
Java™ 2
FOR

DUMmIES
‰

2ND EDITION

by Barry Burd

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page iii

C1.jpg

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page ii

Java™ 2
FOR

DUMmIES
‰

2ND EDITION

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page i

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page ii

Java™ 2
FOR

DUMmIES
‰

2ND EDITION

by Barry Burd

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page iii

Java 2 For Dummies, 2nd Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Java is a trademark or regis-
tered trademark of Sun Microsystems, Inc. in the United States and other countries. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004102602

ISBN: 0-7645-6858-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2O/RY/QY/QU/IN

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page iv

About the Author
Dr. Barry Burd received an M.S. degree in Computer Science at Rutgers
University and a Ph.D. in Mathematics at the University of Illinois. As a teach-
ing assistant in Champaign-Urbana, Illinois, he was elected five times to the
university-wide List of Teachers Ranked as Excellent by Their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for profes-
sional programmers in business and industry. He has lectured at conferences
in the United States, Europe, Australia, and Asia. He is the author of several
articles and books, including JSP: JavaServer Pages and Beginning
Programming with Java For Dummies, both from Wiley Publishing, Inc.

Dr. Burd lives in Madison, New Jersey, with his wife and two children. In his
spare time, he enjoys being a workaholic.

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page v

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page vi

Dedication
for

Jennie, Sam, and Harriet,

Ruth and Sam,

Jennie and Benjamin, Katie and Abram,

and Basheva

Author’s Acknowledgments
Thanks again!

—Barry Burd

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Paul Levesque

Acquisitions Editor: Steve Hayes

Copy Editor: Virginia Sanders

Technical Editor: Wiley-Dreamtech
India Pvt Ltd

Editorial Manager: Kevin Kirschner

Permissions Editor: Laura Moss

Media Development Specialist: Angela Denny

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition

Project Coordinator: Nancee Reeves

Layout and Graphics: Denny Hager,
Joyce Haughey, Michael Kruzil,
Stephanie D. Jumper, Jacque Schneider

Proofreaders: Andy Hollandbeck,
Charles Spencer, TECHBOOKS Production
Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Editorial Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

00a_568582_ffirs.qxd 7/27/04 11:38 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ..1

Part I: Getting Started ...9
Chapter 1: All about Java ..11
Chapter 2: Running Canned Java Programs ...23
Chapter 3: Using the Basic Building Blocks ...43

Part II: Writing Your Own Java Programs69
Chapter 4: Making the Most of Variables and Their Values71
Chapter 5: Controlling Program Flow with Decision-Making Statements99
Chapter 6: Controlling Program Flow with Loops ...121

Part III: Working with the Big Picture:
Object-Oriented Programming139
Chapter 7: Thinking in Terms of Classes and Objects ..141
Chapter 8: Saving Time and Money: Reusing Existing Code169
Chapter 9: Constructing New Objects ..199

Part IV: Savvy Java Techniques219
Chapter 10: Putting Variables and Methods Where They Belong221
Chapter 11: Using Arrays and Collections to Juggle Values249
Chapter 12: Looking Good When Things Take Unexpected Turns279

Part V: The Part of Tens ...305
Chapter 13: Ten Ways to Avoid Mistakes ...307
Chapter 14: Ten Sets of Web Resources for Java ...313

Part VI: Appendixes ...319
Appendix A: Using the CD-ROM ...321
Appendix B: When to Use Words Like “public” and “private”331

Index ...341

End-User License Agreement361

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page ix

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page x

Table of Contents
Introduction ...1

How to Use This Book ..1
Conventions Used in This Book ..1
What You Don’t Have to Read ...2
Foolish Assumptions ..3
How This Book Is Organized ..4

Part I: Getting Started ...4
Part II: Writing Your Own Java Programs ...4
Part III: Working with the Big Picture:

Object-Oriented Programming ...4
Part IV: Savvy Java Techniques ...5
Part V: The Part of Tens ..5
Part VI: Appendixes ...5
Bonus Chapters on the CD-ROM! ...5

Icons Used in This Book ...6
Where to Go from Here ...7

Part I: Getting Started ..9

Chapter 1: All about Java .11
What You Can Do with Java ...12
Why You Should Use Java ..13
Getting Perspective: Where Java Fits In ...14
Object-Oriented Programming (OOP) ..15

Object-oriented languages ...16
Objects and their classes ...17
What’s so good about an object-oriented language?18
Refining your understanding of classes and objects20

What’s Next? ..22

Chapter 2: Running Canned Java Programs .23
Downloading and Installing the Java Software

Development Kit (SDK) ...23
Downloading Java ..25
Installing Java on your computer ..27

Preparing to Use an Integrated Development Environment30
JCreator ..31
Running JCreator for the first time ...31

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xi

Running Java Programs ..34
Running a text-based program ...34
Running a GUI on its own ...38
Running a GUI on a Web page (a Java applet)39

Chapter 3: Using the Basic Building Blocks .43
Speaking the Java Language ..43

The grammar and the common names ...44
The words in a Java program ...45

Checking Out Java Code for the First Time ...48
Understanding the Simple Java Program ...49

The Java class ..49
The Java method ...50
The main method in a program ...52
How you finally tell the computer to do something53
Curly braces ...55

And Now, a Few Comments ..58
Adding comments to your code ..58
What’s Barry’s excuse? ...61
Finding javadoc pages ..61
Using comments to experiment with your code62

Typing Your Own Code ...64

Part II: Writing Your Own Java Programs69

Chapter 4: Making the Most of Variables and Their Values 71
Varying a Variable ...71
Assignment Statements ..73
Understanding the Types of Values That Variables May Have74
An Import Declaration ..77
Displaying Text ..78
Numbers without Decimal Points ...78
Combining Declarations and Initializing Variables80
The Atoms: Java’s Primitive Types ...81

The char type ...82
The boolean type ...84

The Molecules and Compounds: Reference Types85
Creating New Values by Applying Operators ..89

Initialize once, assign often ..92
The increment and decrement operators ..92
Assignment operators ..96

Java 2 For Dummies, 2nd Edition xii

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xii

Chapter 5: Controlling Program Flow with
Decision-Making Statements .99

Making Decisions (Java if Statements) ...100
Guess the number ...100
She controlled keystrokes from the keyboard101
Creating randomness ..102
The if statement ...103
The double equal sign ..104
Brace yourself ..105
Indenting if statements in your code ..105
Elseless in Ifrica ...106

Forming Conditions with Comparisons and Logical Operators107
Comparing numbers; comparing characters107
Comparing objects ..108
Importing everything in one fell swoop ...111
Java’s logical operators ..111

Building a Nest ...113
Choosing among Many Alternatives (Java switch Statements)115

Your basic switch statement ..116
To break or not to break ...119

Chapter 6: Controlling Program Flow with Loops 121
Repeating Instructions Over and Over Again

(Java while Statements) ..122
Repeating a Certain Number of Times (Java for Statements)125

The anatomy of a for statement ..126
The world premiere of “Al’s All Wet” ..128

Repeating Until You Get What You Want (Java do Statements)129
Reading a single character ...132
File handling in Java ..133
Variable declarations and blocks ..133

Loops Made Painless ..134
Don’t need no stinking counters ...134
Grouping things together ...136
Anatomy of an enhanced for loop ...137

Part III: Working with the Big Picture:
Object-Oriented Programming139

Chapter 7: Thinking in Terms of Classes and Objects 141
Defining a Class (What It Means to Be an Account)142

Declaring variables and creating objects144
Initializing a variable ...146
Using variables ..146

xiiiTable of Contents

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xiii

Compiling and Running More Than One Class ..147
Defining a Method within a Class (Displaying an Account)148

An account that displays itself ..150
The display method’s header ..151

Sending Values to and from Methods (Calculating Interest)152
Passing a value to a method ..155
Returning a value from the getInterest method156
Making numbers look good ..158

Hiding Details with Accessor Methods (Why You Shouldn’t
Micromanage a Bank Teller) ..162

Good programming ...162
Public lives and private dreams: Making a variable name

inaccessible ..165
Enforcing rules with accessor methods ...167

Chapter 8: Saving Time and Money: Reusing Existing Code 169
Defining a Class (What It Means to Be an Employee)170

The last word on employees ..170
Putting your class to good use ..172
Cutting a check ..173

Working with Disk Files (A Brief Detour) ...174
Storing data in a file ..175
Copying and pasting code ..177
Reading from a file ...178
Who moved my file? ..180
Adding directory names to your filenames181
Reading a line at a time ...182

Defining Subclasses (What It Means to Be a Full-Time Employee or
a Part-Time Employee) ...183

Creating a subclass ...185
Creating subclasses is habit-forming ..188

Using Subclasses ...189
A program for the minimalist ...189
A program for the maximalist ..192

Overriding Existing Methods (Changing the Payments
for Some of Your Employees) ...195

Chapter 9: Constructing New Objects .199
Defining Constructors (What It Means to Be a Temperature)200

What is a temperature? ...200
What you can do with a temperature ...202
Calling new Temperature (32.0): A case study203
enum types as first-class citizens ..206
Some things never change ...207

Java 2 For Dummies, 2nd Edition xiv

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xiv

More Subclasses (Doing Something about the Weather)208
Building better temperatures ..208
Constructors for subclasses ..210
Using all this stuff ..211
The default constructor ...212
An invisible constructor call ..214

A Constructor That Does More ...215

Part IV: Savvy Java Techniques219

Chapter 10: Putting Variables and Methods
Where They Belong .221

Defining a Class (What It Means to Be a Baseball Player)222
Another way to beautify your numbers ...223
Using the Player class ...223
Nine, count ’em, nine ..225
Don’t get all GUI on me ...226
Tossing an exception from method to method227

Making Static (Finding the Team Average) ..228
Why is there so much static? ...230
Displaying the overall team average ...231
Static is old hat ..233
Could cause static; handle with care ..234

Experiments with Variables ...235
Putting a variable in its place ..236
Telling a variable where to go ..238

Passing Parameters ...241
Pass by value ...241
Returning a result ..243
Pass by reference ..244
Returning an object from a method ..246
Epilogue ..247

Chapter 11: Using Arrays and Collections to Juggle Values 249
Getting Your Ducks All in a Row ..249

Creating an array in two easy steps ..251
Storing values ..252
Tab stops and other special things ...255
Using an array initializer ..255
Stepping through an array with the enhanced for loop256
Searching ..257

Arrays of Objects ..261
Using the Room class ..262
Yet another way to beautify your numbers265
The conditional operator ...266

xvTable of Contents

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xv

Command Line Arguments ...267
Using command line arguments in a Java program267
Checking for the right number of command line arguments269
Setting up JCreator for command line arguments270

Using Java Collections ..273
Collection classes to the rescue ..274
Using an ArrayList ...275
Using generics (hot stuff!) ..277
Testing for the presence of more data ..277

Chapter 12: Looking Good When Things
Take Unexpected Turns .279

Handling Exceptions ...280
The parameter in a catch clause ...284
Exception types ...285
Who’s going to catch the exception? ..286
Throwing caution to the wind ...293
Doing useful things ..294
Our friends, the good exceptions ..295

Handle an Exception or Pass the Buck ...296
Finishing the Job with a finally Clause ...301

Part V: The Part of Tens ..305

Chapter 13: Ten Ways to Avoid Mistakes .307
Putting Capital Letters Where They Belong ..307
Breaking Out of a switch Statement ..308
Comparing Values with a Double Equal Sign ...308
Adding Components to a GUI ..308
Adding Listeners to Handle Events ...309
Defining the Required Constructors ...309
Fixing Non-Static References ...309
Staying within Bounds in an Array ...310
Anticipating Null Pointers ..310
Helping Java Find its Files ..311

Chapter 14: Ten Sets of Web Resources for Java 313
The Horse’s Mouth ..313
Finding News, Reviews, and Sample Code ...314
Improving Your Code with Tutorials ..314
Finding Help on Newsgroups ...314
Checking the FAQs for Useful Info ...315
Opinions and Advocacy ...315

Java 2 For Dummies, 2nd Edition xvi

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xvi

Looking for Java Jobs ...315
Becoming Certified in Java ..316
Developing Servlets ..316
Everyone’s Favorite Sites ...316

Part VI: Appendixes ..319

Appendix A: Using the CD-ROM .321
What You Can Expect to Find on the CD-ROM ..321
System Requirements ...322
Using the CD with Microsoft Windows ...323
Using the CD with Mac OS ..324
Running the Java Code That’s in This Book ..325
Freeware, Shareware, and Just Plain Ware ...326

JCreator ..326
Adobe Acrobat Reader ...327
Jindent ..327
NetCaptor ...328
WinOne ...328

And, If You Run into Any Trouble328

Appendix B: When to Use Words Like “public” and “private” 331
Members versus Classes ..331
Access Modifiers for Members ..332

Default access ..334
Protected access ...334

Access Modifiers for Classes ...338

Index..341

End-User License Agreement361

xviiTable of Contents

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xvii

Java 2 For Dummies, 2nd Edition xviii

00b_568582_ftoc.qxd 7/28/04 12:37 AM Page xviii

Introduction

Java is good stuff. I’ve been using it for years. I like Java because it’s very
orderly. Almost everything follows simple rules. The rules can seem intim-

idating at times, but this book is here to help you figure them out. So, if you
want to use Java and want an alternative to the traditional techie, soft-cover
book, sit down, relax, and start reading Java 2 For Dummies, 2nd Edition.

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You
can’t break anything by writing Java code, so you’re always free to experiment.

But let me be honest. If you don’t understand the bigger picture, writing a
program is difficult. That’s true with any computer programming language —
not just Java. If you’re typing code without knowing what it’s about, and the
code doesn’t do exactly what you want it to do, you’re just plain stuck.

So, in this book, I divide Java programming into manageable chunks. Each
chunk is (more or less) a chapter. You can jump in anywhere you want —
Chapter 5, Chapter 10, or wherever. You can even start by poking around in
the middle of a chapter. I’ve tried to make the examples interesting without
making one chapter depend on another. When I use an important idea from
another chapter, I include a note to help you find your way around.

In general, my advice is as follows:

� If you already know something, don’t bother reading about it.

� If you’re curious, don’t be afraid to skip ahead. You can always sneak a
peek at an earlier chapter if you really need to do so.

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Java 2
For Dummies, 2nd Edition, is no exception. What follows is a brief explanation
of the typefaces used in this book:

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 1

� New terms are set in italics.

� If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject
in the text field.”

� You also see this computerese font. I use computerese for Java code,
filenames, Web page addresses (URLs), on-screen messages, and other
such things. Also, if something you need to type is really long, it appears
in computerese font on its own line (or lines).

� You need to change certain things when you type them on your own
computer keyboard. For instance, I may ask you to type

public class Anyname

which means that you type public class and then some name that you
make up on your own. Words that you need to replace with your own
words are set in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you may hate making decisions as much as I
do. If so, here are some guidelines that you can follow:

� If you already know what kind of an animal Java is and know that you
want to use Java, skip Chapter 1 and go straight to Chapter 2. Believe
me, I won’t mind.

� If you already know how to get a Java program running, skip Chapter 2
and start with Chapter 3.

� If you write programs for a living but use any language other than C or
C++, start with Chapter 2 or 3. When you reach Chapters 5 and 6, you’ll
probably find them to be easy reading. When you get to Chapter 7, it’ll
be time to dive in.

� If you write C (not C++) programs for a living, start with Chapters 3 and 4
but just skim Chapters 5 and 6.

� If you write C++ programs for a living, glance at Chapter 3, skim Chapters
4 through 6, and start reading seriously in Chapter 7. (Java is a bit differ-
ent from C++ in the way it handles classes and objects.)

� If you write Java programs for a living, come to my house and help me
write Java 2 For Dummies, 3rd Edition.

If you want to skip the sidebars and the Technical Stuff icons, please do. In
fact, if you want to skip anything at all, feel free.

2 Java 2 For Dummies, 2nd Edition

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 2

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

� I assume that you have access to a computer. Here’s the good news:
You can run the code in this book on almost any computer. The only
computers that you can’t use to run this code are ancient things that are
more than six years old (give or take a few years).

� I assume that you can navigate through your computer’s common
menus and dialog boxes. You don’t have to be a Windows, Unix, or
Macintosh power user, but you should be able to start a program, find a
file, put a file into a certain directory . . . that sort of thing. Most of the
time, when you practice the stuff in this book, you’re typing code on
your keyboard, not pointing and clicking your mouse.

On those rare occasions when you need to drag and drop, cut and paste,
or plug and play, I guide you carefully through the steps. But your com-
puter may be configured in any of several billion ways, and my instruc-
tions may not quite fit your special situation. So, when you reach one of
these platform-specific tasks, try following the steps in this book. If the
steps don’t quite fit, consult a book with instructions tailored to your
system.

� I assume that you can think logically. That’s all there is to programming
in Java — thinking logically. If you can think logically, you’ve got it made.
If you don’t believe that you can think logically, read on. You may be
pleasantly surprised.

� I make very few assumptions about your computer programming
experience (or your lack of such experience). In writing this book, I’ve
tried to do the impossible. I’ve tried to make the book interesting for
experienced programmers, yet accessible to people with little or no pro-
gramming experience. This means that I don’t assume any particular
programming background on your part. If you’ve never created a loop or
indexed an array, that’s okay.

On the other hand, if you’ve done these things (maybe in Visual Basic,
COBOL, or C++), you’ll discover some interesting plot twists in Java. The
developers of Java took the best ideas in object-oriented programming,
streamlined them, reworked them, and reorganized them into a sleek,
powerful way of thinking about problems. You’ll find many new, thought-
provoking features in Java. As you find out about these features, many of
them will seem very natural to you. One way or another, you’ll feel good
about using Java.

3Introduction

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 3

How This Book Is Organized
This book is divided into subsections, which are grouped into sections,
which come together to make chapters, which are lumped finally into six
parts. (When you write a book, you get to know your book’s structure pretty
well. After months of writing, you find yourself dreaming in sections and
chapters when you go to bed at night.) The parts of the book are listed here.

Part I: Getting Started
This part is your complete executive briefing on Java. It includes a “What is
Java?” chapter and a complete set of instructions on installing and running
Java. It also has a jump-start chapter — Chapter 3. In this chapter, you visit
the major technical ideas and dissect a simple program.

Part II: Writing Your Own Java Programs
Chapters 4 through 6 cover the basic building blocks. These chapters
describe the things that you need to know so you can get your computer
humming along.

If you’ve written programs in Visual Basic, C++, or any another language,
some of the material in Part II may be familiar to you. If so, you can skip some
sections or read this stuff quickly. But don’t read too quickly. Java is a little
different from some other programming languages, especially in the things
that I describe in Chapter 4.

Part III: Working with the Big Picture:
Object-Oriented Programming
Part III has some of my favorite chapters. This part covers the all-important
topic of object-oriented programming. In these chapters, you find out how to
map solutions to big problems. (Sure, the examples in these chapters aren’t
big, but the examples involve big ideas.) In bite-worthy increments, you dis-
cover how to design classes, reuse existing classes, and construct objects.

Have you read any of those books that explain object-oriented programming
in vague, general terms? I’m very proud to say that Java 2 For Dummies, 2nd
Edition, isn’t like that. In this book, I illustrate each concept with a simple-yet-
concrete program example.

4 Java 2 For Dummies, 2nd Edition

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 4

Part IV: Savvy Java Techniques
If you’ve tasted some Java and want more, you can find what you need in this
part of the book. This part’s chapters are devoted to details — the things that
you don’t see when you first glance at the material. So, after you read the ear-
lier parts and write some programs on your own, you can dive in a little
deeper by reading Part IV.

Part V: The Part of Tens
The Part of Tens is a little Java candy store. In the Part of Tens, you can find
lists — lists of tips for avoiding mistakes, resources, and all kinds of interesting
goodies.

Part VI: Appendixes
The book has two appendixes. One appendix tells you all about this book’s
CD-ROM (what’s on the CD, how to use the CD, how to make the CD look like
a UFO at night, and so on). The other appendix summarizes some important
rules for writing Java programs. To find out which parts of your code spill
over automatically into other peoples’ code, read the second appendix.

Bonus Chapters on the CD-ROM!
You’ve read the Java 2 For Dummies book, seen the Java 2 For Dummies
movie, worn the Java 2 For Dummies T-shirt, and eaten the Java 2 For
Dummies candy. What more is there to do?

That’s easy. Just pop in the book’s CD-ROM and you can find four additional
chapters:

� In Chapter 15, you combine several smaller programs to create a bigger
program. As part of that process, you find out which parts of one pro-
gram are of use to any other program. You get an expanded description
of the material in Appendix B.

� In Chapter 16, you handle button clicks, keystrokes, and other such
things. You find out about one additional Java language feature (some-
thing like a Java class) called an interface.

5Introduction

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 5

� In Chapter 17, you deal with Java applets. You put applets on Web
pages, draw things, and make things move. You create a small game that
visitors to your site can play.

� In Chapter 18, you see an example of Java database handling. The exam-
ple takes you from start to finish — from establishing a connection and
creating a table to adding rows and making queries.

Note: For you Web fanatics out there, you can also read the bonus chapters
on the Web at www.dummies.com/go/java2_fd.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence in my head. Most of the sentences I
mutter several times. When I have an extra thought, a side comment, or
something that doesn’t belong in the regular stream, I twist my head a little
bit. That way, whoever’s listening to me (usually nobody) knows that I’m off
on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book.

A tip is an extra piece of information — something helpful that the other
books may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark it
with a Warning icon.

Question: What’s stronger than a Tip, but not as strong as a Warning?

Answer: A Remember icon.

“If you don’t remember what such-and-such means, see blah-blah-blah,” or “For
more information, read blahbity-blah-blah.”

6 Java 2 For Dummies, 2nd Edition

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 6

This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of this
introduction!)

I use this icon to point out useful stuff that’s on the CD (obviously).

Occasionally I run across a technical tidbit. The tidbit may help you under-
stand what the people behind the scenes (the people who developed Java)
were thinking. You don’t have to read it, but you may find it useful. You may
also find the tidbit helpful if you plan to read other (more geeky) books about
Java.

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Java. Think of me
(the author) as your guide, your host, your personal assistant. I do everything
I can to keep things interesting and, most importantly, help you understand.

If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is Java2ForDummies@
BurdBrain.com. And don’t forget — for the latest updates, visit one of this
book’s support Web sites. The support sites’ addresses are www.BurdBrain.
com and www.dummies.com/go/java2_fd.

7Introduction

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 7

8 Java 2 For Dummies, 2nd Edition

00c_568582_cintro.qxd 7/27/04 11:39 PM Page 8

Part I
Getting Started

01a_568582 pp01.qxd 7/27/04 11:40 PM Page 9

In this part . . .

Become acquainted with Java. Find out what Java is
all about, and whether you do (or don’t) want to use

Java. If you’ve heard things about Java and aren’t sure
what they mean, the material in this part can help you. If
you’re staring at your computer, wondering how you’re
going to get a Java program running, this part has the
information that you need. Maybe you’ve told people that
you’re a Java expert, and now you need to do some seri-
ous bluffing. If so, this part of the book is your crash
course in Java. (Of course, if the word bluffing describes
you accurately, you may also want to pick up a copy of
Ethics For Dummies.)

01a_568582 pp01.qxd 7/27/04 11:40 PM Page 10

Chapter 1

All about Java
In This Chapter
� What Java is

� Where Java came from

� Why Java is so cool

� How to orient yourself to object-oriented programming

Say what you want about computers. As far as I’m concerned, computers
are good for just two simple reasons:

� When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for SETI@home — the search
for extraterrestrial intelligence. Do I feel sorry for my computer because
it’s working so hard? Does the computer complain? Will the computer
report me to the National Labor Relations Board? No.

I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

� Computers move ideas, not paper. Not long ago, when you wanted to
send a message to someone, you hired a messenger. The messenger got
on his or her horse and delivered your message personally. The message
was on paper, parchment, a clay tablet, or whatever physical medium
was available at the time.

This whole process seems wasteful now, but that’s only because you and
I are sitting comfortably at the dawn of the electronic age. The thing is
that messages are ideas. Physical things like ink, paper, and horses have
little or nothing to do with real ideas. These physical things are just tem-
porary carriers for ideas (temporary because people used them to carry
ideas for several centuries). But, in truth, the ideas themselves are
paperless, horseless, and messengerless.

So the neat thing about computers is that they carry ideas efficiently.
They carry nothing but the ideas, a couple of photons, and a little elec-
trical power. They do this with no muss, no fuss, and no extra physical
baggage.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 11

When you start dealing efficiently with ideas, something very nice happens.
Suddenly, all the overhead is gone. Instead of pushing paper and trees, you’re
pushing numbers and concepts. Without the overhead, you can do things
much faster and do things that are far more complex than ever before.

What You Can Do with Java
It would be so nice if all this complexity was free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what the computer will be
asked to do. After that thinking is done, someone has to write a set of instruc-
tions for the computer to follow.

Given the current state of affairs, you can’t write these instructions in English
or any other language that people speak. Science fiction is filled with stories
about people who say simple things to robots and get back disastrous, unex-
pected results. English and other such languages are unsuitable for communi-
cation with computers for several reasons:

� An English sentence can be misinterpreted. “Chew one tablet three
times a day until finished.”

� It’s difficult to weave a very complicated command in English. “Join
flange A to protuberance B, making sure to connect only the outermost
lip of flange A to the larger end of the protuberance B, while joining the
middle and inner lips of flange A to grommet C.”

� An English sentence has lots of extra baggage. “Sentence has unneeded
words.”

� English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’),
Wiley shall pay the sum of one-thousand-two-hundred-fifty-seven dollars
and sixty-three cents ($1,257.63) to the Author for partial submittal of
Java 2 For Dummies, 2nd Edition (‘the Work’).”

To tell a computer what to do, you have to speak a special language and write
terse, unambiguous instructions in that language. A special language of this
kind is called a computer programming language. A set of instructions, written
in such a language, is called a program. When they’re looked at as a big blob,
these instructions are called software or code. Here’s what code looks like
when it’s written in Java:

import static java.lang.System.out;

class PayBarry {
public static void main(String args[]) {

12 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 12

double checkAmount = 1257.63;
out.print(“Pay to the order of “);
out.print(“Dr. Barry Burd “);
out.print(“$”);
out.println(checkAmount);

}
}

Why You Should Use Java
It’s time to celebrate! You’ve just picked up a copy of Java 2 For Dummies,
2nd Edition, and you’re reading Chapter 1. At this rate, you’ll be an expert
Java programmer in no time at all, so rejoice in your eventual success by
throwing a big party.

To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake
cake mix. Let me see . . . add water to the mix, and then add butter and eggs . . .
Hey, wait! I just looked at the list of ingredients. What’s MSG? And what about
propylene glycol? That’s used in antifreeze, isn’t it?

I’ll change plans and make the cake from scratch. Sure, it’s a little harder. But
that way, I get exactly what I want.

Computer programs work the same way. You can use somebody else’s pro-
gram or write your own. If you use somebody else’s program, you use what-
ever you get. When you write your own program, you can tailor the program
especially for your needs.

Writing computer code is a big, worldwide industry. Companies do it, free-
lance professionals do it, hobbyists do it, all kinds of people do it. A typical
big company has teams, departments, and divisions that write programs for
the company. But you can write programs for yourself or someone else, for a
living or for fun. In a recent estimate, the number of lines of code written
each day by programmers in the United States alone exceeds the number of
methane molecules on the planet Jupiter.* Take almost anything that can be
done with a computer. With the right amount of time, you can write your own
program to do it. (Of course, the “right amount of time” may be very long, but
that’s not the point. Many interesting and useful programs can be written in
hours or even minutes.)

* I made up this statistic all by myself.

13Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 13

Getting Perspective: Where Java Fits In
Here’s a brief history of modern computer programming:

� 1954–1957: FORTRAN is developed.

FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers through-
out the world. A well-known computer scientist, Tony Hoare, once said,
“I don’t know what the language of the year 2000 will look like, but I
know it will be called FORTRAN.”

� 1959: COBOL is created.

The letter B in COBOL stands for Business, and business is just what
COBOL is all about. The language’s primary feature is the processing of
one record after another, one customer after another, or one employee
after another.

Within a few years after its initial development, COBOL became the most
widely used language for business data processing. Even today, COBOL
represents a large part of the computer programming industry.

� 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language.

The look and feel that you see in this book’s examples come from the C
programming language. Code written in C uses curly braces, if state-
ments, for statements, and so on.

In terms of power, you can use C to solve the same problems that you
can solve by using FORTRAN, Java, or any other modern programming
language. (You can write a scientific calculator program in COBOL, but
doing that sort of thing would feel really strange.) The difference
between one programming language and another isn’t power. The differ-
ence is ease and appropriateness of use. That’s where the Java language
excels.

� 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++.

Unlike its C language ancestor, the language C++ supports object-
oriented programming. This represents a huge step forward.

� May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language.

Java improves upon the concepts in C++. Unlike C++, Java is streamlined
for use on the World Wide Web. Java’s “Write Once, Run Anywhere” phi-
losophy makes the language ideal for distributing code across the
Internet.

14 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 14

In addition, Java is a great general-purpose programming language. With
Java, you can write windowed applications, build and explore databases,
control handheld devices, and more. Within five short years, the Java
programming language had 2.5 million developers worldwide. (I know. I
have a commemorative T-shirt to prove it.)

� November 2000: The College Board announces that, starting in the
year 2003, the Computer Science Advanced Placement exams will be
based on Java.

Wanna know what that snot-nosed kid living down the street is going to
be learning in high school next year? You guessed it — Java.

� March 2003: SkillMarket (mshiltonj.com/sm) reports that the demand
for Java programmers tops the demand for C++ programmers by 42
percent.

And there’s more! The demand for Java programmers beats the com-
bined demand for C++ and C# programmers by 10 percent. Java pro-
grammers are more employable than VB (Visual Basic) programmers by
a whopping 111 percent.

Object-Oriented Programming (OOP)
It’s three in the morning. I’m dreaming about the history course that I failed
in high school. The teacher is yelling at me, “You have two days to study for
the final exam, but you won’t remember to study. You’ll forget and feel guilty,
guilty, guilty.”

Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even
less.) At first, I drop the telephone on the floor. After fumbling to pick it up, I
issue a grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from The
New York Times. I’m writing an article about Java and I need to know all about
the programming language in five words or less. Can you explain it?”

My mind is too hazy. I can’t think. So I say anything that comes to my mind,
and then go back to sleep.

Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where
he could put his article about Java?

I put on my robe and rush to the front of my house’s driveway. As I pick up
the morning paper, I glance at the front page and see the two-inch headline:

Burd Calls Java “A Great Object-Oriented Language”

15Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 15

Object-oriented languages
Java is object-oriented. What does that mean? Unlike languages such as FOR-
TRAN, which focus on giving the computer imperative “Do this/Do that” com-
mands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. You start, however, by organizing
the data, and the commands come later.

Object-oriented languages are better than “Do this/Do that” languages
because they organize data in a way that lets people do all kinds of things
with it. To modify the data, you can build on what you already have, rather
than scrap everything you’ve done and start over each time you need to do
something new. Although computer programmers are generally smart people,
they took awhile to figure this out. For the full history lesson, see the sidebar
“The winding road from FORTRAN to Java” (but I won’t make you feel guilty if
you don’t read it).

16 Part I: Getting Started

The winding road from FORTRAN to Java
Back in the mid-1950s, a team of people created
a programming language named FORTRAN. It
was a good language, but it was based on the
idea that you should issue direct, imperative
commands to the computer. “Do this, computer.
Then do that, computer.” (Of course, the com-
mands in a real FORTRAN program were much
more precise than “Do this” or “Do that.”)

In the years that followed, teams developed
many new computer languages, and many of
the languages copied the FORTRAN “Do this/Do
that” model. One of the more popular “Do this/Do
that” languages went by the one-letter name C.
Of course, the “Do this/Do that” camp had some
renegades. In languages named SIMULA and
Smalltalk, programmers moved the imperative
“Do this” commands into the background and
concentrated on descriptions of data. In these
languages, you didn’t come right out and say,
“Print a list of delinquent accounts.” Instead,
you began by saying, “This is what it means to
be an account. An account has a name and a
balance.” Then you said, “This is how you ask

an account whether it’s delinquent.” Suddenly,
the data became king. An account was a thing
that had a name, a balance, and a way of telling
you whether it was delinquent.

Languages that focus first on the data are called
object-oriented programming languages. These
object-oriented languages make excellent pro-
gramming tools. Here’s why:

� Thinking first about the data makes you a
good computer programmer.

� You can extend and reuse the descriptions
of data over and over again. When you try
to teach old FORTRAN programs new tricks,
however, the old programs show how brittle
they are. They break.

In the 1970s, object-oriented languages like
SIMULA and Smalltalk became buried in the
computer hobbyist magazine articles. In the
meantime, languages based on the old FOR-
TRAN model were multiplying like rabbits.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 16

Objects and their classes
In an object-oriented language, you use objects and classes to organize your
data.

Imagine that you’re writing a computer program to keep track of the houses in
a new real-estate development. The development (still under construction) is
a condominium. The houses differ only slightly from one another. Each house
has a distinctive siding color, an indoor paint color, a kitchen cabinet style, and
so on. In your object-oriented computer program, each house is an object.

But objects aren’t the whole story. Although the houses differ slightly from one
another, all the houses share the same list of characteristics. For instance, each
house has a characteristic known as siding color. Each house has another
characteristic known as kitchen cabinet style. In your object-oriented pro-
gram, you need a master list containing all the characteristics that a house
object can possess. This master list of characteristics is called a class.

So there you have it. Object-oriented programming is misnamed. It should
really be called “programming with classes and objects.”

17Chapter 1: All about Java

So in 1986, a fellow named Bjarne Stroustrup
created a language named C++. The C++ lan-
guage became very popular because it mixed
the old C language terminology with the
improved object-oriented structure. Many com-
panies turned their backs on the old FORTRAN/C
programming style and adopted C++ as their
standard.

But C++ had a flaw. Using C++, you could
bypass all the object-oriented features and
write a program by using the old FORTRAN/C
programming style. When you started writing a
C++ accounting program, you could take either
fork in the road:

� You could start by issuing direct “Do this”
commands to the computer, saying the
mathematical equivalent of “Print a list of
delinquent accounts, and make it snappy.”

� You could take the object-oriented approach
and begin by describing what it means to be
an account.

Some people said that C++ offered the best of
both worlds, but others argued that the first
world (the world of FORTRAN and C) shouldn’t
be part of modern programming. If you gave a
programmer an opportunity to write code either
way, the programmer would too often choose to
write code the wrong way.

So in 1995, James Gosling of Sun Microsystems
created the language named Java. In creating
Java, Gosling borrowed the look and feel of C++.
But Gosling took most of the old “Do this/Do
that” features of C++ and threw them in the
trash. Then he added features that made the
development of objects smoother and easier. All
in all, Gosling created a language whose object-
oriented philosophy is pure and clean. When
you program in Java, you have no choice but to
work with objects. That’s the way it should be.

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 17

Now notice that I put the word classes first. How dare I do this! Well, maybe
I’m not so crazy. Think again about a housing development that’s under con-
struction. Somewhere on the lot, in a rickety trailer parked on bare dirt, is a
master list of characteristics known as a blueprint. An architect’s blueprint is
like an object-oriented programmer’s class. A blueprint is a list of characteris-
tics that each house will have. The blueprint says, “siding.” The actual house
object has gray siding. The blueprint says, “kitchen cabinet.” The actual
house object has Louis XIV kitchen cabinets.

The analogy doesn’t end with lists of characteristics. Another important par-
allel exists between blueprints and classes. A year after you create the blue-
print, you use it to build ten houses. It’s the same with classes and objects.
First, the programmer writes code to describe a class. Then when the pro-
gram runs, the computer creates objects from the (blueprint) class.

So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

What’s so good about an
object-oriented language?
Based on the previous section’s story about home building, imagine that you
have already written a computer program to keep track of the building
instructions for houses in a new development. Then, the big boss decides on
a modified plan — a plan in which half the houses have three bedrooms, and
the other half have four.

If you use the old FORTRAN/C style of computer programming, your instruc-
tions look like this:

Dig a ditch for the basement.
Lay concrete around the sides of the ditch.
Put two-by-fours along the sides for the basement’s frame.
...

This would be like an architect creating a long list of instructions instead of a
blueprint. To modify the plan, you would have to sort through the list to find
the instructions for building bedrooms. To make things worse, the instructions
could be scattered among pages 234, 394–410, 739, 10, and 2. If the builder had
to decipher other peoples’ complicated instructions, the task would be ten
times harder.

Starting with a class, however, is like starting with a blueprint. If someone
decides to have both three- and four-bedroom houses, you can start with a
blueprint called the house blueprint that has a ground floor and a second

18 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 18

floor, but has no indoor walls drawn on the second floor. Then, you make two
more second-floor blueprints — one for the three-bedroom house and
another for the four-bedroom house. (You name these new blueprints the
three-bedroom house blueprint and the four-bedroom house blueprint.)

Your builder colleagues are amazed with your sense of logic and organiza-
tion, but they have concerns. They pose a question. “You called one of the
blueprints the ‘three-bedroom house’ blueprint. How can you do this if it’s a
blueprint for a second floor, and not for a whole house?”

You smile knowingly and answer, “The three-bedroom house blueprint can
say, ‘For info about the lower floors, see the original house blueprint.’ That
way, the three-bedroom house blueprint describes a whole house. The four-
bedroom house blueprint can say the same thing. With this setup, we can
take advantage of all the work we already did to create the original house
blueprint and save lots of money.”

In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can
also say that the three- and four-bedroom house classes are extending the
original house class. (See Figure 1-1.)

The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are sub-
classes of the original house class. Put another way, the original house class
is called the parent class of three- and four-bedroom house classes. The three-
and four-bedroom house classes are child classes of the original house class.
(See Figure 1-1.)

house class

The three-bedroom house class
extends the house class,
inherits the features of the house class,
is a subclass of the house class,
is a child class of the house class.

The four-bedroom house class
extends the house class,
inherits the features of the house class,
is a subclass of the house class,
is a child class of the house class.

The house class is
thesuperclass of the three-bedroom house class,
theparent class of the three-bedroom house class,
thesuperclass of the four-bedroom house class,
theparent class of the four-bedroom house class.

Superclass Parent

three-bedroom
house class

four-bedroom
house class

Subclass ChildSubclass ChildSubclass Child

Figure 1-1:
Terminology

in object-
oriented

program-
ming.

19Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 19

Needless to say, your home-builder colleagues are jealous. A crowd of home-
builders is mobbing around you to hear about your great ideas. So, at that
moment, you drop one more bombshell: “By creating a class with subclasses,
we can reuse the blueprint in the future. If someone comes along and wants a
five-bedroom house, we can extend our original house blueprint by making a
five-bedroom house blueprint. We’ll never have to spend money for an origi-
nal house blueprint again.”

“But,” says a colleague in the back row, “what happens if someone wants a
different first-floor design? Do we trash the original house blueprint or start
scribbling all over the original blueprint? That’ll cost big bucks, won’t it?”

In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a new,
small blueprint describing only the new living room and call this the Jacuzzi-
in-living-room house blueprint. Then, this new blueprint can refer to the origi-
nal house blueprint for info on the rest of the house (the part that’s not in the
living room).” In the language of object-oriented programming, the Jacuzzi-in-
living-room house blueprint still extends the original house blueprint. The
Jacuzzi blueprint is still a subclass of the original house blueprint. In fact, all
the terminology about superclass, parent class, and child class still applies.
The only thing that’s new is that the Jacuzzi blueprint overrides the living
room features in the original house blueprint.

In the days before object-oriented languages, the programming world experi-
enced a crisis in software development. Programmers wrote code, then dis-
covered new needs, and then had to trash their code and start from scratch.
This happened over and over again because the code that the programmers
were writing couldn’t be reused. Object-oriented programming changed all
this for the better (and, as Burd said, Java is “A Great Object-Oriented
Language”).

Refining your understanding
of classes and objects
When you program in Java, you work constantly with classes and objects.
These two ideas are really important. That’s why, in this chapter, I hit you
over the head with one analogy after another about classes and objects.

Close your eyes for a minute and think about what it means for something to
be a chair. . . .

A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree of
softness, and so on. These are the properties that a chair possesses. What I

20 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 20

describe is chairness — the notion of something being a chair. In object-
oriented terminology, I’m describing the chair class.

Now peek over the edge of this book’s margin and take a minute to look
around your room. (If you’re not sitting in a room right now, fake it.)

Several chairs are in the room, and each chair is an object. Each of these
objects is an example of that ethereal thing called the Chair class. So that’s
how it works — the class is the idea of chairness, and each individual chair is
an object.

A class isn’t quite a collection of things. Instead, a class is the idea behind a
certain kind of thing. When I talk about the class of chairs in your room, I’m
talking about the fact that each chair has legs, a seat, a color, and so on. The
colors may be different for different chairs in the room, but that doesn’t
matter. When you talk about a class of things, you’re focusing on the proper-
ties that each of the things possesses.

It makes sense to think of an object as being a concrete instance of a class. In
fact, the official terminology is consistent with this thinking. If you write a
Java program in which you define a Chair class, each actual chair (the chair
that you’re sitting on, the empty chair right next to you, and so on) is called
an instance of the Chair class.

Here’s another way to think about a class. Imagine a table displaying all three
of your bank accounts. (See Table 1-1.)

Table 1-1 A Table of Accounts
Account Number Type Balance

16-13154-22864-7 Checking 174.87

1011 1234 2122 0000 Credit -471.03

16-17238-13344-7 Savings 247.38

Think of the table’s column headings as a class, and think of each row of the
table as an object. The table’s column headings describe the Account class.

According to the table’s column headings, each account has an account
number, a type, and a balance. Rephrased in the terminology of object-
oriented programming, each object in the Account class (that is, each
instance of the Account class) has an account number, a type, and a
balance. So, the bottom row of the table is an object with account number

21Chapter 1: All about Java

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 21

16-17238-13344-7. This same object has type Savings and a balance of 247.38.
If you opened a new account, you would have another object, and the table
would grow an additional row. The new object would be an instance of the
same Account class.

What’s Next?
This chapter is filled with general descriptions of things. A general descrip-
tion is good when you’re just getting started, but you don’t really understand
things until you get to know some specifics. That’s why the next several
chapters deal with specifics.

So please, turn the page. The next chapter can’t wait for you to read it.

22 Part I: Getting Started

01b_568582 ch01.qxd 7/27/04 11:40 PM Page 22

Chapter 2

Running Canned Java Programs
In This Chapter
� Setting up your computer to run Java

� Running text-based programs

� Running window-based programs

� Running Java applets

The best way to get to know Java is to do Java. When you’re doing Java,
you’re writing, testing, and running your own Java programs. This chap-

ter gets you ready to do Java by having you run and test programs. Instead of
writing your own programs, however, you get to run programs I’ve already
written for you — nice guy that I am.

Downloading and Installing the Java
Software Development Kit (SDK)

First you need some Java development software. You can choose from several
products. In fact, you may already have one of these products on your own
computer. If you don’t, you can download the basic software by visiting a Sun
Microsystems Web site. The product that you want to download is known by
a few different names. It’s called the Java 2 Software Development Kit (SDK),
the Java Development Kit (JDK), and the Java 2 Standard Edition (J2SE).

This section tells you how to download and install the Java SDK. First, I give a
condensed, quick-start set of instructions. Then, I present a detailed, read-
every-step-carefully version.

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 23

So what follows is the condensed, quick-start version of instructions for use
with Microsoft Windows systems. If these instructions are too condensed for
you, follow the detailed instructions that come immediately after these quick
instructions.

If you’re using Linux, Unix, Macintosh, or some other non-Windows system,
visit this book’s Web site for further instructions.

1. Visit java.sun.com.

2. Find a link to download the J2SE 5.0 (the Java 2 Standard Edition,
version 5.0).

If you find some other 1.5.x version, like 1.5.1_02, that’s fine. Just make
sure that you have a version numbered 1.5.something-or-other or higher.

3. Download the SDK, not the JRE.

The JRE (Java Runtime Environment) isn’t harmful to your computer,
but the JRE isn’t enough. To create your own Java programs, you need
more than the JRE. You need the entire SDK. (Besides, when you run the
install program for the SDK, the install program offers to put both the
SDK and the JRE on your computer.)

4. Double-click the icon of the downloaded file and follow the wizard’s
instructions for installing the Java SDK.

As the installation begins, the wizard asks you to choose from among
several components that can possibly by installed. You can choose to
have some or all of the components installed. Just make sure that your
choice includes the development tools and the JRE.

You also see the name of the directory in which the Java SDK is to be
installed. Jot down the exact name of the directory. It’s something like
jdk1.5 or C:\Program Files\Java\jdk1.5. (For some Java versions,
the name starts with j2sdk.) Whatever the directory’s name is, I call this
your Java home directory.

At some point, the wizard asks whether you want to register your Web
browser with the latest Java plug-in. If you plan to create Java applets,
accept this option and register your browser. (Even if you won’t be writ-
ing applets, it’s a good idea to register your browser.)

5. Return to the page where you found the SDK download. Get another
download — the J2SE Documentation (also known as the J2SE API
Documentation).

6. Extract the zipped J2SE Documentation to your Java home directory.

Your Java home directory comes with several subdirectories — bin, jre,
lib, and a few others. After the extraction, your Java home directory
has a new directory named docs. I call this new directory your Javadoc
directory.

24 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 24

Downloading Java
If the previous instructions are too quick for you, you can follow this sec-
tion’s detailed instructions.

The Sun Microsystems Web site changes from week to week. By the time you
read this book, my detailed instructions may be obsolete. So as you read
these instructions, be ready for some surprises. Be prepared to do some
hunting on Sun’s Java Web site. Expect to find a few options that were added
to the site after I wrote this chapter. If you get lost, check this book’s Web site
for more up-to-date instructions.

Here are the detailed instructions for downloading the Java SDK:

1. Visit java.sun.com.

2. On the java.sun.com home page’s right margin, look for something
called Popular Downloads.

3. Under Popular Downloads, look for a J2SE 5.0 link.

The next thing you see is a page full of download links.

Most of the programs in this book run only under Java 1.5.0 beta, or
later. They do not run under any version earlier than Java 1.5.0 beta. In
particular, they do not run under Java 1.4 or under Java 1.4.2.

4. Take a few minutes to examine the download links.

Depending on what Sun Microsystems has cooking when you visit the
Web site, you may find variations on the simple J2SE link. You may see
the word Platform and the abbreviations SDK and JRE. You also see ver-
sion numbers, such as 5.0. You want the highest version number that’s
available at the Web site.

Avoid links that are labeled JRE because they lead to the software for
running existing Java programs, not the software for writing new Java
programs. It’s not bad to have the JRE on your computer, but in order
to write new Java programs, you need something more powerful than
the JRE. You need the SDK. (In fact, when you download the SDK, you
get the JRE along with the SDK. So don’t download the JRE separately.)

5. Click the link to download the latest version of the SDK.

At java.sun.com, you can find downloads for Windows, Linux, and
Solaris. If your favorite operating environment isn’t Windows, Linux,
or Solaris, don’t despair. Many third-party vendors have converted
Java to other environments. If the Mac is your thing, visit developer.
apple.com/java.

Clicking the SDK download link brings you to the Sun Microsystems
License Agreement page.

25Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 25

6. Do whatever you normally do with license agreements.

I won’t be the one to tell you not to bother reading it. If you accept the
agreement, you’re taken to yet another Web page.

7. On this final Web page, click the link or button to start the download.

For Windows, the Web page offers two kinds of installation downloads —
the regular (online) installation and the offline installation. I prefer the
offline installation, but you may prefer the online installation.

• The online installation is good if you want to save space on your
hard drive.

Clicking the online installation link puts a tiny file on your hard
drive. Eventually, your hard drive has one tiny file plus the
installed Java SDK.

• The offline installation is good if you ever want to reinstall the
Java SDK.

Clicking the offline installation link downloads a huge setup file on
your hard drive. Eventually, your hard drive has a huge setup file
plus the installed Java SDK.

The huge setup file takes an extra 50MB on your hard drive, but if
you ever want to reinstall Java, you have the setup file right where
you need it.

As you begin downloading the tiny online file or the huge offline setup file,
note the directory on your hard drive where the file is being deposited.

8. Return to the Web page that you were visiting in Step 4. On that page,
find a link to the J2SE Documentation (also known as the J2SE API
Documentation).

The Java language has a built-in feature for creating consistent, nicely
formatted documentation in Web page format. As a Java programmer,
you won’t survive without a copy of the Application Programming
Interface (API) documentation by your side. You can bookmark the doc-
umentation at the java.sun.com site and revisit the site whenever you
need to look up something. But in the long run (and in the not-so-long
run), you can save time by downloading your own copy of the API docs.

See Chapter 3 for more about the API.

9. Download the API documentation.

The documentation comes inside a big Zip file. Just leave this file on
your hard drive for now. You don’t unzip the file until you read the next
section’s instructions.

26 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 26

Installing Java on your computer
After you download the Java SDK, you’re ready to install the software on your
computer. Of course, you can do this 900 different ways, depending on your
operating system, the names of directories on your hard drive, the wind
velocity, and other factors. The following steps offer some guidelines:

1. Open My Computer and find the SDK file that you downloaded.

The file has a name like jdk1.5-blah-blah.exe or j2sdk1.
5-yada-yada.exe. The exact name depends on the operating system
you’re using, the version number that Sun has reached with Java, and
whatever naming conventions the people at Sun have changed since
book was written.

2. Double-click the SDK file’s icon.

What happens next depends on which option you chose in Step 7 of the
previous set of instructions.

• If you downloaded the tiny online installation file, your computer
downloads more files from the Internet and installs Java while it
downloads.

• If you downloaded the huge offline installation file, your computer
extracts the contents of the huge setup file and installs Java from
these contents.

3. Among the features that you select to install, make sure you select
Development Tools and Public Java Runtime Environment. (See
Figure 2-1.)

You can choose to have some or all of the components installed. Just
make sure that your choice includes these two items.

4. Jot down the name of the directory in which the Java SDK is being
installed and then click Next.

From one version to the next, the installation package puts Java in differ-
ent directories on the computer’s hard drive. Lately the package has
installed Java in a directory named C:\Program Files\Java\jdk1.5.0.
During the installation on your computer, you may see a different direc-
tory name. (One way or another, the name probably has jdk or j2sdk
in it.)

Take note of this directory name when the installation package displays it.
(Refer to Figure 2-1.) This directory is called your Java home directory.
You need the name of this directory in other sections of this chapter and
in other chapters of this book.

27Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 27

If you’re a Windows user, Program Files is probably part of your Java
home directory’s name. Whenever I tell you to type the directory’s name,
it’s a good idea to type an abbreviated version that doesn’t include the
blank space. The official Windows abbreviation for Program Files is
progra~1 (with a squiggly little tilde character and 1 at the end). So if
my Java home directory is C:\Program Files\Java\jdk1.5.0, then
when I need to type the directory’s name, I usually type C:\progra~1\
Java\jdk1.5.0.

5. When you see a wizard page that offers to install the Java Web browser
plug-in, accept this option and then click Install. (See Figure 2-2.)

Installing the plug-in gives you the ability to run Java applets on your
computer.

6. Enjoy the splash screens that you see while the software is being
installed.

At the end of the installation, you click the proverbial Finish button. But
you’re still not done with the whole kit ’n caboodle. The next step is
installing the Java documentation.

7. Copy the documentation to your Java home directory.

In Step 9 of the previous section, you downloaded a file named
jdk-1_5_0-doc.zip (or something like that). Unzip (extract) this
file so that its contents are in your Java home directory.

Directory name

Figure 2-1:
A page

of the
Java SDK

installation
wizard.

28 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 28

Your Java home directory has a name like jdk1.5. That’s not the same
as another directory that you may find on your hard drive — a directory
with a name like j2re1.5.

8. Check to make sure that you unzipped the documentation correctly.

After unzipping the documentation’s Zip file, you should have a subdi-
rectory named docs in your Java home directory. So open My Computer
and navigate to your new jdkwhatever or j2sdksuch-and-such folder.
Directly inside that folder, you should see a new folder named docs.
This directory is called your Javadoc directory. (See Figure 2-3.)

When your docs are all lined up in a row, you can proceed to the next step —
installing a Java development environment.

Figure 2-3:
Your Java

home
directory

should
contain a

docs
directory.

Figure 2-2:
Say “yes” to

plug-ins.

29Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 29

Preparing to Use an Integrated
Development Environment

If you followed the instructions up to this point, you have all the software that
you need for writing and running your own Java programs. But there’s one
more thing you may want. It’s called an Integrated Development Environment
(IDE). If you don’t have an IDE, writing and running a program involves opening
several different windows — a window for typing the program, another window
for running the program, and maybe a third window to keep track of all the
code that you’ve written. An IDE seamlessly combines all this functionality
into one well-organized application.

Java has its share of integrated development environments. Some of the
more popular products include Eclipse, Borland JBuilder, NetBeans, and IBM
WebSphere. Some fancy environments even have drag-and-drop components
so that you can design your graphical interface visually. (See Figure 2-4. For
more info on the neat-o Jigloo graphical user interface builder shown here,
check out www.cloudgarden.com/jigloo/index.html.)

Figure 2-4:
Using the

Eclipse IDE
with the

Jigloo
graphical

user
interface

builder.

30 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 30

JCreator
The programs in this book work with almost any Java IDE. But in this chapter,
I show you how to use JCreator LE (Lite Edition). I chose JCreator LE over
other IDEs for several reasons:

� JCreator LE is free.

� Among all the Java IDEs, JCreator represents a nice compromise
between power and simplicity.

� Unlike some other Java IDEs, JCreator works with almost any version
of Java, from the ancient version 1.0.2 to the new-and-revolutionary
version 5.0.

� JCreator LE is free. (It’s worth mentioning twice.)

If you’re the kind of person who prefers plain old text editors and command
prompts over IDEs, visit this book’s Web site. On that site, I’ve posted instruc-
tions for writing and running Java programs without an IDE.

This book’s CD-ROM has a special version of JCreator LE — a version that’s
customized especially for Java 2 For Dummies, 2nd Edition, readers! So please
install JCreator LE from the CD-ROM. (Who knows? You may like it a lot, and
buy JCreator Pro!)

For help installing materials from the CD-ROM, see Appendix A.

Running JCreator for the first time
The first time you run JCreator, the program asks for some configuration
information. Just follow these steps:

1. If you haven’t already done so, launch JCreator.

The JCreator Setup Wizard appears on your screen. The wizard’s first
page is for File Associations.

2. Accept the File Associations defaults and click Next.

The wizard’s next page (the JDK Home Directory page) appears.

3. Look at the text field on the JDK Home Directory page. Make sure
that this field displays the name of your Java home directory. (See
Figure 2-5.)

31Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 31

If the wrong directory name appears in the text field, just click the
Browse button and navigate to your computer’s Java home directory.

For information on your computer’s Java home directory, see Step 4 of
this chapter’s “Downloading and Installing the Java Software
Development Kit (SDK)” section, or Step 4 of this chapter’s “Installing
Java on your computer” section.

4. When you’re happy with the name in the home directory text field,
click Next.

The wizard’s last page (the JDK JavaDoc Directory page) appears.

5. Look at the text field on the JDK JavaDoc Directory page. Make sure
that this field displays the name of your Javadoc directory. (See
Figure 2-6.)

Figure 2-6:
Confirming

the location
of your

Javadoc
directory.

Figure 2-5:
Confirming

the location
of your Java

home
directory.

32 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 32

Normally, your Javadoc directory’s name is the name of your Java home
directory, followed by \docs. For information on your computer’s Javadoc
directory, see Step 6 of this chapter’s “Downloading and Installing the Java
Software Development Kit (SDK)” section, or Step 8 of this chapter’s
“Installing Java on your computer” section.

If the wrong directory name appears in the text field, just click the
Browse button and navigate to your computer’s Javadoc directory.

If you do anything wrong in Steps 3 or 4 above, you can correct your
mistake later. See this book’s Web site for details.

6. Click Finish.

At this point, the JCreator work area opens. (See Figure 2-7.)

In JCreator’s help files, the stuff in Figure 2-7 is called the workspace, not the
work area. But elsewhere in these help files, JCreator reuses the word work-
space to mean something entirely different. To avoid any confusion, I use two
different terms. I use work area for the stuff in Figure 2-7, and I use workspace
for that other, entirely different thing. (I explain that entirely different thing
later in this chapter in the section entitled “Running a text-based program.”)

Figure 2-7:
JCreator’s
work area.

33Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 33

Running Java Programs
In this section, you run three Java programs — programs I wrote to help you
practice running some Java code. Each program computes the monthly pay-
ment on a home mortgage, but each program interacts with the user in its
own unique way. After you make your way through this section, you’ll know
how to run three kinds of programs: a text-based program, a stand-alone GUI
program, and a Java applet.

Running a text-based program
The first mortgage-calculating program doesn’t open its own window.
Instead, the program runs in JCreator’s General Output pane. (See Figure 2-8.)
A program that operates completely in this General Output pane is called a
text-based program.

If you’re using Linux, Unix, Mac, or some other non-Windows system, the
instructions in this section don’t apply to you. Visit this book’s Web site for
an alternative set of instructions.

Actually, as you run the mortgage program, you see two things in the General
Output pane:

� Messages and results that the mortgage program sends to you.
Messages include things like How much are you borrowing? Results
include lines like Your monthly payment is $552.20.

� Responses that you give to the mortgage program while it runs. If you
type 100000.00 in response to the program’s question about how much
you’re borrowing, you see that number echoed in the General Output
pane.

Running the mortgage program is easy. Here’s how you do it:

1. Make sure that you’ve followed the previous instructions in this
chapter — instructions for installing the Java SDK and configuring
JCreator.

Figure 2-8:
A run of the
text-based
mortgage
program.

34 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 34

Thank goodness! You don’t have to follow those instructions more than
once.

2. Launch JCreator.

The big JCreator work area stares at you from your computer screen.
(Refer to Figure 2-7.)

If this is your first time running JCreator, you don’t see JCreator’s work
area. Instead you see the JCreator Setup Wizard. To get past the Setup
Wizard, follow the instructions in the section entitled “Running JCreator
for the first time” in this chapter.

3. In JCreator’s menu bar, choose File➪Open Workspace from the main
menu.

Don’t choose File➪Open. Instead, choose File➪Open Workspace.

A familiar-looking Open dialog box appears. This dialog box looks in
your MyProjects directory. This MyProjects directory is a subdirec-
tory of the directory in which JCreator is installed.

The MyProjects directory has subdirectories named Program0201,
Listing0302, and so on. The MyProjects directory also has files with
names like Chapter02 and Chapter03. If you set your computer so that
it doesn’t hide file extensions for known file types, then the names of the
files are Chapter02.jcw, Chapter03.jcw, and so on. (See the sidebar
entitled “Those pesky filename extensions.”)

35Chapter 2: Running Canned Java Programs

Those pesky filename extensions
The filenames displayed in My Computer or in
Windows Explorer can be misleading. You
may visit the MyProjects\Program0203
directory and see the name MyWebPage.
Instead of just MyWebPage, the file’s full
name is MyWebPage.html. You may see two
MortgageApplet files. What you don’t see is
that one file’s real name is MortgageApplet.
java, and the other file’s real name is
MortgageApplet.class.

The ugly truth is that My Computer and
Windows Explorer can hide a file’s extensions.
This awful feature tends to confuse Java pro-
grammers. So, if you don’t want to be confused,
modify the Windows Hide Extensions feature. To

do this, you have to open the Folder Options
dialog box. Here’s how:

� In Windows 95, 98, or NT: In the Windows
Explorer menu bar, choose View➪Folder
Options (or just View➪Options).

� In Windows ME or 2000: Choose Start➪
Settings➪Control Panel➪Folder Options.

� In Windows XP: Choose Start➪Control
Panel➪Performance and Maintenance➪
File Types.

In the Folder Options dialog box, click the View
tab. Then look for the Hide File Extensions for
Known File Types option. Make sure that this
check box is not selected.

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 35

4. Select the file named Chapter02 (or Chapter02.jcw), and then click
Open.

Clicking Open may coax out a message box asking if you want to “Save
the workspace modifications?” If so, click Yes. Clicking Open may coax
out another box asking if you want to “. . . close all document Windows?”
If so, click Yes.

JCreator divides things into workspaces. Each workspace is further sub-
divided into projects. To organize this book’s examples, I made a work-
space for each chapter, and then made a project for each complete Java
program. When you open Chapter02.jcw, you get my Chapter02 work-
space — a workspace that contains three projects. The projects’ names
are Program0201, Program0202, and Program0203. That’s why, in
JCreator’s File View pane, you see a Chapter02 tree with branches
labeled Program0201, Program0202, and Program0203. (See Figure 2-9.)

5. In the File View’s tree, right-click the branch labeled Program0201.
In the resulting context menu, choose Sets as Active Project. (See
Figure 2-9.)

Choosing Sets as Active Project makes Program0201 the active project.

Figure 2-9:
Three

projects in
the File

View pane.

36 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 36

In JCreator, only one project at a time can be the active project. To run a
particular program, the program’s code has to be in whatever project is
currently active. In JCreator’s File View, you can tell which project is
active by looking for the project whose name is boldface. (See Figure 2-9
once again.) On some systems, the active project’s name is a hazy, light-
gray boldface.

If a particular program isn’t in the active project, you can’t run that pro-
gram, but you can do some other things with that program. For instance,
you can see the program in one of JCreator’s panes, make changes to the
program, save the program, and so on. For this reason, it’s really easy to
get confused and forget which project is active. So always keep the
active project in the forefront of your mind. If your code doesn’t do what
you think it should do, check to make sure that the project you want to
run is the active project.

6. Choose Build➪Compile Project from the main menu.

Choosing Compile Project does exactly what it says. It compiles the pro-
ject’s code. (To find out what compile means, see the sidebar entitled
“Compiling and running a Java program.”)

After some pleasant chirping sounds from your hard drive, JCreator’s
bottom pane displays a Process completed message. (See Figure 2-10.)

7. Choose Build➪Execute Project from the main menu.

When you choose Execute Project, the computer runs the project’s
code. (That is, the computer runs a Java program that I wrote.) As part
of the run, the message How much are you borrowing? appears in
JCreator’s General Output pane. (Refer to Figure 2-8.)

8. Click anywhere inside JCreator’s General Output pane, and then type
a number, like 100000.00, and press Enter.

When you type a number in Step 8, don’t include your country’s currency
symbol and don’t use a grouping separator. (U.S. residents, don’t type a
dollar sign and don’t use commas.) Things like $100000.00 or 100,000.00
cause the program to crash. You see a NumberFormatException message
in the General Output pane.

Figure 2-10:
The

compiling
process is

completed.

37Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 37

After you press Enter, the Java program displays another message
(What’s the interest rate?) in JCreator’s General Output pane.

9. In response to the interest rate question, type a number, like 5.25, and
press Enter.

After you press Enter, the Java program displays another message (How
many years . . . ?) in JCreator’s General Output pane.

10. Type a number, like 30, and press Enter.

In response to the numbers that you’ve typed, the Java program dis-
plays a monthly payment amount. Again, refer to Figure 2-8. (Disclaimer:
Your local mortgage company will charge you much more than the
amount that my Java program calculates.)

When you type a number in Step 10, don’t include a decimal point. Things
like 30.0 cause the program to crash. You see a NumberFormatException
message in the General Output pane.

Occasionally you decide in the middle of a program’s run that you’ve
made a mistake of some kind. You want to stop the program’s run dead
in its tracks. To do this, choose Tools➪Stop Tool from the main menu.

Running a GUI on its own
In the previous section, you go through all the steps for compiling and run-
ning a text-based Java program. In this section, you go through the same
steps for a GUI. The term GUI stands for Graphical User Interface. It’s the term
used for a program that displays windows, buttons, and other nice-looking
stuff. GUI programs are good because, unlike text-based programs, they don’t
look like they’re running on your grandparents’ computers.

If you installed JCreator from this book’s CD-ROM, you can find a GUI version
of the mortgage-calculating program in a project named Program0202. To run
the program, just follow these instructions:

1. If you haven’t already done so, follow Steps 1 to 4 from the section
entitled “Running a text-based program.”

When you finish with these steps, the Chapter02 workspace is open.

JCreator remembers which workspace is open from one launch to another.
So, if you ran the text-based program and then closed JCreator, you can
just launch JCreator and skip the steps for opening the Chapter02 work-
space (Steps 3 and 4 in the text-based program section).

38 Part I: Getting Started

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 38

2. In the File View’s tree, right-click the branch labeled Program0202. In
the resulting context menu, choose Sets as Active Project.

This makes Program0202 the active project.

3. Follow Steps 6 and 7 in the “Running a text-based program” section.

This compiles and runs the Program0202 project’s code. The code dis-
plays a window like the one shown in Figure 2-11. In the window, you can
experiment and type your own values for the principal, the interest rate,
and the number of years of the loan. Whenever you change a value, the
program responds instantly by updating the value in the Payment field.

Running a GUI on a Web page
(a Java applet)
Java’s big splash onto the scene came in the mid-1990s. The people at Sun
Microsystems had managed to work Java programs into Web pages, and the
results were dazzling. The infusion of Java into the Web was powerful, effi-
cient, portable, and secure. The trick was to create a part of a program,
called an applet, and to display the applet inside a rectangle on the Web page.

These days, applets are passé. Real Java programmers roll their eyes when
they hear the word applet. There are three reasons for this:

� Since the mid-1990s, better technologies have emerged for putting eye-
catching content onto Web pages.

� Microsoft, the makers of the world’s most powerful Web browser,
refused to give their browser the most up-to-date Java tools.

� For Java programmers, the real money isn’t in creating glittery Web
pages. The real money is in business applications with J2EE.

For more information on J2EE, see Chapter 3.

Figure 2-11:
A run of
the GUI

mortgage
program.

39Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 39

40 Part I: Getting Started

Compiling and running a Java program
What does it mean for JCreator to “compile your
project?” A compiler is a tool that translates
code from one form to another. For instance, in
my Program0201 project directory, I have a
file named MortgageText.java. If you look
inside the MortgageText.java file, you see
code like this:

import java.io.*;
import java.text.NumberFormat;
public class MortgageText {

public static void
main(String args[]) throws
IOException

Although this code isn’t easy reading, it cer-
tainly uses letters and other characters that
English-speaking people can understand. This
file, MortgageText.java, is called Java
source code. It’s the kind of code that you find
out how to write by reading this book. It’s the
code that you have before you’ve done any
compiling — before you choose Build➪Compile
Project from JCreator’s main menu.

When you choose Build➪Compile Project, the
computer takes your source code and trans-
lates it into something called bytecode. The
newly created bytecode file is automatically
given a name like MortgageText.class. (You can
open My Computer and look for the new
.class file in your Program0201 directory.)
Unlike the original .java file, the new .class
file has no recognizable characters in it and isn’t
suitable for human consumption. Instead, the
.class file is streamlined so that the computer
can carry out your program’s commands quickly
and easily.

In the way that it compiles code, Java repre-
sents a strict departure from most other pro-
gramming languages. When you compile a
program in another language (COBOL or C++,
for instance), you create a file that can be run
on only one operating system. For example,
if you compile a C++ program on a Windows

computer and then move the translated file to a
Mac, the Mac treats the translated file as pure
garbage. The Mac can’t interpret any of the
instructions in the translated file. This is bad for
many reasons. One of the most striking reasons
is that you can’t send this kind of code over the
World Wide Web and expect anyone with a
different kind of computer to be able to run the
code.

But with Java, you can take a bytecode file that
you created with a Windows computer, copy the
bytecode to who-knows-what kind of computer,
and then run the bytecode with no trouble at all.
That’s one of the many reasons why Java has
become popular so quickly. This outstanding
feature, the ability to run code on many differ-
ent kinds of computers, is called portability.

After compiling your Java project, choose
Build➪Execute from the main menu. At this
point, I normally say that your computer starts
running a Java program. But to be really picky,
your computer never actually “runs a Java pro-
gram.” Instead, your computer runs something
called the Java Virtual Machine (JVM). The use
of a virtual machine is another way in which
Java is different from other computer program-
ming languages.

The Java Virtual Machine is a piece of software.
Think of the JVM as a proxy, an errand boy, a
go-between. The JVM serves as an interpreter
between Java’s run-anywhere bytecode and
your computer’s own system. As it runs, the
JVM walks your computer through the execu-
tion of bytecode instructions. The JVM exam-
ines your bytecode, bit by bit, and carries out
the instructions described in the bytecode. The
JVM interprets bytecode for your Windows
system, your Mac, your Linux box, or whatever
kind of computer you’re using. That’s a good
thing. It’s what makes Java programs more
portable than any other language’s programs.

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 40

Passé or not, some people still want to create applets. So in this section, you
run a simple Java applet. Just follow these steps:

1. If you haven’t already done so, follow Steps 1 to 4 from the section
entitled “Running a text-based program.”

When you finish with these steps, the Chapter02 workspace is open.

2. In the File View’s tree, right-click the branch labeled Program0203. In
the resulting context menu, choose Sets as Active Project.

This makes Program0203 the active project.

3. Follow Steps 6 and 7 in the “Running a text-based program” section.

This compiles and runs the Program0202 project’s code. You see a new
Web page containing a mortgage applet in the Web browser window.
(See Figure 2-12.)

If you follow the steps in this section, and you don’t see the mortgage applet
running in your Web browser, you can do a few things:

� Check your Web browser’s settings to make sure that the display of
Java applets is enabled.

� Make sure that you installed the Java plug-in.

See Step 5 of the section entitled “Installing Java on your computer.”

� Close any browser windows that you have open. Then return to
JCreator and choose Build➪Execute Project again.

Sometimes this helps.

� Skip the whole applet business and move on to Chapter 3.

Hardly anyone uses Java applets these days anyway.

Figure 2-12:
The

mortgage
applet runs

in your
browser
window.

41Chapter 2: Running Canned Java Programs

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 41

42 Part I: Getting Started

Running an applet
In this chapter, you can find a sidebar entitled
“Compiling and running a Java program.” The
sidebar describes the execution of a Java pro-
ject. To execute a project, your computer runs
a Java Virtual Machine (JVM), and this JVM
carries a Java program’s instructions. That’s
how it works for a project that doesn’t involve
applets. But when your project involves an
applet, the story is a bit different.

If you’ve worked with Web pages, you may be
familiar with something called HTML — the
Hypertext Markup Language. It’s the universal
language for the World Wide Web. Almost every
Web page starts with an HTML file. That’s why,
when you expand Program0203 in JCreator’s
File View pane, you see something named
MyWebPage.html.

When JCreator executes the Program0203
project, it finds this MyWebPage.html file,
and opens this file with Microsoft Internet
Explorer. At this point, Internet Explorer takes
on the full burden of running your code. Internet
Explorer acts on the commands (the tags) in the
MyWebPage.html file. In particular, Internet
Explorer finds the following tag inside the
MyWebPage.html file:

<applet code=”MortgageApplet”
width=300
height=200></applet>

This tag instructs Internet Explorer to look for
the Java program named MortgageApplet.
When it finds the program, Internet Explorer
displays the applet (the text fields, the words
Principal, Rate, Payment, and other stuff) in the
browser window.

So that’s what JCreator does when you want
an applet to be executed. JCreator doesn’t
run the JVM directly. Instead, JCreator tells
Internet Explorer to visit an HTML document.
Then Internet Explorer runs the JVM and dis-
plays the applet on a Web page. Have you read
about all the lawsuits between Microsoft and
Sun Microsystems? At the heart of these law-
suits is the use of an outdated JVM in the
Internet Explorer browser.

By the way, if JCreator doesn’t find Internet
Explorer on your system, then JCreator opens
the file with Sun’s appletviewer. The
appletviewer is a small browser that’s designed
specifically for viewing Java applets. The
appletviewer displays nothing but applets (no
hyperlinks, no images, no text other than the
applet’s text) so you can’t use appletviewer to
preview a complete Web page.

01c_568582 ch02.qxd 7/27/04 11:58 PM Page 42

Chapter 3

Using the Basic Building Blocks
In This Chapter
� Speaking the Java language: the API and the Language Specification

� Understanding the parts of a simple program

� Documenting your code

� Editing and running a Java program

“All great ideas are simple.”

—Leo Tolstoy

The quotation applies to all kinds of things — things like life, love, and
computer programming. That’s why this chapter takes a multilayered

approach. In this chapter, you get your first blast of details about Java pro-
gramming. But in discovering details, you see the simplicities.

Speaking the Java Language
If you try to picture in your mind the whole English language, what do you
see? Maybe you see words, words, words. (That’s what Hamlet saw.) Looking
at the language under a microscope, you see one word after another. The
bunch-of-words image is fine, but if you step back a bit, you may see two
other things:

� The language’s grammar

� Thousands of expressions, sayings, idioms, and historical names

The first category (the grammar) includes rules like, “The verb agrees with
the noun in number and person.” The second category (expressions, sayings,

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 43

and stuff) includes knowledge like, “Julius Caesar was a famous Roman
emperor, so don’t name your son Julius Caesar, unless you want him to get
beat up every day after school.”

The Java programming language has all the aspects of a spoken language like
English. Java has words, grammar, commonly used names, stylistic idioms,
and other such things.

The grammar and the common names
The people at Sun Microsystems who created Java thought of Java as coming
in two parts. Just as English has its grammar and commonly used names,
the Java programming language has its specification (its grammar) and its
Application Programming Interface (its commonly used names). Whenever I
write Java programs, I keep two important pieces of documentation — one
for each part of the language — on my desk:

� The Java Language Specification: This includes rules like, “Always put
an open parenthesis after the word for” and “Use an asterisk to multiply
two numbers.”

� The Application Programming Interface: Java’s Application Programming
Interface (API) contains thousands of tools that were added to Java after
the language’s grammar was defined. These tools range from the common-
place to the exotic. For instance, the tools include a routine named pow
that can raise 5 to the 10th power for you. A more razzle-dazzle tool
(named JFrame) displays a window on your computer’s screen. Other
tools listen for the user’s button clicks, query databases, and do all
kinds of useful things.

You can download the Language Specification, the API documents, and all the
other Java documentation (or view the documents online) by poking around
at java.sun.com/j2se/1.5.0/download.jsp and at java.sun.com/j2se/
1.5.0/docs/index.html. But watch out! These Web pages are moving tar-
gets. By the time you read this book, the links in this paragraph will probably
be out of date. The safest thing to do is to start at java.sun.com/j2se, and
then look for links to things like “version 5.0” and “documentation.”

The first part of Java, the Language Specification, is relatively small. That
doesn’t mean you won’t take plenty of time finding out how to use the rules
in the Language Specification. Other programming languages, however, have
double, triple, or ten times the number of rules.

The second part of Java — the API — can be intimidating because it’s so
large. The API contains at least 3,000 tools and keeps growing with each new
Java language release. Pretty scary, eh? Well, the good news is that you don’t
have to memorize anything in the API. Nothing. None of it. You can look up

44 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 44

the stuff you need to use in the documentation and ignore the stuff you don’t
need. What you use often, you’ll remember. What you don’t use often, you’ll
forget (like any other programmer).

For information on how to find things in Java’s API documentation, see the
section entitled “Finding javadoc pages,” later in this chapter.

No one knows all there is to know about the Java API. If you’re a Java pro-
grammer who frequently writes programs that open new windows, you know
how to use the API Frame class. If you seldom write programs that open win-
dows, the first few times you need to create a window, you can look up the
Frame class in the API documentation. My guess is that if you took a typical
Java programmer and kept that programmer from looking up anything in the
API documentation, the programmer would be able to use less than 2 percent
of all the tools in the Java API.

