
Andy Harris
Author of HTML, XHTML, and CSS
All-in-One For Dummies

Learn to:
• Master basic JavaScript as a Web design

and application development tool

• Write your own programs

• Use JavaScript with AJAX, XML, and
JSON

• Design an interface, animate images,
program menus, and manage cookies

JavaScript
® & AJAX

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/go/

javascriptandajaxfd to find two additional chapters and all

the programming code used in the book

 Open the book and find:

• How to choose a test browser

• How to discuss string
concatenation with a straight face

• Tips for debugging your code

• How to add useful information to a
dropdown list

• Why AJAX connections should be
asynchronous

• The exciting possibilities of the
jQuery library

• How to use the Aptana editor

• Online resources for JavaScript
programmers

Andy Harris is a lecturer in computer science at Indiana University/

Purdue University at Indianapolis. He was instrumental in developing

the university’s certificate program in applied computer science and has

taught courses in Web development as well as several programming

languages.

$29.99 US / $35.99 CN / £21.99 UK

Programming Languages/JavaScript

ISBN 978-0-470-41799-7

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Learn to use these powerful
tools together and build
Web sites that work
If you want to build Web pages that offer real value to
your site’s visitors, JavaScript and AJAX are top tools for
the job. Even if you’re new to Web programming, this book
helps you create sites any designer will admire. With easy-
to-understand steps and an emphasis on free tools, you’ll
be able to jump right into building a site using the same
techniques as the pros.

• Down to basics — learn your way around JavaScript and choose
an editor and test browser

• Manage complexity — use functions, arrays, and objects to
create more sophisticated programs

• Page magic — discover how to control what happens on your
pages, animate objects, and put pages in motion

• Get beautiful — Use the jQuery User Interface library to add
sliders, tabbed interfaces, and custom dialogs to a site

• Come clean with AJAX — build AJAX requests into your
programs, use jQuery, and work with AJAX data

JavaScrip
t

® &
 A

JA
X

Harris

spine=.864”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/javascriptandajax

spine=.864”

by Andy Harris

JavaScript® & AJAX
FOR

DUMmIES
‰

01_417997-ffirs.indd i01_417997-ffirs.indd i 10/26/09 9:53 PM10/26/09 9:53 PM

JavaScript® & AJAX For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permission Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
JavaScript is a registered trademark of Sun Microsystems, Inc. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in
this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009939782

ISBN: 978-0-470-41799-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_417997-ffirs.indd ii01_417997-ffirs.indd ii 10/26/09 9:53 PM10/26/09 9:53 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author
Andy Harris began his teaching life as a special education teacher. As he was

teaching young adults with severe disabilities, he taught himself enough com-

puter programming to support his teaching habit with freelance programming.

Those were the exciting days when computers started to have hard drives,

and some computers began communicating with each other over an arcane

mechanism some were calling the Internet.

All this time Andy was teaching computer science part time. He joined the

faculty of the Indiana University-Purdue University Indianapolis Computer

Science department in 1995. He serves as a Senior Lecturer, teaching the

introductory course to freshmen as well as numerous courses on Web

development, general programming, and game programming. As manager

of the Streaming Media Laboratory, he developed a number of online video-

based courses, and worked on a number of international distance education

projects including helping to start a computer science program in Tetevo,

Macedonia FYR.

Andy is the author of several other computing books including HTML,
XHTML, and CSS All-in-One Desktop Reference For Dummies, Flash Game
Programming For Dummies, and Game Programming: the L Line. He invites

your comments and questions at andy@aharrisbooks.net, You can visit

his main site and fi nd a blog, forum, and links to other books at http://
www.aharrisbooks.net.

01_417997-ffirs.indd iii01_417997-ffirs.indd iii 10/26/09 9:53 PM10/26/09 9:53 PM

Dedication
I dedicate this book to Jesus Christ, my personal savior, and to Heather, the

joy in my life. I also dedicate this project to Elizabeth, Matthew, Jacob, and

Benjamin. I love each of you.

Author’s Acknowledgments
Thank you fi rst to Heather. Even though I type all the words, this book is a

real partnership, like the rest of our life. Thanks for being my best friend and

companion. Thanks also for doing all the work it takes for us to sustain a

family when I’m in writing mode.

Thank you to Mark Enochs. It’s great to have an editor who gets me, and

who’s willing to get excited about a project. I really enjoy working with you.

Thanks a lot to Steve Hayes. It’s been a lot of fun to dream up this idea with

you, and to see it evolve from something a little messy to a project we can all

be proud of. I’m looking forward to working with you more.

Thank you to the copy editors: Barry Childs-Helton, Virginia Sanders, and

Rebecca Whitney. I appreciate your efforts to make my geeky mush turn into

something readable. Thanks for improving my writing.

A special thanks to Jeff Noble for his technical editing. I appreciate your vigi-

lance. You have helped to make this book as technically accurate as possible.

Thank you to the many people at Wiley who contribute to a project like this.

The author only gets to meet a few people, but so many more are involved in

the process. Thank you very much for all you’ve done to help make this proj-

ect a reality.

A big thank you to the open source community which has created so many

incredible tools and made them available to all. I’d especially like to thank

the creators of Firefox, Firebug, Aptana, HTML Validator, the Web Developer

toolbar, Notepad++, PHP, Apache, jQuery, and the various jQuery plugins.

This is an amazing and generous community effort.

I’d fi nally like to thank the IUPUI computer science family for years of support

on various projects. Thank you especially to all my students, current and

past. I’ve learned far more from you than the small amount I’ve taught. Thank

you for letting me be a part of your education.

01_417997-ffirs.indd iv01_417997-ffirs.indd iv 10/26/09 9:53 PM10/26/09 9:53 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form located

at http://dummies.custhelp.com. For other comments, please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and

Media Development

Senior Project Editor: Mark Enochs

Executive Editor: Steve Hayes

Copy Editors: Barry Childs-Helton,

Virginia Sanders, Rebecca Whitney

Technical Editor: Jeff Noble

Editorial Manager: Leah Cameron

Media Development Project Manager:

Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Assistant Producers:

Josh Frank, Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Kristie Rees

Layout and Graphics: Carl Byers,

Melissa K. Jester, Christine Williams

Proofreaders: John Greenough,

Content Editorial Services

Indexer: Sharon Shock

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_417997-ffirs.indd v01_417997-ffirs.indd v 10/26/09 9:53 PM10/26/09 9:53 PM

Contents at a Glance
Introduction .. 1

Part I: Programming with JavaScript 7
Chapter 1: Taking the Web to the Next Level... 9

Chapter 2: Writing Your First Program ... 31

Chapter 3: Changing Program Behavior with Conditions ... 55

Chapter 4: Loops and Debugging ... 71

Chapter 5: Functions, Arrays, and Objects ... 97

Part II: Using JavaScript to Enhance Your Pages 129
Chapter 6: Talking to the Page ... 131

Chapter 7: Getting Valid Input .. 157

Chapter 8: Moving and Grooving ... 181

Part III: Moving Up to AJAX 221
Chapter 9: AJAX Essentials ... 223

Chapter 10: Improving JavaScript and AJAX with jQuery .. 239

Chapter 11: Animating jQuery .. 265

Chapter 12: Using the jQuery User Interface Toolkit .. 293

Chapter 13: Improving Usability with jQuery .. 317

Chapter 14: Working with AJAX Data .. 339

Part IV: The Part of Tens .. 367
Chapter 15: Ten Amazing jQuery Plugins ... 369

Chapter 16: Ten Great Resources .. 397

Index .. 401

02_417997-ftoc.indd vi02_417997-ftoc.indd vi 10/26/09 9:54 PM10/26/09 9:54 PM

Table of Contents
Introduction ... 1

What You Will Need .. 2

How This Book Is Organized .. 3

Part I: Programming with JavaScript ... 3

Part II: Using JavaScript to Enhance Your Pages 3

Part III: Moving Up to AJAX .. 4

Part IV: The Part of Tens ... 4

It’s Even on the Internet! ... 4

Icons Used in This Book ... 5

Where to Go from Here ... 5

A Final Word ... 6

Part I: Programming with JavaScript 7

Chapter 1: Taking the Web to the Next Level .9
Building Something Cool .. 9

Getting Started ... 14

Overview of the Core Technologies .. 14

Choosing your computer .. 15

Picking an Editor .. 16

Avoiding the problem tools .. 16

Using a WYSIWYG editor .. 17

Introducing programmer’s editors .. 18

Getting familiar with some important editors 19

Introducing Aptana .. 23

Creating Your Browser Collection ... 24

Setting the standard .. 24

Picking a browser or two .. 25

Turning Firefox into a Development Machine ... 26

Web Developer Toolbar ... 27

HTML Validator extension .. 27

Firebug .. 28

Chapter 2: Writing Your First Program .31
Becoming a Programmer .. 31

Choosing a JavaScript editor .. 32

Picking your test browser ... 33

Adding a script to your page .. 34

02_417997-ftoc.indd vii02_417997-ftoc.indd vii 10/26/09 9:54 PM10/26/09 9:54 PM

JavaScript & AJAX For Dummies viii
Embedding your JavaScript code .. 35

Creating comments .. 36

Using the alert() method for output .. 36

Adding the semicolon.. 37

Introducing Variables .. 37

Creating a variable for data storage .. 38

Asking the user for information ... 39

Responding to the user ... 39

Using Concatenation to Build Better Greetings ... 40

Comparing literals and variables ... 41

Including spaces in concatenated phrases 41

Understanding the string Object ... 42

Introducing object-oriented programming (and cows) 42

Investigating the length of a string .. 43

Using string methods to manipulate text ... 44

Understanding Variable Types .. 47

Adding numbers ... 47

Adding the user’s numbers .. 48

The trouble with dynamic data .. 49

The pesky plus sign ... 50

Changing Variables to the Desired Type .. 51

Using variable conversion tools .. 51

Fixing the addInput code .. 52

Chapter 3: Changing Program Behavior with Conditions55
Working with Random Numbers ... 55

Creating a die to die for... 56

Rolling the dice .. 56

Using if to Control Flow .. 58

If and only if .. 59

Using conditions .. 60

Comparison operators .. 60

Do What I Say or Else .. 61

Using else-if for more complex interaction 62

The mystery of the unnecessary else.. 64

It’s Time to Switch Your Thinking ... 64

Creating an expression.. 65

Switching with style ... 67

Nesting if Statements .. 67

Building the nested conditions .. 69

Making sense of nested ifs .. 69

Chapter 4: Loops and Debugging. .71
Building Counting Loops with for .. 71

Building a standard for loop ... 72

Making a backwards loop ... 73

Counting fi ve at a time .. 74

02_417997-ftoc.indd viii02_417997-ftoc.indd viii 10/26/09 9:54 PM10/26/09 9:54 PM

ix Table of Contents

Looping for a while .. 75

Creating a basic while loop .. 75

Avoiding loop mistakes ... 77

Introducing Some Bad Loops ... 77

Managing the reluctant loop .. 77

Managing the compulsive loop .. 78

Debugging Your Code ... 79

Letting Aptana help ... 79

Debugging JavaScript on IE .. 81

Finding errors in Firefox ... 82

Catching syntax errors with Firebug ... 82

Catching Logic Errors ... 84

Logging to the console with Firebug ... 84

Looking at console output .. 86

Using an Interactive Debugger ... 86

Adding a breakpoint .. 88

Running the debugger ... 88

Using the Debug perspective ... 89

Examining Debug mode with a paused program 91

Walking through your program ... 92

Viewing expression data ... 93

Using the Firebug debugger.. 94

Chapter 5: Functions, Arrays, and Objects. .97
Breaking Code into Functions .. 97

Inviting ants to the picnic ... 98

Thinking about song (and program) structure 98

Building the antsFunction.html program.. 99

Passing Data into and out of Functions .. 100

Examining the main code .. 102

Looking at the chorus line .. 102

Handling the verses ... 103

Managing Scope ... 105

Introducing local and global variables .. 106

Examining variable scope ... 106

Building a Basic Array ... 109

Storing a list of data in an array ... 109

Accessing array data ... 110

Using arrays with for loops .. 111

Visiting the ants one more time ... 112

Working with Two-Dimensional Arrays .. 114

Setting up the arrays ... 115

Getting a city .. 116

Creating a main() function .. 117

02_417997-ftoc.indd ix02_417997-ftoc.indd ix 10/26/09 9:54 PM10/26/09 9:54 PM

JavaScript & AJAX For Dummies x
Creating Your Own Objects .. 118

Building a basic object .. 118

Adding methods to an object ... 120

Building a re-usable object ... 121

Using your shiny new objects .. 123

Introducing JSON ... 124

Storing data in JSON format ... 124

Building a more complex JSON structure 125

Part II: Using JavaScript to Enhance Your Pages 129

Chapter 6: Talking to the Page. .131
Understanding the Document Object Model ... 131

Navigating the DOM ... 132

Changing DOM properties with Firebug ... 132

Examining the document object .. 134

Harnessing the DOM through JavaScript ... 135

Getting the blues, JavaScript-style .. 135

Writing JavaScript code to change colors 137

Managing Button Events ... 137

Setting up the playground .. 139

Embedding quotes within quotes .. 141

Writing the changeColor function ... 141

Interacting with Text Input and Output .. 142

Introducing event-driven programming .. 142

Creating the XHTML form ... 143

Using getElementById() to get access to the page 144

Manipulating the text fi elds .. 145

Writing to the Document .. 146

Preparing the HTML framework .. 147

Writing the JavaScript ... 147

Finding your innerHTML .. 148

Working with Other Text Elements ... 148

Building the form ... 150

Writing the function... 151

Understanding generated source code ... 153

Chapter 7: Getting Valid Input .157
Getting Input from a Drop-Down List .. 157

Building the form ... 158

Reading the list box ... 159

Managing Multiple Selections .. 160

Coding a multiple-selection select object 161

Writing the JavaScript code ... 162

02_417997-ftoc.indd x02_417997-ftoc.indd x 10/26/09 9:54 PM10/26/09 9:54 PM

xi Table of Contents

Check, Please — Reading Check Boxes .. 164

Building the checkbox page ... 165

Responding to the check boxes ... 166

Working with Radio Buttons .. 167

Interpreting radio buttons .. 169

Working with Regular Expressions ... 170

Introducing regular expressions .. 174

Characters in regular expressions ... 176

Marking the beginning and end of the line 176

Working with Special Characters .. 177

Matching a character with the period... 177

Using a character class ... 177

Specifying digits ... 178

Marking punctuation characters ... 178

Finding word boundaries .. 178

Repetition Operations ... 178

Finding one or more elements ... 179

Matching zero or more elements ... 179

Specifying the number of matches .. 179

Working with Pattern Memory ... 179

Recalling your memories .. 180

Using patterns stored in memory .. 180

Chapter 8: Moving and Grooving .181
Making Things Move ... 181

Looking over the HTML... 183

Getting an overview of the JavaScript ... 185

Creating global variables .. 185

Initializing.. 186

Moving the sprite ... 187

Checking the boundaries .. 189

Reading Input from the Keyboard ... 191

Building the keyboard page .. 191

Looking over the keyboard.js script ... 193

Overwriting the init() function ... 193

Setting up an event handler .. 193

Responding to keystrokes .. 194

Deciphering the mystery of keycodes ... 196

Following the Mouse ... 197

Looking over the HTML... 197

Setting up the HTML .. 199

Initializing the code ... 199

Building the mouse listener .. 199

Automatic Motion .. 200

02_417997-ftoc.indd xi02_417997-ftoc.indd xi 10/26/09 9:54 PM10/26/09 9:54 PM

JavaScript & AJAX For Dummies xii
Image-Swapping Animation .. 203

Preparing the images ... 203

Building the page ... 204

Building the global variables .. 206

Setting up the interval ... 206

Animating the sprite .. 207

Improving the animation with preloading 207

Working with Compound Images .. 209

Preparing the image .. 211

Setting up the HTML and CSS ... 211

Writing the JavaScript ... 212

Setting up global variables ... 212

Building an init() function ... 213

Animating the sprite .. 213

Movement and Swapping ... 214

Building the HTML framework ... 214

Building the code ... 216

Defi ning global variables ... 217

Initializing your data .. 218

Animating the image .. 218

Updating the image .. 218

Moving the sprite ... 218

Part III: Moving Up to AJAX 221

Chapter 9: AJAX Essentials .223
AJAX: Return to Troy .. 223

AJAX Spelled Out ... 225

A is for asynchronous ... 225

J is for JavaScript ... 226

A is for . . . and? ... 226

And X is for . . . data? ... 226

Making a Basic AJAX Connection .. 227

Building the HTML form .. 230

Creating an XMLHttpRequest object ... 230

Opening a connection to the server .. 232

Sending the request and parameters .. 232

Checking the status ... 233

All Together Now: Making the Connection Asynchronous 234

Setting up the program ... 236

Building the getAJAX() function .. 236

Reading the response .. 237

02_417997-ftoc.indd xii02_417997-ftoc.indd xii 10/26/09 9:54 PM10/26/09 9:54 PM

xiii Table of Contents

Chapter 10: Improving JavaScript and AJAX with jQuery 239
Introducing JavaScript Libraries ... 239

Getting to Know jQuery .. 241

Installing jQuery ... 242

Importing jQuery from Google ... 242

Using jQuery with Aptana ... 243

Writing Your First jQuery App ... 245

Setting up the page .. 246

Meet the jQuery node object .. 247

Creating an Initialization Function .. 248

Using $(document).ready() .. 248

Discovering alternatives to document.ready 250

Investigating the jQuery Object ... 250

Changing the style of an element ... 251

Selecting jQuery objects ... 252

Modifying the style .. 253

Adding Events to Objects ... 253

Adding a hover event .. 254

Changing classes on the fl y .. 256

Making an AJAX Request with jQuery ... 258

Including a text fi le with AJAX .. 258

Building a poor man’s CMS with AJAX .. 260

Chapter 11: Animating jQuery .265
Getting Prepared for Animation .. 265

Writing the HTML and CSS foundation ... 269

Initializing the page.. 270

Working with callback functions ... 271

Hiding and Showing the Content ... 271

Toggling visibility... 272

Sliding an element .. 272

Fading an element in and out ... 273

Changing an Element’s Position with jQuery ... 273

Creating the HTML framework ... 276

Setting up the events ... 277

Don’t go chaining 277

Building the move() function with chaining 278

Building time-based animation with animate() 279

Move a little bit: Relative motion ... 280

Modifying Elements on the Fly ... 280

Building the basic page ... 286

Initializing the code ... 287

Adding text ... 287

Attack of the clones ... 288

02_417997-ftoc.indd xiii02_417997-ftoc.indd xiii 10/26/09 9:54 PM10/26/09 9:54 PM

JavaScript & AJAX For Dummies xiv
It’s a wrap.. 289

Alternating styles ... 290

Resetting the page ... 290

More fun with selectors and fi lters .. 291

Chapter 12: Using the jQuery User Interface Toolkit293
Looking Over the ThemeRoller .. 294

Visiting the Theme Park ... 296

Wanna Drag? Dragging and Dropping Elements 297

Downloading the Library .. 300

Resizing on a Theme ... 301

Examining the HTML and standard CSS.. 304

Importing fi les .. 304

Making a resizable element .. 305

Adding themes to your elements ... 305

Adding an icon ... 308

Dragging, Dropping, and Calling Back ... 309

Building the basic page ... 312

Initializing the page.. 312

Handling the drop .. 314

Dropping out can be fun ... 315

Cloning the elements ... 315

Chapter 13: Improving Usability with jQuery .317
Multi-Element Designs .. 317

Using the Accordion widget ... 318

Building a tabbed interface .. 322

Using tabs with AJAX... 325

Improving Usability ... 327

The dating game ... 329

Picking numbers with the slider .. 331

Selectable elements ... 333

Building a sortable list .. 335

Creating a custom dialog box ... 336

Chapter 14: Working with AJAX Data .339
Getting an Overview of Server-Side Programming 339

Introducing PHP ... 340

Writing a form for PHP processing .. 341

Responding to the request ... 344

Sending Requests AJAX-Style ... 345

Sending the data .. 346

Responding to the results ... 348

Building a More Interactive Form ... 349

Creating an AJAX form .. 350

Writing the JavaScript code ... 352

Processing the result ... 353

Simplifying PHP for AJAX .. 353

02_417997-ftoc.indd xiv02_417997-ftoc.indd xiv 10/26/09 9:54 PM10/26/09 9:54 PM

xv Table of Contents

Working with XML Data .. 354

Review of XML .. 354

Manipulating XML with jQuery .. 356

Creating the HTML ... 358

Retrieving the data .. 358

Processing the results ... 358

Printing out the pet name ... 359

Working with JSON Data ... 360

Understanding JSON .. 360

Reading JSON data with jQuery ... 362

Managing the framework .. 364

Retrieving the JSON data .. 364

Processing the results ... 365

Part IV: The Part of Tens ... 367

Chapter 15: Ten Amazing jQuery Plugins. .369
Using the Plugins ... 369

ipwEditor .. 370

Adding a basic editor with editable... 370

Incorporating more advanced editing with FCKedit 373

jQuery Cookies ... 376

fl ot .. 378

Tag Cloud .. 380

Tablesorter ... 383

Jquery-translate ... 385

Droppy .. 388

galleria ... 390

Jmp3 .. 393

Chapter 16: Ten Great Resources .397
jQuery PHP library .. 397

JSAN — JavaScript Archive Network .. 397

W3Schools tutorials and examples ... 398

Google AJAX APIs .. 398

Afl ax ... 398

MochiKit ... 398

Dojo ... 399

Ext JS ... 399

YUI .. 399

DZone .. 399

Index ... 401

02_417997-ftoc.indd xv02_417997-ftoc.indd xv 10/26/09 9:54 PM10/26/09 9:54 PM

02_417997-ftoc.indd xvi02_417997-ftoc.indd xvi 10/26/09 9:54 PM10/26/09 9:54 PM

Introduction

The World Wide Web officially celebrated its 20th birthday as I began writ-

ing this book. In one sense, it’s hard to believe that the technology has

been around this long already. At another level, it’s amazing how much has

happened in that short time. When I started teaching and writing about the

Internet (long before the Web was practical), none of us had any idea what it

was going to turn into one day.

If you’re reading this book, I don’t have to tell you that the Web is a big deal.

It’s come a long way, and it’s doing very interesting things. What I want to

show in this book is where the Web is going. Web technology is changing

faster than ever, and people who don’t understand these changes are going

to have a hard time staying on top of things.

In the early days of the Web, we talked about Web pages, as if the Internet

were a set of ordinary documents connected by links. This was true (and still

is largely), but I don’t think that’s the best way to think of the Web any more.

Today’s Web is not about documents, but about applications. Users and

developers expect their pages to do things, not just be glorified documents.

This book describes two critical and inter-related technologies: JavaScript

and AJAX. JavaScript has been a part of the Web since the relatively early

days. It is a simple but powerful programming language that was designed

from the beginning to work within the context of a Web document. While

JavaScript has been with us for a long time, it has recently seen a resurgence

of interest in the form of AJAX. This new technology promises a lot of cool

things, but it’s still rooted in the heritage of JavaScript and HTML.

The great thing about JavaScript and AJAX is the amount of power they give

you. If you already know HTML or XHTML, you know how to create Web doc-

uments, but those documents are relatively lifeless and static.

JavaScript is a real programming language, and it allows you to add real pro-

gramming capabilities to your pages. If you’ve never programmed before,

this is a great place to start. JavaScript is a pleasant and relatively easy lan-

guage for beginners. It uses the familiar Web page as a user interface, which

makes it an easy way to develop forms and user interfaces. If you’re already

a programmer, you’ll find that your previous knowledge extends easily to

JavaScript, and you’ll be fluent in this skill in no time.

03_417997-intro.indd 103_417997-intro.indd 1 10/26/09 9:54 PM10/26/09 9:54 PM

2 JavaScript & AJAX For Dummies

AJAX extends the capabilities of JavaScript in new ways that are still being

explored. In one sense, the AJAX libraries assist in creating great user experi-

ences with new interface elements like menus and sliders. In another sense,

AJAX allows some very important features like the ability to perform client-

side includes (a very handy tool for making your pages more efficient) and

direct control of server-side scripts.

If you read this entire book, you’ll be able to do amazing things with your

Web pages. You’ll be able to get input from users, test the validity of user

input, animate your pages, and interact with Web servers.

What You Will Need
One of the great things about JavaScript is how easy it is to get into. You

don’t need a whole lot to get started:

 ✓ Any computer will do. If your computer is relatively recent (it can run

Firefox or Safari, for example), you have enough horsepower for Web

development. Netbooks are fine, too. Theoretically you could do Web

development on a cell phone, but I wouldn’t want to do it for long.

 ✓ Any operating system is fine. I wrote this book on a combination of

Windows XP and Fedora Core Linux machines. Most of the programs I

recommend have versions for Windows, Mac, and Linux.

 ✓ All the best tools are free. Don’t bother purchasing any expensive soft-

ware for Web development. All the tools you need are free. You don’t

need a fancy editor like DreamWeaver or expressionWeb. While these

tools have their place, they aren’t necessary. Everything I show in this

book uses entirely free tools.

 ✓ No programming experience is necessary. If you already know com-

puter programming in some other language, you’ll have no trouble with

JavaScript and AJAX. But if you have never programmed at all before,

this is a great place to start. If you’re already a programmer, JavaScript

is a pretty easy language to pick up. If not, it’s a great place to start. I’m

expecting you have some familiarity with XHTML and CSS, and you know

how to get your Web pages to a server. (See my book HTML, XHTML,
and CSS All-in-One Desk Reference For Dummies if you want more infor-

mation on these topics.) I’ve also added two bonus chapters to the Web

site: one on HTML and XHTML, and another on CSS. See them at www.
aharrisbooks.net/jad and www.dummies.com/go/javascript
andajaxfd if you need a refresher.

So what do you need? Imagination, perseverance, and a little bit of time.

03_417997-intro.indd 203_417997-intro.indd 2 10/26/09 9:54 PM10/26/09 9:54 PM

3 Introduction

How This Book Is Organized
I organized this book by renting time on a supercomputer and applying a

multilinear Bayesian artificial intelligence algorithm. No, I didn’t. I don’t even

know what that means. I really just sketched it out during a meeting when I

was supposed to be paying attention. In any case, the book is organized into

a number of sections that describe various aspects of Web development with

JavaScript and AJAX.

Like the other books in the For Dummies series, you can use this reference

in many ways, depending on what you already know and what you want to

learn. Each chapter of this book describes a particular facet of JavaScript or

AJAX programming. You can read the chapters in any order you wish, espe-

cially if you already have some knowledge and you’re looking for a particular

skill. However, the chapters do build in complexity from beginning to end,

so if you find you don’t understand something in a later chapter, you might

want to review some earlier chapters. (I’ll point out exactly where you can

find things you might need as we go.) If you’re just starting out, it’s probably

easiest to go from beginning to end, but the main thing is to dig in and have

some fun.

Part I: Programming with JavaScript
If you’ve never written a computer program before, consider this your boot

camp. (But it’s kind of a fun boot camp, with a little more silliness than most —

and no pushups in the rain.) Begin by building your toolkit of powerful but free

tools and applications. Here you learn what programming is all about — with

JavaScript as the language of choice. You’ll be introduced to new friends like

variables, conditions, loops, arrays, and objects.

Part II: Using JavaScript
to Enhance Your Pages
The main reason people use JavaScript is to trick out Web pages. In this sec-

tion you learn how to write programs that talk to the Web page they live in.

Your programs will be able to read user input, validate that input, and dance

around on the screen. It’s pretty fun.

03_417997-intro.indd 303_417997-intro.indd 3 10/26/09 9:54 PM10/26/09 9:54 PM

4 JavaScript & AJAX For Dummies

Part III: Moving Up to AJAX
If you’ve been hanging around with Web geeks, you’ve probably heard of

AJAX. It’s kind of a big deal, and it has the potential to change the way Web

development works. Learn what this thing is really about. Create some AJAX

requests by hand, and then use the incredible jQuery library to do more pow-

erful programming. Learn how jQuery introduces new ways to think about

programming, and how to use the jQuery User Interface extension to build

snappy user experiences. You’ll also learn how to work with various kinds of

data, from PHP programs to XML and JSON. Yummy.

Part IV: The Part of Tens
No Dummies book would be complete without a Part of Tens. I’m really

excited about these chapters. In one, you explore ten of my favorite jQuery

plugins. These amazing tools make it easy to add amazing features to your

sites. You’ll see plugins for automatically sorting tables, translating text into

foreign languages, building graphs, showing image galleries, playing mp3

files, and much more. Another chapter points you toward some amazing

resources on the Web to learn even more.

It’s Even on the Internet!
This book has a couple of companion Web sites that are critical to under-

standing the book. Web programming is about making Web pages do things,

and you just won’t be able to see all of that in a book. As you’re going

through this book, I strongly advise you to visit either www.dummies.com/
go/javascriptandajaxfd or my Web site: www.aharrisbooks.net/
jad. A running version of every program in the book is available on both of

these sites. You’ll also be able to view the source code of each program in its

natural habitat — running on the Web.

The www.aharrisbooks.net/jad site is also a great place to start when

you’re collecting your tools and libraries. Every tool or library that I describe

in this book is linked from the Web page, so you’ll definitely want to check it

out. I also have a forum where I’m happy to answer your questions and share

projects with you. I’m looking forward to seeing you there.

03_417997-intro.indd 403_417997-intro.indd 4 10/26/09 9:54 PM10/26/09 9:54 PM

5 Introduction

Icons Used in This Book
Every once in a while, a concept is important enough to warrant special

attention. This book uses a few margin icons to point out certain special

information.

These are tidbits of additional information you ought to think about or at least

keep in mind.

Occasionally I feel the need to indulge my “self-important computer science

instructor” nature, and I give some technical background on things. These

things are interesting but not critical, so you can skip them if you want. You

might want to memorize a couple of them before you go to your next com-

puter science cocktail party. You’ll be the hit of the party.

Tips are suggestions to make things easier.

Be sure to read anything marked with this icon. Failure to do so might result in

a plague of frogs, puffs of black smoke, or your program not working like you

expect.

Where to Go from Here
Before you start banging out some code, let’s take stock of your needs. If

you’ve never dealt with JavaScript or AJAX, you might want to start off in

Part I. If you know JavaScript but not AJAX, skip ahead to Part IV. If you want

to brush up on your JavaScript, go to Parts II and III.

Well, just dig in and have some fun!

 ✓ Skim the book. Get an overview, look at the figures, and get a sense of

the fun to be had.

 ✓ Visit the Web sites. You can’t taste the recipes in a cookbook, and you

can’t get a real sense of Web programs in a computing book. Go to either

of the companion Web sites at www.aharrisbooks.net/jad or www.
dummies.com/go/javascriptandajaxfd and play around with the

sample programs. Note that you will also find two bonus chapters on

HTML and CSS programming on these companion sites, as well as all the

code from the programs used throughout the book.

03_417997-intro.indd 503_417997-intro.indd 5 10/26/09 9:54 PM10/26/09 9:54 PM

6 JavaScript & AJAX For Dummies

 ✓ Check out the Cheat Sheet. The Cheat Sheet at www.dummies.com/
cheatsheet/javascriptandajax is a handy reference of common

programming variables and coding miscellany.

 ✓ Pick a spot and dig in. If you’re already comfortable with JavaScript

programming, take a look at Part III on AJAX. If not, you might need to

back up a little bit and find the more appropriate spot. If in doubt, you

could always go from beginning to end (but what’s the fun in that?)

 ✓ Have fun. Programming is a serious business. You can actually make a

living doing this stuff. But it’s also a lot of fun. Have a good time, relax,

and enjoy making your Web pages do things you never thought they

could do.

A Final Word
Thank you for buying this book. I truly hope you find it fun and useful. I had

a great time writing this book, and I think you’ll have a good time using it.

I’m looking forward to hearing from you and seeing what you can do with the

skills you pick up here. Drop me a line at andy@aharrisbooks.net and let

me know how it’s going!

03_417997-intro.indd 603_417997-intro.indd 6 10/26/09 9:54 PM10/26/09 9:54 PM

Part I
Programming with

JavaScript

04_417997-pp01.indd 704_417997-pp01.indd 7 10/26/09 9:55 PM10/26/09 9:55 PM

In this part . . .
You enter the world of JavaScript programming. The

kind of programming you learn in this part is suit-

able for any kind of language. You’ll be able to translate

these ideas to any major language without difficulty. Of

course, the examples and emphasis are in JavaScript.

Chapter 1 helps you gather your tools. Most of the tools

you need for professional JavaScript program are com-

pletely free. Learn what you need in terms of editors,

browsers, and plugins.

Chapter 2 gets you started in JavaScript. You’ll store data

in variables, work with text data, and do some basic input

and output.

Chapter 3 takes you into the wonderful world of decision

making. You’ll learn how to generate random numbers

and then use them to experiment with several decision-

making mechanisms. Your programs will make decisions

like the best of them.

Chapter 4 introduces the powerful idea of loops. Your pro-

grams will be able to repeat as many times as you want,

and will stop on a dime. Loops can also cause difficult-to-

spot logic problems, so this chapter also describes a num-

ber of debugging techniques.

Chapter 5 helps you build more powerful programs by

combining elements. You can combine variables to make

arrays, and you can combine statements to make func-

tions. You also learn how to combine both instructions

and data to make objects, including the powerful JSON

object.

04_417997-pp01.indd 804_417997-pp01.indd 8 10/26/09 9:55 PM10/26/09 9:55 PM

Chapter 1

Taking the Web to the Next Level
In This Chapter
▶ Reviewing HTML, XHTML, and CSS

▶ Examining the role of JavaScript and AJAX

▶ Exploring what JavaScript and AJAX can add to Web pages

▶ Choosing an editor

▶ Building your browser toolkit

The Web is a pretty big deal. It’s a lot of fun to build Web pages, and just

about every business needs them. As the Web has grown and changed,

the expectations of what a Web page is and does have also changed. If you

already know HTML or XHTML, you know how to create Web documents — if

you need a refresher, check out Bonus Chapter 1 on either the companion

Web site at www.dummies.com/go/javascriptandajaxfd or my own site

at www.aharrisbooks.net/jad.

As the Web has evolved so have the tools that are used to create Web pages

and documents. JavaScript and AJAX are two powerful tools for creating

dynamic Web documents. This chapter gets you started with a look at some

of the primary technologies out there for building Web pages.

Building Something Cool
This book is about adding features to Web pages that you cannot do with

simple HTML and CSS.

Make no mistake; we’re talking about programming here — and programming

is a little bit harder than plain old Web development. However, it’s really

worth it, as the example page in Figure 1-1 illustrates.

To keep this example simple, I’m using some external libraries. They are

explained in Part IV of this book, but for now just appreciate that something

exciting is happening here.

05_417997-ch01.indd 905_417997-ch01.indd 9 10/26/09 9:55 PM10/26/09 9:55 PM

10 Part I: Programming with JavaScript

Figure 1-1:
This page
has some

interesting
features

that would
not be pos-

sible in
basic HTML.

The text in this box changes.

This program requires you to have an active Internet connection to work cor-

rectly. Check Chapter 10 to see some alternatives for connecting to external

libraries.

If you want to see this page in action (and you really should), please go to the

companion Web sites for this book: www.aharrisbooks.net/jad or www.
dummies.com/go/javascriptandajaxfd. This program and every other

program and example in the book are available at that site.

At first, the Web page looks pretty simple, but when you open it in your own

browser (as you should) and begin playing with it, you’ll soon discover that it

packs a lot of surprises. This very simple page illustrates a lot of the reasons

why you should learn JavaScript and AJAX.

 ✓ The buttons do something. You might already have a handle on creat-

ing form elements (such as buttons and text fields) in plain HTML, but

HTML can’t do anything with the buttons and text fields; that’s why you

need a programming language.

 If you want something interesting to happen, you need a programming

language. Each of these buttons uses JavaScript to do some interesting

05_417997-ch01.indd 1005_417997-ch01.indd 10 10/26/09 9:55 PM10/26/09 9:55 PM

11 Chapter 1: Taking the Web to the Next Level

work, but the fact that the page is now interactive is a huge change. With

JavaScript, you can build applications, not just pages.

 ✓ The Count button dynamically changes the page. When you click the

Count button, new content is added to the page automatically. A pro-

gram counts how many times the Count button is pressed and adds text

to the “watch this space” section. As the user interacts with the page,

the page has material that wasn’t originally on the server.

 Of course, this example is simple, but you will be able to add any kind of

text to any Web element dynamically. That’s a very powerful capability.

Figure 1-2 shows how the page looks after I click the Count button a few

times.

 ✓ The Toggle Visibility button makes things appear and disappear. You

can’t really modify whether things appear or go away in HTML. You can

do so in CSS to some level, but JavaScript gives you a much more power-

ful set of tools for changing what parts of the page are visible to the user

at any time. Look at Figure 1-3 to see the page with the output segment

hidden.

Figure 1-2:
The Count

button
changes the

text in part
of the page.

The Count button
A new line is added to this section each

time the user clicks the Count button.

05_417997-ch01.indd 1105_417997-ch01.indd 11 10/26/09 9:55 PM10/26/09 9:55 PM

12 Part I: Programming with JavaScript

Figure 1-3:
Click the

Toggle
Visibility

button to
make the

panel with
the output
reappear.

I clicked the Toggle Visibility button, and the output disappeared.

 ✓ The Toggle Style button instantly changes the appearance of part of

the page. You can use JavaScript to change the contents of any part

of the page (that is, the HTML) — but you can also use JavaScript to

modify the appearance (the CSS) in real time. In this example, I’ve cre-

ated a special CSS class called funky that is added to or removed from

the output box every time the user clicks the button. This approach

works with any CSS class. (Amazing, huh?) Figure 1-4 shows the page

with the funky class applied.

If you need a refresher on CSS or XHTML, please look over the bonus

chapters on the Web site: www.dummies.com/go/javascriptand
ajaxfd or www.aharrisbooks.net/jad.

I’ve added callouts to some of the figures in this chapter to describe

what’s happening. The images in this book are not sufficient to under-

stand what the page does. Find the program at www.dummies.com/go/
javascriptandajaxfd or www.aharrisbooks.net/jad and look at

it yourself.

 ✓ The Animate button is even more fun. The Animate button makes a

series of gradual changes to the output box, changing its size, shape,

and appearance over time. (You’ve really got to try it; a screen shot

won’t do it justice.)

05_417997-ch01.indd 1205_417997-ch01.indd 12 10/26/09 9:55 PM10/26/09 9:55 PM

13 Chapter 1: Taking the Web to the Next Level

Figure 1-4:
You can

dynamically
change the

appearance
of any page

element.

The Toggle Style button

 ✓ The Show Code button brings in text from an external file. This button

uses a simple form of AJAX to load an external file into the page in real

time. This is an easy way to build modular pages. In this case, I’m actu-

ally pulling in a copy of the JavaScript code so you can see how it works.

Don’t worry if you don’t understand it yet. That’s what this book is for!

Figure 1-5 shows this operation in action.

 ✓ Let the user drag the code. The user can pick up the code and move it

wherever she wants. This is another kind of functionality unheard of in

ordinary Web pages.

No, you wouldn’t normally display your code to users. I’m just illustrating that

it’s pretty easy to pull in an arbitrary text file from a server. Since you are a

programmer now, I chose to show you a preview of the code as the text file I

brought in.

These capabilities are profound, and they’re just the beginning. Learning to

program transforms your Web pages from static documents to living applica-

tions that can interact with your users in new and exciting ways.

Feel free to look over the code for this project. It’s actually in three files:

demo.html, demo.css, and demo.js. All can be found in the Chapter 1

folder of the book’s companion Web site. Use View Source when the page is

displayed in your browser to see the source code of the HTML file.

05_417997-ch01.indd 1305_417997-ch01.indd 13 10/26/09 9:55 PM10/26/09 9:55 PM

14 Part I: Programming with JavaScript

Figure 1-5:
The Show
Code but-

ton pulls
code from

another file
and shows it

on-screen.

Click to see the code from another file.

I’ve added plenty of comments in the code to help you see what’s going on,

but it’s okay if you don’t have all the intricacies nailed down yet. Think of this

as a preview of things you’ll get to do in this book.

Getting Started
Making your pages do all this stuff looks like fun, and it is. There’s a lot to get

under your belt, but don’t panic; I take you through everything. The first step

is to review the core technologies that JavaScript and AJAX are based on, and

see how they’re related to some other (more advanced) technologies you’ll

eventually need.

Overview of the Core Technologies
Powerful as they are, JavaScript and AJAX do not stand on their own. They

only have meaning in the context of Web pages, so they rely on various Web

technologies. If you want to build a JavaScript application, you’ll need several

other technologies, too:

05_417997-ch01.indd 1405_417997-ch01.indd 14 10/26/09 9:55 PM10/26/09 9:55 PM

15 Chapter 1: Taking the Web to the Next Level

 ✓ HTML: HTML (HyperText Markup Language) is the basic markup lan-

guage that describes Web pages. It’s a relatively simple technique for

building Web sites that requires nothing but a plain text editor.

 ✓ XHTML: XHTML is often considered the successor to HTML. Because it

doesn’t allow certain kinds of tags, XHTML is actually a smaller language

that’s a bit easier to use. Typically XHTML pages are more dependent on

CSS than HTML, as many of the HTML tags are replaced with CSS tools.

 ✓ CSS: CSS (Cascading Style Sheets) is a way to add specific style informa-

tion to an HTML or XHTML page. HTML and XHTML provide the general

framework, and CSS describes the color and layout.

 ✓ JavaScript: JavaScript is a programming language embedded in all

modern Web browsers. It’s specially designed to interact with Web

pages; you can use it to extract information from parts of a page, and to

manipulate the page in real time.

 ✓ AJAX: (Asynchronous JavaScript And XML) is a technique that allows

JavaScript to communicate more directly with the Web server. It creates

an interesting new relationship between the Web browser and the Web

server. About half of this book is dedicated to AJAX.

 ✓ PHP: (PHP Hypertext Preprocessor) is one of several important lan-

guages for working on a Web server. Although it’s not a primary focus

of this book, the PHP language can do things that JavaScript cannot do.

AJAX is frequently used to connect JavaScript applications to PHP pro-

grams. You get a brief introduction to PHP in Chapter 14.

 ✓ Java: Java is a language that’s entirely different from JavaScript (despite

the similar names). Although Java is useful on both the client and server

sides of the client-server relationship, it’s not a primary focus of this book.

When you’re looking for online help about JavaScript, be sure that you talk to

JavaScript experts and not Java programmers. Although the languages have

similar names, they’re entirely different languages. Java programmers love

to act superior, and they’ll give you grief if you ask a JavaScript question in a

Java forum. If in doubt, ask on my Web site (www.aharrisbooks.net). I can

help you with either language, and I won’t mind (or bug you about it) if you’re

a little confused.

Choosing your computer
Of course, you’ll need a computer. Fortunately, it doesn’t have to be anything

special. Any computer you can use to view Web pages can also be used to

create them. Any of the major operating systems (Windows, Mac, and Linux)

is perfectly fine. I do most of my work on a combination of Linux (Fedora

Core) and Windows XP, but all the programs in the book will work exactly the

same on any reasonably modern computer.

05_417997-ch01.indd 1505_417997-ch01.indd 15 10/26/09 9:55 PM10/26/09 9:55 PM

16 Part I: Programming with JavaScript

At some point you’ll want your Web pages to be available on the Internet.

Although you can install a server on your home computer, it’s usually better

to use an online hosting service. You can often get very good online hosting

very cheaply or even free. If you want to have a specific name attached to

your Web site (such as www.mySite.com), then you’ll need to pay about

$10 a year to register the domain. Hosting services frequently use Linux, but

you’ll probably use an online interface that hides all the details from you.

The right tools make any job easier, but for Web development, many of the

really great software tools are available entirely free of charge. Because these

tools are open source (available with a license that encourages distribution),

they are entirely legal to use without paying for them, unlike commercial pro-

grams obtained using illicit methods.

You can do basic Web development on any computer with a text editor and

browser. As your Web-tweaking skills get more sophisticated, you might want

more powerful tools. Read on to see some great tools that cost absolutely

nothing.

Picking an Editor
Web pages, JavaScript, HTML, and CSS are all ultimately forms of text. You

don’t really need any particular program to write them. Still, having exactly

the right tool can make your life a lot easier. Since you’re going to spend a lot

of time with your Web tools, you should be aware of your options.

Avoiding the problem tools
Using the wrong tool for the job can really make your life difficult. Here are a

few tools that don’t really stand up to the job of Web development:

 ✓ Microsoft Word: Word processors are great (I’m using one to write this

book), but they aren’t really designed for creating Web pages. Word

(and all other word processors) store lots of information in their files

besides plain text. All the formatting stuff is great for non-Web docu-

ments, but HTML and CSS have their own ways of managing this data,

and the other stuff gets in the way. Even the Save as HTML command

is problematic. Although it stores the page in a form of HTML, Word’s

formatting is extremely clunky and difficult to work with. The resulting

pages will not be suitable for adapting to JavaScript.

 ✓ Notepad: This is the classic tool built into most versions of Windows. It

saves pages in plain text, so it’s better than Word for Web development,

but Notepad is too simplistic for any sort of serious work. It lacks such

05_417997-ch01.indd 1605_417997-ch01.indd 16 10/26/09 9:55 PM10/26/09 9:55 PM

17 Chapter 1: Taking the Web to the Next Level

basic features as line numbers — and it can’t handle multiple documents

at once. You’ll quickly outgrow Notepad as a Web-development tool.

 ✓ TextEdit: The default text editor on the Mac is a very powerful tool,

but it’s more like a word processor than what I’d call a true text editor.

When you save an HTML file in TextEdit, it’s usually not stored the way

you need it to: Rather than seeing the results of the code, you’ll see the

code itself. If you want to use TextEdit for HTML or JavaScript, make

sure you choose Format➪Make Plain Text before saving your file.

 ✓ Graphics editors: Some high-end graphics editors like Adobe

Photoshop, Adobe Fireworks, and Gimp also have the ability to export

to HTML, but the code they produce is not easy to work with. It’s really

better to use these programs to edit your graphics and use a dedicated

text editor to handle your code.

