts and bolts of the JavaScript language work. Finally,
at the end of this chapter, we point you to good sources of additional infor-
mation about JavaScript. These will come in handy as your scripting needs
advance.

20_238479 ch13.indd 22320_238479 ch13.indd 223 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

224 Part IV: Integrating Scripts with (X)HTML

Including Scripts in Web Pages
Because a JavaScript script is a totally separate animal from HTML markup,
you have to contain this JavaScript beast inside an HTML container tag,
<script> and </script>. You can put a script in one of two places on an
HTML page:

 � Within the <head> and </head> tags (this is called a header script)

 � Within the <body> and </body> tags (this is called a body script)

Header scripts contain code that you either want processed before the page
loads or else you want them available to be called by other scripts in your
Web page. Body scripts are executed when the <body> tag is processed.
Typically, body scripts are used to generate HTML content for the page.

Listing 13-1 shows a header script. This simple script pops up a welcoming
message box when the user loads the page.

Listing 13-1: Header Script
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My JavaScript page</title>
 <script language=”Javascript” type=”text/javascript”>
 alert(“Welcome to my JavaScript page!”)
 </script>
</head>
<body bgcolor=”#FFFFFF”>
 <h2>This script pops up a message box for the user.</h2>
</body>
</html>

The preceding <script> tag has two attributes:

 � language=”Javascript” tells the browser which scripting language
the document uses.

 � type=”text/javascript” tells the browser that the script is plain
text in JavaScript.

The script itself, alert(“Welcome to my JavaScript page!”), is
straightforward. The alert() method displays a message box that pops up
on top of the browser window and shows a customized message to the Web
page visitor. You specify the message you want displayed by enclosing the

20_238479 ch13.indd 22420_238479 ch13.indd 224 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

225Chapter 13: The Nuts and Bolts of JavaScript

text within quotation marks and putting the text string inside the alert()
method’s parentheses, as shown in Listing 13-1. (Note: (Curly quotes and
single quotes won’t work.) Make sure you close the script with the </
script> tag, and your script is ready to go.

Using the Same Script on Multiple Pages
If you have a single Web page that uses a JavaScript script, it’s handy to be
able to contain all the scripting code inside a single <script> tag. However,
suppose you have a boatload of pages, each of which needs to call the same
script. You can always copy and paste the script into each page, but there
are two downsides to that approach:

 � You have to add the script to each page and make sure it’s set up cor-
rectly and working.

 � Any time you tweak the script, you’re forced to update each and every
HTML page that uses it. If you have two pages, that’s no big deal. But if
you have more than three, it can lead to a maintenance migraine.

Fortunately, this latter headache can be avoided — even without ibuprofen!
Instead, you can use an external JavaScript file, also called a .js file (pro-
nounced “dot jay ess”). A .js file is an ordinary text file that stores your
JavaScript scripts. You can store one or more of your JavaScript scripts in a
single .js file and access them from multiple HTML pages. (It is much like
the .css files in which you store external style sheets, except that a .js file
stores external JavaScript code.)

To use the same script on multiple pages, you should

 1. Put the script in an external JavaScript file.

 If you have the script already inside your HTML page, remove all the
JavaScript code inside the <script> tag and paste it into a separate
file.

 2. Reference the file in any HTML page when you need the script.

 Define a <script> tag in the head section of your Web page, but don’t
add any code inside it. Instead, use the src (for source) attribute in the
<script> tag to call the external .js file.

Listing 13-2 shows the reference to the external file.

20_238479 ch13.indd 22520_238479 ch13.indd 225 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

226 Part IV: Integrating Scripts with (X)HTML

Listing 13-2: External Script Reference
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My JavaScript page</title>
<script src=”external.js” language=”JavaScript” type=”text/javascript”>
</script>
</head>
<!-- (the rest of your HTML page goes here) -->

You don’t need to include anything else between the opening and closing
script tags beyond what’s shown. In Listing 13-2, the name of the source file,
external.js, is placed between double quotes. You can reference this file,
external.js, with either a relative or absolute link, so you can refer to
external JavaScript files in other directories on your server, or even on other
servers (if you have access to those servers).

Adding the src attribute to the <script> tag tells the browser to look for
that external file in the specified path. The resulting Web pages look and act
like the scripts are in the header or body of the page’s script tags, though the
script is in the external .js file.

With this technique, you need to change a JavaScript only once on your site in
the external file, not in each individual page on the site. All pages that refer-
ence the external file automatically receive the updated code. It’s a big time-
saver when updating your site.

If you use a script on only one page, it’s often easier simply to put the script
on the page in a body or header script.

If you have multiple external .js files, you can use any or all of them on any
HTML page. Just include multiple <script> references on the page. It’s per-
fectly okay for a page to include multiple scripts — and to both refer to exter-
nal .js files and to include its own scripts inside <script> tags.

When you have multiple <script> tags defined in your Web page, the
browser processes them in the order in which they are declared. If, for some
reason, you have an external .js file that conflicts with a script inside a
<script> tag, the last one defined wins.

There is nothing magical about the inside of the .js file itself — it is pure
JavaScript code. No HTML tags are allowed. Listing 13-3 shows an example of
a script in an external .js file. This script implements button rollovers for a
Web page. When the user moves the mouse pointer over a button image, the
image changes to highlight the choice.

20_238479 ch13.indd 22620_238479 ch13.indd 226 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

227Chapter 13: The Nuts and Bolts of JavaScript

Listing 13-3: An External JavaScript File
homeOff = new Image
productsOff = new Image
contactOff = new Image
pressOff = new Image

homeOver = new Image
productsOver = new Image
contactOver = new Image
pressOver = new Image

homeOff.src = “images/home_off.jpg”
productsOff.src = “images/products_off.jpg”
contactOff.src = “images/contact_off.jpg”
pressOff.src = “images/press_off.jpg”

homeOver.src = “images/home_over.jpg”
productsOver.src = “images/products_over.jpg”
contactOver.src = “images/contact_over.jpg”
pressOver.src = “images/press_over.jpg”

function imgOver(thisImg) {
 document[thisImg].src = “images/” + thisImg + “_over.jpg”
}

function imgOut(thisImg) {
 document[thisImg].src = “images/” + thisImg + “_off.jpg”
}

Note that the contents of the .js file shown in Listing 13-3 could be pasted
directly between <script> and </script> tags inside an HTML or XHTML
document and function identically.

Exploring the JavaScript Language
If you travel to a country whose people don’t speak your language, you usu-
ally buy a pocket guide to help you make your way through the country. You
don’t necessarily need to know all the particulars and idiosyncrasies of the
language, but you do need to know the essentials — phrases like “Where’s
the bathroom?” or “Where can I get an espresso?” — in order to survive.

In the same way, if you want to work with JavaScript, you don’t need to
become a hotshot scripting guru. You do, however, need to know enough
about scripting to do the programming equivalent of ordering a meal or find-
ing a bathroom.

20_238479 ch13.indd 22720_238479 ch13.indd 227 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

228 Part IV: Integrating Scripts with (X)HTML

Like any other programming language, JavaScript is made up of several com-
ponents, including

 � Basic syntax rules

 � Commands, values, and variables

 � Operators and expressions

 � Statements

 � Loops

 � Functions

 � Arrays

 � Object orientation

The following sections explore each of these.

Basic syntax rules
Every language has its own set of rules to make it possible to communicate.
English, for example, uses periods to end sentences, quotation marks to
denote quotes, and exclamation points to indicate something exciting is hap-
pening! JavaScript is no exception.

Here are some of the basic syntax rules that you should understand as you
begin to discover what the scripting language is all about.

Statements
Just as an English or French document is composed of sentences, JavaScript
scripts are composed of one or more statements. For example, the script in
Listing 13-1 has a single statement, whereas the script in Listing 13-3 has
more than 20. Statements can end simply by putting the next statement on
the following line. You can also optionally end a statement with a semicolon.

Capitalization
JavaScript is a case-sensitive language. The text you type in a script must not
only be spelled correctly but must also be in the correct case. For example,
the alert() method we use earlier in this chapter is in the correct syntax
for that method. If we use Alert() or ALERT(), the script won’t work.

White space
JavaScript ignores spaces and tabs (usually called white space) between
statements, but it’s a good idea to use space to make your code more read-
able. For example, the following two code examples function in the same way,
but the first is much easier to read than the second.

20_238479 ch13.indd 22820_238479 ch13.indd 228 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

229Chapter 13: The Nuts and Bolts of JavaScript

 � The following code separates and organizes statements with spaces and
line breaks, so it’s easy to read and understand:

if (document.images) {
 arrowRed = new Image
 arrowBlue = new Image

 arrowRed.src = “images/redArrow.gif”
 arrowBlue.src = “images/blueArrow.gif”
}

 � The following code separates statements with semicolons and doesn’t
use spaces and line breaks for organization, so it’s harder to read:

if (document.images) {arrowRed = new Image; arrowBlue = new Image;
arrowRed.src =”images/redArrow.gif”; arrowBlue.src = “images/
blueArrow.gif”}

Comments
Comments are text within your script that’s ignored by the browser when the
script runs. Comments are invaluable help to

 � Other people who are trying to figure out your code.

 � You. Months after you write the script, comments can make the code
much easier for you to change.

Single-line comments
You can add comments to your JavaScript by adding two slashes to a com-
ment that fits all on one line, like this:

//The code that runs below displays a snazzy pop-up window

Multiple-line comments
If your comment is lengthy and you need to span more than one line, you can
either start each line with two slashes or else enclose your comments with
/* and */ marks.

/* The code that runs below displays a really nifty, snazzy,
 jazzy, wicked-cool pop-up window.
 Last modified: June 10, 2007 */

Variables and data types
In JavaScript, you can execute various commands that are built in to the lan-
guage itself, such as alert(), shown in Listing 13-1. However, you often use
commands to act on pieces of information, known as values. For example,
alert() displays a string value that is contained within its parentheses. A
value can be either a literal value (such as a number or a string of alphanu-
meric characters) or a variable. Each value is categorized by its type.

20_238479 ch13.indd 22920_238479 ch13.indd 229 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

230 Part IV: Integrating Scripts with (X)HTML

Variables
A variable is a placeholder for a value. For example, the variable favPerson
contains the string value Gilligan. In JavaScript, you can write this as
favPerson = “Gilligan”.

The equals sign is read as “is set to.” In other words, the variable favPerson
now contains (is set to) the value “Gilligan.” (The equals sign is an assignment
operator, which is explained later in this chapter.) When assigning a value to
a variable, keep in mind the following rules:

 � The variable name is always on the left side of the equals sign.

 � The variable value is always on the right side.

Here are examples of variables and the value that each contains:

x = 5
first_Time = false
formZipcode = “92683”

In the preceding example, x contains the numeric value of 5. However, the
formZipcode variable contains a text string, not a number, because that
value (like all string values) is enclosed in double quotes.

If you need to perform mathematical operations on a variable, assign a
number value to it, not a quoted string.

The actual act of creating a variable and assigning it a value is called declar-
ing the variable. So, to declare the variable pi to be equal to 3.14, you write
this:

pi = 3.14

When you declare a variable, remember that

 � JavaScript is case-sensitive.

 myname, MyName, and myName are treated as three separate variables
because each has a different capitalization.

 � Variable names can use only letters, numbers, and underscores.

 They can’t contain spaces or other punctuation.

 � Variable names can’t start with a number.

20_238479 ch13.indd 23020_238479 ch13.indd 230 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

231Chapter 13: The Nuts and Bolts of JavaScript

 � Variable names can’t be the same as a reserved word.

 Reserved words are special keywords, such as if or with, that are used
by JavaScript for its core functionality. Make sure you avoid naming a
variable the same as one of these words. A complete list of reserved
words is available at www.javascripter.net/faq/reserved.htm.

Data types
When you work with a literal value or variable, JavaScript categorizes it as a
particular data type. Table 13-1 shows the common types of values.

Table 13-1 Data Types
Type Description Example

Number Any numeric value 42

String Text characters inside quote
marks

“My name is
Inigo Montoya”

Object A JavaScript object, which
can be defined by the lan-
guage or else created on your
own

window

Function Value returned by a function myFunction()

Boolean A logically true or false value true

Null Empty; has no value null

Operating on expressions
As the preceding sections discuss, a literal value (such as 5 and
“Lightbulb”) or a variable can represent a value of a particular type.
However, in JavaScript, a complete statement, called an expression, can also
return a value. For example, consider the following two expressions:

2+1+2 // Evaluates to a value of 5
“A” + “three” + “hour” + “tour” // Evaluates to “Athreehourtour”

As you can see from these two examples, JavaScript often uses symbols as
you evaluate, manipulate, and work with expressions. These symbols are
called operators. In the examples shown above, the + (plus) symbol may be
used to add numeric values or to combine two or more strings together into
a single one (an operation known as concatenation).

20_238479 ch13.indd 23120_238479 ch13.indd 231 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

232 Part IV: Integrating Scripts with (X)HTML

JavaScript has several different types of operators, including assignment,
arithmetic, counting, and comparison types.

Assignment operators
Assignment operators put values into variables. For example, x = 8 assigns
the value of 8 to the variable x. Table 13-2 shows the assignment operators
— although, as you can see, they really combine assignment and arithmetic
functionality.

Table 13-2 Assignment Operators
Operator Assignment Description

= x = y Sets x to the value of y

+= x += y Same as x=x + y

-= x -= y Same as x=x - y

*= x *= y Same as x=x * y

/= x /= y Same as x=x / y

Arithmetic operators
When you feel like crunching numbers, use arithmetic operators. You’ll
quickly recognize these symbols from your high-school math class.
Expressions with the most common operators are listed in Table 13-3.

Table 13-3 Arithmetic Operators
Operator Example Description

+ x + y (numeric) Adds x and y together

- x - y Subtracts y from x

* x * y Multiplies x and y together

/ x / y Divides x by y

- -x Reverses the sign of x

Counting operators
JavaScript provides operators that are especially designed for counting
either up or down while a process runs. The same operator can

20_238479 ch13.indd 23220_238479 ch13.indd 232 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

233Chapter 13: The Nuts and Bolts of JavaScript

 � Retrieve a variable

 � Count up or count down

Table 13-4 shows the counting operators.

Table 13-4 Counting Operators
Operator Description

++x Increases y by 1 (same as x=x+1) before an assignment

x++ Increases y by 1 after an assignment

--x Decreases y by 1 (same as x=x-1) before an assignment

x-- Decreases y by 1 after an assignment

Changing before an assignment
When you place the ++ or -- operators before the variable, the value of the
variable changes before you use the variable. For example, if x is 8, then
y=++x changes the variables in this order:

 1. Set x to 9.

 2. Set y to 9.

Changing after an assignment
When you place the ++ or -- operators after the variable, the value of the
variable changes after you use the variable. For example, if x is 8, then y=x++
changes the variables in this order:

 1. Set y to 8.

 2. Set x to 9.

Comparison operators
Comparison operators tell you whether expressions on both sides of the oper-
ator are the same or different. The result of a comparison operation is either
true or false. Table 13-5 shows the comparison operators.

20_238479 ch13.indd 23320_238479 ch13.indd 233 4/10/08 9:43:45 PM4/10/08 9:43:45 PM

234 Part IV: Integrating Scripts with (X)HTML

Table 13-5 Comparison Operators
Operator Example Description

== x == y Returns true if x and y are equal

!= x != y Returns true if x and y are not equal

> x > y Returns true if x is greater thany

>= x >= y Returns true if x is greater than or
equal to y

< x < y Returns true if x is less than y

<= x <= y Returns true if x is less than or equal
to y

|| x || y Returns true if either x or y is true

&& x && y Returns true if both x and y are true

! !x Returns true if x is false

Working with statements
As discussed in the “Basic syntax rules” section, JavaScript statements are
the basic units of a script. Two common types are expression statements and
conditional statements.

Expression statement
An expression statement returns a value. For example, consider the following
statement:

fullName = firstName + “ “ + lastName

The result of this expression is that the variable fullName is assigned the
concatenated value of

 � The value of the variable firstName

 � A space

 � The value of the variable lastName

The plus signs indicate that the result is concatenated — put together to form
a string.

20_238479 ch13.indd 23420_238479 ch13.indd 234 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

235Chapter 13: The Nuts and Bolts of JavaScript

Conditional statement
A conditional statement can check your data and decide what to do. It has
three steps:

 1. Test a value.

 The result of the test is always either true or false.

 2. Select an action according to the result of the test.

 3. Perform the selected action.

The most common conditional statements are the if and if/else state-
ments. Consider the following if statement:

if (x = “Boxen”) {
 y = 1
 alert(“You are a smarty! The correct answer is Boxen. Well done!”)
}

The if statement tests the expression inside the parentheses and deter-
mines whether or not x = “Boxen”. If the test evaluates to true, then
the statements inside the curly braces are executed. If the test evaluates to
false, then these lines are bypassed.

The if/else statement can also be used to specify code to be processed
when the if test evaluates to false:

if (x = “Boxen”) {
 y = 1
 alert(“You are a smarty! The correct answer is Boxen. Well done!”)
}
else {
 y = 0
 alert(“You are totally wrong! The correct answer is Boxen. Bad!”)
}

A second example helps illustrate the steps involved in an if/else condi-
tional statement:

if (confirm(“Are you sure you want to do that?”)) {
alert(“You said yes”)

}
else {

alert(“You said no”)
}

20_238479 ch13.indd 23520_238479 ch13.indd 235 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

236 Part IV: Integrating Scripts with (X)HTML

Here’s how the statement works:

 1. The if portion of the statement displays a dialog box that asks the user
to confirm a choice, using the confirm() method.

 This is the “Are you sure you want to do that?” message you see on the
left in Figure 13-1.

 2. The confirm() method returns either true or false, depending on
the user’s response.

 • If the user clicks the OK button in the dialog box, the confirm()
method returns true.

 • If the user clicks the Cancel button, the confirm() method
returns false.

 3. The code then performs an action based on the value that the con-
firm() method returns.

 • If the method returns true, an alert appears with the message,
“You said yes,” as shown on the right in Figure 13-1.

 • If the method returns false, an alert appears with the message,
“You said no.”

Figure 13-1:
Confirming a
user action.

Loops
When you need to repeat an action in a JavaScript script, you use a loop. For
example, a script that uses a loop can

 � Make sure every character in a Zip code field is a number.

 � Check every item in a list for a specific value

20_238479 ch13.indd 23620_238479 ch13.indd 236 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

237Chapter 13: The Nuts and Bolts of JavaScript

for loop
The for loop repeats steps a specific number of times.

If you don’t know how many times you need to repeat some steps, use a
while loop instead of a for loop.

The for loop in Listing 13-4 calculates a multiplication table. Figure 13-2
shows the result in the browser.

Listing 13-4: A for Loop
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>A For Loop</title>
</head>
<body>
<script type=”text/javascript” language=”javascript”>

document.write(“<h3>Multiplication table for 7</h3>”)

for (loopCount = 0; loopCount <= 10; loopCount++)
{

document.write(“7 X “,loopCount,” = “, 7 * loopCount,”
”);
}
</script>
</body>
</html>

Figure 13-2:
This script’s
for loop cal-
culates and
displays the

multiplica-
tion result.

20_238479 ch13.indd 23720_238479 ch13.indd 237 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

238 Part IV: Integrating Scripts with (X)HTML

A for loop has three steps:

 1. The initialization step sets the beginning value of the loop variable.

 In Listing 13-4, loopCount = 0 is the initialization step.

 2. The limiting step tells the loop when to stop looping.

 In Listing 13-4, loopCount <= 10 is the limiting step. The loop repeats
as long as the value of loopCount is less than or equal to 10.

 3. The increment step tells the loop to increase the variable loopCount by
a specific amount after the for block (the set of statements contained
inside the curly braces) is executed.

 In Listing 13-4, loopCount++ is the increment step. It increases the
value of loopCount by 1 each time through the loop.

while loop
A while loop repeats steps until you get a certain kind of result (such as
finding a name in a list).

If you know exactly how many times you need to repeat steps, use a for loop
instead of a while loop.

Listing 13-5 shows the construction of the while loop.

Listing 13-5: A while Loop
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>A While Loop</title>
</head>
<body>
<script type=”text/javascript” language=”javascript”>
con = confirm(“Do you want to continue?”)
while(con == false)
{

document.write(“Continuing to wait
”);
 con = confirm(“Do you want to continue?”)
}
</script>
</body>
</html>

20_238479 ch13.indd 23820_238479 ch13.indd 238 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

239Chapter 13: The Nuts and Bolts of JavaScript

A while loop works as follows:

 1. The while statement evaluates the expression inside its parentheses.

 In Listing 13-5, con == false is evaluated. The value of con is depen-
dent on whether the user clicks the yes or no button in a confirmation
message box.

 2. As long as the expression evaluates to true, the code contained inside
the curly braces (the while block) is repeated.

 In Listing 13-5, notice that the confirm statement is triggered again at
the end of the while block to determine whether the loop should con-
tinue.

Functions
A function is a grouped set of JavaScript statements that

 � Is identified by a name

 � Is sectioned off from the rest of the script

 � Performs a specific task

 � Must be called by other parts of the script to execute

Functions are useful when you want to organize your code into separate units
or when you use a bit of code more than once in a script. For example, a user
may enter information into a form. You can use a function to save that infor-
mation, perform a calculation on it, and allow other parts of the script to call
the function to retrieve the result of the calculation.

A function consists of

 � The function declaration, which contains the keyword function, a unique
function name, and parentheses. Optionally, you can pass values into
the function by adding arguments inside the parentheses.

 � The function block, which is a set of one or more statements surrounded
by curly braces.

The basic structure of a function looks like this:

function name_of_function(argument) {
 // One or more statements
}

20_238479 ch13.indd 23920_238479 ch13.indd 239 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

240 Part IV: Integrating Scripts with (X)HTML

Here is an example of a function:

function alertMessage() {
alert(“Please enter a value in this field.”)

}

When your page loads into the browser and your script is processed by the
browser, the function code doesn’t run automatically. Instead, it has to be
explicitly called in your script. Therefore, to trigger the alertMessage()
function, you need to call it by name:

alertMessage()

Listing 13-6 shows a script with a function that is used to display a variety of
alerts, depending on which button the user presses.

Listing 13-6: Calling a Function
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Function calling</title>

<script language=”javascript” type=”text/javascript”>
function saySomething(message) {

alert(message)
}

</script>
</head>
<body>
<h2>Famous Quotes</h2>
<hr />
<form action=”#”>

<input type=”button” value=”George Orwell” onclick=
 “saySomething(‘To write or even speak English is not a science but
 an art.’)” />
<input type=”button” value=”Arthur Conan Doyle” onclick=
 “saySomething(‘We cannot command our love, but we can our actions.’)” />
<input type=”button” value=”H.G. Wells” onclick=
 “saySomething(‘If we do not end war, war will end us.’)” />

</form>
</body>
</html>

The result of this script is shown in Figure 13-3.

20_238479 ch13.indd 24020_238479 ch13.indd 240 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

241Chapter 13: The Nuts and Bolts of JavaScript

Figure 13-3:
An alert

pops up as
a result of

clicking the
H.G. Wells

button.

In the script, when the user clicks one of the buttons on the page, the say-
Something function is called and is passed the information in quotes, which
the function stores in the variable message. The function then displays the
alert, with the value of message, which is the quotation it was passed.

Arrays
An array is a collection of values. Arrays are useful because you can use them
to manipulate and sort groups of things.

The location of information in an array is based on a numbered position
called the index. Index numbering always starts at 0 and goes up. JavaScript
has a special object — the Array object — just to handle arrays.

Creating arrays
To create an instance of an array, you must use the new operator along with
the Array object, like this:

x = new Array()

You can fill in the array when you create the Array object, separating the
array elements with commas, like so:

theDays = new Array(“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,
 “Saturday”, “Sunday”)

20_238479 ch13.indd 24120_238479 ch13.indd 241 4/10/08 9:43:46 PM4/10/08 9:43:46 PM

242 Part IV: Integrating Scripts with (X)HTML

Accessing arrays
After the array is created, you can write to it and read from it by using the []
operator. By placing a position number in this operator, you can access the
data stored at that index number.

For example, the value of theDays[2] in the preceding example is
Wednesday (array positions always begin with 0, so Monday is 0). Please
remember this, because many programming languages use 1 not 0 as their
first array index value, and many new JavaScript programmers mistakenly
think it works the same way.

Reading elements
To read an element from an array, create a variable and assign it a value from
the array, like this:

thisDay = theDays[6]

The value of thisDay is now Sunday.

Writing elements
To write a value to the array, follow these steps:

 1. Identify the index of the value you want to change.

 2. Assign a new value to the array element, like this:

theDays[0] = “Mon”

Looping
Every array has a length property, which is very useful for discovering how
many elements the array contains, and is often used to loop through the
array elements, as in this example:

planets = new Array (“Mercury”, “Venus”, “Earth”, “Mars”)
for (i = 0; i < planets.length; i++)
alert (planets[i]);

This causes the browser to display a series of four alert boxes, each contain-
ing one of the names of the planets array. The value of planets.length is
3 (since numbering starts at 0), and the script steps through each element of
the array until the value of the counting variable i is greater than 3, at which
time the script ends.

20_238479 ch13.indd 24220_238479 ch13.indd 242 4/10/08 9:43:47 PM4/10/08 9:43:47 PM

243Chapter 13: The Nuts and Bolts of JavaScript

Objects
Most JavaScript scripts are designed to “give life” to objects that exist inside
your browser. A rollover brings an image link to life. A validated e-mail
address field is smart about what kind of e-mail address it will accept. A doc-
ument displays new text on the fly, basing what it shows on a response from
the Web page visitor.

Within JavaScript, you work with a variety of objects — such as the browser
window, a button, a form field, an image, or even the document itself.
Because JavaScript’s primary calling is to work with objects, the scripting
language is called an object-based language.

Think, for a moment, of an object that exists in the real world, such as a car
or an MP3 player. Each of these objects has characteristics that describe the
object, such as color, weight, and height. Many objects also have a behavior
that can be triggered. A car can be started; an MP3 player can be played.

These real-world analogies can be applied to JavaScript. Objects you work
with have descriptive qualities (called properties) and behaviors (called
methods). For example, a document object represents the HTML page in your
browser. It has properties, such as linkColor, title, and location, as
well as methods, such as open(), clear(), and write(). (JavaScript meth-
ods always have parentheses following their names.)

JavaScript uses periods (or dots) to access an object’s properties or
methods:

object.property
object.method()

For example, to get the title of the document and assign it to a variable,
you write this:

mytitle = document.title

To call the clear method of the document, you write this:

document.clear()

Events and Event Handling
Events are actions that either the browser executes or the user performs
while visiting your page. Loading a Web page, moving the mouse over an
image, closing a window, and submitting a form are all examples of events.

20_238479 ch13.indd 24320_238479 ch13.indd 243 4/10/08 9:43:47 PM4/10/08 9:43:47 PM

244 Part IV: Integrating Scripts with (X)HTML

JavaScript deals with events by using commands called event handlers. Any
action by the user on the page triggers an event handler in your script. Table
13-6 is a list of JavaScript’s event handlers.

Table 13-6 Event Handlers
Event Handler Description

onabort User cancels a page load.

onblur An element loses focus (and is no longer available through the
event handler) because the user focuses on a different ele-
ment.

onchange User changes the contents of a form element or selects a dif-
ferent check box, radio button, or menu item.

onclick User clicks an element with the mouse.

ondblclick User double-clicks an element with the mouse.

onerror Browser encounters an error in the scripts or other instruc-
tions on the page.

onfocus An element becomes the focus of the user’s attention — as
does (for example) a form field when you start typing in it.

onkeydown User presses and holds a key on the keyboard.

onkeypress User presses and immediately releases a key on the keyboard.

onkeyup User releases a depressed key.

onload Browser loads an HTML page.

onmouse-
down

User moves the mouse pointer over an element, presses the
mouse button down, and holds it down.

onmouse-
move

User moves the mouse pointer anywhere on the page.

onmouseout User moves the mouse pointer off an element.

onmou-
seover

User moves the mouse pointer over an element.

onmouseup User releases a held mouse button.

onreset User clicks a form’s Reset button.

onresize User resizes the browser window.

onselect User selects a check box, radio button, or menu item from a
form.

onsubmit User clicks a form’s Submit button.

onunload Browser stops displaying one Web page because it’s about to
load another.

20_238479 ch13.indd 24420_238479 ch13.indd 244 4/10/08 9:43:47 PM4/10/08 9:43:47 PM

245Chapter 13: The Nuts and Bolts of JavaScript

Not all objects support every event handler. For example, the onload han-
dler is supported by only the window and image objects. The onsubmit
event handler is supported by only the form object.

A common way to deal with event handlers is to use them as an attribute of
an HTML element. This is called an inline event handler. Here is an example
of the onsubmit inline event handler being used as an attribute of a <form>
tag:

<form onsubmit=”submitIt(this)” action=”submitForm.cgi”>

This example calls the submitIt function when the user clicks the form’s
Submit button. You can also embed JavaScript commands in the HTML, like
this:

<input type=”button” value=”Click Me!”
 name=”button1” onclick=”alert(“That tickles!”);” />

A third way to use event handlers is to express them in JavaScript code, like
this:

document.button1.onclick = function () { alert(“That tickles!”)}

Chapter 15 offers examples of event handlers.

Document Object Model (DOM)
JavaScript gives you the tools to manipulate the objects in a Web page. The
Document Object Model (DOM) is the specification for how all those objects
are represented. The DOM is a Web standard, defined by the World Wide
Web Consortium — the W3C, for short. (More information than you can imag-
ine about the DOM specification is available at www.w3.org/DOM.)

The DOM allows JavaScript to programmatically access and manipulate the
contents of a document. The DOM defines

 � Each object on a Web page

 � Attributes associated with those objects

 � Methods that you can use to manipulate those objects

By using the DOM, JavaScript can dynamically update the content, structure,
and style of Web pages. This means that you can use JavaScript to produce
effects in your Web pages, such as

20_238479 ch13.indd 24520_238479 ch13.indd 245 4/10/08 9:43:47 PM4/10/08 9:43:47 PM

246 Part IV: Integrating Scripts with (X)HTML

 � Rewriting your document on the fly

 � Changing styles and style sheets

 � Page layout

Other JavaScript Items of Interest
Table 13-7 lists other script- and forms-related markup attributes that you
might find in (X)HTML files.

Table 13-7 Other Script- and Forms-related (X)HTML Attributes
Name Function/Value

Equals
Value Types Related

Element(s)

declare Declares docu-
ment object with-
out invoking it

“declare” <script>

defer Allows user agent
to defer script
execution

“defer” <script>

References and Resources
This part of the book presents the basics of the JavaScript language and how
to add and adapt scripts that you find on the Web to your own HTML pages.
But the JavaScript language is more powerful than that.

If you want to start writing your own code, you need more information. The
best place to get your questions answered is online. Many resources on the
Web can help you use JavaScript. Visit the Web site associated with this book
and click the Chapter 13 link for a detailed list of Web sites and books that
can help you create and use JavaScript.

20_238479 ch13.indd 24620_238479 ch13.indd 246 4/10/08 9:43:47 PM4/10/08 9:43:47 PM

Chapter 14

Working with Forms
In This Chapter
� Using forms in your Web pages

� Creating forms

� Working with form data

� Designing easy-to-use forms

M ost of the HTML you write helps you display content and information
for your users. Sometimes, however, you want a Web page to gather

information from users instead of giving static information to them. HTML
form markup tags give you a healthy collection of elements and attributes for
creating forms to collect information from visitors to your site.

This chapter covers the many different uses for forms. It also shows you how
to use form markup tags to create just the right form for soliciting informa-
tion from your users, reviews your options for working with the data you
receive, and gives you some tips for creating easy-to-use forms that really
help your users provide the information you’re looking for.