Sure, you may love the For Dummies style. But unfortunately, Java’s official
API documentation isn’t written that way. The API documentation is both
concise and precise. For some help deciphering the API documentation’s lan-
guage and style, see this book’s Web site.

In a way, nothing about the Java API is special. Whenever you write a Java
program — even the smallest, simplest Java program — you create a class
that’s on par with any of the classes defined in the official Java API. The API is
just a set of classes and other tools that were created by ordinary program-
mers who happen to participate in the official JCP — the Java Community
Process. Unlike the tools that you create yourself, the tools in the API are dis-
tributed with every version of Java. (I’m assuming that you, the reader, are
not a participant in the Java Community Process. But then, with a fine book
like Java 2 For Dummies, 2nd Edition, one never knows.)

If you’re interested in the JCP’s activities, visit www.jcp.org.

The folks at the JCP don’t keep the Java programs in the official Java API a
secret. If you want, you can look at all these programs. When you install Java
on your computer, the installation puts a file named src.zip on your hard
drive. You can open src.zip with your favorite unzipping program. There,
before your eyes, is all the Java API code.

The words in a Java program
A hard-core Javateer will say that the Java programming language has two
different kinds of words: keywords and identifiers. This is true. But the bare
truth, without any other explanation, is sometimes misleading. So I recommend
dressing up the truth a bit and thinking in terms of three kinds of words: key-
words, identifiers that ordinary programmers like you and me create, and
identifiers from the API.

45Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 45

The differences among these three kinds of words are similar to the differences
among words in the English language. In the sentence “Sam is a person,” the
word person is like a Java keyword. No matter who uses the word person, the
word always means roughly the same thing. (Sure, you can think of bizarre
exceptions in English usage, but please don’t.)

46 Part I: Getting Started

Java’s API stew
To say that the Java programming language
“has an Application Programming Interface” is
a bit misleading. In fact, Java has several APIs:

� J2SE: The most widely used API is called
J2SE — the Java 2 Standard Edition. If you
run Java on a desktop computer or even
on a mainframe of some kind, you’re
almost certainly running code from this
Standard Edition. Among other things, this
API includes code that writes text to the
screen, displays numbers in several for-
mats, and stores large collections of values.
Without something like this API, Java would
be a fairly useless computer programming
language.

When you follow the instructions in Chapter
2, and you download something called jdk
or j2sdk, you’re getting Java with its
Standard Edition API.

� J2EE: In the abbreviation J2EE, the extra
E stands for Enterprise. No, it’s not the
API that’s used on Star Trek. It’s a collection
of code that streamlines large business
processes. J2EE code talks to large data-
bases and handles customers by the mil-
lions. If you’ve ever heard of something
called Enterprise JavaBeans, you’ve heard
of one aspect of J2EE. Another part of J2EE
(called JavaServer Pages) creates dynamic
Web pages for shopping carts and other
applications.

As a newcomer to Java, you’ll probably
have very little contact with J2EE. Even so,

be aware that J2EE exists. Most big busi-
nesses use either J2EE or its competitor
(the massive .NET Framework from
Microsoft). If you want to earn some bucks
writing computer programs, finding out how
to use J2EE should be part of your long-term
plans.

� J2ME: Cellphones are small. There’s no
room inside a cellphone for something like
J2SE. Besides, the J2SE code solves desk-
top computer problems, and little handheld
appliances have their own special kinds
of problems. All things considered, J2SE is
a poor fit for a pager, a smart card, or a
cable-converter box. So the people who
develop Java have created a third API
called J2ME — the Java 2 Micro Edition.
This API includes tools for telephony, wire-
less communications, and gaming. It’s very
cool stuff.

� Miscellaneous APIs: If you visit java.
sun.com/othertech, you find several
projects that aren’t yet incorporated into
J2anythingE. Other such projects are lurk-
ing at www.jcp.org. These works-in-
progress include peer-to-peer networking,
dynamic systems management, and some
other futuristic goodies. Much of the code
that’s now in one of the three major APIs
started off in this miscellaneous category.
Many concepts that begin as miscella-
neous fragments eventually graduate to
become part of a major Java standard.

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 46

The word Sam is like a Java identifier because Sam is a name for a particular
person. Words like Sam, Dinswald, and McGillimaroo don’t come prepacked
with meaning in the English language. These words apply to different people
depending on the context and become names when parents pick one for their
newborn kid.

Now consider the sentence “Julius Caesar is a person.” If you utter this sen-
tence, you’re probably talking about the fellow who ruled Rome until the Ides
of March. Although the name Julius Caesar isn’t hard-wired into the English
language, almost everyone uses the name to refer to the same person. If
English were a programming language, the name Julius Caesar would be an
API identifier.

So here’s how I, in my own mind, divide the words in a Java program into
categories:

� Keywords: A keyword is a word that has its own special meaning in the
Java programming language, and that meaning doesn’t change from one
program to another. Examples of keywords in Java include if, else, and
do. The Cheat Sheet in the front of this book has a complete list of Java
keywords.

The JCP committee members, who have the final say on what constitutes
a Java program, have chosen all of Java’s keywords. Thinking about the
two parts of Java, which I discuss in “The grammar and the common
names” section earlier in this chapter, the Java keywords belong solidly
to the Language Specification.

� Identifiers: An identifier is a name for something. The identifier’s mean-
ing can change from one program to another, but some identifiers’ mean-
ings tend to change more than others.

• Identifiers created by you and me: As a Java programmer (yes,
even as a novice Java programmer), you create new names for
classes and other things that you describe in your programs. Of
course, you may name something Prime, and the guy writing code
two cubicles down the hall can name something else Prime. That’s
okay because Java doesn’t have a predetermined meaning for the
word Prime. In your program, you can make Prime stand for the
Federal Reserve’s prime rate. And the guy down the hall can make
Prime stand for the “bread, roll, preserves, and prime rib.” A con-
flict doesn’t arise, because you and your co-worker are writing two
different Java programs.

• Identifiers from the API: The JCP members have created names
for many things and thrown at least 3,000 of these names into the
Java API. The API comes with each version of Java, so these names
are available to anyone who writes a Java program. Examples of
such names are String, Integer, JWindow, JButton, JTextField, and File.

47Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 47

Strictly speaking, the meanings of the identifiers in the Java API are not cast
in stone. Although you can make up your own meanings for the words like
Button or Window, this isn’t a good idea. If you did, you would confuse the
dickens out of other programmers, who are used to the standard API mean-
ings for these familiar identifier names. But even worse, when your code
assigns a new meaning to an identifier like Button, you lose any computa-
tional power that was created for the identifier in the API code. The program-
mers at Sun Microsystems did all the work writing Java code to handle
buttons. If you assign your own meaning to the word Button, you’re turning
your back on all the progress made in creating the API.

Checking Out Java Code
for the First Time

The first time you look at somebody else’s Java program, you tend to feel a
bit queasy. The realization that you don’t understand something (or many
things) in the code can make you nervous. I’ve written hundreds (maybe
thousands) of Java programs, but I still feel insecure when I start reading
someone else’s code.

The truth is that finding out about a Java program is a bootstrapping experi-
ence. First you gawk in awe of the program. Then you run the program to see
what it does. Then you stare at the program for a while or read someone’s
explanation of the program and its parts. Then you gawk a little more and run
the program again. Eventually, you come to terms with the program. (Don’t
believe the wise guys who say they never go through these steps. Even the
experienced programmers approach a new project slowly and carefully.)

In Listing 3-1, you get a blast of Java code. (Like all novice programmers,
you’re expected to gawk humbly at the code.) Hidden in the code, I’ve placed
some important ideas, which I explain in detail in the next section. These
ideas include the use of classes, methods, and Java statements.

Listing 3-1: The Simplest Java Program

class Displayer {

public static void main(String args[]) {
System.out.println(“You’ll love Java!”);

}
}

To see the code of Listing 3-1 in the JCreator work area, follow these steps:

48 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 48

1. Open the Chapter03 workspace, and within that workspace, make
Listing0301 the active project. (See Chapter 2 for details.)

In the File View pane’s tree, the name Listing0301 is set in boldface.
Under Listing0301, you see a branch labeled Displayer.java.

2. Double-click the Displayer.java branch in the File View pane’s tree.

JCreator’s Editor pane appears on the right side of the work area. The
Editor pane contains the code in Listing 3-1.

After following the first step above, you can run the code in Listing 3-1 by
choosing Build➪Compile Project, and then choosing Build➪Execute Project.
(See Chapter 2 for details.)

When you run the program from Listing 3-1, the computer displays You’ll
love Java! (See Figure 3-1.) Now, I admit that writing and running a Java
program is a lot of work just to get You’ll love Java! to appear on some-
body’s computer screen, but every endeavor has to start somewhere.

In the following section, you do more than just run the program and admire
the program’s output. After you read the following section, you actually
understand what makes the program in Listing 3-1 work.

Understanding the Simple Java Program
This section presents, explains, analyzes, dissects, and otherwise demystifies
the Java program shown previously in Listing 3-1.

The Java class
Because Java is an object-oriented programming language, your primary goal
is to describe classes and objects. (If you’re not convinced about this, read
the sections on object-oriented programming in Chapter 1.)

On those special days when I’m feeling sentimental, I tell people that Java is
more pure in its object-orientation than most other so-called object-oriented
languages. I say this because, in Java, you can’t do anything until you’ve cre-
ated a class of some kind. It’s like being on Jeopardy!; hearing Alex Trebec

Figure 3-1:
Running the
program in
Listing 3-1.

49Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 49

say, “Let’s go to a commercial;” and then interrupting him by saying, “I’m
sorry, Alex. You can’t issue an instruction without putting your instruction
inside a class.”

In Java, the entire program is a class. I wrote the program, so I get to make up a
name for my new class. I chose the name Displayer, because the program dis-
plays a line of text on the computer screen. That’s why the code in Listing 3-1
starts with class Displayer. (See Figure 3-2.)

The first word in Listing 3-1, the word class, is a Java keyword. (See the section
“The words in a Java program,” earlier in this chapter.) No matter who writes a
Java program, the word class is always used the same way. On the other hand,
the word Displayer in Listing 3-1 is an identifier. I made up the word Displayer
while I was writing this chapter. The word Displayer is the name of a particular
class — the class that I’m creating by writing this program.

The Java programming language is case-sensitive. This means that if you
change a lowercase letter in a word to an uppercase letter, you change the
word’s meaning. Changing case can make the entire word go from being
meaningful to being meaningless. In the first line of Listing 3-1, you can’t
replace class with Class. If you do, the whole program stops working.

The Java method
You’re working as an auto mechanic in an upscale garage. Your boss,
who’s always in a hurry and has a habit of running words together, says,
“FixTheAlternator on that junkyOldFord.” Mentally, you run through a list
of tasks. “Drive the car into the bay, lift the hood, get a wrench, loosen the
alternator belt,” and so on. Three things are going on here:

The entire program

The class Displayer

Class Displayer {
 public static void main(String args[]) {
 System.out.println("You'll love Java!");
 }
}

Figure 3-2:
A Java

program is
a class.

50 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 50

� You have a name for the thing you’re supposed to do. The name is
FixTheAlternator.

� In your mind, you have a list of tasks associated with the name
FixTheAlternator. The list includes “Drive the car into the bay, lift the
hood, get a wrench, loosen the alternator belt,” and so on.

� You have a grumpy boss who’s telling you to do all this work. Your boss
gets you working by saying, “FixTheAlternator.” In other words, your boss
gets you working by saying the name of the thing you’re supposed to do.

In this scenario, using the word method wouldn’t be a big stretch. You have a
method for doing something with an alternator. Your boss calls that method
into action, and you respond by doing all the things in the list of instructions
that you’ve associated with the method.

If you believe all that (and I hope you do), then you’re ready to read about
Java methods. In Java, a method is a list of things to do. Every method has a
name, and you tell the computer to do the things in the list by using the
method’s name in your program.

I’ve never written a program to get a robot to fix an alternator. But, if I did,
the program may include a FixTheAlternator method. The list of instruc-
tions in my FixTheAlternator method would look something like the text
in Listing 3-2.

Listing 3-2: A Method Declaration

void FixTheAlternator() {
DriveInto(car, bay);
Lift(hood);
Get(wrench);
Loosen(alternatorBelt);
...

}

Somewhere else in my Java code (somewhere outside of Listing 3-2), I need an
instruction to call my FixTheAlternator method into action. The instruction
to call the FixTheAlternator method into action may look like the line in
Listing 3-3.

Listing 3-3: A Method Call

FixTheAlternator(junkyOldFord);

Don’t scrutinize Listings 3-2 and 3-3 too carefully. All the code in Listings 3-2
and 3-3 is fake! I made up this code so that it looks a lot like real Java code,
but it’s not real. What’s more important, the code in Listings 3-2 and 3-3 isn’t
meant to illustrate all the rules about Java. So, if you have a grain of salt
handy, take it with Listings 3-2 and 3-3.

51Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 51

Now that you have a basic understanding of what a method is and how it
works, you can dig a little deeper into some useful terminology:

� If I’m being lazy, I refer to the code in Listing 3-2 as a method. If I’m not
being lazy, I refer to this code as a method declaration.

� The method declaration in Listing 3-2 has two parts. The first line (the
part with FixTheAlternator in it, up to but not including the open
curly brace) is called a method header. The rest of Listing 3-3 (the part
surrounded by curly braces) is a method body.

� The term method declaration distinguishes the list of instructions in
Listing 3-2 from the instruction in Listing 3-3, which is known as a
method call.

A method’s declaration tells the computer what happens if you call the
method into action. A method call (a separate piece of code) tells the com-
puter to actually call the method into action. A method’s declaration and
the method’s call tend to be in different parts of the Java program.

The main method in a program
Figure 3-3 has a copy of the code from Listing 3-1. The bulk of the code con-
tains the declaration of a method named main. (Just look for the word main
in the code’s method header.) For now, don’t worry about the other words in
the method header — the words public, static, void, String, and args. I explain
these words in the next several chapters.

The main method's header

The main method (also
known as the main

method's declaration)

public static void main(String args[]) {

 System.out.println("You'll love Java!");
}

class Displayer {

}
The main

method's body
Figure 3-3:

The main
method.

52 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 52

Like any Java method, the main method is a recipe.

How to make biscuits:
Heat the oven.
Roll the dough.
Bake the rolled dough.

or

How to follow the main instructions for a Displayer:
Print “You’ll love Java!” on the screen.

The word main plays a special role in Java. In particular, you never write
code that explicitly calls a main method into action. The word main is the
name of the method that is called into action automatically when the pro-
gram begins running.

So look back at Figure 3-1. From within JCreator you choose Build➪Execute
Project to run the Displayer program. When the Displayer program runs,
the computer automatically finds the program’s main method and executes
any instructions inside the method’s body. In the Displayer program, the
main method’s body has only one instruction. That instruction tells the com-
puter to print You’ll love Java! on the screen. So in Figure 3-1, You’ll
love Java! appears in JCreator’s General Output pane.

None of the instructions in a method are executed until the method is called
into action. But, if you give a method the name main, that method is called
into action automatically.

Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember things
like subprograms, procedures, functions, subroutines, subprocedures, or
PERFORM statements. Whatever you call it in your favorite programming lan-
guage, a method is a bunch of instructions collected together and given a
new name.

How you finally tell the computer
to do something
Buried deep in the heart of Listing 3-1 is the single line that actually issues a
direct instruction to the computer. The line, which is highlighted in Figure 3-4,
tells the computer to display You’ll love Java! This line is known as a
statement. In Java, a statement is a direct instruction that tells the computer to
do something (for example, display this text, put 7 in that memory location,
make a window appear).

53Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 53

Of course, Java has different kinds of statements. A method call, which I
introduce in “The Java method,” earlier in this chapter, is one of the many
kinds of Java statements. Listing 3-3 shows you what a method call looks like,
and Figure 3-4 also contains a method call that looks like this:

System.out.println(“You’ll love Java!”);

When the computer starts executing this statement, the computer calls a
method named System.out.println into action. (Yes, in Java, a name can have
dots in it. The dots mean something.)

To find out the meaning behind the dots in Java names, see Chapter 7.

Figure 3-5 illustrates the System.out.println situation. Actually, two meth-
ods play active roles in the running of the Displayer program. Here’s how
they work:

� There’s a declaration for a main method. I wrote the main method
myself. This main method is called automatically whenever I start run-
ning the Displayer program.

� There’s a call to the System.out.println method. The method call for
the System.out.println method is the only statement in the body of
the main method. In other words, calling the System.out.println
method is the only thing on the main method’s to-do list.

The declaration for the System.out.println method is buried inside the
official Java API. For a refresher on the Java API, see the sections, “The
grammar and the common names” and “The words in a Java program,”
earlier in this chapter.

When I say things like “System.out.println is buried inside the API,” I’m
not doing justice to the API. True, you can ignore all the nitty-gritty Java code
inside the API. All you need to remember is that System.out.println is
defined somewhere inside that code. But I’m not being fair when I make the
API code sound like something magical. The API is just another bunch of Java
code. The statements in the API that tell the computer what it means to carry
out a call to System.out.println look a lot like the Java code in Listing 3-1.

Class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

} A statement (a call to the
System.out.println method)

Figure 3-4:
A Java

statement.

54 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 54

In Java, each statement (like the boxed line in Figure 3-4) ends with a semi-
colon. Other lines in Figure 3-4 don’t end with semicolons, because the other
lines in Figure 3-4 aren’t statements. For instance, the method header (the
line with the word main in it) doesn’t directly tell the computer to do any-
thing. The method header announces, “Just in case you ever want to do main,
the next few lines of code tell you how you’ll do it.”

Every complete Java statement ends with a semicolon.

Curly braces
Long ago, or maybe not so long ago, your schoolteachers told you how useful
outlines are. With an outline, you can organize thoughts and ideas, help people
see forests instead of trees, and generally show that you’re a member of the
Tidy Persons Club. Well, a Java program is like an outline. The program in
Listing 3-1 starts with a big header line that says, “Here comes a class named
Displayer.” After that first big header is a subheader that announces, “Here
comes a method named main.”

Class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

}

public void println(String s) {

 ensureOpen();

 textOut.write(s);

 textOut.flushBuffer();

 ...

}

The computer calls your main
method automatically, then...

...a statement in your main method
calls the System.out.println method.

101010000111000...

Somewhere
inside the
JavaAPI...Figure 3-5:

Calling the
System.out.

println
method.

55Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 55

Now, if a Java program is like an outline, why doesn’t a program look like an
outline? What takes the place of the Roman numerals, capital letters, and
other things? The answer is twofold:

� In a Java program, curly braces enclose meaningful units of code.

� You, the programmer, can (and should) indent lines so that other pro-
grammers can see the outline form of your code at a glance.

In an outline, everything is subordinate to the item in Roman numeral I. In a
Java program, everything is subordinate to the top line — the line with the
word class in it. To indicate that everything else in the code is subordinate to
this class line, you use curly braces. Everything else in the code goes inside
these curly braces. (See Listing 3-4.)

Listing 3-4: Curly Braces for a Java Class

class Displayer {

public static void main(String args[]) {
System.out.println(“You’ll love Java!”);

}
}

In an outline, some stuff is subordinate to a capital letter A item. In a Java
program, some lines are subordinate to the method header. To indicate that
something is subordinate to a method header, you use curly braces. (See
Listing 3-5.)

Listing 3-5: Curly Braces for a Java Method

class Displayer {

public static void main(String args[]) {
System.out.println(“You’ll love Java!”);

}
}

In an outline, some items are at the bottom of the food chain. In the
Displayer class, the corresponding line is the line that begins with
System.out.println. Accordingly, this System.out.println line goes
inside all the other curly braces and is indented more than anything else.

Never lose sight of the fact that a Java program is, first and foremost, an
outline.

If you put curly braces in the wrong places or omit curly braces where the
braces should be, your program probably won’t work at all. If your program
works, it’ll probably work incorrectly.

56 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 56

If you don’t indent lines of code in an informative manner, your program will
still work correctly, but neither you nor any other programmer will be able to
figure out what you were thinking when you wrote the code.

If you’re one of those visual thinkers, you could picture outlines of Java pro-
grams in your head. One friend of mine visualizes an actual numbered outline
morphing into a Java program. (See Figure 3-6.) Another person, who shall
remain nameless, uses more bizarre imagery. (See Figure 3-7.)

Class Displayer{

}
System.out.println
(“You'll love Java!”);

public static void main
 (String args[])
{
}

public static void main
 (String args[]){
}

Figure 3-7:
A class is

bigger than
a method; a

method is
bigger than

a statement.

Class Displayer {

 public static void main(String args[]) {

 System.out.println("You'll love Java!");

 }

}

I. class Displayer
 A. public static void main(String args[])
 1. System.out.println("You'll love Java!");

I. The Dispayer class
 A. The main method
 1. Print "You'll love Java!"

Figure 3-6:
An outline

turns into a
Java

program.

57Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 57

And Now, a Few Comments
People gather around campfires to hear the old legend about a programmer
whose laziness got her into trouble. To maintain this programmer’s
anonymity, I call her Jane Pro. Jane worked many months to create the holy
grail of computing — a program that thinks on its own. If completed, this pro-
gram could work independently, learning new things without human interven-
tion. Day after day, night after night, she labored to give the program that
spark of creative, independent thought.

One day, when she was almost finished with the project, she received a dis-
turbing piece of paper mail from her health insurance company. No, the mail
wasn’t about a serious illness. It was about a routine office visit. The insur-
ance company’s claim form had a place for her date of birth, as if her date of
birth had changed since the last time she sent in a claim. She had absent-
mindedly scribbled 2004 as her year of birth, so the insurance company
refused to pay the bill.

Jane dialed the insurance company’s phone number. Within twenty minutes
she was talking to a live person. “I’m sorry,” said the live person. “To resolve
this issue you must dial a different number.” Well, you can guess what hap-
pened next. “I’m sorry. The other operator gave you the wrong number.” And
then “I’m sorry. You must call back the original phone number.”

Five months later, Jane’s ear ached, but after 800 hours on the phone she had
finally gotten a tentative promise that the insurance company would eventu-
ally reprocess the claim. Elated as she was, she was anxious to get back to
her computer programming project. Could she remember what all those lines
of code were supposed to be doing?

No, she couldn’t. She stared and stared at her own work and, like a dream
that doesn’t make sense the next morning, the code was now completely
meaningless to her. She had written a million lines of code and not one line
was accompanied by an informative explanatory comment. She had left no
clues to help her understand what she’d been thinking, so in frustration, she
abandoned the whole project.

Adding comments to your code
Listing 3-6 has an enhanced version of this chapter’s sample program. In
addition to all the keywords, identifiers, and punctuation, Listing 3-6 has text
that’s meant for human beings to read.

58 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 58

Listing 3-6: Three Kinds of Comments

/*
* Listing 3-6 in “Java 2 For Dummies”
*
* Copyright 2004 Wiley Publishing, Inc. All rights reserved.
*/

/**
* The Displayer class displays text on the computer screen.
*
* @author Barry Burd
* @version 1.6 02/21/04
* @see java.lang.System
*/
class Displayer {

/**
* Execution of the program starts at this main method.
*
* @param args (See Chapter 11.)
*/
public static void main(String args[]) {

System.out.println(“I love Java!”); //Changed to “I”
}

}

A comment is a special section of text inside a program. It is text whose pur-
pose is to help people understand the program. A comment is part of a good
program’s documentation.

The Java programming language has three different kinds of comments:

� Traditional comments: The first five lines of Listing 3-6 form one traditional
comment. The comment begins with /* and ends with */. Everything
between the opening /* and the closing */ is for human eyes only. No
information about “Java 2 For Dummies” or Wiley Publishing,
Inc. is translated by the compiler.

To read about compilers, see Chapter 2.

The second, third, and fourth lines in Listing 3-6 have extra asterisks (*).
I call them extra because these asterisks aren’t required when you
create a comment. They just make the comment look pretty. I include
them in Listing 3-6 because, for some reason that I don’t entirely under-
stand, most Java programmers add these extra asterisks.

� End-of-line comments: The text //Changed to “I” in Listing 3-6 is an
end-of-line comment. An end-of-line comment starts with two slashes,
and goes to the end of a line of type. Once again, no text inside the end-
of-line comment gets translated by the compiler.

59Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 59

� Javadoc comments: A javadoc comment begins with a slash and two
asterisks (/**). Listing 3-6 has two javadoc comments — one with text
The Displayer class . . . and another with text Execution of
the program. . . .

A javadoc comment is a special kind of traditional comment. A javadoc
comment is meant to be read by people who never even look at the Java
code. But that doesn’t make sense. How can you see the javadoc com-
ments in Listing 3-6 if you never look at Listing 3-6?

Well, a certain program called javadoc (what else?) can find all the
javadoc comments in Listing 3-6 and turn these comments into a nice-
looking Web page. The page is shown in Figure 3-8.

Figure 3-8:
The javadoc

page
generated

from the
code in

Listing 3-6.

60 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 60

Javadoc comments are great. Here are several great things about them:

� The only person who has to look at a piece of Java code is the program-
mer who writes the code. Other people who use the code can find out
what the code does by viewing the automatically generated Web page.

� Because other people don’t look at the Java code, other people don’t
make changes to the Java code. (In other words, other people don’t
introduce errors into the existing Java code.)

� Because other people don’t look at the Java code, other people don’t
have to decipher the inner workings of the Java code. All these people
need to know about the code is what they read in the code’s Web page.

� The programmer doesn’t create two separate things — some Java code
over here and some documentation about the code over there. Instead,
the programmer creates one piece of Java code and embeds the docu-
mentation (in the form of javadoc comments) right inside the code.

� Best of all, the generation of Web pages from javadoc comments is done
automatically. So everyone’s documentation has the same format. No
matter whose Java code you use, you find out about that code by read-
ing a page like the one in Figure 3-8. That’s good because the format in
Figure 3-8 is familiar to anyone who uses Java.

You can generate your own Web pages from the javadoc comments that you
put in your code. To discover how, visit this book’s Web site.

What’s Barry’s excuse?
For years, I’ve been telling my students to put comments in their code, and
for years I’ve been creating sample code (like the code in Listing 3-1) with no
comments in it. Why?

Three little words: “Know your audience.” When you write complicated, real-
life code, your audience is other programmers, information technology man-
agers, and people who need help deciphering what you’ve done. When I write
simple samples of code for this book, my audience is you — the novice Java
programmer. Instead of reading my comments, your best strategy is to stare
at my Java statements — the statements that Java’s compiler deciphers.
That’s why I put so few comments in this book’s listings.

Besides, I’m a little lazy.

Finding javadoc pages
In Chapter 2, I encourage you to download a copy of the official Java API
documentation. This API documentation is a huge collection of Web pages

61Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 61

created automatically from javadoc comments. To access this documenta-
tion, do the following:

1. Follow Steps 1 and 2 in the step list that comes immediately after
Listing 3-1 in this chapter.

The code of Listing 3-1 appears in JCreator’s Editor pane.

2. In the Editor pane, right-click the word System. In the resulting con-
text menu, choose Show JDK Help.

The javadoc page for System appears in JCreator’s Editor pane. To see
more of this page, use the pane’s scrollbar. The stuff on this page may
not make much sense to you now, but as you read more of this book,
things become clearer.

For tips on reading and understanding Java’s API documentation, see
this book’s Web site.

3. Click the Displayer.java tab at the top of the Editor pane.

The code of Listing 3-1 appears once again.

4. In the Editor pane, right-click the word println, and choose Show JDK
Help from the context menu that appears.

The documentation for the println method appears in the Editor pane.

Using comments to experiment
with your code
You may hear programmers talk about commenting out certain parts of their
code. When you’re writing a program and something’s not working correctly,
it often helps to try removing some of the code. If nothing else, you find out
what happens when that suspicious code is removed. Of course, you may not
like what happens when the code is removed, so you don’t want to delete the
code completely. Instead, you turn your ordinary Java statements into com-
ments. For instance, you turn the statement

System.out.println(“I love Java!”);

into the comment

// System.out.println(“I love Java!”);

This keeps the Java compiler from seeing the code while you try to figure out
what’s wrong with your program.

62 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 62

Traditional comments aren’t very useful for commenting out code. The big
problem is that you can’t put one traditional comment inside of another. For
instance, suppose you want to comment out the following statements:

System.out.println(“Parents,”);
System.out.println(“pick your”);
/*
* Intentionally displays on four separate lines
*/
System.out.println(“battles”);
System.out.println(“carefully!”);

If you try to turn this code into one traditional comment, you get the follow-
ing mess:

/*
System.out.println(“Parents,”);
System.out.println(“pick your”);
/*
* Intentionally displays on four separate lines
*/
System.out.println(“battles”);
System.out.println(“carefully!”);

*/

The first */ (after Intentionally displays) ends the traditional comment
prematurely. Then the battles and carefully statements aren’t com-
mented out, and the last */ chokes the compiler.

So the best way to comment out code is to use end-of-line comments. But
typing two slashes for each of ten lines can be tedious. Fortunately, JCreator
has a good shortcut. Here’s how it works:

1. Select the lines that you want to comment out.

2. From the JCreator menu bar, choose Edit➪Format➪Increase
Comment Indent.

When you do this, each selected line becomes an end-of-line comment. End-
of-line comments can contain traditional comments (and end-of-line com-
ments can contain other end-of-line comments) so you can comment out the
Parents, pick your battles carefully! code with no unwanted side
effects. If you decide later to uncomment the code, that’s easy, too:

1. Select the lines that you no longer want to be commented out.

2. From the JCreator menu bar, choose Edit➪Format➪Decrease
Comment Indent.

63Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 63

Typing Your Own Code
Chapter 2 is about running someone else’s Java code (code that you down-
load from this book’s Web site). But eventually, you’ll write code on your
own. This section shows you how to create code with the JCreator develop-
ment environment.

The version of JCreator on this book’s CD-ROM has a specially customized
MyProjects directory. The MyProjects directory contains several ready-
made workspaces. One of these workspaces (named MyWorkspace) has no
projects in it. Here’s how you create a project in MyWorkspace:

1. Launch JCreator.

2. From JCreator’s menu bar, choose File➪Open Workspace.

An Open dialog box appears.

3. In the Open dialog box, select MyWorkspace.jcw (or simply
MyWorkspace). Then click Open.

Clicking Open may coax out a message box asking whether you want to
“Save the workspace modifications?” If so, click Yes. Clicking Open may
coax out another box asking if you want to “. . . close all document
Windows?” If so, click Yes.

In MyWorkspace.jcw, the extension .jcw stands for “JCreator work-
space.”

After clicking Open, you see MyWorkspace in JCreator’s File View pane.
The next step is to create a new project within MyWorkspace.

4. In the File View pane, right-click MyWorkspace. Then choose Add new
Project from the context menu that appears, as shown in Figure 3-9.

JCreator’s Project Wizard opens. (See Figure 3-10.)

5. In the wizard’s Project Template tab, select the Empty Project icon,
and then click Next.

After clicking Next, you see the wizard’s Project Paths tab, as shown in
Figure 3-11.

Figure 3-9:
Getting

JCreator to
add a new

project.

64 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 64

6. In the Name field, type MyFirstProject.

You can add blank spaces, making the name My First Project, but I don’t
recommend it.

7. Make sure that the Add to Current Workspace radio button is
selected, and then click Finish.

If you click Next instead of Finish, you see some other options that you
don’t need right now. So to avoid any confusion, just click Finish.

Clicking Finish brings you back to JCreator’s work area, with
MyFirstProject set in bold. The bold typeface means that
MyFirstProject is the active project. The next step is to create a
new Java source code file.

Figure 3-11:
The Project

Wizard’s
Project

Paths tab.

Figure 3-10:
The Project

Wizard’s
Project

Template
tab.

65Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 65

8. In the File View pane, right-click MyFirstProject. Then choose
Add➪New Class from the context menu that appears, as shown in
Figure 3-12.

JCreator’s Class Wizard opens. (See Figure 3-13.)

Like every other windowed environment, JCreator provides many ways to
accomplish the same task. Instead of right-clicking MyFirstProject, you
can go to the menu bar and choose File➪New➪Class. But right-clicking
a project has a small benefit. If you right-click the name of a project, the
newly created class is without a doubt in that project. If you use the menu
bar instead, the newly created class goes in whichever project happens
to be the active project. So if your workspace contains many projects, you
can accidentally put the new class into the wrong project.

9. In the Class Wizard’s Name field, type the name of your new class.

For this first project, I highly recommend the name Displayer. To be safe,
use an uppercase letter D and lowercase letters for all the other charac-
ters. (See Figure 3-13.)

Figure 3-13:
The Class

Wizard’s
Class

Settings tab.

Figure 3-12:
Getting

JCreator to
add a new

class.

66 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 66

10. Skip everything in the Class Wizard except the Name field. (In other
words, click Finish.)

Clicking Finish brings you back to JCreator’s work area. Now the Editor
pane has a tab named Displayer.java. For your convenience, the
Displayer.java tab already has a tiny bit of code in it. (See Figure 3-14.)

11. Type your new Java program.

Add your code to the code in JCreator’s Editor pane. For this first project,
I recommend copying the code in Listing 3-1 exactly as you see it.

• Spell each word exactly the way I spell it in Listing 3-1.

• Capitalize each word exactly the way I do in Listing 3-1.

• Include all the punctuation symbols — the curly braces, the semi-
colon, everything.

12. From the menu bar, choose Build➪Compile Project.

If you typed everything correctly, you see the comforting Process com-
pleted message, with no error messages, at the bottom of JCreator’s
work area. The text appears in JCreator’s Build Output pane, which now
covers up the old General Output pane. (See Figure 3-15.)

When you choose Build➪Compile Project, JCreator compiles whichever
project is currently active. Only one project at a time is active. So if your
workspace contains several projects, make sure that the project you
want to compile is currently the active project.

Figure 3-15:
The result of
a successful
compilation.

Figure 3-14:
JCreator

writes a bit
of code in
the Editor

pane.

67Chapter 3: Using the Basic Building Blocks

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 67

13. Check for error messages at the bottom of JCreator’s work area.

If, in Step 11, you didn’t type the code exactly as it’s shown in Listing 3-1,
you see some error messages in the Task List pane. (Like so many other
things, the Task List pane appears at the bottom of JCreator’s work
area.)

Each error message refers to a specific place in your Java code. To jump
the cursor to that place in the Editor pane, double-click the message in
the Task List pane. Compare everything you see, character by character,
with my code in Listing 3-1. Don’t miss a single detail, including spelling,
punctuation, and uppercase versus lowercase.

14. Make any changes or corrections to the code in the Editor pane. Then
repeat Steps 12 and 13.

When at last you see the Process completed message with no error
messages, you’re ready to run the program.

15. From the menu bar choose Build➪Execute Project.

That does the trick. Your new Java program runs in JCreator’s General
Output pane. If you’re running the code in Listing 3-1, you see the
You’ll love Java! message in Figure 3-1. And believe me; messages
like this are never wrong.

68 Part I: Getting Started

01d_568582 ch03.qxd 7/27/04 11:41 PM Page 68

Part II
Writing Your Own

Java Programs

02a_568582 pp02.qxd 7/27/04 11:42 PM Page 69

In this part . . .

In this part, you dig in and get dirty by writing some
programs and finding out what Java really feels like.

Some of the stuff in this part is specific to Java, but lots of
the material is just plain old generic computer program-
ming. Here you concentrate on details — details about
data, logic, and program flow. After you’ve read this part
and practiced some of the techniques, you can write all
kinds of interesting Java programs.

02a_568582 pp02.qxd 7/27/04 11:42 PM Page 70

Chapter 4

Making the Most of Variables
and Their Values

In This Chapter
� Assigning values to things

� Making things store certain types of values

� Applying operators to get new values

The following conversation between Van Doren and Philbin never took
place:

Charles: A sea squirt eats its brain, turning itself from an animal into a
plant.

Regis: Is that your final answer, Charles?

Charles: Yes, it is.

Regis: How much money do you have in your account today, Charles?

Charles: I have fifty dollars and twenty-two cents in my checking account.

Regis: Well, you better call the IRS, because I’m putting another million
dollars in your account. What do you think of that, Charles?

Charles: I owe it all to honesty, diligence, and hard work, Regis.

Some aspects of this dialogue can be represented in Java by a few lines of
code.

Varying a Variable
No matter how you acquire your million dollars, you can use a variable to
tally your wealth. The code is shown in Listing 4-1.

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 71

Listing 4-1: Using a Variable

amountInAccount = 50.22;
amountInAccount = amountInAccount + 1000000.00;

The code in Listing 4-1 makes use of the amountInAccount variable. A vari-
able is a placeholder. You can stick a number like 50.22 into a variable. After
you place a number in the variable, you can change your mind and put a dif-
ferent number into the variable. (That’s what varies in a variable.) Of course,
when you put a new number in a variable, the old number is no longer there.
If you didn’t save the old number somewhere else, the old number is gone.

Figure 4-1 gives a before-and-after picture of the code in Listing 4-1. After the
first statement in Listing 4-1 is executed, the variable amountInAccount has
the number 50.22 in it. Then, after the second statement of Listing 4-1 is exe-
cuted, the amountInAccount variable suddenly has 1000050.22 in it. When
you think about a variable, picture a place in the computer’s memory where
wires and transistors store 50.22, 1000050.22, or whatever. In the left side of
Figure 4-1, imagine that the box with the number 50.22 in it is surrounded by
millions of other such boxes.

Now you need some terminology. The thing stored in a variable is called a
value. A variable’s value can change during the run of a program (when Regis
gives you a million bucks, for instance). The value that’s stored in a variable
isn’t necessarily a number. (You can, for instance, create a variable that
always stores a letter.) The kind of value that’s stored in a variable is a vari-
able’s type.

You can read more about types in the section “Understanding the Types of
Values That Variables May Have,” later in this chapter.

Before executing
amountInAccount =
 amountInAccount + 1000000.00;

amountInAccount

50.22

After executing
amountInAccount =
 amountInAccount + 1000000.00;

amountInAccount

50.22
1000050.22

Figure 4-1:
A variable

(before and
after).

72 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 72

A subtle, almost unnoticeable difference exists between a variable and a vari-
able’s name. Even in formal writing, I often use the word variable when I mean
variable name. Strictly speaking, amountInAccount is a variable name, and
all the memory storage associated with amountInAccount (including the
type that amountInAccount has and whatever value amountInAccount
currently represents) is the variable itself. If you think this distinction
between variable and variable name is too subtle for you to worry about,
join the club.

Every variable name is an identifier — a name that you can make up in your
own code. In preparing Listing 4-1, I made up the name amountInAccount.

For more information on the kinds of names in a Java program, see Chapter 3.

Before the sun sets on Listing 4-1, you need to notice one more part of the
listing. The listing has 50.22 and 1000000.00 in it. Anybody in his or her
right mind would call these things numbers, but in a Java program it helps to
call these things literals.

And what’s so literal about 50.22 and 1000000.00? Well, think about the
variable amountInAccount in Listing 4-1. The variable amountInAccount
stands for 50.22 some of the time, but it stands for 1000050.22 the rest of the
time. You could sort of use the word number to talk about amountInAccount.
But really, what amountInAccount stands for depends on the fashion of the
moment. On the other hand, 50.22 literally stands for the value 5022⁄100.

A variable’s value changes; a literal’s value doesn’t.

Assignment Statements
Statements like the ones in Listing 4-1 are called assignment statements. In an
assignment statement, you assign a value to something. In many cases, this
something is a variable.

I recommend getting into the habit of reading assignment statements from
right to left. For instance, the first line in Listing 4-1 says,

“Assign 50.22...
amountInAccount = 50.22;
...to the
amountInAccount
variable.”

73Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 73

The second line in Listing 4-1 is just a bit more complicated. Reading the
second line from right to left, you get

“Add 1000000.00 to the value that’s
already in the amountInAccount
variable...

amountInAccount = amountInAccount + 1000000.00;
...and make
that number
(1000050.22) be
the new value of the
amountInAccount variable.”

In an assignment statement, the thing being assigned a value is always on the
left side of the equal sign.

Understanding the Types of Values
That Variables May Have

Have you seen the TV commercials that make you think you’re flying around
among the circuits inside a computer? Pretty cool, eh? These commercials
show 0s (zeros) and 1s sailing by because 0s and 1s are the only things that
computers can really deal with. When you think a computer is storing the
letter J, the computer is really storing 01001010. Everything inside the com-
puter is a sequence of 0s and 1s. As every computer geek knows, a 0 or 1 is
called a bit.

As it turns out, the sequence 01001010, which stands for the letter J, can
also stand for the number 74. The same sequence can also stand for
1.0369608636003646 × 10-43. In fact, if the bits are interpreted as screen pixels,
the same sequence can be used to represent the dots shown in Figure 4-2.
The meaning of 01001010 depends on the way the software interprets this
sequence of 0s and 1s.

Figure 4-2:
An extreme
close-up of
eight black-

and-white
screen
pixels.

74 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 74

So how do you tell the computer what 01001010 stands for? The answer is in
the concept of type. The type of a variable is the range of values that the vari-
able is permitted to store.

I copied the lines from Listing 4-1 and put them into a complete Java pro-
gram. The program is in Listing 4-2. When I run the program in Listing 4-2,
I get the output shown in Figure 4-3.

Listing 4-2: A Program Uses amountInAccount

import static java.lang.System.out;

class Millionaire {
public static void main(String args[]) {

double amountInAccount;

amountInAccount = 50.22;
amountInAccount = amountInAccount + 1000000.00;

out.print(“You have $”);
out.print(amountInAccount);
out.println(“ in your account.”);

}
}

In Listing 4-2, look at the first line in the body of the main method.

double amountInAccount;

This line is called a variable declaration. Putting this line in your program
is like saying, “I’m declaring my intention to have a variable named
amountInAccount in my program.” This line reserves the name
amountInAccount for your use in the program.

In this variable declaration, the word double is a Java keyword. This word
double tells the computer what kinds of values you intend to store in
amountInAccount. In particular, the word double stands for numbers
between –1.8 × 10308 and 1.8 × 10308. (These are enormous numbers with 308
zeros before the decimal point. Only the world’s richest people write checks
with 308 zeros in them. The second of these numbers is one-point-eight

Figure 4-3:
Running the
program in
Listing 4-2.

75Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 75

gazazzo-zillion-kaskillion. The number 1.8 × 10308, a constant defined by the
International Bureau of Weights and Measures, is the number of eccentric
computer programmers between Sunnyvale, California, and the M31
Andromeda Galaxy.)

More important than the humongous range of the double keyword’s numbers
is the fact that a double value can have digits beyond the decimal point.
After you declare amountInAccount to be of type double, you can store all
sorts of numbers in amountInAccount. You can store 50.22, 0.02398479, or
–3.0. In Listing 4-2, if I hadn’t declared amountInAccount to be of type
double, I may not have been able to store 50.22. Instead, I would have had to
store plain old 50, without any digits beyond the decimal point.

76 Part II: Writing Your Own Java Programs

Digits beyond the decimal point
Java has two different types that have digits
beyond the decimal point: type double and
type float. So what’s the difference? When
you declare a variable to be of type double,
you’re telling the computer to keep track of 64
bits when it stores the variable’s values. When
you declare a variable to be of type float, the
computer keeps track of only 32 bits.

You could change Listing 4-2 and declare
amountInAccount to be of type float.

float amountInAccount;

Surely, 32 bits are enough to store a small
number like 50.22. Well, they are and they aren’t.
You could easily store 50.00 with only 32 bits.
Heck, you could store 50.00 with only 6 bits. The
size of the number doesn’t matter. It’s the accu-
racy that matters. In a 64-bit double variable,
you’re using most of the bits to store stuff
beyond the decimal point. To store the .22 part
of 50.22, you need more than the measly 32 bits
that you get with type float.

Do you really believe what you just read — that
it takes more than 32 bits to store .22? To help
convince you, I made a few changes to the code
in Listing 4-2. I made amountInAccount be of
type float, and the output I got was

You have $1000050.25 in your
account.

Compare this with the output in Figure 4-3.
When I switch from type double to type
float, Charles has an extra three cents in
his account. By changing to the 32-bit float
type, I’ve clobbered the accuracy in the
amountInAccount variable’s hundredths
place. That’s bad.

Another difficulty with float values is purely
cosmetic. Look again at the literals, 50.22
and 1000000.00, in Listing 4-2. The Laws
of Java say that literals like these take up
64 bits each. This means that if you declare
amountInAccount to be of type float,
you’re going to run into trouble. You’ll have
trouble stuffing those 64-bit literals into your
little 32-bit amountInAccount variable. To
compensate, you can switch from double lit-
erals to float literals by adding an F to each
double literal, but a number with an extra F at
the end looks funny.

float amountInAccount;
amountInAccount = 50.22F;
amountInAccount =

amountInAccount +
1000000.00F;

To experiment with numbers, visit http://
babbage.cs.qc.edu/courses/cs341/
IEEE-754.html. The page takes any number
that you enter and shows you how the number
would be represented as 32 bits and as 64 bits.

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 76

Another type — type float — also allows you to have numbers after the dec-
imal point, but this type isn’t as accurate. (See the sidebar, “Digits beyond
the decimal point,” for the full story.) Don’t sweat the choice between float
and double. For most programs, just use double.

An Import Declaration
It’s always good to announce your intentions up front. Consider the following
classroom lecture:

“Today, in our History of Film course, we’ll be discussing the career of actor
Lionel Herbert Blythe Barrymore.

“Born in Philadelphia, Barrymore appeared in more than 200 films,
including It’s a Wonderful Life, Key Largo, and Dr. Kildare’s Wedding Day.
In addition, Barrymore was a writer, composer, and director. Barrymore
did the voice of Ebenezer Scrooge every year on radio. . . .”

Interesting stuff, heh? Now compare the paragraphs above with a lecture in
which the instructor doesn’t begin by introducing the subject:

“Welcome once again to the History of Film.

“Born in Philadelphia, Lionel Barrymore appeared in more than 200
films, including It’s a Wonderful Life, Key Largo, and Dr. Kildare’s Wedding
Day. In addition, Barrymore (not Ethel, John, or Drew) was a writer,
composer, and director. Lionel Barrymore did the voice of Ebenezer
Scrooge every year on radio. . . .”

Without a proper introduction, a speaker may have to remind you constantly
that the discussion is about Lionel Barrymore and not about some other
Barrymore. The same is true in a Java program. Compare some code from
Listings 3-1 and 4-2. From Listing 3-1:

class Displayer {

System.out.println(“You’ll love Java!”);

and from Listing 4-2:

import static java.lang.System.out;

class Millionaire {

out.print(“You have $”);
out.print(amountInAccount);
out.println(“ in your account.”);

77Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 77

With Listing 4-2, you announce in your introduction (in your import declara-
tion) that you’re using System.out in your Java class. You clarify what you
mean by System with the full name java.lang.System. (Hey! Didn’t the first
lecturer clarify with the full name “Lionel Herbert Blythe Barrymore?”) After
having announced your intentions in the import declaration, you can use the
abbreviated name out in your Java class code.

The details of this import stuff can be pretty nasty. So for now, just paste the
import declaration in Listing 4-2 at the top of your Java programs. (Don’t
bother pasting this import declaration into a program that doesn’t use
System.out. It probably wouldn’t hurt anything, but it would look very
strange to a veteran Java programmer.)

No single section in this book can present the entire story about import dec-
larations. To begin untangling some of the import declaration’s subtleties, see
Chapters 5, 9, and 10.

Displaying Text
The last three statements in Listing 4-2 use a neat formatting trick. You want
to display several different things on a single line on the screen. You put
these things in separate statements. All but the last of the statements are
calls to out.print. (The last statement is a call to out.println.) Calls to
out.print display text on part of a line and then leave the cursor at the end
of the current line. After executing out.print, the cursor is still at the end of
the same line, so the next out.whatever can continue printing on that same
line. With several calls to print capped off by a single call to println, the
result is just one nice-looking line of output. (Refer to Figure 4-3.)

A call to out.print writes some things and leaves the cursor sitting at the
end of the line of output. A call to out.println writes things and then fin-
ishes the job by moving the cursor to the start of a brand new line of output.

Numbers without Decimal Points
“In 1995, the average family had 2.3 children.”

At this point, a wise guy always remarks that no real family has exactly 2.3
children. Clearly, whole numbers have a role in this world. So, in Java, you
can declare a variable to store nothing but whole numbers. Listing 4-3 shows
a program that uses whole number variables.

78 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 78

Listing 4-3: Using the int Type

import static java.lang.System.out;

class ElevatorFitter {

public static void main(String args[]) {
int weightOfAPerson;
int elevatorWeightLimit;
int numberOfPeople;

weightOfAPerson = 150;
elevatorWeightLimit = 1400;
numberOfPeople =

elevatorWeightLimit / weightOfAPerson;

out.print(“You can fit “);
out.print(numberOfPeople);
out.println(“ people on the elevator.”);

}
}

The story behind the program in Listing 4-3 takes some heavy-duty explain-
ing. So here goes:

You have a hotel elevator whose weight capacity is 1,400 pounds. One week-
end, the hotel hosts the Brickenchicker family reunion. In a certain branch of
the Brickenchicker family are identical dectuplets (ten siblings, all with the
same physical characteristics). Normally, each of the Brickenchicker dectu-
plets weighs exactly 145 pounds. But on Saturday, the family has a big
catered lunch, and, because lunch included strawberry shortcake, each of
the Brickenchicker dectuplets now weighs 150 pounds. Immediately after
lunch, all ten of the Brickenchicker dectuplets arrive at the elevator at
exactly the same time. (Why not? All ten of them think alike.) So, the question
is, how many of the dectuplets can fit on the elevator?

Now remember, if you put one ounce more than 1,400 pounds of weight on
the elevator, the elevator cable breaks, plunging all dectuplets on the eleva-
tor to their sudden (and costly) deaths.

The answer to the Brickenchicker riddle (the output of the program of
Listing 4-3) is shown in Figure 4-4.

Figure 4-4:
Save the
Bricken-

chickers!

79Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 79

At the core of the Brickenchicker elevator problem, you’ve got whole
numbers — numbers with no digits beyond the decimal point. When you
divide 1,400 by 150, you get 91⁄3, but you shouldn’t take the 1⁄3 seriously. No
matter how hard you try, you can’t squeeze an extra 50 pounds worth of
Brickenchicker dectuplet onto the elevator. This fact is reflected nicely in
Java. In Listing 4-3, all three variables (weightOfAPerson,
elevatorWeightLimit, and numberOfPeople) are of type int. An int value
is a whole number. When you divide one int value by another (as you do
with the slash in Listing 4-3), you get another int. When you divide 1,400 by
150, you get 9 — not 91⁄3. You see this in Figure 4-4. Taken together, the follow-
ing statements put the number 9 on the computer screen:

numberOfPeople =
elevatorWeightLimit / weightOfAPerson;

out.print(numberOfPeople);

Combining Declarations and
Initializing Variables

Look back at Listing 4-3. In that listing, you see three variable declarations —
one for each of the program’s three int variables. I could have done the
same thing with just one declaration:

int weightOfAPerson, elevatorWeightLimit, numberOfPeople;

If two variables have completely different types, you can’t create both vari-
ables in the same declaration. For instance, to create an int variable named
weightOfFred and a double variable named amountInFredsAccount, you need
two separate variable declarations.

80 Part II: Writing Your Own Java Programs

Four ways to store whole numbers
Java has four different types of whole numbers.
The types are called byte, short, int, and
long. Unlike the complicated story about the
accuracy of types float and double, the only
thing that matters when you choose among the
whole number types is the size of the number
that you’re trying to store. If you want to use
numbers larger than 127, don’t use byte. To

store numbers larger than 32767, don’t use
short.

Most of the time, you’ll use int. But if you need
to store numbers larger than 2147483647,
forsake int in favor of long. (A long number
can be as big as 9223372036854775807.) For the
whole story, see Table 4-1.

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 80

You can give variables their starting values in a declaration. In Listing 4-3
for instance, one declaration can replace several lines in the main method
(all but the calls to print and println).

int weightOfAPerson = 150, elevatorWeightLimit = 1400,
numberOfPeople = elevatorWeightLimit / weightOfAPerson;

When you do this, you don’t say that you’re assigning values to variables.
The pieces of the declarations with equal signs in them aren’t really called
assignment statements. Instead, you say that you’re initializing the variables.
Believe it or not, keeping this distinction in mind is helpful.

Like everything else in life, initializing a variable has advantages and
disadvantages:

� When you combine six lines of Listing 4-3 into just one declaration,
the code becomes more concise. Sometimes, concise code is easier to
read. Sometimes it’s not. As a programmer, it’s your judgment call.

� By initializing a variable, you may automatically avoid certain
programming errors. For an example, see Chapter 7.

� In some situations, you have no choice. The nature of your code
forces you either to initialize or not to initialize. For an interesting
example, see the deleting-evidence program in Chapter 6.

The Atoms: Java’s Primitive Types
The words int and double, which I describe in the previous sections, are
examples of primitive types (also known as simple types) in Java. The Java
language has exactly eight primitive types. As a newcomer to Java, you can
pretty much ignore all but four of these types. (As programming languages
go, Java is nice and compact that way.) The complete list of primitive types is
shown in Table 4-1.

Table 4-1 Java’s Primitive Types
Type Name What a Literal Looks Like Range of Values

Whole number types

byte (byte)42 –128 to 127

short _(short)42 –32768 to 32767

int 42 –2147483648 to
2147483647

(continued)

81Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 81

Table 4-1 (continued)
Type Name What a Literal Looks Like Range of Values

long 42L –9223372036854775808 to
9223372036854775807

Decimal number types

float 42.0F –3.4 × 1038 to 3.4 × 1038

double 42.0 –1.8 × 10308 to 1.8 × 10308

Character type

char ‘A’ Thousands of characters,
glyphs, and symbols

Logical type

boolean true true, false

The types that you shouldn’t ignore are int, double, char, and boolean.
Previous sections in this chapter cover the int and double types. So, this
section covers char and boolean types.

The char type
Not so long ago, people thought computers existed only for doing big number-
crunching calculations. Nowadays, with word processors, nobody thinks that
way anymore. So, if you haven’t been in a cryogenic freezing chamber for the
last 20 years, you know that computers store letters, punctuation symbols,
and other characters.

The Java type that’s used to store characters is called char. Listing 4-4 has
a simple program that uses the char type. The output of the program of
Listing 4-4 is shown in Figure 4-5.

Listing 4-4: Using the char Type

class CharDemo {

public static void main(String args[]) {
char myLittleChar = ‘b’;
char myBigChar = Character.toUpperCase(myLittleChar);
System.out.println(myBigChar);

}
}

82 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 82

In Listing 4-4, the first initialization stores the letter b in the variable
myLittleChar. In the initialization, notice how b is surrounded by single
quote marks. In Java, every char literal starts and ends with a single quote
mark.

In a Java program, single quote marks surround the letter in a char literal.

If you need help sorting out the terms assignment, declaration, and initializa-
tion, see the “Combining Declarations and Initializing Variables” section,
earlier in this chapter.

In the second initialization of Listing 4-4, the program calls an API method
whose name is Character.toUpperCase. The Character.toUpperCase method
does just what its name suggests — the method produces the uppercase
equivalent of the letter b. This uppercase equivalent (the letter B) is assigned
to the myBigChar variable, and the B that’s in myBigChar is printed on the
screen.

For an introduction to the Java Application Programming Interface (API), see
Chapter 3.

If you’re tempted to write the following statement,

char myLittleChars = ‘barry’; //Don’t do this

please resist the temptation. You can’t store more than one letter at a time in
a char variable, and you can’t put more than one letter between a pair of
single quotes. If you’re trying to store words or sentences (not just single
letters), you need to use something called a String.

For a look at Java’s String type, see the section, “The Molecules and
Compounds: Reference Types,” later in this chapter.

If you’re used to writing programs in other languages, you may be aware of
something called ASCII Character Encoding. Most languages use ASCII; Java
uses Unicode. In the old ASCII representation, each character takes up only
8 bits, but in Unicode, each character takes up 16 bits. Whereas ASCII stores
the letters of the familiar Roman (English) alphabet, Unicode has room for
characters from all the world’s languages. The only problem is that some of
the API methods are geared specially toward the 16-bit code. Occasionally,

Figure 4-5:
An exciting

run of the
program of
Listing 4-4.

83Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 83

this bites you in the back. If you’re using a method to write Hello on the
screen and H e l l o shows up instead, check the method’s documentation
for mention of Unicode characters.

It’s worth noticing that the two methods, Character.toUpperCase and
System.out.println, are used quite differently in Listing 4-4. The method
Character.toUpperCase is called as part of an initialization or an assign-
ment statement, but the method System.out.println is called on its own.
To find out more about this, see Chapter 7.

The boolean type
A variable of type boolean stores one of two values — true or false.
Listing 4-5 demonstrates the use of a boolean variable. The output of the
program in Listing 4-5 is shown in Figure 4-6.

Listing 4-5: Using the boolean Type

import static java.lang.System.out;

class ElevatorFitter2 {

public static void main(String args[]) {
out.println(“True or False?”);
out.println(“You can fit all ten of the”);
out.println(“Brickenchicker dectuplets”);
out.println(“on the elevator:”);
out.println();

int weightOfAPerson = 150;
int elevatorWeightLimit = 1400;
int numberOfPeople =

elevatorWeightLimit / weightOfAPerson;

boolean allTenOkay = numberOfPeople >= 10;

out.println(allTenOkay);
}

}

Figure 4-6:
The

Bricken-
chicker

dectuplets
strike again.

84 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 84

In Listing 4-5, the allTenOkay variable is of type boolean. To find a value for
the allTenOkay variable, the program checks to see whether numberOfPeople
is greater than or equal to ten. (The symbols >= stand for greater than or
equal to.)

At this point, becoming fussy about terminology pays. Any part of a Java
program that has a value is called an expression. If you write

weightOfAPerson = 150;

then 150 is an expression (an expression whose value is the quantity 150).
If you write

numberOfEggs = 2 + 2;

then 2 + 2 is an expression (because 2 + 2 has the value 4). If you write

int numberOfPeople =
elevatorWeightLimit / weightOfAPerson;

then elevatorWeightLimit / weightOfAPerson is an expression. (The
value of the expression elevatorWeightLimit / weightOfAPerson
depends on whatever values the variables elevatorWeightLimit and
weightOfAPerson have when the code containing the expression is executed.)

Any part of a Java program that has a value is called an expression.

In Listing 4-5, the code numberOfPeople >= 10 is an expression. The expres-
sion’s value depends on the value stored in the numberOfPeople variable.
But, as you know from seeing the strawberry shortcake at the Brickenchicker
family’s catered lunch, the value of numberOfPeople isn’t greater than or
equal to ten. This makes the value of numberOfPeople >= 10 to be false.
So, in the statement in Listing 4-5, in which allTenOkay is assigned a value,
the allTenOkay variable is assigned a false value.

In Listing 4-5, I call out.println() with nothing inside the parentheses.
When I do this, Java adds a line break to the program’s output. In Listing 4-5,
out.println() tells the program to display a blank line.

The Molecules and Compounds:
Reference Types

By combining simple things, you get more complicated things. That’s the way
it always goes. Take some of Java’s primitive types, whip them together to
make a primitive type stew, and what do you get? A more complicated type
called a reference type.

85Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 85

The program in Listing 4-6 uses reference types. Figure 4-7 shows you what
happens when you run the program in Listing 4-6.

Listing 4-6: Using Reference Types

import javax.swing.JFrame;

class ShowAFrame {

public static void main(String args[]) {
JFrame myFrame = new JFrame();
String myTitle = “Blank Frame”;

myFrame.setTitle(myTitle);
myFrame.setSize(200, 200);
myFrame.setDefaultCloseOperation

(JFrame.EXIT_ON_CLOSE);
myFrame.setVisible(true);

}
}

The program in Listing 4-6 uses two references types. Both of these types are
defined in the Java API. One of the types (the one that you’ll use all the time)
is called String. The other type (the one that you can use to create GUIs) is
called JFrame.

A String is a bunch of characters. It’s like having several char values in a
row. So, with the myTitle variable declared to be of type String, assigning
“Blank Frame” to the myTitle variable makes sense in Listing 4-6. The
String class is declared in the Java API.

In a Java program, double quote marks surround the letters in a String literal.

A Java JFrame is a lot like a window. (The only difference is that you call it a
JFrame instead of a window.) To keep Listing 4-6 short and sweet, I decided
not to put anything in my frame — no buttons, no fields, nothing.

Figure 4-7:
An empty

frame.

86 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 86

Even with a completely empty frame, Listing 4-6 uses tricks that I don’t
describe until later in this book. So don’t try reading and interpreting every
word of Listing 4-6. The big thing to get from Listing 4-6 is that the program
has two variable declarations. In writing the program, I made up two variable
names — myTitle and myFrame. According to the declarations, myTitle is of
type String, and myFrame is of type JFrame.

You can look up String and JFrame in Java’s API documentation. But, even
before you do, I can tell you what you’ll find. You’ll find that String and
JFrame are the names of Java classes. So, that’s the big news. Every class is
the name of a reference type. You can reserve amountInAccount for double
values by writing

double amountInAccount;

or by writing

double amountInAccount = 50.22;

You can also reserve myFrame for a JFrame value by writing

JFrame myFrame;

or by writing

JFrame myFrame = new JFrame();

To review the notion of a Java class, see the sections on object-oriented
programming (OOP) in Chapter 1.

Every Java class is a reference type. If you declare a variable to have some
type that’s not a primitive type, the variable’s type is (most of the time) the
name of a Java class.

Now, when you declare a variable to have type int, you can visualize what
that declaration means in a fairly straightforward way. It means that, some-
where inside the computer’s memory, a storage location is reserved for that
variable’s value. In that storage location is a bunch of bits. The arrangement
of the bits assures that a certain whole number is represented.

That explanation is fine for primitive types like int or double, but what does
it mean when you declare a variable to have a reference type? What does it
mean to declare variable myFrame to be of type JFrame?

Well, what does it mean to declare i thank You God to be an E. E. Cummings
poem? What would it mean to write the following declaration?

EECummingsPoem ithankYouGod;

87Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 87

It means that a class of things is EECummingsPoem, and ithankYouGod refers
to an instance of that class. In other words, ithankYouGod is an object
belonging to the EECummingsPoem class.

Because JFrame is a class, you can create objects from that class. (See
Chapter 1.) Each such object (each instance of the JFrame class) is an actual
frame — a window that appears on the screen when you run the code in
Listing 4-6. By declaring the variable myFrame to be of type JFrame, you’re
reserving the use of the name myFrame. This reservation tells the computer
that myFrame can refer to an actual JFrame-type object. In other words,
myFrame can become a nickname for one of the windows that appears on the
computer screen. The situation is illustrated in Figure 4-8.

When you declare ClassName variableName;, you’re saying that a certain
variable can refer to an instance of a particular class.

In Listing 4-6, the phrase JFrame myFrame reserves the use of the name
myFrame. On that same line of code, the phrase new JFrame() creates a new
object (an instance of the JFrame class). Finally, that line’s equal sign makes
myFrame refer to the new object. Knowing that the two words new JFrame()
create an object can be very important. For a more thorough explanation of
objects, see Chapter 7.

myFrame

An object
(an instance of

the JFrame class)

Another object
(another instance of

the JFrame class)

The JFrame class

Figure 4-8:
The variable

myFrame
refers to an
instance of
the JFrame

class.

88 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 88

Creating New Values by
Applying Operators

What could be more comforting than your old friend, the plus sign? It was the
first thing that you learned about in elementary school math. Almost every-
body knows how to add 2 and 2. In fact, in English usage, adding 2 and 2 is a
metaphor for something that’s easy to do. Whenever you see a plus sign, a
cell in your brain says, “Thank goodness — it could be something much more
complicated.”

So Java has a plus sign. You can use it for several different purposes. You can
use the plus sign to add two numbers, like this:

int apples, oranges, fruit;
apples = 5;
oranges = 16;
fruit = apples + oranges;

You can also use the plus sign to paste String values together:

String startOfChapter =
“It’s three in the morning. I’m dreaming about the “+
“history course that I failed in high school.”;

System.out.println(startOfChapter);

89Chapter 4: Making the Most of Variables and Their Values

Primitive type stew
While I’m on the subject of frames, what’s a
frame anyway? A frame is a window that has a
certain height and width and a certain location
on your computer’s screen. So, deep inside the
declaration of the Frame class, you can find
variable declarations that look something like
this:

int width;
int height;
int x;
int y;

Here’s another example — Time. An instance
of the Time class may have an hour (a number
from 1 to 12), a number of minutes (from 0 to 59),
and a letter (a for a.m.; p for p.m.).

int hour;
int minutes;
char amOrPm;

So notice that this high and mighty thing called
a Java API class is neither high nor mighty.
A class is just a collection of declarations. Some
of those declarations are the declarations of
variables. Some of those variable declarations
use primitive types, and other variable declara-
tions use reference types. These reference
types, however, come from other classes, and
the declarations of those classes have vari-
ables. The chain goes on and on. Ultimately,
everything comes, in one way or another, from
the primitive types.

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 89

This can be handy because in Java, you’re not allowed to make a String
straddle from one line to another. In other words, the following code wouldn’t
work at all:

String thisIsBadCode =
“It’s three in the morning. I’m dreaming about the
history course that I failed in high school.”;

System.out.println(thisIsBadCode);

The correct way to say that you’re pasting String values together is to say
that you’re concatenating String values.

You can even use the plus sign to paste numbers next to String values.

int apples, oranges, fruit;
apples = 5;
oranges = 16;
fruit = apples + oranges;
System.out.println(“You have “ + fruit +

“ pieces of fruit.”);

Of course, the old minus sign is available too (but not for String values).

apples = fruit - oranges;

Use an asterisk (*) for multiplication and a forward slash (/) for division.

double rate, pay;
int hours;

rate = 6.25;
hours = 35;
pay = rate * hours;
System.out.println(pay);

For an example using division, refer to Listing 4-3.

When you divide an int value by another int value, you get an int value.
The computer doesn’t round. Instead, the computer chops off any remainder.
If you put System.out.println(11 / 4) in your program, the computer
prints 2, not 2.75. To get past this, make either (or both) of the numbers
you’re dividing double values. If you put System.out.println(11.0 / 4)
in your program, the computer prints 2.75.

Another useful arithmetic operator is called the remainder operator. The
symbol for the remainder operator is the percent sign (%). When you put
System.out.println(11 % 4) in your program, the computer prints 3. It
does this because 4 goes into 11 who-cares-how-many times with a remainder
of 3. The remainder operator turns out to be fairly useful. Listing 4-7 has an
example.

90 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 90

Listing 4-7: Making Change

import static java.lang.System.out;

class MakeChange {

public static void main(String args[]) {
int total = 248;
int quarters = total / 25;
int whatsLeft = total % 25;

int dimes = whatsLeft / 10;
whatsLeft = whatsLeft % 10;

int nickels = whatsLeft / 5;
whatsLeft = whatsLeft % 5;

int cents = whatsLeft;

out.println(“From “ + total + “ cents you get”);
out.println(quarters + “ quarters”);
out.println(dimes + “ dimes”);
out.println(nickels + “ nickels”);
out.println(cents + “ cents”);

}
}

A run of the code in Listing 4-7 is shown in Figure 4-9. You start with a total of
248 cents. Then

quarters = total / 25

divides 248 by 25, giving 9. That means you can make 9 quarters from 248
cents. Next,

whatsLeft = total % 25

divides 248 by 25 again, and puts only the remainder, 23, into whatsLeft.
Now you’re ready for the next step, which is to take as many dimes as you
can out of 23 cents.

Figure 4-9:
Change

for $2.48.

91Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 91

Initialize once, assign often
Listing 4-7 has three lines that put values into the variable whatsLeft:

int whatsLeft = total % 25;

whatsLeft = whatsLeft % 10;

whatsLeft = whatsLeft % 5;

Only one of these lines is a declaration. The other two lines are assignment
statements. That’s good because you can’t declare the same variable more
than once (not without creating something called a block). If you goof and
write

int whatsLeft = total % 25;

int whatsLeft = whatsLeft % 10;

in Listing 4-7, you see an error message (whatsLeft is already defined)
when you try to compile your code.

To find out what a block is, see Chapter 5. Then, for some honest talk about
redeclaring variables, see Chapter 10.

The increment and decrement operators
Java has some neat little operators that make life easier (for the computer’s
processor, for your brain, and for your fingers). Altogether, four such opera-
tors exist — two increment operators and two decrement operators. The
increment operators add 1, and the decrement operators subtract 1. The
increment operators use double plus signs (++), and the decrement opera-
tors use double minus signs (--). To see how they work, you need some
examples. The first example is in Figure 4-10.

A run of the program in Figure 4-10 is shown in Figure 4-11. In this horribly
uneventful run, the count of bunnies is printed three times.

The double plus signs go by two different names, depending on where you
put them. When you put the ++ before a variable, the ++ is called the preincre-
ment operator. (The pre stands for before.)

The word before has two different meanings:

� You put ++ before the variable.

� The computer adds 1 to the variable’s value before the variable is used
in any other part of the statement.

92 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 92

To understand this, look at the bold line in Figure 4-10. The computer adds 1
to numberOfBunnies (raising the value of numberOfBunnies to 29), and then
the computer prints the number 29 on-screen.

With out.println(++numberOfBunnies), the computer adds 1 to
numberOfBunnies before printing the new value of numberOfBunnies
on-screen.

An alternative to preincrement is postincrement. (The post stands for after.)
The word after has two different meanings:

� You put ++ after the variable.

� The computer adds 1 to the variable’s value after the variable is used in
any other part of the statement.

To see more clearly how postincrement works, look at the bold line in
Figure 4-12. The computer prints the old value of numberOfBunnies (which
is 28) on the screen, and then the computer adds 1 to numberOfBunnies,
which raises the value of numberOfBunnies to 29.

With out.println(numberOfBunnies++), the computer adds 1 to
numberOfBunnies after printing the old value that numberOfBunnies
already had.

Figure 4-11:
A run of

the code in
Figure 4-10.

import static java.lang.System.out;
class preIncrementDemo {
 public static void main(String args[]) {
 int numberOfBunnies = 27;

 ++numberOfBunnies;
 out.println(numberOfBunnies);
 out.println(++numberOfBunnies);
 out.println(numberOfBunnies);
 }
}

numberOfBunnies
becomes 28.

28 gets printed.

numberOfBunnies
becomes 29, and
29 gets printed.

29 gets printed again.

Figure 4-10:
Using

preincre-
ment.

93Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 93

A run of the code in Figure 4-12 is shown in Figure 4-13. Compare Figure 4-13
with the run in Figure 4-11:

� With preincrement in Figure 4-11, the second number is 29.

� With postincrement in Figure 4-13, the second number is 28.

In Figure 4-13, the number 29 doesn’t show up on-screen until
the end of the run, when the computer executes one last
out.println(numberOfBunnies).

Are you trying to decide between using preincrement or postincrement? Try
no longer. Most programmers use postincrement. In a typical Java program,
you often see things like numberOfBunnies++. You seldom see things like
++numberOfBunnies.

In addition to preincrement and postincrement, Java has two operators that
use --. These operators are called predecrement and postdecrement.

� With predecrement (--numberOfBunnies), the computer subtracts 1
from the variable’s value before the variable is used in the rest of the
statement.

� With postdecrement (numberOfBunnies--), the computer subtracts 1
from the variable’s value after the variable is used in the rest of the
statement.

Figure 4-13:
A run of

the code in
Figure 4-12.

import static java.lang.System.out;
class preIncrementDemo {
 public static void main(String args[]) {
 int numberOfBunnies = 27;

 numberOfBunnies++;
 out.println(numberOfBunnies);
 out.println(numberOfBunnies++);
 out.println(numberOfBunnies);
 }
}

numberOfBunnies
becomes 28.

28 gets printed.

28 gets printed, and then
numberOfBunnies

becomes 29.

29 gets printed.

Figure 4-12:
Using

postincre-
ment.

94 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 94

Instead of writing ++numberOfBunnies, you could achieve the same effect by
writing numberOfBunnies = numberOfBunnies + 1. So some people con-
clude that Java’s ++ and -- operators are for saving keystrokes — to keep
those poor fingers from overworking themselves. This is entirely incorrect.
The best reason for using ++ is to avoid the inefficient and error-prone prac-
tice of writing the same variable name, such as numberOfBunnies, twice in
the same statement. If you write numberOfBunnies only once (as you do when
you use ++ or --), the computer has to figure out what numberOfBunnies
means only once. On top of that, when you write numberOfBunnies only
once, you have only one chance (instead of two chances) to type the variable
name incorrectly. With simple expressions like numberOfBunnies++, these
advantages hardly make a difference. But with more complicated expres-
sions, like inventoryItems[(quantityReceived--*itemsPerBox+17)]++,
the efficiency and accuracy that you gain by using ++ and -- is significant.

95Chapter 4: Making the Most of Variables and Their Values

Statements and expressions
You can describe the pre- and postincrement
and pre- and postdecrement operators in two
ways: the way everyone understands them and
the right way. The way that I explain the con-
cept in most of this section (in terms of time,
with before and after) is the way that everyone
understands it. Unfortunately, the way everyone
understands the concept isn’t really the right
way. When you see ++ or --, you can think in
terms of time sequence. But occasionally some
programmer uses ++ or -- in a convoluted way,
and the notions of before and after break down.
So, if you’re ever in a tight spot, think about
these operators in terms of statements and
expressions.

First, remember that a statement tells the
computer to do something, and an expres-
sion has a value. (I discuss statements in
Chapter 3, and I describe expressions else-
where in this chapter.) Which category does
numberOfBunnies++ belong to? The sur-
prising answer is both. The Java code
numberOfBunnies++ is both a statement and
an expression.

Assume that, before the computer exe-
cutes the code out.println(numberOf
Bunnies++), the value of numberOf
Bunnies is 28.

� As a statement, numberOfBunnies++
tells the computer to add 1 to
numberOfBunnies.

� As an expression, the value of
numberOfBunnies++ is 28, not 29.

So, even though the computer adds 1
to numberOfBunnies, the code out.
println(numberOfBunnies++) really
means out.println(28).

Now, almost everything you just read
about numberOfBunnies++ is true about
++numberOfBunnies. The only difference is
that as an expression, ++numberOfBunnies
behaves in a more intuitive way.

� As a statement, ++numberOfBunnies
tells the computer to add 1 to
numberOfBunnies.

� As an expression, the value of
++numberOfBunnies is 29.

So, with out.println(++numberOf
Bunnies), the computer adds 1 to the variable
numberOfBunnies, and the code out.
println(++numberOfBunnies) really
means out.println(29).

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 95

Assignment operators
If you read the preceding section, which is about operators that add 1, you
may be wondering whether you can manipulate these operators to add 2 or
add 5 or add 1000000. Can you write numberOfBunnies++++ and still call
yourself a Java programmer? Well, you can’t. If you try it, an error message
appears when you try to compile your code.

So what can you do? As luck would have it, Java has plenty of assignment
operators that you can use. With an assignment operator, you can add, sub-
tract, multiply, or divide by anything you want. You can do other cool opera-
tions, too. Listing 4-8 has a smorgasbord of assignment operators (the things
with equal signs). Figure 4-14 shows the output from running Listing 4-8.

Listing 4-8: Assignment Operators

import static java.lang.System.out;

class UseAssignmentOperators {

public static void main(String args[]) {
int numberOfBunnies = 27;
int numberExtra = 53;

numberOfBunnies += 1;
out.println(numberOfBunnies);

numberOfBunnies += 5;
out.println(numberOfBunnies);

numberOfBunnies += numberExtra;
out.println(numberOfBunnies);

numberOfBunnies *= 2;
out.println(numberOfBunnies);

out.println(numberOfBunnies -= 7);

out.println(numberOfBunnies = 100);
}

}

Figure 4-14:
A run of

the code in
Listing 4-8.