Using a WYSIWYG editor
The promise of WYSIWYG (“what you see is what you get”) editing is very

alluring. Word-processing programs have had this capability for years. As

you edit a document on-screen, you can see in real time exactly how it will

look on paper. A number of tools promise this kind of functionality for Web

pages: Adobe Dreamweaver is the most popular, followed by Microsoft

FrontPage and its replacement ExpressionWeb. Although these tools are

popular for traditional Web development, they have some drawbacks when it

comes to the kind of interactive work we do in this book:

 ✓ WYSIWYG is a lie. The whole assumption of WYSIWYG works fine when

the output is a paper document printed on a printer. You can predict how

the output will work. Web pages are different, because the output shows

up on a display that belongs to somebody else. You don’t know what

size it will be, what colors it will support, or what fonts are installed.

You also don’t know which browser the user will be viewing pages with,

which can make a major difference in the output of the page.

 ✓ The editor hides details you need. A visual editor tries to protect you

from some of the details of Web development. That’s fine at first, but at

some point you’ll need that level of control. Most professionals who use

Dreamweaver spend most of their time in Code view, ignoring the advan-

tages of a visual editor. Why pay for features you’re going to ignore?

 ✓ Visual editors assume static documents. A visual editor is based on the

idea that a Web page is an ordinary document. The kinds of pages we

build in this book are much more than that. You will (for example) be

writing code that creates and modifies Web documents on the fly. You

need to know how to build Web documents by hand so you can write

code that builds them and changes them dynamically.

05_417997-ch01.indd 1705_417997-ch01.indd 17 10/26/09 9:55 PM10/26/09 9:55 PM

18 Part I: Programming with JavaScript

Introducing programmer’s editors
A number of specialty editors have propped up which seek to fill the gap

between plain-text editors and the WYSIWYG tools. These editors write in

plain text, but they have additional features for programmers, including:

 ✓ Awareness of languages: Programmer’s editors often know what lan-

guage you’re writing in and can adapt, helping you whether you’re writ-

ing HTML, JavaScript, or CSS code. Most general-purpose programmer’s

editors can handle all these languages natively, and often can help with

many more languages.

 ✓ Syntax highlighting: Various elements are colored in different ways so

you can see what is in plain text, what is part of an HTML tag, and so on.

This simple feature can make it much easier to find problems like miss-

ing quotes, and to see the general structure of your page quickly.

 ✓ Syntax support: Programmer’s editors often provide some sort of help

for remembering the syntax of your language. This boost can be in the

form of buttons and macros for handling common code, pre-written tem-

plates for standard layouts and patterns, and syntax completion (which

looks at what you’re typing and suggests completions based on the cur-

rent language you’re using).

 ✓ Multiple document support: Advanced Web applications often involve

editing several different documents at once. You might have a dozen

Web pages with a few CSS style sheets and an external JavaScript file or

two. A programmer’s editor allows you to view and edit all these files

simultaneously. Many also allow you to generate a project file so you can

save all the related files automatically and load them in one batch.

 ✓ Macro tools: Programming often requires repetitive typing tasks. Having

a feature that records and plays back sequences of keystrokes as macros

(short automated operations) can be incredibly helpful.

 ✓ Debugging and preview support: Most programmer’s editors have a

tool for previewing your code in a browser (or sometimes directly in the

editor). The editors also often have tools for predicting certain errors,

or responding to errors when they occur. At a minimum, you need the

capability to jump directly to a particular line or section of your code.

 ✓ Indentation support: Most programmers use indentation as a power-

ful tool to help them understand the structure of the Web documents

they’re building. A good editor can assist you with this indentation and

also help you recognize when you’ve made mistakes in the structure of

your document.

05_417997-ch01.indd 1805_417997-ch01.indd 18 10/26/09 9:55 PM10/26/09 9:55 PM

19 Chapter 1: Taking the Web to the Next Level

Getting familiar with some
important editors
A couple of multi-purpose programmer’s editors immediately come to mind.

You should consider investigating one or more of these free programs:

 ✓ vi and emacs: These are the granddaddies of all text editors. Both are

very common on Unix/Linux environments. They are also available for

Windows and Mac. Though extremely capable editors, vi and emacs

were developed at a time when modern ideas about usability weren’t

practical. If you already know how to use one of these tools, by all

means investigate a modern variant. (Frankly, I still use emacs as my

primary text editor, though I don’t know if I’d learn it today with all the

easier options out there.) Figure 1-6 shows a Web page being edited

with emacs.

Figure 1-6:
Emacs isn’t

pretty, but
it’s very

powerful.
Use it for

extra geek
points.

Clean interface without buttons or gadgets

You can have many files open at once or look at two spots in the same file.

05_417997-ch01.indd 1905_417997-ch01.indd 19 10/26/09 9:55 PM10/26/09 9:55 PM

20 Part I: Programming with JavaScript

 ✓ notepad++: This is what Notepad for Windows should be. It starts with

the speed and simplicity of Windows Notepad, but adds tons of features

for programmers. I especially like the built-in support for page valida-

tion. This is one of the few programs to earn a permanent shortcut on

my desktop. Unfortunately, it’s only for Windows. Figure 1-7 shows the

same page being edited in notepad++.

 ✓ Bluefish: The Bluefish text editor is rapidly becoming a favorite tool

for Web developers. It’s quick and powerful, and it has plenty of great

features for Web developers. One especially powerful tool is the CSS

generator, which helps you develop style sheets with a menu system so

you don’t have to memorize any syntax. It also has a great generator for

default templates, which makes XHTML-strict Web pages much easier

to build. Bluefish is available for all major platforms (for the Windows

version, you’ll also need to install the free GTK library). You can see

Bluefish running in Figure 1-8.

Figure 1-7:
You’ll find

notepad++
a very

powerful
alternative

to Notepad.

Support for multiple documents

Extensive set of commands and tools for text editing

Automatic syntax highlighting in dozen of languages

05_417997-ch01.indd 2005_417997-ch01.indd 20 10/26/09 9:55 PM10/26/09 9:55 PM

21 Chapter 1: Taking the Web to the Next Level

Figure 1-8:
Bluefish is

a very nice
editor for

XHTML and
JavaScript.

 ✓ jEdit: This powerful editor is written in Java, so it is available on virtu-

ally every platform. It is a very powerful editor in its basic format, but its

best feature is the extensive plugin library that allows you to customize

it to your own needs. If you install the free XML library, jEdit has incredi-

ble support for HTML and XHTML. Figure 1-9 shows the sample program

being edited in jEdit.

 ✓ codetch: This editor is unique because rather than being a standalone

editor, it is actually an extension for the popular Firefox browser. It has

most of the same features as the other editors, with the convenience

of being already a part of your browser. It is not quite as configurable

as some of the other tools, but it’s still extremely handy. You can see

codetch in action in Figure 1-10.

05_417997-ch01.indd 2105_417997-ch01.indd 21 10/26/09 9:55 PM10/26/09 9:55 PM

22 Part I: Programming with JavaScript

Figure 1-9:
jEdit is a fast
and capable

editor writ-
ten in Java.

Figure 1-10:
The codetch

plugin for
Firefox is a

complete
Web editor.

05_417997-ch01.indd 2205_417997-ch01.indd 22 10/26/09 9:55 PM10/26/09 9:55 PM

23 Chapter 1: Taking the Web to the Next Level

Introducing Aptana
One particular programmer’s editor has really taken over the Web develop-

ment world in recent years. Aptana is a full-featured programmer’s editor

based on the powerful and popular Eclipse editor for Java programming.

Aptana has a lot to recommend:

 ✓ Extensive built-in support for Web languages: Aptana comes out of the

box with support for HTML/XHTML, CSS, JavaScript, and AJAX.

 ✓ Syntax highlighting: Most programmer’s editors have syntax highlight-

ing, but Aptana is especially capable in this area. Sometimes you’ll have

the same physical document with three or more different languages

active, and Aptana can usually sense by context whether you’re writing

CSS, XHTML, or JavaScript code.

 ✓ Code completion: This is one of Aptana’s most impressive features.

When you start writing a line of code, Aptana will pop up a menu of sug-

gestions. This helps you avoid mistakes, so you don’t have to memorize

all the various CSS attributes and JavaScript commands exactly.

 ✓ Error detection: Aptana can look over your document as you create it

and highlight some areas in real time. This feature can help you write

better code, and can also help hone your skills at writing code.

 ✓ AJAX support: AJAX is a relatively new technology, and most editors do

not directly support it. Aptana has a number of features that help you

with AJAX, including built-in support of all the major AJAX libraries.

Aptana is completely free. I’ve placed a link to Aptana (and indeed all the

tools mentioned here) on the Web site for this book. You can see Aptana in

action in Figure 1-11.

My personal setup varies from machine to machine, but generally I use

Aptana for my heavy programming, with notepad++ as a quick editor on

Windows, and emacs as my primary basic text editor on Linux or Mac

machines. Of course, you’ll develop your own preferences as you go. All

these editors are free and available at www.aharrisbooks.net/jad, so

they’re worthy of some experimentation.

05_417997-ch01.indd 2305_417997-ch01.indd 23 10/26/09 9:55 PM10/26/09 9:55 PM

24 Part I: Programming with JavaScript

Figure 1-11:
Aptana

might be the
best Web

editor avail-
able at any

price.

Multiple document support

Automatic syntax highlighting and code completion

Intergrated file management tool

Console area for debugging and error messages

Automatically generated map showing the main sections of a page or program

Creating Your Browser Collection
Web pages live within the context of Web browsers. Each browser interprets

HTML and CSS a bit differently, and the differences are magnified when you

start talking about JavaScript and AJAX. Subtle (and sometimes not-so-subtle)

differences in the way browsers support your code can be very important.

Setting the standard
Every Web browser has its own particular way of displaying Web pages.

Although those ways are pretty similar, the differences can sometimes be a

problem. Worse, as you begin to write JavaScript code, you’ll find that each

browser has its own interpretation of the code. That can be a real mess.

05_417997-ch01.indd 2405_417997-ch01.indd 24 10/26/09 9:55 PM10/26/09 9:55 PM

25 Chapter 1: Taking the Web to the Next Level

Fortunately, there’s been a big push toward standardization in recent years.

The various browser developers have been getting together and agreeing to

various standards set forth by a centralized team called the World Wide Web
Consortium (W3C). When a browser implements JavaScript, it now agrees

(theoretically, at least) to adhere to a set of standards for behavior. As long

as your code follows the same standards, you can expect everything to work

pretty well. (Most of the time, anyway.)

In this book, I adhere to accepted JavaScript standards as practiced by most

developers. All the code in this book is tested on IE7 for Windows, Firefox 3 for

Windows, and Firefox 3 for Linux. Any time the code is likely to cause particu-

lar browser problems, I try to point out the specific issues.

Picking a browser or two
Here are a few browsers you should be aware of:

 ✓ Legacy browsers: You’ll find a lot of older browsers still being used

on the Internet. Some people have continued to stick with whatever

browser was on their machine when they got it, and haven’t upgraded in

years. The browsers earlier than IE6 or Firefox are a particular problem,

because support for Web standards and for JavaScript was very uneven

in the early days of the Web. For the most part, this book assumes that

your users will be using at least a somewhat modern browser.

AJAX in particular won’t work on really old browsers.

 ✓ Microsoft Internet Explorer 6: This is a very common browser, still in

popular use. At one point it was the dominant browser on the Internet,

but it has fallen from favor in recent years, being replaced by newer

offerings from Microsoft as well as competitors like Firefox and Opera.

This browser is well-known for a number of “features” that don’t comply

with community standards. Its use is declining, but as of this writing,

you still have to consider supporting it; a lot of users still have it.

 ✓ Firefox: The Firefox Web browser from Mozilla reopened the so-

called “browser wars” by providing the first significant competition to

Microsoft in many years. Firefox really opened eyes with its impressive

features: tabbed browsing, improved security, and integrated searching.

For developers, Firefox was among the first browsers to truly support

Web standards in a serious way. Firefox is especially important to devel-

opers because of its extension architecture, which allows a programmer

to turn Firefox into a high-powered development tool. Look at the next

section of this chapter for suggestions on some great extensions to add

to Firefox.

05_417997-ch01.indd 2505_417997-ch01.indd 25 10/26/09 9:55 PM10/26/09 9:55 PM

26 Part I: Programming with JavaScript

 ✓ Microsoft Internet Explorer 7 and 8: IE7 could be considered a tribute

to Firefox, as it incorporates many of the same features. While this book

was being written, IE8 came out, and added a few more improvements.

Although the support for standards is not as complete in IE7 and IE8 as

it is in some of the other current fleet of browsers, they are much better

than in any earlier versions of IE.

 ✓ Opera: Opera is an important browser because it was one of the earliest

browsers to actively support Web standards. It’s very popular in certain

circles, but has never gained widespread popularity. Since it supports

Web standards, it will typically run any code written for a standards-

compliant browser.

 ✓ Safari: Safari is the Web browser packaged with Mac OS. It is a very

capable standards-compliant browser. There is now a Windows version

available. The Web browser built into iPhones uses the same engine as

Safari, so this is an important consideration if you’re building applica-

tions for mobile devices.

 ✓ Chrome: This newer browser was created by Google. It is highly

standards-compliant, and it’s especially powerful at handling Java

Script and AJAX. This is not surprising, considering Google is one of

the companies that pioneered the use of AJAX and is actively promot-

ing its use. Chrome has one of the fastest JavaScript interpreters in

common use.

 ✓ Other browsers: There are many other browsers in use today, including

specialty browsers on various forms of Linux, cell phones, and PDAs.

It is nearly impossible to support them all, but many browsers now at

least try to support Web standards.

I prefer to do most of my testing with Firefox 3, because it has very good

standards support and an excellent set of tools for improving and debugging

your code. I then check my pages on other browsers including IE6, IE7, and

Chrome.

Turning Firefox into a Development
Machine

Firefox is an especially important browser for Web developers. It has a

number of attractive features including its excellent standards support in

HTML and JavaScript. However, the most important advantage of Firefox

as a developer’s tool might be its support for extensions. Many commercial

browsers keep their code a closely guarded secret, and are very difficult

05_417997-ch01.indd 2605_417997-ch01.indd 26 10/26/09 9:55 PM10/26/09 9:55 PM

27 Chapter 1: Taking the Web to the Next Level

to extend. Firefox was designed from the beginning to have its capabilities

extended — and a number of very clever programmers have added incredible

extensions to the tool. A few of these extensions have become “must haves”

for Web developers:

Web Developer Toolbar
The Web Developer Toolbar by Chris Pederick is an incredible tool. It adds a

new toolbar to Firefox with a number of extremely useful capabilities:

 ✓ Edit CSS: You can pop up a small window and type in CSS code. The CSS

will take effect immediately in real time, so you can see exactly what

effect your CSS has on the view of the page.

 ✓ Display Ruler: This incredibly handy tool allows you to draw a ruler on

your page to see exactly how large various elements are. This is really

useful for debugging Web layouts.

 ✓ Outline tables: This tool helps you make sense of table-based layouts.

It’s a good way to see how a complex table-based design is created.

It’s best to avoid table-based layout, but sometimes you have to look at

somebody else’s pages.

 ✓ Resize menu: The Resize menu lets you see how your page looks in a

number of other standard sizes. This can be very useful when you’re

designing a layout.

 ✓ Validation tools: Web Developer includes a number of really handy

tools for validating your Web pages. It includes links for validating HTML

and CSS, as well as the primary accessibility standards.

HTML Validator extension
This incredible extension brings the same validation engine used by the W3C

to your browser. It gives quick feedback on the validity of any page you view.

It also adds much more information to Firefox’s View Source page, including

feedback on exactly which validation errors you have. (Validation informa-

tion is not provided by the normal View Source page.) The hints for fixing the

errors are actually helpful, and there’s also a tool for automatically repairing

the code with the excellent HTML Tidy program. HTML is the foundation for

your JavaScript code, and invalid HTML provides a faulty framework. With

the HTML Validator, there’s no reason to have invalid pages. Figure 1-12

shows the improved View Source window with the warnings tab and the but-

tons for fixing the code with HTML Tidy.

05_417997-ch01.indd 2705_417997-ch01.indd 27 10/26/09 9:55 PM10/26/09 9:55 PM

28 Part I: Programming with JavaScript

Figure 1-12:
The HTML

Validator
extension
adds very

useful
features to

the View
Source tool.

View Source window

Validator errors appear in this window.

The Validor extension provides helpful error messages.

Firebug
The Firebug extension is one of the most important tools in Web develop-

ment. It turns Firefox into a complete debugging tool. Firebug has several

especially useful features:

 ✓ Inspect Window: This incredible tool allows you to move your mouse

over any element in your page and instantly see the code that created

that section in another panel. This is a very easy way to analyze and

debug pages. You can also see instantly what CSS applies to a particular

snippet of code, and highlight code to see the corresponding output.

 ✓ CSS View and Edit: You can look over the CSS of your page in a panel,

see previews of any colors, and edit the values. You’ll see the results in

real time on the page.

 ✓ JavaScript Debugging: Even pros make mistakes — and up to now, few

debugger tools have been available for JavaScript programmers. Firebug

has better mechanisms for error-trapping than the browsers do, and it

05_417997-ch01.indd 2805_417997-ch01.indd 28 10/26/09 9:55 PM10/26/09 9:55 PM

29 Chapter 1: Taking the Web to the Next Level

also incorporates a very nice debugger that can really help you find your

errors as your program runs.

 ✓ AJAX monitoring: AJAX programming is based on a series of requests

back and forth from the server. Firebug helps you to keep track of these

requests and watch your data move.

 ✓ Live code view: The ordinary view source menu of most browsers

helps you see the code as it originally comes from the browser. In

JavaScript programming, you’re often changing the page code on the fly.

Firebug shows you the page as it really is, even if it’s being changed by

JavaScript. This is a very useful facility.

 ✓ Firebug lite: This is a variation of firebug that works in IE and other

browsers. This adds most of the power of firebug to any browser.

Figure 1-13 shows Firebug in inspect mode. As the user moves over a piece of

the page, the related code segment appears in the code window.

Figure 1-13:
Firebug

being used
to inspect a
Web page.

View and edit HTML, CSS, or JavaScript

The inspect mode lets you highlight the page and see the relevant code.

View the CSS or DOM info for the
 currently selected window.

05_417997-ch01.indd 2905_417997-ch01.indd 29 10/26/09 9:55 PM10/26/09 9:55 PM

30 Part I: Programming with JavaScript

05_417997-ch01.indd 3005_417997-ch01.indd 30 10/26/09 9:55 PM10/26/09 9:55 PM

Chapter 2

Writing Your First Program
In This Chapter
▶ Adding JavaScript code to your pages

▶ Setting up your environment for JavaScript

▶ Creating variables

▶ Input and output with modal dialog boxes

▶ Using concatenation to build text data

▶ Understanding basic data types

▶ Using string methods and properties

▶ Using conversion functions

Web pages begin with XHTML code. This basic code provides the

framework. CSS adds decoration to the basic structure, but to make

your pages literally sing and dance, you’ll need to learn a programming

language.

The JavaScript language is a very popular first language, because it’s

designed to interact with Web pages, and it’s already built into most Web

browsers. It’s reasonably easy to learn, and it’s very powerful.

The whole idea of learning a programming language might seem intimidating,

but don’t worry. Programming isn’t really that hard. I show you exactly how

to get started in this chapter. You’ll be coding like a pro in a very short time.

Becoming a Programmer
JavaScript is a programming language first developed by Netscape commu-

nications. It is now standard on nearly every browser. There are a few things

you should know about JavaScript right away:

06_417997-ch02.indd 3106_417997-ch02.indd 31 10/26/09 9:56 PM10/26/09 9:56 PM

32 Part I: Programming with JavaScript

 ✓ It’s a real programming language. Sometimes people who program in

other languages such as C++ and VB.NET scoff at JavaScript and claim

it’s not a “real” programming language because it lacks some features.

These features (particularly the ability to communicate with the local

file system) were left out on purpose to keep JavaScript safe. (You’re

introduced to some AJAX alternatives that provide access to these fea-

tures in the last half of this book.) JavaScript is a real language, and it’s a

very good place to start programming.

 ✓ It’s not Java. There is another popular programming language called

Java (without the script part), which is also used for Web program-

ming. JavaScript and Java are completely different languages (despite

the similar names). Make sure you don’t go onto a Java forum and start

asking JavaScript questions. Those Java programmers can be kind of

snooty and superior. (They shouldn’t be; I program in Java, too. It’s

just a language.)

 ✓ It’s a scripting language. JavaScript is a pretty easy language to get to

know. It isn’t nearly as strict as certain other languages (I’m looking at

you, Java), and it has a relatively relaxed view of things (for one, it’s less

demanding about exactly what sort of data goes where). This lets you

concentrate more on trying to solve your problem than worrying about

exactly how your code is written. It’s still a programming language, so

there are a few rules you must obey, but scripting languages such as

JavaScript tend to be much more forgiving to beginners than the big

monster languages.

Choosing a JavaScript editor
JavaScript (like XHTML and CSS) is really just text. You can modify your

JavaScript code in the same editor you use for XHTML and CSS. If you used

Aptana before (mentioned in Chapter 1) and liked it, you’re going to love the

editor now. Of course, you can continue to use another editor if you prefer.

JavaScript is an entirely different language and uses a different syntax than

HTML and CSS. It isn’t hard to learn, but there’s a lot to learn in any true pro-

gramming language. Aptana has a number of really great features that help

you tremendously when writing JavaScript code:

 ✓ Syntax highlighting: Just like HTML and CSS, Aptana automatically

adjusts code colors to help you see what’s going on in your program. As

you see later in this chapter, this can be a big benefit when things get

complicated.

 ✓ Code completion: When you type in the name of an object, Aptana pro-

vides you with a list of possible completions. This can be really helpful,

so you don’t have to memorize all the details of the various functions

and commands.

06_417997-ch02.indd 3206_417997-ch02.indd 32 10/26/09 9:56 PM10/26/09 9:56 PM

33 Chapter 2: Writing Your First Program

 ✓ Help files: The My Aptana page (available from the File menu if you’ve

dismissed it) has links to really great help pages for HTML, CSS, and

JavaScript. The documentation is actually easier to read than some of

what you’ll find on the Web.

 ✓ Integrated help: Hover the mouse pointer over a JavaScript command

or method and a nifty little text box pops up, explaining exactly how it

works. Often the box includes an example or two.

 ✓ Error warnings: When Aptana can tell something is going wrong, it tries

to give you an error message and places a red squiggly line (like the

ones spellcheckers use) under the suspect code.

I’m unaware of a better JavaScript editor at any price, and Aptana is free, so

there’s just not a good reason to use anything else. Of course, you can use

any text editor you like if you don’t want or need these features.

There’s one strange characteristic I’ve noticed in Aptana: The Preview tab

isn’t as reliable a technique for checking JavaScript code as it is for XHTML

and CSS. I find it better to run the code directly in my browser or use the Run

button to have Aptana run it in the external browser for me.

Picking your test browser
In addition to your editor, you should carefully choose your browser based

on how it works when you’re testing JavaScript code.

All the major browsers support JavaScript, and it works relatively similarly

across the browsers (at least until things get a bit more advanced). However,

all browsers are not equal when it comes to testing your code.

Things will go wrong when you write JavaScript code, and the browser is

responsible for telling you what went wrong. Firefox is way ahead of IE when

it comes to reporting errors. Firefox errors are much easier to read and under-

stand, and Firefox supports a feature called the JavaScript console (described

in Chapter 4) that makes it much easier to see what’s going on. If at all pos-

sible, use Firefox to test your code, and then check for discrepancies in IE.

Chapter 4 gives you more about finding and fixing errors — and some great

tools in Firefox and Aptana to make this important job easier.

That’s enough preliminaries. Pull out your editor, and start writing a real

program. It’s simple enough to get started. The foundation of any JavaScript

program is a standard Web page.

06_417997-ch02.indd 3306_417997-ch02.indd 33 10/26/09 9:56 PM10/26/09 9:56 PM

34 Part I: Programming with JavaScript

Adding a script to your page
The context of JavaScript programs is Web pages, so begin your JavaScript

journey by adding some content to a basic Web page. If you aren’t familiar

with XHTML or CSS (the languages used for basic Web development), please

review the bonus chapters available on either of the two Web sites dedicated

to this book (www.dummies.com/go/javascriptandajaxfd or www.
aharrisbooks.net/jad), or look into a more complete reference like

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies (Wiley).

It’s pretty easy to add JavaScript code to your pages. Figure 2-1 shows the

classic first program in any computer language.

This page has a very simple JavaScript program in it that pops up the phrase

“Hello, World!” in a special element called a dialog box. It’s pretty cool.

Here’s an overview of the code, and then I’ll explain all the details step by step.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>HelloWorld.html</title>
 <script type = «text/javascript»>
 //<![CDATA[
 // Hello, world!
 alert(«Hello, World!»);
 //]]>
 </script>
 </head>

 <body>

 </body>
</html>

As you can see, there’s nothing in the HTML body in this page at all. You can

(and will) incorporate JavaScript with XHTML content later. For now, though,

you can simply place JavaScript code in the head area of your Web page in a

special tag and make it work.

06_417997-ch02.indd 3406_417997-ch02.indd 34 10/26/09 9:56 PM10/26/09 9:56 PM

35 Chapter 2: Writing Your First Program

Figure 2-1:
A

JavaScript
program
caused

this little
dialog box
to pop up!

Embedding your JavaScript code
JavaScript code is placed in your Web page via the <script> tag. JavaScript

code is placed inside the <script></script> pair. The <script> tag

has one required attribute, type, which will usually be text/javascript.

(Other types are possible, but they are rarely used.)

The other funny thing in the code in the previous section is that crazy CDATA

stuff. Immediately inside the <script> tag, the next line is

Hello, World?
There’s a long tradition in programming lan-
guages that your first program in any language
should simply say “Hello, World!” and do noth-
ing else. There’s actually a very good practical
reason for this habit. Hello World is the simplest
possible program you can write that you can
prove works. Hello World programs are used to

help you figure out the mechanics of the pro-
gramming environment — how the program is
written, what special steps you have to do to
make the code run, and how it works. There’s
no point in making a more complicated program
until you know you can get code to pop up and
say hi.

06_417997-ch02.indd 3506_417997-ch02.indd 35 10/26/09 9:56 PM10/26/09 9:56 PM

36 Part I: Programming with JavaScript

//<![CDATA[

This bizarre line is a special marker explaining that the following code is

character information, and shouldn’t be interpreted as XHTML. The end of

the script finishes off the character data marker with this code:

//]]>

In modern browsers, it’s a good idea to mark off your JavaScript code as

character data. If you don’t, the XHTML validator will sometimes get con-

fused and claim you have errors when you don’t.

That CDATA business is bizarre. It’s hard to memorize, I know, but just type it

a few times, and you’ll own it.

A lot of older books and Web sites do not include the character data trick, but

it’s well worth mastering. You’ve invested too much effort into building stan-

dards-compliant pages to have undeserved error messages pop up because

the browser mistakes your JavaScript for badly-formatted XHTML.

Creating comments
As with XHTML and CSS, JavaScript comments are important to include.

Because programming code can be more difficult to decipher than XHTML

or CSS, it’s even more important to comment your code in JavaScript than it

is in those other two environments. The comment character in JavaScript is

two slashes (//). The browser ignores everything from the two slashes to the

end of the line. You can also use a multi-line comment (/* */) just like the

one in CSS.

Using the alert() method for output
There are a number of ways to output data in JavaScript. In this example, I

use the alert() method. This technique pops up a small dialog box contain-

ing text for the user to read. The alert box is an example of a modal dialog
box. Modal dialog boxes interrupt the flow of the program until the user pays

attention to them. Nothing else will happen in the program until the user

acknowledges the dialog box by clicking the OK button. The user can’t inter-

act with the page until after clicking the button.

Modal dialog boxes might seem a bit rude. In fact, you probably won’t use

them much once you learn some other input and output techniques. The fact

that the dialog box demands attention makes it a very easy tool to use when

you start programming. When you’ve got the basic programming ideas under

your belt, I show you more elegant ways to communicate with the Web page.

06_417997-ch02.indd 3606_417997-ch02.indd 36 10/26/09 9:56 PM10/26/09 9:56 PM

37 Chapter 2: Writing Your First Program

Adding the semicolon
Each command in JavaScript ends with a semicolon (;) character. The semi-

colon in most computer languages acts like the period in English: It indicates

the end of a logical thought. Usually each line of code is also one line in the

text editor.

 To tell the truth, JavaScript usually works fine if you leave out the semico-

lons, but you should add them anyway because they can clarify your mean-

ing. Besides, most other languages (such as PHP, introduced in Chapter 14)

require semicolons. You might as well start a good habit now.

Introducing Variables
Computer programs get their power by working with information. Figure 2-2

shows a program that gets data from the user and uses it in a customized

greeting.

Figure 2-2:
The pro-

gram asks
for the
user’s
name.

This program introduces a new kind of dialog box that allows the user to

enter some data. The information is stored in the program for later use.

Figure 2-3 shows the first part of the response at the top. The user must click

OK to get the rest of the greeting in a second alert dialog box, as shown at the

bottom of Figure 2-3.

Figure 2-3:
A two-

dialog box
response to

user input.

06_417997-ch02.indd 3706_417997-ch02.indd 37 10/26/09 9:56 PM10/26/09 9:56 PM

38 Part I: Programming with JavaScript

The output might not seem that incredible, but take a look at the source code

to see what’s happening:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>prompt.html</title>
 <script type = «text/javascript»>
 //<![CDATA[

 var person = «»;
 person = prompt(«What is your name?»);
 alert(«Hi»);
 alert(person);

 //]]>
 </script>
 </head>

 <body>

 </body>
</html>

Creating a variable for data storage
This program is interesting because it allows user interaction. The user can

enter a name that is stored in the computer and then returned in a greeting.

The key to this program is a special element called a variable. Variables are

simply places in memory for holding data. Any time you want a computer

program to “remember” something, you can create a variable and store your

information in it.

Variables typically have the following characteristics:

 ✓ The var statement. Indicates you are creating a variable with the var

command.

 ✓ A name. When you create a variable, you are required to give it a name.

 ✓ An initial value. It’s useful to give each variable a value immediately

 ✓ A data type. JavaScript automatically determines the type of data in a

variable (more on this later), but you should still be clear in your mind

about what type of data you expect a particular variable to contain.

06_417997-ch02.indd 3806_417997-ch02.indd 38 10/26/09 9:56 PM10/26/09 9:56 PM

39 Chapter 2: Writing Your First Program

Asking the user for information
Variables are more interesting when they contain information. JavaScript has

a simple tool called the prompt, which allows you to easily ask a question and

store the answer in a variable. Here’s the relevant line from prompt.html:

 person = prompt(“What is your name?”);

The prompt statement does several interesting things:

 ✓ It pops up a dialog box. The prompt() method creates a modal dialog

box much like the alert technique discussed earlier.

 ✓ It asks a question. The prompt command expects you to ask the user a

question.

 ✓ It provides space for a response. There is a space in the dialog box for

the user to type a response of some kind, and buttons to indicate that

the user is finished or wants to cancel the operation.

 ✓ It passes the information to a variable. The purpose of a prompt com-

mand is to get data from the user, so prompts are nearly always con-

nected to a variable. When the code is finished, the variable will contain

the indicated value.

Responding to the user
This program uses the alert() method to begin a greeting to the user. The

first alert works just like the one from the helloWorld program:

 alert(“Hi”);

The content of the parentheses is the text you want the user to see. In this

case, you want the user to see the literal value “Hi”.

The second alert statement is a little bit different:

 alert(person);

This alert statement has a parameter with no quotes. Since there are

no quotes, JavaScript understands you don’t really want to say the text

“person”. Instead, it looks for a variable named person, and returns the

value of that variable.

So the variable can take any name, store it, and return a customized greeting.

06_417997-ch02.indd 3906_417997-ch02.indd 39 10/26/09 9:56 PM10/26/09 9:56 PM

40 Part I: Programming with JavaScript

Using Concatenation to Build
Better Greetings

It seems a little awkward to have the greeting and the person’s name on two

different lines. Figure 2-4 shows a better solution. The program asks for a

name again, and stores it in a variable. This time, the greeting is combined

into one alert dialog box, and it looks a lot better:

Figure 2-4:
Now there’s

just one
dialog box

response to
the user’s

input.

The secret to Figure 2-4 is one of those wonderful gems of the computing

world: a really simple idea with a really complicated name. Take a look at

the code and you’ll see that combining variables with text is not all that

complicated:

 <script type = “text/javascript”>
 //<![CDATA[
 // from concat.html

 var person = “”;
 person = prompt(“What is your name?”);
 alert(“Hi there, “ + person + “!”);

 //]]>
 </script>

For the sake of brevity, I’ve only included the <script> tag and its contents;

the rest of this page is a standard blank XHTML page. (As always, see the

complete document on the Web site: www.aharrisbooks.net/jad). I use

this approach throughout this chapter, but I also include a comment in each

JavaScript snippet to indicate where you can get the entire file on the Web

site.

06_417997-ch02.indd 4006_417997-ch02.indd 40 10/26/09 9:56 PM10/26/09 9:56 PM

41 Chapter 2: Writing Your First Program

Comparing literals and variables
In this program there are really two different kinds of text. The whole expres-

sion “Hi there, ” is a literal text value. That is, you really mean to say “Hi

there.” On the other hand, person is a variable; you can put any person’s

name in it. You can combine literal values and variables in one phrase if you

want:

 alert(“Hi there, “ + person + “!”);

The secret to this code is to follow the quotes. “Hi there, ” is a literal

value, because it is in quotes. In this line, person is a variable name (because

it is not in quotes) and “!” is a literal value. You can combine any number of

text snippets together with the plus sign as shown in the preceding code.

Using the plus sign to combine text is called concatenation. (I told you it was

a complicated word for a simple idea.)

Including spaces in concatenated phrases
You might be curious about the extra space between the comma and the

quote in the output line:

Concatenation and your editor
The hard part about concatenation is figuring
out which part of your text is a literal value and
which part is a string. It won’t take long before
you start going cross-eyed trying to understand
where the quotes go.

Modern text editors (like Aptana) have a won-
derful feature that can help you here. They
color different kinds of text in different colors.
By default, Aptana colors variable names black,
and literal text dark green (at least when you’re
in JavaScript — in HTML, literal text is in blue).

Personally, I find it hard to differentiate the
dark green from black, so I changed the Aptana
color scheme: I have it make string literals blue
whether I’m in JavaScript or HTML. With this
setting in place, I can easily see what part of
the statement is literal text and what’s being

read as a variable name. That makes concat-
enation a lot easier.

To change the color scheme in Aptana, click
Window➪Preferences. You’ll see an expand-
able outline in the resulting dialog box. Click
Aptana➪Editors➪JavaScript Editor➪Colors.
You can then scroll down and find color settings
for any type of data. I found “string” (another
term for text) under “literals” and changed the
color of my text strings from dark green to blue.

If you make a mistake, there’s a button to revert
back to the default values.

Most editors that have syntax highlighting allow
you to change settings to fit your needs. Don’t
be afraid to use these tools to help you program
better.

06_417997-ch02.indd 4106_417997-ch02.indd 41 10/26/09 9:56 PM10/26/09 9:56 PM

42 Part I: Programming with JavaScript

 alert(“Hi there, “ + person + “!”);

This is important because you want the output to look like a normal sen-

tence. If you don’t have the space, the computer won’t add one, and the

output would look like:

Hi there,Benjamin!

Be sure to construct the output as it should look on-screen, including spaces

and punctuation.

Understanding the string Object
The person variable used in the previous program is designed to hold text.

Programmers (being programmers) devised their own mysterious term to

refer to text. In programming, text is referred to as string data.

The term string comes from the way text is stored in computer memory. Each

character is stored in its own cell in memory, and all the characters in a word

or phrase reminded the early programmers of beads on a string. (Surprisingly

poetic for a bunch of geeks, huh?)

Introducing object-oriented
programming (and cows)
JavaScript (and many other modern programming languages) use a powerful

model called object-oriented programming (OOP). This style of programming

has a number of advantages. Most important for beginners, it allows you

access to some very powerful objects that do interesting things out of the box.

Objects are used to describe complicated things that can have a lot of

characteristics — for instance, a cow. You can’t really put an adequate

description of a cow in an integer variable.

In many object-oriented environments, objects can have these characteris-

tics (imagine a cow object for the examples):

 ✓ Properties: Characteristics about the object, such as breed and age.

 ✓ Methods: Things the objects can do, such as moo() and giveMilk().

 ✓ Events: Stimuli the object responds to, such as onTip().

06_417997-ch02.indd 4206_417997-ch02.indd 42 10/26/09 9:56 PM10/26/09 9:56 PM

43 Chapter 2: Writing Your First Program

Each of these ideas will be described as they are needed, as not all objects

support all these characteristics.

If you have a variable of type cow, it describes a pretty complicated thing.

This thing might have properties, methods, and events. All could be used

together to build a good representation of a cow. (Believe it or not, I’ve built

cow programming constructs more than once in my life — and you thought

programming was dull.)

Most variable types in JavaScript are actually objects — and most JavaScript

objects have a full complement of properties and methods (many even have

event handlers). When you get a handle on how all these things work, you’ve

got a powerful and compelling programming environment.

Okay, before somebody sends me some angry e-mails, I know there is some

debate about whether JavaScript is a truly object-oriented language. I’m not

going to get into the (frankly boring and not terribly important) details in this

book. We’re going to call it object-oriented for now, because it’s close enough

for beginners. If that bothers you, you can refer to JavaScript as an object-

based language. Nearly everyone agrees with that. More information on this

topic is throughout the book as you learn how to build your own objects in

Chapter 5 and how to use HTML elements as objects in Chapter 6.

Investigating the length of a string
When you assign text to a variable, JavaScript automatically treats the vari-

able as a string object. The object instantly takes on the characteristics of a

string object. Strings have a couple of properties, and a bunch of methods.

The one interesting property (at least for beginners) is length. Look at the

example in Figure 2-5 to see the length property in action:

Figure 2-5:
This

program
reports the

length of
any text.

That’s kind of cool. The cooler part is the way it works. As soon as you assign

a text value to a variable, JavaScript treats that variable as a string, and since

it’s a string, it now has a length property. This property returns the length

of the string in characters. Here’s how it’s done in the code:

06_417997-ch02.indd 4306_417997-ch02.indd 43 10/26/09 9:56 PM10/26/09 9:56 PM

44 Part I: Programming with JavaScript

 <script type = “text/javascript”>
 //<![CDATA[
 //from nameLength.html

 var person = prompt(“Please enter your name.”);
 var length = person.length;

 alert(“Hi, “ + person + “!”);
 alert(“The name “ + person + “ is “ + length + “

characters long.”);

 //]]>
 </script>

This code uses the length property as if it were a special subvariable. For

example, person is a variable in the previous example — and person.
length is the length property of the person variable. In JavaScript, an

object and a variable are connected by a period (with no spaces).

The string object in JavaScript has only two other properties (constructor

and prototype). Both of these properties are only needed for advanced pro-

gramming, so I skip them for now.

Using string methods to manipulate text
The length property is kind of cool, but the string object has a lot more up

its sleeve. Objects also have methods (things the object can do). Strings in

JavaScript have all kinds of methods. Here’s a few of my favorites:

 ✓ toUpperCase(): Makes an entirely uppercase copy of the string.

 ✓ toLowerCase(): Makes an entirely lowercase copy of the string.

 ✓ substring(): Returns a specific part of the string.

 ✓ indexOf(): Determines if one string occurs within another.

The string object has many other methods, but I’m highlighting these because

they’re useful for beginners. Many of the string methods — such as big() and

fontColor() — simply add HTML code to text. They aren’t used very often,

because they produce HTML code that won’t validate, and they don’t really

save a lot of effort anyway. Some of the other methods — such as search(),

replace(), and slice() — use advanced constructs like arrays and regular

expressions that aren’t necessary for beginners. (To learn more about work-

ing with arrays, see Chapter 5. You learn more about regular expressions in

Chapter 7.)

06_417997-ch02.indd 4406_417997-ch02.indd 44 10/26/09 9:56 PM10/26/09 9:56 PM

45 Chapter 2: Writing Your First Program

Don’t take my word for it. Look up the JavaScript string object in the Aptana

online help (or one of the many other online JavaScript references) and see

what properties and methods it has.

Like properties, methods are attached to an object by using a period. Methods

are distinguished by a pair of parentheses, which sometimes contains special

information called parameters. Parameters are information that will be passed

to the method so it can do its job. Some methods require parameters, and

some do not. It all makes sense once you start using methods.

The best way to see how methods work is to check out some in action. Look

at the code for stringMethods.html:

 <script type = “text/javascript”>
 //<![CDATA[
 //from stringMethods.html

 var text = prompt(“Please enter some text.”);

 alert(“I’ll shout it out:”);
 alert(text.toUpperCase());

 alert(“Now in lowercase...”);
 alert(text.toLowerCase());

 alert(“The first ‘a’ is at letter...”);
 alert(text.indexOf(“a”));

 alert(“The first three letters are ...”);
 alert(text.substring(0, 3));

 //]]>
 </script>

The output produced by this program is shown in Figure 2-6.

Why are the first three characters (0, 3)?
The character locations for JavaScript (and
most programming languages) will prob-
ably seem somewhat strange to you until you
know the secret. You might expect text.
substring(1,3) to return the first three
characters of the variable text, yet I used
text.substring(0,3) to do that job.
Here’s why: The indices don’t correspond to

character numbers; instead, they are the indi-
ces between characters.

|a|b|c|d|
0 1 2 3 4

So if I want the first three characters of the
string “abcd”, I use substring(0,3). If
I want the “cd” part, it’s substring(2,4).

06_417997-ch02.indd 4506_417997-ch02.indd 45 10/26/09 9:56 PM10/26/09 9:56 PM

46 Part I: Programming with JavaScript

 Here’s yet another cool thing about Aptana: When you type the term text.

(complete with period), Aptana understands that you’re talking about a string

variable and automatically pops up a list of all the possible properties and

methods. (I wish I’d had that when I started doing this stuff.)

You can see from this code that methods are pretty easy to use. When you

have a string variable in place, you can invoke the variable’s name, followed

by a period and the method’s name. Some of the methods require more infor-

mation to do their job. Here’s a look at the specifics:

 ✓ toUpperCase() and toLowerCase():Takes the value of the variable

and converts it entirely to the given case. This is often used when you

aren’t concerned about the capitalization of a variable.

 ✓ indexOf(substring): Returns the character position of the substring

within the variable. If the variable doesn’t contain the substring, return

the value -1.

 ✓ substring(begin, end): Returns the substring of the variable from

the beginning character value to the end.

Figure 2-6:
String

methods
can be
fun. . . .

06_417997-ch02.indd 4606_417997-ch02.indd 46 10/26/09 9:56 PM10/26/09 9:56 PM

47 Chapter 2: Writing Your First Program

Understanding Variable Types
JavaScript isn’t too fussy about whether a variable contains text or a number,

but the distinction is still important, because there is a difference in the way

these things are stored in memory, and this difference can cause some sur-

prising problems.

Adding numbers
To see what can go wrong when JavaScript misunderstands data types, try

a little experiment. First, take a look at the following program (as usual for

this chapter, I’m only showing the script part because the rest of the page is

blank):

 <script type = “text/javascript”>
 //<![CDATA
 //from addNumbers.html

 var x = 5;
 var y = 3;
 var sum = x + y;

 alert(x + « plus « + y + « equals « + sum);

 //]]>
 </script>

This program features three variables. I’ve assigned the value 5 to x, and 3

to y. I then add x + y and assign the result to a third variable, sum. The last

line prints out the results, which are also shown in Figure 2-7.

Figure 2-7:
This

program
(correctly)

adds two
numbers
together.

Note a few important things from this example:

06_417997-ch02.indd 4706_417997-ch02.indd 47 10/26/09 9:56 PM10/26/09 9:56 PM

48 Part I: Programming with JavaScript

 ✓ You can assign values to variables. It’s best to read the equals sign

as “gets” so the first assignment should be read as “variable x gets the

value 5.”

 var x = 5;

 ✓ Numeric values are not enclosed in quotes. When you refer to a text

literal value, it is always enclosed in quotes. Numeric data (like the value

5) are not placed in quotes.

 ✓ You can add numeric values. Since x and y both contain numeric

values, you can add them together.

 ✓ The results of an operation can be placed in a variable. The result of

the calculation x + y is placed in a variable called sum.

 ✓ Everything works as expected. The program behaves in the way you

intended it to. That’s important because it’s not always true as you’ll see

in the next example — I love writing code that blows up on purpose!

Adding the user’s numbers
The natural extension of the addNumbers.html program would be a feature

that allows the user to input two values and then return the sum. This could

be the basis for a simple adding machine. Here’s the JavaScript code:

 <script type = “text/javascript”>
 //<![CDATA[
 //from addInputWrong.html

 var x = prompt(“first number:”);
 var y = prompt(“second number:”);
 var sum = x + y;

 alert(x + “ plus “ + y + “ equals “ + sum);

 //]]>
 </script>

This code seems reasonable enough. It asks for each value and stores them

in variables. It then adds the variables up and returns the results, right? Well,

look at Figure 2-8 and you’ll see a surprise.

Something’s obviously not right here. To understand the problem, you need

to see how JavaScript makes guesses about data types.

06_417997-ch02.indd 4806_417997-ch02.indd 48 10/26/09 9:56 PM10/26/09 9:56 PM

49 Chapter 2: Writing Your First Program

Figure 2-8:
Wait a

minute . . .
3 + 5 = 35?

The trouble with dynamic data
Ultimately, all the information stored in a computer, from music videos to

e-mails, is stored as a bunch of ones and zeroes. The same value 01000001

could mean all kinds of things: it might mean the number 65 or the character

A. (In fact, it does mean both of those things in the right context.) The same

binary value might mean something entirely different if it’s interpreted as a

real number, a color, or a part of a sound file.

The theory isn’t critical here, but one point is really important: Somehow the

computer has to know what kind of data is stored in a specific variable. Many

languages (like C and Java) have all kinds of rules about this. If you create a

variable in one of these languages, you have to define exactly what kind of

data will go in the variable — and you can’t change it.

JavaScript is much more easygoing about variable types. When you make

a variable, you can put any kind of data in it that you want. In fact, the data

type can change. A variable can contain an integer at one point and the same

variable might contain text in another part of the program.

