

by Erik Guilfoyle

Half-Life® 2 Mods
FOR

DUMmIES
‰

01_096314 ffirs.qxp 12/7/06 10:40 AM Page iii

01_096314 ffirs.qxp 12/7/06 10:40 AM Page ii

Half-Life® 2 Mods
FOR

DUMmIES
‰

01_096314 ffirs.qxp 12/7/06 10:40 AM Page i

01_096314 ffirs.qxp 12/7/06 10:40 AM Page ii

by Erik Guilfoyle

Half-Life® 2 Mods
FOR

DUMmIES
‰

01_096314 ffirs.qxp 12/7/06 10:40 AM Page iii

Half-Life® 2 Mods For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Half-Life is a registered
trademark of Valve Corporation. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIM-
ITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDER-
STANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COM-
PETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006936817

ISBN: 978-0-470-09631-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/SX/RS/QW/IN

01_096314 ffirs.qxp 12/7/06 10:40 AM Page iv

About the Author
Erik “foyleman” Guilfoyle joined the game-modding scene shortly after the
release of Half-Life in early 2000 by creating a custom level and supporting
material for the game. After that, Erik was hooked on modding games.

Two years and a lot of practice later, Soldier of Fortune was released. Erik
jumped at the opportunity to map a custom level for this game and was
among the first to release a map for the game with custom textures. This led
to a flurry of e-mails requesting advice for constructing custom material as
well as the beginning of a compendium of game modification tutorials.

Not much later, Erik started his own Web site to host existing and new tutori-
als. The site grew until he had the largest collection of tutorials on the Internet
for Call of Duty mapping. Now, Erik runs the MODSonline.com modding com-
munity with the assistance of two other administrators and several friends,
covering many games, including Half-Life 2. As new games are released, he
starts the tutorials section with beginner instruction and leads the member
forums in preparation for the next up-and-coming game.

In August of 2006, Erik published his first book through Wiley Publishing, Inc.:
Quake 4 Mods For Dummies.

Aside from his love for games, Erik is also the vice president of an estab-
lished media company, Tres Inc. His company has produced 3-D models,
animations, motion graphics, and Web sites for companies and corporations
throughout New Jersey for over five years. Mission Critical Studios, an off-
shoot of Tres Inc., is now working on a game of its own.

01_096314 ffirs.qxp 12/7/06 10:40 AM Page v

01_096314 ffirs.qxp 12/7/06 10:40 AM Page vi

Dedication
This book is dedicated to the MODSonline.com modding community.

01_096314 ffirs.qxp 12/7/06 10:40 AM Page vii

01_096314 ffirs.qxp 12/7/06 10:40 AM Page viii

Author’s Acknowledgments
I would like to express my thanks to those that have knowingly and unknow-
ingly helped me to gain the knowledge that I now have in the field of game
modding. David Gonzalez helped to get me started in the world of modding
by introducing me to the original Half-Life game and giving me time to con-
tinue even when we had real work to get done. My wife Kate allows me to
spend countless hours on the computer rather than with her without too
much complaining, and I must thank her for that. Also, thanks to Peter and
Cathy Guilfoyle, my parents.

And what would this book be without the Half-Life 2 game itself? Valve
Software built an awesome game and allows people like me to wreak havoc
on the code that makes it all work. For this game, the games before it, and the
games to come, thank you for making the world that much more fun.

This book would not have been possible if it were not for the kind and tal-
ented folks at Wiley. Melody Layne gave me the opportunity to work with
Wiley and got me on track with an easy-to-follow format that anyone can
read. Christopher Morris and Jeff Salé helped to keep me on that track with
insightful and helpful suggestions through editing. I know several others had
a part in helping me put this book together, and I extend my thanks to them
as well.

Finally, thanks to all the fine members of MODsonline.com. It is with them that
I have learned so much and continue to learn more with each game that comes
out. I only hope that all the tutorials, forums posts, and everything else I do
help to one day make games even more outstanding than they are now.

01_096314 ffirs.qxp 12/7/06 10:40 AM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Christopher Morris

Acquisitions Editor: Melody Layne

Copy Editor: Jennifer Riggs

Technical Editor: Jeff Salé

Editorial Manager: Kevin Kirschner

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Jonelle Burns,
Carl Byers, Lavonne Cook, Joyce Haughey,
Stephanie Jumper, Barry Offringa,
Heather Ryan

Proofreader: Techbooks

Indexer: Techbooks

Anniversary Logo Design: Richard Pacifico

Special Help: Colleen Totz Diamond,
Teresa Artman, Andy Hollandbeck

Cover Image: David Gonzalez

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_096314 ffirs.qxp 12/7/06 10:40 AM Page x

Contents at a Glance
Introduction ...1

Part I: The ABCs of Modding ...7
Chapter 1: Modifying the Game..9
Chapter 2: Getting Familiar with Modding Tools and Techniques.............................17
Chapter 3: Breaking Down the Game ...23

Part II: Making Your Own Maps...................................29
Chapter 4: Getting Set Up for Mapping..31
Chapter 5: Creating Your First Game Map...59
Chapter 6: Decorating the Scene ..73
Chapter 7: Adding Lights and a Player ..81
Chapter 8: Putting the Pieces Together...91

Part III: Expanding on Your Creation107
Chapter 9: Expanding Your Map with Additions ..109
Chapter 10: Building with Optimization in Mind..127
Chapter 11: Heading to the Great Outdoors ...153
Chapter 12: Adding a Few Details...185

Part IV: Going Beyond the Basics219
Chapter 13: Creating Custom Textures..221
Chapter 14: Finishing Up Your Map ...261
Chapter 15: Showing the World ..273

Part V: The Part of Tens ..295
Chapter 16: Ten Great Tips and Tricks ..297
Chapter 17: Ten Great Mods to Learn From..307

Appendix: CD Installation Instructions317

Index ...321

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xi

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xii

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
Foolish Assumptions ...3
How This Book Is Organized...3

Part I: The ABCs of Modding...4
Part II: Making Your Own Maps ..4
Part III: Expanding on Your Creation..5
Part IV: Going Beyond the Basics...5
Part V: The Part of Tens...5

Icons Used in This Book..6

Part I: The ABCs of Modding ..7

Chapter 1: Modifying the Game .9
Checking Out Half-Life 2 ..11
Adding to or Changing the Game ...12

Finding out what you can mod ...12
Knowing what tools you need ..13

The Modding Process Goes Something Like This......................................14
Sharing the Game with Others ...15

Chapter 2: Getting Familiar with Modding Tools and Techniques . . .17
Gathering the Tools Involved ...17

Writing plain text ..18
Drawing, painting, and taking pictures..18
Packing up your work ..19

Using Best Modding Practices..20
Following standard naming conventions ..20
Instructing the end user ..20
Including all the files required ..21
Avoiding the overwriting headache...21
Saving and saving again...21

Differences between Half-Life and Other Games..22

Chapter 3: Breaking Down the Game .23
Making Maps and Playing Levels ...23
Making Your Own Maps...24

Building blocks of a map ...25
Setting boundaries ...25

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xiii

Half-Life 2 Mods For Dummies xiv
Seeing in three dimensions ...26
Measuring in units..27

Toying with Textures ...27
Painting the walls ...27
Building interest ...27

Evoking Entities..28

Part II: Making Your Own Maps29

Chapter 4: Getting Set Up for Mapping .31
Installing the Hammer Editor ...31
Launching for the First Time ..34

Dealing with configuration errors ..37
Manually configuring Hammer Editor..39

Exploring the Interface ..46
Looking in 2D and 3D ...47
Pressing buttons and working menus ...49
Reading messages ..54

Using Shortcuts for Success ...56
Troubleshooting Issues ...57

Chapter 5: Creating Your First Game Map .59
Selecting a Texture...59

Deciding on a base texture..60
Filtering textures ..60

Drawing the First Brush ..63
Maneuvering in the Viewports ...65

Zooming and moving the view..65
Counting in the power of two ...66

Resizing and Moving Brushes...67
Taking Cues...68
Hollowing Out the Room...69
Breaking Things Apart...71
Leaking Is Not an Option...71
Saving Your Map...72

Chapter 6: Decorating the Scene .73
Selecting Faces on the Wall...73
Exploring the Face Edit Sheet Window..74
Putting on Some Paint: Applying Textures ...76

Adding texture to a wall...77
Adding texture to the floor..78
Adding texture to the ceiling ..79

Half-Life 2 Mods For Dummies

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xiv

Chapter 7: Adding Lights and a Player .81
Lighting the Way...81

Positioning the entity...83
Adding a bit of color ..84

Adding a Place to Start ..86
Positioning and Providing Some Direction ...87

Adjusting the rotation from the Object Properties window88
Adjusting the rotation from within the 2D viewport........................89

Chapter 8: Putting the Pieces Together .91
Leveling the Playing Field ...91

Building the BSP ...92
Seeing what can be seen..92
Lighting the scene ..94
Playing with the results ...94

Processing the Pieces..94
Listening to the console ..98
Spotting an error ..103

Playing the Result ..105

Part III: Expanding on Your Creation...........................107

Chapter 9: Expanding Your Map with Additions 109
Making Copies ..109
Joining Rooms ..111

Drawing your halls ...112
Making room to play ..114
Cutting in some doors ...119

Retexturing the Hallway Walls..123
Lighting the Path ..124
Running in the Halls...125

Chapter 10: Building with Optimization in Mind 127
Seeing What the Game Can See ..128

Accessing your commands ...128
Outlining your world..130

Mitering for Mappers...133
Fixing those corners ..134
Combining multiple brushes...138
Automatic optimization...139
Creating portals ..142

Can You See Me?...151

xvTable of Contents

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xv

Half-Life 2 Mods For Dummies xvi
Chapter 11: Heading to the Great Outdoors .153

Building an Outdoor Addition ..153
Multiplying the ground ..155
Filling in the useless corner ..157
Defining your boundaries..158

Making a Scene ...159
Throwing dirt on the ground ..159
Fitting the outer building...160
Climbing the roof..161
Walling in the yard and adding sky ..162

Mitering the Outer Walls ...163
Getting Outside...164

Clipping out some doors ...164
Touching up the textures ..167

Fixing a Bottleneck...172
Sliding Open the Door ...173

Making that door move ...174
Sealing your area ..176

Lighting from Above ..179
Adding virtual sunlight ..179
Adding a virtual sun...181

Testing Your Progress..183

Chapter 12: Adding a Few Details .185
Doing Some Decorating ...185

Pulling a ledge...186
Lighting the porch..189
Defining the indoor lights..195

Pairing the Doors ...200
Adding Some Crates...203

Placing crates for strategy ..206
Making crates for other environments ..208

Picking Up on Pickups ...211
Adding armor ..211
Restoring health ...212
Finding weapons...214
Grabbing ammo ..215

Testing and Having Fun ...217

Part IV: Going Beyond the Basics219

Chapter 13: Creating Custom Textures .221
Slicing Up the Texture ...222
Installing Some Tools...222
Bricking Up the Joint ...224

Half-Life 2 Mods For Dummies

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xvi

xviiTable of Contents

Finding the Right Size ..225
Tiling on Forever ..228

Shifting the image to expose the seam ..228
Stamping out your seams..231
Shifting back to ground zero...234

Mapping Your Images ..235
Splashing on some color: The diffuse map236
Picking out the highlights: The specular map238
Bumping polygons in and out: The normal map243
Creating a normal map without the filter..249
Building the VTF ...250

Making Everything Work Together ..253
Building a material ...253
Applying your material ..257

Chapter 14: Finishing Up Your Map .261
Multiple Spawns for Multiplayer Games ...261
Reflecting on Your Surroundings ...265

Dropping in cubemaps...265
Generating reflections..271

Chapter 15: Showing the World .273
Packing Up for Release ..273

Explaining yourself...273
The origins of README..274
Picturing your level ..277
Packaging additions to the game ...279

Zipping It Up ...291
Distributing the Goods ..293

Part V: The Part of Tens ...295

Chapter 16: Ten Great Tips and Tricks .297
Coming Up with Original Ideas...297
Planning Your Build ...298
Designing Minimally...298
Following Examples ...299
Using Prefabs ..301
Meshing Objects...301
Putting on a New Skin..303
Measuring the Player...303
Finding More to Mod ...304

Listening in..304
Modeling and animating ..304

Looking for Help...305

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xvii

Chapter 17: Ten Great Mods to Learn From .307
Crossfire 2 b3 ..307
Urbanes Deathmatch 2 ..308
Dystopia ..309
High-Resolution Skins..309
Razor’s Weapon Sound Package...310
Source Racer...311
BlockStorm..312
Strider Mod ...313
Garry’s Mod ..314
Portal Challenge ...315

Appendix: CD Installation Instructions317

Index..321

Half-Life 2 Mods For Dummies xviii Half-Life 2 Mods For Dummies

02_096314 ftoc.qxp 12/7/06 10:40 AM Page xviii

Introduction

If this is your first time venturing into the world of game modding, let me
post a warning now: You are entering into something that many people

(including me) have described as addicting, exciting, and frustrating all at the
same time. I know very few people who started on the path of game modifica-
tion and found it easy to stop working on their projects for even a few days. If
you’re experienced in game modification, you already know what you’re get-
ting yourself into. Either way, I welcome you to Half-Life 2 Mods For Dummies.

I’ve lead many beginners along the path of game modification, and they all
say the same thing: This is an addictive hobby, and it isn’t easy to put down
even for the night. On several occasions, I’ve sat down in my computer chair
to work on my game, planning to accomplish only a few things. The next
thing I know, it’s 2 o’clock in the morning, I’m still working, and I have to get
up for work in another four hours.

So, heed my warning but also enjoy what is to come. This book gives you the
knowledge and skill to mod on your own. I show you not only how to create
modifications for the Half-Life 2 game but also create content that will have
you bragging to your friends and family. Although this book can’t tell you
every aspect of modding Half-Life 2, it shows you how to continue on your
own and grow into a master of games.

About This Book
When the first version of Half-Life came out, a buddy of mine and I decided to
create our own mod for the multiplayer version of the game. From that
moment on, I was hooked on modding. There really was no turning back for
me, and I just kept on creating more and more content.

Eventually, I moved on to another game — Soldier of Fortune — to see what
kind of things I could create elsewhere. Quite often, I was unable to find assis-
tance online for creating my custom content, so I decided to learn it on my
own. Through much trial and error and many discussions with other mod-
ders online, I discovered that I was able to help others with their projects.
That’s when I decided to dedicate my efforts to teaching and guiding others
on the how to mod the Soldier of Fortune game.

03_096314 intro.qxp 12/7/06 10:41 AM Page 1

Over the years, I furthered my exploration and tutelage of modding with
other games, and here I am now with Half-Life 2. I really enjoy showing others
how to make mods for games, and I can do the same for you. All you need to
do is read on.

My goal in this book is to show you by example many aspect of modding
Half-Life 2. I provide you with an understanding of how things work so that
you can take what I show you and expand your newly found knowledge on
your own. I leave you with not just information but also something you can
play in the game and show off to your friends and family.

Some of you might feel that the focus of this book is on mapping rather than
modding for Half-Life 2. True, I do focus on the most popular form of game
modification — mapping —, but mapping is a type of game modification. I
also provide some insight that leads you toward more complex modding of
the game that you can further explore on your own. The space I have here is
limited, but the info in this book will start you on what I find to be the quite
enjoyable path of game modification.

Conventions Used in This Book
I lead you into the world of modding Half-Life 2 by way of two methods, both
of which I feel are equally important. The first and most obvious is by way of
example. As I walk you through the different aspects of modding, I show you,
step-by-step, the methods to use. I don’t leave you guessing what needs to be
typed, clicked, or done.

For each chapter that has you creating something for the game, I also supply
an example. On the companion CD (as the back of the book), you can find
chapter-based files containing all the work that was reviewed. You can use
this either for reference of the current chapter or as a starting point for the
following chapter, which builds upon the previous.

The second method that I use is that of background. I provide you with all the
necessary background for each subject in modding. A statement made to me
once a long time ago that I have never forgotten is, “It’s easier to drive a car if
you know how it works.” You can apply the same principle to games. The
more you know about how a game works, the easier it is to mod.

Background provides you with understanding. With understanding, you can
do more than create. You can also better find out why something doesn’t
work. There are going to be moments that something doesn’t turn out as you
expected. With a background of how you got to your issue, you should be
able to solve any problems that arise.

2 Half-Life 2 Mods For Dummies

03_096314 intro.qxp 12/7/06 10:41 AM Page 2

Foolish Assumptions
To find a starting ground upon which to write, I had to make a few assumptions.

First, I assume that you have a basic understanding of your computer.
Perhaps not so obvious, I also assume that you’re working on a computer
that uses the Microsoft Windows operating system. At the time of this writ-
ing, you can modify the Half-Life 2 game only on a Windows installation. If you
use a Linux or Mac operating system, I cannot be certain that the chapters
contain proper examples.

Because you have a Microsoft Windows operating system, I took the liberty
of making a few other assumptions. I figure that you know how to open and
use Windows File Explorer for browsing folders and files on your computer. I
also figure that you have the basic programs that come with Windows, such
as Notepad, installed and accessible.

If you don’t have a Windows operating system, the contents of this book can
still be of great value. Through example and history, the information I provide
you can be useful regardless of the game or platform on which you’re work-
ing. The discussions here help you to understand the modding process for
most games out there. You will be ready to mod, even if you can’t actively
follow my examples right now.

Second, you must know how to use the keyboard and mouse. You also need a
three-button mouse. Although you can follow the majority of this book with-
out a three-button mouse, there are one or two operations that you can’t do
without this type of mouse.

Finally, because you purchased this book, I assume you know something
about games. You should already have a copy of the Half-Life 2 game, not just
in your hands, but installed on your computer. Hopefully, you installed the
game by using the default installation paths. After you installed the game, I
assume you got it running and perhaps even played it a little bit. You bought
the game, so you should spend a little time enjoying it.

How This Book Is Organized
Although this book is written in a particular order and each chapter builds
upon the next, this doesn’t mean you can’t skip around. If you want to know
how to make your own textures, go for it. Head over to Chapter 15 and start
on your custom textures. There I show you how to create your own texture
from start to finish.

3Introduction

03_096314 intro.qxp 12/7/06 10:41 AM Page 3

If you’d prefer to better optimize your map, Chapter 10 is the one for you.
There you can see how to build you map and modify it for smoother play in
the game. (It will have better speed and rely less on your processor.)

As for the chapters that build upon the previous chapters, those are fine to
skip around as well. Just load the example files from the previous chapter as
found on the CD at the back of the book. Then go on your way as if you’ve
accomplished everything I’ve written up to that point. If I feel you should ref-
erence a previous chapter for clarity, I make sure to mention it.

This book is broken into five parts as follows.

Part I: The ABCs of Modding
Allow me to introduce you the world of modding. In this part, I help you
better understand what it means to modify a game. I point out specific
aspects of the game and relate them to something you’re familiar with: real
life. Then, I briefly walk you through the steps involved in modding a game.

After you’re familiar with the concept of modding, I introduce you to some of
the tools you’ll be using and how you can use them. I acquaint you with some
important things that you should remember while modding, and I explain
why you want to remember them.

Then, I start breaking down the game. You’ve perhaps already played through
Half-Life 2, but I’ll bet you haven’t seen it the way I’m going to show it to you.
I help you look at the game through different eyes.

Part II: Making Your Own Maps
In Part II, I ease you into the modding process of making your own levels. I
start you off with the tools required and show you around. When you’re
familiar with the popular map editor, I get you started on making your first
level. It won’t be much, but by the end of this part, you will have a level that
you can play in the game.

While making your own level, you get all the basics required. From creating a
room and painting the walls to adding light, you build a place to start. From
there, you convert your level from the editor load it in the game for some fun.

4 Half-Life 2 Mods For Dummies

03_096314 intro.qxp 12/7/06 10:41 AM Page 4

Part III: Expanding on Your Creation
Part III goes beyond the basics of building a simple level for the game. This is
where you go from a single room to something you can enjoy with your
friends online. This is arguably the best part of making a level for Half-Life 2.

I start you off with simple additions to the level. You expand from creating a
single room to creating something a bit bigger. From there, I show you some
optimization tricks. These advancements are some of the most valuable
because they can perhaps help the novice and advanced alike.

With your small level in hand, you next turn it into a fun multiplayer level.
You add on an outside area with a great sky. Then, I show you how to place
items within the level that the player can use to win the battle.

Part IV: Going Beyond the Basics
Map construction isn’t where the fun stops. In Part IV, I take you on a path
that can help to improve the level you created in previous chapters and then
set it free to the public to enjoy it as you do.

The trip starts with the world of textures. Textures are what can take your
player from the dunes of Mars to the beaches of Hawaii. From the confines of
a dungeon to the vastness of space, you can create the images that line the
walls of everything in the game. Not only are the walls covered in this part
but so are the faces and bodies of the players within the game. Textures
cover it all.

Closing this part is what you need to know to get your mod out to the world. I
show you what’s involved in packing up your level for distribution. Then I
guide you through what should be done to get your mod onto the Web sites
for all to see. Why not let the world have as much fun as you did with your
awesome creation?

Part V: The Part of Tens
Part V puts everything else into perspective. Modding doesn’t stop where I
left off. There are tons of other things that you can do to customize a game,
and I provide you with ideas to get you started. At this point, you have the
knowledge to further yourself in the world of modding or to find more help
when needed.

5Introduction

03_096314 intro.qxp 12/7/06 10:41 AM Page 5

I provide you with ideas and examples of modding tips and tricks and where
to look for them. Then I provide examples of the different mods currently
available online and why I think they’re a cut above the rest.

Icons Used in This Book
As you read through the book, you’ll find some fun little icons in the margins.
These icons alert you to special content that often highlights the topic at
hand. Here are the icons you might see and what they mean:

Tips provide helpful information about the subject. Although perhaps not
immediately relevant to performing the task, these tips will come in handy in
the future.

Remember icons remind you of an important idea or fact that you should
keep in mind as you explore Half-Life 2 mods. They might even point you to
another chapter for more in-depth information about a topic.

Warnings point out specific actions that you want to keep your eye on. Read
each of the warnings as you’re going through a chapter to make sure that
problems don’t arise.

Technical Stuff icons provide further insight into the subject being read. You
can skip them if you like, but I find them to be quite informative.

6 Half-Life 2 Mods For Dummies

03_096314 intro.qxp 12/7/06 10:41 AM Page 6

Part I
The ABCs of

Modding

04_096314 pt01.qxp 12/7/06 10:41 AM Page 7

In this part . . .

Games can be a lot of fun to play. They allow your
mind to explore a virtual world as someone or

something that you’ve never been before. From your own
home to the jungles and deserts of the world to the infi-
nite possibilities of space, you can go anywhere you want.
Your only limitations are the imaginations of those who
created the game.

Well, playing games is just where the adventure begins.
You can be the one who tells the story of a far away place.
You can create lands and worlds that come from your own
imagination. Then, you can be the one who takes your
friends on an adventure that you created.

In this part, I take you behind the curtain that is your
computer screen. I show you that there is no limitation to
what can be accomplished with games. The fun doesn’t
stop when you reach the end credits — this is when the
fun just begins.

04_096314 pt01.qxp 12/7/06 10:41 AM Page 8

Chapter 1

Modifying the Game
In This Chapter
� Looking at the game through a modder’s eyes

� Finding modding tools that you had all along

� Walking through the making of a mod

� Going public with your creations

Have you ever been playing a video game and thought, “I would have
done it differently” or “I could have done it better”? Perhaps you

thought, “Wouldn’t it be cool if. . . . “ Well, you don’t have to just think it.
You can make changes to games, and you don’t have to be a software
engineer to do it.

Game modification — changing something in a game — has generally been
associated with the first-person shooter (FPS) and real-time strategy genres.
The change could be very small, such as making a player’s outfit orange
instead of blue, or the change could be very large, such as creating a whole
new environment for the player to explore. You can change almost every
aspect of a game and make it look and feel like something completely differ-
ent. Or, instead of altering an existing part of the game, you could add new
elements to it. Anything that in some way modifies a game from what it was
when the publisher released it is a mod.

Game modification isn’t a new practice. However, only recently, with the cre-
ation of multiplayer shooters for the PC, has it become popular. It was this
genre of gaming that gave people the inspiration to show off. At first, players
competed to see who was the best FPS player. Later, when players realized
that they could modify a game, the competition grew to include this aspect of
the game and to see who could make the most impressive changes to a game.

The FPS game genre was created in early 1990. You play from the point of the
view of the in-game character just like in Half-Life 2. This gives you your first-
person perspective of the game.

05_096314 ch01.qxp 12/7/06 10:41 AM Page 9

The center of action revolves around you, Gordon Freeman, as the player,
while you use a handheld weapon, such as a pistol. Although your primary
objective in the game might change, you’re often placed in situations where
you must shoot your weapon — thus, making the game a shooter.

Controversy surrounds which game was the first FPS game. It’s a tossup
between Spasim and Maze War, which were first developed in 1973. Then,
later that same year, player versus player game play was tested between two
linked computers playing Spasim. The following year, both games were intro-
duced to a network, and multiplayer gaming as we know it was invented.
Because both games played from the first-person perspective with weapons,
this marked the birth of the FPS.

In 1991, id Software released the game Hovertank 3D, which was a simple
maze game from the first-person perspective. The environment was very
flat, and the enemies were nothing more than 2D graphics. Later that year,
Catacomb 3D was released (as a modified version of Hovertank 3D) featuring
textured walls as well as showing the player’s hand onscreen — like you now
see in Half-Life 2.

In 1992,VGA (Video Graphics Array) graphics was added to the release of
Wolfenstein 3D. This game was a huge hit due to both the game play and this
higher-quality graphics and inspired more development in the genre. The fol-
lowing year, Doom added even more graphical detail. This game offers rooms
of various sizes, outdoor environments, and textures that were previously flat
surfaces. However, the most important upgrade to this rising game genre was
the ability for anyone connected to a network to enjoy the multiplayer aspect.

The first version of Quake was introduced by id Software in 1996. It had
highly upgraded graphics as well as networking capabilities and was the first
game in the genre to gain widespread fame as a multiplayer Internet game. It
broke the bounds of its predecessor, Doom, by networking globally. To fur-
ther its success, Quake was the first game that offered developer support for
user modifications. This was the beginning of mods created by the consumer
rather than the industry, and it was also when Valve Software began work on
its game, Half-Life.

In 1998, Sierra Studios and Valve Software released Half-Life. This FPS was
based on a heavily modified version of the Quake game engine. At first, what
made this game a huge hit was the presentation of the game and that it had a
storyline with a plot. Not many games before it had actual plots to involve
the player; rather, they simply offered the player something to shoot. For the
first time, there is a game presenting the player with an interesting story.

10 Part I: The ABCs of Modding

05_096314 ch01.qxp 12/7/06 10:41 AM Page 10

Developed on an adaptable game engine, Half-Life continued to encourage the
gaming and modding community to further develop Half-Life. Valve Software
provided excellent support from the beginning by including level-design tools
with the software. Later, Valve Software released documentation, additional
source codes, and tools to further the capabilities of modders.

Then, in 1999, a beta version of Counter-Strike, a Half-Life mod, was released
to the public. This mod grew in popularity like no other mod before it. It was
so well received that Valve bought the rights, assisted in its continued devel-
opment, and released it as a commercial expansion of the game in 2000.

Many other mods were created for Half-Life, but Counter-Strike set the stan-
dard. It was proof that modding could get you into the gaming industry and
benefit the game developers.

Valve Software took five of the six years since the release of Half-Life to
deliver a game of which they were proud. That game is Half-Life 2 and it has
been redeveloped from the ground up to provide us with the best possible
game play to date. Now we, as Gordon Freeman, can continue the story
where it left off.

Checking Out Half-Life 2
Whether you purchase Half-Life 2 with or without the intent to modify it, you
should begin by playing around with it. Play through a few single-player mis-
sions and then move on to the multiplayer games. If you don’t want to play
online, start multiplayer games of your own. You might be the only one in the
game, but you will still enjoy yourself.

After playing the game and enjoying what the developers were able to deliver,
play the game again — but this time, instead of running around and shooting
everything that moves, take some time to look around. Stop and look out win-
dows and over railings. Walk around the other players in the game and see
what they’re wearing. Take a closer look at the walls to see the details that
are included, and then see what happens when you shoot them with different
weapons. Listen to the sounds the weapons make as well as the sounds all
around you.

By investigating the details of the game, you start to see things differently. It’s
like looking at a room where you live and thinking about painting the walls a
different color or moving the furniture. It could also be like considering a differ-
ent outfit for the day as opposed to the same outfits that you wear every day.

11Chapter 1: Modifying the Game

05_096314 ch01.qxp 12/7/06 10:41 AM Page 11

Adding to or Changing the Game
At first, seeing which game elements you can change can be difficult.
However, when you begin to understand the different pieces that make up the
game, you will start looking at all games a little differently. You can relate the
various elements you see to specific files within the game, and you’ll start to
know which of those files that you can modify. For instance, look around the
physical area in which you’re now sitting. Within the area, you see objects,
like the book you’re holding; a table with some items on it — or, if you’re out-
doors, maybe some trees. In the game world, each different item could be
considered a separate object that the game refers to as an asset. Each asset,
because it may be used more than once in a game, is defined in files. If you
change one of these files — say, to change the book you’re holding to a differ-
ent color — you made a modification.

So what does this have to do with mods and modding? Well, if you modify the
game so that it’s in any way different from when you purchased it, you create
a mod. Mod is just a short way of saying modification. Then, it stands to
reason that the act of modifying is called modding.

The mods that you make can be simple or complex. You can make them by
adding something new to the game or by changing something that already
exists. You could make your changes to provide an improvement to the game,
or you could completely change everything and create a total modification of
the game. You might be surprised to know that many of the games on the
shelves are total modifications of another game. The original Half-Life game is
essentially a total modification of Quake from id Software, and Half-Life 2 was
built from the basis of Half-Life.

Finding out what you can mod
Games are just groups of files that are read by one master program that dis-
plays those files’ contents on the screen. When one or more of these files is
changed, the change is reflected within the game. Official game updates and
expansion kits can perform these changes, but you can, too. So why not
include your own changes to the game to create something completely new?

Upon first glance, you might not realize just how much game content you can
mod. Everything, all of what you see from the time you double-click the game
icon to the moment you close down the game, can be changed. A short list of
moddable things in a game would read like this:

12 Part I: The ABCs of Modding

05_096314 ch01.qxp 12/7/06 10:41 AM Page 12

� Textures and images: Everything that you see when you play any level
in Half-Life 2 started as an image. Whether it’s the bricks on the walls or
the face on another player, these are all images that can be added. I
show you in Chapter 13 how to create your own textures.

� Levels: From multiplayer to single player, you can build completely origi-
nal levels for the game that you and your friends can play. What could
be more fun than playing a multiplayer level together with your friends
online?

� User interfaces: The selection windows before playing the game and the
usable computer screens within the game can be modified. You can set
up these screens to better meet your needs or to make things look any
way you have dreamed.

� Coding changes: Change the way a weapon shoots or how much damage
a player receives when they fall from the top of a building. This and much
more can be achieved through code changes and Valve Software has
given us permission to make them.

The preceding is just a very short list of what can be modded in this game. As
long as you have access to the files that make a game run and you have the
tools to change them, you can modify that game as much as you like. You
could even turn Half-Life 2 into a new version of Donkey Kong if that’s what
you want.

The reason Half-Life 2 can be modded so extensively is primarily due to the
developers. Luckily, players have been provided with access to the game files
so that we can modify them. Not all game companies permit that kind of
access.

Knowing what tools you need
Tools are available for every job, and game modification is no exception. Some
tools are provided for you by the game developers, but others you must
obtain. However, you might be surprised to know that most of what you need,
if not all, is already installed on your computer. You just need to know which
programs you can use to modify each of the different files within the game.

Here are examples of such programs that you might already have:

� File-compression utility: If you’ve been downloading a lot of files, you’re
certain to have a file-compression utility. The program of choice in this
book is WinZip, which is used primarily to open .zip files found on
most download sites. This utility can easily open the compressed game
files that were installed with the game so that you can gain access to all
the moddable game files and start having fun.

13Chapter 1: Modifying the Game

05_096314 ch01.qxp 12/7/06 10:41 AM Page 13

� Plain text editor: Many of the files in the game are written and modified
by using a plain text editor. I’m certain that you already have at least one
of these installed on your computer. Notepad, for instance, is a perfect
program for editing these files. It comes installed with Windows and can
read, edit, and save these files without any special setup or instruction.

� Developer-provided tools: When you install the Half-Life 2 game, you
also have the option to install some of the modification tools via the
Steam engine, Source SDK. This software, a developer’s kit for the Source
engine, allows you to modify the game and create custom game levels
to play.

As modding became popular, game developers started to assist the modifica-
tion community. They offered words of advice and eventually tools and docu-
mentation to make more complicated changes. As the modifications became
bigger and better, so did the sales of the original game because more and
more people wanted to play the game with these new modifications installed.
This inspired more participation from developers and publishers who offered
even better tools and documentation.

The Modding Process Goes
Something Like This

The most common type of modification is to create a custom level for the
game. The process of doing such goes like this:

1. Plan your custom level with notes and drawings.

Write down what you want to include in your custom level and maybe
even sketch out how you want things to lay in the game.

2. Construct the level in a program by building walls.

This is a lot like playing with blocks. You create and place your different
shaped blocks where you want them in order to create a room, several
rooms, or any other structure for the player to roam.

3. Add some color to the surfaces in the level.

Adding color is a simple process of selecting an image and then applying
color to the wall, floor, or any other surface in the game.

4. Place additional elements in the game such as lights, monsters,
weapons, or other objects.

14 Part I: The ABCs of Modding

05_096314 ch01.qxp 12/7/06 10:41 AM Page 14

Again, just select elements from a list and place them where you want.
Then you can fine-tune the way they work. (For instance, you can
change the color of a light.)

5. Compile and play the level in the game.

Choose a compile command from the editor’s menu, and it creates all
the files required so that you can play your finished level in the game.
Then you just load the level and start having fun.

6. (Optional) Give your level to the world.

This optional step puts all the custom files together into a single file that
you can place online for download or on a disc to hand to your friends.
This way more people can enjoy the work you put into your custom
modification.

As you can see, the process isn’t all that complicated. In this book, I show
you where you can find the necessary tools, how to use them, and the
options that each tool has to offer. With this information, you soon will
be on your way to making your own custom game levels.

Sharing the Game with Others
In the list in the preceding section, I mention that the last step of the modifi-
cation process is optional; however, sharing your creation is most often the
purpose of making a mod. I think that it’s perhaps the most exciting part.
For my part, knowing that many other people are getting enjoyment from
something that I built motivates me to do more.

In this book, I not only show you how to package all your files together for dis-
tribution, but I also show you where to go from there. I offer advice on where
to send your files and how to get them out to the public for all to enjoy.

15Chapter 1: Modifying the Game

05_096314 ch01.qxp 12/7/06 10:41 AM Page 15

16 Part I: The ABCs of Modding

05_096314 ch01.qxp 12/7/06 10:41 AM Page 16

Chapter 2

Getting Familiar with Modding
Tools and Techniques

In This Chapter
� Exploring your modding tools

� Writing a README

� Backing up and saving your work

� Comparing Half-Life 2 with other games

Every job requires the right tool. If you were working on the engine of
your car, you would use a wrench or a screwdriver. Modding games is no

different, but the necessary tools come in the form of programs.

Gathering the Tools Involved
Some of the tools you use to modify the game have been placed at your dis-
posal by way of the Steam downloader. All you need to do is to tell Steam to
download these tools, and suddenly you’re up and running. (The details of
doing this are explained in Chapter 4.) These downloaded tools include

� A mapping editor

� A model viewer

� A graphical user interface editor

However, you need some tools that don’t come with the game. Some tools
you already have and just don’t know it yet. The remaining tools have been
provided on the CD that accompanies this book. Those tools, discussed in
detail in the next few sections of this chapter, are

06_096314 ch02.qxp 12/7/06 10:41 AM Page 17

� A plain text editor

� An image editor

� An image compressor

� A compression utility

Each of these additionally supplied tools serves a very specific purpose.
You’re probably already familiar with most of these tools in some way.
However, even though you might have used them previously, you might not
have realized how they can be related to modding Half-Life 2.

Writing plain text
The most common tool used in all forms of game modification is the plain
text editor. Plain text is simply text that is stripped of all formatting. When
you use a word-processing program such Microsoft Word, the software intro-
duces unseen formatting to the text. This formatting could be as simple as
bold or italics attributes to the more complex font selection. Plain text doesn’t
have any of this hidden information. The hidden data would only confuse the
game when it attempts to read what you’ve written.

Because you’re working with the Microsoft Windows operating system, you
already have an excellent plain text editor installed. Notepad comes with
your Windows installation and is the tool that I use throughout the chapters
of this book. With Notepad, what you see is what you get, and there is no
hidden formatting.

Drawing, painting, and taking pictures
Half-Life 2 consists of many images — large and small. Everything you see in
the game has some sort of image applied to it. From the walls in a room to the
face on a character, everything starts as a picture and is then applied to the
corresponding piece in the game.

All the images within the game are either provided in the Targa (.tga) image
format or started as a Targa image. Those that begin as Targas are eventually
converted to a different format called the Valve Texture Format (VTF). This
format contains more details than Targas about how the image should
behave within the game environment.

So, when choosing your image-editing software, choose one that can work
with Targa images. The .tga image format is the image format primarily used
with this game.

18 Part I: The ABCs of Modding

06_096314 ch02.qxp 12/7/06 10:41 AM Page 18

The most widely used program for working with images is Adobe Photoshop,
and a trial version is supplied on the CD in the back of the book. I use
Photoshop in the examples in this book. Although you could use other soft-
ware applications for editing images, I recommend that you install and use
Adobe Photoshop while following this book. This helps avoid miscommunica-
tion, and you might find that you really like this program.

Another image application that I use in this book is a VTF image converter
called the Valve Texture Tool (VTEX). The VTF image is a special image
Half-Life 2 uses that adds additional elements to help the image display easily.
Such elements might be reflection, transparency, or bumping as explained in
further detail in Chapter 13. With VTEX, you can take your Targa image and
convert it into the VTF image for use within the game.

VTEX is supplied on the CD located in the back of this book. It is freeware, so
it won’t cost you anything to use and it’s provided by Valve.

Packing up your work
After you complete your mod and are ready to show it off, you need to pack-
age all of its various components into a simple file that can be easily distrib-
uted. Using this single file not only makes it easier to distribute your mod to
your adoring public, but it can also save space. By packaging the files appro-
priately, you can compress them to a filesize that’s smaller than the total sum
of the separated files.

One of the things you want to consider when creating your package of files is
the ease at which the end user can access its contents. For this purpose, I
recommend using WinZip. It is easily available online and comes with a free
trial so that anyone can download and use this program. Also, it’s compatible
with a number of other compression utilities such as WinRar and the zip
compression agent found within Windows XP.

You can use a number of possible compression utilities to package your files.
Some people like to use WinRar, and some use the compression utility that
comes with Windows, the Microsoft Zip utility. However, I find that WinZip
is the simplest utility to use, and also the one that results in the fewest
complications.

If you don’t have WinZip installed, you should install the trial version now. It’s
provided on the CD in the back of this book. You can also download it from
the Web site, www.winzip.com.

19Chapter 1: Getting Familiar with Modding Tools and Techniques

06_096314 ch02.qxp 12/7/06 10:41 AM Page 19

Using Best Modding Practices
Modding is still a fairly new activity. You don’t have many strict guidelines
that you have to follow. However, some very advisable practices are in place.
These practices are primarily to avoid conflict with other mods when sharing
your final work with others as well as to prevent loss of work because your
files weren’t properly saved to disk.

Following standard naming conventions
Whether you’re creating a single level or a complete modification of the
game, naming your work is very important. You want to come up with an
original name for your modification — whether it’s a single file or a group of
files — that most likely hasn’t been used by someone else. Otherwise, when
two mods with the same name are downloaded and installed, files will be
overwritten and lost. Try doing a little research on similar mods that are
already available on the Internet before coming up with the final name of
your work to avoid such issues.

For example, say that I release a custom game level under the name MyLevel,
and I name the file MyLevel.map. If you decide to name your level the same
thing, there could be a conflict. If the same person downloads and installs
both custom levels of the same name, one of them is going to overwrite the
other. This might seem trivial at first, but it happens quite often and is some-
what avoidable.

Instructing the end user
Always include a README file with your final work. The README file is a text
file that contains information about you and your mod. With it, the user
knows who to contact for help or kudos, what your mod consists of, and how
to properly install and use it with the game.

Don’t ever assume that the end users know what to do with your files.
Rather, assume they know nothing other than how to access your README
file, and then instruct them with what to do from there. If your reader doesn’t
know how to install the file and isn’t tempted enough to open the README
text file and actually read it, at least you’ve done what you could to inform
the end user to the best of your ability. I explain this file in more detail in
Chapter 19.

20 Part I: The ABCs of Modding

06_096314 ch02.qxp 12/7/06 10:41 AM Page 20

Including all the files required
When making your mod, check to see whether any of the files you used are
part of a mod that you previously installed. If you installed a level that comes
with custom images, for example, make sure to include those images with
your mod. You don’t want to distribute a mod that doesn’t have all the
required files.

If you do include files that were previously provided via another mod, make
sure you give credit to the author of those images. Make mention of where
those unoriginal files came from within your README. Then, make sure those
files are also included with your distribution in case the user doesn’t have
the same mods installed.

Avoiding the overwriting headache
In Chapter 17, I introduce you to creating your own mod folders within the
game. Primarily, you do this so that you don’t overwrite the original game
files, thereby destroying the original game. You don’t want to make any per-
manent changes to the game. Instead, create a mod folder of your own and
place your altered files in there. This prevents you from having to tell users
that they have to reinstall their game to get it back to the way it was before
they installed your mod.

Saving and saving again
Game modding is still a young hobby. As such, the available tools aren’t quite
perfect. Errors can occur when using modding tools that can render your
files useless. Although I mention ways to avoid the most common errors,
some errors occur seemingly without reason.

To avoid letting these errors ruin the effort you put into your mod, make sure
that you save your work regularly. Save it often. Save it under different names
for different versions. Then, when you’ve saved it a number of times after a
week or more of work, back it up to another location. Put it on CD, DVD, or
other removable media.

One day, you’ll think back to these few paragraphs about saving your work,
and you’ll be thankful. You’ll be thankful that you have a backup of your work
that you can go to after a disaster, however minor your changes between
backups may be.

21Chapter 1: Getting Familiar with Modding Tools and Techniques

06_096314 ch02.qxp 12/7/06 10:41 AM Page 21

Differences between Half-Life
and Other Games

Games from different developers are created differently. Although modding
practices are relatively the same among the various games, some fundamen-
tal differences can have a big impact on the way you plan your mod.

When it comes to level design, the Half-Life game series is roughly the same
between versions 1 and 2. You create a box and place all your buildings,
rooms, halls, models, and everything else inside it. This big box must be
made without any gaps because the box defines the boundaries of your level.
Without boundaries, the game would crash because it would contain too
much information for your computer to process.

You’re presented with an empty area like the void of outer space. You create
your level by adding to this space blocks such as the walls of your buildings.
I like to refer to this process of level creation as adding to the void.

Some other games (such as the Unreal series by Epic Games), however, work
this process in reverse. They present you with a giant block that is like a
block of clay. You then carve out your level from this solid block.

With Half-Life 2, you add to your environment. I find this a much simpler con-
cept to understand. Just like building a house in the real world, you add a
wall, add a room, and add details by building up from nothing.

22 Part I: The ABCs of Modding

06_096314 ch02.qxp 12/7/06 10:41 AM Page 22

Chapter 3

Breaking Down the Game
In This Chapter
� Making your own maps

� Placing textures in the game

� Adding interactive elements as entities

� Scripting your way to reactive elements

� Using graphical user interfaces to make a more interactive world

Half-Life 2 consists of several elements that all come together to create
what you see on the computer. There are sights, sounds, and interac-

tive elements. All these pieces that make up the game can be found within
one common location in the game: the game level. However, before it
becomes a level, it starts as a map.

Making Maps and Playing Levels
The level is the virtual world in which you exist as the player. After you start
the game and make a selection from the available menu, be it a single-player
or multiplayer game, your player is released into the level. Here you can
explore the game environment very much the same way you would explore a
local park, school, or other environment in the real world.

Whether you’re playing a single-player mission or a multiplayer battle, each
environment between loading screens is a level.

Loading screens appear in both the single-player and multiplayer game types.
The multiplayer games make the screen obvious with the display of a loading
bar. However, the single-player loading screens are often hidden with short
movies called cut-scenes. These span the time between the end of one level
and the start of another in the hopes of keeping you further submersed in the
game play.

07_096314 ch03.qxp 12/7/06 10:41 AM Page 23

Before an environment becomes a playable level, it starts life as a map. The
map is named such for a few important reasons:

� When you create a playable environment, you must map out the position
of everything within your environment. Thankfully, the mapping editor
takes the tediousness out of this task.

� Although the extension of your saved file is now .vmf, in the previous ver-
sion of Half-Life you would then save the map with the .map extension.

After the map file has been converted into a playable level, the map file is no
longer needed. I’m not saying that you should delete it. You might want to
hold onto it so that you can make changes to it later. However, you don’t
need to distribute this file to the public unless you want them to have the
source for creating your level.

Making Your Own Maps
I find that one of the biggest thrills of modding is the ability to make my own
maps and then play them in the game. I really enjoy being able to create a vir-
tual environment, make it unique, and then offer it to others to enjoy.

Map making requires more than just the placement of a few buildings. It’s
more like creating a real building or small community and then furnishing it.
You must place all the walls, ceilings, floors, and other structural elements to
make up the buildings in your game. However, you must also paint the walls,
add tables and chairs, and drop in enemies to fight. You must consider every
object or feature that’s to be represented while playing the game.

I could just jump right into the map-making process with you, but I think that
you should first have a good understanding of the game environment. To
make a good map, you should understand how your placed objects and fea-
tures are perceived within the game. Don’t worry: This doesn’t mean you
need to go back to school and learn new theories and rules. Because you live

24 Part I: The ABCs of Modding

Leveling levels
The term level most likely came from the prede-
cessor of the shooter gaming genre, the role-
playing game. The goal of role-playing games is
to increase the level of a player by progressing
through the increasingly difficult environments

of the game. Therefore, the two terms became
synonymous. You would level up your player by
progressing through varying levels of difficulty
in each environment.

07_096314 ch03.qxp 12/7/06 10:41 AM Page 24

in a three-dimensional (3D) world, relating the real world with the virtual one
is fairly easy.

Building blocks of a map
Adding walls, ceilings, and other structures to your map is much like playing
with blocks or Legos. You lay each block next to another to create a sealed
room where the player can have fun. The blocks can be various shapes and
sizes and placed together in just about any orientation you can think of,
allowing limitless possibilities for the construction of your map.

The blocks placed to make up the structures and constraints are brushes.
Although brushes can be made into various shapes and sizes, they must be
solid in form. This means that they must have at least four sides, like a three-
sided pyramid with a floor.

With at least four sides, they can be defined as solid, structural blocks in the
game, which is important. The game performs some optimization techniques
to help it to run smoothly. Part of this optimization depends on the ability of
the game to define what the player can and cannot see. Because the game
assumes that the player cannot see through solid brushes, this helps with
that optimization.

Another restriction that brushes have is that they must be convex in shape.
This means that you can’t have a single brush with a concave or U-like shape.
This limitation reduces the work required by your processor during game
play, and because you can place multiple brushes together to create any
shape imaginable, it’s a fair compromise to make.

Setting boundaries
Within each map, you must create specific boundaries, usually through the
placement of brushes. When creating buildings and other things in your map,
you’re confined to a single space. You have a large area in which to build —
kind of like building in outer space. However, if your computer had to calcu-
late a virtual world that went on without boundaries, it would quickly run out
of free memory and processing power and then crash.

To avoid crashing the game, you must set the boundaries of your map. By
creating a large, sealed room around all your other structures and elements,
you can define these boundaries. Then, when the game begins putting
together your 3D world, it won’t lose its cool and crash on you. This game-
creation process is rendering, which comprises making your data visible on
the computer screen. Your computer takes the code that has been written to
the map file and turns it into visual data that makes up your game.

25Chapter 3: Breaking Down the Game

07_096314 ch03.qxp 12/7/06 10:41 AM Page 25

Seeing in three dimensions
Earlier, I refer to the environment as a 3D world. What I mean is that just like
the world we live in, the game world also has three dimensions — the X, Y,
and Z planes. One dimension runs from left to right; in Half-Life 2, this is the X
plane. Another plane, the Y plane, runs from back to front. Last, the plane that
runs from bottom to top is the Z plane. Together, they make up the three
planes of the 3D environment. Figure 3-1 helps to illustrate these three planes.

Those of you with a background in mathematics or modeling might be con-
fused by this configuration of axes. You would be more familiar with a verti-
cal x axis and a horizontal y axis. However, in the world of gaming, these axes
are reversed. This is because many games, such as Half-Life 2, use a Cartesian
coordinate system, which defines the third axis — the height — as the z axis.

If you were to measure a box, like the post office does before shipping, you
measure in these three dimensions. The width, length, and height of the box
relate to the X, Y, and Z planes, respectively.

X-AXIS

Z-
AX

ISY-A
XIS

Figure 3-1:
This figure

is pretty
plane, but it

should get
the point

across.

26 Part I: The ABCs of Modding

07_096314 ch03.qxp 12/7/06 10:41 AM Page 26

Measuring in units
The game world has its own way to express distance. Instead of using inches
or centimeters, it uses units. Although it isn’t easy to picture how big a unit is
in reference to real-world objects, it does relate to another digital medium of
measurement: the pixel. One unit in the game is equal to 1 pixel. This might
be confusing at first, but after a week of being submersed in the mapping
world, it becomes second nature to you.

Measuring things this way makes it easy to create images for use within the
game, but not everyone likes it. A large number of modders would prefer that
this measurement relate directly to real-life measurements so they can more
easily reproduce in the virtual world real-life environments, such as their
homes or offices. If you are one of these modders, the real-life conversion of
units to inches is listed in Chapter 16. There you can also find other helpful
measurements for reference when building your maps.

Toying with Textures
The virtual world of games is full of images. I don’t just mean the images
invoked in your mind of the wonderful things you can do. Everything that you
see in the game starts as unpainted objects. The walls begin as plain boxes,
and the players start out lacking color, definition, and everything else that
makes them look like players.

Painting the walls
When the game is being built, the person doing the building puts the color
into the game. This is done by placing images on everything, but these are
not the same kind of images you can get with your camera. These images
have additional features specified within them. These features define how
light bounces off the image, how the image can convey the appearance of
little bumps and scratches and other similar things. Altogether, these images
and features make up a texture.

Textures carry a very important role in the game: They provide the color and
other features that would otherwise be missing. Without textures, everything
you see in the game would look flat, colorless, and plain.

Building interest
Textures do a lot more than just add color to a scene. They also define
bumps, scratches, and other forms of dimension. Sure, color is the primary
function of a texture, but it also does quite a bit more.

27Chapter 3: Breaking Down the Game

07_096314 ch03.qxp 12/7/06 10:41 AM Page 27

While you’re playing a game, your computer has to render the 3D environ-
ment. The more rendering that your computer has to do, the harder it has to
work. So, if you have a wall with complex trimming mounted near both the
floor and ceiling and if you also have wood paneling with more trim along the
middle of the wall, all this adds up to a lot of dimension. All the trim would
stick out from the surface in different ways, and indentation would occur
between each of the boards of wood paneling. This level of detail causes a
great deal of rendering.

With textures, you can fake most of this bumping so your computer doesn’t
have to do it. The less work your computer has to do when creating its envi-
ronment, the faster it can provide you with an exciting and fun game. This
also means the structural part of your wall doesn’t have to be so complex.
You can create a flat wall and make it look more complex simply with the use
of textures.

I show you how to create these textures in Chapter 15. I show you how to go
from simple color to the highly detailed bumping and shining that a texture
can bring forth in the game.

Evoking Entities
Entities, in very basic terms, are the opposite of structural brushes. Brushes
are the building blocks of a map. They help to define what the player can and
cannot see within the game.

Entities, on the other hand, don’t provide any structure to the game.
However, they do provide activity and interactivity. If you walk up to a door
and it opens or moves as a result of something that you did, that door is an
entity. If you walk up to a control panel or an elevator or anything else that
reacts to your action, it is an entity within the game.

That door or control panel is a type of entity known as an active brush; how-
ever, another type of entity is a point entity. A point entity has an effect on the
environment in some way, but it isn’t quite as interactive. Point entities are
small, single points that affect the game environment (for example, a light).
Alternatively, a point entity can allow another entity to focus on it. You could
add a light to the game, instruct that light to act as a spotlight, and point to
another point entity as a focal point. In both cases, the point entity exists as a
nonsolid object in the game that exists in a single point as opposed to the
door, which is solid and consists of several points for each of its corners.

28 Part I: The ABCs of Modding

07_096314 ch03.qxp 12/7/06 10:41 AM Page 28

Part II
Making Your
Own Maps

08_096314 pt02.qxp 12/7/06 10:41 AM Page 29

In this part . . .

Game modification is an extremely broad subject.
It can span from programming lines of code to creat-

ing the cut scenes that play between each level. However,
the most popular mods for almost any game out there
take players someplace they’ve never been before.

It’s time to get set up and into gear. In this part, you install
some modding tools and start making your first custom
game level. By the end of this part, you’ll have something
to show your friends, and you will officially be a modder.

08_096314 pt02.qxp 12/7/06 10:41 AM Page 30

Chapter 4

Getting Set Up for Mapping
In This Chapter
� Downloading the Hammer Editor and tools

� Launching and configuring the editor

� Getting to know the interface

� Using shortcuts

Before you can begin working on your new level, you need to install the
Hammer Editor. Thanks to Steam, locating and installing this editor is

really quite simple.

To make changes to the first Half-Life game, you had to download and install
WorldCraft. This third-party map editor makes you follow specific (and sort
of tricky) installation instructions. If you hadn’t worked with WorldCraft
before, installation wasn’t a trivial process. You had to install the editor in the
correct directory, on the same hard drive as the game, and with specific set-
tings. Unless you did everything perfectly, the editor wouldn’t work.

This process is much simpler now thanks to the Steam downloader. If you
installed the full version of Half-Life 2, you installed Steam and then used it to
register your Half-Life 2 game.