Uses for Forms
The Web contains millions of forms, but every form is driven by the same set
of markup tags. Web forms can be short or long, simple or complex, and they
have myriad uses. But they all fall into one of two broad categories:

 � Search forms that let users search a site or the entire Web

 � Data-collection forms that provide information for such uses as online
shopping, technical support, site preferences, and personalization

Before you create any form markup, you need to determine what kind of data
your visitors will search for on your site and/or what kind of data you need to
collect from visitors. Your data drives the form elements you use — and how
you put them together on a page.

21_238479 ch14.indd 24721_238479 ch14.indd 247 4/10/08 9:44:16 PM4/10/08 9:44:16 PM

248 Part IV: Integrating Scripts with (X)HTML

Searches
Search forms help you give visitors information.

The following search forms are from the friendly folks at the Internal Revenue
Service (IRS). The difference between these search forms is the data the IRS
site needs from you for its search:

 � The IRS home page (shown in Figure 14-1) is a simple search form that
uses two different single-field forms to help visitors search for general
information and tax forms. This type of form can produce dozens of rel-
evant responses. Visitors can both

 • Choose the best option.

 • Look at more than one option.

 � A more complicated search form, such as the Refund Status page (as
shown in Figure 14-2), produces only one specific response. It searches
IRS records for the status of your refund. This page demands detailed
information because the IRS doesn’t want you to see anyone else’s
refund; therefore it both

 • Finds the data that visitors actually need.

 • Hides data that visitors shouldn’t see.

Figure 14-1:
The IRS

home page
uses two

short search
forms.

21_238479 ch14.indd 24821_238479 ch14.indd 248 4/10/08 9:44:16 PM4/10/08 9:44:16 PM

249Chapter 14: Working with Forms

Figure 14-2:
The refund-

status
search form

is a little
more com-

plex.

Searches come in all shapes and sizes, so the search forms that drive those
searches should come in all shapes and sizes, too. A short keyword search
might do the trick, or you might need a more sophisticated search method.

Data collection
Data-collection forms receive information you want to process or save. When
you create a form that collects information, the information you need is what
drives the structure and complexity of the form:

 � If you need just a little information, the form may be short and (rela-
tively) sweet.

 The Library of Congress (LC) uses a form to collect information from
teachers to subscribe to a free electronic newsletter, as shown in Figure
14-3. The LC doesn’t need much information to set up the subscription,
so the form is short and simple.

 � If you need a lot of information, your form may be several pages long.

 RateGenius uses long and detailed forms to gather the information it
needs to help customers get the best possible loan rate. The page in
Figure 14-4 is just the first of several that a visitor must fill out to pro-
vide all the necessary information.

21_238479 ch14.indd 24921_238479 ch14.indd 249 4/10/08 9:44:16 PM4/10/08 9:44:16 PM

250 Part IV: Integrating Scripts with (X)HTML

Figure 14-3:
A free sub-

scription
form col-

lects basic
information.

Figure 14-4:
An online

car-loan site
uses many

detailed
forms to

collect nec-
essary data.

21_238479 ch14.indd 25021_238479 ch14.indd 250 4/10/08 9:44:17 PM4/10/08 9:44:17 PM

251Chapter 14: Working with Forms

Creating Forms
HTML form markup tags and attributes can

 � Define the overall form structure.

 Every form has the same basic structure.

 � Tell the Web browser how to handle the form data.

 � Create input objects (such as text fields and drop-down lists).

Which input elements you use depends on the data you’re collecting.

Structure
All of the input elements associated with a single form are

 � Contained within a <form> tag

 � Processed by the same form handler

 A form handler is a program on the Web server (or a simple mailto
URL) that manages the data a user sends to you through the form. A
Web browser can only gather information through forms; it doesn’t know
what to do with the information once it has it. You must provide some
other mechanism to actually do something useful with the data you col-
lect. (This chapter covers form handlers in detail later.)

Attributes
You always use these two key attributes with the <form> tag:

 � action: The URL of the form handler.

 � method: How you want the form data to be sent to the form handler.

 Your form handler dictates which of these values to use for method:

 • get sends the form data to the form handler on the URL.

 • post sends the form data in the Hypertext Transfer Protocol
(HTTP) header.

 Webmonkey offers a good overview of the difference between get and
post in its “Good Forms” article:

http://www.webmonkey.com/99/30/index4a_page3.html

21_238479 ch14.indd 25121_238479 ch14.indd 251 4/10/08 9:44:18 PM4/10/08 9:44:18 PM

252 Part IV: Integrating Scripts with (X)HTML

Markup
The markup in Listing 14-1 creates a form that uses the post method to send
user-entered information to a form handler (guestbook.cgi) to be pro-
cessed on the Web server.

Listing 14-1: A Simple Form Processed by a Form Handler
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Forms</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
<body>
 <form action=”cgi-bin/guestbook.cgi” method=”post”>

 <!-- form input elements go here -->

 </form>
</body>
</html>

The value of the action attribute is a URL, so you can use absolute or relative
URLs to point to a form handler on your server.

Input tags
The tags you use to solicit input from your site visitors make up the bulk of
any form. HTML supports a variety of different input options — from text
fields to radio buttons and from files to images.

Every input control associates some value with a name:

 � When you create the control, you give it a name.

 � The control sends back a value based on what the user does in the form.

For example, if you create a text field that collects a user’s first name, you
might name the field firstname. When the user types his or her first name
in the field and submits the form, the value associated with firstname is
whatever name the user typed in the field.

The whole point of a form is to gather values associated with input controls,
so the way you set the name and value for each control is important. The fol-
lowing sections explain how you should work with names and values for each
of the input controls.

21_238479 ch14.indd 25221_238479 ch14.indd 252 4/10/08 9:44:18 PM4/10/08 9:44:18 PM

253Chapter 14: Working with Forms

Input fields
You can use a variety of input fields in your forms.

For input elements that require a user to select an option (such as a check box
or radio button) rather than typing something into a field, you define both the
name and the value. When the user selects a box or a button and then clicks the
Submit button, the form returns the name and value assigned to the element.

Text
Text fields are single-line fields that users can type information into.

 � To define the input field as a text field, use the <input /> element with
the type attribute set to text.

<input type=”text” />

 � You use the name attribute to give the input field a name.

<input type=”text” name=”firstname” />

 � The user supplies the value when he or she types in the field.

This markup creates two text input fields — one for a first name and one for a
last name:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
 <p>First Name: <input type=”text” name=”firstname” /></p>
 <p>Last Name: <input type=”text” name=”lastname” /></p>
</form>

In addition to the <input /> elements, the preceding markup includes para-
graph (<p>) elements and some text to label each of the fields. By themselves,
most form elements don’t give the user many clues about the type of informa-
tion you want them to enter. You also must use HTML block and inline ele-
ments to format the appearance of your form. Figure 14-5 shows how a
browser displays this HTML.

Figure 14-5:
Text-entry
fields in a

form.

21_238479 ch14.indd 25321_238479 ch14.indd 253 4/10/08 9:44:18 PM4/10/08 9:44:18 PM

254 Part IV: Integrating Scripts with (X)HTML

You can control the size of a text field with these attributes:

 � size: The length (in characters) of the text field

 � maxlength: The maximum number of characters the user can type into
the field

The following markup creates a form that sets both fields to a size of 30 and
a maxlength of 25. Each field will be about 30 characters long; even so, a
user can type only 25 characters into each field, as shown in Figure 14-6.

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30”
 maxlength=”25” /></p>
</form>

Figure 14-6:
You can

specify the
length and
maximum
number of

characters
for a text

field.

Passwords
A password field is a text field that doesn’t display what the user types.
Someone looking over the user’s shoulder sees each keystroke represented
on the screen by a placeholder character, such as an asterisk or bullet.

You create a password field by using the <input /> element with the type
attribute set to password, as follows:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>
</form>

Password fields are programmed like text fields.

21_238479 ch14.indd 25421_238479 ch14.indd 254 4/10/08 9:44:18 PM4/10/08 9:44:18 PM

255Chapter 14: Working with Forms

Figure 14-7 shows how a browser replaces what you type with bullets. (Some
browsers may replace the text with asterisks or some other character. It
depends on the browser’s default settings.)

Figure 14-7:
Password

fields mask
the text a

user enters.

Check boxes and radio buttons
If only a few possible values are available to the user, you can give him or her
a collection of options to choose from:

 � Check boxes: Choose more than one option.

 � Radio buttons: Choose only one option.

If many choices are available, use a drop-down list instead of radio buttons or
check boxes.

To create radio buttons and check boxes, you

 � Use the <input /> element with the type attribute set to radio or
checkbox.

 • If the attribute value is radio, a round radio button appears.

 • If it’s checkbox, a check box appears.

 Radio buttons differ from check boxes in an important way: Users can
select a single radio button from a set of options but can select any
number of check boxes (including none, one, or more than one).

 � Create each option with these attributes:

 • The name attribute to give the option a name.

 • The value attribute to specify what value is returned if the user
selects the option.

21_238479 ch14.indd 25521_238479 ch14.indd 255 4/10/08 9:44:18 PM4/10/08 9:44:18 PM

256 Part IV: Integrating Scripts with (X)HTML

You can use the checked attribute (with a value of checked) to specify
that an option should be already selected when the browser displays
the form. This is a good way to specify a default selection in a list.

This markup shows how to format check-box and radio-button options:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What are some of your favorite foods?</p>
<p><input type=”checkbox” name=”food” value=”pizza” checked=”checked” />
 Pizza

 <input type=”checkbox” name=”food” value=”icecream” />Ice Cream

 <input type=”checkbox” name=”food” value=”eggsham” />Green Eggs and Ham

</p>

<p>What is your gender?</p>
<p><input type=”radio” name=”gender” value=”male” />Male

 <input type=”radio” name=”gender” value=”female” checked=”checked” />
 Female</p>
</form>

In the preceding code, each set of options uses the same name for each input
control but gives a different value to each option. You give each item in a set
of options the same name to let the browser know they’re part of a set. Figure
14-8 shows how a browser displays this markup, where we’ve also checked
the box for “ice cream” and left the default check next to “pizza” as-is. If you
want to, in fact, you can check as many boxes as you by default in the page
markup, simply by included checked=”checked” in each <input … /> ele-
ment you choose to check in advance.

Figure 14-8:
Check

boxes and
radio but-

tons.

21_238479 ch14.indd 25621_238479 ch14.indd 256 4/10/08 9:44:19 PM4/10/08 9:44:19 PM

257Chapter 14: Working with Forms

Hidden fields
A hidden field gives you a way to collect name and value information that the
user can’t see along with the rest of the form data. Hidden fields are useful
for keeping track of information associated with the form (such as its version
or name).

If your Internet service provider (ISP) provides a generic application for a
guest book or feedback form, you might have to put your name and e-mail
address in the form’s hidden fields so the data goes specifically to you.

To create a hidden field, you

 � Use the <input /> element with its type attribute set to hidden.

 � Supply the name and value pair you want to send to the form handler.

Here’s an example of markup for a hidden field:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<input type=”hidden” name=”e-mail” value=”me@mysite.com” />
<p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>
</form>

As a general rule, using your e-mail address in a hidden field is just asking for
your address to be picked up by spammers. If your ISP says that this is how
you should do your feedback form, ask them if they have any suggestions for
how you can minimize the damage. Surfers to your page can’t see your e-mail
address, but spammers’ spiders can read the underlying tags. At a minimum,
you would hope that your ISP supports one of the many JavaScript encryption
tools available to obscure e-mail addresses from harvesters.

File uploads
A form can receive documents and other files, such as images, from users.
When the user submits the form, the browser grabs a copy of the file and
sends it with the other form data. To create this file-upload field,

 � Use the <input /> element with the type attribute set to file.

 The file itself is the form field value.

 � Use the name attribute to give the control a name.

Here’s an example of markup for a file-upload field:

21_238479 ch14.indd 25721_238479 ch14.indd 257 4/10/08 9:44:19 PM4/10/08 9:44:19 PM

258 Part IV: Integrating Scripts with (X)HTML

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>Please submit your resume in Microsoft Word or plain text format:

 <input type=”file” name=”resume” />
</p>
</form>

Browsers render a file-upload field with a browse button that allows a user to
surf his or her local hard drive and select a file to send to you, as in
Figure 14-9.

Figure 14-9:
A file-

upload field.

When you accept users’ files through a form, you can receive files that are
either huge or are infected by viruses. Consult with whoever is programming
your form handler to discuss options for protecting the system where files are
saved. Several barriers can help minimize your risks, including

 � Virus-scanning software

 � Restrictions on file size

 � Restrictions on file type

Drop-down lists
Drop-down lists are a great way to give users lots of options in a little screen
space. You use two different tags to create a drop-down list:

21_238479 ch14.indd 25821_238479 ch14.indd 258 4/10/08 9:44:19 PM4/10/08 9:44:19 PM

259Chapter 14: Working with Forms

 � <select> holds the list.

 Use a name attribute with the <select> element to name the entire list.

 � A collection of <option> elements identifies the list options.

 The value attribute assigns a unique value for each <option> element.

Here’s an example of markup for a drop-down list:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What is your favorite food?</p>
<select name=”food”>
 <option value=”pizza”>Pizza</option>
 <option value=”icecream”>Ice Cream</option>
 <option value=”eggsham”>Green Eggs and Ham</option>
</select>
</form>

The browser turns this markup into a drop-down list with three items, as
shown in Figure 14-10.

Figure 14-10:
A drop-

down list.

You can enable users to select more than one item from a drop-down list by
changing the default settings of your list:

 � If you want your user to be able to choose more than one option (by
holding down the Alt [Windows] or Ô [Mac] key while clicking options
in the list), add the multiple attribute to the <select> tag. The value
of multiple is multiple.

 Because of XHTML rules, standalone attributes cannot stand alone;
therefore, the value is the same as the name of the attribute.

21_238479 ch14.indd 25921_238479 ch14.indd 259 4/10/08 9:44:20 PM4/10/08 9:44:20 PM

260 Part IV: Integrating Scripts with (X)HTML

 � By default, the browser displays only one option until the user clicks
the drop-down menu’s arrow to display the rest of the list. Use the size
attribute with the <select> tag to specify how many options to show.

 If you specify fewer than the total number of options, the browser
includes a scroll bar with the drop-down list.

You can specify that one of the options in the drop-down list be already
selected when the browser loads the page, just as you can specify a check
box or radio button to be checked. Simply add the selected attribute to
have a value of selected for the <option> tag you want as the default.

The following markup

 � Allows the user to choose more than one option from the list

 � Displays two options

 � Selects the third option in the list by default

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>What are some of your favorite foods?</p>
<select name=”food” size=”2” multiple=”multiple”>
 <option value=”pizza”>Pizza</option>
 <option value=”icecream”>Ice Cream</option>
 <option value=”eggsham” selected=”selected”>Green Eggs and Ham</option>
</select>
</form>

Figure 14-11 shows how adding these attributes modifies the appearance of
the list in a browser.

Figure 14-11:
A drop-

down list
with modifi-

cations.

21_238479 ch14.indd 26021_238479 ch14.indd 260 4/10/08 9:44:20 PM4/10/08 9:44:20 PM

261Chapter 14: Working with Forms

Multi-line text boxes
If a single-line text field isn’t enough room for responses, create a text box
instead of a text field:

 � The <textarea> element defines the box and its parameters.

 � The rows attribute specifies the height of the box in rows based on the
font in the text box.

 � The cols attribute specifies the width of the box in columns based on
the font in the text box.

The text that the user types into the box provides the value, so you need only
give the box a name with the name attribute:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
 <textarea rows=”10” cols=”40” name=”comments”>
 Please include any comments here.
 </textarea>
</form>

Any text you include between the <textarea> and </textarea> tags
appears in the text box in the browser, as shown in Figure 14-12. The user
then enters information in the text box and overrides your text.

Figure 14-12:
A text box.

Submit and reset
Submit and Reset buttons help the user tell the browser what to do with the
form. You can create buttons to either submit or reset your form, using the
<input /> element with the following type and value attributes:

21_238479 ch14.indd 26121_238479 ch14.indd 261 4/10/08 9:44:20 PM4/10/08 9:44:20 PM

262 Part IV: Integrating Scripts with (X)HTML

 � Submit

 Visitors have to tell a browser when they’re done with a form and want
to send the contents. You create a button to submit the form to you by
using this markup:

<input type=”submit” value=”Submit” />

 You don’t use the name attribute for the Submit and Reset buttons. You
use the value attribute instead to specify how the browser labels the
buttons for display.

 � Reset

 Visitors need to clear the form if they want to start all over again or
decide not to fill it out. You create a button to reset, or clear, the form
by using the following markup:

<input type=”reset” value=”Clear” />

You can set the value to anything you want to appear on the button. In our
example, we set ours to Clear. (You can use something that’s more appropri-
ate to you if you’d like.)

Here’s an example of markup to create Submit and Reset buttons named Send
and Clear, respectively:

<form action=”cgi-bin/guestbook.cgi” action=”post”>
<p>First Name: <input type=”text” name=”firstname” size=”30”
 maxlength=”25” /></p>
<p>Last Name: <input type=”text” name=”lastname” size=”30” maxlength=”25” /></p>
<p>Password: <input type=”password” name=”psswd” size=”30” maxlength=”25” /></p>

<p>What are some of your favorite foods?</p>
<p><input type=”checkbox” name=”food” value=”pizza” checked=”checked” />
 Pizza

 <input type=”checkbox” name=”food” value=”icecream” />Ice Cream

 <input type=”checkbox” name=”food” value=”eggsham” />Green Eggs and Ham

</p>

<p>What is your gender?</p>
<p><input type=”radio” name=”gender” value=”male” />Male

 <input type=”radio” name=”gender” value=”female” checked=”checked” />
 Female</p>

<p>
 <input type=”submit” value=”Send” />
 <input type=”reset” value=”Clear” />
</p>
</form>

Figure 14-13 shows how a browser renders these buttons in a form.

21_238479 ch14.indd 26221_238479 ch14.indd 262 4/10/08 9:44:20 PM4/10/08 9:44:20 PM

263Chapter 14: Working with Forms

Figure 14-13:
Submit and

reset but-
tons labeled
as Send and

Clear.

Customizing
If you don’t like the Submit and Reset buttons that a browser creates, you
can substitute your own graphical buttons by using

 � The <input /> element with a type of image.

 � An src attribute that specifies the image’s location.

 � A value that defines the result of the field:

 • For an image that submits the form, set value to submit.

 • For an image that clears the form, set value to reset.

Use the alt attribute to provide alternative text for browsers that don’t show
images (or for users who can’t see them).

The following markup creates customized Submit and Reset buttons:

<p><input type=”image” value=”submit” src=”submit_button.gif” alt=”Submit” />
 <input type=”image” value=”reset” src=”reset_button.gif” alt=”Clear” />
</p>

21_238479 ch14.indd 26321_238479 ch14.indd 263 4/10/08 9:44:20 PM4/10/08 9:44:20 PM

264 Part IV: Integrating Scripts with (X)HTML

Validation
No matter how brilliant your site’s visitors may be, there’s always a chance
that they’ll enter data you aren’t expecting. JavaScript to the rescue!

Form validation is the term for checking the data the user enters before it’s
put into your database. Check the data with both JavaScript and Common
Gateway Interface (CGI) scripts on your server.

JavaScript
You can validate entries in JavaScript before data goes to the server. This
means that visitors don’t wait for your server to check the data — they’re
told quickly (before they click Submit, if you want) if there’s a problem.

If you want to use JavaScript in your forms and on your Web site, you can
learn more about it in Chapters 12 and 13 of this book, or online at:

 � www.w3schools.com/js/default.asp

 � www.quirksmode.org/js/forms.html

 � http://www.webmonkey.com/programming/javascript/

CGI
You need to validate your form data on the server side because users can
surf with JavaScript turned off. (They’ll have a slower validation process.)
Find out more about CGI in the next section and at

 � www.4guysfromrolla.com/webtech/LearnMore/Validation.asp

 � www.cgi101.com/book

Processing Data
Getting form data is really only half the form battle. You create form elements
to get data from users, but then you have to do something with that data. Of
course, your form and your data are unique every time, so no single, generic
form handler can manage the data for every form. Before you can find (or
write) a program that handles your form data, you must know what you want
to do with it. For example . . .

21_238479 ch14.indd 26421_238479 ch14.indd 264 4/10/08 9:44:21 PM4/10/08 9:44:21 PM

265Chapter 14: Working with Forms

 � If you just want to receive comments from a Web form by e-mail, you
might need only a simple mailto: URL.

 � If a form gathers information from users to display in a guest book, you

 • Add the data to a text file or a small database that holds the
entries.

 • Create a Web page that displays the guest-book entries.

 � If you need a shopping cart, you need programs and a database that can
handle inventory, customer-order information, shipping data, and cost
calculations.

Your Web-hosting provider — whether it’s an internal IT group or an ISP to
which you pay a monthly fee — has the final say in what kind of applications
you can use on your Web site to handle form data. If you want to use forms on
your site, be sure that your hosting provider supports the applications you
need to run on the server to process form input data (which will normally use
the post or get methods we discuss earlier in this chapter). Chapter 3
includes more information on finding the right ISP to host your pages.

Using CGI scripts and other programs
Typically, form data is processed in some way or another by a Common
Gateway Interface (CGI) script written in some programming language such
as Perl, Java, AppleScript, or one of many other languages that run on Web
servers. These scripts make the data from your form useful by

 � Putting it into a database

 � Creating customized HTML based on it

 � Writing it to a flat file — computer-geek speak for a plain, unadorned text
file, or one that uses commas or tab characters on individual lines of
text to separate field values, aka CSV for “comma-separated values” or
TSV for “tab-separated values.

If you aren’t familiar with CGI scripts and how they work, the “CGI Scripts for
Fun and Profit” article on Webmonkey provides an excellent overview:

http://www.webmonkey.com/99/26/index4a.html

21_238479 ch14.indd 26521_238479 ch14.indd 265 4/10/08 9:44:21 PM4/10/08 9:44:21 PM

266 Part IV: Integrating Scripts with (X)HTML

You don’t have to be a programmer to make the most of forms. Many ISPs
support (and provide) scripts for processing common forms such as guest
books, comment forms, and even shopping carts. Your ISP may give you

 � All the information you need to get the program up and running

 � HTML to include in your pages

You can tweak the markup that manages how the form appears in the canned
HTML you get from an ISP, but don’t change the form itself — especially the
form tag names and values. The Web-server program uses these to make the
entire process work.

Several online script repositories provide free scripts that you can download
and use along with your forms. Many of these also come with some generic
HTML you can dress up and tweak to fit your Web site. You simply drop
the program that processes the form into the folder on your site that holds
programs (usually called cgi-bin), add the HTML to your page, and you’re
good to go. Some choice places on the Web to find scripts you can download
and put to work immediately are

 � Matt’s Script archive: www.scriptarchive.com/nms.html

 � The CGI Resource Index: http://cgi.resourceindex.com

 � ScriptSearch: www.scriptsearch.com

If you want to use programs that aren’t provided by your ISP on your Web site,
you need complete access to your site’s cgi-bin folder. Every ISP’s setup is dif-
ferent, so read your documentation to find

 � Whether your ISP allows you to use CGI scripts in your Web pages

 � Languages the ISP supports (Perl is a safe bet, but it’s safer to be sure.)

Sending data by e-mail
You can opt to receive your form data from e-mail instead of using a script or
other utility to process a form’s data. You get just a collection of name-and-
value pairs tucked into a text file sent to your e-mail address, but that isn’t
necessarily a bad thing. You can include a short contact form on your Web
site that asks people to send you feedback (a feature that always looks pro-
fessional); then you can simply include, in the action URL, the e-mail address
you want the data sent to:

21_238479 ch14.indd 26621_238479 ch14.indd 266 4/10/08 9:44:21 PM4/10/08 9:44:21 PM

267Chapter 14: Working with Forms

<form action=”mailto:me@mysite.com” action=”post”>

Many spam companies get e-mail addresses by trolling Web sites looking for
mailto URLs. Consider setting up a special e-mail account just for comments —
that way, your regular e-mail address won’t get pulled onto spam mailing lists.
On the other hand, you can also use JavaScript based e-mail address encryp-
tion tools that will garble and disguise the contents of such addresses — as
long as they can be un-encrypted on the receiving end, that is!

Designing User-Friendly Forms
Designing useful forms is a different undertaking from designing easy-to-use
forms. Your form may gather the data that you need, but if it’s hard for visi-
tors to use, they may abandon it before they’re done.

As you use the markup elements from this chapter, along with the other ele-
ments that drive page layout, keep the following guidelines in mind:

 � Provide textual cues for all your forms. Be clear about

 • Information you want

 • Format you need

 For example, tell users such inputting details as whether

 • Dates must be entered as mm/dd/yy (or as mm/dd/yyyy).

 • The number of characters a field can take is limited.

Characters can be limited with the maxlength attribute.

 � Use field width and character limits to provide visual clues. For exam-
ple, if users should enter a phone number as xxx-xxx-xxxx, consider cre-
ating three text fields — one for each part of the phone number.

 � Group similar fields together. A logical grouping of fields makes filling
out a form easier. It’s confusing if you ask for the visitor’s first name,
then birthday, then last name.

 � Break long forms into easy-to-manage sections. Forms in short chunks
are less intimidating and more likely to be completed.

Major online retailers (such as Amazon.com) use this method to get the
detail they need for orders without making the process too painful.

21_238479 ch14.indd 26721_238479 ch14.indd 267 4/10/08 9:44:21 PM4/10/08 9:44:21 PM

268 Part IV: Integrating Scripts with (X)HTML

 � Mark required fields clearly. If some parts of your form can’t be left
blank when users submit the form, mark those fields clearly.

You can identify required fields by

 • Making them bold

 • Using a different color

 • Placing an asterisk beside them

 � Tell users what kind of information they need for the form. If users
need any information in their hands before they fill out your form, a form
gateway page can detail everything users should have before they start
filling out the form.

 The RateGenius Apply For a Loan page (shown in Figure 14-14) lays out
clearly for visitors about to fill out a long form exactly what information
to prepare before starting.

The series of forms RateGenius uses to gather information for car loans and
loan refinancing are excellent examples of long forms that collect a variety of
different kinds of data by using all the available form markup elements. Visit
www.rategenius.com to review its form techniques.

Figure 14-14:
A form-

gateway
page helps
users pre-
pare to fill
out a long

form.

21_238479 ch14.indd 26821_238479 ch14.indd 268 4/10/08 9:44:21 PM4/10/08 9:44:21 PM

269Chapter 14: Working with Forms

Other Noteworthy Forms-Related Markup
Table 14-1 lists other forms-related (X)HTML markup attributes that you
might find in HTML files.

Table 14-1 Other Forms-Related (X)HTML Attributes
Name Function/Value

Equals
Value
Types

Related
Element(s)

Accept Lists acceptable
MIME types for
file upload

CS Media types <form>
<input />

accept-
charset

Lists character
encodings

SS Encodings <form>

Checked Preselects option
for select lists

“checked” <input />

Disabled Disables form “disabled” <button>
<input>
<opt-
group>
<option>
<select>
<tex-
tarea>

enctype Specifies encod-
ing method for
form-input data

Media type <form>

for Points to ID refer-
ence from other
attributes

Idref <label>

label Identifies a group
of options in a
form

Text <opt-
group>

label Specifies an
option name in a
form

Text <option>

method HTTP method to
use when submit-
ting a form

{“get”|”put”} <form>

multiple Permits selection
of multiple options
in a form

“multiple” <select>

21_238479 ch14.indd 26921_238479 ch14.indd 269 4/10/08 9:44:22 PM4/10/08 9:44:22 PM

270 Part IV: Integrating Scripts with (X)HTML

Name Function/Value
Equals

Value
Types

Related
Element(s)

name Names a specific
form control

CDATA <button>
<tex-
tarea>

name Names a specific
form-input field

CDATA <select>

name Names a form for
script access

CDATA <form>

readonly Blocks editing of
text fields within
a form

“readonly” <input />
<textarea

size Specifies number
of lines of text to
display for a drop-
down menu

Number <select>

tabindex Defines tabbing
order for form
fields

Number <a><area
/>
<button>
<input />
<object>
<select>
<tex-
tarea>

type Defines button
function in a form

{“button”|
”reset”|
“submit”}

<button>

type Specifies type of
input required for
form-input field

{“button”|”checkbox”|
“file”|”hidden”|
”image”|
“password”|
”radio”|“reset”|
”submit”|”text”}

<input />

value Supplies a value
to send to the
server when
clicked

CDATA <button>

value Associates values
with radio buttons
and check boxes

CDATA <input />

21_238479 ch14.indd 27021_238479 ch14.indd 270 4/10/08 9:44:22 PM4/10/08 9:44:22 PM

Chapter 15

Fun with Client-Side Scripts
In This Chapter
� Defining DHTML

� Dealing with image and text rollovers

� Adding dynamic content

� Showing pop-up windows

� Using Web cookies

If you’re the outdoor type, you can get an adrenaline rush by climbing a
mountain, mountain biking, or perhaps inventing a new sport, such as

parafishing or sewer snorkeling. If you are reading this book, chances are
you’re sitting in front of your computer trying to create a Web site. If so, we
have another idea for the ultimate Web adrenaline rush: Dynamic HTML!

Dynamic HTML, also known as DHTML, is techie talk for a useful and power-
ful set of technologies. It’s the combination of HTML, Cascading Style Sheets
(CSS), the Document Object Model (the DOM), and JavaScript. If you use
these four technologies together, you’re creating DHTML.

DHTML is like a printed document in which the DOM acts as the nouns,
JavaScript as the verbs, CSS as the adjectives, and HTML as the paper itself.
The individual parts are useful, but it’s in combination that they become
truly powerful. If you can put them all together, you can speak DHTML.

In this chapter, we explore how to use DHTML and its component technolo-
gies to bring active content to your Web pages. Specifically, we explore how
to create rollovers, add dynamic content to your page, display pop-up win-
dows, and tap in to the power of cookies.

22_238479 ch15.indd 27122_238479 ch15.indd 271 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

272 Part IV: Integrating Scripts with (X)HTML

Adding Rollovers to Your Pages
If you are new to HTML, a rollover probably sounds like a pet trick. But, in
actuality, a rollover is perhaps the most common use of DHTML on the Web.
It’s an instruction that brings your Web page to life when a mouse pointer
hovers over an image or text.

Image rollovers with JavaScript
If all JavaScript scripts went to school, the image rollover would certainly be
the BMOC, the Big Muckety-muck on Campus. It’s definitely the most popular
use for JavaScript. Without image rollovers, your image buttons look dull and
drab; visitors to your site might even assume that your buttons aren’t actu-
ally live links if those buttons don’t change in some fashion when a cursor
moves over them. With image rollovers, however, your pages let loose a dash
of adrenaline with each mouse-pointer hover.

We used the terrific (and free!) button generator at www.tomaweb.com/
buttons.asp to make these and other buttons you’ll see in this chapter —
and others to follow. You might want to try it, too!

Consider the two states of the image rollover you see in Figure 15-1:

 � The left side of Figure 15-1 shows a button in its inactive (off) state.

 � The right side of Figure 15-1 shows the same button when the cursor is
moved over it. That’s the active (on) state.

Figure 15-1:
A simple

button by
itself (left)

and with
the mouse

pointer hov-
ering (right).

Listing 15-1 shows the code for a JavaScript image rollover.

22_238479 ch15.indd 27222_238479 ch15.indd 272 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

273Chapter 15: Fun with Client-Side Scripts

Listing 15-1: JavaScript Image Rollover
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>JavaScript Image Rollover</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
 function chgImg(imgField,imgState) {
 document[imgField].src = “images/” + imgField + imgState + “.gif”
 }
 </script>
</head>
<body>
 <a href=”index.html” onmouseover=”chgImg(‘homeButton’,’On’)”
 onmouseout=”chgImg(‘homeButton’,’Off’)”>
 <img src=”images/homeButtonOff.gif” width=”65” height=”15”
 border=”0” alt=”Go Home” name=”homeButton” />
</body>
</html>

The images subdirectory holds two separate image files with identical
dimensions:

 � homeButtonOff.gif appears when the button is in the off state (when
the page loads).