96 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 96

Listing 4-8 shows how versatile Java’s assignment operators are. With the
assignment operators, you can add, subtract, multiply, or divide a variable by
any number. Notice how += 5 adds 5 to numberOfBunnies, and how *= 2
multiplies numberOfBunnies by 2. You can even use another expression’s
value (in Listing 4-8, numberExtra) as the number to be applied.

The last two lines in Listing 4-8 demonstrate a special feature of Java’s assign-
ment operators. You can use an assignment operator as part of a larger Java
statement. In the next to last line of Listing 4-8, the operator subtracts 7 from
numberOfBunnies, decreasing the value of numberOfBunnies from 172 to
165. But then the whole assignment business is stuffed into a call to
out.println, so the number 165 is printed on the computer screen.

Lo and behold, the last line of Listing 4-8 shows how you can do the same
thing with Java’s plain old equal sign. The thing that I call an assignment
statement near the start of this chapter is really one of the assignment opera-
tors that I describe in this section. So, whenever you assign a value to some-
thing, you can make that assignment be part of a larger statement.

Each use of an assignment operator does double duty as both a state-
ment and an expression. In all cases, the expression’s value equals
whatever value you assign. For example, before executing the code
out.println(numberOfBunnies -= 7), the value of numberOfBunnies
is 172. As a statement, numberOfBunnies -= 7 tells the computer to sub-
tract 7 from numberOfBunnies (so the value of numberOfBunnies goes from
172 down to 165). As an expression, the value of numberOfBunnies -= 7
is 165. So the code out.println(numberOfBunnies -= 7) really means
out.println(165). The number 165 is displayed on the computer screen.

For a richer explanation of this kind of thing, see the sidebar, “Statements and
expressions,” earlier in this chapter.

97Chapter 4: Making the Most of Variables and Their Values

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 97

98 Part II: Writing Your Own Java Programs

02b_568582 ch04.qxd 7/27/04 11:43 PM Page 98

Chapter 5

Controlling Program Flow with
Decision-Making Statements

In This Chapter
� Writing statements that choose between alternatives

� Putting statements inside one another

� Choosing among many alternatives

The TV show Dennis the Menace aired on CBS from 1959 to 1963. I remem-
ber one episode in which Mr. Wilson was having trouble making an impor-

tant decision. I think it was something about changing jobs or moving to a
new town. Anyway, I can still see that shot of Mr. Wilson sitting in his yard,
sipping lemonade, and staring into nowhere for the whole afternoon. Of
course, the annoying character Dennis was constantly interrupting Mr.
Wilson’s peace and quiet. That’s what made this situation funny.

What impressed me about this episode (the reason why I remember it so
clearly even now) was Mr. Wilson’s dogged intent in making the decision.
This guy wasn’t going about his everyday business, roaming around the
neighborhood, while thoughts about the decision wandered in and out of his
mind. He was sitting quietly in his yard, making marks carefully and logically
on his mental balance sheet. How many people actually make decisions
this way?

At that time, I was still pretty young. I’d never faced the responsibility of
having to make a big decision that affected my family and me. But I wondered
what such a decision-making process would be like. Would it help to sit there
like a stump for hours on end? Would I make my decisions by the careful
weighing and tallying of options? Or would I shoot in the dark, take risks, and
act on impulse? Only time would tell.

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 99

Making Decisions (Java if Statements)
When you’re writing computer programs, you’re constantly hitting forks in
roads. Did the user correctly type his or her password? If yes, let the user
work; if no, kick the bum out. So the Java programming language needs a way
of making a program branch in one of two directions. Fortunately, the lan-
guage has a way. It’s called an if statement.

Guess the number
The use of an if statement is illustrated in Listing 5-1. Two runs of the pro-
gram in Listing 5-1 are shown in Figure 5-1.

Listing 5-1: A Guessing Game

import static java.lang.System.out;
import java.util.Scanner;
import java.util.Random;

class GuessingGame {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);

out.print(“Enter an int from 1 to 10: “);

int inputNumber = myScanner.nextInt();
int randomNumber = new Random().nextInt(10) + 1;

if (inputNumber == randomNumber) {
out.println(“**********”);
out.println(“*You win.*”);
out.println(“**********”);

} else {
out.println(“You lose.”);
out.print(“The random number was “);
out.println(randomNumber + “.”);

}

out.println(“Thank you for playing.”);
}

}

100 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 100

The program in Listing 5-1 plays a guessing game with the user. The program
gets a number (a guess) from the user and then generates a random number
between 1 and 10. If the number that the user entered is the same as the
random number, the user wins. Otherwise, the user loses. In either case, the
program tells the user what the random number was.

She controlled keystrokes
from the keyboard
Taken together, the lines

import java.util.Scanner;

Scanner myScanner = new Scanner(System.in);

int inputNumber = myScanner.nextInt();

in Listing 5-1 get whatever number the user types on the keyboard. The last
of the three lines puts this number into a variable named inputNumber. If
these lines look complicated, don’t worry. You can copy these lines almost
word for word whenever you want to read from the keyboard. Include the
first two lines (the import and Scanner lines) just once in your program.
Later in your program, wherever the user types an int value, include a line
with a call to nextInt (as in the last of the three lines above).

Of all the names in these three lines of code, the only two names that I coined
myself are inputNumber and myScanner. All the other names are part of Java.
So, if I want to be creative, I can write the lines this way:

import java.util.Scanner;

Scanner readingThingie = new Scanner(System.in);

int valueTypedIn = readingThingie.nextInt();

Figure 5-1:
Two runs

of the
guessing

game.

101Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 101

I can also beef up my program’s import declarations, as I do in Listings 5-2
and 5-3. Other than that, I have very little leeway.

As you read on in this book, you’ll start recognizing the patterns behind
these three lines of code, so I don’t clutter up this section with all the details.
For now, you can just copy these three lines and keep the following in mind:

� When you import java.util.Scanner, you don’t use the word static.

Importing Scanner is different from importing System.out. When you
import java.lang.System.out, you use the word static. (See Listing 5-1.)

For the real story on the word static, see Chapter 10.

� The name System.in stands for the keyboard.

To get characters from someplace other than the keyboard, you can
type something other than System.in inside the parentheses.

What else can you put inside the parentheses? For some ideas, see
Chapter 8.

� When you expect the user to type an int value (a whole number of
some kind), use nextInt().

If you expect the user to type a double value (a number containing a
decimal point), use nextDouble(). If you expect the user to type true or
false, use nextBoolean(). If you expect the user to type a word (a word
like Barry, Java, or Hello), use next().

For an example in which the user types a word, see Listing 5-3. For an
example in which the user types a single character, see Listing 6-4 in
Chapter 6. For an example in which a program reads an entire line of text
(all in one big gulp), see Chapter 8.

� You can get several values from the keyboard, one after another.

To do this, use the myScanner.nextInt() code several times.

To see a program that reads more than one value from the keyboard, go
to Listing 5-4.

Creating randomness
Achieving real randomness is surprisingly difficult. Mathematician Persi
Diaconis says that if you flip a coin several times, always starting with the
head side up, you’re likely to toss heads more often than tails. If you toss sev-
eral more times, always starting with the tail side up, you’re likely to toss
tails more often than heads. In other words, coin tossing isn’t really fair.*

102 Part II: Writing Your Own Java Programs

* Diaconis, Persi. “The search for randomness.” American Association for the Advancement
of Science annual meeting. Seattle. 14 Feb. 2004.

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 102

Computers aren’t much better than coins and human thumbs. A computer
mimics the generation of random sequences but, in the end, the computer
just does what it’s told and does all this in a purely deterministic fashion.
So in Listing 5-1, when the computer executes

import java.util.Random;

int randomNumber = new Random().nextInt(10) + 1;

the computer appears to give us a randomly generated number — a whole
number between 1 and 10. But it’s all a fake. The computer just follows
instructions. It’s not really random, but without bending a computer over
backwards, it’s the best that anyone can do.

Once again, I ask you to take this code on blind faith. Don’t worry about what
new Random().nextInt means until you have more experience with Java.
Just copy this code into your own programs and have fun with it. And if the
numbers from 1 to 10 aren’t in your flight plans, don’t fret. To roll an imagi-
nary die, write the statement

int rollEmBaby = new Random().nextInt(6) + 1;

With the execution of this statement, the variable rollEmBaby gets a value
from 1 to 6.

The if statement
At the core of Listing 5-1 is a Java if statement. This if statement represents
a fork in the road. (See Figure 5-2.) The computer follows one of two prongs —
the prong that prints You win or the prong that prints You lose. The com-
puter decides which prong to take by testing the truth or falsehood of a
condition. In Listing 5-1, the condition being tested is

inputNumber == randomNumber

Does the value of inputNumber equal the value of randomNumber? When the
condition is true, the computer does the stuff between the condition and the
word else. When the condition turns out to be false, the computer does the
stuff after the word else. Either way, the computer goes on to execute the last
println call, which displays Thank you for playing.

The condition in an if statement must be enclosed in parentheses. However,
a line like if(inputNumber == randomNumber) is not a complete statement,
so this line shouldn’t end with a semicolon.

103Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 103

Sometimes, when I’m writing about a condition that’s being tested, I slip into
using the word expression instead of condition. That’s okay, because every
condition is an expression. An expression is something that has a value and,
sure enough, every condition has a value. The condition’s value is either
true or false. (For revealing information about expressions, and values like
true and false, see Chapter 4.)

The double equal sign
In Listing 5-1, in the if statement’s condition, notice the use of the double
equal sign. Comparing two numbers to see whether they’re the same isn’t the
same as setting something equal to something else. That’s why the symbol to
compare for equality isn’t the same as the symbol that’s used in an assign-
ment or an initialization. In an if statement’s condition, you can’t replace the
double equal sign with a single equal sign. If you do, your program just won’t
work. (You’ll almost always get an error message when you try to compile
your code.)

On the other hand, if you never make the mistake of using a single equal sign
in a condition, you’re not normal. Not long ago, while I was teaching an intro-
ductory Java course, I promised that I’d swallow my laser pointer if no one
made the single equal sign mistake during any of the lab sessions. This
wasn’t an idle promise. I knew I’d never have to keep it. As it turned out, even
if I had ignored the first ten times anybody made the single equal sign mis-
take during those lab sessions, I would still be laser-pointer free. Everybody
mistakenly uses the single equal sign several times in his or her programming

Does inputNumber
equal randomNumber?

You win.

You lose.
The random
number was...

Thank you for playing.

yes no

Figure 5-2:
An if

statement is
like a fork in

the road.

104 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 104

career. The trick is not to avoid making the mistake; the trick is to catch the
mistake whenever you make it.

Brace yourself
The if statement in Listing 5-1 has two halves — a top half and a bottom half.
I have names for these two parts of an if statement. I call them the if part
(the top half) and the else part (the bottom half).

The if part in Listing 5-1 seems to have more than one statement in it. I make
this happen by enclosing the three statements of the if part in a pair of curly
braces. When I do this, I form a block. A block is a bunch of statements
scrunched together by a pair of curly braces.

With this block, three calls to println are tucked away safely inside the if
part. With the curly braces, the rows of asterisks and the words You win are
displayed only when the user’s guess is correct.

This business with blocks and curly braces applies to the else part as well.
In Listing 5-1, whenever inputNumber doesn’t equal randomNumber, the com-
puter executes three print/println calls. To convince the computer that all
three of these calls are inside the else clause, I put these calls into a block.
That is, I enclose these three calls in a pair of curly braces.

Strictly speaking, Listing 5-1 has only one statement between the if and the
else statements, and only one statement after the else statement. The trick
is that when you surround a bunch of statements inside curly braces, you get
a block, and a block behaves, in all respects, like a single statement. In fact,
the official Java documentation lists blocks as one of the many kinds of state-
ments. So, in Listing 5-1, the block that prints You win and asterisks is a
single statement. It’s a statement that has, within it, three smaller statements.

Indenting if statements in your code
Notice how, in Listing 5-1, the print and println calls inside the if state-
ment are indented. (This includes both the You win and You lose state-
ments. The print and println calls that come after the word else are still
part of the if statement.) Strictly speaking, you don’t have to indent the
statements that are inside an if statement. For all the compiler cares, you
can write your whole program on a single line or place all your statements in
an artful, misshapen zigzag. The problem is that if you don’t indent your
statements in some logical fashion, neither you nor anyone else can make
sense of your code. In Listing 5-1, the indenting of the print and println
statements helps your eye (and brain) see quickly that these statements are
subordinate to the overall if/else flow.

105Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 105

In a small program, unindented or poorly indented code is barely tolerable.
But in a complicated program, indentation that doesn’t follow a neat, logical
pattern is a big, ugly nightmare.

When you write if statements, you may be tempted to chuck all the rules
about curly braces out the window and just rely on indentation. Unfortunately,
this seldom works. If you indent three statements after the word else and
forget to enclose those statements in curly braces, the computer thinks that
the else part includes only the first of the three statements. What’s worse,
the indentation misleads you into believing that the else part includes all
three statements. This makes it more difficult for you to figure out why your
code isn’t behaving the way you think it should behave. So watch those braces!

Elseless in Ifrica
Okay, so the title of this section is contrived. Big deal! The idea is that you
can create an if statement without the else part. Take, for instance, the
code in Listing 5-1. Maybe you’d rather not rub it in whenever the user
loses the game. The modified code in Listing 5-2 shows you how to do this
(and Figure 5-3 shows you the result).

Listing 5-2: A Kinder, Gentler Guessing Game

import static java.lang.System.in;
import static java.lang.System.out;
import java.util.Scanner;
import java.util.Random;

class DontTellThemTheyLost {

public static void main(String args[]) {
Scanner myScanner = new Scanner(in);

out.print(“Enter an int from 1 to 10: “);

int inputNumber = myScanner.nextInt();
int randomNumber = new Random().nextInt(10) + 1;

if (inputNumber == randomNumber) {
out.println(“*You win.*”);

}

out.println(“That was a very good guess :-)”);
out.print(“The random number was “);
out.println(randomNumber + “.”);
out.println(“Thank you for playing.”);

}
}

106 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 106

The if statement in Listing 5-2 has no else part. When inputNumber is the
same as randomNumber, the computer prints You win. When inputNumber
is different from randomNumber, the computer doesn’t print You win.

Listing 5-2 illustrates another new idea. With an import declaration for
System.in, I can reduce new Scanner(System.in) to the shorter new
Scanner(in). Adding this import declaration is hardly worth the effort. In
fact, I do more typing with the import declaration than without it. Nevertheless,
the code in Listing 5-2 demonstrates that it’s possible to import System.in.

Forming Conditions with Comparisons
and Logical Operators

The Java programming language has plenty of little squiggles and doodads
for your various condition-forming needs. This section tells you all about them.

Comparing numbers; comparing characters
Table 5-1 shows you the operators that you can use to compare things with
one another.

Table 5-1 Comparison Operators
Operator Symbol Meaning Example

== is equal to numberOfCows == 5

!= is not equal to buttonClicked !=
panicButton

< is less than numberOfCows < 5

> is greater than myInitial > ‘B’

<= is less than or equal to numberOfCows <= 5

>= is greater than or equal to myInitial >= ‘B’

Figure 5-3:
Two runs of
the game in
Listing 5-2.

107Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 107

You can use all of Java’s comparison operators to compare numbers and
characters. When you compare numbers, things go pretty much the way you
think they should go. But when you compare characters, things are a little
strange. Comparing uppercase letters with one another is no problem.
Because the letter B comes alphabetically before H, the condition ‘B’ < ‘H’
is true. Comparing lowercase letters with one another is also okay. What’s
strange is that when you compare an uppercase letter with a lowercase letter,
the uppercase letter is always smaller. So, even though ‘Z’ < ‘A’ is false,
‘Z’ < ‘a’ is true.

Under the hood, the letters A through Z are stored with numeric codes 65
through 90. The letters a through z are stored with codes 97 through 122.
That’s why each uppercase letter is smaller than each lowercase letter.

Be careful when you compare two numbers for equality (with ==) or inequal-
ity (with !=). After doing some calculations and obtaining two double values
or two float values, the values that you have are seldom dead-on equal to
one another. (The problem comes from those pesky digits beyond the deci-
mal point.) For instance, the Fahrenheit equivalent of 21 degrees Celsius is
69.8, and when you calculate 9.0 / 5 * 21 + 32 by hand, you get 69.8. But
the condition 9.0 / 5 * 21 + 32 == 69.8 turns out to be false. That’s
because, when the computer calculates 9.0 / 5 * 21 + 32, it gets
69.80000000000001, not 69.8.

Comparing objects
When you start working with objects, you’ll find that you can use == and !=
to compare objects with one another. For instance, a button that you see on
the computer screen is an object. You can ask whether the thing that was just
mouse-clicked is a particular button on your screen. You do this with Java’s
equality operator.

if (e.getSource() == bCopy) {
clipboard.setText(which.getText());

To find out more about responding to button clicks, read Chapter 16 on this
book’s CD-ROM.

The big gotcha with Java’s comparison scheme comes when you compare
two strings. (For a word or two about Java’s String type, see the section
about reference types in Chapter 4.) When you compare two strings with one
another, you don’t want to use the double equal sign. Using the double equal
sign would ask, “Is this string stored in exactly the same place in memory as
that other string?” That’s usually not what you want to ask. Instead, you usu-
ally want to ask, “Does this string have the same characters in it as that other
string?” To ask the second question (the more appropriate question) Java’s

108 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 108

String type has a method named equals. (Like everything else in the known
universe, this equals method is defined in the Java API, short for Application
Programming Interface.) The equals method compares two strings to see
whether they have the same characters in them. For an example using Java’s
equals method, see Listing 5-3. (A run of the program in Listing 5-3 is shown
in Figure 5-4.)

Listing 5-3: Checking a Password

import static java.lang.System.*;
import java.util.Scanner;

class CheckPassword {

public static void main(String args[]) {

out.print(“What’s the password? “);

Scanner myScanner = new Scanner(in);
String password = myScanner.next();

out.println(“You typed >>” + password + “<<”);
out.println();

if (password == “swordfish”) {
out.println(“The word you typed is stored”);
out.println(“in the same place as the real”);
out.println(“password. You must be a”);
out.println(“hacker.”);

} else {
out.println(“The word you typed is not”);
out.println(“stored in the same place as”);
out.println(“the real password, but that’s”);
out.println(“no big deal.”);

}
out.println();

if (password.equals(“swordfish”)) {
out.println(“The word you typed has the”);
out.println(“same characters as the real”);
out.println(“password. You can use our”);
out.println(“precious system.”);

} else {
out.println(“The word you typed doesn’t”);
out.println(“have the same characters as”);
out.println(“the real password. You can’t”);
out.println(“use our precious system.”);

}
}

}

109Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 109

In Listing 5-3, the call myScanner.next() grabs whatever word the user
types on the computer keyboard. The code shoves this word into the vari-
able named password. Then the program’s if statements use two different
techniques to compare password with “swordfish”.

The more appropriate of the two techniques uses Java’s equals method. The
equals method looks funny when you call it, because you put a dot after one
string and put the other string in parentheses. But that’s the way you have to
do it.

In calling Java’s equals method, it doesn’t matter which string gets the dot
and which gets the parentheses. For instance, in Listing 5-3, you could have
written

if (“swordfish”.equals(password))

The method would work just as well.

A call to Java’s equals method looks imbalanced, but it’s not. There’s a
reason behind the apparent imbalance between the dot and the parenthe-
ses. The idea is that you have two objects: the password object and the
“swordfish” object. Each of these two objects is of type String. (However,
password is a variable of type String, and “swordfish” is a String literal.)
When you write password.equals(“swordfish”), you’re calling an equals
method that belongs to the password object. As you call that method, you’re
feeding “swordfish” to the method as the method’s parameter (pun
intended).

You can read more about methods belonging to objects in Chapter 7.

When comparing strings with one another, use the equals method, not the
double equal sign.

Figure 5-4:
The result of

using ==
and using

Java’s
equals

method.

110 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 110

Importing everything in one fell swoop
The first line of Listing 5-3 illustrates a lazy way of importing both
System.out and System.in. To import everything that System has to
offer, you use the asterisk wildcard character (*). In fact, importing
java.lang.System.* is like having about 30 separate import declarations,
including System.in, System.out, System.err, System.nanoTime, and
many other System things.

The use of an asterisk in an import declaration is generally considered bad
programming practice, so I don’t do it often in this book’s examples. But for
larger programs — programs that use dozens of names from the Java API —
the lazy asterisk trick is handy.

You can’t toss an asterisk anywhere you want inside an import declaration.
For example, you can’t import everything starting with java by writing
import java.*. You can substitute an asterisk only for the name of a class
or for the name of something static that’s tucked away inside a class. For
more information about asterisks in import declarations, see Chapter 9. For
information about static things, see Chapter 10.

Java’s logical operators
Mr. Spock would be pleased. Java has all the operators that you need for
mixing and matching logical tests. The operators are shown in Table 5-2.

Table 5-2 Logical Operators
Operator Symbol Meaning Example

&& and 5 < x && x < 10

|| or x < 5 || 10 < x

! not !password.equals(“swordfish”)

You can use these operators to form all kinds of elaborate conditions.
Listing 5-4 has an example.

111Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 111

Listing 5-4: Checking Username and Password

import static java.lang.System.out;
import java.util.Scanner;

class Authenticator {

public static void main(String args[]) {

Scanner myScanner = new Scanner(System.in);

out.print(“Username: “);
String username = myScanner.next();

out.print(“Password: “);
String password = myScanner.next();

if (
(username.equals(“bburd”) &&
password.equals(“swordfish”)) ||
(username.equals(“hritter”) &&
password.equals(“preakston”))

)
{

out.println(“You’re in.”);
} else {

out.println(“You’re suspicious.”);
}

}
}

Some runs of the program of Listing 5-4 are shown in Figure 5-5. When the
username is bburd and the password is swordfish or when the username is
hritter and the password is preakston, the user gets a nice message.
Otherwise, the user is a bum who gets the nasty message that he or she
deserves.

Keep an eye on those parentheses! When you’re combining comparisons with
logical operators, it’s better to waste typing effort and add unneeded paren-
theses than to goof up your result by using too few parentheses. Take, for
example, the expression

Figure 5-5:
Using

logical
operators.

112 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 112

2 < 5 || 100 < 6 && 27 < 1

By misreading this expression, you may come to the conclusion that the
expression is false. That is, you could wrongly read the expression as mean-
ing (something-or-other) && 27 < 1. Because 27 < 1 is false, you would
conclude that the whole expression is false. The fact is that, in Java, any &&
operator is evaluated before any || operator. So the expression really asks
if 2 < 5 || (something-or-other). Because 2 < 5 is true, the whole
expression is true.

To change the expression’s value from true to false, you can put the
expression’s first two comparisons in parentheses, like this:

(2 < 5 || 100 < 6) && 27 < 1

Java’s || operator is inclusive. This means that you get a true value when-
ever the thing on the left side is true, the thing on the right side is true, or
both things are true. For instance, the expression 2 < 10 || 20 < 30 is true.

In Java, you can’t combine comparisons the way you do in ordinary
English. In English, you may say, “We’ll have between three and ten people
at the dinner table.” But in Java, you get an error message if you write
3 <= people <= 10. To do this comparison, you need something like
3 <= people && people <= 10.

Building a Nest
Have you seen those cute Russian Matryoshka nesting dolls? Open up one,
and another one is inside. Open up the other, and a third one is inside it. You
can do the same thing with Java’s if statements. (Talk about fun!) Listing 5-5
shows you how.

Listing 5-5: Nested if Statements

import static java.lang.System.out;
import java.util.Scanner;

class Authenticator2 {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);

out.print(“Username: “);
String username = myScanner.next();

(continued)

113Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 113

Listing 5-5 (continued)

if (username.equals(“bburd”)) {
out.print(“Password: “);
String password = myScanner.next();

if (password.equals(“swordfish”)) {
out.println(“You’re in.”);

} else {
out.println(“Incorrect password”);

}

} else {
out.println(“Unknown user”);

}
}

}

Figure 5-6 shows several runs of the code in Listing 5-5. The main idea is that
to log on, you have to pass two tests. (In other words, two conditions must
be true.) The first condition tests for a valid username; the second condition
tests for the correct password. If you pass the first test (the username test),
you march right into another if statement that performs a second test (the
password test). If you fail the first test, you never make it to the second test.
The overall plan is shown in Figure 5-7.

The code in Listing 5-5 does a good job with nested if statements, but it
does a terrible job with real-world user authentication. First of all, never
show a password in plain view (without asterisks to masquerade the pass-
word). Second, don’t handle passwords without encrypting them. Third,
don’t tell the malicious user which of the two words (the username or the
password) was entered incorrectly. Fourth . . . well I could go on and on. The
code in Listing 5-5 just isn’t meant to illustrate good username/password
practices.

Figure 5-6:
Authenticat-

ing a user.

114 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 114

Choosing among Many Alternatives
(Java switch Statements)

I’m the first to admit that I hate making decisions. If things go wrong, I would
rather have the problem be someone else’s fault. Writing the previous sec-
tions (on making decisions with Java’s if statement) knocked the stuffing
right out of me. That’s why my mind boggles as I begin this section on choos-
ing among many alternatives. What a relief it is to have that confession out of
the way!

Does username
equal "bburd"?

Does password
equal "swordfish"?

no yes

no yes

Unknown
user

You're inIncorrect
password

Figure 5-7:
Don’t try

eating with
this fork.

115Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 115

Your basic switch statement
Now, it’s time to explore situations in which you have a decision with many
branches. Take, for instance, the popular campfire song “Al’s All Wet.” (For a
review of the lyrics, see the sidebar.) You’re eager to write code that prints
this song’s lyrics. Fortunately, you don’t have to type all the words over and
over again. Instead, you can take advantage of the repetition in the lyrics.

A complete program to display the “Al’s All Wet” lyrics won’t come until
Chapter 6. In the meantime, assume that you have a variable named verse.
The value of verse is 1, 2, 3, or 4, depending on which verse of “Al’s All Wet”
you’re trying to print. You could have a big, clumsy bunch of if statements
that checks each possible verse number.

if (verse == 1) {
out.println(“That’s because he has no brain.”);

}
if (verse == 2) {

out.println(“That’s because he is a pain.”);
}
if (verse == 3) {

out.println(“‘Cause this is the last refrain.”);
}

116 Part II: Writing Your Own Java Programs

“Al’s All Wet”
Sung to the tune of “Gentille Alouette”:

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
That’s because he has no brain.
Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh. . . .

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
That’s because he is a pain.
He’s a pain, he’s a pain,
Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh. . . .

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.
Why is Al out in the rain?
’Cause this is the last refrain.
Last refrain, last refrain,
He’s a pain, he’s a pain,
Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh. . . .

Al’s all wet. Oh, why is Al all wet? Oh,
Al’s all wet ’cause he’s standing in the rain.

–Harriet Ritter and Barry Burd

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 116

But that approach seems wasteful. Why not create a statement that checks
the value of verse just once and then takes an action based on the value that
it finds? Fortunately, just such a statement exists. It’s called a switch state-
ment. Listing 5-6 has an example of a switch statement.

Listing 5-6: A switch Statement

import static java.lang.System.out;
import java.util.Scanner;

class JustSwitchIt {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
out.print(“Which verse? “);
int verse = myScanner.nextInt();

switch (verse) {
case 1:

out.println(“That’s because he has no brain.”);
break;

case 2:
out.println(“That’s because he is a pain.”);
break;

case 3:
out.println(“‘Cause this is the last refrain.”);
break;

default:
out.println(“No such verse. Please try again.”);
break;

}

out.println(“Ohhhhhhhh. . . .”);
}

}

Figure 5-8 shows two runs of the program in Listing 5-6. (The overall idea
behind the program is illustrated in Figure 5-9.) First, the user types a
number, like the number 2. Then, execution of the program reaches the top of
the switch statement. The computer checks the value of the verse variable.
When the computer determines that the verse variable’s value is 2, the com-
puter checks each case of the switch statement. The value 2 doesn’t match
the topmost case, so the computer proceeds on to the middle of the three
cases. The value posted for the middle case (the number 2) matches the
value of the verse variable, so the computer executes the statements that
come immediately after case 2. These two statements are

117Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 117

out.println(“That’s because he is a pain.”);
break;

The first of the two statements displays the line That’s because he is a
pain. on the screen. The second statement is called a break statement.
(What a surprise!) When the computer encounters a break statement, the
computer jumps out of whatever switch statement it’s in. So, in Listing 5-6,
the computer skips right past the case that would display ’Cause this is
the last refrain. In fact, the computer jumps out of the entire switch
statement and goes straight to the statement just after the end of the switch
statement. The computer displays Ohhhhhhhh. . . . because that’s what
the statement after the switch statement tells the computer to do.

If the pesky user asks for verse 6, the computer responds by dropping past
cases 1, 2, and 3. Instead, the computer does the default. In the default, the
computer displays No such verse. Please try again, and then breaks

Which verse is this?

Has no
brain

Ohhhhhhhh....

1

Is a
pain

2

Last
refrain

3

Try
again

other

Figure 5-9:
The big

fork in the
code of

Listing 5-6.

Figure 5-8:
Running

the code of
Listing 5-6.

118 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 118

out of the switch statement. After the computer is out of the switch state-
ment, the computer displays Ohhhhhhhh. . . .

You don’t really need to put a break at the very end of a switch statement.
In Listing 5-6, the last break (the break that’s part of the default) is just for
the sake of overall tidiness.

To break or not to break
In every Java programmer’s life, a time comes when he or she forgets to use
break statements. At first, the resulting output is confusing, but then the pro-
grammer remembers fall-through. The term fall-through describes what hap-
pens when you end a case without a break statement. What happens is that
execution of the code falls right through to the next case in line. Execution
keeps falling through until you eventually reach a break statement or the end
of the entire switch statement.

Usually, when you’re using a switch statement, you don’t want fall-through,
so you pepper break statements throughout the switch statements. But,
occasionally, fall-through is just the thing you need. Take, for instance, the
“Al’s All Wet” song. (The classy lyrics are shown in the sidebar bearing the
song’s name.) Each verse of “Al’s All Wet” adds new lines in addition to the
lines from previous verses. This situation (accumulating lines from one verse
to another) cries out for a switch statement with fall-through. Listing 5-7
demonstrates the idea.

Listing 5-7: A switch Statement with Fall-Through

import static java.lang.System.out;
import java.util.Scanner;

class FallingForYou {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);
out.print(“Which verse? “);
int verse = myScanner.nextInt();

switch (verse) {
case 3:

out.print(“Last refrain, “);
out.println(“last refrain,”);

case 2:
out.print(“He’s a pain, “);
out.println(“he’s a pain,”);

(continued)

119Chapter 5: Controlling Program Flow with Decision-Making Statements

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 119

Listing 5-7 (continued)

case 1:
out.print(“Has no brain, “);
out.println(“has no brain,”);

}

out.println(“In the rain, in the rain.”);
out.println(“Ohhhhhhhh...”);
out.println();

}
}

Figure 5-10 shows several runs of the program in Listing 5-7. Because the
switch has no break statements in it, fall-through happens all over the place.
For instance, when the user selects verse 2, the computer executes the two
statements in case 2:

out.print (“He’s a pain, “);
out.println(“he’s a pain,”);

Then, the computer marches right on to execute the two statements in case 1:

out.print (“Has no brain, “);
out.println(“has no brain,”);

That’s good, because the song’s second verse has all these lines in it.

Notice what happens when the user asks for verse 6. The switch statement
in Listing 5-7 has no case 6 and no default, so none of the actions inside the
switch statement are executed. Even so, with statements that print In the
rain, in the rain and Ohhhhhhhh right after the switch statement, the
computer displays something when the user asks for verse 6.

Figure 5-10:
Running

the code of
Listing 5-7.

120 Part II: Writing Your Own Java Programs

02c_568582 ch05.qxd 7/27/04 11:44 PM Page 120

Chapter 6

Controlling Program Flow
with Loops

In This Chapter
� Using basic looping

� Counting as you loop

� Impressing your friends with Java’s newly enhanced loops

In 1966, the company that brings you Head & Shoulders shampoo made
history. On the back of the bottle, the directions for using the shampoo

read, “LATHER-RINSE-REPEAT.” Never before had a complete set of directions
(for doing anything, let alone shampooing your hair) been summarized so
succinctly. People in the direction-writing business hailed this as a monumen-
tal achievement. Directions like these stood in stark contrast to others of the
time. (For instance, the first sentence on a can of bug spray read, “Turn this
can so that it points away from your face.” Duh!)

Aside from their brevity, the thing that made the Head & Shoulders directions
so cool was that, with three simple words, they managed to capture a notion
that’s at the heart of all instruction giving — the notion of repetition. That
last word, REPEAT, took an otherwise bland instructional drone and turned it
into a sophisticated recipe for action.

The fundamental idea is that when you’re following directions, you don’t just
follow one instruction after another. Instead, you take turns in the road. You
make decisions (“If HAIR IS DRY, then USE CONDITIONER,”) and you go into
loops (“LATHER-RINSE, and then LATHER-RINSE again.”). In computer pro-
gramming, you use decision making and looping all the time. This chapter
explores looping in Java.

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 121

Repeating Instructions Over and Over
Again (Java while Statements)

Here’s a guessing game for you. The computer generates a random number
from 1 to 10. The computer asks you to guess the number. If you guess incor-
rectly, the game continues. As soon as you guess correctly, the game is over.
The program to play the game is shown in Listing 6-1, and a round of play is
shown in Figure 6-1.

Listing 6-1: A Repeating Guessing Game

import static java.lang.System.out;
import java.util.Scanner;
import java.util.Random;

class GuessAgain {

public static void main(String args[]) {
Scanner myScanner = new Scanner(System.in);

int numGuesses = 0;
int randomNumber = new Random().nextInt(10) + 1;

out.println(“ ************ “);
out.println(“Welcome to the Guessing Game”);
out.println(“ ************ “);
out.println();

out.print(“Enter an int from 1 to 10: “);
int inputNumber = myScanner.nextInt();
numGuesses++;

while (inputNumber != randomNumber) {
out.println();
out.println(“Try again...”);
out.print(“Enter an int from 1 to 10: “);
inputNumber = myScanner.nextInt();
numGuesses++;

}

out.print(“You win after “);
out.println(numGuesses + “ guesses.”);

}
}

122 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 122

In Figure 6-1, the user makes four guesses. Each time around, the computer
checks to see whether the guess is correct. An incorrect guess generates a
request to try again. For a correct guess, the user gets a rousing You win,
along with a tally of the number of guesses he or she made. The computer
repeats several statements over and over again, checking each time through
to see whether the user’s guess is the same as a certain randomly generated
number. Each time the user makes a guess, the computer adds 1 to its tally of
guesses. When the user makes the correct guess, the computer displays that
tally. The flow of action is illustrated in Figure 6-2.

Welcome to the Guessing Game
Enter an int from 1 to 10:
Get inputNumber from the user
Add 1 to numGuesses

Try again...
Enter an int from 1 to 10:
Get inputNumber from the user
Add 1 to numGuesses

Compare inputNumber and randomNumber

You win after numGuesses

They're the same

They're different

Figure 6-2:
Around

and around
you go.

Figure 6-1:
Play until
you drop.

123Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 123

When you look over Listing 6-1, you see the code that does all this work.
At the core of the code is a thing called a while statement (also known as a
while loop). Rephrased in English, the while statement would say

while the inputNumber is not equal to the randomNumber
keep doing all the stuff in curly braces: {

}

The stuff in curly braces (the stuff that repeats over and over again) is the
code that prints Try again, and then Enter an int . . . gets a value
from the keyboard and adds 1 to the count of the user’s guesses.

When you’re dealing with counters, like numGuesses in Listing 6-1, you may
easily become confused and be off by 1 in either direction. You can avoid this
headache by making sure that the ++ statements stay close to the statements
whose events you’re counting. For example, in Listing 6-1, the variable
numGuesses starts off with a value of 0. That’s because, when the program
starts running, the user hasn’t made any guesses. Later in the program, right
after each call to myScanner.nextInt, is a numGuesses++ statement. That’s
how you do it — you increment the counter as soon as the user enters
another guess.

The statements in curly braces are repeated as long as inputNumber !=
randomNumber keeps being true. Each repetition of the statements in the
loop is called an iteration of the loop. In Figure 6-1, the loop undergoes
three iterations. (If you don’t believe that Figure 6-1 has exactly three itera-
tions, count the number of Try again printings in the program’s output.
A Try again appears for each incorrect guess.)

When, at long last, the user enters the correct guess, the computer goes back
to the top of the while statement, checks the condition in parentheses, and
finds itself in double negative land. The not equal (!=) relationship between
inputNumber and randomNumber no longer holds. In other words, the while
statement’s condition, inputNumber != randomNumber, has become false.
Because the while statement’s condition is false, the computer jumps past
the while loop and goes on to the statements just below the while loop. In
these two statements, the computer prints You win after 4 guesses.

With code of the kind shown in Listing 6-1, the computer never jumps out
in mid-loop. When the computer finds that inputNumber isn’t equal to
randomNumber, the computer marches on and executes all five statements
inside the loop’s curly braces. The computer performs the test again (to see
whether inputNumber is still not equal to randomNumber) only after it fully
executes all five statements in the loop.

124 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 124

Repeating a Certain Number of Times
(Java for Statements)

“Write ‘I will not talk in class’ on the blackboard 100 times.”

What your teacher really meant was,

Set the count to 0.
As long as the count is less than 100,

Write ‘I will not talk in class’ on the blackboard,
Add 1 to the count.

Fortunately, you didn’t know about loops and counters at the time. If you
pointed all this stuff out to your teacher, you’d have gotten into a lot more
trouble than you were already in.

One way or another, life is filled with examples of counting loops. And com-
puter programming mirrors life — or is it the other way around? When you
tell a computer what to do, you’re often telling the computer to print three
lines, process ten accounts, dial a million phone numbers, or whatever.
Because counting loops are so common in programming, the people who
create programming languages have developed statements just for loops of
this kind. In Java, the statement that repeats something a certain number
of times is called a for statement. The use of the for statement is illustrated
in Listings 6-2 and 6-3. Listing 6-2 has a rock-bottom simple example, and
Listing 6-3 has a more exotic example. Take your pick.

Listing 6-2: The World’s Most Boring for Loop

import static java.lang.System.out;

class Yawn {

public static void main(String args[]) {

for (int count = 1; count <= 10; count++) {
out.print(“The value of count is “);
out.print(count);
out.println(“.”);

}

out.println(“Done!”);
}

}

125Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 125

Figure 6-3 shows you what you get when you run the program of Listing 6-2.
(You get exactly what you deserve.) The for statement in Listing 6-2 starts
by setting the count variable equal to 1. Then the statement tests to make
sure that count is less than or equal to 10 (which it certainly is). Then the
for statement dives ahead and executes the printing statements between the
curly braces. (At this early stage of the game, the computer prints The
value of count is 1.) Finally, the for statement does that last thing
inside its parentheses — it adds 1 to the value of count.

With count now equal to 2, the for statement checks again to make sure that
count is less than or equal to 10. (Yes, 2 is smaller than 10.) Because the test
turns out okay, the for statement marches back into the curly braced state-
ments and prints The value of count is 2 on the screen. Finally, the for
statement does that last thing inside its parentheses — it adds 1 to the value
of count, increasing the value of count to 3.

And so on. This whole thing keeps being repeated over and over again until,
after 10 iterations, the value of count finally reaches 11. When this happens,
the check for count being less than or equal to 10 fails, and the loop’s execu-
tion ends. The computer jumps to whatever statement comes immediately
after the for statement. In Listing 6-2, the computer prints Done! The whole
process is illustrated in Figure 6-4.

The anatomy of a for statement
After the word for, you always put three things in parentheses. The first of
these three things is called an initialization, the second is an expression, and
the third thing is called an update.

for (initialization ; expression ; update)

Figure 6-3:
Counting

to ten.

126 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 126

Each of the three items in parentheses plays its own distinct role:

� The initialization is executed once, when the run of your program first
reaches the for statement.

� The expression is evaluated several times (before each iteration).

� The update is also evaluated several times (at the end of each iteration).

If it helps, think of the loop as if its text is shifted all around:

int count = 1
for count <= 10 {

out.print(“The value of count is “);
out.print(count);
out.println(“.”);
count++

}

You can’t write a real for statement this way. Even so, this is the order in
which the parts of the statement are executed.

If you declare a variable in the initialization of a for loop, you can’t use that
variable outside the loop. For instance, in Listing 6-2, you get an error mes-
sage if you try putting out.println(count) after the end of the loop.

Anything that can be done with a for loop can also be done with a while
loop. Choosing to use a for loop is a matter of style and convenience, not
necessity.

Set count to 1

The value of count is ...
Add 1 to count

Is count less than or equal to 10?

Done

yes

no
Figure 6-4:
The action

of the for
loop in

Listing 6-2.

127Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 127

The world premiere of “Al’s All Wet”
Listing 6-2 is very nice, but the program in that listing doesn’t do anything
interesting. For a more eye-catching example, see Listing 6-3. In Listing 6-3,
I make good on a promise I made in Chapter 5. The program in Listing 6-3
prints all the lyrics of the hit single, “Al’s All Wet.” (You can find the lyrics in
Chapter 5.)

Listing 6-3: The Unabridged “Al’s All Wet” Song

import static java.lang.System.out;

class AlsAllWet {

public static void main(String args[]) {

for (int verse = 1; verse <= 3; verse++) {
out.print(“Al’s all wet. “);
out.println(“Oh, why is Al all wet? Oh,”);
out.print(“Al’s all wet ‘cause “);
out.println(“he’s standing in the rain.”);
out.println(“Why is Al out in the rain?”);

switch (verse) {
case 1:

out.println
(“That’s because he has no brain.”);

break;
case 2:

out.println
(“That’s because he is a pain.”);

break;
case 3:

out.println
(“‘Cause this is the last refrain.”);

break;
}

switch (verse) {
case 3:

out.println(“Last refrain, last refrain,”);
case 2:

out.println(“He’s a pain, he’s a pain,”);
case 1:

out.println(“Has no brain, has no brain,”);
}

out.println(“In the rain, in the rain.”);
out.println(“Ohhhhhhhh...”);
out.println();

}

128 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 128

out.print(“Al’s all wet. “);
out.println(“Oh, why is Al all wet? Oh,”);
out.print(“Al’s all wet ‘cause “);
out.println(“he’s standing in the rain.”);

}
}

Listing 6-3 is nice because it combines many of the ideas from Chapters 5 and
6. In Listing 6-3, two switch statements are nested inside a for loop. One of
the switch statements uses break statements; the other switch statement
uses fall-through. As the value of the for loop’s counter variable (verse)
goes from 1 to 2 and then to 3, all the cases in the switch statements are
executed. When the program is near the end of its run and execution has
dropped out of the for loop, the program’s last four statements print the
song’s final verse.

When I boldly declare that a for statement is for counting, I’m stretching the
truth just a bit. Java’s for statement is very versatile. You can use a for
statement in situations that have nothing to do with counting. For instance, a
statement with no update part, such as for(i=0; i<10;), just keeps on
going. The looping ends when some action inside the loop assigns a big
number to the variable i. You can even create a for statement with nothing
inside the parentheses. The loop for(; ;) runs forever, which is good if
the loop controls a serious piece of machinery. Usually, when you write a for
statement, you’re counting how many times to repeat something. But, in
truth, you can do just about any kind of repetition with a for statement.

Listing 6-3 uses break statements to jump out of a switch. But a break state-
ment can also play a role inside a loop. To see an example, visit this book’s
Web site.

Repeating Until You Get What You Want
(Java do Statements)

“Fools rush in where angels fear to tread.”

—Alexander Pope

Today, I want to be young and foolish (or, at the very least, foolish). Look
back at Figure 6-2 and notice how Java’s while loop works. As execution
enters a while loop, the computer checks to make sure that the loop’s condi-
tion is true. If the condition isn’t true, the statements inside the loop are
never executed — not even once. In fact, you can easily cook up a while loop
whose statements are never executed (although I can’t think of a reason why
you would ever want to do it).

129Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 129

int twoPlusTwo = 2 + 2;

while (twoPlusTwo == 5) {
out.println(“Are you kidding?”);
out.println(“2 + 2 doesn’t equal 5”);
out.print(“Everyone knows that”);
out.println(“ 2 + 2 equals 3”);

}

In spite of this silly twoPlusTwo example, the while statement turns out to
be the most versatile of Java’s looping constructs. In particular, the while
loop is good for situations in which you must look before you leap. For exam-
ple: “While money is in my account, write a mortgage check every month.”
When you first encounter this statement, if your account has a zero balance,
you don’t want to write a mortgage check — not even one check.

But at times (not many), you want to leap before you look. Take, for instance,
the situation in which you’re asking the user for a response. Maybe the user’s
response makes sense, but maybe it doesn’t. If it doesn’t, you want to ask
again. Maybe the user’s finger slipped, or perhaps the user didn’t understand
the question.

Figure 6-5 shows some runs of a program to delete a file. Before deleting the
file, the program asks the user whether making the deletion is okay. If the
user answers y or n, the program proceeds according to the user’s wishes.
But if the user enters any other character (any digit, uppercase letter, punctu-
ation symbol, or whatever), the program asks the user for another response.

To write this program, you need a loop — a loop that repeatedly asks the
user whether the file should be deleted. The loop keeps asking until the user
gives a meaningful response. Now, the thing to notice is that the loop doesn’t
need to check anything before asking the user the first time. Indeed, before
the user gives the first response, the loop has nothing to check. The loop
doesn’t start with “as long as such-and-such is true, then get a response from
the user.” Instead, the loop just leaps ahead, gets a response from the user,
and then checks the response to see if it made sense.

Figure 6-5:
Checking

before you
delete a file.

130 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 130

That’s why the program in Listing 6-4 has a do loop (also known as a do . . .
while loop). With a do loop, the program jumps right in, takes action, and
then checks a condition to see whether the result of the action makes sense.
If the result makes sense, execution of the loop is done. If not, the program
goes back to the top of the loop for another go-around.

Listing 6-4: To Delete, or Not to Delete

import java.io.File;
import static java.lang.System.out;
import java.util.Scanner;

class DeleteEvidence {

public static void main(String args[]) {
File evidence = new File(“c:\\cookedBooks.txt”);
Scanner myScanner = new Scanner(System.in);
char reply;

do {
out.print(“Delete evidence? (y/n) “);
reply = myScanner.next().charAt(0);

} while (reply != ‘y’ && reply != ‘n’);

if (reply == ‘y’) {
out.println(“Okay, here goes...”);
evidence.delete();

} else {
out.println(“Sorry, buddy. Just asking.”);

}
}

}

Figure 6-5 (shown previously) shows two runs of the code in Listing 6-4. The
program accepts lowercase letters y and n, but not the uppercase letters Y
and N. To make the program accept uppercase letters, change the conditions
in the code as follows:

do {
out.print(“Delete evidence? (y/n) “);
reply = myScanner.next().charAt(0);

} while (reply! = ‘y’ && reply != ‘Y’ &&
reply != ‘n’ && reply!=’N’);

if (reply == ‘y’ || reply == ‘Y’)

Figure 6-6 shows the flow of control in the loop of Listing 6-4. With a do loop,
the situation in the twoPlusTwo program (shown earlier) can never happen.
Because the do loop carries out its first action without testing a condition,
every do loop is guaranteed to perform at least one iteration.

131Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 131

Reading a single character
In Listing 5-3, the user types a word on the keyboard. The myScanner.next
method grabs the word, and places the word into a String variable named
password. Everything works nicely because a String variable can store many
characters at once and the next method can read many characters at once.

But in Listing 6-4, you’re not interested in reading several characters.
You expect the user to type one letter — either y or n. So you don’t create
a String variable to store the user’s response. Instead, create a char
variable — a variable that stores just one symbol at a time.

The Java API doesn’t have a nextChar method. To read something suitable
for storage in a char variable, you have to improvise. The code in Listing 6-4
reads an entire string with the next method, then grabs the string’s starting
character with charAt(0). So if the user types the word yes, several things
happen:

1. The next method gets yes from the keyboard.

2. The charAt method grabs the letter y from the string yes.

3. The letter y gets assigned to the variable reply.

A String variable can contain many characters or just one character. But a
String variable that contains only one character isn’t the same as a char
variable. No matter what you put in a String variable, String variables and
char variables have to be treated differently.

Delete evidence?

Delete the file, or don't
delete the file (depending

on the reply)

Was the reply either y or n?no yes

Figure 6-6:
Here we
go loop,
do loop.

132 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 132

File handling in Java
In Listing 6-4, the actual file-handling statements deserve some attention.
These statements involve the use of classes, objects, and methods. Many of
the meaty details about these things are in other chapters, like Chapters 7
and 9. Even so, I can’t do any harm by touching on some highlights right
here.

So, you can find a class in the Java language API named java.io.File. The
statement

File evidence = new File(“c:\\cookedBooks.txt”);

creates a new object in the computer’s memory. This object, formed from the
java.io.File class, describes everything that the program needs to know
about the disk file c:\cookedBooks.txt. (In Java, when you want to indicate
a backslash inside a double-quoted String literal, you use a double back-
slash instead.) From this point on in Listing 6-4, the variable evidence refers
to the disk file c:\cookedBooks.txt.

After you’ve got all this java.io.File stuff in your head, the only thing left
to know is that the evidence object, being an instance of the java.io.File
class, has a delete method. (What can I say? It’s in the API documentation.)
When you call evidence.delete, the computer gets rid of the file for you.

Variable declarations and blocks
A bunch of statements surrounded by curly braces form a block. If you
declare a variable inside a block, you generally can’t use that variable outside
the block. For instance, in Listing 6-4, you get an error message if you make
the following change:

do {
out.print(“Delete evidence? (y/n) “);
char reply = myScanner.next().charAt(0);

} while (reply != ‘y’ && reply != ‘n’);

if (reply == ‘y’)

With the declaration char reply inside the loop’s curly braces, no use of the
name reply makes sense anywhere outside the braces. When you try to
compile this code, you get three error messages — two for the reply words
in while (reply != ‘y’ && reply != ‘n’), and a third for the if state-
ment’s reply.

133Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 133

So in Listing 6-4, your hands are tied. The program’s first real use of the
reply variable is inside the loop. But, to make that variable available after
the loop, you have to declare reply before the loop. In this situation, you’re
best off declaring the reply variable without initializing the variable. Very
interesting!

To read more about variable initializations, see Chapter 4. To read more
about blocks, see Chapter 5.

Loops Made Painless
I’ll never forget the first time I played Clue. We bought the board game during
a family vacation in Niagara Falls. (Niagara Falls?) Cousin Alan and I sat in the
hotel room playing the game for hours on end. I scribbled complicated asser-
tions in my little detective’s notebook.

At one point, I bluffed by suggesting three cards that I had in my hand. Alan
took the bait and made an accusation that was wrong on all three counts.
Because he’d lost the game, and because I was being so smug about it, he
beat the living daylights out of me. It was heaven. If I had the chance, I’d do it
all over again.

Don’t need no stinking counters
The for loop in Listing 6-2 counts from 1 to 10. And its friend (the for loop in
Listing 6-3) counts 1, 2, 3. This counting is very nice, but sometimes it’s not
the most natural way to think about a problem. Take, for instance, the listing
of all possible accusations in the board game Clue. The suspects aren’t num-
bered from 1 to 6, and neither are the rooms or weapons. You can number
all these things, but why bother with numbering when the programming
language provides a simpler solution?

Java’s enhanced for loop lets you cycle through groups of things without cre-
ating a counting variable. All you have to do is define the group. Listing 6-5
shows you what to do.

Listing 6-5: “I Accuse . . .”

import static java.lang.System.out;

class Clue {

enum Suspect {mustard, plum, green,
peacock, scarlet, white};

134 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 134

enum Room {ballroom, kitchen, diningRoom,
lounge, hall, study, library,
billiardRoom, conservatory};

enum Weapon {knife, candlestick, revolver,
rope, leadPipe, wrench};

public static void main(String args[]) {

for (Suspect mySuspect : Suspect.values()) {
for (Room myRoom : Room.values()) {

for (Weapon myWeapon : Weapon.values()) {
out.print(mySuspect);
out.print(“ in the “);
out.print(myRoom);
out.print(“ with a “);
out.println(myWeapon);

}
}

}

Suspect killer = Suspect.peacock;
Room sceneOfTheCrime = Room.study;
Weapon murderWeapon = Weapon.leadPipe;

out.println();
out.print(“I accuse “);
out.print(killer);
out.print(“ in the “);
out.print(sceneOfTheCrime);
out.print(“ with a “);
out.print(murderWeapon);
out.println(“.”);

}
}

The output of the code in Listing 6-5 has 324 lines, so I can’t show it all to
you. But the first several lines appear in Figure 6-7. First, you see Colonel
Mustard’s ballroom antics. Then you get Mustard’s kitchen tricks. Later in the
run, when all of Mustard’s frolics are finished, you see the same possibilities
for Professor Plum.

Figure 6-7:
The code in

Listing 6-5
starts

running.

135Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 135

Listing 6-5 has a loop within a loop within a loop.

� The Room loop is inside of the Suspect loop. Not only do you loop
through all the rooms, but you loop through all the rooms six times —
once for each of the six suspects. If I count them up, that makes 54 visits
to various rooms.

� The Weapon loop is inside of the Room loop. So every time you visit a
room (and you visit a room 54 times), you go through all six of the
hideous weapons.

Like the code in Listing 6-3, this section’s Clue program nests statements
within other statements. In Listing 6-3, I nested switch statements inside a
big for statement. But in the Clue program, I nest for statements inside of
other for statements. It may look at bit tangled at first, but when you get
used to it, nesting loop within loop is a really useful technique.

Grouping things together
Java provides lots of ways for you to group things together. In Chapter 11,
you can group things into an array or a collection. In this chapter, you group
things into an enum type. (Of course, you can’t group anything unless you can
pronounce enum. The word enum is pronounced ee-noom, like the first two
syllables of the word enumeration.)

Creating a complicated enum type isn’t easy, but to create a simple enum type,
just write a bunch of words inside a pair of curly braces. Listing 6-5 has three
enum types. The names of the enum types are Suspect, Room, and Weapon.

When you define an enum type, two important things happen:

� You create values.

Just as 13 and 151 are int values, mustard and plum are Suspect
values.

� You can create variables to refer to those values.

After the for loop in Listing 6-5, I declare a variable named killer. Just as
int numGuesses declares a numGuesses variable is of type int, and
just as String myTitle declares variable myTitle to be of type
String, so Suspect killer declares variable killer to be of type
Suspect.

I declare int numGuesses in Listing 6-1, and I declare String myTitle
in Listing 4-6.

136 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 136

Being of type Suspect means that you can have values mustard, plum,
green, and so on. So in Listing 6-5, I give the killer variable the value
peacock. (At this point in the code, if I don’t type the longer dotted
name Suspect.peacock, the Java compiler gets confused.)

In a similar way, I create variables sceneOfTheCrime and murderWeapon
toward the end of Listing 6-5. Both of these variables have enum types,
and both are given appropriate values (values like Room.study and
Weapon.leadPipe).

In Listing 6-5, all the enum type declarations are outside of the main method.
(For example, the line that begins with enum Suspect is before the start of
the main method.) Java doesn’t allow you to put an enum type declaration
inside a method. That’s because an enum type declaration is really a Java
class in disguise. For more insight on enum types, see Chapter 9.

Anatomy of an enhanced for loop
The enhanced and un-enhanced for loops have a lot in common. Figure 6-8
illustrates the point.

� In both kinds of loops, you define a variable.

The loop in Listing 6-2 defines a variable named count. The loop in
Listing 6-5 defines a variable named mySuspect.

In both listings, the statements inside the loop refer to the newly defined
variable. The loop in Listing 6-2 has the statement

out.print(count);

Listing 6-2: for (int count = 1; count <= 10; count++)

Listing 6-5: for (Suspect mySuspect : Suspect.values())

The type of
value that a
variable can

have

The name of
the variable

The range of values
that variable takes

on during execution
of the loop

Figure 6-8:
Comparing

for loops.

137Chapter 6: Controlling Program Flow with Loops

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 137

and the loop in Listing 6-5 has the statement

out.print(mySuspect);

During successive iterations, the print in Listing 6-2 stands for
out.print(1), out.print(2), and so on. During successive
iterations, the print in Listing 6-5 stands for out.print(mustard),
out.print(plum), and so on.

� In both kinds of loops, you declare the type of value that the variable
can have.

In Listing 6-2, the variable count must store an int value (–7, 0, 5, 15,
and so on). In Listing 6-5, the variable mySuspect must refer to a
Suspect value (mustard, plum, white, and so on).

In fact, this declaring the type of value rule applies everywhere in Java —
not only in for loops. Every Java variable belongs to one type or
another. In Listing 6-1, the line

int numGuesses = 0;

declares that numGuesses must store an int value. The line goes on to
say that, among all possible int values, the starting value for
numGuesses is 0. Again in Listing 6-1, the line

Scanner myScanner = new Scanner(System.in);

declares that myScanner must refer to a Scanner object. Among all
such objects, the starting value for myScanner is an object that gets
keystrokes from the keyboard (from System.in).

� In both kinds of loops, you specify a range of values.

You specify the range of values that the variable takes on during the exe-
cution of the loop. In Listing 6-2, you narrow the count variable’s values
to the numbers from 1 to 10. In Listing 6-5, you throw caution to the
wind, and say that mySuspect gets to be every one of the items in
Suspect.values().

You can apply values() to the name of any enum type. In fact, to create an
enhanced for loop with an enum type, you have to use something like
values(). The expression Suspect.values() stands for all the items you
list in the declaration of the Suspect enum type. So, in the loop of Listing 6-5,
mySuspect becomes mustard, then plum, then green, and so on.

When you apply values() to the name of an enum type, you get an array of
items belonging to that enum type. To read all about arrays, see Chapter 11.

138 Part II: Writing Your Own Java Programs

02d_568582 ch06.qxd 7/27/04 11:44 PM Page 138

Part III
Working with the

Big Picture:
Object-Oriented

Programming

03a_568582 pp03.qxd 7/27/04 11:45 PM Page 139

In this part . . .

Have you read or heard anything about object-oriented
programming? Sometimes, all the object-oriented

programmers seem to belong to a little club. They have a
secret handshake, a secret sign, and a promise not to reveal
object-oriented programming concepts to any outsiders.
Well, the secrecy is ending. In this part, I take all the mys-
tery out of object-oriented programming. I introduce the
concepts step by step and illustrate each concept with a
Java program or two.

03a_568582 pp03.qxd 7/27/04 11:45 PM Page 140

Chapter 7

Thinking in Terms of
Classes and Objects

In This Chapter
� Thinking like a real object-oriented programmer

� Passing values to and from methods

� Hiding details in your object-oriented code

As a computer book author, I’ve been told this over and over again —
I shouldn’t expect people to read sections and chapters in their logical

order. People jump around, picking what they need and skipping what they
don’t feel like reading. With that in mind, I realize that you may have skipped
Chapter 1. If that’s the case, please don’t feel guilty. You can compensate in
just sixty seconds by reading the following information from Chapter 1:

Because Java is an object-oriented programming language, your primary
goal is to describe classes and objects. A class is the idea behind a certain
kind of thing. An object is a concrete instance of a class. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

Of course, you can certainly choose to skip over the 60-second summary
paragraph. If that’s the case, you may want to recoup some of your losses.
You can do that by reading the following two-word summary of Chapter 1:

Classes; objects.

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 141

Defining a Class (What It Means
to Be an Account)

What distinguishes one bank account from another? If you ask a banker this
question, you hear a long sales pitch. The banker describes interest rates,
fees, penalties — the whole routine. Fortunately for you, I’m not interested in
all that. Instead, I want to know how my account is different from your
account. After all, my account is named Barry Burd, trading as Burd Brain
Consulting, and your account is named Jane Q. Reader, trading as Budding
Java Expert. My account has $24.02 in it. How about yours?

When you come right down to it, the differences between one account and
another can be summarized as values of variables. Maybe there’s a variable
named balance. For me, the value of balance is 24.02. For you, the value of
balance is 55.63. The question is, in writing a computer program to deal
with accounts, how do I separate my balance variable from your balance
variable?

The answer is to create two separate objects. Let one balance variable live
inside one of the objects and let the other balance variable live inside the
other object. While you’re at it, put a name variable and an address variable
in each of the objects. And there you have it. You’ve got two objects, and
each object represents an account. More precisely, each object is an instance
of the Account class. (See Figure 7-1.)

So far, so good. But you still haven’t solved the original problem. In your com-
puter program, how do you refer to my balance variable, as opposed to your
balance variable? Well, you have two objects sitting around, so maybe you
have variables to refer to these two objects. Create one variable named

An instance of the Account class

name

address

balance

Barry

222 Cyberspace Lane

24.02

Another instance of the Account class

name

address

balance

Jane

111 Consumer Street

55.63Figure 7-1:
Two objects.

142 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 142

myAccount and another variable named yourAccount. The myAccount variable
refers to my object (my instance of the Account class) with all the stuff that’s
inside it. To refer to my balance, write

myAccount.balance

To refer to my name, write

myAccount.name

Then yourAccount.balance refers to the value in your object’s balance
variable, and yourAccount.name refers to the value of your object’s name
variable. To tell the computer how much I have in my account, you can write

myAccount.balance = 24.02;

To display your name on the screen, you can write

out.println(yourAccount.name);

These ideas come together in Listings 7-1 and 7-2.

Listing 7-1: What It Means to Be an Account

class Account {
String name;
String address;
double balance;

}

Listing 7-2: Dealing with Account Objects

import static java.lang.System.out;

class UseAccount {

public static void main(String args[]) {
Account myAccount;
Account yourAccount;

myAccount = new Account();
yourAccount = new Account();

myAccount.name = “Barry Burd”;
myAccount.address = “222 Cyberspace Lane”;
myAccount.balance = 24.02;

(continued)

143Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 143

Listing 7-2 (continued)

yourAccount.name = “Jane Q. Public”;
yourAccount.address = “111 Consumer Street”;
yourAccount.balance = 55.63;

out.print(myAccount.name);
out.print(“ (“);
out.print(myAccount.address);
out.print(“) has $”);
out.print(myAccount.balance);
out.println();

out.print(yourAccount.name);
out.print(“ (“);
out.print(yourAccount.address);
out.print(“) has $”);
out.print(yourAccount.balance);

}
}

Taken together, the two classes — Account and UseAccount — form one
complete program. The Account class defines what it means to be an
Account. The code for the Account class tells you that each of the Account
class’s instances has three variables — name, address, and balance. This is
consistent with the information in Figure 7-1.

If you’ve been grappling with the material in Chapters 4 through 6, the code
for class Account (Listing 7-1) may come as a big shock to you. Can you
really define a complete Java class with only four lines of code (give or take a
curly brace)? You certainly can. In fact, the Account class in Listing 7-1 is
quite representative of what Java programmers think of when they think
class. A class is a grouping together of existing things. In the Account class of
Listing 7-1, those existing things are two String values and a double value.

The code in Listing 7-2 defines the UseAccount class. The code needs a main
method, and every method has to be in one class or another. So put the main
method in a class named UseAccount. This main method has variables of its
own — yourAccount and myAccount.

Declaring variables and creating objects
In a way, the first two lines inside the main method of Listing 7-2 are mislead-
ing. Some people read Account yourAccount as if it’s supposed to mean,
“yourAccount is an Account,” or “The variable yourAccount refers to an

144 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 144

instance of the Account class.” That’s not really what this first line means.
Instead, the line Account yourAccount means, “If and when I make the vari-
able yourAccount refer to something, that something will be an instance of
the Account class.” So, what’s the difference?

The difference is, simply declaring Account yourAccount doesn’t make the
yourAccount variable refer to an object. All the declaration does is reserve
the variable name yourAccount so that the name can eventually refer to an
instance of the Account class. The creation of an actual object doesn’t come
until later in the code, when the computer executes new Account().

Technically, when the computer executes new Account(), you’re creating an
object by calling the Account class’s constructor. I have more to say about
that in Chapter 9.

When the computer executes the assignment yourAccount = new
Account(), the computer creates a new object (a new instance of the
Account class) and makes the variable yourAccount refer to that new
object. (It’s the equal sign that makes the variable refer to the new object.)
The situation is illustrated in Figure 7-2.

To test the claim that I made in the last few paragraphs, I added an extra line
to the code of Listing 7-1. I tried to print yourAccount.name after declaring
yourAccount, but before calling new Account().

After executing
Account yourAccount;

After executing
yourAccount =
 new Account ();

yourAccount yourAccount

name

address

balance

Figure 7-2:
Before and

after a
constructor

is called.

145Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 145

Account myAccount;
Account yourAccount;

out.println(yourAccount.name);

myAccount = new Account();
yourAccount = new Account();

When I tried to compile the new code, I got this error message: variable
yourAccount might not have been initialized. So that settles it.
Before you do new Account(), you can’t print the name variable of an object;
an object doesn’t exist.

When a variable has a reference type, simply declaring the variable isn’t
enough. You don’t get an object until you call a constructor and use the key-
word new.

For information about reference types, see Chapter 4.

Initializing a variable
In Chapter 4, I announce that you can initialize a primitive type variable as
part of the variable’s declaration.

int weightOfAPerson = 150;

You can do the same thing with reference type variables, such as myAccount
and yourAccount in Listing 7-2. You can combine the first four lines in the
listing’s main method into just two lines, like this:

Account myAccount = new Account();
Account yourAccount = new Account();

If you combine lines this way, you automatically avoid the variable might
not have been initialized error that I describe in the previous section.
Sometimes you find a situation in which you can’t initialize a variable. But
when you can initialize, it’s usually a plus.

Using variables
After you’ve bitten off and chewed the main method’s first four lines, the rest
of the code in Listing 7-2 is sensible and straightforward. You have three lines
that put values in the myAccount object’s variables, three lines that put
values in the yourAccount object’s variables, and four lines that do some
printing. The program’s output is shown in Figure 7-3.

146 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 146

Compiling and Running
More Than One Class

Each program in Chapters 3 to 6 consists of a single class. That’s great for a
book’s introductory chapters. But in real life, a typical program consists of
hundreds or even thousands of classes. The program that spans Listings 7-1
and 7-2 consists of two classes. Sure, having two classes isn’t like having
thousands of classes, but it’s a step in that direction.

In practice, most programmers put each class in a file of its own. When you
create a program like the one in Listings 7-1 and 7-2, you create two files
on your computer’s hard drive. So the code that comes from this book’s
CD-ROM has two separate files — Account.java and UseAccount.java.
(See Figure 7-4.)

To run the code, just do what you do to run any old single-file program.

1. Open the Chapter07 workspace.

2. Set Listings0701-02 as the active project.

3. Choose Build➪Compile Project.

4. Choose Build➪Execute Project.

Figure 7-4:
Two files in

one project.

Figure 7-3:
Running the

code in
Listings 7-1

and 7-2.

147Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 147

For details on compiling and running code that’s copied from the
CD-ROM, see Chapter 2.

Creating a new program with two or more classes is also pretty easy. (All you
have to do is flip back and forth a million times between this chapter and
Chapter 3.)

1. Follow Steps 1 through 7 in the typing your own code section of
Chapter 3.

With these steps, you create a new project.

2. Follow Steps 8 through 11 (also in the typing your own code section of
Chapter 3) to create the first of two or more classes.

If you’re experimenting with the code in Listings 7-1 and 7-2, this first
class is named Account.

3. Follow Steps 8 through 11 again to create another class.

If you’re experimenting with the code in Listings 7-1 and 7-2, this second
class is named UseAccount.

Repeat Steps 8 through 11 once for each of the classes in your Java
program.

4. Follow Steps 12 through 15 in that same section of Chapter 3.

When you do, JCreator compiles and runs your program.

When you work with several classes at once, you can easily get the following
unfriendly message: NoSuchMethodError: main. You see this when you try
to execute a class that has no main method. For example, the Account class
in Listing 7-1 has no main method. If the Account class’s code is the front-
most code in JCreator’s Editor pane, and you choose Build➪Execute File
(instead of Build➪Execute Project) from JCreator’s main menu, you get the
dreaded NoSuchMethodError. To fix this, always make sure that your project
has a class with a main method, and always choose Build➪Execute Project to
run your code.

Defining a Method within a Class
(Displaying an Account)

Imagine a table containing the information about two accounts. (If you have
trouble imagining such a thing, just look at Table 7-1.)

148 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 148

Table 7-1 Without Object-Oriented Programming
Name Address Balance

Barry Burd 222 Cyberspace Lane 24.02

Jane Q. Public 111 Consumer Street 55.63

In Table 7-1, each account has three things — a name, an address, and a bal-
ance. That’s the way things were done before object-oriented programming
came along. But object-oriented programming involved a big shift in thinking.
With object-oriented programming, each account can have a name, an
address, a balance, and a way of being displayed.

In object-oriented programming, each object has its own built-in functional-
ity. An account knows how to display itself. A string can tell you whether it
has the same characters inside it as another string. A PrintStream instance,
such as System.out, knows how to do println. In object-oriented program-
ming, each object has its own methods. These methods are little subpro-
grams that you can call to have an object do things to (or for) itself.

And why is this a good idea? It’s good because you’re making pieces of data
take responsibility for themselves. With object-oriented programming, all the
functionality that’s associated with an account is collected inside the code
for the Account class. Everything you have to know about a string is located
in the file String.java. Anything having to do with year numbers (whether
they have two or four digits, for instance) is handled right inside the Year
class. So, if anybody has problems with your Account class or your Year
class, he or she knows just where to look for all the code. That’s great!

So imagine an enhanced account table. In this new table, each object has
built-in functionality. Each account knows how to display itself on the screen.
Each row of the table has its own copy of a display method. Of course, you
don’t need much imagination to picture this table. I just happen to have a
table you can look at. It’s Table 7-2.

Table 7-2 The Object-Oriented Way
Name Address Balance Display

Barry Burd 222 Cyberspace Lane 24.02 out.print. . . .

Jane Q. Public 111 Consumer Street 55.63 out.print. . . .

149Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 149

An account that displays itself
In Table 7-2, each account object has four things — a name, an address, a
balance, and a way of displaying itself on the screen. After you make the jump
to object-oriented thinking, you’ll never turn back. A program that imple-
ments the ideas in Table 7-2 is shown in Listings 7-3 and 7-4.

Listing 7-3: An Account Displays Itself

import static java.lang.System.out;

class Account {
String name;
String address;
double balance;

void display() {
out.print(name);
out.print(“ (“);
out.print(address);
out.print(“) has $”);
out.print(balance);

}
}

Listing 7-4: Using the Improved Account Class

class UseAccount {

public static void main(String args[]) {
Account myAccount = new Account();
Account yourAccount = new Account();

myAccount.name = “Barry Burd”;
myAccount.address = “222 Cyberspace Lane”;
myAccount.balance = 24.02;

yourAccount.name = “Jane Q. Public”;
yourAccount.address = “111 Consumer Street”;
yourAccount.balance = 55.63;

myAccount.display();
System.out.println();
yourAccount.display();

}
}

150 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 150

A run of the code in Listings 7-3 and 7-4 looks just like a run for Listings 7-1
and 7-2. You can see the action in Figure 7-3.

In Listing 7-3, the Account class has four things in it — a name, an address, a
balance, and a display method. These things match up with the four
columns in Table 7-2. So each instance of the Account class has a name, an
address, a balance, and a way of displaying itself. The way you call these
things is nice and uniform. To refer to the name stored in myAccount, you
write

myAccount.name

To get myAccount to display itself on the screen, you write

myAccount.display()

The only difference is the parentheses.

When you call a method, you put parentheses after the method’s name.

The display method’s header
Look again at Listings 7-3 and 7-4. A call to the display method is inside the
UseAccount class’s main method. But the declaration of the display
method is up in the Account class. The declaration has a header and a body.
(See Chapter 3.) The header has two words and some parentheses:

� The word void tells the computer that when the display method is
called, the display method doesn’t return anything to the place that
called it. To see a method that does return something to the place that
called it, see the next section.

� The word display is the method’s name. Every method must have a
name. Otherwise, you don’t have a way to call the method.

� The parentheses contain all the things you’re going to pass to the
method when you call it. When you call a method, you can pass infor-
mation to that method on the fly. The display method in Listing 7-3
looks strange because the parentheses in the method’s header have
nothing inside them. This nothingness indicates that no information is
passed to the display method when you call it. For a meatier example,
see the next section.

151Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 151

Sending Values to and from Methods
(Calculating Interest)

Think about sending someone to the supermarket to buy bread. When you
do this, you say, “Go to the supermarket and buy some bread.” (Try it at
home. You’ll have a fresh loaf of bread in no time at all!) Of course, some
other time you send that same person to the supermarket to buy bananas.
You say, “Go to the supermarket and buy some bananas.” And what’s the
point of all this? Well, you have a method, and you have some on-the-fly
information that you pass to the method when you call it. The method is
named goToTheSupermarketAndBuySome. The on-the-fly information is either
bread or bananas, depending on your culinary needs. In Java, the method
calls would look like this:

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas);

The things in parentheses are called parameters or parameter lists. With para-
meters, your methods become much more versatile. Instead of getting the
same thing each time, you can send somebody to the supermarket to buy
bread one time, bananas another time, and birdseed the third time. When
you call your goToTheSupermarketAndBuySome method, you decide right
there and then what you’re going to ask your pal to buy.

And what happens when your friend returns from the supermarket? “Here’s
the bread you asked me to buy,” says your friend. As a result of carrying out
your wishes, your friend returns something to you. You make a method call,
and the method returns information (or a loaf of bread).

The thing returned to you is called the method’s return value. The general
type of thing that was returned to you is called the method’s return type.
These concepts are made more concrete in Listings 7-5 and 7-6.

Listing 7-5: An Account that Calculates Its Own Interest

import static java.lang.System.out;

class Account {
String name;
String address;
double balance;

void display() {
out.print(name);
out.print(“ (“);
out.print(address);

152 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 152

out.print(“) has $”);
out.print(balance);

}

double getInterest(double percentageRate) {
return balance * percentageRate / 100.00;

}
}

Listing 7-6: Calculating Interest

import static java.lang.System.out;

class UseAccount {

public static void main(String args[]) {
Account myAccount = new Account();
Account yourAccount = new Account();

myAccount.name = “Barry Burd”;
myAccount.address = “222 Cyberspace Lane”;
myAccount.balance = 24.02;

yourAccount.name = “Jane Q. Public”;
yourAccount.address = “111 Consumer Street”;
yourAccount.balance = 55.63;

myAccount.display();

out.print(“ plus $”);
out.print(myAccount.getInterest(5.00));
out.println(“ interest “);

yourAccount.display();

double yourInterestRate = 7.00;
out.print(“ plus $”);
double yourInterestAmount =

yourAccount.getInterest(yourInterestRate);
out.print(yourInterestAmount);
out.println(“ interest “);

}
}

The output of the code in Listings 7-5 and 7-6 is shown in Figure 7-5. In
Listing 7-5, the Account class has a getInterest method. This getInterest
method is called twice from the main method in Listing 7-6. The actual
account balances and interest rates are different each time.

153Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 153

� In the first call, the balance is 24.02, and the interest rate is 5.00. The
first call, myAccount.getInterest(5.00), refers to the myAccount
object and all the variables inside it. (See Figure 7-6.) When this call is
made, the expression balance * percentageRate / 100.00 stands
for 24.02 * 5.00 / 100.00.