Installing the Hammer Editor
Hammer Editor is the Valve Software mapping editor. With this utility, you can
make levels for the game. Before you can access this utility, though, you need
to install it — and as with all the games delivered by Valve, via Steam.

To begin, start the Steam application. Steam is the central location to find and
launch your games as well as update existing games and download new ones.

By default, Steam is set up to automatically start with Windows. You know it’s
running when you see its icon, as shown here, displayed in your system tray.

09_096314 ch04.qxp 12/7/06 10:42 AM Page 31

If Steam isn’t already running, you launch it. Steam’s location on your Start
menu differs depending on how you installed Half-Life 2. If you installed Steam
before installing Half-Life 2, you find the launch icon by choosing Start➪
All Programs➪Valve➪Steam. If you installed Half-Life 2 before installing Steam,
you find the launch icon by choosing Start➪All Programs➪Steam➪Steam.

Before installing the tools that you use for your mod creations, make sure
you already installed the game types for which you want to create mods and
that you have played them at least once. In this book, I take you through the
steps of creating mods for Half-Life 2: Deathmatch. Although modification for
any of the game types is pretty much the same, I figure you want to be able to
show off your custom content with your friends and family in a multiplayer
environment. The deathmatch game type is perfect for this.

If you have not played the game types that you plan to mod since the installa-
tion of the game on your computer, do so now. If you don’t play them before
attempting to edit them, errors will occur. Certain game configuration files
must be created to avoid editing errors, and these configuration files are cre-
ated automatically for you when you play each game type.

However, because you’re going to be working on mods for the deathmatch
game type, you must make sure that Half-Life 2: Deathmatch has also been
installed. Here’s how.

From within the Steam application, open the My Games tab. Within the list of
games on this page, make sure that Half-Life 2: Deathmatch is listed with a
status of 100% - Ready, as shown in Figure 4-1. If it isn’t, right-click Half-Life 2:
Deathmatch and then choose Install Game.

Figure 4-1:
The My

Games tab
lists games

that have
been (and

can be)
installed.

32 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 32

When installation of Half-Life2: Deathmatch is complete, you’re ready to
install the modding tools for the game. Steam makes it just as easy to install
the tools as it does to install the various games by combining the download-
ing and installation process into a single step. Here’s how:

1. Make sure that Steam is open.

If Steam isn’t open, right-click the Steam tray icon and then choose
Games from the list. This launches a window with a group of tabs at the
top, like the ones shown in Figure 4-1.

2. Select the Tools tab from the Steam window.

This displays a list of installable tools for the different games available
through Steam, as shown Figure 4-2. The tool that you need is Source
SDK. SDK refers to the Software Developers Kit, which contains all of the
applications and files you need to mod the game.

3. Right-click Source SDK and then choose Install Game from the list of
options.

If you haven’t installed and activated Half-Life 2 through your Steam
account, you won’t have the option to select and install Source SDK.
This option is available only after installing Half-Life 2.

A new window pops up in which you must confirm that you want to
download and install Source SDK. (See Figure 4-3.)

4. Click the Download and Install button.

Figure 4-2:
Right-click
and install

Source SDK
from the

Tools tab
in Steam.

33Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 33

5. Pass through a series of windows to confirm the installation of the
Source SDK tools as follows:

a. Confirm your drive space and download time.

If you have enough disk space on your hard drive and the esti-
mated download time is acceptable, click Next to continue. If you
don’t have enough drive space, you might need to install another
hard drive in your computer to continue.

b. Select the Create a Desktop Shortcut to Source SDK option.

Although you can access these tools right from the Steam applica-
tion, I recommend that you select the option to create a desktop
shortcut. While you’re getting familiar with everything, the short-
cut makes things a lot easier. Click Next to continue.

c. Finish and begin downloading.

Leave selected the option to open the My Games tab and then click
Finish to begin your download.

When Source SDK completes its download, it’s listed in the Steam Tools tab
with a status of 100% - Ready, and you have the option to launch the program.

Launching for the First Time
You now have a couple options for launching Source SDK. If you took my rec-
ommendation to check the “Create a Desktop Shortcut” option, you have a
quick and easy way to launch the program from your desktop. Otherwise,
you can also always find your Steam installed applications via the Steam
application itself. Source SDK is listed in the Steam Tools tab.

Figure 4-3:
Click the

Download
and Install

button to
continue
with the

installation.

34 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 34

Choose either option to launch Source SDK.

The first time you launch Source SDK, you have to go through a few steps to
set up everything for use. This setup provides information on how the pro-
gram should run the next time it’s launched. The setup process goes like this:

1. Confirm that the program is ready to launch.

The program is ready to launch if the status is listed in your Steam
window as “100% - Ready.”

2. Wait while the program copies files to your hard drive.

When you download Source SDK, all the installation files are compressed
into a single file to make them easier to download. The first time you
launch Source SDK, this compressed file will decompress and place the
individual files where they need to be on your hard drive. This is the
copying process.

3. Launch the Hammer Editor.

Double clicking the Hammer Editor application will launch the editor. If
Hammer Editor loads up without any warnings, you’re ready to go.
Otherwise, continue to the next step.

4. If an error regarding missing configuration files pops up, reset your
configuration files.

If no configuration files are found for the deathmatch game type, you are
notified and have to resolve the issues with a couple of steps outlined in
the next part of this chapter.

5. Manually configure Hammer Editor, save the settings, and finally load
the editor.

After the game has installed the basic configuration files, you may want
to manually adjust some of the configuration settings. These settings are
defined in the part, “Manually configuring Hammer.”

After you perform the preceding steps, the first window you see lets you
know that the application is ready to run. (See Figure 4-4.) Because you just
downloaded this program, the window is nothing more than a confirmation
window. Click the Launch Tool button to continue.

After launching the tool, the necessary files are automatically expanded and
copied to the proper locations. You just have to sit back and wait a minute or
two while this happens.

After the files are done copying, the Source SDK window appears listing all
the available tools you have to work with. (See Figure 4-5.) The links and
applications listed here are what you primarily use to create your mods for
Half-Life 2. The list of options and what they do are as follows:

35Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 35

� Hammer Editor: This application is the map editor that allows you to
create new levels for the game.

� Model Viewer: This application allows you to preview the models that
are used within the game in a separate 3D environment. You can look
around the model at all angles. This utility is especially useful when you
create and add your own models to the game. It allows you to make sure
that everything looks the way you want it to before you place it in the
game.

� Face Poser: In the single-player game, you might want to add a character
that says something. This application allows you to sync the character’s
mouth and lips to what he or she is going to say.

� Release Notes: This is a link that opens in your browser and takes you to
the developer Web site for Valve. This page lists the features and upgrades
that have occurred in each version of Source SDK that has been released.

Figure 4-5:
Source SDK
has another

menu of
options from

which you
can select.

Figure 4-4:
The first

time Source
SDK runs,
a window

tells you it’s
ready to go.

36 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 36

� SDK Reference Docs: Another online document, this page provides you
with additional documentation, tutorials, and other helpful information
to assist you in your quest to make great mods.

� Create a Mod: This utility assists you in the creation of a new modifica-
tion for the game. It sets up folders and options for the applications that
are necessary when you modify the game’s original content. If you’re
simply adding content to the game, this utility isn’t necessary. However,
if you’re modifying existing files in the game, this comes in handy so you
don’t end up making permanent changes to the game.

� Refresh SDK Content: Some configuration files and related programs
used by the application and utilities in the SDK can become corrupt.
If they do, you can use this utility to restore the original files to their
original condition when you first installed the SDK.

� Reset Game Configurations: If you run into problems with the applica-
tions in this SDK, you might find that resetting the configurations helps.
This utility resets only the configuration files to their original condition
when you first started using the SDK.

� Valve Developer Community: This is a Web link to the Valve Developer
Community main page. This is a good place to find links, tutorials, and
other helpful material related to Half-Life 2 and modding.

� SoftImage|XSI Mod Tool: This is a link to a modeling program. You can
use it to create new models for the game, such as weapons, characters,
or anything else that’s not already available. This program doesn’t come
with Source SDK because it’s not a product directly supported by Valve.
However, this link is provided to give you a head start on making custom
models.

� Current Game: Here you can choose the game that you want to work on
in the various applications listed earlier.

As I mention in the preceding list, the first application to explore is the
Hammer Editor. This application allows you to make custom levels for the
game. To continue the setup process required for the first use of Hammer
Editor, launch the application. You can do so either by double-clicking its name
in this window or by right-clicking its name and choosing Launch from the list.

Dealing with configuration errors
If you launch Hammer Editor and see a pop-up warning window like that
shown in Figure 4-6, something needs to be fixed before you can continue.
Generally, this error shouldn’t pop up. If it does, though, the necessary con-
figuration files haven’t been automatically generated yet. Therefore, you have
to do a couple things to get the game to generate them manually.

37Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 37

Most commonly, this error occurs if you try to load Hammer Editor without
first accessing the game. So, load Half-Life 2: Deathmatch and then close it by
following these steps:

1. Click Cancel to close this warning window.

2. Click Close to close the Source SDK window.

3. If your Steam window isn’t open anymore, open it by double-clicking
the icon in your taskbar.

4. Select the My Games tab and double-click Half-Life 2: Deathmatch to
launch the game.

5. After the game completes loading, close the game.

To close the game, click Quit in the game.

6. Reopen the Source SDK window. Go back to the Tools tab within the
Steam window and then double-click Source SDK to launch it.

7. Before launching the Hammer Editor, first double-click the Reset
Game Configurations link.

This makes sure that your configuration files are reset and ready to run.
A window pops up asking you to confirm that you want to reset your
configuration.

8. Click Reset to continue and then click OK in the next window that is
confirming the reset operation to close the Hammer Editor.

Hopefully, these additional steps resolve any errors you encounter. To find
out, launch the Hammer Editor again by double-clicking its name in the
Source SDK window. If you see the error again, you need to proceed with the
next section. If, on the other hand, the error is fixed and everything is fine,
continue your investigation of the Hammer Editor by skipping to the section,
“Exploring the Interface,” later in this chapter.

If when you relaunch the Hammer Editor application you see a window asking
if you want to run the application anyway, click the Run Anyway button to
continue. The next section will outline the manual configuration steps to
follow to ensure Hammer Editor runs correctly.

Figure 4-6:
A warning

window
might occur
the first time

you launch
Hammer

Editor.

38 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 38

An error will be displayed if you have not yet played the game type you are
attempting to edit. In this case, make sure you have played Half-Life 2:
Deathmatch at least once or an error will occur.

Manually configuring Hammer Editor
Another window pops up, alerting you that this is the first time the program
is running and also asking you whether you want to view the new user’s
guide to set up Hammer Editor. Click Yes to view it. However, you don’t have
to view this now because the required setup steps are outlined later in this
book. If you choose to not read the new user’s guide from Valve, click No.

Now, you’re in front of the Configure Hammer window. This window estab-
lishes the required settings to make everything run. To configure Hammer
Editor manually, you follow exactly the steps listed to avoid any errors.

The Configure Hammer window, as shown in Figure 4-7, has tabs at the top
that allow for a specific set of options to be established. The tabs are

� Game Configurations: The configurations for the game define the name
of your configuration as well as the location of the files associated with
the particular game type that you’re modding. Because you can mod for
single-player, multiplayer, and other game types separately, you must
first define in this tab where the available game options are found.

Figure 4-7:
The

Configure
Hammer
window

sets up the
options

required for
the editor.

39Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 39

� General: Here you can set up user preferred options. These options can
be adjusted at any time, so for now, use the default settings in this tab.

� 2D Views: This tab offers further user preferred options. Leave these
options with their default values.

� 3D Views: This tab offers further user preferred options. Again, leave
these options with their default values.

� Materials: This tab, used to adjust the options of the textures and mate-
rials used in the editor, is currently unavailable to you. It becomes avail-
able after the first setup is completed.

� Build Programs: Here you define the locations of each program used in
the level-building process. Your level starts as a simplified map file and
must then be turned into a level to be played in the game.

Although these settings can all be adjusted later from within Hammer Editor,
a select few settings must be set prior to the first time you launch the appli-
cation. I point out these settings in detail.

Adding configurations
The first thing you need to do is create a name for your configuration. Do so
by following these steps:

1. Select the Game Configurations tab from within the Configure
Hammer window.

2. Click the Edit button to the right of the Configuration field.

This opens a new window, as shown in Figure 4-8.

3. In the Edit Game Configurations window, click the Add button to add
a new configuration name.

4. In the resulting text box, enter HL2: Deathmatch and then click Close
to continue with the other settings.

Figure 4-8:
You can

create
multiple

configura-
tions for
Hammer

Editor.

40 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 40

Because you’re going to be working on levels for the deathmatch game
type, this is an appropriate name to start with.

5. Click the Add button to the right of the Game Data Files text box.

The game data file defines the different options available within the
game type you’re editing. For example, if you’re playing Counter Strike
Source, you might want to define an area within the level where players
can purchase weapons, ammo, and armor. This is done with the game
data file. (However, this option is not available when playing in a death-
match level.)

When you click Add, a window pops up that allows you to select a game
data file (.fgd file). This window opens automatically to the folder

C:\Program Files\Valve\Steam\SteamApps\username\sourcesdk\bin

where username is your Steam user name, and Valve is optional based
on your installation.

6. Because you’re making a deathmatch level, select the hl2mp.fdg file
located in this folder and then click Open.

Other optional game data files are

• Counter Strike Source maps: cstrike.fgd

• Day of Defeat: dod.fgd

• Half-Life 2 single-player: halflife2.fgd

Based on the configuration name and game data file that was entered,
only the last three fields in this tab remain to be filled in. The others
automatically fill in with the following data:

• Texture Format: Material (Half-Life 2): This defines the material files
that are used, which in turn defines the texture available when
building your maps. The only other option would be for Team
Fortress Classic maps.

Team Fortress Classic is a game type from the original Half-Life game.
This game type allows you to select a character to play that has
specific characteristics, such as a medic who can heal other players
or a demolition man who can plant different types of explosives.
The different characters combine to make up a team, and in Team
Fortress Classic, two teams battle it out for dominance in a game.

• Map Type: Half-Life 2: This defines the map files that are built. The
only other option is for Team Fortress maps.

• Default PointEntity class: info_player_deathmatch: This defines the
default point entity available in Half-Life 2 when you select which
one to insert into your map. In most cases, info_player_deathmatch
is the entity selected by default. (Entities are defined further in
Chapter 3.)

41Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 41

• Default SolidEntity class: func_detail: This defines the default solid
entity available in Half-Life 2 when you select which one to insert
into your map. In most cases, func_detail is the entity selected by
default.

• Default Texture scale: 0.25: Texture scaling must be set to 0.25;
otherwise, the textures won’t look right when you compile the
map and play it in the game. This scale is actually the equivalent
of 1 pixel to 1 unit within Hammer Editor. I discuss this in greater
detail later in the book.

• Default Light map scale: 16: The light map scale must be set to 16;
otherwise, you might end up with errors while compiling your
map. This scale represents how defined the lighting is on each wall
created in Hammer Editor.

• Cordon texture: tools\toolsskybox: This defines the material or tex-
ture used when defining a cordon volume in the editor. A cordon
volume is an area of your map that you boxed out of the map that
you’re working in. It allows you to section a portion of the map for
testing but to ignore the rest. In most cases, tools\toolsskybox is
the entity selected by default.

The next field to be defined in your Game Configurations tab is the Game
Executable Directory. This directory is where the game’s .exe file is
found.

7. Click the Browse button to open a window that allows you to select a
directory on your hard drive. Then, within this new window, select
the directory

C:\Program Files\Valve\Steam\SteamApps\username\half-life 2 deathmatch

where username is your Steam user name, and Valve is optional
based on your installation.

The other possible game type selections are

• Counter Strike Source

C:\Program Files\Valve\Steam\SteamApps\username\counter-strike source

• Day of Defeat Source

C:\Program Files\Valve\Steam\SteamApps\username\day of defeat source

• Half-Life 2 single-player

C:\Program Files\Valve\Steam\SteamApps\username\half-life 2

For the next field, the Game Directory field, you need to define where the
GameInfo.txt file is located for the game type with which you are
working.

42 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 42

8. For the deathmatch game type, click the Browse button to the right of
the text area and select the directory

C:\Program Files\Valve\Steam\SteamApps\username\
half-life 2 deathmatch\hl2mp

where username is your Steam user name, and Valve is optional
based on your installation.

Other possible options are

• Counter Strike Source

C:\Program Files\Valve\Steam\SteamApps\username\
counter-strike source\cstrike

• Day of Defeat Source

C:\Program Files\Valve\Steam\SteamApps\username\
day of defeat source\hl2mp

• Half-Life 2 single-player

C:\Program Files\Valve\Steam\SteamApps\username\half-life 2\hl2

The last field on this tab is the Hammer VMF Directory. This is where
Hammer Editor saves the map data files required for compiling your
map into a level for playing in the game.

9. Click Browse to the right of this field and select the directory

C:\Program Files\Valve\Steam\SteamApps\username\
sourcesdk_content\hl2mp\mapsrc

for the deathmatch game type, where username is your Steam user
name, and Valve is optional based on your installation.

Other options are

• Counter Strike Source

C:\Program Files\Valve\Steam\SteamApps\username\
sourecesdk_content\cstrike\mapsrc

• Day of Defeat Source

C:\Program Files\Valve\Steam\SteamApps\
username\ sourecesdk_content\dod\mapsrc

• Half-Life 2 single-player

C:\Program Files\Valve\Steam\SteamApps\
username\ sourecesdk_content \hl2\mapsrc

43Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 43

Specifying programs
Now skip over to the Build Programs tab. Here, you identify each of the sepa-
rate programs that will be used to turn your map file (that you created in the
editor) into a level that can be played in the game. The build process is
explained in greater detail in Chapter 3, but for now, just enter the values out-
lined here into the fields.

1. Select your new configuration from the drop-down list if you haven’t
already.

2. The game executable is the file that launches your game type. Because
this is a deathmatch game type, click Browse and locate the death-
match executable.

It is found in the location

C:\Program Files\Valve\Steam\SteamApps\username\
half-life 2 deathmatch\hl2.exe

where username is your Steam user name, and Valve is optional based
on your installation.

Other possible options are

• Counter Strike Source

C:\Program Files\Valve\Steam\SteamApps\username\
counter-strike source\counter-strike source\hl2.exe

• Day of Defeat Source

C:\Program Files\Valve\Steam\SteamApps\username\
day of defeat source\hl2.exe

• Half-Life 2 single-player

C:\Program Files\Valve\Steam\SteamApps\username\half-life 2\hl2.exe

3. The BSP executable is the first of three steps in building your level.
Click the Browse button and locate as well as select the file

C:\Program Files\Valve\Steam\SteamApps\username\bin\vbsp.exe

where username is your Steam user name, and Valve is optional
based on your installation.

The BSP is explained in detail in Chapter 8.

4. Step two of the building process is the VIS executable. Click the
Browse button and then locate a select the file

C:\Program Files\Valve\Steam\SteamApps\username\bin\vvis.exe

44 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 44

where username is your Steam user name, and Valve is optional
based on your installation.

5. The third step of the building process is the RAD executable. Click
Browse and locate as well as select the file

C:\Program Files\Valve\Steam\SteamApps\username\bin\vrad.exe

where username is your Steam user name, and Valve is optional
based on your installation.

6. Finally, the compiled level needs to be saved where you expect the
game to find it. Click the Browse button beside Place Compiled Maps
in This Directory Before Running The Game field. Then locate and
select the directory

C:\Program Files\Valve\Steam\SteamApps\username\
half-life 2 deathmatch\hl2\maps

where username is your Steam user name, and Valve is optional
based on your installation.

That’s it for the configuration of Hammer Editor. Click OK at the bottom of
the window, and the editor loads, as in Figure 4-9.

Figure 4-9:
The

Hammer
Editor when

it first
opens.

45Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 45

Exploring the Interface
The editor might look somewhat intimidating when you first see it. It has mul-
tiple columns with different tools and settings. Unfamiliar words and a string
of buttons are across the top of the editor, and you might not recognize them.
Don’t let this worry you. By the end of this chapter, you should feel much
more comfortable with what’s onscreen. You’ll also be ready to plunge into
the world of mapping. Chapter 5 shows you how to construct your first map.

To more easily figure out what’s what within the editor, first start a new map.
Right now, most of the options in the editor are either hidden or unavailable
because you don’t have any open maps to work with. Starting a new map acti-
vates these buttons so you can see them.

Choose File➪New. This opens a new map, creates a new window, and enables
all the tools in the editor. It looks like Figure 4-10.

It’s possible that your editor displays more or less buttons and options. Valve
regularly updates the programs you have installed. These updates are
applied automatically. Although your editor may look slightly different, the
option I cover in this book will generally apply to all versions regardless of
the version of Hammer Editor that you are running.

Figure 4-10:
Creating

a new
map opens

a new
window and

activates
the buttons.

46 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 46

Looking in 2D and 3D
Begin by going over the four windows now open in the middle of the screen.
You see a single window that’s split into four quadrants. One quadrant is the
camera viewport; each of the other three quadrants represents a single-
dimensional view in the three-dimensional world. You can resize this window
as a whole within the editor by clicking and dragging any of the windows
edges or corners. You can also move the dividers that split the windows by
clicking and dragging them. This allows you more control over your work
environment. However, for the time being, just leave everything as is while I
explain each of the four views in detail.

If you move the dividers between the viewports and you want to reset them,
press Ctrl+A. This automatically resets the sizes of the four views so that
they’re all equal.

Camera viewport
The quadrant located in the top-left corner is the camera viewport. This is
your 3D viewport. (See Figure 4-10.) The purpose of the viewport is to pre-
sent you with a visual representation of your map. Right now it’s empty; but
later, when you start working on your map, this window depicts what you are
working on as if you were in the game. The camera viewport also makes it a
lot easier to select portions of the map that you’re working on. I go into this
further in Chapter 5.

When you roll your mouse over this viewport, the title bar of the window
changes to Untitled – Wireframe. This means that this viewport is dis-
playing content in wireframe mode. Wireframe is just one of several viewing
options. The following is a list of the viewing options:

� 3D Wireframe: When drawing the 3D content within this window, each
object is represented as a line drawing rather than as a solid object. (See
Figure 4-11.)

Figure 4-11:
The 3D

Wireframe
viewing

option of the
camera

window.

47Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 47

� 3D Filled Polygons: Each object is filled in with color so that the object
looks solid. (See Figure 4-12.)

� 3D Textured Polygons: Each object is displayed with its assigned tex-
ture similar to how it appears in the game. (See Figure 4-13.)

� 3D Shaded Textured Polygons: This is very much like the previous set-
ting except that shading is applied as light hits the textures. In this case,
you won’t see any difference at all because there isn’t anything there to
see. This view option is much more apparent later when your map is
being constructed.

These modes are better understood when you start making a map and can
see the difference as applied to your map. For now, know that the different 3D
viewing options are available.

Figure 4-13:
The 3D

Textured
Polygons

viewing
option of the

camera
window.

Figure 4-12:
The 3D

Filled
Polygons

viewing
option of the

camera
window.

48 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 48

2D viewports
The other three viewports that are attached to the camera viewport are the
2D viewports. When you roll your mouse over each of these viewports, the
window’s title bar shows the viewport name. The top-right view is the Top
view, the bottom-left view is the Front view, and the bottom-right view is the
Right view. These three views together make up your 3D workspace in the
editor.

Although you can change each of these viewports to any of the above-
mentioned views, you should leave them at their default settings for now.

The View menu option in the editor refers to each of these three viewports in
an X, Y, and Z format rather than Top, Front, and Right. The equivalent of
each view is as follows:

� Top: 2D XY

� Front: 2D XZ

� Right: 2D YZ

Pressing buttons and working menus
The buttons at the top of the window contain the commands most often used
while working on your map. I don’t describe all the buttons in this book.
Actually, my goal is that by the end of this book, you won’t even need any of
the buttons. It’s more efficient to know the keyboard shortcuts to all the com-
mands in the editor than to rely on buttons and menu options. But before I
go over the essential shortcuts in Chapter 5, let me introduce you to these
buttons.

Menus are also available at the top of the screen. Here you can find all the
editor options available. If you don’t have the keyboard shortcut memorized
or you don’t see the button for the operation you want to perform, you can
find it in this menu.

The buttons in the toolbars along the top of the Hammer Editor interface are
described in Table 4-1.

49Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 49

Table 4-1 Tools at the Top of the Hammer Editor Interface
Tool Icon Name Function

Toggle Grid Toggles the 2D grid on and off so that
grid lines show up in the 2D views.

Toggle 3D Grid Toggles the 3D grid on and off so that
grid lines show up on selected objects
in the camera viewport.

Smaller Grid (left bracket) Decreases the size of your grid.

Larger Grid (right bracket) Increases the size of your grid.

Load Window State Loads your last saved independent
window state.

Save Window State Saves your current independent
window state.

Carve with Selected Objects When chosen, the selected object’s
shape is carved out of any overlapping
objects.

Group Selected Objects Places all selected objects into a group
so it’s easier to move them together.

Ungroup Selected Groups Ungroups the selected groups.

Toggle Group Ignore Normally, when you select a single item
in a group, the entire group is selected.
This tool ignores groups so that individ-
ual objects can be selected.

Hide Selected Objects Removes from view all selected objects.
This does not remove them from the
map.

Hide Unselected Objects Shows all hidden objects.

50 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 50

Tool Icon Name Function

Cut, Copy, Paste These three buttons cut, copy, and
paste (respectively) the selected
objects in your map.

Toggle Cordon State Turns on and off the cordon state.

Edit Cordon Bounds Selects or edits the cordon area. A
cordon area partitions off a selected
portion of your map so you can play-test
this area without regard to the rest of
the map. It’s a means of quickly testing
small areas of your map.

Toggle Select-by-Handles With this enabled, the objects in your
map can be selected only by the center
x rather than by clicking anywhere
within the object.

Toggle Auto Selection This option allows for easier selection of
multiple objects in your map. With it, you
can drag a selection box around a group
of items in your map to select them.
Without it, you must press Enter after
dragging the selection box in order to
make your selection.

Texture Lock Allows you to move an object in your
map without disturbing the applied
texture.

Scaling Texture Lock When you scale an object’s size with
this option turned on, the texture scales
with it.

Toggle Face Alignment Toggles the automatic alignment of tex-
tures on objects. When turned on, the
texture is aligned to the object. When
off, the texture is aligned to the map’s
world coordinates.

Displacement Mask Solid Turns on or off the display of the non-
displacement sides for a brush that con-
tains displacement surfaces.

(continued)

51Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 51

Table 4-1 (continued)
Tool Icon Name Function

Displacement Mask Highlights a surface in yellow if it is too
Walkable steep for the player to walk on. Note:

This works only in the 3D Textured views.

Displacement Mask Alpha Turns on or off the display of the vertices
that are collapsed when two displace-
ments of different resolutions are con-
nected via a Sew command, or a brush
that contains displacement surfaces.

Run Map! [F9] Loads and runs your map in the game.
F9 is the shortcut for this action.

Toggle Helpers Helpers are words that assist in identify-
ing selected entities. When Toggle
Helpers is turned on and you select one
or more entities in your map, you can
zoom in to your map and see the name
of the entity.

Toggle Models in 2D Here you can show or hide models in
the 2D windows.

Toggle Model Fade Preview Turns on or off the model fade preview
in the 3d view window.

When you click the Load Window State button, the four viewports in the
editor separate into four windows. This allows you to customize differently
each window in the editor, but it also means that you have to work with four
windows instead of one. After you click this button and separate your win-
dows, you can return the viewports back to their previous state by choosing
Tools➪Options and deselecting the Use Independent Window Configurations
option on the General tab. Afterward, you must close and restart Hammer
Editor for your settings to take effect.

The buttons that run down the left side of the editor are for adding and modi-
fying objects in your map. With these, you can add brushes, entities, apply
textures, and so on. A breakdown of what these buttons can do for you is
shown in Table 4-2.

52 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 52

Table 4-2 Tools along the Side of the Hammer Editor Interface
Tool Icon Name Function

Selection Tool This tool allows you to select an object
in your map. Press and hold Ctrl while
selecting multiple objects.

Magnify With this tool, left-click to zoom into a
specific area of your map. Right-click to
zoom out.

Camera This tool allows you to place and modify
cameras in your map. These cameras
help you to take a close look at what
you’re working on.

Entity Tool This tool allows you to place entities in
the map.

Block Tool Select this tool to add new brushes.

Toggle Texture Application To apply or modify a texture to a brush,
select this tool.

Apply Current Texture If you already have a texture selected,
this tool applies it.

Apply Decals Use this to apply decals to objects.
Decals are like textures and can be
applied over the top of other textures.

Apply Overlays This is very similar to the Apply Decals
tool except that overlays have more
options in the editor. Chapter 5 dives into
the subject of textures and decals in
greater detail.

Clipping Tool With this tool, you can cut brushes to
create various shapes other than the
common cube.

Vertex Tool To further manipulate brushes to the
desired shape, use this tool. It allows
you to move the corner points around in
the editor.

53Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 53

A group of four tools is also on the right side of the editor. (Refer to Fig-
ure 4-10.) These groups are portable in that you can freely move them and
arrange them however you desire, which is something I recommend. After I
define each of these groups, I go over the steps for arranging them.

� Select Modes: Use this group to control how map objects are selected.
This can help if you want to make sure that you don’t select the wrong
thing when working on a complicated map.

� Textures: This group is a shortcut to selecting textures. The other
method is to select your brush, select the Toggle Texture Application
button on the left, select a texture, and then apply it. Instead, select a
texture in the Texture group on the right and then use the Apply Current
Texture button on the left to apply it to a brush.

� Filter Control: With Filter Control, you can simply select or deselect
groups and objects to hide or show them in your map. When working on
large, complicated maps, this comes in handy.

� New Objects: This group helps when placing entities, prefabs, and
brushes. For instance, when placing brushes, you can choose to place a
square, cylinder, spike, or other shaped brush. You can also define if a
selected brush or group of brushes should be separated into world
brushes or grouped as a single entity.

As for arranging these windows, I recommend condensing them into a single
column (if they aren’t already). How they’re arranged when you first load the
editor is dependent on your screen resolution. If your resolution is set to
1024 × 768, you have two columns of tools taking up valuable workspace, as
shown in Figure 4-14.

To condense these grouped tools into a single column, click and drag the
upper-left corner of the group and then move it where you want. In this case,
start with the Select Modes group. Left-click the upper-left corner of this
group and then drag it under the New Objects group.

Continue with the remaining two groups in the left column, moving them to
the right column. The result looks like Figure 4-15. Yes, I know that the group
at the bottom of the column is cut off and slightly out of view, but as long as
you can still access all functions, you won’t have any problems. You have
more room to work on your map, which is a huge benefit.

Reading messages
The Messages window found near the bottom of the editor, as shown in
Figure 4-14, is there to help you spot errors in your map or in the loading of
the editor. If a problem occurs while loading the configurations files, it’s
listed in this window.

54 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 54

You’re going to find that this window isn’t used very much. Rather, it takes up
valuable workspace for your map. I recommend that you close this window. If
at any time you want to see the Messages window, reopen it either by choos-
ing Window➪Messages or by pressing Alt+F3.

To close this window, choose Window➪Messages, and it disappears.

Notice that I stretched it out across the bottom of the editor and shrank it in
height. I did this to further increase my work area for the map while still
being able to notice any important messages that might come up.

One last thing before you’re done — maximize your map. The work area for
your map, which contains the four viewports, is fairly small. This can make it
difficult to work on your map because you have to constantly move to place
and modify your map objects.

Select Modes

Textures

Filter control New ObjectsMessages window

Figure 4-14:
Two

columns of
tools can

take up a lot
of room in
the editor.

55Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 55

To resolve this size issue, maximize your Mapping window. In the upper-right
corner of the window, you have the standard window functions that you find
in all the windows on your computer — the Minimize, Maximize, and Close
buttons. Clicking the second button from the end maximizes your window to
fill in all of the available space in your editor.

Click the Maximize button, and you have a nice working environment with
lots of space to make your map just as I have in Figure 4-15.

Using Shortcuts for Success
You should get to know the keyboard shortcuts for the editor. No quicker and
easier way exists to work on your map other than when you’re using key-
board shortcuts. You might find it difficult to remember them at first, but
trust me when I tell you that it’s worth the effort. The more you use them, the
better you remember them.

Figure 4-15:
Arrange

your work
area so that
you can see

most of
your map.

56 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 56

If you forget a keyboard shortcut or want to look for one you don’t know yet,
you can often find it listed next to the operating command in the editor. For
example, if the operating command is a button (like the Clipping tool), hover
your mouse over the button, and the shortcut displays as a ToolTip for you.
If the operating command is in the main menu, it might be listed next to the
command name.

If you read through the upcoming chapters, important shortcuts are intro-
duced. If you’re looking for other references, flip over to the Cheat Sheet
found at the beginning of this book.

Troubleshooting Issues
In a perfect world, there would be no problems with the editor. You could
load it up and start working regardless of the computer you’re using.
However, with so many different computers in the world, you can’t possibly
avoid all possible problems that might arise.

Some problems are more common than others. Throughout this book, I point
out common errors and methods to fix them when appropriate. If you’re
experiencing a problem that isn’t covered, I recommend that you search the
Internet for a solution. It’s quite possible that you’re not alone and that the
issue has been documented and solved already.

57Chapter 4: Getting Set Up for Mapping

09_096314 ch04.qxp 12/7/06 10:42 AM Page 57

58 Part II: Making Your Own Maps

09_096314 ch04.qxp 12/7/06 10:42 AM Page 58

Chapter 5

Creating Your First Game Map
In This Chapter
� Selecting the texture for your walls

� Zooming and moving the 2D window

� Using brushes

� Changing your room from solid to hollow

� Keeping a seal on your room

It’s time to jump right in and start creating your first game map. Your goal
is to create a very simple room — just a small area with four walls, a ceil-

ing, and a floor. This might not sound like much, but from this, you will be
able to create great things.

Whenever I’m starting a map or testing out ideas, this is where I start. I create
a small room with the basic necessities for playing in the game. Then I build
my additions onto this small map. The additions could be an entire city with
streets and skyscrapers that stretches on for blocks, or it could be something
I want to invent and test, like a fancy door, before adding it into my final piece.

All great things start small, and this chapter is where you begin. In no time, you’ll
be building onto the small space you create and making something fantastic.

Selecting a Texture
Before you begin creating the walls and parts of your room, I recommend that
you select a base texture to apply to the things you draw. Textures are really
just images that are painted onto the surfaces of what you see within the
game. Just like the walls in your house, start with a primer (your base texture)
and then go back and apply the final coat (what the player sees). I explain
more about the base texture in the section, “Deciding on a base texture.”

In order to access the available textures, you must first have a map open in
the Hammer Editor. If the editor is closed, open it now so that you can start a
new map. Choose File➪New, and you’re ready to start on your custom level.

10_096314 ch05.qxp 12/7/06 10:42 AM Page 59

Deciding on a base texture
After the editor is loaded and ready to go, you need to select an initial
texture — the base texture — from which to build. While you’re creating
things within the editor, the selected texture is automatically applied to it. You
can change the selected texture at any time, and you can even go back later
and apply different textures. When your map grows in size and complexity,
though, so does the tediousness of going back and replacing all the textures.

I start with the Nodraw texture, which is a good base texture because it’s
solid and doesn’t take up additional memory in the game. Because the
Nodraw texture makes solid walls, your map is self-contained. A map needs
to be self-contained so that it can’t leak, as I explain in further detail later in
the section, “Leaking Is Not an Option.” And because it’s ignored by the game
as a texture, the Nodraw texture doesn’t take up any additional computer
memory or processing power.

Even though the Nodraw texture is ignored by the game, you can still see it in
the editor. When applied to a brush face, that brush face isn’t drawn in the 3D
world. This makes it perfect for places that can’t be seen by the player, such
as the areas behind walls, between brushes that are butted against each
other (see the upcoming section, “Drawing the First Brush,” for further
explanation), and so on.

Of course, choosing a texture, such as brick or concrete, for these hidden
areas would work as well. However, if you don’t plan on using those textures
elsewhere in the map, the game simply wastes memory by loading them in
the game. And, when it comes to games, you don’t want to waste anything
because you want the player to have the best possible experience when
playing your level.

Filtering textures
To select the Nodraw texture, you must browse the available textures, find it,
and then select it. From the Texture Group option on the right of the editor
(see Figure 5-1), click the Browse button to open the list of textures.

Figure 5-1:
The Texture

Group
allows for

quick texture
selection.

60 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 60

After you click the texture’s Browse option, a new window pops up with all
the available textures for your map, as shown in Figure 5-2. Seeing all these
choices is exciting until you realize that you’re looking for only one specific
texture in a list of many.

Thankfully, a group of options that can simplify finding the right texture is at
the bottom of this window. Here is a breakdown of the options in this window:

� Texture Preview window: Preview the textures in the main window. For
each texture, you can find a square sample of the texture along with the
texture’s name, which should help you quickly scan and locate the tex-
ture of your choice. Double-clicking any of these textures automatically
selects them for use in the editor.

� Size: Adjust the display size of the textures with the Size feature. Selecting
a larger size prevents you from seeing as many textures in the area above.

� Only Used Textures: Select this option to filter out those textures not
currently used in your map. Because you currently have no textures in
your map, selecting this option would result in hiding all the textures
from view. However, this is a great feature later when you’re looking to
reuse a texture already found in your map.

� Filter: This text box is a great search function. For example, typing brick
into this box hides any texture that doesn’t have brick in the title. You
can then see all the textures that contain the word brick. You’ll find that
this feature gets a lot of use.

� Keywords: This option works very much like the Filter option. The differ-
ence is that the words you enter search through each texture’s keywords
instead of the titles. When Half-Life 2 textures are created, keywords can

Figure 5-2:
The

Textures
window
offers a
detailed

selection of
textures.

61Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 61

be separately defined. These words can be anything that the author
deems suitable. Because you can’t be certain of what turns up with key-
words, this searching function might not be as useful as the Filter option.

� Mark: Select a texture and then click the Mark button to select all the
brushes or brush faces in your map with that selected texture. With this
button, you can find where you used the selected texture in your map.
You can also use this button to select and globally adjust all applied
versions of the same texture throughout your map.

� Replace: Click the Replace button to open the Replace Textures window,
as shown in Figure 5-3. With this window, you can find and replace any
texture in your map. If you start your map with grass on the ground of
some of your map’s areas and later decide that you want to use dirt, this
window makes replacing all the grass with dirt quick and easy.

� Number × Number: When a texture is selected, two numbers are dis-
played here that represent the texture’s width and height. — number
combinations, such as 64 × 64, 128 × 128, 256 × 256, and 512 × 512.

� Open Source: Click the Open Source button after selecting a texture to
open the text file that defines that texture.

The textures in Half-Life 2 are more than just images. They’re also text
files, which are saved with a VMT (Valve Material Texture) extension.
In Chapter 15, I discuss textures in more depth.

� Reload: Click the Reload button to refresh the list of textures displayed.

� Opaque: Select this option to show only those textures that are fully
opaque and don’t have any transparency.

� SelfIllum: Select this option to show only those textures that are defined
to give off light in the game.

� Show Errors: Select this option to show only those textures that have
errors in their VMT file.

� Translucent: Select this option to show only those textures that have
some form of transparency.

� EnvMask: Select this option to show only those textures that have an
environmental mask defined. This is similar to the Specular Map created
in Chapter 13.

To find and select the Nodraw texture, type “nodraw” into the filter text box
and wait. The window then locates and displays all the textures that contain
this search term. After this search is complete, you have only one texture to
select — the tools/toolsnodraw texture (see Figure 5-4).

To select the Nodraw texture, double-click it. This closes the Textures
window and displays the Nodraw texture in your Texture Group window on
the right, as shown in Figure 5-5. You’re now ready to start building your map.

62 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 62

Drawing the First Brush
The world inside 3D games is made up of building blocks called brushes. If
you think of this world as being a house, every wall, floor, and roof is made
up of one or more of these brushes.

With your texture selected, you’re ready to start creating your game world
by drawing your first brush. To create a brush, click and drag a rectangular
shape into the editor. Clicking and dragging a brush is drawing. I show you
how to do this in the following steps:

Figure 5-5:
The

selected
texture

displays in
the Texture

Group
window.

Figure 5-4:
The Nodraw

texture is
yellow with

Nodraw
printed in it.

Figure 5-3:
Find and
replace

textures in
your map

quickly.

63Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 63

1. Press Ctrl+B or select the Block Tool icon on the left of the editor.

2. To draw your first brush, begin in any one of the three 2D windows.

In this example, I start in the top window, which is located in the
top-right of the editor.

If you don’t remember which window is which, drag your mouse over
the windows and keep your eye on the title bar of the editor. When you
drag the mouse over each window, the window’s name appears in the
title bar. Or, drag your mouse over the upper-left corner of each view-
port to see the name of the window appear in that corner.

3. Click anywhere near the middle of this window and then drag
the mouse.

When you drag the mouse, a square with a dashed, yellow outline
appears. On the top and left sides of the square are numbers, as shown
in Figure 5-6. The numbers represent the size of the selection area,
which isn’t important just yet.

4. After you create a medium-sized square on the grid, release the
mouse button.

You aren’t concerned with the size of the brush right now because you’ll
resize it shortly. When you do release the mouse button, the square
marking the selection area turns from yellow to white.

5. Press Enter to create the brush.

With your selections are complete, pressing Enter creates the brush
within these boundaries. The result is a red square with a white dot in
each corner and a small red x in the middle.

Figure 5-6:
After you

draw your
brush, the

dimensions
are

displayed.

64 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 64

There you have it. You just started your first map and created your first brush.
You can’t yet play it in the game, and it doesn’t look too fancy, but it’s the start
of something that might be played by thousands of gamers when you’re done.

Maneuvering in the Viewports
Before you get back to resizing and building upon your first brush, you should
get more familiar with the four windows in the editor. You’ll work in these win-
dows most of your mapping life, so understanding how they work is important.

Zooming and moving the view
Although each of your four viewports can be customized to display anything
that you want, I assume that you kept them in their default orientation that I
review in Chapter 4.

Moving around within the 2D viewports is fairly simple. There aren’t a lot of
different movements you can make.

To move left, right, up, and down in the 2D viewport, you have two options.
You can slide the scroll bar on the sides of the window in the direction you
want to move. Or, you can place your mouse over the viewport and then
press your arrow keys to move in the appropriate direction. I usually use
the arrow keys because they’re more precise.

Make sure that your mouse cursor is over the top of the window in which you
want to move. Otherwise, the window that moves might not be the one that
you intended.

Using the arrow keys in the camera viewport actually results in a different
kind of movement. Pressing the arrow keys rotates your camera just like
when you rotate your head. If you want to shift in the direction of the arrow
keys, you must first press Shift. For example, pressing Shift+↑ moves you up
instead of causing you to look up.

Perhaps a more familiar way to move around in the camera viewport is via
the WASD keys. These are the keys often used to move around in the game,
and they’ve been adapted to work the same within the editor. W moves you
forward, A left, S back, and D right.

To zoom in and out — or move forward and back — in any of the viewports,
use your mouse wheel. Scrolling the wheel is the easiest way to zoom about.

Moving around in each of the viewports might seem tedious. However, a few
additional shortcuts make life easier. If you’re working in a large map and you

65Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 65

need to adjust a brush that you located in one viewport, you can center the
view around your selection in the other three viewports by pressing Ctrl+E.
You have to locate the brush that you want to edit in only one viewport, and
then you can automatically put it in view within all the other viewports.

As for the camera viewport, although a few different view options are available,
I recommend changing the view option to 3D Textured Polygon. The camera
viewport will become an important means of selecting different objects in your
map, and the ability to see exactly what you’re selecting is very important.

To make this change, click anywhere in the camera viewport to make sure
that it’s the selected viewport that you want changed. Choose View➪3D
Textured Polygon. When you do this, your camera viewport might appear to
go blank because your camera is currently inside the only brush in your map.
Place your cursor over the camera viewport and then scroll the mouse wheel
downward until you see your brush appear, as shown in Figure 5-7.

Counting in the power of two
The numbers in the mapping world revolve around the power of two. All tex-
tures for a game are sized with numbers, such as 8, 64, 128, 256, 512, or some
combination thereof. When images are scaled from one size to another, they
look best when they’re scaled by powers of two.

Textures in many games are created with a special format that already
contains the scaling information for each texture size. So, a texture that’s
512 × 512 might already contain the information for the same texture
that’s 256 × 256, 128 × 128, and so on.

A similar sizing pattern is found in the way the 2D window is laid out. The
default setup places the grid lines 64 units apart. The darker grid lines
(if you can see them) are 1024 units apart.

Next, note that each unit in the editor is equal to 1 pixel in a texture. Placing a
64 × 64 texture on a brush face that is 64 units square results in an optimally
sized texture-to-brush ratio.

The grid lines in the editor’s 2D windows can be adjusted. Pressing [and]
decreases and increases the grid size. What makes this important is that with
grid snap turned on, you can’t make brushes or selections equal to any other
size than a multiplication of that grid size. If you want to make a wall 8 units
thick, you must first decrease the grid size to 8 units or less.

You can turn off the grid snap option by choosing Map➪Snap to Grid.
However, this isn’t recommended. It is extremely important that your
brushes line up exactly in the editor, or errors result later when you try to
compile your map into a playable level.

66 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 66

Resizing and Moving Brushes
Getting back to your map, you need to finish sizing your medium-size brush
that you created in the section, “Drawing the First Brush,” earlier in this
chapter. You want to size it equal to that of the entire room you’re making,
which will be 512 units in width, 512 units in depth, and 128 units in height. I
choose 512 units square because this creates a room large enough to experi-
ment in without making it too large. A room with a height of 128 units makes
the player feel comfortable. You could create a room of nearly any size when
constructing your map, but for practice purposes here, you should use the
dimensions listed.

If you read the earlier section, “Zooming and moving the view,” you already
know how to move around in your 2D window, but now you need to under-
stand how to resize and move your brushes in your map.

To resize a brush, you must first select it. Select the Selection tool icon on the
left as shown here or press Shift+S. This tool allows you to select and manipu-
late the objects in your map.

To select your brush, just click it in the camera viewport. This selects your
entire brush.

Figure 5-7:
Change

your
camera

viewport so
you can see

and select
objects in
your map.

67Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 67

You can also select your brush from any of the 2D viewports by clicking the
center x or one of the outer edges of the brush; however, this method can
be inaccurate and isn’t recommended. If you have a large map with many
brushes, it’s not as easy to select the precise brush from the 2D window
because you might accidentally select the wrong one. If you select your
brushes from the camera viewport, making a selection mistake is much more
difficult. However, in some cases, you must select your brush from the 2D
viewport. One example is when you want to rotate or skew your brush. In
Chapter 13, a light fixture is shaped from the 2D viewport.

With your brush selected, you see a group of small, white squares around
your brush in the 2D viewports (see Figure 5-7). These are handles that you
can click and drag to resize your brush. If you click a corner handle, it resizes
both sides of that brush; the other handles affect only one side.

If you need to move the brush, simply click and drag anywhere within the
brush from within any of the 2D viewports. You can move your brush around
and place it anywhere although right now, your brush probably shouldn’t
need to be moved.

When resizing your brush, your goal is to create a brush 512 units in width,
512 units in depth, and 128 units in height. First, resize the width and depth.
From within the top 2D viewport, stretch each of the four sides of the brush
until the numbers around them read 512.0, as shown in Figure 5-7. Remember
that for better control of your brush, you can zoom in and out of the
window’s view as well as move the grid.

Next, resize the height of the brush from either of the two other 2D view-
ports. Click and drag either the top or bottom handle until the brush height
is equal to 128.0, as shown in Figure 5-7.

Taking Cues
Often people overlook the status bar at the bottom of the editor. It’s not
prominent within the editor, but take a look at the bottom of the editor now.
There you find information about your mapping environment that can be of
great value.

Here is a list of what you can discover from this small but resourceful status
bar. Each appears from left to right in the status bar:

� Help Reminder: The bar starts off reminding you that whenever you
need help with the editor, just press F1. After you press F1, the Valve
Developer Community page opens in your Web browser where a lot of
useful information is found.

68 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 68

� Selection Information: Here you see information about what you
selected. For example, if you selected a brush, this displays the type of
brush and the number of sides. However, if you selected an entity, this
displays the name information of the entity.

� Coordinates: The numbers displayed here are the current coordinates
of your mouse from within one of the 2D viewports. If you’re in the top
X, Y viewports, the numbers displayed here are the X and Y map coordi-
nates of your mouse in that window.

� Selection Size: If you click a brush or create a new selection area in one
of the 2D viewports, this information tells you the width, length, and
height of your selection as well as its center point in the form of X, Y,
and Z coordinates.

� Zoom Size: The level of zoom you selected for your current 2D viewport
is listed here.

� Grid Information: Here you find the current grid information for your 2D
viewports. However, note that the grid information is for all 2D viewports
because changing the grid value for one affects them all. The information
tells you whether grid snap is on or off as well as the size of the grid.

Hollowing Out the Room
When your brush is properly sized, you need to hollow it out to make room
for your player. Right now, it’s a solid block. Your goal is to create an empty
room with four walls, a floor, and a ceiling.

Make sure your brush is selected first. Then choose Tools➪Make Hollow or
press Ctrl+H. A dialog box pops up, asking you, “How thick do you want the
wall?” as shown in Figure 5-8.

Wall thickness refers to the thickness of the walls after this brush has been
hollowed out. If you enter 8, the hollowed brush’s walls will be 8 units thick.
However, you also have the option of entering a negative number, which
keeps your hollowed area equal to the current size of your brush. The walls
would then be created outside of the currently solid brush.

In this case, enter a value of 8. This is a good wall thickness for the game
because it makes the walls appear similar in size to the walls in most homes.
Then press OK to hollow the brush and continue.

You now have something that looks more like a room and less like a solid block.
(See Figure 5-9.) The brush that was once solid now looks more like a room
made of six brushes: one for each side, one for the top, and one for the bottom.

69Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 69

Figure 5-9:
Hollowing a
solid brush
results in a

structure of
multiple

brushes.

Figure 5-8:
Enter the
resulting

brush wall
thickness

for the
hollow

function.

70 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 70

Breaking Things Apart
Try selecting just one of the walls in your new room. You’ll find that you can’t
do it without selecting all six walls because all the brushes resulting from the
hollowing process are grouped together. In some cases, you might find this
grouping useful; however, I find it annoying because I then have to take addi-
tional steps later to make changes to individual walls.

To ungroup the brushes that make up your room, follow these steps:

1. From within the camera viewport, click anywhere in your new room.

This selects all size walls, giving them a reddish hue in the camera
viewport and a yellow outline in the 2D viewports.

2. With the group selected, choose Tools➪Ungroup or press Ctrl+U.

Seemingly nothing happens, but your brushes did ungroup.

3. Within the camera viewport, select any wall in your room.

Only one wall is selected instead of all the walls in the group.

Leaking Is Not an Option
Making sure that your map has a good seal is crucial. You’ll be adding entities
that create light or are interpreted as objects that can create light. If you
allow this light to escape into the void outside your map, you create a leak.

The game engine doesn’t like leaks because they present too much informa-
tion for it to process. When you take your map and compile the information
into a playable level, the process must also calculate how light acts and reacts
in the environment. Some textures reflect light like a mirror, and that reflected
light can in turn reflect off another surface. This bouncing effect is perhaps
the most intensive process for your computer to calculate during the compile
process. If you allow the light to go beyond the confines of your playable area,
your computer foresees an endless amount of calculating for the light that is
bouncing into the void, and the computer reports that a leak has occurred.

If you accidentally moved any of the walls in your room, go back and check
for potential leaks. Make sure that no visible gaps fall between your brushes.
Also look in the corners for holes; if any exist, adjust the brushes to close
them before you continue.

71Chapter 5: Creating Your First Game Map

10_096314 ch05.qxp 12/7/06 10:42 AM Page 71

Other possible causes for leaks are:

� Placing an entity outside of your mapping area. All entities should be
within the confines of your map.

� Texturing a structural brush or surface that should be keeping the seal
on your map from the outer void with a texture that is transparent or
non-solid. Such a texture would be a wire fence where you can see
through the holes in the fence.

� Not having a good seal on your area portals between leafs. This is part
of optimization techniques discussed in Chapter 10. Area portals are
used to seal off room from each other.

That’s it for the structure of your room, and now is a good time to save your
work before you continue.

Saving Your Map
Finally, it’s time to save your map. Save your map often after each important
step that you perform in the editor. It would be horrible to lose all your hard
work if for some unexpected reason the editor crashed. Sure, the editor isn’t
suppose to crash, but just as Murphy’s Law states, “Whatever can go wrong,
will go wrong.”

To save the map, you have a couple of options:

� Choose File➪Save or choose File➪Save➪Save As.

� Use the keyboard shortcut, Ctrl+S.

When naming your map, make sure to use only alphanumeric characters and
no spaces. Any other characters result in errors when you compile and play
your map. Also, since this is a deathmatch game type, it is common practice
to start the name of your file with dm_. This makes your map easily recog-
nized as a deathmatch map. For example, instead of naming your map my
room.vmf, use dm_my_room.vmf. This saves you a headache later.

Because you’re working in Chapter 5 of this book, save it under a name that
makes it easy to reference later. For example, name it dm_chapter5.vmf.

72 Part II: Making Your Own Maps

10_096314 ch05.qxp 12/7/06 10:42 AM Page 72

Chapter 6

Decorating the Scene
In This Chapter
� Grabbing new textures

� Covering the Nodraw texture with fresh paint

� Applying textures to walls, floors, and ceilings

The stage is set, but what about the scene? If you’ve followed the book to
this point, the walls in your dm_chapter5.vmf file are just covered in

the Nodraw texture. This texture is great for keeping the processing power
required by the game to a minimum but is quite unsuitable for your game
play. Your player can’t see this texture in the game, so you should dress
things up with some textures.

Textures are really just pictures painted on the sides of the brushes in your
map. (A side of a brush is a face. Texturing the side of a brush is painting a
brush face.) These pictures are often designed to look like concrete, brick,
metal, wood, or other materials you commonly find in the real world. Most of
the time, these pictures are created in small squares that can be stacked on
top and next to each other endlessly and saved in an image format that the
game can recognize. These are called tileable images because the image is
applied like tiles on a floor.