 � homeButtonOn.gif appears when the button is in the on state (when
the cursor is over the button).

If you want to add JavaScript rollovers to your existing Web page, follow
these steps:

 1. Decide on an attribute name for the rollover button.

You want to give each button a unique name. For example, if you have a
button for an About page, you might call it aboutMeButton. Call a
button linked to your Home page homeButton.

 2. Create your button images in your favorite image-editing application.

 You need two identical-size images for each button.

 3. Name the On and Off button image files with the attribute.

 For example, the aboutMeButton button needs two image files:

aboutMeButtonOn.gif
aboutMeButtonOff.gif

 4. Put button image files into an images subdirectory in the directory for
the page that contains the rollovers (or in the same directory, as in
our preceding example).

22_238479 ch15.indd 27322_238479 ch15.indd 273 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

274 Part IV: Integrating Scripts with (X)HTML

 5. Add the JavaScript code in Listing 15-1 to your page.

 That’s everything between (and including) the <script> and </
script> tags. It goes inside the <head> tags at the top.

 6. Add the off versions of each image to your page.

 7. Add the name attribute to each tag on your page.

 8. Surround each tag with an <a href> tag.

 9. Add these event handlers to each <a href> tag:

 Add the following attributes to use homeButton:

onmouseover=”chgImg(‘homeButton’,’On’)”
onmouseout=”chgImg(‘homeButton’,’Off’)”

 Next, add these attributes to use aboutMeButton:

onmouseover=”chgImg(‘aboutMeButton’,’On’)”
onmouseout=”chgImg(‘aboutMeButton’,’Off’)”

With this image-rollover script, note the following behavior:

 � For dialup visitors to your Web site, this rollover script takes a moment
to download the active image file the first time the visitor hovers the
mouse pointer over the image.

 However, you can preload the active states of your images; that is, tell
JavaScript to load all the on versions of your buttons when the page ini-
tially loads. This technique enables your page to instantaneously swap
images when they’re rolled over. Listing 15-2 shows the added code to
preload the images.

 Recent versions of Microsoft Internet Explorer (5.x and newer) contain a
bug that can make preloading ineffective. Under some circumstances,
the browser ignores any images already downloaded into your local
cache — and instead requests the image anew each time a visitor moves
the mouse pointer over the rollover image. If you encounter this prob-
lem, consider a text rollover instead (discussed in the “Text rollovers
with CSS” section later in this chapter).

 � This script depends on giving buttons specific names; if you want more
flexibility, your script must handle it.

 � This script causes trouble with certain ancient browsers, particularly
Netscape versions 1 and 2 and Internet Explorer versions 1, 2, and 3.

Listing 15-2: Enhanced JavaScript Image Rollover with Preloader
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

22_238479 ch15.indd 27422_238479 ch15.indd 274 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

275Chapter 15: Fun with Client-Side Scripts

 <title>JavaScript Image Rollover</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>

 //Preloads images
 if (document.images) {
 homeButtonOn = new Image
 homeButtonOff = new Image
 homeButtonOn.src = “homeButtonOn.gif”
 homeButtonOff.src = “homeButtonOff.gif”
 }

 function chgImg(imgField,imgState) {
 document[imgField].src = imgField + imgState + “.gif”
 }
 </script>
</head>
<body>
 <a href=”index.html” onmouseover=”chgImg(‘homeButton’,’On’)”
 onmouseout=”chgImg(‘homeButton’,’Off’)”>
 <img src=”homeButtonOff.gif” width=”80” height=”30”
 border=”0” alt=”Go Home” name=”homeButton” />
</body>
</html>

Text rollovers with CSS
For years, the only option available for creating a rollover was to create
button images, then “activate” them with JavaScript (as discussed in the pre-
ceding “Image rollovers with JavaScript” section). However, now that CSS has
gained acceptance in newer browser versions, there’s an alternative way to
create rollovers without using images at all.

Text rollovers have advantages and disadvantages when compared to
JavaScript image rollovers:

 � Good news: Text is faster and more meaningful to search engines,
and it’s always easier to just add text to a page than it is to create two
images and then add them to a page, as with an image rollover. Plus, you
don’t need to worry about preloading images.

 � Bad news: Although you can control the text font, style, and border,
you can’t do all the nifty visual tricks that you can with images, such as
anti-aliasing. In addition, this method works only in reasonably current
browsers. (If your target viewing audience uses a browser released in
this century, you should be fine.)

22_238479 ch15.indd 27522_238479 ch15.indd 275 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

276 Part IV: Integrating Scripts with (X)HTML

Figure 15-2 shows a plain-Jane Web page with two rollover text links: Home
and About Me. Moving the cursor over one of the images, as shown in Figure
15-3, causes the rolled-over version of the text to display. Listing 15-3 dis-
plays the HTML and CSS required for this rollover effect.

Figure 15-2:
A page

with text
rollovers
handled

with CSS.

Figure 15-3:
Moving the
cursor over
the link text

changes
the text and
background

colors.

The page can still show up on-screen whether you’ve visited the linked page
or not. Figure 15-4 shows how the page appears after you’ve been to this
site’s home page. And although that image is grayed out, it’s still a link, so
rolling over it still produces the same effect as in Figure 15-3.

Figure 15-4:
After you’ve

been to a
page, the

link text
color shows

that the
page was

visited.

22_238479 ch15.indd 27622_238479 ch15.indd 276 4/10/08 9:45:05 PM4/10/08 9:45:05 PM

277Chapter 15: Fun with Client-Side Scripts

Listing 15-3: A Text Rollover with CSS
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>CSS Text Rollover</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 h4 {font: 18px geneva, sans-serif; margin: 0; color: #000;
 background: #FFF;}
 a {text-decoration: none;}
 div#navbar {width: 100px;}
 div#navbar a {display:block; margin: 0; padding: 0.3em;}
 div#navbar a:link {color: #008080; background-color: transparent;}
 div#navbar a:visited {color: #C0C0C0; background-color: transparent;}
 div#navbar a:hover {background: #FFFFFF; color: #008080;}
 </style>
</head>
<body>
<div id=”navbar”>
 <h4>Home</h4>
 <h4>About Me</h4>
</div>
</body>
</html>

In this example, we change the text from teal-on-white to white-on-teal when the
cursor hovers over the link; that way it’s easy for you to see what’s going on in
these screenshots. You may want your site to use a more colorful approach (or
perhaps a different color scheme). It goes gray after being visited.

Adding this type of navigation to your site couldn’t be simpler:

 1. Within the <head> tags, add the preceding code (from Listing 15-3)
inside and including the <style> and </style> tags.

 2. Add links inside individual <h4> tags.

 3. Make sure that the entire menu is inside a <div> tag with an id attri-
bute of navbar.

If you add the CSS to your site via a link to a site-wide external style sheet
(see Chapters 8 and 9 for more information on style sheets), you can add,
change, or delete menu-bar links on your site at any time, without having to
touch a single line of CSS or JavaScript. You simply add or modify your <a
href> tags. Slick, huh?

22_238479 ch15.indd 27722_238479 ch15.indd 277 4/10/08 9:45:06 PM4/10/08 9:45:06 PM

278 Part IV: Integrating Scripts with (X)HTML

Displaying Dynamic Content
on Your Page

Web pages can take advantage of JavaScript to change by themselves with-
out requiring user input or updates from a Web server. To demonstrate how
JavaScript does this, we create a simple clock that automatically updates
itself every second. We first show you how to do this using JavaScript and
HTML, and then how to do it using JavaScript and the DOM.

HTML and JavaScript
You can create a JavaScript-enabled clock by using JavaScript and an ordi-
nary HTML <input> tag. Listing 15-4 displays the code that you need to
make this happen, and Figure 15-5 displays the results on-screen.

Figure 15-5:
This page

displays
the cur-

rent time,
updated

every sec-
ond, inside a

text field.

Listing 15-4: A Simple HTML and JavaScript Clock
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>HTML Clock</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
 window.onload = theClock

 function theClock() {
 now = new Date;

 theTime = ((now.getHours() > 0 && now.getHours()

22_238479 ch15.indd 27822_238479 ch15.indd 278 4/10/08 9:45:06 PM4/10/08 9:45:06 PM

279Chapter 15: Fun with Client-Side Scripts

 < 13)) ? now.getHours() : (now.getHours() == 0)
 ? 12 : now.getHours()-12;
 theTime += (now.getMinutes() > 9) ? “:” + now.getMinutes() : “:0”
 + now.getMinutes();
 theTime += (now.getSeconds() > 9) ? “:” + now.getSeconds() : “:0”
 + now.getSeconds();
 theTime += (now.getHours() < 12) ? “ am” : “ pm”;

 document.myForm.myClock.value = theTime;
 setTimeout(“theClock()”,1000);
 }
 </script>
</head>
<body>
<form action=”#” name=”myForm”>
The current time is
<input type=”text” name=”myClock” readonly=”readonly” size=”11” />
</form>
</body>
</html>

In Listing 15-4, the clock is updated inside a form text field so that JavaScript
can write out to the page without having to reload the entire page every
second. Wherever the text field is on your page, that’s where the time
appears. The clock shows the time set on the user’s computer, not the time on
the Web server that’s serving the pages.

To add this clock to your page, just follow these steps:

 1. Copy everything from the beginning <script> tag to the ending </
script> tag in Listing 15-4.

 The complete code listings for this book are available at the Web site
associated with this book.

 2. Paste the code into the <head> section of your page.

 3. Add the <form> and <input> tags (including the name attribute on
each) on your page where you want your clock to appear.

The very first thing that JavaScript does when the Web page loads is set the
window’s onload event handler to trigger the theClock function. This is no
big deal — unless you want to run another script when the page loads.
However, this script is written in such a way that it never comes back to run
anything else, since the clock is constantly updating itself.

22_238479 ch15.indd 27922_238479 ch15.indd 279 4/10/08 9:45:06 PM4/10/08 9:45:06 PM

280 Part IV: Integrating Scripts with (X)HTML

JavaScript and DOM
When you add both JavaScript and some DOM manipulation to your page,
you can update the text of the page itself, as shown in Listing 15-5. Figure 15-6
shows a clock that updates every second, but the clock text looks just like
the other text on the line.

Figure 15-6:
This page

displays
the cur-

rent time,
updated

every
second, as
simple text.

Listing 15-5: A Slightly More Complex JavaScript and DOM Clock
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>DOM-based Clock</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript1.5”>
 window.onload = theClock

 function theClock() {
 now = new Date;

 theTime = ((now.getHours() > 0 && now.getHours() < 13)) ?
 now.getHours() : (now.getHours() == 0) ? 12 : now.getHours()-12;
 theTime += (now.getMinutes() > 9) ? “:” + now.getMinutes() : “:0”
 + now.getMinutes();
 theTime += (now.getSeconds() > 9) ? “:” + now.getSeconds() : “:0”
 + now.getSeconds();
 theTime += (now.getHours() < 12) ? “ am” : “ pm”;

 clockSpan = document.getElementById(“myClock”);
 clockSpan.replaceChild(document.createTextNode(theTime),
 clockSpan.firstChild);

 setTimeout(“theClock()”,1000);
 }

22_238479 ch15.indd 28022_238479 ch15.indd 280 4/10/08 9:45:06 PM4/10/08 9:45:06 PM

281Chapter 15: Fun with Client-Side Scripts

 </script>
</head>
<body>
The current time is ?
</body>
</html>

The script in Listing 15-5 is virtually identical to Listing 15-4, except for a
couple of different lines of JavaScript. Using the DOM, the script can grab
that text and replace it with new text every second.

 � The good news: You can style that text with CSS and make it appear just
like everything else on the page. The look is far superior to what you get
if you put the dynamic text inside an <input> tag.

 � The bad news: Older browsers don’t support the tag, so if your
visitors use legacy versions of Netscape or Microsoft browsers, consider
using the HTML and JavaScript version instead.

Other examples in this book show the initial <script> tag with the lan-
guage attribute set to javascript. This particular script specifies
javascript1.5, which tells the browser to ignore everything that’s going on
if you aren’t using a modern browser. If you come into this page with an older
browser, you won’t get an error, but you won’t get the dynamic effects, either.

To add the DOM-enabled scripted clock to your page, follow these steps:

 1. Add everything between the beginning and ending <script> tags to
the <head> section of your page.

 2. Add a tag with an id attribute of myClock anywhere on your
page.

 The clock appears!

Are you getting errors when you try to add the DOM-powered clock to your
page? Some browsers have a problem with either nothing or a space in the
 tag. Solution: As with the example shown in Listing 15-5, put some-
thing (anything) inside the tag for when it’s initially loaded. In this
case, there’s a question mark, but it won’t ever be visible to Web page visitors.

Displaying Pop-up Windows
Pop-up windows can be useful, but they’re also one of the most abused tools
on the Web. Having a way to provide some extra information to site visi-
tors without making them leave your page is useful. Unfortunately, so many
unethical people have given pop-ups (in particular, advertising pop-ups) a

22_238479 ch15.indd 28122_238479 ch15.indd 281 4/10/08 9:45:07 PM4/10/08 9:45:07 PM

282 Part IV: Integrating Scripts with (X)HTML

bad name that many Web surfers install pop-up blockers. Consequently, if
you add pop-up windows to your site, make sure that they aren’t the only
way visitors can access vital information.

Figure 15-7 shows a simple pop-up window containing the clock from Listing
15-5. This little window is a nice, floating, constantly updated clock that can
stay up even after you’ve left the calling page. Listing 15-6 shows how to
create this pop-up window, which is a new browser window with no address
bar, menu bar, scroll bars, status bar, or toolbars, as shown in Figure 15-7.

Figure 15-7:
Clicking the

link opens
a new

browser
window.

Listing 15-6: Opening a New Browser Window
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Window opener</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
 function OpenWindow (newPage) {
 window.open(newPage,”newWin”,”width=200,height=50,resizable=yes”);
 }
 </script>
</head>
<body>
<a href=”domClock.html”
 onclick=”OpenWindow(this.href);return false”>Open a new clock
</body>
</html>

22_238479 ch15.indd 28222_238479 ch15.indd 282 4/10/08 9:45:07 PM4/10/08 9:45:07 PM

283Chapter 15: Fun with Client-Side Scripts

The “Open a new clock” link, when clicked, calls a tiny JavaScript function
that opens a new window that’s 200 pixels wide, 50 pixels high, and resizable.
You also need to rename the code from Listing 15-5 to domClock.html and
save it into the same directory where Listing 15-6 lives.

Follow these steps to add this new window to your own site:

 1. Add everything from the beginning to the ending <script> tags to
the <head> of your page.

 2. In the body, figure out where you want the link to be.

 3. Add the onclick event handler attribute to the <a href> tag around
the text or image.

You can have multiple links on the same page that each open a new window,
and they can all have identical onclick handlers and call the same
JavaScript function.

The script is coded so that all the different bars — address bars, menu bars,
mini-bars, you name it — are turned off. You can change the code so the
window sizes are different (or various fields either are or aren’t displayed) by
varying the contents of the last field in the window.open function. Table 15-1
shows the valid entries for this parameter: Just put them all, separated by
commas (but not spaces), into a single string, and you get exactly the results
you want.

The default for every JavaScript Window parameter is no, so there’s no differ-
ence between setting an entry to no and just leaving it off entirely.

Table 15-1 JavaScript’s Window Parameters
Name Values

(Default in
Italics)

Description and
Value

location yes, no Should the new window display the location bar
(also known as the address bar)?

menubar yes, no Should the new window display the menu bars?
(Applies only to Windows and Unix.)

resiz-
able

yes, no Should the user be allowed to resize the new
window?

scroll-
bars

yes, no Should the user be allowed to scroll the new
window?

status yes, no Should the new window display the status bar?

toolbar yes, no Should the new window display the toolbar?

(continued)

22_238479 ch15.indd 28322_238479 ch15.indd 283 4/10/08 9:45:07 PM4/10/08 9:45:07 PM

284 Part IV: Integrating Scripts with (X)HTML

Table 15-1 (continued)
Name Values

(Default in
Italics)

Description and
Value

height Numeric The height of the new window in pixels

width Numeric The width of the new window in pixels

top Numeric The top position of the new window in pixels,
relative to the top edge of the browser window

left Numeric The left position of the new window in pixels,
relative to the left edge of the browser window

Working with Cookies
Every time we start talking about cookies, we are tempted to grab a glass of
milk and get ready for dipping. But then we remind ourselves that Web cook-
ies, as useful as they can be, actually taste pretty bland. (We imagine they’d
taste far more like chicken than the famous Toll House recipe.) Although they
may not be tasty, you might find cookies to be helpful as you create your
Web site.

A cookie lets you store information on visitors’ computers that you can
revisit later. Cookies offer a powerful way to maintain “state” within your
Web pages.

The code in Listing 15-7 reads and writes two cookies when a visitor loads
the page:

 � pageHit contains a count of the number of times the visitor has loaded
the page.

 � pageVisit contains the last date and time the visitor visited.

Figure 15-8 shows how the page appears on the initial visit, and Figure 15-9
shows how it looks on subsequent visits.

22_238479 ch15.indd 28422_238479 ch15.indd 284 4/10/08 9:45:07 PM4/10/08 9:45:07 PM

285Chapter 15: Fun with Client-Side Scripts

Figure 15-8:
This cookie

knows
you’ve

never been
to this page

before.

Figure 15-9:
These cook-

ies know
not only that
you’ve been
here before,

but when.

Listing 15-7: Cookie-Handling Script
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Cookie Demo</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <script type=”text/javascript” language=”javascript”>
 now = new Date
 expireDate = new Date
 expireDate.setMonth(expireDate.getMonth()+6)

 hitCt = parseInt(cookieVal(“pageHit”))
 hitCt++
 lastVisit = cookieVal(“pageVisit”)
 if (lastVisit == 0) {
 lastVisit = “”
 }

 document.cookie = “pageHit=”+hitCt+”;expires=” + expireDate.toGMTString()
 document.cookie = “pageVisit=”+now+”;expires=” + expireDate.toGMTString()

(continued)

22_238479 ch15.indd 28522_238479 ch15.indd 285 4/10/08 9:45:07 PM4/10/08 9:45:07 PM

286 Part IV: Integrating Scripts with (X)HTML

Listing 15-7 (continued)

 function cookieVal(cookieName) {
 thisCookie = document.cookie.split(“; “)
 for (i=0; i<thisCookie.length; i++) {
 if (cookieName == thisCookie[i].split(“=”)[0]) {
 return thisCookie[i].split(“=”)[1]
 }
 }
 return 0
 }
 </script>
</head>
<body>
<h2>
 <script type=”text/javascript” language=”javascript”>
 document.write(“You have visited this page “ + hitCt + “ times.”)
 if (lastVisit != “”) {
 document.write(“
Your last visit was “ + lastVisit)
 }
 </script>
</h2>
</body>
</html>

Unlike preceding examples, Listing 15-7 has a <script> section in both the
head and the body:

 � Cookies are read and written in the header script when the page loads.

 � The body script dynamically writes out the contents of the page itself.

Follow these steps to add the cookie-handling script to your page:

 1. Copy both <script> sections and put them into the appropriate parts
of your page.

 2. Change the <body> section to contain the text that you want the page
to display.

 The lines inside the document.write() statements write the text out
to the document on the fly.

A cookie has an expiration date, after which it’s no longer available. This
example creates cookies that expire in six months. If you want your cookies to
live longer (or not so long), adjust the JavaScript code near the top that sets a
value for expireDate. Thus, the following example increases the current
expiration date by six months:

expireDate.setMonth(expireDate.getMonth()+6)

22_238479 ch15.indd 28622_238479 ch15.indd 286 4/10/08 9:45:08 PM4/10/08 9:45:08 PM

287Chapter 15: Fun with Client-Side Scripts

Using the XHTML Object Element
You can use the (X)HTML <object> element to embed content inside a Web
page. It provides a general mechanism to embed content of all kinds, from
another text file to numerous types of active content, such as programs writ-
ten in languages other than JavaScript and multimedia (Flash animations, for
example). This is advanced stuff for Web-page builders, so we list only object-
related (X)HTML attributes in Table 15-2 and then conclude with pointers to
details on using this element.

If you want to use programming languages (such as Perl, Python, Java, and so
forth) or various types of multimedia in your Web pages, you should cozy up
to the <object> element.

Table 15-2 Object-related (X)HTML Attributes
Name Function/Value Equals Value Types Related

Element(s)

archive Identifies location
(URI) for archive file

URI <object>

classid Identifies object imple-
mentation URI

URI <object>

codebase Identifies base URI for
classid, data,
and archive

URI <object>

codetype Identifies content type
for code

Media type <object>

data Identifies object data
by location

URI <object>

standby Specifies message
that appears on-
screen while object is
loading

Text <object>

type Identifies content type
for object data

Media type <object>

The following resources address the (X)HTML <object> tag nicely:

22_238479 ch15.indd 28722_238479 ch15.indd 287 4/10/08 9:45:08 PM4/10/08 9:45:08 PM

288 Part IV: Integrating Scripts with (X)HTML

 � W3Schools offers (X)HTML tag information online; <object> coverage
includes links to a complete tag list at www.w3schools.com/tags/
tag_object.asp.

 � Juicy Studio offers a detailed discussion of the <object> element at
www http://juicystudio.com/article/object-paranoia.php.

 � In the HTML 4 Recommendation, the W3C includes “Objects, Images,
and Applets” at www.w3.org/TR/REC-html40/struct/objects.
html.

22_238479 ch15.indd 28822_238479 ch15.indd 288 4/10/08 9:45:08 PM4/10/08 9:45:08 PM

Part V
(X)HTML Projects

23_238479 pp05.indd 28923_238479 pp05.indd 289 4/11/08 12:16:23 AM4/11/08 12:16:23 AM

In this part . . .

In this part of the book, you can explore, understand,
and see some typical Web page projects, including all

the markup and underlying scripts, graphics, and other
materials that go into their makeup. They’re ready-to-use
examples that you can edit or customize for your own
needs and circumstances; these projects are designed to
function as templates of a sort that you can adapt and use
as your own Web pages.

Here, you find typical implementations of a personal
Web page, an eBay auction page, a basic company Web
site, and a product catalog page that incorporates an
honest-to-gosh shopping cart application. This is where
everything from Parts II, III, and IV is put to work in useful,
snazzy Web pages you can tailor for your own purposes.

23_238479 pp05.indd 29023_238479 pp05.indd 290 4/11/08 12:16:24 AM4/11/08 12:16:24 AM

Chapter 16

The About Me Page
In This Chapter
� Deciding what your page needs to contain

� Analyzing your audience

� Building the page

� Using templates

It’s time to build your very own page, one that tells the world who you are
and what you’re like.

You get only one chance to make a good first impression, and your About Me
Page is how people all over the world can get to know who you are. So put
your best foot forward and make your home page reflect exactly the kind of
image you want to project.

Overview and Design Considerations
Every Web site should start with a plan of its goals and intended audience,
and a simple home page is no exception. Think about

 � Who will visit the site

 � What you want them to get out of it

 � How often you want to update the site

 � Content to include

24_238479 ch16.indd 29124_238479 ch16.indd 291 4/10/08 9:46:35 PM4/10/08 9:46:35 PM

292 Part V: (X)HTML Projects

Audience analysis
Your site will be your public face to the world, so analyze who you think will
be visiting — and what you want them to get out of a visit. For instance, a site
that amuses and entertains your friends might be exactly what you don’t want
a prospective employer to see!

Even if you don’t give people the URL of your site, they’re still likely to find it
through search engines. Googling—searching the Web, particularly via Google.
com, for information about—prospective employees and dates is more
common than not. Do you really want your parents and siblings, or your co-
workers, to read all the details about what you did last weekend?

Component elements
At its simplest, any Web page consists of nothing but a single HTML text file.
If you’re a great designer, that’s sufficient. Chances are, though, that you’ll
want to add an image or two to give the site some visual interest. The two
examples of home pages in this chapter each use three files: the home page
and two images.

Page Markup
After you have a template for a Web page (see the “HTML, XHTML and CSS For
Dummies” sidebar), just fill in the blanks. Include your content in new head-
ings (<h2> tags in the following examples) and new paragraphs (with their
corresponding <p> tags).

Your home page
Listing 16-1 is the HTML code for a typical home page. Figure 16-1 shows how
it looks when displayed in a browser.

Listing 16-1: A Home Page
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My Home Page</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
</head>
<body>

24_238479 ch16.indd 29224_238479 ch16.indd 292 4/10/08 9:46:35 PM4/10/08 9:46:35 PM

293Chapter 16: The About Me Page

 <h1><img src=”gregory-bbnt.jpg” alt=”Gregory in the bluebonnets” width=”180”
 height=”240” align=”middle” hspace=”10” />Welcome to my home page!</h1>
 <h2>About me:</h2>
 <p>My name is Gregory. I’m a Montessori school student, and I’m interested
 in movies, music, bouncing, and sports. I love bacon and other kinds of
 meat, eat bread and fried polenta, and hate green vegetables.</p>
 <h2>Sites I like:</h2>
 <p>I’m a major Disney movie fan, so the

 Disney Movie List remains a source of constant inspiration</p>
 <p>My enduring favorite is the Disney Pixar movie <i>Cars</i>, so the
 Number #1 CARS movie fansite
 totally rocks.</p>
 <h2>Send me email:
 <img src=”email.jpg” alt=”email image” width=”48” height=”66”
 align=”middle” border=”0” /></h2>
</body></html>

This page is about as simple as it gets: There’s no style information, no
JavaScript, only two images, and not a lot of text. But it’s enough to give you
an idea of what kind of person put up the site and what he’s like.

Figure 16-1:
A simple

home page.

24_238479 ch16.indd 29324_238479 ch16.indd 293 4/10/08 9:46:35 PM4/10/08 9:46:35 PM

294 Part V: (X)HTML Projects

This page contains two small graphics:

 � gregory-bbnt.jpg is a favorite photo that shows the site subject in a
field of Texas bluebonnets.

 � email.jpg is a button that visitors can click. When a visitor clicks it,
his or her e-mail client pops open in a window with a preaddressed
e-mail.

It isn’t hard to go from a super-simple site to a site that’s considerably more
attractive without getting horribly complex. Listing 16-2 and Figure 16-2 show
a site with a lot more style and only a little more complexity.

Listing 16-2: Another Home Page
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My Home Page</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 body {color: #000; background-color: #9C6;}
 h1 {font: 48px “monotype corsiva”, fantasy;}
 h2 {margin-top: 20px; font: 20px “trebuchet ms”, verdana,
 arial, helvetica, geneva, sans-serif;}
 p {margin-left: 20px; font: 14px/16px verdana, geneva, arial,
 helvetica, sans-serif}
 </style>
</head>
<body>
 <h1><img src=”gregory-bbnt.jpg” alt=”Gregory amidst bluebonnets” width=”180”

height=”240”
 align=”middle” hspace=”10” />Welcome to my home page!</h1>
 <h2>About me:</h2>
 <p>My name is Gregory. I’m a Montessori school student, and I’m interested
 in movies, music, bouncing, and sports. I love bacon and other kinds of
 meat, eat bread and fried polenta, and hate green vegetables.</p>
 <h2>Sites I like:</h2>
 <p>I’m a major Disney movie fan, so the

 Disney Movie List remains a source of constant inspiration</p>
 <p>My enduring favorite is the Disney Pixar movie <i>Cars</i>, so the
 Number #1 CARS movie fansite
 totally rocks.</p>
 <h2>Send me email:
 <img src=”email.jpg” alt=”email image” width=”48” height=”66”
 align=”middle” border=”0” /></h2>
</body>
</html>

24_238479 ch16.indd 29424_238479 ch16.indd 294 4/10/08 9:46:35 PM4/10/08 9:46:35 PM

295Chapter 16: The About Me Page

Text and tags within the <body> element are about the same as inside the
first example, but the result is different because of the style rules in the
<head>.

Figure 16-2:
Our less-

simple-and-
more-stylish
home page.

The style rules set a background color for the page and specify the fonts to
be used. Although the two pages share identical content, the latter page gives
a stronger impression of its maker’s personality.

Looking good
Adding cool fonts and bright colors to your page is a good way to add visual
interest — but it makes your site look tacky if it’s overdone.

Follow these tips for a colorful, professional-looking page:

24_238479 ch16.indd 29524_238479 ch16.indd 295 4/10/08 9:46:35 PM4/10/08 9:46:35 PM

296 Part V: (X)HTML Projects

 � Pick a graphic and use its colors elsewhere on the page.

The green at the back of the photo harmonizes nicely with the green
background:

 • The background color in the photo blends with the background
color for the page (if you use transparent gifs and pick the same
background color, it will blend in seamlessly).

 • The color of the background also provides the color for the e-mail
icon (we built it at www.tomaweb.com, using their free button gif
builder).

 � Check your page on other computers to make sure your colors really
look the way you want them to look.

 Colors often appear differently on different monitors, and not everyone’s
monitor is set up correctly.

 � Be selective when choosing fonts and font colors.

 • A font on your computer might not be on other computers.

 Provide alternate fonts as a backup in your style rules.

 • Don’t use too many different fonts on one page or it’ll end up look-
ing like a ransom note.

 • Use font colors that contrast with your background so people can
read what you’ve written.

Listing 16-3 is a bare-bones template with comments that tell you where to
add your own content. Start with this, and where you end up is limited only
by your imagination and creativity.

24_238479 ch16.indd 29624_238479 ch16.indd 296 4/10/08 9:46:36 PM4/10/08 9:46:36 PM

297Chapter 16: The About Me Page

Listing 16-3: A Home Page Template
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>My Home Page</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 body {color: #000000; background-color: #FFFFFF;}

 /* Add additional style rules here */

 </style>
</head>
<body>
 <h1>Welcome to my home page!</h1>

 <h2>About me:</h2>
 <!-- Add something here about you and your interests -->

 <h2>Sites I like:</h2>
 <!-- Add links here to sites that you like to visit -->

 <h2>Send me email!</h2>
</body>
</html>

24_238479 ch16.indd 29724_238479 ch16.indd 297 4/10/08 9:46:36 PM4/10/08 9:46:36 PM

298 Part V: (X)HTML Projects

Using HTML, XHTML and CSS For Dummies
page templates

Part V of this book (Chapters 16–19) contains
page templates designed specifically so you
can easily copy and modify them to suit your
tastes. You can either

 � Type them in yourself

 � Download them from the Web site associ-
ated with this book.

If you’re looking for more templates, you can
find great ones for copying, pasting, and adding
your content in most WYSIWYG HTML editors.
Chapter 22 covers these editors. You can also
find a more advanced About Me page that

Ed Tittel built for his recently reworked Web
site, that includes a custom graphic header, a
more professional look and content, with links
to a résumé, detailed professional bio, and
a list of publications — entirely suitable for a
professional first impression (a very best foot
forward)! Visit it online at www.edtittel.
com (where you can use View Source in your
browser to see the HTML used therein). A dif-
ferent version of that page is depicted below,
which we constructed specifically for this
book. (Want to peek at the page’s source code?
Again, You’ll find it at the Web site associated
with this book.

24_238479 ch16.indd 29824_238479 ch16.indd 298 4/10/08 9:46:36 PM4/10/08 9:46:36 PM

Chapter 17

The eBay Auction Page
In This Chapter
� Designing an online auction page

� Better ways to sell your auction items

� Template markup

Whether you’re trying to buy or sell a car, a rare CD, or a bologna
sandwich that bears an uncanny likeness to Calvin Coolidge, eBay is

the 21st century’s answer to a street market. In fact, with more than 100 mil-
lion active participants, eBay is sometimes called “the world’s garage sale.”
However, if these staggering numbers leave you starry-eyed over anticipated
profits, be careful: With millions of items for sale, it’s easy for your “Coolidge-
lookalike bologna sandwich” to get lost in such a huge and teeming crowd.