JavaScript uses the context to determine how to interpret the data in a par-

ticular variable. When you assign a value to a variable, JavaScript puts the

data in one of the following categories:

06_417997-ch02.indd 4906_417997-ch02.indd 49 10/26/09 9:56 PM10/26/09 9:56 PM

50 Part I: Programming with JavaScript

 ✓ Integer: Integers are whole numbers (no decimal part). They can be

positive or negative values.

 ✓ Floating-point number: A floating-point number has a decimal point like

3.14. Floating-point values can also be expressed in scientific notation

like 6.02e23 (Avagadro’s number: 6.02 times 10 to the 23rd). Floating-

point numbers can also be negative.

 ✓ Boolean: A Boolean value can only be true or false.

 ✓ String: Text is usually referred to as “string” data in programming lan-

guages. String values are usually enclosed in quotes.

 ✓ Arrays and objects: These are more complex data types you can ignore

for now. They are covered in depth in Chapter 5.

These different data types are necessary because the computer uses differ-

ent techniques to store different types of data into the binary format that

all computer memory ultimately uses. Most of the time, when you make a

variable, JavaScript guesses right and you have no problems. But sometimes

JavaScript makes some faulty assumptions and things go wrong.

The pesky plus sign
I’ve used the plus sign in two different ways throughout this chapter. The fol-

lowing code uses the plus sign in one way:

var x = “Hi, “;
var y = “there!”;

result = x + y;
alert(result);

In this code, x and y are text variables. The result = x + y line is inter-

preted as “concatenate x and y,” and the result will be “Hi, there!”.

Here’s the strange thing: The following code is almost identical:

var x = 3;
var y = 5;

result = x + y;
alert(result);

The behavior of the plus sign is different here, even though the statement

result = x + y is identical!

In this second case, x and y are numbers. The plus operator has two entirely

different jobs. If it’s surrounded by numbers, it adds. If it’s surrounded by

text, it concatenates! Automatically. (Hoo boy.)

06_417997-ch02.indd 5006_417997-ch02.indd 50 10/26/09 9:56 PM10/26/09 9:56 PM

51 Chapter 2: Writing Your First Program

That’s what happens to the first adding-machine program (the one that blows

up): When the user enters data in prompt dialog boxes, JavaScript assumes the

data is text. So when I try to add x and y, it “helpfully” concatenates instead.

There’s a fancy computer-science word for this phenomenon (an operator

doing different things in different circumstances). Those Who Care About

Such Things call this an overloaded operator. Smart people sometimes have

bitter arguments about whether overloaded operators are a good idea or not,

because they can cause problems like the program concatenating when you

think it will add. Overloaded operators can also make things easier in other

contexts. I’m not going to enter into that debate here. It’s not a big deal, as

long as you can see the problem and fix it when it occurs.

Changing Variables to the Desired Type
If JavaScript is having a hard time figuring out what type of data is in a vari-

able, you can give it a friendly push in the right direction with some handy

conversion functions as shown in Table 2-1.

Table 2-1 Variable Conversion Functions
Function From To Example Result
parseInt() String Integer parseInt(“23”) 23
parseFloat() String Floating-

point
parseFloat
(“21.5”)

21.5

toString() Any variable String myVar.toString() varies

eval() Expression Result eval(“5 + 3”) 8
Math.ceil()

Math.floor()

Math.round()

Floating-
point

Integer Math.ceil(5.2)

Math.floor(5.2)

Math.round(5.2)

6
5
5

Using variable conversion tools
The conversion functions are incredibly powerful, but you only need them if

the automatic conversion causes you problems. Here’s how they work:

 ✓ parseInt(): Used to convert text to an integer. If you put a text value

inside the parentheses, the function returns an integer value. If the

string has a floating-point representation (“4.3” for example), an integer

value (4) will be returned.

06_417997-ch02.indd 5106_417997-ch02.indd 51 10/26/09 9:56 PM10/26/09 9:56 PM

52 Part I: Programming with JavaScript

 ✓ parseFloat(): Converts text to a floating-point value.

 ✓ toString(): Takes any variable type and creates a string representa-

tion. Note that it isn’t usually necessary to use this function, because it’s

usually invoked automatically when needed.

 ✓ eval(): This is a special method that accepts a string as input. It then

attempts to evaluate the string as JavaScript code and return the output.

You can use this for variable conversion or as a simple calculator —

eval(“5 + 3”) will return the integer 8.

 ✓ Math.ceil(): One of several methods of converting a floating-point

number to an integer. This technique always rounds upward, so Math.
ceil(1.2) will be 2, and Math.ceil(1.8) will also be 2.

 ✓ Math.floor(): Similar to Math.ceil, except it always rounds down-

ward, so Math.floor(1.2) and Math.floor(1.8) will both evaluate

to 1.

 ✓ Math.round(): Works like the standard rounding technique used in

grade school. Any fractional value less than .5 will round down, and

greater than or equal to .5 will round up, so Math.round(1.2) is 1, and

Math.round(1.8) is 2.

Fixing the addInput code
With all this conversion knowledge in place, it’s pretty easy to fix up the

addInput program so it works correctly. Just use parseFloat() to force

both inputs into floating-point values before adding them. Note that you

don’t have to convert the result explicitly to a string. That’s done automati-

cally when you invoke the alert() method:

 //<![CDATA[
 // from addInput.html

 var x = prompt(“first number:”);
 var y = prompt(“second number:”);
 var sum = parseFloat(x) + parseFloat(y);

 alert(x + “ plus “ + y + “ equals “ + sum);

 //]]>

You can see the program works correctly in Figure 2-9.

Conversion methods allow you to ensure the data is in exactly the format you

want.

06_417997-ch02.indd 5206_417997-ch02.indd 52 10/26/09 9:56 PM10/26/09 9:56 PM

53 Chapter 2: Writing Your First Program

Figure 2-9:
Now the
program
asks for

input and
correctly

returns
the sum.

06_417997-ch02.indd 5306_417997-ch02.indd 53 10/26/09 9:56 PM10/26/09 9:56 PM

54 Part I: Programming with JavaScript

06_417997-ch02.indd 5406_417997-ch02.indd 54 10/26/09 9:56 PM10/26/09 9:56 PM

Chapter 3

Changing Program Behavior
with Conditions

In This Chapter
▶ Generating random numbers and converting them to integers

▶ Understanding conditions

▶ Using the if-else structure

▶ Managing multiple conditions

▶ Using the switch structure

▶ Handling unusual conditions

One of the most important aspects of computers is their apparent abil-

ity to make decisions. Computers can change their behavior based on

circumstances. In this chapter you learn how to create random numbers in

JavaScript, and several ways to have your program make decisions based on

the roll of a digital die.

Working with Random Numbers
Random numbers are a big part of computing. They add uncertainty to

games, but they’re also used for serious applications like simulations, secu-

rity, and logic. In this chapter, you generate random numbers to simulate

dice and then explore various ways to modify the computer’s behavior based

on the value of the roll.

Most languages have a feature for creating random numbers, and JavaScript

is no exception. The Math.random() function returns a random floating-

point value between 0 and 1.

07_417997-ch03.indd 5507_417997-ch03.indd 55 10/26/09 9:56 PM10/26/09 9:56 PM

56 Part I: Programming with JavaScript

 Technically, computers can’t create truly random numbers. Instead, they

use a complex formula that starts with one value and creates a second semi-

predictable value. In JavaScript, the first value (called the random seed) is

taken from the system clock in milliseconds, so the results of a random

number call seem truly random.

Creating a die to die for
It’s very easy to create a random floating-point number between 0 and 1,

because that’s what the Math.random() function does. What if you want

an integer within a specific range? For example, you might want to simulate

rolling a six-sided die. How do you get from the 0-to-1 floating-point value to a

1-to-6 integer?

Here’s the standard approach:

 1. Get a random floating-point value.

 Use the Math.random() function to get a floating-point value between 0

and 1.

 2. Multiply the zero-to-one value by 6.

 This gives you a floating-point value between 0 and 5.999 (but never 6).

 3. Use Math.ceil() to round up.

 Here’s where you need to convert the number to an integer. In Chapter 2

I mention three functions to convert from a float to an integer. Math.
ceil() always rounds up, which means you’ll always get an integer

between 1 and 6.

Rolling the dice
Take a look at the RollDie.html code that rolls your digital dice:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>rollDie.html</title>
 <script type = «text/javascript»>
 //<![CDATA[
 // from rollDie.html

07_417997-ch03.indd 5607_417997-ch03.indd 56 10/26/09 9:56 PM10/26/09 9:56 PM

57 Chapter 3: Changing Program Behavior with Conditions

 var number = Math.random();
 alert(number);

 var biggerNumber = number * 6;
 alert(biggerNumber);

 var die = Math.ceil(biggerNumber);
 alert(die);

 //]]>

 </script>
 </head>

 <body>
 <div id = «output»>

 </div>
 </body>
</html>

As you can see, I converted the strategy from the previous section directly

into JavaScript code:

 1. Create a random floating-point value.

 The Math.random() function creates a random floating-point number

and stores it in the variable number.

 2. Multiply the number by 6.

 To move the number into the appropriate range (6 values), I multiplied

by 6, and stored the result in biggerNumber.

 3. Round up.

 I used the Math.ceil() function to round the number up to the next

highest integer.

Figure 3-1 shows the program running.

You might need to run the rollDice.html page a few times to confirm that

it works as suspected.

If you want to re-run a program you’ve already loaded into the browser, just

hit the Refresh button on the browser toolbar.

07_417997-ch03.indd 5707_417997-ch03.indd 57 10/26/09 9:56 PM10/26/09 9:56 PM

58 Part I: Programming with JavaScript

Figure 3-1:
This

program
generates

a value
between 1

and 6.

Using if to Control Flow
If you can roll a die, you’ll eventually want different things to happen in dif-

ferent circumstances. Figure 3-2 shows two different runs of a simple game

called deuce.html.

Figure 3-2:
Nothing

happens
when you

roll a 5, but
something

exciting
happens

when you
roll a 2.

Okay, it’s not that exciting. I promise to add dancing hippos in a later version.

In any case, the “You got a deuce” message only happens when you roll a

2. The code is simple but profound:

07_417997-ch03.indd 5807_417997-ch03.indd 58 10/26/09 9:56 PM10/26/09 9:56 PM

59 Chapter 3: Changing Program Behavior with Conditions

 <script type = “text/javascript”>
 //<![CDATA[
 // from deuce.html
 // get a random number
 // If it’s a two, you win

 var die = Math.ceil(Math.random() * 6);
 alert(die);
 if (die == 2){
 alert («You got a Deuce!»);
 } // end if

 //]]>
 </script>

As usual, I’m only showing the <script> tag and its contents here, because

the rest of the page is blank.

If and only if
The key to this program is the humble if statement. This powerful command

does a number of important things:

 ✓ It sets up a condition. More on conditions in a moment, but the main

idea is this: A condition is a true or false question. if statements always

include some type of condition in parentheses.

 ✓ It begins a block of code. if statements set up a chunk of code that

won’t always execute. The end of the if line includes a left brace ({).

 ✓ It usually has indented code under it. The line or lines immediately

after the if statement are part of the block, so they are indented to indi-

cate they are special.

 ✓ It ends several lines later. The end of the if statement is actually the

right brace (}) several lines down in the code. In essence, an if state-

ment contains other code.

 ✓ It’s indented. The convention is to indent all the code between the if

statement and its ending brace.

While not required, it’s common to put a comment indicating that the right

brace ends an if statement. In the C-like languages, the same symbol (}) is

used to end a bunch of things, so it’s nice to remind yourself what you think

you’re ending here.

07_417997-ch03.indd 5907_417997-ch03.indd 59 10/26/09 9:56 PM10/26/09 9:56 PM

60 Part I: Programming with JavaScript

Using conditions
A condition is the central part of if statements and several other important

structures. Conditions deserve a little respect of their own. A condition is an
expression that can be evaluated to be true or false. Conditions come in three

main flavors:

 ✓ A comparison: This is by far the most common kind of condition. Typically

you compare a variable to a value, or two variables to each other. A

number of different types of comparisons are described in Table 3-1.

 ✓ A Boolean variable: Boolean variables are variables that only contain

true or false values. In JavaScript, any variable can be a Boolean,

if you assign it a true or false value. It’s unnecessary to compare a

Boolean to anything else, because it’s already true or false.

 ✓ A Boolean function: Sometimes you’ll have a function that returns a true

or false value. This type of function can also be used as a condition.

Incidentally, Boolean variables are the only variable type capitalized in most

languages. This is because they were named after a person, George Boole.

He was a nineteenth-century mathematician who developed a form of binary

arithmetic. He died thinking his logic research a failure. His work eventually

became the foundation of modern computing. Drop a mention of George at

your next computer-science function to earn muchos geek points.

Comparison operators
JavaScript supports a number of different types of comparisons, summarized

in Table 3-1:

Table 3-1 JavaScript Comparison Operators
Name Operator Example Notes

Equal == (x==3) Works with all variable types,
including strings

Not equal != (x != 3) True if values are not equal

Less than < (x < 3) Numeric or alphabetical
comparison

Greater than > (x > 3) Numeric or alphabetical
comparison

Less than or
equal to

<= (x <= 3) Numeric or alphabetical
comparison

Greater than
or equal to

>= (x >= 3) Numeric or alphabetical
comparison

07_417997-ch03.indd 6007_417997-ch03.indd 60 10/26/09 9:56 PM10/26/09 9:56 PM

61 Chapter 3: Changing Program Behavior with Conditions

You should consider a few things when working with conditions:

 ✓ Make sure the variable types are compatible. You’ll get unpredictable

results if you compare a floating-point value to a string.

 ✓ You can compare string values. In JavaScript, the inequality operators

can be used to determine the alphabetical order of two values, and you

can use the same equality symbol (==) with strings that you use with

other variables. (This is not true in all programming languages.)

 ✓ Equality uses a double equals sign. The single equals sign (=) is used

to indicate assignment. When you’re comparing variables, use a double

equals sign (==) instead.

Don’t confuse assignment with comparison! If you accidentally say (x = 3)

instead of (x == 3), your code won’t crash, but it won’t work properly. The

first statement simply assigns the value 3 to the variable x. It returns the value

true if the assignment was successful (which it will be). You’ll think you’re

comparing x to 3, but you’re assigning x to 3, and the condition will always be

true. It’s a nightmare. I still do it once in a while.

Do What I Say or Else
The Deuce game is pretty exciting and all, but it would be even better if you

had one comment when the roll is a 2 and another comment when it’s some-

thing else. The else-if structure is designed to let you specify one behavior

when a condition is true, and another behavior if the condition is false. Figure

3-3 shows a program with exactly this behavior.

Figure 3-3:
You get one

message
for deuces

and another
message for

everything
else.

This program uses the same type of condition, but it adds an important

section:

07_417997-ch03.indd 6107_417997-ch03.indd 61 10/26/09 9:56 PM10/26/09 9:56 PM

62 Part I: Programming with JavaScript

 <script type = “text/javascript”>
 //<![CDATA[
 // from deuceOrNot.html

 var die = Math.ceil(Math.random() * 6);
 if (die == 2){
 alert(«You got a deuce!»);
 } else {
 alert(«It’s only a « + die + «.»);
 } // end if

 //]]>
 </script>

The if statement is unchanged, but now there’s an else clause. Here’s how

it works:

 ✓ The if statement sets up a condition: The if indicates the beginning of

a code branch, and it prepares the way for a condition.

 ✓ The condition establishes a test: Conditions are true or false expres-

sions, so the condition will indicate something that can be true or false.

 ✓ If the condition is true: The code between the condition and the else

clause runs. After this code is finished, program control moves past the

end of the if structure. (That is, the computer skips the else clause

and executes then next line of code outside the if structure.)

 ✓ If the condition is false: The code between else and the end of the if

runs instead.

The else clause acts like a fork in the road. The code will go along one path

or another (depending on the condition), but never both at once.

You can put as much code as you want inside an if or else clause, includ-

ing more if statements!

You can only use else in the context of an if statement. You can’t use else

by itself.

Using else-if for more complex interaction
The if-else structure is pretty useful when you have only two branches, but

what if you want to have several different options? Imagine for example that

you want to output a different value for every single possible die value. You’ll

need a variation of the if structure to make this work. I show such a tool next,

but first, look at a program which uses this technique. Figure 3-4 shows a die

only a geek could love. All its values are output in binary notation.

07_417997-ch03.indd 6207_417997-ch03.indd 62 10/26/09 9:56 PM10/26/09 9:56 PM

63 Chapter 3: Changing Program Behavior with Conditions

Figure 3-4:
A die for the

true geek
gamer.

A simple if-else structure won’t be sufficient here, because you have six

different options, and if-else only gives you two choices. Here’s some

code that uses another variation of if and else:

 <script type = “text/javascript”>
 //<![CDATA[
 // from binaryDice.html

 var die = Math.ceil(Math.random() * 6);
 if (die == 1){
 alert(«001»);
 } else if (die == 2){
 alert(«010»);
 } else if (die == 3){
 alert(«011»);
 } else if (die == 4){
 alert(«100»);
 } else if (die == 5){
 alert(«101»);
 } else if (die == 6){
 alert(«110»);
 } else {
 alert(«something strange is happening...»);
 } // end if

 //]]>
 </script>

Binary?
Binary notation is the underlying structure of all
data in a computer. It uses 1s and 0s to store
other numbers, which can be combined to
form everything you see on the computer, from
graphics to text to music videos and adventure
games. Here’s a quick conversion chart so you
can read the dice:

001 = 1 011 = 3 101 = 5

010 = 2 100 = 4 110 = 6

You can survive just fine without knowing binary
(unless you’re a computer science major —
then you’re expected to dream in binary). Still,
it’s kind of cool to know how things really work.

07_417997-ch03.indd 6307_417997-ch03.indd 63 10/26/09 9:56 PM10/26/09 9:56 PM

64 Part I: Programming with JavaScript

This program begins with an ordinary if statement, but it has a number of

else clauses. You can include as many else clauses as you want if each

includes its own condition.

For example, imagine the computer generates the value 3. The process would

look like this:

 1. The first condition (die == 1) is false, so the program immediately

jumps to the next else.

 2. This sets up another condition (die == 2), which is also false, so pro-

gram control goes to the next else clause.

 3. This one has yet another condition (die == 3) — which is true! The

code inside this clause is executed (alerting the value “011”).

 4. A condition has finally been triggered — so the computer skips all the

other else conditions and moves to the line after the end if.

 5. This is the last line of code — so the program ends.

The mystery of the unnecessary else
When you use multiple conditions, you can (and should) still indicate an

ordinary else clause without a condition as your last choice. This special

condition sets up code that should happen if none of the other conditions

is triggered. It’s useful as a “garbage collection” function, in case you didn’t

anticipate a condition in the else if clauses.

If you think carefully about the binary dice program, the else clause seems

superfluous. It isn’t really necessary! You went through all that trouble to

create a random number scheme that guarantees you’ll have an integer

between 1 and 6. If you checked for all six values, why have an else clause?

It should never be needed.

There’s a big difference between what should happen and what does happen.

Even if you think you’ve covered every single case, you’re going to be sur-

prised every once in a while. If you use a multiple if structure, you should

always incorporate an else clause to check for surprises. It doesn’t need to

do much but inform you that something has gone terribly wrong.

It’s Time to Switch Your Thinking
The dice problem is a special type of branching, where you have one expres-

sion (the die) that could have multiple values (1 through 6). Many program-

ming languages include a handy tool for exactly this type of situation. Take a

look at Figure 3-5, where you’ll see yet another variation of the die roller.

07_417997-ch03.indd 6407_417997-ch03.indd 64 10/26/09 9:56 PM10/26/09 9:56 PM

65 Chapter 3: Changing Program Behavior with Conditions

Figure 3-5:
Ancient

Roman dice,
useful if

we come
across any

ancient
Romans.

Once again I start with an ordinary 1 through 6 integer and assign a new

value based on the original roll. This time I use another structure specialized

for “one expression with lots of values” situations. Take a look at the code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from RomanDice.html
 var die = Math.ceil(Math.random() * 6);
 var output = «»;
 switch(die){
 case 1:
 output = «I»;
 break;
 case 2:
 output = «II»;
 break;
 case 3:
 output = «III»;
 break;
 case 4:
 output = «IV»;
 break;
 case 5:
 output = «V»;
 break;
 case 6:
 output = «VI»;
 break;
 default:
 output = «PROBLEM!!!»;
 } // end switch

Creating an expression
The switch structure is organized a little bit differently than the if with a

bunch of else ifs business.

07_417997-ch03.indd 6507_417997-ch03.indd 65 10/26/09 9:56 PM10/26/09 9:56 PM

66 Part I: Programming with JavaScript

The switch keyword is followed immediately by an expression in parenthe-

ses. The expression is usually a variable with several possible values. The

switch structure then provides a series of test values and code to execute in

each case.

Here’s how to create a switch statement:

 1. Begin with the switch keyword.

 This sets up the structure. You’ll indent everything until the right brace

(}) that ends the switch structure.

 2. Indicate the expression.

 This is usually a variable you want to compare against several values.

The variable goes inside parentheses and is followed by a left brace({).

 3. Identify the first case.

 Indicate the first value you want to compare the variable against. Be

sure the case is the same type as the variable.

 4. End the case description with a colon (:).

Be careful! Case lines end with a colon (indicating the beginning of a

case) rather than the more typical semicolon. It’s easy to forget this.

 5. Write code for the case.

 You can write as many lines of code as you want. This code will only be

executed if the expression is equal to the given case. Typically all the

code in a case is indented.

 6. Indicate the end of the case with a break statement.

 The break statement tells the computer to jump out of the switch

structure as soon as this case has been evaluated (which is almost

always what you want).

 7. Repeat with other cases.

 Build similar code for all the other cases you want to test.

 8. Trap for surprises with the default clause.

 The special case default works like the else in an else if struc-

ture. It manages any cases that haven’t already been trapped. Even if

you think you’ve got all the bases covered, you should put some default

code in place just in case.

You don’t need to put a break statement in the default clause, because it

always happens at the end of the switch structure anyway.

07_417997-ch03.indd 6607_417997-ch03.indd 66 10/26/09 9:56 PM10/26/09 9:56 PM

67 Chapter 3: Changing Program Behavior with Conditions

Switching with style
The switch structure is powerful, but it can be a little tricky, because the

format is a little strange. Here are a few handy tips to keep in mind:

 ✓ You can compare any type of expression. If you’ve used another lan-

guage (like C or Java) you might have learned that switches only work

on numeric values. JavaScript switches can be used on any data type.

 ✓ It’s up to you to get the type correct. If you are working with a numeric

variable and you compare it against string values, you might not get the

results you’re expecting.

 ✓ Don’t forget the colons. At the end of most lines, the switch statement

uses semicolons like most other JavaScript commands. The lines describ-

ing cases end with colons (:) instead. It’s really easy to get confused.

 ✓ Break each case. Use the break statement to end each case, or you’ll

get weird results.

If you’ve got some programming experience, you might argue that another

option involving something called arrays would be a better solution for this

particular problem. I tend to agree, but for that, look ahead to Chapter 5.

Switches and if – else if structures do have their place, too.

Nesting if Statements
It’s possible to combine conditions in all kinds of crazy ways. One decision

might include other decisions, which could incorporate other decisions. You

can put if statements inside each other to manage this kind of (sometimes

complicated) logic.

What’s this L337 stuff?
Leet (L337) is a wacky social phenomenon pri-
marily born of the online gaming community.
Originally it began as people tried to create
unique screen names for multiplayer games.
If you wanted to call yourself “gamer,” for
example, you’d usually find the name already
taken. Enterprising gamers started substituting
similar-looking letters and numbers (and some-
times creative spelling) to make original names

that are still somewhat readable. The practice
spread, and now it’s combined with text mes-
saging and online chat shortcuts as a sort of
geek code. Get it? L337 94m3r is “Leet Gamer,”
or “Elite Gamer.” Before you ask, I don’t know
why the referee is sometimes a surfer and
sometimes a L337 94m3r. It must have been
some sort of bizarre childhood circumstances.

07_417997-ch03.indd 6707_417997-ch03.indd 67 10/26/09 9:56 PM10/26/09 9:56 PM

68 Part I: Programming with JavaScript

Figure 3-6 shows a particularly bizarre example. Imagine you’re watching the

coin toss at your favorite sporting event. Of course, a coin can be heads or

tails. Just for the sake of argument, the referee also has a complex personal-

ity. Sometimes he’s a surfer and sometimes he’s a L337 94m3r (translation:

elite gamer). The figure shows a few tosses of the coin.

This is getting pretty strange, so you might as well look at some code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from coinToss.html
 coin = Math.ceil(Math.random() * 2);
 character = Math.ceil(Math.random() * 2);
 if (character == 1){
 //It’s a surfer referee
 if (coin == 1){
 alert(“You got heads, Dude.”);
 } else {
 alert(“Dude! It’s totally tails!”);
 } // end coin if

 } else {
 //now it’s a L337 Referee
 if (coin == 1){
 alert(“h34D$ r0xx0r$”);
 } else {
 alert(“741L$ ruL3”);
 } // end coin if
 } // end character if

 //]]>
 </script>

Figure 3-6:
Heads or

tails? Surfer
or gamer?

07_417997-ch03.indd 6807_417997-ch03.indd 68 10/26/09 9:56 PM10/26/09 9:56 PM

69 Chapter 3: Changing Program Behavior with Conditions

Building the nested conditions
Once you understand how nested if structures work, you can see how this

all fits together. The following refers to the example in the previous section:

 1. You flip a coin.

 I just used a variation of the die-rolling technique. A coin can be only

heads or tails, so I rolled a value that would be 1 or 2 for the coin

variable.

 2. Flip another coin for the personality.

 The referee’s persona will be reflected in another random value between

1 and 2.

 3. Check for the surfer.

 If the character roll is 1, we have a surfer, so set up an if statement to

handle the surfer’s output.

 4. If it’s the surfer, check the coin toss.

 Now that you know it’s a surfer speaking, you’ll need to check the coin

for heads or tails. You’ll need another if statement for this.

 5. Respond to the coin toss in surfer-speak.

 Use alert() statements to output the result in the surfer dialect.

 6. Handle the L337 character.

 The outer if structure determines which character is speaking. The

else clause of this case will happen if character is not 1, so all the

LEET stuff goes in the else clause.

 7. Check the coin again.

 Now you know you’re speaking in gamer code, determine what to say by

consulting the coin in another if statement.

Making sense of nested ifs
As you can see, nested if structures aren’t all that difficult, but they can be

messy, especially as you get several layers deep (as you will, eventually).

Here’s a batch of tips to make sure everything makes sense:

 ✓ Watch your indentation. Indentation is a great way to tell what level of

code you’re on, but be vigilant on the indentation scheme you choose. An

editor like Aptana, which automatically indents your code, is a big plus.

07_417997-ch03.indd 6907_417997-ch03.indd 69 10/26/09 9:56 PM10/26/09 9:56 PM

70 Part I: Programming with JavaScript

 ✓ Use comments. It’s easy to get lost in the logic of a nested condition.

Add comments liberally so you can remind yourself where you are in the

logic. Note that in the examples in this chapter I specify which if state-

ment is ending.

 ✓ Test your code. Just because you think it works doesn’t mean it will.

Surprises happen. Test thoroughly to make sure the code does what you

think it should do.

07_417997-ch03.indd 7007_417997-ch03.indd 70 10/26/09 9:56 PM10/26/09 9:56 PM

Chapter 4

Loops and Debugging
In This Chapter
▶ Creating for loops

▶ Learning for loop variations

▶ Building flexible while loops

▶ Making well-behaved while loops

▶ Recognizing troublesome loops

▶ Catching crashes with debugging tools

▶ Catching logic errors

▶ Using the Aptana line-by-line debugger

▶ Using the Firebug debugger

▶ Watching variables and conditions

Computer programs can do repetitive tasks easily. This is accomplished

through a series of constructs called loops. A loop is a structure that

allows you to repeat a chunk of code. In this chapter you learn the two major

techniques for managing loops.

Loops are powerful, but they can be dangerous. It’s possible to create loops

that act improperly, and these problems are very difficult to diagnose. But

don’t worry. I demonstrate a number of very powerful techniques for looking

through your code to find out what’s going on.

Building Counting Loops with for
One very standard type of loop is the for loop. You use these loops when

you want to repeat code a certain number of times. Figure 4-1 shows a for

loop in action:

It looks like ten different alert() statements, but there’s only one. It just got

repeated ten times.

08_417997-ch04.indd 7108_417997-ch04.indd 71 10/26/09 9:57 PM10/26/09 9:57 PM

72 Part I: Programming with JavaScript

Figure 4-1:
This loop

repeats ten
times before

it stops.

In Figure 4-1, and some of the other looping demos in this chapter, I show the

first few dialog boxes and the last. You should be able to get the idea. Be sure

to look at the actual program on either of the companion Web sites (www.
dummies.com/go/javascriptandajaxfd or www.aharrisbooks.net/
jad) to see how it really works.

Building a standard for loop
The structure of the for loop can be seen by studying the code:

 <script type = “text/javascript”>
 //<![CDATA[
 //from BasicFor.html
 for (lap = 1; lap <= 10; lap++){
 alert(“now on lap: “ + lap + “.”);
 } // end for
 //]]>
 </script>

for loops are based on an integer (sometimes called a sentry variable). In

this example, lap is serving as the sentry variable. The sentry variable is nor-

mally used to count the number of repetitions through the loop.

The for statement has three distinct parts:

 ✓ Initialization: This segment (lap = 1) sets up the initial value of the

sentry.

 ✓ Condition: The condition (lap <= 10) is an ordinary condition

(although it doesn’t require parentheses in this context). As long as the

condition is evaluated as true, the loop will repeat.

 ✓ Modification: The last part of the for structure (lap++) indicates the

sentry will be modified in some way throughout the loop. In this case, I

add one to the lap variable each time through the loop.

08_417997-ch04.indd 7208_417997-ch04.indd 72 10/26/09 9:57 PM10/26/09 9:57 PM

73 Chapter 4: Loops and Debugging

The for structure has a pair of braces containing the code that will be

repeated. As usual, all code inside this structure is indented. You can have as

much code inside a loop as you want.

The lap++ operator is a special shortcut. It’s very common to add one to

a variable, so the lap++ operation means “add one to lap.” You could also

write lap = lap + 1, but lap++ sounds so much cooler.

When programmers decided to improve on the C language, they called the

new language C++. Get it? It’s one better than C! Those computer scientists are

such a wacky bunch!

for loops are pretty useful when you know how many times something

should happen.

Making a backwards loop
You can modify the basic for loop so it counts backward. Figure 4-2 shows

an example of this behavior.

Figure 4-2:
This pro-

gram counts
backward
by using a

for loop.

The backward version of the for loop uses the same general structure as the

forward version, but with slightly different parameters:

 <script type = “text/javascript”>
 //<![CDATA[
 //from backwards.html

 for (lap = 10; lap >= 1; lap--){
 alert(“Backing up: “ + lap);
 } // end for

 //]]>
 </script>

08_417997-ch04.indd 7308_417997-ch04.indd 73 10/26/09 9:57 PM10/26/09 9:57 PM

74 Part I: Programming with JavaScript

If you want to count backward, just modify the three parts of the for

statement:

 ✓ Initialize the sentry to a large number: If you’re counting down, you

need to start with a larger number than 0 or 1.

 ✓ Keep going as long as the sentry is larger than some value: The code

inside the loop will execute as long as the condition is true. The number

will continue to get smaller, so make sure you’re doing a “greater than”

or “greater than or equal to” comparison.

 ✓ Decrement the sentry: If you want the number to get smaller, you need

to subtract something from it. The -- operator is a quick way to do this.

It subtracts 1 from the variable.

Counting five at a time
You can use the for loop to make other kinds of counting loops. If you want

to count by fives, for example, you can use the following variation:

 <script type = “text/javascript”>
 //<![CDATA[

 //from byFive.html
 for (i = 5; i <= 25; i += 5){
 alert(i);
 } // end for

 //]]>
 </script>

This code starts i as 5, repeats as long as i is less than or equal to 25, and

adds 5 to i on each pass through the loop. Figure 4-3 illustrates this code in

action.

If you want a for loop to skip numbers, you just make a few changes to the

general pattern.

 ✓ Initialize the sentry to 5: I want the loop to start at 5, so that’s the initial

value.

 ✓ Compare the sentry to 25: It makes sense for a 5 loop to end at a mul-

tiple of 5. I want this loop to continue until we get to 25, so the loop will

continue as long as i is less than or equal to 25.

 ✓ Add 5 to i on each pass: The statement i += 5 adds 5 to i. (It’s just

like saying i = i + 5.)

08_417997-ch04.indd 7408_417997-ch04.indd 74 10/26/09 9:57 PM10/26/09 9:57 PM

75 Chapter 4: Loops and Debugging

Figure 4-3:
A for loop

can also
skip values.

The key to building for loops is to remember these three elements and make

sure they work together: Build a sentry variable, give it a sensible initial

value, check against a condition, and modify the variable on each pass.

This is easy to do in a for loop, because all these elements are in the for

loop structure. Still, if you find your loop isn’t working as expected, you

might need to look into the debugging tricks described later in this chapter.

Looping for a while
The for loop is useful, but it has a cousin that’s even more handy, called the

while loop. A while loop isn’t committed to any particular number of rep-

etitions. It simply repeats as long as its condition is true.

Creating a basic while loop
The basic while loop is deceptively simple to build. Here’s an example:

 <script type = “text/javascript”>
 //<![CDATA[
 // from while.html

08_417997-ch04.indd 7508_417997-ch04.indd 75 10/26/09 9:57 PM10/26/09 9:57 PM

76 Part I: Programming with JavaScript

 answer = “-99”;
 while (answer != “5”){
 answer = prompt(“What is 3 + 2?”);
 if (answer == “5”){
 alert(“great!”);
 } else {
 alert(“try again...”);
 } // end if
 } // end while

 //]]>
 </script>

This script asks the user a simple math question — and keeps asking until

the user responds correctly. You can see it in action in Figure 4-4.

Figure 4-4:
This loop

continues
until the

user enters
the correct

answer.

The operation of a while loop is pretty easy to understand. Here’s how the

math program works:

 1. Create a variable called answer.

 This will act as a sentry variable for the loop.

 2. Initialize the variable.

 The initial value of the variable is set to “-99”, which can’t possibly be

correct. Doing so guarantees that the loop will execute at least one time.

 3. Evaluate what’s in the answer variable.

 In this particular program the correct answer is 5. If the value of answer

is anything but 5, the loop continues. I’ve preset the value of answer to

“-99”, so you know it’s going to happen at least once.

 4. Ask the user a challenging math question.

 Well, a math question anyway. The important thing is to change the

value of answer so it’s possible to get 5 in answer and then exit the

loop.

08_417997-ch04.indd 7608_417997-ch04.indd 76 10/26/09 9:57 PM10/26/09 9:57 PM

77 Chapter 4: Loops and Debugging

 5. Give the user some feedback.

 It’s probably good to let the user know how she did, so provide some

sort of feedback.

Avoiding loop mistakes
A while loop seems simpler than a for loop, but while has exactly the

same basic requirements:

 ✓ There is usually a critical sentry variable. while loops are usually (but

not always) controlled by some key variable.

 ✓ The sentry must be initialized. If the loop is going to behave properly,

the sentry variable must still be initialized properly. In most cases, you’ll

want to guarantee that the loop happens at least one time.

 ✓ You must have a condition. Like the for loop, the while loop is based

on conditions. As long as the condition is true, the loop continues.

 ✓ There must be a mechanism for changing the sentry. Somewhere in

the loop you need to have a line that changes the value of the sentry. Be

sure that it’s possible to make the condition logically false, or you’ll be

in the loop forever!

If you forget one of these steps, the while loop might not work correctly. It’s

easy to make mistakes with your while loops. Unfortunately, these mistakes

don’t usually result in a crash. Instead, the loop might either refuse to run

altogether or continue indefinitely.

Introducing Some Bad Loops
Sometimes loops don’t behave. Even if you’ve got the syntax correct, it’s pos-

sible that your loop just doesn’t do what you want. Two main kinds of loop

errors are common: loops that never happen, and loops that never quit.

Managing the reluctant loop
You might write some code and find that the loop never seems to run. Here’s

some of a program that illustrates this woeful condition:

08_417997-ch04.indd 7708_417997-ch04.indd 77 10/26/09 9:57 PM10/26/09 9:57 PM

78 Part I: Programming with JavaScript

 <script type = “text/javascript”>
 //<![CDATA[

 //from never.html
 //Warning! this script has a deliberate error!

 i = 1;
 while (i > 10){
 i++;
 } // end while

 //]]>
 </script>

This code looks innocent enough, but if you run it, you’ll be mystified. It

doesn’t crash, but it also doesn’t seem to do anything. If you follow the code

step by step, you’ll eventually see why. I initialize i to 1, and then repeat as

long as i is greater than 10. See the problem? i is less than 10 at the very

beginning, so the condition starts out false, and the loop never executes! I

probably meant for the condition to be (i < 10). It’s a sloppy mistake, but

exactly the kind of bone-headed error I make all the time.

Managing the compulsive loop
The other kind of bad-natured loop is the opposite of the reluctant loop. This

one starts up just fine, but never goes away!

The following code illustrates an endless loop:

 <script type = “text/javascript”>
 //<![CDATA[

 //from endless.html
 // Warning: this program has a deliberate
 // error! You will have to stop the browser
 // to end the loop.

 i = 0;
 j = 0;

 while (i < 10){
 j++;
 alert(j);
 } // end while

 //]]>
 </script>

08_417997-ch04.indd 7808_417997-ch04.indd 78 10/26/09 9:57 PM10/26/09 9:57 PM

79 Chapter 4: Loops and Debugging

If you decide to run endless.html, be aware that it will not work properly.

What’s worse, the only way to stop it will be to kill your browser through the

Task Manager program. I show you later in this chapter how to run such code

in a “safe” environment so you can figure out what’s wrong with it.

This code is just one example of the dreaded endless loop. Such a loop usu-

ally has perfectly valid syntax, but a logic error prevents it from running

properly. The logical error is usually one of the following:

 ✓ The variable was not initialized properly. The initial value of the sentry

is preventing the loop from beginning correctly.

 ✓ The condition is checking for something that cannot happen. Either

the condition has a mistake in it, or something else is preventing it from

triggering.

 ✓ The sentry has not been updated inside the loop. If you simply forget

to modify the sentry variable, you’ll get an endless loop. If you modify

the variable, but do it after the loop has completed, you get an endless

loop. If you ask for input in the wrong format, you might also get a diffi-

cult-to-diagnose endless loop.

Debugging Your Code
If you’ve been writing JavaScript code, you’ve also been encountering errors.

It’s part of a programmer’s life. Loops are especially troublesome, because

they can cause problems even if there are no syntax errors. Fortunately,

there are some really great tricks you can use to help track down pesky bugs.

Letting Aptana help
If you’re writing your code with Aptana, you already have some great help

available. It gives you the same syntax-highlighting and code-completion fea-

tures as you had when writing XHTML and CSS.

Also, Aptana can often spot JavaScript errors on the fly. Figure 4-5 shows a

program with a deliberate error.

08_417997-ch04.indd 7908_417997-ch04.indd 79 10/26/09 9:57 PM10/26/09 9:57 PM

80 Part I: Programming with JavaScript

Figure 4-5:
Aptana

caught my
error and
provides

some help.

These markers indicate errors in the code.

The validation pane lists all known errors.

Click an error to be taken to that line in the editor.

Aptana notifies you of errors in your code with a few mechanisms:

 ✓ The suspect code has a red squiggle underneath. It’s just like what a

word-processing spell-checker shows you for a suspect word.

 ✓ A red circle indicates the troublesome line. You can scan the margin

and quickly see where the errors are.

 ✓ All errors are summarized in the validation pane. You can see the

errors and the line number for each. Double-click an error to be taken to

that spot in the code.

 ✓ You can hover over an error to get more help. Hover the mouse

pointer over an error to get a summary of the error.

Aptana can catch some errors, but it’s most useful for preventing errors with

its automatic indentation and code-assist features. The browsers are where

you’ll usually discover logic and errors. Some browsers are more helpful than

others when it comes to finding and fixing problems.

08_417997-ch04.indd 8008_417997-ch04.indd 80 10/26/09 9:57 PM10/26/09 9:57 PM

81 Chapter 4: Loops and Debugging

Debugging JavaScript on IE
Microsoft Internet Explorer has unpredictable behavior when it comes to

JavaScript errors. IE6 will take you to some type of editor, but the editors

have changed over the years, and are modified (without your knowledge or

permission) when you installed new software. IE7 and IE8 (at least by default)

simply do nothing. You won’t see an error, or any indication there was an

error. (Denial — my favorite coping mechanism.)

Here’s how you can force IE to give you a little bit of help:

 1. Choose Tools➪Internet Options➪Advanced.

 You’ll see a dialog box that looks like Figure 4-6.

Figure 4-6:
The Internet

Options
dialog box
allows you
to get error

warnings
in Internet

Explorer.

 2. Choose “Display a Notification about Every Script Error.”

 Leave all the other settings alone for now. Yep, we’re going to keep

script debugging disabled, because it doesn’t work very well. I’ll show

you a better technique later in this chapter (see the “Using the Firebug

Debugger” section).

Now, when you reload broken.html in IE, you’ll see something like

Figure 4-7.

08_417997-ch04.indd 8108_417997-ch04.indd 81 10/26/09 9:57 PM10/26/09 9:57 PM

82 Part I: Programming with JavaScript

Figure 4-7:
I never

thought I’d
be happy to
see an error

message.

This is actually good news, because at least you know there’s a problem, and

you’ve got some kind of clue how to fix it. In this particular case, the error

message is pretty useful. Sometimes that’s the case, and sometimes the error

messages seem to have been written by aliens.

Be sure to have the error notification turned on in IE so you know about

errors right away. Of course, you’ll also need to check your code in Firefox,

which has tons of great tools for checking out your code.

Finding errors in Firefox
Firefox has somewhat better error-handling than IE by default, and you

can use add-ons to turn it into a debugging animal. At its default setting,

error notification is minimal. If you suspect JavaScript errors, open up the

JavaScript Errors window. You can do this by choosing Error Console from

the Tools menu, or by typing javascript: in the location bar. Figure 4-8 shows

the error console after running broken.html.

I generally find the error messages in the Firefox console more helpful than

the ones provided by IE.

The Error console doesn’t automatically clear itself when you load a new

page. When you open it up, there might be a bunch of old error messages in

there. Be sure to clear the history (with the Error Console’s Clear button) and

refresh your page to see exactly what errors are happening on this page.

Catching syntax errors with Firebug
One of the best things about Firefox is the add-on architecture. Some really

clever people have created very useful add-ons that add wonderful function-

ality. Firebug is one example. This add-on (available at https://addons.
mozilla.org/en-US/firefox/addon/1843) tremendously expands your

editing bag of tricks.

08_417997-ch04.indd 8208_417997-ch04.indd 82 10/26/09 9:57 PM10/26/09 9:57 PM

83 Chapter 4: Loops and Debugging

Figure 4-8:
The Firefox

Error
Console
is pretty

useful.

Firebug (first introduced in Chapter 1) is useful for HTML and CSS editing,

but it really comes into its own when you’re trying to debug JavaScript code.

When Firebug is active, it displays a little icon at the bottom of the browser

window. If there are any JavaScript errors, a red error icon will appear. Click

this icon, and the Firebug window appears, describing the problem. Figure

4-9 shows how it works.

Figure 4-9:
The Firebug
tool shows

an error.
Click the
error line

to see it in
context.

If you click the offending code snippet, you can see it in context. This can

be useful, because the error might not be on the indicated line. Generally,

if I’m doing any tricky JavaScript, I’ll have Firebug turned on to catch any

problems.

08_417997-ch04.indd 8308_417997-ch04.indd 83 10/26/09 9:57 PM10/26/09 9:57 PM

84 Part I: Programming with JavaScript

The Firebug Lite version of Firebug can be used in other browsers (IE, Chrome,

and Safari). This version is accessed as a bookmarklet, meaning you can put

a link to the code in your bookmarks and use this program to get most of the

features of Firebug in these other browsers. Check http://getfirebug.
com/lite.html for details.

Catching Logic Errors
The dramatic kind of error you see in broken.html is actually pretty easy to

fix. It crashes the browser at a particular part of the code, so you get a good

idea what went wrong. Crashes usually result in error messages, which gen-

erally give some kind of clue about what went wrong. Most of the time, it’s

a problem with syntax. You spelled something wrong, forgot some punctua-

tion, or something else pretty easy to fix once you know what’s wrong.

Loops and branches often cause a more sinister kind of problem, called a

logical error (as opposed to a syntax error). Logical errors happen when your

code doesn’t have any syntax problems, but it’s still not doing what you

want. These errors can be much harder to pin down, because you don’t get

as much information.

Of course, if you have the right tools, you can eventually track down even the

trickiest bugs. The secret is to see exactly what’s going on inside your vari-

ables — stuff the user usually doesn’t see.

Logging to the console with Firebug
Firebug has another nifty trick: You can send quick messages to the Firebug

console. Take a look at log.html:

 <script type = “text/javascript”>
 //<![CDATA[
 // from log.html
 // note this program requires firebug on firefox

 for (i = 1; i <= 5; i++){
 console.log(i);
 } // end for loop

 //another loop with a fancier output
 for (i = 1; i <= 5; i++){
 console.log(“i is now %d.”, i);
 }

08_417997-ch04.indd 8408_417997-ch04.indd 84 10/26/09 9:57 PM10/26/09 9:57 PM

85 Chapter 4: Loops and Debugging

 console.info(“This is info”);
 console.warn(“This is a warning”);
 console.error(“This is an error”);

 //]]>
 </script>

This code is special, because it contains several references to the console

object. This object is only available to Firefox browsers with the Firebug

extension installed. When you run the program with Firebug and look at the

Console tab, you’ll see something like Figure 4-10.

The console object allows you to write special messages that will only be

seen by the programmer in the console. This is a great way to test your code

and see what’s going on, especially if things aren’t working the way you want.

If you want to test your code in IE, there’s a version of Firebug (called Firebug

Lite) that works on other browsers. Check the Firebug main page to download

and install this tool if you want to use console commands on these browsers.

Note that the syntax for using the console might be a bit different when you’re

using Firebug Lite. Check the main site for details.

Figure 4-10:
The Firebug

console
shows lots

of new
information.