Your objective is to place some of the textures onto the brush faces of your
map. You can put a concrete texture on the floor, a metal texture on the walls,
and a decorative tile on the ceiling. All the textures that you need are available
in the editor; they’re based on the levels already created for the game. If you
see a texture in the game, you can use it in the editor for your map as well.

Selecting Faces on the Wall
Before you select the new texture you want to apply, you must select the
brush face of one of your walls. This distinction (the brush face, not the brush)
is important because you don’t want to apply the texture to the entire brush
on each of the walls. This defeats the purpose of using the Nodraw texture
when constructing the room.

11_096314 ch06.qxp 12/7/06 10:43 AM Page 73

First, adjust your view within the camera viewport so that you can see the
inside of your room. From here, you can select the brush faces that require
a texture.

Click the Texture Application icon (as shown in the margin) on the left side of
the editor. The shortcut for this tool is Shift+A.

After you activate the Texture Application tool, the Face Edit Sheet window
comes up, as shown in Figure 6-1.

Exploring the Face Edit Sheet Window
In the Face Edit Sheet window, you can select additional textures and adjust
those that exist in your map. However, perhaps the most important options
that become available with this open window are the texture shortcuts for
applying, copying, and working with textures in your map.

Move this Face Edit Sheet window to the side so that you can better see the
camera viewport. Then let me show you the different options available in this
window and what each does for you and your textures.

In the first tab — Material — you have all your texture application options
available:

� Texture Scale, X and Y: This option allows you to scale the size of the
texture applied to your brush. Because a brush face has only two direc-
tions, only two axes are represented for scaling — the X and Y axes.
Although you can adjust the values by entering them manually or press-
ing the respective up and down buttons for each axis, you can also place
your mouse in the value field and then adjust it by scrolling your mouse
wheel. Enter a negative number to invert the texture.

Figure 6-1:
Press

Shift+A to
access the

Texture
Application

window’s
feature set.

74 Part II: Making Your Own Maps

11_096314 ch06.qxp 12/7/06 10:43 AM Page 74

� Texture Shift, X and Y: This option allows you to move the texture
across the brush face. Because a brush face has only two directions,
only two axes are represented for shifting — the X and Y axes. Adjusting
the values for shift is done the same way as for the texture scale.

� Texture Group: Because no texture groups are available, this selection
is limited to All Textures. However, textures that are imported from the
original Half-Life game WAD files can be referenced here individually as
a group.

� Current Texture: This is quite simply the texture you have selected for
application to a brush face.

� Hide Mask: If the red hue that you see on selected brush faces is getting
in your way, select Hide Mask to hide this reddish coloring. You can’t see
which brush face you selected, but you do have an unobstructed view of
the texture as it is applied and adjusted on the brush face.

� Browse: Click Browse to open the Textures window, which provides you
with more texture find and selection options.

� Replace: This button opens another dialog box that allows you to find
and replace textures throughout your map.

� Apply: With a brush face selected, click Apply to paste the selected
texture on the selected brush face.

� Lightmap Scale (units per luxel): Adjust this value to affect the level of
lighting detail on the selected brush face. A lower number increases the
quality of light displaying more defined shadows because it applies more
lighting detail to fewer units. However, a lower number also requires
more processing power from your computer during game play. I recom-
mend that you adjust this value only when needed.

� Rotation: The value entered here is the degree of rotation for the texture
on the brush face. Positive and negative numbers can be used.

� Justify: Within this option area, you’re presented with a number of but-
tons that affect the position and size of the image. The alignment but-
tons are L (left), R (right), T (top), B (bottom), and C (center). The Fit
button is unique because using it fits the single texture to the brush
face; therefore, scaling it in size equal to that of the brush face.

The other option here is the Treat as One check box. When you enable
this option and you select multiple brush faces, all the faces are adjusted
as if they were one, large brush face. For instance, clicking the Fit button
fits the texture to the entire selection of brush faces as if they were one
brush face rather than fitting them to each individual brush face.

� Align: The align options for textures refer to how the origin of the tex-
ture is calculated. A World alignment considers the entire mapping
world as a basis for the origin of your texture. A Face alignment consid-
ers the selected brush face as being in a world of its own. This matters
when trying to line up the position of applied textures.

75Chapter 6: Decorating the Scene

11_096314 ch06.qxp 12/7/06 10:43 AM Page 75

� Mode: This option might appear to be a single button but is actually a
drop-down list of options. The modes listed here affect what occurs
when you use your mouse in the camera viewport to manipulate tex-
tures on brush faces. These options are

• Lift + Select: Clicking a brush face selects the brush face and then
sets its texture as your current texture in the Face Edit Sheet.

• Lift: Clicking a brush face selects only its texture (and not the
brush face) as your current texture.

• Select: Clicking a brush face selects only that brush face.

• Apply (Texture Only): Clicking a brush face applies the current
texture.

• Apply (Texture + Values): Clicking a brush face applies the current
texture and any other values entered on the Face Edit Sheet.

• Align to View: Clicking a brush face applies the current texture
using your camera as the point of origin. This means that if you’re
looking at the brush face on an angle from within the Camera view-
port, your texture is applied on that same angle.

� Smoothing Groups: Selecting this option allows you to assign multiple
brush faces to a numbered group for lighting. Then, when compiled and
played in the game, the game lights each group of brush faces as if they
were a single, continuous brush face. This is helpful if the lighting looks
like it is being broken up along a wall made of multiple brush faces.

The second tab in the Face Edit Sheet is Displacement. Its primary use is to
modify brush faces, such as those made to look like terrain. With the options
listed here, you can raise spots of a brush to form hills, lower spots for val-
leys and perform a number of other functions to make your terrain look like
the bumpy ground you see outside of your window.

Putting on Some Paint:
Applying Textures

Textures are the paint and wallpaper of the virtual world. They are images
that you can apply to a brush face making it appear as brick, wood, water or
anything else you have in mind.

The steps below will show you how to dress up your empty room. With the
textures you are about to apply, your empty, yellow room will start to look
like a game level.

76 Part II: Making Your Own Maps

11_096314 ch06.qxp 12/7/06 10:43 AM Page 76

Adding texture to a wall
When you’re ready to apply a new texture to a wall, follow these steps:

1. Select one of the inner walls of your hollowed room by clicking it in
the camera viewport.

2. In the Face Edit Sheet, click Browse to open the Textures window.

Here you want to locate a good brick texture to apply to the walls of
your room. However, when you open the Textures window, you might
see only the Nodraw texture. This happens because nodraw is still in
your Filter box. Select nodraw and then delete it by pressing Delete. A
second or two later, all the textures will show up again.

You could look through all the textures to find just the right one. But to
make things easier, back in the Filter box, you can enter the word brick
to display only those textures with brick in the title. In the third row of
textures, you find a good texture to start with: titled brick/brick-
wall031a (as shown in Figure 6-2). If you have trouble finding it, type the
name into the Filter box.

3. Double-click the brick/brickwall031a texture to simultaneously select
it and close the Textures window.

4. With your texture selected, right-click one of the four walls in
your room.

This applies the texture you select.

If you accidentally left-click the wall, you replace your selected brick tex-
ture with the Nodraw texture. You have to go back and reselect the brick
texture for application.

Figure 6-2:
Filter your

textures to
find what

you’re
looking for

easily.

77Chapter 6: Decorating the Scene

11_096314 ch06.qxp 12/7/06 10:43 AM Page 77

5. Continue to place the brick texture on the remaining walls in the
room until all four are covered.

You have to move your camera around in the camera viewport to do
this. Just use the WASD (W moves you forward, A left, S back, and D
right) and the arrow keys to get around, as I explain in Chapter 5. The
result looks like Figure 6-3.

Adding texture to the floor
After you apply a texture to the wall, you can move on to other brush faces.
Click Browse within the Face Edit Sheet window. It’s time to look for a texture
for your floor. The following steps show you how:

1. In the Textures window, replace brick in the Filter box with concrete.

A room with brick walls looks best with a concrete floor.

2. Scroll down using the scroll bar on the right to the third row and then
select the first texture listed, titled concrete/concretefloor008a (as
shown in Figure 6-4).

If you have trouble locating it, type the full name of the texture into the
Filter box, and you’ll find it. Double-click the texture to select it and then
close the Textures window.

3. When your concrete texture is selected as the current texture, right-
click the floor in your room to apply it.

The result is a nicely textured floor, as shown in Figure 6-5.

Figure 6-3:
Apply the

brick texture
to the four

walls in your
room.

78 Part II: Making Your Own Maps

11_096314 ch06.qxp 12/7/06 10:43 AM Page 78

Adding texture to the ceiling
After the floor is done, you’re left with the ceiling to texture. The following
steps show you how:

1. Click Browse to open the Textures window and then replace whatever
is in the Filter box with ceiling.

This lists all textures with ceiling in the title.

2. To fit the theme of the room that you establish, select the texture
concrete/concreteceiling003a.

Look for the third texture in the top row, as in Figure 6-6. Double-click
this texture to select it and close the Textures window.

Figure 6-5:
Right-click

to apply the
concrete
texture to
your floor.

concretefloor008a

Figure 6-4:
Select a

concrete
texture for
the floor of
your room.

79Chapter 6: Decorating the Scene

11_096314 ch06.qxp 12/7/06 10:43 AM Page 79

3. Right-click the ceiling in your room to apply the newly selected texture.

Your room is complete now with textures. (See Figure 6-7.)

4. Close the Face Edit Sheet window after you’re done applying your
texture. Then choose File➪Save As and save your map as
dm_chapter6.vmf.

You don’t want to lose the work you’ve done to this point, and I recom-
mend saving your map under progressing names as you go along, such as
dm_mymap1.vmf, dm_mymap2.vmf, and so on. Naming your files in this
way can give you some security so that a map error halfway through its
development doesn’t ruin the rest of your work. If an error occurs that
you can’t fix, you can always go back to a previous version of the file.

Figure 6-7:
Right-click

to apply
the ceiling

texture.

concreteceiling003a

Figure 6-6:
Select the

new ceiling
texture for
the ceiling

of your
room.

80 Part II: Making Your Own Maps

11_096314 ch06.qxp 12/7/06 10:43 AM Page 80

Chapter 7

Adding Lights and a Player
In This Chapter
� Adding light to the room

� Coloring a light from the Object Properties window

� Creating a player spawn point

� Adjusting spawn point properties

After you create a room for your player as was done in Chapter 6, you
need to add two important things: light and a player spawn point.

You need light to see. Without the light, everything is black. Sometimes you
want the player to rely on his or her flashlight or other resources to see where
he or she is headed, but generally you want to provide some source of light.

Next you need to define where your player spawns (starts) in the level.
Without the spawn point, the game doesn’t know where to put the player
when the game starts. Although, later you’ll want to add multiple spawn
points for many players, for now, you need just one so you can spawn into
your level for testing.

Lighting the Way
Adding light to a map is quite important and really simple. Without the light,
the player can’t see in the game. Although it’s true that sometimes you want
a dark area in the level — it can provide a place to hide something like a
pickup (such as a weapon, armor or health pack), an enemy, or the player —
you probably don’t want the entire map completely dark. If the player can’t
see where he or she is going, he or she becomes frustrated. So, you should
provide at least one dim light within your level.

12_096314 ch07.qxp 12/7/06 10:43 AM Page 81

To add light to your level, you must add an entity to your map. Entities are
active or interactive elements of a game such as a light, a door, or a pickup.
Here’s how to add one to your map:

1. Activate the Entity Tool by clicking its icon on the left or by pressing
Shift+E.

The Entity Tool icon looks like a lightbulb. Selecting this tool allows you
to place entities in your map.

2. From within the New Objects group, choose Light from the Objects
drop-down list.

The New Objects group is on the right side of the editor window, as
shown in Figure 7-1. The Categories box shows the default selection,
Entities, and in the Objects list are the entities available for you to place
in your map. The entity name that you place to create light is called light.

3. Click any 2D viewport in the location where you want the entity
placed.

You don’t have to place the 2D viewport in an exact location. You can
move it later. However, try and place the light close to where you want
it. For now, place the light in the upper-right corner of the room near the
ceiling, also shown in Figure 7-1.

New Objects group

Figure 7-1:
The light

entity
creates a

point of light
in your map.

82 Part II: Making Your Own Maps

12_096314 ch07.qxp 12/7/06 10:43 AM Page 82

You might find that you can’t place the light exactly where you want it
because the entity placement keeps snapping to the grid intersections.
Press [to decrease the grid spread. This allows you to more accurately
place the light.

4. Press Enter to insert the light entity into this position.

After you press enter, you see a small red square in the 2D viewports. In
the camera viewport, the light looks like a lightbulb, as shown in Figure 7-2.

If you read to this point, the light is placed and ready to light your map. Don’t
worry about this lightbulb image showing in your map and being seen by
players in the game. The light entity is a point entity and therefore, isn’t a
direct interactive element in the game, but rather an active element that
produces the action of providing light from a single point. The player can’t
see point entities directly.

Positioning the entity
Position the light entity in a way that makes sense to the player. It wouldn’t
make a lot of sense if the light came from the center of the floor or a bottom
corner of the room (that is, unless you put something else there that looks
like it should create this light). Instead, the player is going to expect the light
to come from the ceiling as if from a light fixture.

To move your new entity in the map, switch from the Entity Tool to the
Selection Tool. The Entity Tool allows you only to place entities in the map
and not to move them around.

Figure 7-2:
The light

looks like a
lightbulb in
the camera

viewport.

83Chapter 7: Adding Lights and a Player

12_096314 ch07.qxp 12/7/06 10:43 AM Page 83

To activate the Selection Tool, press Ctrl+S.

From within any 2D viewport, click and drag the light entity toward a corner
in the room and place it similarly to the entity shown in Figure 7-3. Also, you
can move the light toward the ceiling the same way.

For now, leave this single light in the corner so you can see the difference of
light and dark within the game when you test the compiled map.

Adding a bit of color
The light entity in the camera viewport is white because that is the default
light color in any map. However, sometimes you might want to choose a
different color depending on the environment you’re trying to simulate. A
change of color can make a huge difference in the look of your level.

Figure 7-3:
Move the

light to the
corner of
the room

after
selecting

the
Selection

Tool.

84 Part II: Making Your Own Maps

12_096314 ch07.qxp 12/7/06 10:43 AM Page 84

As an example, try changing the color of the light to red so that you can see
the difference it provides in the game. Here’s how:

1. With the light entity selected, press Alt+Enter to open the Object
Properties dialog box.

The Object Properties dialog box allows you to adjust any property of
the entity you select (see Figure 7-4). Right now, you’re interested in the
Brightness property, which also determines the color of the light.

2. Choose Brightness from the list of Keyvalues.

Brightness is the second option, right under Name, in the list. Making
this selection also changes some of the options on the right.

3. Click Pick Color to select a new color for your light entity.

Pick Color opens a new dialog box with your color selection options, as
shown in Figure 7-5. You have the option of selecting a color or typing in
the specific color values to obtain what you’re looking for.

4. Select the color red and click OK.

Selecting your color automatically enters the appropriate values into the
properties value box located just above the Pick Color button. Yours
reads 255 0 0 200. The first three digits are the RGB color value that you
select, and the last digit is the brightness level, which is defaulted to 200.

Figure 7-4:
The Color

Picker
window

allows you
to select or

type in a
color value

for your
light.

85Chapter 7: Adding Lights and a Player

12_096314 ch07.qxp 12/7/06 10:43 AM Page 85

5. Click the Apply button and then the Cancel button to apply the
property changes and close the window.

The once-white light entity in the camera viewport turns red so that
you can see from within the editor what color the light is, as shown in
Figure 7-6.

That’s enough with the light in this map. It’s time to move on to creating the
player spawn point.

Adding a Place to Start
The player spawn point is the location where the player starts within the
game. A player spawn point is also an entity. You can define the location as
well as the direction the player is facing when he or she spawns. Here’s how:

Figure 7-5:
The color

the light
emits within
the game is

represented
by the color
of the entity

in the
camera

viewport.

Figure 7-5:
The color

the light
emits within
the game is

represented
by the color
of the entity

in the
camera

viewport.

86 Part II: Making Your Own Maps

12_096314 ch07.qxp 12/7/06 10:43 AM Page 86

1. Press Shift+E to activate the Entity Tool.

The Entity Tool allows you to place new entities.

2. Choose the info_player_deathmatch entity from the Objects list in the
Objects group on the right.

Before placing your entity, you need to choose the entity that you want
to place from the Object group. In this case, this entity is theinfo_player_
deathmatch entity. This is the entity that is used for player spawning by
the Half-Life 2: Deathmatch game type.

3. Click in any 2D viewport to place your new entity.

In the corner opposite the light, click and place your new entity within
any 2D viewport.

4. Press Enter to insert your new entity.

After you insert the info_player_deathmatch entity, you see what looks
like a model similar to Gordon from the game, as shown in Figure 7-7.
It’s kind of funny to see, but this is a good representation of a player
spawn point.

When you zoom in closer to view the entity in any 2D viewport, you also
notice that the entity name is displayed. This is another helpful tool when
working on your maps.

Positioning and Providing Some Direction
Looking at the placement of the entity, it might not be where you want it in
the map. In Figure 7-8, you can see the entity isn’t standing on the ground,
and it’s also facing to the side. These things need corrected.

Figure 7-7:
The

info_player_
deathmatch
entity looks
like Gordon

in the editor.

87Chapter 7: Adding Lights and a Player

12_096314 ch07.qxp 12/7/06 10:43 AM Page 87

Switch from the Entity Tool to the Selection Tool by pressing Shift+S. With
this tool selected, you can move the player entity so that it is standing on the
ground. In my case, I had to lower the grid size to 8 units before I could get the
entity placed properly on the floor instead of inside it or floating above of it.

If the entity is positioned in the room, it’s a good idea to adjust the direction
it’s facing. A better option is if the player was facing the center of the room
than when they spawned one of the walls.

To adjust the angle at which the entity is facing, you have two options:

� Adjust the entity’s angle from the Object Properties dialog box.

� Adjust the rotation of the entity from within the 2D viewport.

Adjusting the rotation from the
Object Properties window
The first way to adjust the angle the entity is facing is from the Object
Properties window. Here’s how:

1. With the entity selected, press Alt+Enter to open the Object Properties
dialog box (see Figure 7-8).

Figure 7-8:
The Object
Properties
dialog box

for this
entity allows

you to face
the player in

a specific
direction.

88 Part II: Making Your Own Maps

12_096314 ch07.qxp 12/7/06 10:43 AM Page 88

This dialog box, for the info_player_deathmatch entity, has only one
property adjustment, which is for the Pitch Yaw Roll of the player.

In the upper-right corner of this dialog box, you see a black circle.
Within this circle you will either see a white line or a white dot. This
circle works a lot like a compass. The dot represents the center of the
black circle while the line represents the direction your object is facing
as from the center of the circle.

2. Click and drag within the circle and adjust the radius line so it is
pointing in the direction that you want the entity to face, as I did in
Figure 7-8.

This black circle automatically adjusts the Yaw of the entity. You can see
the degree of rotation represented as 0 45 0 in the text box below the
circle. The three digits represent the Pitch, Yaw, and Roll respectively.

3. After the angle is set to your liking, click Apply to apply the change
and then click Cancel to close the window.

Adjusting the rotation from
within the 2D viewport
Perhaps the easiest way to adjust the direction your entity is facing is from
right within the 2D viewport. Clicking on the entity more than once offers you
additional manipulation options.

� The first click selects the object and size the object in your map.

� The second click offers you rotation adjustment.

� The third click lets you skew the object.

� The fourth click brings you back to selecting and sizing the object.

Figure 7-9:
Two clicks

of your
object in the
2D viewport
activate the

Rotation
option.

89Chapter 7: Adding Lights and a Player

12_096314 ch07.qxp 12/7/06 10:43 AM Page 89

Now, change the direction of your player spawn point so that it is facing the
center of the room.

1. If you selected your player spawn point already, click the entity from
within the Top (X/Y) viewport.

You must rotate your entity from within this viewport. Any other
viewport rotates your entity the wrong way.

When you select for rotation, you see four circles around the entity, one on
each corner (see Figure 7-9). This means the entity is ready for rotation.

2. Click and drag any of these circles to rotate the entity. Rotate the
entity until it’s facing the direction you want. Then release the mouse
button and you’re done.

The result is a spawn entity that causes the player to spawn facing the
center of the room. (See Figure 7-10.)

All right, this is another good point to save your map. Choose File➪Save As
and then save your map as dm_chapter7.vmf.

Figure 7-10:
Rotate the

spawn
entity so
that the

player is
facing the
center of
the room.

90 Part II: Making Your Own Maps

12_096314 ch07.qxp 12/7/06 10:43 AM Page 90

Chapter 8

Putting the Pieces Together
In This Chapter
� Understanding the compile process of the map

� Turning your map into a playable level

� Playing your custom level in the game

If you read the preceding chapters in this book, you know how to construct
all the pieces of your map. You create a basic room for your player to start

the game. You dress things by placing textures on all the walls. You add some
colorful light to the area and give a player a place to spawn. These are all the
elements you need to create your map. Before you can play your map in the
game, though, you need to turn it into a level.

There is an important difference between maps and levels. The map is where
you put together all the pieces to make up the world for your game. However,
a level is what the player can load and play in the game. A level is a map file
that has been read, converted, and saved into a file or group of files that is
read by the game and interpreted as the playable field.

Leveling the Playing Field
A buddy of mine who now works for a popular game developer once said to me,
“It’s easier to drive a car when you know how it works.” From that point on, I
looked at a game engine the same way a mechanic looks at the engine under the
hood of a car. I study the mechanics of the map files, their conversion process,
and the result as seen in the game. When something goes wrong with a map I’m
building, I now know where to start looking for the problem — or at the very
least, I know where not to look because I know what’s going on under the hood.

The compile process takes a map file and turns it into a playable level for
a game. This process, as it turns out, happens to be very similar for most
of the games on the market today. Each of the three stages in the compile
process does its part to turn the map file into a playable part of the game.
In the following sections, I explain these three steps as they occur during
the compile process.

13_096314 ch08.qxp 12/7/06 10:44 AM Page 91

Building the BSP
The first process the map goes through is the Valve Binary Space Partitioning
(BSP or VBSP) process. Here, the map file is read and picked apart, creating
only the basic compiled level, excluding lights. Each brush face is located in
the map file and then checked in relation to how it interacts with the other
brush faces in the map. If it touches another brush face, that brush face is
split where they touch.

Take a look at Figure 8-1. Here you look down on a simple map from the top.
It’s a rectangular room with two walls placed within. This is what the map
looks like from above before it goes through the BSP process.

Now look at Figure 8-2. This illustration shows what happens after the BSP
process. Each dashed line represents where the floor and ceiling of the room
is split as a result of where other brush faces — such as the walls within the
map — touch. The split starts where the walls touch the floor and continues
either to the end of the brush or to the next split. The simple map is divided
by the editor when the map is turned into a playable level.

The areas that are created by these splits are BSP leaves. These leaves are
different than those you create in the next phase of compiling, the VIS leaves.

Seeing what can be seen
The second process of compiling the map is the Visibility (VIS or VVIS for Valve
VIS) process. During the VIS process, the visibility of each player is determined
to assist the game in maximizing the rendering of what you see. The map is
checked to define what the player can and cannot see from any point within the
level by dividing the map into smaller blocks. These smaller blocks go by many

Figure 8-1:
A simple

map as
seen from

the top.

92 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 92

names for different games, but Valve Software refers to them as visleafs (or VIS
leafs) or just leaves, in Half-Life 2. I define them as a combination of the splitting
created in the BSP process defined in the preceding section, predefined algo-
rithms, hint brushes, and portal brushes, which I explore further in Chapter 10.

When this VIS leaf data is read during the game, it determines which VIS
leaves can be seen by the player, and it three-dimensionally re-creates only
those sectioned-off areas for the player during the game. This re-creation is
rendering. The computer renders the visuals within the level by determining
which leaves can “see” each other.

In Figure 8-3, you can see a possible scenario of how a map might be divided
into VIS leaves. Each division in the sample creates what the game defines as
an area, which the game uses for optimization. When the player looks across
the splitting in Leaf 1, he or she can see Leaves 2 and 3. Therefore, everything
contained within these areas is re-created and drawn within the game because
it’s assumed that if Leaf 1 can see these areas, the player can, too. Because
they can’t be seen by Leaf 1, the other areas in the level aren’t drawn in the
game at this time. Leaf 2 can’t see Leaf 5; therefore, when the player steps into
Leaf 2, all areas except Leaf 5 could be drawn. Only when the player steps into
Leaf 3 does the game re-create the entire level because only that leaf can see
all other areas. The places at which these leaves split from one another are
portals because they enable you to view one leaf from another.

This is important because you can prevent problems that can occur with the
game. For example, if the game tries to render the entire level all at once, the
computer has too much information to handle. This could result in the game
running ridiculously slowly or crashing. You’ll often notice this slowdown in
the form of lag on some custom maps. You can prevent this, however, by
either properly positioning your brushes during the design of your map or by
adding special Hint or Portal brushes that can help you force the splitting
where you want the splitting. Splitting is discussed in detail in Chapter 10.

Player
Figure 8-2:

A map
divided into

areas by
the editor.

93Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 93

Lighting the scene
The third and final process of compiling the map is the lighting process. This
process is called VRAD (for Valve Radiance) or Flare by some games, but the
meaning is the same. This stage is when the light is properly added to the map,
and it’s often the most time consuming of the three stages. Light comes from
the sky, light entities, and some other entities as well. Other map objects, such
as walls, might cast shadows, but that doesn’t mean the light stops at those
objects. In many cases, light bounces off objects, like the sunlight bouncing
off a pond or a piece of paper. The calculations go on for a default value of five
bounces, which is the effect of light bouncing off five surfaces. Considering the
number of surfaces that could be in a map and the amount of open space the
light travels through, it’s understandable why this process can take so long.

Playing with the results
Although the BSP process is actually the first of the three stages in compiling
your map, as a whole, these stages are together called the BSP process. The
result of compiling a map is a single .bsp file that loads into your game as a
playable level. So, if you’re compiling a map file named dm_chapter8.vmf,
the result is a new file, dm_chapter8.bsp.

Processing the Pieces
Before your changes can take effect, you must compile your custom map. If you
don’t have your last saved map file open in the editor, open it now. If you’re
following along with the book, the map file you need is dm_chapter7.vmf.
When the editor is running, you can open your map file from the menu by
choosing File➪Open and selecting your dm_chapter7.vmf file.

Player

Leaf 1

Leaf 2

Leaf 3

Leaf 4

Leaf 5

Figure 8-3:
A map

divided into
VIS leaves.

94 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 94

Because you’re in Chapter 8 of this book, resave this map as
dm_chapter8.vmf.

The compile process is really quite simple. All the necessary settings were
set up during the configuration process when you installed SDK (Software
Developer Kit). All that remains for you to do is launch the compile process
and click OK.

To launch the compile process, press F9. This is the shortcut for Run Map,
which you can also find by choosing File➪Run Map. After the Run Map
launches, the Run Map dialog box opens, offering you access to more
options. As shown in Figure 8-4, the Normal compiling options are

� Run BSP: With three options, you want to make sure you select Normal.
Because this is the first time you’re compiling your map, you must run
the BSP process and include everything, not just entities. You could
recompile a map to update the entity information, but I recommend that
you always run the BSP at the Normal setting, regardless.

� Run VIS: You should run the VIS process at Normal. Without it, your
map will barely run in the game, if it runs at all. This is because the pre-
vious BSP process only roughed out your map into a level and left it
without any optimization whatsoever, like the VIS process does.

If you’re simply trying to compile your map to confirm texture place-
ment and basic layout, the Fast option is useful. This option quickly
builds your BSP but leaves out the higher-level optimization performed
during the Normal VIS process. However, this option also provides you
with a false reading of frame rates, lag issues, and other things that make
this compile option less useful.

Don’t ever release your map to the public when you compile it using this
Fast VIS option. This is like handing out a half-finished product, which
results in poor game play.

� Run RAD: Keep this option set to Normal as well. Without this option,
your map has no lighting effects. Yes, you could see, but only because
the default light setting in Half-Life 2 is Full Brightness. However, your
map has no shadows or other lighting effects that make the finished
level interesting.

You also notice an HDR (High Dynamic Range) check box here. Selecting
this option enables the HDR lighting, which allows more colors to show up
in your lighting. When enabled, the player’s settings are taken into consid-
eration. The darkest area in the level is displayed at the darkest level of
light and color that the player’s computer can possibly display. The same
occurs for the brightest levels. HDR often makes more contrast between
colors and levels of light, and it can make a game look more vibrant.

95Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 95

The drawback of enabling the HDR option is that it significantly adds to
the compile time. At first, while your map is still small, you aren’t going
to see a big difference between the different levels of compiling, such as
enabling HDR or running at Fast VIS. However, as you map gets larger,
the time it takes to compile your map into a playable level significantly
increases. For instance, I have friends that have waited days for their
very complex level to compile.

� Don’t Run the Game After Compiling: Select this box now. This disables
the option of having the compiler automatically open the game and run
your level after the compile process is complete. For now, select this
option so that the level doesn’t load up automatically. The first time
you compile your map, I want to show you the compile console, which
is hidden when the game is launched.

� Additional Game Parameters: This text box near the bottom of the
window allows you to enter special commands that are run during the
compile process. Usually, you aren’t going to need this. This is for
advanced processing of your map.

Press the Expert button at the bottom of the Run Map dialog box to open the
Expert Run Map window. In Figure 8-5, the Expert Run Map window offers you a
more complex list of compile options that you can select from and change.
Usually, you don’t need these additional options when compiling your map, but
they’re nice to have if you want more control over how your map is compiled.

Figure 8-4:
The Normal

compile
options are
most often

used to
make your

map
playable.

96 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 96

� Configurations: The Configurations drop-down list provides you with a
list of preset options for compiling your map. You can select one for
compiling your map, edit one, or create a new one based on all the other
details specified in this window.

� Compile/Run Command: The options you see here mimic the Compile
process, which I describe earlier in this chapter. First, you must run
your BSP, VIS, and RAD to turn your map into a level. Then, as in the
Default configuration, the compiled map is copied to the proper game
directory on your hard drive and then run in the game.

The buttons on the right allow you to change the order and details of
each command, but leave that for when you have a better understanding
of how things work. Making any changes now could result in errors.

� Command: For each command on the left side of this window, a primary
command starts it. Usually, this is an executable file.

� Parameters: For each command, parameters must be passed on. These
parameters tell the executed command what to do and how to do it.

� Ensure File Post-Exists: Select this check box and enter a filename if you
wish to be notified that the specified file doesn’t exist after the compile
process is complete. You could specify your compiled BSP file here so
that everything stops if no BSP file is created.

� Use Process Window: This is a very important option to select. This
provides you with a window during the compile process that displays all
the details of the process when they occur. More importantly, this
window alerts you to errors that might exist in your map.

Click Normal to go back to the Normal Run Map window. Make sure that you
select the Don’t Run the Game After Compiling option. Then click OK to com-
pile your map.

Figure 8-5:
The Expert

compile
options offer

you more
control.

97Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 97

Listening to the console
After you initiate the compile process, a new window comes up in the editor.
This window, the Compile Process window, has a lot of text in it (see Figure 8-6).
While the map is compiling, all the commands and results are printed in this
window. This way, if any errors come up during the process, you can see
what they are. If you select the Don’t Run the Game After Compiling option in
the previous window before compiling the map, this Compile Process window
is covered by the game window, and you can’t see whether there were any
errors until you close the game window.

The information printed in the Compile Process window should follow the
same outline as the compile process that is described earlier in this chapter.
Each of the compiling commands, BSP, VIS, and RAD are executed using the
specified parameters.

The first process to run is VBSP. The output to the Compile Process window
looks similar to this:

** Executing...
** Command: “c:\program files\steam\steamapps\foyleman\sourcesdk\bin\vbsp.exe”
** Parameters: -game “c:\program files\steam\steamapps\foyleman\half-life 2

deathmatch\hl2mp” “C:\Program Files\Steam\SteamApps\foyleman\
sourcesdk_content\hl2mp\mapsrc\dm_chapter8”

Valve Software - vbsp.exe (Jan 2 2006)
2 threads
materialPath: c:\program files\steam\steamapps\foyleman\half-life 2

deathmatch\hl2mp\materials

Figure 8-6:
The Compile

Process
window

displays the
progress of
the compile

process.

98 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 98

Loading C:\Program
Files\Steam\SteamApps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.vmf

fixing up env_cubemap materials on brush sides...
ProcessBlock_Thread: 0...1...2...3...4...5...6...7...8...9...10 (0)
ProcessBlock_Thread: 0...1...2...3...4...5...6...7...8...9...10 (0)
Processing areas...done (0)
Building Faces...done (0)
FixTjuncs...
PruneNodes...
WriteBSP...
done (0)
writing C:\Program

Files\Steam\SteamApps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.prt...done (0)

Creating default cubemaps for env_cubemap using skybox materials:
skybox/sky_day01_01*.vmt
Run buildcubemaps in the engine to get the correct cube maps.

In the preceding example, the VBSP command is run. First, details about the
command are output if you defined them within the Expert Run Map window.
Then, the command is executed.

When the VBSP executable is run, the results are output to the window. This
is helpful for two reasons:

� You’re notified of any errors or warnings during this process. Without
this information, you couldn’t know if something was wrong with your
map or what it was that was wrong.

� You can see the progress of the compile process and not fear that your
computer has frozen. Some larger maps can take very long to compile,
and you might begin to wonder whether your map is still compiling.
With this window, you know.

The string of numbers, from 1–10, is displayed when executing more processor
intensive operations. When the process runs, these numbers are displayed
incrementally to let you know that it is still working.

Some information that shows up might look like errors but doesn’t actually
need your attention. When running this example map through the compile
process, I experienced a potential error:

“No such variable ‘$hdrbasetexture’ for material
‘skybox/sky_day01_01rt’.”

If asterisks preceded this line of text, something requires your attention.
However, if no asterisks appear, as in this example, the line is printed as
information rather than a warning or an error.

99Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 99

After the BSP process, comes the VIS process. As VVIS is executed, similar lines
of text will be output to the window as displayed here:

** Executing...
** Command: “c:\program files\steam\steamapps\foyleman\sourcesdk\bin\vvis.exe”
** Parameters: -game “c:\program files\steam\steamapps\foyleman\half-life 2

deathmatch\hl2mp” “C:\Program
Files\Steam\SteamApps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8”

Valve Software - vvis.exe (Jan 2 2006)
2 threads
reading c:\program

files\steam\steamapps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.bsp

reading c:\program
files\steam\steamapps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.prt

4 portalclusters
4 numportals

BasePortalVis: 0...1...2...3...4...5...6...7...8...9...10 (0)
PortalFlow: 0...1...2...3...4...5...6...7...8...9...10 (0)
Optimized: 0 visible clusters (0.00%)
Total clusters visible: 16
Average clusters visible: 4
Building PAS...
Average clusters audible: 4
visdatasize:44 compressed from 64
writing c:\program

files\steam\steamapps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.bsp

0 seconds elapsed

VVIS follows similar steps as VBSP when outputting to the window. The
process is defined at the top, the process is executed below, and lines of text
display the progress of the process while it occurs.

The third setup of the compile process is VRAD.

** Executing...
** Command: “c:\program files\steam\steamapps\foyleman\sourcesdk\bin\vrad.exe”
** Parameters: -game “c:\program files\steam\steamapps\foyleman\half-life 2

deathmatch\hl2mp” “C:\Program
Files\Steam\SteamApps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8”

Valve Software - vrad.exe SSE (Jan 16 2006)
----- Radiosity Simulator ----
2 threads
[Reading texlights from ‘lights.rad’]
[45 texlights parsed from ‘lights.rad’]

100 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 100

Loading c:\program
files\steam\steamapps\foyleman\sourcesdk_content\hl2mp\mapsrc\
dm_chapter8.bsp

16 faces
4960 square feet [714240.00 square inches]
0 displacements
0 square feet [0.00 square inches]
16 patches before subdivision
368 patches after subdivision
1 direct lights
BuildFacelights: 0...1...2...3...4...5...6...7...8...9...10 (0)
BuildVisLeafs: 0...1...2...3...4...5...6...7...8...9...10 (1)
transfers 20392, max 131
transfer lists: 0.2 megs
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (0)

Bounce #1 added RGB(1855, 0, 0)
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (0)

Bounce #2 added RGB(338, 0, 0)
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (0)

Bounce #3 added RGB(83, 0, 0)
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (1)

Bounce #4 added RGB(16, 0, 0)
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (0)

Bounce #5 added RGB(4, 0, 0)
GatherLight: 0...1...2...3...4...5...6...7...8...9...10 (0)

Bounce #6 added RGB(1, 0, 0)
Build Patch/Sample Hash Table(s).....Done<0.0004 sec>
FinalLightFace: 0...1...2...3...4...5...6...7...8...9...10 (0)
FinalLightFace Done
Ready to Finish
0 of 0 (0% of) surface lights went in leaf ambient cubes.
ComputePerLeafAmbientLighting: 0...1...2...3...4...5...6...7...8...9...10

The VRAD is a far more complex process as represented by the amount of
text that is output in the window. However, the output also provides you with
much more information about your map.

First, your computer determines how much area your light can cover before
the light dissipates. Like the lamp in your room, when you turn it on, your entire
house doesn’t light up. The light can only reach so far, and this is considered in
the game. This is represented in the output as BuildFaceLights and BuildVisLeafs.

The lighting process then has to consider how light can start from a single
source, such as that lamp in your room, and spread from there. The light starts
from one point and then hits a surface such as a wall, a floor, or anything else
in its way. The light then bounces off that surface and continues its path.
Consider how light can be reflected off a white piece of paper. Well, light can
reflect off anything really. Some surfaces simply reflect more light than others.

101Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 101

This light reflection process is calculated for six bounces. You can see this in
the text output earlier as:

GatherLight:
0...1...2...3...4...5...6...7...8...9...10 (0)
Bounce #1 added RGB(1, 0, 0)

The VRAD step of the compile process usually takes the most time to
complete. Consider all the lights that shine and reflect in your map. The
light starts from a single point and shines in every direction. The light
reflects off all the different surfaces in your map. This takes a lot of time
for your computer to calculate.

After the light is calculated, the details about your map are printed to the
window.

Object names Objects/Maxobjs Memory / Maxmem Fullness
------------ --------------- --------------- --------
models 1/1024 48/49152 (0.1%)
brushes 6/8192 72/98304 (0.1%)
brushsides 36/65536 288/524288 (0.1%)
planes 40/65536 800/1310720 (0.1%)
vertexes 35/65536 420/786432 (0.1%)
nodes 27/65536 864/2097152 (0.0%)
texinfos 5/12288 360/884736 (0.0%)
texdata 4/2048 128/65536 (0.2%)
dispinfos 0/0 0/0 (0.0%)
disp_verts 0/0 0/0 (0.0%)
disp_tris 0/0 0/0 (0.0%)
disp_lmsamples 0/0 0/0 (0.0%)
faces 16/65536 896/3670016 (0.0%)
origfaces 6/65536 336/3670016 (0.0%)
leaves 29/65536 928/2097152 (0.0%)
leaffaces 16/65536 32/131072 (0.0%)
leafbrushes 16/65536 32/131072 (0.0%)
areas 2/256 16/2048 (0.8%)
surfedges 88/512000 352/2048000 (0.0%)
edges 57/256000 228/1024000 (0.0%)
LDR worldlights 1/8192 88/720896 (0.0%)
HDR worldlights 0/8192 0/720896 (0.0%)
waterstrips 0/32768 0/327680 (0.0%)
waterverts 0/65536 0/786432 (0.0%)
waterindices 0/65536 0/131072 (0.0%)
cubemapsamples 0/1024 0/16384 (0.0%)
overlays 0/512 0/180224 (0.0%)
LDR lightdata [variable] 14208/0 (0.0%)
HDR lightdata [variable] 0/0 (0.0%)
visdata [variable] 44/16777216 (0.0%)
entdata [variable] 400/393216 (0.1%)
LDR leaf ambient 29/65536 696/1572864 (0.0%)
HDR leaf ambient 0/65536 0/1572864 (0.0%)
occluders 0/0 0/0 (0.0%)

102 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 102

occluder polygons 0/0 0/0 (0.0%)
occluder vert ind 0/0 0/0 (0.0%)
detail props [variable] 1/12 (8.3%)
static props [variable] 1/12 (8.3%)
pakfile [variable] 7346/0 (0.0%)

Win32 Specific Data:
physics [variable] 2290/4194304 (0.1%)
==== Total Win32 BSP file data space used: 30874 bytes ====

Linux Specific Data:
physicssurface [variable] 2290/6291456 (0.0%)
==== Total Linux BSP file data space used: 30874 bytes ====

Total triangle count: 32
Writing c:\program

files\steam\steamapps\foyleman\sourcesdk_content\hl2mp\mapsrc\
chapter8.bsp

2 seconds elapsed

You can see that from the detail above that 1 model is in your map, 6 brushes
that make up the single room, 36 brush sides, and so on. What you can also
see here is the maximum number of each that is allowed in a single map. If
you try and place more than 1,024 models in your map, it results in an error
during the compile process.

Finally, the last few lines in this window display the last command to be run.
This is the command that copies your compiled map into the directory that
the game can locate. When you go to play your new map, the game can find
and then load it.

** Executing...
** Command: Copy File
** Parameters: “C:\Program

Files\Steam\SteamApps\foyleman\sourcesdk_content\hl2mp\mapsrc\dm_c
hapter8.bsp” “c:\program files\steam\steamapps\foyleman\half-life
2 deathmatch\hl2mp\maps\dm_chapter8.bsp”

Spotting an error
Spotting errors isn’t always easy, so you need to read through the text in the
Compile Process window carefully. Eventually, you’ll become familiar with the
text here and you can skim quickly through it to recognize problems.
However, if you haven’t seen errors displayed before, you might not spot
them right away.

For example, I created an error in my map on purpose, as shown in Figure 8-7.
I moved one of the walls away from the rest of the room and created a leak.

103Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 103

Chapter 5 shows that you need to be careful not to leave any gaps between
the walls. If you leave a gap between walls, you might find an error similar to
the one in the following text:

**** leaked ****
Entity info_player_deathmatch (-128.00 -128.00 8.00) leaked!

Even though the compile process doesn’t seem to stop when this error
occurs, it is a very serious error that must be fixed. The VVIS process actu-
ally doesn’t run when there is a leak, and you’ll most likely experience bad
frame rates that feel like lag in larger maps.

If you do see this text in the Compile Process window, you need to locate the
leak and seal it. Sometimes when working on very large maps, it’s nearly
impossible to find a leak with any guidance. Well, not to worry, because the
editor actually shows you the way.

To find your leak, close the Compile Process window. Choose Map➪Load
Pointfile. A small window comes up. Just make sure that the pointfile you’re
loading has the same name as your map, such as dm_chapter8.lin. Then
click Yes to continue.

If the pointfile that you’re prompted to load isn’t the same name as your map,
click No in the dialog box prompting you to load the pointfile. Save your map
again, recompile your map, and then load the pointfile again. The correct
pointfile is then loaded.

The pointfile contains information about your map and the brushes within it.
This file is generated during the compile process and used to construct your
BSP. When an error occurs, such as a leak, an additional file is created that is
referenced by your pointfile. It contains the coordinates of your leak, which
can then be referenced in the Hammer editor.

When you load your pointfile into the editor, you can find a red line. I made
this red line a little more obvious in Figure 8-8.

Figure 8-7:
Don’t leave

any gaps
between

your walls
that might

leak out
of your

mapping
area.

104 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 104

The red line starts from one of your entities. In the case of Figure 8-9, the line
starts from the player spawn point. Then, the line goes through your map
and stops where it exits through your leak.

If you’re having trouble finding the red line that points to your leak, try zoom-
ing out in your 2D viewports. You have a better chance of locating the red
line if you can see more of your map.

After you locate your leak, you can fix it.

Playing the Result
Compile your map again, but this time, you deselect the option that stops
your map from running. Press F9 to open the Run Map window. Make sure
that all your compiling commands are set to Normal. Deselect the Don’t Run
the Game After Compiling option and then press OK.

Your map runs through the compile process as it did before. However, when
the compiling is complete, the game loads automatically. When the game
loads, it proceeds to automatically load your new level and then spawn your
player into this level.

Make sure that you have loaded the Half-Life 2: Deathmatch game type at
least once before compiling and playing your new level. If you do not, the
game will crash in lieu of loading your level.

Figure 8-8:
A red line

shows you
where your

leak is
located.

105Chapter 8: Putting the Pieces Together

13_096314 ch08.qxp 12/7/06 10:44 AM Page 105

As with all deathmatch game types for Half-Life 2, you must first click OK to
play in the game. Then you can feel free to run around your new map. You
can see how one corner is very dark and that another is very red because of
the red light that was placed there, as shown in Figure 8-9.

When you’re done exploring, simply press Esc to access the game options.
Then click Quit to end and close the game. The game window closes, and the
editor appears. This way, you can continue to improve your custom map.

Figure 8-9:
Your new

map is now
playable.

106 Part II: Making Your Own Maps

13_096314 ch08.qxp 12/7/06 10:44 AM Page 106

Part III
Expanding on
Your Creation

14_096314 pt03.qxp 12/7/06 10:44 AM Page 107

In this part . . .
You have the knowledge to make your own map, but

now it’s time to become an artist. Take that one-room
level and turn it into something you can take online and
play with your friends. Step outdoors (at least virtually)
for the first time, and I will show you the door that leads
to a bigger, better level that plays with ease for either one
or many players.

14_096314 pt03.qxp 12/7/06 10:44 AM Page 108

Chapter 9

Expanding Your Map
with Additions

In This Chapter
� Duplicating selections

� Joining rooms with halls

� Adding doors

� Texturing and lighting the hall

� Play-testing the new map

If you’ve read the previous chapters, you know how to put together a
simple room — really just a box with a light where you can play. In this

chapter, I help you expand on this creation and make it more interesting. I
show you how to add another room to your map, placed diagonally from
your current structure. Then you connect the two with an L-shaped hallway.

If you don’t already have the map from Chapter 8 loaded in the editor, do so
now by choosing File➪Open and opening dm_chapter8.vmf. I show you
how to build your additions onto this already constructed map.

Making Copies
You could go through the same steps that I outline in Chapter 5 to create
your second room, but instead, I show you another option. Because the goal
is to create a room just like your first room, you can duplicate the existing
structure. Then you can move your copy diagonally in your 2D window to
create the second room.

1. Select all the brushes and objects that make up your first room.

Do this from the camera viewport. Move around the camera viewport by
using the arrow keys. Select the walls, ceiling, and floor by Ctrl+clicking
from within the camera viewport, as shown in Figure 9-1. Also select the

15_096314 ch09.qxp 12/7/06 10:44 AM Page 109

light that is in this room. However, don’t select the player spawn point;
you don’t want to make a duplicate of this entity yet. Later, you’ll add
additional spawn points to the map for multiple players.

2. Zoom out so you can see more of your map and then adjust your grid
size to 64 units.

The window is probably zoomed in on this one room. By zooming out,
you can better move the copy to another location. Use the mouse wheel
to zoom out farther.

Adjust your grid size to 64 units by pressing [or] to lower or raise the
grid size. This makes it easier for you to move your copy and place it
more accurately. In the next step, you place your copy 64 units away
from the original room on a diagonal. Because your selection snaps to
the grid when you move it, adjusting the grid makes it that much easier
to move into place.

3. Shift+click and drag your selection to create a copy of your selection.
Drag it up and to the left diagonally.

Continue dragging until there is one 64 unit block between your copies,
as shown in Figure 9-2.

Figure 9-2:
Drag your

copy up and
to the left of
the original

to create
two

separate
rooms.

Figure 9-1:
Select

everything
in your map

except for
the player

spawn
point.

110 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 110

Clicking outside your selection results in making a new selection rather
than moving your current selection. If you accidentally deselect every-
thing, try pressing Ctrl+Z to undo the last selection, which causes you to
deselect your room.

4. With your duplicate room in place, press Esc to deselect everything.

Now you have two identical rooms. To make your new room different, change
the color of the light. The light in the original room is red, so, for this exam-
ple, make the light in the new room blue. Follow the steps in Chapter 7 to
adjust the light color in this room.

This is a good time to save your map. Save your map as dm_chapter9.vmf
by choosing File➪Save As, entering the new name, and clicking Save. As I
mention in Chapter 2, save your maps in stages. If you find that one of the
steps you take during the building process creates an error within the map,
going back to a good copy is easier than finding the source of the problem
one brush at a time or worse, starting completely over.

Joining Rooms
You now have two rooms in your map but no way to move between them as a
player. To solve this, you need to add a hallway connecting the two rooms. In
this section, I show you how to create an L-shaped hall below your new room
and to the left of your original room. The halls connect to the center of a wall
on each of your rooms. Here’s how:

1. After making sure that everything is deselected, select the Nodraw
texture.

This is the texture you use to build all your structures before applying
decoration. Click Browse from the Textures group on the right side of
the editor to open the Textures window.

2. Because this texture was used before, select the check box on the
bottom of this window to display Only Used Textures, as shown in
Figure 9-3.

This filters your view to only those textures that are used in your map.
The Nodraw texture surrounds the outside of your rooms and therefore
would be part of this list.

3. Double-click the Nodraw texture to select it.

The window closes.

111Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 111

Drawing your halls
How wide should the hall be? How tall? Determining the width and height
of structures, such as hallways, is something that comes with experience.
You don’t have a set number that you must use when constructing different
areas of a map, but you do have ideal numbers. The hall you’re creating
is 128 units wide, and the height is equal to that of your rooms. A width of
128 units makes your player feel comfortable and also allows multiple players
to pass each other in the same hall without having to squeeze through.

1. Select the block tool either from the left side of the editor or by
pressing Shift+B.

With this tool, you can draw the brushes in your map that make up
your hall.

2. From within the Top X/Y viewport, draw out a solid brush for your
first hallway.

Use the same method that you use when creating a room by drawing a
solid brush and hollowing it. (See Chapter 5 for more on how to do this.)
You should end up with a brush that looks similar to Figure 9-4 in length
and width. It measures 128 × 384 units, but the height of the brush is
currently too small.

3. From one of the other 2D view ports, adjust the height of the brush so
that it is equal to that of the two rooms you’re connecting.

The height is 128 units, like in Figure 9-4.

4. With your hallway started, press Enter to create the new brush.

You have half of the hallway structure created and are ready to create
the second.

Figure 9-3:
In the

Textures
group,

select the
Only Used

Textures
option.

112 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 112

5. Draw a new brush between the second room and the previous hall-
way brush to connect the two, as shown in Figure 9-5.

You draw this brush from the Top X/Y viewport. The brush is sized at
about 256 ×128 units, and the height is the same as the previous brush,
128 units.

6. With the second hallway brush drawn, press Enter to create the brush.

Your hallway shape is laid out with two solid blocks, like that in Figure 9-6.
However, solid brushes aren’t going to do you or your player much
good. You need to hollow them.

Figure 9-6:
Press Enter

to create
the brush,

and your
hallway

begins to
take shape.

Figure 9-5:
Create the

second
hallway

brush from
the Top 2D
view port.

Figure 9-4:
Adjust the

height of
your halls

to equal
that of the
adjoining

rooms.

113Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 113

Making room to play
It’s time to hollow these two brushes, one at a time. You should hollow each
of these brushes separately so that you don’t create errors with the map
structure. Here’s how:

1. With one brush selected, press Ctrl+H to bring up the Hammer
window where you can enter your wall thickness (see Figure 9-7).

If you hollowed the original room in your map, you entered a wall thick-
ness of 8, which represents 8 units. Enter 8 again and then click OK to
continue. The result looks like Figure 9-8, where your brush is hollowed
and looks more like a room of its own.

Figure 9-8:
Your

hollowed
brush with a

wall
thickness of

8 units.

Figure 9-7:
Press Ctrl+H

to hollow a
selected

brush.

114 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 114

2. For the second hallway brush, select it, press Ctrl+H, enter a value
of 8 units for the wall thickness, and click OK.

You end up with two hollowed hallway brushes, like that of Figure 9-9.
However, you have no way to get into these halls from either room. You
solve that problem in the next step.

3. Select one of the brushes that make up your halls.

When you do, the entire hall section is selected rather than just the
single brush. This same thing occurs if you hollow the original room in
your map because these brushes are now grouped.

4. Ungroup your brushes by selecting each of the two hall sections that
were hollowed. With the group of brushes selected, press Ctrl+U to
ungroup them.

Now, when you select one of the brushes, you select only that one
because they are all ungrouped. Make sure to ungroup the brushes in
both hall sections.

To start making access ways through these soon-to-be hallways, you
need to delete the brushes that you don’t need and then adjust the
others to fill in any gaps. However, to manipulate each brush that was
hollowed, you have to ungroup them.

Figure 9-9:
The second

brush is
hollowed,

and you
need to
create

access to
both

brushes.

115Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 115

5. Selectively delete the brushes that you don’t need.

When the brushes were hollowed, walls were created on all six sides of
the hollowed brush. You need only the side walls, floor, and ceiling for
your halls. So, select each of the three smaller-sized walls that get in the
way. Two of these walls butt against the rooms, and one butts against
the other hall section, as depicted in Figure 9-10. After you select the
brushes, press Delete to remove them.

6. Deleting those brushes leaves you with a gap between your original
room and the new hall brushes. To close this gap, drag the edge of the
hallway brushes, thereby stretching them until they touch the room.

Figure 9-11 show the gap that must be closed to prevent the leak error,
as I describe in Chapter 5.

Figure 9-11:
This gap
between

your
brushes
must be

closed to
prevent

errors later.

Figure 9-10:
Remove the

unnecessary
brushes

from your
halls.

116 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 116

7. In the camera viewport, select one of the walls that needs to be
stretched in order to close the gap on one side.

8. It’s easiest to see this gap in the 2D top viewport, so select the middle,
white handle that represents the side of your brush (the other two han-
dles represent the corners of your brush) and then drag the handle
until it meets with the wall of your room, as shown in Figure 9-12.

The little white blocks on the corners and sides of a selected brush are
handles. You can grab these handles with your mouse and then drag them
around. In this case, you’re grabbing one of the handles to resize the brush
in one direction. You could also grab a corner handle to do this, but that
might result in resizing the brush in two directions rather than just one.