Given this reality, the more attractively your auction item is presented and
the better the description is written, the greater the chances your item will
sell — and at a higher price.

In this chapter, we show you how to use HTML and CSS effectively to make
your eBay auction look wicked cool. You’ll discover how to

 � Highlight parts of your description.

 � Add pictures.

Although eBay is the biggest auction site online, you can use HTML in item
descriptions on most other online auction sites as well, including Yahoo!
Auctions, uBid, and others.

25_238479 ch17.indd 29925_238479 ch17.indd 299 4/10/08 9:47:21 PM4/10/08 9:47:21 PM

300 Part V: (X)HTML Projects

Designing Your Auction Page
Online auction sites let you include a few specific elements in your auction
item page, such as

 � Title (and sometimes a subtitle)

 � Description

This chapter focuses on the item description because that’s where
HTML markup can enhance the look of the description and add pictures.

 � Pictures

Figure 17-1 shows an example of an auction description from eBay that uses
HTML to add style and an embedded picture.

Auction sites typically allow you to use a series of online forms to list items
for sale. If you want to use HTML and CSS in your item description, you
include that markup in the text field that the auction site gives you for the
description, as shown in Figure 17-2.

Figure 17-1:
This auction
description
uses HTML
to style the

text and
add a left-

justified
picture.

25_238479 ch17.indd 30025_238479 ch17.indd 300 4/10/08 9:47:21 PM4/10/08 9:47:21 PM

301Chapter 17: The eBay Auction Page

Figure 17-2:
Entering
HTML in

the online
description

form field at
eBay.

eBay allows you to use HTML for style only in the item description; you can’t
use it in the title or subtitle lines.

Because the auction site itself creates much of what appears on an online
auction page, you don’t have to create the entire page of HTML markup. You
just create markup for the item-description part of the page. That means

 � You don’t need to include the <html>, <title>, <head>, or <body>
tags (remember, your markup will be part of a larger, complete HTML
document).

 � You can’t include any scripts in the description.

When you create your auction-item page, be aware that all browsers are not
created equal. A couple of limitations apply:

 � If you use Microsoft Internet Explorer 6 or newer as your browser, eBay
gives you an HTML editor that allows you to style text directly — and
then turns it into HTML markup, as shown in Figure 17-2 (notice the
HTML tab above the text-entry box; we’re using the Windows Vista IE
version 7.0.6000).

 � Other browsers, including Mozilla Firefox and Safari on the Macintosh,
now also support tabs for Standard (plain text) or HTML (markup)
which you can use the same way.

25_238479 ch17.indd 30125_238479 ch17.indd 301 4/10/08 9:47:22 PM4/10/08 9:47:22 PM

302 Part V: (X)HTML Projects

When designing your item’s title and description, don’t immediately rush to
add fancy HTML formatting. Instead, your first task is to create a description
that effectively presents your product. Before you worry about the HTML
markup, write a compelling title and description. Consider the following tips
when you write your text:

 � Write a concise, descriptive title. A good title includes words that
clearly and specifically identify what you are selling. eBay’s search
engine uses these titles to help people find your item, and you won’t sell
what buyers can’t find.

 � Look at completed listings to see successful descriptions. Use those
ideas to stimulate your own.

However, don’t plagiarize other people’s descriptions (or rip off their
pictures). That way lies trouble.

 � Spell words in the title and description correctly. Misspelled words
won’t be found by visitors searching for your item.

 In fact, we’ve bought equipment worth thousands of dollars for a frac-
tion of its market value, largely because it got no other bids — all
because the sellers misspelled the items’ names in the auction titles.

 � Be sure that you’re listing the item in the proper auction category.
If you list it in the wrong category, your item will get lost, buried,
obscured, masked . . . well, you get the idea.

 � Resist the temptation to use large fonts and lots of styles. Buyers want
to see your item description and photographs as quickly as possible.
Keep your text and images direct, visually uncluttered, and to the point.

 � Use good photographs or illustrations. Items with pictures or graphics
sell much better:

 • The photo of your item (more than one is usually better) should be
sharp, with the item’s important features clearly visible.

 • Make sure that your image files are a reasonable size; buyers hate
large photos that take a long time to load or require scrolling (we
recommend reducing photos to no larger than 640×480 pixels).

 Use a photo-editing program to reduce the pictures that your digi-
tal camera or scanner produces to a smaller size and save them as
lower-resolution JPEG files. You want a size that loads quickly and
can be viewed without scrolling, as discussed in Chapter 7.

 � Avoid animation and music like the plague. Serious bidders click off of
your item in a flash if they find either of these annoyances in your item
description.

25_238479 ch17.indd 30225_238479 ch17.indd 302 4/10/08 9:47:22 PM4/10/08 9:47:22 PM

303Chapter 17: The eBay Auction Page

Presentation Issues to Consider
When you create your listings, remember that a variety of users will view
your page using different browsers and operating systems. With that in mind,
peruse the following helpful tips for creating your listing:

 � Design your page so it works with as many browsers as possible. Any
Web browser may view your listing. (For example, you can’t assume that
your buyers have a browser capable of properly rendering CSS.)

 � Use an appropriate font size. The font size that you use should be large
enough to be legible at a variety of screen resolutions. Standard font
sizes such as a 10- to 12-point font are good examples. Some buyers
won’t bother to read your item description if it is in a tiny font size. At
the same time, don’t make the font size too large. Large fonts can make
your auction item page look amateurish.

 � Don’t use huge type that requires users to scroll the page a lot. For
example, four headings—all in a 48-point font—is way too big.

� Use backgrounds that don’t distract your users from the text and
images on the Web site.

 Avoid colored or patterned backgrounds because

 • People who are colorblind might have problems reading them.

 • Colored backgrounds can make your page hard to read when
printed on a monochrome printer. (Many users print auctions for
inventory records.)

 • They can make your page look amateurish.

Using a Template for Presenting
Your Auction Item

In this section, we provide a handy HTML template that enables you to dis-
play pictures of your item alongside its description:

 � A left column contains two pictures of the auction item.

The example assumes that you’re hosting the image files on a Web
server that you control. (Though eBay will now let you host one image
per auction for free, you must pay for additional images; if you don’t
mind spending money on this, feel free to upload them using the eBay
auction setup form instead.) You should prepare the image files and
upload them to your server before you begin using the template.

 � A right column contains text describing the item.

25_238479 ch17.indd 30325_238479 ch17.indd 303 4/10/08 9:47:22 PM4/10/08 9:47:22 PM

304 Part V: (X)HTML Projects

Listing 17-1 shows the HTML markup for the auction item description. You
can type it in any text editor, replacing the parts set off by the HTML com-
ment tags with the appropriate information (as indicated in the comment-
tag text).

Listing 17-1: Auction Item HTML Template
<!-- Begin Description Table -->
<!-- Picture column -->

<table align=”center” cellpadding=”8” border=”7”
 cellspacing=”0” bgcolor=”#FFFFFF”>
<tr>
<td valign=”top” align=”Left” width=”1%”>

<!-- First picture goes below; replace URL with the location of your picture -->

<img border=”0” align=”top” hspace=”5”
 src=”http://www.example.com/images/image1.jpg”
 alt=”Alternative image text” />

<!-- Next picture goes below; replace URL with the location of your picture -->

<img border=”0” align=”top” hspace=”5”
 src=”http://www.example.com/images/image1.jpg”
 alt=”Alternative image text” /></td>

<!-- Text column -->

<td valign=”top” align=”Left”>

<!-- This table-within-a-table for the headline makes your description
 look better -->

<table border=”0” >
 <tr><td align=”Left” >
 Your Exciting Item Title Goes Here!
 </td></tr>
</table>

<p>

<!-- Begin Description -->

Replace this text with the description of your auction item.

<!-- End Description -->

</p>

<p>

25_238479 ch17.indd 30425_238479 ch17.indd 304 4/10/08 9:47:23 PM4/10/08 9:47:23 PM

305Chapter 17: The eBay Auction Page

<!-- Enter your payment terms and details here. -->

</p>

<p>

<!-- Enter your shipping terms and details here. -->

</p>

</td>
</tr>

</table>

<!-- End Description Table -->

In Figure 17-3, you can see the on-screen results of the preceding auction
item-description template. (We sold many copies of this item successfully
on eBay.)

Figure 17-3:
The tem-

plate as it
appeared on

eBay.

Many auction sites, including eBay, host pictures for your item — often for
free. For example, eBay hosts one picture for free, but you must pay for extra
pictures. You might also consider using sites such as Picasa (http://
picasa.google.com) that offer free image-hosting services that include
Web access for online auction sellers.

25_238479 ch17.indd 30525_238479 ch17.indd 305 4/10/08 9:47:23 PM4/10/08 9:47:23 PM

306 Part V: (X)HTML Projects

25_238479 ch17.indd 30625_238479 ch17.indd 306 4/10/08 9:47:23 PM4/10/08 9:47:23 PM

Chapter 18

A Company Site
In This Chapter
� Deciding what your site needs to contain

� Including the basic parts of a Web site

� Separating content from presentation

� Building the site

Companies large and small differ on their office dress policies — from
being required to wear three-piece suits in the office to being allowed

to work in a SpongeBob T-shirt and torn cutoffs. However, all companies,
despite their differences in formality and workwear, want to present them-
selves effectively to the outside world. As such, they want their Web sites to
reek of confidence, capability, and professionalism. No one feels good about
forking over hard-earned money to a company with a cheesy and tacky Web
site (unless that company sells cheese and tacks).

In this chapter, you explore the basics of creating a company Web site —
and look at the typical elements you want to utilize as you design your own
company’s site.

Issues to Consider When
Designing Your Site

When you start to plan your company’s Web site, the most important task is
to consider the kind of people who are going to visit — potential or existing
customers, clients, or partners. After you determine a list of the types of visi-
tors, brainstorm about what they will want from your Web site.

26_238479 ch18.indd 30726_238479 ch18.indd 307 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

308 Part V: (X)HTML Projects

Working with the concept of personas (okay, that’s personae in Latin), in which
you envision a few of the site’s visitors and what they each want to get from the
site, can be valuable. As you lay out the site, think about how each of these imag-
inary people interacts with your design. Will they find what they’re looking for?

If you’re designing a site for a company that has many departments, you’ll
soon discover that each department may have a different vision of what the
company Web site should be. For instance, marketing wants the front page of
the site to be a gigantic Flash animation showing all the company’s products —
whereas management wants every page on the site to look exactly like a corpo-
rate brochure and to look the same in every browser known to humankind.

Your job, as a Web designer and developer, is not only to design the site but
also to educate people around you about what is possible and feasible —
while staying within your budget.

Basic Elements of a Company Web Site
As you consider creating a company Web site, consider the following among
basic elements that you may want to include. As a purely hypothetical but
hopefully illustrative example, this sample company site includes six key files:

 � The initial Web page, index.html, is the site’s home page. It contains
the basic marketing message about the company and its services; despite
its name, it’s entitled “About Us.” For most company Web sites, the home
page presents key facts about the company and identifies its business
focus, target markets, and seeks to attract visitors to explore further.

 A site’s home page can have any of a variety of file names, such as
index.html, default.html, and home.html. You want to check with
your Webmaster or your Web-hosting provider to determine the exact
filename you should use. However, in general, the filename index.html
will almost always work.

 � The products/services pages are named multimedia.html, print.
html and web_design.html. Each contains summary information
about company projects and services, related to multimedia and print
projects, as well as custom Web-design services. When creating file-
names, keep them short, simple, and intelligible so you and others can
at least guess what they hold.

 � The contact us page, contactus.html, contains an e-mail link to the
company to enable visitors to communicate with the principals via
e-mail. Let’s also observe again that it’s essential to respond rapidly,
professionally, and thoroughly to such inquiries. Many “Contact Us”
pages also include a mail address and one or more phone numbers for
the company; some even include (or point to) maps and directions to
reach company HQ or other locations.

26_238479 ch18.indd 30826_238479 ch18.indd 308 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

309Chapter 18: A Company Site

 � A press page, press.html, contains

 • Links to the press releases generated by the company

 • Information that marketing thinks members of the press might
want, such as news coverage, analyst reports, product reviews,
and even image libraries (if applicable)

 This page isn’t discussed in the rest of the chapter, but you can easily
modify the basic HTML template discussed for the other site pages to
create this unique page on your own.

 � An image, logo.gif, is displayed on the site’s home page to give visi-
tors an initial impression of the company and its creative ethos. This
could be any image, from a company logo to pictures of employees in
action. On our sample site, we repeat this same image at the head of
each page on the site. This is a common technique, and helps to estab-
lish a sense of continuity and branding to help hold your site together.

 � A style sheet, style.css, contains the formatting instructions for each
page of the site.

 Every page links to this style sheet by using the <link> tag. A change in
this file changes the appearance of every page on the site.

The home page
Listing 18-1 shows the home-page markup for Conquest Media, our not-so-fic-
titious company (it represents author Jeff Noble’s growing business venture).
Figure 18-1 shows how it looks when displayed in a browser.

Listing 18-1: Our Company’s Home Page (index.html)
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>
 <title>Conquest Media</title>
 <link href=”style.css” rel=”stylesheet” type=”text/css”>
</head>
<body>
<!-- Main text area for body copy-->
 <div align=”center”></div>
<!-- Page container that centers contents -->
 <div id=”container”>
<!-- Navigation -->
 <div id=”nav”>

(continued)

26_238479 ch18.indd 30926_238479 ch18.indd 309 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

310 Part V: (X)HTML Projects

Listing 18-1 (continued)

 [about us]
 [web design]
 [multimedia]
 [print]
 [contact us]

 </div> <!-- close nav division -->
 <div id=”container”>
 <h1>About Us</h1>
 <p>Conquest Media is an Austin multimedia company providing a
 variety of design solutions for clients within Austin,
 Houston, Dallas/Ft. Worth areas of Texas, across the United
 States and around the world. We specialize in creating
 cutting edge web designs, dynamic multimedia, and print
 design solutions to suit all business needs.</p>
 <p>We understand that every client of Conquest Media has
 different requests and specifications that we will gladly meet.
 It’s our guarantee to work with you on a one-to-one basis
 to complete your project.</p>
 <p>Our talented team of 3D artists, web designers, multimedia
 specialists, and database programmers has the experience, talent,
 technical knowledge and skills to deliver impressive and effective
 results. Simply put, there are a lot of design studios out there,
 and anyone can say they are a designer, but we have the portfolio
 to back it up. </p>
 <p>We invite you to review our portfolio of web design, multimedia,
 and print designs to see just exactly what we do here, why we love
 it, and why people love our work.</p>
 <div id=”footer”>All images and content © Conquest Media 2008.
 All Rights Reserved.</div>
<!-- end #container --></div>
</body>
</html>

As you look at the markup in Listing 18-1, you can see that it doesn’t contain
any information about colors, fonts, or how the page itself should be dis-
played. All that information is in the style sheet, which allows the most flex-
ible approach to updating the site in the future.

The navigation used in the home page and for the other site pages is based
on a simple text bar (a collection of text links, each enclosed in square brack-
ets []). These links are simple, easy to code, and can be spidered (automati-
cally searched for keywords) by search engines such as Google. They work
as well in older browsers as they do in newer ones.

26_238479 ch18.indd 31026_238479 ch18.indd 310 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

311Chapter 18: A Company Site

Figure 18-1:
Our com-

pany’s home
page.

If you want to use this template for your home page, just

 � Change the contents of the <title> and <h1> tags, and customize the
navigation to meet your needs (you can use the text rollovers for naviga-
tion described in Chapter 15 instead, if you prefer).

 � Add the company’s description where text that follows the <h1> ele-
ment occurs, after deleting the Conquest Media description.

It’s all greeked to me
If you would like to mock up a page for which
you don’t yet have actual content, we recom-
mend using greeked text. Greeked text is place-
holder text that typically starts with the Latin
phrase “Lorem Ipsum” and gets repetitively
nonsensical from there. It’s easy to tell apart
from real text.

If you want to add greeked text to your page,
check out www.lipsum.com, which will
let you choose such options as the number of
words, paragraphs, and bytes of greeked text
you need. Then you can copy and paste the
place holder text into your page.

26_238479 ch18.indd 31126_238479 ch18.indd 311 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

312 Part V: (X)HTML Projects

The Web Design page
Listing 18-2 and Figure 18-2 show the company’s Web Design page and dem-
onstrate how the overall look is the same, yet slightly different, for an interior
site page.

Listing 18-2: Our Company’s Web Design Page (web_design.html)
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Conquest Media</title>
 <link href=”style.css” rel=”stylesheet” type=”text/css”>
</head>
<body>
 <div id=”header”></div>
<!-- Page container that centers contents -->
 <div id=”container”>
 <div id=”nav”>

 [about us]
 [web design]
 [multimedia]
 [print]
 [contact us]

 </div> <!-- end navigation area -->
<h1>Web Design </h1>
 <div id=”item”>
 <div id=”leftColumn”>
 <img src=”images/portfolio_web-1.gif” alt=”Arclight Records”
 width=”190” height=”146”>
 </div> <!-- end leftColumn -->
 <div id=”rightColumn”>
 <p>Arclight Records wanted a unique website to showcase their
 rapidly growing record label. We provided a brand new creative
 look and integrated an existing online store where they sell
 their products.</p>
 <p>
 Click Here To View Website</p>
 </div><!-- end rightColumn -->
 </div> <!-- end Arclight item -->
 <div id=”item”>
 <div id=”leftColumn”>
 <img src=”images/portfolio_web-2.gif” alt=”Amy Komar”
 width=”190” height=”146”>
 </div> <!-- end leftColumn -->
 <div id=”rightColumn”>

26_238479 ch18.indd 31226_238479 ch18.indd 312 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

313Chapter 18: A Company Site

 <p>Celebrated acrylic painter Amy Komar selected us from numerous
 design submissions. We created a custom design to emphasize her
 colorful paintings and administration section for her to update
 the site without any HTML knowledge.</p>
 <p>
 Click Here To View Website</p>
 </div> <!-- end rightColumn -->
 </div> <!-- end Amy Komaritem -->
 <div id=”footer”>All images and content © Conquest Media 2008.
 All Rights Reserved.
 </div> <!-- end footer -->
 </div> <!-- end container -->
</body>
</html>

Figure 18-2:
Our com-

pany’s Web
Design

page.

To use the template shown in Listing 18-2, follow these steps:

 1. Customize the title, heading, footer, and navigation bar for your page.

 2. Add descriptive text within the <p> tag to describe your products.

 3. If it makes sense to do so, create a bulleted or numbered list (or
), and describe each product specifically within individual
tags instead of using paragraphs of text.

26_238479 ch18.indd 31326_238479 ch18.indd 313 4/10/08 9:47:43 PM4/10/08 9:47:43 PM

314 Part V: (X)HTML Projects

You can add links to subpages from within the individual product descrip-
tions. If you do this, use this page as a template for the individual product
pages, but make sure to create a Products link in the navigation bar. That way,
site visitors can retrace their steps back to where they came from without
clicking the Back button.

The Contact Us page
This simple page allows visitors to the site to send their feedback directly to the
company. It provides an e-mail link, as shown in Listing 18-3 and Figure 18-3.

Listing 18-3: Contact Our Company (contact.html)
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Conquest Media</title>
<link href=”style.css” rel=”stylesheet” type=”text/css”>
</head>
<body>
<!-- Main text area for body copy-->
<div id=”header”></div>
<!-- Page container that centers contents -->
<div align=”center”>
<!-- Navigation -->
<div id=”nav”>

[about us]
[web design]
[multimedia]
[print]
[contact us]

</div>
<div id=”container”>
<h1>Contact Us</h1>
 <p>We care about what you think about our site, our work, and our
 company. If you have a comment, question, or you want to request
 information, please contact us with the information below.</p>
<p>
info@conquestmedia.com</p>
<div id=”footer”>All images and content © Conquest Media 2008.
 All Rights Reserved.</div>
<!-- end #container --></div>
<!-- end centered page> </div>
</body>
</html>

26_238479 ch18.indd 31426_238479 ch18.indd 314 4/10/08 9:47:44 PM4/10/08 9:47:44 PM

315Chapter 18: A Company Site

You could make the contact page considerably smarter by creating a form to
solicit a name and an associated e-mail address, along with other information
of potential interest. You might also want to add a little JavaScript that verifies
whether valid information is entered into each of the fields. You want to make
sure that

 � A name was entered.

 � Some text was entered in the message <textarea> field.

 � Something resembling an e-mail address was given in the e-mail address
field. (But there’s no way to verify that the e-mail address belongs to the
person filling out the form.)

Figure 18-3:
Contacting

our com-
pany.

Embedding an e-mail address into the HTML markup like this is generally a
bad idea. It works, but spammers usually find the e-mail address in the HTML
file and abuse it. In the long run, it’s smarter to use a Common Gateway
Interface (CGI) program that hands out this address on the server side, possi-
bly after requiring requesters to jump through some hoops to prove they’re
human (as when they have to read some altered, wavy text on-screen and type
it in to prove they can read). See Chapter 14 for more information on forms
handling, or contact your Webmaster or Web host for assistance.

26_238479 ch18.indd 31526_238479 ch18.indd 315 4/10/08 9:47:44 PM4/10/08 9:47:44 PM

316 Part V: (X)HTML Projects

The style sheet
Listing 18-4 is a very basic version of a style sheet. All the HTML pages in this
Web site reference this style sheet. The great advantage of using a style sheet
to define your formatting instructions is that you can update this one file to
give the whole site an entirely new look.

Listing 18-4: The Site-Wide Style Sheet (style.css)
body {
 font: 100% Verdana, Arial, Helvetica, sans-serif;
 background-image:url(images/background_page.gif);
 margin: 0;
 /* it’s good practice to zero the margin and padding of the body
 element to account for differing browser defaults */
 padding: 0;
 text-align: center;
 /* this centers the container in IE 5* browsers. The text is then
 set to the left aligned default in the #container selector */
 color: #000000;
 font: 11px verdana, arial, sans-serif;
 font-weight: normal;
 } /*end body styles */

h1{
 text-align: center;
 color: #beb9ae;
 } /* end h1 styles */

.portfolio_text{
 font-size: 13px;
 font-weight: bold;
 color: #393939;
 } /* end .portfolio text styles */

#header{
 width: 100%;
 height: 255px;
 text-align: center;
 background-image: url(images/background_top.gif);
 min-width: 565px;
 } /* end header styles */

#container {
 text-align: left;
 width: 575px;
 margin: 0 auto;
 } /* end container styles */

26_238479 ch18.indd 31626_238479 ch18.indd 316 4/10/08 9:47:45 PM4/10/08 9:47:45 PM

317Chapter 18: A Company Site

#nav {
 font-size: 15px;
 width: 100%;
 height: 50px;
 float: left;
 } /* end navigation bar styles */

#nav ul {
 font-size: 15px;
 margin: 0px;
 padding: 0px;
 white-space: nowrap;
 } /* end navigation bar unordered list styles */

#nav li {
 font-size: 15px;
 color: #9cb166;
 list-style-type: none;
 display: inline;
 padding: 10px;
 } /* end navigation bar list item styles */

a {
 font-weight: bold;
 text-decoration: none;
 color: #666633;
 background: transparent;
 } /* end anchor element styles */

a:visited {
 font-weight: bold;
 text-decoration: none;
 color: #666666;
 background: transparent;
 } /*end visited hyperlink display styles */

a:hover {
 color: #FA0000;
 background: transparent;
 text-decoration: underline;
 } /* end hover over hyperlink display styles */

a:active {
 color: #494949;
 background: transparent;
 font-weight: bold;
 text-decoration: underline;
 } /* end active hyperlink display styles */

(continued)

26_238479 ch18.indd 31726_238479 ch18.indd 317 4/10/08 9:47:45 PM4/10/08 9:47:45 PM

318 Part V: (X)HTML Projects

Listing 18-4 (continued)
#item {
 text-align: center;
 width: 100%;
 height: 160px;
 } /* end display item styles */

#leftColumn {
 float: left;
 width:190px;
 text-align: left;
 } /* end left column layout styles (site thumbnails) */

#rightColumn {
 text-align: left;
 float: left;
 margin-left: 10px;
 width: 350px;
 } /* end right column layout styles (descriptive text) */

#footer {
 font-size: 10px;
 font-weight: bold;
 color: #52544f;
 text-align: center;
 padding:40px;
 clear: both;
 } /*end page footer styles */

li {
 margin-bottom: 10px
 } /*end list item styles */

This style sheet sets up headers, footers, and navigation, and gives its users
consistent styles to apply to list-items and body text. It’s an integral part of
the look of our pages, as removing the stylesheet reference in any single
page then viewing it “naked” will quickly illustrate.

Give Your Visitors What They Need
As you put your company pages together, give your visitors what they need
and make it easy for them to find, and they’ll keep coming back for more.
How can you find out what they need? Easy! Talk to those people in sales,
support, marketing, and other departments, to find out what kinds of infor-
mation, documents, software, and other goodies they give to customers all
the time, and you’ve identified the things that are most important for you to
highlight — and make available — on your Web pages.

26_238479 ch18.indd 31826_238479 ch18.indd 318 4/10/08 9:47:45 PM4/10/08 9:47:45 PM

Chapter 19

A Product Catalog
In This Chapter
� Designing a product catalog

� Choosing a shopping cart

� Adding the PayPal shopping cart to your pages

� Example HTML templates

In days gone by, a product catalog was a big production, a huge invest-
ment . . . and hard copy only. Not only did printing costs add up, but

sending it to every George, Jerry, and Kramer meant only big companies
could afford this maneuver. Unless your name was Sears & Roebuck, J.C.
Penney, or Eddie Bauer, you had no way to reach a broad audience with
your catalog.

The Internet, of course, has changed all this. Now, whether you’re part of a
big or a small company, you can produce and maintain a professional-looking
catalog on your Web site. And, without a significant investment, you can even
sell directly to your customers from an online store.

This chapter covers the basics of creating a product catalog and selling your
goods on the Web.

Dissecting a Product Catalog
An online product catalog usually includes these components:

 � A navigation interface to help users move easily through the catalog.

 The navigation interface is normally a menu system. Navigation inter-
faces are discussed briefly in Chapter 3.

27_238479 ch19.indd 31927_238479 ch19.indd 319 4/10/08 9:48:19 PM4/10/08 9:48:19 PM

320 Part V: (X)HTML Projects

 � At least one category page, with several items listed in each category.

 Choosing a category from the menu system brings the user to a category
page, which identifies individual items with

 • Thumbnail images

 • A brief description

 The image and title of an item are linked to that item’s detail page. The
user clicks the link for detailed information about an item.

 The site may allow the user to purchase items from the category page.
(Some sites require purchases from the item’s detail page.)

 � A detail page for each item in the catalog, which usually displays

 • At least one large image of the item.

 • A detailed description of the item.

 • A button that adds the item to the site’s shopping cart, if the site
allows purchases. (This chapter covers shopping carts later.)

Design basics
Whether you sell directly to online buyers or
just show your retail store’s inventory, keep
these design principles in mind:

 � Keep your catalog clean. Your online store
should encourage users to browse. Users
need to be able to see many items quickly,
but you should also make it easy for users
to get more detail on items that interest
them.

 � Make your site design colorful, interesting,
and fun. (Keep the file size of the graphics
small — no more than 50 KB per photo —
so pages download quickly.)

 � Make it easy to get around. Site navigation
should be easy, logical, and obvious. If site
visitors find interesting items quickly, they
buy. Otherwise they lose interest and find
what they want elsewhere.

 � Provide detail. Visitors can’t see or touch
the item, so printed detail is a must. There
are no space limitations on the Web (unlike
printed catalogs), so you can include lots
of details about items. (Info on shipping
charges, returns, and contact should be
easy to find, too.)

 � Make buying easy if you’re selling.
Streamline the buying process as much as
possible. An online purchase shouldn’t take
more than three screens. You’ll make more
sales and gain repeat customers.

 Too many online stores use shopping-cart
software that seems positively user-hostile.
Buyers must fill out page after page of selec-
tion and confirmation screens to complete a
sale. Streamline this process to encourage
visitors to become regular customers.

27_238479 ch19.indd 32027_238479 ch19.indd 320 4/10/08 9:48:19 PM4/10/08 9:48:19 PM

321Chapter 19: A Product Catalog

This chapter’s example of a product catalog uses the following resources:

 � Two templates for the product catalog:

 • A category page with small images of items within that category

 • A detail page for one example item

 � The navigational menu system

Figure 19-1 shows the single category page for Conquest Media. Site visitors
click the thumbnail picture of an item to jump to the detail page.

Figure 19-1:
A category
page from
the online

catalog.

After a visitor clicks an item in the category page, the item-detail page
appears, as shown in Figure 19-2. This page contains the all-important
Buy Now button, which allows the visitor to purchase the item.

27_238479 ch19.indd 32127_238479 ch19.indd 321 4/10/08 9:48:19 PM4/10/08 9:48:19 PM

322 Part V: (X)HTML Projects

Figure 19-2:
An item-

detail page.

Choosing a Shopping Cart
If you want people to purchase from your site, you need a shopping cart. The
cart allows buyers to purchase items and pay for them (usually with a credit
card or a bank account transaction).

The shopping-cart software (which runs on a Web server) leads the buyer
through the following steps of buying a product online:

 1. The buyer selects an item and adds it to the shopping cart.

 2. If the buyer wants to shop for other items, he or she can continue shop-
ping and place other items in the shopping cart.

 3. When ready to purchase, the buyer chooses to move to the checkout
process.

 At checkout, the shopping cart software

 • Totals the purchases

 • Adds shipping costs (if necessary)

 • Leads the buyer through the payment process of entering such
details as a credit card number and shipping address

27_238479 ch19.indd 32227_238479 ch19.indd 322 4/10/08 9:48:20 PM4/10/08 9:48:20 PM

323Chapter 19: A Product Catalog

In concept, a shopping cart for an online store is fairly simple. But in execu-
tion, it can get complex. This chapter surveys only the basics of e-commerce.
If you are going to dive into it fully, we recommend these books:

 � Starting an Online Business For Dummies, 5th Edition, by Greg Holden
(Wiley)

 � MySQL/PHP Database Applications by Brad Bulger, Jay Greenspan, and
David Wall (Wiley)

PayPal
In this chapter, we use the shopping cart from a well-known e-commerce site,
PayPal. Owned by eBay, PayPal’s shopping cart is free for you to use on your
Web site. Your customers can purchase multiple items with a single payment,
and you can accept credit-card and bank-account payments. (PayPal charges
you a transaction fee when you receive payment.)

PayPal offers a button generator that takes information about the name and
price of an item you have for sale and creates HTML markup for an Add to
Cart button that you can then insert directly into your product-catalog page.

This button generator and the PayPal shopping cart require a PayPal Premier
or Merchant account. (PayPal Personal accounts don’t accept debit- or credit-
card payments; they only send or receive bank transfers.)

Other e-commerce solutions
PayPal is one of the easiest shopping carts to implement on your site, but
many others are available.

The following technologies require more of a serious business and financial
commitment to setting up your online presence.

Hosting e-commerce services
Hosted e-commerce services let you build an online storefront on your site
but let the service provider deal with the technical aspects of your store and
your transaction processing.