� In the second call, the balance is 55.63, and the interest rate is 7.00.
In the main method, just before this second call is made, the variable
yourInterestRate is assigned the value 7.00. The call itself,
yourAccount.getInterest(yourInterestRate), refers to
the yourAccount object and all the variables inside it. (Again, see
Figure 7-6.) So, when the call is made, the expression balance *
percentageRate / 100.00 stands for 55.63 * 7.00 / 100.00.

By the way, the main method in Listing 7-3 contains two calls to
getInterest. One call has the literal 5.00 in its parameter list; the other call
has the variable yourInterestRate in its parameter list. Why does one call
use a literal and the other call use a variable? No reason. I just wanted to
show you that you can do it either way.

An instance of the Account class

name

address

balance

Barry

222 Cyberspace Lane

 24.02

Another instance of the Account class

name

address

balance

Jane

111 Consumer Street

 55.63

myAccount yourAccount

Account

UseAccount

Figure 7-6:
My account

and your
account.

Figure 7-5:
Running the

code in
Listings 7-5

and 7-6.

154 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 154

Passing a value to a method
Take a look at the getInterest method’s header. (As you read the explana-
tion in the next few bullets, you can follow some of the ideas visually with the
diagram in Figure 7-7.)

� The word double tells the computer that when the getInterest
method is called, the getInterest method returns a double value
back to the place that called it. The statement in the getInterest
method’s body confirms this. The statement says return balance *
percentageRate / 100.00, and the expression balance *
percentageRate / 100.00 has type double. (That’s because all the
things in the expression — balance, percentageRate, and 100.00 —
have type double.)

When the getInterest method is called, the return statement calcu-
lates balance * percentageRate / 100.00 and hands the calcula-
tion’s result back to the code that called the method.

� The word getInterest is the method’s name. That’s the name you use to
call the method when you’re writing the code for the UseAccount class.

� The parentheses contain all the things that you’re going to pass to the
method when you call it. When you call a method, you can pass infor-
mation to that method on the fly. This information is the method’s
parameter list. The getInterest method’s header says that the
getInterest method takes one piece of information and that piece of
information must be of type double.

double getInterest(double percentageRate)

Account
UseAccount

double getInterest(double percentageRate) {

 return balance * percentageRate / 100.00;

}

out.println(myAccount.getInterest(5.00));

11

22

Figure 7-7:
Passing a
value to a

method.

155Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 155

Sure enough, if you look at the first call to getInterest (down in the
useAccount class’s main method), that call has the number 5.00 in it.
And 5.00 is a double literal. When I call getInterest, I’m giving the
method a value of type double.

If you don’t remember what a literal is, see Chapter 4.

The same story holds true for the second call to getInterest. Down
near the bottom of Listing 7-6, I call getInterest and feed the variable
yourInterestRate to the method in its parameter list. Luckily for me,
I declared yourInterestRate to be of type double just a few lines
before that.

When you run the code in Listings 7-5 and 7-6, the flow of action isn’t from
top to bottom. The action goes from main to getInterest, then back to
main, then back to getInterest, and finally back to main again. The whole
business is shown in Figure 7-8.

Returning a value from the
getInterest method
When the getInterest method is called, the method executes the one state-
ment that’s in the method’s body: a return statement. The return statement
computes the value of balance * percentageRate / 100.00. If balance
happens to be 24.02, and percentageRate is 5.00, the value of the expres-
sion is 1.201 — around $1.20. (Because the computer works exclusively with
0s and 1s, the computer gets this number wrong by an ever so tiny amount.
The computer gets 1.2009999999999998. That’s just something that humans
have to live with.)

Anyway, after this value is calculated, the computer executes the return,
which sends the value back to the place in main where getInterest was
called. At that point in the process, the entire method call —
myAccount.getInterest(5.00) — takes on the value 1.2009999999999998.
The call itself is inside a println:

out.println(myAccount.getInterest(5.00));

So the println ends up with the following meaning:

out.println(1.2009999999999998);

The whole process, in which a value is passed back to the method call, is
illustrated in Figure 7-9.

156 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 156

class Account {
 Yada, yada, yada...

 double getInterest(double percentageRate) {
 return balance * percentageRate / 100.00;
 }
}

class UseAccount {

 public static void main(String args[]) {
 Account myAccount = new Account();
 Account yourAccount = new Account();

 myAccount.name = "Barry Burd";
 myAccount.address = "222 Cyberspace Lane";
 myAccount.balance = 24.02;

 yourAccount.name = "Jane Q. Public";
 yourAccount.address = "111 Consumer Street";
 yourAccount.balance = 55.63;

 myAccount.display();

 out.print(" plus $");

 out.print(myAccount.getInterest(5.00));

 out.println(" interest ");

 yourAccount.display();

 double yourInterestRate = 7.00;
 out.print(" plus $");
 double yourInterestAmount =

 yourAccount.getInterest(yourInterestRate) ;

 out.print(yourInterestAmount);
 out.println(" interest ");
 }
}

11

22

33

44

55Figure 7-8:
The flow of

control in
Listings 7-5

and 7-6.

157Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 157

If a method returns anything, a call to the method is an expression with a
value. That value can be printed, assigned to a variable, added to something
else, or whatever. Anything you can do with any other kind of value, you can
do with a method call.

Making numbers look good
Looking back at Figure 7-5, you may be concerned that the interest on my
account is only $1.2009999999999998. Seemingly, the bank is cheating me out
of 200-trillionths of a cent. I should go straight there and demand my fair
interest. Maybe you and I should go together. We’ll kick up some fur at that
old bank and bust this scam right open. If my guess is correct, this is part of a
big salami scam. In a salami scam, someone shaves little slices off millions of
accounts. People don’t notice their tiny little losses, but the person doing the
shaving collects enough for a quick escape to Barbados (or for a whole truck-
load of salami).

But, wait a minute! Nothing is motivating you to come with me to the bank.
Checking back at Figure 7-5, I see that you’re way ahead of the game.
According to my calculations, the program overpays you by 300-trillionths of
a cent. Between the two of us, we’re ahead by a hundred-trillionth of a cent.
What gives?

Well, because computers use 0s (zeros) and 1s and don’t have an infinite
amount of space to do calculations, inaccuracies like the ones shown in
Figure 7-5 are inevitable. The best that you can do is display numbers in a
more sensible fashion. You can round the numbers and display only two
digits beyond the decimal point, and some handy tools from Java’s API
(Application Programming Interface) can help. The code is shown in
Listing 7-7, and the pleasant result is displayed in Figure 7-10.

Account
UseAccount

double getInterest(double percentageRate) {

 return balance * percentageRate / 100.00;

}

out.println(myAccount.getInterest(5.00));

Figure 7-9:
A method
call is an

expression
with a value.

158 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 158

Listing 7-7: Making Your Numbers Look Right

import static java.lang.System.out;

class UseAccount {

public static void main(String args[]) {
Account myAccount = new Account();
Account yourAccount = new Account();

myAccount.balance = 24.02;
yourAccount.balance = 55.63;

double myInterest = myAccount.getInterest(5.00);
double yourInterest = yourAccount.getInterest(7.00);

out.printf(“$%4.2f\n”, myInterest);
out.printf(“$%5.2f\n”, myInterest);
out.printf(“$%.2f\n”, myInterest);
out.printf(“$%3.2f\n”, myInterest);
out.printf(“$%.2f $%.2f”, myInterest, yourInterest);

}
}

Before you can run the code in Listing 7-7, you have to put two classes into
your JCreator project. One class is the code in Listing 7-7; the other class is
an Account class, like the one in Listing 7-5.

Listing 7-7 uses a handy method named printf. When you call printf, you
always put at least two parameters inside the call’s parentheses.

� The first parameter is a format string.

The format string uses funny looking codes to describe exactly how the
other parameters are displayed.

� All the other parameters (after the first) are values to be displayed.

Look at the last printf call of Listing 7-7. The first parameter’s format string
has two placeholders for numbers. The first placeholder (%.2f) describes
the display of myInterest. The second placeholder (another %.2f)
describes the display of yourInterest. To find out exactly how these format
strings work, see Figures 7-11 through 7-15.

Figure 7-10:
Numbers
that look

like dollar
amounts.

159Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 159

Display a dollar sign.

Use appropriately
many places to display

a number and put two of
these places to the right

of the decimal point.

Go to a new line.

What the computer
displays:

$1.20

"$%.2f\n"
Figure 7-13:

Displaying
a value
without

specifying
the exact

number of
places.

Display a dollar sign.

Use at least five places
to display a number
and put two of these

places to the right of the
decimal point.

Go to a new line.

Because myInterest takes only four
places, display myInterest with
an extra blank space.

What the computer
displays:

$ 1.20

"$%5.2f\n"

Figure 7-12:
Adding

extra places
to display a

value.

Display a dollar sign.

Use at least four places
to display a number
and put two of these

places to the right of the
decimal point.

Go to a new line.

"a number" is the second parameter
(the value of myInterest)

What the computer
displays:

$1.20

"$%4.2f\n"

Figure 7-11:
Using a
format
string.

160 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 160

For more examples using the printf method and its format strings, see
Chapters 8 and 9. For a complete list of options associated with the printf
method’s format string, see the java.util.Formatter page of Java’s API
documentation.

The format string in a printf call doesn’t change the way a number is stored
internally for calculations. All the format string does is create a nice-looking
bunch of digit characters that can be displayed on your screen.

Display a
dollar sign.

Display the value of the second
parameter (myInterest)

with two of these places to the
right of the decimal point.

Display a blank
space and a dollar sign.

Display the value of the third
parameter (yourInterest)
with two of these places to the
right of the decimal point.

What the computer
displays:

$1.20 $3.89

"$%.2f $%.2f"

Figure 7-15:
Displaying
more than
one value

with a
format
string.

Display a dollar sign.

Use at least three places
to display a number
and put two of these

places to the right of the
decimal point.

Go to a new line.

Three isn't enough, so the
computer uses four places.

What the computer
displays:

$1.20

"$%3.2f\n"

Figure 7-14:
Specifying

too few
places to
display a

value.

161Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 161

Hiding Details with Accessor Methods
(Why You Shouldn’t Micromanage a
Bank Teller)

Put down this book and put on your hat. You’ve been such a loyal reader that
I’m taking you out to lunch!

I’ve got just one problem. I’m a bit short on cash. Would you mind if, on the
way to lunch, we stopped at an automatic teller machine and picked up a few
bucks? Also, we have to use your account. My account is a little low.

Fortunately, the teller machine is easy to use. Just step right up and enter
your PIN. After entering your PIN, the machine asks which of several variable
names you want to use for your current balance. You have a choice of
balance324, myBal, currentBalance, b$, BALANCE, asj999, or
conStanTinople. Having selected a variable name, you’re ready to select a
memory location for the variable’s value. You can select any number between
022FFF and 0555AA. (Those numbers are in hexadecimal format.) After you’ve
configured the teller machine’s software, you can easily get your cash. You
did bring a screwdriver, didn’t you?

Good programming
When it comes to good computer programming practice, one word stands
out above all others — simplicity. When you’re writing complicated code, the
last thing you want is to deal with somebody else’s misnamed variables; con-
voluted solutions to problems; or clever, last-minute kludges. You want a
clean interface that makes you solve your own problems and no one else’s.

In the automatic teller machine scenario that I describe earlier, the big prob-
lem is that the machine’s design forces you to worry about other people’s
concerns. When you should be thinking about getting money for lunch,
you’re thinking instead about variables and storage locations. Sure, someone
has to work out the teller machine’s engineering problems. But the banking
customer isn’t the person to solve these problems.

This section is about safety, not security. Safe code keeps you from making
accidental programming errors. Secure code (a completely different story)
keeps malicious hackers from doing intentional damage.

162 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 162

So this means that everything connected with every aspect of a computer
program has to be simple. Right? Well, no. That’s not right. Sometimes, to
make things simple in the long run, you have to do lots of preparatory work
up front. The people who built the automated teller machine worked hard to
make sure that the machine is consumer-proof. The machine’s interface, with
its screen messages and buttons, makes the machine a very complicated, but
carefully designed, device.

The point is that making things look simple takes some planning. In the case
of object-oriented programming, one of the ways to make things look simple
is to keep code outside a class from directly using variables defined inside
the class. Take a peek at the code in Listing 7-1. You’re working at a company
that has just spent $10 million for the code in the Account class. (That’s
more than a million and a half per line!) Now your job is to write the
UseAccount class. You would like to write

myAccount.name=”Barry Burd”;

but doing so would be getting you too far inside the guts of the Account
class. After all, people who use an automatic teller machine aren’t allowed to
program the machine’s variables. They can’t use the machine’s keypad to
type the statement

balanceOnAccount29872865457 =
balanceOnAccount29872865457 + 1000000.00;

Instead, they push buttons that do the job in an orderly manner. That’s how a
programmer achieves safety and simplicity.

So, to keep things nice and orderly, you need to change the Account class
from Listing 7-1 by outlawing statements such as the following:

myAccount.name=”Barry Burd”;

and

out.print(yourAccount.balance);

But, of course, this poses a problem. You’re the person who’s writing the
code for the UseAccount class. If you can’t write myAccount.name or
yourAccount.balance, how are you going to accomplish anything at all?
The answer lies in things called accessor methods. These methods are demon-
strated in Listings 7-8 and 7-9.

163Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 163

Listing 7-8: Hide Those Variables

class Account {
private String name;
private String address;
private double balance;

public void setName(String n) {
name = n;

}

public String getName() {
return name;

}

public void setAddress(String a) {
address = a;

}

public String getAddress() {
return address;

}

public void setBalance(double b) {
balance = b;

}

public double getBalance() {
return balance;

}
}

Listing 7-9: Calling Accessor Methods

import static java.lang.System.out;

class UseAccount {

public static void main(String args[]) {
Account myAccount = new Account();
Account yourAccount = new Account();

myAccount.setName(“Barry Burd”);
myAccount.setAddress(“222 Cyberspace Lane”);
myAccount.setBalance(24.02);

yourAccount.setName(“Jane Q. Public”);
yourAccount.setAddress(“111 Consumer Street”);
yourAccount.setBalance(55.63);

164 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 164

out.print(myAccount.getName());
out.print(“ (“);
out.print(myAccount.getAddress());
out.print(“) has $”);
out.print(myAccount.getBalance());
out.println();

out.print(yourAccount.getName());
out.print(“ (“);
out.print(yourAccount.getAddress());
out.print(“) has $”);
out.print(yourAccount.getBalance());

}
}

A run of the code in Listings 7-8 and 7-9 looks no different from a run of
Listings 7-1 and 7-2. Either program’s run is shown in Figure 7-3. The big
difference is that in Listing 7-8, the Account class enforces the carefully
controlled use of its internal variables.

Public lives and private dreams: Making
a variable name inaccessible
Notice the addition of the word private in front of each of the Account class’s
variable declarations. The word private is a Java keyword. When a variable is
declared to be private, no code outside of the class can make direct reference
to that variable. So if you put myAccount.name=”Barry Burd” in the
UseAccount class of Listing 7-9, you get the error message name has
private access in Account.

Instead of referencing myAccount.name, the UseAccount programmer must
call method myAccount.setName or method myAccount.getName. These
methods, setName and getName, are called accessor methods, because they
provide access to the Account class’s name variable. (Actually, the term
accessor method isn’t formally a part of the Java programming language. It’s
just the term that people use for methods that do this sort of thing.) To zoom
in even more, setName is called a setter method, and getName is called a
getter method. (I bet you won’t forget that terminology!)

Another commonly used term for an accessor method is a bean method. The
phrase bean method comes from the world of JavaBeans — a way of plugging
Java programs into existing graphical user interface (GUI) environments.
Because JavaBeans relies heavily on accessor methods, many people associ-
ate accessor methods with the JavaBeans specification.

165Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 165

With the Pro version of JCreator, you don’t have to type your own accessor
methods. First you type a variable declaration like private String name.
Then, in JCreator Pro’s menu bar, you choose Tools➪Insert Bean Methods.
After you approve the defaults in a small dialog box, JCreator creates acces-
sor methods and adds them to your code.

Notice that all the setter and getter methods in Listing 7-8 are declared to be
public. This ensures that anyone from anywhere can call these two methods.
The idea here is that manipulating the actual variables from outside the
Account code is impossible, but you can easily reach the approved setter
and getter methods for using those variables.

To read more about the public and private keywords, see Appendix B and
Chapter 15. (Chapter 15 is on the CD-ROM.)

Think again about the automatic teller machine. Someone using the ATM
can’t type a command that directly changes the value in his or her account’s
balance variable, but the procedure for depositing a million-dollar check is
easy to follow. The people who build the teller machines know that if the
check depositing procedure is complicated, plenty of customers will mess it
up royally. So that’s the story — make impossible anything that people
shouldn’t do and make sure that the tasks people should be doing are easy.

Nothing about having setter and getter methods is sacred. You don’t have to
write any setter and getter methods that you’re not going to use. For
instance, in Listing 7-8, I can omit the declaration of method getAddress,
and everything still works. The only problem if I do this is that anyone else
who wants to use my Account class and retrieve the address of an existing
account is up a creek.

When you create a method to set the value in a balance variable, you don’t
have to name your method setBalance. You can name it tunaFish, or what-
ever you like. The trouble is that the setVariablename convention (with
lowercase letters in set and an uppercase letter to start the Variablename
part) is an established stylistic convention in the world of Java programming.
If you don’t follow the convention, you confuse the kumquats out of other
Java programmers. If your integrated development environment has drag-
and-drop GUI design capability, you may temporarily lose that capability.
(For a word about drag-and-drop GUI design, see Chapter 2.)

When you call a setter method, you feed it a value of the type that’s being set.
That’s why, in Listing 7-9, you call yourAccount.setBalance(55.63) with a
parameter of type double. In contrast, when you call a getter method, you
usually don’t feed any values to the method. That’s why, in Listing 7-9, you
call yourAccount.getBalance() with an empty parameter list.

166 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 166

Occasionally, you may want to get and set a value with a single
statement. To add a dollar to your account’s existing balance, you write
yourAccount.setBalance(yourAccount.getBalance() + 1.00).

Enforcing rules with accessor methods
Go back to Listing 7-8 and take a quick look at the setName method. Imagine
putting the method’s assignment statement inside an if statement.

if (!n.equals(“”))
name=n;

Now, if the programmer in charge of the UseAccount class writes
myAccount.setName(“”), the call to setName doesn’t have any effect.
Furthermore, because the name variable is private, the following statement is
illegal in the UseAccount class:

myAccount.name=””;

Of course, a call such as myAccount.setName(“Joe Schmoe”) still works
because “Joe Schmoe” doesn’t equal the empty string “”.

That’s cool. With a private variable and an accessor method, you can prevent
someone from assigning the empty string to an account’s name variable. With
more elaborate if statements, you can enforce any rules you want.

167Chapter 7: Thinking in Terms of Classes and Objects

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 167

168 Part III: Working with the Big Picture: Object-Oriented Programming

03b_568582 ch07.qxd 7/27/04 11:46 PM Page 168

Chapter 8

Saving Time and Money:
Reusing Existing Code

In This Chapter
� Adding new life to old code

� Tweaking your code

� Making changes without spending a fortune

O nce upon a time, there was a beautiful princess. When the princess
turned 25 (the optimal age for strength, good looks, and fine moral

character), her kind father brought her a gift in a lovely golden box. Anxious
to know what was in the box, the princess ripped off the golden wrapping
paper.

When the box was finally opened, the princess was thrilled. To her surprise,
her father had given her what she had always wanted — a computer program
that always ran correctly. The program did everything the princess wanted
and did it all exactly the way she wanted it to be done. The princess was
happy, and so was her kind, old father.

As time went on, the computer program never failed. For years on end, the
princess changed her needs, expected more out of life, made increasing
demands, expanded her career, reached for more and more fulfillment, jug-
gled the desires of her husband and her kids, stretched the budget, and
sought peace within her soul. Through all this, the program remained her
steady, faithful companion.

As the princess grew old, the program became old along with her. One
evening, as she sat by the fireside, she posed a daunting question to the pro-
gram. “How do you do it?” she asked. “How do you manage to keep giving the
right answers, time after time, year after year?”

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 169

“Clean living,” replied the program. “I swim twenty apps each day, I take C++
to Word off viruses, I avoid hogarithmic algorithms, I link Java in moderation,
I say GNU to bugs, I don’t smoke to backup, and I never byte off more than I
can queue.”

Needless to say, the princess was stunned.

Defining a Class (What It Means
to Be an Employee)

Wouldn’t it be nice if every piece of software did just what you wanted it to
do? In an ideal world, you could just buy a program, make it work right away,
plug it seamlessly into new situations, and update it easily whenever your
needs change. Unfortunately, software of this kind doesn’t exist. (Nothing of
this kind exists.) The truth is, no matter what you want to do, you can find
software that does some of it, but not all of it.

This is one of the reasons why object-oriented programming has been so suc-
cessful. For years, companies were buying prewritten code only to discover
that the code didn’t do what they wanted it to do. So what did the companies
do about it? They started messing with the code. Their programmers dug
deep into the program files, changed variable names, moved subprograms
around, reworked formulas, and generally made the code worse. The reality
was that if a program didn’t already do what you wanted it to do (even if it
did something ever so close to what you wanted), you could never improve
the situation by mucking around inside the code. The best option was always
to chuck the whole program (expensive as that was) and start all over again.
What a sad state of affairs!

With object-oriented programming, a big change has come about. At its heart,
an object-oriented program is made to be modified. With correctly written
software, you can take advantage of features that are already built-in, add
new features of your own, and override features that don’t suit your needs.
And the best part is that the changes you make are clean. No clawing and dig-
ging into other people’s brittle program code. Instead, you make nice, orderly
additions and modifications without touching the existing code’s internal
logic. It’s the ideal solution.

The last word on employees
When you write an object-oriented program, you start by thinking about the
data. You’re writing about accounts. So what’s an account? You’re writing
code to handle button clicks. So what’s a button? You’re writing a program to
send payroll checks to employees. What’s an employee?

170 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 170

In this chapter’s first example, an employee is someone with a name and a
job title. Sure, employees have other characteristics, but for now I stick to
the basics. The code in Listing 8-1 defines what it means to be an employee.

Listing 8-1: What Is an Employee?

import static java.lang.System.out;

class Employee {
private String name;
private String jobTitle;

public void setName(String nameIn) {
name = nameIn;

}

public String getName() {
return name;

}

public void setJobTitle(String jobTitleIn) {
jobTitle = jobTitleIn;

}

public String getJobTitle() {
return jobTitle;

}

public void cutCheck(double amountPaid) {
out.printf(“Pay to the order of %s “, name);
out.printf(“(%s) ***$”, jobTitle);
out.printf(“%,.2f\n”, amountPaid);

}
}

According to Listing 8-1, each employee has seven features. Two of these fea-
tures are fairly simple. Each employee has a name and a job title.

And what else does an employee have? Each employee has four methods to
handle the values of the employee’s name and job title. These methods are
setName, getName, setJobTitle, and getJobTitle. Methods like these
(accessor methods) are explained in Chapter 7.

On top of all that, each employee has a cutCheck method. The idea is that
the method that writes payroll checks has to belong to one class or another.
Because most of the information in the payroll check is customized for a par-
ticular employee, you may as well put the cutCheck method inside the
Employee class.

171Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 171

For details about the printf calls in the cutCheck method, see the section
entitled “Cutting a check,” later in this chapter.

Putting your class to good use
The Employee class in Listing 8-1 has no main method, so there’s no starting
point for executing code. To fix this deficiency, the programmer must write a
separate program with a main method and use that program to create
Employee instances. (To find out how to compile two programs separately,
see Chapter 7.) Listing 8-2 shows a class with a main method — one that puts
the code in Listing 8-1 to the test.

Listing 8-2: Writing Payroll Checks

import java.util.Scanner;
import java.io.File;
import java.io.IOException;

class DoPayroll {

public static void main(String args[])
throws IOException {

Scanner diskScanner =
new Scanner(new File(“EmployeeInfo.txt”));

for (int empNum = 1; empNum <= 3; empNum++) {
payOneEmployee(diskScanner);

}
}

static void payOneEmployee(Scanner aScanner) {
Employee anEmployee = new Employee();

anEmployee.setName(aScanner.nextLine());
anEmployee.setJobTitle(aScanner.nextLine());
anEmployee.cutCheck(aScanner.nextDouble());
aScanner.nextLine();

}
}

The DoPayroll class in Listing 8-2 has two methods. One of the methods,
main, calls the other method, payOneEmployee, three times. Each time
around, the payOneEmployee method gets stuff from the EmployeeInfo.txt
file and feeds this stuff to the Employee class’s methods.

172 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 172

Here’s how the variable name anEmployee is reused and recycled:

� The first time that payOneEmployee is called, the statement
anEmployee = new Employee() makes anEmployee refer to a new
object.

� The second time that payOneEmployee is called, the computer executes
the same statement again. This creates a new incarnation of the
anEmployee variable that refers to a brand-new object.

� The third time around, all the same stuff happens again. A new
anEmployee variable ends up referring to a third object.

The whole story is pictured in Figure 8-1.

Cutting a check
Listing 8-1 has three printf calls. Each printf call has a format string
(like “(%s) ***$”) and a variable (like jobTitle). Each format string has a
placeholder (like %s) that determines where and how the variable’s value is
displayed.

For example, in the second printf call, the format string has a %s place-
holder. This %s holds a place for the jobTitle variable’s value. According to
Java’s rules, the notation %s always holds a place for a string and, sure
enough, the variable jobTitle is declared to be of type String in Listing 8-1.
Parentheses and some other characters surround the %s placeholder, so
parentheses surround each job title in the program’s output. (See Figure 8-2.)

An instance of the
Employee class

name

jobTitle

Barry

CEO

Another instance of
the Employee class

name

jobTitle

Harriet

Captain

anEmployee

Employee

DoPayroll

anEmployee anEmployee

A third instance of
 the Employee class

name

jobTitle

You

Exec

1 2 3

Figure 8-1:
Three calls

to the
payOne

Employee
method.

173Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 173

Back in Listing 8-1, notice the comma inside the %,.2f placeholder. The
comma tells the program to use grouping separators. That’s why, in Figure 8-2,
you see $5,000.00, $7,000.00, and $10,000.00 instead of $5000.00,
$7000.00, and $10000.00.

Grouping separators vary from one country to another. For instance, in
France, to write the number one thousand (mille), you write 1 000,00.
Java can Frenchify your number automatically with a statement like
out.print(new java.util.Formatter().format(java.util.Locale.
FRANCE, “%,.2f”, 1000.00)). For details, see the API (Application
Programming Interface) documentation for Java’s Formatter and Locale
classes.

Working with Disk Files
(A Brief Detour)

In previous chapters, programs read characters from the computer’s key-
board. But the code in Listing 8-2 reads characters from a specific file. The
file (named EmployeeInfo.txt) lives on your computer’s hard drive.

This EmployeeInfo.txt file is like a word processing document. The file can
contain letters, digits, and other characters. But unlike a word processing
document, the EmployeeInfo.txt file contains no formatting — no italics,
no bold, no font sizes, nothing of that kind.

The EmployeeInfo.txt file contains only ordinary characters — the kinds
of keystrokes that you type while you play a guessing game from Chapters 5
or 6. Of course, getting guesses from a user’s keyboard and reading employee
data from a disk file aren’t exactly the same. In a guessing game, the program
displays prompts, such as Enter an int from 1 to 10. The game pro-
gram conducts a back-and-forth dialogue with the person sitting at the key-
board. In contrast, Listing 8-2 has no dialogue. This DoPayroll program
reads characters from a hard drive and doesn’t prompt or interact with
anyone.

Figure 8-2:
Everybody
gets paid.

174 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 174

Most of this chapter is about code reuse. But Listing 8-2 stumbles upon an
important idea — an idea that’s not directly related to code reuse. Unlike the
examples in previous chapters, Listing 8-2 reads data from a stored disk file.
So in this section, I take a short side trip to explore disk files.

Storing data in a file
The code in Listing 8-2 doesn’t run unless you have some employee data sit-
ting in a file. Listing 8-2 says that this file is EmployeeInfo.txt. So before
running the code of Listing 8-2, I created a small EmployeeInfo.txt file. The
file is shown in Figure 8-3; refer to Figure 8-2 for the resulting output.

When you install JCreator from this book’s CD-ROM, the computer copies my
EmployeeInfo.txt file exactly where you need it — in the project directory
for Listings 8-1 and 8-2. So you can run this section’s code without worrying
about the EmployeeInfo.txt file.

Even though you’re not worried about it, you may want to see the
EmployeeInfo.txt file in JCreator’s editor. Who knows? You may want to
change some of the data in the file. Here’s how you can bring the file into the
Editor pane:

1. With JCreator open, choose File➪Open Workspace.

An Open dialog box appears.

2. In the Open dialog box, select Chapter08.jcw, and click Open.

The Chapter08 workspace fills JCreator’s File View pane.

3. In the File View pane, right-click the Listings0801-02 project.

A context menu appears.

Figure 8-3:
An

Employee
Info.txt file.

175Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 175

4. In the context menu, select Show All Files.

Some additional filenames appear under the Listings0801-02 branch
of the File View’s tree. One of these other filenames is
EmployeeInfo.txt.

5. In the File View’s tree, double-click EmployeeInfo.txt.

When you write your own code, you may need to create files like my
EmployeeInfo.txt file. Here’s how you do it:

1. In the File View pane, right-click the name of a project. Then choose
Add➪New File from the context menu that appears.

JCreator’s File Wizard opens to the File Path tab.

2. In the Name field, type the name of your new data file.

You can type any name that your computer considers to be a valid file
name. For this section’s example, I used EmployeeInfo.txt, but other
names, such as EmployeeInfo.dat, EmployeeInfo, or
Employees123.01.dataFile, are fine. I try to avoid troublesome names
(including short, uninformative names and names containing blank
spaces), but the name you choose is entirely up to you (and your com-
puter’s operating system, and your boss’s whims, and your customer’s
specifications).

Always include a dot in File Path tab’s Name field. If the filename has no
extension, add a dot at the end of the name. For instance, to create a file
named EmployeeInfo (not EmployeeInfo.txt or EmployeeInfo.dat),
type EmployeeInfo. exactly as you see it here. If you don’t type your
own dot anywhere in the Name field, JCreator adds a default extension
to the filename (turning EmployeeInfo into EmployeeInfo.java).

3. Click Finish.

The filename appears in JCreator’s File View pane. A tab with the new
filename appears in JCreator’s Editor pane.

4. Type text in the Editor pane.

To create this section’s example, I typed the text shown in Figure 8-3.
To create your own example, type whatever text your program needs
during its run.

This book’s Web site has tips for readers who need to create data files with-
out using JCreator. This includes instructions for Linux, Unix, and Macintosh
environments.

176 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 176

Copying and pasting code
In almost any computer programming language, reading data from a file can
be tricky. You add extra lines of code to tell the computer what to do.
Sometimes you can copy and paste these lines from other peoples’ code.
For example, you can follow the pattern in Listing 8-2:

/*
* The pattern in Listing 8-2
*/
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

class SomeClassName {

public static void main(String args[])
throws IOException {

Scanner scannerName =
new Scanner(new File(“SomeFileName”));

//Some code goes here

scannerName.nextInt();
scannerName.nextDouble();
scannerName.next();
scannerName.nextLine();

//Some code goes here
}

}

You want to read data from a file. You start by imagining that you’re reading
from the keyboard. Put the usual Scanner and next codes into your pro-
gram. Then add some extra items from the Listing 8-2 pattern:

� Add two new import declarations — one for java.io.File and another
for java.io.IOException.

� Type throws IOException in your method’s header.

� Type new File(“”) in your call to new Scanner.

� Take a file that’s already on your hard drive. Type that filename inside
the quotation marks.

� Take the word that you use for the name of your scanner. Reuse that
word in calls to next, nextInt, nextDouble, and so on.

177Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 177

Occasionally, copying and pasting code can get you into trouble. Maybe
you’re writing a program that doesn’t fit the simple Listing 8-2 pattern. You
need to tweak the pattern a bit. But in order to tweak the pattern, you need
to understand some of the ideas behind the pattern.

That’s how the next section comes to your rescue. The following section
covers some of these ideas behind the pattern.

Reading from a file
In previous chapters, programs read characters from the computer’s
keyboard. These programs use things like Scanner, System.in, and
nextDouble — things defined in Java’s API. The DoPayroll program in
Listing 8-2 puts a new spin on this story. Instead of reading characters from
the keyboard, the program reads characters from the EmployeeInfo.txt
file. The file lives on your computer’s hard drive.

To read characters from a file, you use some of the same things that help you
read characters from the keyboard. You use Scanner, nextDouble, and other
goodies. But in addition to these goodies, you have a few extra hurdles to
jump. Here’s a list:

� You need a new File object. To be more precise, you need a new
instance of the API’s File class. You get this new instance with code like

new File(“EmployeeInfo.txt”)

The stuff in quotation marks is the name of a file — a file on your com-
puter’s hard drive. The file contains characters like those shown previ-
ously in Figure 8-3.

At this point, the terminology makes mountains out of molehills. Sure,
I use the phrases “new File object” and “new File instance,” but all
you’re doing is making new File(“EmployeeInfo.txt”) stand for a
file on your hard drive. After you shove new
File(“EmployeeInfo.txt”) into new Scanner,

Scanner diskScanner =
new Scanner(new File(“EmployeeInfo.txt”));

you can forget all about the new File business. From that point on in
the code, diskScanner stands for the EmployeeInfo.txt filename on
your computer’s hard drive. (The name diskScanner stands for a file on
your hard drive just as, in previous examples, the name myScanner
stands for the computer’s keyboard.)

178 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 178

Creating a new File object in Listing 8-2 is like creating a new
Employee object later in the same listing. It’s also like creating a new
Account object in the examples of Chapter 7. The only difference is that
the Employee and Account classes are defined in this book’s examples.
The File class is defined in Java’s API.

When you connect to a disk file with new Scanner, don’t forget the new
File part. If you write new Scanner(“EmployeeInfo.txt”) without
new File, the compiler won’t mind. (Choosing Build➪Compile Project
will give you a friendly looking Process completed message.) But when
you run the code, you won’t get anything like the results that you expect
to get.

� You must refer to the File class by its full name — java.io.File.
You can do this with an import declaration as in Listing 8-2.
Alternatively, you can clutter up your code with a statement like

Scanner diskScanner =
new Scanner(new java.io.File(“EmployeeInfo.txt”));

� You need a throws IOException clause. Lots of things can go wrong
when your program connects to EmployeeInfo.txt. For one thing,
your hard drive may not have a file named EmployeeInfo.txt. For another,
the file EmployeeInfo.txt may be in the wrong directory. To brace for
this kind of calamity, the Java programming language takes certain pre-
cautions. The language insists that when a disk file is involved, you
acknowledge the possible dangers of calling new Scanner.

You can acknowledge the hazards in several possible ways, but the sim-
plest way is to use a throws clause. In Listing 8-2, the main method’s
header ends with the words throws IOException. By adding these two
words, you appease the Java compiler. It’s as if you’re saying “I know
that calling new Scanner can lead to problems. You don’t have to
remind me.” And, sure enough, adding throws IOException to your
main method keeps the compiler from complaining. (Without this
throws clause, you get an unreported exception error message.)

For the full story on Java exceptions, read Chapter 12. In the meantime,
add throws IOException to the header of any method that calls new
Scanner(new File(....

� You must refer to the IOException class by its full name —
java.io.IOException.

You can do this with an import declaration as in Listing 8-2.
Alternatively, you can enlarge the main method’s throws clause:

public static void main(String args[])

throws java.io.IOException {

179Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 179

� You must pass the file scanner’s name to the payOneEmployee method.

In Listing 7-5 in Chapter 7, the getInterest method has a parameter
named percentageRate. Whenever you call the getInterest method,
you hand an extra, up-to-date piece of information to the method.
(You hand a number — an interest rate — to the method. Figure 7-7
illustrates the idea.)

The same thing happens in Listing 8-2. The payOneEmployee method
has a parameter named aScanner. Whenever you call the payOneEmployee
method, you hand an extra, up-to-date piece of information to the
method. (You hand a scanner — a reference to a disk file — to
the method.)

You may wonder why the payOneEmployee method needs a parameter. After
all, in Listing 8-2, the payOneEmployee method always reads data from the
same file. Why bother informing this method, each time you call it, that the
disk file is still the EmployeeInfo.txt file?

Well, there are plenty of ways to shuffle the code in Listing 8-2. Some ways
don’t involve a parameter. But the way that this example has arranged things,
you have two separate methods — a main method and a payOneEmployee
method. You create a scanner once inside the main method and then use the
scanner three times — once inside each call to the payOneEmployee method.

Anything that you define inside a method is like a private joke that’s known
only to the code inside that method. So, the diskScanner that you define
inside the main method isn’t automatically known inside the
payOneEmployee method. To make the payOneEmployee method aware of
the disk file, you pass diskScanner from the main method to the
payOneEmployee method.

To read more about variables that you declare inside (and outside) of meth-
ods, see Chapter 10.

Who moved my file?
If you installed JCreator from this book’s CD-ROM, your MyProjects directory
has a subdirectory named Listings0801-02. That Listings0801-02 directory
comes with files named Employee.java and DoPayroll.java — the code in
Listings 8-1 and 8-2. The Listings0801-02 directory also contains the
EmployeeInfo.txt file. That’s good, because if the EmployeeInfo.txt file
isn’t where it belongs, the whole project doesn’t run properly. Instead, you
get a FileNotFoundException.

180 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 180

In general, when you get a FileNotFoundException, some file that your pro-
gram needs isn’t available to your program. This is an easy mistake to make.
It can be frustrating because to you, a file such as EmployeeInfo.txt may
look like it’s available to your program. But remember — computers are
stupid. If you make a tiny mistake, the computer can’t read between the lines
for you. So if your EmployeeInfo.txt file isn’t in the right directory on your
hard drive or the filename is spelled incorrectly, the computer chokes when
it tries to run your code.

Sometimes you know darn well that an EmployeeInfo.txt (or
whatever.xyz) file exists on your hard drive. But when you run your pro-
gram, you still get a mean-looking FileNotFoundException. When this hap-
pens, the file is usually in the wrong directory on your hard drive. (Of course,
it depends on your point of view. Maybe the file is in the right directory, but
you’ve told your Java program to look for the file in the wrong directory.)
When this happens, try copying the file to some other directories on your
hard drive and rerunning your code. (Subdirectories of JCreator’s MyProjects
directory are always good places to put files.) Stare carefully at the names
and locations of files on your hard drive until you figure out what’s wrong.

Adding directory names to your filenames
You can specify a file’s exact location in your Java code. Code like new
File(“C:\\Program Files\\Xinox Software\\JCreatorV3 LE\\
MyProjects\\Listings0801-02\\EmployeeInfo.txt”) looks really ugly,
but it works.

In the previous paragraph, notice the double backslashes in “C:\\Program
Files\\Xinox Software . . .” If you’re a Windows MS-DOS user, you’d
be tempted to write C:\Program Files\Xinox Software with single
backslashes. But in Java, the single backslash has its own special meaning.
(For example, in Listing 7-7, \n means to go to the next line.) So in Java, to
indicate a backslash inside a quoted string, you use a double backslash
instead.

If you know where your Java program looks for files, you can worm your way
from that place to the directory of your choice. For example, the code in
Listing 8-2 normally looks for the EmployeeInfo.txt file in a directory
named Listings0801-02. So as an experiment, go to the Listings0801-02
directory and create a new subdirectory named dataFiles. Then move my
EmployeeInfo.txt file to the new dataFiles directory. To read numbers
and words from the file that you moved, modify Listing 8-2 with the code new
File(“dataFiles\\EmployeeInfo.txt”).

181Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 181

Reading a line at a time
In Listing 8-2, the payOneEmployee method illustrates some useful tricks for
reading data. In particular, every scanner that you create has a nextLine
method. (You might not use this nextLine method, but the method is avail-
able nonetheless.) When you call a scanner’s nextLine method, the method
grabs everything up to the end of the current line of text. In Listing 8-2,
a call to nextLine can read a whole line from the EmployeeInfo.txt file.
(In another program, a scanner’s nextLine call may read everything the user
types on the keyboard, up to the pressing of the Enter key.)

Notice my careful choice of words — nextLine reads everything up to the
end of the current line. Unfortunately, what it means to read up to the end of
the current line isn’t always what you think it means. Intermingling nextInt,
nextDouble, and nextLine calls can be messy. You have to watch what
you’re doing and check your program’s output carefully.

To understand all this, you need to be painfully aware of a data file’s line
breaks. Think of a line break as an extra character, stuck between one line of
text and the next. Then imagine that calling nextLine means to read every-
thing up to and including the next line break.

Now take a look at Figure 8-4.

� If one call to nextLine reads Barry Burd[LineBreak], the subsequent
call to nextLine reads CEO[LineBreak].

� If one call to nextDouble reads the number 5000.00, the subsequent call
to nextLine reads the [LineBreak] that comes immediately after the
number 5000.00. (That’s all the nextLine reads — a [LineBreak] and
nothing more.)

� If a call to nextLine reads the [LineBreak] after the number 5000.00,
the subsequent call to nextLine reads Harriet Ritter[LineBreak].

So after reading the number 5000.00, you need two calls to nextLine in order
to scoop up the name Harriet Ritter. The mistake that I usually make is to
forget the first of those two calls.

Look again at the file in Figure 8-3. For this section’s code to work correctly,
you must have a line break after the last 10000.00. If you don’t, a final call to
nextLine makes your program crash and burn. The error message reads
NoSuchElementException: No line found.

182 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 182

I’m always surprised by the number of quirks that I find in each programming
language’s scanning methods. For example, the first nextLine that reads
from the file in Figure 8-3 devours Barry Burd[LineBreak] from the file. But
that nextLine call delivers Barry Burd (without any line break) to the run-
ning code. So nextLine looks for a line break, and then nextLine loses the
line break. Yes, this is a subtle point. And no, this subtle point hardly ever
causes problems for anyone.

If this business about nextDouble and nextLine confuses you, please don’t
put the blame on Java. Mixing input calls is delicate work in any computer
programming language. And the really nasty thing is that each programming
language approaches the problem a little differently. What you find out about
nextLine in Java helps you understand the issues when you get to know C++
or Visual Basic, but it doesn’t tell you all the details. Each language’s details
are unique to that language. (Yes, it’s a big pain. But because all computer
programmers become rich and famous, the pain eventually pays off.)

Defining Subclasses (What It Means
to Be a Full-Time Employee or
a Part-Time Employee)

This time last year, your company paid $10 million for a piece of software.
That software came in the Employee.class file. People at Burd Brain
Consulting (the company that created the software) don’t want you to know

LineBreakBarry Burd

nextLine()

LineBreakCEO

nextLine()

LineBreak5000.00

nextLine()nextDouble()

LineBreakHarriet Ritter

nextLine()

Figure 8-4:
Calling

nextDouble
and

nextLine.

183Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 183

about the innards of the software (otherwise, you may steal their ideas). So
you don’t have the Java program file that the software came from. (In other
words, you don’t have Employee.java.) You can run the bytecode in the
Employee.class file. You can also read the documentation in a Web page
named Employee.html. But you can’t see the statements inside the
Employee.java program, and you can’t change any of the program’s code.

Since this time last year, your company has grown. Unlike the old days, your
company now has two kinds of employees: full-time and part-time. Each full-
time employee is on a fixed, weekly salary. (If the employee works nights and
weekends, then in return for this monumental effort, the employee receives a
hearty handshake.) In contrast, each part-time employee works for an hourly
wage. Your company deducts an amount from each full-time employee’s pay-
check to pay for the company’s benefits package. Part-time employees, how-
ever, don’t get benefits.

The question is, how can the software that your company bought last year
keep up with the company’s growth? You invested in a great program to
handle employees and their payroll, but the program doesn’t differentiate
between your full-time and part-time employees. You have several options:

� Call your next-door neighbor, whose 12-year-old child knows more about
computer programming than anyone in your company. Get this uppity
little brat to take the employee software apart, rewrite it, and hand it
back to you with all the changes and additions your company requires.

On second thought, you can’t do that. No matter how smart that kid is,
the complexities of the employee software will probably confuse the kid.
By the time you get the software back, it’ll be filled with bugs and incon-
sistencies. Besides, you don’t even have the Employee.java file to hand
to the kid. All you have is the Employee.class file, which can’t be read
or modified with a text editor. (See Chapter 2.) Besides, your kid just
beat up the neighbor’s kid. You don’t want to give your neighbor the sat-
isfaction of seeing you beg for the whiz kid’s help.

� Scrap the $10 million employee software. Get someone in your company
to rewrite the software from scratch.

In other words, say goodbye to your time and money.

� Write a new front end for the employee software. That is, build a piece of
code that does some preliminary processing on full-time employees and
then hands the preliminary results to your $10 million software. Do the
same for part-time employees.

This idea could be decent or spell disaster. Are you sure that the exist-
ing employee software has convenient hooks in it? (That is, does the
employee software contain entry points that allow your front-end

184 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 184

software to easily send preliminary data to the expensive employee soft-
ware?) Remember, this plan treats the existing software as one big,
monolithic lump, which can become cumbersome. Dividing the labor
between your front-end code and the existing employee program is diffi-
cult. And if you add layer upon layer to existing black box code, you’ll
probably end up with a fairly inefficient system.

� Call Burd Brain Consulting, the company that sold you the employee
software. Tell Dr. Burd that you want the next version of his software to
differentiate between full-time and part-time employees.

“No problem,” says Dr. Burd. “It’ll be ready by the start of the next fiscal
quarter.” That evening, Dr. Burd makes a discrete phone call to his next-
door neighbor. . . .

� Create two new Java classes named FullTimeEmployee and
PartTimeEmployee. Have each new class extend the existing functionality
of the expensive Employee class. But have each new class define its own
specialized functionality for certain kinds of employees.

Way to go! Figure 8-5 shows the structure that you want to create.

Creating a subclass
In Listing 8-1, I define an Employee class. I can use what I define in Listing 8-1
and extend the definition to create new, more specialized classes. So in
Listing 8-3, I define a new class — a FullTimeEmployee class.

Employee

FullTimeEmployee PartTimeEmployee

Figure 8-5:
The

Employee
class family

tree.

185Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 185

Listing 8-3: What Is a FullTimeEmployee?

class FullTimeEmployee extends Employee {
private double weeklySalary;
private double benefitDeduction;

public void setWeeklySalary(double weeklySalaryIn) {
weeklySalary = weeklySalaryIn;

}

public double getWeeklySalary() {
return weeklySalary;

}

public void setBenefitDeduction(double benefitDedIn) {
benefitDeduction = benefitDedIn;

}

public double getBenefitDeduction() {
return benefitDeduction;

}

public double findPaymentAmount() {
return weeklySalary - benefitDeduction;

}
}

Looking at Listing 8-3, you can see that each instance of the FullTime
Employee class has two variables: weeklySalary and benefitDeduction.
But are those the only variables that each FullTimeEmployee instance has?
No, they’re not. The first line of Listing 8-3 says that the FullTimeEmployee
class extends the existing Employee class. This means that in addition to
having a weeklySalary and a benefitDeduction, each FullTimeEmployee
instance also has two other variables: name and jobTitle. These two vari-
ables come from the definition of the Employee class, which you can find in
Listing 8-1.

In Listing 8-3, the magic word is the word extends. When one class extends an
existing class, the extending class automatically inherits functionality that’s
defined in the existing class. So, the FullTimeEmployee class inherits the
name and jobTitle variables. The FullTimeEmployee class also inherits all
the methods that are declared in the Employee class — setName, getName,
setJobTitle, getJobTitle, and cutCheck. The FullTimeEmployee class
is a subclass of the Employee class. That means the Employee class is the
superclass of the FullTimeEmployee class. You can also talk in terms of
blood relatives. The FullTimeEmployee class is the child of the Employee
class, and the Employee class is the parent of the FullTimeEmployee class.

It’s almost (but not quite) as if the FullTimeEmployee class were defined by
the code in Listing 8-4.

186 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 186

Listing 8-4: Fake (But Informative) Code

import static java.lang.System.out;

class FullTimeEmployee {
private String name;
private String jobTitle;
private double weeklySalary;
private double benefitDeduction;

public void setName(String nameIn) {
name = nameIn;

}

public String getName() {
return name;

}

public void setJobTitle(String jobTitleIn) {
jobTitle = jobTitleIn;

}

public String getJobTitle() {
return jobTitle;

}

public void setWeeklySalary(double weeklySalaryIn) {
weeklySalary = weeklySalaryIn;

}

public double getWeeklySalary() {
return weeklySalary;

}

public void setBenefitDeduction(double benefitDedIn) {
benefitDeduction = benefitDedIn;

}

public double getBenefitDeduction() {
return benefitDeduction;

}

public double findPaymentAmount() {
return weeklySalary - benefitDeduction;

}

public void cutCheck(double amountPaid) {
out.printf(“Pay to the order of %s “, name);
out.printf(“(%s) ***$”, jobTitle);
out.printf(“%,.2f\n”, amountPaid);

}
}

187Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 187

Why does the title for Listing 8-4 call that code fake? (Should the code feel
insulted?) Well, the main difference between Listing 8-4 and the inheritance
situation in Listings 8-1 and 8-3 is this: A child class can’t directly reference
the private variables of its parent class. To do anything with the parent
class’s private variables, the child class has to call the parent class’s acces-
sor methods. Back in Listing 8-3, calling setName(“Rufus”) would be legal,
but the code name=”Rufus” wouldn’t be. If you believe everything you read
in Listing 8-4, you think that code in the FullTimeEmployee class can do
name=”Rufus”. Well, it can’t. (My, what a subtle point this is!)

You don’t need the Employee.java file on your hard drive to write code that
extends the Employee class. All you need is the file Employee.class.

Creating subclasses is habit-forming
After you’re accustomed to extending classes, you can get extend-happy.
If you created a FullTimeEmployee class, you might as well create a
PartTimeEmployee class, as shown in Listing 8-5.

Listing 8-5: What Is a PartTimeEmployee?

class PartTimeEmployee extends Employee {
private double hourlyRate;

public void setHourlyRate(double rateIn) {
hourlyRate = rateIn;

}

public double getHourlyRate() {
return hourlyRate;

}

public double findPaymentAmount(int hours) {
return hourlyRate * hours;

}
}

Unlike the FullTimeEmployee class, PartTimeEmployee has no salary or
deduction. Instead PartTimeEmployee has an hourlyRate variable. (Adding
a numberOfHoursWorked variable would also be a possibility. I chose not to
do this, figuring that the number of hours a part-time employee works will
change drastically from week to week.)

188 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 188

Using Subclasses
The previous section tells a story about creating subclasses. It’s a good story,
but it’s incomplete. Creating subclasses is fine, but you gain nothing from
these subclasses unless you write code to use them. So in this section, you
explore code that uses subclasses.

Now the time has come for you to classify yourself as either a type-F person
or a type-P person. A type-F person wants to see the fundamentals. (The
letter F stands for fundamentals.) “Show me a program that lays the princi-
ples out in their barest, most basic form,” says the type-F person. A type-F
person isn’t worried about bells and whistles. The bells come later, and the
whistles may never come at all. If you’re a type-F person, you want to see a
program that uses subclasses, and then moves out of your way so you can
get some work done.

On the other hand, a type-P person wants practical applications. (The letter P
stands for practical.) Type-P people need to see ideas in context; otherwise
the ideas float away too quickly. “Show me a program that demonstrates the
usefulness of subclasses,” says the type-P person. “I have no use for your
stinking abstractions. I want real-life examples, and I want them now!”

Because I’m always aiming to please my reader, this section has two (count
’em — two) examples that make use of the previous section’s subclasses.
Listing 8-6, which is for the type-F crowd, is lean and simple and makes good
bedtime reading. On the other hand, Listing 8-7, which is for type-P fanatics,
shows how subclasses fit into a useful context.

So that’s it. Choose your poison and read on.

A program for the minimalist
Listing 8-6 shows you a bare-bones program that uses the subclasses
FullTimeEmployee and PartTimeEmployee. Figure 8-6 shows the program’s
output.

Listing 8-6: Use Subclasses and Then Leave Me Alone

class DoPayrollTypeF {

public static void main(String args[]) {

FullTimeEmployee ftEmployee = new FullTimeEmployee();

(continued)

189Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 189

Listing 8-6 (continued)

ftEmployee.setName(“Barry Burd”);
ftEmployee.setJobTitle(“CEO”);
ftEmployee.setWeeklySalary(5000.00);
ftEmployee.setBenefitDeduction(500.00);
ftEmployee.cutCheck(ftEmployee.findPaymentAmount());
System.out.println();

PartTimeEmployee ptEmployee = new PartTimeEmployee();

ptEmployee.setName(“Steve Surace”);
ptEmployee.setJobTitle(“Driver”);
ptEmployee.setHourlyRate(7.53);
ptEmployee.cutCheck(ptEmployee.findPaymentAmount(10));

}
}

To understand Listing 8-6, you need to keep an eye on three classes: Employee,
FullTimeEmployee, and PartTimeEmployee. (For a look at the code that
defines these classes, see Listings 8-1, 8-3, and 8-5.)

The first half of Listing 8-6 deals with a full-time employee. Notice how so
many methods are available for use with the ftEmployee variable. For
instance, you can call ftEmployee.setWeeklySalary because ftEmployee
has type FullTimeEmployee. You can also call ftEmployee.setName
because the FullTimeEmployee class extends the Employee class.

Because cutCheck is declared in the Employee class, you can call ftEmployee.
cutCheck. But you can also call ftEmployee.findPaymentAmount because a
findPaymentAmount method is in the FullTimeEmployee class.

Making types match
Look again at the first half of Listing 8-6. Take special notice of that last
statement — the one in which the full-time employee is actually cut a check.
The statement forms a nice, long chain of values and their types. You can see
this by reading the statement from the inside out.

Figure 8-6:
The output

of the
program in
Listing 8-6.

190 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 190

� Method ftEmployee.findPaymentAmount is called with an empty para-
meter list (Listing 8-6). That’s good, because the findPaymentAmount
method takes no parameters (Listing 8-3).

� The findPaymentAmount method returns a value of type double
(again, Listing 8-3).

� The double value that ftEmployee.findPaymentAmount returns is
passed to method ftEmployee.cutCheck (Listing 8-6). That’s good,
because the cutCheck method takes one parameter of type double
(Listing 8-1).

For a fanciful graphic illustration, see Figure 8-7.

Always feed a method the value types that it wants in its parameter list.

The second half of the story
In the second half of Listing 8-6, the code creates an object of type
PartTimeEmployee. A variable of type PartTimeEmployee can do
some of the same things a FullTimeEmployee variable can do. But the
PartTimeEmployee class doesn’t have the setWeeklySalary and
setBenefitDeduction methods. Instead, the PartTimeEmployee class
has the setHourlyRate method. (See Listing 8-5.) So, in Listing 8-6, the
next-to-last line is a call to the setHourlyRate method.

The last line of Listing 8-6 is by far the most interesting. On that line,
the code hands the number 10 (the number of hours worked) to the
findPaymentAmount method. Compare this with the earlier call to
findPaymentAmount — the call for the full-time employee in the first
half of Listing 8-6. Between the two subclasses, FullTimeEmployee and
PartTimeEmployee, are two different findPaymentAmount methods. The
two methods have two different kinds of parameter lists:

No parameters
No parameters

double

findPaymentAmount cutCheck

double

Figure 8-7:
Matching

parameters.

191Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 191

� The FullTimeEmployee class’s findPaymentAmount method takes no
parameters (Listing 8-3).

� The PartTimeEmployee class’s findPaymentAmount method takes one
int parameter (Listing 8-5).

This is par for the course. Finding the payment amount for a part-time
employee isn’t the same as finding the payment amount for a full-time
employee. A part-time employee’s pay changes each week, depending on the
number of hours the employee works in a week. The full-time employee’s pay
stays the same each week. So the FullTimeEmployee and PartTimeEmployee
classes both have findPaymentAmount methods, but each class’s method
works quite differently.

A program for the maximalist
If you crave useful results and practical applications, you either skipped over
the last listing or gritted your teeth while you read through it. Listing 8-7
gives you the same information with a more practical point of view. Of
course, there’s a price. Listing 8-7 is longer and more complicated than the
listing in the previous section. Oh, well!

Listing 8-7: Big-Time Payroll Program

import static java.lang.System.out;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

class DoPayrollTypeP {

public static void main(String args[])
throws IOException {

Scanner diskScanner =
new Scanner(new File(“EmpInfoNew.txt”));

Scanner kbdScanner = new Scanner(System.in);

for (int empNum = 1; empNum <= 3; empNum++) {
payOneFTEmployee(diskScanner);

}

for (int empNum = 4; empNum <= 6; empNum++) {
payOnePTEmployee(diskScanner, kbdScanner);

}
}

192 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 192

public static void payOneFTEmployee(Scanner diskScanner) {
FullTimeEmployee employee = new FullTimeEmployee();

employee.setName(diskScanner.nextLine());
employee.setJobTitle(diskScanner.nextLine());
employee.setWeeklySalary(diskScanner.nextDouble());
employee.setBenefitDeduction(diskScanner.nextDouble());
diskScanner.nextLine();
diskScanner.nextLine(); //Reads the dashed line that

// separates two employees

employee.cutCheck(employee.findPaymentAmount());
out.println();

}

public static void payOnePTEmployee
(Scanner diskScanner, Scanner kbdScanner) {

PartTimeEmployee employee = new PartTimeEmployee();

employee.setName(diskScanner.nextLine());
employee.setJobTitle(diskScanner.nextLine());
employee.setHourlyRate(diskScanner.nextDouble());
diskScanner.nextLine();
diskScanner.nextLine(); //Reads the dashed line that

// separates two employees

out.print(“Enter “);
out.print(employee.getName());
out.print(“‘s hours worked this week: “);
int hours = kbdScanner.nextInt();

employee.cutCheck(employee.findPaymentAmount(hours));
out.println();

}
}

For all its complexity, the code in Listing 8-7 still isn’t a full-blown payroll pro-
gram. It’s a toy program, but it’s a bit more realistic than the program in
Listing 8-6. The code in Listing 8-7 writes checks for six employees — three
full-time employees and three part-time employees. Calls to payOneFTEmployee
and payOnePTEmployee make sure that each employee receives a check.
Each of these payOneEmployee methods reads data from a file and uses the
data to fill the employee object’s variables with values. Figure 8-8 shows the
file that I used to test Listing 8-7, and the resulting run is shown in Figure 8-9.

193Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 193

Compared with its full-time cousin, the payOnePTEmployee method pulls one
extra idea out of its bag of tricks. When the time comes to get the number of
hours the employee worked, the payOnePTEmployee method doesn’t consult
a disk file. Instead, the method asks the user for live keyboard input. The
thought here is that the disk file is where all the long-term information about
employees lives. Because the number of hours an employee worked this
week isn’t long-term information, the payOnePTEmployee method gets the
user to enter this information on the fly.

The payOnePTEmployee method reads a name, a job title, and an hourly rate
from the disk file. Then the method reads a number of hours from the key-
board. Because the payOnePTEmployee method reads data from two differ-
ent sources, you pass two different scanners to the method. In the method’s
parameter list, you separate the two items with a comma.

Figure 8-9:
Paying your
employees.

Figure 8-8:
Input for the

big-time
payroll

program.

194 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 194

Overriding Existing Methods
(Changing the Payments for
Some of Your Employees)

Wouldn’t you know it! Some knucklehead in the human resources department
offered double pay for overtime to one of your part-time employees. Now
word is getting around, and some of the other part-timers want double pay
for their overtime work. If this keeps up, you’ll end up in the poorhouse, so
you need to send out a memo to all the part-time employees, explaining why
earning more money is not to their benefit.

In the meantime, you have two kinds of part-time employees — the ones who
receive double pay for overtime hours and the ones who don’t — so you
need to modify your payroll software. What are your options?

� Well, you can dig right into the PartTimeEmployee class code, make a
few changes, and hope for the best. (Not a good idea!)

� You can follow the previous section’s advice and create a subclass of the
existing PartTimeEmployee class. “But wait,” you say. “The existing
PartTimeEmployee class already has a findPaymentAmount method.
Do I need some tricky way of bypassing this existing findPaymentAmount
method for each double-pay-for-overtime employee?”

At this point, you can thank your lucky stars that you’re doing object-
oriented programming in Java. With object-oriented programming, you
can create a subclass that overrides the functionality of its parent class.
Listing 8-8 has just such a subclass.

Listing 8-8: Yet Another Subclass

class PartTimeWithOver extends PartTimeEmployee {

public double findPaymentAmount(int hours) {

if(hours <= 40) {
return getHourlyRate() * hours;

} else {
return getHourlyRate() * 40 +

getHourlyRate() * 2 * (hours - 40);
}

}
}

195Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 195

Figure 8-10 shows the relationship between the code in Listing 8-8 and other
pieces of code in this chapter. In particular, PartTimeWithOver is a subclass
of a subclass. In object-oriented programming, a chain of this kind is not the
least bit unusual. In fact, as subclasses go, this chain is rather short.

The PartTimeWithOver class extends the PartTimeEmployee class, but
PartTimeWithOver picks and chooses what it wants to inherit from the
PartTimeEmployee class. Because PartTimeWithOver has its own declara-
tion for the findPaymentAmount method, the PartTimeWithOver class
doesn’t inherit a findPaymentAmount method from its parent. (See
Figure 8-11.)

According to the official terminology, the PartTimeWithOver class overrides
its parent class’s findPaymentAmount method. If you create an object from
the PartTimeWithOver class, that object has the name, jobTitle,
hourlyRate, and cutCheck of the PartTimeEmployee class, but the object
has the findPaymentAmount method that’s defined in Listing 8-8.

If you need clarification on the stuff that you just read, look at the code in
Listing 8-9. A run of that code is shown in Figure 8-12.

Employee

FullTimeEmployee PartTimeEmployee

PartTimeWithOverFigure 8-10:
A tree of
classes.

196 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 196

Listing 8-9: Testing the Code from Listing 8-8

class DoPayrollTypeF {

public static void main(String args[]) {

FullTimeEmployee ftEmployee = new FullTimeEmployee();

ftEmployee.setName(“Barry Burd”);
ftEmployee.setJobTitle(“CEO”);
ftEmployee.setWeeklySalary(5000.00);
ftEmployee.setBenefitDeduction(500.00);
ftEmployee.cutCheck(ftEmployee.findPaymentAmount());

PartTimeEmployee ptEmployee = new PartTimeEmployee();

ptEmployee.setName(“Chris Apelian”);
ptEmployee.setJobTitle(“Computer Book Author”);
ptEmployee.setHourlyRate(7.53);
ptEmployee.cutCheck(ptEmployee.findPaymentAmount(50));

PartTimeWithOver ptoEmployee = new PartTimeWithOver();

ptoEmployee.setName(“Steve Surace”);
ptoEmployee.setJobTitle(“Driver”);
ptoEmployee.setHourlyRate(7.53);
ptoEmployee.cutCheck

(ptoEmployee.findPaymentAmount(50));
}

}

Employee
(Listing 8-1)

name
jobTitle
cutCheck

PartTimeEmployee
(Listing 8-5)

hourlyRate
findPaymentAmount

PartTimeWithOver
(Listing 8-8) findPaymentAmount

Figure 8-11:
Method

findPayment
Amount isn’t

inherited.

197Chapter 8: Saving Time and Money: Reusing Existing Code

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 197

The code in Listing 8-9 writes checks to three employees. The first employee
is a full-timer. The second is one of those part-time employees who hasn’t yet
gotten wind of the overtime payment scheme. The third employee knows
about the overtime payment scheme and demands a fair wage.

With the subclasses, all three of these employees coexist in Listing 8-9.
Sure, one subclass comes from the old PartTimeEmployee class, but
that doesn’t mean you can’t create an object from the PartTimeEmployee
class. In fact, Java is very smart about this. Listing 8-9 has three calls to the
findPaymentAmount method, and each call reaches out to a different version
of the method.

� In the first call, ftEmployee.findPaymentAmount, the ftEmployee
variable is an instance of the FullTimeEmployee class. So the method
that’s called is the one in Listing 8-3.

� In the second call, ptEmployee.findPaymentAmount, the ptEmployee
variable is an instance of the PartTimeEmployee class. So the method
that’s called is the one in Listing 8-5.

� In the third call, ptoEmployee.findPaymentAmount, the ptoEmployee
variable is an instance of the PartTimeWithOver class. So the method
that’s called is the one in Listing 8-8.

This code is fantastic. It’s clean, elegant, and efficient. With all the money that
you save on software, you can afford to pay everyone double for overtime
hours. (Whether you do that or keep the money for yourself is another
story.)

Figure 8-12:
Running the

code of
Listing 8-9.

198 Part III: Working with the Big Picture: Object-Oriented Programming

03c_568582 ch08.qxd 7/27/04 11:46 PM Page 198

Chapter 9

Constructing New Objects
In This Chapter
� Defining constructors

� Using constructors in subclasses

� Using Java’s default constructor features

� Constructing a simple GUI

Ms. Jennie Rebekah Burd
121 Schoolhouse Lane

Anywhere, Kansas

Dear Ms. Burd,

In response to your letter of June 21, I believe I can say with complete assur-
ance that objects are not created spontaneously from nothing. Although I have
never actually seen an object being created (and no one else in this office can
claim to have seen an object in its moment of creation), I have every confi-
dence that some process or other is responsible for the building of these inter-
esting and useful thingamajigs. We here at ClassesAndObjects.com support the
unanimous opinions of both the scientific community and the private sector on
matters of this nature. Furthermore, we agree with the recent finding of a Blue
Ribbon Presidential Panel, which concludes beyond any doubt that sponta-
neous object creation would impede the present economic outlook.

Please be assured that I have taken all steps necessary to ensure the safety
and well being of you, our loyal customer. If you have any further questions,
please do not hesitate to contact our complaint department. The depart-
ment’s manager is Mr. Blake Wholl. You can contact him by visiting our
company’s Web site.

Once again, let me thank you for your concern, and I hope you continue to
patronize ClassesAndObjects.com.

Yours truly,

Mr. Scott Brickenchicker
The one who couldn’t get on the elevator in Chapter 4

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 199

Defining Constructors (What It Means
to Be a Temperature)

Here’s a statement that creates an object:

Account myAccount = new Account();

I know this works — I got it from one of my own examples in Chapter 7.
Anyway, in Chapter 7, I say, “when the computer executes new Account(),
you’re creating an object by calling the Account class’s constructor.” What
does this mean?

Well, when you ask the computer to create a new object, the computer
responds by performing certain actions. For starters, the computer finds a
place in its memory to store information about the new object. If the object
has variables, the variables should eventually have meaningful values.

So one question is, when you ask the computer to create a new object, can
you control what’s placed in the object’s variables? And what if you’re inter-
ested in doing more than filling variables? Perhaps, when the computer cre-
ates a new object, you have a whole list of jobs for the computer to carry out.
For instance, when the computer creates a new window object, you want the
computer to realign the sizes of all the buttons in that window.

Creating a new object can involve all kinds of tasks, so in this chapter, you
create constructors. A constructor tells the computer to perform a new
object’s startup tasks.

What is a temperature?
“Good morning, and welcome to Object News. The local temperature in your
area is a pleasant 73 degrees Fahrenheit.”

Each temperature consists of two things — a number and a temperature
scale. The code in Listing 9-1 makes this fact abundantly clear.

Listing 9-1: The Temperature Class

class Temperature {
private double number;
private ScaleName scale;

200 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 200

public Temperature() {
number = 0.0;
scale = ScaleName.fahrenheit;

}

public Temperature(double number) {
this.number = number;
scale = ScaleName.fahrenheit;

}

public Temperature(ScaleName scale) {
number = 0.0;
this.scale = scale;

}

public Temperature(double number, ScaleName scale) {
this.number = number;
this.scale = scale;

}

public void setNumber(double number) {
this.number = number;

}

public double getNumber() {
return number;

}

public void setScale(ScaleName scale) {
this.scale = scale;

}

public ScaleName getScale() {
return scale;

}
}

At the top of the code in Listing 9-1 are two variables: number and scale.
A number is just a double value, such as 32.0 or 70.52. A scale is an enum
value. I define the enum type ScaleName in Listing 9-2.

For an introduction to enum types, see Chapter 6.

Listing 9-2: The ScaleName enum Type
enum ScaleName {celsius, fahrenheit, kelvin, rankine};

201Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 201

The code in Listing 9-1 also has the usual setter and getter methods
(accessor methods for the number and scale variables).

For some good reading on setter and getter methods (also known as accessor
methods) see Chapter 7.

On top of all that, Listing 9-1 has four other method-like looking things. Each
of these method-like things has the name Temperature, which happens to be
the same as the name of the class. None of these Temperature method-like
things has a return type of any kind — not even void, which is the copout
return type.

Each of these method-like things is called a constructor. A constructor is like a
method, except that a constructor has a very special purpose — creating
new objects.

Whenever the computer creates a new object, the computer executes the
statements inside a constructor.

What you can do with a temperature
Listing 9-3 gives form to some of the ideas that I describe above. In Listing
9-3, you call the constructors that are declared back in Listing 9-1. Figure 9-1
shows what happens when you run all this code.

Listing 9-3: Using the Temperature Class

import static java.lang.System.out;

class UseTemperature {

public static void main(String args[]) {
final String format = “%5.2f degrees %s\n”;

Temperature temp = new Temperature();
temp.setNumber(70.0);
temp.setScale(ScaleName.fahrenheit);
out.printf(format, temp.getNumber(), temp.getScale());

temp = new Temperature(32.0);
out.printf(format, temp.getNumber(), temp.getScale());

temp = new Temperature(ScaleName.celsius);
out.printf(format, temp.getNumber(), temp.getScale());

temp = new Temperature(2.73, ScaleName.kelvin);
out.printf(format, temp.getNumber(), temp.getScale());

}
}

202 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 202

In Listing 9-3, each statement of the kind

temp = new Temperature(blah,blah,blah);

calls one of the constructors from Listing 9-1. So, by the time the code in
Listing 9-3 is done running, it creates four instances of the Temperature
class. Each instance is created by calling a different constructor from
Listing 9-1.

Calling new Temperature(32.0):
A case study
When the computer executes one of the new Temperature statements in
Listing 9-3, the computer has to decide which of the constructors in Listing
9-1 to use. The computer decides by looking at the parameter list (the stuff in
parentheses) after the words new Temperature. For instance, when the
computer executes

temp = new Temperature(32.0);

from Listing 9-3, the computer says to itself, “The number 32.0 in parentheses
is a double value.” One of the Temperature constructors in Listing 9-1 has
just one parameter with type double. The constructor’s header looks like
this.

public Temperature(double number)

“So, I guess I’ll execute the statements inside that particular constructor.”
The computer goes on to execute the following statements:

this.number = number;
scale = ScaleName.fahrenheit;

As a result, you get a brand-new object, whose number variable has the value
32.0, and whose scale variable has the value fahrenheit.

Figure 9-1:
Running the

code from
Listing 9-3.

203Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 203

In the two lines of code, you have two statements that set values for the vari-
ables number and scale. Take a look at the second of these statements,
which is a bit easier to understand. The second statement sets the new
object’s scale variable to fahrenheit. You see, the constructor’s parameter
list is (double number), and that list doesn’t include a scale value. So who-
ever programmed this code had to make a decision about what value to use
for the scale variable. The programmer could have chosen fahrenheit or
celsius, but she could also have chosen kelvin or rankine. (This program-
mer happens to live in New Jersey, in the United States, where people com-
monly use the old Fahrenheit temperature scale.)

Marching back to the first of the two statements, this first statement assigns
a value to the new object’s number variable. The statement uses a cute
trick that you can see in many constructors (and in other methods that
assign values to objects’ variables). To understand the trick, take a look at
Listing 9-4. The listing shows you two ways that I could have written the
same constructor code.

Listing 9-4: Two Ways to Accomplish the Same Thing

//Use this constructor ...

public Temperature(double whatever) {
number = whatever;
scale = ScaleName.fahrenheit;

}

//... or use this constructor ...

public Temperature(double number) {
this.number = number;
scale = ScaleName.fahrenheit;

}

//... but don’t put both constructors in your code.

Listing 9-4 has two constructors in it. In the first constructor, I use two differ-
ent names — number and whatever. In the second constructor, I don’t need
two names. Instead of making up a new name for the constructor’s parameter,
I reuse an existing name by writing this.number.

So here’s what’s going on in Listing 9-1:

� In the statement this.number = number, the name this.number refers
to the new object’s number variable — the variable that’s declared near
the very top of Listing 9-1. (See Figure 9-2.)

� In the statement this.number = number, the word number (on its
own, without this) refers to the constructor’s parameter. (Again, see
Figure 9-2.)

204 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 204

In general, this.someName refers to a variable belonging to the object that
contains the code. In contrast, plain old someName refers to the closest place
where someName happens to be declared. In the statement this.number =
number (Listing 9-1), that closest place happens to be the Temperature
constructor’s parameter list.

class Temperature {

 private double number;
 private ScaleName scale;

 public Temperature(double number) {

 this.number = number;
 scale = ScaleName.fahrenheit;
 }

Figure 9-2:
What

this.number
and number

mean.

205Chapter 9: Constructing New Objects

What’s this all about?
Suppose your code contains a constructor —
the first of the two constructors in Listing 9-4.
The whatever parameter is passed a number
like 32.0 for instance. Then the first statement in
the constructor’s body assigns that value,
32.0, to the new object’s number variable. The
code works. But in writing this code, you had to
make up a new name for a parameter — the
name whatever. And the only purpose for this
new name is to hand a value to the object’s
number variable. What a waste! To distinguish
between the parameter and the number vari-
able, you gave a name to something that was
just momentary storage for the number value.

Making up names is an art, not a science. I’ve
gone through plenty of naming phases. Years
ago, whenever I needed a new name for a

parameter, I picked a confusing misspelling of
the original variable name. (I’d name the para-
meter something like numbr or nuhmber.) I’ve
also tried changing a variable name’s capital-
ization to come up with a parameter name. (I’d
use parameter names like Number or nUMBER.)
In Chapter 8, I name all my parameters by
adding the suffix In to their corresponding vari-
able names. (The jobTitle variable matched
up with the jobTitleIn parameter.) None of
these naming schemes works very well. I can
never remember the quirky new names that I’ve
created. The good news is that this parameter
naming effort isn’t necessary. You can give the
parameter the same name as the variable. To
distinguish between the two, you use the Java
keyword this.

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 205

enum types as first-class citizens
A peak at the code from this book’s CD-ROM tells an interesting
story. The project for this section’s example contains three Java files:
Temperature.java (Listing 9-1), ScaleName.java (Listing 9-2), and
UseTemperature.java (Listing 9-3). The big news in this trio is
ScaleName.java. Why does this wimpy little one-line enum type
deserve to be in its own separate Java file?

Well, two issues exist here, and both of them are important:

� An enum type is a class in disguise. When the Java compiler gets hold of
your enum declaration, the compiler immediately turns the enum type
into a class:

class ScaleName extends Enum {
//There’s code here that I’m not showing to you

celsius = new ScaleName(“celsius”, 0);
fahrenheit = new ScaleName(“fahrenheit”, 1);
kelvin = new ScaleName(“kelvin”, 2);
rankine = new ScaleName(“rankine”, 3);

//There’s code here that I’m not showing to you
}

This normally happens behind the scenes. So in previous examples
(Listing 6-5, for instance), you don’t have to think about it. But in most of
this book’s examples (and according to standard Java programming
practice), each Java class lives in a .java file all its own. Because
ScaleName is a class, having a separate ScaleName.java file makes
perfect sense.