Make sure that you grab the handle when you want to resize the brush.
If you don’t, you move the brush rather than resize it. If you’re unsure
that you resized the brush rather than moving it, zoom out in your view
and make sure that you didn’t create a gap on the other side of your
selected brush.

9. Perform the same action in Step 9 on the brush located on the other
side of this hall section.

This brush also creates a gap that must be closed. Select the brush and
drag the edge handle until the wall meets with the other wall, and the
gap is closed.

If you see any other gaps in your map, make sure to close them. Gaps will
create errors in your map during the compile process, causing your map not
to compile.

All of the gaps are now closed between your brushes, but you still don’t have
a means of moving the player between the rooms and hall sections. You need
to create these entrances. Here’s how:

Figure 9-12:
Select the
brush and
close the

gap by
stretching it.

117Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 117

1. Adjust your view in the viewports so that you can see the inner corner
of the halls.

Notice that one brush cuts off the player’s access between these two
hall sections. All you need to do is resize that brush and make an open-
ing. The process is very similar to closing the gaps.

2. Select the brush that splits the two hall sections from within the
camera viewport and then select the middle handle on the left of
this brush to resize it.

3. Click and drag the brush to create your opening, as shown in
Figure 9-13.

Look closer at Figure 9-18 where you dragged the one wall brush to
create an opening between the two hall sections. You see that the two
brushes in the hall corner don’t meet properly. This happens when your
grid size isn’t small enough. With grid snap turned on, the edge of the
brush you’re resizing snaps to the grid lines in your 2D viewports. In
Figure 9-14, my grid size is too large to get the two corner brushes to fit
properly. The solution is to adjust my grid size.

4. Lower the grid size by pressing [. Keep pressing [until the grid size
is 8, the same size as your wall thickness.

You can see the grid size in the lower-right corner of the editor, as is
explored in Chapter 4.

5. After the grid appears small enough to fix the corner issue, select the
brush that you resized to open the hall sections toward each other
and adjust the brush so the corner meets cleanly, as in Figure 9-14.

Figure 9-13:
Resize the

brush that is
separating

the two hall
sections to

create an
opening.

118 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 118

Cutting in some doors
You now have two rooms and a hallway between them. However, you don’t
have access yet to your new hallway. What you need to do is cut some door-
ways. I show you two methods to accomplish this task:

� Clipping brushes

� Carving brushes

The next two sections explain both of these techniques.

Clipping brushes
Move the view in the camera viewport into the first room so that it faces the
wall you want to cut. You’re going to cut an entrance into the wall of this room.

Instead of stretching and moving brushes, you’re going to use another tool:
the Clipper. Here’s how:

1. Select the wall you want to edit and then select the Clipping tool by
pressing its icon or by pressing Shift+X.

To activate the Clipping tool, press the Clipping tool icon, as shown in
the margin, on the left side of the editor.

2. Before you use the Clipper tool, adjust your 2D top viewport so that
you’re looking at the location on the wall where you want to create
your opening.

You could create the opening in this wall from any 2D viewport, how-
ever; doing this from the top view is easier, as shown in Figure 9-15.

Figure 9-14:
Adjust your
grid size to

more
precisely
size your

brushes in
the 2D

viewports.

119Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 119

3. Create your clipping plane by clicking and dragging in the 2D
window, thereby creating a line by which to clip.

When you click, you see a white handle like the handle used to resize
selected brushes. When you drag your mouse, a second handle shows
up and is placed where you let go of your mouse. Between the two han-
dles is a teal line, which is your clip line. It is on this line, as shown in
Figure 9-16, that your selected brush splits.

If you click in the 2D viewport, place the first handle of your Clipper, and
forget to drag the mouse to create the second handle — don’t worry.
You can now click and drag the first handle to create the second handle.
To move your clipping plain, click and drag either of the handles at
either end of the clipping line.

4. Press Shift+X until both halves of your brush are outlined in white.

Because the clipping tool has multiple functions, only half of the brush
you’re about to split is outlined in white (see Figure 9-21). The clipping
tool can cut off half your brush or it can split your brush in two. The
portion of your brush that is outlined in white is the portion that
remains in your map after you proceed with the clipping operation.

Figure 9-16:
The white
clip line is

where your
brush is

split.

Figure 9-15:
Adjust your

view so that
you’re

looking at
the spot you
want to clip.

120 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 120

To cycle through your clipping options, press Shift+X. Each press
provides you with one of three clipping options:

• Cut off one side of the brush.

• Cut off the other side of the brush.

• Split the brush in two.

You want the third option, which splits your selected brush into two
brushes. When both halves of your brush appear, you selected the
correct clipping option.

5. To split your brush, press Enter.

You should now have two brushes where one used to be, as shown in
Figure 9-17. All that’s left is to resize the brush that is cutting off the
entrance into the hall, and you’re done.

After you finish the preceding steps, switch back to the Selection tool
(Shift+S). You now need to select and resize the wall brush that covers the
entrance to the hall.

Select the brush that needs to be resized. Then grab the middle handle at the
end of the brush that is covering the hall entrance. Click and drag that handle
until it no longer blocks the hall, but not so far that it goes beyond the outer
wall of the hall and creates a leak. You want a nice corner, like you had on the
inside of the halls. The result is a clean looking entrance into the hall, like
Figure 9-18.

Carving brushes
For the entrance in the other room, I show you another method — carving.
Using this method, you create a brush that is equal in size to the entrance
that you want to create. You overlap this brush — with the wall — where
you want to create your entrance. Then you carve the shape of this brush
out of the wall.

Figure 9-17:
Press Enter

to split the
wall in two.

121Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 121

Be careful when using the carving tool. Any other brush that your carving
brush intersects with is carved. If you’re intersecting with the floor, the floor
is carved, too. Make sure that you only overlap those brushes that you want
to be affected when using this method.

1. Adjust your viewports so that you can see the area in the other room
where you want to create your entrance to the hall.

2. Select the Block Creation tool by pressing Shift+B.

With this tool, you create the brush that is used to carve your entrance.

3. Draw a brush equal in width and height to the entrance you want
to make.

Make the depth a little bit larger so that it encompasses the hole you
want to carve, as shown in Figure 9-19. After you draw the brush, press
Enter to create it.

Make certain that the new brush isn’t overlapping the floor or ceiling
brushes. Also, make sure it isn’t overlapping any of the brushes inside
the hall. Remember, anything that this brush overlaps is carved by it.

Figure 9-19:
Create a

brush that is
the size of

the hole you
want to

carve.

Figure 9-18:
Resize the
wall for a

nice
entrance

into the hall.

122 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 122

4. Switch back to the Selection tool by pressing Shift+S and then select
the new brush that you want to use for carving.

5. When you’re ready to carve, press the Carve icon (in the margin on
the top of the editor) or press Ctrl+Shift+C.

After you carve, you might not notice that it worked right away because
the carving brush is still in your map. Press Delete to delete this brush
because it is still selected. You now have a perfect entrance into the hall
from this room, as shown in Figure 9-20.

Retexturing the Hallway Walls
If you’ve followed to this point, you now need to texture the walls in your
hall. The walls are currently textured with the Nodraw texture, which doesn’t
do you any good in the game. You can apply the same textures that you have
in the rooms to the walls in the hall.

1. Open the Texture Application tool by selecting its icon on the left side
of the editor.

You can also open the Texture Application tool by pressing Shift+A. This
opens the Face Edit Sheet window and makes a number of other texture
application options available that are otherwise unavailable. These
options and a description of this window are explored in Chapter 6.

2. Starting with the floors, click the floor of your textured room to select
that texture.

When you click it, the brush face is selected; more importantly, the
texture that is currently applied to that brush face becomes your active
texture in the Face Edit Sheet window, as shown in Figure 9-21.

Figure 9-20:
Carving the
wall leaves
you with a

hole shaped
like your
carving

brush.

123Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 123

3. To quickly apply the selected texture, right-click the floor in the hall.
Do so with both floor brushes in the hall and then move on to the
ceiling brushes.

4. Click the ceiling brush to select its texture and then right-click the
untextured ceiling brushes in the hall to apply this texture.

Repeat this process with the walls until your hall is completely textured.

Texture all the brush faces inside your map. Don’t leave any Nodraw
texture showing, or your map won’t look right in the game. Don’t texture
the outside of your rooms and hall. Because the outside won’t be seen
by the player, it’s better to leave those brush faces textured with the
Nodraw texture.

5. After you’re done texturing, switch back to the Selection tool by
pressing Shift+S.

This way, you don’t accidentally change any of the textures you placed.

Lighting the Path
If you’ve read to this point, your structures are complete. However, when
the player enters the hallway, he isn’t going to see much because there isn’t
much light. You need to add some more lights to your map, and I show you a
very easy way to make duplicates of the lights already in your map.

Start by adding more light to one of your rooms and its adjoined hallway leg.
Here’s how:

Figure 9-21:
Select a

brush face
to select its

texture
when the

Texture
Application

tool is
active.

124 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 124

1. Select the Selection tool by pressing Shift+S and make sure you have a
good view of your entire room in the Top 2D view port.

You need a good view of the entire room so that you can see where
you’re placing your copied light.

2. Select one of the lights within one of the rooms.

3. Shift+click your light and then drag it to another corner in the room.

Repeat this process until you have a light in three of the four corners of
the room. Leave one corner a little dark so you can hide as a player in
the game or something else in it later.

4. Make one more copy of this light and then place it in the middle of the
hall section closest to that room.

Using the same light color that you used in the room lights the hallway
enough for the player.

Repeat this process within the other room. The result is a level that has
half blue light and half red light. Your 2D Top overview of the map looks
something like Figure 9-22.

Running in the Halls
When your changes are complete, save your map so you don’t lose any of the
hard work you just completed. You’re ready to test your hard work in the
game. Go ahead and compile the map again to create your playable level. To

Figure 9-22:
Place

copies of
your lights
around the

map, half
red and the

other half
blue.

125Chapter 9: Expanding Your Map with Additions

15_096314 ch09.qxp 12/7/06 10:44 AM Page 125

do so, press F9 to bring up the Run Map window. Make sure the three compil-
ing commands are set to Normal. Also, deselect the Don’t Run the Game After
Compiling option. Click OK to run the compile process and launch your new
level in the game.

You might want to first compile the map with the Don’t Run the Game After
Compiling option selected. This way, you can look for possible errors in the
Compile Process window before running the map. However, if an error is in
your map, you’ll notice it in the game, when the game doesn’t load your map,
or after you close the game window and review the Compile Process window
in the editor. That message window is still there when you close the game.

When the compile process completes, the game loads automatically and
starts your custom level. When the level starts, click OK to enter the game,
and have fun exploring. You have two great-looking rooms with matching
halls, like you see in Figure 9-23. One half of the map is blue, and the other
half is red, thanks to the colored lights.

While looking around, take notice of your textures and brushes. Make sure
your textures line up and look good. You don’t want to see any seams in the
middle of the wall that might make the wall look like it’s broken. Make sure all
your corners are straight and nothing is sticking out or too far in. Most
importantly, feel proud that you just completed this map, and you can now
have fun playing in it.

Figure 9-23:
Your first

map is
growing into

something
great.

126 Part III: Expanding on Your Creation

15_096314 ch09.qxp 12/7/06 10:44 AM Page 126

Chapter 10

Building with Optimization
in Mind

In This Chapter
� Looking at your level as a developer

� Mitering corners

� Dividing the map into areas

� Viewing the map from a new perspective

If you built your map in Chapter 10, it is pretty small: two rooms and an
L-shaped hallway. If your map is four or more times larger, optimization

becomes an important concern. When you play-test your new level within
a game window that you launch from the editor, you might notice that the
game plays in a choppy manner. Player movement isn’t smooth at all, and it
feels as though the game is lagging. With a poorly optimized map, this will
actually happen during a real game even when the editor isn’t loaded in the
background. Your map might end up unplayable.

When you experience these slow downs or jittery issues, it’s your computer’s
way of asking for help. Your level has too much information, and it can’t
handle it all. Think of all the game elements it must load, display, and keep
track of, including all textures, brush faces, and even other players running
around the map. These elements make your computer work very hard.

Optimization techniques come into play at this time. The methods listed
in this chapter need to be employed when you’re building a map. When
you know how to build a map, it’s a good time to explore these methods.
Afterward, I walk you through some testing methods that help you to find
and fix trouble spots in your map.

No matter how small your map, optimizing it is always a good idea.

16_096314 ch10.qxp 12/7/06 10:45 AM Page 127

Seeing What the Game Can See
Most problems that occur in maps are caused by allowing the player to see
too much of the map at once. In Chapter 8, I explain the compiling process
and how the level is rendered within the game based on leaves and portals. In
the following sections, I cover methods of displaying onscreen images in the
manner that the game has rendered them. Understanding what the game is
doing to create your visuals is the best way to understand how to control
your visuals with your mapping technique.

Accessing your commands
Before you can understand the hows of optimizing, you need to know the
“whys.” When your game lags and your computer struggles to keep up, you
can enter a few commands into the console of the game to find out what your
computer is working so hard at. These commands show you what is being ren-
dered within the game regardless of where the player is located in your level.

When you can see what is being done in the game, you know what needs
improvement. If your player can’t physically see around the corner of your
hallway but the computer is drawing the room that’s over there anyway,
something needs to stop this. There is no reason why the game should think
the player can see around corners that he or she actually can’t see around.
Fixing this is one example of optimization. Here’s how you do it:

1. Load the last saved version of your map and resave it under a
new name.

The last version was dm_chapter9.vmf, so open this file and then
save it as dm_chapter10.vmf.

2. Open the Run Map window to compile the map but first enter some
additional parameters to run your map.

I explain the compile process in Chapter 8. However, the Additional
Game Parameters text box at the bottom of the Run Map window has
not yet been used. Before compiling the map, enter –dev –console in
this text box, as shown in Figure 10-1. These commands are used when
the game launches your map, and they allow you to enter developer
commands into the now accessible console.

3. Click OK to compile and run the game after compiling.

The game loads the same as it has before after compiling your map.
However, after it’s loaded, you see a lot more text information as well
as a window — that you never saw before — display briefly. This
window is your Console window where you can enter special
commands for the game.

128 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 128

4. Click OK to enter the game.

5. Open the Console window by pressing the ~ key.

Pressing the ~ key opens the Console window in the game, as shown in
Figure 10-2. The Console window is now an available option because you
entered the special commands before compiling and running the map.

6. Open the Console again while the map is running and type the
command you want to run for testing your map.

Figure 10-2:
The game

Console
window

allows you
to enter
special

commands
run by the

game.

Figure 10-1:
Enter –dev

–console
into the

Additional
Game

Parameters
text box.

129Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 129

While writing this book, an update for the Half-Life 2 SDK was released on
Steam. After updating, I began running into some minor issues. One of these
issues was that when I started a game to test my new level, I would immedi-
ately be kicked out of the game. This was because the game’s default time
and frag limit was set to 0 — a limit that is always met at the start of the
game. The solution is to add two more commands to the line in Step 2 above.
Add +mp_timelimit 20 +mp_fraglimit 20. This tells your test game that you
have 20 minutes or 20 frags (kills) before it should end.

Outlining your world
Several commands can be run, but only a few of them provide you with infor-
mation about your level that can help you understand how your level is built,
or rendered, by the game. This information helps you use important optimiza-
tion techniques in your map so that it runs better in the game as a level.

All of these commands, if used by a player within the game, could be used as
an unfair advantage against another player. With this in mind, the developers
of the game have designated these special commands as cheats. In order to
use these cheats, you must enable them.

The first command that you enter in the console is sv_cheats 1. This enable
cheats within the game which will allow you to enter the additional commands
outlined below. Type sv_cheats 1 into the console window and press Enter.

Next, type the command mat_wireframe 1. When you’re done, press Enter
and then close the Console window by pressing the ~ key to see the results.
What you see is something like Figure 10-3.

Don’t worry about these settings affecting your game play later. These set-
tings reset to their default values after you shut down and restart the game.

You now see white lines all over your map. These white lines represent the
outlines of the polygons that the game renders for the player. The more
polygons your player can see, the harder your computer works to render
the level on your screen. Your goal is to reduce the total number of polygons
rendered in the level so your computer doesn’t have to work so hard.

You can gather from this, as shown in Figure 10-3, that the game thinks your
player can see a lot more of the level than you can actually see. Should any
room that the player can’t physically see be rendered? Well, of course it
shouldn’t. You can fix this through optimization.

Open the Console window again by pressing the ~ key. Enter the same
command again, but this time, change the command value to 3. So, enter
mat_wireframe 3, press Enter, and then close the Console window.

130 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 130

This command, as well as a few others, can be entered with different values
to produce different results. In the case of the command mat_wireframe,
you have four options:

� mat_wireframe 0: This option turns off the wireframe viewing in
the game.

� mat_wireframe 1: If you’ve followed the chapter to this point, this is
the command you first ran (refer to Figure 10-3). With it, you can see an
outline of all the polygons currently being drawn and rendered in the
game.

� mat_wireframe 2: This option looks similar to mat_wireframe 1
except that only those polygons that the player can physically see in
the game are outlined.

� mat_wireframe 3: This option outlines only the visible BSP (Binary
Space Partitioning) leaves, similar to VIS (Visibility) leaves that I
describe in Chapter 8. The difference between these leaves is that BSP
leaves contain the geometry of the map, but VIS leaves contain what the
player can see. This command option provides you with enough detail
to see how your level is created in the game, without the clutter of the
additional lines (see Figure 10-4).

Figure 10-3:
The game,
as shown

with mat_
wire

frame 1
entered in

the Console
window.

131Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 131

If you are entering these commands as they are explained above, try this
shortcut: Instead of retyping the entire command, press the up arrow to dis-
play your last entered command and then simply change the value at the end
of the command. Then press Enter to execute the command. It’s sometimes
easier than retyping the entire command several times in a row.

When you enter mat_wireframe 3 in the Console window, your view is less
complex. The lines in this view exist in the mat_wireframe 2 view, but
there are fewer of them. This less complex view of your level helps you to
best optimize your map.

In Chapter 8, the compile process is outlined. The first stage is VBSP, when the
map is broken into BSP leafs. You now see this after entering mat_wireframe
3 in the Console window. To make the game environment look better and
appear more realistic, these BSP leafs are then broken further into polygons,
which you see after entering mat_wireframe 1 in the Console window.

The second stage of the compile process is VIS. This process determines
which VIS leafs (or leaves) can see each other. The game knows now that any
VIS leaf that can be seen from the VIS leaf in which your player is standing
needs rendering in the game.

Figure 10-4:
The game,
as shown

with
mat_wire
frame 3

entered into
the console.

132 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 132

I know it’s confusing to know which leaf is which. Some BSP leaves handle the
geometry of the level, and some VIS leaves handle what the player can and
cannot see. However, anytime that I refer to leaves in this book, I am referenc-
ing VIS leaves. VIS leaves are the important leaves because they refer to what
the player can see, which affects what is rendered — rendering puts strain on
your computer. I specify when I refer to BSP leafs.

If you take some time to wander around your level with the mat_wireframe 3
option enabled, you might end up with some questions. Why can I still see so
much of the map? Why did the compile process split the map in this manner?
I could have split the map better, so how can I have control over the compile
process?

I answer the last question throughout the rest of this chapter — and in so
doing, your other questions are answered, too.

Mitering for Mappers
Mitering is not just a word for carpenters and woodworkers. Mitering is also
an important part of mapping. When carpenters miter the joint between two
pieces of wood, they bevel the edges of both pieces at a 45-degree angle to
form a 90-degree corner. In Figure 10-5, two corners are shown in the mapping
editor. The left corner is not mitered; a player looking at this corner from
within the game sees three brush faces because the thin edge of one wall is
exposed. The right corner right is mitered; a player looking at this corner
sees only two brush faces.

This non-mitered edge creates additional geometry within the game. This edge
increases the number of brush faces, resulting in additional polygons and more
splits to surrounding surfaces. Figure 10-6 is an example of this additional
geometry. Sure, this won’t have an impact on a small, two-room level, but if this
were a larger map with more corners, problems during game play could arise.

Figure 10-5:
The corner
on the right
is optimized

through
mitering.

133Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 133

When you create maps, you need to perform all the mitering work to the
walls and other brushes as you go along. If you wait until the map is big and
complicated, missing some of the corners is easy.

Fixing those corners
In the editor, go back to your map (dm_chapter10.vmf) to fix those cor-
ners. In this section, I show you how to miter your corners by moving the
edges of your brushes. Because the outside of the map is never seen, you
aren’t concerned about the outside corners. Instead, five inner corners need
your attention. In Figure 10-7, I circled the five corners for your reference.

To understand what a brush edge is, think of what makes a rectangular brush.
A rectangle has six sides, and an edge is where each side meets another. So,
when you’re looking at the flat side of a brush, like that of Figure 10-8, the
corner at which one side meets another is its edge. These edges can be manip-
ulated to allow you to turn that rectangle into a trapezoid or any other shape.

Figure 10-6:
Failing

to miter
corners
creates

additional
geometry

that the gun
is aimed at.

134 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 134

To create your mitered corner, follow these steps:

1. Zoom in close to the corner that you want to miter so you can get a
good view.

I started with the corner in the middle of the hall and zoomed in close in
the 2D Top viewport so that I’m looking down on the corner that needs
mitered.

2. Adjust your grid to 8 units.

Your grid size needs to be equal to that of your wall thickness. Because
you wall thickness is 8 units, your grid should be 8 as well.

3. From the camera viewport, select one of the two walls.

You want to move one corner of the selected brush to create your
45-degree bevel.

Figure 10-8:
An edge is
where two

brush faces
meet.

Figure 10-7:
These five

corners can
be seen

from within
the game

and should
be mitered

for opti-
mization.

135Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 135

4. Press Shift+V to activate the Vertex Manipulation tool.

This tool can also be activated by pressing its icon located on the left
of the editor and shown in this margin. White and yellow handles, repre-
senting each corner and edge of the brush, appear in all the viewports.

Like the Clipping tool I use in Chapter 9, the Vertex Manipulation tool
has multiple options that can be accessed with multiple activations of
the tool. To cycle through these options, press Shift+V. Each press
provides you with one of three options:

• Manipulate corners and edges.

• Manipulate corners only represented as white handles.

• Manipulate edges only represented as yellow handles.

You want the third option, which avoids possible errors in making your
adjustments to the brush. You don’t want to accidentally move the top
corner without moving the bottom corner of the brush. Moving the
entire edge is, therefore, safer in accomplishing this task. When you
see only yellow handles on the edges of the selected brush, as shown
in Figure 10-9, you selected the correct option for this tool.

5. Click and drag the brush edge that you want to move until you have a
45-degree angle, like the one in Figure 10-10.

6. After one wall is complete, select the other wall and do the same for it.

When you’re done, you have two mitered brushes that meet perfectly
with each other and look like Figure 10-11. You effectively reduced the
number of polygons and splits within your level.

Figure 10-9:
Activate

the Vertex
Manipulation
tool multiple

times for
different
options.

136 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 136

Continue with this method until all the corners within the playable area of
your map are mitered.

However, one more corner might be overlooked — the corner in the middle
of the hall. This hallway started out as two separate brushes, and you can
still see where they are divided in the floor and ceiling. These brushes also
need to be mitered to increase the optimization in the level, and the process
is the same as that of the corners.

Adjust the floor and ceiling brushes so they create a mitered edge. The result
looks like Figure 10-12.

After you miter the visible corners in your map, think about the corners that
you can’t see, such as those outside your map. Because the player never sees
these areas of the map, you don’t need to optimize them. You need to worry
about only what the player sees because everything else is simply ignored by
the game.

Figure 10-11:
After you

miter your
corner, you
have fewer

visible brush
faces.

Figure 10-10:
Drag the

brush
corner until
you have a
45-degree

angle.

137Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 137

Combining multiple brushes
Corners aren’t the only things that can be adjusted to reduce the splitting
effect. Sometimes you end up with multiple brushes that make up a single
wall. One such case exists in the hall.

If you created the hall from two hollowed brushes, one length of wall would
now be composed of two separate brushes (see Figure 10-13). These were
two separate blocks before they were hollowed into two hall sections. What
you’re left with is a single wall made of two brushes. This needs optimized to
prevent possible splitting later.

Select the short length of wall and delete it by pressing Delete. Then select and
stretch the longer length to fill the gap left behind by the previous brush. This
leaves you with one, long brush that makes the wall that consisted of two sepa-
rate brushes. Having one, long brush helps with the optimization of your map.

Figure 10-13:
Walls that
don’t need
split need
adjusted.

Figure 10-12:
Miter the
floor and
ceiling in

the hall, too.

138 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 138

Automatic optimization
Although the compile process can optimize some brushes for you, don’t rely
on it. The compile process can automatically reduce the brush face count,
regardless of any settings. When the compiler looks at two brush faces that
meet, it also looks at the textures applied to them. If the texture values are
exactly the same, like with a continuous texture, the compiler merges the two
brush faces. However, if you copy and paste the same texture throughout the
level (as you do for the map in this book), the compiler automatically merges
your brushes for you. Just remember that if you decide to make any changes,
such as texturing the hallway differently, you have to go back and test the
results in the game because you might need to make some adjustments for
better optimization in the editor.

Luckily, when you test your map later with the developer commands (see the
earlier section, “Accessing your commands”), you see whether an issue
needs your attention. All the splits in the brushes are outlined.

Go back through your map and make sure that all the textures line up prop-
erly. Select one floor texture and paste it throughout all the adjoining floors.
Do the same for the ceiling textures and wall textures so you know that any
brush faces that touch are optimized automatically for you.

The splitting of your brushes based on distance is automated. If you make a
map of a huge outdoor area that consists of a really large, single brush for
your ground, this could cause difficulty for the game to render. The compile
process breaks your map into cubes of 1,024 units to resolve this difficulty.
At every 1,024 units starting from the 0, 0, 0 (X, Y, Z) axis point in the center
of the mapping world, your map creates a split.

This might not be convenient, however, when you’re trying to create a well-
optimized map, but it’s something that has to be dealt with. This also must
be considered while designing and constructing your map.

Take a look at your map from within the 2D Top viewport. Zoom out so you
can see all your construction and try to picture where each 1,024 split occurs.

In Figure 10-14, I emphasized with bold lines where these 1,024 splits occur.
The first room was created in the middle of the mapping area. Therefore,
splitting starts in the middle of this room.

If the room is created away from these 1,024 splits, the only splits made in
this room are those that you create with your brushes. Now that you know
about this automatic process, it can be prepared ahead of time before the
map construction begins. However, because it was not considered before
building, you adjust for it now by moving all your brushes and other objects
in the map to a better location on the mapping grid.

139Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 139

Choose Edit➪Select All to select everything in your map. Then click and drag
your selection to a location where the least amount of splitting occurs. You
might need to adjust your grid size to place the selection exactly where you
want it. I had to lower my grid size to 8 units.

You may find it difficult to see where these split locations are located within
the 2D viewports. In Figure 10-16, I enlarged my grid to 512 units to better see
where every 1,024 unit grid line crossed in my map. This is where the 1,024
splits mentioned above will occur. Then, after making a mental note of this
location in the Top 2D viewport, I adjusted my grid to 8 units so I could prop-
erly position my selection.

I moved my selection down and to the right slightly, as shown in Figure 10-15.
Because walls often hide the location of splits, I considered this in my place-
ment. Now, rather than having splitting that runs through the middle of the
room, I reduced the splitting for a more optimized map.

After you finish moving the contents of your map and all the other previous
steps are complete, test it out in the game. Press F9 to open the Run Map
window, and then compile and run the map.

When the level opens in the game, open the Console window by pressing
the ~ key. Type mat_wireframe 3 in the Console window, press Enter, and
then close the window and take a look around (see Figure 10-16). You see an
improvement compared with your level before the optimization techniques
were employed. Fewer splits are in your brushes, and already, less of the map
is rendered for the player. However, you can still do more.

Figure 10-14:
The compiler

automat-
ically splits

your map
every 1,024

units.

140 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 140

For now, save the map over the existing file, dm_chapter10.vmf.

Figure 10-16:
Less of your
map is now

rendered
with fewer

splits.

Figure 10-15:
Adjust your

map for
more

control over
where the

1,024 splits
occur.

141Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 141

Creating portals
Mitering corners reduces polygons, which helps with optimization. However,
you still have to solve the issue of too much area being rendered within the
game. The problem isn’t that bad in a small map, but it could be better. Your
computer shouldn’t have to work hard at rendering more of the level than
your player can actually see. The solution is to add portals.

As I discuss in Chapter 8, portals define VIS leaves within the map. This
affects what the game thinks the player can and cannot see. You can create a
couple of portals in your map through the placement of Hint brushes. In the
example map, these Hint brushes split the map into three areas so that the
outer two areas — the two large rooms plus some of the attached hall —
can’t see each other. Because they can’t see each other, the game doesn’t
render the contents of the room you aren’t located in.

Before showing you how to create and place these Hint brushes, see what
your VIS leaves look like beforehand. The view is similar to what you saw
when running the mat_wireframe command in the console but different in
that the following method helps you see VIS leaves rather than BSP leaves.

Viewing your leaves in-game
You can view VIS leafs in you level in two different ways:

� One by one in the game by using a new console command

� By running a special compiling command in the editor

To start, let me show you the in-game option.

1. Press F9 to open the Run Map window, and then click OK to compile
and run your map in the game.

2. When the game launches with your level, open the Console window,
type mat_leafvis 1, and then press Enter.

3. Close the Console window and take a walk around your map to view
the VIS leaves as the player walks through them.

While you walk around the level, each VIS leaf that you step into becomes
outlined in red, like that of Figure 10-17. The leaves might look the same as
the BSP leaves that you saw before because they’re created automatically
using similar algorithms. Soon, I show you how to manage your VIS leaves,
which makes the difference between the two leaves apparent.

142 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 142

Viewing your leaves with GLView
The second option for viewing VIS leaves requires a little additional setup.
This option is a separate compiling command that runs within the editor to
provide you with a new view of your map. The primary purpose of this new
view is to provide you with the visibility information for your level.

1. Press F9 to open the Run Map window but don’t click OK to compile
the map just yet.

As I mention before, some additional setup is required.

2. Click Expert to open the advanced compiling options.

3. Click Edit to the right of the Configurations drop-down list.

This opens a new window, Run Map Configurations, as shown in
Figure 10-18. Here, you can manage the different configurations you
have available for compiling your map.

4. Click New to create a new configuration.

Another new window opens, prompting you to enter a name for your
configuration.

Figure 10-17:
The console

command
mat_

leafvis
outlines the

player’s
current VIS

leaf.

143Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 143

5. Enter GLView and click OK. Then click Close on the Run Map
Configurations window.

Your new configuration shows up in the Run Map Configurations
window. When you see it, you can close this window.

6. Choose GLView from the Configurations drop-down list.

Select your new configuration. After you do, the other options in this
window appear blank because nothing has yet been entered in them.
Those steps are next.

7. Click New to the right of the Compile/Run Commands option list.

When you click New, a blank entry appears in the Compile/Run
Commands list (Figure 10-19). This new entry won’t be blank for long.

8. Click the Cmds button (on the right side of the window) and choose
BSP program from the list.

After you choose this, a new command appears in the empty Command
box: $bsp_exe. This command refers to the first phase of three in the
compile process.

Figure 10-19:
A blank

entry
appears

when
entering

a new
Compile/Run

Command.

Figure 10-18:
Manage

your
compiling

configu-
rations here.

144 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 144

9. Click and place your cursor in the Parameters box and then
enter -glview $path\$file.$ext.

This new parameter tells the compiler to run your map in the BSP
compiler with the –glview command.

10. Select the Ensure File Post-Exists option and then enter $path\
$file.gl in the text box.

This checks that the .gl file for your compiled map exists before
continuing. If the file doesn’t exist, using this method to view your
VIS leaves doesn’t work.

11. Click New to the right of the Compile/Run Commands option list to
create another new command.

This configuration requires two commands.

12. Click the Cmds button (on the right side of the window) and choose
Executable from the list.

This pops up a file browser window where you can select a specific file
to be run. Browse to

C:\Program Files\Valve\Steam\SteamApps\username\sourcesdk\bin

where username is your Steam username, and Valve is optional based
on your installation.

13. Select glview.exe and click Open to insert the selected file as your
command.

14. Click and place your cursor in the Parameters box and enter -portals
$path\$file.gl.

This new parameter tells the compiler to run your map in the glview pro-
gram with the –portals command. This is why the .gl file must exist as
specified in the previous compiling command.

15. Select the check box next to each of your new compile/run commands
to enable them (see Figure 10-20).

Figure 10-20:
Your new

configuration
is set and

ready to
compile

your map.

145Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 145

16. Click the Go! button to compile your map using your new configuration.

When you click Go!, your map compiles, and the process appears to be
the same. However, when the compiling is done, the game doesn’t load
for you. This time, the GLView program does load and run your level, and
it provides you with some new, valuable information about your map.

In Figure 10-21, the GLView program displays a map in a very basic form. You’re
looking at the hall from within the first room. All the walls in the map are col-
ored in shades of gray and with some white outlines. You’re looking for these
white outlines because they define where your VIS leaves exist in your map.

Move around your map by using either the arrow keys or the WASD keys.
With your mouse, you can pitch your view to look up and down. Take notice of
where each portal is located. If you want, you can even move your camera out
of and over the top of your map, as I have in the overhead shot in Figure 10-22.

In Chapter 8, I describe the process of how the game is rendered for the player
and how only the leaves that can see each other are drawn. These lessons can
now be applied to your map, using the numbers for each VIS leaf in Figure 10-24.

If the player is in Leaf 2, both hallways and all their contents are rendered
in the game. I specify the contents of the hall because there could be other
objects (like weapons, ammo, or other players) in this leaf that would also
be rendered regardless of whether you could actually see them.

Figure 10-21:
Your level,
as shown
within the

GLView
program.

146 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 146

If the player is in Leaf 4, all but Leaf 7 is rendered in the game because you
can draw a straight line between Leaf 4 and all the other leafs without leaving
the confines of the map. A lot of other objects that need to be rendered could
be in the map, and this is a waste of your computer resources.

Portals and Hint brushes now come into play. They can be used to create
divisions in your map that lead to better placement of your leaves.

Close your GLView by pressing Esc. Exiting any other way could cause a
crash in the program, so press Esc.

Making new leaves
Figure 10-23 shows how you can divide the room in such a way that the two
outer rooms can’t see each other. Creating a portal on this diagonal effec-
tively splits your map into three separate leaves, where Leaf 1 can’t see
beyond Leaf 3 and vice versa. Split the one large area into three smaller areas
with an angled portal brush. I show you how to put this idea into action, and
then you can see the benefit of such practice.

To create a portal, you need to add a brush that completely fills your opening
from wall to wall and floor to ceiling. Then texture this brush on one side
with the Hint texture — thus why it’s sometimes called a Hint brush — and
the other sides with the toolsskip texture. The toolsskip texture is ignored
by the game, and the portal texture divides your map into leaves.

Figure 10-22:
Each VIS

leaf
numbered,
as shown,

from
overhead.

147Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 147

Make sure that your portal brush creates a tight seal between the walls that it
touches. Just like slicing through bread, if you don’t slice all the way through,
you don’t have two separate pieces. You need to create two discrete leaves
with your portal.

The most difficult part of this operation is creating the three-sided brush with a
diagonal face. To do this, use the Clipping tool to slice a square brush in half on
that diagonal. The process is similar to the one used for splitting the wall for
the hall, as I discuss earlier in this chapter, except that you do it on a diagonal.

Before you draw your brush, you should locate and select the toolsskip tex-
ture. Because all but one side of the brush will be textured with the toolsskip
texture, it makes sense to start with this one. To find it, press Browse within
the Texture group on the right side of the editor. Then filter for the word skip
and select the toolsskip texture. It is blue, with the word SKIP, as shown in
Figure 10-24.

You will also want to make sure that your grid is set to 8 units. Because the
portal brush needs to fit between the walls of your hall, 8 units is ideal. Check
the information bar at the bottom of the editor to see your current grid set-
tings and adjust it if necessary using the [and] keys.

Figure 10-24:
This skip

texture
will be

overlooked
in the game

and editor.

Figure 10-23:
Splitting one

large area
into three.

148 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 148

1. With the Nodraw texture loaded, create a brush that fits into the
hallway corner.

Press Shift+B for the Block tool and then draw your brush. Make sure
that it meets your ceiling and floor. This brush needs to meet all four
walls of the hallway and create a seal. In the example map, you need
to drag the brush to at least 224 × 224 units in the 2D Top view port
and 128 units in height, as in Figure 10-25.

After it’s drawn, press Enter to create the brush.

2. Split the brush on a diagonal with the Clipping tool.

Press Shift+X to turn on the Clipping tool, and then place two cutting
points over your portal brush. The easiest way to do this is to place
your first point on the tip of the inner corner in the hallway and the
other point one grid line down and to the right on the diagonal, as
shown in Figure 10-26.

In Figure 10-28, you might be surprised that the second point wasn’t even
placed outside of the brush you’re clipping. The clipping line will be cre-
ated along the points regardless of where you place them. Placing the
two points so close together makes it easier to create a 45-degree cut.

Figure 10-25:
Create an
oversized

brush to clip
on the

diagonal for
your portal

brush.

149Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 149

If you find that you’re cutting off the wrong half of the brush, press
Shift+X to change your selection before pressing Enter to activate the cut.

With your clipping selection made and the clipping portion that you
want to save is outlined in white, press Enter to cut the brush.

3. Texture the portal side of the brush with the Hint texture.

Open the Texture Application tool by pressing Shift+A. Press Browse to
locate and select the Hint texture (see Figure 10-27). It is pink and reads
HINT — no other words.

Right-click the diagonal brush face inside of your map to apply this tex-
ture. The result is a brush that has the Hint texture on one side and the
Skip texture on all other sides.

That’s it for the portal that is now creating your new leaves. Because this portal
creates a complete seal around all walls and splits the map into three separate
areas, you have effectively created two new portals: one portal in each hallway.

Make sure to save the map at this time.

Figure 10-27:
The Hint

texture will
hint to the

existence of
brush and

create a
new portal.

Point of reference

Figure 10-26:
Your cutting

points can
be placed

anywhere in
your map to

create the
clipping

plane.

150 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 150

Can You See Me?
After you better optimize your map, take a look at the benefits.

First, compile your map and view it in GLView. Press F9 to open the Run Map
window. If you aren’t already in the Advanced window for compiling, click
Expert to get there. Make sure your new GLView configuration is selected.
Then press Go! to compile and view the map.

Looking at your map this time from the top view as shown in Figure 10-28, you
can see more leaves. The number of leaves in your map isn’t important. What is
important is that the leaves are arranged so that your computer doesn’t have to
work at rendering an area of the map that your player can’t actually see.

You can have too many VIS leafs. If you divide your map into as many
leaves as possible, you do yourself more harm then good. The compile
times increase dramatically, and the game might actually start to slow down.
Each leaf adds data to the map that must be considered by the game when
running. Simply, place leaves where you need them.

Close the GLView now by pressing Esc. This time, compile the map and run it
in the game. You can see how the map is affected after the placement of your
new portals.

Figure 10-28:
GLView

shows you
that your

leaves are
well placed.

151Chapter 10: Building with Optimization in Mind

16_096314 ch10.qxp 12/7/06 10:45 AM Page 151

Press F9 for the Run Map window and switch to the Normal view if you aren’t
already there. Make sure that all your compile commands are set to Normal and
that you still have the additional game parameters entered as –dev –console.
Then press OK to compile the map and launch it in the game.

When you enter the game, open the console by pressing ~. In the console,
enter the command to view your VIS leafs — mat_leafvis 1. Then press
Enter and close the console. Walking around your map, you can see the VIS
leaves outline in red as your player steps into each leaf similar Figure 10-17.
The leaves appear exactly as you saw them in the GLView program.

If you see additional splits in the hallway of your level, you need to go back
and fix them. Your textures might not have been properly places, or you
might have a gap between your Hint brush and one of the other brushes
that’s causing a leak.

Open the console again and type mat_wireframe 3. Viewing your map shows
you that your Hint brushes didn’t create any additional geometry in the game,
which is great (see Figure 10-29). All you did was affect what is rendered, which
will be of great benefit later when you start to fill in the map with details and
additional objects.

Save your map again, and you’re done. After the basics of optimization you’re
ready to move on to bigger and better things.

Figure 10-29:
Only

rendering
(not

geometry)
was

affected
by your

changes.

152 Part III: Expanding on Your Creation

16_096314 ch10.qxp 12/7/06 10:45 AM Page 152

Chapter 11

Heading to the Great Outdoors
In This Chapter
� Adding an outdoor area

� Texturing the outdoors

� Creating doors between areas

� Using special lighting techniques

� Setting up the doors to move for the player

The preceding chapters help you get a well-optimized indoor map under
way with a couple rooms and a hallway connecting them. However, this

map is still pretty small. Continuing the expansion, here I show you how to
head outdoors and work on a different type of environment.

This chapter shows you how to apply special textures to make the addition
look like the outside world. Then you add some special lighting effects to
complete the feel of your map. You need a way to get inside and out, so you
install a doorway and an actual working door for your player to interact with.

Building an Outdoor Addition
Building an outdoor addition is structurally the same as working indoors. You
create a sealed area that extends from your current work, so you need walls,
a floor, and a ceiling. However, instead of using concrete or brick textures on
this outside area, you must apply textures that display a sky, dirt, and other
outdoor ambiance.

Although building an outdoor environment is simple, plan a few important
details before you begin. Structurally, an outdoor area is a box with a texture
on the floor resembling grass or dirt; the rest of the brushes are textured with a
sky texture. However, when the player approaches the edge of the box, nothing
visually signals the edge of the map. The player just finds himself on the brink
of nothing, unable to move forward. Figure 11-1 is an example of what a map
looks like when the player can see over its edge. Because this can be confusing,
you need something here that tells the player, “You can’t go beyond this point.”

17_096314 ch11.qxp 12/7/06 10:45 AM Page 153

To define the edge of the map, you need to add a tall wall. The wall extends
all the way around the outside area and is tall enough that the player can’t
see over the edge. The rest of the box is textured with the sky texture.

When building your sky, its height needs some consideration. You need the
sky to be tall enough that whatever is thrown at it — such as a grenade, a
body, or whatever — doesn’t hit and bounce off the ceiling of your sky box.
That would look bad in the game. However, building the area larger than it
needs to be is a waste of compile time. In Chapter 8, I explain the compile
process and how the third process of compiling is that of light. The more area
the light covers, the more processing time the map requires. Perhaps the
extra processing time won’t make too much of a difference in your small map,
but if you start considering it now, you’ll be in good shape for larger maps.

Here’s what you need to do to begin work on the outside area in the map:

1. Load dm_chapter10.vmf in the editor.

2. Make sure to have the Nodraw texture selected as your base texture.

3. Draw a large brush that positions the current structure in the lower-
left corner, as shown in Figure 11-2.

After selecting the Block tool, I drew a box that is 1472 × 1488 × 320 units
in size on the X, Y, and Z axes. The left and bottom side of this box

Figure 11-1:
The edge of

the map
where sky

meets
structure.

154 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 154

should be 8 units away from the walls of your building, and the bottom
of the box should be on the same plane as your floors. This creates an
area large enough to feel like it’s outdoors and to encompass the current
structure. Also, there is enough room to account for the 8-unit walls on
the sides that will be created when the brush is hollowed. You now have
the basic shape that you can work from, but not the final box.

After the box is drawn, don’t forget to press Enter to create the box in
the editor.

4. Use the Hollow function to make the solid brush into a room for
your player.

Press Ctrl+H to open the Hollow option window. Enter 8 as the wall
thickness for your hollowed room and then press OK.

5. Select your new box and press Ctrl+U to ungroup the brushes.

You need to make some adjustments to these brushes coming up
next, and that’s easier to do when they’re not all grouped.

You should have a nicely hollowed box surrounding your map.

Multiplying the ground
As it sits now, the ground brush overlaps the floors of your building. You
need to fix that, or the game will display errors as it tries to figure out which
texture it should display. The best solution is to split the floor into pieces
that fit the area you need to cover:

1. Select the ground brush and adjust it to fit in the upper-right corner of
the map between the buildings.

The brush must extend under the walls that surround your outside area
to keep the seal you have in your map but also must butt against the
brushes in your building so as not to overlap (see Figure 11-3).

Figure 11-2:
The outside
area should

be large
enough to

encompass
your indoor

area.

155Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 155

2. From the Top 2D view port, use the clone function to fill the missing
pieces of ground by duplicating the selected brush and moving it.

You’re welcome to simply draw new brushes for each of the ground
pieces, but I find the clone function easier to use in this situation. Select
the brush you want to duplicate, Shift+click that brush and drag it to a
new location in the map.

3. Adjust that copy, which is now selected, to fit into one of the gaps in
the ground.

Continue doing this until you complete the ground for your map. Use
Figure 11-4 as a guide to placing those brushes. Use duplicates to fill in
the missing ground.

Filling in the useless corner
Looking at the top view of the map, you see a nice, large, outdoor area for your
players. However, you also see a small area in the bottom left that isn’t exactly
playable. This small area is blocked by the L-shaped hallway connecting your

Figure 11-4:
Adjust the

ground
brush so

that it
doesn’t

overlap the
floor

brushes.

Figure 11-3:
Adjust the

floor brush
so it fits

tightly into
the upper

right of
the map.

156 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 156

two rooms. Because you won’t use this area in your map, exclude it by
adjusting the brushes in the map and filling in that corner as detailed in
the next few steps.

To start, the two walls that meet in the lower-left corner need to be short-
ened. In case your players can see the tops of your buildings, you should
leave these tops inside the map. Remove only the empty space from that
bottom-left corner.

Stretch the brushes of the walls so that they meet up with the backs of the
buildings. When you’re done, it should look something like Figure 11-5. In this
figure, you are looking at the hallway from within the outside area. Notice
how the two walls on the left and right (representing the lower and left walls
in the 2D window of the editor) extend to the length of the buildings and then
stop. Later, when you’re done manipulating the ground brush, you can fill in
that corner.

As for the hole you now have in the corner, you could draw in a few more
wall brushes to close the gap, but here is a way to save yourself some work.
Instead, draw two larger blocks that completely fill in that corner. Each new
block needs to touch the ceiling brush of the sky and extend only to about
8 units below the tops of your buildings. (There’s no point in extending the
brushes below the tops of your inner rooms because the player cannot
access this area, and you created the necessary seal.) The result looks
something like Figure 11-6.

Using a solid brush in this case doesn’t hurt your map in any way. Because
it’s solid, no light calculations are within it. The compiler sees it only as a fat
brush that seals the inside of your level, preventing leaking.

Outer wall

Outer wall

Figure 11-5:
Adjust the
brushes in
the lower
left of the

outside area
before

closing that
corner.

157Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 157

Defining your boundaries
You want to apply two different textures to the outside walls to complete
your scene. First, you want to texture half the outer brush faces with some-
thing that looks like a solid containment wall. This gives the player a sense
that the level stops here. The rest of the outside area gets a sky texture.

You can get two textures on your walls by splitting the walls — the top half
being sky, and the bottom half being solid wall. Here’s how:

1. Make sure you view your map in either the 2D Front or Side viewport.

2. Select all the brushes that make up the surrounding wall. Remember
to select those blocks in the southwest corner of the map because
your solid wall will reach above that point.

For the example in this book, you’ll be making the wall 160 units tall,
which is slightly higher than your buildings. A wall that’s 160 units is a
good height; it’s tall enough that your player won’t be able to see over
the top when playing in the game.

3. With all those brushes selected, use the Clipping tool to split them all
at once at the 160-unit line on the Z axis.

Press Shift+X to turn on the Clipping tool. Click and place the first clip-
ping point within the 2D viewport on the 160 Z axis and anywhere on
the other axis.

4. Click and drag your first point to place the second clipping point within
the same window on the 160 Z axis and anywhere on the other axis.

This displays a horizontal line that represents your clipping line.

5. Confirm that both halves of your clipping plane are outlined in white
to be split. Otherwise, continue pressing Shift+X until they are.

Figure 11-6:
Fill in the

hole in the
lower-left

corner with
two large,

solid
brushes.

158 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 158

6. Press Enter to split your selection, leaving you with top and bottom
halves of your walls.

The result should look similar to Figure 11-7.

Making a Scene
It would be nice to test your map and see how it plays in the game. However,
you still have some very important brush faces to texture. You haven’t tex-
tured your outside walls and sky. Without it, the leak error will result in your
map during the compile process, and you won’t be able to load it in the game.
Presently, everything in the outside area is covered with the Nodraw texture.
The following sections show you how to dress things up with some proper
textures, starting with the ground.

Throwing dirt on the ground
Because this is an outdoor area, select an appropriate texture for your
ground. Here’s how:

1. Press Shift+A to open the Face Edit Sheet window.

2. Click Browse to open the list of available textures for selection.

3. Enter the word dirt into the Filter to locate all the textures that would
be best suited for this outside ground and select the texture
nature/blenddirtgrass001a, as shown in Figure 11-8.

To select the texture, double-click it within this view. The viewer window
closes, and your texture is selected.

4. Move around your map within the Camera viewport and apply that
texture to the brush faces on the ground by right-clicking.

Figure 11-7:
Split the
walls of

your outside
area to
define

where the
outside

walls meet
the sky.

159Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 159

Fitting the outer building
With your ground taken care of, move onto the exterior of the buildings.
Because the building’s interior has a brick texture, select something similar
for the outside.

When you created the texture for the interior of your buildings, you found
your interior wall texture by filtering the textures with the word brick. You find
a similar texture for the outside by using the same filter word. Here’s how:

1. From within the Face Edit Sheet window, press Browse and filter your
textures with the same word, brick.

2. Select the brick/brickwall031d texture, shown in Figure 11-9.

This texture is very similar to the one you used for the interior except
that it has a concrete border on the top edge to help to make the rooftop
look better from the outside.

3. Apply this new texture to the brush faces on the exterior of the two
rooms. Right-click within the Camera viewport to apply the selected
texture.

Figure 11-9:
Apply a

brick texture
to the

building
exterior.

Figure 11-8:
Apply a
natural

texture to
the ground

of your
outdoor

area.

160 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 160

After you apply your texture to the exterior walls, some corners appear
to need mitering. It is not required that you miter these exterior corners
as long as you apply the same texture to all the brush faces on all
adjoining walls. The compiler will do the optimization work for you.
As I describe in Chapter 10, the compiler merges brush faces that have
the same texture with the same values applied to those brush faces.
However, I personally prefer to miter all of my corners so that I am
confident that the brushes are optimized regardless of texturing. This
mitering step is described in the section, “Mitering the Outer Walls,”
later in this chapter.

4. Go through the rest of the level and continue to apply this wall tex-
ture. Remember to apply it to all the wall surfaces of the building,
including the thin strip at the top of the wall.

If you change textures and then go back to reapply some of the wall tex-
tures, copy the texture from the adjoining wall. Otherwise, your wall
might appear to have a seam where the two textures meet, and you also
end up with an additional split in the wall. To copy the texture, select it
from one of the surrounding walls. Then you can continue to reapply it
with those same texture settings.

Climbing the roof
After the walls are done, texture the rooftops. Your player won’t access this
spot in the map, so the texture that you use isn’t important. However, because
the player might see it when he jumps, select something that fits the scene.

Browse your textures and filter with the word roof. This turns up a few good
textures for your map. Specifically, I like the texture props/rubberroof002a.
Another texture, props/tarpaperroof002a, is also nice, but it will look
very repetitive because of its design.

Select and apply the props/rubberroof002a texture, as shown in Figure
11-10. Make sure to apply it to all rooftop surfaces.

Figure 11-10:
Apply a

texture to
the rooftops

of the
buildings.

161Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 161

Walling in the yard and adding sky
Move on to the outer wall, applying two textures here:

� For the lower half of the wall, something solid and strong looking

� For the sky that appears over the wall

1. Browse your textures and filter your list with the word stonewall.

You can certainly use other filters, but this one helps you locate the
texture I had in mind.

2. Select the texture stone/stonewall006a, as shown in Figure 11-11.

This texture has a look that fits everything else done to this point.

3. Apply this texture to the lower wall section that surrounds the
interior of your map.

When you apply this texture, it begins to repeat itself vertically. Don’t
worry about this repetition. The texture doesn’t have to fit, and you can
work the overlap into the scene later.

With the solid walls covered, move onto the sky. Adding a sky that looks like
it stretches into infinity is really a lot easier than you might think. It’s nothing
more than applying the right texture to the brushes. The game does the rest
of the work for you.

1. Browse your texture and filter the list with the word sky.

2. Look through the textures and select the tools/toolsskybox
texture, which looks like Figure 11-12.

Figure 11-11:
Apply a

stone
texture to
the walls

surrounding
the outdoor

area.

162 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 162

This blue texture bears the word SKYBOX written on it and doesn’t
really look anything like a sky, at least just yet. The game knows to apply
the sky to this texture so it looks vast within the game.

3. Apply this texture through the rest of the interior of your map.

When you’re done, you should no longer be able to see any Nodraw tex-
ture from inside the playable area. The outside of the map should still be
textured in Nodraw, but the player will never see that.

4. Save what you have so far under a new name (dm_chapter11.vmf).

Keep versions of your map to fall back on if a problem arises because of an
unexpected mistake or error.

Mitering the Outer Walls
When you optimize the interior of your rooms and hall in Chapter 10, I show
you how to miter the corners that the player sees. At that time, the player
could see only the interior of those three sections. However, now the player
can walk around outside these rooms, and the corners outside haven’t been
mitered for optimization.

Let me state again that although brushes with matching textures will auto-
matically optimize themselves during the compile process, I recommend that
you miter your corners. Mitering is a good habit to get into as it ensures that
your map is properly optimized.

Make your way around the map and miter the corners around the rooms. Six
corners need your attention, as I point out in Figure 11-13.

Figure 11-12:
The sky
texture

creates the
illusion of
a big sky.

163Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 163

Getting Outside
You’ve added a great set of brushes for your outdoor scene, but how do you
get to it? Right now, your player will spawn inside one of the rooms but can’t
get beyond the two rooms and the hallway. You need to cut a set of doors for
your player to use. In the next few sections, though, you make two sets of
doors rather than one.

You have a number of ways to cut in your first set of doors.

� Create an entrance by stretching and duplicating brushes (just as you
do to the ground of your outdoor area earlier, in the section “Multiplying
the ground”).

� Shrink the existing walls and draw new ones to replace the missing pieces.

� Use the Clipping tool to split the existing brushes, thereby making a
doorway.