08_417997-ch04.indd 8508_417997-ch04.indd 85 10/26/09 9:57 PM10/26/09 9:57 PM

86 Part I: Programming with JavaScript

Looking at console output
Here’s how it works:

 ✓ The first loop prints the value of i to the console. Each time through

the first loop, the console.log function prints out the current value of

i. This would be very useful information if (for example) the loop wasn’t

working correctly. You can use the console.log() method to print the

value of any variable.

 ✓ The second loop demonstrates a more elaborate kind of printing.

Sometimes you’ll want to make clear exactly what value you’re sending

to the console. Firebug supports a special syntax called formatted print-
ing to simplify this process.

 console.log(“i is now %d.”, i);

 The text string “i is now %d” indicates what you want written in the

console. The special character %d specifies that you will be placing a

numeric variable in this position. After the comma, you can indicate the

variable you want inserted into the text.

There are other formatting characters you can use as well. %s is for

string, and %o is for object. If you’re familiar with printf in C, you’ll

find this technique familiar.

 ✓ You can specify more urgent kinds of logging. If you want, you can

use alternatives to the console.log if you want to impart more

urgency in your messages. If you compare the code in log.html

with the output of Figure 4-10 you’ll see how info, warning, and error

messages are formatted.

When your program isn’t working properly, try using console commands to

describe exactly what’s going on with each of your variables. This will often

help you see problems and correct them.

When you get your program working properly, don’t forget to take the console

commands out! Either remove them or render them ineffective with comment

characters. The console commands will cause an error in any browser that

does not have Firebug installed. Typically, your users will not have this exten-

sion (nor should they need it! You’ve debugged everything for them!).

Using an Interactive Debugger
Traditional programming languages often feature a special debugging tool for

fixing especially troubling problems. A typical debugger has these features:

08_417997-ch04.indd 8608_417997-ch04.indd 86 10/26/09 9:57 PM10/26/09 9:57 PM

87 Chapter 4: Loops and Debugging

 ✓ The capability to pause a program as it’s running: Logic errors are

hard to catch because the program keeps on going. With a debugger,

you can set a particular line as a breakpoint. When the debugger encoun-

ters the breakpoint, the program is in a “pause” mode. It isn’t completely

running, and it isn’t completely stopped.

 ✓ A mechanism for moving through the code a line at a time: You can

normally step through code one line at a time checking to see what’s

going on.

 ✓ A way to view the values of all variables and expressions: It’s usually

important to know what’s happening in your variables. (For example,

is a particular variable changing when you think it should?) A debugger

should let you look at the values of all its variables.

 ✓ The capability to stop runaway processes: As soon as you start creating

loops, you’ll find yourself accidentally creating endless loops. In a typi-

cal browser, the only way out of an endless loop is to kill the browser

with the task manager (or process manager in some operating systems).

That’s a bit drastic. A debugger can let you stop a runaway loop without

having to access the task manager.

Debuggers are extremely handy, and they’ve been very common in most

programming languages. JavaScript programmers haven’t had much access

to debugging tools in the past, because the technical considerations of an

embedded language made this difficult.

Fortunately, Firebug and Aptana both have interactive debuggers that pro-

vide all these features. Even better, they work together to provide you lots of

useful help.

Aptana has a debugger built in. Originally, this involved a special Firefox

plugin that sent information back to Aptana. The developers of Firebug and

Aptana are now working together to give Firebug the ability to work directly

with Aptana. When you use the Aptana debugger, it works automatically with

Firebug.

To test the debuggers, I wrote a program with a deliberate error that would

be hard to find without a debugger:

 //<![CDATA[
 //from debug.html
 //has a deliberate error

 var i = 0;
 var j = 0;
 while (i <= 10){
 console.log(i);
 j++;
 } // end while

 //]]>
 </script>

08_417997-ch04.indd 8708_417997-ch04.indd 87 10/26/09 9:57 PM10/26/09 9:57 PM

88 Part I: Programming with JavaScript

This is another version of the endless.html program from earlier in this

chapter. You might be able to see the problem right away. If not, stay tuned;

you’ll see it as you run the debugger. Even if you can tell what’s wrong, follow

along so you can learn how to use the debugger when you need it.

I used console.log() for output in this program just to avoid jumping back

and forth from the browser to the editor to handle dialog boxes.

To step through a program using the Aptana debugger, begin by loading the

file into the debugger.

Adding a breakpoint
So far your JavaScript programs have been pretty small, but they’re going to

get much larger. You usually won’t want to start the line-by-line debugging

from the beginning, so you need to specify a breakpoint. When you run a pro-

gram in Debug mode, it runs at normal speed until it reaches a breakpoint —

and then it pauses so you can control it more immediately.

To set a breakpoint, right-click a line number in the code editor.

Figure 4-11 shows me setting a breakpoint on line 12 of the debug.html

code.

Running the debugger
The debugger requires you to run your program in a different way than you

might be used to. Since your program is normally run by the browser (not

Aptana), somehow you need a mechanism for passing information back from

the browser to Aptana.

 1. Start the debugger by clicking the Debug icon.

 It looks like a little bug.

 2. Install the Aptana Firefox plugin automatically.

 When you debug a JavaScript program for the first time, Aptana asks

permission to install an additional Firefox plugin. Click Yes to complete

the installation. You will only need to do this once.

 3. Switch to the Debug perspective.

 Aptana pops up a message box to ask whether you want to switch to

the Debug perspective. Answer Yes to change Aptana (temporarily) to

Debug configuration.

08_417997-ch04.indd 8808_417997-ch04.indd 88 10/26/09 9:57 PM10/26/09 9:57 PM

89 Chapter 4: Loops and Debugging

Figure 4-11:
Use a

breakpoint
to tell the
debugger
where to

pause.

A breakpoint has been added to line 12.

Using the Debug perspective
When Aptana is used for debugging, it introduces a new layout (called a per-
spective in Aptana). This changes the way the screen looks, and optimizes the

editor for debugging mode. Figure 4-12 shows the debug.html program in

Debug perspective.

The Debug perspective changes the editor to emphasize debugging:

 ✓ The code completion window is gone. This feature isn’t needed when

you’re debugging, so it’s removed. You need the screen space for other

goodies.

 ✓ The file management window is also missing. Likewise, you won’t be

doing a lot of file manipulation in Debug mode, so this window is gone

too. (Don’t worry; you’ll get it back when you return to normal edit

mode.)

08_417997-ch04.indd 8908_417997-ch04.indd 89 10/26/09 9:57 PM10/26/09 9:57 PM

90 Part I: Programming with JavaScript

Figure 4-12:
Aptana

looks a little
different
in Debug

perspective.

The variables panelThe Debug panel

Results of console commands

The ordinary code window where you can set waypoints.

 ✓ You have a new debug window. This window shows your active

threads. The most important thing about it is the buttons along the top.

 ✓ You also have a window showing breakpoints and variables. This pow-

erful new window describes the values of all your variables while the

program is running.

 ✓ Most of the other windows are the same. You still have the code

window, console, and outline window, but they are rearranged a little

differently than normal. Of course you can adjust them if you wish.

Once you’ve got the debug mode running one time, you’ll have a little Debug

icon in the upper right of the Aptana interface. When this quick button is

available, you can use it to switch into Debug mode. Use the Aptana button to

move back to ordinary editing mode.

08_417997-ch04.indd 9008_417997-ch04.indd 90 10/26/09 9:57 PM10/26/09 9:57 PM

91 Chapter 4: Loops and Debugging

Examining Debug mode
with a paused program
When you run your code through the debugger, Aptana fires up a new

instance of Firefox, and loads your program into it. When your program is

paused for debugging, you’ll see a few new details, shown in Figure 4-13.

When your program is paused, you can see several important new indicators:

 ✓ The Debug window shows which script is active. Right now your

programs have only one script, but later you’ll have more. The thread

window tells you which script currently has the processor’s attention.

 ✓ The buttons in the Debug window are active. Mouse over each of the

new buttons to see their tooltips. I explain these buttons in the upcom-

ing section on stepping through your code.

Figure 4-13:
You get a
few new
buttons

and tools
when you’re
debugging a

program.

Resume

Suspend

Terminate

Step Into

08_417997-ch04.indd 9108_417997-ch04.indd 91 10/26/09 9:57 PM10/26/09 9:57 PM

92 Part I: Programming with JavaScript

 ✓ The Breakpoints panel has more panes. In addition to the breakpoints

and variables panes, you’ll see some new panes, expressions, and

scripts.

 ✓ The Variables panel lets you see all the variables the page knows

about. Even though this program contains only two explicitly defined

variables, there seems to be a lot more than that. Every JavaScript pro-

gram has a whole bunch of special variables built in. (I explain how to

use this panel later in this chapter.)

 ✓ The Breakpoints panel allows you to manage your breakpoints. This

is a good place for you to see all of the breakpoints in your project. You

can enable or disable a breakpoint from this panel.

 ✓ The Expressions panel allows you to follow particular variables or

expressions. It’s an extremely powerful tool. I demonstrate its use later

in this chapter.

 ✓ The current line of code is highlighted. If you set a breakpoint on line

12, you’ll see that line highlighted. (It might be difficult to see in Figure

4-13.) As you move through the code, you’ll see this highlight move. This

will help you to follow the logic.

In some versions of Aptana, a message that starts TypeError: request.
loadGroup has no properties appears sometimes when you are debug-

ging a program. This is not an error in your code, and it doesn’t seem to cause

any problems. You can safely ignore this error. I’ve also run across a “socket

connection” error once in a while. Normally you can restart Firefox to fix this

problem.

Walking through your program
Here’s the best part. You can run your program in super slow-mo, seeing

every aspect of its behavior.

 1. Take a step.

 Click on the Step Into button on the Debug panel. (It looks like a curved

arrow pointing between two dots, or just use the F5 key.)

 2. Look at the code.

 The highlighting has moved to the next line (line 13).

 3. Mouse over the variables.

 Hover your mouse pointer over the two variables (i and j) in your code.

You’ll see a dialog box that describes the current value of each variable.

 4. Take a few more steps.

 Use the Step Into button a few more times. Watch as the highlight moves

through the program, looping.

08_417997-ch04.indd 9208_417997-ch04.indd 92 10/26/09 9:57 PM10/26/09 9:57 PM

93 Chapter 4: Loops and Debugging

 5. Check the variables again.

 Take another look at the variables after a few times through the loop,

and you’ll begin to see what’s wrong with this code: j is increasing, but

i is still stuck at 0.

 6. Stop the debug session.

 If you think you understand the problem, you can stop the debug ses-

sion with the red square Terminate button. (You’ll need to do that in

this program, because it’s an endless loop. It will never end on its own.)

Aptana will close down the generated Firefox instance.

If the debugger isn’t acting properly, be sure you’ve set a breakpoint. If you

don’t have a breakpoint, the program won’t stop. Also, be sure you’ve used

the Debug button to start the program. Using the Run program or viewing the

page directly in the browser won’t activate the debugger.

Viewing expression data
The whole point of debugging is to find difficult problems. Usually, these

problems are variables that aren’t doing what you expect. Aptana provides

a Variables tab, which shows the value of all variables in a program, but it’s

surprisingly difficult to use. JavaScript programs come bundled with hun-

dreds of variables. If you dig around, you can eventually find the i and j vari-

ables. (Scroll down in the variables panel to find them.) Every time you take

another step, you have to scroll down again to see the values, or mouse over

the variables in the code.

Fortunately, Aptana provides a much easier way. Select a variable with

the mouse and right-click. In the resulting menu, choose Watch. Figure

4-14 shows the debugger after I’ve chosen to watch both variables and run

through the loop a few times.

In this mode, you can see the exact values of the variables you’ve chosen to

track. When the variable changes value, you can see it happen immediately.

The Expression window has one more cool trick: You can use it to watch

complex expressions, not just variables. In this program, you want to know

why the loop isn’t exiting. Highlight the condition (i <= 10) and add it to

the watch expressions just as you did the variables.

Now step through the program watching the variables and the condition. With

all this information available to you, my coding mistake becomes obvious: I

used the variable i in the condition, but I never changed it inside the loop.

Instead, I changed the value of j, which has nothing at all to do with the loop!

08_417997-ch04.indd 9308_417997-ch04.indd 93 10/26/09 9:57 PM10/26/09 9:57 PM

94 Part I: Programming with JavaScript

Figure 4-14:
The ex-

pressions
window

highlights
the

variables
I’m inter-
ested in.

Displays the value of any expression or variable

Hover the mouse over a variable name while the program is
paused to see the current value of the variable.

Whenever you encounter a program that isn’t doing what you want, fire up

the debugger, watch the critical values, and step through the code a line at a

time. This will often help you find even the most difficult errors.

Using the Firebug debugger
The Aptana debugger is very good, but I’ve found it to be a bit cranky. It com-

plains if the version of Firebug isn’t exactly right, and sometimes it gives you

trouble with other extensions. Fortunately, Firebug has a debugger that’s just

as good as Aptana (except for one notable limitation). Figure 4-15 shows the

Firebug debugger in action.

08_417997-ch04.indd 9408_417997-ch04.indd 94 10/26/09 9:57 PM10/26/09 9:57 PM

95 Chapter 4: Loops and Debugging

Figure 4-15:
The Firebug
debugger is
very similar

to the one in
Aptana.

Add a breakpoint to Firebug’s script panel. Watch panel

The currently running line is highlighted.

Firebug’s debugger works in the same general way as the Aptana debugger.

Here’s how to use it:

 1. Open up the suspect file in Firefox.

 Of course, you’ll need to load up the file before you do so.

 2. Open the Firebug <script> tag.

 You might need to enable scripts for local files.

 3. Set a breakpoint.

 Click the line number where you want the breakpoint to go. A red dot

will appear, indicating the breakpoint.

 4. Reload the page.

 Use the F5 key or reload button to reload the page in debug mode.

08_417997-ch04.indd 9508_417997-ch04.indd 95 10/26/09 9:57 PM10/26/09 9:57 PM

96 Part I: Programming with JavaScript

 5. Watch the page pause at the breakpoint.

 As with the Aptana debugger, you’re placed in a pause mode with the

program resting at the breakpoint.

 6. Use the Step Into and Step Over buttons to move through the code.

 The Firebug debugger has the same Step Into and Step Over buttons as

the Aptana debugger. Use them to walk through your code one line at

a time.

 7. Type in a variable name or condition in the watch expression menu.

 This allows you to track any particular variables or conditions that are

giving you trouble.

The Firebug debugger is very easy to use, but it has one significant flaw:

It can only be used after a program has loaded into memory. If a program

immediately goes into an endless loop (as endless.html in this chapter

does), the program never stops executing and you never get access to the

debug sessions.

Most JavaScript programs are written in a way that prevents this problem

(look at Chapter 6 for information on how to pre-load JavaScript code).

However, you might not be able to debug every program you encounter using

the Firebug debugger.

Of course, you don’t necessarily need a debugger at all. JavaScript debuggers

are relatively new, and people have been writing JavaScript without them for

years. You can always do it the old-fashioned way: good old alert() state-

ments. If you’re not sure what’s going on in your code, alert every variable to

see its value. Of course, don’t forget to remove the alert() statements when

you’re done.

08_417997-ch04.indd 9608_417997-ch04.indd 96 10/26/09 9:57 PM10/26/09 9:57 PM

Chapter 5

Functions, Arrays, and Objects
In This Chapter
▶ Making code manageable with functions

▶ Passing parameters into functions

▶ Returning values from functions

▶ Examining functions and variable scope

▶ Producing basic arrays

▶ Retrieving data from arrays

▶ Building a multi-dimensional array

▶ Creating custom objects with properties and methods

▶ Building object constructors

▶ Building JSON data structures

It doesn’t take long for your code to become complex. Soon enough, you’ll

find yourself wanting to write more sophisticated programs. When things

get larger, you need new kinds of organizational structures to handle the

added complexity.

You can bundle several lines of code into one container and give this new

chunk of code a name. That’s called a function. You can also take a whole

bunch of variables, put them into a container, and give it a name. That’s

called an array.

This chapter shows you how to work with more code and more data — in the

form of functions and arrays — without going crazy.

Breaking Code into Functions
It doesn’t take long for code to get complicated. It would be good to have

some sort of tool for managing the complexity and making code easier to

handle. That’s exactly what a concept called functions does for you.

09_417997-ch05.indd 9709_417997-ch05.indd 97 10/26/09 9:58 PM10/26/09 9:58 PM

98 Part I: Programming with JavaScript

Inviting ants to the picnic
To explain functions better, think back to an old campfire song. Figure 5-1

re-creates this classic song for you in JavaScript format. (You might want to

roast a marshmallow while you view this program.)

Figure 5-1:
Nothing

reminds me
of functions
like a clas-

sic campfire
song.

If you’re unfamiliar with this song, it simply recounts the story of a bunch of

ants. The littlest one apparently has some sort of attention issues (but we

love him anyway). During each verse, the little one gets distracted by some-

thing that rhymes with the verse number. The real song typically has ten

verses, but I’m just doing two for the demo.

Thinking about song (and program)
structure
Before you look at the code, think about the structure of the song. Like many

songs, it has two main parts. The chorus is a phrase repeated many times

throughout the song. The song has several verses, which are similar to each

other, but not quite identical.

Think about the song sheet passed around the campfire. (I’m getting hungry

for a s’more.) The chorus is usually listed only one time, and each verse is

listed. Sometimes you’ll have a section somewhere on the song sheet that

looks like this:

Verse 1
Chorus
Verse 2
Chorus

09_417997-ch05.indd 9809_417997-ch05.indd 98 10/26/09 9:58 PM10/26/09 9:58 PM

99 Chapter 5: Functions, Arrays, and Objects

Musicians call this thing a “road map,” and that’s a great name for it. It’s a

higher-level view of how you progress through the song. In the road map,

you don’t worry about the details of the particular verse or chorus. The road

map shows the big picture, and you can look at each verse or chorus for the

details.

Building the antsFunction.html program
Take a look at the code for antsFunction.html and see how it resembles a

song sheet:

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsFunction.html

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom

\n”;
 alert(text);
 } // end chorus

 function verse1(){
 var text = “The ants go marching 1 by 1 hurrah,

hurrah \n”;
 text += “The ants go marching 1 by 1 hurrah,

hurrah \n”;
 text += “The ants go marching 1 by 1 \n”;
 text += “ The little one stops to suck his thumb

\n”;
 alert(text);
 } // end verse1

 function verse2(){
 var text = “The ants go marching 2 by 2 hurrah,

hurrah \n”;
 text += “The ants go marching 2 by 2 hurrah,

hurrah \n”;
 text += “The ants go marching 2 by 2 \n”;
 text += “ The little one stops to tie his shoe

\n”;
 alert(text);
 } // end verse1

09_417997-ch05.indd 9909_417997-ch05.indd 99 10/26/09 9:58 PM10/26/09 9:58 PM

100 Part I: Programming with JavaScript

 //main code
 verse1();
 chorus();
 verse2();
 chorus();

 //]]>
 </script>

The program code breaks the parts of the song into the same pieces a song

sheet does. Here are some interesting features of antsFunction.html:

 ✓ I created a function called chorus(). Functions are simply collections

of code lines with a name.

 ✓ All the code for the chorus goes into this function. Anything I want to

do as part of printing out the chorus goes into the chorus() function.

Later, when I want to print the chorus, I can just call the chorus() func-

tion and it will execute all the code I stored there.

 ✓ Each verse has a function, too. I broke the code for each verse into its

own function as well.

 ✓ The main code is a road map. After all the details are delegated to the

functions, the main part of the code just controls the order in which the

functions are called.

 ✓ Details are hidden in the functions. The main code handles the big pic-

ture. The details (how to print the chorus or verses) are hidden inside

the functions.

Functions are a very useful tool for controlling complexity. You can take a

large, complicated program and break it into several smaller pieces. Each

piece stands alone and solves a specific part of the overall problem.

You can think of each function as a miniature program. You can define vari-

ables in functions, put loops and branches in there, and do anything else you

can do with a program. A program using functions is basically a program full

of subprograms.

When you have your functions defined, they’re just like new JavaScript com-

mands. In a sense, when you add functions, you’re adding your own new com-

mands to JavaScript.

Passing Data into and out of Functions
Functions are logically separated from the main program. This is a good

thing, because this separation prevents certain kinds of errors. Sometimes,

however, you want to send information into a function. You might also want

09_417997-ch05.indd 10009_417997-ch05.indd 100 10/26/09 9:58 PM10/26/09 9:58 PM

101 Chapter 5: Functions, Arrays, and Objects

a function to return some type of value. The antsParam.html page rewrites

the “Ants” song in a way that takes advantage of function input and output:

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsParam.html

I’m not providing a figure showing this program because it looks just like

antsFunction.py to the user. That’s one of the advantages of functions:

You can improve the underlying behavior of a program without imposing a

change in the user’s experience. Here’s what the code looks like now:

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom

\n”;
 return text;
 } // end chorus

 function verse(verseNum){
 var distraction = “”;
 if (verseNum == 1){
 distraction = “suck his thumb.”;
 } else if (verseNum == 2){
 distraction = “tie his shoe.”;
 } else {
 distraction = “I have no idea.”;
 }

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse1

 //main code
 alert(verse(1));
 alert(chorus());
 alert(verse(2));
 alert(chorus());

 //]]>
 </script>

09_417997-ch05.indd 10109_417997-ch05.indd 101 10/26/09 9:58 PM10/26/09 9:58 PM

102 Part I: Programming with JavaScript

There are a couple of important new ideas in this code (keep in mind that

this is just the overview — specifics are coming in the next few sections):

 ✓ These functions return a value. The functions don’t do their own alert

statements any more. Instead, they create a value and return it to the

main program.

 ✓ There’s only one verse function. Because the verses are all pretty simi-

lar, it makes sense to have only one verse function. This improved func-

tion needs to know what verse it’s working on to handle the differences.

Examining the main code
The main code has been changed in one significant way. In the last program,

the main code called the functions, which did all the work. This time, the

functions don’t actually do the output themselves. Instead, they collect infor-

mation and pass it back to the main program. Inside the main code, each

function is treated like a variable.

You’ve seen this behavior before: The prompt() method returns a value.

Now the chorus() and verse() methods also return values. You can do

anything you want to this value, including printing it out or comparing it to

some other value.

It’s often considered a good idea to separate the creation of data from its use

as I’ve done here. That way you have more flexibility. After a function creates

some information, you can print it to the screen, store it on a Web page, put it

in a database, or whatever.

Looking at the chorus line
The chorus has been changed to return a value. Take another look at the

chorus() function to see what I mean:

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;
 text += “boom boom boom boom boom boom boom boom

\n”;
 return text;
 } // end chorus

09_417997-ch05.indd 10209_417997-ch05.indd 102 10/26/09 9:58 PM10/26/09 9:58 PM

103 Chapter 5: Functions, Arrays, and Objects

Here’s what changed:

 ✓ The purpose of the function has changed. The function is no longer

designed simply to output some value to the screen. Instead, it now pro-

vides text to the main program, which can do whatever it wants with the

results.

 ✓ There’s a variable called text. This variable will contain all the text to

be sent to the main program. (This was true before, but it’s even more

important now.)

 ✓ The text variable is concatenated over several lines. I used string

concatenation to build a complex value. Note the use of newlines (\n) to

force carriage returns.

 ✓ The return statement sends text back to the main program. When

you want a function to return some value, simply use return followed

by a value or variable. Note that return should be the last line of the

function.

Handling the verses
The verse() function is quite interesting: To make the verse so versatile

(get it? — VERSE-atile!), it must take input from the primary program and

return output. It has these features:

 ✓ It’s more flexible than the previous functions. The same function can

be used to produce many different verses.

 ✓ It takes input to determine which verse to print. The road map sends a

verse number to the function.

 ✓ It modifies the verse based on the input. The verse umber is used to

determine how the rest of the verse should be created.

 ✓ It returns a value, just as chorus() does. The output of this function is

passed back to the main program so it can do something with the newly

minted verse.

Passing data to the verse() function
First, notice that the verse() function is always called with a value inside

the parentheses. For example, the main program says verse(1) to call the

first verse, and verse(2) to invoke the second. The value inside the paren-

theses is called an argument.

09_417997-ch05.indd 10309_417997-ch05.indd 103 10/26/09 9:58 PM10/26/09 9:58 PM

104 Part I: Programming with JavaScript

The verse() function must be designed to accept an argument. Look at the

first line and you’ll see how I did it:

 function verse(verseNum){

I included a variable name, verseNum, in the function definition. Inside the

function, this variable is known as a parameter. (Don’t get hung up on the

terminology. People often use the terms “parameter” and “argument” inter-

changeably.) The important idea is this: Whenever the verse() function is

called, it automatically has a variable called verseNum. Whatever argument

you send to the verse() function from the main program will become the

value of the variable verseNum inside the function.

You can define a function with as many parameters as you want. Each param-

eter gives you the opportunity to send a piece of information to the function.

Determining the distraction
If you know the verse number, you can determine what distracts “the little

one” in the song. There are a couple of ways to do this, but a simple if /
else if structure is sufficient for this example:

 var distraction = “”;
 if (verseNum == 1){
 distraction = “suck his thumb.”;
 } else if (verseNum == 2){
 distraction = “tie his shoe.”;
 } else {
 distraction = “I have no idea.”;
 }

Here I initialized the variable distraction to be empty. If verseNum is 1,

set distraction to “suck his thumb.” If verseNum is 2, distraction

should be “tie his shoe”. Any other value for verseNum is treated as an

error by the else clause.

If you’re an experienced coder, you might be yelling at the program. I know, it

still isn’t optimal. Later in this chapter, I show an even better solution for han-

dling this particular situation with arrays.

09_417997-ch05.indd 10409_417997-ch05.indd 104 10/26/09 9:58 PM10/26/09 9:58 PM

105 Chapter 5: Functions, Arrays, and Objects

By the time this code segment is complete, there is a legitimate value for

both verseNum and distraction.

Creating the text
After you know these variables (verseNum and distraction), it’s pretty

easy to construct the output text:

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse1

There’s a whole lotta concatenatin’ going on, but it’s essentially the same

code as the original verse() function. This one’s just a lot more flexible,

because it can handle any verse. (Well, it can if the function has been pre-

loaded to understand how to handle the particular verse number. More on

that soon.)

Managing Scope
A function is much like an independent mini-program. Any variable you

create inside a function only has meaning inside that function. When the

function finishes executing, its variables disappear! This is actually a really

good thing. A major program will have hundreds of variables. They can be

very difficult to keep track of. It’s possible to re-use a variable name without

knowing it, or have a value changed inadvertently. When you break your

code into functions, each function has its own independent set of variables.

You don’t have to worry about whether the variables will cause problems

elsewhere.

09_417997-ch05.indd 10509_417997-ch05.indd 105 10/26/09 9:58 PM10/26/09 9:58 PM

106 Part I: Programming with JavaScript

Introducing local and global variables
You can also define variables at the main (script) level. These variables are

considered global variables. A global variable is available at the main level

and inside each function. A local variable (one defined inside a function) has

meaning only inside the function. The concept of local-versus-global func-

tions is sometimes referred to as scope.

Local variables are kind of like local police who have a limited geographical

jurisdiction, but are very useful within that space. They know the neighbor-

hood. Sometimes you’ll encounter situations that cross local jurisdictions.

This is the kind of situation that requires a state trooper or the FBI. Local

variables are local cops, and global variables are the FBI.

In general, try to make as many of your variables local as possible. The only

time you really need a global variable is when you want some information to

be used in multiple functions.

Examining variable scope
To understand the implications of variable scope, take a look at scope.
html:

 <script type = “text/javascript”>
 //<![CDATA[
 //from scope.html
 var globalVar = “I’m global!”;

 function myFunction(){
 var localVar = “I’m local”;
 console.log(localVar);
 }

 myFunction();

 //]]>
 </script>

This program defines two variables. globalVar is defined in the main code,

and localVar is defined inside a function. If you run the program in Debug

mode while watching the variables, you can see how they behave. Figure 5-2

shows what the program looks like early in the run.

09_417997-ch05.indd 10609_417997-ch05.indd 106 10/26/09 9:58 PM10/26/09 9:58 PM

107 Chapter 5: Functions, Arrays, and Objects

Note that localVar doesn’t have meaning until the function is called,

so it remains undefined until the computer gets to that part of the code.

Step ahead a few lines, and you’ll see localVar has a value, as shown in

Figure 5-3.

Be sure to use the Step Into technique for walking through a program rather

than Step Over for this example. When Step Over encounters a function, it

runs the entire function as one line. If you want to look into the function and

see what’s happening inside it (as you do here), use Step Into. Please look at

Chapter 4 if you need a refresher on using debugging modes.

Figure 5-2:
Here

globalVar is
defined, but

localVar
is not.

globalVar has a value, but localVar does not because the program
has not yet reached the funtion containing localVar.

Control has not been passed to the function yet.

09_417997-ch05.indd 10709_417997-ch05.indd 107 10/26/09 9:58 PM10/26/09 9:58 PM

108 Part I: Programming with JavaScript

Figure 5-3:
Behold!

localVar has
a value —

because I’m
inside the
function.

Be sure to step into a function to see what’s going on instead of stepping over the function.

Step Into

Step Over
The global variable still has
meaning and the local variable has a value.

Program Control is now inside the function.

Note that globalVar still has a value — and so does localVar, because it’s

inside the function.

If you move down the code a few more steps, you’ll find that localVar no

longer has a value when the function ends. This is illustrated in Figure 5-4.

Variable scope is a good thing because it means you only have to keep track

of global variables and the variables defined inside your current function.

The other advantage of scope is that you can re-use a variable name. You

can have ten different functions all using the same variable name and they

won’t interfere with each other, because each one is an entirely different

variable.

09_417997-ch05.indd 10809_417997-ch05.indd 108 10/26/09 9:58 PM10/26/09 9:58 PM

109 Chapter 5: Functions, Arrays, and Objects

Figure 5-4:
When the

function
ends, once

again local-
Var has no

meaning.

Now the local variable has no meaning because its function is no longer in memory.

Control has moved again outside the function.

Building a Basic Array
If a function is a group of code lines with a name, an array is similar; it’s a

group of variables with a name. An array is actually a special kind of variable

used to manage complexity. Use an array whenever you want to work with a

list of similar data types.

Storing a list of data in an array
The following code shows a basic demonstration of arrays:

 <script type = “text/javascript”>
 //<![CDATA[
 //from genres.html

 //creating an empty array
 var genre = new Array(5);

09_417997-ch05.indd 10909_417997-ch05.indd 109 10/26/09 9:58 PM10/26/09 9:58 PM

110 Part I: Programming with JavaScript

 //storing data in the array
 genre[0] = “flight simulation”;
 genre[1] = “first-person shooters”;
 genre[2] = “driving”;
 genre[3] = “action”;
 genre[4] = “strategy”;

 //returning data from the array
 alert (“I like “ + genre[4] + “ games.”);

 //]]>
 </script>

The variable genre is a special variable, because it contains many different

values. In essence, it is a list of game genres. The new Array(5) construct

creates space in memory for five variables, all named genre.

Accessing array data
After you’ve specified an array, you can work with the individual elements

using square brace syntax. Each element of the array is identified by an inte-

ger. The index usually begins with 0:

 genre[0] = “flight simulation”;

This line means: Assign the text value “flight simulation” to the genre

array variable at position 0.

Most languages require that all array elements be the same type. JavaScript

is very forgiving about this. You can combine all kinds of stuff in a JavaScript

array. This can sometimes be very useful, but be aware this trick won’t work

in all languages. In general, I try to keep all the members of an array the same

type. Don’t forget that array indices usually start with 0.

After you’ve got the data stored in the array, you can use the same square-

bracket syntax to read the information.

The line

 alert (“I like “ + genre[4] + “ games.”);

means “find element 4 of the genre array, and include it in an output

message.”

When genre.html is run, it shows what you see in Figure 5-5.

09_417997-ch05.indd 11009_417997-ch05.indd 110 10/26/09 9:58 PM10/26/09 9:58 PM

111 Chapter 5: Functions, Arrays, and Objects

Figure 5-5:
This data

came from
an array.

Using arrays with for loops
The main reason to use arrays is for convenience. When you have a lot of

information in an array, you can write code to work with the data quickly.

Whenever you have an array of data, you commonly want to do something

with each element in the array. Take a look at games.html to see how this

can be done:

 <script type = “text/javascript”>
 //<![CDATA[
 //from games.html

 //pre-loading an array
 var gameList = new Array(“Flight Gear”,

“Sauerbraten”,
 “Future Pinball”, “Racer”, “TORCS”, “Orbiter”,
 “Step Mania”, “NetHack”,
 “Marathon”, “Crimson Fields”);

 var text = “”;
 for (i = 0; i < gameList.length; i++){
 text += “I love “ + gameList[i] + “\n”;
 } // end for loop
 alert(text);

 //]]>
 </script>

This code has some noteworthy things about it:

 ✓ It features an array called gameList. This array contains the names of

some of my favorite freeware games.

 ✓ The array is pre-loaded with values. If you provide a list of values when

creating an array, JavaScript simply pre-loads the array with the values

you indicated. It isn’t necessary to specify the size of the array if you

pre-load it.

 ✓ A for loop steps through the array. Arrays and for loops are natural

companions. The for loop steps through each element of the array.

09_417997-ch05.indd 11109_417997-ch05.indd 111 10/26/09 9:58 PM10/26/09 9:58 PM

112 Part I: Programming with JavaScript

 ✓ The array’s length is used in the for loop condition. Rather than speci-

fying the value 10, I used the length property of the array in my for

loop. This is good, because the loop will automatically adjust to the size

of the array if I add or remove elements.

 ✓ It does something with each element. Because i goes from 0 to 9 (and

these are they array indices), I can easily print out each value of the

array. In this example, I simply add to an output string.

 ✓ Note the newline characters. The \n combination is a special character.

It tells JavaScript to add a carriage return (which is like pressing the

Enter key).

When games.html runs, it looks like Figure 5-6.

If you want to completely ruin your productivity, you might want to Google

some of these game names shown in Figure 5-6. They are absolutely incred-

ible, and every one of them is free. It’s hard to beat that. (See, even if you don’t

learn how to program in this book, you get something good out of it!)

Figure 5-6:
Now I’ve
got a list

of games.
Arrays

and loops
are fun!

Visiting the ants one more time
Just when you got that ant song out of your head, take a look at one more

variation. This one uses arrays and loops to simplify the code even more!

 <script type = “text/javascript”>
 //<![CDATA[
 //from antsArray.html

 var distractionList = new Array(“”, “suck his

thumb”, “tie his shoe”);

 function chorus() {
 var text = “...and they all go marching down\n”;
 text += “to the ground \n”;
 text += “to get out \n”;
 text += “of the rain. \n”;
 text += “ \n”;

09_417997-ch05.indd 11209_417997-ch05.indd 112 10/26/09 9:58 PM10/26/09 9:58 PM

113 Chapter 5: Functions, Arrays, and Objects

 text += “boom boom boom boom boom boom boom boom
\n”;

 return text;
 } // end chorus

 function verse(verseNum){
 //pull distraction from array
 var distraction = distractionList[verseNum];

 var text = “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum + “ hurrah,

hurrah \n”;
 text += “The ants go marching “;
 text += verseNum + “ by “ + verseNum;
 text += “ the little one stops to “;
 text += distraction;
 return text;
 } // end verse1

 //main code is now a loop
 for (verseNum = 1; verseNum < distractionList.

length; verseNum++){
 alert(verse(verseNum));
 alert(chorus());
 } // end for loop

 //]]>
 </script>

This code is just a little different from the antsParam program shown

earlier.

 ✓ It has an array called distractionList. This array is (despite the

misleading name) a list of distractions. I made the first one (element 0)

blank so the verse numbers would line up properly

 ✓ The verse() function looks up a distraction. Because distractions

are now in an array, the verseNum can be used as an index to loop up

a particular distraction. Compare this function to the verse() function

in antsParam. Although arrays require a little more planning than code

structures, they can highly improve the readability of your code.

 ✓ The main program is in a loop. I step through each element of the

distractionList array, printing out the appropriate verse and chorus.

 ✓ The chorus() function remains unchanged. There’s no need to

change chorus().

09_417997-ch05.indd 11309_417997-ch05.indd 113 10/26/09 9:58 PM10/26/09 9:58 PM

114 Part I: Programming with JavaScript

Working with Two-Dimensional Arrays
Arrays are useful when working with lists of data. Sometimes you’ll encoun-

ter data that’s best imagined in a table. For example, consider if you wanted

to build a distance calculator that determines the distance between two

cities. The original data might look like Table 5-1.

Table 5-1 Distances between Major Cities
0) Indianapolis 1) New York 2) Tokyo 3) London

0) Indianapolis 0 648 6476 4000

1) New York 648 0 6760 3470

2) Tokyo 6476 6760 0 5956

3) London 4000 3470 5956 0

Think about how you would use this table to figure out a distance. If you

wanted to travel from New York to London, for example, you’d pick out the

New York row and the London column and figure out where they intersect.

The data in that cell is the distance (3,470 miles).

When you look up information in any kind of a table you’re actually working

with a two-dimensional data structure. That’s a fancy term, but it just means

“table.” If you want to look something up in a table, you need two indices, one

to determine the row, and another to determine the column.

If this is difficult to grasp, think of the old game “Battleship.” The playing field

is a grid of squares. You announce “I-5” (meaning “column I, row 5”) and your

opponent looks in that grid to discover that you’ve sunk his battleship. In

programming, typically you use integers for both indices, but otherwise it’s

exactly the same: Any time you have two-dimensional data, you access it with

two indices.

Often we call these indices row and column to help you think of the

structure as a table. Sometimes there are better names that more clearly

describe how the behavior works. Take a look at Figure 5-7 and you’ll see

that the distance.html program asks for two cities and returns a dis-

tance according to the data table.

Yep, it’s possible to have 3-, 4-, and n-dimension arrays in programming, but

don’t worry about that yet. (It might make your head explode.) Most of the

time, 1 or 2 dimensions are all you need.

09_417997-ch05.indd 11409_417997-ch05.indd 114 10/26/09 9:58 PM10/26/09 9:58 PM

115 Chapter 5: Functions, Arrays, and Objects

Figure 5-7:
It’s a “Tale

of Two
Cities.” You

even get the
distance
between

them!

This program is a touch longer than some of the others, so I break it into

parts for easy digestion. Be sure to look at the program in its entirety on

either of the companion Web sites: www.dummies.com/go/javascript
andajaxfd or www.aharrisbooks.net/jad.

Setting up the arrays
The key to this program is the data organization. The first step is to set up

two arrays, and it looks like this:

 <script type = “text/javascript”>
 //<![CDATA[
 //from distance.html

 //cityName has the names of the cities
 cityName = new Array(“Indianapolis”, “New York”,

“Tokyo”, “London”);

 //create a 2-dimension array of distances
 distance = new Array (
 new Array (0, 648, 6476, 4000),
 new Array (648, 0, 6760, 3470),
 new Array (6476, 6760, 0, 5956),
 new Array (4000, 3470, 5956, 0)
);

09_417997-ch05.indd 11509_417997-ch05.indd 115 10/26/09 9:58 PM10/26/09 9:58 PM

116 Part I: Programming with JavaScript

The first array is an ordinary single-dimension array of city names. I’ve been

careful to always keep the cities in the same order, so whenever I refer to city

0, I’m talking about Indianapolis (my home town.) New York is always going

to be at position 1, and so on.

In your data design, take care that you always keep things in the same order.

Be sure to organize your data on paper before you type it into the computer,

so you’ll understand what value goes where.

The cityNames array has two jobs. First, it reminds me what order all the

cities will be in, and secondly, it gives me an easy way to get a city name when I

know an index. For example, I know that cityName[2] will always be “Tokyo.”

The distance array is very interesting. If you squint at it a little bit, it looks a

lot like Table 5-1. That’s because it is Table 5-1, just in a slightly different format.

Keep in mind that distance is an array. JavaScript arrays can hold just

about everything, including other arrays! That’s what distance does: It

holds an array of rows. Each element of the distance array is another

(unnamed) array holding all the data for that row. If you want to extract infor-

mation from the array, you need two pieces of information. First you need the

row. Then, because the row is an array, you need the column number within

that array. So distance[1][3] means. “Go to row one (New York) of the

array named distance. Within that row, go to element 3 (London) and

return the resulting value (3470).” Cool, huh?

Getting a city
The program requires that you ask for two cities. You want the user to enter

a city number, not a name, and you want to do this twice. This sounds like a

good time for a function:

 function getCity(){
 // presents a list of cities and gets a number

corresponding
 // to the city name
 var theCity = “”; //will hold the city number

 var cityMenu = “Please choose a city by typing a

number: \n”;
 cityMenu += “0) Indianapolis \n”;
 cityMenu += “1) New York \n”;
 cityMenu += “2) Tokyo \n”;
 cityMenu += “3) London \n”;

 theCity = prompt(cityMenu);
 return theCity;
 } // end getCity

09_417997-ch05.indd 11609_417997-ch05.indd 116 10/26/09 9:58 PM10/26/09 9:58 PM

117 Chapter 5: Functions, Arrays, and Objects

Here the getCity() function prints up a little menu of city choices, and asks

for some input. It then returns that input.

There’s all kinds of ways to improve getCity(). For one thing, maybe it

should repeat until you get a valid number, so that users can’t type in the city

name or do something else crazy. I’ll leave it simple for now. The next chapter

shows you how to use the elements of a user interface to help the user submit

only valid input.

Creating a main() function
The main() function handles most of the code for the program. Here’s what

that looks like:

 function main(){
 var output = “”;
 var from = getCity();
 var to = getCity();
 var result = distance[from][to];
 output = “The distance from “ + cityName[from];
 output += “ to “ + cityName[to];
 output += “ is “ + result + “ miles.”;
 alert(output);
 } // end main

 main();

In this code, the main() function controls traffic. Here’s how it works:

 1. Create an output variable.

 The point of this function is to create some text output describing the

distance. I begin by creating a variable called output and setting its ini-

tial value to empty.

 2. Get the city of origin.

 Fortunately, you’ve got a really great function called getCity() that

handles all the details of getting a city in the right format. Call this func-

tion and assign its value to the new variable from.

 3. Get the destination city.

 That getCity() function sure is handy. Use it again to get the city

number you’ll call to.

 4. Get the distance.

 Because you know two indices, and you know they’re in the right format,

you can simply look them up in the table. Look up distance[from]
[to] and store it in the variable result.

09_417997-ch05.indd 11709_417997-ch05.indd 117 10/26/09 9:58 PM10/26/09 9:58 PM

118 Part I: Programming with JavaScript

 5. Output the response.

 Use concatenation to build a suitable response string and send it to the

user.

 6. Get city names from the cityNames array.

 The program uses numeric indices for the cities, but these don’t mean

anything to the user. Use the cityNames array to retrieve the two city

names for the output.

 7. Run the main() function.

 There’s only one line of code that’s not in a function. That line calls the

main() function and starts the whole thing up.

I didn’t actually write the program in the order in which I showed it to you.

Sometimes it makes more sense to go “inside out” with your programming,

and that was the case here: I actually created the data structure first (as an

ordinary table on paper) and then constructed the main() function. This

made it obvious that I needed a getCity() function, and gave me some clues

about how getCity should work (that is, it should present a list of cities and

then prompt for a numerical input).

Creating Your Own Objects
So far, you’ve used a lot of wonderful objects in JavaScript — but that’s

just the beginning. It turns out you can build your own objects too, and

these objects can be very powerful and flexible. Objects typically have two

important components: properties and methods. A property is like a variable

associated with an object. It describes the object. A method is like a function

associated with an object. It describes things the object can do.

Functions allow you to put code segments together; arrays allow you to put

variables together; objects allow you to put both code segments and variables

(and in fact functions and arrays) in the same large construct.

Building a basic object
JavaScript makes it trivially easy to build an object. Because a variable can

contain any value, you can simply start treating a variable like an object and

it becomes one.

Figure 5-8 shows a critter that has a property.

09_417997-ch05.indd 11809_417997-ch05.indd 118 10/26/09 9:58 PM10/26/09 9:58 PM

119 Chapter 5: Functions, Arrays, and Objects

Figure 5-8:
This alert

box is actu-
ally using an

object.

Take a look at the following code:

 //from basicObject.html
 //create the critter
 var critter = new Object();

 //add some properties
 critter.name = “Milo”;
 critter.age = 5;

 //view property values
 alert(“the critter’s name is “ + critter.name + “.”);

The way it works is not difficult to follow:

 1. Create a new object.

 JavaScript has a built-in object called Object. Make a variable with the

new Object() syntax, and you’ll build yourself a shiny new standard

object.

 2. Add properties to the object.

 A property is like a subvariable. It’s nothing more than a variable

attached to a specific object. When you assign a value to critter.
name, for example, you’re specifying that critter has a property called

name and you’re also giving it a starting value.

 3. An object can have any number of properties.

 Just keep adding properties. This allows you to group a number of vari-

ables into one larger object.

 4. Each property can contain any type of data.

 Unlike arrays — in which it’s common for all the elements to contain

exactly the same type of data — each property can have a different type.

 5. Use the dot syntax to view or change a property.

 If the critter object has a name property, you can use critter.
name as a variable. Like other variables, you can change the value by

assigning a new value to city.name or you can read the content of

the property.

09_417997-ch05.indd 11909_417997-ch05.indd 119 10/26/09 9:58 PM10/26/09 9:58 PM

120 Part I: Programming with JavaScript

If you’re used to a stricter object-oriented language like Java, you’ll find

JavaScript’s easy-going attitude quite strange and maybe a bit sloppy. Other

languages do have a lot more rules about how objects are made and used, but

JavaScript’s approach does have its charms. Don’t get too tied up in the differ-

ences. The way JavaScript handles objects is powerful and refreshing.

Adding methods to an object
Objects have other characteristics besides properties. They can also have

methods. A method is simply a function attached to an object. To see what

I’m talking about, take a look at this example:

 //create the critter
 //from addingMethods.html
 var critter = new Object();

 //add some properties
 critter.name = “Milo”;
 critter.age = 5;

 //create a method
 critter.talk = function(){
 msg = “Hi! My name is “ + this.name;
 msg += “ and I’m “ + this.age;
 alert(msg);
 }; // end method

 // call the talk method
 critter.talk();

This example extends the critter object described in the last section. In

addition to properties, the new critter has a talk() method. If a prop-

erty describes a characteristic of an object, a method describes something

the object can do. Figure 5-9 illustrates the critter showing off its talk()

method.