Back in Listing 6-5, I stuffed three enum type declarations inside another
class — a class named Clue. In Chapter 6, this doesn’t seem unusual, but
now you may be thinking, “A class can be nestled inside another class.”
Well, stop thinking that way. It’s true that Java supports a feature called
inner classes — classes defined within other classes. It’s also true that
this inner class feature allows you to define a Suspect enum type inside
a Clue class. What’s not true is that novice Java programmers should
use inner classes, except in the narrowly defined context of enum types.
So in general, when you’re tempted to put one class inside another, don’t
do it.

� The ScaleName enum type must be available to both the Temperature
and the UseTemperature classes. In the first draft of this section’s
code, I put the ScaleName enum type declaration inside Listing 9-1.
That was fine until I wrote the UseTemperature class (Listing 9-3). The

206 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 206

UseTemperature class refers to ScaleName. So in order to get at this
ScaleName thing that I’d tucked inside Listing 9-1, I had to put some
long, cumbersome statements in Listing 9-3:

temp.setScale(Temperature.ScaleName.fahrenheit);
...
temp = new Temperature(Temperature.ScaleName.celsius);
...
temp = new Temperature

(2.73, Temperature.ScaleName.kelvin);

At this point, a little voice told me that it was easier to put the
ScaleName enum declaration in a file all its own. That way, both the
Temperature and UseTemperature classes could refer to ScaleName
without any extra chains full of names and dots.

Some things never change
Chapter 7 introduces the printf method, and explains that each printf call
starts with a format string. The format string describes the way in which the
other parameters are to be displayed.

In previous examples, this format string is always a quoted literal. For
instance, the first printf call in Listing 7-7 is

out.printf(“$%4.2f\n”, myInterest);

In Listing 9-3, I break with tradition and begin the printf call with a variable
that I name format.

out.printf(format, temp.getNumber(), temp.getScale());

That’s okay as long as my format variable is of type String. And indeed,
in Listing 9-3, the first variable declaration is

final String format = “%5.2f degrees %s\n”;

In this declaration of the format variable, take special note of the word
final. This Java keyword indicates that the value of format can’t be changed.
If I add an additional assignment statement to Listing 9-3

format = “%6.2f (%s)\n”;

then the compiler barks back at me with a cannot assign a value to
final variable message.

207Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 207

When I write the code in Listing 9-3, the use of the final keyword isn’t
absolutely necessary. But the final keyword provides some extra protec-
tion. When I initialize format to “%5.2f degrees %s\n”, I intend to use this
same format just as it is, over and over again. I know darn well that I don’t
intend to change the format variable’s value. Of course, in a 10,000-line pro-
gram, I can become confused and try to assign a new value to format some-
where deep down in the code. So to prevent me from accidentally changing
the format string, I declare the format variable to be final. It’s just good, safe
programming practice.

More Subclasses (Doing Something
about the Weather)

In Chapter 8, I make a big fuss over the notion of subclasses. That’s the right
thing to do. Subclasses make code reusable, and reusable code is good code.
With that in mind, it’s time to create a subclass of the Temperature class
(which I develop in this chapter’s first section).

Building better temperatures
After perusing the code in Listing 9-3, you decide that the responsibility for
displaying temperatures has been seriously misplaced. Listing 9-3 has several
tedious repetitions of the lines to print temperature values. A 1970s program-
mer would tell you to collect those lines into one place and turn them into a
method. (The 1970s programmer wouldn’t have used the word method, but
that’s not important right now.) Collecting lines into methods is fine, but with
today’s object-oriented programming methodology, you think in broader
terms. Why not get each temperature object to take responsibility for dis-
playing itself? After all, if you develop a display method, you’ll probably
want to share the method with other people who use temperatures. So put
the method right inside the declaration of a temperature object. That way,
anyone who uses the code for temperatures has easy access to your display
method.

Now replay the tape from Chapter 8. “Blah, blah, blah . . . don’t want to
modify existing code . . . blah, blah, blah . . . too costly to start again from
scratch . . . blah, blah, blah . . . extend existing functionality.” It all adds up to
one thing:

Don’t abuse it. Instead, reuse it.

208 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 208

So you decide to create a subclass of the Temperature class, which is
defined in Listing 9-1. Your new subclass will complement the Temperature
class’s functionality by having methods to display values in a nice, uniform
fashion. The new class, TemperatureNice, is shown in Listing 9-5.

Listing 9-5: The TemperatureNice Class

import static java.lang.System.out;

class TemperatureNice extends Temperature {

public TemperatureNice() {
super();

}

public TemperatureNice(double number) {
super(number);

}

public TemperatureNice(ScaleName scale) {
super(scale);

}

public TemperatureNice(double number, ScaleName scale) {
super(number, scale);

}

public void display() {
out.printf(“%5.2f degrees %s\n”,

getNumber(), getScale());
}

}

In the display method of Listing 9-5, notice the calls to the Temperature
class’s getNumber and getScale methods. Why do I need to do this? Well,
inside the TemperatureNice class’s code, any direct references to the
number and scale variables would generate error messages. It’s true that
every TemperatureNice object has its own number and scale variables.
(After all, TemperatureNice is a subclass of the Temperature class, and
the code for the Temperature class defines the number and scale vari-
ables.) But because number and scale are declared to be private inside the
Temperature class, only code that’s right inside the Temperature class can
directly use these variables.

Don’t put additional declarations of the number and scale variables inside
the TemperatureNice class’s code. If you do, you’ll inadvertently create four
different variables (two called number, and another two called scale). You’ll
assign values to one pair of variables. Then you’ll be shocked that when dis-
playing the other pair of variables, those values seem to have disappeared.

209Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 209

When an object’s code contains a call to one of the object’s own
methods, you don’t need to preface the call with a dot. For instance,
in the last statement of Listing 9-5, the object calls its own methods with
getNumber() and getScale(), not with someObject.getNumber() and
somethingOrOther.getScale(). If going dotless makes you queasy, you
can compensate by taking advantage of yet another use for the this key-
word. Just write this.getNumber() and this.getScale() in the last
line of Listing 9-5.

Constructors for subclasses
By far, the biggest news in Listing 9-5 is the way the code declares construc-
tors. The TemperatureNice class has four of its own constructors. If you’ve
gotten in gear thinking about subclass inheritance, you’ll wonder why these
constructor declarations are necessary. Doesn’t TemperatureNice inherit
the parent Temperature class’s constructors? No, subclasses don’t inherit
constructors.

Subclasses don’t inherit constructors.

That’s right. Subclasses don’t inherit constructors. In one oddball case, a
constructor may look like it’s being inherited, but that oddball situation is a
fluke, not the norm. In general, when you define a subclass, you need to
declare new constructors to go with the subclass.

I describe the oddball case (in which a constructor looks like it’s being inher-
ited) later in this chapter, in the section “The default constructor.”

So the code in Listing 9-5 has four constructors. Each constructor has the
name TemperatureNice, and each constructor has its own, uniquely identifi-
able parameter list. That’s the boring part. The interesting part is that each
constructor makes a call to something named super, which is a Java keyword.

In Listing 9-5, super stands for a constructor in the parent class.

� The statement super() in Listing 9-5 calls the parameterless
Temperature() constructor that’s in Listing 9-1. That parameterless
constructor assigns 0.0 to the number variable and
ScaleName.fahrenheit to the scale variable.

� The statement super(number, scale) in Listing 9-5 calls the construc-
tor Temperature(double number, ScaleName scale) that’s in
Listing 9-1. In turn, the constructor assigns values to the number and
scale variables.

� In a similar way, the statements super(number) and super(scale) in
Listing 9-5 call constructors from Listing 9-1.

210 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 210

The computer decides which of the Temperature class’s constructors is
being called by looking at the parameter list after the word super. For
instance, when the computer executes

super(number, scale);

from Listing 9-5, the computer says to itself, “The number and scale vari-
ables in parentheses have types double and ScaleName. But only one of the
Temperature constructors in Listing 9-1 has two parameters with types
double and ScaleName. The constructor’s header looks like this:

public Temperature(double number, ScaleName scale)

So, I guess I’ll execute the statements inside that particular constructor.”

Using all this stuff
In Listing 9-5, I define what it means to be in the TemperatureNice class.
Now it’s time to put this TemperatureNice class to good use. Listing 9-6 has
code that uses TemperatureNice.

Listing 9-6: Using the TemperatureNice Class

class UseTemperatureNice {

public static void main(String args[]) {

TemperatureNice temp = new TemperatureNice();
temp.setNumber(70.0);
temp.setScale(ScaleName.fahrenheit);
temp.display();

temp = new TemperatureNice(32.0);
temp.display();

temp = new TemperatureNice(ScaleName.celsius);
temp.display();

temp = new TemperatureNice(2.73, ScaleName.kelvin);
temp.display();

}
}

The code in Listing 9-6 is very much like its cousin code in Listing 9-3. The big
differences are as follows:

211Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 211

� Listing 9-6 creates instances of the TemperatureNice class. That is,
Listing 9-6 calls constructors from the TemperatureNice class, not the
Temperature class.

� Listing 9-6 takes advantage of the display method in the
TemperatureNice class. So the code in Listing 9-6 is much more tidy
than its counterpart in Listing 9-3.

A run of Listing 9-6 looks exactly like a run of the code in Listing 9-3. The run
is shown previously in Figure 9-1.

The default constructor
The main message in the previous section is that subclasses don’t inherit
constructors. So what gives with all the listings back in Chapter 8? In
Listing 8-6, a statement says

FullTimeEmployee ftEmployee = new FullTimeEmployee();

But, here’s the problem: The code defining FullTimeEmployee (Listing 8-3)
doesn’t seem to have any constructors declared inside it. So, in Listing 8-6,
how can you possibly call the FullTimeEmployee constructor?

Here’s what’s going on. When you create a subclass and don’t put any
explicit constructor declarations in your code, then Java creates one
constructor for you. It’s called a default constructor. If you’re creating the
public FullTimeEmployee subclass, the default constructor looks like
the one in Listing 9-7.

Listing 9-7: A Default Constructor

public FullTimeEmployee() {
super();

}

The constructor in Listing 9-7 takes no parameters, and its one statement
calls the constructor of whatever class you’re extending. (Woe be to you if
the class that you’re extending doesn’t have a parameterless constructor.)

You’ve just read about default constructors, but watch out! Notice one thing
that this talk about default constructors doesn’t say: It doesn’t say that you
always get a default constructor. In particular, if you create a subclass and
define any constructors yourself, Java doesn’t add a default constructor for
the subclass (and the subclass doesn’t inherit any constructors, either).

212 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 212

So how can this trip you up? Listing 9-8 has a copy of the code from Listing 8-3,
but with one constructor added to it. Take a look at this modified version of
the FullTimeEmployee code.

Listing 9-8: Look, I Have a Constructor!

class FullTimeEmployee extends Employee {
private double weeklySalary;
private double benefitDeduction;

public FullTimeEmployee(double weeklySalary) {
this.weeklySalary=weeklySalary;

}

public void setWeeklySalary(double weeklySalaryIn) {
weeklySalary = weeklySalaryIn;

}

public double getWeeklySalary() {
return weeklySalary;

}

public void setBenefitDeduction(double benefitDedIn) {
benefitDeduction = benefitDedIn;

}

public double getBenefitDeduction() {
return benefitDeduction;

}

public double findPaymentAmount() {
return weeklySalary - benefitDeduction;

}
}

Using the FullTimeEmployee code in Listing 9-8, a line like the following
doesn’t work:

FullTimeEmployee ftEmployee = new FullTimeEmployee();

It doesn’t work because, having declared a FullTimeEmployee constructor
that takes one double parameter, you no longer get a default parameterless
constructor for free.

So what do you do about this? If you need to declare any constructors,
declare all the constructors that you’re possibly going to need. Take the
constructor in Listing 9-7 and add it to the code in Listing 9-8. Then the call
new FullTimeEmployee() starts working again.

213Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 213

An invisible constructor call
Here’s a program that I like to yank out and show people at Java parties.
(Believe me, it surprises some of the veteran Java programmers.) The pro-
gram is in Listings 9-9, 9-10, and 9-11.

Listing 9-9: First Class Accomodations

class MyClass {

MyClass() {
System.out.println

(“MyClass constructor being called.”);
}

}

Listing 9-10: Second Class Accomodations

class MySubclass extends MyClass {

MySubclass() {
System.out.println

(“MySubclass constructor being called.”);
}

}

Listing 9-11: What’s My Output?

class UseMyClasses {

public static void main(String args[]) {
new MySubclass();

}
}

So what’s the output when you run the code in Listing 9-11? Huh? You think
you get just one line of output? Sorry, that’s not the way it works. The output
that you get is shown in Figure 9-3.

Figure 9-3:
Surprise!

214 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 214

Under certain circumstances, Java automatically adds an invisible call to
super, which is at the top of a constructor body. It’s as if the MySubclass
constructor in Listing 9-10 really looks like this:

MySubclass() {
super();
System.out.println

(“MySubclass constructor being called.”);
}

In Listing 9-10, the invisible super call fires up the MyClass constructor,
which prints the message MyClass constructor being called. This
automatic addition of a super call is a tricky bit of business that doesn’t
appear often, so when it does appear, it may seem quite mysterious.

A Constructor That Does More
Here’s a quote from someplace near the start of this chapter: “And what if
you’re interested in doing more than filling variables? Perhaps, when the
computer creates a new object, you have a whole list of jobs for the com-
puter to carry out.” Okay, what if?

This section’s example has a constructor that does more than just assign
values to variables. The example is in Listings 9-12 and 9-13. The result of
running the example’s code is shown in Figure 9-4.

Listing 9-12: Defining a Frame

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;

class SimpleFrame extends JFrame {

public SimpleFrame() {
setTitle(“Don’t click the button!”);
setLayout(new FlowLayout());
setDefaultCloseOperation(EXIT_ON_CLOSE);
add(new JButton(“Panic”));
setSize(300,100);
setVisible(true);

}
}

215Chapter 9: Constructing New Objects

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 215

Listing 9-13: Displaying a Frame

class ShowAFrame {

public static void main(String args[]) {
new SimpleFrame();

}
}

The code in Listing 9-12 is made up mostly of calls to Java API (Application
Programming Interface) methods. What this means to you is that the code
contains lots of names that are probably unfamiliar to you. When I was first
becoming acquainted with Java, I foolishly believed that knowing Java meant
knowing all these names. Quite the contrary: These names are just carry-on
baggage. The real Java is the way the language implements object-oriented
concepts.

Anyway, the code’s anorexic main method has only one statement — a call to
the constructor in the SimpleFrame class. Notice how the object that this
call creates isn’t even assigned to a variable. That’s okay, because the code
doesn’t need to refer to the object anywhere else.

Up in the SimpleFrame class is only one constructor declaration. Far from
just setting variables’ values, this constructor calls method after method
from the Java API.

All the methods called in the SimpleFrame class’s constructor come from the
parent class, JFrame. The JFrame class lives in the javax.swing package.
This package and another package, java.awt, have classes that help you put
windows, images, drawings, and other gizmos on a computer screen. (In the
java.awt package, the letters awt stand for abstract windowing toolkit.)

For a little gossip about the notion of a Java package, see the sidebar entitled
“Packages and import declarations.” For lots of gossip about the notion of a
Java package, see Appendix B and (on the CD-ROM) Chapter 15.

In the Java API, what people normally call a window is an instance of the
javax.swing.JFrame class.

Figure 9-4:
Don’t panic.

216 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 216

Looking at Figure 9-4, you can probably tell that an instance of the
SimpleFrame class doesn’t do much. The frame has only one button and,
when you click the button, nothing happens. I made the frame this way to
keep the example from becoming too complicated. Even so, the code in
Listing 9-12 uses several API classes and methods. The setTitle, setLayout,
setDefaultCloseOperation, add, setSize, and setVisible methods all
belong to the javax.swing.JFrame class. Here’s a list of names used in the
code:

217Chapter 9: Constructing New Objects

Packages and import declarations
Java has a feature that lets you lump classes into
groups of classes. Each lump of classes
is called a package. In the Java world, pro-
grammers customarily give these packages long,
dot-filled names. For instance, because I’ve reg-
istered the domain name burdbrain.com, I may
name a package com.burdbrain.utils.
textUtils. The Java API is actually a big col-
lection of packages. The API has packages with
names like java.lang, java.util, java.
awt, javax.swing, and so on.

With this information about packages, I can
clear up some of the confusion about import
declarations. Any import declaration that
doesn’t use the word static must start with
the name of a package and must end with either
of the following:

� The name of a class within that package

� An asterisk (indicating all classes within
that package)

For example, the declaration

import java.util.Scanner;

is valid because java.util is the name of a
package in the Java API, and Scanner is the
name of a class in the java.util package.
The dotted name java.util.Scanner is the
fully qualified name of the Scanner class.

A class’s fully qualified name includes the name
of the package in which the class is defined.
(You can find out all this stuff about java.util
and Scanner by reading Java’s API documen-
tation. For tips on reading the documentation,
see Chapter 3 and this book’s Web site.)

Here’s another example. The declaration

import javax.swing.*;

is valid because javax.swing is the name of
a package in the Java API, and the asterisk
refers to all classes in the javax.swing pack-
age. With this import declaration at the top
of your Java code, you can use abbreviated
names for classes in the javax.swing
package — names like JFrame, JButton,
JMenuBar, JCheckBox, and many others.

Here’s one more example. A line like

import javax.*; //Bad!!

is not a valid import declaration. The Java API
has no package with the one-word name
javax. You may think that this line allows you to
abbreviate all names beginning with javax
(names like javax.swing.JFrame and
javax.sound.midi), but that’s not the way
the import declaration works. Because javax
isn’t the name of a package, the line import
javax.* just angers the Java compiler.

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 217

� setTitle: Calling setTitle puts words in the frame’s title bar.
(The new SimpleFrame object is calling its own setTitle method.)

� FlowLayout: An instance of the FlowLayout class positions objects
on the frame in centered, typewriter fashion. Because the frame in
Figure 9-4 has only one button on it, that button is centered near the top
of the frame. If the frame had eight buttons, five of them may be lined up
in a row across the top of the frame, and the remaining three would be
centered along a second row.

� setLayout: Calling setLayout puts the new FlowLayout object in
charge of arranging components, such as buttons, on the frame.
(The new SimpleFrame object is calling its own setLayout method.)

� setDefaultCloseOperation: Calling setDefaultCloseOperation
tells Java what to do when you click the little × in the frame’s upper-right
corner. Without this method call, the frame itself disappears, but the
Java Virtual Machine (JVM) keeps running. If you use JCreator, you have
to halt the JVM by choosing Tools➪Stop Tool.

Calling setDefaultCloseOperation(EXIT_ON_CLOSE) tells Java
to shut itself down when you click the × in the frame’s upper-right
corner. The alternatives to EXIT_ON_CLOSE are HIDE_ON_CLOSE,
DISPOSE_ON_CLOSE, and my personal favorite, DO_NOTHING_ON_CLOSE.

� JButton: The JButton class lives in the javax.swing package. One of
the class’s constructors takes a String instance (such as “Panic”) for
its parameter. Calling this constructor makes that String instance into
the label on the face of the new button.

� add: The new SimpleFrame object calls its add method. Calling the add
method places the button on the object’s surface (in this case, the sur-
face of the frame).

� setSize: The frame becomes 300 pixels wide and 100 pixels tall. (In the
javax.swing package, whenever you specify two dimension numbers,
the width number always comes before the height number.)

� setVisible: When it’s first created, a new frame is invisible. But when
the new frame calls setVisible(true), the frame appears on your
computer screen.

218 Part III: Working with the Big Picture: Object-Oriented Programming

03d_568582 ch09.qxd 7/27/04 11:47 PM Page 218

Part IV
Savvy Java
Techniques

04a_568582 pp04.qxd 7/27/04 11:48 PM Page 219

In this part . . .

Here’s where I start sharing some big-time Java
concepts. This part of the book describes the tricky

things, the little nooks and crannies, the special rules, and
the not-so-special exceptions. As usual, you shouldn’t feel
intimidated. I take you one step at a time and keep the
whole thing light, interesting, and manageable.

04a_568582 pp04.qxd 7/27/04 11:48 PM Page 220

Chapter 10

Putting Variables and Methods
Where They Belong

In This Chapter
� Making something belong to an entire class

� Putting variables inside and outside methods

� Improving your batting average

Hello, again. You’re listening to radio station WWW, and I’m your host,
Sam Burd. It’s the start again of the big baseball season, and today

station WWW brought you live coverage of the Hankees versus Socks game.
At this moment, I’m awaiting news of the game’s final score.

If you remember from earlier this afternoon, the Socks looked like they were
going to take those Hankees to the cleaners. Then, the Hankees were belting
ball after ball, giving the Socks a run for their money. Those Socks! I’m glad
I wasn’t in their shoes.

Anyway, as the game went on, the Socks pulled themselves up. Now the
Socks are nose to nose with the Hankees. We’ll get the final score in a minute,
but first, a few reminders. Stay tuned after this broadcast for the big Jersey’s
game. And don’t forget to tune in next week when the Cleveland Gowns play
the Bermuda Shorts.

Okay, here’s the final score. Which team has the upper hand? Which team will
come out a head? And the winner is . . . oh, no! It’s a tie!

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 221

Defining a Class (What It Means
to Be a Baseball Player)

As far as I’m concerned, a baseball player has a name and a batting average.
Listing 10-1 puts my feeling about this into Java program form.

Listing 10-1: The Player Class

import java.text.DecimalFormat;

class Player {
private String name;
private double average;

public Player(String name, double average) {
this.name=name;
this.average=average;

}

public String getName() {
return name;

}

public double getAverage() {
return average;

}

public String getAverageString() {
DecimalFormat decFormat =

new DecimalFormat(“ .000”);
return decFormat.format(average);

}
}

So here I go, picking apart the code in Listing 10-1. Luckily, earlier chapters
cover lots of stuff in this code. The code defines what it means to be an
instance of the Player class. Here’s what’s in the code:

� Declarations of the variables name and average. For bedtime reading
about variable declarations, see Chapter 4.

� A constructor to make new instances of the Player class. For the low-
down on constructors, see Chapter 9.

222 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 222

� Getter methods for the variables name and average. For chitchat about
accessor methods (that is, setter and getter methods), see Chapter 7.

� A method that returns the player’s batting average in String form.
For the good word about methods, see Chapter 7.

Another way to beautify your numbers
The last method in Listing 10-1 takes the value from the average variable
(a player’s batting average), converts that value (normally of type double)
into a String, and then sends that String value right back to the method
caller. The use of DecimalFormat, which comes right from the Java API
(Application Programming Interface), makes sure that the String value
looks like a baseball player’s batting average. That is, the String value starts
with lots of blank spaces, has no digits to the left of the decimal point, and
has exactly three digits to the right of the decimal point. (The blank spaces
ensure that a gap exists between the batting average and whatever text
appears before it.)

Java’s DecimalFormat class can be quite handy. For example, to display the
values 345 and -345 with an accounting-friendly format, you can use the
following code:

DecimalFormat decFormat =
new DecimalFormat(“$###0.00;($###0.00)”);

System.out.println(decFormat.format(345));
System.out.println(decFormat.format(-345));

In this little example’s format string, everything before the semicolon dictates
the way positive numbers are displayed, and everything after the semicolon
determines the way negative numbers are displayed. So with this format, the
numbers 345 and -345 appear as follows:

$345.00
($345.00)

To discover some other tricks with numbers, visit the DecimalFormat page
of Java’s API documentation.

Using the Player class
Listings 10-2 and 10-3 have code that uses the Player class — the class that’s
defined way back in Listing 10-1.

223Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 223

Listing 10-2: Using the Player Class

import java.util.Scanner;
import java.io.File;
import java.io.IOException;
import javax.swing.JFrame;
import javax.swing.JLabel;
import java.awt.GridLayout;

class TeamFrame extends JFrame {

public TeamFrame() throws IOException {
Player player;
Scanner myScanner =

new Scanner(new File(“Hankees.txt”));

for (int num = 1; num <= 9; num++) {
player =

new Player(myScanner.nextLine(),
myScanner.nextDouble());

myScanner.nextLine();

addPlayerInfo(player);
}

setTitle(“The Hankees”);
setLayout(new GridLayout(9,2));
setDefaultCloseOperation(EXIT_ON_CLOSE);
pack();
setVisible(true);

}

void addPlayerInfo(Player player) {
add(new JLabel(player.getName()));
add(new JLabel(player.getAverageString()));

}
}

Listing 10-3: Displaying a Frame

import java.io.IOException;

class ShowTeamFrame {

public static void main(String args[])
throws IOException {

new TeamFrame();
}

}

224 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 224

For a run of the code in Listings 10-1, 10-2, and 10-3, see Figure 10-1. To run
this program yourself, you need the Hankees.txt file. (The file is loaded
automatically onto your hard drive when you install JCreator from this
book’s CD-ROM.) This file contains data on your favorite baseball players.
(See Figure 10-2.)

For this section’s code to work correctly, you must have a line break after the
last .212 in Figure 10-2. For details about line breaks, see Chapter 8.

Nine, count ’em, nine
The code in Listing 10-2 calls the Player constructor nine times. This means
that the code creates nine instances of the Player class. Each instance has
its own name and average variables. Each instance also has its own Player
constructor and its own getName, getAverage, and getAverageString
methods. Look at Figure 10-3 and think of the Player class with its nine
incarnations.

Figure 10-2:
What

a team!

Figure 10-1:
Would you
bet money

on these
people?

225Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 225

Don’t get all GUI on me
The code in Listing 10-2 uses several names from the Java API. Some of these
names are explained in Chapter 9. Others are explained right here:

� JLabel: A JLabel is an object with some text in it. One of the ways to
display text inside the frame is to add an instance of the JLabel class to
the frame.

In Listing 10-2, the addPlayerInfo method is called nine times, once
for each player on the team. Each time addPlayerInfo is called, the
method adds two new JLabel objects to the frame. The text for each
JLabel object comes from a player object’s getter method.

� GridLayout: A GridLayout arranges things in evenly spaced rows
and columns. This constructor for the GridLayout class takes two
parameters — the number of rows and the number of columns.

In Listing 10-2, the call to the GridLayout constructor takes parameters
(9,2). So in Figure 10-1, the display has nine rows (one for each player)
and two columns (one for a name, and another for an average).

� pack: When you pack a frame, you set the frame’s size. That’s the size
the frame has when it appears on your computer screen. Packing a
frame shrink-wraps the frame around whatever objects you’ve added
inside the frame.

In Listing 10-2, by the time you’ve reached the call to pack, you’ve
already called addPlayerInfo nine times and added 18 labels to the
frame. In executing the pack method, the computer picks a nice size for
each label, given whatever text you’ve put inside the label. Then, the
computer picks a nice size for the whole frame, given that the frame has
these 18 labels inside it.

When you plop stuff onto frames, you have quite a bit of leeway with the
order in which you do things. For instance, you can set the layout before or
after you’ve added labels and other stuff to the frame. If you call setLayout

instance
Barry
.101
constructor
getName
getAv
getAvStr

instance
Harriet
.200
constructor
getName
getAv
getAvStr

instance
Weelie
.030
constructor
getName
getAv
getAvStr

instance
Harry
.124
constructor
getName
getAv
getAvStr

instance
Fishy
.075
constructor
getName
getAv
getAvStr

instance
Mia
.111
constructor
getName
getAv
getAvStr

instance
Jeremy
.102
constructor
getName
getAv
getAvStr

instance
I. M.
.001
constructor
getName
getAv
getAvStr

instance
Hugh
.212
constructor
getName
getAv
getAvStr

The Player class

Figure 10-3:
A class and
its objects.

226 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 226

and then add labels, the labels appear in nice, orderly positions on the frame.
If you reverse this order (add labels and then call setLayout), the calling of
setLayout rearranges the labels in a nice, orderly fashion. It works fine
either way.

In setting up a frame, the one thing that you shouldn’t do is violate the follow-
ing sequence:

Add things to the frame, then
pack();
setVisible(true);

If you call pack and then add more things to the frame, the pack method
doesn’t take the more recent things that you’ve added into consideration. If
you call setVisible before you add things or call pack, the user sees the
frame as it’s being constructed. Finally, if you forget to set the frame’s size
(by calling pack or some other sizing method), the frame that you see looks
like the one in Figure 10-4. (Normally, I wouldn’t show you an anomalous run
like the one in Figure 10-4, but I’ve made the mistake so many times that I feel
as if this puny frame is an old friend of mine.)

Tossing an exception from
method to method
Chapter 8 introduces input from a disk file, and along with that topic comes
the notion of an exception. When you tinker with a disk file, you need to
acknowledge the possibility of raising an IOException. That’s the lesson
from Chapter 8, and that’s why the constructor in Listing 10-2 has a throws
IOException clause.

But what about the main method in Listing 10-3? With no apparent reference
to disk files in this main method, why does the method need its own throws
IOException clause? Well, an exception is a hot potato. If you have one, you
have to either eat it (as you can see in Chapter 12) or use a throws clause to
toss it to someone else. If you toss an exception with a throws clause, some-
one else is stuck with the exception just the way you were.

Figure 10-4:
An under-
nourished

frame.

227Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 227

The constructor in Listing 10-2 throws an IOException, but to whom is this
exception thrown? Who in this chain of code becomes the bearer of responsi-
bility for the problematic IOException? Well, who called the constructor in
Listing 10-2? It was the main method in Listing 10-3 — that’s who called the
TeamFrame constructor. Because the TeamFrame constructor throws its hot
potato to the main method in Listing 10-3, the main method has to deal with
it. As shown in Listing 10-3, the main method deals with it by tossing the
IOException again (by having a throws IOException clause of its own).
That’s how the throws clause works in Java programs.

If a method calls another method, and the called method has a throws
clause, the calling method must contain code that deals with the exception.
To find out more about dealing with exceptions, read Chapter 12.

At this point in the book, the astute For Dummies reader may pose a follow-
up question or two. “When a main method has a throws clause, someone
else has to deal with the exception in that throws clause. But who called the
main method? Who deals with the IOException in the throws clause of
Listing 10-3?” The answer is that the Java Virtual Machine (or JVM, the thing
that runs all your Java code) called the main method. So the JVM takes care
of the IOException in Listing 10-3. If the program has any trouble reading
the Hankees.txt file, the responsibility ultimately falls on the JVM. The JVM
takes care of things by displaying an error message and then ending the run
of your program. How convenient!

Making Static (Finding
the Team Average)

Thinking about the code in Listings 10-1 through 10-3, you decide that you’d
like to find the team’s overall batting average. Not a bad idea! The Hankees in
Figure 10-1 have an average of about .106, so the team needs some intensive
training. While the players are out practicing on the ball field, you have a
philosophical hurdle to overcome.

In Listings 10-1 through 10-3, you have three classes: a Player class and two
other classes that help display data from the Player class. So in this class
morass, where do the variables storing your overall, team-average tally go?

� It makes no sense to put tally variables in either of the displaying classes
(TeamFrame and ShowTeamFrame). After all, the tally has something or
other to do with players, teams, and baseball. The displaying classes are
about creating windows, not about playing baseball.

228 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 228

� You’re uncomfortable putting an overall team average in an instance of
the Player class because an instance of the Player class represents
just one player on the team. What business does a single player have
storing overall team data? Sure, you could make the code work, but it
wouldn’t be an elegant solution to the problem.

Finally, you discover the keyword static. Anything that’s declared to be
static belongs to the whole class, not to any particular instance of the class.
When you create the static variable, totalOfAverages, you create just one
copy of the variable. This copy stays with the entire Players class. No
matter how many instances of the Player class you create — one, nine, or
none — you have just one totalOfAverages variable. And, while you’re at it,
you create other static variables (playerCount and decFormat) and
static methods (findTeamAverage and findTeamAverageString). To see
what I mean, look at Figure 10-5.

Going along with your passion for subclasses, you put code for team-wide tal-
lies in a subclass of the Player class. The code is shown in Listing 10-4.

Listing 10-4: Creating a Team Batting Average

import java.text.DecimalFormat;

class PlayerPlus extends Player {
private static int playerCount = 0;
private static double totalOfAverages = .000;
private static DecimalFormat decFormat =

new DecimalFormat(“ .000”);

(continued)

playerCount
totalOfAverages
decFormat
findTeamAverage
findTeamAverageString

Barry
.101
constructor
getName
getAv
getAvStr

The PlayerPlus class

instance

Harriet
.200
constructor
getName
getAv
getAvStr

instance

Weelie
.030
constructor
getName
getAv
getAvStr

instance

Harry
.124
constructor
getName
getAv
getAvStr

instance

Fishy
.075
constructor
getName
getAv
getAvStr

instance

Mia
.111
constructor
getName
getAv
getAvStr

instance

Jeremy
.102
constructor
getName
getAv
getAvStr

instance

I.M.
.001
constructor
getName
getAv
getAvStr

instance

Hugh
.212
constructor
getName
getAv
getAvStr

instance

Figure 10-5:
Some

static and
non-static
variables

and
methods.

229Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 229

Listing 10-4 (continued)

public PlayerPlus(String name, double average) {
super(name, average);
playerCount++;
totalOfAverages += average;

}

public static double findTeamAverage() {
return totalOfAverages / playerCount;

}

public static String findTeamAverageString() {
return decFormat.format

(totalOfAverages / playerCount);
}

}

Why is there so much static?
Maybe you’ve noticed — the code in Listing 10-4 is overflowing with the word
static. That’s because nearly everything in this code belongs to the entire
PlayerPlus class and not to individual instances of the class. That’s good
because something like playerCount (the number of players on the team)
shouldn’t belong to individual players, and having each PlayerPlus object
keep track of its own count would be silly. (“I know how many players I am.
I’m just one player!”) If you had nine individual playerCount variables,
either each variable would store the number 1 (which is useless) or you
would have nine different copies of the count, which is wasteful and prone to
error. So by making playerCount static, you’re keeping the playerCount in
just one place, where it belongs.

The same kind of reasoning holds for the totalOfAverages. Eventually, the
totalOfAverages variable will store the sum of the players’ batting aver-
ages. For all nine members of the Hankees, this adds up to .956. It’s not until
someone calls the findTeamAverage or findTeamAverageString method
that the computer actually finds the overall Hankee team batting average.

You also want the methods findTeamAverage and findTeamAverageString
to be static. Without the word static, there would be nine findTeamAverage
methods — one for each instance of the PlayerPlus class. This wouldn’t
make much sense. Each instance would have the code to calculate
totalOfAverages/playerCount on its own, and each of the nine calcula-
tions would yield the very same answer.

In general, any task that all the instances have in common (and that yields
the same result for each instance) should be coded as a static method.

230 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 230

Constructors are never static.

In Listing 10-4, the decFormat variable is static. This makes sense, because
decFormat makes totalOfAverages / playerCount look nice, and both
variables in the expression totalOfAverages / playerCount are static.
Thinking more directly, the code needs only one thing for formatting num-
bers. If you have several numbers to format, the same decFormat thing that
belongs to the entire class can format each number. Creating a decFormat for
each player is not only inelegant, but also wasteful.

In this book, my first serious use of the word static is way back in Listing 3-1.
I use the static keyword as part of every main method (and lots of main
methods are in this book’s listings). So why does main have to be static?
Well, remember that non-static things belong to objects, not classes. If the
main method isn’t static, you can’t have a main method until you create an
object. But, when you start up a Java program, no objects have been created
yet. The statements that are executed in the main method start creating
objects. So, if the main method isn’t static, you have a big chicken-and-egg
problem.

Displaying the overall team average
You may be noticing a pattern. When you create code for a class, you gener-
ally write two pieces of code. One piece of code defines the class, and the
other piece of code uses the class. (The ways to use a class include calling
the class’s constructor, referencing the class’s nonprivate variables, calling
the class’s methods, and so on.) Listing 10-4, shown previously, contains
code that defines the PlayerPlus class, and Listing 10-5 contains code that
uses this PlayerPlus class.

Listing 10-5: Using the Code from Listing 10-4

import java.util.Scanner;
import java.io.File;
import java.io.IOException;
import javax.swing.JFrame;
import javax.swing.JLabel;
import java.awt.GridLayout;

class TeamFrame extends JFrame {

public TeamFrame() throws IOException {
PlayerPlus player;
Scanner myScanner =

new Scanner(new File(“Hankees.txt”));

(continued)

231Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 231

Listing 10-5 (continued)

for (int num = 1; num <= 9; num++) {
player =

new PlayerPlus(myScanner.nextLine(),
myScanner.nextDouble());

myScanner.nextLine();

addPlayerInfo(player);
}

add(new JLabel());
add(new JLabel(“ ------”));
add(new JLabel(“Team Batting Average:”));
add(new JLabel(PlayerPlus.findTeamAverageString()));

setTitle(“The Hankees”);
setLayout(new GridLayout(11,2));
setDefaultCloseOperation(EXIT_ON_CLOSE);
pack();
setVisible(true);

}

void addPlayerInfo(PlayerPlus player) {
add(new JLabel(player.getName()));
add(new JLabel(player.getAverageString()));

}
}

To run the code in Listing 10-5, you need a class with a main method. The
ShowTeamFrame class in Listing 10-3 works just fine. (If you run JCreator from
this book’s CD-ROM, you’re all set because the ShowTeamFrame.java file is
already in a project along with Listing 10-5.)

Figure 10-6 shows a run of the code from Listing 10-5. This run depends
on the availability of the Hankees.txt file from Figure 10-2. The code in
Listing 10-5 is almost an exact copy of the code from Listing 10-2. (So close
is the copy that if I could afford it, I’d sue myself for theft of intellectual prop-
erty.) The only thing new in Listing 10-5 is the stuff shown in bold.

Figure 10-6:
A run of

the code in
Listing 10-5.

232 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 232

In Listing 10-5, the GridLayout has two extra rows: one row for spacing and
another row for the Hankee team’s average. Each of these rows has two
Label objects in it.

� The spacing row has a blank label and a label with a dashed line. The
blank label is a placeholder. When you add components to a GridLayout,
the components are added row by row, starting at the left end of a row
and working toward the right end of the row. Without this blank label,
the dashed line label would appear at the left end of the row, under
Hugh R. DaReader’s name.

� The other row has a label displaying the words Team Batting
Average, and another label displaying the number .106. The method
call that gets the number .106 is interesting. The call looks like this:

PlayerPlus.findTeamAverageString()

Take a look at that method call. That call has the following form:

ClassName.methodName()

That’s new and different. In earlier chapters, I say that you normally
preface a method call with an object’s name, not a class’s name. So why
do I use a class name here? The answer: When you call a static method,
you preface the method’s name with the name of the class that contains
the method. The same holds true whenever you reference another
class’s static variable. This makes sense. Remember, the whole class
that defines a static variable or method owns that variable or method.
So, to refer to a static variable or method, you preface the variable or
method’s name with the class’s name.

When you’re referring to a static variable or method, you can cheat and use
an object’s name in place of the class name. For instance, in Listing 10-5, with
judicious rearranging of some other statements, you can use the expression
player.findTeamAverageString().

Java has a neat feature called the static initializer. Using this feature, you can
execute statements involving static variables before calling any of the
class’s methods. To find out more about static initializers, visit this book’s
Web site.

Static is old hat
This section makes a big noise about static variables and methods, but
static things have been part of the picture since early in this book. For
example, Chapter 3 introduces System.out.println. The name System
refers to a class, and out is a static variable in that class. That’s why, in
Chapter 4 and beyond, I use the static keyword to import the out variable:

233Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 233

import static java.lang.System.out;

In Java, static variables and methods show up all over the place. When
they’re declared in someone else’s code, and you’re making use of them in
your code, you hardly ever have to worry about them. But when you’re
declaring your own variables and methods and must decide whether to make
them static, you have to think a little harder.

Could cause static; handle with care
When I first started writing Java, I had recurring dreams about getting a cer-
tain error message. The message was non-static variable or method
cannot be referenced from a static context. So often did I see this
message, so thoroughly was I perplexed, that the memory of this message
became burned into my subconscious existence.

These days, I know why I get the error message so often. I can even make the
message occur if I want. But I still feel a little shiver whenever I see this mes-
sage on my screen.

Before you can understand why the message occurs and how to fix the prob-
lem, you need to get some terminology under your belt. If a variable or
method isn’t static, it’s called non-static. (Real surprising, hey?) Given that
terminology, there are at least two ways to make the dreaded message
appear:

� Put Class.nonstaticThing somewhere in your program.

� Put nonstaticThing somewhere inside a static method.

In either case, you’re getting yourself into trouble. You’re taking something
that belongs to an object (the non-static thing) and putting it in a place where
no objects are in sight.

Take, for instance, the first of the two situations listed above. To see this
calamity in action, go back to Listing 10-5. Toward the end of the listing,
change player.getName() to Player.getName(). That does the trick. What
could Player.getName possibly mean? If it meant anything, the expression
Player.getName would mean “call the getName method that belongs to the
entire Player class.” But look back at Listing 10-1. The getName method isn’t
static. Each instance of the Player (or PlayerPlus) class has a getName
method. None of the getName methods belong to the entire class. So the call
Player.getName doesn’t make any sense. (Maybe the computer is pulling
punches when it displays the inoffensive cannot be referenced . . .
message. Perhaps a harsh nonsensical expression message would be
more fitting.)

234 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 234

For a taste of the second situation (in the bullet list that I give earlier in this
section), go back to Listing 10-4. While no one’s looking, quietly remove the
word static from the declaration of the decFormat variable (near the top of
the listing). This turns decFormat into a non-static variable. Suddenly, each
player on the team has a separate decFormat variable.

Well, things are just hunky-dory until the computer reaches the
findTeamAverageString method. That static method has four
decFormat.SuchAndSuch statements in it. Once again, you’re forced
to ask what a statement of this kind could possibly mean. Method
findTeamAverageString belongs to no instance in particular. (The method
is static, so the entire PlayerPlus class has one findTeamAverageString
method.) But with the way you’ve just butchered the code, plain old
decFormat, without reference to a particular object, has no meaning. So
again, you’re referencing the non-static variable, decFormat, from inside a
static method’s context. Shame!

Experiments with Variables
One summer during my college days, I was sitting on the front porch, loafing
around, talking with someone I’d just met. I think her name was Janine.
“Where are you from?” I asked. “Mars,” she answered. She paused to see
whether I’d ask a follow-up question.

As it turned out, Janine was from Mars, Pennsylvania, a small town about
20 miles north of Pittsburgh. Okay, so what’s my point? The point is that the
meaning of a name depends on the context. If you’re just north of Pittsburgh
and ask, “How do I get to Mars from here?” you may get a sensible, noncha-
lant answer. But if you ask the same question standing on a street corner in
Manhattan, you’ll probably arouse some suspicion. (Okay, knowing
Manhattan, people would probably just ignore you.)

Of course, the people who live in Mars, Pennsylvania, are very much aware
that their town has an oddball name. Fond memories of teenage years at
Mars High School don’t prevent a person from knowing about the big red
planet. On a clear evening in August, you can still have the following conver-
sation with one of the local residents:

You: How do I get to Mars?

Local resident: You’re in Mars, pal. What particular part of Mars are you
looking for?

You: No, I don’t mean Mars, Pennsylvania. I mean the planet Mars.

Local resident: Oh, the planet! Well, then, catch the 8:19 train leaving for
Cape Canaveral . . . No, wait, that’s the local train. That’d take you
through West Virginia. . . .

235Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 235

So the meaning of a name depends on where you’re using the name. Although
most English-speaking people think of Mars as a place with a carbon dioxide
atmosphere, some folks in Pennsylvania think about all the shopping they
can do in Mars. And those folks in Pennsylvania really have two meanings
for the name Mars. In Java, those names may look like this: Mars and
planets.Mars.

Putting a variable in its place
Your first experiment is shown in Listings 10-6 and 10-7. The listings’ code
highlights the difference between variables that are declared inside and out-
side methods.

Listing 10-6: Two Meanings for Mars

import static java.lang.System.out;

class EnglishSpeakingWorld {
String mars = “ red planet”;

void visitPennsylvania() {
out.println(“visitPA is running:”);

String mars = “ Janine’s home town”;

out.println(mars);
out.println(this.mars);

}
}

Listing 10-7: Calling the Code of Listing 10-6

import static java.lang.System.out;

class GetGoing {

public static void main(String args[]) {

out.println(“main is running:”);

EnglishSpeakingWorld e = new EnglishSpeakingWorld();

//out.println(mars); cannot resolve symbol
out.println(e.mars);
e.visitPennsylvania();

}
}

236 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 236

Figure 10-7 shows a run of the code in Listings 10-6 and 10-7. Figure 10-8
shows a diagram of the code’s structure. In the GetGoing class, the main
method creates an instance of the EnglishSpeakingWorld class. The vari-
able e refers to the new instance. The new instance is an object with a
variable named mars inside it. That mars variable has value “red planet”.
The mars variable is called an instance variable, because the variable belongs
to an object — an instance of the EnglishSpeakingWorld class.

Now look at the main method in Listing 10-7. Inside the GetGoing class’s
main method, you aren’t permitted to write out.println(mars). In other
words, a bare-faced reference to any mars variable is a definite no-no. The
mars variable that I mention in the previous paragraph belongs to the
EnglishSpeakingWorld object, not the GetGoing class.

However, inside the GetGoing class’s main method, you can certainly write
e.mas because the e variable refers to your EnglishSpeakingWorld object.
That’s nice.

EnglishSpeakingWorld

mars (instance variable)

red planet

visitPennsylvania

mars (method-local variable)

Janine's home town

GetGoing

e

Figure 10-8:
The

structure of
the code in

Listings 10-6
and 10-7.

Figure 10-7:
A run of

the code in
Listings 10-6

and 10-7.

237Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 237

Near the bottom of the code, the visitPennsylvania method is called.
When you’re inside visitPennsylvania, you have another declaration of a
mars variable, whose value is “Janine’s home town”. This particular mars
variable is called a method-local variable because it belongs to just one
method — the visitPennsylvania method.

So now you have two variables, both with the name mars. One mars variable,
an instance variable, has the value “red planet”. The other mars variable, a
method-local variable, has the value “Janine’s home town”. In the code,
when you use the word mars, which of the two variables are you referring to?

The answer is, when you’re visiting Pennsylvania, the variable with value
“Janine’s home town” wins. When in Pennsylvania, think the way
the Pennsylvanians think. When you’re executing code inside the
visitPennsylvania method, resolve any variable name conflicts by going
with variables that are declared right inside the visitPennsylvania
method.

So what if you’re in Pennsylvania and need to refer to that two-mooned celes-
tial object? More precisely, how does code inside the visitPennsylvania
method refer to the variable with value “red planet”? The answer is, use
this.mars. The word this points to whatever object contains all this code
(and not to any methods inside the code). That object, an instance of the
EnglishSpeakingWorld class, has a big, fat mars variable, and that vari-
able’s value is “red planet”. So that’s how you can force code to see out-
side the method it’s in — you use the Java keyword this.

For more information on the keyword this, see Chapter 9.

Telling a variable where to go
Years ago, when I lived in Milwaukee, Wisconsin, I made frequent use of the
local bank’s automatic teller machines. Machines of this kind were just begin-
ning to become standardized. The local teller machine system was named
TYME, which stood for Take Your Money Everywhere.

I remember traveling by car out to California. At one point, I got hungry and
stopped for a meal, but I was out of cash. So I asked a gas station attendant,
“Do you know where there’s a TYME machine around here?”

So you see, a name that works well in one place could work terribly, or not at
all, in another place. In Listings 10-8 and 10-9, I illustrate this point (with more
than just an anecdote about teller machines).

238 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 238

Listing 10-8: Tale of Atomic City

import static java.lang.System.out;

class EnglishSpeakingWorld2 {
String mars;

void visitIdaho() {
out.println(“visitID is running:”);

mars = “ red planet”;
String atomicCity = “ Population: 25”;

out.println(mars);
out.println(atomicCity);

}

void visitNewJersey() {
out.println(“visitNJ is running:”);

out.println(mars);
//out.println(atomicCity);
// cannot resolve symbol

}
}

Listing 10-9: Calling the Code of Listing 10-8

class GetGoing2 {

public static void main(String args[]) {
EnglishSpeakingWorld2 e = new EnglishSpeakingWorld2();

e.visitIdaho();
e.visitNewJersey();

}
}

Figure 10-9 shows a run of the code in Listings 10-8 and 10-9. Figure 10-10 shows
a diagram of the code’s structure. The code for EnglishSpeakingWorld2
has two variables. The mars variable, which isn’t declared inside a method, is
an instance variable. The other variable, atomicCity, is a method-local vari-
able and is declared inside the visitIdaho method.

239Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 239

In Listing 10-8, notice where each variable can and can’t be used. When you
try to use the atomicCity variable inside the visitNewJersey method, you
get an error message. Literally, the message says cannot resolve symbol.
Figuratively, the message says, “Hey, buddy, Atomic City is in Idaho, not
New Jersey.” Technically, the message says that the method-local variable
atomicCity is available only in the visitIdaho method because that’s
where the variable was declared.

So back inside the visitIdaho method, you’re free to use the atomicCity
variable as much as you want. After all, the atomicCity variable is declared
inside the visitIdaho method.

And what about Mars? Have you forgotten about your old friend, that lovely
eighty-degrees-below-zero planet? Well, both the visitIdaho and
visitNewJersey methods can access the mars variable. That’s because the
mars variable is an instance variable. The mars variable is declared in the

EnglishSpeakingWorld2

mars (instance variable)

red planet

visitIdaho

atomicCity
(method-local variable)

Population: 25

visitNewJersey

Figure 10-10:
The struc-
ture of the

code in
Listings 10-8

and 10-9.

Figure 10-9:
A run of

the code in
Listings 10-8

and 10-9.

240 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 240

code for the EnglishSpeakingWorld2 class but not inside any particular
method. (In my stories about the names for things, remember that people
who live in both states, Idaho and New Jersey, have heard of the planet Mars.)

The lifecycle of the mars variable has three separate steps:

� When the EnglishSpeakingWorld2 class first flashes into existence,
the computer sees String mars and creates space for the variable.

� When the visitIdaho method is executed, the method assigns the
value “red planet” to the mars variable. (The visitIdaho method
also prints the value of the mars variable.)

� When the visitNewJersey method is executed, the method prints the
mars value once again.

In this way, the mars variable’s value is passed from one method to another.

Passing Parameters
A method can communicate with another part of your Java program in sev-
eral ways. One of the ways is through the method’s parameter list. Using a
parameter list, you pass on-the-fly information to a method as the method is
being called.

So imagine that the information you pass to the method is stored in one of
your program’s variables. What, if anything, does the method actually do
with that variable? This section presents a few interesting case studies.

Pass by value
According to my Web research, the town of Smackover, Arkansas, has 2,232
people in it. But my research isn’t current. Just yesterday, Dora Kermongoos
celebrated a joyous occasion over at Smackover General Hospital — the birth
of her healthy, blue-eyed baby girl. (The girl weighs 7 pounds, 4 ounces, and
is 21 inches tall.) Now the town’s population has risen to 2,233.

Listing 10-10 has a very bad program in it. The program is supposed to add 1
to a variable that stores Smackover’s population, but the program doesn’t
work. Take a look at Listing 10-10 and see why.

241Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 241

Listing 10-10: This Program Doesn’t Work

class TrackPopulation {

public static void main(String args[]) {
int smackoverARpop = 2232;

birth(smackoverARpop);
System.out.println(smackoverARpop);

}

static void birth(int cityPop) {
cityPop++;

}
}

When you run the program in Listing 10-10, the program displays the number
2,232 on-screen. After nine months of planning and anticipation and a whop-
ping seven hours in labor, the Kermongoos family’s baby girl wasn’t regis-
tered in the system. What a shame!

The improper use of parameter passing caused the problem. In Java, when
you pass a parameter that has one of the eight primitive types to a method,
that parameter is passed by value.

For a review of Java’s eight primitive types, see Chapter 4.

Here’s what this means in plain English: Any changes that the method makes
to the value of its parameter don’t affect the values of variables back in the
calling code. In Listing 10-10, the birth method can apply the ++ operator to
cityPop all it wants — the application of ++ to the cityPop parameter has
absolutely no effect on the value of the smackoverARpop variable back in the
main method.

Technically, what’s happening is the copying of a value. (See Figure 10-11.)
When the main method calls the birth method, the value stored in
smackoverARpop is copied to another memory location — a location
reserved for the cityPop parameter’s value. During the birth method’s
execution, 1 is added to the cityPop parameter. But the place where the orig-
inal 2232 value was stored — the memory location for the smackoverARpop
variable — remains unaffected.

When you do parameter passing with any of the eight primitive types, the
computer uses pass by value. The value stored in the calling code’s variable
remains unchanged. This happens even if the calling code’s variable and the
called method’s parameter happen to have the exact same name.

242 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 242

Returning a result
You must fix the problem that the code in Listing 10-10 poses. After all, a
young baby Kermongoos can’t go through life untracked. To record this
baby’s existence, you have to add 1 to the value of the smackoverARpop vari-
able. You can do this in plenty of ways, and the way presented in Listing 10-11
isn’t the simplest. Even so, the way shown in Listing 10-11 illustrates a point:
Returning a value from a method call can be an acceptable alternative to
parameter passing. Look at Listing 10-11 to see what I mean.

Listing 10-11: This Program Works

class TrackPopulation2 {

public static void main(String args[]) {
int smackoverARpop = 2232;

smackoverARpop = birth(smackoverARpop);
System.out.println(smackoverARpop);

}

static int birth(int cityPop) {
return cityPop + 1;

}
}

After running the code in Listing 10-11, the number you see on your com-
puter screen is the correct number, 2,233.

main

smackoverARpop

2232

birth

cityPop
2232
2233

Figure 10-11:
Pass by

value, under
the hood.

243Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 243

The code in Listing 10-11 has no new features in it (unless you call working
correctly a new feature). The most important idea in Listing 10-11 is the
return statement, which also appears in Chapter 7. Even so, Listing 10-11
presents a nice contrast to the approach in Listing 10-10, which had to be
discarded.

Pass by reference
In the previous section or two, I take great pains to emphasize a certain
point — that when a parameter has one of the eight primitive types, the para-
meter is passed by value. If you read this, you probably missed the emphasis
on the parameter’s having one of the eight primitive types. The emphasis is
needed because passing objects (reference types) doesn’t quite work the
same way.

When you pass an object to a method, the object is passed by reference. What
this means to you is that statements in the called method can change any
values that are stored in the object’s variables. Those changes do affect the
values that are seen by whatever code called the method. Listings 10-12
and 10-13 illustrate the point.

Listing 10-12: What Is a City?

class City {
int population;

}

Listing 10-13: Passing an Object to a Method

class TrackPopulation3 {

public static void main(String args[]) {
City smackoverAR = new City();
smackoverAR.population = 2232;
birth(smackoverAR);
System.out.println(smackoverAR.population);

}

static void birth(City aCity) {
aCity.population++;

}
}

244 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 244

When you run the code in Listings 10-12 and 10-13, the output that you get is
the number 2,233. That’s good because the code has things like ++ and the
word birth in it. The deal is, adding 1 to aCity.population inside the birth
method actually changes the value of smackoverAR.population as it’s
known in the main method.

To see how the birth method changes the value of smackoverAR.population,
look at Figure 10-12. When you pass an object to a method, the computer
doesn’t make a copy of the entire object. Instead, the computer makes a copy
of a reference to that object. (Think of it the way it’s shown in Figure 10-12.
The computer makes a copy of an arrow that points to the object.)

In Figure 10-12, you see just one instance of the City class, with a population
variable inside it. Now keep your eye on that object as you read the following
steps:

1. Just before the birth method is called, the smackoverAR variable refers
to that object — the instance of the City class.

2. When the birth method is called, and smackoverAR is passed to the
birth method’s aCity parameter, the computer copies the reference
from smackoverAR to aCity. Now aCity refers to that same object —
the instance of the City class.

3. When the statement aCity.population++ is executed inside the birth
method, the computer adds 1 to the object’s population variable. Now
the program’s one and only City instance has 2233 stored in its popula-
tion variable.

4. The flow of execution goes back to the main method. The value of
smackoverAR.population is printed. But smackoverAR refers to that
one instance of the City class. So smackoverAR.population has the
value 2233. The Kermongoos family is so proud.

main

smackoverAR

birth

aCity

population

2232
2233

(An instance of
the City class)

Figure 10-12:
Pass by

reference,
under the

hood.

245Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 245

Returning an object from a method
Believe it or not, there’s one nook and cranny of Java methods that the previ-
ous sections on parameter passing didn’t explore. When you call a method,
the method can return something right back to the calling code. In previous
chapters and sections, I return primitive values, such as int values, or noth-
ing (otherwise known as void). In this section, I return a whole object. It’s an
object of type City from Listing 10-12. The code that makes this happen is in
Listing 10-14.

Listing 10-14: Here, Have a City

class TrackPopulation4 {

public static void main(String args[]) {
City smackoverAR = new City();
smackoverAR.population = 2232;
smackoverAR = doBirth(smackoverAR);
System.out.println(smackoverAR.population);

}

static City doBirth(City aCity) {
City myCity = new City();
myCity.population = aCity.population + 1;
return myCity;

}
}

If you run the code in Listing 10-14, you get the number 2,233. That’s good.
The code works by telling the doBirth method to create another City
instance. In the new instance, the value of population is 2333 (Figure 10-13).

main

smackoverAR
population

2232

doBirth

aCity

myCity
population

2233

Figure 10-13:
The doBirth

method
creates

a City
instance.

246 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 246

When the doBirth method is finished being executed, that City instance is
returned to the main method. Then, back in the main method, that instance
(the one that doBirth returns) is assigned to the smackoverAR variable.
(See Figure 10-14.) Now smackoverAR refers to a brand-new City instance —
an instance whose population is 2,233.

In Listing 10-14, notice that the type consistency in the calling and returning
of the doBirth method:

� The smackoverAR variable has type City. The smackoverAR variable is
passed to the aCity parameter, which is also of type City.

� The myCity variable is of type City. The myCity variable is sent
back in the doBirth method’s return statement. That’s consistent,
because the doBirth method’s header begins with the promise
public static City — the promise to return an object of type City.

� The doBirth method returns an object of type City. Back in the main
method, the object that the call to doBirth returns is assigned to the
smackoverAR variable, and (you guessed it) the smackoverAR variable
is of type City.

Aside from being very harmonious, all this type agreement is absolutely nec-
essary. If you write a program, and your types don’t agree with one another
in the program, the compiler spits out an unsympathetic incompatible
types message.

Epilogue
Dora Kermongoos and her newborn baby daughter are safe, healthy, and
resting happily in their Smackover, Arkansas, home.

main

smackoverAR

doBirth

myCity
population

2233

Figure 10-14:
The

new City
instance

is assigned
to the

smack-
overAR

variable.

247Chapter 10: Putting Variables and Methods Where They Belong

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 247

248 Part IV: Savvy Java Techniques

04b_568582 ch10.qxd 7/27/04 11:48 PM Page 248

Chapter 11

Using Arrays and Collections
to Juggle Values

In This Chapter
� Dealing with several values at once

� Creating values as you get a program running

� Impressing other programmers with fancy generic types

Welcome to the Java Motel! No haughty bellhops, no overpriced room
service, none of the usual silly puns. Just a clean double room at a

darn good value.

Getting Your Ducks All in a Row
The Java Motel, with its ten comfortable rooms, sits in a quiet place off the
main highway. Aside from a small, separate office, the motel is just one long
row of ground floor rooms. Each room is easily accessible from the spacious
front parking lot.

Oddly enough, the motel’s rooms are numbered 0 through 9. I could say that
the numbering is a fluke — something to do with the builder’s original design
plan. But the truth is that starting with 0 makes the examples in this chapter
easier to write.

Anyway, you’re trying to keep track of the number of guests in each room.
Because you have ten rooms, you may think about declaring ten variables:

int guestsInRoomNum0, guestsInRoomNum1, guestsInRoomNum2,
guestsInRoomNum3, guestsInRoomNum4, guestsInRoomNum5,
guestsInRoomNum6, guestsInRoomNum7, guestsInRoomNum8,
guestsInRoomNum9;

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 249

Doing it this way may seem a bit inefficient. But inefficiency isn’t the only
thing wrong with this code. Even more problematic is the fact that you can’t
loop through these variables. To read a value for each variable, you have to
copy the nextInt method ten times.

guestsInRoomNum0 = diskScanner.nextInt();
guestsInRoomNum1 = diskScanner.nextInt();
guestsInRoomNum2 = diskScanner.nextInt();
... and so on.

Surely a better way exists.

That better way involves an array. An array is a row of values, like the row of
rooms in a one-floor motel. To picture the array, just picture the Java Motel:

� First, picture the rooms, lined up next to one another.

� Next, picture the same rooms with their front walls missing. Inside each
room you can see a certain number of guests.

� If you can, forget that the two guests in Room 9 are putting piles of bills
into a big briefcase. Ignore the fact that the guests in Room 6 haven’t
moved away from the TV set in a day and a half. Instead of all these
details, just see numbers. In each room, see a number representing the
count of guests in that room. (If freeform visualization isn’t your strong
point, look at Figure 11-1.)

In the lingo of this chapter, the entire row of rooms is called an array. Each
room in the array is called a component of the array (also known as an array
element). Each component has two numbers associated with it:

A component
whose index is 6,

and whose value is 4

The value 4

The index 6

1

0

4

1

2

2

0

3

2

4

1

5

4

6

3

7

0

8

2

9

Figure 11-1:
An abstract
snapshot of

rooms in the
Java Motel.

250 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 250

� The room number (a number from 0 to 9), which is called an index of the
array

� A number of guests, which is a value stored in a component of the array

Using an array saves you from all the repetitive nonsense in the sample code
shown at the beginning of this section. For instance, to declare an array with
ten values in it, you can write one fairly short statement:

int guests[] = new int[10];

If you’re especially verbose, you can expand this statement so that it
becomes two separate statements:

int guests[];
guests = new int[10];

In either of these code snippets, notice the use of the number 10. This
number tells the computer to make the guests array have ten components.
Each component of the array has a name of its own. The starting component
is named guests[0], the next is named guests[1], and so on. The last of the ten
components is named guests[9].

In creating an array, you always specify the number of components. The
array’s indices start with 0 and end with the number that’s one less than the
total number of components.

The snippets that I show you give you two ways to create an array. The
first way uses one line. The second way uses two lines. If you take the single
line route, you can put that line inside or outside a method. The choice is
yours. On the other hand, if you use two separate lines, the second line,
guests = new int[10], should be inside a method.

In an array declaration, you can put the square brackets before or after the
variable name. In other words, you can write int guests[] or int[] guests. The
computer creates the same guests variable no matter which form you use.

Creating an array in two easy steps
Look once again at the two lines that you can use to create an array:

int guests[];
guests = new int[10];

251Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 251

Each line serves its own distinct purpose:

� int guests[]: This first line is a declaration. The declaration reserves
the array name (a name like guests) for use in the rest of the program. In
the Java Motel metaphor, this line says, “I plan to build a motel here and
put a certain number of guests in each room.” (See Figure 11-2.)

Never mind what the declaration int guests[] does. It’s more impor-
tant to notice what the declaration int guests[] doesn’t do. The decla-
ration doesn’t reserve ten memory locations. Indeed, a declaration like
int guests[] doesn’t really create an array. All the declaration does is
set up the guests variable. At that point in the code, the guests vari-
able still doesn’t refer to a real array. (In other words, the motel hasn’t
been built yet.)

� guests = new int[10]: This second line is an assignment statement.
The assignment statement reserves space in the computer’s memory for
ten int values. In terms of real estate, this line says, “I’ve finally built the
motel. Go ahead and put guests in each room.” (Again, see Figure 11-2.)

Storing values
After you’ve created an array, you can put values into the array’s compo-
nents. For instance, you would like to store the fact that Room 6 contains
4 guests. To put the value 4 in the component with index 6, you write
guests[6] = 4.

Now business starts to pick up. A big bus pulls up to the motel. On the side of
the bus is a sign that says “Noah’s Ark.” Out of the bus come 25 couples, each
walking, stomping, flying, hopping, or slithering to the motel’s small office.
Only 10 of the couples can stay at the Java Motel, but that’s okay because
you can send the other 15 couples down the road to the old C-Side Resort
and Motor Lodge.

guests

guests
[0]

guests
[1]

guests
[2]

guests
[3]

guests
[4]

guests
[5]

guests
[6]

guests
[7]

guests
[8]

guests
[9]

int guests[];

guests

guests = new int[10];Figure 11-2:
Two steps

in creating
an array.

252 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 252

Anyway, to register 10 couples into the Java Motel, you put a couple (2 guests)
in each of your 10 rooms. Having created an array, you can take advantage of
the array’s indexing and write a for loop, like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
guests[roomNum] = 2;

}

This loop takes the place of ten assignment statements. Notice how the
loop’s counter goes from 0 to 9. Compare this with Figure 11-2, and remember
that the indices of an array go from 0 to one less than the number of compo-
nents in the array.

Now, given the way the world works, your guests won’t always arrive in neat
pairs, and you’ll have to fill each room with a different number of guests. You
probably store information about rooms and guests in a database. If you do,
you can still loop through an array, gathering numbers of guests as you go.
The code to perform such a task may look like this:

resultset =
statement.executeQuery(“select GUESTS from RoomData”);

for (int roomNum = 0; roomNum < 10; roomNum++) {
resultset.next();
guests[roomNum] = resultset.getInt(“GUESTS”);

}

But because this book doesn’t cover databases until Chapter 18 (on the
CD-ROM), you may be better off reading numbers of guests from a plain text
file. A sample file is shown in Figure 11-3. After you’ve made a file, you can
call on the Scanner class to get values from the file. The code is shown in
Listing 11-1, and the resulting output is in Figure 11-4.

For instructions on creating your own file like the one in Figure 11-3,
see Chapter 8.

Figure 11-3:
The

GuestList
.txt file.

253Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 253

Listing 11-1: Filling an Array with Values

import static java.lang.System.out;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

class ShowGuests {

public static void main(String args[])
throws IOException {

int guests[] = new int[10];
Scanner diskScanner =

new Scanner(new File(“GuestList.txt”));

for(int roomNum = 0; roomNum < 10; roomNum++) {
guests[roomNum] = diskScanner.nextInt();

}

out.println(“Room\tGuests”);

for(int roomNum = 0; roomNum < 10; roomNum++) {
out.print(roomNum);
out.print(“\t”);
out.println(guests[roomNum]);

}
}

}

The code in Listing 11-1 has two for loops. The first loop reads numbers of
guests, and the second loop writes numbers of guests.

Every array has a built-in length field. An array’s length is the number
of components in the array. So, in Listing 11-1, if you print the value of
guests.length, you get 10.

Figure 11-4:
Running the

code from
Listing 11-1.

254 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 254

Tab stops and other special things
In Listing 11-1, some calls to print and println use the \t escape sequence.
It’s called an escape sequence because you escape from displaying the letter t
on the screen. Instead, the characters \t stand for a tab. The computer
moves forward to the next tab stop before printing any more characters.
Java has a few of these handy escape sequences. Some of them are shown in
Table 11-1.

Table 11-1 Escape Sequences
Sequence Meaning

\b backspace

\t horizontal tab

\n line feed

\f form feed

\r carriage return

\” double quote “

\’ single quote ‘

\\ backslash \

Using an array initializer
Besides what you see in Listing 11-1, there’s another way to fill an array in
Java. It’s with an array initializer. When you use an array initializer, you don’t
even have to tell the computer how many components the array has. The
computer figures this out for you.

Listing 11-2 shows a new version of the code to fill an array. The program’s
output is the same as the output of Listing 11-1. (It’s the stuff shown in
Figure 11-4.) The only difference between Listings 11-1 and 11-2 is the bold
text in Listing 11-2. That bold doodad is an array initializer.

255Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 255

Listing 11-2: Using an Array Initializer

import static java.lang.System.out;

class ShowGuests {

public static void main(String args[]) {

int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

out.println(“Room\tGuests”);

for (int roomNum = 0; roomNum < 10; roomNum++) {
out.print(roomNum);
out.print(“\t”);
out.println(guests[roomNum]);

}
}

}

An array initializer can contain expressions as well as literals. In plain
English, this means that you can put all kinds of things between
the commas in the initializer. For instance, an initializer like
{1 + 3, myScanner.nextInt(), 2, 0, 2, 1, 4, 3, 0, 2}
works just fine.

Stepping through an array
with the enhanced for loop
With the new, improved, ultra-slick Java version 5.0 comes the enhanced
for loop — the loop that doesn’t use counters or indices.

Listing 6-5 in Chapter 6 uses enhanced for loops to step through enum types.
Loosely speaking, an enum type is just a bunch of values. But think about this
chapter’s arrays. An array is a bunch of values, too. So it may come as no
surprise that an enhanced for loop can step through an array’s values.
Listing 11-3 shows you how to do it.

Listing 11-3: Kids, Don’t Try This with Java 1.4!

import static java.lang.System.out;

class ShowGuests {

public static void main(String args[]) {
int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};
int roomNum = 0;

256 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 256

out.println(“Room\tGuests”);
for (int numGuests : guests) {

out.print(roomNum++);
out.print(“\t”);
out.println(numGuests);

}
}

}

Listings 11-1 and 11-3 have the same output. It’s in Figure 11-4.

If you look at the loop in Listing 11-3, you see the same old pattern. Just like
the loops in Listing 6-5, this example’s loop has three parts:

for (variable-type variable-name : range-of-values)

The first two parts are variable-type and variable-name. The loop in
Listing 11-3 defines a variable named numGuests, and numGuests has type
int. During each loop iteration, the variable numGuests takes on a new
value. Look at Figure 11-4 to see these values. The initial value is 1. The next
value is 4. After that comes 2. And so on.

Where is the loop finding all these numbers? The answer lies in the loop’s
range-of-values. In Listing 11-3, the loop’s range-of-values is guests.
So, during the initial loop iteration, the value of numGuests is guests[0]
(which is 1). During the next iteration, the value of numGuests is guests[1]
(which is 4). After that comes guests[2] (which is 2). And so on.

Searching
You’re sitting behind the desk at the Java Motel. Look! Here comes a party of
five. These people want a room, so you need software that checks to see
whether a room is vacant. If one is, the software needs to modify the
GuestList.txt file (refer to Figure 11-3) by replacing the number 0 with the
number 5. As luck would have it, the software is right on your hard drive. The
software is shown in Listing 11-4.

Listing 11-4: Do You Have a Room?

import static java.lang.System.out;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;
import java.io.PrintStream;

(continued)

257Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 257

Listing 11-4 (continued)

public class FindVacancy {

public static void main(String args[])
throws IOException {

Scanner kbdScanner = new Scanner(System.in);
Scanner diskScanner =

new Scanner(new File(“GuestList.txt”));
int guests[] = new int[10];
int roomNum;

for (roomNum = 0; roomNum < 10; roomNum++) {
guests[roomNum] = diskScanner.nextInt();

}

roomNum = 0;
while (roomNum < 10 && guests[roomNum] != 0) {

roomNum++;
}

if (roomNum == 10) {
out.println(“Sorry, no v cancy”);

} else {
out.print(“How many people for room “);
out.print(roomNum);
out.print(“? “);
guests[roomNum] = kbdScanner.nextInt();

PrintStream listOut =
new PrintStream(“GuestList.txt”);

for (roomNum = 0; roomNum < 10; roomNum++) {
listOut.print(guests[roomNum]);
listOut.print(“ “);

}
}

}
}

Figures 11-5 through 11-7 show the running of the code in Listing 11-4. Back
in Figure 11-3, the motel starts with two vacant rooms — Rooms 3 and 8.
(Remember, the rooms start with Room 0.) The first time that you run the
code in Listing 11-4, the program tells you that Room 3 is vacant and puts five
people into the room. The second time you run the code, the program finds
the remaining vacant room (Room 8) and puts a party of ten in the room.
(What a party!) The third time you run the code, you don’t have any more
vacant rooms. When the program discovers this, it displays the message
Sorry, no v cancy, omitting at least one letter in the tradition of all motel
neon signs.

258 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 258

Each run of Listing 11-4’s code writes a brand-new GuestList.txt file. If you
use JCreator, you can easily monitor the changes to GuestList.txt. Keep
GuestList.txt showing in JCreator’s Editor pane. After running the code in
Listing 11-4, switch to some other window on your screen (your Web browser,
for instance) or to some other document in JCreator’s Editor pane. Then
return to the display of GuestList.txt in JCreator. Upon your return,
JCreator tells you that GuestList.txt has been modified. “Do you want to
reload it?” asks JCreator. “Yes,” you click. Then JCreator displays the updated
version of GuestList.txt.

The code in Listing 11-4 uses tricks from other chapters and sections of
this book. The code’s only brand-new feature is the use of PrintStream
to write to a disk file. Think about any example in this book that calls
System.out.print, out.println, or their variants. What’s really going
on when you call one of these methods?

The thing called System.out is an object. The object is defined in the Java API.
In fact, System.out is an instance of a class named java.io.PrintStream
(or just PrintStream to its close friends). Now each object created from the

Figure 11-7:
Sorry, Bud.
No rooms.

Figure 11-6:
Filling the

last vacant
room.

Figure 11-5:
Filling a

vacancy.

259Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 259

PrintStream class has methods named print and println. Just as each
Account object in Listing 7-3 has a display method, and just as the
DecimalFormat object in Listing 10-1 has a format method, so the
PrintStream object named out has print and println methods. When
you call System.out.println, you’re calling a method that belongs to a
PrintStream instance.

Okay, so what of it? Well, System.out always stands for some text area on
your computer screen. If you create your own PrintStream object, and you
make that object refer to a disk file, then that PrintStream object refers to
the disk file. When you call that object’s print method, you write text to a
file on your hard drive.

So in Listing 11-4, when you say

PrintStream listOut =
new PrintStream(“GuestList.txt”);

listOut.print(guests[roomNum]);
listOut.print(“ “);

you’re telling Java to write text to a file on your hard drive — the
GuestList.txt file.

That’s how you update the count of guests staying in the hotel. When you
call listOut.print for the number of guests in Room 3, you may print the
number 5. So, between Figures 11-5 and 11-6, a number in the GuestList.txt
file changes from 0 to 5. Then in Figure 11-6, you run the program a second
time. When the program gets data from the newly written GuestList.txt
file, Room 3 is no longer vacant. So this time, the program suggests Room 8.

Like many other methods and constructors of its kind, the PrintStream con-
structor doesn’t pussyfoot around with files. If it can’t find a GuestList.txt
file, the constructor creates one and prepares to write values into it. But, if a
GuestList.txt file already exists, the constructor clobbers the existing file
and prepares to write to a new, empty GuestList.txt file. If you don’t like it
when files are clobbered, take precautions before calling the PrintStream
constructor.

This is more an observation than a tip. Say that you want to read data
from a file named Employees.txt. To do this, you make a scanner. You
call new Scanner(new File(“Employees.txt”)). If you accidentally call
new Scanner(“Employees.txt”) without the new File part, the call
doesn’t connect to your Employees.txt file. But notice how you prepare
to write data to a file. You make a PrintStream instance by calling new
PrintStream(“GuestList.txt”). You don’t use new File anywhere in the
call. If you goof and accidentally include new File, the Java compiler
becomes angry, jumps out, and bites you.

260 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 260

In Listing 11-4, the condition roomNum < 10 && guests[roomNum] != 0
can be really tricky. If you move things around, and write guests[roomNum] !=
0 && roomNum < 10, you can get yourself into lots of trouble. For details,
see this book’s Web site.

Arrays of Objects
The Java Motel is open for business, now with improved guest registration
software! The people who brought you this chapter’s first section are always
scratching their heads, looking for the best ways to improve their services.
Now, with some ideas from object-oriented programming, they’ve started
thinking in terms of a Room class.