A good example of the online storefront service is Yahoo! Merchant Solutions
(http://smallbusiness.yahoo.com/ecommerce). You can create a
storefront on a Yahoo! server that features your own domain name, a prod-
uct catalog, site-building tools (you can even avoid using raw HTML if you

27_238479 ch19.indd 32327_238479 ch19.indd 323 4/10/08 9:48:20 PM4/10/08 9:48:20 PM

324 Part V: (X)HTML Projects

prefer), a secure shopping cart, e-mail order confirmations, integration with
UPS for shipping, and order statistics tools. An online store on Yahoo! is
fairly easy to set up and operate, especially if you’re more merchant than
Web developer. Prices start at about $40 a month.

Do-it-yourself software
If you are really a technical guru (or aren’t faint of heart), you can install
shopping-cart software on your own Web server and configure it manually.

If you choose this option, you need the technical know-how, a Web server, and
a constant Internet connection for hosting your e-commerce Web site.

One do-it-yourself shopping cart software package is Zen Cart (www.zen-
cart.com). It’s a free, open-source shopping cart written in PHP. Stores cre-
ated with Zen Cart are highly customizable with many useful features — for
example, customers can review your products and you can customize tax
and shipping rates for everywhere you sell your items.

If you use Zen Cart, expect to spend at least a few days setting up your store
before you’re ready for business. You must know how to upload and install
Zen Cart software on your server, how to rename files and set UNIX permis-
sions, and how to create a MySQL database. Then you must create or modify
page templates for your store and supply numerous server-side parameters.

In general, we recommend you stick with PayPal or a hosted e-commerce
solution to avoid the complexity of trying to do it all yourself. Don’t say we
didn’t warn you!

Incorporating a PayPal shopping cart
Creating HTML markup for the shopping cart is easy: Use the PayPal button
generator, and then copy and paste the resulting markup into your Web page.

To use a PayPal shopping cart, you must be a PayPal Premier or Merchant
account holder. After you establish an account, you can create your own Add
to Cart and View Cart (or Buy Now) buttons by performing the instructions
shown in the following sections.

Add to Cart button
Follow these steps to insert an Add to Cart button on your page:

 1. In your Web browser, go to the PayPal site: https://www.paypal.com.

 This site is secure, so all transactions are encrypted between the site
and your browser.

27_238479 ch19.indd 32427_238479 ch19.indd 324 4/10/08 9:48:20 PM4/10/08 9:48:20 PM

325Chapter 19: A Product Catalog

 2. Log in to your Premier or Merchant account.

 Your account overview appears, with details only you need to know about.

 3. Click the Merchant Tools tab.

 4. On the Merchant Tools page, click the PayPal Shopping Cart link.

 5. On the PayPal Shopping Cart page, fill out the information about the
item you want to sell.

 You must enter the item name, the price, and the currency you accept.
An item number (used in reports that PayPal provides for you after the
sale) and the default country for the buyer’s payment form are optional.

 6. In the Select an Add to Cart Button section, click to select the button
style shown.

 If you don’t like the style that appears in response, click the Choose a
Different Button link to pick a different button style.

 You can create a button image and use it with the PayPal shopping cart:

 a. Create the button graphic in an image-editing program.

 b. Upload the graphic to a Web server.

 c. Select the Yes, I Would Like to Use My Own Image radio button on
the PayPal Shopping Cart page.

 d. Fill in the URL for the graphic on your Web server.

 7. Click the Create Button Now button at the bottom of the page.

 8. On the Add a Button to Your Website page, select all the text in the
Add to Cart Button Code field, as shown in Figure 19-3, and then
choose Edit➪Copy in your browser.

Figure 19-3:
Copying the
Add to Cart

button code.

 9. Switch to your HTML page editor and paste the cart code where you
want the button to appear.

 10. Save and preview the HTML page you just modified in your Web
browser to see the button on the page.

27_238479 ch19.indd 32527_238479 ch19.indd 325 4/10/08 9:48:21 PM4/10/08 9:48:21 PM

326 Part V: (X)HTML Projects

View Cart button
If you add a View Cart button to your page, follow these steps:

 1. Go to the PayPal Add a Button to Your Website page.

 This HTML markup was generated at the same time as the Add a Button
HTML markup.

 2. Select all the text in the View Cart Button Code field.

 3. Copy and paste the code into your HTML page.

Page Markup
Listing 19-1 includes the markup for the category page.

Listing 19-1: Category Page Template
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Conquest Media</title>
<link href=”style.css” rel=”stylesheet” type=”text/css”>
<!-- See sample Web site at www.edtittel.com/html4d6e/ch19 for stylesheet -->
</head>
<body>
<div id=”header”></div>
<div id=”container”>
 <div id=”mainContent”>
 <h1>Portfolio</h1>
 <div id=”leftColumn”><img src=”images/portfolio_web-1.gif”
 alt=”Website Design” width=”190” height=”146” />
 <p class=”portfolio_text”>Custom Website Design - $2000</p>
 <p>Forget about basic websites that all look the same. We will create a
 custom website from scratch including consultation, design of a
 graphic mockup, and optimizing of images.</p>
 </div> <!-- end left column markup -->
 <div id=”rightColumn”>
 <p><img src=”images/porfolio_print-1.gif”
 alt=”Print” width=”190” height=”147” border=”0”>
 <p class=”portfolio_text”>Print Design - $3000</p>
 <p>We don’t only do web! We are here for all your print design needs such
 as posters, shirts, stickers, buttons, newspaper ads, busness cards,
 and flyers.</p>
 </div> <!-- end right column markup -->
 <div id=”footer”>All images and content © Conquest Media 2008.
 All Rights Reserved.</div>

27_238479 ch19.indd 32627_238479 ch19.indd 326 4/10/08 9:48:21 PM4/10/08 9:48:21 PM

327Chapter 19: A Product Catalog

 <!-- end #mainContent --></div>
 <!-- end #container --></div>
</body>
</html>

Listing 19-2 includes the markup for the detail-page template.

Listing 19-2: Detail-Page Template
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
 <title>Conquest Media</title>
 <link href=”style.css” rel=”stylesheet” type=”text/css”>

<!-- See sample Web site at www.edtittel.com/html14d6e/ch19 for stylesheet -->
 </head>
 <body>
 <div id=”header”></div>
 <div id=”containerPrint”>
 <div id=”mainContent”>
 <h1>Portfolio</h1>
 <div id=”leftColumnPrint”>
 <img src=”images/porfolio_print-1.jpg” alt=”Website Design”
 width=”565” height=”500” />
 </div> <!-- end leftColumnPrint markup -->
 <div id=”rightColumnPrint”>
 <p class=”portfolio_text”>Print Design - $3000</p>
 <p>We don’t only do web! We are here for all your print design needs
 such as posters, shirts, stickers, buttons, newspaper ads, flyers.
 If it will fit on something, we can design for it. </p>
 <p>Arclight Records were so happy with the website we created that they
 hired us again to handle their print designs. After numerous posters,
 t-shirt designs, and a couple of sticker designs, we continue to work
 with Arclight Records.</p>
 <p>We can do all of this for your company for the low price of $1000,
 that’s right for a limited time only you can cash in on the following
 print design package:</p>
 <!-- list of items-->
 <ul class=”disc”>
 Full-color full-size poster
 Full-color half-size poster
 Black-and-white newspaper ad
 Circular sticker
 Rectangular sticker
 2-color shirt
 3-color shirt

<!-- Paypal Button-->

(continued)

27_238479 ch19.indd 32727_238479 ch19.indd 327 4/10/08 9:48:21 PM4/10/08 9:48:21 PM

328 Part V: (X)HTML Projects

Listing 19-2 (continued)
 <form action=”https://www.paypal.com/cgi-bin/webscr” method=”post”>
 <input type=”hidden” name=”cmd” value=”_s-xclick” />
 <input type=”image”
 src=”https://www.paypal.com/en_US/i/btn/btn_buynow_LG.gif” border=”0”
 name=”submit”
 alt=”Make payments with PayPal - it’s fast, free and secure!” />
 <img alt=”” border=”0” src=”https://www.paypal.com/en_US/i/scr/pixel.gif”
 width=”1” height=”1” />
 <input type=”hidden” name=”encrypted” value=”-----BEGIN PKCS7-----

 your PayPal security code here (you’ll grab this when you cut’n’paste)
 -----END PKCS7-----” />
 </form>
 </div> <!-- end rightColumnPrint markup -->

 <div id=”footer”>All images and content © Conquest Media 2008.
 All Rights Reserved.</div>
 </div> <!-- end #mainContent -->
 </div> <!-- end #container -->
 </body>

</html>

27_238479 ch19.indd 32827_238479 ch19.indd 328 4/10/08 9:48:21 PM4/10/08 9:48:21 PM

Part VI
The Part of Tens

28_238479 pp06.indd 32928_238479 pp06.indd 329 4/11/08 12:16:50 AM4/11/08 12:16:50 AM

In this part . . .

Here we point you at some undeniably cool HTML
tools, cover top dos and don’ts for HTML markup,

and help you catch potential bugs and errors in your
Web pages. We also bring some killer HTML, XHTML, and
CSS specification and resource sites to your attention.
And with our tongues planted firmly in our cheeks (that
makes it kind of hard to talk, you know), we recap some of
the most important advice and information in this book.
Enjoy!

28_238479 pp06.indd 33028_238479 pp06.indd 330 4/11/08 12:16:52 AM4/11/08 12:16:52 AM

Chapter 20

Ten HTML Dos and Don’ts
In This Chapter
� Concentrating on content

� Going easy on the graphics, bells, whistles, and hungry dinosaurs

� Creating well-formulated HTML and then testing, testing, testing

� Keeping it interesting after the building is ovah!

By themselves, HTML and XHTML are neither particularly complex nor
overwhelmingly difficult. As some high-tech wags (including a few

rocket scientists) have put it, HTML ain’t rocket science! Nevertheless, impor-
tant do’s and don’ts can make or break the Web pages you build with HTML,
XHTML, and CSS. Consider these humble admonishments as guidelines for
making the most of your markup without losing touch with your users (or
watching your page blow up on its launch pad).

If some points we make throughout this book seem to crop up here, too —
especially regarding proper and improper use of (X)HTML — it’s no accident.
Heed ye well the prescriptions and avoid ye the maledictions. But hey, they’re
your pages. You can do what you want. Your users will decide the ultimate out-
come. (We’d never say, “We told you so.” Nope. Not us!)

Concentrate on Content
Any Web site lives or dies by its content. That a site is meaningful, that it
delivers information directly, easily, and efficiently, and that a user can rea-
sonably expect to find something new and interesting there with each new
visit — all are pluses. But all those things (and more) rest on solid, useful
content that gives visitors a reason to come (and return) to your site.

29_238479 ch20.indd 33129_238479 ch20.indd 331 4/10/08 9:48:57 PM4/10/08 9:48:57 PM

332 Part VI: The Part of Tens

Never lose sight of your content
So we return to the crucial question of payload: page content. Why? Well, as
Darrell Royal (legendary football coach of the University of Texas Longhorns
in the ’60s and ’70s) is rumored to have said to his players, “Dance with who
brung ya.” In normal English (as opposed to Texan), this means that you
should stick with the people who’ve supported you all along, and give your
loyalty to those who’ve given it to you.

We’re not sure what this means for football, but for Web pages it means keep-
ing faith with your users and keeping content paramount. If you don’t have
strong, solid, informative content, users quickly get that empty feeling that
hits when Web pages are content-free. Then they’ll be off to richer hunting
grounds on the Web, looking for content wherever it can be found.

To satisfy user hunger, put your most important content on your site’s major
pages. Save the frills and supplementary materials for secondary pages. The
short statement of this principle for any kind of markup is: “Tags are impor-
tant, but what’s between the tags — the content — is what really counts.”
Chapter 3 covers making your content the best it can be.

Structure your documents and your site
For users, a clear road map of your content is as important for a single home
page as it is for an online encyclopedia. When longer or more complex docu-
ments grow into a full-fledged Web site, a road map becomes more important
still. This map ideally takes the form of (you guessed it) a flow chart of page
organization and links. If you like pictures with a purpose, the chart could
appear in graphic form in an explicitly labeled site map.

We’re strong advocates of top-down page design: Don’t start writing content
or placing tags until you understand what you want to say and how you want
to organize your material. Start building your (X)HTML document or docu-
ments using paper and pencil (or whatever modeling tool you prefer). Sketch
out relationships within the content and among your pages. Know what and
where you’re building before rolling out the heavy equipment.

Good content flows from good organization. It helps you stay on track during
page design, testing, delivery, and maintenance. Organization helps users find
their way through your site. Need we say more? Well, yes: Don’t forget that
organization changes over time. Revisit and critique your organization and
structure on a regular basis — and don’t be afraid to change either one to
keep up with changes in content or focus.

29_238479 ch20.indd 33229_238479 ch20.indd 332 4/10/08 9:48:57 PM4/10/08 9:48:57 PM

333Chapter 20: Ten HTML Dos and Don’ts

Go Easy on the Graphics, Bells, Whistles,
and Hungry Dinosaurs

Markup, scripting, and style sheets make much possible. But not all possibili-
ties deserve implementation, — nor can Web sites live by snazzy graphics,
special effects, and blinking marquees alone. Let your design and content
drive the markup, the graphics, and interaction, and your site will do its job
without overdazzling (or confusing) visitors.

Make the most from the least
More is not always better, especially when it comes to Web pages. Try to
design and build your pages using minimal ornaments and simple layouts.
Don’t overload pages with graphics or cram in as many levels of headings as
you can fit. Instead, do everything you can to make sure your content is easy
to read and follow. To keep distractions and departures to a minimum, and
make sure any hyperlinks you include add real value to your site.

Gratuitous links to useless information are nobody’s friend; if you’re tempted
to link to a Webcam that shows a dripping faucet, resist, resist, resist!

Structure and images exist to highlight content. The more bells, whistles, and
dinosaur yowls dominate a page, the more they distract visitors from your
content. Use structure and graphics sparingly, wisely, and carefully. Anything
more poses obstacles to content delivery. Go easy on animations, links, and
layout tags, or risk having your message (even your page) devoured by a
hungry T. Rex.

Build attractive pages
When users visit Web pages with a consistent framework that focuses on
content, they’re likely to feel welcome. The important thing is to supplement
content with graphics and links — don’t overwhelm users with a surfeit of
pictures and links. Making Web pages pretty and easy to navigate only adds
to a site’s basic appeal and makes your cybercampers even happier.

If you need inspiration, cruise the Web and look for layouts and graphics that
work for you. If you take the time to analyze what you like, you can work from
other people’s design principles without having to steal details from their lay-
outs or looks (which isn’t a good idea anyway).

29_238479 ch20.indd 33329_238479 ch20.indd 333 4/10/08 9:48:57 PM4/10/08 9:48:57 PM

334 Part VI: The Part of Tens

As you design Web documents, start with a basic, standard page layout. Pick
a small, interesting set of graphical symbols or icons and adopt a consistent
navigation style. Use graphics sparingly (yes, you’ve heard this before); make
them as small as possible — limit size, number of colors, shading, and so
on, while retaining eye appeal. After you build simple, consistent navigation
tools, label them clearly and use them everywhere. Your pages can be both
appealing and informative if you invest enough time and effort.

Create Well-Formulated HTML and Test
If you start with solid markup and good content — and then plough through
what you’ve built to make sure everything works the way as it should (and
communicates what it ought) — you’re on your way to a great Web site. But
once construction is over, testing begins. And only when testing produces
positive results should you open your virtual doors to the public.

Keep track of those tags
Although you’re building documents, it’s easy to forget to use closing tags,
even when they’re required (for example, the that closes the opening
anchor tag <a>). When you’re testing Web pages, some browsers can com-
pensate for such errors, leaving you with a false sense of security.

The Web is no place to depend on the kindness of strangers. Scrutinize your
tags to head off possible problems from browsers that might not be quite so
understanding (or lax, as the case may be).

As for the claims that some vendors of HTML authoring tools make (“You
don’t have to know any HTML!”), all we can say is, “Uh-huh, suuurre. . .” HTML
itself is a big part of what makes Web pages work; if you understand it, you
can troubleshoot with minimal fuss. Also, only you can ensure that your
pages’ inner workings are correct and complete for your documents, whether
you build them yourself or some program builds them for you.

We could go on and on about this, but we’ll exercise some mercy and confine
our remarks to the most pertinent items:

 � Keep track of tags yourself while you write or edit HTML by hand. If
you open a tag — be it an anchor, a text area, or whatever — create the
closing tag for it right then and there, even if you have content to add.
Most HTML editors do this for you.

29_238479 ch20.indd 33429_238479 ch20.indd 334 4/10/08 9:48:57 PM4/10/08 9:48:57 PM

335Chapter 20: Ten HTML Dos and Don’ts

 � Use a syntax checker to validate your work during the testing process.
Syntax checkers are automatic tools that find missing tags or errors.
Use these whether you build pages by hand or with software. The W3C’s
(free) HTML Validator lives at http://validator.w3.org.

 � Obtain and use as many browsers as you can when testing pages.
This not only alerts you to missing tags, but it can also reveal potential
design flaws or browser dependencies (covered in the “Avoid browser
dependencies” section later in this chapter). This exercise also empha-
sizes the need for alternate text. That’s why we also check our pages
with Lynx (a character-only browser).

 � Always follow HTML document syntax and layout rules. Just because
most browsers don’t require elements such as <html>, <head>, and
<body> doesn’t mean you can omit them. It means browsers don’t give
a hoot whether you use them or not. But browsers per se are not your
audience. Your users (and future browsers) may indeed care.

Although HTML isn’t exactly a programming language, it still makes sense to
treat it like one. Following formats and syntax helps you avoid trouble, and
careful testing and rechecking of your work ensures a high degree of quality,
compliance with standards, and a relatively trouble-free Web site.

Avoid browser dependencies
When you’re building Web pages, the temptation to view the Web only in
terms of your favorite browser is hard to avoid. That’s why you must always
recall that users view the Web in general (and your pages in particular) from
many perspectives — through many different browsers.

During the design and writing phases, you’ll probably hop between HTML
and a browser’s-eye view of your work. At that point, you should switch from
one browser to another and test your pages among several browsers (includ-
ing at least one text-only browser like Lynx). This helps balance how you
visualize your pages and also helps keep you focused on content. (Using a
text-only browser is also a great way to ensure that visually impaired visitors
can still relate to your site.)

You can use public Telnet servers with Lynx (a character-mode browser)
installed for free that don’t require software installation. Otherwise, visit
http://brainstormsandraves.com/articles/browsers/lynx for a
good discussion of using Lynx when testing Web pages (you’ll also find pointers
to Lynx downloads for Windows, DOS, Mac OS, and other platforms there).
There’s even a free Firefox plugin for Lynx previews inside a pop-up window
available at https://addons.mozilla.org/en-US/firefox/addon/1944.

29_238479 ch20.indd 33529_238479 ch20.indd 335 4/10/08 9:48:57 PM4/10/08 9:48:57 PM

336 Part VI: The Part of Tens

During testing and maintenance, you must browse your pages from many
points of view. Work from multiple platforms; try both graphical and
character-mode browsers on each page. Testing takes time but repays that
investment with pages that are easy for everyone to read and follow. It also
helps viewers who come at your materials from platforms other than your
own, and helps your pages achieve true independence from any single view-
point. Why limit your options?

If several pages on your site use the same basic (X)HTML, create one template
for those pages. Test that template with as many browsers as you can. When
you’re sure the template is browser-independent, use it to create other pages.
This helps every page look good, regardless of which browser visitors use,
and moves you closer to real HTML enlightenment.

Navigating your wild and woolly Web
Users who view the splendor of your site don’t want to be told you can’t get
there from here. Aids to navigation are vital amenities on a quality Web site.
A navigation bar requires a consistent placement and use of controls to help
users get from A to B. Judicious use of links and careful observation of what
constitutes a complete screen (or screenful) of text, helps users minimize
(or even avoid) scrolling. Text anchors make it easy to move to previous and
next screens, as well as to the top, index, and bottom in any document. Just
that easy, just that simple — or so it appears to the user.

We believe in the low scroll rule: Users should have to scroll no more than one
screenful in either direction from a point of focus or entry to find a navigation
aid that lets them jump (not scroll) to their next point of interest.

We don’t believe that navigation bars are mandatory — nor that names for
controls should always be the same. But we do believe that the more control
you give users over their reading, the better they like it. The longer a docu-
ment gets, the more important such controls become; they work best if they
occur about every 30 lines in longer documents (or in a separate, always-
visible frame if you use HTML frames).

Keep It Interesting After It’s Built!
The tendency to sit on one’s fundament, if not rest on one’s laurels, after
launching a Web site is nearly irresistible. It’s okay to sit down, but it isn’t
okay to leave things alone for too long or to let them go stale for lack of atten-
tion and refreshment. If you stay interested in what’s on your site after it’s

29_238479 ch20.indd 33629_238479 ch20.indd 336 4/10/08 9:48:58 PM4/10/08 9:48:58 PM

337Chapter 20: Ten HTML Dos and Don’ts

ready for prime time, your content probably won’t go past its freshness date.
Do what you can (and what you must) to stay on top of things, and you’ll stay
engaged — as should your site visitors!

Think evolution, not revolution
Over time, Web pages change and grow. Keep a fresh eye on your work and
keep recruiting fresh eyes from the ranks of those who haven’t seen your
work before to avoid what we call “organic acceptance.”

This concept is best explained by the analogy of your face in the mirror:
You see it every day; you know it intimately, so you aren’t as sensitive as
someone else to how your face changes over time. Then you see yourself on
video, or in a photograph, or through the eyes of an old friend. At that point,
changes obvious to the world reveal themselves to you as you exclaim, “I’ve
gone completely gray!” or “My spare tire could mount on a semi!”

Changes to Web pages are usually evolutionary, not revolutionary. They
proceed in small daily steps; big leaps are rare. Nevertheless, you must stay
sensitive to the underlying infrastructure and readability of your content
as pages evolve. Maybe the lack of on-screen links to each section of your
Product Catalog didn’t matter when you had only three products — but now
that you offer 25, they’re a must. You’ve heard that form follows function; in
Web terms, the structure of your site needs to follow changes in its content.
If you regularly evaluate your site’s effectiveness at communicating, you
know when it’s time to make changes, large or small.

This is why user feedback is crucial. If you don’t get feedback through forms
or other means, aggressively solicit some from your users. If you’re not sure
how you’re doing, consider: If you don’t ask for feedback, how can you tell?

Beating the two-dimensional-text trap
Because of centuries of printed material and the linear nature of books, our
mindsets may need adjustment. The nonlinear potentials of hypermedia give
new meaning to the term document, especially on the Web. It can be tempt-
ing to pack pages full of capabilities until they resemble a Pony Express
dynamite shipment that gallops off in many directions at once. Be safe: Judge
hypermedia by whether it

 � Adds interest

 � Expands on your content

 � Makes a serious — and relevant — impact on users

29_238479 ch20.indd 33729_238479 ch20.indd 337 4/10/08 9:48:58 PM4/10/08 9:48:58 PM

338 Part VI: The Part of Tens

Within these constraints, such material can vastly improve any user’s experi-
ence of your site.

Stepping intelligently outside old-fashioned linear thinking can improve your
users’ experience of your site and make your information more accessible
to its audience. That’s why we encourage careful use of document indexes,
cross-references, links to related documents, and other tools to help users
navigate around your site. Keep thinking about the impact of links as you
look at other people’s Web materials; it’s the quickest way to shake free of
the linear-text trap. (The printing press was high-tech for its day, but that
was nearly 600 years ago!) If you’re looking for a model for Web site behavior,
don’t think about your new trifold four-color brochure, however eye-popping
it may be; think about how your customer-service people talk with new cus-
tomers on the phone. (“What can I do to help you today?”)

Overcoming inertia takes vigilance
When you deal with your Web materials post-publication, it’s only human to
goof off after finishing a big job. Maintenance isn’t as heroic or inspiring as
creation, yet it represents most of the activity required to keep any document
alive and well. Sites that aren’t maintained often become ghost sites; users stop
visiting when developers stop working on them. Never fear — a little work and
attention to detail keeps pages fresh. If you start with something valuable and
keep adding value, a site’s value appreciates over time — just like any other
artistic masterpiece. Start with something valuable and leave it alone, and it
soon becomes stale and loses value.

Consider your site from the viewpoint of a master aircraft mechanic: Correct
maintenance is a real, vital, and an on-going accomplishment, without which
you risk a crash. A Web site, as a vehicle for important information, deserves
regular attention; maintaining a Web site requires discipline and respect. See
www.disobey.com/ghostsites/index.shtml for a humorous look at
ghost sites.

Keeping up with change translates into creating (and adhering to) a regular
maintenance schedule. Make it somebody’s job to spend time on a site regu-
larly; check to make sure the job’s getting done. If people get tagged to handle
regular site updates, changes, and improvements, they flog other participants
to give them tasks when scheduled site maintenance rolls around. Pretty
soon, everybody’s involved in keeping information fresh — just as they should
be. This keeps your visitors coming back for more!

29_238479 ch20.indd 33829_238479 ch20.indd 338 4/10/08 9:48:58 PM4/10/08 9:48:58 PM

Chapter 21

Ten Ways to Exterminate
Web Bugs

In This Chapter
� Avoiding gaffes in markup and spelling

� Keeping links hot and fresh

� Gathering beta-testers to check, double-check, and triple-check your site

� Applying user feedback to your site

After you put the finishing touches on a set of pages (but before you
go public on the Web for all the world to see), it’s time to put them

through their paces. Testing remains the best way to control site quality and
effectiveness.

Thorough testing must include content review, analysis of (X)HTML and CSS
syntax and semantics, link checks, and various sanity checks to make doubly
sure that what gets built is what you really want. Read this chapter for some
gems of testing wisdom (learned from a lifetime of Web adventures) as we
seek to rid your Web pages of bugs, errors, and lurking infelicities. Out! Out!
Darned Spot!

Avoid Dead Ends and Spelling Faux Pas
A sense of urgency that things must work well and look good on a Web site
never fails to motivate you to keep your site humming along. That said, if you
work from a visual diagram of how your site is (or should be) organized, you’ll
be well-equipped to check structure, organization, and navigation. Likewise,
if you put your pages through their paces regularly (or at least each time they
change) with a spell checker, you’ll be able to avoid unwanted tpyos.

30_238479 ch21.indd 33930_238479 ch21.indd 339 4/10/08 9:49:12 PM4/10/08 9:49:12 PM

340 Part VI: The Part of Tens

Make a list and check it — twice
Your design should include a road map (often called a site map) that tells you
what’s where in every individual (X)HTML document and stylesheet in
your site — and clues you in on the relationships among its pages. If you’re
really smart, you’ll keep this map up-to-date as you move from design to
implementation. (In our experience, things always change when you go down
this path.) If you’re merely as smart as the rest of us, don’t berate yourself —
update that map now! Be sure to include all intra- and interdocument links.

A site map provides the foundation for a test plan. Yep, that’s right — effec-
tive testing isn’t random. Use your map to

 � Investigate and check every page and every link systematically.

 � Make sure everything works as you think it should — and that what you
built has some relationship (however surprising) to your design.

 � Define the list of things to check as you go through the testing process.

 � Check everything (at least) twice. (Red suit and reindeer harness optional.)

Master text mechanics
By the time any collection of Web pages comes together, you’re looking at
thousands of words, if not more. Yet many Web pages get published without a
spell check, which is why we suggest — no, demand — that you include a spell
check as a step when testing and checking your materials. (Okay, we don’t
have a gun to your head, but you know it’s for your own good.) Many (X)HTML
tools, such as Expression Web, HomeSite, and Dreamweaver, include built-in
spell checkers, and that’s the first spell-check method you should use. These
(X)HTML tools also know how to ignore markup and just check your text.

Even if you use (X)HTML tools only occasionally, and hack out most of your
markup by hand, do a spell check before posting your documents to the
Web. (For a handy illustration of why this step matters, keep a log of spelling
and grammatical errors you find during your Web travels. Be sure to include
a note on how those gaffes reflect on the people who created the pages
involved. Get the message?)

You can use your favorite word processor to spell check your pages. Before you
check them, add (X)HTML and CSS markup to your custom dictionary, and
pretty soon the spell checker runs more smoothly — getting stuck only on URLs
and other strange strings that occur from time to time in Web documents.

If you’d prefer a different approach, try any of the many (X)HTML-based
spell-checking services now available on the Web. We like the free Lite
Edition of the CSE HTML Validator (www.htmlvalidator.com/).

30_238479 ch21.indd 34030_238479 ch21.indd 340 4/10/08 9:49:12 PM4/10/08 9:49:12 PM

341Chapter 21: Ten Ways to Exterminate Web Bugs

If CSE HTML Validator Lite’s spell checker doesn’t float your boat, visit a
search engine, such as www.yahoo.com or www.google.com, and use web
page spell check as a search string. Doing so lets you produce a list of spell-
checking tools made for Web pages.

One way or another, persist until you root out all typos and misspellings.
Your users may not thank you for your impeccable use of language — but
if they don’t trip over errors while exploring your work, they’ll think more
highly of your pages (and their creator), even if they don’t know why. Don’t
forget to put your eyeballs on the copy, though, too: no spell checker in the
world will recognize “It’s time two go too the store” as badly-mangled text,
though you should catch that right away! Better yet, hire a professional
editor or proofreader to help out during testing.

Keep Your Perishables Fresh!
New content and active connections to current, relevant resources are the
hallmarks of a well-tended Web site. You can’t achieve these goals with-
out regular (sometimes constant) effort, so plan for ongoing activity. The
rewards can be huge — starting with a genuine sense of user excitement at
what new marvels and treasures reveal themselves on their next visit to your
site. Such anticipation is impossible to imitate (without doing what you’ll
have to do to keep things fresh in the first place).

Lack of live links — a loathsome legacy
We performed an unscientific, random-sample test to double-check our own
suspicions; users told us that positive impressions of a particular site are
proportional to the number of working links they find there. The moral of this
survey: Always check your links. This is as true after you publish your pages
as it is before they’re made public. Nothing irritates users more than a link
that produces the dreaded 404 File not found error instead of the good
stuff they seek! Remember, too, that link checks are as indispensable to page
maintenance as they are to testing.

If you’re long on 21st-century street smarts, hire a robot to do this job for you:
They work long hours (with no coffee breaks), don’t charge much, and check
every last link in your site (and beyond, if you let them). The best thing about
robots is that you can schedule them to work at regular intervals: They always
show up on time, always do a good job, and never complain (though we
haven’t found one that brings homemade cookies or remembers birthdays).
All you must do is search online for phrases like link checker. You’ll find lots
to choose from!

30_238479 ch21.indd 34130_238479 ch21.indd 341 4/10/08 9:49:12 PM4/10/08 9:49:12 PM

342 Part VI: The Part of Tens

We’re fond of a robot named MOMspider, created by Roy Fielding of the W3C.
Visit the MOMspider site at http://ftp.ics.uci.edu/pub/websoft/
MOMspider. This spider takes some work to use, but you can set it to check
only local links, and it does a bang-up job of catching stale links before users
do. (Some HTML software, such as HomeSite, includes a built-in link checker
to check your links both before and after you post your pages.)

If a URL points to one page that simply points to another (a pointer), you can’t
leave that link alone. Sure, it works, but for how long? And how annoying! So if
your link-checking expedition shows a pointer that points to a pointer (yikes),
do yourself (and your users) a favor by updating the URL to point directly to
the real location. You save users time, reduce Internet traffic, and earn good
cyberkarma.

When old links must linger
If you must leave a URL active even after it has become passé to give your
users time to bookmark your new location, instruct browsers to jump
straight from old page to new by including the following HTML command in
the old doc’s <head>:

<meta http-equiv=”refresh” content=”0”; url=”newurlhere” />

This nifty line of code tells a browser that it should refresh the page. The
delay before switching to the new page is specified by the value of the con-
tent attribute, and the destination URL is determined by the value of the
url attribute. If you build such a page, also include a plain-vanilla link in its
<body> section, so users with older browsers can follow that link manually,
instead of automatically. You might also want to add text that tells visitors to
update their bookmarks with the new URL. Getting there may not be half the
fun, but it’s the whole objective.