Figure 5-9:
Now the

critter can
talk!

Here’s how it works:

 1. Build an object with whatever properties you need.

 Begin by building an object and giving it some properties.

09_417997-ch05.indd 12009_417997-ch05.indd 120 10/26/09 9:58 PM10/26/09 9:58 PM

121 Chapter 5: Functions, Arrays, and Objects

 2. Define a method much like a property.

 In fact, methods are properties in JavaScript, but don’t worry too much

about that — it’ll make your head explode.

 3. You can assign a pre-built function to a method.

 If you’ve already created a function that you want to use as a method,

you can simply assign it.

 4. You can also create an anonymous function.

 More often, you’ll want to create your method right away. You can

create a function immediately with the function(){ syntax.

 5. The this keyword refers to the current object.

 Inside the function, you might want to access the properties of the

object. this.name refers to the name property of the current object.

 6. You can then refer to the method directly.

 After you’ve defined an object with a method, you can invoke it. For

example, if the critter object has a talk() method, use critter.
talk() to invoke this method.

Building a re-usable object
These objects are nice, but what if you want to build several objects with

the same definition? JavaScript supports an idea called a constructor, which

allows you to define an object pattern and re-use it.

Here’s an example:

//building a constructor
//from constructor.html
function Critter(lName, lAge){
 this.name = lName;
 this.age = lAge;
 this.talk = function(){
 msg = “Hi! My name is “ + this.name;
 msg += “ and I’m “ + this.age;
 alert(msg);
 } // end talk method
} // end Critter class def

function main(){
 //build two critters

 critterA = new Critter(“Alpha”, 1);

09_417997-ch05.indd 12109_417997-ch05.indd 121 10/26/09 9:58 PM10/26/09 9:58 PM

122 Part I: Programming with JavaScript

 critterB = new Critter(“Beta”, 2);
 critterB.name = “Charlie”;
 critterB.age = 3;

 //have ‘em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

This example involves creating a class (a pattern for generating objects) and

re-using that definition to build two different critters. First, look over how the

class definition works:

 1. Build an ordinary function.

 JavaScript classes are defined as extensions of a function. The function

name will also be the class name. Note that the name of a class function

normally begins with an uppercase letter. When a function is used in this

way to describe an object, the function is called the object’s construc-

tor. The constructor can take parameters if you wish, but it normally

does not return any values. In my particular example, I add parameters

for name and age.

 2. Use this to define properties.

 Add any properties you want, including default values. Note that you’ll

be able to change those values later if you like. Each property should

begin with this and a period, so if you want your object to have a

color property, you’d say something like this.color = “blue”;.

My example uses the local parameters to define the properties. This is

a very common practice, because it’s an easy way to pre-load important

properties.

 3. Use this to define any methods you want.

 If you want your object to have methods, define them using the this

operator followed by the function(){ keyword. You can add as many

functions as you want.

The way JavaScript defines and uses objects is easy but a little nonstandard.

Most other languages that support object-oriented programming do it in a

different way than the technique described here. Some would argue that

JavaScript is not a true OOP language, as it doesn’t support a feature called

inheritance, but instead uses a feature called prototyping. The difference isn’t

all that critical; most uses of OOP in JavaScript are very simple objects like the

ones described here or JSON, described later in this chapter. Just appreciate

that the introduction to object-oriented programming here is very cursory,

but enough to get you started.

09_417997-ch05.indd 12209_417997-ch05.indd 122 10/26/09 9:58 PM10/26/09 9:58 PM

123 Chapter 5: Functions, Arrays, and Objects

Using your shiny new objects
When you’ve defined a class, you can re-use it. Look again at the main func-

tion to see how I use my newly minted Critter class:

function main(){
 //build two critters

 critterA = new Critter(“Alpha”, 1);

 critterB = new Critter(“Beta”, 2);
 critterB.name = “Charlie”;
 critterB.age = 3;

 //have ‘em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

After a class is defined, you can use it as a new data type. This is a very pow-

erful capability. Here’s how it works:

 1. Be sure you have access to the class.

 A class isn’t useful unless JavaScript already knows about it. In this

example, the class is defined within the code.

 2. Create an instance of the class with the new keyword.

 The new keyword means you want to make a particular critter based

on the definition. Normally you’ll assign this to a variable. My construc-

tor expects the name and age to be supplied, so it automatically creates

a critter with the given name and age.

 3. Modify the class properties as you want.

 You can change the values of any of the class properties. In my example,

I change the name and age of the second critter just to show how it’s

done.

 4. Call class methods.

 Because the Critter class has a talk() method, you can use it when-

ever you want a particular critter to talk.

09_417997-ch05.indd 12309_417997-ch05.indd 123 10/26/09 9:58 PM10/26/09 9:58 PM

124 Part I: Programming with JavaScript

Introducing JSON
JavaScript objects and arrays are incredibly flexible. In fact, they are so well-

known for their power and ease of use, that a special data format called JSON

(JavaScript Object Notation) has now been adopted by many other languages.

JSON is mainly used as a way to store complex data (especially multi-

dimension arrays) and pass the data from program to program. JSON is

essentially another way of describing complex data in a JavaScript Object

format. When you describe data in JSON, you generally do not need a con-

structor, because the data itself is used to determine the structure of the

class.

JSON data is becoming a very important part of Web programming, because

it allows an easy mechanism for transporting data between programs and

programming languages. Throughout this book (especially in the sections

on AJAX and the jQuery library), you’ll see JSON used extensively to manage

complex data easily.

Storing data in JSON format
To see how JSON works, begin by looking at this simple code fragment:

 var critter = {
 “name”: “George”,
 “age”: 10
 };

This code describes a critter with two properties, a name and an age. The

critter looks much like an array, but rather than using a numeric index (as

most arrays do), the critter has string values to serve as indices. It is, in

fact, an object.

You can refer to the individual elements with a variation of array syntax, like

this:

alert(critter[“name”]);

You can also use what’s called dot notation (as used in objects,) like this:

alert(critter.age);

Both notations work in the same way. Most of the built-in JavaScript objects

use the dot notation, but either is acceptable.

09_417997-ch05.indd 12409_417997-ch05.indd 124 10/26/09 9:58 PM10/26/09 9:58 PM

125 Chapter 5: Functions, Arrays, and Objects

The reason JavaScript arrays are so useful is that they are in fact objects.

When you create an array in JavaScript, you are building an object with

numerical property names. This is why you can use either array or object

syntax for managing JSON object properties.

Look at jsonDistance.html on my Web site (www.aharrisbooks.net/
jad) to see the code from this section in action. I don’t show a figure here,

because all the interesting work happens in the code.

Here’s how to store data in JSON notation:

 1. Create the variable.

 You can use the var statement like you do any variable.

 2. Contain the content within braces({}).

 This is the same mechanism you use to create a pre-loaded array (as

described earlier in this chapter).

 3. Designate a key.

 For the critter, I want the properties to be named “name” and “age” —

that is, with words rather than numeric indices. For each property, I begin

with the property name. The key can be a string or an integer.

 4. Follow the key with a colon (:).

 The key is followed by the colon character.

 5. Create the value associated with that key.

 You can then associate any type of value you want with the key. In this

case, I associate the value “George” with the key “name”.

 6. Separate each name/value pair with a comma (,).

 You can add as many name/value pairs as you want.

If you’re familiar with other programming languages, you might think of a

JSON structure as being like a hash table or associative array. JavaScript does

use JSON structures in the same way these other structures are used, but it

isn’t quite accurate to say JSON is either a hash or an associative array. It’s

simply an object. (But if you want to think of it as one of those things, I won’t

tell anybody.)

Building a more complex JSON structure
JSON is convenient because it can be used to handle quite complex data

structures. For example, look at the following (oddly familiar) data structure

written in JSON format:

09_417997-ch05.indd 12509_417997-ch05.indd 125 10/26/09 9:58 PM10/26/09 9:58 PM

126 Part I: Programming with JavaScript

 var distance = {
 “Indianapolis” :
 { “Indianapolis”: 0,
 “New York”: 648,
 “Tokyo”: 6476,
 “London”: 4000 },

 “New York” :
 { “Indianapolis”: 648,
 “New York”: 0,
 “Tokyo”: 6760,
 “London”: 3470 },

 “Tokyo” :
 { “Indianapolis”: 6476,
 “New York”: 6760,
 “Tokyo”: 0,
 “London”: 5956 },

 “London” :
 { “Indianapolis”: 4000,
 “New York”: 3470,
 “Tokyo”: 5956,
 “London”: 0 },
 };

This data structure is another way of representing the distance data used to

describe two-dimension arrays. This is another two-dimension array, but it is

a little different than the one previously described.

 ✓ distance is a JSON object. The entire data structure is stored in a

single variable. This variable is a JSON object with name/value pairs.

 ✓ The distance object has four keys. These correspond to the four rows

of the original chart.

 ✓ The keys are actual city names. The original 2D array used numeric

indices, which are convenient but a bit artificial. In the JSON structure,

the indices are the actual city names.

 ✓ The value of each entry is another JSON object. The value of a JSON

element can be anything, including another JSON object. Very complex

relationships can be summarized in a single variable.

 ✓ Each row is summarized as a JSON object. For example, the value asso-

ciated with “Indianapolis” is a list of distances from Indianapolis to

the various cities.

 ✓ The entire declaration is one “line” of code. Although placed on sev-

eral lines in the editor (for clarity), the entire definition is really just one

line of code.

09_417997-ch05.indd 12609_417997-ch05.indd 126 10/26/09 9:58 PM10/26/09 9:58 PM

127 Chapter 5: Functions, Arrays, and Objects

Setting up the data in this way seems a bit tedious, but it’s very easy to work

with. The city names are used directly to extract data, so you can find the

distance between two cities with array-like syntax:

 alert(distance[“Indianapolis”][“London”]);

If you prefer, you can use the dot syntax:

 alert(distance.Indianapolis.Tokyo);

You can even go with some kind of hybrid:

 alert(distance[“London”].Tokyo);

JSON has a number of important advantages as a data format:

 ✓ It is self-documenting. Even if you see the data structure on its own

without any code around it, you can tell what it means.

 ✓ The use of strings as indices makes the code more readable. It’s much

easier to understand distance[“Indianapolis”][“London”] than

to decipher distance[0][3].

 ✓ JSON data can be stored and transported as text. This turns out to

have profound implications for Web programming, especially in AJAX

(the techniques described elsewhere in this book).

 ✓ JSON can describe complex relationships. The example shown here

is a simple two-dimension array, but the JSON format can be used to

describe much more complex relationships — including complete

databases.

 ✓ Many languages support JSON format. Many Web languages now offer

direct support for JSON. The most important of these is PHP, which is

very frequently used with JavaScript in AJAX applications.

 ✓ JSON is more compact than XML. Another data format called XML is

frequently used to transmit complex data. However, JSON is more com-

pact and less “wordy” than XML.

 ✓ JavaScript can read JSON natively. Some kinds of must be translated

before they can be used. As soon as your JavaScript program has access

to JSON data, it can be used directly.

You might wonder whether you can embed methods in JSON objects. The

answer is yes, but this isn’t usually done when you’re using JSON to transport

information. In Part III of this book about AJAX, you’ll see that methods are

often added to JSON objects to serve as callback functions, but that usage

won’t make sense until you get more familiar with events. To get a start on

that, flip to Chapter 14.

09_417997-ch05.indd 12709_417997-ch05.indd 127 10/26/09 9:58 PM10/26/09 9:58 PM

128 Part I: Programming with JavaScript

09_417997-ch05.indd 12809_417997-ch05.indd 128 10/26/09 9:58 PM10/26/09 9:58 PM

Part II
Using JavaScript

to Enhance
Your Pages

10_417997-pp02.indd 12910_417997-pp02.indd 129 10/26/09 9:58 PM10/26/09 9:58 PM

In this part . . .
JavaScript was developed as a language for manipulat-

ing Web pages. Use this part to learn how JavaScript

interacts directly with the Web page.

Chapter 6 describes the powerful Document Object

Model, and how this mechanism lets your JavaScript pro-

grams interact with the Web page. You’ll learn how to lis-

ten for button events, and how to change parts of the

page on the fly.

Chapter 7 describes ways to get more reliable input. First

you learn how to use specialized user interface elements

like list boxes and radio buttons. Secondly, you learn how

to use regular expressions to ensure the value of text

fields is in the correct format.

Chapter 8 teaches how to animate your page. You learn

how to move page elements around on the page under

user or program control. You learn how to animate ele-

ments and how to pre-load images for more efficient ani-

mation. You also learn how to read the keyboard and

mouse.

10_417997-pp02.indd 13010_417997-pp02.indd 130 10/26/09 9:58 PM10/26/09 9:58 PM

Chapter 6

Talking to the Page
In This Chapter
▶ Introducing the Document Object Model

▶ Responding to form events

▶ Connecting a button to a function

▶ Retrieving data from text fields

▶ Changing text in text fields

▶ Sending data to the page

▶ Working with other text-related form elements

▶ Viewing the source of dynamically generated code

JavaScript is fun and all, but it lives in Web browsers for a reason: to let

you change Web pages. The best thing about JavaScript is how it helps

you control the page. You can use JavaScript to read useful information from

the user and to change the page on the fly.

Understanding the Document
Object Model

JavaScript programs usually live in the context of a Web page. The contents

of the page are available to the JavaScript programs through a mechanism

called the Document Object Model (DOM).

The DOM is a special set of complex variables that encapsulate the entire

contents of the Web page. You can use JavaScript to read from the DOM and

determine the status of an element. You can also modify a DOM variable and

change the page from within JavaScript code.

11_417997-ch06.indd 13111_417997-ch06.indd 131 10/26/09 9:59 PM10/26/09 9:59 PM

132 Part II: Using JavaScript to Enhance Your Pages

Navigating the DOM
The easiest way to get a feel for the DOM is to load up a page in Firefox and

look at the Firebug window’s DOM tab. I do just that in Figure 6-1. In order to

see what’s happening with the DOM, I’m using the Firebug extension. Check

back to Chapter 1 if you need a refresher on using Firebug. Note also that

some versions of Firebug (especially on the Mac) are slightly different, but

the general idea is the same.

When you look over the DOM of a very simple page, it’s easy to get over-

whelmed. You’ll see a lot of variables listed. Technically, these are all ele-

ments of a special object called window. The window object has a huge

number of subobjects, all listed in the DOM view. Table 6-1 describes a few

important window variables.

Table 6-1 Primary DOM Objects
Variable Description Notes

document Represents XHTML page Most commonly scripted element.

location Describes current URL Change location.href to move to a
new page.

history A list of recently visited pages Access this to view previous
pages.

status The browser status bar Change this to set a message in
the status bar.

Changing DOM properties with Firebug
To illustrate the power of the DOM, try this experiment in Firefox:

 1. Load any page.

 It doesn’t matter what page you work with. I’ll use simple.html, a very

basic page with only an <h1> header.

 2. Enable the Firebug extension.

 You can play with the DOM in many ways, but the Firebug extension is

one of the easiest and most powerful tools for experimentation.

 3. Enable the DOM tab.

 This shows you a list of all the top-level variables.

11_417997-ch06.indd 13211_417997-ch06.indd 132 10/26/09 9:59 PM10/26/09 9:59 PM

133 Chapter 6: Talking to the Page

Figure 6-1:
Even a

simple page
has a com-
plex DOM.

You can view the DOM and interact with it in real time.

 4. Scroll down until you see the status element.

 When you find the status element, double-click it.

 5. Type in a message to yourself.

 In a dialog box that appears, type something in and press Enter.

 6. Look at the bottom of the browser.

 The status bar at the bottom of the browser window should now contain

your message!

 7. Experiment on your own.

 Play around with the various elements in the DOM list. Many of them

can be modified. Try changing window.location.href to any URL

and watch what happens. (Don’t worry — you can’t permanently break

anything here.)

 This DOM experiment doesn’t always work. You might have extensions that

block the DOM, or it might not do exactly what you want. If this experiment

does not work, just move on. You’ll never really do it this way again. Once you

learn how easy it is to manipulate the DOM through code, that’s the only way

you’ll want to do it.

11_417997-ch06.indd 13311_417997-ch06.indd 133 10/26/09 9:59 PM10/26/09 9:59 PM

134 Part II: Using JavaScript to Enhance Your Pages

Examining the document object
If the window object is powerful, its offspring — the document object — is

even more amazing.

Once again, the best way to get a feel for this thing is to do some exploring:

 1. Reload simple.html again.

 If your previous experiments caused things to get really weird, you

might have to restart Firefox. Be sure the Firebug extension is showing

the DOM tab.

 2. Find the document object.

 This is usually early in the window list. When you select document, it

expands, showing a huge number of child elements.

 3. Look for the document.body.

 Somewhere in the document you’ll see the body. Select this to see what

you discover.

 4. Find the document.body.style.

 The document object has a body object, and the body object has a

style subobject. Will it never end?

 5. Look through the style elements.

 Some of the styles will be unfamiliar, but keep going and you’ll see some

old friends.

 6. Double-click backgroundColor.

 Each CSS style attribute has a matching (but not quite identical) coun-

terpart in the DOM. Wow. Type a new color (using a color name or hex

color) and see what happens.

 7. Marvel at your cleverness.

 You can navigate the DOM to make all kinds of changes in the page. If

you can manipulate something here, you can write code to do it to.

If you’re lost here, Figure 6-2 shows me modifying the backgroundColor of

the style of the body of the document (on a wing on a bird on a branch on

a tree in a hole in the ground). A figure can’t really do this process justice,

though. You have to experiment for yourself. But don’t be overwhelmed. You

don’t really need to master the details of exactly how the Firebug DOM stuff

works. Just know it’s there, because it’s the foundation of all the cool stuff

you do next.

11_417997-ch06.indd 13411_417997-ch06.indd 134 10/26/09 9:59 PM10/26/09 9:59 PM

135 Chapter 6: Talking to the Page

Figure 6-2:
Firebug lets

me modify
the DOM

of my page
directly.

Harnessing the DOM through JavaScript
Sure, using Firebug to trick out your Web page is geeky and all, but why

should you care? The whole purpose of the DOM is to provide JavaScript

magical access to all the inner workings of your page.

Getting the blues, JavaScript-style
It all gets to be fun when you start to write JavaScript code to access the

DOM. Take a look at blue.html in Figure 6-3.

Figure 6-3:
This page is

blue (trust
me, it is).

But where’s
the CSS?

11_417997-ch06.indd 13511_417997-ch06.indd 135 10/26/09 9:59 PM10/26/09 9:59 PM

136 Part II: Using JavaScript to Enhance Your Pages

The page has white text on a blue background, but there’s no CSS! Instead, it

has a small script that changes the DOM directly, controlling the page colors

through code. The script looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>blue.html</title>

 </head>

 <body>
 <h1>I’ve got the JavaScript Blues</h1>
 <script type = «text/javascript»>
 //<![CDATA[

 // use javascript to set the colors
 document.body.style.color = «white»;
 document.body.style.backgroundColor = «blue»;

 //]]>
 </script>
 </body>
</html>

In the first few chapters of this book I concentrated on JavaScript without

worrying at all about the HTML. The HTML code in those programs was unim-

portant, so I didn’t include it in the code listings. This chapter is about how

to integrate code with HTML, so now I incorporate the HTML as well as the

Shouldn’t it be “background-color?”
If you’ve dug through the DOM-style elements,
you’ll notice some interesting things. For open-
ers, many of the element names are familiar
but not quite identical: background-color
becomes backgroundColor and font-
weight becomes fontWeight. CSS uses
dashes to indicate word breaks, and the DOM

combines words and uses capitalization for
clarity. You’ll find all your old favorite CSS ele-
ments, but the names change according to this
very predictable formula. Still, if you’re ever
confused, just use the Firebug DOM inspector
to look over various style elements.

11_417997-ch06.indd 13611_417997-ch06.indd 136 10/26/09 9:59 PM10/26/09 9:59 PM

137 Chapter 6: Talking to the Page

JavaScript segments. Sometimes I still print out code in separate blocks, so (as

always) try to look at the code in its natural habitat, on either of the compan-

ion Web sites (www.aharrisbooks.net/jad or www.dummies.com/go/
javascriptandajaxfd) through your browser.

Writing JavaScript code to change colors
The page is pretty simple, but it has a few new features:

 ✓ It has no CSS. A form of CSS will be dynamically created through the

code.

 ✓ The script is in the body. I can’t place this particular script in the

header, because it refers to the body.

When the browser first sees the script, there must be a body for the text

to change. If I put the script in the head, there is no body yet when the

browser reads the code, so it gets confused. If I place the script in the

body, then there is a body, so the script can change it. (It’s really okay if

you don’t get this nuance at first. This is probably the only time you’ll see

this particular trick, because I’ll show a better way in the next example.)

 ✓ Use a DOM reference to change the style colors. That long “trail of

breadcrumbs” syntax takes you all the way from the document through

the body to the style and finally to the color. It’s tedious but thorough.

 ✓ Set the foreground color to white. You can change the color property

to any valid CSS color value (a color name or a hex value). It’s just like

CSS, because you are affecting the CSS.

 ✓ Set the background color to blue. Again, this is just like setting CSS.

Managing Button Events
Of course, there’s no good reason to write code such as blue.html. It’s just

as easy to build CSS as it is to write JavaScript. The advantage comes when

you use the DOM dynamically to change the page’s behavior after it has fin-

ished loading.

Figure 6-4 shows a page called “backgroundColors.html”.

The page is set up with the default white background color. It has two but-

tons on it, which should change the body’s background color. Click the blue

button, and you’ll see that it works, as verified in Figure 6-5.

11_417997-ch06.indd 13711_417997-ch06.indd 137 10/26/09 9:59 PM10/26/09 9:59 PM

138 Part II: Using JavaScript to Enhance Your Pages

Figure 6-4:
The page is
white with

two buttons.
I’ve gotta

click blue.

Figure 6-5:
It turned

blue! Joy!

11_417997-ch06.indd 13811_417997-ch06.indd 138 10/26/09 9:59 PM10/26/09 9:59 PM

139 Chapter 6: Talking to the Page

Again, the color change isn’t very convincing in a black-and-white book. You

should be able to tell from the figures that the color did indeed change, but

look on the Web site for real color-changing action. Some really exciting

things just happened:

 ✓ The page has a form. If you need a refresher on form elements, please

check out Bonus Chapter 1 on either of the companion Web sites (www.
dummies.com/go/javascriptandajaxfd or www.aharrisbooks.
net/jad).

 ✓ The button does something. Plain old XHTML forms don’t really do any-

thing; you’ve got to write some kind of programming code to accomplish

that. This program does something before your eyes.

 ✓ There’s a setColor() function. The page has a function that takes a

color name and applies it to the background style.

 ✓ Both buttons pass information to the setColor() function. The color

name will be passed as a parameter to the setColor() function.

Setting up the playground
That’s an overview. Take a closer look at the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/

xhtml»>
 <head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <title>backgroundColors</title>
 <script type = “text/javascript”>
 //<![CDATA[
 // from backgroundColors

 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor

 //]]>
 </script>
 </head>

11_417997-ch06.indd 13911_417997-ch06.indd 139 10/26/09 9:59 PM10/26/09 9:59 PM

140 Part II: Using JavaScript to Enhance Your Pages

 <body>
 <h1>Click a button to change the color</h1>
 <form action = “”>
 <fieldset>
 <input type = “button”
 value = “blue”
 onclick = “changeColor(‘blue’)”/>

 <input type = “button”
 value = “white”
 onclick = “changeColor(‘white’)” />
 </fieldset>

 </form>
 </body>
</html>

Most Web pages actually treat the XHTML page as the user interface and the

JavaScript as the event-manipulation code that goes underneath. It makes

sense, then, to look at the HTML code that acts as the playground first.

 ✓ It contains a form. Note that the form’s action attribute is still empty.

You won’t mess with that until you work with the server in Chapter 14.

 ✓ The form has a fieldset. The input elements need to be inside some-

thing, and a fieldset seems like a pretty natural choice.

 ✓ The page has two buttons. The two buttons on the page are nothing

new, but they’ve never done anything before.

 ✓ The buttons both have onclick attributes. This special attribute can

accept one line of JavaScript code. Usually that line calls a function, as I

have done in this program.

 ✓ Each button calls the same function, but with a different parameter.

Both buttons call changeColor(), but one sends the value “blue” and

the other “white”.

 ✓ Presumably, changeColor will change a color. That’s exactly what it

will do. In fact, it will change the background color.

Generally I write the XHTML code first before the script. As you can see,

the form provides all kinds of useful information that will help me make the

script. Specifically, it’s clear that I need to write a function called change-
Color(), this function should take a color name as a parameter, and should

change the background to the indicated color. With that kind of information

established, the function is half-written!

11_417997-ch06.indd 14011_417997-ch06.indd 140 10/26/09 9:59 PM10/26/09 9:59 PM

141 Chapter 6: Talking to the Page

Embedding quotes within quotes
Take a careful look at the onclick lines. There’s one important issue you

might not have noticed: onclick is an XHTML parameter, and its value must

be encased in quotes. The parameter happens to be a function call that sends

a string value. String values must also be in quotes. This could be very con-

fusing if you used double quotes everywhere, because the browser has no

way to know the quotes are nested. If your code looks like this . . .

 onclick = “changeColor(“white”)” />

. . . then XHTML will think the onclick parameter contains the value

“changeColor)” and it will have no idea what white”)” is.

Fortunately, JavaScript has an easy fix for this problem: If you want to embed

a quote inside another quote, just switch to single quotes. The line is written

with the parameter inside single quotes:

 onclick = “changeColor(‘white’)” />

Writing the changeColor function
The changeColor() function is pretty easy to write. Voilá . . .

 <script type = «text/javascript»>
 //<![CDATA[
 // from backgroundColors

 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor

 //]]>
 </script>

It goes in the header area as normal. It’s simply a function accepting one

parameter called color. The body’s backgroundColor property is set to

color.

This time I can write JavaScript in the header that refers to the body because

the header code is all in a function. The function is read before the body is in

place, but it isn’t activated until the user clicks the button. By this time, there’s

a body — and there’s no problem.

11_417997-ch06.indd 14111_417997-ch06.indd 141 10/26/09 9:59 PM10/26/09 9:59 PM

142 Part II: Using JavaScript to Enhance Your Pages

Interacting with Text Input and Output
Perhaps the most intriguing application of the DOM is the ability to let the

user communicate with the program through the Web page, without all those

annoying dialog boxes. Figure 6-6 shows a page with a Web form containing

two text boxes and a button.

Figure 6-6:
I’ve typed a

name into
the top

text box.

When you click the button, something exciting happens, as demonstrated by

Figure 6-7.

Figure 6-7:
I got a

greeting!
With no

alert box!

Clearly, form-based input and output are preferable to the constant interrup-

tion of dialog boxes.

Introducing event-driven programming
Graphic user interfaces usually use a technique called event-driven program-
ming. The idea is simple:

 1. Create a user interface.

 In Web pages, the user interface is usually built of XHTML and CSS.

 2. Identify events the program should respond to.

 If you have a button, users will click it. (If you want to guarantee they

click it, put the text “launch the missiles” on the button. I don’t know

why, but it always works.) Buttons almost always have events. Some

other elements do, too.

11_417997-ch06.indd 14211_417997-ch06.indd 142 10/26/09 9:59 PM10/26/09 9:59 PM

143 Chapter 6: Talking to the Page

 3. Write a function to respond to each event.

 For each event you want to test, write a function that does whatever

needs to happen.

 4. Get information from form elements.

 Now you are accessing the contents of form elements to get information

from the user. You’ll need a mechanism for getting information from a

text field and other form elements.

 5. Use form elements for output.

 For this simple example, I also use form elements for output. The output

goes in a second text box, even though I don’t intend for the user to type

any text there.

Creating the XHTML form
The first step is to create the XHTML framework. Here’s the XHTML code:

 <title>textBoxes.html</title>

 <link rel = “stylesheet”
 type = “text/css”
 href = “textBoxes.css” />

 </head>

 <body>
 <h1>Text Box Input and Output</h1>
 <form action = “”>
 <fieldset>
 <label>Type your name: </label>
 <input type = “text”
 id = “txtName” />

 <input type = “button”
 value = “click me”
 onclick = “sayHi()”/>

 <input type = “text”
 id = “txtOutput” />
 </fieldset>
 </form>

 </body>
</html>

As you look over the code, note a few important ideas:

11_417997-ch06.indd 14311_417997-ch06.indd 143 10/26/09 9:59 PM10/26/09 9:59 PM

144 Part II: Using JavaScript to Enhance Your Pages

 ✓ The page uses external CSS. The CSS style is nice, but it’s not important

in the discussion here. It stays safely encapsulated in its own file. Of

course, you’re welcome to look it over or change it.

 ✓ Most of the page is a form. All form elements must be inside a form.

 ✓ A fieldset is used to contain form elements. input elements need to

be inside some sort of block-level element, and a fieldset is a natural

choice.

 ✓ There’s a text field named txtName. This text field will contain the name.

I begin with the phrase txt to remind myself that this is a text box.

 ✓ The second element is a button. It isn’t necessary to give the button an

ID (as it won’t be referred to in code), but it does have an onclick()

event.

 ✓ The button’s onclick() event refers to a (yet undefined) function.

The onclick() event is named “sayHi()”.

 ✓ A second text box will contain the greeting. This second text box is

called txtOutput because it’s the text field meant for output.

After you’ve set up the HTML page, the function becomes pretty easy to

write, because you’ve already identified all the major constructs. You know

you’ll need a function called sayHi(), and this function will read text from

the txtName field and write to the txtOutput field.

Using getElementById() to get
access to the page
XHTML is one thing, and JavaScript is another. You need some way to turn

an HTML form element into something JavaScript can read. The magical

getElementById() method does exactly that. First, look at the first two

lines of the sayHi() function (defined in the header as usual):

 function sayHi(){
 var txtName = document.getElementById(“txtName”);
 var txtOutput = document.

getElementById(“txtOutput”);

Every element created in your Web page can be extracted by digging through

the DOM. In the old days, this is how we used to access form elements. It was

ugly and tedious. Modern browsers have the wonderful getElementById()

function instead. This beauty searches through the DOM and returns a refer-

ence to an object with the requested ID.

11_417997-ch06.indd 14411_417997-ch06.indd 144 10/26/09 9:59 PM10/26/09 9:59 PM

145 Chapter 6: Talking to the Page

A reference is simply an indicator where the specified object is in memory.

You can store a reference in a variable. Manipulating this variable manipulates

the object it represents. If you want, you can think of it as making the text box

into a variable.

Note that I call the variable txtName, so its name is just like that of the origi-

nal text box. This variable refers to the text field from the form, not the value

of that text field. When I have a reference to the text field object, I can use its

methods and properties to extract data from it and send new values to it.

Manipulating the text fields
When you have access to the text fields, you can manipulate the values of

these fields with the value property:

 var name = txtName.value;
 txtOutput.value = “Hi there, “ + name + “!”

Text fields (and in fact all input fields) have a value property. You can read

this value as an ordinary string variable. You can also write to this property,

and the text field will be updated on the fly.

This code, created by the following steps, handles the data input and output:

 1. Create a variable for the name.

 This is an ordinary string variable.

 2. Copy the value of the text box into the variable.

 Now that you have a variable representing the text box, you can access

its value property to get the value typed in by the user.

 3. Create a message for the user using ordinary string concatenation.

 4. Send the message to the output text box.

 You can also write text to the value property, which will change the

contents of the text field on the screen.

Text fields always return string values (just as prompts do). If you want to

pull a numeric value from a text field, you might have to convert it with the

parseInt() or parseFloat() functions.

11_417997-ch06.indd 14511_417997-ch06.indd 145 10/26/09 9:59 PM10/26/09 9:59 PM

146 Part II: Using JavaScript to Enhance Your Pages

Writing to the Document
Form elements are great for getting input from the user, but they are not

ideal for output. It really doesn’t make much sense for the output to be

placed in an editable field. It would be much better to actually change the

Web document.

The DOM supports exactly such a technique. Most XHTML elements feature

an innerHTML property. This property describes the HTML code inside the

element. In most cases, it can be read from and written to.

So what are the exceptions? Single-element tags (like and <input>)

don’t contain any HTML, so obviously it doesn’t make sense to read or change

their inner HTML. Table elements can often be read from but not changed

directly.

Figure 6-8 shows a program with a basic form.

Figure 6-8:
Wait —

there’s no
output text

field!

This form doesn’t have a form element for the output. Enter a name and click

the button, and you’ll see the results in Figure 6-9.

Figure 6-9:
The

page has
changed

itself.

Amazingly enough, this page can make changes to itself dynamically. It isn’t

simply changing the values of form fields, but changing the HTML.

11_417997-ch06.indd 14611_417997-ch06.indd 146 10/26/09 9:59 PM10/26/09 9:59 PM

147 Chapter 6: Talking to the Page

Preparing the HTML framework
To see how this is done, begin by looking at the XHTML body for

innerHTML.html:

 <body>
 <h1>Inner HTML Demo</h1>
 <form action = “”>
 <fieldset>
 <label>Please type your name</label>
 <input type = “text”
 id = “txtName” />
 <button type = “button”
 onclick = “sayHi()”>
 Click Me
 </button>
 </fieldset>
 </form>

 <div id = “divOutput”>
 Watch this space.
 </div>
 </body>

The code body has a couple of interesting features:

 ✓ The program has a form. The form is pretty standard. It has a text field

for input and a button, but no output elements.

 ✓ The button will call a sayHi() function. The page will require a func-

tion with this name. Presumably it will say hi somehow.

 ✓ There’s a div for output. A div element in the main body is designated

for output.

 ✓ The div has an ID. The id attribute is often used for CSS styling, but it

can also be used by the DOM.

Any HTML elements that will be dynamically scripted should have an

id field.

Writing the JavaScript
The JavaScript code for modifying inner HTML is pretty easy:

 <script type = “text/javascript”>
 //<![CDATA[
 //from innerHTML.html

11_417997-ch06.indd 14711_417997-ch06.indd 147 10/26/09 9:59 PM10/26/09 9:59 PM

148 Part II: Using JavaScript to Enhance Your Pages

 function sayHi(){
 txtName = document.getElementById(“txtName”);
 divOutput = document.getElementById(“divOutput”);

 name = txtName.value;

 divOutput.innerHTML = “” + name + “<\/em>”;
 divOutput.innerHTML += “ is a very nice name.”;
 }
 //]]>
 </script>

The first step (as usual with Web forms) is to extract data from the input ele-

ments. Note that I can create a variable representation of any DOM element,

not just form elements. The divOutput variable is a JavaScript representa-

tion of the DOM div element.

Finding your innerHTML
As with form elements, divs have other interesting properties you can

modify. The innerHTML property allows you to change the HTML code

displayed by the div. You can put any valid XHTML code you wish inside

the innerHTML property, even HTML tags. Be sure that you still follow the

XHTML rules so your code will be valid.

Even with the CDATA element in place, validators get confused by forward

slashes (like the one in the tag). Whenever you want to use a / charac-

ter in JavaScript strings, precede it with a backslash (<\/em>). Doing so helps

the validator understand that you intend to place a slash character at the next

position.

Working with Other Text Elements
When you know how to work with text fields, you’ve mastered about half of

the form elements. Several other form elements work exactly like text fields,

including these:

 ✓ Password fields: Recall that a password field obscures the user’s input

with asterisks, but it preserves the text.

 ✓ Hidden fields: These allow you to store information in a page without

revealing it to the user. (They’re used a little bit in client-side coding,

but almost never in JavaScript.)

 ✓ Text areas: These are multi-line text boxes. They can be sized to handle

multiple lines of input.

11_417997-ch06.indd 14811_417997-ch06.indd 148 10/26/09 9:59 PM10/26/09 9:59 PM

149 Chapter 6: Talking to the Page

Figure 6-10 is a page with all these elements available on the same form.

Figure 6-10:
Passwords,

hidden
fields, and
text areas

all look the
same to

JavaScript.

When the user clicks the button, the contents of all the fields (even the pass-

word and hidden field) are displayed on the bottom of the page, as illustrated

in Figure 6-11.

Figure 6-11:
Now you
can see

what was in
everything.

11_417997-ch06.indd 14911_417997-ch06.indd 149 10/26/09 9:59 PM10/26/09 9:59 PM

150 Part II: Using JavaScript to Enhance Your Pages

Building the form
Here’s the XHTML that generates the form:

 <body>
 <h1>Text Input Devices</h1>
 <form action = “”>
 <fieldset>
 <label>Normal Text field</label>
 <input type = “text”
 id = “txtNormal” />
 <label>Password field</label>
 <input type = “password”
 id = “pwd” />
 <label>Hidden</label>
 <input type = “hidden”
 id = “hidden”
 value = “I can’t tell you” />
 <textarea id = “txtArea”
 rows = “10”
 cols = “40”>
This is a big text area.
It can hold a lot of text.
 </textarea>
 <button type = “button”
 onclick = “processForm()”>
 Click Me
 </button>
 </fieldset>
 </form>

 <div id = “output”>

 </div>
 </body>

The code should be familiar to you (look over Bonus Chapter 1 if you need

more information on form elements). A few things are worth noting for this

example:

 ✓ There’s an ordinary text field. Just for comparison purposes. It has an

id so it can be identified in the JavaScript.

 ✓ The next field is a password field. Passwords display asterisks, but

store the actual text that was entered. This password has an id of pwd.

 ✓ The hidden field is a bit strange. Hidden fields can be used to store

information on the page without displaying that information to the user.

Unlike the other kinds of text fields, the user cannot modify a hidden

field. (She usually doesn’t even know it’s there.) This hidden field has an

id of secret and a value (“I can’t tell you”).

11_417997-ch06.indd 15011_417997-ch06.indd 150 10/26/09 9:59 PM10/26/09 9:59 PM

151 Chapter 6: Talking to the Page

 ✓ The text area has a different format. The input elements are all single-

tag elements, but the textarea element is designed to contain a large

amount of text, so it has beginning and end tags. The text area’s id is

txtArea.

 ✓ A button starts all the fun. As usual, most of the elements just sit there

gathering data, but the button has an onclick event associated with it,

which calls a function.

 ✓ External CSS gussies it all up. The page has some minimal CSS to clean

it up. (The CSS isn’t central to this discussion, so I won’t reproduce it.)

Note that the page will potentially have a dl on it, so I have a CSS style

for it, even though it doesn’t appear by default.

The password and hidden fields seem secure, but they aren’t. Anybody who

views the page source will be able to read the value of a hidden field, and

passwords transmit their information in the clear. You really shouldn’t be

using Web technology (especially this kind) to transport nuclear launch codes

or the recipe of your secret sauce. (Hmmm — maybe the secret sauce recipe

is the launch code — sounds like a bad spy movie.)

When I create a text field, I often suspend my rules on indentation, because

the text field preserves everything inside it, including any indentation.

Writing the function
Now all you need is a function. Here’s the good news: JavaScript treats all

these elements in exactly the same way! The way you handle a password,

hidden field, or text area is identical to the technique for a regular text field.

Here’s the code:

 <script type = “text/javascript”>
 //<![CDATA[

 // from otherText.html
 function processForm(){
 //grab input from form
 var txtNormal = document.

getElementById(“txtNormal”);
 var pwd = document.getElementById(“pwd”);
 var hidden = document.getElementById(“hidden”);
 var txtArea = document.getElementById(“txtArea”);

 var normal = txtNormal.value;
 var password = pwd.value;
 var secret = hidden.value;
 var bigText = txtArea.value;

11_417997-ch06.indd 15111_417997-ch06.indd 151 10/26/09 9:59 PM10/26/09 9:59 PM

152 Part II: Using JavaScript to Enhance Your Pages

 //create output
 var result = “”
 result += “<dl> \n”;
 result += “ <dt>normal<\/dt> \n”;
 result += “ <dd>” + normal + “<\/dd> \n”;
 result += “ \n”;
 result += “ <dt>password<\/dt> \n”;
 result += “ <dd>” + password + “<\/dd> \n”;
 result += “ \n”;
 result += “ <dt>secret<\/dt> \n”;
 result += “ <dd>” + secret + “<\/dt> \n”;
 result += “ \n”;
 result += “ <dt>big text<\/dt> \n”;
 result += “ <dd>” + bigText + “<\/dt> \n”;
 result += “<\/dl> \n”;

 var output = document.getElementById(“output”);
 output.innerHTML = result;

 } // end function

The processForm() function is a bit longer than the others in this chapter,

but it follows exactly the same pattern: It extracts data from the fields, con-

structs a string for output, and writes that output to the innerHTML attribute

of a div in the page.

The code has nothing new, but it still has a few features you should consider:

 ✓ Create a variable for each form element. Use the document.get
ElementById mechanism.

 ✓ Create a string variable containing the contents of each element. Don’t

forget: The getElementById trick returns an object. To see what’s

inside the object, you have to extract the value property.

 ✓ Make a big string variable to manage the output. When output gets

long and messy like this, concatenate a big variable and then just output

it in one swoop.

 ✓ HTML is your friend. This output is a bit complex, but innerHTML con-

tains HTML, so you can use any HTML styles you want to format your

code. The return string is actually a complete definition list. Whatever

is inside the text box is (in this case) being reproduced as HTML text; if I

want carriage returns or formatting, I’ll have to add them with code.

 ✓ Don’t forget to escape the slashes. The validator gets confused by

ending tags, so add the backslash character to any ending tags occur-

ring in JavaScript string variables (</dl> becomes <\/dl>).

11_417997-ch06.indd 15211_417997-ch06.indd 152 10/26/09 9:59 PM10/26/09 9:59 PM

153 Chapter 6: Talking to the Page

 ✓ Newline characters (\n) clean up the output. If I were writing an ordi-

nary definition list in HTML, I’d put each line on a new line. I try to make

my programs write code just like I do, so I add newline characters every-

where I would add a carriage return in ordinary HTML.

Understanding generated source code
When you run the program, your JavaScript code actually changes the page

it lives on. The code that doesn’t come from your server but is created by

your program is sometimes called generated source. The generated-code

technique is powerful, but it can have a significant problem. Try the following

experiment to see what I mean:

 1. Reload the page to view it without the form contents showing.

 Now view the source.

 2. Note that everything is as expected.

 The source code shows exactly what you wrote.

 3. Click the Click Me button.

 Your function will run, and the page will change. You clearly added HTML

to the output div, because you can see the output right on the screen.

 4. View the source again.

 You’ll be amazed. The output div will be empty, even though you’ll be

able to clearly see that it has changed.

 5. Validators won’t check generated code.

 Using the HTML validator extension or the w3 validator won’t check for

errors in your generated code. You have to check it yourself, but it’s

hard to see the code!

Figure 6-12 illustrates this problem.

Here’s what’s going on: The view source command (on most browsers)

doesn’t actually view the source of the page as it currently stands. It goes

back to the server and retrieves the page, but displays it as source rather

than as rendered output. That means the view source command isn’t

useful for telling you how the page has changed dynamically. Likewise, the

page validators check the page as it occurs on the server without taking into

account things that could have happened dynamically.

11_417997-ch06.indd 15311_417997-ch06.indd 153 10/26/09 9:59 PM10/26/09 9:59 PM

154 Part II: Using JavaScript to Enhance Your Pages

Figure 6-12:
The ordinary

command
to view

source isn’t
showing the
contents of

the div!

The output div in the source code is still empty.

The div clearly has contents even though the source code shows it as empty!

When you were building regular Web pages, this wasn’t a problem, because

regular Web pages don’t change. Dynamically generated pages can change

on the fly, and the browser doesn’t expect that. If you made a mistake in the

HTML, you can’t simply view the source to see what you did wrong in the

code generated by your script. Fortunately, two easy solutions are available

with Firefox plugins:

 ✓ The Web developer toolbar. This toolbar has a wonderful tool called

view generated source, available on the view source menu. This

allows you to view the source code of the current page in its current

state, including any code dynamically generated by your JavaScript.

 ✓ Firebug. Open the Firebug window when a page is open and browse

(with the HTML tab) around your page. Firebug gives you an accurate

view of the page contents, even when they’re changed dynamically. This

can be extremely useful.

11_417997-ch06.indd 15411_417997-ch06.indd 154 10/26/09 9:59 PM10/26/09 9:59 PM

155 Chapter 6: Talking to the Page

These tools will keep you sane when you’re trying to figure out why your gen-

erated code isn’t acting right. (I wish I’d had them years ago)

Figure 6-13 shows the Firebug toolbar — with the dynamically generated con-

tents showing.

Figure 6-13:
Firebug

shows the
current

status of
the page,

even if it’s
dynamically

modified.

The contents of the div were dynamically changed by the code.

The Firebug inspector shows the code as it currently exists, even if it was
modified by JavaScript code (as it was in this example).

11_417997-ch06.indd 15511_417997-ch06.indd 155 10/26/09 9:59 PM10/26/09 9:59 PM

156 Part II: Using JavaScript to Enhance Your Pages

11_417997-ch06.indd 15611_417997-ch06.indd 156 10/26/09 9:59 PM10/26/09 9:59 PM

Chapter 7

Getting Valid Input
In This Chapter
▶ Extracting data from drop-down lists

▶ Managing multiple-selection lists

▶ Getting data from check boxes

▶ Getting information from radio groups

▶ Validating input with regular expressions

▶ Using character, boundary, and repetition operators

▶ Working with pattern memory

It’s very nice to be able to get input from the user, but sometimes users

make mistakes. It’d be great if some better ways existed to make the

user’s job easier and prevent certain kinds of mistakes.

Of course, there are tools for exactly that purpose. In this chapter, you get

the lowdown on two main strategies for improving user input: specialized

input elements and pattern-matching. Together, these tools can help you

ensure that the data the user enters is useful and valid.

Getting Input from a Drop-Down List
The most obvious way to ensure that the user enters something valid is to

supply valid choices. The drop-down list is an obvious and easy way to do this,

as you can see from Figure 7-1.

The drop-down list box approach has a lot of advantages over text-field

input:

 ✓ The user can input with the mouse. This is faster and easier than

typing.

 ✓ No spelling errors. That’s because the user doesn’t have to type the

response.

12_417997-ch07.indd 15712_417997-ch07.indd 157 10/26/09 10:00 PM10/26/09 10:00 PM

158 Part II: Using JavaScript to Enhance Your Pages

 ✓ All answers are available. The user knows which responses are avail-

able, because they’re in a list.