The last option of splitting your wall brush is the simplest method because
it won’t affect the texturing you applied to the interior and exterior of the
rooms. If you move brushes around, the textures won’t line up as they did
before, which creates a visual seam where the walls are joined — as well as
added geometry.

Clipping out some doors
Here’s what you need to do to get started creating your doorways. Use the
Clipping tool, with Figure 11-14 as a guide:

1. Begin by selecting the East wall on the lowermost room in the map.

2. Press Shift+X to turn on the Clipping tool and then start clipping the
center of the wall for a door.

Figure 11-13:
Don’t forget
to miter the

outside
corners

now that
they can
be seen.

164 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 164

You can use either the Top or Front viewport to perform the clipping.
I recommend using the Front viewport. From here, you can see where
your hallway is placed in relation to the door and center the two exactly.

3. Make the first cut to the height of the wall on the Z axis on the –120-
unit grid line.

Press Enter to initiate the cut on your clipping line.

When clipping, split the brushes. After placing your points for clipping,
make sure that both halves of your selected brush are outlined in white.
This indicates that the brush will be split to give you halves. Press
Shift+X to cycle through your different clipping options.

4. Make the next cut on the 8-unit grid line of the Z axis.

This makes for a pretty large door, but that’s okay. You’re going to turn
these into double doors, so 128 units wide for your doorway is ideal.

The next cut defines the height of the door. A good door height in this
game is about 96 units.

5. Select the center brush only so as not to split the walls on either side
of the door in the next step.

Press Shift+S to switch back to the selection tool and click the center
brush within the Camera viewport. The switch back to the Clipping tool
by pressing Shift+X.

6. Split the selected brush on the Y axis on the 104-unit grid line.

Because the top of the floor is on the 8-unit Y axis, your split should
occur 96 units above that. This is the 104-unit grid line.

7. Select only the door brush and split it down the center to create the
two doors (see Figure 11-15).

With these two doors still selected, you need to make them look more
like doors rather than part of the wall, so make the doors more narrow
than the adjoining walls. This also helps with the functionality of the
doors. Because these will be sliding doors, it makes sense that they are
thinner than the walls they slide into.

Figure 11-14:
Use the

Clipping tool
to create

the brushes
for your

doors and
doorway.

165Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 165

8. Center your Top viewport over your two doors so you have a close-up
view of them.

9. Change the grid size and make it two sizes smaller, equal to 2 units,
pressing [twice.

If you can’t see the grid lines in the Top viewport, zoom in on your doors
until you can. You need to see these lines to make the next adjustment.

10. Adjust both brushes simultaneously so that they are equally 2 units
thinner on each side, as shown in Figure 11-16.

To resize the doors, grab one of the handles (white boxes) of the sides
and corners of your selection. Then click and drag one of these handles
to adjust its size.

Wall above the door (blue)

Door (red/yellow)

Wall on sides of door (blue)

Figure 11-16:
Change

the door
thickness to
make them

stand out to
the player.

Figure 11-15:
Clip your

two doors to
be 64 x 96

units each.

166 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 166

11. Return the grid size back to 8 units (Grid8) by pressing] twice.

You don’t want to accidentally make changes to your map that you
cannot see. When you zoom out, you’re won’t going to be able to see the
2-unit grid lines, and you could end up doing something that results in a
leak of your map.

Touching up the textures
The following sections describe a few examples of places where you might
want to touch up the textures. For example, door jams are notorious for
needing touch-ups. I can’t think of any place where you would see doors that
slide directly into brick. I can, however, think of doors that slide into metal
frames that are attached to brick walls. The solution is to create a metal
frame around the doors.

Working around doors
First, the doors you created are in your way. You could try to work around
them to apply the textures where they’re needed, but here’s an easier way:
Temporarily hide the doors so that you can texture what you need, and then
unhide them when you’re done.

1. Select your two doors.

2. Choose View➪Hide Selected Objects.

A new window opens, asking you to create a new visgroup like Figure 11-17.

A visgroup is a group of objects that you can choose to hide or show
within the editor while you work.

3. Enter a name for your new visgroup; name this group Doors 1.

Name each visgroup so that telling them apart is easy. In this case, you
can name the other set Doors 2.

Figure 11-17:
Create

groups of
selected

objects that
can be
hidden

within the
editor.

167Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 167

Do not select the check box here. If you do, this removes your selected
doors from any other visgroup that exists. This is not necessary for your
current selection.

4. Press OK to create your visgroup and hide your doors.

Your doors disappear from view, like in Figure 11-18. However, they are
available to you at any time you want to show them again. If you look at the
VisGroups group on the right of the editor, you see your new group listed
there — unchecked. Later, after making your texture adjustments, you
select that check box next to your group to show them again in your map.

Creating a door frame
After your doors are hidden from view, create that metal door frame.
Here’s how:

1. Select the Nodraw texture from within the Texture group on the right
side of the editor.

2. Activate the Block tool by pressing Shift+B and then draw a thin
brush on one side of the doorway.

The brush should stick out from the doorway by 2 units and extend from
the floor to the top of the doorway without overlapping any other
brushes, as you can see in Figure 11-19.

3. Switch back to the Selection tool by pressing Shift+S. Select your new
brush and then click and drag it to the other side of the doorway.

This creates a duplicate of the first brush that you can place on the
opposite side.

4. For the top of the doorway, switch back again to the Block tool by
pressing Shift+B. Then draw another brush on the top of your door.

Figure 11-20 is an example of what you should end up with.

Figure 11-18:
Unselected

visgroups
are hidden
from view

but remain
in your map.

168 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 168

Adding texture to the door frame
Texture these new brushes with a metal texture:

1. Open the Texture Application tool and browse for a new texture.

2. Filter your texture with the word metalwall.

3. Locate and select the metal/metalwall031a texture, as shown in
Figure 11-21.

Figure 11-21:
Select a

metal
texture

suitable for
a metal
frame.

Figure 11-20:
A door jam

ready for
texturing.

Figure 11-19:
Create a

thin brush
along one
side of the

doorway.

169Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 169

4. Right-click and apply this texture to the visible sides of the brushes in
your doorway.

Applying a new texture for the doors
From the VisGroup window on the right side of the editor, select the check
box next to your group titled Doors 1. Your doors will unhide, and you can
move on to retexturing them. Here’s how:

1. Browse for a new texture that will look good on your doors.

Filter your textures with the word door to make one easier to find.

2. Locate and select the texture metal/metaldoor013a (see Figure 11-22).

You could select a texture that looks like a single door, but in this case,
you could instead apply a texture that already looks like two doors.

3. Right-click the door on your left to apply the new texture.

When you apply the new texture, it appears to not line up properly,
as you can see in Figure 11-23. To resolve this issue, you can

• Manually adjust the texture’s location by shifting it with the
Texture shift values at the top of the Face Edit Sheet window.

• Use the Justify buttons on the right side of the Face Edit Sheet
window. This is my choice.

Figure 11-23:
The door

texture
doesn’t line

up upon
application
and needs

adjustment.

Figure 11-22:
Select a

metal
texture for

your doors.

170 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 170

4. Apply the texture to the door on the right so that they are both
textured with the same texture.

5. Select both brush faces on the doors by Shift+Ctrl+clicking each.

You might not see that the door faces are selected, but they are.

When selecting brushes faces with the Texture Application tool active,
you might not see your selection. This is a visual issue that can some-
times occur. If you move your view around within the Camera view port,
your selection shows up with a red hue, indicating that your selection
was made. After gaining confidence in the editor and tools, you can feel
secure knowing that your selection was made without having to rely on
this visual to confirm it.

6. Select the option to Treat as One.

The Treat as One option, as shown in Figure 11-24, applies any changes
you make to all the selected brush faces as if they were one, large brush.
This way, you can apply changes to your doors as a whole rather than
having to work with them individually.

7. Click the Fit button to fit the texture to your selection.

The Fit button, also shown in Figure 11-24, is in the Face Edit Sheet
window and listed as one of the Justify options. This option fits the tex-
ture so that its height and width equal that of your selection. This is per-
fect for making your texture fit across the two doors.

Your doors should look perfectly textured, as in Figure 11-24. However,
you’ve textured only one side.

Touching up the interior textures
Move your view into the interior of the room where your doors are located.
Your door texture should still be selected as the current texture within the
Face Edit Sheet window, and it is ready to be applied to the other side of the
doors. If you closed the Face Edit Sheet window, go back to the outside area
and reselect the texture on the outside of the doors.

Figure 11-24:
Adjust

both door
textures at

the same
time for a

perfect fit.

171Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 171

On the inside of the doors, right-click the door faces to apply your texture.
The texture applies itself in reverse as a mirror of what you applied earlier.
Only one more application of your texture remains: namely, the portion of the
doors that the player can see when the doors are open.

Reaching the area where the two doors meet might look difficult because
they are against each other. However, nothing is stopping you from moving
those doors into an open area where you can apply your texture, and then
moving them back again. Here’s how:

1. Switch to the Selection tool by pressing Shift+S.

2. Select one of the two doors and move that door to an open area.

Here, you can adjust your view in the Camera viewport so that you can
see the edge of the door that needs texturing.

3. Open the Texture Application tool by pressing Shift+A.

4. Select the door texture from one of your door brush faces with a
left click.

5. Apply this texture to the door edge with a right click, as in Figure 11-25.

6. Do the same for the other door and then move the doors back into
place where they came from.

Fixing a Bottleneck
Having multiple players in two areas divided by a single, small door can
cause problems. If they all try to run through that door at the same time, they
will get stuck. In addition, the volume and predictability of players moving
through this area can make the game predictable. This is a bottleneck. To solve
this issue, you either need to make the door larger or create a second door.
The latter suggestion usually makes for a more interesting level in the game.

Figure 11-25:
Don’t forget

to texture
the edges of

the doors
that will be

exposed
later.

172 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 172

Right now, your map has two major areas divided by a bottleneck. You have
an indoor area and an outdoor area split by a single doorway. To make the
level flow better and to create more player options, you’d be better off
placing a second set of doors in the map in a different location.

To avoid having a bottleneck situation in your map, add a second set of doors
to the north wall of the north room. This makes it easier for your players to
run between the inner and outer areas of the level, and the additional choice
allows for more strategy by the players.

Select the north wall of the second room. Follow the direction outlined
earlier in the earlier section, “Clipping out some doors.” After you create
your second set of doors, create the metal door jams that surround the inner
doorway. Finally, texture the brush faces by following the instructions in the
section “Touching up the textures.” You should end up with what you see in
Figure 11-26.

You’ve made a lot of changes at this point. So that you don’t lose any of your
hard work that was put into this map, save your progress (press Ctrl+S).

Sliding Open the Door
What’s missing from your map at this point is a way to get through your
doors. Right now, they’re just solid brushes. The only differences between
them and the walls around them are the textures. The doors should open for
the players. Because these will be interactive elements of the game, you need
to turn them into entities. In this case, door entities will suffice.

Figure 11-26:
Create a
second,

identical set
of doors on

the northern
wall of the

north room.

173Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 173

Making that door move
Here’s what you need to do to get the doors to move:

1. Move the camera over to one of the door sets in the map.

2. Select one of the two doors in the set.

3. From within the New Objects group on the right side of the editor,
choose toEntity.

This converts your solid brush into an entity that you can now
define with specific properties. These properties are defined within
the Object Properties window that comes up when you press the
button (see Figure 11-27).

4. Choose func_door from the drop-down list of classes.

The default class is func_detail. You need to change this to func_door by
choosing it from the list.

5. Name your door door_blue.

Select a name from the Keyvalues field and enter the name of your door
in the empty text box to the right (see Figure 11-28).

Later, you need to call to this door by name, so give it a name that you can
use. In this case, I name this door and the door next to it both door_blue
because they are adjoined with the room containing blue lights.

Figure 11-27:
You can turn

a regular
world brush

into an
entity, such

as a door.

174 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 174

6. Add a Lip value of 4 to the door.

When a sliding door opens, the distance it slides is equal to its length.
When the door slides open, then, it seems to disappear into the wall. It
would be more realistic if the door didn’t actually slide all the way into
the wall. The distance that is left sticking out of the wall is the Lip and
it’s measured in units. So, a Lip of 4 means that the door stops 8 units
short of the total distance into the wall.

Entering a negative Lip value causes the door to slide further into the
wall. So if you entered a value of –4, the door would slide an additional
8 units into the wall.

7. Adjust the Move Direction to make sure that the door opens into the
brick wall.

The door can open any direction you want. It can open up, down, left,
right, and so on. You want your door to slide into the brick wall that it
touches.

From within the Keyvalues list, choose the second-to-last option, Move
Direction. Look at the black circle that shows up when you make this
selection and confirm that the white line within it points in the direction
you want the door to move, as I have in Figure 11-29.

Make sure that when you define the direction of the door, you do so
in relation to the 2D Top viewport. This is the only view that properly
reflects the angle at which the door should move.

Figure 11-28:
Uniquely

name your
doors so
you can

later call to
that name to

open them.

175Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 175

8. Click Apply to set your changes.

9. Repeat these steps for the other door next to this one.

You want to follow the same steps as with the first door, except that you
use a different move direction:

a. Select the door brush.

b. Turn it into a func_door entity.

c. Give this entity the same name as the door next to it, door_blue.

d. Assign it the correct movedir.

Entities can have the same name. In this case, you create another entity later
that controls both doors at the same time. Because these doors have the
same name, you can control them simultaneously.

That completes one set doors. Go ahead and apply the same principles to the
second set of doors. Remember to assign the correct move direction so that
the doors slide into the wall. Also, give the other doors a different name such
as door_red. This way, you can control these doors separately as a set.

Sealing your area
After you turn part of the wall into an entity, you create a hole in the sealed
area of that room. In Chapter 10, you create a hint brush in the hallway to
split the map into three areas. This way, only one room is rendered in the

Figure 11-29:
Set the

direction
that the

door needs
to move
when it

slides open.

176 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 176

game while the player is in it, and the other room is ignored. By creating a
hole (by way of the doors) in one of the rooms, the area leaks into the rest
of the map and renders everything again.

Thankfully, the solution to sealing this hole is simple. By adding an areaportal
inside the doors that fits the entire doorway hole, you can effectively rede-
fine the room as its own area and seal it again. The area remains sealed until
the doors open and seals again when the doors close.

To create this doorway portal, follow these steps:

1. From the textures group on the right of the editor, browse, filter, and
select the texture tools/toolsareaportal.

This texture helps define the new brush that you are about to create
as a portal. The texture is green and reads AREA PORTAL, as shown in
Figure 11-30.

2. Draw a brush that fits completely inside both your doors and seals
tightly against the brick wall and ground in all four directions.

Your areaportal must create a tight seal around the door to ensure that
there is no leaking of the space it separates. If a leak occurs, this area
won’t be sealed, and no separation is created.

Also, the brush you draw must be thin enough to fit inside your doors
(Figure 11-31). Although the player cannot see this brush, it does cause
everything on the opposite side to be hidden from the player’s view.
This creates some unwanted visual effects that can be avoided by
placing the brush where it can’t be directly seen.

Figure 11-30:
An area-

portal must
be textured

with the
tools/

toolsarea
portal

texture.

177Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 177

In order to get your area portal brush to fit inside of your doors, you
have to adjust your grid size to 1. When you are done sizing this brush,
increase your grid size so that you can see the grid lines when you zoom
out. If you don’t, you may accidentally move a brush and not see it move
because you are zoomed out and cannot see the grid lines.

3. Change to the Selection tool and select your areaportal brush.

After creating the brush, when you switch to the Selection tool (press
Shift+S), the brush you just created should be automatically selected. If
not, try to select it from one of the 2D windows. If that doesn’t work,
move or hide the doors so that you can easily select the brush from
your Camera viewport.

4. Click toEntity to turn your world brush into an entity.

This button is found on the right side of your editor in the New
Objects group.

5. Select func_areaportal from the list of classes.

6. Select Name of Linked Door from the list of Keyvalues and enter the
name of your doors into the text box on the right.

If you named your doors as I did, the value entered here for the areapor-
tal near the blue-lit room is door_blue. The name of the other doors is
door_red. Also, if you forgot the name of your doors, you don’t have to
go back and look it up. The name is available in a drop-down list if you
press the arrow to the right of the text box (Figure 11-32).

7. Click Apply and repeat these steps for the other set of doors.

When completed, save your map again.

Figure 11-31:
Create your

areaportal
brush to fit
inside your

doors.

178 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 178

Lighting from Above
For players to be able to see inside your building, you add light entities. Right
now, if players go into the outdoor area, they won’t be able to see anything
because there is no light. Again, you must add light entities. However, in the
case of your outdoor area, instead of just adding a light bulb to the ceiling,
your goal is to replicate something that resembles the sun. This can be
accomplished with the use of a new entity, light_environment.

Adding virtual sunlight
Perhaps the best place for the placement of your sun is in the corner oppo-
site your rooms. The light can shine down, casting nice shadows and creating
a great-looking environment for your players.

Select the Entity Creation tool by pressing Shift+E. From the New Objects
group on the right side of your editor, select the light_environment entity
from the Object list. Click and place your new entity into your map, and then
press Enter to insert the entity, as shown in Figure 11-33.

Figure 11-32:
All the

current
entity

names
in your

map are
available in

the drop-
down list.

179Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 179

Technically, the placement of this light entity has no effect on the lighting of
your level. The values that you set for this entity create and define the light
attributes. However, if I ever need to make changes, I find it easier to locate
this entity when I place it where I expect the light to be coming from. This is
why I place the entity in this corner.

With the light_environment entity still selected, press Alt+Enter to open the
Object Properties window for this entity. Enter the following Keyvalues:

� Pitch Yaw Roll (XYZ): 0 225 0

This defines the direction that the light faces. By entering a Yaw of 225,
you tell the light to shine toward the southwest corner of the map.

� Pitch: –45

This setting tells the light to shine toward the ground at a 45-degree angle.

� Brightness: 255 255 185 600

The brightness of the light sets the color and amount of light to shine.
The first three digits represent the light’s RGB color values. Because
natural sunlight has a yellow coloring to it, so does this light. The bright-
ness, represented by the value 600, defines how brightly the light should
shine. Although 100 is usually the top value for brightness, you can exag-
gerate this value for a better effect, as I have.

� Ambient: 190 200 220 80

Ambient lighting is what you find in corners or other areas that don’t
have any direct source of light. The light could come from a reflection of
walls, ground, or anything else similar.

The values for this setting follow the same outline as that for the
Brightness. The color of this light — defined as RGB values in the first
three numeric values of this settings — is usually darker, like what you
would see at dusk. Also, the brightness — defined as the last numeric
value of this setting — is usually much lower.

Figure 11-33:
Add the

light_
environment

entity to
create the

effect of
sunlight.

180 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 180

After you make these settings for this entity, click Apply. Then save your map.

At this point, you may want to take another step in making your virtual
sunlight look more like an actual sun.

Adding a virtual sun
You now have enough light in your outdoor area. If you stop here, the level
will look good in the game. However, you could also take the extra step to
add something in the sky that looks like the source of your light — a sun.

Adding a sun to your map is as easy as adding another entity called env_sun.
This entity won’t actually add any light to your map, but it creates the effect
of a sun in the sky when the player looks toward it.

With the Entity Creation tool still selected (Shift+E), change your selected
Object located on the right side of the editor in the New Objects group. Select
the object env_sun from the list.

In the case of this entity, placement does matter. The player will see it — or,
at least, the player sees the effects that it creates within the game. So, place
this new entity into your map in the same corner where you placed the
light_environment entity (see Figure 11-34).

When the fake sun is in your map, define the angle at which it shows and
shines into the player’s eyes when they look at it. You could do this by chang-
ing the properties of the env_sun entity, but that can be tricky to get just
right. The easier method is to place something else into your map at which
you can point your env_sun.

Figure 11-34:
Place the
env_sun
into your

map for a
simulated

sun effect.

181Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 181

Select a new object within the New Object group on the right of your editor.
Select info_target from the list. Place this new entity between your two rooms
near their corners, as in Figure 11-35. With the sun shining down to this loca-
tion, you wind up with the right effect.

With the info_target entity selected, press Alt+Enter to access the Object
Properties window. Enter a name for this entity so that you can call to it from
the env_sun entity. Make sure the Name is selected (in the Keyvalues list) and
then enter the new value into the text box to the right, as in Figure 11-36. A
good name here would be target_sun.

Figure 11-36:
Set a name

for your
target that

can be
called to by

another
entity.

Figure 11-35:
Place an

info_target
in your map

that you can
point the

env_sun at
by name.

182 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 182

After this name is entered, click Apply and close this window. Move your
view in the Camera viewport to the env_sun entity and select it. Then press
Alt+Enter again to open the Object Properties window.

Now that you have a target to point your sun at, you can define this property
within the env_sun entity. Choose UseAngles from the Keyvalues list and
make sure that is the UseAngles value is set to No via the drop-down list. This
means that the game will ignore any directional settings within this entity.
Then choose Viewer Entity from the Keyvalues list; and, from the drop-down
list on the right, select your new target, target_sun (see Figure 11-37).

Testing Your Progress
Finally, after all the work you just put in, you can see how your new outdoor
area looks in the game.

Compile the map; run it through the BSP process by pressing F9. Make sure
your three compile options are all set to Normal and that the option to not
run your map is not selected. Then press OK to compile and test your map.

As the map compiles, you will notice that it now takes a lot longer to finish.
The editor has more open space and more light to calculate during the
compile process. The more detail that is added to your map, the longer it
takes to compile.

Figure 11-37:
Target your

sun by
setting the

Viewer
entity.

183Chapter 11: Heading to the Great Outdoors

17_096314 ch11.qxp 12/7/06 10:45 AM Page 183

If you encounter a leak and the compile process stops, load your point file
and follow the red line in your map to the hole and seal it up. I discuss how to
find leaks in Chapter 8.

Take a look around your new map (see Figure 11-38). Look up at the sun as
you run around the outside area. Most of all, have fun!

Figure 11-38:
A well-lit
map with

nicely
defined

shadows
from the

direction of
your sun.

184 Part III: Expanding on Your Creation

17_096314 ch11.qxp 12/7/06 10:45 AM Page 184

Chapter 12

Adding a Few Details
In This Chapter
� Adding a few brushes for detail

� Teaming doors to work in unison

� Dropping crates in honor of the first-person shooter

� Placing pickups for the players

You’ve put a lot of work into making your first map for Half-Life 2. In the
preceding chapters, you create two interior rooms connected by a hall-

way. By adding sliding doors, you extend the play area to go outdoors with a
sky and outdoor lighting. With all the work you put into this map, you could
call it a second home. However, what is a home without a little decoration? If
your home had no furniture, no rugs, no details to make things interesting, it
wouldn’t be a fun place to hang out.

What’s needed are a few details in the playing area. Some details are small
and won’t be noticed by the player, but others will make a huge difference in
the game play of the level. However, all details, no matter the size, add to the
overall feel of a map and make it worth playing over and over again.

Doing Some Decorating
To start off, I show you how to add some minor details to the layout. These
minor things might not ever be recognized by the other player but will really
add depth and character to the environment.

First, I show you how to enhance the outside walls. Even though the texturing
helps to make them interesting, extra depth created with the addition of just
a few brushes makes your walls look strong and secure.

18_096314 ch12.qxp 12/7/06 10:46 AM Page 185

Pulling a ledge
In this section, you add a ledge to the top of the wall. A ledge makes the top
look and feel more prominent when the light casts a shadow. It makes the walls
feel deep. The change doesn’t need to be big, but it should be noticeable.

You draw a ledge around the entire outer wall at the top where your current
texture starts to repeat itself. The brush should be 32 units tall and 8 units
deep. This size is big enough to give the desired effect without be so big that
it takes over the scene.

Here’s how you add the ledge:

1. Deselect all brushes and select the Nodraw texture.

2. Starting in the southeast corner of the map, draw your first brush in the
direction of your building to 16 units tall and 8 units deep. Stop when
your brush reaches the end before it intersects with another brush.

Draw this new brush flush with the top of the inner wall but not overlap-
ping with any other brushes. This ledge should look like it is overhanging
the top of the wall surrounding this outside area. The result should look
like Figure 12-1.

Note that because this brush doesn’t overlap with the building, I could
continue to draw the brush to the end of the next wall. If this brush were
to overlap, I would have to stop and continue with a shorter brush that
did not overlap.

Figure 12-1:
Create a
ledge on
the wall

beginning in
the lower-
left corner
of the map

and working
toward the

building.

186 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 186

3. Move your view back to the southeast corner and continue the ledge
brush on the eastern wall.

The only spots that might cause you trouble are the corners. You need
to miter them as you go along, just as you did in Chapter 10.

4. Start the mitering with the southeast corner and miter each corner as
you go along with your ledge.

Press Shift+V for the Vertex tool. It should look like Figure 12-2 when
you’re done.

5. Continue adding the ledge brush around the walls until it is complete,
making sure that the ledge wraps around the entire enclosed area.

When you’ve added all the ledge brushes, it’s time to texture these new
brushes. You want to add something that doesn’t completely blend in with
the current wall but doesn’t look out of place.

1. Select the Texture Application Tool by pressing Shift+A.

2. Browse your textures and locate and select the texture stone/
stonewall006b.

Yes, you could use the same texture already on your walls. However, you
can make your scene more interesting by mixing other textures for more
variety. In this case, you’ll use the small, top edge of the texture to
create your final look.

3. Apply the texture stone/stonewall006b (shown in Figure 12-3) to
the front brush face of the ledge brush.

Miter

Figure 12-2:
When you
get to the
corners,
miter the

corners to
reduce

splitting
your

geometry.

187Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 187

4. Shift the texture so that the ledge portion can be seen.

This texture is a complete wall with a ledge on the top. It’s the ledge that
you want to apply to this brush face, without the rest of the wall. When
you apply the texture, you will most likely not see the ledge. So, shift the
texture on the Y axis to make it visible. Do so from the Face Edit Sheet
window by increasing the value in the Texture Shift Y text box. The
resulting value in my case was 96, as shown in Figure 12-3. However, on
your computer, a shift value of 96 may not work. So, line up the texture
by eye as you adjust the shift values.

5. Apply the same texture to the bottom and top of this brush so that all
visible Nodraw texturing is covered.

When you apply this texture, you’re going to see that it doesn’t line up
well. Shift this texture around until you like how it looks. In my map, I
shifted the texture on the Y axis to 102 and copied this to the top of the
brush so it looks like Figure 12-4.

Figure 12-4:
Apply the

same
texture and
shift it into

place under
the ledge.

Figure 12-3:
Select and

apply the
stone/

stonwall
006b

texture to
your new

ledge.

188 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 188

6. Apply these textures to all of the remaining ledges around the walls of
your map.

In some cases, when you apply the texture underneath the ledge, you
will notice that is it going in the wrong direction, like it is in Figure 12-5.
To fix this, rotate the texture 90 degrees by using the Rotation values in
the Face Edit Sheet window.

7. Now that your ledge is fully textured, save the map under the new
name dm_chapter12.vmf.

Lighting the porch
Something else that adds a lot of detail to a level is lighting. I don’t mean
just the general lighting that makes it possible for the players to see where
they’re going. I’m referring to the lights that accent points in the game, such
as entrances.

With the following instructions, you add a light over each pair of doors. This
makes the doorways more obvious to the player and makes them more inter-
esting at the same time.

1. Select the Block Tool and the Nodraw texture. Then move the camera
around and in front of a set of doors, viewing it from the exterior.

2. Draw a brush that is 16 × 16 × 12 units (X, Y, Z) in size and place it
right above the trim that surrounds the doors. Center it above the
doors so that it looks something like Figure 12-6.

This brush is the light’s basic structure, but you need to shape it so it
doesn’t look quite so boxy.

3. Reduce your grid size to Grid 4 by pressing the [key. Then press
Shift+V to show the brush edges.

Figure 12-5:
You may
need to

rotate some
textures to
better line

them up.

189Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 189

4. Drag the top-front brush edge down so that the top of the light fixture
is sloped downward but there is still a 4-unit lip in the front.

Be careful not to drag the edge and create a three-sided brush because
this type of brush manipulation will create an error during the compile
process. The result should look like Figure 12-7.

That completes the light fixture structure. Now you need to texture it:

1. Select the Texture Application Tool by pressing Shift+A.

There are a lot of nice accent lights here for you to play with.

2. Browse to and select the texture lights/combine_lightpanel001.

This texture looks like a round light in a metal casing.

3. Apply this texture to the bottom of the light box that you just created
and Fit it to the brush face.

You need to click Fit from within the Face Edit Sheet to adjust the size
and placement of this texture. It’s larger than your brush face, and using
the Fit button is the simplest method of adjustment.

Figure 12-7:
Move the
edges of

your brush
to create a
shape that
looks more

appropriate
for a

light box.

Figure 12-6:
To start

the light
structure
over the

door, draw
a box with

the Nodraw
texture.

190 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 190

4. As for the remainder of the light fixture, texture it with a Basic
Steel texture.

A fine texture I found for the outside of your light box is metal/
metalwall031a. It looks a lot like the metal on your doors and
doesn’t look out of place in the map.

Optimizing the light fixture
In the preceding section, you completed the creation and texturing of the
light, but doing so really hurt the map’s optimization. In Chapter 10, which
discusses optimization, you see how your map is split into multiple polygons
in the game. Every place two brushes met, they created a split.

If you were to take a look at your current map in the game by using the mat_
wireframe console option also mentioned in Chapter 10, you would see
multiple splits occurring around the light structure that you just made. In
Figure 12-8, I have enabled mat_wireframe 3 and also used a new console
command, mat_drawflat 1. You can now see the splitting of brushes more
clearly. More splits occur around the light, and this added geometry will slow
your map, especially as you add more detail to the level.

Added splitting

Figure 12-8:
The right
console

commands
can make

finding
problems

easy.

191Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 191

The console command mat_drawflat 1 renders your level without textures
and with flat colors in their place. I sometimes use this to get a better view of
the geometry in my map when textures are obscuring the picture.

To solve this problem of splitting brushes, you must define your brush as an
entity, not as a structural brush. Only then will it be calculated during the
BSP process as something that doesn’t create all these splits. You want to
turn it into a func_detail entity. This entity is meant for converting regular
brushes into simple entities.

1. Select the light fixture brush that you just created.

2. In the New Objects group on the right side of the editor, click toEntity.

Your brush is turned into a func_detail entity by default.

The Object Properties window pops up with the default selection of
func_detail selected.

3. Click Apply to convert your brush into the entity that will save your
map from a horrible fate: slowness.

Now, when you go back into your level within the game and view the wire-
frame drawing of splits, you will see that the splits are gone, as shown in
Figure 12-9. The light box will look the same in the game without creating
the added geometry.

In some current games and many older games on the market, you were able
to turn a structural brush into a detail brush. This reduced the geometry in
the same manner as with the func_static entity used in the section
“Optimizing the light fixture.” However, this function of the editor is being
phased out and replaced with an entity. This makes the editing process less
confusing and performs the same function in the game.

Adding a light entity to your light fixture
So, the light fixture looks complete as a structure, but this won’t shine any
visible light in front of the door. To shine a little light on things, you need to
add a light entity, or instead, a point_spotlight entity:

1. Select the Entity Tool (Shift+E) and select point_spotlight as an
Object in the New Objects group on the right side of the editor.

2. Place the entity under your light fixture and press Enter to insert the
light into your map.

This new entity won’t look like a lightbulb. It will look more like a color-
ful, 3D asterisk similar to Figure 12-10.

192 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 192

3. Press Alt+Enter to open the properties for this point_spotlight
object and adjust the Angles to Down and the color to medium gray.

You want the spotlight to shine downward, so you need to specify that.
On the right side of the Object Properties window, you’ll see an Angles
drop-down list. Select Down from the list.

Figure 12-10:
A point_

spot
light

will give
the effect of
light without
adding light

to your
level.

Removed splitting

Figure 12-9:
Turning the
light fixture

into a
func_
detail

entity has
rid your wall

of added
splitting.

193Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 193

Also, this light produces an effect so that, within the game, when a
player looks up at it, a bright, white light obscures the view. To turn
down this brightness, you must darken the color of the light. Adjust
the Color of the light to 136 136 136, which is a medium gray.

4. Position the light entity so that its center point is directly under your
light fixture, as shown in Figure 12-11.

Duplicating your light fixture
After you’ve completed your light fixture, you can duplicate what you have
done for the other set of doors, rather than remaking everything. To copy
what you have already created, follow these steps:

1. Select the brush and spotlight in your map.

To select multiple objects, hold the Ctrl key while clicking them in your
camera viewport.

2. With the Selection tool active, hold the Shift key and click and drag
your selection in the Top 2D viewport to the other side of the map,
where you want to place the duplicate.

3. With your duplicate now near the other set of doors, click on your
selection again in one of the 2D viewports to activate the rotation
handles around these brushes.

The rotation handles look like circles on each corner of your selection in
your 2D viewports (see Figure 12-12).

4. Rotate your selection so that it is properly oriented above your door.

Click and drag one of the circular handles around your selection to
rotate it.

5. Move it into place over the doors.

Position your light over these doors just like the other light fixture.

You’re done over here, and you should have a nice layout like I have in
Figure 12-13.

Figure 12-11:
Position the

center of
the entity

where you
want the
effect to

begin.

194 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 194

Defining the indoor lights
For the outdoor lights, you created a brush and textured it with something
that looks like the casing for a light structure. When the player notices the light
over the door in the game, it’s obvious that this is where the light is emanating
from. However, you didn’t do this for the lights inside the rooms. The lights
indoors just seem to magically appear; they should be defined by a source.

The following instructions show you how to create light fixtures for the
interior of your rooms:

1. Using the Nodraw texture, select the Block Tool and draw a brush 16
units square and 4 units tall inside one of the rooms.

2. Position the brush above one of the existing lights in the room.

The result should look like the brush in Figure 12-14.

3. Texture the four sides of your light box with the same metal texture
you used to surround your outdoor lights, metal/metalwall031a.

Figure 12-13:
Duplicate,
rotate and

position
your first

light to
create a
second.

Figure 12-12:
Position the

center of
the entity

where you
want the
effect to

begin.

195Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 195

4. Texture the underside of the light box with the lights/
fluoresentcool003a texture.

This fits a square brush and looks good. After the texture is applied,
make sure to click Fit in the Face Edit Sheet to align the texture properly
to the brush face.

After the structure is created and textured, you need to turn this brush
into a func_detail entity, just like you did with the outside lights in
the section “Optimizing the light fixture,” earlier in this chapter.

Take a look at the texture lights/fluoresentcool003a, shown in
Figure 12-19. The white dot under the selected texture indicates that
this texture gives off its own light when applied to a world brush. The
problem is that the lighting property doesn’t work on an entity like
func_detail. Rather than add more geometry to the map by not
making your light box an entity, you can apply the texture to the entity
and add your own lights underneath it.

5. Select the new light box, click toEntity, select func_detail from the
list of classes, and apply the changes.

The toEntity button is in the New Objects group on the right side of the
editor. When you click it, the Object Properties window appears, and
you can choose your entity and apply your changes. Converting this
world brush into an entity keeps the geometry in the game to a mini-
mum and keeps your level running smoothly.

Close the Object Properties window after the changes have been applied.

6. Duplicate the light structure (but not the light itself) and place it
above each of the light sources within the indoor areas of your map.

Remember, select the object you want to do duplicate and then press
Shift+click and drag your selection to make a duplicate.

Figure 12-14:
Creating a

light box
over each of

the lights
inside

of your
building

provides a
logical

source for
the light.

196 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 196

At this point, I decided to compile and run my map to see how things look.
While looking around inside the room, I realized that the lights did not look
as good as they could (as shown in Figure 12-15). This was for two particular
reasons:

� The lights look way too bright on the ceiling.

� The color of the light entity does not match the color of the light fixture.

Some of this can be fixed with some tweaking of the light entities. However, the
color difference is an obstacle that can’t be overcome at this time. Looking at
the texture of the fluorescent bulbs, you can see the light coloring isn’t even a
close match. Later in the book (Chapter 13), I get into creating custom textures,
and you discover the techniques used to create a new texture. You can then
apply what you learn to making a custom light texture that radiates the color
light that you require. However, for now, I recommend making a good-looking
map by doing away with the color in the rooms and sticking with a white light
that better suits Half-Life 2 in general.

Colored lights similar to what you had up to this point are popular in arena
deathmatch levels. The bold colors add to the intense game play that occurs
in arena matches. Now that you understand the basics of coloring lights, I
now want to show you some more contemporary methods of lighting a level.

Figure 12-15:
The lighting

in the new
level doesn’t
look as good

as it could.

197Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 197

You need to change the color of each of the lights located in the two rooms
and the hallway. You can perform the same changes to all these lights at the
same time by pressing Ctrl and clicking on each light within the camera view-
port. Then follow these steps:

1. Move the lights down until they evenly fit between the floor and ceiling.

This can be done by clicking inside your selection from within the side
or front viewport and dragging it down, as shown in Figure 12-16.

2. While your lights are still all selected, press Alt+Enter to open the
Object Properties window.

3. Select Brightness from the left column in this window and enter 235
255 210 40 in the text box on the right.

The first three integers define the RGB color value of the light as a very
light yellow, similar to that of normal fluorescent lighting. The last inte-
ger defines the lights’ brightness, which is much lower than the default
200. You compensate for this lack of light shortly.

4. With the new settings in place, click Apply and then close the window.

Your lights now all look the same color and are equally positioned
throughout the rooms. But now you need to add a little more definition
to your lights.

5. Select the Entity Tool and change the object to light_spot in the
New Objects group on the right side of the editor.

You next add a spotlight under each of the light fixtures to produce the
downward lighting that is expected.

6. Position the entity under one of your light fixtures and press Enter to
add the new object.

Figure 12-16:
Move

the lights
down to

reduce the
brightness

on the
ceiling.

198 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 198

7. Switch to the Selection Tool and move the light so that it is resting
directly under the light fixture, as shown in Figure 12-17.

8. Pres Alt+Enter to open the Object Properties window for your new
spotlight.

9. Select Brightness on the left, and on the right, enter 235 255 210 200.
In this case, the default brightness is fine, however the color should
match that of the light underneath it.

By default, the spotlight should look like it’s pointing downward in the
camera viewport. If it isn’t, then adjust the Angles defined in the top-
right corner of the Object Properties window. Selecting Down from the
spotlight’s angle should fix itself.

10. Click Apply and close the window.

11. Place copies of your spotlight under each of the other light fixtures
within the rooms and hall.

You can do this by pressing Shift+clicking and dragging your selection
under another light box. This is easily done from the 2D top viewport.

This time, when I compile and run my map, the lighting looks much better.
Figure 12-18 shows that the light is neither too bright nor too dark. It nicely
fits the new environment.

At this point, you might want to consider fine-tuning the operation of the
doors. Right now, when you walk up to one either pair of doors in your level,
the first door of the pair you approach opens before the other. You could
instead pair the doors so that they work as a team. Then, when one door is
activate by an approaching player, both doors will open simultaneously.

Figure 12-17:
Position the

spotlight
directly

under the
light fixture.

199Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 199

Pairing the Doors
You created two sets of doors. Both sets offer a way to move between the
indoor and outdoor areas in the map. In testing your map, you might have
noticed that it was possible to walk up to a set of doors and make only one
of the two open. In some cases, this might be something that you want.
However, in this map, it would make more sense to have both doors open
simultaneously regardless of the angle at which the player approaches them.

You can tell the game that a group of doors are to work in tandem. The
method is to define the doors with the same targetname and then trigger
them with a separate entity so that when the trigger is activated, both doors
open simultaneously.

1. Select the tools/toolstrigger texture from within the Textures
Group on the right side of the editor.

To create this new trigger entity, you must first create a trigger brush.
This is simply a brush that is textured with the trigger texture. This
texture is a dark yellow with the word TRIGGER written on it.

Figure 12-18:
The new

lighting
greatly

improves
the look of
the level in
the game.

200 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 200

2. Select the Block Tool and draw a brush that encompasses the doors
and extends at least 64 units out from both doors.

In Figure 12-19, I created a brush that was 144 x 152 x 152 (X, Y, Z) units
in size and centered around the two doors. This brush is large enough to
trigger the doors before the player walks into them but not so large that
the player can’t get close to the doors before making them open.

3. Switch to the Selection Tool, click toEntity in the New Objects Group,
and turn this trigger brush in to a trigger_multiple entity.

The New Objects Group is on the right side of the editor. When you click
toEntity, the Object Properties window opens. Select trigger_multiple
from the list of classes. Then press Apply to apply this new entity to the
selected brush.

4. Click the Outputs tab in the Object Properties window.

The Outputs tab (shown in Figure 12-20) is where you define what
happens when your trigger is activated.

5. Click Add at the bottom of the window to add a new output action
and instruct the trigger to open the doors when the player touches
the trigger entity.

Figure 12-19:
The trigger

brush
should

encompass
both doors.

201Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 201

First, you need to tell the trigger that when the player touches it, the
doors should open. After clicking Add, make the following selections
for each option in the window:

• My Output Named: OnStartTouch. This means that when the player
first starts touching the entity, something should happen. That
“something” is about to be defined.

• Targets Entities Named: door_blue. In this case, you’re working
with the door_blue door entities. These are the doors that you
want affected by this trigger entity.

• Via This Input: Open. You want the doors to open (this is the “some-
thing” mentioned above) when the player touches the trigger.

6. Click Add again to add a new output action and instruct the trigger to
close the doors when the player stops touching the trigger entity.

The action you build in Step 5 tells the doors to open. Now you need to
tell the doors to close when the player stops touching the trigger entity.
After you click Add a second time, make the following selections for
each option in the window:

• My Output Named: OnEndTouch. This means that when the player
is no longer touching the entity, something should happen.

• Targets Entities Named: door_blue. This is the entity I want affected
by this trigger entity.

• Via This Input: Close. You want the doors to close when the player
stops touching the trigger.

Your Outputs tab should look something like Figure 12-20.

You could have entered an output name of OnTrigger and set the input
to Open instead of the two options listed above. Then you could skip
the second output name. However, I find it better in the game when the
doors quickly close behind the player as they run through rather than
allowing the doors to wait their default wait time to close on their own.

7. Click Apply and close the window.

Follow the same steps above for the other set of doors. However, rather than
triggering the door_blue entities, you want to trigger the door_red entities.

You could have specified the actions of the doors via the doors themselves. If
you open the Object Properties for your doors and switch to the Inputs tab, you
will see the same values that were set on the triggering entity’s Outputs tab.

202 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 202

Adding Some Crates
I can count on one hand the number of first-person shooters that don’t have
any crates. What’s a first-person shooter game without a few crates? Crates
provide players a place to hide, climb, or change the strategy of game play.
They also add to the environment of the level so it doesn’t look barren.

In this section, I show you how to build a crate for Half-Life 2. Then you
logically place some crates in the map, both inside rooms and outside under
the virtual sky.

You can place your crates anywhere in the map that you want; however,
some places make more sense than others. You can use your crates to alter
how the map is played. Here are a few ways you can use crates in your map:

� Restrict access to an area.

� Guide the players to follow a certain path.

� Offer places to hide weapons or players.

� Provide a means of climbing up to an otherwise inaccessible location.

� Create a safe place for the player to spawn into the map without being
immediately spotted.

Figure 12-20:
Define the
actions of

your trigger
in the

Outputs tab
of the

object’s
properties.

203Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 203

In some games, a crate isn’t anything more than a textured brush. However,
in Half-Life 2, the developers gave these old FPS (First Person Shooter) icons
a purpose. These crates can be picked up with the gravity gun and can con-
tain additional supplies, such as health or ammo. Because these crates have
interactive properties, they are placed as entities into the game and defined
as a model.

Start by placing a few nondescript crates indoors; it’s the placement that can
make the level more fun during play. Here’s how you do place those new crates:

1. Select the Entity Tool.

2. From the New Objects group on the right side of the editor, select
prop_physics_multiplayer as a new object.

You need to use this entity because you’re creating a multiplayer map.
Using prop_static, prop_physics, or prop_dynamic may cause your
model not to be displayed in the game unless it’s a single-player game.

Here is what each of the above mentioned entities add to your map:

• prop_static (_multiplayer) is used for stationary models that
have no player interaction.

• prop_physics (_multiplayer) allows for interaction within
the game.

• prop_dynamic (_multiplayer) offers the ability to control this
entity via scripting.

3. Place this entity into your map near the bottom-right corner of the
South room; then press Enter to insert the new entity.

When you insert this entity, it will look like a small, red dot. This is
because you haven’t yet defined what this item should look like.

4. Press Alt+Enter to open the Object Properties window; select World
Model from the list on the left.

The World Model defines the model that is displayed in the game.

5. Click Browse under the text area on the right side of the Object
Properties window and locate and select a new model from the
Model Browser.

The Model Browser (see Figure 12-21) is a visual means of selecting
models for placement in the game.

• Mod Filter: Leave this set to All Mods because it can sometimes
cause problems when selecting models.

• Directory Tree: The models are divided up into directories for
organization, just like the files on your computer.

204 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 204

• Models List: Below the directories list is the list of models. You can
click through each of the models and see visual representations of
them on the upper-right corner of the window.

• Full Path: Below the list of models is the file path for the model
you want to select. You cannot change the file path; it’s there just
for information.

• Filter: Below the Full Path is the Filter text box. Enter a single word
here to narrow the list to models that contain that word. You use
this text box in the next step.

• Model Preview: The upper-right corner of the window shows a
preview of the selected model. If you haven’t selected a model,
then the word Error appears here in 3D lettering.

• Advanced Specifications: On the bottom right, you can define
more advanced characteristics of the model for the game.

6. Enter crate in the Filter text box and select the MDL Files directory
from the list above.

When you enter the word crate into the filter text box, only those models
whose names contain the word crate will be displayed. It will help you to
narrow down your selections.

You can preview each of the models within the subfolders listed in
yellow near the top of the Model Browser window. Each of these
subfolders help you to better organize all the models into smaller
groups. By clicking on each model in the list beneath the folders list,
you can preview that selected model.

Figure 12-21:
The Model

Browser is a
great help in

selecting
models for
placement

in the game.

205Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 205

However, by selecting the MDL Files category at the top of the list — the
main folder that contains all of the subfolders — you will have a list of
all the available models available to scroll through without regard to
sorting by each subdirectory. Because you aren’t looking at every single
model but rather only those with the word crate in their titles, it’s easier
to click and preview each one.

To quickly browse through the models visually, click the first one in the
list. Then press the up-arrow and down-arrow keys to move through the
list. Each model will be displayed in the model browser as it is selected.

7. Find and select the model props_junk/wood_crate001a.mdl from
the list of models.

This model is the generic crate that you want for your map. You don’t
want to use the crate with the yellow barcode image because the player
will think it has something useful inside of it, just like the original game.

8. Click OK to confirm your model selection.

9. Click Apply and close the Object Properties window.

Your red box is now a wooden crate inside of your map.

Now you may need to move your new model around in the map for better
placement. Make sure it is resting on the floor and also leave enough room
for the player to walk by it. A player needs at least 40 units of space to fit
between brushes, so space your crates at least this distance from the wall to
allow access.

Now you have your first crate in the map, as shown in Figure 12-22.

Placing crates for strategy
You have your first crate built and placed. Now it’s time to add strategic
opportunities to the game by adding more crates. Without the additional
obstacles in the game, your players have little opportunity to hide and plan

Figure 12-22:
Place the

crate on the
ground and
away from
the walls.

206 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 206

out an attack or retreat. It’s your job to add elements to the level that give
players choices. That is one of the functions of the crate.

To place more crates within your map, follow these steps:

1. Move your first crate that you just created near the bottom-right
corner of the South room. Leave just enough room — 40 units — for
the player to squeeze through between the crate and the walls.

2. Duplicate the crate you just placed. Shift-click and drag your first crate
to create a duplicate and move this duplicate just to the left of the first
crate.

Rather than leave this new crate flush and parallel to the first one, rotate
it, as outlined in the following steps, to add some variety and whimsy to
the placement of the crates in the corner.

3. Click the second crate multiple times within one of the 2D viewports
until the rotation handles are visible.

The rotation handles look like circles on each of the four corners of the
selection.

4. Click and drag one of these rotation handles to rotate the crate to the
desired angle.

Figure 12-23 shows how I placed the crates in this room.

5. Make another duplicate of the first crate and place it flush against the
wall and to the left of the second crate.

Placing it here means the player can’t run into the corner from this side.
However, a player can forcibly move the crates with a weapon, thereby
adding another element of strategy to this corner. This slows the player
down a little bit while the other side is open for the player to simply
run through.

Figure 12-23:
When

placing
copies of

an object,
rotate them

or place
them off-

center from
the others.

207Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 207

6. Place a couple more crates in this corner, but rather than setting them
on the floor, place them on top of the existing crates.

This creates a really good hiding place or trap for the player. In
Figure 12-24, I’ve not only placed duplicate crates on top of the others,
but I’ve also rotated them slightly to make it more interesting. You
should do the same.

7. Go through the rest of the indoor area of your map and place a few
more crates.

Try to build some strategic areas for the players, but don’t allow the
placement to interrupt the flow of the game. Placing a crate in the
middle of the hallway would make it difficult to traverse and possibly
less fun. However, placing a few crates to the sides of the rooms
may make it more interesting while also providing places to hide.
Use Figure 12-25 as a guide if you need some ideas on how to place
your crates.

Making crates for other environments
In most cases, you could say that crates are crates, no matter where they are
placed. However, when you consider how the player will interact with them
within the game, crates become much more than just crates. The crates
inside the rooms of your building not only provide something for the player
to hide behind, but also something to climb over or throw. They become part
of a player’s strategy.

Figure 12-24:
Stacked

crates can
make for

good hiding
places.

208 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 208

When you place crates outside, you should be careful. You don’t want the
players climbing the crates to be able to see “behind the curtain.” You don’t
want them to know that there isn’t anything behind the wall or allow them to
walk along the roof of the building. Think carefully about all the possibilities
as you build and place crates in the outside area of your level.

So, when you place additional crates outside of the building, they must
provide limitations to the player. Such limitations can be made simply by
making the crates larger. But, to make them larger means that you either
need a different model or you need to build them with brushes. I chose the
latter so that I could insert something custom as you will soon see.

To build your crate from brushes rather than a model, follow these steps:

1. In the outside area, create a brush with the Nodraw texture. Make it
256 x 128 x 128 (X, Y, Z) units in size, resulting in a large rectangle.

Make sure the brush is resting on the ground and that it isn’t too close
to any of the buildings. You want your player to be able to run around it.

2. Open the Texture Application Tool and browse for the props/
metalcrate002d texture. Apply this texture to the long sides, the
top, and the back.

I am considering the front of this large crate as being the side that faces
away from the buildings.

I chose this texture (shown in Figure 12-26) because the goal is to create
a container that looks like it belongs on a ship or a tractor trailer. A large
metal box with doors on one end is perfect.

Figure 12-25:
Continue

placing
crates

throughout
your level.

209Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 209

When applying the texture, use the alignment buttons in the Face Edit
Sheet window and shift the textures as needed. Try to judge by eye the
placement of the texture. If it looks good to you here in the editor, then it
will look good to you in the game.

3. For the front of this large crate, apply the props/metalcrate002c
texture.

This texture (shown in Figure 12-27) looks like a set of doors that c
ompletes the look of this crate.

4. Turn this world brush into a func_detail entity to reduce the
splitting of geometry in the game.

Select the brush and click toEntity in the New Objects group on the right
side of the editor. Make sure the class is set to func_detail inside the
Object Properties window. Then click Apply and close the window.

Now just make a couple duplicates of this crate. Place one next to the original
and the other one in the empty corner of your outside area. Be sure not to
place them so close to any walls that the player can’t squeeze by. Also, rotate
them slightly to give them more of a personal touch.

When you’re done, your courtyard should look something like Figure 12-28.

Figure 12-27:
Apply the

props/metal
crate002c
texture to

the front of
the crate.

Figure 12-26:
Apply the

texture to all
sides but

the front of
this brush.

210 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 210

Picking Up on Pickups
You run around the corner in your level while playing against someone else
online. As you emerge, your opponent shoots several rounds into your
player, and you escape with only a sliver of health left on your health bar.
The next thing on your mind as a player is, “Where can I find a health pickup
to recuperate and get back in the game?”

Pickups are an important part of the game. They range from health and armor
to weapons and ammo. In a multiplayer game, pickups are your only means
of supplying the player with additional weapons.

Placing these items is very simple. They are entities, and all you need to do
to place them in your map is to select one of them as an object when the
Entity Tool is active, click in your map, and press Enter.

Selecting a place for your pickups is simply a matter of choice. However, you
should consider their placement as you did with the crate. Pickups can be
lures to encourage players to access different areas of the map as well as
make those players more vulnerable to attack.

Adding armor
In Half-Life 2, your suit is your source of protection. Charging your suit is like
adding armor. Start by placing some batteries in the hall between the two
rooms. Give players a reason to run though the halls by placing a row of
three battery pickups in each elbow of the hall:

1. Select the Entity tool.

2. Select item_battery as your object in the New Objects group located
on the right side of the editor.

3. Click in your map to position the entity and press Enter to place it.

Figure 12-28:
Your crates
should look

random
even though

you placed
them with
purpose.

211Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 211

4. Move the object to the center of the hall and make sure it’s positioned
on the floor and not above or under the floor.

5. Duplicate and place another five of these pickups in a row along
each hall.

See Figure 12-29 for placement.

Now that the players have a reason to run through the halls, you have cre-
ated a flow for the level. The players have a reason to run from one end of the
map to the other end. This encourages interaction between opposing teams
and makes for a more enjoyable game. By placing a pickup that restores only
partial armor to the players, you are giving them a reason to return for more
later when that pickup re-spawns. In multiplayer games, pickups re-spawn a
few seconds after being picked up by the player. In single-player games, pick-
ups do not re-spawn.

Restoring health
You should place some health in the map. The health pickup would do well in
a separate place of the map other than that of the armor. This means that the
players have to choose between grabbing armor or health when they need it,
and options like these open up the level to more interaction between the
players and the level.

Battery pickups

Battery pickups

Figure 12-29:
Place a

series of
battery

pickups
in the

hallway to
encourage
the player
to enter it.

212 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 212

Start by placing an info_healthkit in the outside area of your map:

1. With the Entity Tool selected, select the info_healthkit object
within the New Objects group.

2. Place one health pickup in the upper-left corner of the map in the
outside area by clicking in the 2D viewport and pressing Enter.