Make your content mirror your world
When it comes to content, the best way to keep things fresh is to keep up
with the world in which your site resides. As things change, disappear, or
pop up in that world, similar events should occur on your Web site. Since
something new is always happening, and old ways or beliefs are always
fading away — even in studies of ancient cultures or beliefs — if you report
on what’s new and muse on what’s fading from view, you’ll provide constant
reasons for your visitors to keep coming back for more. What’s more, if you
can accurately and honestly reflect (and reflect upon) what’s happening in
your world of interest, you’ll grab loyalty and respect as well as continued
patronage.

30_238479 ch21.indd 34230_238479 ch21.indd 342 4/10/08 9:49:12 PM4/10/08 9:49:12 PM

343Chapter 21: Ten Ways to Exterminate Web Bugs

Check Your Site, and Then
Check It Again!

There’s an ongoing need for quality control in any kind of public content, but
that need is particularly acute on the Web, where the whole world can stop
by (and where success often follows the numbers of those who drop in and
return). You must check your work while you’re building the site and con-
tinue to check your work over time. This practice forces you to revisit your
material with new and shifting perspectives, and to evaluate what’s new and
what’s changed in the world around you. That’s why testing and checking are
never really over; they just come and go — preferably, on a regular schedule!

Look for trouble in all the right places
You and a limited group of hand-picked users should thoroughly test your site
before you share it with the rest of the world — and more than once. This pro-
cess is called beta-testing, and it’s a bona fide, five-star must for a well-built Web
site, especially if it’s for business use. When the time comes to beta-test your
site, bring in as rowdy and refractory a crowd as you can find. If you have picky
customers (or colleagues who are pushy, opinionated, or argumentative), be
comforted knowing that you have found a higher calling for them: Such people
make ideal beta-testers — if you can get them to cooperate.

Don’t wait till the very last minute to test your Web site. Sometimes the
glitches found during the beta-test phase can take weeks to fix. Take heed:
Test early and test often, and you’ll thank us in the long run!

Beta-testers use your pages in ways you never imagined possible. They inter-
pret your content to mean things you never intended in a million years. They
drive you crazy and crawl all over your cherished beliefs and principles. And
they do all this before your users do! Trust us, that’s a blessing — even if it’s
in disguise.

These colleagues also find gotchas, big and small, that you never knew
existed. They catch typos that word processors couldn’t. They tell you things
you left out and things that you should have omitted. They give you a fresh
perspective on your Web pages, and they help you see them from extreme
points of view.

The results of all this suffering, believe it or not, are positive. Your pages will
be clearer, more direct, and more correct than they would have been had you
tested them by yourself. (If you don’t believe us, of course, you could try skip-
ping this step. And when real users start banging on your site, forgive us if we
don’t watch.)

30_238479 ch21.indd 34330_238479 ch21.indd 343 4/10/08 9:49:12 PM4/10/08 9:49:12 PM

344 Part VI: The Part of Tens

Cover all the bases with peer reviews
If you’re a user with a simple home page or a collection of facts and figures
about your private obsession, this tip may not apply to you. Feel free to read
it anyway — it just might come in handy down the road.

If your pages express views and content that represent an organization,
chances are, oh, about 100 percent that you should subject your pages to
peer-and-management review before publishing them to the world. In fact,
we recommend that you build reviews into each step along the way as you
build your site — starting by getting knowledgeable feedback on such basic
aspects as the overall design, writing copy for each page, and the final
assembly of your pages into a functioning site. These reviews help you avoid
potential stumbling blocks, such as unintentional off-color humor or unin-
tended political statements. If you have any doubts about copyright matters,
references, logo usage, or other important details, get the legal department
involved. (If you don’t have one, you may want to consider a little consulting
help for this purpose.)

Building a sign-off process into reviews so you can prove that responsible par-
ties reviewed and approved your materials is a good idea. We hope you don’t
have to be that formal about publishing your Web pages, but it’s far, far better
to be safe than sorry. (This process is best called covering the bases, or per-
haps it’s really covering something else? You decide.)

Use the best tools of the testing trade
When you grind through your completed Web pages, checking your links and
your HTML, remember that automated help is available. If you visit the W3C
HTML Validator at http://validator.w3.org, you’ll be well on your way
to finding computerized assistance to make your HTML pure as air, clean as
the driven snow, and standards-compliant as, ah, really well-written HTML.
(Do we know how to mix a metaphor, or what?)

Likewise, investigating link checkers covered earlier in the chapter is smart;
use them regularly to check links on your pages. These faithful servants tell
you if something isn’t current, and tell you where to find links that need fixing.

Schedule site reviews
Every time you change or update your Web site, you should test its func-
tionality, run a spell check, perform a beta test, and otherwise jump through
important hoops to put your best foot forward online. But sometimes you’ll

30_238479 ch21.indd 34430_238479 ch21.indd 344 4/10/08 9:49:13 PM4/10/08 9:49:13 PM

345Chapter 21: Ten Ways to Exterminate Web Bugs

make just a small change — a new phone number or address, a single prod-
uct listing, a change of name or title to reflect a promotion — and you won’t
go through the whole formal testing process for “just one little thing.”

That’s perfectly understandable — but one thing inevitably leads to another,
and so on. Plus, if you solicit feedback, chances are good that you’ll get
something back that points out a problem you’d never noticed or considered
before. It’s essential to schedule periodic Web site reviews, even if you’ve
made no big changes or updates since the last review. Information grows
stale, things change, and tiny errors have a way of creeping in as one small
change succeeds another.

Just as you take your car in for an oil change or replace your air-conditioning
filter, plan to check your Web site regularly. Most big organizations we talk to
do this every three months or so; others do it more often. Even when you think
you have no bugs to catch, errors to fix, or outdated information to refresh,
you’ll often be surprised by what a review turns up. Make this part of your rou-
tine, and your surprises will be less painful — and require less work to remedy!

Let User Feedback Feed Your Site
Who better to tell you what works and what doesn’t than those who use (and
hopefully, even depend on) your site? Who better to say what’s not needed
and what’s missing? But if you want user feedback to foster site growth and
evolution, you must not only ask for it, you have to encourage it to flow freely
and honestly in your direction, then act on that feedback to keep those well-
springs working.

Foster feedback
Even after you publish your site, testing never ends. (Are you having flash-
backs to high school or college yet? We sure are.) You may not think of user
feedback as a form (or consequence) of testing, but it represents the best
reality check your Web pages are ever likely to get, which is why doing every-
thing you can — including offering prizes or other tangibles — to get users to
fill out HTML forms on your Web site is a good idea.

This reality check is also why reading all feedback you get is a must. Go out
and solicit as much feedback as you can handle. (Don’t worry; you’ll soon
have more.) But carefully consider all feedback that you read — and imple-
ment the ideas that actually bid fair to improve your Web offerings. Oh, and
it’s a really good idea to respond to feedback with personal e-mail, to make
sure your users know you’re reading what they’re saying. If you don’t have
time to do that, make some!

30_238479 ch21.indd 34530_238479 ch21.indd 345 4/10/08 9:49:13 PM4/10/08 9:49:13 PM

346 Part VI: The Part of Tens

Even the most finicky and picky of users can be an incredible asset: Who
better to pick over your newest pages and to point out the small, subtle errors
or flaws they so revel in finding? Your pages will have contributed mightily to
the advance of society by actually finding a legitimate use for a universal
delight in nitpicking. And your users can develop a real stake in boosting your
site’s success, too. Working with users gets them more involved, and helps
guide the content of your Web pages (if not the rest of your professional or
obsessional life). Who could ask for more? Put it this way: You may yet find
out, and it could be very helpful.

If you give to them, they’ll give to you!
Sometimes, simply asking for feedback or providing surveys for users to fill
out doesn’t produce the results you want — either in quality or in volume.
Remember the old days when you’d occasionally get a dollar bill in the mail
to encourage you to fill out a form? It’s hard to deliver cold, hard cash via
the Internet, but a little creativity on your part should make it easy for you
to offer your users something of value in exchange for their time and input.
It could be an extra month on a subscription, discounts on products or ser-
vices, or some kind of freebie by mail. (Maybe you can finally unload those
stuffed Gila monsters you bought for that trade show last year. . . .)

But there’s another way you can give back to your users that might not even
cost you too much. An offer to send participants the results of your survey,
or to otherwise share what you learn, may be all the incentive participants
need to take the time to tell you what they think, or to answer your ques-
tions. Just remember that you’re asking your users to give of their time and
energy, so it’s only polite to offer something in return.

30_238479 ch21.indd 34630_238479 ch21.indd 346 4/10/08 9:49:13 PM4/10/08 9:49:13 PM

Chapter 22

Ten Cool HTML Tools
and Technologies

In This Chapter
� Identifying your HTML toolbox needs

� Discovering your favorite HTML editor

� Adding a graphics application to your toolbox

� Authoring systems for the Web

� Understanding essential utilities for Web publishing

HTML documents are made of plain text, which means you can build one
using a no-frills text editor like Notepad. Once upon a time, that was

all Web authors used. But as the Web has evolved, so have the tools used
to create Web pages. Nowadays, Web authoring is complex enough that a
simple text editor can’t cut unless

 � You don’t care (much) about graphics and HTML validation.

 � You’re on a quick in-and-out mission to make small changes to an exist-
ing HTML document.

As you gain more experience with HTML, you’ll build your own HTML tool-
box. This chapter should help you stock that toolbox. In fact, some of these
tools may already be on your system, quietly waiting to help you create
amazing Web pages.

When you go shopping for items for your HTML toolbox, look for good buys.
Students and educators often qualify for big discounts on major-brand soft-
ware, if they use a search engine to look for “educational software discount.”
But careful shopping can save anybody money on just about any software pur-
chase. Try comparison-shopping at sites such as CNET Shopper (shopper.
cnet.com) or PC Magazine (http://pcmag.shopping.com).

31_238479 ch22.indd 34731_238479 ch22.indd 347 4/10/08 9:49:37 PM4/10/08 9:49:37 PM

348 Part VI: The Part of Tens

HTML Editors
This book explains how to create and maintain (X)HTML pages with nothing
more complicated than a pocketknife and a ball of string. But a good, capable
HTML editor can turn the chore of creating complicated (X)HTML pages into
a relatively easy task.

HTML editors come in two flavors. The flavor you need depends on the com-
plexity of the Web page you are creating or editing.

 � Helper editors have fewer capabilities.

 � WYSIWYG (what you see is what you get) editors do everything but
your laundry.

Helper editors
An HTML helper works the way it sounds. It helps you create HTML, but it
doesn’t do all the markup work for you.

In a helper, HTML is displayed “raw” — tags and all. You can reach right into
the code and tweak it (provided you have HTML, XHTML & CSS For Dummies).

But good helpers save time and lighten your load. Functions like these make
HTML development easier and more fun:

 � Tags are a different color than content.

 � The spell checker knows tags aren’t misspelled words.

Use a helper editor when you’re building complex tables or multilevel lists.
The more complex your markup, the more help a helper editor can provide!

HomeSite: The champ
HomeSite is an HTML editor suitable for both beginners and professionals. It
requires HTML knowledge to use, but it assists you at every step.

We like the HomeSite interface. You can

 � Browse images directly in the editor.

 � Customize the toolbars and menus for your personal needs.

 � Create a browser view instantly by clicking a tab.

 � Move and use context menus with a right-click of your mouse.

31_238479 ch22.indd 34831_238479 ch22.indd 348 4/10/08 9:49:37 PM4/10/08 9:49:37 PM

349Chapter 22: Ten Cool HTML Tools and Technologies

Text is easy to enhance and modify with features like these:

 � Color-coded HTML

 � Integrated spell checker

 � Search-and-replace tools to update whole projects, folders, and files

 � Internal HTML validation

 � Extensive online help if you need to access documentation on HTML and
other popular scripting languages

HomeSite helps you perform

 � Project management

 � Link verification

 � File uploads to a remote Web server

HomeSite retails for $99, and works only on Windows, in case you think you
might want to buy it. If you don’t have HomeSite already, and don’t want to
fork out the cash, try one of the following challengers as your helper editor
instead (note also that HomeSite comes bundled with Dreamweaver).

Contenders
There are many more good HTML helper editors than there are good
WYSIWYG editors. Here’s our slate of alternatives.

BBEdit/TextWrangler
BBEdit has ruled the Macintosh world for years. It comes in two versions:

 � A free product formerly known as BBEdit Lite has been superseded by a
newer, free text editor called TextWrangler.

 � BBEdit ($200 retail)

 If you don’t need the powerful and specialized set of HTML editing, preview,
and cleanup tools that come with BBEdit, use TextWrangler and save! (A
detailed features comparison is available online at www.barebones.com/
products/bbedit/threeway.shtml.)

If you use a Macintosh, check BBEdit out at www.barebones.com.

HTML-Kit
HTML-Kit is a compact Windows tool with

 � Menu-driven support for both HTML and Cascading Style Sheets (CSS)
markup

 � A nice preview window for a browser’s-eye view of your markup

31_238479 ch22.indd 34931_238479 ch22.indd 349 4/10/08 9:49:37 PM4/10/08 9:49:37 PM

350 Part VI: The Part of Tens

If you want to download HTML-Kit, go to www.chami.com/html-kit. You
can download a free version, or register your copy for $65 and obtain a
bunch of extra tools — including a spiffy table designer, a log analyzer, and a
nifty graphical HTML/XHTML/XML editor that lets you view and navigate all
those documents through their syntactical structure.

WYSIWYG editors
A WYSIWYG editor creates markup for you as you create and lay out Web
page content on your monitor (often by dragging and dropping visual ele-
ments, or working through GUI menus and options), shielding your delicate
eyes from bare markup along the way. These tools are like word processors
or page-layout programs; they do lots of work for you.

WYSIWYG editors make your work easier and save hours of endless coding —
you have a life, right? — but you should only use WYSIWYG editors during the
initial design stage. For example, you can use a WYSIWYG editor to create a
complex table in under a minute during initial design work. Later, when the
site is live, you would then use a helper to refine and tweak your HTML
markup directly.

Dreamweaver: still the champ
Dreamweaver is the best WYSIWYG Web development tool for Macintosh
and PC systems. Many (if not most) Web developers use Dreamweaver.
Dreamweaver is an all-in-one product that supports

 � Web-site creation

 � Maintenance

 � Content management

The current version is Adobe Dreamweaver CS3. It also belongs to a suite of
products — Adobe Creative Suite 3, usually abbreviated CS3 — that work
together to provide a full spectrum of Internet solutions. Adobe CS3 comes
in many flavors — which include components such as InDesign, PhotoShop,
Illustrator, Acrobat Professional, Dreamweaver, Fireworks, Contribute, After
Effects Professional, Premiere Pro, Soundbooth, Encore, and even OnLocation.
In fact, for a mere $2,500 or so, you can buy the Adobe Create Suite 3 Master
Collection and get all of these things in a single (very expensive) box!

Dreamweaver features an easy-to-follow-and-learn GUI so you can style Web
pages with CSS without even knowing what a style rule is! Many of the ben-
efits of Dreamweaver stem from its sleek user interface and its respect for
clean HTML. You can learn more about Dreamweaver by visiting the Adobe
Web site at www.adobe.com/products/dreamweaver.

31_238479 ch22.indd 35031_238479 ch22.indd 350 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

351Chapter 22: Ten Cool HTML Tools and Technologies

If you’re too low on funds for a top-of-the-line WYSIWYG HTML editor like
Dreamweaver CS3 (suggested retail price is about $400, but discounts of up to
$200 are available), there are other possibilities. You can ponder the sugges-
tions in the next section or go a-searching on the Web (the search string
“WYSIWYG HTML editor” should do nicely) to find lots more still!

Contenders
WYSIWYG editors generate allegiances that can seem as pointless as the
enmity between owners of Ford and Chevy trucks. All three of the following
editors have fans, and all can both produce great Web pages.

 � Adobe GoLive is a Web page editor that offers text and WYSIWYG edi-
tors, along with color coding, automatic code completion, HTML valida-
tion, nice site management chops, and bunches more. It lists for $400.
Check it out at .

www.adobe.com/products/golive

 � CoffeeCup HTML Editor 2007 is a Windows-based Web package that
offers a code editor (text) and a visual editor (WYSIWYG), along with
drag’n’drop scripting, support for pre-fab code elements called snippets,
and a nifty image editor/mapper. It costs only $49. Check it out at

www.coffeecup.com/html-editor/

 � HotDog Pro is a compact, likeable HTML editor that operates in text
and WYSIWYG modes. It, too, supports color coding, an HTML validator,
offers lots of interesting image handling features, and even a slick multi-
file find and replace/edit toolset. Take a bite at:

www.sausage.com/hotdog-professional.html

Graphics Tools
Graphics applications are beasts. They can do marvelous things, but learning
how to use them can be overwhelming at first.

If you aren’t artistically inclined, consider paying someone else to do your
graphics work. Graphics applications can be pricey and complicated. But
you should have some kind of high-function (if not high-end) graphics
program to tweak images should you need to. Our highest rating goes to
Adobe Photoshop, but considering its cost and the average newbie HTML
hacker’s budget, we discuss a lower-cost alternative first in the following
section.

31_238479 ch22.indd 35131_238479 ch22.indd 351 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

352 Part VI: The Part of Tens

Photoshop Elements: The amateur champ
At around $100 (with discounts as low as $80), Adobe Photoshop Elements
6.0 is an affordable PC- and Mac-based starter version of the full-blown
Photoshop (the gold standard for graphics). You can do almost anything with
Photoshop Elements that you might need for beginning and intermediate-
level graphics editing.

This product is for you if you want to add images to your site but you don’t
want to work with graphics all the time, or use fancy special effects . To learn
more about Photoshop Elements, visit www.adobe.com, select Products➪
All Products, and then select whichever version of Photoshop Elements
(PC or Mac) you want to read more about from the drop-down menu.

If you’re really on a tight budget, check out the $90, PC-only Paint Shop Pro
Photo X2 at www.corel.com instead. It does nearly everything that
Photoshop does and costs less than Photoshop Elements.

Professional contenders
If you work with photographs or other high-resolution, high-quality images or
artwork, you may need one of these Web graphics tools.

Adobe Photoshop
If it weren’t so darned expensive, we’d grant top honors to Photoshop. Alas,
$650 is too high for many novices’ budgets. Wondering whether to upgrade
from Photoshop Elements? Adobe mentions these capabilities among its
“Top reasons to upgrade”:

 � Improved file browser: Shows and tells you more about more kinds of
graphics files and gives you more-powerful search tools.

 � Shadow/Highlight correction: Powerful built-in tools add or manipulate
shadows and highlights in images.

 � More-powerful color controls: Color palettes and color-matching tools
with detailed controls that Elements lacks.

 � Text on a path: Full-blown Photoshop lets you define any kind of path
graphically and then instructs your text to follow that path. This capabil-
ity supports fancy layouts that Elements can’t match.

31_238479 ch22.indd 35231_238479 ch22.indd 352 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

353Chapter 22: Ten Cool HTML Tools and Technologies

If you need to use sophisticated visual effects, edits, or tweaks on high-
resolution photorealistic images, full-blown Photoshop is your best bet. For
basic Web sites, however, Photoshop Elements is more than up to the task —
which is why it’s the most popular graphics editing tool.

Like its little brother Photoshop Elements, full-blown Photoshop works with
both Macintosh and PC operating systems. The current version is Adobe
Photoshop CS3. It’s included in all of Adobe’s product suites.

Photoshop CS3 add-ons and plug-ins provide specialized functions — such
as complex textures or special graphics effects. This extensibility is nice
because graphics professionals who need such capabilities can buy them
(most cost $100 and up, with $300 a pretty typical price) and add them with-
out muss or fuss. But those who don’t need them don’t need to pay extra for
the base-level software.

Adobe Fireworks
Fireworks is a graphics program designed specifically for Web use, so it
offers lots of nice features and functions for that purpose. The current
version is Adobe Fireworks CS3.

Fireworks is tightly integrated with other Adobe products and therefore is
of potentially great interest if you’re using (or considering) Dreamweaver.
Simply put, this combination of Adobe products makes it very easy to add
graphical spice to Web pages.

For more information about Fireworks and related Macromedia products,
check out www.adobe.com/products/fireworks.

Link Checkers
A broken link on your site can be embarrassing. To spare your users the
dreaded 404 Object Not Found error message, use a link checker to make
sure your links are

 � Correctly formatted before you publish

 � Live on the Web after you publish

 Other Web sites may change or disappear after you publish your site.
Regularly check your site’s links to make sure they still work.

31_238479 ch22.indd 35331_238479 ch22.indd 353 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

354 Part VI: The Part of Tens

The worst broken link points to a page on your own site.

Many HTML editors and Web servers include built-in local link checkers, and
they may even scour the Web to check external links.

HTML Link Validator: The champ
HTML Link Validator 4.47 is a professional-strength tool at an affordable price
($35). We recommend it because it handles many kinds of links and reports
clearly and concisely on their condition.

You can find HTML Link Validator all over the Web. A good place to grab it is
at www.download.com (search the program name to find it immediately).

Contenders
Both of the following programs are pretty good link checkers, They need the
application of a little elbow grease to learn and to use, but the price is right:
free.

W3C Link Checker
This is a utility created by volunteers for the World Wide Web Consortium.
You can either

 � Download it from http://validator.w3.org/docs/checklink.html.

 You have a couple of download options:

 • Grab a compiled version for your computer and operating system
and run it as-is.

 • Grab the source code and tweak it for your needs and situation.

 � Use the online version at http://validator.w3.org/checklink.

LinkScan/QuickCheck
LinkScan offers a real-time single-page link check, and a free evaluation
software package that can handle sites with up to 500,000 documents. It cre-
ates an annotated, color-coded listing of each HTML or XHTML document it
parses, and makes it easy to find broken or suspect links, missing image files,
and so forth.

Check it out at www.elsop.com/quick/.

31_238479 ch22.indd 35431_238479 ch22.indd 354 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

355Chapter 22: Ten Cool HTML Tools and Technologies

HTML Validators
Validation compares a document to a set of document rules — a Document Type
Definition (DTD), an XML Schema, or whatever other rules explicitly describe
its syntax and structure. Simply put, validation checks the actual markup and
content against the rules that govern it and flags any deviations it finds.

Typically, a document author follows this process:

 1. Create an HTML document in an HTML editor.

 Let’s say this step results in a file called mypage.htm.

 2. Submit mypage.htm to an HTML or XHTML validation site for inspec-
tion and validation.

 If any problems or syntax errors are detected, the validator reports such
errors in an annotated version of the original HTML document.

 3. If the validator reports errors, the author corrects those errors and
resubmits the document for validation.

 Sometimes, breaking HTML rules is the only way for your page to look right
in older Web browsers. But document rules exist for a reason: Nonstandard
or incorrect HTML markup often produces odd or unpredictable results.

Browsers usually forgive markup errors. Most browsers identify HTML pages
without an <html> element. But someday, markup languages may be so com-
plex and precise that browsers won’t be able to guess whether you’re pub-
lishing in HTML or another markup language. Get the markup right from the
beginning and save yourself a bunch of trouble later.

HTML validation is built into many HTML editors.

W3C validator
The W3C has a free, Web-based validation system available at http://
validator.w3.org. It will provide copious output about what errors or
inconsistencies it finds in your documents until you fix them all. It also
includes an option for viewing annotated source code so you can see exactly
where it’s finding items it doesn’t like. This is a great tool, that is well worth
learning and using.

Built-in validators
Many tools in this chapter offer HTML validation. These include HTML-Kit,
HomeSite, Dreamweaver, and BBEdit. Use ’em if you got ’em; get ’em if you don’t!

31_238479 ch22.indd 35531_238479 ch22.indd 355 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

356 Part VI: The Part of Tens

FTP Clients
After you create your Web site on your computer, you have to share it with
the world. So you need a tool to transfer your Web pages to your Web server.
A very convenient way to accomplish this task is through FTP (File Transfer
Protocol). FTP has been around since the early days of the Internet (way
before the Web came along).

After you select a server host and you know how to access a Web server
(your service provider should supply you with this information), you must
upload your pages to that server. That means you need FTP.

All FTP programs are similar and easy to operate. We recommend these:

 � FileZilla is a fast, capable, free Open Source FTP program with an
intuitive drag’n’drop user interface. It’s available online at http://
filezilla-project.org.

 � Fetch for the Mac is located at http://fetchsoftworks.com.

Swiss Army Knives
Collections of tools can help you manage and control your Web site. They’re
the Web version of a chunky red knife with a tool for every purpose. We call
these Swiss army knives. (Metaphorically speaking, of course.)

 � HTML Toolbox, from NetMechanic, is the sharpest tool in the shed. This
puppy has most of the features we recommend in this chapter, including
link and spell checking and validation.

 This convenient little package costs you about $60 per year (it’s priced
per URL, for sites up to 100 pages). If that’s not too much to ask, check it
out at

www.netmechanic.com/maintain.htm

 � HTML-Kit supports plug-ins to add functions such as link checks and
spelling checks. Most of these plug-ins are free or inexpensive.

www.chami.com/html-kit/plugins

 � Easy HTML Construction Kit offers a collection of useful conversion,
reformatting, and template management tools for a paltry $25. It’s at

www.hermetic.ch/html.htm

31_238479 ch22.indd 35631_238479 ch22.indd 356 4/10/08 9:49:38 PM4/10/08 9:49:38 PM

Chapter 23

Ten Tip-Top Online
HTML References

In This Chapter
� Getting the specs for HTML, XHTML, and CSS

� Discovering HTML and XHTML DTD types

� Pointing out XHTML and HTML Character Codes

� Ferreting out favorite HTML resource sites

When the time comes to dig more deeply into markup details, you’ll
want to know where to turn for information and answers. In this Part

of Ten, we point out the master documents that specify HTML, XHTML, and
CSS down to the last jot and tittle — namely the W3C Recommendations that
govern their contents and structure. We also provide information about the
Document Type Definitions, or DTDs, to which such recommendation cor-
respond, provide pointers to information about character codes for use as
character entities, and conclude with our very favorite HTML, XHTML, and
CSS online resources.

Nothing But the Specs, Please!
The formal documents that describe HTML and XHTML are on the W3C’s
Web site at www.w3.org. That said, markup languages usually include ver-
sion numbers to identify them specifically and uniquely. The current version
of HTML is 4.01. It dates back to December 1997; you can find the document
at www.w3.org/TR/html4.

XHTML has gone through two major drafts, 1.0 and 1.1, since it first appeared
in 2000. The 1.1 version is more advanced than 1.0, but most Web content
developers (and, for that matter, software tools) still follow the 1.0 specifica-
tion anyway. An XHTML 2.0 specification is in “Public Working Draft” status
(its authors haven’t finalized its content and structure).

32_238479 ch23.indd 35732_238479 ch23.indd 357 4/10/08 9:49:59 PM4/10/08 9:49:59 PM

358 Part VI: The Part of Tens

When a W3C specification is finished, it’s known as a W3C Recommendation.

You can find specifications for all three versions of XHTML as follows:

 � XHTML 2.0 Working Draft (7/26/2006)

http://www.w3.org/TR/xhtml2/

 � XHTML 1.1 Module-based XHTML Recommendation (5/31/2001)

www.w3.org/TR/xhtml11/

 � XHTML 1.0 Recommendation (Second Edition, 8/1/2002)

http://www.w3.org/TR/xhtml1/

The Cascading Style Sheets markup language also falls under the W3C’s con-
trol. You can find a wealth of information on this subject at its Cascading
Style Sheets Home page at www.w3.org/Style/CSS. As with XHTML, CSS
comes in three versions, called levels 1, 2, and 3; again, as with XHTML, the
third version remains a work in progress.

You can find specifications for all three levels of CSS as follows:

 � CSS level 1 (1/11/1999)

http://www.w3.org/TR/CSS1

 � CSS level 2 revision 1 (aka CSS 2.1, 7/19/2007)

http://www.w3.org/TR/CSS21/

 � CSS level 3 (varies): look for Level 3 entries on the CSS Current Work page:

http://www.w3.org/Style/CSS/current-work

The HTML and XHTML DTDs
The HTML and XHTML specifications use Document Type Definitions (DTDs)
written in the Standard Generalized Markup Language (SGML) — the grand-
daddy of all markup — to define the details.

In its earlier versions, HTML used elements for formatting; over time, devel-
opers realized that

 � Formatting needed its own language (known as Cascading Style Sheets,
or CSS).

 � HTML elements should describe only a page’s structure, not its appear-
ance or display characteristics.

32_238479 ch23.indd 35832_238479 ch23.indd 358 4/10/08 9:49:59 PM4/10/08 9:49:59 PM

359Chapter 23: Ten Tip-Top Online HTML References

This resulted in three flavors of HTML, which also apply to XHTML as well.
This explains why each of the following list items employs the (X)HTML des-
ignation. In reality, of course, there are a total of six DTDs)to which we pro-
vide links in Table 22-1, which follows our list):

 � (X)HTML Transitional: Uses HTML’s elements to describe font faces and
page colors. XHTML Transitional accounts for formatting elements in
older versions of HTML. Formatting elements in XHTML Transitional are
deprecated (considered obsolete) because the W3C would like develop-
ers to move away from them and to a combination of XHTML Strict and
CSS. We use the XHTML Transitional DTD for the markup in this book.

 � (X)HTML Strict: Doesn’t include any elements that describe formatting.
This version is designed to let CSS drive the page formatting. The CSS-
with-XHTML Strict approach is an ambitious way to build Web pages,
but in practice it has its pros and cons. CSS provides more control over
your page formatting, but creating style sheets that work well in all
browsers can be tricky. (Chapter 9 covers style sheets and the issues
around using them in more detail.)

 � (X)HTML Frameset: Includes frames — markup that allows you to dis-
play more than one Web page or resource at a time in the same browser
window. Frames are still used in some Web sites but are less popular
today than they were in the late 1990s. Our advice is to use them only
if you must display information from multiple HTML documents at the
same time in a single browser window.

All Web browsers support all elements in HTML Transitional (and in XHTML
1.0 Transitional, if proper tag formatting is used); you can choose to use ele-
ments from it or stick with (X)HTML Strict instead. If you use frames, then
technically you have to work with (X)HTML Frameset, but all elements still
work the same way. This book covers all (X)HTML tags in all versions (lump-
ing them into one category called (X)HTML) because all real-world Web
browsers support all three flavors.

Any properly constructed HTML or XHTML document must reference a DTD
in its first line of text. Simply put, that means you’ll use one of the entries from
the Markup column in Table 23-1 to start any of your coding efforts!

32_238479 ch23.indd 35932_238479 ch23.indd 359 4/10/08 9:49:59 PM4/10/08 9:49:59 PM

360 Part VI: The Part of Tens

Table 23-1 Where the HTML and XHTML DTDs Are
Type Name Markup

HTML Transitional <!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01 Transitional//EN” “http://
www.w3.org/TR/html4/loose.dtd”>

HTML Strict <!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>

HTML Frameset <!DOCTYPE HTML PUBLIC “-//W3C//DTD
HTML 4.01 Frameset//EN” “http://www.
w3.org/TR/html4/frameset.dtd”>

XHTML Transitional <!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN” “http://
www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

XHTML Strict <!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Strict//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.
dtd”>

XHTML Frameset <!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Frameset//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-frame-
set.dtd”>

Character Codes Come In Many Flavors
When it comes to reproducing odd or unusual characters in HTML or XHTML
documents, a strange coding technique is used to represent such so-called
“character entities.” These generally take the form & (for ampersand, for
instance) where the ampersand symbol (&) indicates the character entity is
starting and everything from there up to the semi-colon (;) is a symbolic or
numeric character code. It just so happens that & and &38; both refer-
ence the same thing: the character code that represents an ampersand char-
acter on your computer display.