 ✓ You can be sure it’s a valid answer. That’s because you supplied the

possible responses.

 ✓ User responses can be mapped to more complex values. For example,

you can show the user “red” and have the list box return the hex value

“#FF0000”.

Figure 7-1:
The user

selects
from a pre-

defined
list of valid

choices.

If you need a refresher on how to build a list box with the XHTML select

object, please refer to Bonus Chapter 2 on either of the Web sites: www.
aharrisbooks.net/jad or www.dummies.com/go/javascriptand
ajaxfd.

Building the form
It’s best to create the HTML form first, because it defines all the elements

you’ll need for the function. The code is a standard form:

 <body>
 <form action = “”>
 <h1>Please select a color</h1>
 <fieldset>
 <select id = “selColor”>
 <option value = “#FFFFFF”>White</option>
 <option value = “#FF0000”>Red</option>
 <option value = “#FFCC00”>Orange</option>
 <option value = “#FFFF00”>Yellow</option>
 <option value = “#00FF00”>Green</option>
 <option value = “#0000FF”>Blue</option>
 <option value = “#663366”>Indigo</option>
 <option value = “#FF00FF”>Violet</option>
 </select>

12_417997-ch07.indd 15812_417997-ch07.indd 158 10/26/09 10:00 PM10/26/09 10:00 PM

159 Chapter 7: Getting Valid Input

 <input type = “button”
 value = “change color”
 onclick = “changeColor()” />
 </fieldset>
 </form>

 </body>
</html>

The select object’s default behavior is to provide a drop-down list. The first

element on the list is displayed, but when the user clicks the list, the other

options appear.

A select object that will be referred to in code should have an id field.

In this and most examples in this chapter, I added external CSS styling to clean

up each form. Be sure to look over the styles on the Web sites (www.aharris
books.net/jad or www.dummies.com/go/javascriptandajaxfd) if you

want to see how styling was accomplished.

The other element in the form is a button. When the button is clicked, the

changeColor() function will be triggered.

Because the only element in this form is the select object, you might want to

change the background color immediately without requiring a button press.

You can do this by adding an event handler directly onto the select object,

like this:

 <select id = “selColor”
 onchange = “changeColor()”>

This will cause the changeColor() function to be triggered as soon as the

user changes the select object’s value. Typically you only do this if select

is the only element in the form. If there are several elements, processing

doesn’t usually happen until the user signals she’s ready by clicking a button.

Reading the list box
Fortunately, standard drop-down lists are quite easy to read. Here’s the

JavaScript code:

 <script type = “text/javascript”>
 //<![CDATA[
 // from drop-downList.html

12_417997-ch07.indd 15912_417997-ch07.indd 159 10/26/09 10:00 PM10/26/09 10:00 PM

160 Part II: Using JavaScript to Enhance Your Pages

 function changeColor(){
 var selColor = document.

getElementById(“selColor”);
 var color = selColor.value;
 document.body.style.backgroundColor = color;
 } // end function
 //]]>
 </script>

As you can see, the process for reading the select object is much like work-

ing with a text field:

 1. Create a variable to represent the select object.

 The document.getElementById() trick works here just like it does

for text fields.

 2. Extract the value property of the select object.

 The value property of the select object will reflect the value

property of the currently selected option. So, if the user has chosen

“yellow”, the value of selColor will be “#FFFF00”

 3. Set the document’s background color.

 Use the DOM mechanism to set the body’s background color to the

chosen value.

Managing Multiple Selections
The select object can be used in a more powerful way: Figure 7-2 shows a

page with a multiple-selection list box. To make multiple selection work, you

have to make a few changes both to the HTML and the JavaScript code.

Figure 7-2:
You can

pick multiple
choices

from this
list.

12_417997-ch07.indd 16012_417997-ch07.indd 160 10/26/09 10:00 PM10/26/09 10:00 PM

161 Chapter 7: Getting Valid Input

Coding a multiple-selection select object
You’ll have to modify the select code in two ways to make multiple

selections:

 ✓ Indicate multiple selections are allowed. By default, select boxes

have only one value. You’ll need to set a switch to tell the browser to

allow more than one item to be selected.

 ✓ Make it a multi-line select. The standard drop-down behavior

doesn’t make sense when you want multiple selections, because the

user has to see all the options at once. Most browsers switch into a

multi-line mode automatically — but you should control the process

directly just to be sure.

The XHTML code for multiSelect.html is similar to the drop-downList

page, but note a couple of changes:

 <body>
 <h1>Multiple Selections</h1>
 <form action = “”>
 <fieldset>
 <label>
 Select the language(s) you know.
 (ctrl-click to select multiple lines)
 </label>
 <select id = “selLanguage”
 multiple = “multiple”
 size = “10”>
 <option value = “XHTML”>XHTML</option>
 <option value = “CSS”>CSS</option>
 <option value = “JavaScript”>JavaScript</option>
 <option value = “PHP”>PHP</option>
 <option value = “MySQL”>MySQL</option>
 <option value = “Java”>Java</option>
 <option value = “VB.NET”>VB.NET</option>
 <option value = «Python»>Python</option>
 <option value = «Flash»>Flash</option>
 <option value = «Perl»>perl</option>
 </select>
 <button type = «button»
 onclick = «showChoices()»>
 Submit
 </button>
 </fieldset>
 </form>

 <div id = «output»>

 </div>
 </body>
</html>

12_417997-ch07.indd 16112_417997-ch07.indd 161 10/26/09 10:00 PM10/26/09 10:00 PM

162 Part II: Using JavaScript to Enhance Your Pages

The code isn’t shocking, but it does have some important features to recognize:

 ✓ The select object is called selLanguage. As usual, the form elements

need an id attribute so you can read it in the JavaScript.

 ✓ Add the multiple = “multiple” attribute to your select object.

This tells the browser to accept multiple inputs using Shift-click (for

contiguous selections) or Control-click (for more precise selection).

 ✓ Set the size to 10. The size indicates the number of lines that will be

displayed. I set the size to 10 because I have 10 options in the list.

 ✓ Make a button. With multiple selection, you probably won’t want to trig-

ger the action until the user has finished making selections. A separate

button is the easiest way to do this.

 ✓ Create an output div. Something has to hold the response.

Writing the JavaScript code
The JavaScript code for reading a multiple-selection list box is a bit different

than the standard selection code. The value property will only return one

value, but a multiple-selection list box will often return more than one result.

The key is to recognize that a list of option objects inside a select object

is really a kind of array. You can look more closely at the list of objects to see

which ones are selected. That’s essentially what the showChoices() func-

tion does:

 <script type = “text/javascript”>
 //<![CDATA[
 //from multi-select.html
 function showChoices(){
 //retrieve data
 var selLanguage = document.

getElementById(“selLanguage”);

 //set up output string
 var result = “<h2>Your Languages<\/h2>”;
 result += “ \n”;

 //step through options
 for (i = 0; i < selLanguage.length; i++){
 //examine current option
 currentOption = selLanguage[i];

 //print it if it has been selected
 if (currentOption.selected == true){
 result += “ ” + currentOption.value +

“<\/li> \n”;

12_417997-ch07.indd 16212_417997-ch07.indd 162 10/26/09 10:00 PM10/26/09 10:00 PM

163 Chapter 7: Getting Valid Input

 } // end if
 } // end for loop

 //finish off the list and print it out
 result += “<\/ul> \n”;

 output = document.getElementById(“output”);
 output.innerHTML = result;
 } // end showChoices
 //]]>
 </script>

At first the code seems intimidating, but if you break it down, it’s not too

tricky.

 1. Create a variable to represent the entire select object.

 The standard document.getElementById() technique works fine:

 var selLanguage = document.getElementById(“selLanguage”);

 2. Create a string variable to hold the output.

 When you’re building complex HTML output, it’s much easier to work

with a string variable than to directly write code to the element:

 var result = “<h2>Your Languages<\/h2>”;

 3. Build an unordered list to display the results.

 An unordered list is a good way to spit out the results, so I create one in

my result variable:

 result += “ \n”;

 4. Step through selLanguage as if it were an array.

 Use a for loop to examine the list box line by line:

 for (i = 0; i < selLanguage.length; i++){

 Note that selLanguage has a length property like an array.

 5. Assign the current element to a temporary variable.

 The currentOption variable will hold a reference to the each option

element in the original select object as the loop progresses:

 currentOption = selLanguage[i];

12_417997-ch07.indd 16312_417997-ch07.indd 163 10/26/09 10:00 PM10/26/09 10:00 PM

164 Part II: Using JavaScript to Enhance Your Pages

 6. Check to see if the current element has been selected.

 Here currentOption is an object, and it has a selected property.

This property tells you if the object has been highlighted by the user.

selected is a Boolean property, so the only possible values are true

or false.

 if (currentOption.selected == true){

 7. If the element has been selected, add an entry to the output list.

 If the user has highlighted this object, create an entry in the unordered

list housed in the result variable:

 result += “ ” + currentOption.value + “<\/li> \n”;

 8. Close up the list.

 When the loop has finished cycling through all the objects, you can

close up the unordered list you’ve been building:

 result += “<\/ul> \n”;

 9. Print results to the output div.

 The innerHTML property of the output div is a perfect place to print

out the unordered list:

 output = document.getElementById(“output”);
 output.innerHTML = result;

There’s something strange going on here. The options of a select box act like

an array. An unordered list is a lot like an array, which is a lot like a select box.

Bingo! They are arrays, just in different forms. Any listed data can be thought

of as an array. Sometimes you organize it like a list (for display), sometimes

like an array (for storage in memory,) and sometimes it’s a select group (for

user input). Now you’re starting to think like a programmer!

Check, Please — Reading Check Boxes
Check boxes fulfill another useful data-input function: They’re useful any time

you have Boolean data. If some value can be true or false, a check box is a

good tool. Figure 7-3 illustrates a page responding to check boxes.

It’s important to understand that check boxes are independent of each other.

Although they are often found in groups, any check box can be checked or

unchecked regardless of the status of its neighbors.

12_417997-ch07.indd 16412_417997-ch07.indd 164 10/26/09 10:00 PM10/26/09 10:00 PM

165 Chapter 7: Getting Valid Input

Figure 7-3:
You can

pick your
toppings

here.
Choose as

many as
you like.

Order Pizza buttonSelect as many boxes as you want.

When you click the Order Pizza button, the selected output displays here.

Building the checkbox page
As usual, start by looking at the HTML:

 <body>
 <h1>What do you want on your pizza?</h1>
 <form action = “”>
 <fieldset>
 <input type = “checkbox”
 id = “chkPepperoni”
 value = “pepperoni” />
 <label for = “chkPepperoni”>Pepperoni</label>

 <input type = “checkbox”
 id = “chkMushroom”
 value = “mushrooms” />
 <label for = “chkMushroom”>Mushrooms</label>

12_417997-ch07.indd 16512_417997-ch07.indd 165 10/26/09 10:00 PM10/26/09 10:00 PM

166 Part II: Using JavaScript to Enhance Your Pages

 <input type = “checkbox”
 id = “chkSausage”
 value = “sausage” />
 <label for = “chkSausage”>Sausage</label>

 <button type = “button”
 onclick = “order()”>
 Order Pizza
 </button>
 </fieldset>
 </form>
 <h2>Your order:</h2>
 <div id = “output”>

 </div>
 </body>

Each check box is an individual input element. Note that checkbox values

are not displayed. Instead, a label (or similar text) is usually placed after the

check box. A button calls an order() function.

Look at the labels. They each have the for attribute set to tie the label to

the corresponding check box. Although this is not required, it’s a nice touch,

because then the user can click the entire label to activate the check box.

Responding to the check boxes
Check boxes don’t require a lot of care and feeding. When you extract a

checkbox object, it has two critical properties:

 ✓ The value property: Like other input elements, the value property

can be used to store a value associated with the check box.

 ✓ The checked property: This property is a Boolean value, indicating

whether the check box is currently checked.

The code for the order() function shows how it’s done:

 <script type = “text/javascript”>
 //<![CDATA[
 //from checkBoxes.html

 function order(){
 //get variables
 var chkPepperoni = document.

getElementById(“chkPepperoni”);
 var chkMushroom = document.

getElementById(«chkMushroom»);
 var chkSausage = document.

getElementById(“chkSausage”);

12_417997-ch07.indd 16612_417997-ch07.indd 166 10/26/09 10:00 PM10/26/09 10:00 PM

167 Chapter 7: Getting Valid Input

 var output = document.getElementById(«output»);
 var result = « \n»

 if (chkPepperoni.checked){
 result += «» + chkPepperoni.value + «<\/li>

\n»;
 } // end if

 if (chkMushroom.checked){
 result += «» + chkMushroom.value + «<\/li>

\n»;
 } // end if

 if (chkSausage.checked){
 result += «» + chkSausage.value + «<\/li>

\n»;
 } // end if

 result += «<\/ul> \n»
 output.innerHTML = result;
 } // end function

 //]]>
 </script>

For each check box, make sure you use both of its properties:

 1. Determine whether the check box is checked.

 Use the checked property as a condition.

 2. If the box is checked, return the value property associated with the

check box.

Often in practice the value property is left out. The important thing is

whether the check box is checked. It’s pretty obvious that if chkMushroom is

checked, the user wants mushrooms, so you may not need to explicitly store

that data in the checkbox itself.

Working with Radio Buttons
Radio-button groups appear to be pretty simple, but they are more complex

than they seem. Figure 7-4 shows a page using radio-button selection.

The most important rule about radio buttons is that — like wildebeests and

power-walkers — they must be in groups. Each group of radio buttons will

have only one button active. The group should be set up so one button is

active at the very beginning, so there is always exactly one active button in

the group.

12_417997-ch07.indd 16712_417997-ch07.indd 167 10/26/09 10:00 PM10/26/09 10:00 PM

168 Part II: Using JavaScript to Enhance Your Pages

Figure 7-4:
One and
only one
member

of a radio
group can

be selected
at once.

You specify the radio button group in the XHTML code. Each element of the

group can have an id attribute (although the IDs aren’t really necessary in

this application). What’s more important here is the name attribute. Look

over the code and you’ll notice something interesting: All the radio buttons

have the same name!

 <body>
 <h1>With what weapon will you fight the dragon?</h1>
 <form action = “”>
 <fieldset>
 <input type = “radio”
 name = “weapon”
 id = “radSpoon”
 value = “spoon”
 checked = “checked” />
 <label for = “radSpoon”>Spoon</label>

 <input type = “radio”
 name = “weapon”
 id = “radFlower”
 value = “flower” />
 <label for = “radSpoon”>Flower</label>

 <input type = “radio”
 name = “weapon”
 id = “radNoodle”
 value = “wet noodle” />
 <label for = “radNoodle”>Wet Noodle</label>
 <button type = “button”
 onclick = “fight()”>
 fight the dragon
 </button>
 </fieldset>
 </form>
 <div id = “output”>

 </div>
 </body>

12_417997-ch07.indd 16812_417997-ch07.indd 168 10/26/09 10:00 PM10/26/09 10:00 PM

169 Chapter 7: Getting Valid Input

It seems a little odd to have a name attribute when everything else has an id,

but there’s a good reason. The name attribute is used to indicate the group of

radio buttons. Because all the buttons in this group have the same name . . .

 ✓ All these buttons are related, and only one of them will be selected.

 ✓ The browser recognizes this behavior, and automatically deselects the

other buttons in the group whenever one is selected.

 ✓ I added a label to describe what each radio button means. (Very handy

for human beings such as users and troubleshooters.) Labels also

improve usability because now the user can click the label or the button

to activate the button.

It’s important to preset one of the radio buttons to true with the

checked = “checked” attribute. If you fail to do so, you’ll have to add

code to account for the possibility that there is no answer at all.

Interpreting radio buttons
Getting information from a group of radio buttons requires a slightly different

technique from what you’d use for most form elements. Unlike the select

object, in this case there’s no container object that can return a simple value.

You also can’t just go through every radio button on the page, because there

could be more than one group. (Imagine, for example, a page with a multiple-

choice test.)

This is where the name attribute comes in. Although ids must be unique,

multiple elements on a page can have the same name. If they do, these ele-

ments can be treated as an array.

Look over the code and I show how it works:

 <script type = “text/javascript”>
 //<![CDATA[
 // from radioGroup.html
 function fight(){

 var weapon = document.getElementsByName(“weapon”);

 for (i = 0; i < weapon.length; i++){
 currentWeapon = weapon[i];

 if (currentWeapon.checked){
 var selectedWeapon = currentWeapon.value;
 } // end if

 } // end for

12_417997-ch07.indd 16912_417997-ch07.indd 169 10/26/09 10:00 PM10/26/09 10:00 PM

170 Part II: Using JavaScript to Enhance Your Pages

 var output = document.getElementById(“output”);
 var response = “<h2>You defeated the dragon with a

“;
 response += selectedWeapon + “<\/h2> \n”;
 output.innerHTML = response;
 } // end function

 //]]>
 </script>

This code looks much like other code in this chapter, but it has a sneaky

difference that emerges in these steps:

 1. Use getElementsByName to retrieve an array of elements with

this name.

 Now that you’re comfortable with getElementById, I throw a monkey

wrench in the works. Note that it’s plural =— getElementsByName

(Elements with an s) — because this tool is used to extract an array of

elements. It will return an array of elements (in this case, all the radio

buttons in the weapon group).

 2. Treat the result as an array.

 The resulting variable (weapon in this example) is an array. As usual,

the most common thing to do with arrays is process them with loops.

Use a for loop to step through each element in the array.

 3. Assign each element of the array to currentWeapon.

 This variable holds a reference to the current radio button.

 4. Check to see whether the current weapon is checked.

 The checked property indicates whether any radio button is currently

checked.

 5. If the current weapon is checked, retain the value of the radio button.

 If the current radio button is checked, its value will be the current value

of the group, so store it in a variable for later use.

 6. Output the results.

 You can now process the results as you would with data from any other

resource.

Working with Regular Expressions
Having the right kinds of form elements can be very helpful, but things can

still go wrong. Sometimes you have to let the user type things in, and that

information must be in a particular format. As an example, take a look at

Figure 7-5.

12_417997-ch07.indd 17012_417997-ch07.indd 170 10/26/09 10:00 PM10/26/09 10:00 PM

171 Chapter 7: Getting Valid Input

Figure 7-5:
This page
is a mess.

No user
name, and

it’s not a
valid e-mail

or phone
number.

It would be great to have some mechanism for checking input from a form to

see if it’s in the right format. This can be done with string functions, but that

can be really messy. Imagine how many if statements and string methods it

would take to enforce the following rules on this page:

 1. There must be an entry in each field.

 This one is reasonably easy: Just check for non-null values.

 2. The e-mail must be in a valid format.

 That is, it must consist of a few characters, an ampersand (@), a few

more characters, a period, and a domain name of two to four characters.

That would be a real pain to check for.

 3. The phone number must also be in a valid format.

 There are multiple formats, but assume you require an area code in

parentheses, followed by an optional space, followed by three digits, a

dash, and four digits. All digits must be entered as numeric characters

(seems obvious, but you’d be surprised).

Although it’s possible to enforce these rules, it would be extremely difficult

to do so using ordinary string manipulation tools.

JavaScript strings have a match method, which helps find a substring inside

a larger string. This is good, but we’re not simply looking for specific text,

but patterns of text. For example, we want to know if something’s an e-mail

address (text, an @, more text, a period, and two to four more characters).

Imagine how difficult that code would be to write . . . and then take a look at

the code for the validate.html page:

 <script type = “text/javascript”>
 function validate(){
 // get inputs
 name = document.getElementById(“txtName”).value;
 email = document.getElementById(“txtEmail”).value;
 phone = document.getElementById(“txtPhone”).value;

12_417997-ch07.indd 17112_417997-ch07.indd 171 10/26/09 10:00 PM10/26/09 10:00 PM

172 Part II: Using JavaScript to Enhance Your Pages

 //create an empty error message
 errors = “”;

 //check name - It simply needs to exist
 if (name == “”){
 errors += “please supply a name \n”;
 } // end if

 //check email
 emailRE = /^.+@.+\..{2,4}$/;
 if (email.match(emailRE)){
 //console.log(“email match”);
 //do nothing.
 } else {
 //console.log(“email not a match”);
 errors += “please check email address \n”;
 } // end if

 //check phone number
 phoneRE = /^\(\d{3}\) *\d{3}-\d{4}/;
 if (phone.match(phoneRE)){
 //console.log(“phone matches”);
 //do nothing
 } else {
 //console.log(“phone problem”);
 errors += “please check phone #\n”;
 } // end phone if

 //check for errors
 if (errors == “”){
 alert (“now processing data”);
 //process the form
 } else {
 alert(errors);
 } // end if

 } // end function

 </script>

I’m only showing the JavaScript code here, to save space. Look on the Web

site to see how the HTML and CSS are written.

Surprise! The code isn’t really all that difficult! Here’s what’s going on:

 1. Let the code extract data from the form in the usual way.

 2. Create a variable to hold error messages.

 The error variable begins empty (because there are no errors to begin

with). As I check the code, I’ll add any error text to this variable. If there

are no errors, the error variable will remain empty.

12_417997-ch07.indd 17212_417997-ch07.indd 172 10/26/09 10:00 PM10/26/09 10:00 PM

173 Chapter 7: Getting Valid Input

 3. Do the name check.

 That should be very simple; the only way this can go wrong is to have

no name.

 4. If the name is wrong, add a helpful reminder to the error variable.

 If the name isn’t there, just add a message to the error variable. We’ll

report this problem (along with any others) to the user later on.

 5. Build a pattern.

 All this seems pretty simple — until you look at the line that contains

the emailRE = /^.+@.+\..{2,4}$/; business. It looks like a cursing

cartoonist in there. It’s a pattern that indicates whether it’s a legal e-mail

address or not. I explain in the next section how to build it, but for now

just take it on faith so you can see the big picture.

 6. Notice we’re trying to match the e-mail to emailRE.

 Whatever emailRE is (and I promise I’ll explain that soon), the next

line makes it clear that we’re trying to match the e-mail address to that

thing. This turns out to be a Boolean operation. If it’s true, the e-mail

matches the pattern.

 7. Do nothing if the pattern is matched.

 If the e-mail address is valid, go on with the other processing. (Note that

I originally put a console log command for debugging purposes, but I

commented that code out.)

 8. If the pattern match was unsuccessful, add another error message.

 The error variable accumulates all the error messages. If the match was

unsuccessful, that means the e-mail address is not in a valid format, so

we’ll add the appropriate hint to the error variable.

 9. Check the phone number.

 When again, the phone number check is simple except the phoneRE

business, which is just as mysterious: /\(\d{3}\) *\d{3}-\d{4}/.

(Seriously, who makes this stuff up?) Again, if the match is successful,

do nothing, but if there’s a problem, add a report to the error variable.

 10. If everything worked, process the form.

 The status of the error variable indicates whether there were any prob-

lems. If the error variable is still empty, all the input is valid, so it’s time

to process the form.

 11. Report any errors if necessary.

 If you wrote anything to the error variable, the form should not be pro-

cessed. Instead, display the contents of the error variable to the user.

12_417997-ch07.indd 17312_417997-ch07.indd 173 10/26/09 10:00 PM10/26/09 10:00 PM

174 Part II: Using JavaScript to Enhance Your Pages

Frequently you’ll do validation in JavaScript before you pass information to a

program on the server. This way your server program will already know the

data is valid by the time it gets there, which reduces congestion on the server.

JavaScript programs normally pass information to the server through the

AJAX mechanism, which is the focus of part three of this book.

Introducing regular expressions
Of course, the secret is to decode the mystical expressions used in the

match statements. They aren’t really strings at all, but very powerful text

manipulation techniques called regular expression parsing. Regular expres-

sions have migrated from the Unix world into many programming languages,

including JavaScript. A regular expression is a powerful mini-language for

searching and replacing — text patterns in particular — even complex ones.

It’s a weird-looking language, but it has a certain charm after you get used to

reading the arcane-looking expressions.

Regular expressions are normally used with the string match() method in

JavaScript, but they can also be used with the replace() method and a few

other places.

Table 7-1 summarizes the main operators in JavaScript regular expressions.

Table 7-1 JavaScript Main Operators
Operator Description Sample

pattern
Matches Doesn’t

match

. (period) Any single char-
acter except
newline

. E \n

^ Beginning of
string

^a apple banana

$ End of string a$ banana apple

[characters] Any of a list of
characters in
braces

[abcABC] A D

[char range] Any character in
the range

[a-zA-Z] F 9

\d Any single
numerical digit

\d\d\d-\d\
d\d\d

123-4567 The-thing

\b A word boundary \bthe\b the theater

12_417997-ch07.indd 17412_417997-ch07.indd 174 10/26/09 10:00 PM10/26/09 10:00 PM

175 Chapter 7: Getting Valid Input

Operator Description Sample
pattern

Matches Doesn’t
match

+ One or more
occurrences
of the previous
character

\d+ 1234 text

* Zero or more
occurrences
of the previous
character

[a-zA-Z]\d* B17, g 7

{digit} Repeat preced-
ing character
digit times

\d{3}-\d{4} 123-4567 999-99-9999

{min, max} Repeat preced-
ing character at
least min but
not more than
max times

{2,4} ca, com,
info

watermelon

(pattern
segment)

Store results in
pattern memory
returned with
code

^(.).*\1$ gig,
wallow

Bobby

Don’t memorize this table! I explain, in the rest of this chapter, exactly how it

works. Just keep this page handy as a reference.

To see an example of how this works, take a look at regex.html in Figure 7-6.

Figure 7-6:
This tool

allows
you to test

regular
expressions.

The top textbox element accepts a regular expression, and the second text

field contains text you will examine. Practice the following examples to see

how regular expressions work. They are really quite useful when you get the

hang of them. As you walk through the examples, try them out in this tester.

(I’ve included it on the Web page for you, but I don’t reproduce the code here.)

12_417997-ch07.indd 17512_417997-ch07.indd 175 10/26/09 10:00 PM10/26/09 10:00 PM

176 Part II: Using JavaScript to Enhance Your Pages

Characters in regular expressions
The main thing you do with a regular expression is search for text. Say you

work for the bigCorp company and you ask for employee e-mail addresses.

You might make a form that only accepts e-mail addresses with the term

bigCorp in them. You could do that with the following code:

if (email.match(/bigCorp/)){
 alert(“match”);
} else {
 alert(“no match”);
} // end if

This is the simplest type of match. I’m simply looking for the existence of the

needle (bigCorp) in a haystack (the e-mail address stored in email) If the

text bigCorp is found anywhere in the text, then the match is true and I can

do what I want (usually I process the form on the server). More often, you’ll

want to trap for an error, and remind the user of what needs to be fixed.

Notice that the text inside the match() method is encased in forward

slashes (/) rather than quotes. This is important, because the text “bigCorp”

is not really meant to be a string value here. The slashes indicate that the

text is to be treated as a regular expression, which requires extra processing

by the interpreter.

 If you accidentally enclose a regular expression in quotes instead of

slashes, the expression will still work most of the time. JavaScript tries

 to quietly convert the text into a regular expression for you. However,

this process does not always work as planned. Do not rely on the automatic

conversion process, but instead enclose all regular expressions in slashes

rather than quotes.

Marking the beginning and end of the line
You might want to improve the search, because what you really want is

addresses that end with “bigCorp.com”. You can put a special character

inside the match string to indicate where the end of the line should be:

if (email.match(/bigCorp.com$/)){
 alert(“match”);
} else {
 alert(“no match”);
} // end if

12_417997-ch07.indd 17612_417997-ch07.indd 176 10/26/09 10:00 PM10/26/09 10:00 PM

177 Chapter 7: Getting Valid Input

The dollar sign at the end of the match string indicates that this part of the

text should occur at the end of the search string, so andy@bigCorp.com

would match, but not “bigCorp.com announces a new Web site”.

 If you’re already an ace with regular expressions, you know this example has a

minor problem, but it’s pretty picky; I’ll explain it in a moment. For now, just

appreciate that you can include the end of the string as a search parameter.

Likewise, you can use the caret character (^) to indicate the beginning of a

string.

If you want to ensure that a text field contains only the phrase oogie
boogie (and why wouldn’t you?), you can tack on the beginning and ending

markers. /^oogie boogie$/ will only be a true match if there is nothing

else in the phrase.

Working with Special Characters
In addition to ordinary text, you can use a bunch of special character sym-

bols for more flexible matching.

Matching a character with the period
The most powerful character is the period (.), which represents a single

character. Any single character except the newline (\n) will match against

the period.

This may seem silly, but it’s actually quite powerful. The expression /b.g/

will match big, bag, and bug. In fact, it will match any phrase that contains b

followed by any single character then g, so bxg, b g, and b9g would also be

matches.

Using a character class
You can specify a list of characters in square braces, and JavaScript will match

if any one of those characters matches. This list of characters is sometimes

called a character class. For example, b[aeiou]g will match on bag, beg, big,

bog, or bug. This is a really quick way to check a lot of potential matches.

You can also specify a character class with a range. For example, the range

[a-zA-Z] checks all the letters but no punctuation or numerals.

12_417997-ch07.indd 17712_417997-ch07.indd 177 10/26/09 10:00 PM10/26/09 10:00 PM

178 Part II: Using JavaScript to Enhance Your Pages

Specifying digits
One of the most common tricks is to look for numbers. The special character

\d represents a number (an integer digit from 0 to 9). You can check for a

U.S. phone number (without the area code — yet) using this pattern:

\d\d\d-\d\d\d\d

This looks for three digits, a dash, and four digits.

Marking punctuation characters
You can tell that regular expressions use a lot of funky characters, like

periods and braces. What if you’re searching for one of these characters?

Just use a backslash (\) to indicate you’re looking for the actual character,

not using it as a modifier. For example, the e-mail address would be better

searched with /bigCorp\.com/, because this specifies there must be a

period. If you don’t use the backslash, the regular expression tool interprets

the period as “any character” and would allow something like bigCorpucom.

Use the backslash trick for most punctuation, like parentheses, braces, peri-

ods, and slashes.

If you want to include an area code with parentheses, just use backslashes to

indicate the parentheses: /\(\d\d\d\) \d\d\d-\d\d\d\d/.

Finding word boundaries
Sometimes you want to know if something is a word. Say you’re searching for

the word “the,” but you don’t want a false positive on “breathe” or “theater.”

The \b character means “the edge of a word,” so /\bthe\b/ will match on

“the” but not on words containing “the” inside them.

Repetition Operations
All the character modifiers refer to one particular character at a time.

Sometimes you want to deal with several characters at a time. There are sev-

eral operators that help you with this process.

12_417997-ch07.indd 17812_417997-ch07.indd 178 10/26/09 10:00 PM10/26/09 10:00 PM

179 Chapter 7: Getting Valid Input

Finding one or more elements
The plus sign (+) indicates “one or more” of the preceding character, so the

pattern /ab+c/ will match on abc, abbbbbbc, or abbbbbbbc, but not on ac

(there must be at least one b) or on afc (it’s gotta be b).

Matching zero or more elements
The asterisk means “zero or more” of the preceding character. So /I’m
.* happy/ will match on I’m happy (zero occurrences of any character

between I’m and happy). It will also match on I’m not happy (because

there are characters in between).

The .* combination is especially useful, because you can use it to improve

matches like e-mail addresses: /^.*@bigCorp\.com$/ will do a pretty good

job of matching e-mail addresses in our fictional company.

Specifying the number of matches
You can use braces ({}) to indicate the specific number of times the preced-

ing character should be repeated. For example, you can re-write the phone

number pattern like this: /\(\d{3}\) *\d{3}-\d{4}/. This means “three

digits in parentheses, followed by any number of spaces (zero or more), then

three digits, a dash, and four digits. Using this pattern, you’ll be able to tell if

the user has entered the phone number in a valid format.

You can also specify a minimum and maximum number of matches, so /

[aeiou]{1, 3}/ means “at least one and no more than three vowels.”

Now you can improve the e-mail pattern so it includes any number of charac-

ters, an @ sign, and ends with a period and two to four letters: /^.*@.*\..
{2,4}$/.

Working with Pattern Memory
Sometimes you’ll want to “remember” a piece of your pattern and re-use it.

The parentheses are used to group a chunk of the pattern and remember it.

For example, /(foo){2}/ doesn’t match on foo, but it does on foofoo. It’s

the entire segment that’s repeated twice.

12_417997-ch07.indd 17912_417997-ch07.indd 179 10/26/09 10:00 PM10/26/09 10:00 PM

180 Part II: Using JavaScript to Enhance Your Pages

Recalling your memories
You can also refer to a stored pattern later in the expression. The pattern

/^(.).*\1$/ matches any word that begins and ends with the same char-

acter. The \1 symbol represents the first pattern in the string, \2 represents

the second, and so on.

Using patterns stored in memory
 When you’ve finished a pattern match, the remembered patterns are still

available in special variables. $1 is the first, $2 is the second, and so on. You

can use this trick to look for HTML tags and report what tag was found: Match

/^<(.*)>.*<\/\1>$/ and then print out $1 to see what the tag was.

There’s much more to learn about regular expressions, but this basic over-

view should give you enough to write some powerful and useful patterns.

12_417997-ch07.indd 18012_417997-ch07.indd 180 10/26/09 10:00 PM10/26/09 10:00 PM

Chapter 8

Moving and Grooving
In This Chapter
▶ Moving an object onscreen

▶ Responding to keyboard input

▶ Reading mouse input

▶ Running code repeatedly

▶ Bouncing off the walls

▶ Using image-swapping and compound images

▶ Reusing code

▶ Using external script files

JavaScript has a serious side, but it can be a lot of fun, too. You can easily

use JavaScript to make things move, animate, and wiggle. In this chapter,

you get to make your pages dance. Even if you aren’t interested in animation,

you should look over this chapter to find out some important ideas about

how to design your pages and your code more efficiently.

Making Things Move
You might think you need Flash or Java to put animation in your pages, but

that’s not true. You can use JavaScript to create some pretty interesting

motion effects. Begin by taking a look at Figure 8-1.

Because this chapter is about animation, most of the pages feature motion.

You really must see these pages in your browser to get the effect because a

static screen shot can’t really do any of these programs justice.

The general structure of this page provides a foundation for other kinds of

animation:

 ✓ The HTML is pretty simple. As you’ll see when you pop the hood, there

really isn’t much to the HTML code. It’s a couple of divs and some

buttons.

13_417997-ch08.indd 18113_417997-ch08.indd 181 10/26/09 10:00 PM10/26/09 10:00 PM

182 Part II: Using JavaScript to Enhance Your Pages

Figure 8-1:
Click the
buttons,

and the ball
moves.

Press to move the ball.

As the ball moves, its coordinates display here.

 ✓ The ball is in a special div called sprite. Game developers call the

little images that move around on the screen sprites, so I use the same

term.

 ✓ The sprite div has a local style. JavaScript animation requires a

locally defined style.

 ✓ The sprite div has absolute positioning. Because I want to move this

thing around on the screen, it makes sense that the sprite div is abso-

lutely positioned.

 ✓ The code and CSS are as modular as possible. Things can get a little

complicated when you start animating things, so I take care through this

chapter to simplify as much as I can. The CSS styles are defined exter-

nally, and the JavaScript code is also imported.

 ✓ Code is designed to be reused. Many of the programs in this chapter

are very similar to each other. To save effort, I’ve designed things so I

don’t have to rewrite code if possible.

13_417997-ch08.indd 18213_417997-ch08.indd 182 10/26/09 10:00 PM10/26/09 10:00 PM

183 Chapter 8: Moving and Grooving

Looking over the HTML
The following HTML code for the move.html program provides the basic

foundation:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>movement.html</title>
 <link rel = «stylesheet»
 type = «text/css»
 href = «movement.css» />

 <script type = «text/javascript»
 src = «movement.js»>
 </script>
 </head>
 <body onload = «init()»>
 <h1>Click buttons to move ball</h1>
 <div id = «surface»>
 <div id = «sprite»
 style = «position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;» >
 <img src = «ball.gif»
 alt = «ball» />
 </div>
 </div>
 <form action = «»
 id = «controls»>
 <fieldset>
 <button type = «button»
 onclick = «moveSprite(-5, 0)»>
 left
 </button>
 <button type = «button»
 onclick = «moveSprite(5, 0)»>
 right
 </button>
 </fieldset>
 </form>
 <p id = «output»>
 x = 100, y = 100
 </p>
 </body>
</html>

13_417997-ch08.indd 18313_417997-ch08.indd 183 10/26/09 10:00 PM10/26/09 10:00 PM

184 Part II: Using JavaScript to Enhance Your Pages

You should notice a few interesting things about this code:

 ✓ It has an external style sheet. Most of the CSS (the stuff that defines the

surface and the forms) is moved off-stage into an external style sheet.

Some CSS has to be defined locally, but I have made as much of the CSS

coding external as possible.

 <link rel = “stylesheet”
 type = “text/css”
 href = “movement.css” />

 ✓ The JavaScript is also outsourced. The <script> tag has an src

attribute, which you can use to load JavaScript code from an exter-

nal file. The browser loads the specified file and reads it as though it

were directly in the code. (Note that external scripts still require a </
script> tag.) This program gets its scripts from a file called

movement.js.

 <script type = “text/javascript”
 src = “movement.js”>
 </script>

 ✓ The <body> tag calls a method. In animation (and other advanced

JavaScript), you might have some code you want run right away. The

body has an onload event. You can feed it the name of a function (just

like you do with a button’s onclick event). In this case, I want the func-

tion called init() to run as soon as the body finishes loading into the

computer’s memory.

 <body onload = “init()”>

 ✓ The yellow box is a div called surface. It isn’t absolutely necessary,

but when you have something moving around on the screen, it’s nice to

have some kind of boundary so the user knows where she can move the

sprite.

 ✓ There’s a sprite div inside surface. This sprite will be the thing that

actually moves around.

 <div id = “sprite”
 style = “position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;” >
 <img src = “ball.gif”
 alt = “ball” />
 </div>

 ✓ The sprite div has a local style. Your code can change only the styles

that have been defined locally. The sprite div has a local style specify-

ing absolute position, top, and left properties.

13_417997-ch08.indd 18413_417997-ch08.indd 184 10/26/09 10:00 PM10/26/09 10:00 PM

185 Chapter 8: Moving and Grooving

 ✓ There’s a form for buttons. This particular program uses buttons to dis-

cern the user’s intent. When you use buttons, you should place them in

a form (even though in this case the form isn’t absolutely necessary).

 <button type = “button”
 onclick = “moveSprite(-5, 0)”>
 left
 </button>

 ✓ Each button calls the moveSprite() method. The moveSprite()

method is defined in the movement.js file. It accepts two parameters:

dx determines how much the sprite should move in the x (side to side)

axis, and dy controls how much the sprite will move in the y (vertical) axis.

Getting an overview of the JavaScript
Because the JavaScript code is getting more complex, I recommend that you

keep the following programming concepts in mind so that you can improve

your programming efficiency:

 ✓ Move code to an external file. As with CSS code, when the JavaScript

starts to get complex, it’s a good idea to move it to its own file, so it’s

easier to manage and reuse.

 ✓ Encapsulate code in functions. Rather than writing a long, complicated

function, try to break the code into smaller functions that solve individ-

ual problems. If you design these functions well, your code will be easier

to write, understand, and recycle.

 ✓ Create a few global variables. A few key variables will be reused

throughout your code. Create global variables for these key items, but

don’t make anything global that doesn’t need to be.

 ✓ Define constants for clarity. Sometimes it’s handy to have a few key

values stored in special variables. In movement.html, I’ve created some

constants to help me track the boundary of the visual surface.

Creating global variables
The first part of this document simply defines the global variables I use

throughout the program:

//movement.js
//global variables
var sprite;
var x, y; //position variables

13_417997-ch08.indd 18513_417997-ch08.indd 185 10/26/09 10:00 PM10/26/09 10:00 PM

186 Part II: Using JavaScript to Enhance Your Pages

//constants
var MIN_X = 15;
var MAX_X = 365;
var MIN_Y = 85;
var MAX_Y = 435;

The movement program has three main global variables:

 ✓ sprite: Represents the div that will move around on the screen.

 ✓ x: Is the x (horizontal) position of the sprite.

 ✓ y: Is the y (vertical) position of the sprite.

It isn’t necessary to give values to global variables right away, but you should

define them outside any functions so their values will be available to all func-

tions. (Check Chapter 5 for more about functions and variable scope.)

Note that in computer graphics, the y axis works differently than it does in

math. Zero is the top of the screen, and y values increase as you move down

on the page. (This system is used because it models the top-to-bottom pattern

of most display devices.)

This program also features some special constants. A constant is a vari-

able (usually global) with a value that doesn’t change as the program runs.

Constants are almost always used to add clarity.

Through experimentation, I found that the ball’s x value should never be

smaller than 15 or larger than 365. By defining special constants with these

values, I can make it clear what these values represent. (Look ahead to the

boundary-checking code in the “Moving the sprite” section to see how this

really works.)

Programmers traditionally put constants entirely in uppercase letters. Many

languages have special modifiers for creating constants, but JavaScript

doesn’t. If you want something to be a constant, just make a variable with an

uppercase name and treat it as a constant. (Don’t change it during the run of

the program.)

Initializing
The init() function is small but mighty:

function init(){
 sprite = document.getElementById(“sprite”);
} // end init

13_417997-ch08.indd 18613_417997-ch08.indd 186 10/26/09 10:00 PM10/26/09 10:00 PM

187 Chapter 8: Moving and Grooving

It does a simple but important job: It loads up the sprite div and stores it in

a variable named sprite. Because sprite is a global variable, all other func-

tions will have access to the sprite variable and will be able to manipulate it.

You’ll often use the init() function to initialize key variables in your pro-

grams. You can also use this function to set up more advanced event han-

dlers, as you see in the keyboard and mouse examples later in this chapter.

Moving the sprite
Of course, the most interesting function in the program is the one that moves

sprites around the screen. Take a look at it and then look through my expla-

nation for it.

function moveSprite(dx, dy){
 var surface = document.getElementById(“surface”);

 x = parseInt(sprite.style.left);
 y = parseInt(sprite.style.top);

 x += dx;
 y += dy;

 checkBounds();

 // move ball to new position
 sprite.style.left = x + «px»;
 sprite.style.top = y + “px”;

 //describe position
 var output = document.getElementById(«output»);
 output.innerHTML = “x: “ + x + “, y: “ + y;
} // end MoveSprite

The function essentially works by first determining how much the sprite

should be moved in x and y, and then manipulating the left and top proper-

ties of its style.

 1. Accept dx and dy as parameters.

 The function expects two parameters: dx stands for delta-x, and dy is

delta-y. (You can read them difference in x, difference in y if you prefer,

but I like sounding like a NASA scientist.) These parameters tell how

much the sprite should move in each dimension:

function moveSprite(dx, dy){

You might wonder why I’m working with dx and dy when this object

moves only horizontally. See, I’m thinking ahead. I’m going to reuse this

function in the next few programs. Even though I don’t need to move

vertically yet, I will soon, so I included the capability.

13_417997-ch08.indd 18713_417997-ch08.indd 187 10/26/09 10:00 PM10/26/09 10:00 PM

188 Part II: Using JavaScript to Enhance Your Pages

 2. Get a reference to the surface.

 Use the normal document.getElementById trick to extract the sprite

from the page. Be sure the sprite you’re animating has absolute position

with top and left properties defined in a local style.

 var surface = document.getElementById(“surface”);

 3. Extract the sprite’s x and y parameters.

 The horizontal position is stored in the left property. CSS styles are

stored as strings and include a measurement. For example, the original

left value of the sprite is 100px. For the program, we need only the

numeric part. The parseInt() function pulls out only the numeric part

of the left property and turns it into an integer, which is then stored in

x. Do the same thing to get the y value.

 x = parseInt(sprite.style.left);
 y = parseInt(sprite.style.top);

 4. Increment the x and y variables.

 Now that you have the x and y values stored as integer variables, you

can do math on them. It isn’t complicated math. Just add dx to x and

dy to y. This allows you to move the object as many pixels as the user

wants in both x and y axes.

 x += dx;
 y += dy;

 5. Check the boundaries.

 If you have young children, you know this rule: When you have some-

thing that can move, it will get out of bounds. If you let your sprite move,

it will leave the space you’ve designated. Checking the boundaries

isn’t difficult, but it’s another task, so I’m just calling a function here.

I describe checkBounds() in the next section, but basically it just

checks to see whether the sprite is leaving the surface and adjusts its

position to stay in bounds.

 checkBounds();

 6. Move the ball.

 Changing the x and y properties doesn’t really move the sprite. To do

that, you need to convert the integers back into the CSS format. If x is

120, you need to set left to 120px. Just concatenate “px” to the end

of each variable.

 // move ball to new position
 sprite.style.left = x + “px”;
 sprite.style.top = y + “px”;

 7. Print out the position.

 For debugging purposes, I like to know exactly where the x and y posi-

tions are, so I just made a string and printed it to an output panel.

13_417997-ch08.indd 18813_417997-ch08.indd 188 10/26/09 10:00 PM10/26/09 10:00 PM

189 Chapter 8: Moving and Grooving

 //describe position
 var output = document.getElementById(“output”);
 output.innerHTML = “x: “ + x + “, y: “ + y;

Checking the boundaries
You can respond in a number of ways when an object leaves the playing area.

I’m going with wrapping, one of the simplest techniques. If something leaves

the rightmost border, simply have it jump all the way to the left.

The code handles all four borders:

function checkBounds(){
 //wrap
 if (x > MAX_X){
 x = MIN_X;
 } // end if
 if (x < MIN_X){
 x = MAX_X;
 } // end if
 if (y > MAX_Y){
 y = MIN_Y;
 } // end if
 if (y < MIN_Y){
 y = MAX_Y;
 } // end if
} // end function

The checkBounds() function depends on the constants. This helps in a

couple of ways. When you look at the code, it’s really easy to see what’s

going on:

 if (x > MAX_X){
 x = MIN_X;
 } // end if

If x is larger than the maximum value for x, set it to the minimum value. You

almost can’t write it any more clearly than this. If the size of the playing sur-

face changes, you simply change the values of the constants.

All this is very nice, but you probably wonder how I came up with the actual

values for the constants. In some languages, you can come up with nice math-

ematical tricks to predict exactly what the largest and smallest values should

be. In JavaScript, this technique is a little tricky because the environment just

isn’t that precise.