“And what,” you ask, “is a Room instance?” That’s easy. A Room instance has
three properties — the number of guests in the room, the room rate, and a
smoking/nonsmoking stamp. Figure 11-8 illustrates the situation.

Listing 11-5 shows the code that describes the Room class. As promised, each
instance of the Room class has three variables: the guests, rate, and smoking
variables. (A false value for the boolean variable, smoking, indicates a non-
smoking room.) In addition, the entire Room class has a static variable named
currency. This currency object makes room rates look like dollar amounts.

To find out what static means, see Chapter 10.

Listing 11-5: So This is What a Room Looks Like!

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

(continued)

1

0

4

1

2

2

0

3

2

4

1

5

4

6

3

7

0

8

2
60.00 60.00 60.00 60.00 80.00 80.00 80.00 80.00 100.00100.00

9

Figure 11-8:
Another
abstract

snapshot of
rooms in the
Java Motel.

261Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 261

Listing 11-5 (continued)

class Room {
private int guests;
private double rate;
private boolean smoking;
private static NumberFormat currency =

NumberFormat.getCurrencyInstance();

public void readRoom(Scanner diskScanner) {
guests = diskScanner.nextInt();
rate = diskScanner.nextDouble();
smoking = diskScanner.nextBoolean();

}

public void writeRoom() {
out.print(guests);
out.print(“\t”);
out.print(currency.format(rate));
out.print(“\t”);
out.println(smoking ? “yes” : “no”);

}
}

Listing 11-5 has a few interesting quirks, but I’d rather not describe them until
after you see all the code in action. That’s why, at this point, I move right on
to the code that calls the Listing 11-5 code. After you read about arrays of
rooms (shown in Listing 11-6), check out my description of the Listing 11-5
quirks.

Using the Room class
So now you need an array of rooms. The code to create such a thing is in
Listing 11-6. The code reads data from the RoomList.txt file. (Figure 11-9
shows the contents of the RoomList.txt file.)

Figure 11-10 shows a run of the code in Listing 11-6.

Listing 11-6: Would You Like to See a Room?

import static java.lang.System.out;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;

class ShowRooms {

262 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 262

public static void main(String args[])
throws IOException {

Room rooms[];
rooms = new Room[10];

Scanner diskScanner =
new Scanner(new File(“RoomList.txt”));

for (int roomNum = 0; roomNum < 10; roomNum++) {
rooms[roomNum] = new Room();
rooms[roomNum].readRoom(diskScanner);

}

out.println(“Room\tGuests\tRate\tSmoking?”);
for (int roomNum = 0; roomNum < 10; roomNum++) {

out.print(roomNum);
out.print(“\t”);
rooms[roomNum].writeRoom();

}
}

}

Figure 11-9:
A file of

Room data.

263Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 263

Say what you want about the code in Listing 11-6. As far as I’m concerned,
only one issue in the whole listing should concern you. And what, you ask, is
that issue? Well, to create an array of objects, you have to do three things:
make the array variable, make the array itself, and then construct each indi-
vidual object in the array. This is different from creating an array of int
values or an array containing any other primitive type values. When you
create an array of primitive type values, you do only the first two of these
three things.

To help make sense of all this, follow along in Listing 11-6 and Figure 11-11 as
you read the following points.

rooms [0] = readRoom(roomList);

rooms[0
]

rooms[1
]

rooms[2
]

rooms[3
]

rooms[4
]

rooms[5
]

rooms[6
]

rooms[7
]

rooms[8
]

rooms[9
]

rooms

1
60.00

rooms [0] = new Room();

rooms[0
]

rooms[1
]

rooms[2
]

rooms[3
]

rooms[4
]

rooms[5
]

rooms[6
]

rooms[7
]

rooms[8
]

rooms[9
]

rooms

rooms[0
]

rooms[1
]

rooms[2
]

rooms[3
]

rooms[4
]

rooms[5
]

rooms[6
]

rooms[7
]

rooms[8
]

rooms[9
]

rooms

rooms = new Room[10];

rooms

A B

C D

Room rooms[];

Figure 11-11:
Steps in

creating an
array of
objects.

Figure 11-10:
A run of

the code in
Listing 11-6.

264 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 264

� Room rooms[];: This declaration creates a rooms variable. This vari-
able is destined to refer to an array (but doesn’t yet refer to anything
at all).

� rooms = new Room[10];: This statement reserves ten slots of storage
in the computer’s memory. The statement also makes the rooms variable
refer to the group of storage slots. Each slot is destined to refer to an
object (but doesn’t yet refer to anything at all).

� rooms[roomNum] = new Room();: This statement is inside a for loop.
The statement is executed once for each of the ten room numbers.
For example, the first time through the loop, this statement says
rooms[0] = new Room(). That first time around, the statement makes
the slot rooms[0] refer to an actual object (an instance of the Room class).

Although it’s technically not considered a step in array making, you still have
to fill each object’s variables with values. For instance, the first time through
the loop, the readRoom call says rooms[1].readRoom(diskScanner), which
means, “Read data from the RoomList.txt file into the rooms[1] object’s
variables.” Each time through the loop, the program creates a new object and
reads data into that new object’s variables.

Similar to creating arrays of primitive values, you can squeeze the steps
together. For instance, you can do the first two steps in one fell swoop, like
this:

Room rooms[] = new Room[10];

You can also use an array initializer. (For an introduction to array initializers,
see the section, “Using an array initializer,” earlier in this chapter.)

Yet another way to beautify your numbers
You can make numbers look nice in plenty of ways. For instance, Listing 7-7
uses printf and Listing 10-1 uses a DecimalFormat. But in Listing 11-5,
I display a currency amount. I use the NumberFormat class with its
getCurrencyInstance method.

If you compare the formatting statements in Listings 10-1 and 11-5, you don’t
see much difference.

� One listing uses a constructor; the other listing calls
getCurrencyInstance.

The getCurrencyInstance method is a good example of what’s called
a factory method. A factory method is a convenient tool for creating
commonly used objects. People always need code that displays dollar

265Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 265

amounts. So the getCurrencyInstance method creates a dollar
format without forcing you to write new DecimalFormat
(“$###0.00;($###0.00)”).

Like a constructor, a factory method returns a brand-new object. But
unlike a constructor, a factory method has no special status. When you
create a factory method, you can name it anything you want. When you
call a factory method, you don’t use the keyword new.

� One listing uses DecimalFormat; the other listing uses NumberFormat.

A decimal number is a certain kind of number. (In fact, a decimal number is
a number written in the base-10 system.) Accordingly, the DecimalFormat
class is a subclass of the NumberFormat class. The DecimalFormat
methods are more specific, so for most purposes, I use DecimalFormat.
But it’s harder to use the DecimalFormat class’s getCurrencyInstance
method. So for programs that involve money, I tend to use NumberFormat.

� Both listings use format methods.

In the end, you just write something like currency.format(rate) or
decFormat.format(average). After that, Java does the work for you.

The conditional operator
Listing 11-5 uses an interesting doodad called the conditional operator. This
conditional operator takes three expressions, and returns the value of just
one of them. It’s like a mini if statement. When you use the conditional oper-
ator, it looks something like this:

conditionToBeTested ? expression1 : expression2

The computer evaluates the conditionToBeTested condition. If the condi-
tion is true, the computer returns the value of expression1. But, if the
condition is false, the computer returns the value of expression2.

So, in the code

smoking ? “yes” : “no”

the computer checks to see whether smoking has the value true. If so, the
whole three-part expression stands for the first string, “yes”. If not, the
whole expression stands for the second string, “no”.

In Listing 11-5, one of the strings, “yes” or “no”, gets displayed by the call to
out.println. Which string gets displayed depends on whether smoking has
the value true or false.

266 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 266

Command Line Arguments
Since you first started working with Java, you’ve been seeing this
String args[] business in the header of every main method. Well, it’s
high time you found out what that business is all about.

When you want to run a Java program, you can get the program going by
choosing Build➪Execute Project or by clicking somewhere else within your
particular development environment.

In plenty of situations, clicking is all you need to do. But sometimes, you want
to add a little extra information as you get the program going. Say, for
instance, that the program puts a new file on your computer’s hard drive.
Maybe, when you start the program, you want to tell the program what it
should name that new file. Hey, maybe you give the program even more infor-
mation. Imagine that this file of yours has random numbers in it. (It’s a list of
numbers to be read aloud at your motel’s weekly Bingo game.) When you get
the program running, you tell the program the name of the new file and how
many numbers you want the new file to contain.

All this leads to one big question. How do you give the program some extra
information each time the program starts running?

That’s where this String args[] business enters the picture. The parame-
ter args[] is an array of String values. These String values are called
command line arguments.

Using command line arguments
in a Java program
Listing 11-7 shows you how to use command line arguments in your code.

Listing 11-7: Generate a File of Numbers

import java.util.Random;
import java.io.File;
import java.io.PrintStream;
import java.io.IOException;

(continued)

267Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 267

Listing 11-7 (continued)

class MakeRandomNumsFile {

public static void main(String args[])
throws IOException {

Random generator = new Random();

if (args.length < 2) {
System.out.println

(“Usage: MakeRandomNumsFile filename number”);
System.exit(1);

}

PrintStream printOut = new PrintStream(args[0]);
int numLines = Integer.parseInt(args[1]);

for (int count = 1; count <= numLines; count++) {
printOut.println(generator.nextInt(10) + 1);

}
}

}

In preparing the code for this book’s CD-ROM, I tweaked some settings for
this section’s JCreator project. As a result, choosing Build➪Execute Project
gets you the window shown in Figure 11-12. Before executing the code,
JCreator prompts the user for extra information. In Figure 11-12, I type two
extra pieces of information — the MyNumberedFile.txt file and the value 5.
After clicking OK, the code in Listing 11-7 begins running.

When the code begins running, the args array gets its values. In the main
method of Listing 11-7, the array component args[0] automatically takes
on the value “MyNumberedFile.txt”, and args[1] automatically becomes
“5”. So the program’s assignment statements end up having the following
meaning:

PrintStream printOut = new PrintStream(“MyNumberedFile.txt”);
int numLines = Integer.parseInt(“5”);

Figure 11-12:
JCreator
prompts
the user
for com-

mand line
arguments.

268 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 268

The program creates a file named MyNumberedFile.txt and sets numLines to
5. So later in the code, the program randomly generates five values and puts
those values into MyNumberedFile.txt. One run of the program gave me the
file shown in Figure 11-13.

Notice how each command line argument is a String value. When you look
at args[1], you don’t see the number 5 — you see the string “5” with a digit
character in it. Unfortunately, you can’t use that “5” to do any counting. To
get an int value from “5”, you have to apply the parseInt method.

The parseInt method lives inside a class named Integer. So, to call parseInt,
you preface the name parseInt with the word Integer. The Integer class has
all kinds of handy methods for doing things with int values.

In Java, Integer is the name of a class, and int is the name of a primitive (simple)
type. The two things are related, but they’re not the same. The Integer class
has methods and other tools for dealing with int values.

Checking for the right number
of command line arguments
What happens if the user makes a mistake? What if the dialog box in
Figure 11-12 (shown previously) pops up and the user forgets to type the
number 5. The user types MyNumberedFile.txt, and nothing else.

Then the computer assigns “MyNumberedFile.txt” to args[0], but it
doesn’t assign anything to args[1]. This is bad. If the computer ever reaches
the statement

int numLines = Integer.parseInt(args[1]);

then the program crashes with an unfriendly ArrayIndexOutOfBounds
Exception.

Figure 11-13:
A file from

a run of
the code in

Listing 11-7.

269Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 269

So, what do you do about this? In Listing 11-7, you check the length of the
args array. You compare args.length with 2. If the args array has fewer
than two components, you display a message on the screen and you exit from
the program. Figure 11-14 shows the resulting output.

Despite the checking of args.length in Listing 11-7, the code still isn’t crash-
proof. If you type five instead of 5, the program takes a nosedive with a
NumberFormatException. The second command line argument can’t be a
word. The argument has to be a number (and a whole number at that). I can
add statements to Listing 11-7 to make the code more bulletproof, but check-
ing for the NumberFormatException is better done in Chapter 12.

When you’re working with command line arguments, you can enter a
String value with a blank space in it. Just enclose the value in double
quote marks. For instance, you can run the code of Listing 11-7 with
arguments “My File.txt” 7.

Setting up JCreator for command line
arguments
Normally, when you choose Build➪Execute Project, the computer starts run-
ning your code. The computer doesn’t wait for you to enter any extra pieces
of information, so things like an extra filename and the number of values in
the file can get lost in the dust. To use command line arguments, the com-
puter has to pause for a moment. During this pause, the computer prompts
the user to type in a few more bits of information.

For the code on the CD-ROM, I rigged JCreator to display the dialog box in
Figure 11-12. But if you’re creating a program on your own, how do you tell
JCreator to pause and prompt the user for information? To find out, follow
these steps:

Figure 11-14:
The code in
Listing 11-7

tells you
how to

run it.

270 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 270

1. In JCreator’s File View pane, find the project whose main program
uses command line arguments.

If you’re using this book’s sample code, pick the Listing1107 project.

2. Right-click the project’s branch in the File View tree. In the resulting
context menu, choose Sets as Active Project.

This makes the appropriate project active.

It’s easy to forget Step 2. Don’t forget Step 2!

3. Again, right-click the project’s branch in the File View tree. In the
resulting context menu, choose Properties.

A Project Properties window appears.

4. In the Project Properties window, select the JDK Tools tab.
(See Figure 11-15.)

5. Make sure that Run Application appears in the Select Tool Type drop-
down list.

6. Beneath the Select Tool Type list, select the Default configuration.

7. Click the Copy button.

A window titled Tool Configuration : Run Application appears.

8. In the Tool Configuration window’s Name text box, type anything that
reminds you what this example is all about.

In Figure 11-16, I typed GetCommandLineArguments.

Figure 11-15:
Preparing to

copy the
default Run
Application
configura-

tion.

271Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 271

9. In the Tool Configuration window, select the Parameters tab.

10. Select the Prompt for main Method Arguments check box.

11. Click OK.

The Tool Configuration window disappears. Now you’re staring at the
Project Properties window again.

12. In the Project Properties window, select the check box next to your
newly created configuration.

In Figure 11-17, I selected my new GetCommandLineArguments
configuration.

13. Click OK.

Isn’t that the way these lists of instructions always seem to end?

Figure 11-17:
Selecting
your new

configura-
tion.

Figure 11-16:
The Tool

Configura-
tion window.

272 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 272

After following Steps 1 through 13, your project is changed. Whenever that
project is the active project, choosing Build➪Execute Project gives you a
dialog box like the one shown previously in Figure 11-12.

For hints on the use of command line arguments in environments other than
JCreator, see this book’s Web site.

The sun is about to set on this book’s discussion of arrays. The next section
deals with something slightly different. But before you leave the subject of
arrays, think about this: An array is a row of things, and not every kind of
thing fits into just one row. Take the motel in this chapter’s first few exam-
ples. The motel rooms, numbered 0 through 9, are in one big line. But what if
you move up in the world? You buy a big hotel with 50 floors and with 100
rooms on each floor. Then the data is square shaped. We have 50 rows, and
each row contains 100 items. Sure, you can think of the rooms as if they’re all
in one big row, but why should you have to do that? How about having a
two-dimensional array? It’s a square-shaped array in which each compo-
nent has two indices — a row number and a column number. Alas, I have no
space in this book to show you a two-dimensional array (and I can’t afford a
big hotel’s prices anyway). But if you visit this book’s Web site, you can read
all about it.

Using Java Collections
Arrays are nice, but arrays have some serious limitations. Imagine that you
store customer names in some predetermined order. Your code contains an
array, and the array has space for 100 names.

String name[] = new String[100];
for (int i = 0; i < 100; i++) {

name[i] = new String();
}

All is well until, one day, customer number 101 shows up. As your program
runs, you enter data for customer 101, hoping desperately that the array with
100 components can expand to fit your growing needs.

No such luck. Arrays don’t expand. Your program crashes with an
ArrayIndexOutOfBoundsException.

“In my next life, I’ll create arrays of length 1,000,” you say to yourself. And
when your next life rolls around, you do just that.

273Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 273

String name[] = new String[1000];
for (int i = 0; i < 1000; i++) {

name[i] = new String();
}

But during your next life, an economic recession occurs. Instead of having
101 customers, you have only 3 customers. Now you’re wasting space for
1,000 names when space for 3 names would do.

And what if no economic recession occurs? You’re sailing along with your
array of size 1,000, using a tidy 825 spaces in the array. The components
with indices 0 through 824 are being used, and the components with indices
825 through 999 are waiting quietly to be filled.

One day, a brand-new customer shows up. Because your customers are
stored in order (alphabetically by last name, numerically by Social Security
number, whatever), you want to squeeze this customer into the correct com-
ponent of your array. The trouble is that this customer belongs very early on
in the array, at the component with index 7. What happens then?

You take the name in component number 824 and move it to component 825.
Then you take the name in component 823 and move it to component 824.
Take the name in component 822 and move it to component 823. You keep
doing this until you’ve moved the name in component 7. Then you put the
new customer’s name into component 7. What a pain! Sure, the computer
doesn’t complain. (If the computer has feelings, it probably likes this kind of
busy work.) But as you move around all these names, you waste processing
time, you waste power, and you waste all kinds of resources.

“In my next life, I’ll leave three empty components between every two
names.” And of course, your business expands. Eventually you find that three
isn’t enough.

Collection classes to the rescue
The issues in the previous few paragraphs aren’t new. Computer scientists
have been working on these issues for a long time. They haven’t discovered
any magic one-size-fits-all solution, but they’ve discovered some clever tricks.

The Java API has a bunch of classes known as collection classes. Each collec-
tion class has methods for storing bunches of values. And each collection
class’s methods use some clever tricks. For you, the bottom line is as follows:
Certain collection classes deal as efficiently as possible with the issues raised
in the previous few paragraphs. If you’re writing code, and you know that you

274 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 274

have to deal with such issues, you can use these collection classes and call
the classes’ methods. Instead of fretting about a customer whose name
belongs in position 7, you can just call a class’s add method. The method
inserts the name at a position of your choice, and deals reasonably with
whatever ripple effects have to take place. In the best circumstances, the
insertion is very efficient. In the worst circumstances, you can rest assured
that the code does everything the best way it can.

Using an ArrayList
The most useful of Java’s collection classes is the ArrayList. Listing 11-8
shows you how it works.

Listing 11-8: Working with a Java Collection

import static java.lang.System.out;
import java.util.Scanner;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;

class ShowNames {

public static void main(String args[])
throws IOException {

ArrayList<String> people = new ArrayList<String>();
Scanner diskScanner =

new Scanner(new File(“names.txt”));

while (diskScanner.hasNext()) {
people.add(diskScanner.nextLine());

}

people.remove(0);
people.add(2, “Jim Newton”);

for (String name : people) {
out.println(name);

}
}

}

Figure 11-18 shows you a sample names.txt file. The code in Listing 11-8
reads that names.txt file, and prints the stuff in Figure 11-19.

275Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 275

All the interesting things happen when you execute the remove and add
methods. The variable named people refers to an ArrayList object. When
you call that object’s remove method

people.remove(0);

you eliminate a value from the list. In this case, you eliminate whatever value
is in the list’s initial position (the position numbered 0). So in Listing 11-8, the
call to remove takes the name Barry Burd out of the list.

That leaves only eight names in the list, but then the next statement,

people.add(2, “Jim Newton”);

inserts a name into position number 2. (After Barry is removed, position
number 2 is the position occupied by Harry Spoonswagler, so Harry moves to
position 3, and Jim Newton becomes the number 2 man.)

Notice that an ArrayList object has two different add methods. The method
that adds Jim Newton has two parameters — a position number and a value
to be added. Another add method

people.add(diskScanner.nextLine());

takes only one parameter. This statement takes whatever name it finds on a
line of the input file and appends that name to the end of the list. (The add
method with only one parameter always appends its value to what’s cur-
rently the end of the ArrayList object.)

Figure 11-19:
The code in
Listing 11-8

changes
some of the

names.

Figure 11-18:
Several

names in
a file.

276 Part IV: Savvy Java Techniques

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 276

Using generics (hot stuff!)
Look again at Listing 11-8, and notice the funky ArrayList declaration:

ArrayList<String> people = new ArrayList<String>();

In Java 5.0, each collection class is generified. That ugly-sounding word
means that every declaration should contain <SomeTypeName>. The thing
that’s sandwiched between < and > tells Java what kinds of values the new
collection may contain.

For example, in Listing 11-8 the words ArrayList<String> people say that
the people variable can refer only to a collection of String values. So from
that point on, any reference to an item from the people collection is treated
exclusively as a String. If you write

people.add(new Room());

then the compiler coughs up your code and spits it out because a Room isn’t
the same as a String. (This coughing and spitting happens even if the com-
piler has access to the Room class’s code — the code in Listing 11-5.) But the
statement

people.add(“George Gow”);

is just fine. Because “George Gow” has type String, the compiler smiles
happily.

Testing for the presence of more data
Here’s a pleasant surprise. When you write a program like the one shown pre-
viously in Listing 11-8, you don’t have to know how many names are in the
input file. Having to know the number of names may defeat the purpose of
using the easily expandable ArrayList class. Instead of looping until you
read exactly nine names, you can loop until you run out of data.

The Scanner class has several nice methods like hasNextInt,
hasNextDouble, and plain old hasNext. Each of these methods checks for
more input data. If there’s more data, the method returns true. Otherwise,
the method returns false.

Listing 11-8 uses the general purpose hasNext method. This hasNext
method returns true as long as there’s anything more to read from the pro-
gram’s input. So after the program scoops up that last Hugh R. DaReader
line in Figure 11-18, the subsequent hasNext call returns false. This false
condition ends execution of the while loop and plummets the computer
toward the remainder of the Listing 11-8 code.

277Chapter 11: Using Arrays and Collections to Juggle Values

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 277

278 Part IV: Savvy Java Techniques

All about generics
One of Java’s original design goals was to keep
the language as simple as possible. The lan-
guage’s developer took some unnecessarily
complicated features of C++ and tossed them
out the window. The result was a language that
was elegant and sleek. Some people said the
language was too sleek. So after several years
of discussion and squabbling, Java is becoming
a bit more complicated.

In particular, Java 5.0 includes enum types,
enhanced for loops, static import, and some
other interesting features. But the most
talked-about new feature is the introduction of
generics.

ArrayList<String> people =
new ArrayList<String>();

The use of anything like <String> is new in
Java 5.0. In old-style Java, you’d write

ArrayList people =
new ArrayList();

In those days, an ArrayList could store
almost anything you wanted to put in it — a
number, an Account, a Room, a String —
anything. The ArrayList class was very
versatile, but with this versatility came some
headaches. If you could put anything into
an ArrayList, you couldn’t easily predict
what you would get out of an ArrayList. In
particular, you couldn’t easily write code that
assumed you had stored certain types of values
in the ArrayList. Here’s an example:

ArrayList things =
new ArrayList();

things.add(new Account());
Account myAccount =

things.get(0);
//DON’T USE THIS. IT’S BAD

CODE.

In the third line, the call to get(0) grabs the
earliest value in the things collection. The call
to get(0) is okay, but then the compiler
chokes on the attempted assignment to
myAccount. You get a message on the third
line saying that whatever you get from the
things list can’t be stuffed into the
myAccount variable. You get this message
because, by the time the compiler reaches the
third line, it has forgotten that the item added on
the second line was of type Account!

The introduction of generics fixes this problem:

ArrayList<Account> things =
new ArrayList<Account>();

things.add(new Account());
Account myAccount =

things.get(0);
//USE THIS CODE INSTEAD. IT’S

GOOD CODE.

Adding <Account> in two places tells the
compiler that things stores Account
instances — nothing else. So, in the third line
above, you get a value from the things col-
lection. Then, because things stores only
Account objects, you can make myAccount
refer to that new value. It works!

04c_568582 ch11.qxd 7/27/04 11:49 PM Page 278

Chapter 12

Looking Good When Things
Take Unexpected Turns

In This Chapter
� Recovering from bad input and other nasty situations

� Making your code (more or less) crash proof

� Defining your own exception class

September 9, 1945: A moth flies into one of the relays of the Harvard Mark
II computer and gums up the works. This becomes the first recorded case

of a real computer bug.

April 19, 1957: Herbert Bright, manager of the data processing center at
Westinghouse in Pittsburgh, receives an unmarked deck of computer punch
cards in the mail (which is like getting an unlabeled CD-ROM in the mail today).
Mr. Bright guesses that this deck comes from the development team for FOR-
TRAN — the first computer programming language. He’s been waiting a few
years for this software. (No Web downloads were available at the time.)

Armed with nothing but this good guess, Bright writes a small FORTRAN pro-
gram and tries to compile it on his IBM 704. (The IBM 704 lives in its own spe-
cially built, 2,000-square-foot room. With vacuum tubes instead of transistors,
the machine has a whopping 32K of RAM. The operating system has to be
loaded from tape before the running of each program, and a typical program
takes between two and four hours to run.) After the usual waiting time, Bright’s
attempt to compile a FORTRAN program comes back with a single error — a
missing comma in one of the statements. Bright corrects the error, and the
program runs like a charm.

July 22, 1962: Mariner I, the first U.S. spacecraft aimed at another planet, is
destroyed when it behaves badly four minutes after launch. The bad behav-
ior is attributed to a missing bar (like a hyphen) in the formula for the rocket’s
velocity.

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 279

Around the same time, orbit computation software at NASA is found to contain
the incorrect statement DO 10 I=1.10 (instead of the correct DO 10 I=1,10).
In modern notation, this is like writing do10i = 1.10 in place of for (int
i=1; i<=10; i++). The change from a comma to a period turns a loop into an
assignment statement.

January 1, 2000: The Year 2000 Problem wreaks havoc on the modern world.

Any historically accurate facts in these notes were borrowed from the follow-
ing sources: the Computer Folklore newsgroup (alt.folklore.computers,
which you can access through groups.google.com), the Free On-line Dic-
tionary of Computing (www.foldoc.org), the “Looking Back” column in
Computer magazine (www.computer.org/computer), and the Web pages of
the IEEE (www.computer.org/history).

Handling Exceptions
You’re taking inventory. This means counting item after item, box after box,
and marking the numbers of such things on log sheets, in little handheld
gizmos, and into forms on computer keyboards. A particular part of the pro-
ject involves entering the number of boxes that you find on the Big Dusty
Boxes That Haven’t Been Opened Since Year One shelf. Rather than break the
company’s decades-old habit, you decide not to open any of these boxes. You
arbitrarily assign the value $3.25 to each box.

Listing 12-1 shows the software to handle this bit of inventory. The software
has a flaw, which is revealed in Figure 12-1. When the user enters a whole
number value, things are okay. But when the user enters something else (like
the number 3.5), the program comes crashing to the ground. Surely something
can be done about this. Computers are stupid, but they’re not so stupid that
they should fail royally when a user enters an improper value.

Listing 12-1: Counting Boxes

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

class InventoryA {

public static void main(String args[]) {
final double boxPrice = 3.25;
Scanner myScanner = new Scanner(System.in);
NumberFormat currency =

NumberFormat.getCurrencyInstance();

280 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 280

out.print(“How many boxes do we have? “);
String numBoxesIn = myScanner.next();
int numBoxes = Integer.parseInt(numBoxesIn);

out.print(“The value is “);
out.println(currency.format(numBoxes * boxPrice));

}
}

The key to fixing a program bug is examining the message that appears when
the program crashes. The inventory program’s message says java.lang.
NumberFormatException. That means a class named NumberFormatException
is in the java.lang API package. Somehow, the call to Integer.parseInt
brought this NumberFormatException class out of hiding.

For a brief explanation of the Integer.parseInt method, see Chapter 11.

Well, here’s what’s going on. The Java programming language has a mechanism
called exception handling. With exception handling, a program can detect that
things are about to go wrong and respond by creating a brand-new object. In
the official terminology, the program is said to be throwing an exception. That
new object, an instance of the Exception class, is passed like a hot potato
from one piece of code to another until some piece of code decides to catch the
exception. When the exception is caught, the program executes some recovery
code, buries the exception, and moves on to the next normal statement as if
nothing had ever happened. The process is illustrated in Figure 12-2.

The whole thing is done with the aid of several Java keywords. These key-
words are as follows:

� throw: Creates a new exception object.

� throws: Passes the buck from a method up to whatever code called the
method.

Figure 12-1:
Oops!

That’s not
a number.

281Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 281

� try: Encloses code that has the potential to create a new exception
object. In the usual scenario, the code inside a try clause contains calls
to methods whose code can create one or more exceptions.

� catch: Deals with the exception, buries it, and then moves on.

So, the truth is out. Through some chain of events like the one shown in
Figure 12-2, the method Integer.parseInt can throw a NumberFormat
Exception. When you call Integer.parseInt, this NumberFormatException
is passed on to you.

The Java API (Application Programming Interface) documentation for the
parseInt method says, “Throws: NumberFormatException — if the string
does not contain a parsable integer.” Once in a while, reading the documenta-
tion actually pays.

If you call yourself a hero, you’d better catch the exception so that all the other
code can get on with its regular business. Listing 12-2 shows the catching of
an exception.

void method1() {
 try {
 method2();
 } catch (Exception e) {

 }
}

void method2() throws Exception {
 method3();
}

void method3() throws Exception {
 method4();
}

void method4() throws Exception {
 throw new Exception();
}

Figure 12-2:
Throwing,

passing, and
catching an

exception.

282 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 282

Listing 12-2: A Hero Counts Boxes

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

class InventoryB {

public static void main(String args[]) {
final double boxPrice = 3.25;
Scanner myScanner = new Scanner(System.in);
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“How many boxes do we have? “);
String numBoxesIn = myScanner.next();

try {
int numBoxes = Integer.parseInt(numBoxesIn);
out.print(“The value is “);
out.println(currency.format(numBoxes * boxPrice));

} catch (NumberFormatException e) {
out.println(“That’s not a number.”);

}
}

}

Figure 12-3 shows three runs of the code from Listing 12-2. When a misguided
user types three instead of 3, the program maintains its cool by displaying
That’s not a number. The trick is to enclose the call to Integer.parseInt
inside a try clause. When you do this, the computer watches for exceptions
when any statement inside the try clause is executed. If an exception is
thrown, the computer jumps from inside the try clause to a catch clause
below it. In Listing 12-2, the computer jumps directly to the catch (Number
FormatException e) clause. The computer executes the println statement
inside the clause, and then marches on with normal processing. (If there were
statements in Listing 12-2 after the end of the catch clause, the computer
would go on and execute them.)

An entire try-catch assembly, complete with a try clause, catch clause, and
what have you, is called a try statement. Sometimes, for emphasis, I call it a
try-catch statement.

Figure 12-3:
Catch that
exception.

283Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 283

The parameter in a catch clause
Take a look at the catch clause in Listing 12-2 and pay particular attention to
the words (NumberFormatException e). This looks a lot like a method’s
parameter list, doesn’t it? In fact, every catch clause is like a little mini-method
with its own parameter list. The parameter list always has an exception type
name and then a parameter.

In Listing 12-2, I don’t do anything with the catch clause’s e parameter, but I
certainly could if I wanted to. Remember, the exception that’s thrown is an
object — an instance of the NumberFormatException class. When an excep-
tion is caught, the computer makes the catch clause’s parameter refer to that
exception object. In other words, the name e stores a bunch of information
about the exception. To take advantage of this, you can call some of the
exception object’s methods.

} catch (NumberFormatException e) {
out.println(“That’s not a number.”);

out.println(“Message: “ + e.getMessage());

out.println(“Here comes a stack trace: “);
e.printStackTrace();
out.println(“Did you like the stack trace?”);

}

With this enhanced catch clause, a run of the inventory program may look
like the run shown in Figure 12-4. When you call getMessage, you fetch some
detail about the exception. (In Figure 12-4, the detail is the fact that the user
mistakenly typed the word three.) When you call printStackTrace, you get a
display showing the methods that were running at the moment when the
exception was thrown. (In Figure 12-4, the display includes Integer.parseInt
and the main method.) Both getMessage and printStackTrace present infor-
mation to help you find the source of the program’s difficulties.

Figure 12-4:
Calling an
exception

object’s
methods.

284 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 284

Exception types
So what else can go wrong today? Are there other kinds of exceptions —
things that don’t come from the NumberFormatException class? Sure, plenty
of different exception types are out there. You can even create one of your own.
You wanna try? If so, look at Listings 12-3 and 12-4.

Listing 12-3: Making Your Own Kind of Exception

class OutOfRangeException extends Exception {
}

Listing 12-4: Using Your Custom Made Exception

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

class InventoryC {

public static void main(String args[]) {
final double boxPrice = 3.25;
Scanner myScanner = new Scanner(System.in);
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“How many boxes do we have? “);
String numBoxesIn = myScanner.next();

try {
int numBoxes = Integer.parseInt(numBoxesIn);

if (numBoxes < 0) {
throw new OutOfRangeException();

}

out.print(“The value is “);
out.println(currency.format(numBoxes * boxPrice));

} catch (NumberFormatException e) {
out.println(“That’s not a number.”);

} catch (OutOfRangeException e) {
out.print(numBoxesIn);
out.println(“? That’s impossible!”);

}
}

}

285Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 285

Listings 12-3 and 12-4 remedy a problem that cropped up in Figure 12-3. Look
at the last of the three runs in Figure 12-3. The user reports that the shelves
have –25 boxes, and the computer takes this value without blinking an eye.
The truth is that you would need a black hole (or some other exotic space-
time warping phenomenon) to have a negative number of boxes on any shelf
in your warehouse. So the program should get upset if the user enters a nega-
tive number of boxes, which is what the code in Listing 12-4 does. To see the
upset code, look at Figure 12-5.

The code in Listing 12-3 declares a new kind of exception class — OutOfRange
Exception. In many situations, typing a negative number would be just fine, so
OutOfRangeException isn’t built into the Java API. However, in the inventory
program, a negative number should be flagged as an anomaly.

The OutOfRangeException class in Listing 12-3 wins the award for the short-
est self-contained piece of code in the book. The class’s code is just a declara-
tion line and an empty pair of braces. The code’s operative phrase is extends
Exception. Being a subclass of the Java API Exception class allows any
instance of the OutOfRangeException class to be thrown.

Back in Listing 12-4, a new OutOfRangeException instance is thrown. When
this happens, the catch clause (OutOfRangeException e) catches the
instance. The clause echoes the user’s input and displays the message That’s
impossible!

Who’s going to catch the exception?
Take one more look at Listing 12-4. Notice that more than one catch clause
can accompany a single try clause. When an exception is thrown inside a
try clause, the computer starts going down the accompanying list of catch
clauses. The computer starts at whatever catch clause comes immediately
after the try clause and works its way down the program’s text.

Figure 12-5:
Running the

code from
Listings 12-3

and 12-4.

286 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 286

For each catch clause, the computer asks itself, “Is the exception that was just
thrown an instance of the class in this clause’s parameter list?”

� If not, the computer skips this catch clause and moves on to the next
catch clause in line.

� If so, the computer executes this catch clause and then skips past all
the other catch clauses that come with this try clause. The computer
goes on and executes whatever statements come after the whole try-
catch statement.

For some concrete examples, see Listings 12-5 and 12-6.

Listing 12-5: Yet Another Exception

class NumberTooLargeException extends OutOfRangeException {
}

Listing 12-6: Where Does the Buck Stop?

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

class InventoryD {

public static void main(String args[]) {
final double boxPrice = 3.25;
Scanner myScanner = new Scanner(System.in);
NumberFormat currency =

NumberFormat.getCurrencyInstance();

out.print(“How many boxes do we have? “);
String numBoxesIn = myScanner.next();

try {
int numBoxes = Integer.parseInt(numBoxesIn);

if (numBoxes < 0) {
throw new OutOfRangeException();

}

if (numBoxes > 1000) {
throw new NumberTooLargeException();

}

out.print(“The value is “);
out.println(currency.format(numBoxes * boxPrice));

}

(continued)

287Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 287

Listing 12-6 (continued)

catch (NumberFormatException e) {
out.println(“That’s not a number.”);

}

catch (OutOfRangeException e) {
out.print(numBoxesIn);
out.println(“? That’s impossible!”);

}

catch (Exception e) {
out.print(“Something went wrong, “);
out.print(“but I’m clueless about what “);
out.println(“it actually was.”);

}

out.println(“That’s that.”);
}

}

To run the code in Listings 12-5 and 12-6, you need one additional Java program
file. You need the OutOfRangeException class in Listing 12-3.

Listing 12-6 addresses the scenario in which you have limited shelf space. You
don’t have room for more than 1,000 boxes, but once in a while, the program
asks how many boxes you have, and somebody enters the number 100000 by
accident. In cases like this, Listing 12-6 does a quick reality check. Any number
of boxes over 1,000 is tossed out as being unrealistic.

Listing 12-6 watches for a NumberTooLargeException, but to make life more
interesting, Listing 12-6 doesn’t have a catch clause for the NumberTooLarge
Exception. In spite of this, everything still works out just fine. It’s fine
because NumberTooLargeException is declared to be a subclass of OutOf
RangeException, and Listing 12-6 has a catch clause for the OutOfRange
Exception.

You see, because NumberTooLargeException is a subclass of OutOfRange
Exception, any instance of NumberTooLargeException is just a special kind
of OutOfRangeException. So in Listing 12-6, the computer may start looking
for a clause to catch a NumberTooLargeException. When the computer
stumbles upon the OutOfRangeException catch clause, the computer says,
“Okay, I’ve found a match. I’ll execute the statements in this catch clause.”

To keep from having to write this whole story over and over again, I introduce
some new terminology. I say that the catch clause with parameter OutOfRange
Exception matches the NumberTooLargeException that’s been thrown. I call
this catch clause a matching catch clause.

288 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 288

The following bullets describe different things that the user may do and how
the computer responds. As you read through the bullets, you can follow along
by looking at the runs shown in Figure 12-6.

� The user enters an ordinary whole number, like the number 3.

All the statements in the try clause are executed. Then the computer
skips past all the catch clauses and executes the code that comes
immediately after all the catch clauses. (See Figure 12-7.)

try {

 //Normal processing (throw no exception)

}

catch (NumberFormatException e) {
 out.println("That's not a number.");
}

catch (OutOfRangeException e) {
 out.print(numBoxesIn);
 out.println("? That's impossible!");
}

catch (Exception e) {
 out.print("Something went wrong, ");
 out.print("but I'm clueless about what ");
 out.println("it actually was.");
}

out.println("That's that.");

Figure 12-7:
No

exception
is thrown.

Figure 12-6:
Running the

code from
Listing 12-6.

289Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 289

� The user enters something that’s not a whole number, like the word
fish.

The code throws a NumberFormatException. The computer skips past
the remaining statements in the try clause. The computer executes the
statements inside the first catch clause — the clause whose parameter
is of type NumberFormatException. Then the computer skips past the
second and third catch clauses and executes the code that comes
immediately after all the catch clauses. (See Figure 12-8.)

� The user enters a negative number, like the number –25.

The code throws an OutOfRangeException. The computer skips past
the remaining statements in the try clause. The computer even skips
past the statements in the first catch clause. (After all, an OutOfRange
Exception isn’t any kind of a NumberFormatException. The catch
clause with parameter NumberFormatException isn’t a match for this
OutOfRangeException.) The computer executes the statements inside
the second catch clause — the clause whose parameter is of type
OutOfRangeException. Then the computer skips past the third catch
clause and executes the code that comes immediately after all the catch
clauses. (See Figure 12-9.)

try {

 throw new NumberFormatException ();

}

catch (NumberFormatException e) {
 out.println("That's not a number.");
}

catch (OutOfRangeException e) {
 out.print(numBoxesIn);
 out.println("? That's impossible!");
}

catch (Exception e) {
 out.print("Something went wrong, ");
 out.print("but I'm clueless about what ");
 out.println("it actually was.");
}

out.println("That's that.");

Figure 12-8:
A Number

Format
Exception is

thrown.

290 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 290

� The user enters an unrealistically large number, like the number 1001.

The code throws a NumberTooLargeException. The computer skips past
the remaining statements in the try clause. The computer even skips past
the statements in the first catch clause. (After all, a NumberTooLarge
Exception isn’t any kind of NumberFormatException.)

But, according to the code in Listing 12-5, NumberTooLargeException
is a subclass of OutOfRangeException. When the computer reaches
the second catch clause, the computer says, “Hmm! A NumberTooLarge
Exception is a kind of OutOfRangeException. I’ll execute the state-
ments in this catch clause — the clause with parameter of type OutOf
RangeException.” In other words, it’s a match.

So, the computer executes the statements inside the second catch clause.
Then the computer skips the third catch clause and executes the code
that comes immediately after all the catch clauses. (See Figure 12-10.)

� Something else, something very unpredictable happens (I don’t know
what).

With my unending urge to experiment, I reached into the try clause of
Listing 12-6 and added a statement that throws an IOException. No
reason — I just wanted to see what would happen.

try {

 throw new OutOfRangeException ();

}

catch (NumberFormatException e) {
 out.println("That's not a number.");
}

catch (OutOfRangeException e) {
 out.print(numBoxesIn);
 out.println("? That's impossible!");
}

catch (Exception e) {
 out.print("Something went wrong, ");
 out.print("but I'm clueless about what ");
 out.println("it actually was.");
}

out.println("That's that.");

Figure 12-9:
An

OutOfRange
Exception is

thrown.

291Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 291

When the code threw an IOException, the computer skipped past the
remaining statements in the try clause. Then the computer skipped
past the statements in the first and second catch clauses. When the
computer reached the third catch clause, I could hear the computer
say, “Hmm! An IOException is a kind of Exception. I’ve found a match-
ing catch clause — a clause with a parameter of type Exception. I’ll
execute the statements in this catch clause.”

So, the computer executed the statements inside the third catch clause.
Then the computer executed the code that comes immediately after all
the catch clauses. (See Figure 12-11.)

When the computer looks for a matching catch clause, the computer latches
on to the topmost clause that fits one of the following descriptions:

� The clause’s parameter type is the same as the type of the exception
that was thrown.

� The clause’s parameter type is a superclass of the exception’s type.

try {

 throw new NumberTooLargeException ();

}

catch (NumberFormatException e) {
 out.println("That's not a number.");
}

catch (OutOfRangeException e) {
 out.print(numBoxesIn);
 out.println("? That's impossible!");
}

catch (Exception e) {
 out.print("Something went wrong, ");
 out.print("but I'm clueless about what ");
 out.println("it actually was.");
}

out.println("That's that.");

Figure 12-10:
A Number
TooLarge

Exception is
thrown.

292 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 292

If a better match appears farther down the list of catch clauses, that’s just too
bad. For instance, imagine that you added a catch clause with a parameter of
type NumberTooLargeException to the code in Listing 12-6. Imagine, also, that
you put this new catch clause after the catch clause with parameter of type
OutOfRangeException. Then, because NumberTooLargeException is a sub-
class of the OutOfRangeException class, the code in your new NumberToo
LargeException clause would never be executed. That’s just the way the
cookie crumbles.

Throwing caution to the wind
Are you one of those obsessive-compulsive types? Do you like to catch every
possible exception before the exception can possibly crash your program?
Well, watch out. Java doesn’t let you become paranoid. You can’t catch an
exception if the exception has no chance of being thrown.

Consider the following code. The code has a very innocent i++ statement
inside a try clause. That’s fair enough. But then the code’s catch clause is
pretending to catch an IOException.

try {

 throw new IOException ();

}

catch (NumberFormatException e) {
 out.println("That's not a number.");
}

catch (OutOfRangeException e) {
 out.print(numBoxesIn);
 out.println("? That's impossible!");
}

catch (Exception e) {
 out.print("Something went wrong, ");
 out.print("but I'm clueless about what ");
 out.println("it actually was.");
}

out.println("That's that.");

Figure 12-11:
An

IOException
is thrown.

293Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 293

// Bad code!
try {

i++;
} catch (IOException e) {

e.printStackTrace();
}

Who is this catch clause trying to impress? A statement like i++ doesn’t do
any input or output. The code inside the try clause can’t possibly throw an
IOException. So the compiler comes back and says, “Hey, catch clause. Get
real. Get off your high horse.” Well, to be a bit more precise, the compiler’s
reprimand reads as follows:

exception java.io.IOException is never thrown in body of
corresponding try statement

Doing useful things
So far, each example in this chapter catches an exception, prints a “bad input”
message, and then closes up shop. Wouldn’t it be nice to see a program that
actually carries on after an exception has been caught? Well, it’s time for some-
thing nice. Listing 12-7 has a try-catch statement inside a loop. The loop
keeps running until the user types something sensible.

Listing 12-7: Keep Pluggin’ Along

import static java.lang.System.out;
import java.util.Scanner;
import java.text.NumberFormat;

class InventoryLoop {

public static void main(String args[]) {
final double boxPrice = 3.25;
boolean gotGoodInput = false;
Scanner myScanner = new Scanner(System.in);
NumberFormat currency =

NumberFormat.getCurrencyInstance();

do {
out.print(“How many boxes do we have? “);
String numBoxesIn = myScanner.next();

try {
int numBoxes = Integer.parseInt(numBoxesIn);
out.print(“The value is “);

294 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 294

out.println
(currency.format(numBoxes * boxPrice));

gotGoodInput = true;
} catch (NumberFormatException e) {

out.println();
out.println(“That’s not a number.”);

}
} while (!gotGoodInput);

out.println(“That’s that.”);
}

}

Figure 12-12 shows a run of the code from Listing 12-7. In the first three
attempts, the user types just about everything except a valid whole number.
At last, the fourth attempt is a success. The user types 3, and the computer
leaves the loop.

Our friends, the good exceptions
A rumor is going around that Java exceptions always come from unwanted,
erroneous situations. Although there’s some truth to this rumor, the rumor
isn’t entirely accurate. Occasionally, an exception arises from a normal,
expected occurrence. Take, for instance, the detection of the end of a file.
The following code makes a copy of a file:

try {
while (true) {

dataOut.writeByte(dataIn.readByte());
}

} catch (EOFException e) {
numFilesCopied = 1;

}

Figure 12-12:
A run of

the code in
Listing 12-7.

295Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 295

To copy bytes from dataIn to dataOut, you just go into a while loop. With
its true condition, the while loop is seemingly endless. But eventually, you
reach the end of the dataIn file. When this happens, the readByte method
throws an EOFException (an end-of-file exception). The throwing of this
exception sends the computer out of the try clause and out of the while
loop. From there, you do whatever you want to do in the catch clause, and
then proceed with normal processing.

Handle an Exception or Pass the Buck
So you’re getting to know Java, hey? What? You say you’re all the way up to
Chapter 12?

I’m impressed. You must be a hard worker. But remember, all work and no
play. . . .

So, how about taking a break? A little nap could do you a world of good. Is ten
seconds okay? Or is that too long? Better make it five seconds.

Listing 12-8 has a program that’s supposed to pause its execution for five sec-
onds. The problem is that the program in Listing 12-8 is incorrect. Take a look
at Listing 12-8 for a minute, and then I’ll tell you what’s wrong with it.

Listing 12-8: An Incorrect Program

/*
* This code does not compile.
*/

import static java.lang.System.out;

class NoSleepForTheWeary {

public static void main(String args[]) {
out.print(“Excuse me while I nap “);
out.println(“for just five seconds...”);

takeANap();

out.println(“Ah, that was refreshing.”);
}

static void takeANap() {
Thread.sleep(5000);

}
}

296 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 296

The strategy in Listing 12-8 isn’t bad. The idea is to call the sleep method,
which is defined in the Java API. This sleep method belongs to the API
Thread class. When you call the sleep method, the number that you feed it
is a number of milliseconds. So, Thread.sleep(5000) means pause for five
seconds.

The problem is that the code inside the sleep method can throw an excep-
tion. This kind of exception is an instance of the InterruptedException
class. When you try to compile the code in Listing 12-8, you get the following
unwanted message:

unreported exception java.lang.InterruptedException; must be
caught or declared to be thrown

For the purpose of understanding exceptions in general, you don’t need to
know exactly what an InterruptedException is. All you really have to know
is that a call to Thread.sleep can throw one of these InterruptedException
objects. But if you’re really curious, an InterruptedException is thrown
when some code interrupts some other code’s sleep. Imagine that you have
two pieces of code running at the same time. One piece of code calls the
Thread.sleep method. At the same time, another piece of code calls the
interrupt method. By calling the interrupt method, the second piece of
code brings the first code’s Thread.sleep method to a screeching halt. The
Thread.sleep method responds by spitting out an InterruptedException.

Now, the Java programming language has two different kinds of exceptions.
They’re called checked and unchecked exceptions:

� The potential throwing of a checked exception must be acknowledged in
the code.

� The potential throwing of an unchecked exception doesn’t need to be
acknowledged in the code.

An InterruptedException is one of Java’s checked exception types. When
you call a method that has the potential to throw an InterruptedException,
you need to acknowledge that exception in the code.

Now, when I say that an exception is acknowledged in the code, what do I
really mean?

// The author wishes to thank that InterruptedException,
// without which this code could not have been written.

No, that’s not what it means to be acknowledged in the code. Acknowledging
an exception in the code means one of two things:

297Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 297

� The statements (including method calls) that can throw the exception
are inside a try clause. That try clause has a catch clause with a
matching exception type in its parameter list.

� The statements (including method calls) that can throw the exception
are inside a method that has a throws clause in its header. The throws
clause contains a matching exception type.

If you’re confused by the wording of these two bullets, don’t worry. The next
two listings illustrate the points made in the bullets.

In Listing 12-9, the method call that can throw an InterruptedException is
inside a try clause. That try clause has a catch clause with exception type
InterruptedException.

Listing 12-9: Acknowledging with a try-catch Statement

import static java.lang.System.out;

class GoodNightsSleepA {

public static void main(String args[]) {
out.print(“Excuse me while I nap “);
out.println(“for just five seconds...”);

takeANap();

out.println(“Ah, that was refreshing.”);
}

static void takeANap() {
try {

Thread.sleep(5000);
} catch (InterruptedException e) {

out.println(“Hey, who woke me up?”);
}

}
}

It’s my custom, at this point in a section, to remind you that a run of Listing
Such-and-Such is shown in Figure So-and-So. But the problem here is that
Figure 12-13 doesn’t do justice to the code in Listing 12-9. When you run the
program in Listing 12-9, the computer displays Excuse me while I nap for
just five seconds, pauses for five seconds, and then displays Ah, that
was refreshing. The code works because the call to the sleep method,
which can throw an InterruptedException, is inside a try clause. That try
clause has a catch clause whose exception is of type InterruptedException.

298 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 298

So much for acknowledging an exception with a try-catch statement. You can
acknowledge an exception another way, which is used in Listing 12-10.

Listing 12-10: Acknowledging with throws

import static java.lang.System.out;

class GoodNightsSleepB {

public static void main(String args[]) {
out.print(“Excuse me while I nap “);
out.println(“for just five seconds...”);

try {
takeANap();

} catch (InterruptedException e) {
out.println(“Hey, who woke me up?”);

}

out.println(“Ah, that was refreshing.”);
}

static void takeANap() throws InterruptedException {
Thread.sleep(5000);

}
}

To see a run of the code in Listing 12-10, refer to Figure 12-13. Once again,
Figure 12-13 fails to capture the true essence of the run, but that’s okay. Just
remember that in Figure 12-13, the computer pauses for five seconds before it
displays Ah, that was refreshing.

The important part of Listing 12-10 is in the takeANap method’s header. That
header ends with throws InterruptedException. By announcing that it
throws an InterruptedException, method takeANap passes the buck. What
this throws clause really says is, “I realize that a statement inside this method
has the potential to throw an InterruptedException, but I’m not acknowl-
edging the exception in a try-catch statement. Java compiler, please don’t

Figure 12-13:
There’s a

five-second
pause

before the
“Ah” line.

299Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 299

bug me about this. Instead of having a try-catch statement, I’m passing the
responsibility for acknowledging the exception to the main method (the
method that called the takeANap method).”

Indeed, in the main method, the call to takeANap is inside a try clause.
That try clause has a catch clause with a parameter of type Interrupted
Exception. So everything is okay. Method takeANap passes the responsibil-
ity to the main method, and the main method accepts the responsibility with
an appropriate try-catch statement. Everybody’s happy. Even the Java com-
piler is happy.

To better understand the throws clause, imagine a volleyball game in which
the volleyball is an exception. When a player on the other team serves, that
player is throwing the exception. The ball crosses the net and comes right to
you. If you pound the ball back across the net, you’re catching the exception.
But if you pass the ball to another player, you’re using the throws clause. In
essence, you’re saying, “Here, other player. You deal with this exception.”

A statement in a method can throw an exception that’s not matched by a
catch clause. This includes situations in which the statement throwing the
exception isn’t even inside a try block. When this happens, execution of the
program jumps out of the method that contains the offending statement.
Execution jumps back to whatever code called the method in the first place.

A method can name more than one exception type in its throws clause. Just
use commas to separate the names of the exception types, like in the follow-
ing example:

throws InterruptedException, IOException, ArithmeticException

The Java API has hundreds of exception types. Several of them are subclasses
of the RuntimeException class. Anything that’s a subclass of Runtime
Exception (or a sub-subclass, sub-sub-subclass, and so on) is unchecked.
Any exception that’s not a descendent of RuntimeException is checked. The
unchecked exceptions include things that would be hard for the computer to
predict. Such things include the NumberFormatException (of Listings 12-2,
12-4, and others), the ArithmeticException, the IndexOutOfBounds
Exception, the infamous NullPointerException, and many others. When
you write Java code, much of your code is susceptible to these exceptions, but
enclosing the code in try clauses (or passing the buck with throws clauses) is
completely optional.

The Java API also has its share of checked exceptions. The computer can
readily detect exceptions of this kind. So Java insists that, for an exception of
this kind, any potential exception-throwing statement is acknowledged with

300 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 300

either a try statement or a throws clause. Java’s checked exceptions include
the InterruptedException (Listings 12-9 and 12-10), the IOException, the
SQLException, and a gang of other interesting exceptions.

Finishing the Job with a finally Clause
Once upon a time, I was a young fellow, living with my parents in Philadelphia,
just starting to drive a car. I was heading toward a friend’s house and thinking
about who knows what when another car came from nowhere and bashed my
car’s passenger door. This kind of thing is called a RunARedLightException.

Anyway, both cars were still drivable, and we were right in the middle of a
busy intersection. To avoid causing a traffic jam, we both pulled over to the
nearest curb. I fumbled for my driver’s license (which had a very young pic-
ture of me on it), and opened the door to get out of my car.

And that’s when the second accident happened. As I was getting out of my
car, a city bus was coming by. The bus hit me and rolled me against my car a
few times. This kind of thing is called a DealWithLawyersException.

The truth is that everything came out just fine. I was bruised but not battered.
My parents paid for the damage to the car, so I never suffered any financial
consequences. (I managed to pass on the financial burden by putting the
RunARedLightException into my throws clause.)

This incident helps to explain why I think the way I do about exception han-
dling. In particular, I wonder, “What happens if, while the computer is recover-
ing from one exception, a second exception is thrown?” After all, the statements
inside a catch clause aren’t immune to calamities.

Well, the answer to this question is anything but simple. For starters, you
can put a try statement inside a catch clause. This protects you against
unexpected, potentially embarrassing incidents that can crop up during the
execution of the catch clause. But when you start worrying about cascading
exceptions, you open up a very slimy can of worms. The number of scenarios
is large, and things can become complicated very quickly.

One not-too-complicated thing that you can do is to create a finally clause.
Like a catch clause, a finally clause comes after a try clause. The big dif-
ference is that the statements in a finally clause are executed whether or
not an exception is thrown. The idea is, “No matter what happens, good or
bad, execute the statements inside this finally clause.” Listing 12-11 has an
example.

301Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 301

Listing 12-11: Jumping Around

import static java.lang.System.out;

class DemoFinally {

public static void main(String args[]) {
try {

doSomething();
} catch (Exception e) {

out.println(“Exception caught in main.”);
}

}

static void doSomething() {
try {

out.println(0 / 0);
} catch (Exception e) {

out.println(“Exception caught in doSomething.”);
out.println(0 / 0);

} finally {
out.println(“I’ll get printed.”);

}

out.println(“I won’t get printed.”);
}

}

Normally, when I think about a try statement, I think about the computer
recovering from an unpleasant situation. The recovery takes place inside a
catch clause, and then the computer marches on to whatever statements
come after the try statement. Well, if something goes wrong during execu-
tion of a catch clause, this picture can start looking different.

Listing 12-11 gets a workout in Figure 12-14. First, the main method calls
doSomething. Then, the stupid doSomething method goes out of its way
to cause trouble. The doSomething method divides 0 by 0, which is illegal
and undoable in anyone’s programming language. This foolish action by the
doSomething method throws an ArithmeticException, which is caught by
the try statement’s one and only catch clause.

Figure 12-14:
Running the

code from
Listing
12-11.

302 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 302

Inside the catch clause, that lowlife doSomething method divides 0 by 0 again.
This time, the statement that does the division isn’t inside a protective try
clause. That’s okay, because an ArithmeticException isn’t checked. (It’s
one of those RuntimeException subclasses. It’s an exception that doesn’t
have to be acknowledged in a try or a throws clause. For details, see the
previous section.)

Well, checked or not, the throwing of another ArithmeticException causes
control to jump out of the doSomething method. But, before leaving the
doSomething method, the computer executes the try statement’s last will
and testament — namely, the statements inside the finally clause. That’s
why, in Figure 12-14, you see the words I’ll get printed.

Interestingly enough, you don’t see the words I won’t get printed in
Figure 12-14. Because the catch clause’s execution throws its own uncaught
exception, the computer never makes it down past the try-catch-finally
statement.

So, the computer goes back to where it left off in the main method. Back in
the main method, word of the doSomething method’s ArithmeticException
mishaps causes execution to jump into a catch clause. The computer prints
Exception caught in main, and then this terrible nightmare of a run is
finished.

303Chapter 12: Looking Good When Things Take Unexpected Turns

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 303

304 Part IV: Savvy Java Techniques

04d_568582 ch12.qxd 7/27/04 11:50 PM Page 304

Part V
The Part of Tens

05a_568582 pp05.qxd 7/27/04 11:50 PM Page 305

In this part . . .
You’re near the end of the book, and the time has

come to sum it all up. This part of the book is your
slam-bam, two-thousand-words-or-less resource for Java.
What? You didn’t read every word in the chapters before
this one? That’s okay. You can pick up a lot of useful
information in this Part of Tens.

05a_568582 pp05.qxd 7/27/04 11:50 PM Page 306

Chapter 13

Ten Ways to Avoid Mistakes
In This Chapter
� Checking your capitalization and value comparisons

� Watching out for fall-through

� Putting methods, listeners, and constructors where they belong

� Using static and nonstatic references

� Avoiding other heinous errors

“The only people who never make mistakes are the people who never
do anything at all.” One of my college professors said that. I don’t

remember the professor’s name, so I can’t give him proper credit. I guess
that’s my mistake.

Putting Capital Letters
Where They Belong

Java is a case-sensitive language, so you really have to mind your Ps and Qs —
along with every other letter of the alphabet. Here are some things to keep in
mind as you create Java programs:

� Java’s keywords are all completely lowercase. For instance, in a Java if
statement, the word if can’t be If or IF.

� When you use names from the Java API (Application Programming Inter-
face), the case of the names has to match what appears in the API.

� You also need to make sure that the names you make up yourself are
capitalized the same way throughout your entire program. If you declare
a myAccount variable, you can’t refer to it as MyAccount, myaccount, or
Myaccount. If you capitalize the variable name two different ways, Java
thinks you’re referring to two completely different variables.

For more info on Java’s case-sensitivity, see Chapter 3.

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 307

Breaking Out of a switch Statement
If you don’t break out of a switch statement, you get fall-through. For instance,
if the value of verse is 3, the following code prints all three lines — Last
refrain, He’s a pain, and Has no brain.

switch (verse) {
case 3:

out.print(“Last refrain, “);
out.println(“last refrain,”);

case 2:
out.print(“He’s a pain, “);
out.println(“he’s a pain,”);

case 1:
out.print(“Has no brain, “);
out.println(“has no brain,”);

}

For the full story, see Chapter 5.

Comparing Values with
a Double Equal Sign

When you compare two values with one another, you use a double equal sign.
The line

if (inputNumber == randomNumber)

is correct, but the line

if (inputNumber = randomNumber)

is not correct. For a full report, see Chapter 5.

Adding Components to a GUI
Here’s a constructor for a Java frame:

public SimpleFrame() {
JButton button = new JButton(“Thank you...”);
setTitle(“...Steven Hayes and Virginia Sanders”);
setLayout(new FlowLayout());

308 Part V: The Part of Tens

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 308

add(button);
button.addActionListener(this);
setSize(300, 100);
setVisible(true);

}

Whatever you do, don’t forget the call to the add method. Without this call, you
go to all the work of creating a button, but the button doesn’t show up on
your frame. For an introduction to such issues, see Chapter 9.

Adding Listeners to Handle Events
Look again at the previous section’s code to construct a SimpleFrame. If you
forget the call to addActionListener, nothing happens when you click the
button. Clicking the button a second time and clicking it harder don’t help.
For the rundown on listeners, see Chapter 16, which is on the CD-ROM.

Defining the Required Constructors
When you define a constructor with parameters, as in

public Temperature(double number)

then the computer no longer creates a default parameterless constructor for
you. In other words, you can no longer call

Temperature roomTemp = new Temperature();

unless you explicitly define your own parameterless Temperature constructor.
For all the gory details on constructors, see Chapter 9.

Fixing Non-Static References
If you try to compile the following code, you get an error message:

class WillNotWork {
String greeting = “Hello”;

public static void main(String args[]) {
System.out.println(greeting);

}
}

309Chapter 13: Ten Ways to Avoid Mistakes

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 309

You get an error message because main is static, but greeting isn’t static.
For the complete guide to finding and fixing this problem, see Chapter 10.

Staying within Bounds in an Array
When you declare an array with ten components, the components have indices
0 through 9. In other words, if you declare

int guests[] = new int[10];

then you can refer to the guests array’s components by writing guests[0],
guests[1], and so on, all the way up to guests[9]. You can’t write
guests[10], because the guests array has no component with index 10.

For the latest gossip on arrays, see Chapter 11.

Anticipating Null Pointers
This book’s examples aren’t prone to throwing the NullPointerException,
but in real-life Java programming, you see that exception all the time. A
NullPointerException comes about when you call a method that’s sup-
posed to return an object, but instead the method returns nothing. Here’s a
cheap example:

import static java.lang.System.out;
import java.io.File;

class ListMyFiles {

public static void main(String args[]) {
File myFile = new File(“\\windows”);

String dir[] = myFile.list();

for (String fileName : dir) {
out.println(fileName);

}
}

}

This program displays a list of all the files in the windows directory. (For clar-
ification on the use of the double backslash in “\\windows”, see Chapter 8.)

310 Part V: The Part of Tens

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 310

But what happens if you change \\windows to something else — something
that doesn’t represent the name of a directory?

File myFile = new File(“&*%$!!”);

Then the new File call returns null (a special Java word meaning “nothing”)
so the variable myFile has nothing in it. Later in the code, the variable dir
refers to nothing, and the attempt to loop through all the dir values fails mis-
erably. You get a big NullPointerException, and the program comes crash-
ing down around you.

To avoid this kind of calamity, check Java’s API documentation. If you’re
calling a method that can return null, add exception-handling code to your
program.

For the story on handling exceptions, see Chapter 12. For some advice on
reading the API documentation, see Chapter 3 and this book’s Web site.

Helping Java Find its Files
You’re compiling Java code, minding your own business, when the computer
gives you a NoClassDefFoundError. All kinds of things can be going wrong,
but chances are that the computer can’t find a particular Java file. To fix this,
you must align all the planets correctly.

� Your project directory has to contain all the Java files whose names are
used in your code.

� If you use named packages, your project directory has to have appropri-
ately named subdirectories.

� Your CLASSPATH must be set properly.

For specific guidelines, see Chapter 15 (on the CD-ROM) and this book’s
Web site.

311Chapter 13: Ten Ways to Avoid Mistakes

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 311

312 Part V: The Part of Tens

05b_568582 ch13.qxd 7/27/04 11:51 PM Page 312

Chapter 14

Ten Sets of Web Resources
for Java

In This Chapter
� Finding resources from Sun Microsystems

� Getting sample code

� Reading the latest Java news

� Starting out — help for Java beginners

� Moving up — jobs, certification, and more for experienced programmers

No wonder the Web is so popular. It’s both useful and fun. This chapter
has ten bundles of resources. Each bundle has Web sites for you to

visit. Each Web site has resources to help you use Java more effectively. And
as far as I know, none of these sites uses adware, pop-ups, or other grotesque
things.

The Horse’s Mouth
Sun’s official Web site for Java is java.sun.com. This site has all the latest
development kits, and many of them are free. In addition, Sun has two special-
purpose Java Web sites. Consumers of Java technology should visit www.java.
com. Programmers and developers interested in sharing Java technology can
go to www.java.net.

And be sure to visit www.jcp.org, home of the Java Community Process. At
this site, you can read the latest proposals for improving Java. Who knows?
You may even want to contribute.

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 313

Finding News, Reviews,
and Sample Code

The Web has plenty of sites devoted exclusively to Java. Many of these sites
feature reviews, links to other sites, and best of all, oodles of sample Java code.
Some also offer free mailing lists that keep you informed of the latest Java
developments. Here’s a brief list of such sites:

� The JavaRanch: www.javaranch.com

� Gamelan: www.developer.com/java

� The Giant Java Tree: www.gjt.org

� The Java Boutique: javaboutique.internet.com

� Freewarejava.com: www.freewarejava.com

� JavaToys: www.nikos.com/javatoys

� JavaShareware.com: www.javashareware.com

Improving Your Code with Tutorials
To find out more about Java, you can visit Sun’s online training pages. The
Web address is java.sun.com/developer/onlineTraining. Some other
nice tutorials are available at the following Web sites:

� Richard Baldwin’s Web site: www.dickbaldwin.com

� IBM developerWorks: www-106.ibm.com/developerworks/training

� ProgrammingTutorials.com: www.programmingtutorials.com

Finding Help on Newsgroups
Have a roadblock that you just can’t get past? Try posting your question on
an Internet newsgroup. Almost always, some friendly expert posts just the
right reply.

314 Part V: The Part of Tens

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 314

With or without Java, you should definitely start exploring newsgroups. You
can find thousands of newsgroups — groups on just about every conceivable
topic. (Yes, there are more newsgroups than For Dummies titles!) To get started
with newsgroups, visit groups.google.com. For postings specific to Java, look
for the groups whose names begin with comp.lang.java. For a novice, the fol-
lowing three groups are probably the most useful:

� comp.lang.java.programmer

� comp.lang.java.help

� comp.lang.java.gui

Checking the FAQs for Useful Info
Has the acronym FAQ made it to the Oxford English Dictionary yet? Everybody
seems to be using FAQ as an ordinary English word. In case you don’t already
know, FAQ stands for frequently asked questions. In reality, an FAQ should be
called ATQTWTOSPOTN. This acronym stands for Answers to Questions That
We’re Tired of Seeing Posted on This Newsgroup.

You can find several FAQs at the official Sun Web site. You can also check out
the FAQs for the comp.lang.java newsgroups that I discuss in the previous
section. To read this wealth of information, go to www.afu.com/javafaq.html.

Opinions and Advocacy
Java isn’t just techie stuff. The field has issues and opinions of all shapes and
sizes. To find out more about them, visit www.javalobby.org. After you’ve
hovered for a while and have a feel for the etiquette, you can even join the
discussion.

Looking for Java Jobs
Are you looking for work? Would you like to have an exciting, lucrative career
as a Java programmer? Then try visiting a Web site that’s specially designed
for people like you. Point your Web browser to www.javajobs.com or
java.computerwork.com.

315Chapter 14: Ten Sets of Web Resources for Java

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 315

Becoming Certified in Java
These days, everybody is anxious to become certified. If you’re one of these
people, you can find plenty of resources about Java certification on the Web.
Just start by visiting www.javaprepare.com and www.javaranch.com/
ring.jsp. Both of these sites link to other interesting sites, including sites
with practice certification exams.

Developing Servlets
This book has all the tools that you need to start using Java. When you’ve fin-
ished being started, you may want to start continuing. This may involve writing
Java servlets.

A servlet is program that responds to a Web request. For instance, a user sit-
ting at a computer in Ong’s Hat, New Jersey, clicks a link. The link-click is sent
to a host computer in Chicken, Alaska. Sophisticated as it is, that host com-
puter in Chicken composes an entire Web page on the fly. The host computer
sends the newly composed page back to the visitor’s computer in Ong’s Hat,
New Jersey.

Composing a Web page on the fly is something that you can do with a Java
servlet. The only extra thing that you need is a cooperative host computer.
Fortunately for cheapskates, you can use some host computers for free. For
lists of servlet-enabled hosts, visit www.coolservlets.com/hosts.html and
www.servlets.com/isps/servlet/ISPViewAll.

Everyone’s Favorite Sites
It’s true — these two sites aren’t devoted exclusively to Java. However, no
geek-worthy list of resources would be complete without Slashdot and
SourceForge.

Slashdot’s slogan, “News for nerds, stuff that matters,” says it all. At
slashdot.org you find news, reviews, and commentary on almost anything
related to computing. There’s even a new word to describe a Web site that’s
reviewed or discussed on the Slashdot site. When a site becomes overwhelmed
with hits from Slashdot referrals, one says that the site has been slashdotted.

316 Part V: The Part of Tens

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 316

Although it’s not quite as high-profile, sourceforge.net is the place to look
for open source software of any kind. The SourceForge repository contains
over 80,000 projects. At the SourceForge site, you can download software, read
about works in process, contribute to existing projects, and even start a pro-
ject of your own. SourceForge is a great site for programmers and developers
at all levels of experience.

317Chapter 14: Ten Sets of Web Resources for Java

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 317

318 Part V: The Part of Tens

05c_568582 ch14.qxd 7/27/04 11:51 PM Page 318

Part VI
Appendixes

06a_568582 pp06.qxd 7/27/04 11:52 PM Page 319

In this part . . .

Appendix A tells you how to use the book’s CD-ROM.
And, by the way, if you haven’t cracked open the

seal on the book’s CD-ROM yet, please do so. (Of course,
you should pay for the book first.) The CD-ROM has some
wonderful things on it — all the code from the book, a
special customized version of JCreator, some fun share-
ware, plus a few additional chapters!

Appendix B covers some important material on the use of
names in Java programs. Appendix B also features some
of my favorite figures and illustrations, so (please) spend
a few minutes with this appendix.

06a_568582 pp06.qxd 7/27/04 11:52 PM Page 320

Appendix A

Using the CD-ROM
In This Appendix
� Knowing system requirements

� Installing software from the CD-ROM

� Finding this book’s listings on the CD-ROM

� Playing with the toys (that is, the software) on this CD-ROM

� Troubleshooting

Sure, you can read, read, read until your eyes bug out. But you won’t get
to know Java until you write and run some code. Besides, it’s no fun to

just read about programming. You’ve got to experiment, try things, make
some mistakes, and discover some things on your own.

So this book’s CD-ROM has everything you need to get going interactively.
First, read the little warning about all the legal consequences of your break-
ing the seal on this book’s disc pack. Then, throw caution to the wind and rip
that pack open. Put the CD-ROM in the drive, and you’re ready to go.

What You Can Expect to Find
on the CD-ROM

This CD-ROM has four kinds of files on it:

� Files that I, the author, created: For the most part, these files contain all
the listings in this book (Listing 3-1 in Chapter 3, for instance). Most of
these listings are Java program files.

� The JCreator integrated development environment: A free copy of the
software, specially customized for this book.

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 321

� Extra chapters in PDF format: When I start writing, I can’t stop. Eventually,
the folks at Wiley Publishing ran out of paper, so they put additional
chapters on the CD-ROM.

� Various pieces of freeware, shareware, and whateverware: I generally
lapse into laziness and call all these things by the name shareware, but
the legal department tells me that I should be more careful.

System Requirements
Your system requirements depend on the kind of computer that you have and
the kind of operating system that you use. To run the Java 5.0 Software
Development Kit on a typical Windows computer, you need at least the fol-
lowing resources:

� A Pentium II processor. (A processor that’s older and clunkier than a
Pentium II may be okay, but I make no guarantees.)

� Microsoft Windows (98, Me, 2000, XP, or Server 2003).

� Enough RAM, whatever that means. The official word from Sun
Microsystems isn’t specific about this, but I suspect that 128MB is the
bare minimum.

� You’d better have a CD-ROM drive. Otherwise, you’ll have difficulty grab-
bing software off this book’s CD-ROM.

� For the basic tools to write and run your own Java programs, you need
about 140MB of disk space. (If you want to store Sun’s documentation,
the source files, demos, and other goodies, you need over 400MB.)

If your computer doesn’t match up to most of these requirements, you may
have problems getting your Java programs to run. But remember, “may have
problems” doesn’t mean that Java won’t work. For the latest and greatest
information on Windows configurations, visit java.sun.com/j2se/1.5.0/
install-windows.html. (And be prepared to change 1.5.0 in the Web
address to 1.5.something-else. These version numbers are moving targets.)

If you’re not a fan of Microsoft Windows, visit java.sun.com/j2se/1.5.0/
system-configurations.html for a list of supported system configura-
tions. (Once again, be prepared to change 1.5.0 to 1.5.something-else.)

Additional Java compiler versions (versions for computers not officially sup-
ported by the folks at Sun Microsystems) appear frequently on the Web. So if
your computer runs Macintosh OS, OpenVMS, or FLKOS (Fred’s Little Known
Operating System), search the Web for the compiler that you need. Who
knows? You may just find it.

322 Part VI: Appendixes

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 322

If you find nothing at one of these 1.5.0 Web addresses, change the number
in the address to 1.5.something-else. Maybe they’re up to Java version
1.5.0_02 or even 1.5.1. Of course, if you can’t find the correct Web
address, and you don’t enjoy guessing games, you have another alternative.
Pay a visit to this book’s Web site. At that site, I (try to) keep a fairly up-to-
date list of useful Java links.

Finally, if you need more information on basic hardware and software issues,
check out these books published by Wiley Publishing, Inc.: PCs For Dummies,
by Dan Gookin; Macs For Dummies, by David Pogue; Windows 2000
Professional For Dummies, by Andy Rathbone and Sharon Crawford; and
Windows 98 For Dummies, Microsoft Windows ME Millennium Edition For
Dummies, and Windows XP For Dummies, all by Andy Rathbone.

Using the CD with Microsoft Windows
To install items from the CD to your hard drive (with the Autorun feature
enabled), follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

A window appears with the following options: HTML Interface,
Browse CD, and Exit.

2. Select one of the options, as follows:

• HTML Interface: Click this button to view the contents of the CD in
standard For Dummies presentation. It looks like a Web page. Here
you can also find a list of useful Web links from the book.

• Browse CD: Click this button to skip the fancy presentation and
simply view the CD contents from the directory structure. This
means that you see just a list of folders — plain and simple.

• Exit: Well, what can I say? Click this button to quit.

If you don’t have the Autorun feature enabled, or if the Autorun window
doesn’t appear, follow these steps to access the CD:

1. Insert the CD into your computer’s CD-ROM drive.

2. Click the Start button and choose Run from the menu.

3. In the dialog box that appears, type d:\start.htm.

Replace d with the proper drive letter for your CD-ROM if it uses a differ-
ent letter. (If you don’t know the letter, double-click the My Computer
icon on your desktop and see what letter is listed for your CD-ROM drive.)

Your browser opens, and the license agreement appears. If you don’t
have a browser, Microsoft Internet Explorer is included on the CD.