Table 23-2 includes pointers to a whole slew of different character codes you
can use in XHTML documents without reservations, but must use carefully
in HTML documents. (XML is a lot smarter about Unicode characters, which
include nearly every printable glyph known to man.) For HTML, the ISO-
Latin-1 character set (and its regionalized variants) are safe, but you should
experiment carefully to see what you can and can’t use from Unicode in your

32_238479 ch23.indd 36032_238479 ch23.indd 360 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

361Chapter 23: Ten Tip-Top Online HTML References

HTML documents by testing with lots of different Web browsers to see what
works and what doesn’t.

Table 23-2 Online Pointers to (X)HTML Character Codes
Name URL

Unicode Code Charts www.unicode.org/charts/

ISO-Latin-1 character set www.htmlhelp.com/reference/charset/

Greek characters www.unicode.org/charts/PDF/U0370.pdf

Currency symbols www.unicode.org/charts/PDF/U20A0.pdf

Miscellaneous symbols www.unicode.org/charts/PDF/U2600.pdf

Arrow characters www.unicode.org/charts/PDF/U27F0.pdf
www.unicode.org/charts/PDF/U2900.pdf

Mathematical characters Search math at www.unicode.org/charts/
(there are six different, relevant code charts)

General punctuation www.unicode.org/charts/PDF/U2000.pdf

Deprecated (X)HTML Elements
and Attributes

In markup terminology, elements or attributes may be deprecated. This
means they’re still recognized but doomed to obsolescence. If you see
(X)HTML markup you don’t recognize or can’t find elsewhere in this book,
chances are good that it’s deprecated. (Note: XHTML doesn’t recognize
deprecated items if you use the Strict DTD, but XHTML Transitional and
Frameset DTDs do recognize them.)

You can find good information about deprecated (X)HTML online, too. Here
are a few of our favorites:

 � HTML 4 Deprecated Features (Web Design Group/htmlhelp.com):

http://htmlhelp.com/reference/html40/deprecated.html

 � Deprecated Tags in HTML 4.0 (HTML Goodies):

http://www.htmlgoodies.com/tutorials/html_401/html4-ref/article.php/3460291

 � Tags and Elements Deprecated in XHTML 1.0 (About.com):

http://webdesign.about.com/od/htmltags/a/bltags_deprctag.htm

 � Deprecated Elements in HTML (html-reference.com):

http://www.html-reference.com/depreciated.htm

32_238479 ch23.indd 36132_238479 ch23.indd 361 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

362 Part VI: The Part of Tens

Table 23-3 lists deprecated (X)HTML elements, whereas Table 23-4 lists dep-
recated (X)HTML attributes (in alphabetical order, for easy reference).

Table 23-3 Deprecated (X)HTML Elements
Element Common

Name
Empty? Category Description

applet Applet No Inclusion Includes Java
applet in (X)HTML
document

b Bold No Presentation Turns text bold
(use
instead)

base-
font

Base font Yes Presentation Sets default font
for text to which
no style sheet or
font element
applies

center Center text No Presentation Centers enclosed
text in current dis-
play area

dir Directory list No List Lists style for lists
of short strings
(such as file
names)

font Font info Yes Presentation Sets size, font, and
color for element
content

i Italic No Presentation Turns text italic
(use
instead)

isin-
dex

Single-line
input

Yes Form-related Prompts user for
single line of input

menu Menu list No List Creates compact
list format

param Object param-
eters

Yes Inclusion Passes “command-
line” input to Java
applet

32_238479 ch23.indd 36232_238479 ch23.indd 362 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

363Chapter 23: Ten Tip-Top Online HTML References

Element Common
Name

Empty? Category Description

s Strikethrough No Presentation Uses strikethrough
font for element
content

strike Strikethrough No Presentation Uses strikethrough
font for element
content

u Underline No Presentation Uses underline
font for element
content

Table 23-4 Deprecated (X)HTML Attributes
Name Where Deprecated Description

align <caption><table
><hr><div><h1..6><p>

Sets alignment at top,
bottom, left, right

alink <body> Sets color for active document
links

back-
ground

<body> Sets background picture for
document body (URL is target)

bgcolor <body><table><tr>
<td><th>

Sets background color for
document body

border <object> Sets width of border around
image

clear
 Sets side of a line break on
which floating objects may not
be positioned

color <basefont> Sets color for basefont
(default) or font element
content

compact Special compact formatting
for list elements

hspace <object> Sets horizontal margin around
an image or object

(continued)

32_238479 ch23.indd 36332_238479 ch23.indd 363 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

364 Part VI: The Part of Tens

Table 23-4 (continued)
Name Where Deprecated Description

link <body> Sets defualt color for docu-
ment links

noshade <hr> Instructs browser to draw
horizontal rules without 3-D
shading

nowrap <td><th> Instructs browser not to
perform word wrap

size <basefont><hr> Sets size for <basefont>
or from 1 to 7, <hr>
in pixels

start Sets starting number for
ordered list

text <body> Sets text (foreground) color for
document body

type Sets list style (1|a|A|i|I
for ordered lists,
disc|circle|square for
unordered lists)

value Sets the value for a list item,
specified by number

vlink <body> Sets color for document links
already visited

vspace <object> Sets vertical margin for an
image

width <hr><pre><td><th> Sets width (percentage or
pixels) for object sizing or
spacing

Magnificent HTML Resource Sites
Though there’s no shortage of good HTML resources online, some are so
simply superlative that we have to call your attention to them here, as we list
our personal Top 10 favorites. In no particular order, here they are:

 � The World Wide Web Consortium is not just the fountain from whence
HTML, XML, XHTML, CSS, and a whole lot more springs, it’s also a great
source of information, tutorials, and tools. Spend some time rooting
around at www.w3.org and you won’t be disappointed.

32_238479 ch23.indd 36432_238479 ch23.indd 364 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

365Chapter 23: Ten Tip-Top Online HTML References

 � The Web Design Group’s motto is “…Making the Web accessible to all,”
but they’ve also got great references and tools, as well as help forums,
FAQs galore, and some great design guides and color code info. Explore
this site at www.htmlhelp.com.

 � W3 Schools uses “the best things in life are free” as its tag line, and it’s
got lots of free and useful stuff to prove that point — including HTML
and XML tutorials that cover the basics of markup, plus CSS, tons of
XML applications, numerous scripting languages for client- and server-
side scripts, and a whole lot more. See what there is to learn and do at
www.w3schools.com.

 � Once upon a time, Webmonkey was part of Wired magazine. It’s always
been a great resource for Web developers, but now it’s on its own. Dig
into this site for an extensive how-to library that covers lots of inter-
esting topics in (for openers) Web authoring, design, multimedia, and
e-business, as well as quick references for everything from JavaScript
to special characters and colors codes. You can check it out at
www.webmonkey.com.

 � HTML Goodies bills itself as “the ultimate html resource.” We’re not sure
what that really means, or how to tell if that claim is really true. But we
are sure you can find a plethora of pleasing and useful HTML help, infor-
mation, and (yes) goodies, so why not root around a while and see what
you can find at www.htmlgoodies.com.

 � Zvon’s tag line is that it’s “The Guide to the XML Galaxy” and indeed
we’d be remiss if we didn’t acknowledge its bias toward XML and corre-
sponding lack of HTML coverage. Nevertheless, its CSS and DTD tutori-
als alone make it worth visiting and learning from, and should you ever
take the XML plunge we guarantee you’ll return time and time again to
www.zvon.org.

 � WebCom.com calls itself the “comprehensive resource for publishing
on the World Wide Web.” As such, it’s mostly a clearinghouse for other
good stuff by way of being a good hosting provider. But it’s a pretty
good clearinghouse at that, and most readers of this book will benefit
from scoping out its Web Primers, HTML Guides (especially “WebCom’s
Own Guide to HTML”), and Publishing Guides, if not other information
silos at www.webcom.com/html.

 � The Web Developer’s Virtual Library (WDVL) is a treasure trove of
information, tutorials, tools coverage, and Web design and program-
ming techniques out the ying-yang. This is a site to spend some serious
time on — in fact, you may find yourself spending more time there than
is good for you. Attack it with a specific agenda (unless you have more
time than you know what to do with) at http://wdvl.com.

32_238479 ch23.indd 36532_238479 ch23.indd 365 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

366 Part VI: The Part of Tens

 � WebReference.com offers both oodles and scads of information about
HTML, XHTML, CSS, and everything involved in designing, creating, and
maintaining quality Web sites. Hint: Use the Sitemap link to get a sense
of what’s there, or you might not really appreciate the many great items
you can find there. Look it over at www.webreference.com.

 � John December is a long time Web maven who’s written and researched
Web topics since the early 1990s. He has an HTML area at his Web site
(www.december.com/html) that offers a useful introductory course
to HTML, pointers to key specifications, color code and coding informa-
tion, plus lots of markup examples and pointers to help budding Web
designers and developers tune up their skills. It’s definitely worth repeat
visits.

Of course, now that we’ve given you ten of these top sites, we feel we’ve only
managed to get you started. As you create your own set of favorites and find
the tools you like best, you’ll also establish your own set as well. Enjoy!

32_238479 ch23.indd 36632_238479 ch23.indd 366 4/10/08 9:50:00 PM4/10/08 9:50:00 PM

• Symbols •
& (ampersand)

beginning entities, 21
displaying on Web page, 22–23

* (asterisk) for JavaScript comments, 229
: (colon) before CSS pseudo-classes, 162
, (comma) in CSS declarations, 128
{ } (curly braces) for CSS markup, 13
= (equals sign)

reading and writing array elements, 242
setting JavaScript variables, 230

! (exclamation mark) beginning comments
(<!--), 23

> (greater-than sign)
displaying on Web page, 22–23
ending comments (-->), 23
for HTML tags, 12

- (hyphen) instead of spaces in fi lenames, 35
@import statement, 135
< (less-than sign)

beginning comments (<!--), 23
displaying on Web page, 22–23
for HTML tags, 12

 (non-breaking space) character, 204
. (period)

accessing object properties or methods, 243
after CSS selector, 129–130
in relative link notation (../), 94–95

“ (quotation marks) for attribute values, 20
; (semicolon)

in CSS declarations, 128
ending entities, 21
separating JavaScript statements, 229

/ (slash)
closing empty elements, 19
in HTML versus XHTML, 19
for JavaScript comments, 229
in relative link notation (../), 94–95

[] (square brackets) as array operator, 242
_ (underscore) instead of spaces in

fi lenames, 35

• A •
<a> element. See also links

for absolute links, 93
CSS styles for, 145–146, 161–163, 165
href attribute, 91, 93, 94, 99, 100, 101, 102
with image triggering links, 115–116
for named locations, 98–100
opening page in new window, 97
overview, 91
for relative links, 94–95
target attribute, 97

abbr attribute for tables, 210
About Me page

adding fonts and colors, 295–297
audience analysis for, 292
components, 292
design considerations, 291–292
Ed Tittel’s page, 26–28, 298
markup, 292–297
more complex version, 294
simple version, 292–293

About.com image map tutorial, 118
absolute links, 93
absolute property measurement values, 124
accessibility

alternative text for images, 108–109, 116
CSS aural styles for, 153
site map benefi ts for, 46
UI design resources, 56
W3C’s Web Accessibility Initiative (WAI), 109

accessing arrays, 242
action attribute (<form> element), 251
active pseudo-class (CSS), 162–163
Add to Cart button, 324–325
Adobe Fireworks, 353
Adobe GoLive WYSIWYG editor, 351
Adobe Photoshop, 352–353
Adobe Photoshop Elements, 352
alert() method (JavaScript), 224
align attribute

for centering tables, 198
<hr> element, 80
 element, 113–114
with other table elements, 197
<p> element, 71–72
<table> or <tr> or <td> element, 195–196

Index

33_238479 bindex.indd 36733_238479 bindex.indd 367 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

368 HTML, XHTML & CSS For Dummies, 6th Edition 368
aligning

horizontal rules, 80
images, 113–114
paragraphs, 71–72
positioning elements with CSS, 141–142
tables, 195–198
text blocks using CSS, 168–169

alt attribute
<area /> element, 117
 element, 108

alternative text (alt text) for images,
108–109, 116

American Standard Code for Information
Interchange (ASCII), 21

ampersand (&)
beginning entities, 21
displaying on Web page, 22–23

anchor element. See <a> element
angle brackets. See greater-than sign (>);

less-than sign (<)
animation, 302, 333
applets, 214
<area /> element, 117
arithmetic operators (JavaScript), 232
arrays (JavaScript), 241–242
ASCII (American Standard Code for

Information Interchange), 21
assignment operators (JavaScript), 232
asterisk (*) for JavaScript comments, 229
attributes. See also specifi c elements and

attributes
defi ned, 17
deprecated, 361, 363–364
forms-related, 269–270
JavaScript-related, 246
measurement values, 124
overview, 20–21
table-related, 210

auction page. See eBay Auction page
aural styles (CSS), 153
axis attribute for tables, 210

• B •
 element, 170
background

for auction sites, 303
background or background-color

property (CSS), 161, 163–164, 209
for table cells, 209

BBEdit HTML editor, 349

beta-testing, 343
bgcolor element for table cells, 208–209
blinking text, 173–174
block quotes, 74–75
<blockquote> element, 74
blocks of text. See text blocks
blue color coding in this book, 17
<body> element. See also text

cookie script in, 286
CSS style for, 142–144
described, 34
overview, 67
scripts in, 224
setting CSS styles in, 132

body scripts, 224
boldface, applying to text, 170–171
border attribute
 element, 112
<table> element, 186

border property (CSS), 189
border-bottom property (CSS), 189
border-color property (CSS), 188
border-left property (CSS), 189
border-right property (CSS), 189
borders

for images, 112–113
for tables, 178, 186–189
using small image to create, 111

border-spacing property (CSS), 194–195
border-style property (CSS), 187–188
border-top property (CSS), 189
border-width property (CSS), 188
box model (CSS), 189
boxes, creating with small image, 110, 111

 (break) element

described, 25
for empty table cells, 194
formatting, 77–78
“Hello World!” Letter example, 34

broken links
avoiding, 341–342
fi xing, 95–96
link checkers, 353–354
to page on your own site, 354

browsers
auction page considerations, 301, 303
avoiding dependencies, 335–336
block quotes display in, 75
bulleted lists display in, 85–86
checking editing in, 37–39
color display by, 159
CSS disabled by some, 128

368

33_238479 bindex.indd 36833_238479 bindex.indd 368 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

369 Index

CSS information for, 122
CSS overriding display rules of, 126–127
CSS style sheets for old and new, 147
defi nition lists display in, 88–89
differences among, 14
headings display in, 72–74
image rollover problems with, 274
image scaling by, 111–112
link display by, 92
list online, 14
numbered lists display in, 84
overview, 13
posting fi les to server via, 40, 55
previewing Web pages in, 29–30, 36–37
testing on multiple, 335–336
text rollover display in, 276
text-only, 13

Builder.com, 105
Bulger, Brad (MySQL/PHP Database

Applications), 323
bulleted lists

browser display of, 85–86
bullet styles for, 86
CSS for, 87
defi ned, 84
elements for, 20
formatting, 85
nesting, 89–90
uses for, 84

button generator online, 272

• C •
calling (JavaScript)

functions, 240–241
methods, 243

canned JavaScript, limitations of, 223
<caption> element, 185
case

CSS sensitivity to, 3
HTML not sensitive to, 3
JavaScript sensitivity to, 228, 230
link URLs sensitivity to, 95
setting with CSS, 172–173
XHTML sensitivity to, 3

cell spans
cell width changes versus, 178
colspan attribute for, 184, 198–200
defi ned, 178
need for, 184
planning needed for, 198
rowspan attribute for, 198, 200–201

cellpadding attribute, 192–194
cells (table). See also cell spans

color for, 208–209
creating with <td> element, 183–184
defi ned, 178
empty, for controlling layout, 194
padding and spacing for, 192–195
populating, 201–204
width adjustments, 189–192

cellspacing attribute, 192–194
<center> element, deprecated, 198
centering tables, 197–198
CGI (Common Gateway Interface)

for e-mail address information, 315
for form validation, 264
further information, 264, 265
online sources for form handlers, 266

CGI Resource Index site, 266
Chapman, Steven (“Hiding Your Email

Address”), 102
char attribute for tables, 210
character codes, 22, 360–361
character spacing using CSS, 168
charoff attribute for tables, 210
check boxes, 255–256
checked attribute (<input /> element),

256
Citixxperience site map, 45
class attribute (CSS), 129–131, 167
client-side scripts

for cookies, 284–286
for displaying dynamic content, 278–281
for image rollovers, 272–275
<object> element for embedding content,

287–288
for pop-up windows, 281–284
for text rollovers, 275–277

clock examples
adding to page, 279, 281
CSS styles for, 281
HTML and JavaScript, 278–279
JavaScript and DOM, 280–281
pop-up window, 282–283

closing tags
keeping track of, 334
for nested lists, 90
for <p> element, 71

CoffeeCup HTML Editor 2007, 351
<col> element, 185, 197
<colgroup> element, 185, 197
colon (:) before CSS pseudo-classes, 162

33_238479 bindex.indd 36933_238479 bindex.indd 369 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

370 HTML, XHTML & CSS For Dummies, 6th Edition

color property (CSS)
hexadecimal color codes with, 159
for link colors, 162, 163
overview, 161
for text colors, 161

colors
background color defi nitions (CSS), 163–164
browser display of, 159
for coding in this book, 17
design considerations, 44
hexadecimal codes for, 158, 159–160
for links using CSS, 161–163
named values in (X)HTML, 158–159
RGB values for, 160
site-wide style sheet for, 310, 316–318
for table borders using CSS, 188, 189
for table cells, 208–209
for text using CSS, 161
tips for using, 296
Web-safe, 159

cols attribute (<textarea> element), 261
colspan attribute for tables, 184, 198–200
comma (,) in CSS declarations, 128
comments

JavaScript, 229
(X)HTML, 23

Common Gateway Interface. See CGI
company site

basic elements, 308–309
Contact Us page, 308, 314–315
customizing templates for your use, 311, 313
design considerations, 307–308
giving visitors what they need, 318
home page, 308, 309–311
logo, 309
press page, 309
products/services pages, 308
site-wide style sheet, 309
style sheet, 316–318
Web Design page, 312–314

comparison operators (JavaScript), 233–234
concatenation, 231, 234
conditional statements (JavaScript), 235–236
confi rm() method (JavaScript), 236
Conquest Media example

Contact Us page, 314–315
customizing templates for your use, 311, 313
home page, 309–311
product catalog, 321–328
site-wide style sheet, 316–318
Web Design page, 312–314

Contact Us page, 308, 314–315

content
arranging dynamically, 215–217
dynamic, displaying, 278–281
embedding with DHTML, 287–288
importance of, 331
keeping fresh and interesting, 336–337, 341,

342
keeping paramount, 332
structuring documents and site for, 332

content attribute (<meta /> element),
63–64

cookies, 284–286
coords attribute (<area /> element), 117
copyright issues for images, 106
counting operators (JavaScript), 232–233
creating a Web page

applications needed, 29–30
editing your page, 37–39
planning a simple design, 31–32
posting your page, 39–40
saving your page, 34–35
steps, 30
viewing your page, 36–37
word processors not useful for, 10, 30
writing HTML, 32–33

CSS (Cascading Style Sheets). See also font
specifi cations using (CSS); specifi c
properties

advantages of, 121–122, 157
aural styles for accessibility, 153
background color defi nitions, 161, 163–164
benefi ts of, 25
box model, 189
browser display rules overridden by,

126–127
for bulleted lists, 87
cascading nature of, 122, 136
class attribute for styles, 129–131
for clock, 281
color coding in this book, 17
color defi nition properties, 161
conventions in this book, 2–3
CSS2.1 specifi cation, 123
CSS3 specifi cation, 123
declarations, 126, 128
developing specifi c styles, 138–146
in DHTML, 271
documentation in iPod format, 153
examples online, 1
external style sheets, 134–135
externalizing style sheets, 146–147
further information, 125

33_238479 bindex.indd 37033_238479 bindex.indd 370 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

371 Index

goal of, 121
guidelines for using, 137
for headings, 74
for horizontal rules, 80
inheritance, 131–132
inline styles, 133, 135
internal style sheets, 133–134
knowledge required for, 125
link color defi nitions, 161–163
media types and their uses, 148
for old and new browsers, 147
overlapping objects, 141–142
paged media styles, 153–155
positioning elements using, 141–142
positioning text using, 168–170
precedence for style rules, 136, 163
print style sheet, 154–155
property measurement values, 124
pseudo-classes, 161–163
selectors, 126, 128
setting rules for entire document, 132
shorthand properties, 140–141
site-wide style sheet, 309, 316–318
specifi cations for, 358
steps for using, 123
style rules, 126
style switching with JavaScript, 215–217
syntax, 126
for table alignment, 197–198
for table borders, 187–189
for table cell padding and spacing, 194–195
table formatting considerations, 176
table width property, 192
testing pages for browsers disabling, 128
text color changes using, 161
for text rollovers, 275–278
uses for, 124–125
visual layouts using, 139–141
visual media styles, 148–153
for white space control, 76
W3C Core style sheets, 135
W3C validation service, 129

“CSS Structure and Rules” tutorial (Web
Design Group), 131

CSS Web Design For Dummies (Mansfi eld), 125
curly braces ({ }) for CSS markup, 13
CuteFTP software, 55
Cyberduck FTP client, 55

• D •
dark green color coding in this book, 17
data types (JavaScript), 231

data-collection forms. See also forms
defi ned, 247
overview, 249–250
validating, 219–220, 264

<dd> element, 87, 88
December, John (Web maven with site), 366
declarations

CSS, 126, 128
object (JavaScript), 246
variable (JavaScript), 230–231

declare attribute for JavaScript objects, 246
default.html page, 308. See also home

page
defer attribute (JavaScript), 246
defi nition lists

browser display of, 88–89
CSS for, 88
defi ned, 87
elements for, 87
formatting, 87–88
resources online, 89

designing. See also planning Web pages
About Me page, 291–292
building attractive pages, 333–334
color considerations, 44
company site, 307–308
following document syntax and layout rules,

335
greeked text for mock-ups, 311
keeping simple, 333
planning a simple design, 31–32
product catalog, 320
professional help for, 44
standard page layout for, 334
structuring your site, 332
top-down page design, 332
UI design resources, 56
user-friendly forms, 267–268

DHTML (Dynamic HTML), 271. See also client-
side scripts

Dictionary of HTML META Tags online, 66
disabilities. See accessibility
<div> element

for centering tables, 198
for text rollovers, 277
for white space, 76

<dl> element, 87
DOCTYPE declaration, 60–61
document structure

basic for every (X)HTML page, 59–60
<body> element, 67
browser display of elements, 67–68
<head> element, 62–66
HTML DOCTYPE declaration, 60

33_238479 bindex.indd 37133_238479 bindex.indd 371 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

372 HTML, XHTML & CSS For Dummies, 6th Edition

document structure (continued)
<html> element, 61
<meta /> element, 63–66
redirecting users to another page, 65–66
XHTML DOCTYPE declaration, 60–61
XHTML namespace, 61–62

document tree, 162
Document Type Defi nitions (DTDs), 358–360
DOM (Document Object Model)

clock using, 280–281
in DHTML, 271
further information, 245
overview, 245–246

domain name
deciding on need for, 53–54
registering with hosting provider, 54
relative links not affected by changing, 94
URL component, 15

download links for PDF fi les, 100–102
Dreamweaver WYSIWYG editor, 350–351
drop-down lists, 258–260
<dt> element, 87
DTDs (Document Type Defi nitions), 358–360
Dynamic HTML (DHTML), 271. See also client-

side scripts
dynamic pages. See also JavaScript

arranging content dynamically, 215–217
cookies for, 284–286
defi ned, 214
displaying dynamic content, 278–281
form validation, 219–220, 264
pop-up windows, 96–97, 218–219, 281–284
rollovers for, 272–277
search term example, 214–215

• E •
Easy HTML Construction Kit, 356
eBay Auction page

background for, 303
browser considerations, 301, 303
designing, 300–302
importance of appearance, 299
presentation issues, 303
scripts not allowed for, 301
tips for writing text for, 302
using template for auction items, 303–305

E-Commerce For Dummies (Wiley
publication), 52

editing Web pages, 37–39
elements. See also specifi c elements

defi ned, 13, 17
deprecated, 361–363

empty, 18–19
keeping track of tags, 334–335
nesting, 20
overview, 18–20
single tags, 18–19
tag pairs, 18–19
well-structured (X)HTML requirements,

23–24
em property measurement values, 124
e-mail

hiding addresses from spammers, 102, 315
links, 102
receiving form data by, 266–267

empty elements
defi ned, 18–19
 as, 106

end tags, 18
entities

defi ned, 17, 21
non-ASCII characters, 21–22
overview, 21–23
tag characters, 22–23
(X)HTML character codes, 22

equals sign (=)
reading and writing array elements, 242
setting JavaScript variables, 230

events (JavaScript)
defi ned, 243
handlers, 244–245, 274
overview, 243–244

evolutionary changes to site, 337
ex property measurement values, 124
“Examine Graphic Channels and Space”

(Builder.com), 105
exclamation mark (!) beginning comments

(<!--), 23
expression statements (JavaScript), 234
expressions (JavaScript), 231. See also

operators (JavaScript)
eXtensible Markup Language (XML), 16, 17
external style sheets (CSS)

importing, 135
linking to page, 134–135
turning internal style sheets into, 146–147

• F •
FAQ page, planning for, 46
feedback from users, 345–346
Fetch FTP client, 55, 356
fi le formats for images, 104–105
File Transfer Protocol. See FTP

33_238479 bindex.indd 37233_238479 bindex.indd 372 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

373 Index

fi lenames
in broken links, fi xing, 95
guidelines for, 34–35
spaces in, avoiding, 35
suffi xes for HTML fi les, 35
URL component, 15

fi le-upload fi elds, 257–258
FileZilla FTP client, 356
Fireworks (Adobe), 353
FirstGov Web site, 11
focus pseudo-class (CSS), 162–163
folders, creating for Web pages, 34
font property (CSS), 174
font specifi cations using (CSS)

for body text, 142–144
changing dynamically with JavaScript,

215–217
character spacing, 168
font families to include in declarations, 165
font property for, 174
font-family property, 129, 142, 144,

164–165
for headings, 144–145, 164–165
for hyperlinks, 145–146, 165
line height, 167
properties for, 164
site-wide style sheet for, 310, 316–318
size, 166
text treatments, 170–174
tips for choosing fonts, 296, 302

font-size property (CSS), 166
font-style property (CSS), 172
font-weight property (CSS), 170–171
footer ID with tables, 204
for loops (JavaScript), 237–238, 242
forcing page refresh, 342
<form> element, 251–252
form handlers

CGI scripts for, 265–266
defi ned, 251
ISP support for, 266
online sources of, 266
prerequisites for creating, 264–265
receiving data by e-mail, 266–267

forms. See also data-collection forms; input
controls for forms

breaking into sections, 267
checking hosting support for, 265
creating, 251–252
cues for users, 267
data as driver for, 247
designing to be user-friendly, 267–268
gateway page for, 268

marking required fi elds, 268
markup, 252
search, 247, 248–249
uses for, 247
validating, 219–220, 264
(X)HTML attributes related to, 269–270

frame attribute for tables, 210
Frameset DOCTYPE declaration, 60, 61
FTP (File Transfer Protocol)

client software, 55, 356
posting fi les to server via, 40, 54–55

functions (JavaScript), 239–241

• G •
gateway page for forms, 268
gateway sites, 11
ghost sites, 338
GIF (Graphics Interchange Format), 105
Gmail interface, 222
goals for site, 42–43
Gourley, David (HTTP expert), 16
graphics. See images
graphics tools. See image-editing tools
greater-than sign (>)

displaying on Web page, 22–23
ending comments (-->), 23
for HTML tags, 12

greeked text, 311
green color coding in this book, 17
Greenspan, Jay (MySQL/PHP Database

Applications), 323

• H •
h elements (h1 through h6). See headings
handicaps. See accessibility
hard returns

ignored in block elements, 75
in preformatted text, 76

<head> element
clock code in, 279, 281
described, 34, 62
forcing page refresh, 342
header section overview, 24
<meta /> element in, 63–66
metadata in, 63–65
placement of, 62
scripts in, 224
text rollovers in, 277
<title> element in, 34, 62–63

header scripts, 224–225
header section. See <head> element

33_238479 bindex.indd 37333_238479 bindex.indd 373 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

374 HTML, XHTML & CSS For Dummies, 6th Edition

headings
browser display of, 72–74
CSS styles for, 74, 144–145, 164–165
elements for, 24, 72
font sizes for, 74
formatting, 72
overview, 24
with tables, 204
uses for, 72

height attribute (element),
110–111

“Hello World!” Letter example
code listing, 33
editing the page, 37–39
planning, 31–32
posting the page, 37–39
saving the page, 34–35
viewing the page, 36–37
writing HTML, 32–33

hexadecimal color codes, 158, 159–160
hidden fi elds, 257
“Hiding Your Email Address” (Chapman), 102
Holden, Greg (Starting an Online Business For

Dummies), 323
home page

company site, 308, 309–311
customizing template for your page, 311
providing access from all areas of site, 49

home.html page, 308. See also home page
HomeSite HTML editor, 348–349
h1 through h6 elements. See headings
horizontal rules

attributes, 79–80
CSS for, 80
formatting, 79
<hr> element for, 25, 78–80
uses for, 78, 80–81

hosted e-commerce services, 323–324
hosting your site. See also Web servers

checking support for forms, 265
costs of, 53
domain name for, 53–54
fi nding a provider, 39
host, defi ned, 51
hosting provider for, 53
yourself, 52–53

HotDog Pro WYSIWYG editor, 351
hover pseudo-class (CSS), 162–163
<hr /> element, 25, 79–80. See also

horizontal rules
href attribute. See also href attribute (<a>

element)
<area /> element, 117
<link> element, 135

href attribute (<a> element)
for absolute links, 93
for fi le downloads, 101
for intradocument links, 99
for mailto: links, 102
for named locations, 99, 100
overview, 91
for relative links, 94

hspace attribute (element),
114–115

.htm or .html suffi x, 35
HTML editors

helpers, 348–350
previewing capabilities of, 29–30
text editors versus, 30
WYSIWYG, 350–351

<html> element, 34, 61
HTML Goodies site, 118, 365
HTML (Hypertext Markup Language). See

also XHTML; (X)HTML
as basis for Web pages, 10
clock using, 278–279
color coding in this book, 17
conventions in this book, 2–3
deprecated elements and attributes, 121,

157, 361–364
in DHTML, 271
DOCTYPE declaration, 60
DTDs, 358–360
importance of understanding, 334
measurement values, 124
resources online, 364–366
specifi cations for 4.01, 19
validating, 344
XHTML versus, 16–17, 19

HTML Link Validator, 354
HTML toolbox

collections, 356
fi nding good buys, 347
FTP clients, 356
graphics tools, 351–353
HTML editors, 29–30, 348–351
HTML validators, 355
link checkers, 353–354

HTML Toolbox (NetMechanic), 356
HTML-Kit tools, 349–350, 355, 356
HTTP (Hypertext Transfer Protocol), 16
http:/, required for link URLs, 96
http-equiv attribute, 65–66
hyperlinks. See links
hypertext, 10–11
Hypertext Markup Language. See HTML
hyphen (-) instead of spaces in fi lenames, 35

33_238479 bindex.indd 37433_238479 bindex.indd 374 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