13_417997-ch08.indd 18913_417997-ch08.indd 189 10/26/09 10:00 PM10/26/09 10:00 PM

190 Part II: Using JavaScript to Enhance Your Pages

I chose a simple but effective technique. I temporarily took out the

checkbounds() call and just took a look at the output to see what the

values of x and y were. I looked to see how large x should be before the

sprite wraps and wrote the value down on paper. Likewise, I found largest

and smallest values for y.

When I knew these values, I simply placed them in constants. I don’t really

care that the maximum value for x is 365. I just want to know that when I’m

messing around with x I don’t want it to go past the MAX_X value.

If the size of my playing surface changes, I can just change the constants and

everything will work out fine.

If you’re interested, here are the other techniques you can use when a sprite is

about to leave the visual area:

 ✓ Bounce: The object bounces off the wall. This is done by inverting the

dx or dy value (depending on whether it’s a vertical or horizontal wall).

 ✓ Stop: The object simply stops moving when it hits the wall. Set dx and

dy to 0 to achieve this effect.

 ✓ Continue: The object keeps moving even though it is out of sight. This is

sometimes used for air-traffic control simulations (where visualizing the

location is part of the game) or orbital simulations (where presumably

the object will return).

 ✓ Combinations: Sometimes you’ll see combinations like the civiliza-

tion games that simulate a cylindrical map by stopping on the top and

bottom and scrolling on the sides.

Shouldn’t you just get size values from the surface?
In a perfect world, I would have extracted the
position values from the playing surface itself.
Unfortunately, JavaScript/DOM is not a perfect
animation framework. HTML 5 supports a mar-
velous tag called the canvas, which serves as
a perfect drawing and animating platform, but it
isn’t available on all browsers yet.

Because I’m using absolute positioning, the
position of the sprite isn’t attached to the sur-
face (as it should be) but to the main screen.
It’s a little annoying, but some experimentation

can help you find the right values. Remember,
as soon as you start using absolute positioning
on a page, you’re pretty much committed to it.
If you’re using animation like this, you probably
want to use absolute positioning everywhere
or do some other tricks to make sure the sprite
stays where you want it to go without overwrit-
ing other parts of the page. Regardless, using
constants keeps the code easy to read and
maintain even if you have to hack a little bit to
find the specific values you need.

13_417997-ch08.indd 19013_417997-ch08.indd 190 10/26/09 10:00 PM10/26/09 10:00 PM

191 Chapter 8: Moving and Grooving

Reading Input from the Keyboard
You can use JavaScript to read directly from the keyboard. Reading from the

keyboard can be useful in a number of situations, but it’s especially handy in

animation and simple gaming applications.

Figure 8-2 shows a program with another moving ball.

Figure 8-2:
You can

move the
ball with the
arrow keys.

The keyboard.html page has no buttons because the arrow keys are used

to manage all the input.

You know what I’m going to say. Look this thing over in your browser because

it just doesn’t have any charm unless you run it and mash on some arrow

keys.

Building the keyboard page
The keyboard page is very much like the movement.html page shown earlier

in this chapter.

13_417997-ch08.indd 19113_417997-ch08.indd 191 10/26/09 10:00 PM10/26/09 10:00 PM

192 Part II: Using JavaScript to Enhance Your Pages

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>keyboard.html</title>

 <link rel = «stylesheet»
 type = «text/css»
 href = «keyboard.css» />

 <script type = «text/javascript»
 src = «movement.js»>
 </script>
 <script type = «text/javascript»
 src = «keyboard.js»>
 </script>

 </head>

 <body onload = «init()»>
 <h1>Use arrow keys to move ball</h1>

 <div id = «surface»>
 <div id = «sprite»
 style = «position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;» >
 <img src = «ball.gif»
 alt = «ball» />
 </div>
 </div>

 <p id = «output»>
 x = 100, y = 100
 </p>
 </body>
</html>

The keyboard.html page is very similar to the movement.html page

described early in the chapter. This sort of situation is when it really pays

off to build reusable code. I basically copied the movement.html page and

made a couple of small but important changes:

 ✓ Import the movement.js script. This page uses the same functions as

the movement.html page, so just import the script.

 ✓ Add another script specific to reading the keyboard. You need a

couple of modifications, which are housed in a second script file called

keyboard.js.

13_417997-ch08.indd 19213_417997-ch08.indd 192 10/26/09 10:00 PM10/26/09 10:00 PM

193 Chapter 8: Moving and Grooving

 ✓ Keep the rest of the page similar. You still call init() when the body

loads, and you still want the same visual design, except for the buttons.

The surface and sprite divs are identical to the movement.html

design.

 ✓ Take out the form. This page responds to the keyboard, so you don’t

need a form any more.

Looking over the keyboard.js script
Remember that this program begins with the movement.js script. As far as

the browser is concerned, that entire script file has been loaded before the

keyboard.js script appears. The basic foundation is already in place from

movement. The keyboard script just handles the modifications to make key-

board support work.

Overwriting the init() function
Working with a keyboard still requires some initialization. I need a little more

work in the init() function, so I make a new version that replaces the ver-

sion created in movement.js.

//assumes movement.js

function init(){
 sprite = document.getElementById(“sprite”);
 document.onkeydown = keyListener;
} // end init

The order in which you import scripts matters. If you duplicate a function, the

browser interprets only the last one it reads.

Setting up an event handler
In my init() function, I still want to initialize the sprite (as I did in

movement.js). When you want to read the keyboard, you need to tap into

the browser’s event-handling facility. Browsers provide basic support for

page-based events (like body.onload and button.onclick), but they also

provide a lower level of support for more fundamental input such as key-

board and mouse input.

If you want to read this lower-level input, you need to specify a function that

will respond to the input.

 document.onkeydown = keyListener;

13_417997-ch08.indd 19313_417997-ch08.indd 193 10/26/09 10:00 PM10/26/09 10:00 PM

194 Part II: Using JavaScript to Enhance Your Pages

This line specifies that a special function called keyListener will be called

whenever the user presses a key. Keep the following things in mind when cre-

ating this type of event handler:

 1. The event handler should be called in init().

 You probably want keyboard handling to be available immediately, so

you should set up event handlers in the init() function.

 2. The function is called as though it were a variable.

 This is a slightly different syntax than you’ve seen before. When you

create function handlers in HTML, you simply feed a string that repre-

sents the function name complete with parameters (button onclick
= “doSomething()”). When you call a function within JavaScript (as

opposed to calling the function in HTML), the function name is actually

much like a variable, so it doesn’t require quotes.

If you want to know the truth, functions are variables in JavaScript. Next

time somebody tells you JavaScript is a “toy language,” mention that it

supports automatic dereferencing of function pointers. Then run away

before the person asks you what that means. (That’s what I do.)

 3. You need to create a function with the specified name.

 If you have this code in init, the browser calls a function called

keyListener() whenever a key is pressed. (You could call the func-

tion something else, but keyListener() is a pretty good name for it

because it listens for keystrokes.)

Responding to keystrokes
After you’ve set up an event handler, you need to write the function to

respond to keystrokes, which is a pretty easy task. Here is the keyListener

code (found in keyboard.js):

function keyListener(e){
 // if e doesn’t already exist, we’re in IE so make it

 if (!e){
 e = window.event;
 } // end IE-specific code

 //left
 if (e.keyCode == 37){
 moveSprite(-10, 0);
 } // end if

13_417997-ch08.indd 19413_417997-ch08.indd 194 10/26/09 10:00 PM10/26/09 10:00 PM

195 Chapter 8: Moving and Grooving

 //up
 if (e.keyCode == 38){
 moveSprite(0, -10);
 } // end if

 //right
 if (e.keyCode == 39){
 moveSprite(10, 0);
 } // end if

 //down
 if (e.keyCode == 40){
 moveSprite(0, 10);
 } // end if

} // end keyListener

This code grabs an event object if needed, and then analyzes that object to

figure out which key (if any) was pressed. It then calls the moveSprite()

function to move the sprite. Here’s the low-down:

 1. Event functions have event objects.

 Just knowing that an event has occurred isn’t enough. You need to know

which key the user pressed. Fortunately, the browsers all have an event
object available that tells you what has happened.

 2. Many browsers pass the event as a parameter.

 When you create an event function, the browser automatically assigns

a special parameter to the function. This parameter (normally called e)

represents the event. Just make the function with a parameter called e,

and most browsers create e automatically.

function keyListener(e){

 3. Internet Explorer needs a little more help.

 IE doesn’t automatically create an event object for you, so you need to

specifically create it.

 // if e doesn’t already exist, we’re in IE so make
it

 if (!e){
 e = window.event;
 } // end IE-specific code

 4. You can use e to figure out which key the user pressed.

 The e object has some nifty properties, including keyCode. This prop-

erty returns a number that tells you which key the user pressed.

13_417997-ch08.indd 19513_417997-ch08.indd 195 10/26/09 10:00 PM10/26/09 10:00 PM

196 Part II: Using JavaScript to Enhance Your Pages

Do a quick search on JavaScript event object to find out other kinds of

event tricks. I’m showing the most critical features here, but this is just

an introduction to the many interesting things you can do with events.

 5. Compare the keycode property of the event object to the keycodes

corresponding to keys you’re interested in.

 You can figure out the keycodes of any keys on your keyboard, and you

can use basic if statements to respond appropriately. (I explain key-

codes in the following section.)

 //left
 if (e.keyCode == 37){
 moveSprite(-10, 0);
 } // end if

 6. Call appropriate variations of moveSprite.

 If the user pressed the left-arrow key, move the sprite to the left. You

can use the moveSprite() function defined in movement.js for this.

Deciphering the mystery of keycodes
When you look over the code in the keyListener function, you can see

some odd numbers in there. For example, the code that looks for the left

arrow key actually compares the e.keyCode to the value 37. The big mys-

tery is where all the numbers in the keyListener function (in the previous

section) came from.

These numbers are called keycodes. They are numeric representations of

the physical keys on the keyboard. Each physical key on the keyboard has

a corresponding keycode. Keycodes are mapped to the physical key, which

means the keycode corresponding to a key is the same even if the keyboard

mapping is changed (to a foreign language or alternate input setting, for

example).

How did I know that the left-arrow key corresponds to the keycode 37? It’s

pretty simple, really. I just wrote a program to tell me. Figure 8-3 shows

readKeys.html in action.

Figure 8-3:
This pro-

gram reads
the key-

board and
reports the
key codes.

13_417997-ch08.indd 19613_417997-ch08.indd 196 10/26/09 10:00 PM10/26/09 10:00 PM

197 Chapter 8: Moving and Grooving

Run readKeys and press a few keys. You can then easily determine what

keycode is related to which key. You might also want to look over the code in

this format if you’re a little confused; because all the code’s in one place, you

might it’s easier to read than the movement examples.

If you use a notebook or an international keyboard, be aware that some of the

keycodes can be nonstandard, especially numeric keypad keys. Try to stick to

standard keys if you want to ensure that your program works on all

keyboards.

Following the Mouse
You can create an event handler that reads the mouse. Figure 8-4 shows such

a program.

Figure 8-4:
Now the

sprite stays
with the
mouse.

Achieving this effect is actually quite easy when you know how to read the

keyboard, because it works in almost exactly the same way.

Looking over the HTML
The code for followMouse.html is simple enough that I kept it in one file.

13_417997-ch08.indd 19713_417997-ch08.indd 197 10/26/09 10:00 PM10/26/09 10:00 PM

198 Part II: Using JavaScript to Enhance Your Pages

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>followMouse.html</title>
 <script type = «text/javascript»>
 var sprite;

 function init(){
 sprite = document.getElementById(«sprite»);
 document.onmousemove = mouseListener;
 } // end init

 function mouseListener(e){
 if (!e){
 e = window.event;
 } // end IE catch

 //get width and height
 height = parseInt(sprite.style.height);
 width = parseInt(sprite.style.width);

 //move center of sprite to mouse
 x = e.pageX - (width/2);
 y = e.pageY - (height/2);

 sprite.style.left = x + «px»;
 sprite.style.top = y + “px”;
 } // end function
 </script>
 </head>

 <body onload = «init()»>
 <h1>Move the mouse and the ball will follow</h1>
 <div id = «sprite»
 style = «position: absolute;
 left: 100px;
 top: 100px;
 width: 50px;
 height: 50px;»>
 <img src = «ball.gif»
 alt = «ball» />
 </div>
 </body>
</html>

13_417997-ch08.indd 19813_417997-ch08.indd 198 10/26/09 10:00 PM10/26/09 10:00 PM

199 Chapter 8: Moving and Grooving

Setting up the HTML
The HTML page is simple. This time I’m letting the mouse take up the entire

page. No borders are necessary, because the sprite won’t be able to leave the

page. (If the mouse leaves the page, it no longer sends event messages.)

Just create a sprite with an image as normal and be sure to call init() when

the body loads.

Initializing the code
The initialization is pretty straightforward:

 1. Create a global variable for the sprite.

 Define the sprite variable outside any functions so it will be available

to all of them.

 var sprite;

 2. Build the sprite in init().

 The init() function is a great place to create the sprite.

 function init(){
 sprite = document.getElementById(“sprite”);
 document.onmousemove = mouseListener;

 3. Set up an event handler for mouse motion.

 Set up an event handler in init(). This time you’re listening for mouse

events, so call this one mouseListener.

 document.onmousemove = mouseListener;

Building the mouse listener
The mouse listener works much like a keyboard listener. The mouse listener

is called whenever the mouse moves, and it examines the event object to

determine the mouse’s current position. It then uses that value to place the

sprite:

 1. Get the event object.

 Use the cross-platform technique to get the event object.

 function mouseListener(e){
 if (!e){
 e = window.event;
 } // end IE catch

13_417997-ch08.indd 19913_417997-ch08.indd 199 10/26/09 10:00 PM10/26/09 10:00 PM

200 Part II: Using JavaScript to Enhance Your Pages

 2. Determine the sprite’s width and height.

 The top and left properties will point to the sprite’s top-left corner. It

looks more natural to have the mouse in the center of the sprite. To cal-

culate the center, you need the height and width values. Don’t forget

to add these values to the local style for the sprite.

 //get width and height
 height = parseInt(sprite.style.height);
 width = parseInt(sprite.style.width);

 3. Use e.pageX and e.pageY to get the mouse position.

 These properties return the current position of the mouse on the page.

 4. Determine x and y under the mouse cursor.

 Subtract half of the sprite’s width from the mouse’s x value (e.pageX)

so the sprite’s horizontal position is centered on the mouse. Repeat with

the y position.

 //move center of sprite to mouse
 x = e.pageX - (width/2);
 y = e.pageY - (height/2);

 5. Move the mouse to the new x and y coordinates.

 Use the conversion techniques to move the sprite to the new position.

 sprite.style.left = x + “px”;
 sprite.style.top = y + “px”;

Another fun effect is to have the sprite influenced by the mouse. Don’t make it

follow the mouse directly but check to see where the mouse is in relationship

with the sprite. Have the sprite move up if the mouse is above the sprite, for

example.

Automatic Motion
You can make a sprite move automatically by attaching a special timer to the

object. Figure 8-5 shows the ball moving autonomously across the page.

Timer.html is surprisingly simple, because it borrows almost everything

from other code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>timer.html</title>

13_417997-ch08.indd 20013_417997-ch08.indd 200 10/26/09 10:00 PM10/26/09 10:00 PM

201 Chapter 8: Moving and Grooving

 <link rel = «stylesheet»
 type = «text/css»
 href = «keyboard.css» />

 <script type = «text/javascript»
 src = «movement.js»>
 </script>

 <script type = «text/javascript»>
 function init(){
 sprite = document.getElementById(«sprite»);
 setInterval(«moveSprite(5, 3)», 100);
 } // end init

 </script>
 </head>

 <body onload = «init()»>
 <h1>Timer-based movement</h1>

 <div id = «surface»>
 <div id = «sprite»
 style = «position: absolute;
 top: 100px;
 left: 100px;
 height: 25px;
 width: 25px;» >
 <img src = «ball.gif»
 alt = «ball» />
 </div>
 </div>

 <p id = «output»>
 x = 100, y = 100
 </p>
 </body>
</html>

The HTML and CSS are exactly the same as the button.html code. Most of

the JavaScript comes from movement.js. The only thing that’s really new is

a tiny but critical change in the init() method.

JavaScript contains a very useful function called setInterval, which takes

two parameters:

 ✓ A function call: Create a string containing a function call including any

of its parameters.

 ✓ A time interval in milliseconds: You can specify an interval in 1,000ths

of a second. If the interval is 500, the given function will be called twice

per second; 50 milliseconds is 20 calls per second; and so on.

13_417997-ch08.indd 20113_417997-ch08.indd 201 10/26/09 10:00 PM10/26/09 10:00 PM

202 Part II: Using JavaScript to Enhance Your Pages

Figure 8-5:
This sprite
is moving

on its own.
(I added

the arrow
to show
motion.)

You can set the interval at whatever speed you want, but that doesn’t guar-

antee things will work that fast. If you put complex code in a function and tell

the browser to execute it 1,000 times per second, it probably won’t be able to

keep up (especially if the user has a slower machine than you do).

The browser calls the specified function at the specified interval. Put any

code that you want repeated inside the given function.

Don’t put anything in an interval function that doesn’t have to go there.

Because this code happens several times per second, it’s called a critical
path, and any wasteful processing here could severely slow down the entire

program. Try to make the code in an interval function as clean as possible.

(That’s why I created the sprite as a global variable. I didn’t want to re-

create the sprite 20 times per second, making my program impossible for

slower browsers to handle.)

By using automatically moving objects, you get a chance to play with other

kinds of boundary detection. If you want to see how to make something

bounce when it hits the edge, look at bounce.html and bounce.js on

either of the companion Web sites (www.aharrisbooks.net/jad or www.
dummies.com/go/javascriptandajaxfd) along with the other code fea-

tured in this chapter.

13_417997-ch08.indd 20213_417997-ch08.indd 202 10/26/09 10:00 PM10/26/09 10:00 PM

203 Chapter 8: Moving and Grooving

Image-Swapping Animation
The other kind of animation you can do involves rapidly changing an image.

Look at Figure 8-6 to see one frame of an animated figure.

Figure 8-6:
This sprite is

kicking!

Animation is never that easy to show in a still screen shot, so Figure 8-7

shows the sequence of images used to build the kicking sprite.

Figure 8-7:
I used this

series of
images to

build the
animation.

You can use any series of images you want. I got these images from a site

called Reiner’s Tilesets (http://reinerstileset.4players.de/
englisch.html). It includes a huge number of sprites, each with several

animations. These animations are called Freya.

Preparing the images
You can build your own images, or you can get them from a site like Reiner’s

Tilesets. In any case, there are a few things to keep in mind when building

image animations:

13_417997-ch08.indd 20313_417997-ch08.indd 203 10/26/09 10:00 PM10/26/09 10:00 PM

204 Part II: Using JavaScript to Enhance Your Pages

 ✓ Keep them small. Larger images will take a long time to download and

will not swap as smoothly as small ones. My images are 128 x 128 pixels,

which is a good size.

 ✓ Consider adding transparency. The images from Reiner’s Tilesets have

a brown background. I made the background transparent by using my

favorite graphics editor (GIMP).

 ✓ Change the file format. The images came in .bmp format, which is inef-

ficient and doesn’t support transparency. I saved them as .gif images

to make them smaller and enable the background transparency.

 ✓ Consider changing the names. I renamed the images to make the names

simpler and to eliminate spaces from the filenames. I called the images

kick00.gif to kick12.gif.

 ✓ Put animation images in a subdirectory. With ordinary page images, I

often find a subdirectory to be unhelpful. When you start building ani-

mations, you can easily have a lot of little images running around. This is

a good place for a subdirectory.

 ✓ Be sure you have the right to use the images. Just because you can

use an image doesn’t mean you should. Try to get permission from the

owner of the images, cite your source, and host the images on your own

server. It’s just good citizenship.

Building the page
The code for animation just uses variations of things you’ve already done: a

setInterval function and some DOM coding.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>imageSwap.html</title>
 <script type = «text/javascript»>
 //<![CDATA[
 var imgList = new Array (
 «freya/kick00.gif»,
 «freya/kick01.gif»,
 «freya/kick02.gif»,
 «freya/kick03.gif»,
 «freya/kick04.gif»,
 «freya/kick05.gif»,
 «freya/kick06.gif»,

13_417997-ch08.indd 20413_417997-ch08.indd 204 10/26/09 10:00 PM10/26/09 10:00 PM

205 Chapter 8: Moving and Grooving

 «freya/kick07.gif»,
 «freya/kick08.gif»,
 «freya/kick09.gif»,
 «freya/kick10.gif»,
 «freya/kick11.gif»,
 «freya/kick12.gif»
);

 var frame = 0;
 var spriteImage

 function init(){
 setInterval(«animate()», 100);
 spriteImage = document.getElementById(«image»);
 } // end init

 function animate(){
 frame += 1;
 if (frame > imgList.length){
 frame = 0;
 } // end if
 spriteImage.src = imgList[frame];
 }
 //]]>
 </script>
 </head>

 <body onclick = «init()»>
 <div id = «sprite»>
 <img id = «image»
 src = «freya/kick00.gif»
 alt = «kicking sprite» />
 </div>
 </body>
</html>

The HTML is incredibly simple:

 1. Set up the body with an init() method.

 As usual, the body’s onclick event calls an init() method to start

things up.

 2. Create a sprite div.

 Build a div named sprite. Because you won’t be changing the position

of this div (yet), you don’t need to worry about the local style.

 3. Name the img.

 In this program, you want to animate the img inside the div, so you

need to give it an id.

13_417997-ch08.indd 20513_417997-ch08.indd 205 10/26/09 10:00 PM10/26/09 10:00 PM

206 Part II: Using JavaScript to Enhance Your Pages

Building the global variables
The JavaScript code isn’t too difficult, but it requires a little bit of thought:

 1. Create an array of image names.

 You have a list of images to work with. The easiest way to support this is

with an array of image names. Each element of the array is the filename

of an image. Put them in the order you want the animation frames to be

shown.

 var imgList = new Array (
 “freya/kick00.gif”,
 “freya/kick01.gif”,
 “freya/kick02.gif”,
 “freya/kick03.gif”,
 “freya/kick04.gif”,
 “freya/kick05.gif”,
 “freya/kick06.gif”,
 “freya/kick07.gif”,
 “freya/kick08.gif”,
 “freya/kick09.gif”,
 “freya/kick10.gif”,
 “freya/kick11.gif”,
 “freya/kick12.gif”
);

 2. Build a frame variable to hold the current frame number.

 Because this animation has 12 frames, the frame variable will go from 0

to 11.

 var frame = 0;

 3. Set up spriteImage.

 This variable will be a reference to the img tag inside the sprite tag.

 var spriteImage

Setting up the interval
The init() function attaches the spriteImage variable to the image object

and sets up the animate() method to run ten times per second.

 function init(){
 setInterval(“animate()”, 100);
 spriteImage = document.getElementById(“image”);
 } // end init

13_417997-ch08.indd 20613_417997-ch08.indd 206 10/26/09 10:00 PM10/26/09 10:00 PM

207 Chapter 8: Moving and Grooving

Animating the sprite
The actual animation happens in the (you guessed it) animate() function.

The function is straightforward:

 1. Increment the frame counter.

 Add one to the frame variable.

 frame += 1;

 2. Check for bounds.

 Any time you change a variable, you should consider whether it could

go out of bounds. I’m using frame as an index in the imgList array, so I

check to see that frame is always less than the length of imgList.

 if (frame > imgList.length){
 frame = 0;
 } // end if

 3. Reset the frame if necessary.

 If the frame counter gets too high, reset it to 0 and start the animation

over.

 4. Copy the image filename from the array to the src property of the

spriteImage object.

 This step causes the given file to display.

 spriteImage.src = imgList[frame];

Improving the animation with preloading
When you run the image swap program, you will get some delays on the first

pass as all the images load. (Making the images smaller and saving them in

the .gif or .png format helps with the delays.) Most browsers store images

locally, so the images will animate smoothly after the first pass.

If you want smoother animation, you can use a technique called preload-

ing. This causes all the images to load before the animation begins. The

Preload.html file makes a few changes to preload the image. (I don’t show

a figure because it looks just like imageswap to the user.)

There are no changes in the HTML code. The only changes are in the

JavaScript code:

13_417997-ch08.indd 20713_417997-ch08.indd 207 10/26/09 10:00 PM10/26/09 10:00 PM

208 Part II: Using JavaScript to Enhance Your Pages

 var imgFiles = new Array (
 “freya/kick00.gif”,
 “freya/kick01.gif”,
 “freya/kick02.gif”,
 “freya/kick03.gif”,
 “freya/kick04.gif”,
 “freya/kick05.gif”,
 “freya/kick06.gif”,
 “freya/kick07.gif”,
 “freya/kick08.gif”,
 “freya/kick09.gif”,
 “freya/kick10.gif”,
 “freya/kick11.gif”,
 “freya/kick12.gif”
);

 var frame = 0;
 var spriteImage
 var images = new Array(12);

 function init(){
 setInterval(“animate()”, 100);
 spriteImage = document.getElementById(“image”);
 loadImages();
 } // end init

 function animate(){
 frame += 1;
 if (frame >= images.length){
 frame = 0;
 } // end if
 spriteImage.src = images[frame].src;
 } // end animate

 function loadImages(){
 //preloads all the images for faster display.
 for (i=0; i < images.length; i++){
 images[i] = new Image();
 images[i].src = imgFiles[i];
 } // end for loop
 } // end loadImages

Here’s how the preloading works:

 1. Change the array name to imgFiles.

 This distinction is subtle but important: The array doesn’t represent

actual images, but the filenames of the images. You need to create

another array to hold the actual image data.

13_417997-ch08.indd 20813_417997-ch08.indd 208 10/26/09 10:00 PM10/26/09 10:00 PM

209 Chapter 8: Moving and Grooving

 2. Create an array of images.

 JavaScript has a data type designed specifically for holding image data.

The images array holds the actual image data (not just filenames, but

the actual pictures). The images array should be global.

 3. Create a function to populate the images array.

 The loadImages() function creates the array of image data. Call

loadImages() from init().

 4. Build a loop that steps through each element of the imgFiles array.

 You build an image object to correspond to each filename, so the length

of the two arrays needs to be the same.

 5. Build a new image object for each filename.

 Use the new Image() construct to build an image object representing

the image data associated with a particular file.

 6. Attach that image object to the images() array.

 This array now contains all the image data.

 7. Modify animate() to read from the images() array.

 The animate() function now reads from the images() array. Because

the image data has been preloaded into the array, it should display more

smoothly.

Preloading images doesn’t make the animation faster. It just delays the anima-

tion until all the images are loaded into the cache, making it appear smoother.

Some browsers still play the animation before the cache has finished loading,

but the technique still has benefits.

Even if you don’t like animation, these techniques can be useful. You can use

the setInterval() technique for any kind of repetitive code you might

want, including the dynamic display of menus or other page elements. In

fact, before CSS became the preferred technique, most dynamic menus used

JavaScript animation.

Working with Compound Images
Another common approach to image-swapping animation is to combine all

images to a single graphic file and use CSS techniques to display only one

part of that image. Figure 8-8 shows you what I mean.

13_417997-ch08.indd 20913_417997-ch08.indd 209 10/26/09 10:00 PM10/26/09 10:00 PM

210 Part II: Using JavaScript to Enhance Your Pages

Figure 8-8:
The chopper

compound
image.

This image file contains several images of a helicopter. Each subimage shows

a different position of main rotor and tail rotor. The compound.html page

shows this image, but it shows only one segment of the image at a time. The

part of the image that’s displayed is changed rapidly to give the appearance

of animation. This technique has some advantages:

 ✓ A single image loads more efficiently than a number of separate images.

 ✓ The entire image loads at once, eliminating the lag associated with mul-

tiple images

 ✓ You can combine very complex images with multiple animations in

this way.

The completed HTML looks like Figure 8-9 (except, of course, you can see the

helicopter’s rotors spinning on the real page).

Figure 8-9:
The image

is moved
within the
div to give

the anima-
tion effect.

13_417997-ch08.indd 21013_417997-ch08.indd 210 10/26/09 10:00 PM10/26/09 10:00 PM

211 Chapter 8: Moving and Grooving

Preparing the image
Preparing an image to be used in this way does require some care. You must

plan to ensure it’s easy to animate the image:

 ✓ Combine all images to a single file. Use an image-editing tool, such as

Gimp or Photoshop.

 ✓ Make sure all subimages are the same size. Your life will be easier if all

the images are a consistent size. All the chopper images are 64 pixels tall

and 132 pixels wide.

 ✓ Make all subimages the same distance apart. The images are all 132

pixels apart.

 ✓ Arrange images in rows or columns. If you have a single animation,

place it in a row or column to simplify your math. You can combine

more images for more complex animations (for example, a sequence of

walk cycles in each direction.

The particular image used in this example is from Ari’s SpriteLib (www.
flyingyogi.com/fun/spritelib.html), an excellent resource of open-

source game graphics. I modified the image slightly for use in this example.

Setting up the HTML and CSS
As with many animation examples, the HTML code is rather minimal. All

that’s necessary is a div with an id attribute:

<body onload = “init()”>
 <h1>Compound Image Demo</h1>
 <div id = “chopper”>
 </div>

</body>

As you can see, the div doesn’t even have an image in it. The image is placed

and manipulated through CSS with the background-image property.

The CSS is likewise quite simple:

 <style type = “text/css”>
 #chopper {
 background-image: url(“heli.gif”);
 height: 64px;
 width: 128px;
 background-position: 0px 0px;
 }
 </style>

13_417997-ch08.indd 21113_417997-ch08.indd 211 10/26/09 10:00 PM10/26/09 10:00 PM

212 Part II: Using JavaScript to Enhance Your Pages

The CSS does a number of important tasks:

 1. Apply the image.

 The entire image is applied as the background image of the div.

 2. Resize the div.

 The div size is adjusted to reflect the size of a single subimage. If you

look at the HTML at this point, the div looks like an ordinary image,

showing only the first sub-image of the chopper.

 3. Set the initial background position.

 Only the first chopper is showing, but the entire image (with four chop-

pers) is attached to the div. I use CSS to move the image so different

frames of the animation appear in the div’s visible space. The initial

position is 0px 0px, meaning that the upper-left corner of the image is

aligned with the upper-left corner of the div.

 This entire helicopter animation might seem like a lot of unnecessary grief.

You might ask why I bother when I could just use an animated GIF image. The

answer is control. I could use those alternatives, and sometimes they’d be

a better choice. However, if you know how to control the animation directly

through JavaScript, you can do things you can’t do otherwise, like change the

animation speed or freeze on a particular frame.

Writing the JavaScript
The general strategy is to run an ordinary animation loop but to change the

background position of the div every frame so it displays a different frame

of the animation. The second frame of the animation occurs at pixel 132, so

if you move the background image to the left by 132px, you see the second

frame. I stored the position necessary to display each frame in an array called

offset. Much of this program looks like the previous image-swapping code.

Setting up global variables
Begin with some global variables that will be used throughout the

application:

 var offsetList = new Array(0, -132, -264, -396);
 var frame = 0;
 var chopper;

 1. Create an offsetList array.

 This array holds the coordinates necessary to display each image in the

list. Use an image editor to check the positions.

13_417997-ch08.indd 21213_417997-ch08.indd 212 10/26/09 10:00 PM10/26/09 10:00 PM

213 Chapter 8: Moving and Grooving

 2. Create a frame variable.

 This integer describes which frame of the animation is currently show-

ing. It will be used as an array index to display the various animation

frames.

 3. Create a variable to hold the div.

 The chopper variable will hold a reference to the div. Changing the

style of the chopper variable will change the visible image.

Building an init() function
The initialization function sets up the animation:

 function init(){
 chopper = document.getElementById(“chopper”);
 setInterval(“animate()”, 100);
 } // end init

The init() function is called by the body onload event. It has two jobs:

 1. Create a reference to the chopper div.

 Remember, the div doesn’t exist until the body has finished loading,

so you must populate the chopper variable in a function. The init()

function is a perfect place for this kind of work.

 2. Use setInterval() to create an animation loop.

 The program calls the animate() function every 100 milliseconds, or

ten times per second.

Animating the sprite
The actual animation is easier than the preparation.

 function animate(){
 frame++;
 if (frame >= offsetList.length){
 frame = 0;
 } // end if

 offset = offsetList[frame] + “px 0px”;
 chopper.style.backgroundPosition = offset;
 } // end animate

To make the animation finally work, follow these steps:

13_417997-ch08.indd 21313_417997-ch08.indd 213 10/26/09 10:00 PM10/26/09 10:00 PM

214 Part II: Using JavaScript to Enhance Your Pages

 1. Increment the frame counter.

 This step indicates that you’re going to a new frame.

 2. Check that the frame is within bounds.

 The frame variable will be used as an index to the offsetList array,

so you need to ensure that it’s smaller than the length of the array. If it’s

too big, you can just reset it to 0.

 3. Create an offset value.

 The offset value is generated from the offsetList array. Note that

the array contains only the x value. Concatenate this with “px 0px” to

create an offset in the legal format for CSS. (Look at the original CSS for

background-position to see the format.)

 4. Apply the offset to the chopper variable.

 Use the backgroundPosition attribute of the style attribute to

dynamically change the background image’s position.

Movement and Swapping
You can combine motion effects with image-swapping to have an image move

around on the screen with animated motion. Figure 8-10 tries to show this

effect, but you need to use a browser to really see it.

Making this program requires nothing at all new. It’s just a combination of

the techniques used throughout this chapter. Figure 8-11 shows the list of

images used to make Freya run. (I added the arrow again just so you can see

how the movement works.)

Building the HTML framework
The HTML is (as usual) pretty minimal here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>run.html</title>
 <script type = «text/javascript»
 src = «run.js»>
 </script>
 </head>

13_417997-ch08.indd 21413_417997-ch08.indd 214 10/26/09 10:00 PM10/26/09 10:00 PM

215 Chapter 8: Moving and Grooving

 <body onload = «init()»>
 <div id = «sprite»
 style = «position: absolute;
 top: 100px;
 left: 100px;»>
 <img src = «freya/run0.gif»
 id = «image»
 alt = «running image» />
 </div>
 </body>
</html>

Figure 8-10:
Run, Freya,

Run!

Figure 8-11:
These are

the running
images from

Reiner’s
Tilesets.

13_417997-ch08.indd 21513_417997-ch08.indd 215 10/26/09 10:00 PM10/26/09 10:00 PM

216 Part II: Using JavaScript to Enhance Your Pages

When you want to create a moving image-swap animation, follow these steps:

 1. Import the script.

 You can build the script locally (as I did in the last example), but any

time the script gets complex, it might be better in an external file.

 2. Call an init() method.

 Most animation requires an init() method called from body.
onload(), and this animation is no exception.

 3. Name the sprite.

 The sprite is a div that will move, so it needs absolute position, top,

and left properties all defined as local styles.

 4. Name the image.

 You also want to animate the image inside the sprite. The only property

you’ll change here is the src, so no local styles are necessary here.

Building the code
The JavaScript code is familiar because all the elements can be borrowed

from previous programs. Here’s the code for run.js (used by run.html) in

its entirety.

//run.js

var frame = 0;
var imgList = new Array(
 “freya/run0.gif”,
 “freya/run1.gif”,
 “freya/run2.gif”,
 “freya/run3.gif”,
 “freya/run4.gif”,
 “freya/run5.gif”,
 “freya/run6.gif”,
 “freya/run7.gif”
);

var sprite;
var spriteImage;
var MAX_X = 500;

function init(){
 sprite = document.getElementById(“sprite”);
 spriteImage = document.getElementById(“image”);

13_417997-ch08.indd 21613_417997-ch08.indd 216 10/26/09 10:00 PM10/26/09 10:00 PM

217 Chapter 8: Moving and Grooving

 setInterval(“animate()”, 100);
} // end init

function animate(){
 updateImage();
 updatePosition();
} // end animate

function updateImage(){
 frame++;
 if (frame > imgList.length){
 frame = 0;
 } // end if
 spriteImage.src = imgList[frame];
} // end updateImage

function updatePosition(){
 sprite = document.getElementById(“sprite”);
 var x = parseInt(sprite.style.left);
 x += 10;
 if (x > MAX_X){
 x = 0;
 } // end if
 sprite.style.left = x + “px”;
} // end function

Defining global variables
You have a few global variables in the code from the previous section:

 ✓ frame:The frame number. It is an integer from 0 to 11 that serves as the

index for the imgList array.

 ✓ imgList: An array of filenames with the animation images.

 ✓ sprite: The div that will be moved around the screen.

 ✓ spriteImage: The img element of sprite. This is the image that will

be swapped.

 ✓ MAX_X: A constant holding the maximum value of X. In this program, I’m

moving only in one direction, so the only boundary I’m worried about is

MAX_X. If the sprite moved in other directions, I’d add some other con-

stants for the other boundary conditions.

13_417997-ch08.indd 21713_417997-ch08.indd 217 10/26/09 10:00 PM10/26/09 10:00 PM

218 Part II: Using JavaScript to Enhance Your Pages

Initializing your data
The init() function performs its normal tasks: setting up sprite variables

and calling the animate() function on an interval.

function init(){
 sprite = document.getElementById(“sprite”);
 spriteImage = document.getElementById(“image”);

 setInterval(“animate()”, 100);
} // end init

When you move and swap images, sometimes you’ll have to adjust the ani-

mation interval and the distance traveled each frame so the animation looks

right. Otherwise the sprite might seem to skate rather than run.

Animating the image
I really have two kinds of animation happening at once, so in the grand tradi-

tion of encapsulation, the animate() function passes off its job to two other

functions:

function animate(){
 updateImage();
 updatePosition();
} // end animate

Updating the image
The updateImage() function handles the image-swapping duties:

function updateImage(){
 frame++;
 if (frame > imgList.length){
 frame = 0;
 } // end if
 spriteImage.src = imgList[frame];
} // end updateImage

Moving the sprite
The sprite is moved in the updatePosition() function:

13_417997-ch08.indd 21813_417997-ch08.indd 218 10/26/09 10:00 PM10/26/09 10:00 PM

219 Chapter 8: Moving and Grooving

function updatePosition(){
 sprite = document.getElementById(“sprite”);
 var x = parseInt(sprite.style.left);
 x += 10;
 if (x > MAX_X){
 x = 0;
 } // end if
 sprite.style.left = x + “px”;
} // end function

I know what you’re thinking: You could use this stuff to make a really cool

game. It’s true. You can make games with JavaScript, but you’ll eventually run

into JavaScript’s design limitations. I prefer Flash and Python as languages to

do game development. Now that I mention it, I’ve written other Wiley books

on exactly these topics: Flash Game Programming For Dummies and Game
Programming: The L Line. See you there!

13_417997-ch08.indd 21913_417997-ch08.indd 219 10/26/09 10:00 PM10/26/09 10:00 PM

220 Part II: Using JavaScript to Enhance Your Pages

13_417997-ch08.indd 22013_417997-ch08.indd 220 10/26/09 10:00 PM10/26/09 10:00 PM

Part III
Moving Up

to AJAX

14_417997-pp03.indd 22114_417997-pp03.indd 221 10/26/09 10:01 PM10/26/09 10:01 PM

In this part . . .

Every once in a while, a technology comes along that

threatens to change everything. AJAX is one such

technology. In this part, you learn what all the fuss is about

and why AJAX is such a big deal. You learn how to make

your own AJAX requests by hand, and then you do some

real Web 2.0 work with the fun and powerful jQuery library.

Chapter 9 describes the nuts-and-bolts details of AJAX —

how it works, how meaningless the acronym is, and every-

thing. See how to build an AJAX connection by hand (but

after you’ve seen it once, use a library like everyone else

does).

Chapter 10 introduces the spiffy jQuery library. This free

toolkit simplifies AJAX tremendously, and it adds amazing

new capabilities to JavaScript. Learn how to incorporate

jQuery into your pages and get started with this incredible

toolkit.

Chapter 11 shows how to use jQuery’s many cool anima-

tion features. You’ll make various elements play hide-and-

seek, slide around, fade, and animate. It’s really fun.

Chapter 12 introduces the incredible jQuery user interface

toolkit. This fun tool allows you to create and use beauti-

ful CSS themes. You also learn how to add dragging, drop-

ping, and resizing behavior to any element on the page.

Chapter 13 describes more of the jQuery user interface,

especially elements that improve usability. You learn how

to easily build accordions and tabbed interfaces, and you

are introduced to automatic calendars, sortable lists,

scrollers, and custom dialogs.

Chapter 14 explains how jQuery helps with more

advanced AJAX functions, especially working with data.

First you get an overview of traditional server-side pro-

gramming with PHP. Then you learn how AJAX simplifies

this process, and how to manage data in specialized for-

mats like XML and JSON.

14_417997-pp03.indd 22214_417997-pp03.indd 222 10/26/09 10:01 PM10/26/09 10:01 PM

Chapter 9

AJAX Essentials
In This Chapter
▶ Understanding AJAX

▶ Using JavaScript to manage HTTP requests

▶ Creating an XMLHttpRequest object

▶ Building a synchronous AJAX request

▶ Retrieving data from an AJAX request

▶ Managing asynchronous AJAX requests

If you’ve been following the Web trends, you’ve no doubt heard of AJAX.

This technology has generated a lot of interest. Depending on who you

listen to, it’s either going to “change the Internet” or “it’s a lot of overblown

hype.” In this book I show what AJAX really is, how to use it, and how to use

a particular AJAX library to supercharge your Web pages.

AJAX: Return to Troy
Okay, AJAX has nothing to do with a sequel to the Iliad (though that would be

pretty cool). But since I have your attention, let’s discuss AJAX, the mighty

and very real Web technology. The first thing to do is figure out exactly what

AJAX is and what it isn’t. It isn’t . . . :

 ✓ A programming language. Nope. It isn’t one more language to cram into

your head (along with the many others you encounter).

 ✓ New. No. Most of the technology in AJAX isn’t really all that new. It’s the

way it’s being used that’s different.

 ✓ Remarkably different. Not really. For the most part, AJAX is really the

same kinds of things you see in the rest of this book. It’s about building

compliant Web pages that interact with the user.

15_417997-ch09.indd 22315_417997-ch09.indd 223 10/26/09 10:01 PM10/26/09 10:01 PM

224 Part III: Moving Up to AJAX

So you’ve got to wonder why people are so excited about AJAX. It’s a rela-

tively simple thing, but it has the potential to change the way people think

about Internet development. Here’s what it really is, has, and does:

 ✓ Direct control of client-server communication. Rather than relying on

the automatic communication between client and server that happens

with Web sites and server-side programs, AJAX is about managing this

relationship more directly.

 ✓ Use of the XMLHttpRequest object. This is a special object that’s been

built into the DOM of all major browsers for some time, but hasn’t been

used heavily. The real innovation of AJAX was finding creative (perhaps

unintentional) uses for this heretofore-obscure utility.

 ✓ A closer relationship between client-side and server-side program-

ming. Up to now, client-side programs (usually JavaScript) did their

own thing, and server-side programs (PHP) operated without too much

knowledge of each other. AJAX helps these two types of programming

work together better.

 ✓ A series of libraries that facilitate this communication. AJAX isn’t all

that hard to use, but it does have a lot of details. Several great libraries

have sprung up to simplify using AJAX technologies. You’ll find AJAX

libraries for both client-side languages (like JavaScript) and server-side

languages (like PHP). As an added bonus, these libraries often include

other great features that make JavaScript programming easier and more

powerful.

Let’s say you’re making an online purchase with a shopping-cart mechanism.

In a typical (pre-AJAX) system, an entire Web page is downloaded to the

user’s computer. There might be a limited amount of JavaScript-based inter-

activity, but anything that requires a data request needs to be sent back to

the server. For example, if you’re on a shopping site and you want more infor-

mation about that fur-lined fishbowl you’ve had your eye on, you might click

the “More information” button. Doing so sends a request to the server, which

builds an entire new Web page for you, containing your new request.

Every time you make a request, the system builds a whole new page on the

fly. The client and server have a long-distance relationship.

In the old days when you wanted to manage your Web site’s content, you had

to refresh each Web page — time-consuming to say the least. But with AJAX,

you can update the content without refreshing the page. Instead of the server

sending an entire-page response just to update a few words, the server only

sends the words you want to update and nothing else.

15_417997-ch09.indd 22415_417997-ch09.indd 224 10/26/09 10:01 PM10/26/09 10:01 PM

225 Chapter 9: AJAX Essentials

If you’re using an AJAX-enabled shopping cart, you might still click the fish-

bowl image. An AJAX request goes to the server and gets information about

the fishbowl. And here’s the good part: This information appears immedi-

ately on the current page, without having to completely refresh the page.

AJAX technology allows you to send a request to the server, which can then

change just a small part of the page. With AJAX, you can have a whole bunch

of smaller requests happening all the time, rather than a few big ones that

rebuild the page in large, distracting flurries of activity.

To the user, this makes the Web page look more like a traditional applica-

tion. That’s the big appeal of AJAX: It allows Web applications to act more

like desktop apps, even if the Web apps have complicated features (such as

remote database access).

Google’s Gmail was the first major application to use AJAX, and it blew

people away because it felt so much like a regular application inside a Web

browser.

AJAX Spelled Out
Technical people love snappy acronyms. There’s nothing more intoxicating

than inventing a term. AJAX is one term that has taken on a life of its own. As

with many computing acronyms, it’s a fun word, but it doesn’t really mean

much. AJAX stands for Asynchronous JavaScript And XML. I suspect these

terms were chosen to make a pronounceable acronym rather than for their

accuracy or relevance to how AJAX works. (But what do I know?)

A is for asynchronous
An asynchronous transaction (at least in AJAX terms) is one in which more

than one thing can happen at once. For example you can have an AJAX call

process a request while the rest of your form is being processed. AJAX

requests do not absolutely have to be asynchronous, but they usually are.

(It’s really okay if you don’t follow this completely. It’s not an important part

of understanding AJAX, but vowels are always nice in an acronym.)

When it comes to Web development, asynchronous means you can send and

receive as many different requests as you want — independently. Data might

start transmitting at any time without having any effect on other data trans-

missions. You could have a form that saves each field to the database as

15_417997-ch09.indd 22515_417997-ch09.indd 225 10/26/09 10:01 PM10/26/09 10:01 PM

226 Part III: Moving Up to AJAX

soon as it’s filled out. Or perhaps a series of drop-down lists that generates

another drop-down list based on the value you just selected.