3. Adjust the pickup’s position in the corner so it’s on the ground and
then rotate it if necessary.

Figure 12-30 shows you the placement.

One health pickup is rarely enough. Another good location for a health
pickup is behind the crates in the upper-left corner of the South room. Now
you are encouraging the player to explore the level for more goodies. Placing
them in plain sight is sometimes too easy.

Health Kit

Health Vial

Health Vial

Health Kit

Figure 12-30:
Place health

kits and
vials in
various

places to
encourage

exploration.

213Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 213

In many games, especially multiplayer games, health is the most important
pickup. This is particularly the case in smaller maps because the players are
forced to run into each other more often. Rather than placing health kits, this
time place a couple health vials. They are smaller and don’t replenish as
much of the player’s health. Place one between the crates in the outside
area and one in the outside corner between the two buildings. You can refer
to Figure 12-36 for placement.

Finding weapons
What is a deathmatch without weapons? Unless you’re planning on using
your level as a picnic area, you need some weapons pickups.

When placing weapons in a map, consider the proximity at which the players
will be fighting. In smaller maps, close-range weapons such as the shotgun
become much more valuable to a player than long-range weapons, such as
a rocket launcher.

Here’s how to add weapons pickups to your map:

1. With the Entity Tool selected, select the weapon_shotgun object
within the New Objects group.

2. Place this weapon in the outside nook between the halls by clicking in
the 2D viewport and pressing Enter.

3. Select and place the weapon_357 in the lower-right corner of the
map, outside the building.

Position and rotate as needed so that the pickup is resting on the ground
and can easily be seen by the player.

4. Select and place the weapon_smg1 in the North room in the upper-
right corner, behind the crates.

Again, position and rotate the pickup so that it rests on the ground and
is easy for a player to see.

You can refer to Figure 12-31 for placement of these weapons.

Place prized weapons in highly visible areas to make them tougher to obtain.
This draws players out in the open and makes for a more interesting battle.

214 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 214

Grabbing ammo
Now move on to adding some ammo pickups to the map. Without ammo, the
weapons are of no use to the players. Ammo is important. You should place
ammo in slightly more visible locations to the players to keep the game going
and avoid frustrating the player.

So far, all the pickups you’ve added have been on the floor. This implies that
if players are looking for a pickup, they need to look for it on the floor. You
want to change that and get players to investigate the level more fully by
placing the next pickup on one of the smaller crates:

1. With the Entity Tool selected, select the item_box_buckshot object
within the New Objects group.

SMG 1 Machine gun

Shotgun 357 Pistol

Figure 12-31:
Place

weapons
appropriate

for your map
in various
places of
the map.

215Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 215

2. Place this shotgun ammo on the edge of one of the crates in the North
room in the lower-left corner. Place it by clicking in the 2D viewport
and pressing Enter.

By placing the shotgun ammo far away from the shotgun itself, you force
the player to go elsewhere in the level to restock. This also helps the
players in case they run out while on the run.

Make sure the ammo is sitting on top of the crate near the edge, as
illustrated in Figure 12-32, so that it’s easier for players to pick it up as
they run by.

3. Place some SMG1 machine gun ammo on the crate in the lower-left
corner of the South room. The object name of this pickup is item_
ammo_smg1.

This is another place that could use some player action, and adding
ammo here helps with that goal.

When you place the ammo, make sure you move it toward the edge
of the crate so the player doesn’t have to reach for it in the game.
Figure 12-33 shows how I placed it.

Figure 12-33:
This ammo

is placed on
the edge of

the crate so
the player

can grab it.

Figure 12-32:
Place items
where they

can be
reached by
the player.

216 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 216

4. Place some 357 pistol ammo in the upper-left corner of the North
room. The object name of this pickup is item_ammo_357.

After you’ve placed it on the floor, angle the entity toward the center
of the room for better visibility. Again, this is far away from the location
of the 357 pistol and might also spark some interest in a player to go
looking for the weapon.

For the ammo pickups mentioned above, refer to Figure 12-34 for placement
within the map.

Testing and Having Fun
That takes care of your map for now. You add more to it in the subsequent
chapters.

Compile your map by pressing F9 and confirming the setup. When it’s done
compiling, let it load and run in the game and check it out as a player.

357 Pistol ammo

Shotgun ammo SMG1 ammo

Figure 12-34:
Place ammo

for the
available

weapons in
locations

other than
where they

find the
weapon.

217Chapter 12: Adding a Few Details

18_096314 ch12.qxp 12/7/06 10:46 AM Page 217

One more thing you might be interested in checking out with your new level
is its optimization. When you were placing many of the detailed brushes,
such as the crates, light fixtures, and so forth, you turned the brushes into
func_detail entities. You made this change to avoid splitting your geome-
try, which would slow down your level. As I discuss in Chapter 10, you can
enter the console command to view how the game renders the level:

1. Open the console by pressing ~.

2. Enter the command, mat_wireframe 3.

3. Press Enter and close the console by pressing ~ again.

After you enter these commands into the console, your map should display
the outlines of everything it is rendering for the player. The results should
look like Figure 12-35, with simple geometry and not too much of the level
being drawn all at once.

Figure 12-35:
Your

func_detail
entities

don’t split
your other

brushes,
and you
retain a

well-
optimized

level.

218 Part III: Expanding on Your Creation

18_096314 ch12.qxp 12/7/06 10:46 AM Page 218

Part IV
Going Beyond

the Basics

19_096314 pt04.qxp 12/7/06 10:46 AM Page 219

In this part . . .
You can do only so much with the building blocks of a

map. To go further, you need to be able to bring your
own images into the game — to create your own textures
and convert them for use within the game.

Then, after everything is finally in place, it’s time to go
public with your creation. In this part, I show you how to
put everything into an easy-to-use package and how to
explain to your audience what you have provided to them
and what they can do with it. Get it out there so everyone
can see!

19_096314 pt04.qxp 12/7/06 10:46 AM Page 220

Chapter 13

Creating Custom Textures
In This Chapter
� Understanding what goes into making a texture

� Taking a real-world image and making it tileable

� Writing a material file for the game

� Putting textures to good use

When I step into the gaming world, I often feel like I’m taken to another
place or time. I could be taken to an alien stronghold in outer space,

to a grass hut on a paradise island, or even to the homeroom of my old high
school.

What makes all these scenes different is not their structures — they’re all
scenes that take place in a room. Instead, it’s the textures. It’s the difference
between the cold steel of a spacecraft, the dry straw of the hut, and the white
paint and chalkboards of my homeroom.

You will find that you can create only so much with the textures that were
provided by the game. Eventually you’ll want to do more, and that means
making your own textures.

The map you’ve been working on up to this point could be transformed into
any setting. As it is, it looks mostly like an abandoned building or garage.
With all the brick, the grassy ground, and the fortress-like walls, your map
feels very strong and foreboding. You could turn the ground into sand and
the building into wood, creating a scene that feels much more dry and
barren. On the other hand, you could brighten the lighting, make the building
walls look more like clay, and stack bricks around the area, making it feel like
it belongs in the Southwestern United States.

When choosing a location, you need to consider what materials you have
at hand.

As the perception of reality in games increases, so does the demand for qual-
ity textures. The highest quality you can achieve is with actual photographs.
Depending on the type of scene you’re working with, you can create your

20_096314 ch13.qxp 12/7/06 10:46 AM Page 221

own textures with image programs, such as Adobe Photoshop, or modeling
software, such as 3D Studio Max. However, nothing beats the look of an
actual photograph for modeling something that is real.

With this in mind, you need to consider what photographs you can get your
hands on — without breaking any copyright laws, of course. In my case, I can
easily walk outside and find plenty of brick walls to take pictures of. So, this
is what I use to show you the ins and outs of creating your own textures. I
take a picture of a brick wall, turn it into a texture for the game, and then
apply this texture to the walls surrounding the outdoor part of the map.

Slicing Up the Texture
A texture is actually more than just an image that’s been brought into a game.
A texture also contains information about how the brush it is applied to
should react in the 3D world. How that surface reacts to light and whether
bumps and grooves are in the image are also defined in the textures.

A texture most commonly consists of multiple images. Each of these images
is referred to as a map because each image maps out a single aspect of a tex-
ture as a whole. These maps include

� Diffuse map: This is the color that is shown in the texture. Generally,
this is the actual image without any changes.

� Specular map: This defines the way light reacts to the texture. Parts of a
texture can be shinier than others, and this fact is important in the game
world, in which light and shadows occur in real time.

� Normal map: This defines how a texture appears to have bumps that
point out or in. The bumping effect made here can actually affect the
polygons upon which this texture is applied. Although this is a normal
map image, the game refers to it as a bump map.

To tie all these images together, you create a material file called a Valve
Material File (VMF). This is a text file that defines the location of each of
these images and which image is to be used for which purpose, as well as a
few other specifics about how the texture should react in your map.

Installing Some Tools
Before you start making your own textures, you need to install some tools for
the job. The first thing you need is image-editing software. Something as
simple as Windows Paint won’t suffice. You need a program that can open
and edit Targa (TGA) images. Targa is an image format used in Half-Life 2.

222 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 222

For the purpose of this chapter, I use Adobe Photoshop. This professional
image-editing program, which happens to come with a free trial, has been
provided to you on the CD located in the back of this book. If you haven’t
already, I recommend installing it by following the instructions provided on
the CD.

The second tool you need is a special filter plug-in for Photoshop — the
NVIDIA Photoshop Plug-ins. This filter takes one of your images and trans-
forms it for use with your custom texture into a normal map. I explain how
this tool works in more detail later in this chapter. For now, just know that
you must install this plug-in to complete your texture. You’ll find a copy of
the installer on the CD in the back of the book.

The final tool you need is a special converter that comes with the Half-Life 2
game. This tool takes your Targa image and converts it into something that
Half-Life 2 can use in your maps. This new image format is Valve Texture
Format (VTF). If you installed the SDK, you also installed the converter, which
you get to use shortly. But before using it, follow a few steps now to set it up:

1. Open your file explorer program.

For me, that program is Windows Explorer, which is opened by choosing
Start➪All Programs➪Accessories➪Windows Explorer.

2. Navigate to the folder C:\Program Files\Valve\Steam\
SteamApps\username\half-life 2 deathmatch\hl2mp, where
username is your Steam user name and Valve is optional based on
your installation.

Because the map you’re working on is for the multiplayer deathmatch
game type, this is the path you want to explore. Otherwise, you would
need to navigate to your specific mod’s folder.

If you installed the game from the Steam download client, then your
installation path will be C:\Program Files\Steam\Steam\
SteamApps\username\. If you installed the game from disks that came
in a box, then your installation path will be C:\Program Files\Valve\
Steam\SteamApps\username\. Note that the second folder name in
the two paths above is different based on your installation.

3. If it does not already exist, create a folder named materialsrc
within the hl2mp folder, as shown in Figure 13-1.

If you’re using Windows Explorer create a new folder by choosing File➪
New➪Folder. A new folder aptly named New Folder appears, ready to
be renamed. Simply type materialsrc to rename it.

4. Create a shortcut on your Desktop to the program C:\Program
Files\Valve\Steam\SteamApps\username\ sourcesdk\
bin\vtex.exe.

Navigate to the folder and file above. Right-click vtex.exe, and select
Send To➪Desktop (Create Shortcut).

223Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 223

Bricking Up the Joint
I took a picture of a wall that will work well as a texture. In Figure 13-2, you
can see that my picture has well-defined features. There is nice contrast
between the bricks that are sticking out and the joints between the bricks
that sink in. These aspects make for a good texture.

Figure 13-2:
A well-taken

picture
often makes

for a good-
looking
texture.

Figure 13-1:
Create the

folder
materialsrc
to hold your

custom
textures.

224 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 224

Any image can be turned into a texture. You don’t need to choose one with
contrasting highs and lows. This brick picture was chosen to make it easier
to illustrate the methods used in making a custom texture.

If you have your own image that you want to use, open it in Photoshop now.
Otherwise, use the same brick image titled Brick_Image_Original.tga
that I provide on this book’s CD.

Start the Adobe Photoshop program. After the program has finished loading,
open Brick_Image_Original.tga. Choose File➪Open, locate the file you
want to open in the File Explorer window, and then click Open.

Finding the Right Size
To begin making your custom texture, you need to determine the final size
of the image. Half-Life 2, as well as most games, requires that the width and
height of your image in pixels evaluate to a power of two. Basically, this
means that your texture must be some combination in width and height
using, but not limited to, the following numbers:

8, 16, 32, 64, 128, 256, 512, 1,024

The reason for the size restriction is that the game needs to resize these
images while you’re playing the game. The images are scaled down to half or
quarter sizes, and the game can do this only if the sizes are divisible by two
or four.

While you’re playing, the game displays smaller or larger versions of the
same image, based on your distance away from the textures. This is called
Level of Detail (LOD) and helps reduce the amount of computing power
required to display all the imagery on the screen at once.

When determining the size of your texture, you need to consider two things:

� You don’t want to take up all the computer’s memory with one tex-
ture. Each texture in the game is loaded into your memory before the
game starts. If your textures’ files are too big, the game could run out of
memory and crash.

� There is no reason to make a texture larger than what is used within
the game. That would be like buying an 8 × 10 photo for your wallet —
it’s a waste of space.

Take both of these considerations into account to create an optimally sized
image. The trick to determining the best size is to know where this texture
will be used in the game. If you’re making a texture to be placed inside your
buildings in the game, take note of the height of your walls. This height in

225Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 225

mapping units should be equal to or less than the height in pixels for
your image.

The wall for which you’re going to create a texture is the wall that surrounds
the outside of the buildings, as shown in Figure 13-3. The visible height of this
wall is 128 units, which is an allowable texture size because it’s a power of
two. However, some experience plays a role at this point.

Keep a few details in mind when you decide on the size of your texture:

� No texture other than a sky texture should ever be 1,024 pixels in
width or height. This won’t be an issue in this circumstance.

� The bigger an image, the clearer the details. When you shrink an
image, you lose some of the details that make it look so great. The less
shrinking you do, the better it looks.

� The larger the image, the more memory your computer requires to
display it in the game. You don’t want to slow down players’ computers
by making them load and display a texture in huge files.

Knowing these facts, you need to find the balance that makes your image
look great in the game and allows the game to run great with your image. This
is something that you might have to experiment with at first. However, as you
work more frequently with custom textures, your experience will help you
make the right choices.

Based on my experience with textures, I recommend that you make your
image 256 pixels high. This is twice the exact size of the wall in your map, and
it will provide a very nice-looking and nice-running image in the game.

Now, it would make sense to go ahead and resize your image to the new size.
However, you need to work with the image and create the different pieces I
list earlier (see the section “Slicing Up the Texture”) that make up the final

Figure 13-3:
To help

determine
the size of

your texture,
consider

where it will
be applied

in the game.

226 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 226

texture. It’s much easier to work on a larger image and then resize it to its
final size just before saving it. Therefore, instead of resizing the image to
256 pixels high, resize it to a multiple of that number closest to its original
height. The image I provided, Brick_Image_Original.tga, is 2,150 pixels
high. The integer power of 2 that is closest to 2,150 is 2,048 (256 × 8). So resize
the figure to 2,048 pixels high.

As for the width, looking at the brick texture provided, it is pretty close to
being square. Therefore a width equal to the height of the image would be
ideal. If the image were wider, such as 3,000 pixels wide, the image would
probably look better when sized as a rectangle because there would be less
distortion after the resize. Since the image is going to be square, the result
will be an image sized to 2,048 × 2,048 pixels. After you make some changes, it
can later be saved to 256 × 256 pixels.

Here’s how you resize the Brick_Image_Original.tga image in Photoshop:

1. Choose Image➪Image Size.

This opens a dialog box, as shown in Figure 13-4.

2. In this dialog box, make sure the Constrain Proportions check box is
deselected.

3. Select pixels as the unit of measurement to the right of the Height and
the Width fields.

4. Enter 2048 into the Height field and 2048 into the Width field.

5. Click OK to apply the changes.

6. Choose File➪Save to save your resized image.

You should now have a pretty nice looking image that’s close to being ready
for the game.

Figure 13-4:
When sizing
your image
for editing,

keep it large
so as not to
lose details.

227Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 227

Tiling on Forever
In some cases, you use your texture for only a single application. Perhaps it’s
a new door, the side of a crate, or some other structure that doesn’t require
the image to repeat. You create this texture, apply it to the brush face, and
then click Fit to properly adjust the image.

However, in most cases, you want your texture to repeat endlessly. For the
case of a brick wall, it is best to create one smaller image that can repeat over
and over again as it goes on down the wall. Then you don’t need to make a
humongous texture to fit the long wall. This act of repeating is tiling. Just like
the tiles in your bathroom or kitchen, the tile is applied, and it repeats until
the entire surface is covered.

Shifting the image to expose the seam
Making the image tile is easy. The game can do this on its own. When you
apply your texture in the mapping editor, the image repeats automatically if
the surface you apply the texture on is larger than the texture itself.

Making this image tile without the player seeing where one tile ends and the
other tile begins — that is the trick. So, what I want to show you now is how
to create a tileable image in Photoshop.

1. In Photoshop, choose Filter➪Other➪Offset.

The Offset dialog box pops up, as shown in Figure 13-5. This filter allows
you to adjust the image so you can see where the seams exist.

2. Select the Preview check box (if it isn’t already selected) and select
the Wrap Around option.

Figure 13-5:
The Offset

filter in
Photoshop

is perfect
for finding
and fixing
seams in

tileable
images.

228 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 228

The Preview option shows you any changes you make in advance, before
you apply them, and Wrap Around is the key to using the Offset filter.

The purpose of the Offset filter is to shift the image horizontally and ver-
tically. It’s like pushing the texture up or to the side. When you allow the
image to wrap around during this process, it’s like you’re wrapping a
package. One end starts in the middle of the package, and the other end
wraps around the package until it meets up with the starting end. Thus
the term Wrap Around.

3. Because the image you’re working with is 2,048 pixels wide, enter a
value equal to half that — 1,024 — in both the Horizontal and Vertical
text fields.

The image adjusts itself (because you have Preview selected). The
points at which the start and end of the image meet while wrapping will
be right in the center of your screen. The result before applying the
change looks like Figure 13-6.

4. Click OK to apply the changes created with the Offset filter.

You might have a hard time seeing the seam running through your
image, but it’s there. In this case, I provided you with an easy image to
work with that doesn’t require a lot of adjustment. However, when you
zoom in really close to the middle of the picture, you see the seam. This
will look even worse when tiled in the game. Figure 13-7 shows a close-
up of this mismatch.

The goal now is to get rid of this seam in the middle of your texture.
That way, when it is tiled in the game, you won’t see where one tile
begins and one ends.

5. Zoom in so you can clearly see the seams.

To zoom your image, use the Navigator window either by entering the
zoom percentage or by sliding the scale rule. The Navigator window
is usually in the upper-right corner of the screen and is displayed in
Figure 13-8. It is often the simplest way to zoom in on your image.

Figure 13-6:
Adjust your
image with

the Offset
filter by half
its total size

both hori-
zontally and

vertically.

229Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 229

Now that you can see the seams, you can start getting rid of them. I
show you how in the next section.

Figure 13-8:
Move

around
a large

image in
Photoshop

via the
Navigator

tab.

Seam

Seam

Figure 13-7:
After

applying the
Offset filter,
zooming in

close shows
the seam.

230 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 230

Stamping out your seams
Now that you can see the details of the image and where the seam lies, hide
that seam by using a Photoshop tool called the Rubber Stamp. You use the
Rubber Stamp to copy a selected area of the image and apply it to another
area. Think of the selected part as the ink for your stamp; you just stamp that
ink over your seam to make it disappear.

1. Select the Rubber Stamp tool from the toolbar on the left side of the
screen.

The tool’s icon looks like a little rubber stamp, as shown in the margin.

Next you need to select a brush size.

2. On the toolbar at the top, you can see the word Brush. To the right of
this word is a dot, a number, and a small arrow. Click this arrow to
open a menu, as shown in Figure 13-9, and then move the slider to the
right of the curvy images until you locate the one labeled 45. Select it,
and the window closes.

The brush size determines how much ink the stamp selects to be
applied later. A good brush size for this image is 45. It’s about the same
size as the mortar between the bricks, which means the Rubber Stamp
tool can stamp over half the mortar while overlapping the brick slightly.
This results in a nicely blended stamping, as you see soon.

With the tool ready for use, it’s time to select the ink for your stamp.
This tool copies a portion of your image as if your image were ink in a
pad and then pastes that copy anywhere you want. After you stamp
down your first copy, you can continue to stamp on down the seam, and
the selection you copied from moves with you. If this sounds confusing,
it makes more sense when you use the tool. If you make a mistake, you
can simply undo your last few operations by pressing Ctrl+Z.

Figure 13-9:
Select an

appropriate
brush size

for your
rubber
stamp.

231Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 231

3. Place your mouse pointer, which now looks like a circle, exactly one
brick to the right of the seam you want to cover and Alt+click.

Use Figure 13-10 as a reference. This is your selection that is pasted over
the seam. Try and be as precise as possible in the placement of your
stamp tool. You want your copied section, which you are selecting now,
to be pasted between the bricks where the seam is located. This pasting
action is the next step.

4. Carefully move your cursor over the seam in the image in a straight
line from your selection point to over the seam. Then click to apply
the stamp.

In that one small spot where you applied the stamp, your seam will now
be hidden.

5. Continue to click the seam while you move up and down the image, as
I have started to do in Figure 13-11.

Seam Mouse pointer

Figure 13-10:
The rubber

stamp
mouse
pointer

looks like a
circle.

232 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 232

Your original selection position for the rubber stamp moves in relation
to your mouse, so you don’t have to reselect the part you want to copy.
You can also click and drag the cursor, and the application of the stamp
follows you. This is great if you have a steady hand while dragging
across the image. However, you can stick with individual clicks if you
want to be more precise.

As you apply the Rubber Stamp selection over the seam, you might
come across areas that don’t look good even after you stamp. Just undo
your last application, make a new rubber stamp selection (by Alt+click-
ing a new area), and apply that selection appropriately.

6. When the seam can no longer be seen, you’re ready to move onto the
next operation.

When using the rubber stamp, I constantly reset the position from which I
copy. I’m somewhat of a perfectionist in my mods and would rather take the
extra time making the texture as perfect as I can make it.

Figure 13-11:
After you
apply the

rubber
stamp to

your image,
the seam

disappears.

233Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 233

Take your time stamping out the seam in your image. Remember that the
seams run both vertically and horizontally and that both need to be cleaned
up. It might take some time to get it just right, but it’s worth it. It looks better
in the game. When stamping out the seam that runs horizontally, take your
copied selection from above or below the seam. You don’t want to copy and
then paste the same seam that you are trying to hide.

As you move along hiding your seam, occasionally zoom out so that you can
see the image as a whole. Inspect it for any seams that you may have missed.
If you did miss any seams, go back and stamp them out with the rubber
stamp tool. Otherwise, you are ready to continue below.

Shifting back to ground zero
When the seam is completely stamped out, return the image to its original
position.

In the case of this image, offsetting the image back to its original position
isn’t required, but it is a good practice. When you return the image to the
starting position, you might notice something that looks out of place and
needs more touching up before you move on.

Here’s how you set your tileable image back to its original position:

1. Choose Filter➪Other➪Offset.

Because you shifted your image exactly half its width, all that’s left is to
shift it again that same distance.

2. Make sure the Horizontal and the Vertical entry is 1024 pixels, as it
was before.

3. Click OK to apply the change.

Now your texture can be tiled, and you won’t see any seams where one
tile ends and the next begins.

Before moving on, save this image someplace safe. For the texture, you
will be transforming this image in different ways, and it’s a good idea to
have the original at hand in case you want to go back and make some
more changes later on.

4. Choose File➪Save As and find a good place on your hard drive to
keep it.

The game isn’t going to be using this image — it will use the resized
version instead — so where you save it is not important. Also, note the
location where you save the image because you may need to load it again
within the image editing program — and knowing where you saved it will
help you find it at that time.

234 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 234

5. Select Targa from the Format drop-down list.

JPEG and GIF file formats compress your image, which can lower the
detail and quality. Instead, choose Targa from the drop-down list located
under the File Name field, as shown in Figure 13-12. This is a good-
quality format and happens to be the same format that will be used for
the final images used in the texture.

6. Click Save.

You’re prompted with a selection of Targa options.

7. Select 24 bits/pixel and click OK.

A 24-bit Targa image is the high-quality image size for this file type. A 16-bit
image has lower quality because it limits the number of colors used in the
image; 32-bit images are reserved for images that have transparency.

Mapping Your Images
The image is now ready to be transformed into the different pieces that make
up the texture. You need to make five different images from this one, each to
serve its own purpose. Later, the game will combine each of these pieces and
present the player with the final texture.

Figure 13-12:
After you
have the

image
adjusted,

save it
under a new

name for
safekeeping.

235Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 235

Splashing on some color: The diffuse map
The first image you need to create is the diffuse map. This image represents
the color for your texture and is really nothing more than the image you now
have displayed in Photoshop. All you have to do is resize it to its final size
and save it.

1. Choose Image➪Image Size within Photoshop.

2. In the dialog box that pops up, as shown in Figure 13-13, select the
Constrain Proportions check box.

This means that when you change one size value, the other changes in
the same proportion.

3. Enter a width of 256 pixels.

This size is the goal set forth at the beginning of the chapter. Because
you have Constrain Proportions selected in the bottom of the dialog
box, the Height changes automatically to 256 pixels as well.

4. Click OK to apply the size change.

The image appears pretty small on your screen after you apply the
above changes, but that’s also because you’re zoomed way out. If you
enter the numbers as I outline, everything is as it should be.

5. To save the file, choose File➪Save As.

You have to save this image and each after it in a specific location so
that the game can find and use these files.

6. In the Save As dialog box, access the folder C:\Program Files\
Valve\Steam\SteamApps\username\half-life 2 deathmatch\

Figure 13-13:
Resize the

image.

236 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 236

hl2mp\materialsrc, where username is your Steam user name and
Valve is optional based on your installation.

In the materials folder that you just navigated to, you can create your
custom texture folder. This folder can have any name that you desire;
however, I recommend that you name it the same as your map file. This
way, when you distribute your map, this folder and the files within it are
less likely to be overwritten by another map with the same name because
it’s unlikely that your map has the exact same name as someone else’s.

7. Because the name of this map will be chapter13.vmf, create a new
folder called chapter13 and then open it.

Click the Create New Folder icon to create a new folder in this directory.
Then change the name of this highlighted New Folder to chapter13.
Then access this folder by double-clicking it. In this new texture folder,
which is now C:\Program Files\Valve\Steam\SteamApps\
username\half-life 2 deathmatch\hl2mp\materialsrc\
chapter13, you can save your diffuse map.

8. Select Targa from the Format drop-down list and name your map
brick_diffuse.tga.

9. Click Save to save the file.

10. When prompted for the Targa resolution, select 24 bits/pixel, and
you’re done.

Later, when you convert your image from the Targa format to the VTF format,
you’ll need another folder named chapter13. This folder needs to be in
C:\Program Files\Valve\Steam\SteamApps\username\half-life 2
deathmatch\hl2mp\materials. You could create this folder later when
you’re ready to perform the conversion; however, I recommend that you do it
now so you don’t forget.

1. Open your file explorer program of choice.

I use Windows Explorer, accessed by choosing Start➪All Programs➪
Accessories➪Windows Explorer.

2. Navigate to the folder C:\Program Files\Valve\Steam\SteamApps\
username\half-life 2 deathmatch\hl2mp\materials.

3. Create a new folder named chapter13.

In Windows Explorer, choose File➪New➪Folder. A new folder is created
and highlighted so you can rename New Folder to chapter13.

Now you can close your file explorer. The folder is created and ready to
receive your converted image files later when the time comes.

237Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 237

Picking out the highlights:
The specular map
The second image you need to create is the specular map. This image defines
how the light reacts. Some parts of the image might be shinier than others,
but some might not reflect any light at all. By making shiny parts of your
image white and dull parts black, you can tell the game how to reflect the
light off your texture.

The specular map image can be applied to your texture in two different ways.
Depending on whether or not you plan to include a normal map — in the next
section, “Bumping polygons in and out: The normal map” — within your tex-
ture determines how this should be done. In either case, I recommend
making the Targa image outlined below. Later, this Targa image can either be
combined with your normal map or used separately.

Before proceeding, you need to go back to the larger version of your image.
The one open in Photoshop now has been scaled down to 256 × 256 pixels.

To go back to the previous version, you have two options. You can close the
one you have and open the high-quality version that you saved earlier, or you
can go back in the history of your alterations in Photoshop to a point before
you scaled the image down in size. I show you the latter.

Photoshop has the ability to save the history of changes made to an image.
Look on the right side of the program and find a tab labeled History, as
shown in Figure 13-14. If you find it, click it; otherwise, choose Window➪
History to display it. On the right side of this History tab, you can scroll through
the changes that you made to your image. Select the history item that comes
just before Image Size. That is the image state before you change the size of
the image.

Now that you’re back to the original image, you can continue making a new
image map.

Figure 13-14:
Use the

History tab
to go back

to a
previous

stage of the
image.

238 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 238

Brick isn’t normally very shiny. Looking at the picture, what you can assume
about the way light reacts to the brick is that any spot where you see black
coloring is a spot that isn’t getting any light. This is where there is either too
much shade on the objects in the picture or there is no shiny quality about it.
These black spots actually appear to absorb light and are therefore dull. The
rest of the image is just flat in terms of light. The image doesn’t reflect light
and it doesn’t absorb light.

So, you need to tell the game that all the black areas of the texture are dull
and that the rest of the image is neither shiny nor dull, but rather flat. With
Photoshop, this is easy to do.

1. Zoom in 125 percent to the image in Photoshop.

The “Shifting the image to expose the seam” section offers several zoom-
ing methods.

You can tell when you’re at 125 percent by either looking at the title bar
on your image’s window or by looking at the Navigator window. Both
show the zoom percentage, as shown in Figure 13-15.

2. Choose Select➪Color Range.

A dialog box opens, and an eyedropper replaces your mouse pointer.
You can use this eyedropper either in the box shown in this small dialog
box or on the image you’re working on in Photoshop. The idea is to
select the black color in your image. This selection will then be trans-
lated to the game as the dull area of the texture.

3. Before selecting the black color, change the Fuzziness value to 150 by
adjusting the slider near the top of the window.

This is the percentage of color to be selected. Because there is so little
black in your image, 150 percent results in a better selection.

Figure 13-15:
Zoom in to

your image
so that you

can see the
distinct

colors of
your brick.

239Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 239

4. Use the eyedropper on the image that is currently behind the Color
Range dialog box by pointing and clicking the image with your
eyedropper.

Because you zoomed in, you can more easily select the black color in
your image.

When you select the black color, your selection should be displayed as
white in the small dialog box, as it is in Figure 13-16.

5. Click OK to make your selection and close the dialog box.

All the black in your image is selected. The selection outlines in your
image might even look like dancing ants. You now need to use this selec-
tion to your advantage.

6. Create a new layer in Photoshop.

In the bottom-right corner of the editor is a tab labeled Layers. (If this tab
isn’t opened, select it now.) At the bottom of this tab is a group of icons.
The second icon from the right looks like the one shown in the margin.
You can use this icon to create new layers in Photoshop. Click it once.

Figure 13-16:
When you

select black,
it appears

as white in
the Color

Range
preview
window.

240 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 240

When you add a new layer, it is added to the list of available layers, as
shown in Figure 13-17. The layer is named Layer 1, but the name isn’t
important. What’s important is that you can add more imagery to this
layer that will lay over the existing layer. That’s because it is listed
above the other layer called Background.

7. Choose Edit➪Fill.

A dialog box, like the one in Figure 13-18, opens. In this dialog box, you
can define which color fills in your selected area.

8. From the Use drop-down list, choose Black and then click OK.

You might not see much of a difference yet, but it’s coming.

9. Deselect everything. You can do this either by choosing Select➪Deselect
or by pressing Ctrl+D.

10. In the Layers tab, select the Background layer.

11. Add another new layer by clicking the Create a New Layer icon.

Figure 13-18:
Fill your

selection
with black.

Figure 13-17:
Create a

new layer
on the

Layers tab.

241Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 241

12. Fill this new layer with a flat, gray color by choosing Edit➪Fill, select-
ing 50% Gray as your fill color, and then clicking OK.

A level of 50 percent gray is considered neutral in the game, and any-
thing that is black won’t be shiny, whereas anything that is white will be
shiny. The result looks like Figure 13-19.

When you present this to the game as the specular map, each of these
colors tells the game something specific. Anything that is 50 percent
gray is basically ignored. This gray color is considered neither shiny nor
dull. Anything that is black is considered dull. Anything that is white, if
white is in this image, would be considered shiny. That leaves all the
shades of gray in between that represent different levels of shininess.

All that’s left is to resize and save it for the game.

13. Resize the image by choosing Image➪Size and entering a width and
height of 256 pixels. Click OK to apply the change.

14. Choose File➪Save As and make sure that the same game folder is still
selected.

That folder is C:\Program Files\Valve\Steam\SteamApps\
username\half-life 2 deathmatch\hl2mp\materialsrc\
chapter13, where username is your Steam user name and Valve is
optional based on your installation.

Figure 13-19:
Fill the layer

with a
neutral

color.

242 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 242

15. Select Targa as the Format for your image and then enter
brick_spec.tga for the name.

16. Click Save and select 24 bits/pixel when prompted.

You’re ready to move on to the next piece of your texture.

Bumping polygons in and out:
The normal map
The next image up is the normal map. This image describes the surface of the
map; it tells the game what parts stick out and what parts bump back in. It’s
very similar to the bump map except that this normal map also affects the
way light reflects off the texture.

A normal map actually can affect the geometry of a game map. It’s meant to
move the polygons under which it is applied so that they bump out or in.
This is why light is affected by this texture element — because light bounces
off a curve differently than off a flat surface.

Before starting, use your History tab in Photoshop to revert to the image
before it was altered for your specular map. Scroll up until you find the Color
Range history layer and select the layer before it.

In the beginning of this chapter, I mention that you need to install a conver-
sion tool (found on this book’s CD) called Photoshop_Plugins_7.83.0629.
1500.exe. Well, now is the time to use it, so make sure you’ve installed it by
running the executable installation program provided. If you need confirma-
tion that it is installed, in Photoshop, choose Filter. Near the bottom of the
drop-down list you should see an item called NVIDIA Tools. If you see this
filter, you’re ready to go. If you’re unable to install or use the Photoshop plug-
in as provided, save the image you currently have open in Photoshop as
brick_normal_pre.tga. Then skip to the end of this section, where I dis-
cuss an alternative to creating a normal map.

Now that you’re ready to create your normal map, it’s time to tell Photoshop
what parts of the image will stick out, lie flat, or stick in. Like the specular
map you created, you define these different aspects of the image by using
white, black, and shades of gray. White defines the areas that stick out, such
as the bricks, and black defines the areas that stick in, like the mortar. You do
all this by using the color-selecting tool in Photoshop:

1. Open the color selector by choosing Select➪Color Range.

2. In the image, click the mortar with your eyedropper.

Starting with the mortar is easiest because it’s mostly a solid color.

243Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 243

3. Turn the Fuzziness down to 100 by moving the slider near the top of
the window. Then, when you have what looks like Figure 13-20, click
OK to make your selection.

The selection you just made sticks in on the texture. Therefore, it is
defined with the fill color of black.

4. Create a new layer in the Layers tab in Photoshop.

5. Choose Edit➪Fill, select Black as the Use color, and then click OK to
apply the color fill to the new layer.

The rest of the image sticks out, and no in-between part of the image
lies flat.

6. Select the Background layer in the Layers tab and create another new
layer.

7. Deselect everything by pressing Ctrl+D.

Figure 13-20:
Select the

white color
in the

mortar
between

your bricks.

244 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 244

8. Then fill the new layer with white by choosing Edit➪Fill and applying
White as the Use color.

The result looks like Figure 13-21.

Now for the NVIDIA filter that you installed earlier. In order to use this
filter, you need to combine all your layers into one layer. In Photoshop,
this is flattening.

9. Choose Layer➪Flatten Image.

All your layers are combined into a single layer. You can now apply the
NVIDIA filter.

10. Choose Filter➪NVIDIA Tools➪NormalMapFilter.

A dialog box opens. A lot of options are in this tool, and for this filter to
work with the game, it’s important that you set them correctly. As shown
in Figure 13-22, options are in three columns, and you should set them
as follows:

Figure 13-21:
Apply color
information:

white
represents
what sticks

out and
black what

sticks in.

245Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 245

� The first column of options should be left all deselected.

• In the second column, select a Filter Type of 4 Sample because this
is a required option for the game. Also select the Wrap check box
because this image is a tileable image that can be wrapped. Your
MinZ should be set to 0, indicating that your lowest height value is
0. Your Scale should be set to 16. (I explain the Scale in more detail
shortly.) Select the Animate Light check box because this helps
display your changes in the 3D Preview.

• In the third column, select Average RGB, which should be the only
available option. Don’t select any of the Alternative Conversions.
Then select an Alpha Field of Height.

You might want to experiment with the Scale option. This setting adjusts
how much bumping occurs with your image. The lower the number, the
less of a bumping effect your image has. I suggested that you set this to
16, but you can try other values. Play with the number if you want and
then click the 3D Preview button to see what it might look like in the
game.

11. When you’re ready, click OK to apply the filter changes to your image.

When you do, your image turns mostly blue, something like Figure 13-23.
(Trust me, it’s blue.) This is typical because the normal map uses color
information to create the effect of bumpiness. This is your height map,
and other than requiring a resize and save, it’s ready for the game.

Figure 13-22:
The NVIDIA

Normal Map
Filter.

246 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 246

12. Resize the image to 256 pixels square.

Your normal map image is created and ready to be saved. However, because
you want to also use a specular map with your texture, this is the point at
which it needs to be inserted into your normal map. Remember, specular
maps are integrated with normal maps when normal maps are present.

To assign the specularity to the normal map, you must insert your specular
map image into the alpha channel of the normal map image. This image that
you’re creating currently has four color channels: RGB, Red, Green, and Blue.
These color channels can be seen individually in Adobe Photoshop by open-
ing the Channel tab located behind the Layers tab.

One more channel, however, could be added to this image. That is the alpha
channel, and it contains transparency information. Anything that is white is
visible and anything that is black is transparent. Half-Life 2 uses this informa-
tion to determine which parts of the image are shiny and which parts are not.
I think this is pretty smart of Valve Software.

Figure 13-23:
Apply

the filter
changes to

your normal
map. It will

look blue.

247Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 247

To insert your specular map image as the alpha channel image, you need to
create a new channel layer, copy the specular map image, and paste it into
the alpha channel, as I outline here:

1. If you haven’t selected the Channels tab in the lower-right corner of
the Adobe Photoshop editor, do so now.

The Channels tab looks like Figure 13-24.

2. Create a new channel by clicking the New Layer icon at the bottom of
this window.

The default new channel is an alpha channel because all the color chan-
nels are already represented.

3. Open the brick_spec.tga image saved earlier.

Choose File➪Open, navigate to the file, and click Open. The image
should have been saved in the folder C:\Program Files\Valve\
Steam\SteamApps\username\half-life 2 deathmatch\hl2mp\
materialsrc\chapter13, where username is your Steam user name
and Valve is optional based on your installation.

4. Copy all of brick_spec.tga by selecting the entire image and
copying it.

Press Ctrl+A to select all the image. Then press Ctrl+C to copy it onto
your clipboard.

5. Paste the copy of your specular map image into the new alpha chan-
nel within the normal map image.

When you switch back to the specular map image, the new alpha chan-
nel should still be selected. If it isn’t, select it now. Then press Ctrl+V to
paste your copy into this layer, as I have done in Figure 13-25.

6. Select the RGB channel to view your normal image without the alpha
channel.

Figure 13-24:
Select the
Channels

tab and
create a

new layer.

248 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 248

Now your normal map image is ready and can be saved. Save this image in your
custom materials folder as brick_normal.tga, making sure that _normal
is at the end of the image name. However, this time, when prompted to save
your Targa image resolution as 16, 24, or 32 bits/pixel, select 32 bits/pixel.
This resolution contains the alpha channel image that you just created.

When saving your normal map image, it is very important to include the
_normal at the end of the image name. Later, when you convert this Targa
file into a Valve Texture Format file, this name will be required so the con-
verter knows how to handle your image file.

The difference between 24-bit and 32-bit Targa images is that the 32-bit image
contains the alpha channel and the 24-bit image does not.

Creating a normal map without the filter
If you can’t use the Photoshop plug-in detailed above, you have another option.
ATI has released a tool called Normal Map Generator, which I have included
on this book’s CD as well. This image converter is not as precise and doesn’t
offer as many options as the Photoshop plug-in from NVIDIA, but it gets the
job done.

Figure 13-25:
Paste the

copy of your
specular

map image
into the

alpha
channel.

249Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 249

To install this alternative tool, open the NormalMapGenerator.zip file and
extract the contents to any folder on your hard drive.

Using Windows Explorer, locate the files you extracted from NormalMap
Generator.zip and run the file TGAtoDOT3.exe. After it’s running, it will
prompt you to select a TGA image file. Select the file you saved in Photoshop
titled brick_normal.tga and click Open. Almost instantaneously, you
will see a message that reads, “Success! New TGA file: C:\Program
Files\Valve\Steam\SteamApps\username\half-life 2 deathmatch\
hl2mp\materialsrc\chapter13\brick_normal_preDOT3.tga.”

Rename that file for use within the game. Just right-click the file, select
Rename, and change the name to brick_normal.tga.

Building the VTF
Before converting your images into Valve textures, you can choose to set up
some special parameters for your images that affect the image conversion.
These special parameters can be turned on by setting a value of 1 next to a
parameter’s name or turned off with a value of 0 or by excluding it from your
settings file. Some of these options are:

� nolod: This tells the game that no level of detail (LOD) is associated
with this image. This is commonly used in textures that aren’t found in
any maps, but rather for locations in the game, such as the HUD (Heads
Up Display).

� nomip: Mip-levels are not created with this setting turned on. Mips are
different-sized versions of the same image to control quality seen and
memory used. A 512 × 512–pixel image might have mip-levels of a 512 ×
512–pixel version, a 128 × 128–pixel version, a 64 × 64–pixel version, and
so on down the line.

� clamps or clampt: These settings prevent the texture from wrapping or
tiling in either direction. This is often used with sprites, which are images
that might be displayed by themselves without tiling.

� skybox: This setting makes sure that the edges of the skybox images
don’t show a seam. A skybox is a six-sided box with one image displayed
on each of its six sides. You don’t want to see where the corners meet in
your box, and this setting helps with that.

� startframe and endframe: These two options are used for creating ani-
mated textures. Your textures must be named in sequence, such as
texture000, texture001, and so on. The startframe is the first image and
the endframe is the last image in the animation.

250 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 250

� nocompress: When the VTF is created, the image is compressed for the
game to save file space and memory. You can turn off this compression if
you want to ensure the highest quality image. However, your image will
use up more memory and could slow down the game.

� nonice: Nice is a filter that is used for smaller mip-levels of a texture.
This filter helps to make the smaller version look better for the most
part. However, sometimes, you might prefer to turn this feature off in
order to retain the look of the lower mip-level without filtering. Turn on
nonice to turn off this feature.

These settings, if they are to be used, must be written in a plain text file. Then
this file is saved as imagename.txt, where imagename is the name of the
Targa image being converted. Save this file in the same location as your Targa
file, and the Vtex converter finds it automatically. However, for the images
that you’re creating here, there is no need for the Vtex settings file because
the default settings are fine.

It’s time to pull all your images together into a single texture file for the game.
As I mention earlier, Half-Life 2 requires that textures be in this VTF format.
The format contains not only the image data from the Targa files that you cre-
ated, but also a few specific settings that you will have a chance to adjust
momentarily.

To begin, open your file explorer program and navigate to the folder where all
your texture files are saved. This should be C:\Program Files\Valve\
Steam\SteamApps\username\half-life 2 deathmatch\hl2mp\
materialsrc\chapter13, where username is your Steam user name,
and Valve is optional based on your installation.

When you saved your first Targa image, you were instructed to create a
folder unique to your map. This is the folder you just navigated to. I also rec-
ommended that you create another folder located at C:\Program Files\
Valve\Steam\SteamApps\username\half-life 2 deathmatch\hl2mp\
materials\chapter13. If you didn’t create it before, create it now.

Now make some room on your screen so that you can see both the Targa
images and the shortcut to vtex.exe that you created at the beginning of
this chapter (see Figure 13-26). You need access to both this shortcut and
your images so that you can easily select and drag your images over top
of your shortcut. This is how you can convert them to the required VTF
textures.

Select all your Targa images from the chapter13 folder. Then drag your
selection over the vtex.exe Desktop shortcut to convert the images. Don’t
open or launch vtex.exe from the shortcut, but simply drag your image
files over top of the vtext.exe shortcut. You can convert each image individu-
ally if you wish, but it’s often easier to just convert them all at once.

251Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 251

In order for vtex.exe to work, you must have Steam running. If you’ve been
following along from previous chapters of this book, you already have it run-
ning, as indicated by the Steam icon in your task tray.

After you drag the images over the vtex.exe shortcut and release the
mouse button, a window pops up displaying the progress of the conversion,
as shown in Figure 13-27. This window lets you know of any errors that come
up and also lets you know when the conversion process is complete. As
prompted within this window at the end of the conversion process, press any
key to continue. This window will close.

You’ll notice that you now have a text file for each of your Targa files in the
materialsrc\chapter13 folder. If the Vtex settings file is missing, Vtex
will create a blank one during the conversion process. This is a blank file and
can be deleted if you wish. It’s up to you because it won’t be needed at any
time again.

If you switch to your materials\chapter13 folder, what was once empty now
contains your converted VTF files. This confirms that the conversion was a suc-
cess, and you’re ready to go to the final step of creating your custom texture.

Figure 13-27:
This

window
displays the
progress of

the image
conversion

process.

Figure 13-26:
Arrange

your
workspace
to see both

your images
and the Vtex

shortcut.

252 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 252

Making Everything Work Together
Now that you have all the pieces of the texture puzzle, it’s time to assemble
them. In a text file that looks just like a script, you need to tell the game
where to find each of these images and how to assemble them. This bit of
script in your text file is a material. It is saved as a Valve Material File (VMF).

Building a material
To create a material for this new texture, follow these steps:

1. Open Notepad.

You can find it at Start➪All Programs➪Accessories➪Notepad.

2. In the text editor, type the following line of text:

“LightmappedGeneric” {

This defines the texture you’re creating as a commonly used, generic
texture that is lit in the world by normal lighting methods. This defini-
tion is one of many shader definitions available for use in textures, but is
also the most common.

3. The second line tells the game what the defuse map texture is going to
be. Enter it as such:

“$basetexture” “chapter13/brick_diffuse”

This line defines the primary image to be displayed for this texture. First,
you tell the game that this is the base texture that is to be displayed. Then
you define it as being located in the folder chapter13 and having the
filename brick_diffuse. The file extension is left off because it’s not
needed.

You could actually close off your material file here with a closing curly
bracket, save it, and use it in the game. However, all the other detail
images that you created would be ignored. Continue on with the addi-
tional definitions to enhance the final texture.

4. The next line you need to type is

“$surfaceprop” “brick”

Here you’re telling the game that this texture acts like brick. It should
look like brick when shot and sound like brick when walked upon. It
defines the surface properties of this texture. You can choose from many
other surface properties, including those in Table 13-1.

253Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 253

Table 13-1 Textures and Surface Properties
Texture Surface Properties

Concrete and baserock boulder brick concrete
Rock

concrete_ gravel rock
block

Liquid slime water wade

Metal canister chain chainlink combine_
metal

crowbar floating_ grenade gunship
metal_barrel

metal metal_barrel metal_bouncy Metal_Box

metal_ metalgrate metalpanel metalvent
seafloorcar

metalvehicle paintcan popcan roller

slipperymetal solidmetal strider weapon

Miscellaneous braking cardboard carpet ceiling_tile
rubbertire

combine_ computer default default_
glass silent

floating glass glassbottle item
standable

jeeptire ladder no_decal paper

papercup plaster plastic_barrel plastic_
barrel_
buoyant

Plastic_Box plastic player player_
control_clip

pottery rubber rubbertire sliding
rubbertire

slidingrubber slidingrubber
tire_front tire_rear

Organic alienflesh antlion armorflesh bloodyflesh

flesh foliage watermelon zombieflesh

254 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 254

Texture Surface Properties

Snow ice snow

Terrain antlionsand dirt grass gravel

mud quicksand sand slippery
slime

tile

Wood wood Wood_Box Wood_Crate Wood_
Furniture

Wood_ Wood_Plank Wood_Panel Wood_Solid
lowdensity

5. To insert your normal map into the material file, enter the
following line:

“$bumpmap” “chapter13/brick_normal”

The material now knows which image is to be used when creating the
bumping effect in the game.

6. Because you included the specular map with your normal map, you
need to activate the effects of your specular map. Add these three
lines next:

“$envmap” “env_cubemap”
“$envmaptint” “[.07 .07 .07] “
“$normalmapalphaenvmapmask” 1

The first line tells the game that this texture has the ability to reflect
light. The next line tells the game how much it should reflect. The high-
est level of reflection is 1, and it should be reserved for polished metal
and mirrors. The lowest level is 0 so .07 makes a good setting for brick
or concrete. The three digits represent red, green, and blue, respectively.
Usually, you will want the numbers to be the same so the color of your
image doesn’t change when light in the game bounces off of the image.

The last line tells the game that the reflective areas of the image are
defined in the alpha channel of your normal map. You copied the specu-
lar map into the alpha channel of the normal map image earlier in this
chapter.

7. (Optional) You can add some other options to your texture:

Although none of these additional options are appropriate for your brick
texture, you might want to use one or more of the following in one of
your future custom textures:

“$model” 1

255Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 255

This line is required when creating textures that are applied to models,
such as the crates that you added inside the buildings.

“$decal” 1

This line is required when creating textures that will be used as decals
within the game. A decal is a texture placed over a brush in the game.
This texture lays over whatever it is applied to.

“$alpha” 0.5

Containing a value between 0 and 1, this setting defines the translucence
of the texture, 0 being completely transparent. This is useful for glass or
fence textures.

“$color” [1 1 1]

With this setting, you can multiply this RGB color value with the texture.
So, if you have a white light that you want to look red, adjust the color to
[1 0 0]. The values represent percentages of the RGB color scale.

“$nocull” 1

This line allows the texture to be visible from both sides of a brush when
applied to a flat brush.

“$selfillum” 1

This setting causes the texture to give off light based on the alpha tex-
ture in your diffuse map.

8. Finally, to close these lines of scripting in your material file, add the
closing curly bracket.

The result, when fully assembled in your text file, should read like this:

“LightmappedGeneric” {
“$basetexture” “chapter13/brick_diffuse”
“$surfaceprop” “brick”
“$bumpmap” “chapter13/brick_normal”
“$envmap” “env_cubemap”
“$envmaptint” “[.07 .07 .07]”
“$normalmapalphaenvmapmask” 1

}

With your material file written, you need to save it someplace that the
game can find and read it.

9. Choose File➪Save As in Notepad. Navigate to the folder C:\Program
Files\Valve\Steam\SteamApps\username\half-life 2
deathmatch\hl2mp\materials\chapter13 and save your new
material file as brick.vmt.

The name of your VMT file becomes the name of your texture, so name it
to whatever you feel is appropriate. In this case, brick seems to make
the most sense.

256 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 256

After you save your file as brick.vmt, open the folder by using Windows
Explorer and double-check that the file has the correct name. Sometimes,
when you save a file with Notepad and you add a file extension other than
.txt, the program adds .txt to the end. The result as a file named brick.
vmt.txt. Check that this hasn’t happened and, if it has, correct the error by
renaming the file.

The name of the file isn’t crucial, but again, you don’t want it to be confused
with a file that might have been created by someone else. Therefore, naming
it in relation to your map makes sense.

Now you’re done and ready to show off your work.

Applying your material
Construction time is over, and now it’s time to play. This is when you get to
apply your texture in the editor and then see how it looks in the game.

1. Load the editor, and then load your last map version, which should be
dm_chapter12.vmf.

2. So as not to mess up the previous map, save this map with the new
name dm_chapter13.vmf.

3. With your map loaded in the editor, move your camera in the camera
viewport to the outside area and center on the outside of your building.

You apply your new brick texture to the outer walls of the building.

4. To load your new texture, select the Texture Application Tool. Then
click Browse to look through your texture.

Because your texture is saved in the chapter13 materials folder, use
“chapter13” to filter your textures. You should easily spot your new tex-
ture, as I have in Figure 13-28.

Figure 13-28:
Find the

texture set
that you
created

with your
material file.

257Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 257

5. Select this texture by double-clicking it.

6. Apply it to the outer walls of your building by right-clicking the walls
in the camera viewport.

Leave the top edge of the previous texture applied. You can see in
Figure 13-29 that you can leave the top border of the original texturing in
place around the building. This border looks good and does not interfere
with the new texture.

7. Continue to apply this texture to the outer walls of your building until
you have covered it entirely.

You might also want to apply this texture to the inner walls of your
building for consistency.

When you do this, you notice that you can’t see where one square of the
texture ends and the other begins. This means your attempt to make it
tileable was successful, as shown in Figure 13-30.

Figure 13-30:
When

applied to
the wall

surrounding
your map,

your texture
looks

clean and
seamless.

Figure 13-29:
Apply the

new texture
to the walls

but leave
the top edge

texture in
place.

258 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 258

8. Now that you applied your new texture, save your map again. Then
compile and play it from the Run Map window by pressing F9.

Press F9, check that all options are set to Normal, and then click OK. See
Chapter 8 for details of this process.

When the level loads, you see a beautiful-looking brick wall, like the one
shown in Figure 13-31. Regardless of whether you’re up close or far
away, it will look good and run well in the game.

Figure 13-31:
In the game,
your texture

looks well
detailed

regardless
of your

distance
from it.

259Chapter 13: Creating Custom Textures

20_096314 ch13.qxp 12/7/06 10:46 AM Page 259

260 Part IV: Going Beyond the Basics

20_096314 ch13.qxp 12/7/06 10:46 AM Page 260

Chapter 14

Finishing Up Your Map
In This Chapter
� Getting more players into your game

� Adding cubemaps for reflections and specularity

� Dark and light shadows thanks to cubemaps

At this point, you have a nearly completed map. You have a couple rooms
that lead to an outdoor area, and crates and weapons for defensive and

offensive strategies are available for the players. However, you have only one
player in the map so far. Playing a level intended for deathmatch doesn’t
make sense unless you allow other players to join. To do that, you have to
give other players a place to spawn into your level.