375 Index

• I •
icons in margins of this book, 6
if statements (JavaScript), 235
if/else statements (JavaScript), 235–236
image maps, 117–118
image rollovers

adding to page, 273–274
button generator for, 272
code listings, 273, 274–275
preloader enhancement for, 274–275
states, 272, 273
text rollovers versus, 275

image-editing tools
creating borders using, 113
fi nding hexadecimal color codes using, 160
overview, 351–353

images. See also element
alignment, 113–114
alternative text for, 108–109, 116
for auction sites, 300, 302
borders for, 112–113
copyright issues, 106
fi le format information online, 105
fi le formats for, 104–105
graphics tools, 351–353
image maps, 116–118
as links, 115–118
logo for company site, 309
off-site, avoiding direct links to, 50
optimization tutorials, 104
in pop-up windows, JavaScript for, 218–219
relative links for, 106
role in Web pages, 103–104
rollovers, 272–275
scaling by browsers, 111–112
site map for alternative accessibility, 46
size specifi cation for, 110–112
spacers for empty table cells, 194
spacing for, 114–115
storage location for, 106
turning small image into lines and boxes,

110, 111
Web-friendly, creating, 104–105
wise use of, 333

 element
align attribute, 113–114
alt attribute, 108
border attribute, 112
described, 19
as empty element, 106
height attribute, 110–111
hspace attribute, 114–115

image maps using, 117–118
for links in anchor tag, 115–116, 117
markup example, 107
src attribute, 20, 107
triggering links, 115–116
vspace attribute, 114–115
width attribute, 110–111

@import statement, 135
importing external style sheets (CSS), 135
indenting paragraphs using CSS, 169–170
index.html page, 308. See also home page
inheritance (CSS), 131–132
inline elements, 71, 93. See also specifi c

elements
inline event handlers (JavaScript), 245
inline styles (CSS), 133, 135
<input /> element

for check boxes, 255–256
checked attribute, 256
for fi le-upload fi elds, 257
for hidden fi elds, 257
maxlength attribute, 254
name attribute, 253, 255
for password fi elds, 254
for radio buttons, 255–256
for Reset buttons, 262, 263
size attribute, 254
src attribute, 263
for Submit buttons, 262, 263
for text fi elds, 253–254
type attribute, 253, 254, 257, 262, 263
value attribute, 255, 262, 263

input controls for forms
check boxes, 255–256
drop-down lists, 258–260
fi le-upload fi elds, 257–258
hidden fi elds, 257
multi-line text boxes, 261
overview, 219–220
password fi elds, 254–255
radio buttons, 255–256
Reset button, 261–263
Submit button, 261–263
text fi elds, 253–254

internal style sheets (CSS)
adding to page, 133–134
turning into external style sheets, 146–147

Internet connection for Web server, 52
Internet resources

About Me page by Ed Tittel, 298
browser color display test page, 159
browsers list, 14
button generator, 272
CGI information, 264, 265

33_238479 bindex.indd 37533_238479 bindex.indd 375 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

376 HTML, XHTML & CSS For Dummies, 6th Edition

Internet resources (continued)
character codes, 361
Citixxperience site, 45
companion site for this book, 1
CSE HTML Validator, Lite Edition, 340
CSS documentation in iPod format, 153
CSS reference, 125
CSS specifi cations, 358
“CSS Structure and Rules” tutorial, 131
CSS style sheet validation service, 129
defi nition lists discussion, 89
deprecated elements and attributes, 361
Dictionary of HTML META Tags, 66
DOM specifi cation, 245
DTDs, 360
For Dummies site, 47
FirstGov site, 11
form handling scripts, 266
FTP client software, 55, 356
ghost sites, 338
graphics formats information, 105
graphics tools, 352, 353
greeked text, 311
hexadecimal color codes, 160
“Hiding Your Email Address,” 102
HTML 4.01 specifi cations, 19
HTML helper editors, 349, 350
HTML resource sites, 364–366
HTML utility collections, 356
HTML validators, 344, 355
image map tutorials, 118
image optimization tutorials, 104
JavaScript information, 264
link checkers, 354
Lynx, 335
MOMspider link checker, 342
<object> element information, 288
PayPal, 324
spell checking, 340–341
templates from this book, 298
TextPad text editor, 30
top online references, 357–366
UI design, 56
White House home page, 103–104
W3C Core style sheets, 135
W3C’s Web Accessibility Initiative (WAI),

109
WYSIWYG editors, 350, 351
XHTML specifi cations, 19, 357–358
Yahoo! Merchant Solutions, 323
Zen Cart shopping cart, 324

intradocument links, 98–100. See also links
italics, applying to text, 172

• J •
Java versus JavaScript, 214
JavaScript

for arranging content dynamically, 215–217
arrays overview, 241–242
basic syntax rules, 228–229
body scripts, 224
canned, limitations of, 223
clock examples using, 278–281
color coding in this book, 17
components, 228
CSS with, 122
data types overview, 231
deferring execution of, 246
defi ned, 213
in DHTML, 271
disabling for older browsers, 281
Document Object Model (DOM), 245–246
events and event handling, 243–245
expression statements, 234
expressions, defi ned, 231
external fi le for, 225–227
for form validation, 219–220, 264
functions overview, 239–241
further information, 246, 264
header scripts, 224–225
help for users with function turned off, 46
for image rollovers, 272–275
including scripts in Web pages, 224–225
Java versus, 214
loops overview, 236–239
objects overview, 243
operators overview, 231–234
for pop-up windows, 218–219, 281–284
referencing an external fi le, 225–226
uses for, 214–222
variables overview, 229–231
window parameters, 283–284
(X)HTML markup related to, 246

JPEG (Joint Photographic Experts Group)
format, 105

.js fi les, 225–227
Juicy Studio site, 288

• K •
keywords in <meta /> element, 64–65

33_238479 bindex.indd 37633_238479 bindex.indd 376 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

377 Index

• L •
language attribute (<script> element),

224, 281
less-than sign (<)

beginning comments (<!--), 23
displaying on Web page, 22–23
for HTML tags, 12

letter-spacing property (CSS), 168
 element

for bulleted lists, 20, 85
for defi nition lists, 88
for numbered lists, 81–82

light green color coding in this book, 17
line breaks

 element for, 25, 77–78
ignored in block elements, 75, 77
paragraphs versus, 77
in preformatted text, 76

line-height property (CSS), 167
lines

horizontal rules, 25, 78–81
using small image to create, 110, 111

line-through text, 173–174
link checkers, 353–354
<link> element for external style sheets

(CSS), 134–135, 147
link pseudo-class (CSS), 162–163
links

absolute, 93
anchor element for, 91
basic, 91–92
broken, avoiding, 341–342
broken, fi xing, 94–96
browser display of, 92
“click here,” avoiding, 51
CSS styles for, 145–146, 161–163, 165
cut and paste method for, 95–96
defi ned, 10, 91
to e-mail addresses, 102
to external style sheets (CSS), 134–135, 147
for fi le downloads, 101–102
font family for (CSS), 165
forcing page refresh, 342
http:/ required for URLs, 96
images as, 115–118
intradocument, 98–100
MOMspider link checker, 342
to named locations, 98–100
to non-HTML resources, 100–102

off-site, considerations for, 49–51
opening pages in new window, 96–97
between pages of site, 94–95
pseudo-classes for (CSS), 161–163
redirecting users to another page, 66
relative, 93–95
resources that can be linked to, 92
text for, 51
tips for using, 337–338
URL specifi cation for, 92, 93, 94, 95–96

LinkScan/QuickCheck link checker, 354
lists

bulleted, 20, 84–87
defi nition, 87–89
nesting, 89–90
numbered, 81–84
overview, 25

logo for company site, 309
loops (JavaScript)

defi ned, 236
for, 237–238, 242
while, 238–239

Lopuck, Lisa (Web Design For Dummies), 56
lowercase. See case
low-scroll rule for navigation aids, 336
Lynx for testing, 335

• M •
mailto: links, 102
maintaining your site, 338
Mander, Richard (Web Usability For

Dummies), 56
Mansfi eld, Richard (CSS Web Design For

Dummies), 125
<map> element, 117
mapping your site. See site map
margin shorthand property (CSS), 140–141
markup. See also specifi c kinds

color coding in this book, 16
defi ned, 4, 11
overview, 11–13

Matt’s Script archive site, 266
maxlength attribute (<input /> element),

254
measurement values for properties (CSS), 124
media styles (CSS)

paged media, 153–155
visual media, 148–153

media types (CSS), 148

33_238479 bindex.indd 37733_238479 bindex.indd 377 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

378 HTML, XHTML & CSS For Dummies, 6th Edition

<meta /> element
content attribute, 63–64
http-equiv attribute, 65–66
keywords and page descriptions in, 64–65
name attribute, 63–64
redirecting users to another page, 65–66

metadata
defi ned, 63
<meta /> element for, 63–64
uses for, 64–65

method attribute (<form> element), 251
methods (JavaScript), calling, 243
Microsoft Word

avoiding for HTML creation, 10, 30
saving documents as text fi les, 32

MOMspider link checker, 342
monospaced type in this book, 2
moving fi les to Web server, 39–40, 54–56
multi-line text boxes, 261
multimedia

paged media styles (CSS), 153–155
visual media styles (CSS), 148–153

multiple attribute (<select> element), 259
music in auction pages, avoiding, 302
MySQL/PHP Database Applications (Bulger,

Greenspan, and Wall), 323

• N •
name attribute
<input /> element, 253, 255
<meta /> element, 63–64
<select> element, 259

namespaces, 61–62
navbar class (CSS), 139–141
navigation tools. See also UI (user interface)

defi ned, 26
For Dummies site example, 47–49
to home page, 49
images versus text, 180
importance of, 336
low-scroll rule for, 336
navigation bar using CSS, 139–141
off-site links, 49–51
planning for expansion, 46
for product catalog, 319
simple text bar, 310
site map, 45–46
site map as aid to creating, 44, 49
site size issues for, 47
test visitor for, 49
uses for, 43
visual scheme for, 49

 (non-breaking space) character, 204
nesting elements

CSS inheritance with, 131–132
lists, 89–90
overview, 20
<pre> elements inside <blockquotes>, 76
tables, 206–207

NetMechanic’s HTML Toolbox, 356
new operator, creating arrays using, 242
Nielsen, Jakob (accessibility expert), 56
non-breaking space () character, 204
noshade attribute (<hr> element), 80
Notepad text editor, 30
numbered lists

browser display of, 84
defi ned, 81
elements for, 81
formatting, 82–83
nesting, 89–90
numbering, 83–84

• O •
<object> element, 287–288
objects (JavaScript), 243, 246
off-site links. See also links

absolute links for, 93
considerations for choosing, 49–50
endorsement implied by, 50
guidelines for, 50
link text for, 51
to named locations, 100
to non-HTML resources, 100–102
opening in new window, 96–97
reviewing periodically, 50

 element, 81, 83–84
On the Web icon, 6
operators (JavaScript)

arithmetic, 232
assignment, 232
comparison, 233–234
counting, 232–233
defi ned, 231

<option> element for drop-down lists, 259,
260

orange color coding in this book, 17
ordered lists. See numbered lists
outside links. See off-site links
overlapping objects with CSS, 141–142
overlining text, 173–174

33_238479 bindex.indd 37833_238479 bindex.indd 378 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

379 Index

• P •
<p> element
align attribute, 71–72
closing tag for, 71
creating paragraphs, 70–71
described, 24
“Hello World!” Letter example, 34
with <input /> element, 253
with tables, 204

padding for tables
cellpadding attribute for, 192–193
CSS styles for, 194–195

padding property (CSS)
shorthand property for white space,

140–141
for table cells, 194–195

paged media styles (CSS), 153–155
pageHit cookie, 284–286
pageVisit cookie, 284–286
Paint Shop Pro Photo X2, 352
paragraphs. See also <p> element

alignment, 71–72
formatting, 70–71
indenting (CSS), 169–170
line breaks versus, 77
line breaks within, 77–78
line height specifi cation (CSS), 167

password fi elds, 254–255
paths (URL component), 15
PayPal

adding shopping cart to site, 324–326
shopping cart from, 323
Web site, 324

PDF fi les
linking to, 100–102
off-site, avoiding direct links to, 50

peer reviews, 344
percentage property measurement values,

124
period (.)

accessing object properties or methods, 243
after CSS selector, 129–130
in relative link notation (../), 94–95

Photoshop (Adobe), 352–353
Photoshop Elements (Adobe), 352
planning Web pages. See also designing; UI

(user interface)
building navigation tools, 47–49
getting critiques, 44
hosting considerations, 51–54
identifying elements needed, 43
importance of, 44

mapping your site, 44–46
moving fi les to your Web server, 39–40,

51–54
off-site link considerations, 49–51
overview, 31–32
professional design help for, 44
questions to ask, 42
requirements determined by goals, 43
setting goals for site, 42–43
table layout, 179–180
UI design resources, 56
under construction sections, avoiding, 45

PNG (Portable Network Graphics), 105
populating table cells, 201–204
pop-up text for images, 109
pop-up windows

adding to page, 283
JavaScript for, 218–219, 281–284
JavaScript window parameters, 283–284
opening linked documents in, 96–97
users’ dislike of, 97, 219, 281–282

post method, 252
posting fi les to Web server, 39–40, 54–56
<pre> element, 76
preformatted text, 75–76
preloaders for rollovers, 274–275
press page for company site, 309
print style sheet (CSS), 154–155
product catalog

advantages of Internet for, 319
category-page template, 326–327
components, 319–320
designing, 320
detail-page template, 327–328
further information, 323
incorporating PayPal shopping cart,

324–326
navigation interface, 319
resources used by, 321
shopping-cart software for, 322–324

properties (CSS). See also specifi c properties
for color defi nitions, 161
defi ned, 126
measurement values, 124
for paged media styles, 154
shorthand, 140–141
for table borders, 187–189
for visual media styles, 149–152

protocols, 15, 16. See also specifi c protocols
pseudo-classes (CSS), 161–163
purple color coding in this book, 17

33_238479 bindex.indd 37933_238479 bindex.indd 379 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

380 HTML, XHTML & CSS For Dummies, 6th Edition

• Q •
quotation marks (“) for attribute values, 20
quotes, block, 74–75

• R •
radio buttons, 255–256
reading array elements, 242
redirecting users to another page, 65–66
relative links

defi ned, 93
guidelines for, 94
for images, 106
notation (../), 94–95
simple, 94
site links, 94–95
unaffected by server or domain change, 94

relative property measurement values, 124
Remember icon, 6
Reset button for forms, 261–263
revolutionary changes, avoiding, 337
RGB color values, 160
rollovers

defi ned, 272
image, JavaScript for, 272–275
text, CSS for, 275–277

rows attribute (<textarea> element), 261
rows (table), <tr> element for, 182–183,

195–196
rowspan attribute for tables, 198, 200–201
rules attribute for tables, 210

• S •
saving Word document as text fi le, 32
scope attribute for tables, 210
<script> element. See also client-side

scripts
language attribute, 224, 281
processing order for multiple, 226
src attribute, 225, 226
type attribute, 224

scripting. See also CGI (Common Gateway
Interface); client-side scripts; JavaScript

online sources for scripts, 266
server-side, 221

ScriptSearch site, 266
search engines

metadata used by, 64–65
site map benefi ts for, 46
<title> element used by, 63

search forms, 247, 248–249. See also forms
<select> element for drop-down lists,

259–260
selected attribute (<option> element),

260
selectors (CSS), 126, 128
semicolon (;)

in CSS declarations, 128
ending entities, 21
separating JavaScript statements, 229

servers. See Web servers
server-side scripting, 221
shape attribute (<area /> element), 117
shopping-cart software

Add to Cart button, 324–325
do-it-yourself, 324
functions provided by, 322
further information, 323
hosted e-commerce services for, 323–324
incorporating PayPal into site, 324–326
PayPal for, 323
View Cart button, 325

shorthand properties (CSS), 140–141
Simple Mail Transfer Protocol (SMTP), 16
SimpleText text editor, 30
site map

benefi ts for users, 46
planning for expansion, 46
process of creating, 44
under construction sections, avoiding, 45
using for development, 44–45, 340
as visual guide for users, 45–46

“Site Redesign Tutorial” (Webmonkey), 56
site reviews, 344–345
size

for fonts, 74, 166
for horizontal rules, 79
image borders increasing, 113
of site, navigation and, 47
specifying for images, 110–112
for text fi elds, 254

size attribute
<hr> element, 79
<input /> element, 254

slash (/)
closing empty elements, 19
in HTML versus XHTML, 19
for JavaScript comments, 229
in relative link notation (../), 94–95

SmartFTP software, 55
Smith, Bud (Web Usability For Dummies), 56
SMTP (Simple Mail Transfer Protocol), 16
software. See also specifi c kinds

fi nding good buys, 347

33_238479 bindex.indd 38033_238479 bindex.indd 380 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

381 Index

FTP clients, 55, 356
graphics tools, 351–353
HTML editors, 29–30, 348–351
HTML utility collections, 356
HTML validators, 355
link checkers, 353–354
shopping-cart, 322–324
text editors, 30
for Web servers, 52

spacing. See aligning; white space
spammers, hiding e-mail addresses from, 102,

315
span attribute for tables, 210
 element, applying CSS styles using,

131
spell checking, 339, 340–341
square brackets ([]) as array operator, 242
src attribute
 element, 20, 107
<input /> element, 263
<script> element, 225, 226

standards
HTML, 3, 16
for tables, 205

start attribute (element), 83
start tags, 18
Starting an Online Business For Dummies

(Holden), 323
statements (JavaScript)

conditional, 235–236
defi ned, 228
expression, 234

Strict DOCTYPE declaration, 60, 61
strikethrough (line-through) text, 173–174
structure. See document structure
style attribute (CSS), 133, 135
<style> element

CSS style rules in, 133–134
turning internal to external style sheet, 147
for visual layouts, 139–141

style rules (CSS)
changing dynamically with JavaScript,

215–217
class attribute, 129–131
defi ned, 126
inheritance, 131–132
multiple per selector, 128
for old and new browsers, 147
for positioning elements, 141–142
precedence for, 136, 163
setting for entire document, 132
site-wide style sheet, 309, 316–318
 element with, 131

for visual layouts, 139–141
z-index with, 141

style sheets. See CSS (Cascading Style
Sheets)

Submit button for forms, 261–263
summary attribute for tables, 210
syntax checkers, 335
syntax, defi ned, 15

• T •
<table> element
align attribute, 195–196
cellpadding attribute, 192–194
cellspacing attribute, 192–194
optional attributes, 183
required for tables, 182
for simple table, 182–183
width attribute, 190–191
width property (CSS), 192

tables
aligning, 195–198
basic structural elements of, 178–179
basic (X)HTML elements of, 181–182
borders for, 186–188
cell spans for, 178, 184, 198–201
centering, 197–198
color for cells, 208–209
creating a simple table, 182–183
creating a table-based Web page, 183–184
dense, avoiding, 208
drafting, 180–181
empty cells for controlling layout, 194
images versus text for navigation, 180
nesting, 206–207
other (X)HTML attributes, 209–210
other (X)HTML elements, 185
overview, 25
padding and spacing for, 192–195
planning layout of, 179–180
populating cells, 201–204
presentation-focused, 176
simple versus complex, 177–178
standards for, 205
testing, 205
tips for creating, 205–209
uses for, 175–178
white space for markup, 206
width adjustments, 189–192
(X)HTML and CSS for, 176

tags. See elements; specifi c elements
target attribute (<a> element), 97
<tbody> element, 185, 197

33_238479 bindex.indd 38133_238479 bindex.indd 381 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

382 HTML, XHTML & CSS For Dummies, 6th Edition

<td> element
align attribute, 195–196
border-spacing property (CSS), 194–195
colspan attribute, 184, 198–200
creating cells using, 183–184
nesting <table> elements in, 206–207
padding property (CSS), 194–195
required for tables, 182
rowspan attribute, 198, 200–201
for simple table, 182–183
valign attribute, 196
width attribute, 190–191
width property (CSS), 192

Technical Stuff icon, 6
templates

for auction item presentation, 303–305
category page, 327–328
detail page, 327–328
downloading, 298
testing on multiple browsers, 336
using ones in this book, 298

testing. See also validating
beta-testing, 343
Lynx for, 335
multiple browsers for, 335–336
navigation tools, 49
pages for browsers disabling CSS, 128
peer reviews for, 344
site reviews for, 344–345
tables, 205
tips for, 335–336
user feedback for, 345–346

text. See also font specifi cations using (CSS);
text blocks

for auction sites, tips, 302
boldface for, 170–171
color change using CSS, 161
defi nition lists, 87–89
for forms, 267
greeked, 311
horizontal rules, 25, 78–81
HTML page as collection of blocks, 69
for hyperlinks, 51
hypermedia usage tips, 337–338
as image alternative, 108–109, 116
inline elements versus blocks, 70
italics for, 172
line breaks, 25, 77–78
nesting lists, 89–90
positioning using CSS, 168–170
preformatted, 75–76
rollovers, 275–277
spell checking, 339, 340–341
tips for choosing fonts, 296

text blocks. See also forms; tables; specifi c
kinds

aligning using CSS, 168–169
bulleted lists, 20, 84–87, 89–90
formatting ignored by browsers, 75
headings, 24, 72–74, 144–145, 164–165, 204
inline elements versus, 70
numbered lists, 81–84, 89–90
paragraphs, 24, 70–72, 77–78, 167, 169–170
quotes, 74–75
types of, 69

text editors, 30. See also HTML editors;
specifi c editors

text fi elds, 253–254
text rollovers

adding to page, 277
browser display of, 276
code listing, 277
CSS for, 275–278
image rollovers versus, 275

text-align property (CSS)
for tables, 197
for text, 169

<textarea> element, 261
text-decoration property (CSS), 173–174
text-indent property (CSS), 169–170
text-only browsers

alternative text for images, 108–109, 116
headings display in, 74
need for, 13

TextPad text editor, 30
text-transform property (CSS), 172–173
TextWrangler HTML editor, 349
<tfoot> element, 185, 197
<th> element, 185, 197
<thead> element, 185, 197
Tip icon, 6
<title> element, 34, 62–63
Tittel, Ed (About Me page), 26–28
tools. See software
top-down page design, 332
Totty, Brian (HTTP expert), 16
<tr> element, 182–183, 195–196
Transitional DOCTYPE declaration, 60, 61
Tricks of the Trade icon, 6
type attribute. See also type attribute

(<input /> element)
 element, 84
<script> element, 224
 element, 85

type attribute (<input /> element)
for check boxes, 255
for fi le-upload fi elds, 257
for hidden fi elds, 257

33_238479 bindex.indd 38233_238479 bindex.indd 382 4/10/08 9:50:14 PM4/10/08 9:50:14 PM

383 Index

for password fi elds, 254
for radio buttons, 255
for Reset buttons, 262, 263
for Submit buttons, 262, 263
for text fi elds, 253

typos, avoiding, 339

• U •
UI (user interface). See also designing;

navigation tools; planning Web pages
defi ned, 41
design resources, 56
Gmail’s use of JavaScript for, 222
importance of, 41
site map, 44–46
visual scheme for, 49

 element, 20, 85–86
under construction sections, avoiding, 45
underlining text, 173–174
underscore (_) instead of spaces in fi lenames,

35
Unicode character codes, 22, 361
unordered lists. See bulleted lists
uploading fi les to Web server, 39–40, 54–56
uppercase. See case
URLs (Uniform Resource Locators). See also

links
components, 15
conventions in this book, 2
overview, 14–15
for posting fi les to server, 54
redirecting users to another page, 65–66

user feedback, 345–346
user interface. See UI

• V •
validating. See also testing

forms, 219–220, 264
HTML validators for, 344, 355
overview, 355
spell checking, 339, 340–341
style sheets, W3C service for, 129

valign attribute for table elements, 196, 197
value attribute
<input /> element, 255, 262, 263
<option> element, 259

values. See also variables (JavaScript)
CSS, 126
JavaScript, 229, 230

variables (JavaScript)
declaring, 230–231
defi ned, 230
overview, 229–231

vertical-align property for tables (CSS),
197

View Cart button, 325
visited pseudo-class (CSS), 162–163
visual layouts using CSS, 139–141
visual media styles (CSS), 148–153
vspace attribute (element),

114–115

• W •
Wall, David (MySQL/PHP Database

Applications), 323
Warning! icon, 6
Web browsers. See browsers
Web Design For Dummies (Lopuck), 56
Web Design Group, 131, 365
Web Developer’s Virtual Library (WDVL), 365
“Web Graphics Overview” (Webmonkey), 105
Web hosting. See hosting your site
Web Pages That Suck site, 56
Web resources. See Internet resources
Web servers. See also hosting your site

dedicated, 52
defi ned, 52
Internet connection for, 52
moving fi les to, 39–40, 51–54
overview, 13–14
relative links not affected by changing, 94
software for, 52

Web Usability For Dummies (Mander and
Smith), 56

WebCom.com site, 365
Webmastering For Dummies (Wiley

publication), 52
Webmonkey

hexadecimal color codes, 160
image optimization tutorials, 104
“Site Redesign Tutorial,” 56
“Web Graphics Overview,” 105
Web site, 365

WebReference.com, 366
Web-safe colors, 159
Westciv, CSS information from, 125, 153
while loops (JavaScript), 238–239
White House home page, 103–104

33_238479 bindex.indd 38333_238479 bindex.indd 383 4/10/08 9:50:15 PM4/10/08 9:50:15 PM

384 HTML, XHTML & CSS For Dummies, 6th Edition

white space
cellspacing attribute for tables, 192–193
CSS and <div> elements for, 76
CSS properties for tables, 194–195
CSS shorthand properties for, 140–141
ignored in block elements, 75
image settings for, 114–115
in JavaScript, 228–229
line breaks for, 77
 (non-breaking space) character

for, 204
in preformatted text, 76
for table markup, 206
uses for, 76

width attribute
<hr> element, 79
 element, 110–111
<table> or <td> element, 190–191

width property for tables (CSS), 192
word processors, avoiding for HTML

creation, 10, 30
word-spacing property (CSS), 168
World Wide Web, 11
writing array elements, 242
WS_FTP software, 55
W3C Link Checker, 354
W3C (World Wide Web Consortium)

Core style sheets, 135
CSS3 specifi cation, 123
HTML standards kept by, 3, 16
HTML Validator, 344, 355
link to site, 92
<object> element information, 288
style sheet validation service, 129
Web Accessibility Initiative (WAI), 109
Web site, 364

W3Schools site, 288, 365
WYSIWYG editors, 350–351

• X •
XHTML. See also HTML (Hypertext Markup

Language); (X)HTML
color coding in this book, 17
conventions in this book, 2–3
DOCTYPE declaration, 60–61
DTDs, 358–360
HTML versus, 16–17, 19
namespace, 61–62
specifi cations for, 19, 357–358

(X)HTML. See also HTML (Hypertext Markup
Language); XHTML

color coding in this book, 17
color names, 158–159
color numbers, 159–160
conventions in this book, 2–3
deprecation of formatting markup, 121, 157,

197
do’s and don’ts, 331–338
DTDs, 358–360
examples online, 1
HTML versus XHTML, 16–17, 19
specifi cations, 19
well-structured, elements required for,

23–24
XML (eXtensible Markup Language), 16, 17

• Y •
Yahoo!

browsers list, 14
Merchant Solutions, 323–324

“Your Complete Guide to Web Design” online,
56

• Z •
Zen Cart shopping cart, 324
Zvon’s site, 365

33_238479 bindex.indd 38433_238479 bindex.indd 384 4/10/08 9:50:15 PM4/10/08 9:50:15 PM

	HTML, XHTML & CSS for Dummies. 6th Edition
	About the Authors
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	Three Presumptuous Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting to Know (X) HTML and CSS
	Chapter 1: The Least You Need to Know about HTML, CSS, and the Web
	Web Pages in Their Natural Habitat
	Anatomy of a URL
	(X) HTML’s Component Parts
	Parts Is Parts: What Web Pages Are Made Of
	Listing 1-1: Meet an Author!

	Chapter 2: Creating and Viewing a Web Page
	Before You Get Started
	Creating a Page from Scratch
	Editing an Existing Web Page
	Posting Your Page Online

	Chapter 3: Proper Planning Prevents Poor Page Performance
	Planning Your Site
	Hosting Your Web Site

	Part II: Formatting Web Pages with (X) HTML
	Chapter 4: Creating (X)HTML Document Structure
	Establishing a Document Structure
	Labeling Your (X) HTML Document
	Adding a Document Header
	Creating the (X) HTML Document Body

	Chapter 5: Text and Lists
	Formatting Text
	Controlling Text Blocks
	Organizing Information

	Chapter 6: Linking to Online Resources
	Basic Links
	Customizing Links

	Chapter 7: Finding and Using Images
	The Role of Images in a Web Page
	Creating Web-Friendly Images
	Adding an Image to a Web Page
	Images That Link

	Part III: Taking Precise Control Over Web Pages and Styles
	Chapter 8: Introducing Cascading Style Sheets
	Advantages of Style Sheets
	CSS Structure and Syntax
	Using Different Kinds of Style Sheets
	Understanding the Cascade

	Chapter 9: Using Cascading Style Sheets
	Managing Layout, Positioning, and Appearance
	Multimedia

	Chapter 10: Getting Creative with Colors and Fonts
	Color Values
	Color Definitions
	Fonts

	Chapter 11: Using Tables to Jazz Up Your Pages
	What Tables Can Do for You
	Table Basics
	Sketching Your Table
	Constructing Basic Tables
	Adding Spans
	Populating Table Cells
	Testing Your Table
	Table-Making Tips
	Other Table Markup of Interest

	Part IV: Integrating Scripts with (X) HTML
	Chapter 12: Scripting Web Pages
	What JavaScript Can Do for Your Pages

	Chapter 13: The Nuts and Bolts of JavaScript
	Including Scripts in Web Pages
	Using the Same Script on Multiple Pages
	Exploring the JavaScript Language
	Events and Event Handling
	Document Object Model (DOM)
	Other JavaScript Items of Interest
	References and Resources

	Chapter 14: Working with Forms
	Uses for Forms
	Creating Forms
	Processing Data
	Designing User-Friendly Forms
	Other Noteworthy Forms-Related Markup

	Chapter 15: Fun with Client-Side Scripts
	Adding Rollovers to Your Pages
	Displaying Dynamic Content on Your Page
	Displaying Pop-up Windows
	Working with Cookies
	Using the XHTML Object Element

	Part V: (X) HTML Projects
	Chapter 16: The About Me Page
	Overview and Design Considerations
	Page Markup

	Chapter 17: The eBay Auction Page
	Designing Your Auction Page
	Presentation Issues to Consider
	Using a Template for Presenting Your Auction Item

	Chapter 18: A Company Site
	Issues to Consider When Designing Your Site
	Basic Elements of a Company Web Site
	Give Your Visitors What They Need

	Chapter 19: A Product Catalog
	Dissecting a Product Catalog
	Choosing a Shopping Cart
	Page Markup

	Part VI: The Part of Tens
	Chapter 20: Ten HTML Dos and Don’ts
	Concentrate on Content
	Go Easy on the Graphics, Bells, Whistles, and Hungry Dinosaurs
	Create Well-Formulated HTML and Test
	Keep It Interesting After It’s Built!

	Chapter 21: Ten Ways to Exterminate
	Avoid Dead Ends and Spelling Faux Pas
	Keep Your Perishables Fresh!
	Check Your Site, and Then Check It Again!
	Let User Feedback Feed Your Site

	Chapter 22: Ten Cool HTML Tools and Technologies
	HTML Editors
	Graphics Tools
	Link Checkers
	HTML Validators
	FTP Clients
	Swiss Army Knives

	Chapter 23: Ten Tip-Top Online HTML References
	Nothing But the Specs, Please!
	The HTML and XHTML DTDs
	Character Codes Come In Many Flavors
	Deprecated (X) HTML Elements and Attributes
	Magnificent HTML Resource Sites

	Index