323Appendix A: Using the CD-ROM

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 323

4. Read through the license agreement, nod your head, and click the
Agree button if you want to use the CD.

After you click Agree, you’re taken to the Main menu, where you can
browse through the contents of the CD.

5. To navigate within the interface, click a topic of interest to take you to
an explanation of the files on the CD and how to use or install them.

6. To install software from the CD, simply click the software name.

You see two options: to run or open the file from the current location or
to save the file to your hard drive. Choose to run or open the file from its
current location, and the installation procedure continues. When you
finish using the interface, close your browser as usual.

Note: I’ve included an “easy install” in these HTML pages. If your browser
supports installations from within it, go ahead and click the links of the pro-
gram names you see. You see two options: Run the File from the Current
Location and Save the File to Your Hard Drive. Select the Run the File from
the Current Location option and the installation procedure continues.
A Security Warning dialog box appears. Click Yes to continue the installation.

Using the CD with Mac OS
To install items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

In a moment, an icon representing the CD that you just inserted appears
on your Mac desktop. Chances are that the icon looks like a CD-ROM.

2. Double-click the CD icon to show the CD’s contents.

3. Double-click start.htm to open your browser and display the license
agreement.

If your browser doesn’t open automatically, open it as you normally
would by choosing File➪Open File (in Internet Explorer) or
File➪Open➪Location in Netscape and select Java 2 For Dummies. The
license agreement appears.

4. Read through the license agreement, nod your head, and click the
Accept button if you want to use the CD.

After you click Accept, you’re taken to the Main menu. This is where you
can browse through the contents of the CD.

5. To navigate within the interface, click any topic of interest, and you’re
taken you to an explanation of the files on the CD and how to use or
install them.

6. To install software from the CD, simply click the software name.

324 Part VI: Appendixes

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 324

Running the Java Code
That’s in This Book

The CD-ROM has all the code from the listings in this book. It also has some
helper files (data files and other things) that you need to make the most of all
the listings.

If you install JCreator from the CD-ROM, all the code from the book’s listings
gets installed automatically. The code is installed in JCreator’s MyProjects
directory on your computer’s hard drive. For details, see Chapter 2.

If you don’t install JCreator from the CD-ROM, you can still copy this book’s
code to your computer’s hard drive. Just navigate to the folder named Author
on the CD-ROM. Copy everything in that Author folder to your hard drive.

I’ve tried to organize the book’s listings in a simple, yet sensible way. I thought
a long time and came up with a grand plan. The plan is pretty intuitive, so
you can either read about the plan or just follow your nose. Personally I like
noses, but you may like the security of having neatly printed rules. If you
want rules, I present them right here:

� If you use JCreator, all the code is in subdirectories of the MyProjects
directory. (See Chapter 2.)

� Each example has its own subdirectory, and each subdirectory consti-
tutes a single project. For instance, the code from Listing 3-1 is in its own
little directory named Listing0301. The tree in JCreator’s File View
pane has a branch labeled Listing0301.

� In some cases, several of the book’s listings combine to make one big
example. In such cases, that example’s subdirectory has a big combined
name. For instance, in Chapter 7, you get the first full example when you
compile and run Listings 7-1 and 7-2. So the directory for this example is
named Listings0701-02. The tree in JCreator’s File View pane has a
branch labeled Listings0701-02.

� As a rule of thumb, when a listing’s code begins with class SomeName,
the code is in a file called SomeName.java.

� Examples are grouped by chapter, and each chapter has its own
JCreator workspace.

For instance, JCreator’s MyProjects directory has subdirectories
named Listing0501, Listing0502, Listing0601, and so on. The
MyProjects directory also has files named Chapter05.jcw,
Chapter06.jcw, and so on.

If you choose File➪Open Workspace, and select Chapter05.jcw (or just
plain Chapter05), you open the Chapter 5 workspace. After doing this,
you don’t see Listing0601 in JCreator’s File View pane. You see only the
projects named Listing0501, Listing0502, Listing0503, and so on.

325Appendix A: Using the CD-ROM

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 325

Freeware, Shareware, and
Just Plain Ware

The following sections provide a summary of the software and other goodies
that you can find on the CD. If you need help with installing the items
provided on the CD, refer to the installation instructions in the preceding
section.

Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.
Freeware programs are free, copyrighted games, applications, and utilities.
You can copy them to as many computers as you like — for free — but they
offer no technical support. GNU software is governed by its own license,
which is included inside the folder of the GNU software. The distribution of
GNU software is not restricted. See the GNU license at the root of the CD for
more details. Trial, demo, or evaluation versions of software are usually lim-
ited either by time or functionality (such as not letting you save a project
after you create it).

JCreator
Special edition

For Windows. When I started working on this book’s second edition, I went
looking for the right Java development environment. I needed something that
satisfies all your needs:

� Easy to use: You want to use Java. You don’t want to memorize thousands
of ways to point and click.

� Powerful: You want a scalable tool. As you write bigger and better
programs, you want an environment that can support your growing,
complex requirements.

� Efficient: Memory hogs and CPU hogs need not apply.

� Inexpensive: Hey, how about free?

� Versatile: In May of 2004, very few development environments sup-
ported the enhancements in the upcoming Java version 5.0. I needed
a tool that supports all the enhancements, without concession or
compromise.

I found all these qualities in only one product: JCreator from Xinox Software.

326 Part VI: Appendixes

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 326

As if this list of demands wasn’t enough, I needed a company that could work
with me to customize its tool. Based on the book’s examples, I had certain
specialized needs. I wanted to change this default here and change that
option there. I wanted to install my book’s code along with the development
environment. Once again, the people at Xinox Software came through for me.

JCreator is a wonderful product. I hope that you enjoy using it.

For more information and a free trial of JCreator PRO, visit
www.jcreator.com.

Adobe Acrobat Reader
Commercial version

For Windows and Mac. Talk about added value! This book has several extra
chapters on its CD-ROM. To view these chapters, you need a program called
Adobe Acrobat Reader. That’s no problem, because a free copy of Reader is
on the CD-ROM.

For more information, visit www.adobe.com/acrobat.

If you’re on the road, and you need some light reading, just pull into a nearby
cybercafe. You can find the extra chapters on this book’s Web site.

Jindent
Trial version

Platform independent. When it comes to writing code, beauty is more than
skin deep. An ugly program is hard to read. If anything goes wrong, no one,
not even the program’s author, can wade through lines and lines of cryptic,
poorly formatted classes and methods.

To make code look good, you can follow some clear, uniform style guidelines.
Always indent by a certain number of spaces, always arrange curly braces a
certain way, always do this, never do that. You can memorize lots of rules, or
you can have software do it for you.

So write code any way that you want. Then hand your code over to Jindent.
The Jindent program beautifies your code, making it easier to read, easier to
understand, and (yes!) cheaper to maintain.

For more information, visit www.jindent.com.

327Appendix A: Using the CD-ROM

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 327

NetCaptor
Freeware version

For Windows. Talk about cool software! When I use someone else’s computer
and have to surf without NetCaptor, I feel terribly inconvenienced. NetCaptor
uses tabs to keep track of several open Web pages. These tabs replace the
need to open several browser windows. So when I visit a search engine, I keep
the results page open while I investigate some of the page’s entries. When
I do Java development, I keep the API documentation open while I visit one or
more of my own documents. Without NetCaptor, I can open several browser
windows. However, the interface isn’t as seamless, and the stress on my
computer’s RAM and CPU is greater.

For more information, visit www.netcaptor.com.

WinOne
Evaluation

For Windows. If you use Windows, and you’re a real geek, you know how
clumsy MS-DOS can be. The years I’ve wasted retyping commands is dwarfed
only by the time that I’ve spent drilling for items in deeply-nested menus and
Explorer trees. To make your life simpler, try WinOne. The WinOne shell is
like the built-in Windows command prompt. But WinOne has multicolored
text, smart filename completion, a scroll bar, command grouping, smart
delete, macros, command history, extended batch commands, and (best of
all) delightfully easy access to directories.

For more information on WinOne, visit www.winone.com.au.

And If You Run into Any Trouble . . .
I tried my best to find shareware programs that work on most computers
with the minimum system requirements. Alas, your computer may differ, and
some programs may not work properly for some reason.

If you have problems with the shareware on this CD-ROM, the two likeliest
problems are that you don’t have enough memory (RAM) or that you have
other programs running that are affecting installation or running of a pro-
gram. If you get an error message such as Not enough memory or Setup
cannot continue, try one or more of the following suggestions and then try
using the software again:

328 Part VI: Appendixes

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 328

� Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that a virus is infecting it.

� Close all running programs. The more programs that you have running,
the less memory is available to other programs. Installation programs
typically update files and programs. So if you keep other programs run-
ning, installation may not work properly.

� Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

If you still have trouble installing the items from the CD, please call the
Wiley Publishing, Inc. Customer Service phone number at 800-762-2974
(outside the U.S.: 317-572-3993) or send an e-mail to the address of your
choice: Java2ForDummies@BurdBrain.com or techsupdum@wiley.com.

329Appendix A: Using the CD-ROM

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 329

330 Part VI: Appendixes

06b_568582_bappa.qxd 7/27/04 11:52 PM Page 330

Appendix B

When to Use Words Like
“public” and “private”

In This Appendix
� What the words public and private mean

� What the word protected means

� What it means when you use none of these words

In Java, the words public and private are called access modifiers. In this
appendix, you get a brief overview of the way that access modifiers work.

For more details, see Chapter 15 on the CD-ROM.

Members versus Classes
Here’s a fake piece of Java code:

class MyClass {
int myVariable; //an instance variable

// (a member)

void myMethod() { //a method (another member)

int myOtherVariable; //a method-local variable
} // (not a member)

}

There are two kinds of variables — instance variables and method-local
variables. This appendix isn’t about method-local variables. It’s about meth-
ods and instance variables. Both methods and instance variables are called
members of a class.

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 331

In Java, the word public has two slightly different meanings — one meaning
for members and another meaning for classes. Most of this appendix deals
with the meaning of public (and of other such words) for members. The last
part of this appendix (appropriately titled “Access Modifiers for Classes”)
deals with the meaning of public for classes.

Access Modifiers for Members
Can you use a certain member name in a particular place in your code? To
answer the question, you check to see whether that place is inside or outside
of the member’s class:

� If the member is private, only code that’s inside the member’s class can
refer directly to that member’s name.

class SomeClass {
private int myVariable = 10;

}

class SomeOtherClass {

public static void main(String args[]) {
SomeClass someObject = new SomeClass();

//This doesn’t work:
System.out.println(someObject.myVariable);

}
}

� If the member is public, any code can refer directly to that member’s
name.

class SomeClass {
public int myVariable = 10;

}

class SomeOtherClass {

public static void main(String args[]) {
SomeClass someObject = new SomeClass();

//This works:
System.out.println(someObject.myVariable);

}
}

Figures B-1 through B-3 illustrate the ideas in a slightly different way.

332 Part VI: Appendixes

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 332

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

public variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Figure B-2:
The range

of code
in which
a public

variable or
method can

be used
(shaded).

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classYFigure B-1:

Several
classes

and their
subclasses.

333Appendix B: When to Use Words Like “public” and “private”

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 333

Default access
No doubt you’ve seen variables and methods with no access modifiers in
their declarations. A method or variable of this kind is said to have default
access. In Java, the default access for a member of a class is package-wide
access. A member declared without the word public, private, or protected in
front of it is accessible in the package in which its class resides. Figures B-4
and B-5 illustrate the point.

Protected access
Yet another access modifier isn’t used in any example before this appendix.
(At least, I don’t remember using it in any earlier examples.) It’s the protected
access modifier. A member that’s protected is slightly less hidden than one
that has default access.

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

private variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Figure B-3:
The range

of code
in which
a private

variable or
method can

be used
(shaded).

334 Part VI: Appendixes

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 334

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure B-5:
The range

of code
in which
a default

variable or
method can

be used
(shaded).

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure B-4:
Packages

cut across
subclass

hierarchies.

335Appendix B: When to Use Words Like “public” and “private”

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 335

If a member has default access, code in a different package cannot refer directly
to that member’s name. The following example illustrates this scenario:

In one file:

package com.burdbrain.somepackage;

public class SomeClass {
static int myVariable = 10;

}

And in another file:

package com.burdbrain.someotherpackage;

import com.burdbrain.somepackage.*;

class SomeOtherClass extends SomeClass {

public static void main(String args[]) {

//This doesn’t work:
System.out.println(myVariable);

}
}

If a member is protected, code in a subclass can refer directly to that member’s
name, even if that subclass belongs to a different package. The following exam-
ple illustrates this particular scenario:

In one file:

package com.burdbrain.somepackage;

public class SomeClass {
protected static int myVariable = 10;

}

And in another file:

package com.burdbrain.someotherpackage;

import com.burdbrain.somepackage.*;

class SomeOtherClass extends SomeClass {

public static void main(String args[]) {

//This works:
System.out.println(myVariable);

}
}

336 Part VI: Appendixes

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 336

Looking at this code, you see that you start with an instance variable that has
default access (a variable without the word public, private, or protected in its
declaration). That variable can be accessed only inside the package in which
it lives. Now add the word protected to the front of the variable’s declaration.
Suddenly, classes outside that variable’s package have some access to the
variable. A subclass (of the class in which the variable is declared) can
now reference the variable. You can also reference the variable from a sub-
subclass, a sub-sub-subclass, and so on. Any descendent class will do.

Compare Figures B-5 and B-6. Notice the extra bit of shading in Figure B-6?
A subclass can access a protected member of a class, even if that subclass
belongs to some other package.

The real story about protected access is one step more complicated than the
story that I describe in this section. The Java Language Specification mentions
a hair-splitting point about code being responsible for an object’s implementa-
tion. When you’re first figuring out how to program in Java, don’t worry about
this point. Wait until you’ve written many Java programs. Then, when you
stumble upon a variable has protected access error message, you can
start worrying. Better yet, skip the worrying and take a careful look at the
protected access section in the Java Language Specification.

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

protected
 variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure B-6:
The range

of code
in which a
protected

variable or
method can

be used
(shaded).

337Appendix B: When to Use Words Like “public” and “private”

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 337

Access Modifiers for Classes
A class can be either public or non-public. If you see something like

public class SomeClass

then you’re looking at the declaration of a public class. But, if you see plain
old

class SomeClass

then the class that’s being declared isn’t public.

If a class is public, you can refer to the class from anywhere in your code. The
following example illustrates the point:

In one file:

package com.burdbrain.somepackage;

public class SomeClass {

}

And in another file:

package com.burdbrain.someotherpackage;

import com.burdbrain.somepackage.*;

//You CAN extend SomeClass:
class SomeOtherClass extends SomeClass {

public static void main(String args[]) {

//This works too:
SomeClass someObject = new SomeClass();

}
}

If a class isn’t public, you can refer to the class only from code within the
class’s package. The following code makes that crystal clear:

In one file:

package com.burdbrain.somepackage;

class SomeClass {

}

338 Part VI: Appendixes

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 338

And in another file:

package com.burdbrain.someotherpackage;

import com.burdbrain.somepackage.*;

//You can’t extend SomeClass:
class SomeOtherClass extends SomeClass {

public static void main(String args[]) {

//This doesn’t work either:
SomeClass someObject = new SomeClass();

}
}

339Appendix B: When to Use Words Like “public” and “private”

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 339

340 Part VI: Appendixes

06c_568582_bappb.qxd 7/27/04 11:52 PM Page 340

• Numbers & Symbols •
* (asterisk)

in import declarations, 111, 217
for javadoc comments (/**), 60
as multiplication operator, 90
for traditional comments (/* and */), 59

\ (backslash)
escape sequence for (\\), 255
in escape sequences, 255
in path names (\\), 181

{ } (curly braces)
for blocks, 105
indentation versus, 106
using in programs, 55–57

. (dot)
ending file names, 176
equals method and, 110
object calling own method and, 210

= (equal sign) in if statement conditions
(==), 104–105, 308

- (minus sign) as decrement operator (--),
92, 94, 95

() (parentheses)
equals method and, 110
for if statement conditions, 104
in method headers, 151, 155–156

% (percent sign)
in format string for printf method,

159–161, 173–174
as remainder operator, 90–91

+ (plus sign)
as addition operator, 89
as concatenation operator, 89–90
as increment operator (++), 92–96

? (question mark) as conditional
operator, 266

“ (quotation marks), escape sequence for
(\”), 255

; (semicolon) ending Java statements, 55
’ (single quotation marks)

for char literals, 83
escape sequence for (\’), 255

/ (slash)
as division operator, 90, 91
for end-of-line comments (//), 60
for javadoc comments (/**), 60
for traditional comments (/* and */), 59

[] (square brackets) in array
declarations, 251

0 (zero) as array starting number, 251

• A •
Access (Microsoft), creating a database in,

CD-50–CD-52
access modifiers

for classes, 338–339, CD-21–CD-23
default access, 334
defined, CD-2
for members, 332–337, CD-4–CD-6
protected access, 334–337, CD-2

accessor methods
as bean methods, 165
calling, 164–165
enforcing rules with if statements, 167
hiding variables using, 163–164
public keyword for, 166
single statement for getting and

setting, 167
Account class

accessor methods in, 164, 165, 166
display method, 150–151
getInterest method of, 152–154
hiding variables, 164, 165
simple form, 143, 144

Acrobat Reader by Adobe (on the CD), 327
actionPerformed method of applets,

CD-31–CD-32, CD-43

Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 341

342 Java 2 For Dummies, 2nd Edition

add method
of ArrayList object, 276
of SimpleFrame object, 218

addActionListener, 309
addition operator, 89
addPlayerInfo method, 226
Adobe Acrobat Reader (on the CD), 327
“Al’s All Wet” program

using for statement, 128–129
using switch statement, 116–120

and operator, 111
anEmployee variable, 173
API (Application Programming Interface).

See also J2SE API Documentation
applets and, CD-40
case-sensitive names from, 307
complexity of, 44–45
downloading, 44
identifiers, 47–48
tools in, 44
variety of Java APIs, 46
viewing Java API code, 45

applets
default versus public access,

CD-39–CD-40
defined, CD-37
JVM and, 42
methods in, CD-39, CD-42–CD-44
odometer example, CD-40–CD-44
as outdated technology, 39
responding to events, CD-44–CD-47
running, 39, 41–42
running in JCreator, CD-38–CD-39
simple example, CD-37–CD-40

appletviewer, 42
arithmetic operators, 90–91
ArithmeticException, 302–303
ArrayIndexOutOfBoundsException,

269–270, 273
ArrayList class
add method, 276
generics with, 277, 278
remove method, 276
ShowNames class using, 275–276
testing for the presence of more data, 277

arrays
ArrayIndexOutOfBoundsException,

269–270, 273
assignment statements, 252

command line arguments, 267–273
components or elements, 250
creating for objects, 264–265
declarations, 251–252
escape sequences for displaying

values, 255
index, 251, 252–253, 310
initializers, 255–256
length of, 254
limitations of, 273–274
in methods, 251
modifying values, 257–261
need for, 249–250
of objects, 261–266
searching, 257–261
staying within bounds, 310
stepping through, 256–257
storing values in, 252–256
two-line versus single-line declaration, 251
values, 251

ArtFrame class, CD-12
ArtFrame object, CD-6–CD-8, CD-11, CD-13
ASCII Character Encoding, 83
assignment operators, 96–97
assignment statements

for arrays, 252
declarations versus, 92
overview, 73–74

asterisk (*)
in import declarations, 111, 217
for javadoc comments (/**), 60
as multiplication operator, 90
for traditional comments (/* and */), 59

• B •
backslash (\)

escape sequence for (\\), 255
in escape sequences, 255
in path names (\\), 181

backspace, escape sequence for, 255
bean methods. See accessor methods
birth method
TrackPopulation class, 242–243
TrackPopulation2 class, 243–244
TrackPopulation3 class, 244–245

blocks, 105, 133–134
bold type in this book, 2
bonus chapters for this book, 5–6

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 342

boolean type, 84–85, 102
Borland JBuilder IDE, 30
break statements
for statement with, 129
switch statements and, 119–120, 308

Bright, Herbert (data processing
manager), 279

browsers. See Web browsers
bugs. See also error messages; exception

handling; exceptions
history of, 279–280
key to fixing, 281

Burd, Barry
e-mail address, 7, 329
Java 2 For Dummies, 1–7

buttons
actionPerformed method, CD-31–CD-32
events and event handling, CD-27–CD-28
interfaces and, CD-28–CD-29
this keyword and, CD-31
threads of execution and, CD-29–CD-31
window with a button, CD-25–CD-27

byte type, 80, 81
bytecode files, 40

• C •
C language, 14
C++ language, 14, 17
calling constructors, 203, 214–215
calling methods

accessor methods, 164–165
in applets, CD-39
defined, 52
of exception objects, 284
main method and, 53
need for, 51
object calling own method, 210
statements for, 54

carriage return escape sequence, 255
case
Character.toUpperCase method, 83
Java as case-sensitive, 50, 307
recommendations, 307

catch clauses. See also try statements
defined, 283
matching, 288
as mini-method, 284
multiple, for one try clause, 286–293

never thrown exceptions and, 293–294
order of processing for, 286–287, 288–293
parameter list, 284

catch keyword, 282
catching exceptions. See also catch

clauses; exception handling
defined, 281
illustrated, 282
try statements for, 283

CD-ROM with this book
bonus chapters on, 5–6
contents, 321–322
JCreator LE on, 31
Listings0801-02 directory, 180
On the CD icon, 7
running code in this book, 325
ShowTeamFrame class on, 232
software on, 326–328
system requirements, 322–323
TeamFrame class on, 232
technical support, 329
troubleshooting, 328–329
using with Mac OS, 324
using with Microsoft Windows, 323–324

certification, 316
char type, 82–84
characters. See also String type
char type for, 82–84
comparison operators with, 108
reading a single character, 132

Character.toUpperCase method, 83
child classes. See subclasses (child classes)
Class Wizard (JCreator), 66–67
classes

access modifiers for classes, 338–339,
CD-21–CD-23

access modifiers for members, 332–337
adding in JCreator, 66–67
as collections of declarations, 89
compiling and running multiple classes,

147–148
created from enum types, 206
curly braces in, 56
declaring variables, 144–146
defined, 141
defining in programs, 142–147
defining methods in, 148–151
describing as goal of OOP, 49, 141
extending, 19

343Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 343

344 Java 2 For Dummies, 2nd Edition

classes (continued)
fully qualified names, 217
import declarations, 77–78
inheritance, 19
interfaces versus, CD-28
members, defined, 331
members versus, 332, CD-3
naming, 50
nonpublic, 338, CD-21, CD-22–CD-23
non-static variable or method...

message and, 234
objects and, 17–18, 141
overview, 17–18, 20–22
as programs, 50
public, 332, 338–339, CD-3, CD-21–CD-22
as reference types, 87
referencing packaged classes, CD-21–CD-22
required in Java, 49–50
in same package, CD-17, CD-20–CD-21
subclasses or child classes, 19
superclasses or parent classes, 19

ClassNotFoundException, CD-56
CLASSPATH definition, CD-11
COBOL language, 14
code

adding in JCreator, 67
on the CD-ROM, 325
checking out for first time, 48–49
commenting out, 62–63
copying and pasting, 177–178
curly braces in, 55–57
defined, 12
example, 12–13
indenting, 56, 57, 105–106
Java bytecode, 40
safety versus security, 162
viewing in JCreator, 48–49
viewing Java API code, 45
Web sites for sample code, 314

collection classes
ArrayList, 275–278
generics with, 277, 278
need for, 273–274
overview, 274–275
testing for the presence of more data, 277

combining declarations, 80–81
command line arguments

checking the number of, 269–270
JCreator setup for, 270–273

String args[] in main method
and, 267

using in Java programs, 267–269
comments

adding to code, 58–61
audience for, 61
commenting out code, 62–63
end-of-line, 59
for experimenting with code, 62–63
javadoc, 60–61
need for, 58, 61
traditional, 59
uncommenting code, 63

comparison operators
comparing objects with, 108–110
comparing values with, 308
overview, 107–108
table summarizing, 106

compiler, defined, 40
compiling

Java programs, 40
JCreator projects, 37, 67
multiple classes, 147–148

components of arrays
declaring number of, 251
defined, 250

Computer Science Advanced Placement
exams, 15

computers
equipment and knowledge needed, 3
value of, 11–12

concatenation operator, 89–90
conditional operator, 266
conditions in if statements, 103–104
configuring

JCreator, 31–33
Windows (Microsoft), 322–323

connecting to databases, CD-55–CD-56
constructors

assigning values to variables, 204–205
calling, 203, 214–215
default, 212–213, 309
defining a frame, 215–217, 308–309
file clobbering by, 260
invisible call to super, 214–215
methods versus, 202
object creation and, 202
parameters for identifying, 203

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 344

startup tasks and, 200, 215–218
static keyword and, 231
for subclasses, 210–211, 212–215
super keyword for, 210–211
throws IOException clause in, 228

context, meaning of names and, 235–236
conventions in this book, 1–2
copying and pasting code, 177–178
counters

in for loops, 124
int type for, 138
for loops without, 129, 134–136

Crawford, Sharon (Windows 2000
Professional For Dummies), 323

Create New Data Source window (Access),
CD-50–CD-51

CreateTable class, CD-53–CD-54
Cross-Reference icon, 6
curly braces ({ })

for blocks, 105
indentation versus, 106
using in programs, 55–57

currency
formatting, 265–266
program for displaying local, CD-32–CD-36

Customer Service, 329
cutCheck method, 171–172, 173–174

• D •
database drivers, CD-55
databases

connecting and disconnecting,
CD-55–CD-56

creating a table, CD-53–CD-54
creating an Access database, CD-50–CD-52
creating data, CD-53–CD-56
retrieving data, CD-56–CD-59
storing values in arrays, 253
telling the system about, CD-49–CD-52
using SQL commands, CD-54–CD-55

decimal places
DecimalFormat class and, 223, 266
formatting currency, 265–266
rounding numbers for, 159–161

DecimalFormat class, 223, 266
decision-making statements. See flow

control

declarations
array, 251–252
assignment statements versus, 92
blocks and variable declarations, 133–134
classes as collections of, 89
combining, 80–81
display method header, 151
import, 77–78, 111
method, 52
package, CD-8
private keyword for variables, 165
public keyword for accessor

methods, 166
reference type, 87–88
variable, 75, 133–134, 144–146
variables declared inside versus outside

methods, 236–241
decrement operator (--), 92, 94, 95
default access, 334, CD-14–CD-17,

CD-39–CD-40
default constructor, 212–213, 309
defining classes, 142–147
deleting files, 133
demo versions of software. See trial

versions of software
DemoFinally class, 302–303
development of Java, 14–15, 16–17
Diaconis, Persi (mathematician), 102
directories

adding to filenames, 181
CLASSPATH for, CD-11
configuring JCreator and, 31–33
FileNotFoundException and, 181
Java home directory, 28–29, 31–32
in Java home directory, 24
for Java SDK, 27–28
Javadoc, 24, 29, 32–33
NoClassDefFoundError, 311
package directory structure, CD-8–CD-9

disconnecting from databases, CD-55–CD-56
disk files. See file handling
display method for objects, 150–151
displaying

filename extensions, 35
Java API code, 45
Java code for first time, 48–49
object-oriented programming and, 149
text, 78

345Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 345

division operator, 90, 91
“Do this/Do that” languages, 16–17
dobirth method, 246–247
documentation. See J2SE API

Documentation
DocumentListener interface,

CD-35–CD-36
DoPayroll class, 172–173, 174
DoPayrollTypeF class, 197–198
dot (.)

ending file names, 176
equals method and, 110
object calling own method and, 210

double type
comparison operators and, 108
method for getting, 102
overview, 75–77, 82

do...while statement
for continuing after catching exceptions,

294–295
deleting program example, 131–132
need for, 129–130
reading a single character, 132

downloading. See also Internet resources
Java, 25–26
Java Language Specification, 44
J2SE API Documentation, 24, 26, 44
for online versus offline installation, 26
SDK (Software Development Kit), 24, 25–26

Drawing class
CLASSPATH and, CD-11
default access and, CD-14
DrawingWide subclass, CD-13–CD-14
DrawingWideBB subclass, CD-17
overview, CD-7–CD-8
protected variables, CD-18–CD-19

drawings
packages for, CD-7
putting on frames, CD-6–CD-8,

CD-11–CD-12
DrawingWide class, CD-13–CD-14, CD-15,

CD-18–CD-19
DrawingWideBB class, CD-17
drawRect method, CD-40
drawString method, CD-40
DummiesPanel class, CD-38–CD-39

• E •
Eclipse IDE, 30
e-mail addresses

for the author, 7, 329
Wiley technical support, 329

Employee class
accessor methods, 171
cutCheck method, 171–172
FullTimeEmployee subclass, 185–188,

189–194, 212–213
main method missing from, 172
overview, 171–172
PartTimeEmployee subclass, 185, 188,

191–194
EmployeeInfo.txt file

listing, 175
overview, 174
storing data in, 175–176

end-of-file exceptions, 295–296
English, unsuitability for programming, 12
EnglishSpeakingWorld class,

236, 237, 238
EnglishSpeakingWorld2 class, 239–241
enum types

classes created from, 206
for groups, 136–137
ScaleName, 201–202, 206–207
scales as, 201
values method for, 138

EOFException, 295–296
equal sign (=) in if statement conditions

(==), 104–105, 308
equals method, 109–110
error messages. See also exception

handling; exceptions; troubleshooting
CD-ROM with this book and, 328–329
getMessage method of exception objects

and, 284
JCreator compiler messages, 68
NoClassDefFoundError, 311
non-static variable or method...,

234–235
NoSuchMethodError, 148
variable has protected access, CD-

21
escape sequences, 255

346 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 346

evaluation versions of software. See trial
versions of software

event handling
for applets, CD-44–CD-47
for button-click events, CD-28
events defined, CD-27–CD-28
interfaces and, CD-28–CD-29
for keyboard events, CD-32–CD-36
listeners for, 309
threads of execution and, CD-29–CD-31

exception handling
acknowledging exceptions in the code,

297–301
catch clause, 283
catching exceptions, defined, 281
checked versus unchecked exceptions

and, 297–298, 302–303
continuing after catching exceptions,

294–295
creating your own exception, 285–286
desired exceptions for expected

occurrences, 295–296
for end-of-file exceptions, 295–296
exceptions in catch clauses, 301–303
finally clause, 301–303
Java mechanism, 281
by JVM, 228
keywords for, 281–282
main method and, 227–228
multiple catch clauses for one try

clause, 286–293
need for, 282
for negative numbers, 285–286
never thrown exceptions and, 293–294
order of processing for catch clauses,

286–287, 288–293
sleep method and, 296–301
throwing exceptions, defined, 281
try clause, 283
try statements defined, 283

exceptions. See also exception handling
acknowledged in the code, 297–301
ArithmeticException, 302–303
ArrayIndexOutOfBoundsException,

269–270, 273
calling methods of exception objects, 284
in catch clauses, 301–303

catching, defined, 281
checked versus unchecked, 297–298,

302–303
ClassNotFoundException, CD-56
creating your own, 285–286
database, CD-56
desired, for expected occurrences,

295–296
end-of-file, 295–296
EOFException, 295–296
FileNotFoundException, 180–181
InterruptedException, 297–301
IOException, 291–292, 301
main method and, 227–228
messages as key to fixing bugs, 281
never thrown, 293–294
NullPointerException, 310–311
NumberFormatException, 281, 282, 290
NumberTooLargeException, 287–288,

291, 293
OutOfRangeException, 285–286, 288,

290, 291, 293
RunTimeException, 303
sleep method and, 296–301
SQLException, 301, CD-56
throwing, defined, 281
throws IOException clause, 177, 179,

227–228
executeUpdate command (SQL), CD-54
expressions

assignment operators and, 97
conditions as, 104
defined, 85
in for statements, 127

extending classes, defined, 19

• F •
fall-through with switch statements,

119–120, 308
FAQs (frequently asked questions), 315
file handling

adding directories to filenames, 181
copying and pasting code for, 177–178
deleting files, 133
DoPayroll class and, 174
file clobbering by constructors, 260

347Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 347

file handling (continued)
FileNotFoundException, 180–181
java.io.Exception class and, 179
java.io.File class and, 133, 179
java.io.PrintStream class and, 260
reading data from a file, 177–183
storing data in a file, 175–176

filename extensions, showing, 35
FileNotFoundException, 180–181
finally clause, 301–303
findPaymentAmount method
FullTimeEmployee class, 191, 192
overriding, 196–197
PartTimeEmployee class, 191–192
PartTimeWithOver class, 196–197
testing the code, 198

FindVacancy class, 257–261
float type, 76, 77, 82, 108
flow control. See also if statements; loops;

switch statements
break statements and, 119–120, 129, 308
comparison operators for, 107–110, 308
logical operators for, 111–113
nesting if statements, 113–115

FlowLayout class, 218
Font class, CD-40
fonts

for applets, CD-40
conventions in this book, 2

for statement
“Al’s All Wet” example, 128–129
basic format, 126
break statements with, 129
counters, 124
cycling through groups, 134–136
enhanced for loop, 134–138
expressions in, 127
initialization, 127
other repetition using, 129
simple example, 125–126
stepping through an array, 256–257
for storing values in arrays, 253–254, 256
update, 127
without counters, 129, 134–136

form feed escape sequence, 255
format methods, 266
format strings for printf method,

159–161, 207–208

Formatter class, 174
formatting numbers

currency, 265–266
return values, 158–161

FORTRAN language, 14, 16–17
frames

buttons on, CD-25–CD-32
constructors defining, 215–217, 308–309
defined, 89
JFrame type, 86–88
making visible, 218, 227
packages for, 218, CD-7
packing, 226, 227
putting drawings on, CD-6–CD-8,

CD-11–CD-12
sequence for setting up, 226–227

freeware programs
defined, 326
NetCaptor (on the CD), 328

frequently asked questions (FAQs), 315
FullTimeEmployee class

creating, 185–188
default constructor, 212–213
findPaymentAmount method, 191, 192
making types match, 190–191
methods available, 190
payOneFTEmployee method, 193
testing the code, 197–198
using, extended example, 192–194
using, minimal example, 189–191

• G •
GameApplet class, CD-45–CD-46
GameFrame class
actionPerformed method, CD-31–CD-32
GamePanel class and, CD-46–CD-47
listing, CD-26
results of running, CD-27
this keyword and, CD-31

GamePanel class
GameFrame class and, CD-46–CD-47
listing, CD-45
methods not needed in, CD-46
results of running, CD-46

generics, 277, 278
getCurrencyInstance method, 265–266
GetData class, CD-57–CD-59

348 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 348

GetGoing class, 236–237
GetGoing2 class, 239
getInterest method

of Account class, 152–154
called in UseAccount class, 153–154
header, 155–156
passing values to, 155–156
returning values from, 156–158

getMessage method of exception
objects, 284

getter methods. See accessor methods
GNU software, 326
GoodNightsSleepA class, 298–299
GoodNightsSleepB class, 299–301
Gookin, Dan (PCs For Dummies), 323
Gosling, James (Java creator), 17
graphical user interfaces. See GUIs
GridLayout class, 226, 233
groups
enum type for, 136–137
for loop for cycling through, 134–136

GuestList.txt file, 253–254, 257–261
GUIs (graphical user interfaces)

adding components, 308–309
Jigloo interface builder, 30
running on a Web page, 39, 41
running on its own, 38–39

• H •
Hankees.txt file, 225, 232
hasNext method of Scanner class, 277
hasNextDouble method of Scanner class,

277
hasNextInt method of Scanner

class, 277
Hoare, Tony (computer scientist), 14
HTML (Hypertext Markup Language),

applets and, 42

• I •
IBM WebSphere IDE, 30
icons in margins of this book, 2, 6–7
IDE (Integrated Development Environment),

30–33. See also JCreator
identifiers, 47–48

if statements
blocks in, 105
comparison operators with, 107–110, 308
conditions with, 103–104
double equal sign for conditions, 104–105
enforcing rules with, 167
indenting code in, 105–106
logical operators with, 111–113
nesting, 113–115
number guessing example, 100–102
overview, 103–104
switch statements versus, 116–117
without else statements, 106–107

import declarations
asterisk in, 111, 217
for java.io.Exception class, 179
nonpublic classes and, CD-22–CD-23
overview, 77–78
packages and, 217, CD-17, CD-21–CD-23
static keyword with, 233–234

increment operator, 92–96, 124
indenting code, 56, 57, 105–106
index of an array

defined, 251
staying within bounds, 310
storing values and, 252–253

inheritance
constructors and, 210
defined, 19

init method of applets, CD-39, CD-42, CD-44
initializing

array initializers, 255–256
for statements, 127
variables, 81, 146

installing
CD files with Mac OS, 324
CD files with Windows, 323–324
Java, 27–29
J2SE API Documentation, 24, 28–29
online versus offline installation, 26
SDK (Software Development Kit), 24, 27–29

instance variables
defined, 237, CD-3
as members of a class, 331, CD-3
method-local variables versus, 239–240

instances of classes
defined, 21
naming, 88

349Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 349

int type
for counters, 138
declaring arrays as, 251–252
Integer class and, 269
method for getting, 102
overview, 80, 81

Integer class, 269
Integer.parsInt method exceptions,

281, 282, 283
Integrated Development Environment

(IDE), 30–33. See also JCreator
interfaces

classes versus, CD-28
implementing, CD-29
methods, CD-28–CD-29
MoneyFrame class, CD-35–CD-36

Internet resources. See also downloading
Adobe Acrobat Reader site, 327
bonus chapters on the Web, 6
doing without an IDE, 31
FAQs, 315
history of programming bugs, 280
Java API projects, 46
Java certification, 316
Java home page, 24, 25, 313
Java Language Specification, 44
Java 2 For Dummies Web sites, 6, 7
JCP site, 45, 313
JCreator site, 327
Jigloo information, 30
Jindent site, 327
job hunting, 315
J2SE API Documentation, 44
Microsoft Windows help, 322–323
NetCaptor site, 328
for news and reviews, 314
newsgroups, 314–315
On the Web icon and, 7
opinions and advocacy, 315
for sample code, 314
servlet information, 316
Slashdot site, 316
SourceForge site, 317
tutorials, 314
WinOne site, 328

InterruptedException, 297–301
InventoryA class, 280–282

InventoryB class, 282–284
InventoryC class, 284–287
InventoryD class, 287–293
InventoryLoop class, 294–295
IOException, 291–292, 301
italics in this book, 2
ItemListener interface, CD-36

• J •
JApplet class, public extensions of,

CD-39–CD-40
Java

case-sensitivity of, 50, 307
certification, 316
development of, 14–15, 16–17
downloading, 25–26
home directory, 28–29, 31–32
installing, 27–29
online versus offline installation, 26
popularity of, 15
portability, 40
Web site, 24, 25, 313

Java Community Process. See JCP
Java Database Connectivity. See JDBC
Java Language Specification, 44
Java Runtime Environment (JRE), 24, 25
Java Software Development Kit. See SDK
Java 2 Enterprise Edition (J2EE) API, 46
Java 2 For Dummies (Burd, Barry). See also

CD-ROM with this book
assumptions about the reader, 3
bonus chapters, 5–6
conventions, 1–2
icons in book margins, 2, 6–7
organization, 4–6
using, 1, 2, 7
Web sites, 6, 7

Java 2 Micro Edition (J2ME) API, 46
Java 2 Standard Edition (J2SE) API, 46.

See also J2SE API Documentation
Java Virtual Machine (JVM), 40, 42, 228
java.awt package, 218
javadoc comments

API documentation created from, 61–62
overview, 60–61

350 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 350

Javadoc directory
configuring JCreator and, 32–33
installing J2SE API Documentation in,

24, 29
java.io.Exception class, reading from a

file and, 177, 179
java.io.File class

deleting files and, 133
overview, 133
reading from a file and, 177, 179

java.io.PrintStream class, 259–260
java.sql package, CD-53
javax.sql package, CD-53
javax.swing package, 218, CD-27, CD-32
JBuilder IDE (Borland), 30
JButton class, 218
JCP (Java Community Process)

identifiers created by, 47–48
Java API and, 45
Web site, 45, 313

JCreator
adding code in, 64–68
adding new classes, 66–67
advantages of, 31, 326–327
CLASSPATH and, CD-11
command line argument setup,

270–273
commenting out code, 63
compiling and running multiple classes,

147–148
compiling projects, 37, 67
creating data files, 176
error messages, 68
JCreator LE (on the CD), 31
monitoring changes to text files, 259
opening data files, 175–176
packages in, CD-9–CD-10
projects, 36–37, 64–65
running applets, CD-38–CD-39
running for the first time, 31–33
running GUI on a Web page, 39, 41
running GUI on its own, 38–39
running text-based programs, 34–38
special edition on the CD, 326–327
uncommenting code, 63
viewing code in, 48–49

Web site, 327
work area, 33
workspaces, 35–36, 64–65

JCreator Setup Wizard, 31–33
JDBC (Java Database Connectivity). See

also databases
connecting and disconnecting,

CD-55–CD-56
creating a table, CD-53–CD-54
need for, CD-49
packages, CD-53
scrollable result sets, CD-55
using SQL commands, CD-54–CD-55

JFrame class, 218
JFrame objects, CD-12
JFrame type, 86–88
Jigloo graphical user interface builder, 30
Jindent trial version (on the CD), 327
JLabel object, 226
job hunting resources, 315
JRE (Java Runtime Environment), 24, 25
JTextField class, CD-27, CD-32
J2EE (Java 2 Enterprise Edition) API, 46
J2ME (Java 2 Micro Edition) API, 46
J2SE API Documentation. See also API

(Application Programming Interface)
complexity of, 44–45
described, 61–62
directory for, 24, 29, 32–33
downloading, 24, 26, 44
finding javadoc pages, 62
installing, 24, 28–29

J2SE (Java 2 Standard Edition) API, 46
JVM (Java Virtual Machine), 40, 42, 228

• K •
keyboard

number guessing program and, 101–102
responding to events, CD-32–CD-36
System.in name for, 102

keywords. See also specific keywords
class, 50
defined, 46, 47
for exception handling, 281–282
lowercase for, 307

351Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 351

• L •
Label objects, 233
Language Specification for Java, 44
length of arrays, 254
line feed escape sequence, 255
listeners, 309
literals, defined, 73
Locale class, 174
logical operators, 111–113
long type, 80, 82
loops

for continuing after catching exceptions,
294–295

counters, 124
do...while statement for, 129–134
enhanced for loop, 134–138
for statement for, 125–129
need for, 121
number guessing program example,

122–124
repeating a certain number of times,

125–129
for stepping through an array, 256–257
for storing values in arrays, 253–254
while statement for, 122–124

lowercase. See case

• M •
Mac OS, installing CD files with, 324
Macs For Dummies (Pogue, David), 323
main method

applets lacking, CD-39
body, 52
called by JVM, 228
header, 52
NoSuchMethodError error, 148
overview, 52–53
static keyword in, 231, 309–310
String args[] in, 267
throws IOException clause in, 227–228
variable references in, 237–238

MakeRandomNumsFile class, 268–270
matching catch clauses, 288
members of classes

access modifiers for, 332–337, CD-4–CD-6
classes versus, 332, CD-3

default access and, CD-15–CD-17
defined, 331, CD-3
public keyword and, 332, CD-3

method-local variables
class members and, 331, CD-3
defined, 238
instance variables versus, 239–240

methods. See also specific methods
access modifiers, 332–337
accessor methods, 163–167
in applets, CD-39, CD-42–CD-44
arrays in, 251
calling, 51, 52
calling other methods from, 228
catch clause as mini-method, 284
constructors versus, 202
creating objects, 145–146
curly braces in, 56
declarations, 52
default access, 334
defined, 51, 53
defining in classes, 148–151
DocumentListener interface, CD-35
formatting return values, 158–161
interface, CD-28–CD-29
ItemListener interface, CD-36
main method, 52–53
as members of a class, 331, CD-3
MouseListener interface, CD-36
names for, 51
non-static variable or method...

message, 234–235
overriding existing methods, 195–198
overview, 50–52
passing parameters by reference, 244–245
passing parameters by value, 241–243
passing values to, 155–156
passing variable values between, 239–241
private, 334, CD-6
public, 333, CD-5
range of code for using default, CD-16
range of code for using protected, CD-19
return value, 152
returning a result to, 243–244
returning objects from, 246–247
returning values from, 156–158
static, 230, 233
this keyword accessing variables in,

204–205, 210, CD-31

352 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 352

types and, 102
variables declared inside versus outside,

236–241
void keyword for, 151

Microsoft Access, creating a database in,
CD-50–CD-52

Microsoft Windows. See Windows
(Microsoft)

minus sign (-) as decrement operator (--),
92, 94, 95

MoneyFrame class
components of MoneyFrame window,

CD-35
interfaces, CD-35–CD-36
listing, CD-32–CD-34
outline, CD-35

mortgage-calculating programs
GUI on a Web page, 39, 41
GUI, standalone, 38–39
messages, 34
text-based, 34–38

MouseListener interface, CD-36
multiplication operator, 90
multithreading, CD-29–CD-31
My File.txt file, 270
MyNumberedFile.txt file, 268–269

• N •
names.txt file, 275–276
naming

bytecode files, 40
capitalization and, 307
classes, 50
context and, 235–236
data files, 176
fully qualified names for classes, 217
instances of classes, 88
methods, 51
packages, CD-17
showing filename extensions, 35
static variables or methods, 233
variables declared inside versus outside

methods, 236–241
variables versus variable names, 73
variables with same name, handling,

142–144
negative numbers, exceptions for, 286
nesting if statements, 113–115

NetBeans IDE, 30
NetCaptor freeware (on the CD), 328
new Account method, 145–146
New Database window (Access),

CD-51–CD-52
new File object, 177, 178–179
news, Web sites for, 314
newsgroups, 314–315
next method, 102
nextBoolean method, 102
nextDouble method, 102, 182–183
nextInt method, 102, 182
nextLine method, 182–183
NoClassDefFoundError, 311
nonpublic classes, 338, CD-21, CD-22–CD-23
non-static variable or method...

message, 234–235
NoSleepForTheWeary class, 296–298
NoSuchMethodError error, 148
not operator, 111
null pointers, 310–311
NullPointerException, 310–311
NumberFormat class, 265, 266
NumberFormatException, 281, 282, 290
number guessing program

original version, 100–102
repeating version, 122–124

NumberTooLargeException, 287–288, 291,
293

• O •
object-oriented programming. See OOP
objects. See also constructors

arrays of, 261–266
calling own method, 210
classes and, 17–18
comparison operators with, 108–110
creating, 145–146
defined, 141
describing as goal of OOP, 49, 141
display method for, 150–151
as instances of classes, 21, 141
overview, 17–18, 20–22
returning from methods, 246–247

ODBC Data Source Administrator (Access),
CD-50, CD-52

ODBC Microsoft Access Setup window
(Access), CD-50–CD-51

353Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 353

odometer applet, CD-40–CD-44
Odometer class, CD-41
OdometerPanel class, CD-41–CD-42
offline installation, 26
On the CD icon, 7
On the Web icon, 7
online installation, 26
OOP (object-oriented programming)

advantages of, 18–20
classes, 17–18
defined, 16
displaying and, 149
ease of modifying code, 170
Java and, 15
objects, 17
terminology, 19

operators
arithmetic, 90–91
assignment operators, 96–97
assignment statements versus

declarations and, 92
comparison, 107–110, 308
concatenation, 89–90
conditional operator, 266
increment and decrement, 92–96, 124
logical, 111–113

or operator, 111
outlines, programs as, 56
OutOfRangeException, 285–286, 288, 290,

291, 293
overriding existing methods, 195–198

• P •
pack method, 226, 227
packages

applets and, CD-39
classes in same package, CD-17,

CD-20–CD-21
declarations, CD-8
default access and, CD-15–CD-17
defined, 217
directory structure, CD-8–CD-9
for drawings and frames, CD-7
import declarations and, 217, CD-17,

CD-21–CD-23
in JCreator, CD-9–CD-10
JDBC, CD-53

naming, CD-17
nonpublic classes and, CD-22–CD-23
protected access and, 334–337,

CD-18–CD-21
subclasses and, CD-13–CD-14

packing frames, 226, 227
paint method, CD-8, CD-12
paint method of applets, CD-39, CD-43,

CD-44
parameter passing. See passing parameters
parent classes, 19
parentheses [()]
equals method and, 110
for if statement conditions, 104
in method headers, 151, 155–156

parseInt method, 269
PartTimeEmployee class

creating, 185, 188
findPaymentAmount method, 191–192
methods available, 191
overriding existing methods, 195–197
PartTimeWithOver subclass, 195–198
payOnePTEmployee method, 193–194
testing the code, 197–198
using, extended example, 192–194
using, minimal example, 191–192

PartTimeWithOver class, 195–198
passing parameters

by reference, 244–245
returning a result, 243–244
returning objects from methods, 246–247
by value, 241–243

passing values
between methods, 239–241
to methods, 155–156

path names, 181
pausing programs, exception handling for,

296–301
payOneEmployee method, 172–173, 180
payOneFTEmployee method, 193
payOnePTEmployee method, 193–194
PCs For Dummies (Gookin, Dan), 323
percent sign (%)

in format string for printf method,
159–161, 173–174

as remainder operator, 90–91
Player class

data file for, 225
DecimalFormat class and, 223

354 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 354

getAverageString method, 223
getter methods, 223
instances created by TeamFrame class,

225–226
listing, 222
name and average variables, 222–223
team averages and, 229

Player constructor, 225–226
PlayerPlus class

listing, 229–230
static keywords in, 230–231

plus sign (+)
as addition operator, 89
as concatenation operator, 89–90
as increment operator (++), 92–96

Pogue, David (Macs For Dummies), 323
pointers, null, 310–311
popularity of Java, 15
portability of Java, 40
postdecrement operator, 94
postincrement operator, 93–94
predecrement operator, 94
preincrement operator, 92–93, 94
primitive types, 81–85, 146
print method, 255, 260
printf method

called by cutCheck method, 173–174
format strings, 159–161, 173–174
format variable with, 207–208

println method, 255, 260
printStackTrace method, 284
PrintStream constructor, 260
PrintStream object, 260
private keyword

as access modifier, CD-2
default access and, CD-15–CD-17
public keyword versus, 332–334,

CD-4–CD-6
range of code for using, 334, CD-6
in variable declarations, 165

programming
experience not needed for this book, 3
history of, 14–15
object-oriented (overview), 15–22
popularity of, 13

programming languages
C, 14
C++, 14, 17
defined, 12

English unsuitable as, 12
object-oriented, 16

programs. See also running programs
advantages of writing your own, 13
classes as, 50
compiling and running, 40
defined, 12
as outlines, 55–57
pausing, 296–301
running Java programs, 34–41
simple Java example, 48–50

Project Properties window (JCreator),
271, 272

Project Wizard (JCreator), 64–65
projects (JCreator)

command line argument setup, 270–273
compiling, 37, 67
creating, 64–65
defined, 36
executing, 37
setting the active project, 36–37

protected access
default access versus, 334–336
defined, CD-18
packages and, 334–337, CD-18–CD-21
variable has protected access

message, CD-21
protected keyword

as access modifier, CD-2
default access and, CD-15–CD-17

public keyword
as access modifier, CD-2
for accessor methods, 166
applets and, CD-39–CD-40
for classes, 338–339, CD-21–CD-22
declaring variables public, CD-2
default access and, CD-15–CD-17
members versus classes and, 332, CD-3
private keyword versus, 332–334,

CD-4–CD-6
range of code for using, 333, CD-5

• Q •
question mark (?) as conditional

operator, 266
quotation marks (“), escape sequence for

(\”), 255

355Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 355

• R •
randomness

difficulties attaining, 102
generating random numbers, 103
MakeRandomNumsFile class, 268–269

Rathbone, Andy
Windows ME Millennium Edition For

Dummies, 323
Windows 98 For Dummies, 323
Windows 2000 Professional For

Dummies, 323
Windows XP For Dummies, 323

reading data from a file
copying and pasting code for, 177–178
FileNotFoundException, 180–181
java.io.Exception class and, 177, 179
java.io.File class and, 177, 179
new File object for, 177, 178–179
one line at a time, 182–183
passing the file scanner’s name, 180
throws IOException clause for,

177, 179
reference types

declarations, 87–88
initializing variables, 146
JFrame, 86–88
overview, 85–88
String, 86, 87

remainder operator, 90–91
Remember icon, 6
remove method of ArrayList object, 276
repaint method of applets, CD-43
retrieving database data, CD-56–CD-59
return type, defined, 152
return value

defined, 152
formatting numbers, 158–161
returning from methods, 156–158

returning
formatting return values, 158–161
objects from methods, 246–247
results to methods, 243–244
values from methods, 156–158

reviews, Web sites for, 314

revising existing code. See also subclasses
(child classes)

need for, 183–185
OOP and ease of, 170

Ritchie, Dennis (C creator), 14
Room class

conditional operator, 266
formatting currency, 265–266
listing, 261–262
Room instance and, 261

RoomList.txt file, 262, 263
rounding numbers, 158–161
running programs

applets, 39, 41, CD-38–CD-39
GUI on a Web page, 39, 41
GUI on its own, 38–39
JCreator for the first time, 31–33
programs with multiple classes, 147–148
text-based Java programs, 34–38

RunTimeException, 303

• S •
safety versus security, 162
ScaleName class, 206–207
ScaleName enum type, 201–202, 206–207
Scanner class

fully qualified name, 217
getting values from a file, 253
nextLine method, 182
passing the file scanner’s name, 180
reading data from a file, 177, 178–179, 260
testing collections using, 277

scrollable result sets (JDBC), CD-55
SDK (Software Development Kit)

directory for, 27–28
downloading, 24, 25–26
installing, 24, 27–29
JRE included with, 24, 25
JRE versus, 24, 25

searching arrays, 257–261
security

protecting source code, 183–184
safety versus, 162

semicolon (;) ending Java statements, 55

356 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 356

servlets, 316
setDefaultCloseOperation

method, 218
setLayout method, 218
setSize method, 218
setter methods. See accessor methods
setTitle method, 218
setVisible method, 218, 227
shareware programs, 326
short type, 80, 81
ShowAFrame class, 216
ShowFrame class, CD-6–CD-7, CD-11
ShowFrameWideBB class, CD-20–CD-21
ShowGameFrame class, CD-26–CD-27
ShowGuests class, 254, 256–257
showing. See displaying
ShowMoneyFrame class, CD-34
ShowNames class

generics with, 277
original version, 275–276

ShowRooms class
listing, 262–263
object array creation by, 264–265
output from, 264

ShowTeamFrame class
data file for, 225
listing, 224
team averages and, 228
TeamFrame class run by, 232

SimpleApplet class
calling methods in, CD-39
listing, CD-37
as public class, CD-39–CD-40
results of running, CD-38
Web page for, CD-38

SimpleFrame class, 215
simplicity

as good programming practice, 162–163
of Java Language Specification, 44

SIMULA language, 16
single quotation marks (‘)

for char literals, 83
escape sequence for (\’), 255

SkillMarket report on Java, 15
slash (/)

as division operator, 90, 91
for end-of-line comments (//), 60

for javadoc comments (/**), 60
for traditional comments (/* and */), 59

Slashdot Web site, 316
sleep method, 296–301
Smalltalk language, 16
software

on the CD-ROM, 326–328
defined, 12

Software Development Kit. See SDK
SourceForge Web site, 317
SQL For Dummies (Taylor, Allen G.), CD-54
SQL (Structured Query Language)

commands, using, CD-54–CD-55
SQLException, 301, CD-56
square brackets ([]) in array

declarations, 251
start method of applets, CD-42, CD-43
statements. See also flow control; specific

statements
assignment operators in, 97
assignment statements, 73–74, 92, 252
colon ending, 55
defined, 53
method calls, 54

static keyword
class instances and, 229
constructors and, 231
import declarations with, 233–234
in main method, 231, 309–310
methods and, 230
naming variables or methods and, 233
non-static variable or method...

message, 234–235
in number guessing program, 102
in PlayerPlus class, 230–231
ubiquity of, 234

stepping through an array, 256–257
stop method of applets, CD-43
storing

data in a file, 175–176
values in arrays, 252–256

String args[] in main method, 267
String type

concatenating values, 89–90
equals method, 109–110
method for getting, 102
overview, 86, 87

357Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 357

Stroustrup, Bjarne (C++ creator), 14, 17
Structured Query Language (SQL)

commands, using, CD-54–CD-55
subclasses (child classes)

constructors for, 210–211, 212–215
creating, 185–188
defined, 19
FullTimeEmployee example, 185–188,

189–194, 197–198
invisible call to super, 214–215
overriding existing methods, 195–198
packages and, CD-13–CD-14
PartTimeEmployee example, 185, 188,

191–194, 197–198
PartTimeWithOver example, 195–198
super keyword in, 210–211
testing the code, 197–198
using, extended example, 192–194
using, minimal example, 189–192

Sun Microsystems
appletviewer, 42
Java developed by, 14–15, 17
online training pages, 314

super keyword
invisible call to, 214–215
in subclasses, 210–211

superclasses, 19
switch statements

basic statement, 116–119
break statements and, 119–120, 308
fall-through, 119–120, 308
in for loops, 128–129
if statements versus, 116–117

system requirements for the CD-ROM,
322–323

System.in name, 102
System.out object, 259–260
System.out.println method, 54–55

• T •
tabs, escape sequence for, 255
Taylor, Allen G. (SQL For Dummies), CD-54
TeamFrame class
addPlayerInfo method calls, 226
data file for, 225
GridLayout constructor calls, 226
listing, 224

Player constructor calls, 225–226
team averages and, 228
using PlayerPlus class, 231–233

Technical Stuff icon, 2, 7
Temperature class

listing, 200–201
number variable, 201, 203–204, 209–210
scale variable, 201, 203–204, 209–210
ScaleName enum type and, 201–202,

206–207
TemperatureNice subclass, 208–212

Temperature constructors, 202, 204–205
TemperatureNice class

constructors, 210–211
number and scale variables and, 209–210
as subclass of Temperature class,

208–210
text
char type for characters, 82–84
displaying, 78
System.out object and, 260

text files
for array values, 253–254
EmployeeInfo.txt, 174, 175–176
GuestList.txt, 253–254, 257–261
Hankees.txt, 225, 232
My File.txt, 270
MyNumberedFile.txt, 268–269
names.txt, 275–276
PrintStream constructor and, 260
RoomList.txt, 262, 263

text-based programs, running, 34–38
this keyword, 204–205, 210, CD-31
threads of execution, CD-29–CD-31
Thread.sleep method, 296–301
throw keyword, 281
throwing exceptions. See also exception

handling
for acknowledging exceptions in the code,

299–301
defined, 281
illustrated, 282

throws clause, 299–301
throws IOException clause

in main method, 227–228
for reading from a file, 177, 179, 227

throws keyword, 281
Tip icon, 6

358 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 358

Tool Configuration: Run Application
window (JCreator), 271–272

TrackPopulation class, 242
TrackPopulation2 class, 243–244
TrackPopulation3 class, 244–245
TrackPopulation4 class, 246–247
trial versions of software

defined, 326
Jindent (on the CD), 327
WinOne (on the CD), 328

troubleshooting. See also error messages;
exception handling; exceptions

avoiding mistakes, 307–311
CD-ROM with this book, 328–329
mortgage-calculating applet, 41

try clause. See also try statements
defined, 283
multiple catch clauses for, 286–293
never thrown exceptions and, 293–294
order of processing for catch clauses,

286–287, 288–293
try keyword, 282
try statements. See also catch clauses;

try clause
acknowledging exceptions in the code,

298–299
defined, 283
finally clause, 301–303
multiple catch clauses for one try

clause, 286–293
try-catch statements. See try

statements
tutorials online, 314
typeface conventions in this book, 1–2
types
boolean, 84–85, 102
byte, 80, 81
char, 82–84
declaring, 75
defined, 72
double, 75–77, 82, 102, 108
enum, 136–137, 138, 201–202, 206–207
float, 76, 77, 82, 108
for loops and, 138
int, 80, 81, 102, 138, 251–252, 269
JFrame, 86–88
long, 80, 82
methods and, 102

need for, 74–75
primitive, 81–85, 146
reference types, 85–88, 146
return type, 152
short, 80, 81
String, 86, 87, 89–90, 102, 109–110
whole numbers, 78–80

• U •
Unicode characters, 83–84
uppercase. See case
UseAccount class

calling accessor methods, 164–165
display method, 150
formatting return values, 159–161
getInterest method called in, 153–154
simple form, 143–144

UseTemperature class
listing, 202–203
new Temperature statements, 203
ScaleName enum type and, 206–207
UseTemperatureNice subclass, 211–212

UseTemperatureNice class, 211–212

• V •
values. See also types

in arrays, 251
assigned to variables by constructors,

204–205
of boolean variables, 84
changing by applying operators, 89–97
comparing, 104–105, 308
defined, 72
enum type and, 136
escape sequences for displaying, 255
expressions and, 85
for loops and, 138
formatting return values, 158–161
initializing, 81
modifying in arrays, 257–261
passing between methods, 239–241
passing to methods, 155–156
return value, 152
returning from methods, 156–158
storing in arrays, 252–256

values method, 138

359Index

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 359

variable has protected access
message, CD-21

variables
access modifiers for members, 332–337
assignment statements, 73–74, 92
blocks and declarations, 133–134
combining declarations, 80–81
declarations, 75, 133–134, 144–146
declared inside versus outside methods,

236–241
default access, 334, CD-14–CD-17
defined, 72
enforcing rules with if statements, 167
enum type and, 136–137
for loops and, 137–138
for format strings for printf method,

207–208
hiding with accessor methods, 163–167
in initialization of for loop, 127
initializing, 81, 146
instance, 237, 239–240, 331, CD-3
literals versus, 73
as members of a class, 331
method-local, 238, 239–240, 331
non-static variable or method...

message, 234–235
passing values between methods, 239–241
private, 165, 334, CD-2, CD-6
protected, 335, 337, CD-18–CD-21
public, 333, CD-2, CD-5
range of code for using default, CD-16
range of code for using protected, CD-19
with same name, handling, 142–144
static, 229, 230, 231, 233
this keyword for, 204–205, 210, CD-31
types, 72, 74–77
using, 71–73, 146–147
values assigned by constructors, 204–205
values stored in, 72
variable has protected access

message, CD-21
variable names versus, 73
whole numbers in, 78–80

viewing. See displaying
visitIdaho method, 239, 240, 241
visitNewJersey method, 240–241
visitPennsylvania method, 238
void keyword, 151

• W •
Warning! icon, 6
Web browsers

applet methods called by, CD-39,
CD-42–CD-43

applet package and, CD-39
Web sites. See Internet resources
WebSphere IDE (IBM), 30
while clause in do...while statement,

122–124
whole numbers, 78–80
Wiley Publishing Customer Service, 329
windows. See frames
Windows ME Millennium Edition For

Dummies (Rathbone, Andy), 323
Windows (Microsoft)

creating an Access database in,
CD-50–CD-52

further information, 323
installing CD files, 323–324
system requirements for the CD-ROM,

322–323
Web sites for help, 322–323

Windows 98 For Dummies
(Rathbone, Andy), 323

Windows 2000 Professional For Dummies
(Rathbone, Andy and
Crawford, Sharon), 323

Windows XP For Dummies
(Rathbone, Andy), 323

WinOne evaluation version (on the CD), 328

• Z •
zero (0) as array starting number, 251

360 Java 2 For Dummies, 2nd Edition

06d_568582_bindex.qxd 7/27/04 11:53 PM Page 360

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)
transfer the Software to a single hard disk, provided that you keep the original for backup or
archival purposes. You may not (i) rent or lease the Software, (ii) copy or reproduce the
Software through a LAN or other network system or through any computer subscriber
system or bulletin-board system, or (iii) modify, adapt, or create derivative works based on
the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer the
Software and user documentation on a permanent basis, provided that the transferee agrees
to accept the terms and conditions of this Agreement and you retain no copies. If the
Software is an update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the About the CD-ROM appendix of
this Book. These limitations are also contained in the individual license agreements recorded
on the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the About the CD-ROM appendix and
on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

06e_568582_meddis.qxd 7/27/04 11:53 PM Page 361

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials and
workmanship under normal use for a period of sixty (60) days from the date of purchase of
this Book. If WPI receives notification within the warranty period of defects in materials or
workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that vary
from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workmanship
shall be limited to replacement of the Software Media, which may be returned to WPI
with a copy of your receipt at the following address: Software Media Fulfillment Department,
Attn.: Java 2 For Dummies, 2nd Edition Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for delivery.
This Limited Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted for the remain-
der of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including without
limitation damages for loss of business profits, business interruption, loss of business infor-
mation, or any other pecuniary loss) arising from the use of or inability to use the Book or
the Software, even if WPI has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

06e_568582_meddis.qxd 7/27/04 11:53 PM Page 362

PERSONAL FINANCE & BUSINESS

Also available:
Accounting For Dummies
(0-7645-5314-3)
Business Plans Kit For
Dummies
(0-7645-5365-8)
Managing For Dummies
(1-5688-4858-7)
Mutual Funds For Dummies
(0-7645-5329-1)
QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)

Resumes For Dummies
(0-7645-5471-9)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business
For Dummies
(0-7645-1547-0)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:
Bartending For Dummies
(0-7645-5051-9)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Cookies For Dummies
(0-7645-5390-9)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Home Maintenance For
Dummies
(0-7645-5215-5)
Slow Cookers For Dummies
(0-7645-5240-6)
Wine For Dummies
(0-7645-5114-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

HOME, GARDEN, FOOD & WINE

Also available:
Cats For Dummies
(0-7645-5275-9)
Chess For Dummies
(0-7645-5003-9)
Dog Training For Dummies
(0-7645-5286-4)
Labrador Retrievers For
Dummies
(0-7645-5281-3)
Martial Arts For Dummies
(0-7645-5358-5)
Piano For Dummies
(0-7645-5105-1)

Pilates For Dummies
(0-7645-5397-6)
Power Yoga For Dummies
(0-7645-5342-9)
Puppies For Dummies
(0-7645-5255-4)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Weight Training For Dummies
(0-7645-5168-X)

FITNESS, SPORTS, HOBBIES & PETS

0-7645-2431-3 0-7645-5331-3 0-7645-5307-0

0-7645-5295-3 0-7645-5130-2 0-7645-5250-3

0-7645-5167-1 0-7645-5146-9 0-7645-5106-X

06f_568582_badvert.qxd 7/27/04 11:54 PM Page 363

Also available:
The Bible For Dummies
(0-7645-5296-1)
Controlling Cholesterol
For Dummies
(0-7645-5440-9)
Dating For Dummies
(0-7645-5072-1)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Judaism For Dummies
(0-7645-5299-6)

Menopause For Dummies
(0-7645-5458-1)
Nutrition For Dummies
(0-7645-5180-9)
Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Religion For Dummies
(0-7645-5264-3)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

A world of resources to help you grow

TRAVEL

Also available:
America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)

France For Dummies
(0-7645-6292-4)
Las Vegas For Dummies
(0-7645-5448-4)
London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts
For Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)

Also available:
The ACT For Dummies
(0-7645-5210-4)
Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For Dummies
(0-7645-5426-3)
SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

EDUCATION & TEST PREPARATION

HEALTH, SELF-HELP & SPIRITUALITY

0-7645-5453-0 0-7645-5438-7 0-7645-5444-1

0-7645-5194-9 0-7645-5325-9 0-7645-5249-X

0-7645-5154-X 0-7645-5302-X 0-7645-5418-2

06f_568582_badvert.qxd 7/27/04 11:54 PM Page 364

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

Plain-English solutions for everyday challenges

HOME & BUSINESS COMPUTER BASICS

Also available:
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Office XP 9-in-1 Desk
Reference For Dummies
(0-7645-0819-9)
PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Troubleshooting Your PC
For Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)
Word 2002 For Dummies
(0-7645-0839-3)

Also available:
CD and DVD Recording
For Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
eBay For Dummies
(0-7645-1642-6)
Genealogy Online For
Dummies
(0-7645-0807-5)
Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)

Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Paint Shop Pro For Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Photoshop Elements For
Dummies
(0-7645-1675-2)
Scanners For Dummies
(0-7645-0783-4)

INTERNET & DIGITAL MEDIA

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0894-6 0-7645-1642-6 0-7645-1664-7

• Find listings of even more Dummies titles

• Browse online articles, excerpts, and how-to’s

• Sign up for daily or weekly e-mail tips

• Check out Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

06f_568582_badvert.qxd 7/27/04 11:54 PM Page 365

Helping you expand your horizons and realize your potential

GRAPHICS & WEB SITE DEVELOPMENT

Also available:
Adobe Acrobat 5 PDF
For Dummies
(0-7645-1652-3)
ASP.NET For Dummies
(0-7645-0866-0)
ColdFusion MX For Dummies
(0-7645-1672-8)
Dreamweaver MX For
Dummies
(0-7645-1630-2)
FrontPage 2002 For Dummies
(0-7645-0821-0)

HTML 4 For Dummies
(0-7645-0723-0)
Illustrator 10 For Dummies
(0-7645-3636-2)
PowerPoint 2002 For
Dummies
(0-7645-0817-2)
Web Design For Dummies
(0-7645-0823-7)

Also available:
Access 2002 For Dummies
(0-7645-0818-0)
Beginning Programming
For Dummies
(0-7645-0835-0)
Crystal Reports 9 For
Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)

JavaScript For Dummies
(0-7645-0633-1
Oracle9i For Dummies
(0-7645-0880-6)
Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)

SQL For Dummies
(0-7645-0737-0)
Visual Basic .NET For
Dummies
(0-7645-0867-9)

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

PROGRAMMING & DATABASES

Also available:
A+ Certification For Dummies
(0-7645-0812-1)
CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1651-5 0-7645-1643-4 0-7645-0895-4

0-7645-0746-X 0-7645-1626-4 0-7645-1657-4

0-7645-1545-4 0-7645-1760-0 0-7645-0772-9

06f_568582_badvert.qxd 7/27/04 11:54 PM Page 366

Chapter 15

Sharing Names among the Parts
of a Java Program

In This Chapter
� Hiding names from other classes

� Exposing names to other classes

� Tweaking your code to find the right middle ground

Speaking of private variables and methods (and I do speak about these
things in this chapter). . . .

I’m eating lunch with some friends of mine at work. “They can read your
e-mail,” says one fellow. Another chimes in, “They know every single Web site
that you visit. They know what products you buy, what you eat for dinner,
what you wear, what you think. They even know your deepest, darkest
secrets. Why, I wouldn’t be surprised if they know when you’re going to die.”

A third voice enters the fray. “It’s getting to the point where you can’t blow
your nose without someone taking a record of it. I visited a Web site a few
weeks ago, and the page wished me a Happy Birthday. How did they know it
was me, and how did they remember that it was my birthday?”

“Yeah,” says the first guy. “I have a tag on my car that lets me sail through toll
booths. It senses that I’m going through and puts the charge on my credit
card automatically. So every month, I get a list from the company showing
where I’ve been and when I was there. I’m amazed it doesn’t say who I was
visiting and what I did when I got there.”

I think quietly to myself. I think about saying, “That’s just a bunch of baloney.
Personally, I’d be flattered if my employer, the government, or some big com-
pany thought so much of me that they tracked my every move. I have enough
trouble getting people’s attention when I really want it. And most agencies
that keep logs of all my purchasing and viewing habits can’t even spell my
name right when they send me junk mail. ‘Hello, this is a courtesy call for
Larry Burg. Is Mr. Burg at home?’ Spying on people is really boring. I can
just see the headline on the front page of The Times: ‘Author of Java 2
For Dummies Wears His Undershirt Inside Out!’ Big deal!”

So I think for a few seconds, and then I say, “They’re out to get us. TV
cameras! That’s the next big thing — TV cameras everywhere.”

Access Modifiers
If you’ve read this far into Java 2 For Dummies, 2nd Edition (or even if you’re
browsing the bookstore shelves and have opened right to this chapter), you
probably know one thing: Object-oriented programming is big on hiding
details. Programmers who write one piece of code shouldn’t tinker with the
details inside another programmer’s code. It’s not a matter of security and
secrecy. It’s a matter of modularity. When you hide details, you keep the intri-
cacies inside one piece of code from being twisted and broken by another
piece of code. Your code comes in nice, discrete, manageable lumps. You
keep complexity to a minimum. You make fewer mistakes. You save money.
You help promote world peace.

Other chapters have plenty of examples of the use of private variables. When
a variable is declared private, it’s hidden from all outside meddling. This
hiding enhances modularity, minimizes complexity, and so on.

Elsewhere in the annals of Java 2 For Dummies, 2nd Edition, are examples of
things that are declared public. Just like a public celebrity, a variable that’s
declared public is left wide open. Plenty of people probably know what kind
of toothpaste Elvis used, and any programmer can reference a public vari-
able, even a variable that’s not named Elvis.

In Java, the words public and private are called access modifiers. No doubt
you’ve seen variables and methods without access modifiers in their declara-
tions. A method or variable of this kind is said to have default access. Many
examples in this book use default access without making a big fuss about it.
That’s okay in some chapters, but not in this chapter. In this chapter, I
describe the nitty-gritty details about default access.

And you can find out about yet another access modifier that isn’t used in any
example before this chapter. (At least, I don’t remember using it in any earlier
examples.) It’s the protected access modifier. Yes, this chapter covers some
of the slimy, grimy facts about protected access.

Classes, Access, and Multipart Programs
With this topic, you can become all tangled up in terminology, so you need to
get some basics out of the way. (Most of the terminology that you need
comes from Chapter 10, but it’s worth reviewing at the start of this chapter.)
Here’s a fake piece of Java code:

CD-2 Bonus Chapter

CD-3Chapter 15: Sharing Names among the Parts of a Java Program

class MyClass {
int myVariable; //an instance variable

// (a member)

void myMethod() { //a method (another member)

int myOtherVariable; //a method-local variable
} // (not a member)

}

The comments on the right side of the code tell the whole story. Two kinds of
variables exist here — instance variables and method-local variables. This
chapter isn’t about method-local variables. It’s about methods and instance
variables.

Believe me, carrying around the phrase “methods and instance variables”
wherever you go isn’t easy. It’s much better to give these things one name
and be done with it. That’s why both methods and instance variables are
called members of a class.

Members versus classes
At this point, you make an important distinction. Think about Java’s public
keyword. As you may already know from previous chapters, you can put
public in front of a member. For example, you can write

public static void main(String args[]) {

or

public amountInAccount = 50.22;

These uses of the public keyword come as no big surprise. What you may
not already know is that you can put the public keyword in front of a class.
For example, you can write

public class Drawing {

// Your code goes here

}

In Java, the public keyword has two slightly different meanings — one mean-
ing for members, and another meaning for classes. Most of this chapter deals
with the meaning of public (and of other such keywords) for members. The
last part of this chapter (appropriately titled “Access Modifiers for Java
Classes”) deals with the meaning for classes.

Access modifiers for members
Sure, this section is about members. But that doesn’t mean that you can
ignore Java classes. Members or not, the Java class is still where all the
action takes place. Each instance variable is declared in a particular class,
belongs to that class, and is a member of that class. The same is true of meth-
ods. Each method is declared in a particular class, belongs to that class, and
is a member of that class. Can you use a certain member name in a particular
place in your code? To begin answering the question, you check to see
whether that place is inside or outside of the member’s class:

� If the member is private, only code that’s inside the member’s class can
refer directly to that member’s name.

class SomeClass {
private int myVariable = 10;

}

class SomeOtherClass {

public static void main(String args[]) {
SomeClass someObject = new SomeClass();

//This doesn’t work:
System.out.println(someObject.myVariable);

}
}

� If the member is public, any code can refer directly to that member’s
name.

class SomeClass {
public int myVariable = 10;

}

class SomeOtherClass {

public static void main(String args[]) {
SomeClass someObject = new SomeClass();

//This works:
System.out.println(someObject.myVariable);

}
}

Figures 15-1 through 15-3 illustrate the ideas in a slightly different way.