Along with additional player spawn points, one other element is missing.
Regardless of whether you are making a deathmatch game type or a single
player game type, you should include an entity commonly referred to as the
cubemap. The cubemap provides the effect of reflections on the surfaces that
can utilize this feature. In your map, this surface is your custom texture, and
it’s utilized by the specular map that you incorporate into the normal map of
your custom texture.

More details on the cubemap are to come. First, it’s time to add more players
to the map. Open up your map in the Hammer Editor so that you can start to
make your changes.

Multiple Spawns for Multiplayer Games
Up to this point, I’ve been showing you how to design a map for a death-
match game. It’s too small for players to team up, and it has been designed so
that the players can basically run in a circle either away from their oppo-
nents or toward them. This design makes it easy to place the spawn points
for the deathmatch game type.

A spawn point already exists in the South building, so start by moving this
spawn point to a better location in the room. Press Shift+S to make sure the

21_096314 ch14.qxp 12/7/06 10:47 AM Page 261

Selection Tool is active. Then click-select your info_player_deathmatch
entity by clicking it from inside the camera viewport. Then, click and drag it
from within the top viewport and place it behind the crates in the bottom-
right corner of the room, as shown in Figure 14-1.

What makes this a great location for the player to spawn is that it’s not out in
the open. Somewhat hidden by the crates, the player can spawn in without
being immediately seen by another player, allowing the player to figure out
where he is before jumping into battle.

The spawn entity is already facing the correct direction, which is out of the
entrance of this stack of crates. So, no need to make any other adjustments
here. You can move on to the next spawn point placement.

You could add the rest of the spawn points individually with the Entity Tool
by doing the following:

1. Select the tool by pressing Shift+E.

2. Select the info_player_deathmatch entity as the object in the New
Objects group on the right side of the editor.

3. Place the entity within the map.

4. Adjust the positioning of the entity so that it’s not stuck in or hanging
above the ground.

5. Adjust the angle at which the entity is facing.

6. Follow the same steps again with the next spawn point.

However, you can shorten this process a bit. Instead of creating a new point
for each player, simply press Shift+click and drag a copy of the existing
player spawn. Then all that’s left is to adjust the angle at which the player is
facing, and you can move onto the next spawn point. Do this for the next
spawn point placement.

info_player_deathmatch

Figure 14-1:
Move the

existing
player

spawn point
behind the

crates in the
same room.

262 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 262

How many spawn points should you make? The maximum number of players
allowed in a Half-Life 2: Deathmatch game is 32. In larger maps, I recommend
that you place at least 32 spawn points in the event that 32 players try to
spawn in at the same time. (Hey, it’s possible.) However, you’re allowed to
place any number that you want, more or less, and the game will use what it
has available.

Another good location for a player spawn point is behind the crates in the
North building. Hold Shift, click, and drag your existing player spawn point
into the other room behind the crates (see Figure 14-2). When it’s in position,
release the mouse button and press Alt+Enter to open the Object Properties
window. In this window, adjust the angle so that the player is facing the open
area of the crates. It’s no fun to spawn into a game and find yourself disori-
ented because you are facing the wall.

In the top-right corner of the Object Properties window is a black circle with
a line. This line points in the direction the player entity is facing. Click and
drag this line to adjust your player’s facing angle. The result, as shown in
Figure 14-3, should read Angles: 90 and Pitch Yaw Roll: 0 90 0. This means the
player is facing at a 90-degree angle to Y axis plane of your map.

Click Apply to apply the changes to your entity. Then close the window.

Now create another duplicate of this player spawn point just as you did
above. Drag this to the nook between the two buildings in the outside area.
This position isn’t as safe as the others, but it’s not in plain sight, which
makes it an acceptable spawn location.

You will notice in Figure 14-4 that I’ve placed the player spawn point in the
lower-right corner of this nook. Again, this location is generally out of sight
from most of the map. The player should be able to spawn here without
catching the eye of an enemy. As a bonus, when the player spawns into the
level, a shotgun is available for immediate pickup. Just make sure that the
player isn’t facing the other wall in that corner.

info_player_deathmatch

Figure 14-2:
Move a

copy of the
spawn point

behind the
crates in the
upper room.

263Chapter 14: Finishing Up Your Map

21_096314 ch14.qxp 12/7/06 10:47 AM Page 263

One last spawn point should be placed behind the large crate in the upper-
right corner of the outside area. It’s another safe area for the player to spawn.
Press and hold Shift while you click and drag one of your existing player
spawn points into this corner.

When it’s in the corner, adjust the facing angle so the player is facing away
from the walls of the corner. A good angle in this corner would be 225 degrees,
resulting in what you see in Figure 14-5.

That’s enough spawn points for this map. It’s a small map, and four players
are plenty for a map this size. Save this map as dm_chapter14.vfm.

info_player_deathmatch

Figure 14-4:
Place a

spawn point
in the nook

between
the two

buildings.

Figure 14-3:
Adjust

players’
angles so

they are
facing away

from any
walls.

264 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 264

Reflecting on Your Surroundings
Before you can consider this level complete, you need to add at least one
cubemap. Your map may contain textures or other entities that have some
capacity for reflecting either directly, like that of a mirror, or indirectly, like
that of a specular map. In order for the game to be able to reflect its sur-
roundings, it must calculate what those surroundings are. This is where the
cubemap comes into play.

Dropping in cubemaps
Placing a cubemap into your map is as simple as placing any other entity.
That’s because the cubemap is an entity; the env_cubemap entity. However,
knowing where to place each cubemap is very important so that your reflec-
tions not only look good but also don’t hinder the performance of game play.

For each cubemap that is placed in your map — yes, you can place many and
you will soon — the game essentially takes a picture — actually six pictures —
of its surroundings. These pictures are extremely similar to the images used
in creating your sky in that there is one picture for each side of a cube (hence
the cube in cubemap). These pictures, when the game is being played, are
then projected back from this cubemap entity and reflected off any surface
that allows for reflection. This gives the effect of real reflections in the game.

The game uses pre-rendered images to project from the cubemap because it
helps to make the game play smoother. If the game had to calculate environ-
mental reflections in real time, your computer wouldn’t have enough process-
ing power to play the game. It’s that much work for your computer. So, the
game uses projected images that closely resemble the environment instead.
These projected images are 64 × 64 pixels each in width and height.

info_player_deathmatch

Figure 14-5:
Place the

last spawn
point behind
the crate in
the upper-

right corner
of the map.

265Chapter 14: Finishing Up Your Map

21_096314 ch14.qxp 12/7/06 10:47 AM Page 265

I explain the reasoning for each placement of a total of eight cubemaps as I go
through each of the following steps:

1. Select the Entity Tool by pressing Shift+E and select the env_cubemap
entity as your object within the New Objects Group on the right side
of the editor.

With the entity tool turned on and the cubemap entity selected, you’re
ready to start inserting your cubemap.

2. Place the first cubemap right next to the player in the South room.

Click in the Top 2D viewport in the corner of the South room and near
the player. Make sure you place the entity within the room and not
above or below it. Then press Enter to place the new entity.

3. Switch to the Selection Tool by pressing Shift+S. Then adjust your
ports so you have a good view of the new cubemap and the player
spawn point next to it.

You need a close view of the two entities together for the next step, so
position your camera and zoom in as I have done in Figure 14-6.

4. Adjust the height of the env_cubemap entity so that it is at eye level of
the player spawn point (see Figure 14-7).

Figure 14-6:
Place the
cubemap
next to a

player
spawn and
zoom in on

both
entities.

266 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 266

You zoomed in close in Step 3 so you could see the player spawn’s eye
level within the map. When you zoom in, you can see what looks like a
simple model of the character Gordon from the story of Half-Life 2.

Regarding the description above of the workings of cubemaps within the
game, you can understand why you would want the images of these
cubemaps to be projected as if from the player’s line of sight. Placing the
cubemap at the player’s eye level accomplishes this objective. So, when
the player runs through the level, the reflections appear from the per-
spective of the player’s line of sight.

5. Finally, move the cubemap entity to the center of the room, leaving its
height unaffected (see Figure 14-8).

For now, this is the only cubemap to place in this room. The room is
small, and adding more cubemaps to this room may not improve the
effect. As a matter of fact, adding more cubemaps would increase the
memory used by the game because the additional cubemap images must
be loaded for display, which would make your computer work harder
and possibly slow game play. Placing a single cubemap in the middle
results in full coverage and even distribution of the reflection images.
However, testing the level during game play will determine if more cube-
maps will make the level look better without slowing game play.

Figure 14-7:
Adjust the

height of the
cubemap to
put it in the

player’s line
of sight.

267Chapter 14: Finishing Up Your Map

21_096314 ch14.qxp 12/7/06 10:47 AM Page 267

6. Copy and place a cubemap in the remaining areas of the map.

See Figure 14-9 for placement of these cubemaps.

Now that the first cubemap is placed, the rest are easy. With the first
placement, you needed to get the height correct. Now you can simply
copy the existing entity for placement in the rest of the map. By holding
Shift, clicking, and dragging the first cubemap entity, you can create
copies of it for placement elsewhere in the map.

A cubemap should be placed in each sectioned area of playable map. By
sectioned, I mean each square or rectangle of the map that essentially
could be its own room. This includes

• The two rooms (2)

• Each leg of the hallway (2)

• The nook between the rooms (1)

• The large outdoor area (1)

• The areas outside the doors of each room (2)

That makes a total of eight cubemaps that need to be placed.

Visual errors may occur if a cubemap is too close to a wall or other world
brush. To avoid this possible error, make sure that you don’t place any cube-
maps closer than 16 units from any world brush in the map.

In the hallways, place the cubemap right next to the lights that are also in the
center of the hallway. Although there is no rule that states that these two
entities should not overlap, I recommend that you don’t overlap them, to pre-
vent the possibility of visual errors in these areas of the map.

Figure 14-8:
Move the

cubemap to
the center

of the room
for even

coverage.

268 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 268

That takes care of the general cubemap placement. However, all this does is
accurately project the reflective images from that specific point in the map.
The reflection isn’t going to be correctly represented in those areas of the
map that are either brighter or darker than the area around the cubemap
nearest that location.

For example, if you jump into the map now with your pistol in hand and walk
into one of the dark corners of the building, the weapon will reflect more light
than it should. You can see this in Figure 14-10. This is because the reflections
on the weapon are based on the cubemap closest to the player, which hap-
pens to be in a moderately well-lit area of the room.

To fix this problem, you need to place another cubemap in the darker cor-
ners of your map. Each of the rooms has one corner that doesn’t have a light,
and the upper-right corner in the outside area also has a lot of shade. Place
an env_cubemap in each of these three corners as outlined in Figure 14-11;
remember to keep it at least 16 units away from the surrounding walls.

Now, when you generate your cubemaps and take another look at your
weapon in one of these darker corners, the weapon won’t shine so brightly.

Figure 14-9:
Place a

cubemap in
each

section of
map that

could be its
own room.

269Chapter 14: Finishing Up Your Map

21_096314 ch14.qxp 12/7/06 10:47 AM Page 269

Figure 14-11:
Place a

cubemap in
each dark
corner of
the map.

Figure 14-10:
The weapon

in this dark
corner

reflects an
unrealistic

amount
of light.

270 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 270

Generating reflections
You have your cubemaps placed in the map, but all this does is tell the game
where the reflective images will project from. You still need to create these
reflective images. Thankfully, this is another simple process that begins with
compiling your map.

Make sure you’ve saved the map by pressing Ctrl+S. Press F9 to open the Run
Map window, make sure all the BSP options are set to Normal, and then press
OK to compile and run your level in the game.

When the map loads in the game, it may not look exactly as it did. It may be
darker or brighter than it was in previous tests. Don’t let this worry you; it
will soon be fixed and look even better than before.

The reason the level may look different is that the cubemap is using the
sky textures as images. When no other cubemap images are available,
the sky textures are used by default, and this may cause things to look
slightly different.

Open the console by pressing the ~ key and then type the command
buildcubemaps. Then press Enter and wait. The screen shrinks and flashes
a bunch of images. This is the game taking the six images for each cubemap
that you placed in the map. Then, the game saves all of these images right
inside the compiled map file. This makes it less of a hassle to deal with when
distributing your file later. When you see the console again, the process is
complete.

To see the changes to your level, you must restart it in the game. To do this,
open the console (if it was closed) and enter map dm_chapter14 to reload
the map. The map loads, and you can look around at the final changes.
Figure 14-12 shows you how the light now affects your weapon more
realistically.

Now, if you decide to make any changes at all to your map file and recompile
the map, you also have to rebuild the cubemap images. Just follow the same
method above to generate these images, and you’ll be set.

271Chapter 14: Finishing Up Your Map

21_096314 ch14.qxp 12/7/06 10:47 AM Page 271

Figure 14-12:
The weapon
on this dark

corner is
now dark

itself.

272 Part IV: Going Beyond the Basics

21_096314 ch14.qxp 12/7/06 10:47 AM Page 272

Chapter 15

Showing the World
In This Chapter
� Defining what’s in the package and what should be done with it

� Putting together your BSP package

� Zipping up all the final files for release

� Getting your mod out to the public

After you finish creating all of your custom content, you’re going to want
to show it off. You could just put all the files together and start handing

it out, but this can lead to confusion and other problems. Practiced modders
commonly use a preferred method of distribution that I outline for you here. I
also show you how to find places to put your package online and get it out to
the community where it can be enjoyed by all.

Packing Up for Release
One of the things that Valve Software has done to make distribution easier is
to create a method of packing up all your files into a single file. This way,
when someone downloads your mod, he has to place only one file — instead
of 20 — in the proper directory, and then he’s ready to go. I take you though
the process of putting together your custom map — after it has been com-
piled for the last time — and your custom texture.

Explaining yourself
After you have all your content built and tested to make sure it’s complete,
you need to write your readme.txt file. This is a text file, also called just
README, that accompanies all modifications. It tells the user who made the
mod, what it contains, how to install it, what (if any) bugs exist, as well as
any other information you want to include.

22_096314 ch15.qxp 12/7/06 10:47 AM Page 273

The origins of README
Many years ago, before game modifications, program writers would include a
README file with their distributions. The file had the same purpose as it
does for mods; however, the files were named just README rather than
readme.txt. Because this file was generally viewed only by other program-
mers, a file extension wasn’t required and so was often left off. It was named
in all capital letters to draw more attention to the file.

Although the README file doesn’t need to be included to make your files
work with the game, it keeps you on friendly terms with the community.
When you give your mod to the different distribution Web sites, you don’t
want to turn the site administrators into a support team for your mod. That’s
a sure way to have your file deleted from the Web site. This README offers
the users basic answers to questions they might have as well as a way of
asking questions directly of you, the author.

A good README outline supplies the users with as much information about
your map as they need to know and, if necessary, with information about how
to contact you with questions. An outline of a README looks like this:

==

Map Title :
Map Version :
Author :
E-mail :
Website :

==

Game :
Supported Gametype :
Map Size :
Map Rating :

==

Contents of this Package :

==

Installation Instructions :

==

Construction Date :
Construction Time :

274 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 274

Computer Configuration :
Custom Content :
Known Bugs :

==

Credit to Authors :
Special Thanks :
Additional Notes :

==

All this information is contained within a plain text file. This way, it can easily
be read in Notepad or any other text editor out there because they all can
read plain text.

The file should begin with map and author information. Give yourself credit
for a job well done. Let people know who you are and possibly where they
can find more custom content that you created.

Then tell the user and distributor what this content is for. As a user, I some-
times find files that I downloaded months or years ago, but I can’t remember
which game they go with. The same has happened to me as a Web site admin-
istrator. If the users or site administrators don’t know within which game to
install your content, they’re just going to delete it.

Next, tell the users what’s in the package. Let them know that it’s a map,
custom texture, or whatever you might have put together. Then, when they
load this content in the game, they know what to look for.

A very important part of this README file is the installation instructions. You
might know what you’re doing when it comes to installing game files. However,
thousands of other people out there have no clue what to do. Try to include
detailed instructions about how to make your files available in the game.

Providing construction information might not seem important, but if you con-
tinue modding games, it will be something that you will want to know in the
future. As I wrote this chapter, I received an e-mail from someone looking for
information on compile times for his map. I referred him to a map I made
about five years ago. I wouldn’t have remembered the details of this project
on my own, but because the details were in the README, I was able to help
him with his questions.

Finally, just as important as telling the user what’s contained in your package,
you must give credit to those who deserve it. If you found inspiration in
someone else’s work or received help from someone or some group, give
credit for it. This is how the gaming community remains a community; it

275Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 275

avoids accusations of theft and provides respect to those in the community
who help and support it the most.

To create a README file for your custom level, start by opening your plain
text editor. I recommend using Notepad because it comes with every installa-
tion of Microsoft Windows and is therefore readily available. Also, since
Notepad is a plain text editor, using it ensures that anyone can read the file
because there has been no special formatting applied to the text; it’s just
plain text.

You can find Notepad by choosing Start➪All Programs➪Accessories➪Notepad.
This opens a new Notepad window, as shown in Figure 15-1.

Type the contents of your README as outlined above. Fill in the blanks with
information about your custom level and its contents. When you are done, it
should read something like this:

==

Map Title : Chapter 14
Map Version : v2.0
Author : foyleman
E-mail : foyleman@modsonline.com
Website : http://www.modsonline.com

==

Game : Half-Life 2
Supported Gametype : deathmatch
Map Size : 4 players
Map Rating : for anyone, no adult content

Figure 15-1:
Create your

README
using

Notepad or
another

plain text
editor.

276 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 276

==

Contents of this Package : This is a custom map made for the Half-Life 2 Mods
For Dummies book. It contain a custom brick texture.

==

Installation Instructions : Save dm_chapter14.bsp to the folder C:\Program
Files\Valve\SteamApps\username\half-life 2 deathmatch\hl2mp\maps
where Valve is you installation directory and username is your
Steam account username. Then load the map dm_chapter14 in a
deathmatch game.

==

Construction Date : 08/2006
Construction Time : 2 days
Computer Configuration : AMD 4200 X2, 2Gb Ram
Custom Content : textures, map
Known Bugs : NA

==

Credit to Authors : NA
Special Thanks : Half-Life 2 Mods For Dummies
Additional Notes : Check out MODSonline.com for more maps and tutorials for

Half-Life 2 and more

==

Save this file as dm_chapter14.txt, which is the same as your map file’s
name but with a different suffix. Save the file in the same folder on your com-
puter as the BSP file — that is, C:\Program Files\Valve\SteamApps\
username\half-life 2 deathmatch\hl2mp\maps, where Valve is your
installation folder and username is your Steam account user name.

Some people like to save their file as README.txt. However, that means a lot
of different maps’ text files have the same name. By naming this file the same
as your map file or perhaps as yourmapname_README.txt, you are better
assured that it won’t get lost or overlooked.

That’s it! Your README is all set and ready for inclusion with your distribu-
tion package.

Picturing your level
When you submit your final package, the distribution Web sites will ask you
for a screenshot of your content. A screenshot is a picture of what you see on
your screen. Often, this means a screenshot from within your level. However,

277Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 277

this image can be anything that you want. The game allows you to take
screenshots automatically and saves them in JPG image format in a folder on
your computer. By default, the game sets F5 as your screenshot shortcut key.
This can be changed from within the game’s keyboard options.

If F5 is no longer your screenshot command, check your game options to see
what the new keyboard command is. You can do this by pressing Esc to get
to the game menu, choosing Options, clicking the Keyboard tab, and scrolling
down to the option labeled Take Screen Shot.

The distribution Web sites ask you for this screenshot so that they can
include a visual image of your content on the Web page. By supplying the
Web site administrators with that image, you save them time and effort. Less
work for Web site administrators means a greater likelihood that your pack-
age will be posted without delay.

To take this shot, load your level in the game. When it’s loaded, move about
your level by using your standard keyboard controls, looking for the picture
you want to use to represent your level. When you’re ready, press F5 (or
whatever your assigned keyboard shortcut is) to take a screenshot, as I have
done in Figure 15-2.

Figure 15-2:
Take a

screenshot
of your level
from within

the game.

278 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 278

Then you can exit from the game and retrieve your screenshot. Here’s how to
find it:

1. Open Windows Explorer and navigate to the folder C:\Program
Files\Valve\SteamApps\username\half-life 2 deathmatch\
hl2mp\screenshots.

This folder may not have been here before, but when you took a screen-
shot from within the game, the folder was automatically created and the
screenshot was saved here. In the path above, Valve is your installation
directory and username is your Steam account user name.

2. Select the most recent screenshot in this folder and copy it by press-
ing Ctrl+C.

When you took your screenshot, the game created a JPG file. The file
was named the same thing as your custom map but followed by a series
of four numbers, starting with 0000. Each time you take a screenshot,
the game creates a new JPG file and increments this four-digit number
by 1. This means that you can take up to 10,000 screen shots of a single
level before you start overwriting existing screenshots.

In my case, I found the screenshot named dm_chapter140000.jpg
listed here, and it was the most recent file added to this folder.

3. Now change folders to C:\Program Files\Valve\SteamApps\
username\half-life 2 deathmatch\hl2mp\maps and paste your
copied file here by pressing Ctrl+V.

You want to paste your screenshot in the same folder as your BSP file so
that later it can be included in a package for distribution with your BSP.

You can now rename your screenshot. However, sometimes you want to
include more than one screenshot with your distribution. The screenshot
naming scheme provided by the game is fine, and you don’t need to
rename them.

Now move on to the next section to create your BSP package, and later you
will include your custom screenshot for distribution.

Packaging additions to the game
The less confusing it is for people to install your level, the more likely it is
that they will install it and enjoy it. For that reason, you want to package your
custom maps and other content into a single file that you can easily hand out
to the world.

279Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 279

With that in mind, the package you put together will contain:

� The map and related items for that map as constructed in earlier
chapters.

� The custom texture, consisting of a few images and a material file.

� The README that you create earlier in this chapter.

The last chapter that required working with your custom map and related
elements was Chapter 14. The files from this map, including the README
created earlier in this chapter, are what you put together in your package.
Those files are

� hl2mp\maps\dm_chapter14.bsp: This is your compiled map.

� hl2mp\maps\dm_chapter14.txt: This is the README file that you
created to describe the contents of your level.

� hl2mp\maps\graphs\dm_chapter14.ain: This is a file created by
the game that helps with the game’s artificial intelligence (AI). This file
was automatically created for you when you first played your level in
the game. If this file doesn’t exist, the game will automatically create it
for you, so it isn’t critical.

� hl2mp\maps\soundcache\dm_chapter14.cache: This is the list of
sounds that are pre-loaded for the game to use in your level. This file
was automatically created for you when you first played your level in
the game. If this file doesn’t exist, the game will automatically create it
for you, so again, it isn’t critical.

� hl2mp\materials\chapter13\brick.vmt: Your custom brick mater-
ial file, as created in Chapter 13.

� hl2mp\materials\chapter13\brick_detail.vtf: One of your
custom texture images, as created in Chapter 13.

� hl2mp\materials\chapter13\brick_diffuse.vtf: One of your
custom texture images, as created in Chapter 13.

� hl2mp\materials\chapter13\brick_normal.vtf: One of your
custom texture images, as created in Chapter 13.

A package is a single, compressed file that contains your compiled level and
all of the other files required for your level to work in the game without any
errors. You compress these files into a single BSP file by using a method simi-
lar to other compression utilities, such as WinZip, Winrar, and so on. The
only thing you absolutely need to distribute is this single BSP that contains
everything needed to run your level in the game.

To create this package, you need a program that can compress and insert
these files into the BSP file. The Source SDK, which you should already have
downloaded and installed in Chapter 4, includes Bspzip for this purpose.

280 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 280

Alternatively, I review a third-party program that you may prefer to use over
Bspzip. Pakrat is a stand-alone utility with a GUI, making it easier to see what
you are doing rather than having to work from the command line. Information
on how to use Pakrat can be found on the CD media in the back of the book in
a PDF entitled Chapter 18.

Bspzip
Bspzip is the program that came with the Source SDK. When you installed the
modding tools for Half-Life 2, you automatically installed this program as well.

As I note earlier, some people find this program difficult to work with. This is
because in order to use the program, you have to manually type all the com-
mands into a Command Prompt window. Depending on how many custom
files you need to include with your package, this can be time consuming.

The level and custom content created in the previous chapters doesn’t add
up to a lot of different files, so using Bspzip in this instance is not all that
troublesome. I break down the compression process for you here:

1. Open a Command Prompt window by choosing Start➪All Programs➪
Accessories➪Command Prompt.

This window, pictured in Figure 15-3, is where you type your commands
to import each file into the BSP.

2. In the Command Prompt window, type the following command to
change directories to your maps folder where the BSP and Bspzip files
are located and then press Enter:

cd \Program Files\Valve\SteamApps\username\half-life 2
deathmatch\hl2mp\maps

In this command, replace Valve with your installation folder and
username with your Steam account username.

This line begins with the command cd, which means change directory.
The directory that you want to change to is listed after the command.

Figure 15-3:
You type

Bspzip
commands

in the
Command

Prompt
window.

281Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 281

3. Referring to the list of custom files for your map, enter the command
to import a file into the BSP, pressing Enter after each command:

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“materials/chapter13/brick.vmt”
“%vproject%/materials/chapter13/brick.vmt”
dm_chapter14.bsp

The command above is broken down by spaces.

With the first statement,

“%sourcesdk%\bin\bspzip”

you launch the Bspzip executable, which is located in the
sourcesdk\bin folder. The inclusion of %sourcesdk% tells your com-
puter that it should look in the Steam-defined sourcesdk folder.

In order for this command to work, you must have the Steam application
running in the background. If Steam isn’t running, an error message will
appear in the Command Prompt window telling you that Steam must be
running.

The next command,

-addfile

tells Bspzip what function it is going to run. In this case, the function is
to add a new file.

The next three entries,

dm_chapter14.bsp “materials/chapter13/brick.vmt”
“%vproject%/materials/chapter13/brick.vmt”
dm_chapter14.bsp

are details about the files to be added. They are, in order:

• The path name of the file you are adding; relative to the game
installation.

• The full path name of the file. The inclusion of %vproject% tells
your computer that it is to automatically insert the full folder path
up to the location of your BSP file.

• The resulting BSP filename after adding this file to the original BSP.
Usually, this is going to be the same name as the original BSP file.

4. Repeat Step 3 for the remaining files that need to be added to your BSP.

Those remaining files should be added with the following commands,
pressing Enter after each line:

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“materials/chapter13/brick_detail.vtf”
“%vproject%/materials/chapter13/brick_detail.vtf”
dm_chapter14.bsp

282 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 282

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“materials/chapter13/brick_diffuse.vtf”
“%vproject%/materials/chapter13/brick_diffuse.vtf”
dm_chapter14.bsp

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“materials/chapter13/brick_normal.vtf”
“%vproject%/materials/chapter13/brick_normal.vtf”
dm_chapter14.bsp

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp “maps/dm_chapter14.txt”
“%vproject%/maps/dm_chapter14.txt” dm_chapter14.bsp

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“maps/graphs/dm_chapter14.ain”
“%vproject%/maps/graphs/dm_chapter14.ain” dm_chapter14.bsp

“%sourcesdk%\bin\bspzip” -addfile dm_chapter14.bsp
“maps/soundchache/dm_chapter14.cache”
“%vproject%/maps/soundchache/dm_chapter14.cache”
dm_chapter14.bsp

That’s all of the custom files that were made for this map. So, you’re now
done importing your files into the BSP.

If you want to confirm that your files imported correctly, you can run another
Bspzip command to view the list of files contained within your BSP file:

“%sourcesdk%\bin\bspzip” -dir dm_chapter14.bsp

In this command, you are telling Bspzip to list the directory of files that have
been compressed into the file dm_chapter14.bsp. When you enter this
command and press Enter, you should get a list of files that reads something
like this:

maps/dm_chapter14.txt
maps/graphs/dm_chapter14.ain
maps/soundcache/dm_chapter14.cache
materials/maps/dm_chapter14/chapter13/brick_248_-56_72.vmt
materials/maps/dm_chapter14/chapter13/brick_408_672_72.vmt
materials/maps/dm_chapter14/chapter13/brick_32_-272_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-328_520_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-544_304_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-152_-56_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-160_128_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-328_120_72.vmt
materials/maps/dm_chapter14/chapter13/brick_696_-56_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_248_-56_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_696_-56_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_-336_968_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_-328_520_72.vmt
materials/maps/dm_chapter14/chapter13/brick_-336_968_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_32_-272_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_-160_128_72.vmt

283Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 283

materials/maps/dm_chapter14/metal/metalwall031a_-544_304_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_-152_-56_72.vmt
materials/maps/dm_chapter14/metal/metalwall031a_-328_120_72.vmt
materials/maps/dm_chapter14/cubemapdefault.vtf
materials/maps/dm_chapter14/c248_-56_72.vtf
materials/maps/dm_chapter14/c408_672_72.vtf
materials/maps/dm_chapter14/c32_-272_72.vtf
materials/maps/dm_chapter14/c-328_520_72.vtf
materials/maps/dm_chapter14/c-544_304_72.vtf
materials/maps/dm_chapter14/c-152_-56_72.vtf
materials/maps/dm_chapter14/c-160_128_72.vtf
materials/maps/dm_chapter14/c-328_120_72.vtf
materials/maps/dm_chapter14/c696_-56_72.vtf
materials/maps/dm_chapter14/c-336_968_72.vtf
materials/maps/dm_chapter14/c848_1104_72.vtf
materials/chapter13/brick.vmt
materials/chapter13/brick_detail.vtf
materials/chapter13/brick_diffuse.vtf
materials/chapter13/brick_normal.vtf

Notice that the files you specifically imported are listed above. As for all of
those additional vtf texture files, they are the cubemap images that you gen-
erated in Chapter 14. The numbers for some of those vtf texture files listed
above may be different because they were automatically generated by the
game, but they should be similar.

One other command that you can use with Bspzip can extract the files from
the BSP file. So, not only can you add new files, but you can also take out
existing files. This can be useful if you want to include a custom map element
into your map that was used by someone else. You can extract all the files
and include an individual file with your BSP file. Just remember to give the
original author credit for his hard work.

To extract all the files from a BSP file, enter the following command into the
Command Prompt:

“%sourcesdk%\bin\bspzip” -extract dm_chapter14.bsp

This extracts all the files from the BSP file into folders that are relative to the
original files location. These extracted files are all of the files that were com-
pressed into dm_chapter14.bsp.

When you are done working with the Bspzip program, close the Command
Prompt window.

284 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 284

Pakrat
Pakrat is a stand-alone Bspzip utility that has a graphical user interface (GUI).
This means you are working with a program that has buttons and readouts
that are easier to follow than the command-line processes of the Bspzip utility.

Version 0.95 of this utility is included on this book’s CD. The installation file
includes a readme.txt file that shows you how to install the utility on your
computer. However, I quickly walk you through the process here as well in
case those instructions are not clear.

As indicated in the installation notes for this file, Pakrat is a Java application,
and it requires that you have the Java Runtime Environment (JRE) installed
on your computer. You can download the JRE from http://java.sun.com/.
From the Java Technology Web site, choose Downloads➪Java SE and follow
the links for the download of the installation file for your operating system.

After you’ve installed the JRE, follow these instructions to install Pakrat:

1. Open the file pakrat-095.zip with your file compression utility.

If you don’t have a file compression utility that recognizes this file when
you double-click it, I recommend installing WinZip as found on the CD
media in the back of this book. It comes with a free trial.

2. Extract the file Pakrat.jar to your sourcesdk/bin folder.

Select Pakrat.jar and click Extract within your compression utility.
Navigate to the folder C:\Program Files\Valve\Steam\SteamApps\
username\sourcesdk\bin, where Valve is your installation folder
and username is your Steam account username. Press Extract.

You can extract Pakrat.jar anywhere you want. It just makes the most
sense to place this file in the same place as all the other modding exe-
cutable files. If it’s easier for you, go ahead and extract this file to your
Desktop. Then it will be readily available for use.

3. Close your compression utility.

Now that Pakrat is installed, you can launch the utility:

1. Navigate to the Pakrat.jar file.

If you installed the file where I recommended, then open Windows
Explorer by choosing Start➪All Programs➪Accessories➪Windows
Explorer. Then navigate to the installation folder C:\Program Files\
Valve\Steam\SteamApps\username\sourcesdk\bin, where Valve
is your installation folder and username is your Steam account user-
name. Here you will find Pakrat.jar.

285Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 285

If you installed the game by downloading it via the Steam client, then
your installation folder will be Steam. However, if you installed the game
from CD or DVD disks, then your installation folder will be Valve.

2. Launch Pakrat.jar by double-clicking it.

You should see two windows, as shown in Figure 15-4.

The first window that opens prompts you to select your map file. This
window wants you to select the BSP file into which you will be importing
your custom files. This window works much like Windows Explorer, so
navigating through the different folders and files is fairly simple.

3. In the Open a map file window, navigate to dm_chapter14.bsp.

You should be able to find it in C:\Program Files\Valve\Steam\
SteamApps\username\half-life 2 deathmatch\hl2mp\maps,
where Valve is your installation folder and username is your Steam
account username.

4. Select dm_chapter14.bsp and click Open.

The file opens and a new window displays all of the files already
included in your BSP, as shown in Figure 15-5.

At the bottom of the window are number of buttons that can help you work
with your BSP:

� View: Select a file and click this button to view the contents of the
selected file. The contents displayed will either be the actual content
like that of a text file, as in the case of the VMT file, or be the details of
the file if it’s an image, as in the case of the VTF file.

Figure 15-4:
Launch

Pakrat and
select your

BSP file.

286 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 286

� Edit: Select a file and click this button to edit the file, such as changing its
folder location or name. The contents of a selected file cannot be changed.

� Add: Add a new file to the BSP.

� Delete: Remove a file from the BSP.

� Save: Save the changes made to the BSP.

� Scan: Scan the map information within the BSP for custom files that
might need to be included.

� Auto: Automatically scan your BSP and add the custom files.

Your first thought might be to click Auto and let Pakrat import all the files for
you automatically. However, doing so is problematic. For some reason, when
you click the Auto command, Pakrat inserts your first file in all capital letters.
In this case, that file is the Brick material file, and it would be inserted as
materials/CHAPTER13/BRICK.vmt. This is obviously incorrect and would
cause your custom texture to be missing from the game when played.

Figure 15-5:
Pakrat

displays all
of the files

already
included in

your BSP.

287Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 287

So, instead, the solution is to add each file individually. This might sound
tedious, but it’s still easier than adding them from the command prompt line-
by-line. Here’s how to add new files to your BSP:

1. Click Add.

Doing so opens a file explorer window (see Figure 15-6), which lets you
navigate the files on your computer and select the file to be added.

2. Navigate to the maps folder where your BSP file is located, select the
README file dm_chapter14.txt, and click Open.

Your README file is located in C:\Program Files\Valve\SteamApps\
username\half-life 2 deathmatch\hl2mp\maps, where Valve is
your installation directory and username is your Steam account username.

3. Repeat Step 2 for all the files you want to add to your BSP.

Refer to the list of files outlined earlier to locate and add to your BSP
package.

If at any time you are asked if you want to Fix-up path for any of the files
you are adding, as shown in Figure 15-7, click Yes. This question from
Pakrat means that Pakrat is trying to include the full file path into your
package when the file path should actually be relative to your installa-
tion of Half-Life 2. Clicking Yes fixes the issue.

Figure 15-7:
Click Yes

any time you
are asked to
fix up a path

by Pakrat.

Figure 15-6:
Select and

add each
custom file
created for

your map.

288 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 288

If you don’t see the file you need to add, then change the Files of Type to
All Files in the Select Files window. This will most likely happen when
you attempt to add the soundcache\dm_chapter14.cache file.
Changing the type of viewable file to All Files will make the hidden file
visible, and you’ll be able to add it to your BSP package.

When you’re done adding files, they should all be listed at the bottom of
your Pakrat files list. They are listed in blue and without a check mark
next to their names, as shown in Figure 15-8. The check mark is an indica-
tion that the file has been added to your BSP and saved as such. Because
you haven’t saved your changes yet, the files are not checked off.

4. To save your changes, choose File➪Save BSP.

This opens a save window (Figure 15-9) asking you the name of the BSP
you want to save. This is an opportunity for you to save the final BSP
with a new name. However, renaming isn’t necessary in this case.

5. Select your existing file dm_chapter14.bsp and click Save.

Figure 15-8:
Your files
are in the

Pakrat list,
but not yet

listed as
saved.

289Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 289

6. When prompted about whether you want to overwrite the existing
BSP, click Yes.

When the new BSP is saved, Pakrat reloads your BSP and shows that
your new files have been included and saved. As Figure 15-10 shows,
your BSP is now ready for distribution.

Figure 15-10:
Your BSP
has now

been
updated

with your
custom files
and is ready

for the
public.

Figure 15-9:
Save your

altered map
file over the

existing BSP
file for your

map.

290 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 290

7. Close Pakrat by choosing File➪Quit and then confirm that you want to
quit Pakrat by clicking Yes.

Zipping It Up
All of your files are now ready to send out to the Web sites so they can offer
them to the public to download. However, you can’t just give them a handful
of loose files. You need to first compress them into a single file. In this case,
that single file is a zip file.

Provided on this book’s CD is a program called WinZip. This program com-
presses one or more files into a single, smaller file. This is perfect for offering
files for distribution. If you haven’t installed WinZip yet, install it now.

It’s time to create your final distribution package. Here’s how:

1. Open Windows Explorer and navigate to the maps folder where your
BSP file is located.

This folder is C:\Program Files\Valve\SteamApps\username\
half-life 2 deathmatch\hl2mp\maps, where Valve is your instal-
lation folder and username is your Steam account username.

This folder holds not only your BSP file, but also your README file and
screenshot. These files will also be included in the final package.

2. Select your BSP file, your README file, and your screenshot.

To select multiple files, hold down Ctrl and click each of these three
files within Windows Explorer. Each file should be highlighted as it is
selected.

The files you want to select are

• dm_chapter14.bsp

• dm_chapter14.txt

• dm_chapter140000.jpg

Although you have already included dm_chapter14.txt in the BSP
package, not everyone is going to know that it’s there. Including it in this
zip file ensures that anyone can find it and read about what is contained
within.

3. Right-click one of these selected files and choose WinZip➪Add to
maps.zip.

This new menu option is available after the installation of WinZip, as
shown in Figure 15-11.

291Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 291

Because maps is the folder you are currently in, the option to create a
zip file from the selected files under the name of maps.zip is an option.
This makes it very simple to create a zip file of multiple files at once.
Later, you can rename this zip file to something more appropriate.

After you make this selection, a new file, maps.zip, appears in your
maps folder. This is your distribution package.

4. Right-click maps.zip and choose Rename. Rename this file to
dm_chapter14.zip.

You want to rename this file to the same name as your map so it is easily
identifiable.

When you choose Rename from drop-down menu, the file becomes high-
lighted and the cursor is available so you can change the name of the
selected file. Replace the name of the file and press Enter to apply the
change.

That’s it. You’re now ready to get your map out to the world for everyone to
enjoy. Just by sending this zip file to your friends and to Web sites, you can
distribute your custom game content.

Figure 15-11:
Zip your

selected
files into a
single zip

file right
from

Windows
Explorer.

292 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 292

Distributing the Goods
Getting your map out to the public might seem easy at first. However, when
you start looking at free distribution Web sites, you’ll find it isn’t always so
easy to figure out who to contact or where to go — unless you have a little
basic direction.

The first place you want to start is with Web sites that already offer down-
loadable content for Half-Life 2. Because Web sites can change so frequently,
I’ve set up a Web page where you can find a list of Half-Life 2 map submission
links at www.half-life2modsfordummies.com.

Internet search engines are a great place to search for Web sites that offer
Half-Life 2 custom content and maps. Use your favorite search engine to
locate more Web sites by using keywords such as Half-Life 2, custom content,
custom maps, downloads, mapping, and editing.

When you visit any sites, begin by looking for a link that refers to submis-
sions of content. Look in the Downloads section as well as the Contact pages.

If you still can’t find anything that looks like a submission link, contact the
Web site administrator by using whatever contact links you can find. As a
Web site owner myself, I don’t mind being contacted with questions, espe-
cially if it means adding more content to my site. You must remember that
these Web site owners and admins love to add content because more submis-
sions usually means more visitors. As long as you’ve included your README
file, screenshot, and game content files, your mod is sure to be listed on
these sites.

When contacting Web sites, tell the administrators who you are and what you
would like to provide them. Tell them that you’re a mapper or modder and
that you would like them to offer your custom game content for download on
their Web site. Don’t include the file with your e-mail at this time. Let the
recipients get back in touch with you with instructions on how you should
supply the file to them.

You’re now well equipped to make maps and mods for Half-Life 2 and get your
custom material out to the public.

293Chapter 15: Showing the World

22_096314 ch15.qxp 12/7/06 10:47 AM Page 293

294 Part IV: Going Beyond the Basics

22_096314 ch15.qxp 12/7/06 10:47 AM Page 294

Part V
The Part of Tens

23_096314 pt05.qxp 12/7/06 10:47 AM Page 295

In this part . . .

After getting this far, you must be raring to go further.
In this part, I offer some tips that will keep you out of

trouble and then help you discover more about what mod-
ding can do.

Don’t be concerned that you are reaching the final pages
of the book because your education doesn’t stop here.
Take a look online at all of the modifications you can
download and enjoy. Then, take a look at how they were
created. It’s amazing what others can do with mods, and
you can figure out how to do it, too.

23_096314 pt05.qxp 12/7/06 10:47 AM Page 296

Chapter 16

Ten Great Tips and Tricks

To help you further your knowledge and jump over some of the beginner
hurdles, this chapter gives you the top ten tips and tricks for modding

Half-Life 2. These tips answer some of the most commonly asked questions
by people just starting out with mapping and modding.

Coming Up with Original Ideas
You have the knowledge to get started on your own mod for Half-Life 2.
Although you’re ready to jump into editing, maybe you don’t know what to
create. This is a very common problem among modders and mappers. Either
you start with an inspired idea to work, or you start inspired to work without
an idea of where to start. It happens to professionals and beginners alike.

To come up with ideas, use what’s around you. The first place you should
look is right where you’re sitting. Try building a map of your house, school,
work, town, or other location with which you’re familiar. Most of the best
maps were created around actual places. If where you live doesn’t inspire
you, turn toward television, books, or the Internet. With so much technology
at your disposal, you can look at environments and places located anywhere
in the world without leaving your own home.

Another way I like to start my personal projects is to think of something that
hasn’t been done before. For example, I once made a map for Solider of
Fortune that was the first for the game series to incorporate an elevator that
could stop and start at the floor of the player’s choosing. The player wasn’t
limited to a preset path for the elevator to travel. So, ask yourself, “What new
thing can I add?” When you have the answer, add it.

Finally, when you have no more ideas to work on but you really have an urge
to do something, try asking members of a clan (gaming group) or other
gaming group if they would like a custom addition to the game. Let them
know you can build it based on their requests. Clans often have a level or
game type that they prefer playing more than any other. However, after hours
of playing the same levels, the members yearn for variety. That’s where you
can step in and create that spectacular add-on they’ve been begging for.

24_096314 ch16.qxp 12/7/06 10:47 AM Page 297

Planning Your Build
I don’t care how experienced you are at building maps or mods: If you don’t
have some sort of plan for what you’re constructing, you’re eventually going
to have to rebuild part of your map.

I once worked on a city map for a mod team. This map called for a couple of
city blocks of buildings with streets and alleys that ran between them. I fig-
ured that I could build this map without planning distances between build-
ings, the number of buildings, and other items that would fill this map.

Each build resulted in streets that weren’t the correct width, streets that
couldn’t be blocked off by any logical means, and other obstacles. It wasn’t
until a month later and my sixth version of this map that I started to get
things right.

Maps can’t just go on forever. Eventually, you must define boundaries, and
streets are often the most difficult to block off. Sure, you could just stop the
map, but you want to do something that’s logical. Try considering roadblocks,
a broken bridge, a disabled vehicle, a fire, or a similar impassible obstacle.

The solution to avoiding these errors is to plan your project before you begin.
Draw a diagram of what you’re trying to accomplish. Expand the diagram to
include features, images, and other items that you specifically want added. If
you’re mapping, get yourself some graph paper and plot the building and
other structures that you plan to build. Also consider taking or finding photos
of what you want to build to further illustrate what you want to accomplish.

With everything properly planned out ahead of time, you’ll find that your pro-
ject goes together much easier and quicker. You won’t have to rebuild as
much, and you’ll be done in no time.

Designing Minimally
It’s an awful thing when you construct an entire map, compile it, test it, and
then realize that everything runs too slowly in the game because the level
contains too much detail. Although game engines have rapidly come a long
way in becoming powerful delivery agents of 3D worlds, they can’t yet handle
everything you might want to throw at them. This is where designing mini-
mally comes in handy.

You can have all those details that you want in your level. However, you don’t
have to make them into solid objects or brushes that the game has to over-
work to deliver to your screen. Instead, let the textures do the work for you.

298 Part V: The Part of Tens

24_096314 ch16.qxp 12/7/06 10:47 AM Page 298

Think of the large outdoor crates that I show you how to construct in
Chapter 12. If you look at the crates within the game, they have dimension,
indentation, and a realistic presence — things that make the crates look like
they were constructed from a lot of tiny brushes. However, all you had to do
for each crate was build a cube and apply a texture. This texture then did the
rest of the work for you.

Where can you find textures for this purpose? You can use many different
types of resources. For example, for the bricks used in Chapter 13, I took pic-
tures of the exterior of a local building. Here are a few other good ways to
acquire textures:

� Purchase textures from the Internet. Searching the Internet for “buy
textures” turns up pages of results.

� Buy images. You can often find CDs of images at your local computer
stores, or you can look on the Internet for sites that sell individual
photos. Just make sure that you read the licensing information before
distributing them to your friends.

� Use textures from other games, such as earlier versions of Quake,
Half-Life, or just about any other game. Often, I choose games that sup-
port modifications, such as the Quake series, because I know it will be
easier to extract those textures from the game. If a game doesn’t support
mods, you might not be able to get those textures out of the game.

� If you have experience with modeling, you can model your own
scenes and render the images required for your textures. I have, on
occasion, created my own models, arranged them in a scene, rendered
an image of that model, and converted it into a texture for the game.

When you don’t have what you need, think outside the box. Or, in this case,
think outside the program. Look online or outside for ways to reduce your
brush count in the game while still delivering details in your level.

Following Examples
You might not have realized it yet, but the SDK download and installation
already comes with many example maps for you to look at. Several levels and
their compiled counterparts are supplied to you.

To find this example content, take a look through the folders and files that
were installed with the game. Look through the folder

C:\Program Files\Valve\SteamApps\username\sourcesdk_content

where Valve is your installation folder and username is your Steam account
username to find a ton of great things you can learn from.

299Chapter 16: Ten Great Tips and Tricks

24_096314 ch16.qxp 12/7/06 10:47 AM Page 299

Say that you are trying to provide your deathmatch level with more professional
lighting, but you don’t know how to lay out your lights for your situation. Try
loading some of the example maps into the game and looking through them
for similarities and things you like. Then open the source file in the editor
and see how the developers did it.

To look through the deathmatch maps, try these steps:

1. Open your file explorer program.

To use Windows Explorer, choose Start➪All Programs➪Accessories➪
Windows Explorer.

2. Navigate to the folder

C:\Program Files\Valve\SteamApps\username\sourcesdk_content\hl2mp\mapsrc

where Valve is your installation folder and username is your Steam
account username.

Here you will find several example maps and their compiled BSP files.

3. Copy the contents of this folder.

Select all the files in this folder and press Ctrl+C to copy them.

4. Navigate to your deathmatch maps folder

C:\Program Files\Valve\SteamApps\username\
half-life 2 deathmatch\hl2mp\maps

where Valve is your installation folder and username is your Steam
account username.

5. Paste your copied files in this folder by pressing Ctrl+V.

6. Load and play these custom maps in the game.

Start the game and open the console. With the same devmap console
command you use in earlier chapters, load each map one at a time.
Explore the maps and take notes on what you do like and don’t like.

When you’re done playing the maps and taking notes, load those same
maps in the Hammer editor. Here, you can look at how the maps were
constructed and see how the developers did what you like — and how
not do those things you didn’t like.

The same goes for other parts of the game. Scripts, GUIs, and other things
used to make a level work are included in the source_sdk folders. Even the
models that are using the game can be imported into a 3D modeling program.
The possibilities are staggering.

Sometimes, checking out examples can inspire you or drastically reduce your
build time. The maps that come with the game are perfect for this. The devel-
opers of the game have put a lot of neat tricks at you fingertips.

300 Part V: The Part of Tens

24_096314 ch16.qxp 12/7/06 10:47 AM Page 300

Using Prefabs
If you’re making a map or series of maps that reuse the same construction of
brushes, turn it into a prefab, which is like a tiny map that can be imported
into any map that you’re working on. Usually, prefabs are made up of guard
towers, buildings, or other commonly used structures. This way, you have to
build them only once, and then you can easily duplicate them whenever you
need to.

To create a prefab, select the group of brushes that you want to save. Choose
Tools➪Create Prefab. Then save the file under a name of your choosing in
your prefabs folder. The prefabs folder is located at

C:\Program Files\Valve\SteamApps\username\sourcesdk\bin\prefabs

where Valve is your installation folder and username is your Steam account
username. The file is saved in the map format VMF.

To load a prefab is just as simple. Select the Entity Tool. Click and place your
insertion point in your 2D viewports with the Entity Tool. From the New Objects
Group on the right side of the editor, select Prefabs from the Categories list.
From the Objects list, select your prefab of choice. The prefabs listed here
are those available in the sourcesdk\bin\prefabs folder. Press Enter to
insert the prefab just as if it were an entity. Then you can select, move, rotate
and do just about anything you need to do with your new prefab.

When you insert a prefab, contents are grouped. If you want to make changes
to the prefab, ungroup everything by selecting the prefab and pressing Ctrl+U.
Then you can manipulate each piece of the prefab however you need.

You can also find prefabs available online, usually at the same places where
you can find custom maps and mods. Sometimes, mappers like to offer their
prefabs for download, just like their maps. This way, their great constructions
can find their way into other maps. Just remember that if you do use a prefab
in your map, you should give credit to the author in the README file (which I
discuss in Chapter 15).

Meshing Objects
If you’re trying to create a more flexible brush in your map, such as terrain
with hills and valleys, consider displacement creation. In this process, you
take a seemingly simple block and divide it into a flexible brush that you can
use to make your hilly terrain.

301Chapter 16: Ten Great Tips and Tricks

24_096314 ch16.qxp 12/7/06 10:47 AM Page 301

1. Create a large brush for your terrain.

This will be your ground, so make it large enough to cover the area.
Refer to Chapter 5 for creating brushes.

2. Open the Texture Application Tool by pressing Ctrl+A.

3. Click the Displacement tab at the top of the Face Edit Sheet.

Here you can split your brush to make it flexible.

4. Press Create under the list of Tools buttons.

This tells the editor that your selected brush is to be displaced with the
settings you are about to enter. It also pops up another window asking
you for the power of displacement.

5. Enter a value between 1 and 4 in the Power attribute and then click
Apply.

This Power attribute determines how many times the displacement
brush will be divided. For now, enter a value of 3; you can experiment
later with different values. You’ll quickly get the hang of how these dif-
ferent values affect the displacement of your brush.

6. Select the Paint Geometry tool within the Displacement window.

A new window comes up, offering you methods of changing your dis-
placement brush. This tool allows you to click and drag points of your
displaced brush to create those hills and valleys. For now, leave all the
settings at default to create some hills.

7. Left-click various points of your displacement brush to raise that area
higher than the rest.

This creates a nice hill in your terrain. If you want to lower the terrain,
change the effect from within the Displacement Paint Geometry window.

8. Try different options and adjust your displacement brush to get a
sense of what happens with the use of each function.

By experimenting, you quickly get the hang of how to create a great-look-
ing terrain for your map.

If you’re working with a large outdoor area, you’ll find that the displacement
brush isn’t divided enough for you to create smooth terrain. The solution is
to create several smaller displacement brushes and sew them together. After
working your displacement brushes into the desired shapes, place these
brushes next to each other. Click Sew in the Tools of the Displacement tab to
force all the edges to meet and close any visible gaps.

With this option for your maps, you can really go wild and create some nice-
looking levels. However, be careful not to overdo it: All this added geometry
adds up. Eventually, the game starts slowing down because the game has so

302 Part V: The Part of Tens

24_096314 ch16.qxp 12/7/06 10:47 AM Page 302

much to calculate that your processor can get bogged down, and the game
won’t run smoothly. So, as you go along with your terrain (or whatever you’re
creating), test it in the game to make sure things are progressing as expected.

Putting on a New Skin
Skinning is a popular way to change existing models already in the game.
Basically, skinning is the replacement of existing textures with new ones. You
can look into the game files for the existing textures used on weapons, play-
ers, or any other entities and models, and you can replace these textures with
your own creation. You can effectively change the look of the entire game.

One such example is to change a character skin so that it looks like you —
the real you — in the game. This means locating the face texture for one of
the player models. Load this texture into Photoshop and overlay your face in
place of the original. Then just save that new texture and check it out —
you’re in the game!

Measuring the Player
A very common question in all the mapping forums is, “What are the player
dimensions?” Many people want to know how the game relates to real life in
order to properly plan their maps. Perhaps they want a life-size room or
building. These dimensions could help them achieve that.

The basic measurements of the player in the game are as follows:

� Player’s height: 73 units

� Player’s height while crouched: 37 units

� Player’s width: 37 units

� Player’s maximum step without jumping: 18 units

� Player’s maximum jumping height: 56 units

� Player’s maximum jumping height while crouched: 21 units

� Player’s maximum jumping distance: 176 units

� Player’s maximum jumping distance while crouching: 62 units

� Player’s highest fall without damage: 240 units

� Steepest angle that a player can climb: 45 degrees

303Chapter 16: Ten Great Tips and Tricks

24_096314 ch16.qxp 12/7/06 10:47 AM Page 303

Before I list the conversion of units to inches, keep in mind that this is a
game. The laws of nature do not apply in the virtual world. Therefore, you
really should make your map so that it looks good — not so that it maps to
real-world specifications.

With that in mind, the unit-to-measurement conversion has been averaged as
follows:

3727 units = 100 meters

1 unit = .95 inches (You can round to 1 inch.)

Finding More to Mod
If you’re looking to further modify a game, you can do a lot more than what I
tell you about in this book. I was able to cover only mapping, scripts, textures,
and skins in the page space allotted. However, modding doesn’t stop there.

Listening in
You can add new audio or even change the audio that already exists in the
game. Weapons, background music, pickups, and several other objects in the
game create sound. These are just a few places to start.

The audio files in the game can be found in sound directory of your mod.
The files are in WAV format and saved at 11/22/44 kHz 8/16 Bit PCM, which is
a fairly normal audio format. Music on your audio CDs is saved as 44 kHz 16
Bit WAV files. All you need is an audio-editing program that can manage WAV
files, and you are ready to go.

Modeling and animating
If you’ve read this book to this point, you’ve seen the models in the game: the
player, weapons, and several other entities. These models were created in
modeling programs such as MilkShape 3D, Maya, and 3D Studio Max.

You can create your own models and import them into a game. This might
take additional time and practice on your behalf, but if you can create a
model, you will be on your way to mastering games.

304 Part V: The Part of Tens

24_096314 ch16.qxp 12/7/06 10:47 AM Page 304

After you discover creating custom models for the game, you can get into ani-
mating them. Think of what happens when your weapon runs out of ammo:
The player reloads the weapon, and you see an animation of this reloading.

If you want to get into modeling and animating for games, I recommend that
you start with the Internet. Locate some online tutorials specific to Half-Life
2. They can give you an idea what software you will need to pick up and what
more you have to figure out.

Looking for Help
The topics I don’t cover in this book are most likely to be available by way of
online tutorials. My education into the world of game mods started with
online tutorials. When I surpassed the tutorials that were available, I started
making my own.

You can find various Web sites that offer both written and video tutorials on a
variety of modding subjects. For those tasks that aren’t covered by tutorials,
the forums offer a wealth of information and means to ask for more.

If you’re looking for more help, start with your favorite Internet search
engine. You’re sure to come up with a few pages of results that give you what
you are looking for.

I created an additional source for finding Web sites that offer tutorials infor-
mation for modding games. Visit www.half-life2modsfordummies.com
and follow the links provided there.

305Chapter 16: Ten Great Tips and Tricks

24_096314 ch16.qxp 12/7/06 10:47 AM Page 305

306 Part V: The Part of Tens

24_096314 ch16.qxp 12/7/06 10:47 AM Page 306

Chapter 17

Ten Great Mods to Learn From

A number of great mods are already available on the Internet. They’re not
only great fun, but they’re also a great way to gain knowledge. You can

download a mod, open the contents, and explore the changes that were
implemented to make what someone created possible.

In this chapter, I selected ten great mods and dissected them. My goal is to
give you ideas on what you can do and create. In some cases, I even tell you
what changes the mod authors made to the game so you can experiment.
However, providing inspiration isn’t all I’m trying to do. I also want to tell you
what the modders could have done to further improve the mods that they
released to the public. Hopefully, the result will be a lot more mods for all to
enjoy.

A portion of the mods listed in this chapter are included on this book’s com-
panion CD. Feel free to install them as they are discussed. Play around with
them to see what they can do — and maybe feel inspired to create your own!

For more information on how these and other mods were created, examine
their contents. Compare the files in the mod with those of the original game.
This will truly help you to solve more riddles when creating your own mods.

Crossfire 2 b3
Mod name Crossfire2
Version b3, release date unknown
Author Unknown
E-mail Unknown
Web site Unknown
Filename dm_crossfire2b2.bsp.rar

Inspiration for your creation can come from anywhere. In the case of this
level, the author drew inspiration from a custom level that was created many
years ago for the original Half-Life game. Crossfire2 is a remake of Crossfire,
one of my favorite deathmatch maps.

25_096314 ch17.qxp 12/7/06 10:47 AM Page 307

The map has received subtle updates while retaining its original look and
feel. Additions, such as combine gates and transparent shield barriers, were
added. The Half-Life 2 Source engine makes this level shine.

Possible pitfalls
Remaking a level means that layout for your level is already done; however, it
also makes room for more scrutiny. Because so many people have played the
original countless times, nothing short of perfection will be expected. So, be
careful when remaking levels. When done well, your re-creation will receive
much praise.

Urbanes Deathmatch 2
Mod name DM Urbanes
Version v2, released 03/17/2005
Author DR@GONFLY
E-mail voorkaj@hotmail.com
Web site Unknown
Filename dm_urbanes_v2.rar

Urbanes is a beautiful deathmatch level with an original design. Elements that
aren’t normally found in deathmatch levels, such as plasma balls, have been
used here to give game play a unique feel. The level appears to have no bot-
tlenecks, which means that players won’t be caught in areas of the level in
which they cannot escape.

Another unique inclusion in this level is a teleporter. In one of the larger
rooms, a beam of light shoots through the floor. When the player steps into
this light, he is teleported to a platform that provides him with a sniping
advantage over the other players. However, because there should be no
advantage without disadvantage, the only escape from this platform is a
painful jump to the floor.

Possible pitfalls
Version 2 addresses some important issues that were overlooked with the
first release. When adding so many custom elements to a level, your frame
rates grow, resulting in slow, laggy game play. Optimization becomes
extremely important. Based on such criticism to the first release, version 2
addresses these frame rate issues. The map was optimized, and the original
lag is gone.

To avoid these problems, test your level before its release. Use the console
commands explored in Chapter 10 and look for potential problems. If possible,
play your new level with friends to help you look for these problems. Then

308 Part V: The Part of Tens

25_096314 ch17.qxp 12/7/06 10:47 AM Page 308

you have the opportunity to fix any issues before the public points them out
to you.

Dystopia
Mod name Dystopia
Version Demo update 4, released 09/10/2005
Author Team Dystopia
E-mail dystopia@dystopia-mod.com
Web site www.dystopia-game.com
Filename dystopia_demo_client_full_u4.exe

Dystopia is actually a complete modification of Half-Life 2. The game comes
with its own models, loading screens, menus, and more. However, what I want
to focus on is that this modification is focused around a compilation of maps.

Creating a group of levels that center around a central theme can create a
specific fan base. Dystopia, for instance, is based around high technology and
what Team Dystopia calls cyberpunk. It’s this theme that everything is built
around, including levels, skins, models, and more.

Possible pitfalls
Vast creations often require vast resources, and modding is no different. An
undertaking such as Dystopia requires a team effort to complete. So much
custom content goes into a themed set of levels and accompanying assets
that one person can’t likely complete this alone.

Mod teams aren’t easy to establish or maintain. This is a common reason for
their failing and why you don’t see too many completed mods available. If
you plan on creating a mod and managing a team, also plan on that manage-
ment taking a lot of your time. Despite a lot of work, the payoff in the end is
be greater when you get to hand off your creation to the rest of the gamers
out there who end up loving it as much as you.

High-Resolution Skins
Mod name FakeFactory & Ogg’s Cinematic Mod
Version 2.32, released 08/05/2005
Author Team Dystopia
E-mail info@madservice.de
Web site Unknown
Filename fakefactory_cinematic_2.32_full.zip

309Chapter 17: Ten Great Mods to Learn From

25_096314 ch17.qxp 12/7/06 10:47 AM Page 309

A quick way to dress up a game is to create new skins for the models.
FakeFactory & Ogg’s Cinematic Mod is a package of skins and other additions
that replace many of the character faces, textures, sounds, and more in the
game. These faces in particular were reproduced in a much higher quality
than the originals, which makes them look much more realistic.

Adding realism to the game can breathe new life into it. Installing these high-
resolution face skins might have you reloading the game and playing it again
just to experience the higher quality provided with this mod.

To create such changes, different methods could have been applied. One such
method could simply be using Photoshop. The creator could have layered
other faces or images over the originals to add to the complexity of the skins.
However, when working with faces — as opposed to weapons or outfits —
this method is often more difficult.

Another method is to re-create the characters of the game within a 3D model-
ing program, such as Maya or 3D Studio Max. Within these programs, you can
re-create the faces and add the missing details. After you’re done, you can
export these new face skins to an image file that can be used within the game.
This might be an easier method, but it requires the know-how of working with
modeling programs.

Possible pitfalls
Higher quality usually means that your computer requires more resources. In
this case, you need enough memory in your computer to handle these large
image files. Each image needs to be preloaded by the game be displayed. This
is perhaps why Valve didn’t provide them upon release of the game.

Such additions to the game can exclude potential fans of your work because
if those who download and install your mod don’t have the necessary equip-
ment to properly load and display these larger images, they can’t partake in
your creation.

Razor’s Weapon Sound Package
Mod name Half-Life 2 Weapon Sound Pack
Version 2, released 11/03/2005
Author Razor
E-mail Unknown
Web site Unknown
Filename razor_hl2_weaponsoundpackv2.zip

310 Part V: The Part of Tens

25_096314 ch17.qxp 12/7/06 10:47 AM Page 310

If you’ve ever watched a scary movie with the sound turned off, you’ve likely
noticed that the movie doesn’t seem as scary or seem as interesting. The
same holds true for games. A game is much more interesting with sound,
such as background effects, theme music — or, in the case of this mod,
weapons.

In this modification, Razor altered the sounds of the weapons. He added
more reverb in some cases; for others, he changed them completely. The
result is a new feel for how the game plays.

Possible pitfalls
When you change the sounds used by a well-known game, the result can be a
dramatically changed feel for the game. Many gamers might not like this
change and might also take offense.

Consider if you changed the music in the movie Halloween. This movie’s
theme song and background music are unique. If you change them, the movie
would seem different, and diehard fans might dislike what was done.

What you change or add to a game might not go over well. Consider testing
your change on some friends and getting their reaction before releasing it to
the public.

Source Racer
Mod name Source Racer
Version Beta 2, released 01/30/2005
Author Stefan Lednicky and Team
E-mail lednicky@gmail.com
Web site sourceracer.co.uk
Filename srclient20.rar

Sometimes designing new maps can lead to the need for code changes. You
find that you created a great map, but certain weapons, settings, or some
other change needs to be made to make your map that much better. This is
how Source Racer might have been created.

Source Racer is based on racing vehicles. The maps are built like an obstacle
course that you race around multiple times. The code changes provide the
game with a clear starting and finishing point as well as keep track of laps
around the tracks. To top it off, additional pickups were created to give the
vehicles another strategy element, such as a burst of turbo or a drop trap for
the other players.

311Chapter 17: Ten Great Mods to Learn From

25_096314 ch17.qxp 12/7/06 10:47 AM Page 311

Other additions to the game include

� Levels: Five custom levels come with the installation. Also included is
one uncompiled map, which I assume is here to encourage outside
development of maps (meaning that you, too, could create a custom
level for this modification).

� Textures: Quite a few custom textures were created for this mod, such
as an arrow indicator that helps players know where they are to drive
next.

� Models: The most notable additions to the game are the special pickups
that available around the track. These pickups are models that can be
dropped into the game, like entities.

� Resource files: Resource files cover a broad range of changes made to
the game. They include custom fonts for text used by the Heads Up
Display (HUD) or other areas of the game as well as menu and HUD
changes. Reviewing the resource files within a plain text editor can help
you to see what changes were made and perhaps how to make them
yourself in your own mod.

� Scripts: The scripts in this modification primarily affect two components
of the game: the custom sounds and the vehicle pickups. Take a look
through these scripts with your text editor for information on the
changes that were made.

� Sounds: Several custom sound effects were added to the game. If you
can create your own sounds, adding them to the game isn’t overly diffi-
cult. Refer to the source files for this modification as well as some of the
information in Chapter 16 to see how to make and add your own custom
sounds to a game.

Possible pitfalls
A lot of work is involved in the upkeep of a mod and its team as the original
team leader, Stefan, realized. He eventually had to give up his position and
pass it onto a new team leader, DeadlyDan, and the mod has since been slow
to release updates. You can’t blame DeadlyDan, however. Mods are time con-
suming and require a lot of commitment.

BlockStorm
Mod name BlockStorm Modification
Version Beta 1, released 08/24/2006
Author Baxayaun
E-mail Baxayaun@gmail.com
Web site www.sdk-project.com
Filename blockstorm20beta201.rar

312 Part V: The Part of Tens

25_096314 ch17.qxp 12/7/06 10:47 AM Page 312

The author of BlockStorm, Baxayaun, is a very clever modder. He is involved
in many different Half-Life 2 modifications, as his Web site points out.

What makes BlockStorm so unique is that it doesn’t look at Half-Life 2 in the
traditional sense. Baxayaun doesn’t use the Source engine as a means to create
a special first-person shooter game. Rather, he uses it to re-create a 2D game
within a 3D world.

BlockStorm is a remake of the classic game Arkanoid. The idea of the game is
to move bounce the moving ball around the map to break all the blocks in the
playing field. Doing so moves you onto the next level, presenting a different
arrangement of blocks to break.

It’s very interesting to see a new idea of how to play a game presented with
something as established as Half-Life 2. Considering making games like this
can open your eyes to the vast number of possibilities that you can do with
your own creation.

Possible pitfalls
Working on a new idea such as BlockStorm requires a lot of trial and error.
This beta release shows that this game can end up being quite good when it’s
finished, but it also shows that a lot of improvement needs to be made before
it’s considered finished. For instance, I found the speed of the bumper pad
used to bounce the ball to be too slow. The only way to discover trouble
spots like these is to play the game, make adjustments, play again, make
more adjustments, and repeat as needed.

I am sure that a lot of play-testing goes on behind the closed development
door of this modification. However, the result should be a great game built on
a unique game engine.

Strider Mod
Mod name Pilotable Strider Mod
Version 0.3.5.1, released 07/12/2006
Author TheQuartz
E-mail thequartz@stridermod.com
Web site www.stridermod.com
Filename StriderMod0351full_installer.zip

Here is a mod that spawned from the question, “What if I could ride in one of
those striders?” Well, TheQuartz was able to make it happen. He started by
creating a vehicle modification that allows the player to ride inside the
strider creature. In another release of the mod, he added the ability to spawn
a helicopter and fly that within the existing single player maps.

313Chapter 17: Ten Great Mods to Learn From

25_096314 ch17.qxp 12/7/06 10:47 AM Page 313

Now the Strider Mod has been released with two maps and a lot of added
assets, it is a complete mod by itself rather than just an addition to the game.
The levels start out with striders ready for mounting so that you and an
opposing player can battle one-on-one. The levels are also designed for multi-
ple teammates to join and help the cause with rockets and other weapons.

Possible pitfalls
When dealing with models that weren’t exactly meant for player interaction,
many things can — and will — go wrong. A lot of testing is required to find
the possible problems that come along with making such a modification.

In this case, the primary problem that I found with riding a strider is that
maps generally aren’t built with the strider in mind. Only large maps accom-
modate the striders because these creatures are large. And when making
large maps, you must also make large barricades to prevent the new vehicle
from breaking out of bounds. I was able to find my way into areas of the maps
that I wasn’t meant to find. Errors such as these need to be discovered in
testing before release to the public.

Garry’s Mod
Mod name Garry’s Mod
Version 9.0.4, released 11/27/2006
Author Garry Newman
E-mail garrynewman@gmail.com
Web site www.garrysmod.com
Filename gmod_9_0_4.exe

One of the most popular modifications for Half-Life 2 is Garry’s Mod. This is
a modification of the physics within the game giving you, the player, the
ability to manipulate the world around you. It’s more of a playground — or
sandbox, as Garry likes to call it — than it is a level of game play. It’s a place
where the player can create and move things around that would normally be
impossible.

Garry’s mod is a modification of code. It started with a few changes to the
weapons within the game and kept growing from there. Now, not only can you
play the mod, but you can create your own mods for it. Yup, you can mod for
the mod.

Garry’s mod offers you the ability to create custom maps, models, and any-
thing else you can think of to include into his mod. Then, when you load the

314 Part V: The Part of Tens

25_096314 ch17.qxp 12/7/06 10:47 AM Page 314

standard modification, you are presented with options to select and load
additional modifications.

Although version 10 of this modification is coming soon, version 9 is the last
to offer free downloads. Valve liked the modification well enough to offer
Garry the option to place it on the Steam downloader for a small fee of $10.
This is testament to the fact that if you work hard and people like what you
create, you will be noticed and can turn your modification hobby into a full
career.

Possible pitfalls
Making a modification and keeping it up to date means that your hobby will
turn into a second job. Most, if not all, of your free time will be spent writing
and rewriting code for your modification. Garry has rewritten his modifica-
tion at least three times already, and I wonder whether he has time for any-
thing else.

However, for many, the potential of turning your hobby into a full-time career
is a dream come true. It’s not impossible, but it’s also not easy. It takes long
hours and dedication. Work hard, though, and you will reap the rewards.

Portal Challenge
Mod name gm_portal_challenge
Version Released 08/22/2006
Author DaMaN
E-mail Da_HL_MaN@yahoo.ca
Web site unknown
Filename 1031_gm_portal_challenge_package.zip

Portal Challenge is a modification for Garry’s Mod. As I mention earlier, Garry’s
Mod offers you the ability to create modifications for his modification. This is
just one of those mods.

With the anticipation of the Portal, which is to be released with Half-Life 2:
Episode 2, some modders are deciding not to wait. Instead, they are creating
their own versions of what Portal might be like — giving us, the gamers, a
chance to experience it.

I chose to show you this version of the Portal game mod because it is an
extension of Garry’s Mod and because it’s a great example of how you can
make a mod for a mod — or perhaps mod another mod altogether.

315Chapter 17: Ten Great Mods to Learn From

25_096314 ch17.qxp 12/7/06 10:47 AM Page 315

Possible pitfalls
Creating a mod of a game that is coming to market often means that your
mod won’t stay popular for long. For now, you can bask in the glory of being
one of the first few who offer a taste of a game that is highly anticipated.
However, that anticipation and glory will dissipate after the actual game is
released. If you can offer more than what is expected from the game, you
have a chance of keeping your mod alive for longer. However, this is often not
the case.

You modify a game that is about to come to market. However, your mod
might be short lived. If you can deal with that, go for it.

316 Part V: The Part of Tens

25_096314 ch17.qxp 12/7/06 10:47 AM Page 316

Appendix

CD Installation Instructions
In This Appendix:
� System requirements

� Using the CD with Windows

� What you’ll find on the CD

� Troubleshooting

System Requirements

Make sure that your computer meets the minimum system requirements
shown in the following list. If your computer doesn’t match up to most

of these requirements, you may have problems using the software and files
on the CD. For the latest and greatest information, please refer to the ReadMe
file located at the root of the CD-ROM.

� A PC with a Pentium 4 2.0GHz or Athlon XP 2000+ processor or higher

� Microsoft Windows 2000 with Service Pack 4, or Windows XP with
Service Pack 1 or 2 or later

� At least 512MB of total RAM installed on your computer

� 650MB of available hard-disk space

� A CD-ROM drive

� A sound card for PCs

� 1,024x768 monitor resolution with 16-bit video card

� A modem with a speed of at least 14,400 bps

If you need more information on the basics, check out these books published
by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Windows 2000
Professional For Dummies, Windows XP For Dummies, all by Andy Rathbone.

26_096314 app.qxp 12/7/06 10:48 AM Page 317

318 Half-Life 2 Mods For Dummies

Using the CD with Microsoft Windows
To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer’s CD-ROM drive. The license agree-
ment appears.

Note: The interface won’t launch if you have autorun disabled. In that
case, click Start➪Run. In the dialog box that appears, type D:\start.exe.
(Replace D with the proper letter if your CD-ROM drive uses a different
letter. If you don’t know the letter, see how your CD-ROM drive is listed
under My Computer.) Click OK.

2. Read through the license agreement, and then click the Accept button
if you want to use the CD.

The CD interface appears. The interface allows you to install the pro-
grams and run the demos with just a click of a button (or two).

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer back to the installation instruc-
tions in the preceding section.

Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like — for free — but they offer no
technical support.

GNU software is governed by its own license, which is included inside the
folder of the GNU software. There are no restrictions on distribution of GNU
software. See the GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by
time or functionality (such as not letting you save a project after you create it).

Author-created material
For Windows.

26_096314 app.qxp 12/7/06 10:48 AM Page 318

319Appendix: CD Installation Instructions

All the examples provided in this book are located in the Author directory on
the CD and work with Windows 95/98/NT/XP/2000 and later computers.
These files contain much of the sample code from the book.

Adobe Photoshop CS2
Trial Version

For Windows. A trial version of Adobe’s powerful image manipulation soft-
ware. For more information, visit www.adobe.com.

Game mods
A portion of the mods listed in Chapter 17 can also be found on the CD-ROM.
Please see the CD for further details.

Normal Map Generator
For Windows. A tool for converting height maps to normal maps. For more
information, visit www.ati.com.

NVIDIA Photoshop plug-ins installer
For Windows: This filter takes one of your images and transforms it for use
with your custom texture into a normal map.

Pakrat
Pakrat is a compression viewer and utility with a GUI that makes creating
your map packages easy.

Room 101 — the video
A video presentation created by the author of this book that shows step-by-
step how to do many of the things discussed in the chapters of this book.

26_096314 app.qxp 12/7/06 10:48 AM Page 319

WinZip
Trial Version

For Windows. This handy utility allows you to view, extract, and manipulate ZIP
archives on your computer. For more information, visit www.winzip.com.

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM)
for the programs you want to use, or you have other programs running that
are affecting installation or running of a program. If you get an error message
such as Not enough memory or Setup cannot continue, try one or
more of the following suggestions and then try using the software again:

� Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus.

� Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

� Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

Customer Care

If you have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call 1(317)
572-3994. You can also contact Wiley Product Technical Support at http://
support.wiley.com. John Wiley & Sons will provide technical support only for
installation and other general quality control items. For technical support on
the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

320 Half-Life 2 Mods For Dummies

26_096314 app.qxp 12/7/06 10:48 AM Page 320

• Symbols and
Numerics •
2D viewports (Hammer Editor)

description, 48
entity rotation, 89–90

2D Views tab (Configure Hammer
window), 40

2D window, clipping pane, 120
3D Filled Polygons (Hammer Editor), 47
3D Shaded Textured Polygons (Hammer

Editor), 47
3D Textured Polygons (Hammer Editor), 47
3D Views tab (Configure Hammer

window), 40
3D Wireframe (Hammer Editor), 47

• A •
accent points, lighting, 189–195
active brushes, 28
Adobe Photoshop

images, 19
Targa files, 223
Web site, 319

Align option, Face Edit Sheet window, 75
ambient lighting, 180
ammo pickups, 215–217
Apply Current Texture tool, 53
Apply Decals tool, 53
Apply option, Face Edit Sheet window, 75
Apply Overlays tool, 53
armor, adding, 211–212
assets, 12
ATI Web Site (Normal Map Generator), 319
audio files, 304
author information, README file, 275

• B •
base textures, 60
best practices

include all necessary files, 21
naming conventions, 20
overwriting, avoiding, 21
README file, 20
saving, 21

Binary Space Partitioning. See BSP
Block Creation tool, doors creating, 122
Block Tool

drawing, 63
hall drawing, 112
overview, 53

BlockStorm mod, 312–313
bottlenecks at doors, 172–173
boundaries

defining, 158–159
maps, 25
outdoor environments, 158–159

brick texture, 224–225
brightness, lighting direction, 180
Browse option, Face Edit Sheet

window, 75
brush face in VBSP, 92
brushes. See also faces

active brushes, 28
Block Tool, 53
convex shape, 25
crates, 204
defining as entity, 192
deleting, 116
dragging, 116
drawing, 63–65
edges, 134
faces, 73
handles, 117
Hollow function, 155
hollowing, 114

Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 321

brushes (continued)
introduction, 25
ledges, 186
moving, 67–68
multiple, 138
overview, 63
resizing, 67–68
sealing area, 177
shape, 25
sides, 25
splitting, 121
ungrouping, 71, 155
wall thickness, 69

BSP (Binary Space Partitioning)
building, 92
description, 92
leafs, outlines, 131

.bsp file, 94
$bsp_exe command, 144
Bspzip, 281–284
Build Programs tab (Configure Hammer

window), 40
build-cubemaps command, 271
buildings

exterior texture, 160–161
roof texture, 161

bump map, 222
buttons (Hammer Editor)

Carve with Selected Objects tool, 50
Cut, Copy, Paste tool, 51
Displacement Mask Alpha tool, 52
Displacement Mask Solid tool, 51
Displacement Mask Walkable tool, 52
Edit Cordon Bounds tool, 51
Hide Selected Objects tool, 50
Hide Unselected Objects tool, 50
Group Selected Objects tool, 50
Larger Grid tool, 50
Load Window State tool, 50
Run Map! tool, 52
Save Window State tool, 50
Scaling Texture Lock tool, 51
Smaller Grid tool, 50
Texture Lock tool, 51
Toggle Auto Selection tool, 51
Toggle Cordon State tool, 51
Toggle Face Alignment tool, 51
Toggle Grid tool, 50

Toggle Group Ignore tool, 50
Toggle Helpers tool, 52
Toggle Model Fade Preview tool, 52
Toggle Models in 2D tool, 52
Toggle Select-by-Handles tool, 51
Toggle 3D Grid tool, 50
tools, enabling, 46
Ungroup Selected Groups tool, 50

• C •
Camera tool, 53
camera viewport (Hammer Editor)

3D Filled Polygons, 48
3D Shaded Textured Polygons, 48
3D Textured Polygons, 48
3D Wireframe, 47
wall thickness, 117

car analogy, 91
Cartesian coordinates, 26
Carve with Selected Objects tool (Hammer

Editor), 50
carving brushes, creating doors, 121–123
Catacomb 3D, release, 10
CD with book

Adobe Photoshop CS2, 319
author-created material, 318–319
demo versions of software, 318
evaluation versions of software, 318
freeware programs, 318
game mods, 319
GNU software, 318
Microsoft Windows, 318
Normal Map Generator, 319
NVIDIA Photoshop plug-ins installer, 319
Pakrat, 319
Room 101, 319
shareware programs, 318
trial versions of software, 318
troubleshooting, 320
WinZip, 320

ceiling texture, 79–80
cheats, sv_cheats 1 command, 130
clamps option, VTF, 250
clampt option, VTF, 250
clip line, 120
clipping brushes, creating doors, 119–121

322 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 322

clipping options, 121
clipping pane, 2D window, 120
Clipping tool

description, 53
doors, 119–121
doors to outside, 164–167

coding, modding, 13
color

entities, 84–86
lighting, 84–86, 198–199
textures, diffuse map, 236–237

commands
accessing, 128–130
$bsp_exe, 144
build-cubemaps, 271
Console window, 129
developer, 128
mat_drawflat 1, 191
mat_wireframe 0, 131
mat_wireframe 1, 130–131
mat_wireframe 2, 131
mat_wireframe 3, 130–132
sv_cheats 1, 130

Compile Process window, 98
compiling, map files, 94–97, 105–106
compression utility

downloading, 18
WinZip, 19

concrete textures, 254
configuration

errors, Hammer Editor, 37–39
files, missing, 35

Configure Hammer window
Build Programs option, 40
Game Configurations option, 39
Game Configurations tab, 40
General option, 40
Materials option, 40
3D Views tab, 40
2D Views tab, 40

Console window, opening, 129
convex shape of brushes, 25
coordinates

description, 69
status bar, 69

copying rooms, 109–111
cordon texture, 42

cordon volume, 42
corners

fixing, 134–138
halls, 118
useless, fixing, 156–157

Counter-Strike
release, 11
source maps, 41

crates
brushes, 204
environments, 208–211
placement, strategy, 206–208
prop_dynamic object, 204
prop_physics_multiplayer

object, 204
prop_static object, 204
uses, 203

Create a Mod option (Source SDK), 37
Crossfire 2 b3 mod, 307–308
Ctrl+A keyboard shortcut, 47, 248, 302
Ctrl+B keyboard shortcut, 64
Ctrl+C keyboard shortcut, 248, 279, 300
Ctrl+D keyboard shortcut, 241, 244
Ctrl+E keyboard shortcut, 66
Ctrl+H keyboard shortcut, 69, 114, 155
Ctrl+S keyboard shortcut, 72, 84, 173, 271
Ctrl+U keyboard shortcut, 71, 155, 301
Ctrl+V keyboard shortcut, 248, 279, 300
Ctrl+Z keyboard shortcut, 111, 231
cubemaps

introduction, 265
placement, 266–268
visual errors, 268

Current Game option (Source SDK), 37
Current Texture option, Face Edit Sheet

window, 75
custom levels, 14–15
Cut, Copy, Paste tool (Hammer Editor), 51
cut-scenes, 23

• D •
Day of Defeat, dod.fgd file, 41
decals, Apply Decals tool, 53
design, minimal, 298–299
-dev -console, 128
developer-provided tools, 14

323Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 323

dialog boxes
Object Properties, 85
Offset, 228
Run Map, 95

diffuse map
introduction, 222
texture color, 236–237

Displacement Mask Alpha tool (Hammer
Editor), 52

Displacement Mask Solid tool (Hammer
Editor), 51

Displacement Mask Walkable tool
(Hammer Editor), 52

distribution, 293
Doom graphics with VGA, 10
doors

Block Creation tool, 122
bottleneck at, 172–173
carving brushes, 121–123
clipping brushes, 119–121
clipping doors to outside, 164–167
Clipping tool, 119–121
frames, 168–169
frames, textures, 169–170
hiding, 167–168
moving, 174–176
pairing, 200–202
sealing area, 176–179
sliding open, 173–179
textures, 170–171
touching up textures, 167–168

drawing
brushes, 63–65
halls, 112–123
introduction, 18–19

duplicating
light fixtures, 194–195
lights, 124–125

Dystopia mod, 309

• E •
edges, brushes, 134
Edit Cordon Bounds tool

(Hammer Editor), 51
Edit Game Configurations window

(Hammer Editor), 40
endframe option, VTF, 250

entities
active brushes, 28
brushes, 28
brushes, defining as, 192
color, 84–86
env_cubemap, 265
facing angle, 88
func_static, 192
light, 82
player spawn point, 87
point entities, 28
point_spotlight, 192
positioning, 83–84
rotation, 88–90
structure, 28
trigger_multiple, 201

Entity Creation Tool, virtual sunlight, 179
Entity Tool

description, 53
player spawn point, 87
selecting, 82
spawn points, 262

env_cubemap entity, 265
EnvMask option, Textures window, 62
errors

finding, 103–105
gaps in walls, 104
pointfile, 104

example maps, 299–300
excluding areas of map, 157
Expert Run Map window

Command option, 97
Compile/Run Command option, 97
Configurations option, 97
Ensure File Post-Exists option, 97
Parameters option, 97
Use Process Window option, 97

exterior texture, 160–161

• F •
F5 keyboard shortcut, 278
F9 keyboard shortcut, 52
Face Edit Sheet window

Align option, 75
Apply option, 75
Browse option, 75
Current Texture option, 75

324 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 324

Hide Mask option, 75
Justify option, 75
Lightmap Scale option, 75
Mode option, 76
Replace option, 75
Rotation option, 75
Smoothing Groups option, 76
Texture Group option, 75
Texture Scale, X and Y option, 74
Texture Shift, X and Y option, 75

Face Poser (Source SDK), 36
faces

alignment, 75
justified, 75
masks, 75
selecting, 73–74
texture, 75
Toggle Face Alignment tool, 51

.fgd file, 41
file compression utility, 13
Filter Control tools, 54
Filter option, Textures window, 61
filtering textures, 60–63
floor, texture, 78–79
FPS (first-person shooter)

first game, 10
game modification, 9

func_areaportal class, 178
func_detail entities, 192
func_detail SolidEntity class, 42
func_door class, 174
func_static entity, 192

• G •
Game Configurations tab (Configure

Hammer window), 40
game modification, 9
games, playing before modding, 32
Garry’s Mod, 314–315
General tab (Configure Hammer window), 40
GLView

maps, 146
VIS leaves, 143–147

Gookin, Dan (PCs For Dummies), 317
Gordon Freeman, 10
graphical user interface, editor, 17
graphics, VGA added to Doom, 10

grid
halls, 118
information, 69
Larger Grid tool, 50
Smaller Grid tool, 50
snap to, 66
status bar, 69
Toggle Grid tool, 50
Toggle 3D Grid tool, 50

ground brush, multiplying ground, 155
ground, multiplying, 155–156
Group Selected Objects tool (Hammer

Editor), 50

• H •
Half-Life

compared to other games, 22
release, 10

Half-Life 2
looking over, 11
single-player, halflife2.fgd file, 41

Half-Life 2: Deathmatch, 32
halls

corners, 118
doors, 119–123
drawing, 112–113
grids, 118

Hammer Editor
buttons, 49–53
camera viewport, 47–48
Carve with Selected Objects tool, 50
configuration, 35
configuration, manual, 39–45
configuration errors, 39–45
configurations, adding, 40–43
Cut, Copy, Paste tool, 51
Displacement Mask Alpha tool, 52
Displacement Mask Solid tool, 51
Displacement Mask Walkable tool, 52
Edit Cordon Bounds tool, 51
Edit Game Configurations window, 40
Filter Control, 54
game types, 42
Hammer Editor option (Source SDK), 36
Half-Life 2 Map Type, 41
Hide Selected Objects tool, 50
Hide Unselected Objects tool, 50
Group Selected Objects tool, 50

325Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 325

Hammer Editor (continued)
info_player_deathmatch point entity, 41
installation, 31–34
launching, 35
Larger Grid tool, 50
Load Window State tool, 50
Material Texture Format, 41
Messages window, 54–56
New Objects, 54
new window, 46
open map, 46
programs, specifying, 44
Run Map! tool, 52
Save Window State tool, 50
Scaling Texture Lock tool, 51
Select Modes, 54
shortcuts, 56–57
Smaller Grid tool, 50
Team Fortress Classic, 41
Texture Lock tool, 51
Textures, 54
3D Filled Polygons, 47
3D Shaded Textured Polygons, 47
3D Textured Polygons, 47
3D view, 47–49
3D Wireframe, 47
Toggle Auto Selection tool, 51
Toggle Cordon State tool, 51
Toggle Face Alignment tool, 51
Toggle Grid tool, 50
Toggle Group Ignore tool, 50
Toggle Helpers tool, 52
Toggle Model Fade Preview tool, 52
Toggle Models in 2D tool, 52
Toggle Select-by-Handles tool, 51
Toggle 3D Grid tool, 50
tools, enabling, 46
2D viewports, 48, 89–90
Ungroup Selected Groups tool, 50
wall thickness, 114

Hammer window, wall thickness, 114
handles

brushes, resizing, 117, 120
Toggle Select-by-Handles tool, 51

Heads Up Display (HUD), 312
health, restoring, 212–214
Help Reminder, 68
Helpers, Toggle Helpers tool, 52
Hide Mask option, Face Edit Sheet window, 75

Hide Selected Objects tool (Hammer
Editor), 50

Hide Unselected Objects tool (Hammer
Editor), 50

High-Resolution Skins mod, 309–310
Hint brush, 147
Hollow function, brushes, 155
hollowing out room, 69–70, 114
Hovertank 3D, release, 10
HUD (Heads Up Display), 312

• I •
image compressor, downloading, 18
image editor, downloading, 18
images

Adobe Photoshop, 19
alignment, 74
map, 222
modding, 13
purchasing, 299
textures, size, 225–227
textures, tiling, 228–235
.tga format, 18
tileable, 73
turning to textures, 224–225
VTEX, 19
VTF, 18

info_healthkit object, 213
info_player_deathmatch point

entity, 41
installation

Hammer Editor, 31–34
README file, 275

Internet, purchasing textures from, 299
Internet resources. See Web sites
item_ammo_smg1 object, 216
item_battery object, 211
item_box_buckshot object, 215

• J •
joining rooms

doors, 119–123
drawing halls, 112–123
Nodraw texture, 111
room to play, 114–118

JRE (Java Runtime Environment), 285
Justify option, Face Edit Sheet window, 75

326 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 326

• K •
Keywords option, Textures window, 61
keyboard shortcuts

Ctrl+A, 47, 248, 302
Ctrl+B, 64
Ctrl+C, 248, 279, 300
Ctrl+D, 241, 244
Ctrl+E, 66
Ctrl+H, 69, 114, 155
Ctrl+S, 72, 84, 173, 271
Ctrl+U, 71, 155, 301
Ctrl+V, 248, 279, 300
Ctrl+Z, 111, 231
F5, 278
F9, 52
listed in operating command (Editor), 57
Shift+A (Texture Application tool), 74
tilde (~), 271
up arrow (display last command), 132
WASD keys, 146

• L •
Larger Grid tool (Hammer Editor), 50
leaks

entities, 72
light, 71
seals, 72

leaves, 93
ledges

adding, 186–189
texture, 188

Level of Detail (LOD), 225
levels

color, 14
compile, 15
description, 23
elements, 14
maps, 24
modding, 13
overview, 24
play, 15
surfaces, 14
walls, 14

light direction (yaw), 180

light entities, 192–194
lighting

accent points, 189–195
ambient, 180
brightness, 180
color, 84–86, 198–199
cubemaps, 268
duplicating lights, 124–125
indoor lights, 195–200
leaks, 71
light entities, 192–194
light fixtures, duplicating, 194–195
Lightmap Scale option, 74
normal map, 243
optimizing light fixtures, 191–192
pitch, 180
point_spotlight entity, 192
roll, 180
scale, default, 42
source, 195
spotlight, 192–194
sun, adding, 181–183
sunlight, 179–181
VRAD, 94
yaw, 180

Lightmap Scale option, Face Edit Sheet
window, 75

liquid textures, 254
Load Window State tool (Hammer Editor), 50
loading screens, 23
LoadPointfile option, 104
LOD (Level of Detail), 225

• M •
Magnify tool, 53
Make Hollow command, 69
map files

Compile Process window, 98
compiling, options, 95–96
compiling, running game afterward, 105–106
lighting, 94
VBSP, 92

mapping editor, 17
maps

boundaries, 25, 153
brushes, 25, 28

327Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 327

maps (continued)
corners, mitering, 133
creating, 24–25
Diffuse map, 222
examples, 299–300
excluding areas, 157
GLView, 146
Half-Life 2, 41
levels, 24
mitering, 133
normal, 223
Normal map, 222
overview, 24
prefabs, 301
Run Maps! tool, 52
saving, 72
Specular map, 222
submission links Web site, 293
white lines in, 130

Mark option, Textures window, 62
masks

Displacement Mask Alpha tool, 52
Displacement Mask Solid tool, 51
Displacement Mask Walkable tool, 52
Hide Mask option, 74

mat_drawflat 1 command, 191
Material texture format, 41
materials

applying, 257–259
building, 253–257

Materials tab (Configure Hammer
window), 40

mat_wireframe 0 command, 131
mat_wireframe 1 command, 130–131
mat_wireframe 2 command, 131
mat_wireframe 3 command, 130–132
Maze War, 10
measurement

overview, 27
player dimensions, 303–304
power of two, 66–67

menus in Hammer Editor, 49
meshing objects, 301–303
Messages window (Hammer Editor), 54–56
metal textures, 254
Microsoft Windows, using with CD, 318
Microsoft Word

CD with book, 318
plain text, 18

minimal design, 298–299
miscellaneous textures, 254
mitering

corners, 134–138
introduction, 133
ledge drawing, 187
outer walls, 163–164
Vertex Manipulation tool, 136

modding
best practices, 20–21
coding changes, 13
definition, 12
images, 13
levels, 13
naming conventions, 20
overwriting prevention, 21
playing games before, 32
process outline, 14–15
README file, 20
required files, 21
saving, 21
textures, 13
user interfaces, 13
what can be modded, 12–13

Mode option, Face Edit Sheet window, 76
Model Browser

Advanced Specifications, 205
Directory Tree, 204
Filter, 205
Full Path, 205
Mod Filter, 204
Model Preview, 205
Models List, 205

Model Viewer (Source SDK)
downloading, 17
introduction, 36

mods
BlockStorm, 312–313
Crossfire 2 b3, 307–308
definition, 12
Dystopia, 309
Garry’s Mod, 314–315
High-Resolution Skins, 309–310
Portal Challenge, 315–316
Razor’s Weapon Sound Package,

310–311
Source Racer, 311–312
Strider Mod, 313–314
Urbanes Deathmatch 2, 308–309

328 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 328

mouse, handles grabbing and dragging
with, 117

moving doors, 174–176
multiplayer gaming, invention, 10

• N •
naming conventions, 20
New Object group, 54, 82
nocompress option, VTF, 251
Nodraw texture, 60
nolod option, VTF, 250
nomip option, VTF, 250
nonice option, VTF, 251
normal map, 222–223, 243–249
Normal Map Generator

ATI Web site, 318
overview, 249–250

Normal Run Map window, 97
Notepad

introduction, 18
opening, 276
README file, 276

Number × Number option, Textures
window, 62

NVIDIA Photoshop Plug-ins, 223

• O •
Object Properties dialog box, 85
Object Properties window

entity rotation, 88–89
Outputs tab, 201

objects
Carve with Selected Objects tool, 50
Group Selected Objects tool, 50
Hide Selected Objects tool, 50
Hide Unselected Objects tool, 50
info_healthkit, 213
introduction, 12
item_ammo_smg1, 216
item_battery, 211
item_box_buckshot, 215
meshing, 301–303
Toggle Group Ignore tool, 50
weapon_shotgun, 214–215

Offset dialog box, 228
Offset filter, 229

Only Used Textures option, Textures
window, 61

Opaque option, Textures window, 62
Open Source option, Textures window, 62
optimization

automatic, 139–141
benefits, 151–152
commands, 128–130
light fixtures, 191–192

organic textures, 254
original ideas, coming up with, 297
outdoor environment

boundaries, defining, 158–159
clipping doors to, 164–167
map edge, defining, 153
outer wall texture, 162–163
roof texture, 161
textures, 159

outer wall
creating, 162–163
mitering, 163–164

outlines of polygons, 130
overlays, Apply Overlays tool, 53

• P •
packaging files

Bspzip, 281–284
compression, 19
files from custom map, 280
Pakrat, 285–291
README file, 274–277
screenshot, 277–279
WinZip, 291–292

painting
brush faces, 73
introduction, 18–19
textures, 27

pairing doors, 200–202
Pakrat, 285–291
PCs For Dummies (Gookin), 317
Photoshop

images, 19
NVIDIA Photoshop Plug-ins, 223
Rubber Stamp tool, 231
Targa files, 223

pickups
ammo, 215–217
armor, 211–212

329Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 329

pickups (continued)
health, 212–214
introduction, 81
weapons, 214–215

pitch, lighting direction, 180
pixels, 27
placement of crates for strategy,

206–208
plain text

README file, 275
writing in, 18

plain text editor
downloading, 18
Notepad, 14

planes, dimensions, 26
planning builds, 298
players

dimensions, 303–304
spawn point, 87

playing games before modding, 32
point entities, 28, 41
pointfile, errors referenced in, 104
point_spotlight entity, 192
polygons

normal map, 243–249
outlines, 130, 131

portal brushes, 148
Portal Challenge mod, 316
portals

creating, 142–150
VIS leaves, viewing in-game, 142–143
VIS leaves, viewing with GLView,

143–147
positioning entities, 83–84
power of two, 66–67
prefabs, maps, 301
prop_dynamic, 204
prop_physics_multiplayer object, 204
prop_static, 204
purchasing textures from Internet, 299

• Q •
Quake, release, 10

• R •
Rathbone, Andy

Windows 2000 Professional For
Dummies, 317

Windows XP For Dummies, 317
Razor’s Weapon Sound Package mod,

310–311
README file

author information, 275
example, 276–277
installation instructions, 275
introduction, 20
Notepad, 276
outline, 274–275

reflections, 271
Refresh SDK Content option (Source SDK), 37
Release Notes (Source SDK), 36
Reload option, Textures window, 62
rendering

description, 25
VIS leafs, 93

Replace option
Face Edit Sheet window, 75
Textures window, 62

Reset Game Configurations option
(Source SDK), 37

restoring health, 212–214
retexturing, walls, 123–124
rock textures, 254
roll, lighting direction, 180
roof texture, 161
rooms

copying, 109–111
hollowing out, 69–70
joining, doors, 119–123
joining, drawing halls, 111–113
joining, room to play, 114–118

rotation of entities
Object Properties window, 88–89
2D viewport, 89–90

Rotation option, Face Edit Sheet window, 75
Rubber Stamp tool (Photoshop), seams in

texture images, 231

330 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 330

Run Map dialog box
Additional Game Parameters option, 96
Don’t Run the Game After Compiling

option, 96
Run BSP option, 95
Run RAD option, 95
Run VIS option, 95

Run Map window, 126
Run Map! tool (Hammer Editor), 52

• S •
Save Window State tool (Hammer Editor), 50
saving, maps, 72
Scaling Texture Lock tool (Hammer

Editor), 51
screenshot, packaging files, 277–279
SDK Reference Docs option (Source SDK), 37
sealing area, 176–179
Select Modes tools, 54
selection, size, 69
Selection Information, 69
Selection tool

entity position, 84
introduction, 53

SelfIllum option, Textures window, 62
sharing, game, 15
Shift+A keyboard shortcut (Texture

Application tool), 74
shooters, 10
Show Errors option, Textures window, 62
skinning, 303
sky, height, 153
sky texture, map edge, 153
skybox option, VTF, 250
sliding open doors, 173–179
Smaller Grid tool (Hammer Editor), 50
Smoothing Groups option, Face Edit Sheet

window, 76
snow texture, 255
SoftImage|XSI Mod Tool option (Source

SDK), 37
SolidEntity classes, func_detail, 42
Source Racer mod, 311–312
Source SDK

Create a Mod option, 37
Current Game option, 37

Face Poser option, 36
Hammer Editor option, 36
installing game, 33
introduction, 14
launching first time, 34–35
Model Viewer option, 36
Refresh SDK Content option, 37
Release Notes option, 36
Reset Game Configurations option, 37
SDK Reference Docs option, 37
SoftImage|XSI Mod Tool option, 37
tools installation, 34
Valve Developer Community option, 37

Spasim, 10
spawn points

Entity Tool, 262
number of, 263

specular map
highlights, 238–243
introduction, 222

splitting brushes, 121
spotlight, 192–194
startframe option, VTF, 250
status bar

Coordinates, 69
Grid Information, 69
Help Reminder, 68
Selection Information, 69
Selection Size, 69
Zoom Size, 69

Steam downloader
Hammer Editor installation, 31–32
introduction, 17
launching, 32
starting, 31

Steam window, Tools tab, 33
strategic placement of crates, 206–208
Strider Mod mods, 313–314
structure, entities activity and inactivity, 28
submissions, 293
sun, adding, 181–183
sunlight, adding, 179–181
surface properties, 254
sv_cheats 1 command, 130
system requirements, 317

331Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 331

• T •
Targa images, 18, 222
Team Fortress Classic, 41
terrain textures, 255
testing, 183–184, 217–218
text editor, plain text editor, 14, 18
Texture Application tool, retexturing

walls, 123
Texture Group option, Face Edit Sheet

window, 75
Texture Lock tool (Hammer Editor), 51
Texture Preview window, 61
Texture Scale, X and Y option, Face Edit

Sheet window, 74
Texture Shift, X and Y option, Face Edit

Sheet window, 75
textures

Apply Current Texture tool, 53
base textures, 60
bricks, 224–225
browsing, 61
building interest, 27–28
ceiling, 79–80
color, adding, 27
color, diffuse map, 236–237
concrete, 254
cordon texture, 42
dimension adding, 27–28
door frames, 169–170
doors, 170–171
EnvMask option, 62
exterior, 160–161
faces, 73
Filter text box, 61
filtering, 60–63
floor, 78–79
height, 62
highlights, specular map, 238–243
image map, 222
images, size, 225–227
images, tiling, 228–235
keywords, 61
ledges, 188
liquid, 254
marking, 62
metal, 254

miscellaneous, 254
modding, 13
Nodraw, 60
Only Used Textures option, 61
opaque, 62
Open Source option, 62
organic, 254
outdoor environments, 159
outer wall, 162–163
painting walls, 27
power of two, 66–67
purchasing from Internet, 299
reloading, 62
rendering, 28
replacing, 62
retexturing walls, 123–124
rock, 254
roof, 161
rotation, 74
scale, default, 42
Scaling Texture Lock tool, 51
SelfIllum option, 62
Show Errors option, 62
size, 61, 225–227
snow, 255
stonewall, 162
surface properties, 254
terrain, 255
Texture Lock tool, 51
Texture Preview window, 61
Toggle Texture Application tool, 53
touching up, 171–172
translucent, 62
using from other games, 299
walls, 27, 77–78
width, 62
wood, 255

Textures tools, 54
Textures window

EnvMask option, 62
Filter option, 61
Keywords option, 61
Mark option, 62
Number × Number option, 62
Only Used Textures option, 61
Opaque option, 62
Open Source option, 62

332 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 332

Reload option, 62
Replace option, 62
SelfIllum option, 62
Show Errors option, 62
Size option, 61
Texture Preview window, 61
Translucent option, 62

.tga image format, 18
3D Filled Polygons (Hammer Editor), 47
3D Shaded Textured Polygons (Hammer

Editor), 47
3D Textured Polygons (Hammer Editor), 47
3D Views tab (Configure Hammer

window), 40
3D Wireframe (Hammer Editor), 47
tileable images, 73
tiling images, textures

original position, 234-235
seams, 228–230
seams, Rubber Stamp tool, 231–234

Toggle Auto Selection tool (Hammer
Editor), 51

Toggle Cordon State tool (Hammer Editor), 51
Toggle Face Alignment tool (Hammer

Editor), 51
Toggle Grid tool (Hammer Editor), 50
Toggle Group Ignore tool (Hammer

Editor), 50
Toggle Helpers tool (Hammer Editor), 52
Toggle Model Fade Preview tool (Hammer

Editor), 52
Toggle Models in 2D tool (Hammer Editor), 52
Toggle Select-by-Handles tool (Hammer

Editor), 51
Toggle Texture Application tool, 53
Toggle 3D Grid tool (Hammer Editor), 50
Tools tab, Steam window, 33
total modification, 12
touching up textures, 171–172
Translucent option, Textures window, 62
trigger_multiple entity, 201
troubleshooting CD with book, 320
tutorials for modding games, 305
2D viewports (Hammer Editor)

description, 48
entity rotation, 89–90

2D Views tab (Configure Hammer
window), 40

2D window, clipping pane, 120

• U •
Ungroup Selected Groups tool (Hammer

Editor), 50
units of measurement, 27
units per luxel (Lightmap Scale), 75
up arrow keyboard shortcut (display last

command), 132
Urbanes Deathmatch 2 mod, 308–309
user interfaces, modding, 13
utilities, file compression, 13

• V •
Valve Developer Community option

(Source SDK), 37
Valve Material File (VMF), 222
Valve Radiance. See VRAD (Valve

Radiance)
Valve Texture Format. See VTF (Valve

Texture Format)
Valve Texture Tool (VTEX), 19
Valve VIS. See VVIS (Valve VIS)
VBSP (Valve Binary Space Partitioning)

description, 92
output, 98–99

Vertex Manipulation tool, mitered
corners, 136

Vertex Tool, 53
VGA (Video Graphics Array), 10
viewports

camera, 47–48
moving, 65–66
2D, 48
zooming in, 65–66

VIS leaves
creating, 147–150
description, 93
importance of, 133
too many, 151
viewing, GLView, 143–147
viewing, in-game, 142–143

visibility, VIS, 92

333Index

27_096314 bindex.qxp 12/7/06 10:48 AM Page 333

visigroups, 167
visleafs (VIS leafs), 93
VMF (Valve Material File), 222
VRAD (Valve Radiance), 94, 101–102
VTEX (Valve Texture Tool), images, 19
vtex.exe, using Steam, 252
VTF (Valve Texture Format)

clamps option, 250
clampt option, 250
defined, 223
endframe option, 250
image converter, 19
images, 18
nocompress option, 251
nolod option, 250
nomip option, 250
nonice option, 251
skybox option, 250
startframe option, 250
VTEX, 19

VVIS (Valve VIS) process, 92, 100

• W •
walls

camera viewport, 117
Hammer window, 114
ledges, 186–189
map edge, 153
outer wall, applying textures, 162–163
outer wall, mitering, 163–164
painting, 27
retexturing, 123–124
texture, 27, 77–78
thickness, 69

WASD keys, 146
weapons, placement, 214–215
weapon_shotgun object, 214–215
Web sites

Adobe, 319
ATI (Normal Map Generator), 319
BlockStorm mod, 312
Dystopia mod, 309
Garry’s Mod, 314
Half Life 2 Mods for Dummies, 293, 305
Strider Mod, 313
tutorial for modding games, 305
Wiley tech support, 320
WinZip, 19, 320

white lines in maps, 130
Wiley tech support Web site, 320
windows

Compile Process, 98
Console, 129
Expert Run Map, 99
Hammer, 114
Load Window State tool, 50
Normal Run Map, 97
Run Map, 126
Save Window State tool, 50
Texture Preview, 61

Windows (Microsoft), using with CD, 318
Windows 2000 Professional For Dummies

(Rathbone), 317
Windows XP For Dummies (Rathbone), 317
WinZip

CD with book, 320
compression, 13, 19
packaging files, 291–292

wireframe
mat_wireframe command, 130–132
turn off, 131

Wolfenstein 3D, VGA added for release, 10
wood textures, 255
Word (Microsoft)

CD with book, 318
plain text, 18

WorldCraft, 31

• X •
x axis, 26
X plane, 26

• Y •
y axis, 26
Y plane, 26
yaw, light direction, 180

• Z •
z axis, 26
Z plane, 26
zooming

size, 69
status bar, 69

334 Half-Life 2 Mods For Dummies

27_096314 bindex.qxp 12/7/06 10:48 AM Page 334

Notes

27_096314 bindex.qxp 12/7/06 10:48 AM Page 335

Notes

27_096314 bindex.qxp 12/7/06 10:48 AM Page 336

Notes

27_096314 bindex.qxp 12/7/06 10:48 AM Page 337

Notes

27_096314 bindex.qxp 12/7/06 10:48 AM Page 338

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

28_096314 bob.qxp 12/7/06 10:48 AM Page 339

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

28_096314 bob.qxp 12/7/06 10:48 AM Page 340

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

28_096314 bob.qxp 12/7/06 10:48 AM Page 341

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

28_096314 bob.qxp 12/7/06 10:48 AM Page 342