CD-4 Bonus Chapter

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

public variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Figure 15-2:
The range of

code in
which a

public
variable or

method can
be used

(shaded).

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classYFigure 15-1:

Several
classes and

their
subclasses.

CD-5Chapter 15: Sharing Names among the Parts of a Java Program

Putting a drawing on a frame
To make this business about access modifiers clear, you need an example or
two. In this chapter’s first example, almost everything is public. With public
access, you don’t have to worry about who can use what.

The code for this first example comes in several parts. The first part, which is
in Listing 15-1, displays an ArtFrame. On the face of the ArtFrame is a
Drawing. If all the right pieces are in place, running the code of Listing 15-1
displays a window like the one in Figure 15-4.

Listing 15-1: Displaying a Frame

import com.burdbrain.drawings.*;
import com.burdbrain.frames.ArtFrame;

class ShowFrame {

public static void main(String args[]) {
ArtFrame artFrame = new ArtFrame(new Drawing());

artFrame.setSize(200, 100);
artFrame.setVisible(true);

}
}

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

private variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Figure 15-3:
The range of

code in
which a
private

variable or
method can

be used
(shaded).

CD-6 Bonus Chapter

The code in Listing 15-1 creates a new ArtFrame instance. You may suspect
that ArtFrame is a subclass of a Java frame class, and that’s certainly
the case. Chapter 9 says that Java frames are, by default, invisible. So, in
Listing 15-1, to make the ArtFrame instance visible, you call the setVisible
method.

Now notice that Listing 15-1 starts with two import declarations. The
first import declaration allows you to abbreviate any name from the
com.burdbrain.drawings package. The second import declaration
allows you to abbreviate the name ArtFrame.

For a review of import declarations, see Chapter 4.

The detective in you may be thinking, “He must have written more code
(code that I don’t see here) and put that code in packages that he named
com.burdbrain.drawings and com.burdbrain.frames.” And, indeed, you are cor-
rect. To make Listing 15-1 work, I need to create something called a Drawing,
and I’m putting all my drawings in the com.burdbrain.drawings package.
I also need an ArtFrame class, and I’m putting all such classes in my
com.burdbrain.frames package.

So, really, what’s a Drawing? Well, if you’re so anxious to know, look at
Listing 15-2.

Listing 15-2: The Drawing Class

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {
public int x = 40, y = 40, width = 40, height = 40;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

The code for the Drawing class is pretty slim. It contains a few int variables
and a paint method. That’s all. Well, when I create my classes, I try to keep
’em lean. Anyway, here are some notes about my Drawing class:

Figure 15-4:
An

ArtFrame.

CD-7Chapter 15: Sharing Names among the Parts of a Java Program

� At the top of the code is a package declaration. Lo and behold! I’ve
made my Drawing class belong to a package — the com.burdbrain.
drawings package. I didn’t pull this package name out of the air. The
convention (handed down by the people at Sun Microsystems) says that
you start a package name by reversing the parts of your domain name,
so I reversed burdbrain.com. Then, you add one or more descriptive
names, separated by dots. I added the name drawings because I intend
to put all my drawing goodies in this package.

� The Drawing class is public. A public class is vulnerable to intrusion
from the outside. So in general, I avoid plastering the public keyword in
front of any old class. But in Listing 15-2, I have to declare my Drawing
class to be public. If I don’t, classes that aren’t in the com.burdbrain.
drawings package can’t use the goodies in Listing 15-2. In particular,
the line

ArtFrame artFrame = new ArtFrame(new Drawing());

in Listing 15-1 is illegal unless the Drawing class is public.

For more information on public and nonpublic classes, see the section
entitled “Access Modifiers for Java Classes,” later in this chapter.

� The code has a paint method. This paint method uses a standard Java
trick for making things appear on-screen. The parameter g in Listing 15-2
is called a graphics buffer. To make things appear, all you do is draw on
this graphics buffer, and the buffer is eventually rendered on the com-
puter screen.

Here’s a little more detail: In Listing 15-2, the paint method takes a g
parameter. This g parameter refers to an instance of the java.awt.
Graphics class. Because a Graphics instance is a buffer, the things that
you put onto this buffer are eventually displayed on the screen. Like all
instances of the java.awt.Graphics class, this buffer has several draw-
ing methods — one of them being drawOval. When you call drawOval,
you specify a starting position (x pixels from the left edge of the frame
and y pixels from the top of the frame). You also specify an oval size by
putting numbers of pixels in the width and height parameters. Calling
the drawOval method puts a little round thing into the Graphics buffer.
That Graphics buffer, round thing and all, is displayed on-screen.

Directory structure
The code in Listing 15-2 belongs to the com.burdbrain.drawings package.
When you put a class into a package, you have to create a directory structure
that mirrors the name of the package. If you use JCreator, building this direc-
tory structure is easy. (See the “Using Java packages in JCreator” section, later
in this chapter.) In fact, if you load JCreator from this book’s CD-ROM, the
directory structures for all the book’s examples are installed automatically.

CD-8 Bonus Chapter

Even if you don’t use JCreator, understanding this directory business is
handy. To house code that’s in the com.burdbrain.drawings package, you
have to have three directories: a com directory, a subdirectory of com named
burdbrain, and a subdirectory of burdbrain named drawings. The overall
directory structure is shown in Figure 15-5.

If you don’t have your code in appropriate directories, you get a repulsive
and disgusting NoClassDefFoundError. Believe me, this error is never
fun to get. When you see this error, you don’t have any clues to help you
figure out where the missing class is or where the compiler expects to find it.
If you stay calm, you can figure out all this stuff on your own. If you panic,
you’ll be poking around for hours. As a seasoned Java programmer, I can
remember plenty of scraped knuckles that came from this heinous
NoClassDefFoundError.

Using Java packages in JCreator
When you become a seasoned Java programmer, you’ll put your own
Java programs into your own packages. If you use JCreator, this process
is easy. Imagine that you’re writing a program as part of your new
com.myhomedomain.stuff package.

The directory that houses this project’s code
(a subdirectory of JCreator’s MyProjects directory)

ShowFrame (Listing 15-1)
in unnamed package

Drawing (Listing 15-2)
in package com.burdbrain.drawings

ArtFrame (Listing 15-3)
in package com.burdbrain.frames

com

burdbrain

drawings frames

Figure 15-5:
The files

and
directories

in your
project.

CD-9Chapter 15: Sharing Names among the Parts of a Java Program

package com.myhomedomain.stuff;

class MyCode {

public static void main(String args[]) {
System.out.println(“I’m in a package.”);

}
}

This is how you make a new MyCode.java file in JCreator:

1. Follow Steps 1 through 7 in the last section of Chapter 3.

In these steps, you start JCreator, open a workspace, and create a proj-
ect. The steps are the same whether you work with packages or not.

2. Follow Steps 8 and 9 in the last section of Chapter 3.

In these steps, you begin creating a new Java class. A Class Wizard
dialog box is showing on your screen. You can see the wizard’s Class
Settings page. (See Figure 15-6.)

3. In the dialog box’s Package text box, type the name of the package
that will be housing your code. (See Figure 15-6.)

As you type a dotted package name (like com.myhomedomain.stuff),
JCreator automatically creates the appropriate directory structure
(like com\myhomedomain\stuff). To see this for yourself, check the
Location field in Figure 15-6.

4. Click Finish, and then type your Java code.

That’s all you have to do.

Figure 15-6:
Putting a

Java class
into a

package.

CD-10 Bonus Chapter

Making a frame
This chapter’s first three listings develop one multipart example. This section
has the last of three pieces in that example. This last piece isn’t crucial for
the understanding of access modifiers, which is the main topic of this chap-
ter. So, if you want to skip past the explanation of Listing 15-3, you can skip it
without losing the chapter’s thread. On the other hand, if you want to know
more about the Java Swing classes, read on.

CD-11Chapter 15: Sharing Names among the Parts of a Java Program

Looking for files in all the right places
You try to compile the program in Listing 15-1.
The Java compiler pokes through the code and
stumbles upon some missing pieces. First
there’s this thing called an ArtFrame. Then
you have this Drawing business. Listing 15-1
defines a class named ShowFrame, not
ArtFrame or Drawing. So where does the
compiler go for information about the
ArtFrame and Drawing classes?

If you stop to think about it, the problem can
be daunting. Should the compiler go searching
all over your hard drive for files named
ArtFrame.java or Drawing.class? How
large is your new hard drive? 120GB? 240GB?
6,000,000GB? And what about references to files
on network drives? The search space is poten-
tially unlimited. What if the compiler eventually
resolves all these issues? Then you try to run
your code and the Java Virtual Machine (JVM)
starts searching all over again. (For info on the
Java Virtual Machine, see Chapter 2.)

To tame this problem, Java defines something
called a CLASSPATH. The CLASSPATH is a list
of places where the compiler and the JVM look
for code. JCreator buries this CLASSPATH deep
inside its program options. That’s why you don’t
have to think about the CLASSPATH when
you run this book’s examples. (In JCreator, the

settings for certain JDK tools include the text
-classpath “$[ClassPath]”. Take my
word for it — this fixes the problem for most
small programming projects.)

The non-JCreator world has several ways to set
a CLASSPATH. Some programmers create a
new CLASSPATH each time they run a Java
program. Others create a system-wide
CLASSPATH variable. (If you’re familiar with
the PATH variable on Windows and UNIX
computers, you may already know how this
stuff works.) One way or another, the compiler
and the JVM need a list of places to look
for code. Without such a list, these Java
tools don’t look anywhere. They don’t find
classes like ArtFrame or Drawing. You
get a cannot find symbol message or a
NoClassDefFoundError message, and
you’re very unhappy.

If you installed JCreator from this book’s
CD-ROM, you don’t have to think about all
this. If not, or if you do fancy things with Java
packages, a healthy understanding of the
CLASSPATH may be useful to you. If so, I rec-
ommend a visit to this book’s Web site. At the
Web site you can find out more about the intri-
cacies of Java’s CLASSPATH.

Listing 15-3: The ArtFrame Class

package com.burdbrain.frames;

import com.burdbrain.drawings.*;
import javax.swing.JFrame;
import java.awt.Graphics;

public class ArtFrame extends JFrame {
Drawing drawing;

public ArtFrame(Drawing drawing) {
this.drawing = drawing;
setTitle(“Abstract Art”);
setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void paint(Graphics g) {
drawing.paint(g);

}
}

Listing 15-3 has all the gadgetry that you need for putting a drawing on a
Java frame. The code uses several names from the Java API (Application
Programming Interface). I explain most of these names in Chapters 9 and 10.

The only new name in Listing 15-3 is the word paint. The paint method in
Listing 15-3 defers to another paint method — the paint method belonging
to a Drawing object. The ArtFrame object creates a floating window on your
computer screen. What’s drawn in that floating window depends on whatever
Drawing object was passed to the ArtFrame constructor.

If you trace the flow of Listings 15-1 through 15-3, you may notice something
peculiar. The paint method in Listing 15-3 never seems to be called. Well, for
many of Java’s window-making components, you just declare a paint method
and let the method sit there quietly in the code. When the program runs, the
computer calls the paint method automatically.

That’s what happens with javax.swing.JFrame objects. In Listing 15-3, the
frame’s paint method is called from behind the scenes. Then, the frame’s
paint method calls the Drawing object’s paint method, which in turn, draws
an oval on the frame. That’s how you get the stuff you see in Figure 15-4.

Sneaking Away from the Original Code
Your preferred software vendor, Burd Brain Consulting, has sold you two
files — Drawing.class and ArtFrame.class. As a customer, you can’t see
the code inside the files Drawing.java and ArtFrame.java. So, you have
to live with whatever happens to be inside these two files. (If only you’d

CD-12 Bonus Chapter

purchased a copy of Java 2 For Dummies, 2nd Edition, which has the code for
these files in Listings 15-2 and 15-3!) Anyway, you want to tweak the way the
oval looks in Figure 15-4 so that it’s a bit wider. To do this, you create a sub-
class of the Drawing class — DrawingWide — and put it in Listing 15-4.

Listing 15-4: A Subclass of the Drawing Class

import com.burdbrain.drawings.*;
import java.awt.Graphics;

public class DrawingWide extends Drawing {
int width = 100, height = 30;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

To make use of the code in Listing 15-4, you remember to change one of the
lines in Listing 15-1. You change the line to

ArtFrame artFrame = new ArtFrame(new DrawingWide());

Listing 15-4 defines a subclass of the original Drawing class. In that subclass,
you override the original class’s width and height variables and the original
class’s paint method. The frame that you get is shown in Figure 15-7.

In passing, you may notice that the code in Listing 15-4 doesn’t start with a
package declaration. This means that your whole collection of files comes
from the following three packages:

� The com.burdbrain.drawings package. The original Drawing class
from Listing 15-2 is in this package.

� The com.burdbrain.frames package. The ArtFrame class from
Listing 15-3 is in this package.

� An ever-present, unnamed package. In Java, when you don’t start a file
with a package declaration, all the code in that file goes into one big,
unnamed package. Listings 15-1 and 15-4 are in the same unnamed pack-
age. In fact, most of the listings from the first 12 chapters of this book
are in Java’s unnamed package.

Figure 15-7:
Another art

frame.

CD-13Chapter 15: Sharing Names among the Parts of a Java Program

At this point, your project has two drawing classes — the original Drawing
class and your new DrawingWide class. Similar as these classes may be,
they live in two separate packages. That’s not surprising. The Drawing class,
developed by your friends at Burd Brain Consulting, lives in a package
whose name starts with com.burdbrain. But you developed DrawingWide on
your own, so you shouldn’t put it in a com.burdbrain package. The most
sensible thing to do is to put it in one of your own packages, such as
com.myhomedomain.drawings, but putting your class in the unnamed
package will do for now.

One way or another, your DrawingWide subclass compiles and runs as
planned. You go home, beaming with the confidence of having written useful,
working code.

Default access
If you’re reading these paragraphs in order, you know that the last example
ends very happily. The code in Listing 15-4 runs like a charm. Everyone,
including my wonderful editor, Paul Levesque, is happy.

But, wait! Do you ever wonder what life would be like if you hadn’t chosen
that particular career, dated that certain someone, or read that certain
For Dummies book? In this section, I roll back the clock a bit to show you
what would have happened if one word had been omitted from the code in
Listing 15-2.

Dealing with different versions of a program can give you vertigo, so I start
this discussion by describing what you’ve got. First, you have a Drawing
class. In this class, the variables aren’t declared to be public and have the
default access. The Drawing class lives in the com.burdbrain.drawings
package. (See Listing 15-5.)

Listing 15-5: Variables with Default Access

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {
int x = 40, y = 40, width = 40, height = 40;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

CD-14 Bonus Chapter

Next, you have a DrawingWide subclass (copied, for your convenience, in
Listing 15-6). The DrawingWide class is in Java’s unnamed package.

Listing 15-6: A Failed Attempt to Create a Subclass

import com.burdbrain.drawings.*;
import java.awt.Graphics;

public class DrawingWide extends Drawing {
int width = 100, height = 30;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

The trouble is that the whole thing falls apart at the seams. The code in
Listing 15-6 doesn’t compile. Instead, you get the following error messages:

x is not public in com.burdbrain.drawings.Drawing;
cannot be accessed from outside package
y is not public in com.burdbrain.drawings.Drawing;
cannot be accessed from outside package

The code doesn’t compile, because an instance variable that has default
access can’t be directly referenced outside its package — not even by a sub-
class of the class containing the variable. The same holds true for any meth-
ods that have default access.

A class’s instance variables and methods are called members of the class. The
rules for access, default and otherwise, apply to all members of classes.

The access rules that I describe in this chapter don’t apply to method-local
variables. A method-local variable can be accessed only within its own
method.

For the rundown on method-local variables, see Chapter 10.

In Java, the default access for a member of a class is package-wide access.
A member declared without the word public, private, or protected in front
of it is accessible in the package in which its class resides. Figures 15-8 and
15-9 illustrate the point.

CD-15Chapter 15: Sharing Names among the Parts of a Java Program

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure 15-9:
The range of

code in
which a
default

variable or
method can

be used
(shaded).

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure 15-8:
Packages

cut across
subclass

hierarchies.

CD-16 Bonus Chapter

The names of packages, with all their dots and subparts, can be slightly mis-
leading. For instance, when you write a program that responds to button
clicks, you normally import classes from two separate packages. On one
line, you may have import java.awt.*;. On another line, you may have
import java.awt.event.*;. Importing all classes from the java.awt pack-
age doesn’t automatically import classes from the java.awt.event package.

Crawling back into the package
I love getting things in the mail. At worst, it’s junk mail that I can throw right
into the trash. At best, it’s something I can use, a new toy, or something
somebody sent especially for me.

Well, today is my lucky day. Somebody from Burd Brain Consulting sent a
subclass of the Drawing class. It’s essentially the same as the code in Listing
15-6. The only difference is that this new DrawingWideBB class lives inside
the com.burdbrain.drawings package. The code is shown in Listing 15-7.
To run this code, I have to modify Listing 15-1 with the line

ArtFrame artFrame = new ArtFrame(new DrawingWideBB());

Listing 15-7: Yes, Virginia, This Is a Subclass

package com.burdbrain.drawings;

import java.awt.Graphics;

public class DrawingWideBB extends Drawing {
int width = 100, height = 30;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

When you run Listing 15-7 alongside the Drawing class in Listing 15-5, every-
thing works just fine. The reason? It’s because Drawing and DrawingWideBB
are in the same package. Look back at Figure 15-9 and notice the shaded
region that spans across an entire package. Being in the same package, the
code in the DrawingWideBB class has every right to use the x and y
variables, which are defined with default access in the Drawing class.

CD-17Chapter 15: Sharing Names among the Parts of a Java Program

Protected Access
When I was first getting to know Java, I thought the word protected meant nice
and secure, or something like that. “Wow, that variable is protected. It must
be hard to get at.” Well, this notion turned out to be wrong. In Java, a member
that’s protected is less hidden, less secure, and easier to use than one that
has default access. The concept is rather strange.

Think of protected access this way. You start with an instance variable that has
default access (a variable without the word public, private, or protected in its
declaration). That variable can be accessed only inside the package in which
it lives. Now add the word protected to the front of the variable’s declaration.
Suddenly, classes outside that variable’s package have some access to the
variable. A subclass (of the class in which the variable is declared) can now
reference the variable. You can also reference the variable from a sub-subclass,
a sub-sub-subclass, and so on. Any descendent class will do. For an example,
see Listings 15-8 and 15-9.

Listing 15-8: Protected Variables

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {
protected int x = 40, y = 40, width = 40, height = 40;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

Listing 15-9: The Subclass from the Blue Lagoon, Part II

import com.burdbrain.drawings.*;
import java.awt.Graphics;

public class DrawingWide extends Drawing {
int width = 100, height = 30;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

Listing 15-8 defines the Drawing class. Listing 15-9 defines DrawingWide,
which is a subclass of the Drawing class.

CD-18 Bonus Chapter

In the Drawing class, the x, y, width, and height variables are protected.
The DrawingWide class has its own width and height variables, but
DrawingWide references the x and y variables that are defined in the
parent Drawing class. That’s okay even though DrawingWide isn’t in the
same package as its parent Drawing class. (The Drawing class is in the
com.burdbrain.drawings package; the DrawingWide class is in Java’s
great, unnamed package.) It’s okay because the x and y variables are pro-
tected in the Drawing class.

Compare Figures 15-9 and 15-10. Notice the extra bit of shading in Figure 15-10.
A subclass can access a protected member of a class, even if that subclass
belongs to some other package.

Do you work with a team of programmers? Do people from outside your team
use their own team’s package names? If so, when they use your code, they
may make subclasses of the classes that you’ve defined. This is where pro-
tected access comes in handy. Use protected access when you want people
from outside your team to make direct references to your code’s variables or
methods.

class1

class2
 extends class1

class3
 extends class2

classA

classB
 extends classA

protected
 variable

classC
 extends classB

classX

classY
 extends classX

classZ
 extends classY

Legend:

A package Another package Yet another package

Figure 15-10:
The range of

code in
which a

protected
variable or

method can
be used

(shaded).

CD-19Chapter 15: Sharing Names among the Parts of a Java Program

Putting non-subclasses
in the same package
Those people from Burd Brain Consulting are sending you one piece of soft-
ware after another. This time, they’ve sent an alternative to the ShowFrame
class — the class in Listing 15-1. This new ShowFrameWideBB class displays a
wider oval (how exciting!), but it does this without creating a subclass of the
old Drawing class. Instead, the new ShowFrameWideBB code creates a
Drawing instance and then changes the value of the instance’s width and
height variables. The code is shown in Listing 15-10.

Listing 15-10: Drawing a Wider Oval

package com.burdbrain.drawings;

import com.burdbrain.frames.ArtFrame;

class ShowFrameWideBB {

public static void main(String args[]) {
Drawing drawing = new Drawing();
drawing.width = 100;
drawing.height = 30;

ArtFrame artFrame = new ArtFrame(drawing);
artFrame.setSize(200, 100);
artFrame.setVisible(true);

}
}

So, here’s the story. This ShowFrameWideBB class in Listing 15-10 is in the
same package as the Drawing class (the com.burdbrain.drawings pack-
age). But ShowFrameWideBB isn’t a subclass of the Drawing class.

Now imagine compiling ShowFrameWideBB with the Drawing class that’s
shown in Listing 15-8 — the class with all those protected variables. What
happens? Well, everything goes smoothly, because a protected member is
available in two (somewhat unrelated) places. Look again at Figure 15-10.
A protected member is available to subclasses outside the package, but the
member is also available to code (subclasses or not) within the member’s
package.

Listing 15-10 has a main method, which is inside a class, which is in turn
inside the com.burdbrain.drawings package. With a development environ-
ment like JCreator, you don’t think twice about running a main method that’s
in a named package. But if you run programs from the command line (or if
your development environment doesn’t find main methods on its own), you

CD-20 Bonus Chapter

may need to wield names like com.burdbrain.drawings.ShowFrameWideBB
(the fully qualified name of the package in Listing 15-10). For tips on running
ShowFrameWideBB in environments other than JCreator, visit this book’s
Web site.

The real story about protected access is one step more complicated than the
story that I describe in this section. The Java Language Specification men-
tions a hair-splitting point about code being responsible for an object’s imple-
mentation. When you’re first figuring out how to program in Java, don’t
worry about this point. Wait until you’ve written many Java programs.
Then, when you stumble upon a variable has protected access error
message, you can start worrying. Better yet, skip the worrying and take a
careful look at the protected access section in the Java Language Specification.

For info about the Java Language Specification, visit Chapter 3.

Access Modifiers for Java Classes
Maybe the things that you read about access modifiers for members make
you a tad dizzy. After all, member access in Java is a very complicated sub-
ject with lots of plot twists and cliffhangers. Well, the dizziness is over.
Compared with the saga for variables and methods, the access story for
classes is rather simple.

A class can be either public or nonpublic. If you see something like

public class Drawing

then you’re looking at the declaration of a public class. But, if you see plain
old

class ShowFrame

then the class that’s being declared isn’t public.

Public classes
If a class is public, you can refer to the class from anywhere in your code. Of
course, some restrictions apply. You must obey all the rules in this chapter’s
“Directory structure” section. If you’re creating code on your own, you have
to follow the steps in this chapter’s “Using Java packages in JCreator” section.

You must also refer to a packaged class properly. For example, in Listing 15-1,
you can write

CD-21Chapter 15: Sharing Names among the Parts of a Java Program

import com.burdbrain.drawings.*;
import com.burdbrain.frames.ArtFrame;
...
ArtFrame artFrame = new ArtFrame(new Drawing());

or you can do without the import declarations and write

com.burdbrain.frames.ArtFrame artFrame =
new com.burdbrain.frames.ArtFrame

(new com.burdbrain.drawings.Drawing());

One way or another, your code must acknowledge the fact that the ArtFrame
and Drawing classes are in named packages.

Nonpublic classes
If a class isn’t public, you can refer to the class only from code within the
class’s package.

I tried it. First, I went back to Listing 15-2 and deleted the word public.
I turned public class Drawing into plain old class Drawing, like this:

package com.burdbrain.drawings;

import java.awt.Graphics;

class Drawing {
public int x = 40, y = 40, width = 40, height = 40;

public void paint(Graphics g) {
g.drawOval(x, y, width, height);

}
}

Then I compiled the code in Listing 15-7. Everything was peachy because
Listing 15-7 starts with the following lines:

package com.burdbrain.drawings;

public class DrawingWideBB extends Drawing

Because both pieces of code are in the same com.burdbrain.drawings
package, access from DrawingWideBB back to the nonpublic Drawing class
was no problem at all.

CD-22 Bonus Chapter

But then I tried to compile the code in Listing 15-3. The code in Listing 15-3
begins with

package com.burdbrain.frames;

That code isn’t in the com.burdbrain.drawings package. So when the com-
puter reached the line

Drawing drawing;

from Listing 15-3, the computer went poof! To be more precise, the computer
displayed this message:

com.burdbrain.drawings.Drawing is not public
in com.burdbrain.drawings;
cannot be accessed from outside package

Well, I guess I got what was coming to me.

Things are never as simple as they seem. The rules that I describe in this
section apply to almost every class in this book. But Java’s inner classes
(which I introduce in Chapter 9) follow a different set of rules. Fortunately, a
typical novice programmer has little contact with inner classes. The only
inner classes in this book are disguised as enum types. So for now, you can
live very happily with the rules that I describe in this section.

CD-23Chapter 15: Sharing Names among the Parts of a Java Program

CD-24 Bonus Chapter

Chapter 16

Responding to Keystrokes
and Mouse Clicks

In This Chapter
� Creating code to handle mouse clicks (and other such events)

� Writing and using a Java interface

In the late 1980s, I bought my first mouse. I paid $100 and, because I didn’t
really need a mouse, I checked with my wife before buying it. (At the time,

my computer ran a hybrid text/windowed environment. Anything that I could
do with a mouse, I could just as easily do with the Alt key.)

Now it’s the 21st century. The last ten mice that I got were free. Ordinary
ones just fall into my lap somehow. A few exotic mice were on sale at the
local computer superstore. One cost $10 and came with a $10 rebate.

As I write this chapter, I’m using the most recent addition to my collection —
an official For Dummies mouse. This yellow and white beauty has a little com-
partment filled with water. Instead of a snowy Atlantic City scene, the water
surrounds a tiny Dummies Man charm. It’s so cute. It was a present from the
folks at Wiley Publishing.

Go On . . . Click That Button
In previous chapters, I create windows that don’t do much. A typical window
displays some information but doesn’t have any interactive elements. Well,
the time has come to change all that. This chapter’s first example is a window
with a button on it. When the user clicks the button, darn it, something hap-
pens. The code is shown in Listing 16-1.

Listing 16-1: A Guessing Game

import java.util.Random;
import javax.swing.*;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

class GameFrame extends JFrame implements ActionListener {
int randomNumber = new Random().nextInt(10) + 1;
int numGuesses = 0;

JTextField textField = new JTextField(5);
JButton button = new JButton(“Guess”);
JLabel label = new JLabel(numGuesses + “ guesses”);

public GameFrame() {
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLayout(new FlowLayout());
add(textField);
add(button);
add(label);
button.addActionListener(this);
pack();
setVisible(true);

}

public void actionPerformed(ActionEvent e) {
String textFieldText = textField.getText();

if (Integer.parseInt(textFieldText) == randomNumber) {
button.setEnabled(false);
textField.setText(textField.getText() + “ Yes!”);
textField.setEnabled(false);

} else {
textField.setText(“”);

}

numGuesses++;
String guessWord =

(numGuesses == 1) ? “ guess” : “ guesses”;
label.setText(numGuesses + guessWord);

}
}

Listing 16-2: Starting the Guessing Game

class ShowGameFrame {

public static void main(String args[]) {
new GameFrame();

}
}

CD-26 Bonus Chapter

Some snapshots from a run of this section’s code are shown in Figures 16-1
and 16-2. In a window, the user plays a guessing game. Behind the scenes, the
program chooses a secret number (a number from 1 to 10). Then the pro-
gram displays a text field and a button. The user types a number in the text
field and clicks the button. One of two things happens next:

� If the number that the user types isn’t the same as the secret number,
the computer posts the number of guesses made so far. The user gets to
make another guess.

� If the number that the user types is the same as the secret number, the
text field displays Yes!. Meanwhile, the game is over, so both the text
field and the button become disabled. Both components have that gray,
washed-out look, and neither component responds to keystrokes or
mouse clicks.

In Listing 16-1, the code to create the frame, the button, and the text field
isn’t earth-shattering. I did similar things in Chapters 9 and 10. The
JTextField class is new in this chapter, but a text field isn’t much different
from a button or a label. Like so many other components, the JTextField
class is defined in the javax.swing package. When you create a new
JTextField instance, you have the option of specifying a number of
columns. In Listing 16-1, I create a text field that’s five columns wide.

Listing 16-1 uses a fancy operator to decide between the singular guess and
the plural guesses. If you’re not familiar with this use of the question mark
and colon, see Chapter 11.

Events and event handling
The big news in Listing 16-1, shown in the previous section, is the handling of
the user’s button click. When you’re working in a graphical user interface
(GUI), anything the user does (like pressing a key, moving the mouse, clicking

Figure 16-2:
The correct

guess.

Figure 16-1:
An incorrect

guess.

CD-27Chapter 16: Responding to Keystrokes and Mouse Clicks

the mouse, or whatever) is called an event. The code that responds to the
user’s press, movement, or click is called event-handling code.

Listing 16-1 deals with the button-click event with three parts of its code:

� The top of the GameFrame class declaration says that this class
implements ActionListener.

� The constructor for the GameFrame class adds this to the button’s list
of action listeners.

� The code for the GameFrame class has an actionPerformed method.

Taken together, all three of these tricks make the GameFrame class handle
button clicks. To understand how it works, you have to know about some-
thing called an interface, which I discuss in the following section.

The Java interface
You may have noticed that, in Java, you never get a class to extend more than
one parent class. In other words, you never say

class DontDoThis extends FirstClass, SecondClass, ThirdClass

A class can have only one parent class, and that’s fine when you want your
new class to be like a frame. But what if you want your new class to be like a
frame and a button-click-listening thing? Can your new class be like both
things?

Yes, it can be. Java has this thing called an interface. An interface is like a
class, but it’s different. (So, what else is new? A cow is like a planet, but it’s
quite a bit different. Cows moo; planets hang in space.) Anyway, when you
hear the word interface, you can start by thinking of a class. Then, in your
head, note the following things:

� A class can extend only one parent class, but a class can implement
more than one interface.

For instance, if you want GameFrame to listen for keystrokes as well as
button clicks, you can say

class GameFrame extends JFrame
implements ActionListener, ItemListener

� An interface’s methods have no bodies of their own.

CD-28 Bonus Chapter

Here’s a copy of the API code for the ActionListener interface:

package java.awt.event;

import java.util.EventListener;

public interface ActionListener extends EventListener {

public void actionPerformed(ActionEvent e);

}

I’ve removed the code’s comments, but I’ve avoided messing with the
API code in any significant ways. In this code, the actionPerformed
method has no body — no curly braces and no statements to execute.
In place of a body, there’s just a semicolon.

A method with no body, like the method defined in the ActionListener
interface, is called an abstract method.

� When you implement an interface, you provide bodies for all the
interface’s methods.

That’s why an actionPerformed method is in Listing 16-1. By announc-
ing that it will implement the ActionListener interface, the code in
Listing 16-1 agrees that it will give meaning to the interface’s
actionPerformed method. In this situation, giving meaning means
declaring an actionPerformed method with curly braces, a body, and
maybe some statements to execute.

When you announce that you’re going to implement an interface, the
Java compiler takes this announcement seriously. Later on in the code,
if you fail to give meaning to any of the interface’s methods, the compiler
yells at you.

If you’re really lazy, you can quickly find out what methods need to be
declared in your interface-implementing code. Try to compile the code, and
the compiler lists all the methods that you should have declared but didn’t.

Threads of execution
Here’s a well-kept secret: Java programs are multithreaded, which means that
several things are going on at once whenever you run a Java program. Sure,
the computer is executing the code that you’ve written, but it’s executing
other code as well (code that you didn’t write and don’t see). All this code is
being executed at the same time. While the computer executes your main
method’s statements, one after another, the computer takes time out, sneaks
away briefly, and executes statements from some other, unseen methods.
For most simple Java programs, these other methods are methods that are
defined as part of the Java Virtual Machine (JVM).

CD-29Chapter 16: Responding to Keystrokes and Mouse Clicks

For instance, Java has an event-handling thread. While your code runs, the
event-handling thread’s code runs in the background. The event-handling
thread’s code listens for mouse clicks and takes appropriate action whenever
a user clicks the mouse. Figure 16-3 illustrates how this works.

When the user clicks the button, the event-handling thread says, “Okay, the
button was clicked. So, what should I do about that?” And the answer is, “Call
some actionPerformed methods.” It’s as if the event-handling thread had
code that looks like this:

if (buttonJustGotClicked()) {
object1.actionPerformed(infoAboutTheClick);
object2.actionPerformed(infoAboutTheClick);
object3.actionPerformed(infoAboutTheClick);

}

Of course, behind every answer is yet another question. In this situation, the
follow-up question is, “Where does the event-handling thread find
actionPerformed methods to call?” And there’s another question: “What if
you don’t want the event-handling thread to call certain actionPerformed
methods that are lurking in your code?”

Well, that’s why you call the addActionListener method. In Listing 16-1,
the call

button.addActionListener(this);

tells the event-handling thread, “Put this code’s actionPerformed method
on your list of methods to be called. Call this code’s actionPerformed
method whenever the button is clicked.”

So, that’s how it works. To have the computer call an actionPerformed
method, you register the method with Java’s event-handling thread. You do
this registration by calling addActionListener. The addActionListener

Your code's thread

setLayout(new FlowLayout());
add(textField);
add(button);
add(label);

button.addActionListener(this);
pack();
setVisible(true);

The event handling thread

Did the user click the mouse?
.
.
Did the user click the mouse?
.
.
Did the user click the mouse?
Yes? Okay, then. I'll call the

actionPerformed method.

Figure 16-3:
Two Java

threads.

CD-30 Bonus Chapter

method belongs to the object whose clicks (and other events) you’re waiting
for. In Listing 16-1, you’re waiting for the button object to be clicked, and the
addActionListener method belongs to that button object.

The keyword this
In Chapters 9 and 10, the keyword this gives you access to instance vari-
ables from the code inside a method. So, what does the this keyword really
mean? Well, compare it with the English phrase “state your name.”

I, (state your name), do solemnly swear, to uphold the constitution of the
Philadelphia Central High School Photography Society. . . .

The phrase “state your name” is a placeholder. It’s a space in which each
person puts his or her own name.

I, Bob, do solemnly swear. . . .

I, Fred, do solemnly swear. . . .

Think of the pledge (“I . . . do solemnly swear . . .”) as a piece of code in a
Java class. In that piece of code is the placeholder phrase, “state your name.”
Whenever an instance of the class (a person) executes the code (that is,
takes the pledge), the instance fills in its own name in place of the phrase
“state your name.”

The this keyword works the same way. It is sitting inside the code that
defines the GameFrame class. Whenever an instance of GameFrame is con-
structed, the instance calls addActionListener(this). In that call, the
this keyword stands for the instance itself.

button.addActionListener(thisGameFrameInstance);

By calling button.addActionListener(this), the GameFrame instance
is saying, “Add my actionPerformed method to the list of methods that
are called whenever the button is clicked.” And indeed, the GameFrame
instance has an actionPerformed method. The GameFrame has to have an
actionPerformed method, because the GameFrame class implements the
ActionListener interface. It’s funny how that all fits together.

Inside the actionPerformed method
The actionPerformed method in Listing 16-1 uses a bunch of tricks from the
Java API. Here’s a brief list of tricks:

CD-31Chapter 16: Responding to Keystrokes and Mouse Clicks

� Every instance of JTextField (and of JLabel) has methods — getText
and setText. Calling getText fetches whatever string of characters is
in the component. Calling setText changes the characters that are in
the component. In Listing 16-1, judicious use of getText and setText
pulls a number out of the text field and replaces the number with either
nothing (the empty string “”), or the number, followed by the word Yes!

� Every component in the javax.swing package (JTextField,
JButton, or whatever) has a setEnabled method. When you call
setEnabled(false), the component gets that limp, gray, washed-out
look and can no longer receive button clicks or keystrokes.

You can perform a test to make sure that the object referred to by the button
variable is really the thing that was clicked. Just write if (e.getSource() ==
button). If your code has two buttons, button1 and button2, you can test
to find out which button was clicked. You can write if (e.getSource() ==
button1) and if (e.getSource() == button2).

Responding to Things Other Than
Button Clicks

When you know how to respond to one kind of event, responding to other
kinds of events is easy. Listings 16-3 and 16-4 display a window that shows
amounts as U.S. or U.K. currencies. The code in these listings responds to
many kinds of events. Figures 16-4, 16-5, and 16-6 show some pictures of the
code in action.

Listing 16-3: Displaying the Local Currency

import javax.swing.*;
import javax.swing.event.DocumentListener;
import javax.swing.event.DocumentEvent;
import java.awt.FlowLayout;
import java.awt.Color;
import java.awt.event.*;
import java.text.NumberFormat;
import java.util.Locale;

class MoneyFrame extends JFrame implements DocumentListener,
ItemListener,
MouseListener {

JTextField textField = new JTextField(5);
JComboBox combo = new JComboBox();
JLabel label = new JLabel(“ “);

CD-32 Bonus Chapter

NumberFormat currencyUS =
NumberFormat.getCurrencyInstance();

NumberFormat currencyUK =
NumberFormat.getCurrencyInstance(Locale.UK);

public MoneyFrame() {
setLayout(new FlowLayout());

add(textField);
combo.addItem(“US”);
combo.addItem(“UK”);
add(combo);
add(label);

textField.getDocument().addDocumentListener(this);
combo.addItemListener(this);
label.addMouseListener(this);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setSize(300, 100);
setVisible(true);

}

void setTextOnLabel() {
String amountString = “”;

try {
double amount =

Double.parseDouble(textField.getText());

if (combo.getSelectedItem().equals(“US”))
amountString = currencyUS.format(amount);

if (combo.getSelectedItem().equals(“UK”))
amountString = currencyUK.format(amount);

} catch (NumberFormatException e) {
}

label.setText(amountString);
}

public void insertUpdate(DocumentEvent d) {
setTextOnLabel();

}

public void removeUpdate(DocumentEvent d) {
setTextOnLabel();

}

(continued)

CD-33Chapter 16: Responding to Keystrokes and Mouse Clicks

Listing 16-3 (continued)

public void changedUpdate(DocumentEvent d) {
}

public void itemStateChanged(ItemEvent i) {
setTextOnLabel();

}

public void mouseEntered(MouseEvent m) {
label.setForeground(Color.red);

}

public void mouseExited(MouseEvent m) {
label.setForeground(Color.black);

}

public void mouseClicked(MouseEvent m) {
}

public void mousePressed(MouseEvent m) {
}

public void mouseReleased(MouseEvent m) {
}

}

Listing 16-4: Calling the Code in Listing 16-3

class ShowMoneyFrame {

public static void main(String args[]) {
new MoneyFrame();

}
}

Figure 16-5:
Using the

combo box.

Figure 16-4:
U.S.

currency.

CD-34 Bonus Chapter

Okay, so Listing 16-3 is a little long. Even so, the outline of the code in
Listing 16-3 isn’t too bad. Here’s what the outline looks like:

class MoneyFrame extends JFrame implements DocumentListener,
ItemListener,
MouseListener {

variable declarations

constructor for the MoneyFrame class

declaration of a method named setTextOnLabel

all the methods that are required because the class
implements three interfaces

}

The constructor in Listing 16-3 adds the following three components to the
new MoneyFrame window:

� A text field: In Figure 16-4, the user types 22 in the text field.

� A combo box: In Figure 16-4, the combo box displays US. In Figure 16-5,
the user selects an item in the box. In Figure 16-6, the selected item is UK.

� A label: In Figure 16-4, the label displays $22.00.

The MoneyFrame implements three interfaces — the DocumentListener,
ItemListener, and MouseListener interfaces. Because it implements three
interfaces, the code can listen for three different kinds of events. I discuss the
interfaces and events in the following list:

� DocumentListener: A class that implements the DocumentListener
interface must have three methods named insertUpdate, removeUpdate,
and changedUpdate. When you type a digit in a text field, the event-
handling thread calls insertUpdate. Erasing a digit from the field gets
the event-handling thread to call removeUpdate.

In Listing 16-3, the insertUpdate and removeUpdate methods call
setTextOnLabel. My setTextOnLabel method checks to see what’s
currently selected in the combo box. If the user selects the US option,
the setTextOnLabel method formats dollars. If the user selects the UK
option, the setTextOnLabel method formats pounds.

Figure 16-6:
U.K.

currency.

CD-35Chapter 16: Responding to Keystrokes and Mouse Clicks

By the way, if you’re thinking in terms of real currency conversion, forget
about it. This program just changes back and forth between a dollar sign
and a pound sign. Sure, there are easier ways to accomplish this task,
but you’ve got bigger Javafish to fry.

� ItemListener: A class that implements the ItemListener interface
must have an itemStateChanged method. When you select an item in a
combo box, the event-handling thread calls itemStateChanged.

In Listing 16-3, when the user selects US or UK in the combo box, the
event-handling thread calls the itemStateChanged method. In turn, the
itemStateChanged method calls setTextOnLabel, and so on.

� MouseListener: A class that implements the MouseListener interface
must have mouseEntered, mouseExited, mouseClicked, mousePressed,
and mouseReleased methods. Implementing MouseListener is differ-
ent from implementing ActionListener. When you implement
ActionListener, as in Listing 16-1, the event-handling thread responds
only to mouse clicks. But with MouseListener, the thread responds to
the user pressing the mouse, releasing the mouse, and more.

In Listing 16-3, the mouseEntered and mouseExited methods are called
whenever you move over or away from the label. How do you know that
the label is involved? Just look at the code in the MoneyFrame construc-
tor. The label variable’s addMouseListener method is the one that’s
called.

Look at the mouseEntered and mouseExited methods in Listing 16-3.
When mouseEntered or mouseExited is called, the computer forges
ahead and calls setForeground. This setForeground method changes
the color of the label’s text. (Maybe you can see the red text in Figure 16-6;
maybe you can’t. I don’t know whether colors appear in this CD-ROM
chapter.)

Isn’t modern life wonderful? The Java API even has a Color class with
names like Color.red and Color.black.

Listing 16-3 has several methods that aren’t really used. For instance, when you
implement MouseListener, your code has to have its own mouseReleased
method. You need the mouseReleased method not because you’re going to
do anything special when the user releases the mouse button, but because
you made a promise to the Java compiler and have to keep that promise.

CD-36 Bonus Chapter

Chapter 17

Writing Java Applets
In This Chapter
� Creating a simple applet

� Building applet animation

� Putting buttons (and other such things) on an applet

With Java’s first big burst onto the scene in 1995, the thing that made
the language so popular was the notion of an applet. An applet is a

Java program that sits inside a Web browser window. The applet has its own
rectangular area on a Web page. The applet can display a drawing, show an
image, make a figure move, respond to information from the user, and do all
kinds of interesting things. When you put a real live computer program on a
Web page, you open up a world of possibilities.

Applets 101
Listings 17-1 and 17-2 show you a very simple Java applet. The applet displays
the words Java 2 For Dummies inside a rectangular box. (See Figure 17-1.)

Listing 17-1: An Applet

import javax.swing.JApplet;
import java.awt.Font;
import java.awt.Graphics;

public class SimpleApplet extends JApplet {

public void init() {
setContentPane(new DummiesPanel());

}
}

Listing 17-2: Some Helper Code for the Applet

import javax.swing.JPanel;
import java.awt.Font;
import java.awt.Graphics;

class DummiesPanel extends JPanel {

public void paint(Graphics myGraphics) {

myGraphics.drawRect(50, 60, 250, 75);
myGraphics.setFont(new Font(“Dialog”, Font.BOLD, 24));
myGraphics.drawString(“Java 2 For Dummies”, 55, 100);

}
}

When you run the code in Listings 17-1 and 17-2, you don’t execute a main
method. Instead, you run a Web browser and the Web browser visits an
HTML file. The HTML file includes a reference to the applet’s Java code, and
the applet appears on your Web page. Listing 17-3 shows a bare minimum
HTML file.

Listing 17-3: A One-Line Web Page

<applet code=SimpleApplet width=350 height=200></applet>

For more information about HTML files, see Chapter 2.

The easiest way to set things up is to put the HTML file and the applet’s code
in the same directory. If you installed JCreator from this book’s CD-ROM, then
Listings 17-1, 17-2, and 17-3 are already in one directory on your computer’s
hard drive. To run the applet, do the usual Build➪Execute Project business.
Instead of running a main method, JCreator opens a Web browser and visits
the HTML file in Listing 17-3.

Figure 17-1:
Nice title!

CD-38 Bonus Chapter

For instructions on running applets in environments other than JCreator, visit
this book’s Web site. At that site, you can also read about the locations of
HTML files and applets. (You can find out how to put these files in separate
directories, if necessary.)

You can use JCreator’s editor to make your own HTML files. You can create
<applet> tags like the one in Listing 17-3. Follow the second set of steps
in the section entitled “Storing data in a file” in Chapter 8. To make an
HTML file, don’t name your file somename.txt. Instead, name your file some-
name.htm or somename.html. With either the .htm or .html extension,
JCreator recognizes the presence of a Web page and acts accordingly. (Even
without JCreator, you still need the .htm or .html extension. The extension
tells your Web browser what to do with your file.)

Waiting to be called
When you look at the code in Listings 17-1 and 17-2, you may notice one
thing — an applet doesn’t have a main method. That’s because an applet isn’t
a complete program. An applet is a class that contains methods, and your
Web browser calls those methods (directly or indirectly). Do you see the
init method in Listing 17-1? The browser calls this init method. Then the
init method’s call to setContentPane drags in the code from Listing 17-2.

Now, take a look at the paint method in Listing 17-2. The browser calls this
paint method automatically, and the paint method tells the browser how to
draw your applet on the screen.

For a list of applet methods that your Web browser calls, see the section
entitled “The methods in an applet,” later in this chapter. For a bit more infor-
mation on the paint method and its Graphics parameter, see Chapter 13.

A public class
Notice that the SimpleApplet in Listing 17-1 is a public class. If you create an
applet, and you don’t make the class public, you get an Applet not inited
or a Loading Java Applet Failed error. To state things very plainly, any
class that extends JApplet must be public. If the class isn’t public, your Web
browser can’t call the class’s methods.

To state things a little less plainly, a class can have either default access or
public access. The only code that can reference a default access class is
code that’s in the same package as the default access class. Now remember
that your Web browser tries to call methods that are buried inside your
applet class. Because the Web browser isn’t likely to be in the same package
as your applet (believe me, it’s not), the applet must be public. If the applet

CD-39Chapter 17: Writing Java Applets

isn’t public, your Web browser’s code (code that’s not in the same package as
the applet) can’t call any of your applet’s methods.

For more information on public and default access, see the section entitled
“Access Modifiers for Java Classes” in Chapter 15. (You can find Chapter 15
on the CD-ROM.)

The Java API (again)
The code in Listing 17-2 uses a few interesting Java API tricks. Here are some
tricks that don’t appear in any earlier chapters:

� drawRect: Draws an unfilled rectangle.

Look at the call to drawRect in Listing 17-2. According to that call, the
rectangle’s upper-left corner is 50 pixels across and 60 pixels down from
the upper-left corner of the panel. The rectangle’s lower-right corner is
250 pixels across and 75 pixels down from the upper-left corner of the
panel.

I wanted the rectangle to surround the words Java 2 For Dummies.
To come up with numbers for the drawRect call, I used trial and
error. However, you can make the program figure out how many
pixels the words Java 2 For Dummies take up. To do this, you need the
FontMetrics class. (For information on FontMetrics, see the Java API
documentation.)

� The Font class: Describes the features of a character font.

Listing 17-2 creates a bold, 24-point font with the Dialog typeface style.
Other typeface styles include DialogInput, Monospaced, Serif, and
SansSerif.

� drawString: Draws a string of characters.

Listing 17-2 draws the string “Java 2 For Dummies” on the face of the
panel. The string’s lower-left corner is 55 pixels across and 100 pixels
down from the upper-left corner of the panel.

Making Things Move
This section’s applet is cool because it’s animated — you can see an odome-
ter change on the screen. When you look at the code for this applet, you may
think the code is quite complicated. Well, in a way, it is. A lot is going on
when you use Java to create animation. On the other hand, the code for this
applet is mostly boilerplate. To create your own animation, you can borrow
most of this section’s code. To see what I’m talking about, look at Listings 17-4
and 17-5.

CD-40 Bonus Chapter

Listing 17-4: An Odometer Applet

import javax.swing.JApplet;
import javax.swing.Timer;
import java.awt.Color;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class Odometer extends JApplet
implements ActionListener {

Timer timer;

public void init() {
OdometerPanel panel = new OdometerPanel();

panel.setBackground(Color.white);
setContentPane(panel);

}

public void start() {

if (timer == null) {
timer = new Timer(100, this);
timer.start();

} else {
timer.restart();

}
}

public void stop() {

if (timer != null) {
timer.stop();
timer = null;

}
}

public void actionPerformed(ActionEvent e) {

repaint();
}

}

Listing 17-5: The Odometer Panel

import javax.swing.JPanel;
import java.awt.Font;
import java.awt.Graphics;

class OdometerPanel extends JPanel {
long hitCount = 239472938472L;

(continued)

CD-41Chapter 17: Writing Java Applets

Listing 17-5 (continued)

public void paint(Graphics myGraphics) {

myGraphics.setFont
(new Font(“Monospaced”, Font.PLAIN, 24));

myGraphics.drawString
(“You are visitor number “ +
Long.toString(hitCount++), 50, 50);

}
}

For a snapshot of the odometer applet in action, see Figure 17-2. Notice the
number in the figure. It’s not the same as the starting value of the hitCount
variable. That’s because, every 250 milliseconds, the applet adds 1 to the
value of hitCount and displays the new value. The odometer isn’t reporting
an honest hit count, but it’s still really cute.

The methods in an applet
Most of the method names in Listings 17-4 and 17-5 are standard for an
applet. The Java API JApplet and JPanel classes have default declarations
for these methods, so you don’t really have to declare these methods your-
self. The only methods that you have to put in your code are the methods
that you want to customize.

Here’s a list of JApplet and JPanel methods that your Web browser auto-
matically calls:

� init: The browser calls init when you first visit the page containing
the applet. Imagine that you close the Web browser. Later, you start the
browser running again and revisit the page containing the applet. Then
the browser calls the applet’s init method again.

� start: The browser calls start right after it calls init. If your applet
performs any continuous work, you can begin that work’s code in the
applet’s start method. For instance, if your applet has any animation,
the code to begin running that animation is in your start method.

Figure 17-2:
A popular
Web site.

CD-42 Bonus Chapter

� paint: The browser calls paint right after it calls start. The paint
method has instructions for drawing your applet on the screen. For an
explanation, see Chapter 15. (You can find Chapter 15 on the CD-ROM).

The browser can call paint several times. For instance, imagine that
you cover part of the browser with another window. Or maybe you
shrink the browser so that only part of the applet is showing. Later,
when you uncover the applet or enlarge the browser window again, the
browser calls the panel’s paint method.

� stop: When the applet’s work should be ceased, the browser calls the
stop method. Say, for instance, that you click a link that takes you away
from the page with the applet on it. Then the browser calls the applet’s
stop method. Later, when you revisit the page with the applet on it, the
browser calls the applet’s start method again.

What to put into all these methods
The code in Listings 17-4 and 17-5 uses a standard formula for creating anima-
tion inside an applet. Here’s a very brief explanation:

� The applet implements the ActionListener interface.

� The start method creates a new timer with the following code:

new Timer(100, this)

Every 100 milliseconds (every tenth of a second) the timer in Listing 17-4
rings its alarm.

When it “rings its alarm,” the timer actually gets Java to call an
actionPerformed method. And whose actionPerformed method
does Java call? Once again, the keyword this answers our question. In
Listing 17-4, the word this refers to this very same code — this instance
of the Odometer object that contains the new Timer(100, this) call.
So every tenth of a second, when the timer rings its alarm, Java calls the
actionPerformed method in Listing 17-4. How nice and tidy it is!

� The actionPerformed method calls the repaint method. Under the
hood, a call to repaint always calls somebody’s paint method. In this
example, that somebody is the code in Listing 17-5. This paint method
draws the words You are visitor number whatever on the screen.

� At some point, the day is done, and your browser calls the stop method.
When this happens, the stop method tosses the timer into the dumper.

If it weren’t such standard code, I’d feel guilty for explaining this stuff so
briefly. But, really, to achieve motion in your own applet, just copy Listings 17-4
and 17-5. Then replace the listing’s init and paint methods with your own
code.

CD-43Chapter 17: Writing Java Applets

So, what do you put in your init and paint methods?

� If you declare an init method, the method should contain setup code
for the applet — stuff that happens once, the first time the applet is
loaded.

In Listing 17-4, the setup code fiddles with a panel:

• It creates a panel by calling the OdometerPanel constructor.

• It makes the panel’s background white. (This ensures that the
rectangle housing the applet blends nicely with the rest of the
Web page.)

• It forges a rock-solid connection between the panel and the applet.
It does this by calling the setContentPane method.

� The paint method describes a single snapshot of the applet’s motion.

In Listing 17-5, the paint method sets the graphics buffer’s font, writes
the hitCount value on the screen, and then adds 1 to the hitCount.
(Who needs real visitors when you can increment your own hitCount
variable?)

The value of the hitCount variable starts high and becomes even
higher. To store such big numbers, I give hitCount the type long. I use
the Long class’s toString method to turn hitCount into a string of
characters. This toString method is like the Integer class’s parseInt
method.

I introduce the parseInt method in Chapter 11.

To debug an applet, you can put calls to System.out.println in the applet’s
code. If you’re running Internet Explorer, the println output appears in some-
thing called the Java console. You can see the console by choosing Tools➪
Sun Java Console from Internet Explorer’s menu bar.

Responding to Events in an Applet
This section has an applet with interactive thingamajigs on it. This applet is
just like the examples in Chapter 16. In fact, to create Listing 17-7, I started
with the code in Listing 16-1. I didn’t do this out of laziness (although, heaven
knows, I can certainly be lazy). I did it because applets are so much like Java
frames. If you take the code for a frame and trim it down, you can usually
create a decent applet.

CD-44 Bonus Chapter

Listing 17-6: A Guessing Game Applet

import javax.swing.JApplet;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class GameApplet extends JApplet {

public void init() {
setContentPane(new GamePanel());

}
}

Listing 17-7: The Guessing Game Panel

import javax.swing.*;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.util.Random;

class GamePanel extends JPanel implements ActionListener {
int randomNumber = new Random().nextInt(10) + 1;
int numGuesses = 0;

JTextField textField = new JTextField(5);
JButton button = new JButton(“Guess”);
JLabel label = new JLabel(numGuesses + “ guesses”);

GamePanel() {
add(textField);
add(button);
add(label);
button.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {
String textFieldText = textField.getText();

if (Integer.parseInt(textFieldText) == randomNumber) {
button.setEnabled(false);
textField.setText(textField.getText() + “ Yes!”);
textField.setEnabled(false);

} else {
textField.setText(“”);

}

numGuesses++;
String guessWord =

(numGuesses == 1) ? “ guess” : “ guesses”;
label.setText(numGuesses + guessWord);

}
}

CD-45Chapter 17: Writing Java Applets

To run the code in Listings 17-6 and 17-7, you need an HTML file:

<applet code=”GameApplet” width=225 height=50></applet>

Figures 17-3 and 17-4 show you what happens when you run this section’s
listings. It’s pretty much the same as what happens when you run the code in
Listing 16-1. The big difference is that the applet appears as part of a Web
page in a browser window.

Instead of noticing what code Listing 17-7 has, notice what code the listing
doesn’t have. To go from Listing 16-1 to Listing 17-7, I remove several lines.

� I don’t bother calling setLayout.

The default layout for an applet is FlowLayout, which is just what I want.

If you want info on how FlowLayout works, see Chapter 9.

� I don’t call the pack method.

The width and height fields in the HTML applet tag determine the
applet’s size.

� I don’t call the setVisible method.

An applet is visible by default.

Figure 17-4:
The correct

guess.

Figure 17-3:
An incorrect

guess.

CD-46 Bonus Chapter

The only other change is between Listings 16-2 and 17-6. Like many other
applets, Listing 17-6 has no main method. Instead, Listing 17-6 has an init
method. You don’t need a main method, because you never need to say new
GameApplet() anywhere in your code. The Web browser says it for you.
Then, after the Web browser creates an instance of the GameApplet class, the
browser goes on and calls the instance’s init method. That’s the standard
scenario for the running of a Java applet.

CD-47Chapter 17: Writing Java Applets

CD-48 Bonus Chapter

Chapter 18

Using Java Database Connectivity
In This Chapter
� Connecting to a database

� Inserting values into a database

� Making queries to a database

Whenever I teach Java to professional programmers, I always hear the
same old thing. “We don’t need to make any cute little characters fly

across the screen. No blinking buttons for us. We need to access databases.
Yup, just show us how to write Java programs that talk to databases.”

So here it is, folks — Java Database Connectivity.

Telling the System about Your Database
When I first started working with databases, my toughest problem was con-
necting to a database. I had written all the Java code. (Well, I had copied all
the Java code from some book.) The Java part was easy. The hard part was
getting my code to find the database on the system.

Part of the problem was that the way you get your code to talk to the data-
base depends on the kind of system you have and the kind of database that
you’re running on your system. The books that I was using couldn’t be too
specific on all the details because the details (having nothing to do with Java)
varied from one reader’s computer to another.

Well, in this chapter, I make some bold assumptions and try to give you some
concrete advice. I assume that you’re running Windows and that you have
Microsoft Access installed on your computer. If my assumptions are incor-
rect, then as far as connecting to the database goes, you’re on your own.
(All the Java code in this chapter still works, but you have to tackle the con-
nection problem by yourself.)

Anyway, just follow these steps to create an Access database on a Windows
computer:

1. Choose Start➪Settings➪Control Panel.

This opens the Windows Control Panel. What you do next depends on
which version of Windows you use.

2. In Windows 2000, select Administrative Tools. In Windows XP, first
select Performance and Maintenance, and then select Administrative
Tools.

Either way, you get a list of tools.

3. In the Administrative Tools list, double-click Data Sources (ODBC).

This starts the ODBC Data Source Administrator, which is shown in
Figure 18-1.

4. In the ODBC Data Source Administrator dialog box, select the User
DSN tab. Then click the Add button.

This opens up the Create New Data Source window, which is shown in
Figure 18-2.

If you run into trouble with the User DSN tab, try the System DSN tab
instead.

5. In the Create New Data Source window, select Microsoft Access Driver
(*.mdb). Then click Finish.

Clicking Finish takes you to the ODBC Microsoft Access Setup window,
which is shown in Figure 18-3.

Figure 18-1:
The ODBC

Data Source
Admini-
strator.

CD-50 Bonus Chapter

6. Type a name in the Data Source Name text box and type a phrase in
the Description text box.

If you want to be consistent with this chapter’s examples, type
AccountDatabase in the Data Source Name text box. For the Description
text box, you can type anything you want. (This chapter’s code doesn’t
care what description you type. But for your own sake, type something
reasonably descriptive.)

7. Click the Create button.

This opens up the New Database window, which is shown in Figure 18-4.

8. Browse to the directory where you want your database file to live and
type a filename in the Database Name text box.

Once again, the Java code doesn’t care what you do here. To keep things
tidy, I put the file in a directory named c:\databases, but this isn’t
crucial at all. The only thing that matters is that you keep the file’s .mdb
extension. (Otherwise, your system has trouble remembering that this is
a Microsoft Access database.)

Figure 18-3:
The ODBC
Microsoft

Access
Setup

window.

Figure 18-2:
The Create
New Data

Source
window.

CD-51Chapter 18: Using Java Database Connectivity

9. Click OK. When you see a message box saying that the database .mdb
file was successfully created, click OK. Back in the ODBC Microsoft
Access Setup window, click OK.

Finally, back in the ODBC Data Source Administrator dialog box, notice
that your new AccountDatabase has been created (and click OK). See
Figure 18-5.

That’s great. Now you’re ready to run some Java database code.

Figure 18-5:
The

Account
Database
has been
created.

Figure 18-4:
The New
Database

window.

CD-52 Bonus Chapter

Creating Data
For the code that you’re about to explore, the formal name is Java Database
Connectivity (JDBC). Using JDBC, you issue database commands through Java
code. The crux of JDBC is in two packages: java.sql and javax.sql, which
are both in the Java API. This chapter’s examples use the classes in java.sql.
The first example is in Listing 18-1.

Listing 18-1: Creating a Table; Inserting Data

import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Connection;
import java.sql.SQLException;

class CreateTable {

public static void main(String args[])
throws SQLException, ClassNotFoundException {

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection connection = DriverManager.getConnection
(“jdbc:odbc:AccountDatabase”);

Statement statement = connection.createStatement();

statement.executeUpdate(
“create table ACCOUNTS “ +
“ (NAME VARCHAR(32) NOT NULL PRIMARY KEY, “ +
“ ADDRESS VARCHAR(32), “ +
“ BALANCE FLOAT) “

);

statement.executeUpdate(
“insert into ACCOUNTS values “ +
“ (‘Barry Burd’, ‘222 Cyberspace Lane’, 24.02)”

);

statement.executeUpdate(
“insert into ACCOUNTS values “ +
“ (‘Jane Public’, ‘111 Consumer Street’, 55.63)”

);

statement.close();
connection.close();

}
}

CD-53Chapter 18: Using Java Database Connectivity

When you run the code in Listing 18-1, nothing seems to happen. The pro-
gram starts running and then stops running. That’s about it. The code has no
visible output, because all the output goes to a database. So, to see the result
of running the code in Listing 18-1, you have to look for changes in the data-
base itself.

If you followed the instructions in this chapter’s first section and created a
Microsoft Access database, you can use Access to examine your database.
What you see is in Figure 18-6.

Using SQL commands
In Listing 18-1, the heart of the code is in three calls to executeUpdate. Each
executeUpdate call contains a string — a normal, Java, double-quoted string
of characters. To keep the code readable, I’ve chopped each string into parts.
I separate the parts with plus signs (Java’s string concatenation operator).

Java’s plus sign does double duty. For numbers, the plus sign performs addi-
tion. For strings, the plus sign squishes two strings together, creating one big,
combined string.

You can make a double-quoted string as long as you like. When you get to the
right edge of your screen, just keep typing. If you want to see the whole string
without scrolling, however, you can break the string into pieces, as I did in
Listing 18-1. Just separate the pieces with plus signs.

You cannot break a Java string into pieces by just pressing Enter and moving
to the next line. When you start a string with the double-quote (“), the ending
double-quote must be on the same line of code.

If you’re familiar with SQL (the Structured Query Language), then the com-
mand strings in the calls to executeUpdate make sense to you. If not, then
pick up a copy of SQL For Dummies, 5th Edition, by Allen G. Taylor (from
Wiley Publishing, Inc.). One way or another, don’t go fishing around this
chapter for explanations of create table and insert into. You won’t find
the explanations, because these command strings aren’t part of Java. These

Figure 18-6:
Viewing

changes in
the Account

Database.

CD-54 Bonus Chapter

commands are just strings of characters that you feed to the executeUpdate
method. These strings, which are written in SQL, create a new database table
and add rows of data to the table. When you write a Java database program,
that’s what you do. You write ordinary SQL commands and surround those
commands with calls to Java methods.

The code in this chapter adheres strictly to the techniques defined in JDBC
version 1.0. Later versions of the JDBC classes support something called
scrollable result sets. With a scrollable result set, you have methods like
insertRow — methods that save you the effort of writing complete SQL
command strings.

Connecting and disconnecting
Aside from the calls to method executeUpdate, the code in Listing 18-1 is
cut-and-paste stuff. Here’s a rundown on what each part of the code means:

� Class.forName: Find a database driver.

To talk to a database, you need an intermediary piece of software. That
intermediary is called a database driver. Drivers come in all shapes and
sizes, and most of them are quite expensive. Java, however, comes with
a small, freebie driver — the JDBC-ODBC Bridge. The JDBC-ODBC Bridge
turns Java database commands into ODBC (Open Database Connectivity)
commands. Because ODBC is quite common, your computer probably
understands these translated ODBC commands.

Anyway, the code for the JDBC-ODBC Bridge is kept in the
JdbcOdbcDriver class (which is a Java class). This class lives
inside the sun.jdbc.odbc package.

To use this JdbcOdbcDriver class, you call the Class.forName
method. Believe it or not, the Java API has a class named Class.
The Class class contains information about classes that are avail-
able to the Java Virtual Machine (JVM). In Listing 18-1, the call to
Class.forName looks for the sun.jdbc.odbc.JdbcOdbcDriver class.
After a JdbcOdbcDriver instance is loaded, you can proceed to connect
with a database.

� DriverManager.getConnection: Establish a session with a particular
database.

If you use Windows and Microsoft Access, you may have followed the
instructions in this chapter’s first section. In following those instruc-
tions, you told your computer about a thing called AccountDatabase.
Well, at this point in the Java code, you’re opening up a connection to
AccountDatabase. You’re doing this with the aid of the DriverManager
class.

CD-55Chapter 18: Using Java Database Connectivity

In the parameter for getConnection (refer to Listing 18-1), notice the
colons. The code doesn’t simply name the AccountDatabase, it tells the
DriverManager class what protocols to use to connect with the data-
base. The code jdbc:odbc: — which is the same as the http: in a Web
address — tells the computer to use the jdbc protocol to talk to the
odbc protocol, which in turn talks directly to your AccountDatabase.

� connection.createStatement: Make a statement.

It seems strange, but in Java Database Connectivity, you create a single
statement object. After you’ve created a statement object, you can use
that object many times, with many different SQL strings, to issue many
different commands to the database. So, before you start calling the
statement.executeUpdate method, you have to create an actual
statement object. The call to connection.createStatement creates
that statement object for you.

� SQLException and ClassNotFoundException: Acknowledge excep-
tions that can be thrown in the code.

If you read Chapter 12, you know that some method calls throw checked
exceptions. A checked exception is one that has to be acknowledged
somewhere in the calling code. Well, a call to Class.forName can
throw a ClassNotFoundException, and just about everything else in
Listing 18-1 can throw an SQLException. To acknowledge these excep-
tions, I top off my main method with a nice throws clause.

� close: Release resources.

As Ritter always says, you’re not being considerate of others if you don’t
clean up your own messes. Every connection and every database state-
ment lock up some system resources. When you’re finished using these
resources, you need to release them. If you don’t do this by making
explicit calls to close methods, the system has to figure out on its own
that you’re finished with these resources. Because this “figuring stuff out
on its own” business is hit or miss, the best thing to do is to put close
calls in your code.

Retrieving Data
What good is a database if you can’t get data from it? In this section, you
query the database that you created in Listing 18-1. The code to issue the
query is in Listing 18-2.

CD-56 Bonus Chapter

Listing 18-2: Making a Query

import static java.lang.System.out;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.ResultSet;
import java.text.NumberFormat;

class GetData {

public static void main(String args[])
throws SQLException, ClassNotFoundException {

NumberFormat currency =
NumberFormat.getCurrencyInstance();

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection connection = DriverManager.getConnection
(“jdbc:odbc:AccountDatabase”);

Statement statement = connection.createStatement();

ResultSet resultset =
statement.executeQuery(“select * from ACCOUNTS”);

while(resultset.next()) {
out.print(resultset.getString(“NAME”));
out.print(“\t”);
out.print(resultset.getString(“ADDRESS”));
out.print(“\t”);
out.println
(currency.format(resultset.getFloat(“BALANCE”)));

}

resultset.close();
statement.close();
connection.close();

}
}

A run of the code from Listing 18-2 is shown in Figure 18-7. The code queries
the database and then steps through the rows of the database, printing the
data from each of the rows.

CD-57Chapter 18: Using Java Database Connectivity

Listing 18-2 starts with the usual calls to forName, getConnection, and
createStatement. Then the code calls executeQuery and supplies the call
with an SQL command. For those who know SQL commands, this particular
command gets all data from the ACCOUNTS table (the table that you create in
Listing 18-1).

The thing returned from calling executeQuery is of type java.sql.ResultSet.
(That’s the difference between executeUpdate and executeQuery —
executeQuery returns a result set, and executeUpdate doesn’t.) This result
set is very much like a database table. Like the original table, the result set is
divided into rows and columns. Each row contains the data for one account.
Each row has a name, an address, and a balance amount.

After you’ve called executeQuery and gotten your result set, you can step
through the result set one row at a time. To do this, you go into a little loop
and test the condition resultset.next() at the top of each loop iteration.
Each time around, the call to resultset.next() does two things:

� It moves you to the next row of the result set (the next account) if
another row exists.

� It tells you whether or not another row exists by returning a boolean
value — true or false.

If the condition resultset.next() is true, the result set had another row.
The computer moved to that other row, so you can march into the body of the
loop and scoop data from that row. On the other hand, if resultset.next()
is false, the result set doesn’t have any more rows. You jump out of the loop
and start closing everything.

Now, imagine that the computer is pointing to a row of the result set, and
you’re inside the loop in Listing 18-2. Then you’re retrieving data from the
result set’s row by calling the result set’s getString and getFloat methods.
Back in Listing 18-1, you set up the ACCOUNTS table with the columns NAME,
ADDRESS, and BALANCE. So, here in Listing 18-2, you’re getting data from
these columns by calling your getSomeTypeOrOther methods and feeding
the original column names to these methods. After you have the data, you
display the data on the computer screen, with a tab separating each piece of
information.

Figure 18-7:
Getting data

from the
database.

CD-58 Bonus Chapter

For a review of the \t tab sequence, see Chapter 11.

Each Java ResultSet instance has several nice getSomeTypeOrOther meth-
ods. Depending on the type of data you put into a column, you can call meth-
ods getArray, getBigDecimal, getBlob, getInt, getObject,
getTimestamp, and several others.

CD-59Chapter 18: Using Java Database Connectivity

CD-60 Bonus Chapter

	Java 2 For Dummies, 2nd Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started
	Chapter 1: All about Java
	What You Can Do with Java
	Why You Should Use Java
	Getting Perspective: Where Java Fits In
	Object-Oriented Programming (OOP)
	What’s Next?

	Chapter 2: Running Canned Java Programs
	Downloading and Installing the Java Software Development Kit (SDK)
	Preparing to Use an Integrated Development Environment
	Running Java Programs

	Chapter 3: Using the Basic Building Blocks
	Speaking the Java Language
	Checking Out Java Code for the First Time
	Understanding the Simple Java Program
	And Now, a Few Comments
	Typing Your Own Code

	Part II: Writing Your Own Java Programs
	Chapter 4: Making the Most of Variables and Their Values
	Varying a Variable
	Assignment Statements
	Understanding the Types of Values That Variables May Have
	An Import Declaration
	Displaying Text
	Numbers without Decimal Points
	Combining Declarations and Initializing Variables
	The Atoms: Java’s Primitive Types
	The Molecules and Compounds: Reference Types
	Creating New Values by Applying Operators

	Chapter 5: Controlling Program Flow with Decision-Making Statements
	Making Decisions (Java if Statements)
	Forming Conditions with Comparisons and Logical Operators
	Building a Nest
	Choosing among Many Alternatives (Java switch Statements)

	Chapter 6: Controlling Program Flow with Loops
	Repeating Instructions Over and Over Again (Java while Statements)
	Repeating a Certain Number of Times (Java for Statements)
	Repeating Until You Get What You Want (Java do Statements)
	Loops Made Painless

	Part III: Working with the Big Picture: Object-Oriented Programming
	Chapter 7: Thinking in Terms of Classes and Objects
	Defining a Class (What It Means to Be an Account)
	Compiling and Running More Than One Class
	Defining a Method within a Class (Displaying an Account)
	Sending Values to and from Methods (Calculating Interest)
	Hiding Details with Accessor Methods (Why You Shouldn’t Micromanage a Bank Teller)

	Chapter 8: Saving Time and Money: Reusing Existing Code
	Defining a Class (What It Means to Be an Employee)
	Working with Disk Files (A Brief Detour)
	Defining Subclasses (What It Means to Be a Full-Time Employee or a Part-Time Employee)
	Using Subclasses
	Overriding Existing Methods (Changing the Payments for Some of Your Employees)

	Chapter 9: Constructing New Objects
	Defining Constructors (What It Means to Be a Temperature)
	More Subclasses (Doing Something about the Weather)
	A Constructor That Does More

	Part IV: Savvy Java Techniques
	Chapter 10: Putting Variables and Methods Where They Belong
	Defining a Class (What It Means to Be a Baseball Player)
	Making Static (Finding the Team Average)
	Experiments with Variables
	Passing Parameters

	Chapter 11: Using Arrays and Collections to Juggle Values
	Getting Your Ducks All in a Row
	Arrays of Objects
	Command Line Arguments
	Using Java Collections

	Chapter 12: Looking Good When Things Take Unexpected Turns
	Handling Exceptions
	Handle an Exception or Pass the Buck
	Finishing the Job with a finally Clause

	Part V: The Part of Tens
	Chapter 13: Ten Ways to Avoid Mistakes
	Putting Capital Letters Where They Belong
	Breaking Out of a switch Statement
	Comparing Values with a Double Equal Sign
	Adding Components to a GUI
	Adding Listeners to Handle Events
	Defining the Required Constructors
	Fixing Non-Static References
	Staying within Bounds in an Array
	Anticipating Null Pointers
	Helping Java Find its Files

	Chapter 14: Ten Sets of Web Resources for Java
	The Horse’s Mouth
	Finding News, Reviews, and Sample Code
	Improving Your Code with Tutorials
	Finding Help on Newsgroups
	Checking the FAQs for Useful Info
	Opinions and Advocacy
	Looking for Java Jobs
	Becoming Certified in Java
	Developing Servlets
	Everyone’s Favorite Sites

	Part VI: Appendixes
	Appendix A: Using the CD-ROM
	What You Can Expect to Find on the CD-ROM
	System Requirements
	Using the CD with Microsoft Windows
	Using the CD with Mac OS
	Running the Java Code That’s in This Book
	Freeware, Shareware, and Just Plain Ware
	And If You Run into Any Trouble . . .

	Appendix B: When to Use Words Like “public” and “private”
	Members versus Classes
	Access Modifiers for Members
	Access Modifiers for Classes

	Index
	Chapter 15: Sharing Names among the Parts of a Java Program
	Access Modifiers
	Classes, Access, and Multipart Programs
	Sneaking Away from the Original Code
	Protected Access
	Access Modifiers for Java Classes

	Chapter 16: Responding to Keystrokes and Mouse Clicks
	Go On . . . Click That Button
	Responding to Things Other Than Button Clicks

	Chapter 17: Writing Java Applets
	Applets 101
	Making Things Move
	Responding to Events in an Applet

	Chapter 18: Using Java Database Connectivity
	Telling the System about Your Database
	Creating Data
	Retrieving Data