In this chapter, I show you how to implement both synchronous and asyn-

chronous versions of AJAX.

J is for JavaScript
If you want to make an AJAX call, you simply write some JavaScript code that

simulates a form. You can then access a special object hidden in the DOM

(the XMLHttpRequest object) and use its methods to send that request to

the user. Your program acts like a form, even if there was no form there. In

that sense, when you’re writing AJAX code, you’re really using JavaScript.

Of course, you can also use any other client-side programming language

that can speak with the DOM, including Flash and (to a lesser extent) Java.

JavaScript is the dominant technology, so it’s in the acronym.

A lot of times, you also use JavaScript to decode the response from the AJAX

request.

A is for . . . and?
I think it’s a stretch to use “and” in an acronym, but AJX just isn’t as cool as

AJAX. I guess they didn’t ask me.

And X is for . . . data?
The X is actually for XML, which is one way to send the data back and forth

from the server.

Because the object we’re using is the XMLHttpRequest object, it makes

sense that it requests XML. It can do that, yes, but it can also get any kind of

text data. You can use AJAX to retrieve all kinds of things:

 ✓ Plain old text: Sometimes you just want to grab some text from the

server. Maybe you have a text file with a daily quote in it or something.

 ✓ Formatted HTML: You can have text stored on the server as a snippet

of HTML/XHTML code and use AJAX to load this page snippet into your

browser. This gives you a powerful way to build a page from a series

of smaller segments. You can use this to re-use parts of your page (say

headings or menus) without duplicating them on the server.

15_417997-ch09.indd 22615_417997-ch09.indd 226 10/26/09 10:01 PM10/26/09 10:01 PM

227 Chapter 9: AJAX Essentials

 ✓ XML data: XML is a great way to pass data around (That’s what it was

invented for.) You might send a request to a program that goes to a

database, makes a request, and returns the result as XML.

 ✓ JSON data: A new standard called JSON (JavaScript Object Notation,

introduced in Chapter 5) is emerging as an alternative to XML for for-

matted data transfer. It has some interesting advantages.

In this chapter, I stick with plain old text and HTML. Chapter 14 describes

mechanisms for working with XML and JSON data in AJAX.

Making a Basic AJAX Connection
 AJAX uses some pretty technical parts of the Web in ways that might be unfa-

miliar to you. Read through the rest of this chapter so you know what AJAX

is doing, but don’t get bogged down in the details. Nobody does it by hand!

(Except for people who write AJAX libraries or books about using AJAX.) In

Chapter 10 I show a library that does all the work for you. If all these details

are making you misty-eyed, just skip ahead to the next chapter and come back

here when you’re ready to see how all the magic works.

The basicAJax.html program shown in Figure 9-1 illustrates AJAX at work.

Figure 9-1:
Click the

button and
you’ll see

some AJAX
magic.

 Click the link to get a popup.

When the user clicks on the link, a small pop-up shown in Figure 9-2 appears.

 If you download this file to your own machine, it will probably not run cor-

rectly. That’s because AJAX relies on a Web server for its magic. AJAX code

will only work properly if it is on a Web server. If you want to test AJAX, you’ll

need to post it onto a Web host or install a server on your own machine.

Chapter 14 outlines this process. The examples are working on my Web site,

so you can always look there: www.aharrisbooks.net/jad.

15_417997-ch09.indd 22715_417997-ch09.indd 227 10/26/09 10:01 PM10/26/09 10:01 PM

228 Part III: Moving Up to AJAX

Figure 9-2:
This text

came from
the server.

 If you don’t get the joke, you need to go rent Monty Python and the Holy Grail.
It’s part of geek culture. Trust me. In fact, you should really own a copy.

It’s very easy to make JavaScript pop up a dialog box, but the interesting

thing here is where that text came from: The data was stored on a text file

on the server. Without AJAX, there’s no easy way to get data from the server

without reloading the entire page.

 You might claim that HTML frames allow you to pull data from the server, but

frames have been deprecated (labeled obsolete) in XHTML because they cause

a lot of other problems. You can use a frame to load data from the server, but

you can’t do all the other cool things with frame-based data that you can with

AJAX. Even if frames were allowed, AJAX is a much better solution most of the

time.

This particular example uses a couple of shortcuts to make it easier to

understand:

 ✓ It isn’t fully asynchronous. The program will pause while it retrieves

data. As a user, you won’t even notice this, but as you’ll see, this can

have a serious drawback. It’s a bit simpler, so I start with this example

and then extend it to make the asynchronous version.

 ✓ It isn’t completely cross-browser. The AJAX technique I use in this

program works fine for IE 7 and 8 and all versions of Firefox (and most

other standards-compliant browsers). It does not work correctly, how-

ever, in IE 6 and earlier. I recommend you use jQuery or another library

(described in Chapter 10) for cross-browser compatibility.

Look over the code, and you’ll find it reasonable enough:

15_417997-ch09.indd 22815_417997-ch09.indd 228 10/26/09 10:01 PM10/26/09 10:01 PM

229 Chapter 9: AJAX Essentials

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

<title>Basic AJAX</title>
<script type = «text/javascript»>
//<![CDATA[

function getAJAX(){
 var request = new XMLHttpRequest();
 request.open(«GET», «beast.txt», false);
 request.send(null);

 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(«Error- « + request.status + «: « + request.

statusText);
 } // end if
} // end function
//]]>

</script>

</head>

<body>
<h1>Basic AJAX</h1>

<form action = «»>
 <p>
 <button type = «button»
 onclick = «getAJAX()»>
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>

</body>
</html>

15_417997-ch09.indd 22915_417997-ch09.indd 229 10/26/09 10:01 PM10/26/09 10:01 PM

230 Part III: Moving Up to AJAX

Building the HTML form
You don’t absolutely need an HTML form for AJAX, but I have a simple one

here, complete with a button. Note that the form is not attached to the server

in any way. Here’s the code:

<form action = “”>
 <p>
 <button type = “button”
 onclick = “getAJAX()”>
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>

The button is attached to a JavaScript function called getAJAX().

All you really need is some kind of structure that can trigger a JavaScript

function.

 AJAX isn’t a complex technology, but it does draw on several other technolo-

gies. You might need to review some earlier JavaScript chapters if this mate-

rial is unfamiliar to you. Although these examples don’t require PHP, they do

involve server-side responses like PHP does, so AJAX is usually studied by

people already familiar with both JavaScript and PHP. I give a brief overview

of PHP and how it is used with AJAX in Chapter 14.

Creating an XMLHttpRequest object
The key to AJAX is a special object called the XMLHttpRequest object. All

the major browsers have it, and knowing how to use it in code is what makes

AJAX work. It’s pretty easy to create with the new keyword:

 var request = new XMLHttpRequest();

 Internet Explorer, in versions 5 and 6, had an entirely different way of invoking

the XMLHttpRequest object — involving a technology called ActiveX. If you

want to support these older browsers, use one of the libraries mentioned in

Chapter 10. (I’ve decided not to worry about them in this introductory

chapter.)

This line makes an instance of the XMLHttpRequest object. You’ll use meth-

ods and properties of this object to control a request to the server (as shown

in Table 9-1).

15_417997-ch09.indd 23015_417997-ch09.indd 230 10/26/09 10:01 PM10/26/09 10:01 PM

231 Chapter 9: AJAX Essentials

AJAX is really nothing more than HTTP, the protocol that your browser and

server quietly use all the time to communicate with each other. You can think

of an AJAX request like this: Imagine you have a basket with a balloon tied to

the handle and a long string. As you walk around the city, you can release the

basket under a particular window and let it rise up. The window (server) will

put something in the basket, and you can then wind the string to bring the

basket back down and retrieve the contents.

Table 1-1 Useful Members of the XMLHttpRequest Object
Member Description Basket analogy

open(protocol, URL,
synchronization)

Opens up a connection
to the indicated file on
the server.

Stands under a
particular window.

send(parameters) Initiates the transac-
tion with given param-
eters (or null).

Releases the basket but
hangs on to the string.

status Returns the HTTP
status code returned
by the server (200 is
success).

Checks for error codes
(“window closed,” “bal-
loon popped,” “string
broken,” or “every-
thing’s great”).

statusText Text form of HTTP
status.

Text form of status
code, a text translation
of the numeric error
code returned by status.

responseText Text of the transac-
tion’s response.

Gets the contents of the
basket.

readyState Describes current
status of the transac-
tion (4 is complete).

Is the basket empty,
going up, coming down,
or here and ready to get
contents?

onReadyState Change Event handler. Attach
a function to this
parameter, and when
the readyState
changes, the function
will be called
automatically.

What should I do when
the state of the basket
changes? For example,
should I do something
when I get the basket
back?

15_417997-ch09.indd 23115_417997-ch09.indd 231 10/26/09 10:01 PM10/26/09 10:01 PM

232 Part III: Moving Up to AJAX

 Don’t worry about all the details in this table. I describe these things as you

need them in the text. Also, some of these elements only pertain to asynchro-

nous connections, so you won’t always need them all.

Opening a connection to the server
The XMLHttpRequest object has several useful methods. One of the most

important is the open() method. Here’s what it looks like in action:

 request.open(“GET”, “beast.txt”, false);

The open() method opens up a connection to the server. As far as the

server is concerned, this connection is identical to the connection made

when the user clicks a link or submits a form. The open() method takes

three parameters:

 ✓ The request method: The request method describes how the server

should process the request. Typical values are GET and POST. The use

of these values is described in Chapter 14.

 ✓ A file or program name: The second parameter is the name of a file

or program on the server. This is usually a program or file in the same

directory as the current page.

 ✓ A synchronization trigger: AJAX can be done in synchronous or asyn-

chronous mode. (Yeah, I know, then it’d be AJAX or SJAX, but stay with

me here.) The synchronous form is easier to understand, so I use it first.

The next example (and all the others in this book) will use the asynchro-

nous approach.

For this example, I use the GET mechanism to load a file called beast.txt

from the server in synchronized mode.

Sending the request and parameters
Once you’ve opened up a request, you need to pass that request to the

server. The send() method performs this task. It also provides you a mecha-

nism for sending data to the server. This arrangement only makes sense if the

request is going to a PHP program (or some other program on the server).

Because I’m just requesting a regular text document, I send the value null to

the server:

 request.send(null);

15_417997-ch09.indd 23215_417997-ch09.indd 232 10/26/09 10:01 PM10/26/09 10:01 PM

233 Chapter 9: AJAX Essentials

This is a synchronous connection, so the program pauses here until the

server sends the requested file. If the server never responds, the page will

hang. (This is exactly why the normal approach is to use asynchronous con-

nections.) Because this is just a test program, however, assume everything

will work okay and motor on.

Returning to the basket analogy, the send() method releases the basket,

which floats up to the window. In a synchronous connection, we’re assum-

ing the basket is filled and comes down automatically. The next step won’t

happen until the basket is back on earth. (But if something goes wrong, the

next step might never happen, because the basket will never come back.)

Checking the status
The next line of code won’t happen until the server passes some sort of

response back. Any HTTP request is followed by a numeric code. Normally,

your browser checks these codes automatically, and you don’t see them.

Occasionally, in the course of regular Web browsing, you run across an

HTTP error code such as 404 (file not found) or 500 (internal server error).

If the server was able to respond to the request, it will pass a status code

of 200. (You never see a 200 status code in ordinary browsing, because

that means the page request was successful, so you see the page.) The

XMLHttpRequest object has a property called status that returns the

HTTP status code. If status is 200, then everything went fine and you can

proceed. If status is any other value, some type of error occurred.

Fun with HTTP response codes
Just like the post office stamping success/error
messages on your envelope, the server sends
back status messages with your request. You
can see all the possible status codes on the
World Wide Web Consortium’s Web site at
www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html, but the important
ones to get you started are as follows:

 ✓ 200 = OK: This is a success code. Everything
went okay, and your response has been
returned.

 ✓ 400 = Bad Request: This is a client error
code. It means that something went wrong

on the user side. The request was poorly
formed and couldn’t be understood.

 ✓ 404 = Not Found: This is a client error code.
The page the user requested doesn’t exist
or couldn’t be found.

 ✓ 408 = Request Timeout: This is a client
error code. The server gave up on waiting
for the user’s computer to finish making its
request.

 ✓ 500 = Internal Server Error: This is a server
error code. It means that the server had an
error and couldn’t fill the request.

15_417997-ch09.indd 23315_417997-ch09.indd 233 10/26/09 10:01 PM10/26/09 10:01 PM

234 Part III: Moving Up to AJAX

You’ll want to make sure that the status of the request is successful before

you run the code that’s dependant upon the request. You can check for all

the various status codes if you want, but for this simple example I’m just

ensuring that status is 200:

 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(“Error- “ + request.status + “: “ + request.

statusText);
 } // end if

The request.status property will contain the server’s response. If this

value is 200, I want to do something with the results. In this case, I simply

display the text in an alert box. If the request is anything but 200, I use the

statusText property to determine what went wrong and pass that informa-

tion to the user in an alert.

Using the status property is like looking at the basket after it returns: The

container might have the requested data in it, or it might have some sort of

note (along the lines of “Sorry, the window was closed. I couldn’t fulfill your

request.”). There’s not much point in processing the data if it didn’t return

successfully.

Of course, I could do a lot more with the data. If it’s already formatted as

HTML code, I can use the innerHTML DOM tricks described in Chapter 6 to

display the code in any part of my page. If I’m dealing with some other type

of formatted data (XML or JSON), I can manipulate it with JavaScript and do

whatever I want with it. This technique is described in Chapter 14.

All Together Now: Making the
Connection Asynchronous

The synchronous AJAX connection described in the previous section is easy

to understand, but it has one major drawback: The client’s page completely
stops processing while waiting for a response from the server. This might not

seem like a big problem at first glance, but it is. If aliens attack the Web server,

it won’t make the connection, and the rest of the page will never be activated.

The user’s browser will hang indefinitely. In most cases, the user will have to

shut down the browser process with Ctl+Alt+Del (or the similar procedure on

other OSs). Obviously it would be best to prevent this kind of error.

15_417997-ch09.indd 23415_417997-ch09.indd 234 10/26/09 10:01 PM10/26/09 10:01 PM

235 Chapter 9: AJAX Essentials

That’s why most AJAX calls use the asynchronous technique. Here’s the big

difference: When you send an asynchronous request, the client keeps on

processing the rest of the page. When the request is complete, an event han-

dler processes the event. If the server goes down, the browser will not hang

(although the page probably won’t do what you want).

In other words, the readyState property is like looking at the basket’s prog-

ress. The basket could be sitting there empty, because you haven’t begun the

process. It could be going up to the window, being filled, coming back down,

or it could be down and ready to use. You’re only concerned with the last

state (ready), because that means the data is ready.

 I didn’t include a figure showing the asynchronous version, because to the

user, it looks exactly the same as the synchronous connection. Be sure to put

this code on your own server and check it out for yourself. (Or of course just

look at it on my server.)

The asynchronous version looks exactly the same on the front end, but the

code is structured a little differently:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

<title>asynch.html</title>
<script type = «text/javascript»>
//<![CDATA[

var request; //make request a global variable

function getAJAX(){
 request = new XMLHttpRequest();
 request.open(«GET», «beast.txt»);
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

15_417997-ch09.indd 23515_417997-ch09.indd 235 10/26/09 10:01 PM10/26/09 10:01 PM

236 Part III: Moving Up to AJAX

//]]>

</script>

</head>

<body>
<h1>Asynchronous AJAX transmission</h1>
<form action = «»>
 <p>
 <button type = «button»
 onclick = «getAJAX()»>
 Summon the beast of Caerbannogh
 </button>
 </p>
</form>
</body>
</html>

Setting up the program
The general setup of this program is just like the earlier AJAX example. The

HTML is a simple button which calls the getAJAX() function.

The JavaScript code now has two functions. The getAJAX() function sets

up the request, but a separate function (checkData()) responds to the

request. In an asynchronous AJAX model, it’s typical to separate the request

and the response in different functions.

Note that in the JavaScript code, I made the XMLHttpRequest object — the

request object — into a global variable by declaring it outside any func-

tions. I generally avoid making global variables, but it makes sense in this

case because I have two different functions that require the request object.

Look over Chapter 5 if you need a refresher on the advantages and disadvan-

tages of global variables.

Building the getAJAX() function
The getAJAX() function sets up and executes the communication with the

server.

15_417997-ch09.indd 23615_417997-ch09.indd 236 10/26/09 10:01 PM10/26/09 10:01 PM

237 Chapter 9: AJAX Essentials

function getAJAX(){
 request = new XMLHttpRequest();
 request.open(“GET”, “beast.txt”);
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

The code in this function is pretty straightforward. Here’s what you do:

 1. Create the request object.

 The request object is created exactly as it was in the first example.

 2. Call the request’s open() method to open a connection.

 Note that this time I left the synchronous parameter out, which creates

the (default) asynchronous connection.

 3. Assign an event handler to catch responses.

 You can use event handlers much like the ones in the DOM. In this

particular case I’m telling the request object to call a function called

checkData whenever the state of the request changes.

 You can’t easily send a parameter to a function when you call it using

this particular mechanism. That’s why I made request a global variable.

 4. Send the request.

 As before, the send() method begins the process. Because this is now

an asynchronous connection, the rest of the page will continue to pro-

cess. As soon as the request’s state changes (hopefully because there’s

been a successful transfer), the checkData() function will be activated.

Reading the response
Of course, you now need a function to handle the response when it comes

back from the server. This works by checking the ready state of the

response. Any HTTP request has a ready state, which is a simple integer

value describing what state the request is currently in. There are many ready

states, but the only one we’re concerned with is 4, because it means the

request is finished and ready to process.

15_417997-ch09.indd 23715_417997-ch09.indd 237 10/26/09 10:01 PM10/26/09 10:01 PM

238 Part III: Moving Up to AJAX

The basic strategy for checking a response is to check the ready state in the

aptly-named request.readyState property. If the ready state is 4, check

the status code to ensure there’s no error. If ready state is 4 and status is 200,

you’re in business, so you can process the form. Here’s the code:

function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

Once again, you can do anything you want with the text you receive. I’m just

printing it out, but the data can be incorporated into the page or processed

in any way you want.

Ready, set, readyState!
The readyState property of the request
object indicates the ready state of the request.
It has five possible values:

 ✓ 0 = Uninitialized: The request object
has been created, but the open() method
hasn’t been called on.

 ✓ 1 = Loading: The request object has
been created, the open() method has
been called, but the send() method
hasn’t been called.

 ✓ 2 = Loaded: The request object has
been created, the open() method has
been called, the send() method has been
called, but the response isn’t yet available
from the server.

 ✓ 3 = Interactive: The request object has
been created, the open() method has

been called, the send() method has been
called, the response has started trickling
back from the server, but not everything
has been received yet.

 ✓ 4 = Completed: The request object
has been created, the open() method
has been called, the send() method has
been called, the response has been fully
received, and the request object is fin-
ished with all its request/response tasks.

Each time the readyState property of the
request changes, the function you map to
readyStateChanged is called. In a typi-
cal AJAX program, this will happen four times
per transaction. There’s no point in reading the
data until the transaction is completed, which
will happen when readyState is equal to 4.

15_417997-ch09.indd 23815_417997-ch09.indd 238 10/26/09 10:01 PM10/26/09 10:01 PM

Chapter 10

Improving JavaScript and
AJAX with jQuery

In This Chapter
▶ Downloading and including the jQuery library

▶ Making an AJAX request with jQuery

▶ Using component selectors

▶ Adding events to components

▶ Creating a simple content management system with jQuery

JavaScript has amazing capabilities. It’s useful on its own and when you add

AJAX, it becomes incredibly powerful. However, JavaScript can be tedious.

There’s a lot to remember, and it can be a real pain to handle multiple platform

issues. Some tasks (like AJAX) are a bit complex and require a lot of steps.

Regardless of the task, there are always browser compatibility issues to deal with.

AJAX libraries have come to the rescue, and the jQuery library in particular

is a powerful tool for simplifying AJAX. This chapter explains what JavaScript

Libraries can do and introduces you to one of the most popular libraries in

current use.

Introducing JavaScript Libraries
For these reasons, Web programmers began to compile commonly used

functions into reusable libraries. These libraries became more powerful over

time, and some of them have now become fundamental to Web development.

As these libraries became more powerful, the libraries not only added AJAX

capabilities, but many library developers also add features to JavaScript/

DOM programming that were once available only in traditional programming

languages. Many of these libraries allow for a new visual aesthetic as well as

enhanced technical capabilities. In fact, most applications considered part of

the Web 2.0 revolution are based in part on one of these libraries.

16_417997-ch10.indd 23916_417997-ch10.indd 239 10/26/09 10:02 PM10/26/09 10:02 PM

240 Part III: Moving Up to AJAX

A number of very powerful JavaScript/AJAX libraries are available. All make

basic JavaScript easier, and each has its own learning curve. No library will

write code for you, but a good library can handle some of the drudgery and

let you work instead on the creative aspects of your program. JavaScript

libraries can let you work at a higher level than plain JavaScript, so you can

write more elaborate pages in less time.

Several important JavaScript/AJAX libraries are available. Here are a few of

the most prominent:

 ✓ DOJO (www.dojotoolkit.org/): A very powerful library that includes

a series of user interface widgets (like those in Visual Basic and Java) as

well as AJAX features.

 ✓ MochiKit (http://mochikit.com/): A nice lower-level set of

JavaScript functions to improve JavaScript programming. It makes

JavaScript act much more like the Python language, with an interactive

interpreter.

 ✓ Prototype (www.prototypejs.org/): One of the first AJAX libraries

to become popular. Includes great support for AJAX and extensions for

user interface objects (through the scriptaculous extension).

What is Web 2.0?
I’m almost reluctant to mention the term Web
2.0 here because it isn’t really a very useful
description. There are actually three main ways
people describe Web 2.0 (if such a thing really
exists).

Some talk about Web 2.0 as a design paradigm
(lots of white space, simple color schemes, and
rounded corners). I believe the visual trends
will evolve to something else, and that other
aspects of the Web 2.0 sensibility will have
longer-lasting impact.

The technical aspects of Web 2.0 (heavy use
of AJAX and libraries to make Web program-
ming more like traditional programming) are
more important than the visual aspects. These
technologies make it possible to build Web

applications in much the same way desktop
applications are now created.

I personally think the most important emerging
model of the Web is the change in the commu-
nication paradigm. Web 2.0 is no longer about
a top-down broadcast model of communica-
tion, but more of a conversation among users
of a site or system. Although the visual and
technical aspects are important, the changing
relationship between producers and users of
information is perhaps even more profound.

The design and communication aspects are
fascinating, but this book focuses on the tech-
nical aspects. When you can actually work in
Web 2.0 technologies, you can decide for your-
self how to express the technology visually and
socially. I can’t wait to see what you produce.

16_417997-ch10.indd 24016_417997-ch10.indd 240 10/26/09 10:02 PM10/26/09 10:02 PM

241 Chapter 10: Improving JavaScript and AJAX with jQuery

 ✓ YUI Yahoo! Interface Library (http://developer.yahoo.com/
yui/): This is the library used by Yahoo! for all its AJAX applications. It

has released this impressive library as open source.

 ✓ jQuery (http://jquery.com/): jQuery has emerged as one of the

more popular JavaScript and AJAX libraries. It’s the library I emphasize

in this book.

Getting to Know jQuery
This book focuses on the jQuery library. Although many outstanding AJAX/

JavaScript libraries are available, jQuery has quickly become one of the most

prominent. There are many reasons for the popularity of jQuery:

 ✓ It’s a powerful library. The jQuery system can do all kinds of impressive

things to make your JavaScript easier to write.

 ✓ It’s lightweight. You’ll need to include a reference to your library in

every file that needs it. The entire jQuery library fits in 55K, which is

smaller than many image files. It won’t have a significant impact on

download speed.

 ✓ It supports a flexible selection mechanism. jQuery greatly simplifies

and expands the document.getElementById mechanism that’s cen-

tral to DOM manipulation.

 ✓ It has great animation support. You can use jQuery to make elements

appear and fade, move and slide.

 ✓ It makes AJAX queries trivial. You’ll be shocked at how easy AJAX is

with jQuery.

 ✓ It has an enhanced event mechanism. JavaScript has very limited sup-

port for events. jQuery adds a very powerful tool for adding event han-

dlers to nearly any element.

 ✓ It provides cross-platform support. The jQuery library tries to manage

browser-compatibility issues for you, so you don’t have to stress so

much about exactly which browser is being used.

 ✓ It supports user interface widgets. jQuery comes with a powerful user

interface library including tools HTML doesn’t have, like drag-and-drop

controls, sliders, and date pickers.

 ✓ It’s highly extensible. jQuery has a plugin library that supports all kinds

of optional features, including new widgets and tools like audio integra-

tion, image galleries, menus, and much more.

16_417997-ch10.indd 24116_417997-ch10.indd 241 10/26/09 10:02 PM10/26/09 10:02 PM

242 Part III: Moving Up to AJAX

 ✓ It introduces powerful new programming ideas. jQuery is a great tool

for learning about some really interesting ideas like functional program-

ming and chainable objects. I explain these as you encounter them.

 ✓ It’s free and open source. It’s available under an open-source license,

which means it costs nothing to use, and you can look it over and

change it if you want.

 ✓ It’s reasonably typical. If you choose to use a different AJAX library,

you’ll still be able to transfer the ideas you learned in jQuery.

Installing jQuery
The jQuery library is easy to install and use. Just go to http://jquery.com

and download the current version (1.3.2 as of this writing). Store the result-

ing .js file (jQuery-1.3.2.min.js) in your working directory.

 You might be able to choose from a number of versions of the file. I recom-

mend the minimized version. To make this file as small as possible, every

single unnecessary character (including spaces and carriage returns) has

been removed. This file is very compact, but it’s difficult to read. You can

download the nonminimized version if you want to actually read the code, but

it’s generally better to include the minimized version in your programs.

That’s basically all there is to it. Download the file and place it in the direc-

tory where you want to work.

To incorporate the library in your pages, simply link it as an external

JavaScript file:

 <script type = “text/javascript”
 src = “jquery-1.3.2.min.js”></script>

Be sure to include this script before you write or include other code that

refers to jQuery.

Importing jQuery from Google
Easy as it is to download jQuery, there’s another great way to add jQuery

(and other AJAX library) support to your pages without downloading any-

thing. Google has a publicly available version of several important libraries

(including jQuery) that you can download from the Google servers. This

method has a couple of interesting advantages:

16_417997-ch10.indd 24216_417997-ch10.indd 242 10/26/09 10:02 PM10/26/09 10:02 PM

243 Chapter 10: Improving JavaScript and AJAX with jQuery

 ✓ You don’t have to install any libraries. All the library files stay on the

Google servers.

 ✓ The library is automatically updated. You always have access to the

latest version of the library without making any changes to your code.

 ✓ The library might load faster. The first time one of your pages reads the

library from Google’s servers, you have to wait for the full download, but

then the library is stored in cache (a form of browser memory) so subse-

quent requests will be essentially immediate.

Here’s how you do it:

<script type = “text/javacript”
 src=”http://www.google.com/jsapi”></script>
<script type = “text/javacript”>
 //<[CDATA[
 // Load jQuery
 google.load(“jquery”, “1”);

 //your code here

 //]]>
</script>

Essentially, loading jQuery from Google is a two-step process:

 1. Load the Google API from Google.

 Use the first <script> tag to refer to the Google AJAX API server. This

gives you access to the google.load() function.

 2. Invoke google.load() to load jQuery.

 The first parameter is the name of the library you want to load. The

second parameter is the version number. If you leave this parameter

blank, you get the latest version. If you specify a number, Google gives

you the latest variation of that version. In my example, I want the latest

variation of version 1, but not version 2. Although version 2 doesn’t exist

yet, I expect it to have major changes, and I don’t want any surprises.

Note that you don’t need to install any files locally to use the Google

approach.

Using jQuery with Aptana
The Aptana editor is amazing. One of its most impressive features is the way

it helps you build AJAX applications with several libraries. It has built-in

16_417997-ch10.indd 24316_417997-ch10.indd 243 10/26/09 10:02 PM10/26/09 10:02 PM

244 Part III: Moving Up to AJAX

support for jQuery, which is quite easy to use. Follow these steps to build a

jQuery project within Aptana:

 1. Create a new default Web project.

 Many developers ignore the project mechanism in Aptana and simply

create individual files. The project tool allows you to group a series of

files. The Web Project Wizard (invoked when you create a new Web proj-

ect) allows automatic integration of an AJAX library.

 2. Select jQuery from the libraries wizard.

 After you’ve entered a name for your project, you’re given a list of AJAX

libraries you can add to the project, as shown in Figure 10-1. Pick jQuery

from this list.

 3. Do not create a hosted site.

 The hosted site option allows you to simultaneously create an online ver-

sion of your site within Aptana’s server structure (the cloud). Although

this is an excellent option for commercial sites, you need to pay for server

access, and that isn’t necessary when you’re just starting out.

Figure 10-1:
Aptana

has built-in
support for

many AJAX
libraries.

16_417997-ch10.indd 24416_417997-ch10.indd 244 10/26/09 10:02 PM10/26/09 10:02 PM

245 Chapter 10: Improving JavaScript and AJAX with jQuery

 4. Look over your new project.

 Aptana creates a directory structure for your project. It automatically

includes access to the source files for jQuery.

 5. Add a script tag to your index.html document.

 As you begin to write the src attribute, the autocomplete feature helps

you include the jQuery files.

 6. jQuery functions are now supported in your editor.

 As you write JavaScript code, Aptana gives you code completion hints

for jQuery functions as if they were built into JavaScript. If you’re run-

ning an up-to-date version of Aptana, it already has the latest version of

jQuery and attaches it to your project.

 7. Note that now you’re working in a project.

 Aptana’s project mechanism allows you to save an entire group of files

(including the jQuery library together) so you can open them as one

unit.

 All these options for managing jQuery can be dizzying. Use whichever tech-

nique works best for you. I actually prefer using the local code, rather than the

Google or Aptana solutions, because I find it easier, and this method works

even if I’m offline. For smaller projects (like the demonstrations in this chap-

ter), I don’t like the overhead of the Aptana solution or the online requirement

of Google. In this chapter, I simply refer to a local copy of the jQuery file.

Writing Your First jQuery App
As an introduction to jQuery, I show you how to build an application that you

can already create in JavaScript/DOM. The following sections introduce you

to some powerful features of jQuery. Figure 10-2 illustrates the change.html

page at work, but the interesting stuff (as usual) is under the hood.

Figure 10-2:
The content
of this page
is modified

with jQuery.

16_417997-ch10.indd 24516_417997-ch10.indd 245 10/26/09 10:02 PM10/26/09 10:02 PM

246 Part III: Moving Up to AJAX

Setting up the page
At first, the jQuery app doesn’t look much different than any other HTML/

JavaScript code you’ve already written, but the JavaScript code is a bit differ-

ent. Take a look at how jQuery simplifies this JavaScript code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <title>change.html</title>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 function changeMe(){
 $(«#output»).html(«I changed»);
 }

 //]]>
 </script>
</head>
<body onload = «changeMe()»>
 <h1>Basic jQuery demo</h1>
 <div id = «output»>
 Did this change?
 </div>
</body>
</html>

 If you’re already knowledgeable about jQuery, you might be horrified at my

use of body onload in this example. jQuery provides a wonderful alternative

to the onload mechanism, but I want to introduce only one big new idea at a

time. The next example illustrates the jQuery alternative to body onload and

explains why it is such an improvement.

The basic features of change.html are utterly unsurprising:

 ✓ The HTML has a div named output. This div initially says “Did this

change?” The code should change the content to something else.

 ✓ The HTML calls a function called changeme() when the body finishes

loading. This is a mechanism used frequently in DOM programming,

although you see a new way to do this in the next section.

16_417997-ch10.indd 24616_417997-ch10.indd 246 10/26/09 10:02 PM10/26/09 10:02 PM

247 Chapter 10: Improving JavaScript and AJAX with jQuery

 ✓ There is a reference to the jQuery library. Any page that uses jQuery must

load it using one of the mechanisms described earlier in this chapter.

 ✓ The changeme() function looks really crazy. When you run the pro-

gram, you can tell what it does. The code gets a reference to the output

div and changes its innerHTML property to reflect a new value (“I
changed”). However, the syntax is really new. All that functionality got

packed into one line of (funky looking) code.

Meet the jQuery node object
The secret behind jQuery’s power is the underlying data model. jQuery has

a unique way of looking at the DOM that’s more powerful than the standard

object model. Understanding the way this works is the key to powerful pro-

gramming with jQuery.

The jQuery node is a special object that adds a lot of functionality to the

ordinary DOM element. Any element on the Web page (any link, div, head-

ing, or whatever) can be defined as a jQuery node. You can also make a list of

jQuery nodes based on tag types, so you can have a jQuery object that stores

a list of all the paragraphs on the page, or all the objects with a particular

class name. The jQuery object has very useful methods like html(), which is

used to change the innerHTML property of an element.

 The jQuery node is based on the basic DOM node, so it can be created from

any DOM element. However, it also adds significant new features. This is a

good example of the object-oriented philosophy.

You can create a jQuery object in many ways, but the simplest is through the

special $() function. You can place an identifier (very similar to CSS identi-

fiers) inside the function to build a jQuery object based on an element. For

example,

var jQoutput = $(“#output”);

creates a variable called jQoutput, which contains a jQuery object based on

the output element. It’s similar to

var DOMoutput = document.getElementById(“output”);

The jQuery approach is a little cleaner, and it doesn’t get a reference to a

DOM object (as the getElementById technique does), but it makes a new

object called the jQuery object, which is an enhanced DOM object. Don’t

worry if this is a little hard to understand. It gets easier as you get used to it.

16_417997-ch10.indd 24716_417997-ch10.indd 247 10/26/09 10:02 PM10/26/09 10:02 PM

248 Part III: Moving Up to AJAX

Because jQoutput is a jQuery object, it has some powerful methods. You

can change the content of the object with the html() method. The following

two lines are equivalent:

jQoutput.html(“I’ve changed”); //jQuery version
DOMoutput.innerHTML = “I’ve changed”; //ordinary JS / DOM

jQuery doesn’t require you to create variables for each object, so the code in

the changeMe() function can look like this:

//build a variable and then modify it
var jQoutput = $(“#output”);
jQoutput.html(“I’ve changed”);

Or you can shorten it like this:

 $(“#output”).html(“I changed”);

This last version is how the program is actually written. It’s very common

to refer to an object with the $() mechanism and immediately perform a

method on that object as I’ve done here.

Creating an Initialization Function
Many pages require an initialization function. This is a function that’s run early

to set up the rest of the page. The body onload mechanism is frequently used

in DOM/JavaScript to make pages load as soon as the document has begun

loading. I describe this technique in Chapter 8. Although body onload does

this job well, the traditional technique has a couple of problems:

 ✓ It requires making a change to the HTML. Really the JavaScript code

should be completely separated from HTML. You shouldn’t have to

change your HTML at all to make it work with JavaScript.

 ✓ The timing still isn’t quite right. Code specified in body unload

doesn’t execute until after the entire page is displayed. It would be

better if the code was registered after the DOM is loaded but before the

page displays.

Using $(document).ready()
jQuery has a great alternative to body onload that overcomes its draw-

backs. Take a look at the code for ready.html to see how it works:

16_417997-ch10.indd 24816_417997-ch10.indd 248 10/26/09 10:02 PM10/26/09 10:02 PM

249 Chapter 10: Improving JavaScript and AJAX with jQuery

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <title>ready.html</title>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(document).ready(changeMe);

 function changeMe(){
 $(«#output»).html(«I changed»);
 }

 //]]>
 </script>
</head>
<body>
 <h1>Using the document.ready mechanism</h1>
 <div id = «output»>
 Did this change?
 </div>
</body>
</html>

This code is much like the change.html, but it uses the jQuery technique

for running initialization code:

 ✓ The <body> tag no longer has an onload attribute. This is a common

feature of jQuery programming. The HTML no longer has direct links to

the JavaScript because jQuery lets the JavaScript code attach itself to

the Web page.

 ✓ The initialization function is created with the $(document).ready()

function. This technique tells the browser to execute a function when

the DOM has finished loading (so it has access to all elements of the

form) but before the page is displayed (so any effects of the form appear

instantaneous to the user).

 ✓ $(document) makes a jQuery object from the whole document.

The entire document can be turned into a jQuery object by specifying

document inside the $() function. Note that you don’t use quotes in

this case.

16_417997-ch10.indd 24916_417997-ch10.indd 249 10/26/09 10:02 PM10/26/09 10:02 PM

250 Part III: Moving Up to AJAX

 ✓ The function specified is automatically run. In this particular case, I

want to run the changeMe() function, so I place it in the parameter of

the ready() method. Note that I’m referring to changeMe as a variable,

so it has no quotes or parentheses. (Look at Chapter 8 for more discus-

sion of referring to functions as variables.)

 You might see several other places (particularly in event handling) where

jQuery expects a function as a parameter. Such a function is frequently

referred to as a callback function because it is called after some sort of event

has occurred. You might also notice callback functions that respond to key-

board events, mouse motion, and the completion of an AJAX request.

Discovering alternatives
to document.ready
Programmers sometimes use shortcuts instead of document.ready because

it’s so common to run initialization code. You can shorten

 $(document).ready(changeMe);

to the following code:

 $(changeMe);

If this code isn’t defined inside a function and changeMe is a function defined

on the page, jQuery automatically runs the function directly just like the

document.ready approach.

It’s also possible to create an anonymous function directly:

 $(document).ready(function(){
 $(“#output”).html(“I changed”);
 });

I think this method is cumbersome, but jQuery code frequently uses this

technique.

Investigating the jQuery Object
The jQuery object is interesting because it’s easy to create from a variety of

DOM elements and because it adds wonderful new features to these elements.

16_417997-ch10.indd 25016_417997-ch10.indd 250 10/26/09 10:02 PM10/26/09 10:02 PM

251 Chapter 10: Improving JavaScript and AJAX with jQuery

Changing the style of an element
If you can dynamically change the CSS of an element, you can do quite a lot to

it. jQuery makes this process quite easy. When you have a jQuery object, you

can use the css method to add or change any CSS attributes of the object.

Take a look at styleElement.html shown in Figure 10-3 for an example.

Figure 10-3:
All the

styles here
are applied

dynamically
by jQuery
functions.

The code displays a terseness common to jQuery code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«h1»).css(«backgroundColor», «yellow»);

 $(«#myParagraph»).css({«backgroundColor»:»black»,
 «color»:»white»});

 $(«.bordered»).css(«border», «1px solid black»);
 }
 //]]>
 </script>
 <title>styleElements.html</title>

16_417997-ch10.indd 25116_417997-ch10.indd 251 10/26/09 10:02 PM10/26/09 10:02 PM

252 Part III: Moving Up to AJAX

</head>
<body>
 <h1>I’m a level one heading</h1>
 <p id = «myParagraph»>
 I’m a paragraph with the id «myParagraph.»
 </p>

 <h2 class = «bordered»>
 I have a border.
 </h2>

 <p class = «bordered»>
 I have a border too.
 </p>
</body>
</html>

This program has a few interesting things going on in it. Take a look at the

HTML.

 ✓ It contains an <h1> tag. I’m aware that’s not too exciting, but I use it to

show how to target elements by DOM type.

 ✓ A paragraph has the ID myParagraph. This paragraph is used to illus-

trate how to target an element by ID.

 ✓ Two elements have the class bordered. In ordinary DOM work, you

can’t easily apply code to all elements of a particular class, but jQuery

makes it easy.

 ✓ Several elements have custom CSS, but no CSS is defined. The jQuery

code changes all the CSS dynamically.

The init() function is identified as the function to be run when the docu-

ment is ready. In this function, I use the powerful CSS method to change each

element’s CSS dynamically. I come back to the CSS in a moment, but first

notice how the various elements are targeted.

Selecting jQuery objects
jQuery gives you several alternatives for creating jQuery objects from the

DOM elements. In general, you use the same rules to select objects in jQuery

as you do in CSS:

 ✓ DOM elements are targeted as-is. You can include any DOM element inside

the $(“”) mechanism to target all similar elements. For example, use

$(“h1”) to refer to all h1 objects, or $(“p”) to refer to all paragraphs.

 ✓ Use the # identifier to target a particular ID. This works exactly the

same as CSS. If you have an element with the ID myThing, use this code:

$(“#myThing”).

16_417997-ch10.indd 25216_417997-ch10.indd 252 10/26/09 10:02 PM10/26/09 10:02 PM

253 Chapter 10: Improving JavaScript and AJAX with jQuery

 ✓ Use the . identifier to target members of a class. Again, this is the same

mechanism you use in CSS, so all elements with the class bordered

attached to them can be modified with this code: $(“.bordered”).

 ✓ You can even use complex identifiers. You can use complex CSS identi-

fiers like $(“li img”); this identifier targets only images inside a list

item.

These selection methods (all borrowed from familiar CSS notation) add

incredible flexibility to your code. You can now easily select elements in your

JavaScript code according to the same rules you use to identify elements

in CSS.

Modifying the style
After you’ve identified an object or a set of objects, you can apply jQuery

methods. One very powerful and easy method is the style() method. The

basic form of this method takes two parameters: a style rule and value. For

example, to make the background color of all h1 objects yellow, I used the

following code:

 $(“h1”).css(“backgroundColor”, “yellow”);

If you apply a style rule to a collection of objects (like all h1 objects or all

objects with the bordered class), the same rule is instantly applied to all the

objects.

A more powerful variation of the style rule allows you to apply several CSS

styles at once. It takes a single object in JSON notation (JavaScript Object

Notation described in Chapter 5) as its argument:

 $(“#myParagraph”).css({“backgroundColor”:”black”,
 “color”:”white”});

This example uses a JSON object defined as a series of rule/value pairs. If you

need a refresher on how JSON objects work, look at Chapter 5.

Adding Events to Objects
The jQuery library adds another extremely powerful capability to JavaScript.

It allows you to easily attach events to any jQuery object. As an example, take

a look at hover.html, shown in Figure 10-4.

When you move the mouse pointer over any list item, a border appears over

the item. This effect would be difficult to achieve in ordinary DOM/JavaScript,

but it’s pretty easy to manage in jQuery.

16_417997-ch10.indd 25316_417997-ch10.indd 253 10/26/09 10:02 PM10/26/09 10:02 PM

254 Part III: Moving Up to AJAX

Figure 10-4:
A border
appears

around each
list item

when the
mouse is

over it.

Adding a hover event
Look at the code to see how it works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«li»).hover(border, noBorder);
 } // end init

 function border(){
 $(this).css(«border», «1px solid black»);
 }

 function noBorder(){
 $(this).css(«border», «0px none black»);
 }

 //]]>
 </script>

 <title>hover.html</title>

16_417997-ch10.indd 25416_417997-ch10.indd 254 10/26/09 10:02 PM10/26/09 10:02 PM

255 Chapter 10: Improving JavaScript and AJAX with jQuery

</head>
<body>
 <h1>Hover Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

The HTML couldn’t be simpler: It’s an unordered list. The JavaScript isn’t

much more complex. It consists of three one-line functions.

 ✓ init(): This function is called when the document is ready. It makes

jQuery objects out of all list items and attaches the hover event to

them. hover accepts two parameters. The first is a function to be called

when the mouse hovers over the object. The second parameter is a

function to be called when the mouse leaves the object.

 ✓ border(): This function draws a border around the current element.

The $(this) identifier is used to specify the current object. In this

example, I use the css function to draw a border around the object.

 ✓ noBorder(): It’s very similar to the border() function, but it removes

a border from the current object.

In this example, I used three different functions. Many jQuery programmers

prefer to use anonymous functions (sometimes called lambda functions) to

enclose the entire functionality in one long line:

 $(“li”).hover(
 function(){
 $(this).css(“border”, “1px solid black”);
 },
 function(){
 $(this).css(“border”, “0px none black”);
 }
);

Note that this is still technically a single line of code. Instead of referencing

two functions that have already been created, I build the functions immedi-

ately where they’re needed. Each function definition is a parameter to the

hover() method.

16_417997-ch10.indd 25516_417997-ch10.indd 255 10/26/09 10:02 PM10/26/09 10:02 PM

256 Part III: Moving Up to AJAX

 If you’re a computer scientist, you might argue that this isn’t a perfect example

of a lambda function, and you would be correct. The important thing is to notice

that some ideas of functional programming (such as lambda functions) are

creeping into mainstream AJAX programming, and that’s an exciting develop-

ment. If you just mutter “lambda” and then walk away, people will assume you’re

some kind of geeky computer scientist. What could be more fun than that?

Although I’m perfectly comfortable with anonymous functions, I often find

the named-function approach easier to read, so I tend to use complete named

functions more often.

Changing classes on the fly
jQuery supports another wonderful feature. You can define a CSS style and

then add or remove that style from an element dynamically. Figure 10-5 shows

a page with the ability to dynamically modify the border of any list item.

Figure 10-5:
Click a list

item to
toggle its

border on
and off.

jQuery events
jQuery supports a number of other events.
Any jQuery node can read any of the following
events:

 ✓ change: The content of the element
changes.

 ✓ click: The user clicks the element.

 ✓ dblClick: The user double-clicks the
element.

 ✓ focus: The user selects the element.

 ✓ keydown: The user presses a key while
the element has the focus.

 ✓ hover: The mouse is over the element —
a second function is called when the mouse
leaves the element.

 ✓ mouseDown: A mouse button is pressed
over the element.

 ✓ select: The user selects text in a text-
style input.

16_417997-ch10.indd 25616_417997-ch10.indd 256 10/26/09 10:02 PM10/26/09 10:02 PM

257 Chapter 10: Improving JavaScript and AJAX with jQuery

The code for class.html shows how easy this kind of feature is to add:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <style type = «text/css»>
 .bordered {
 border: 1px solid black;
 }
 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«li»).click(toggleBorder);
 } // end init

 function toggleBorder(){
 $(this).toggleClass(«bordered»);
 }
 //]]>
 </script>

 <title>class.html</title>
</head>
<body>
 <h1>Class Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

Here’s how to make this program:

 1. Begin with a basic HTML page.

 All the interesting stuff happens in CSS and JavaScript, so the actual con-

tents of the page aren’t that critical.

16_417997-ch10.indd 25716_417997-ch10.indd 257 10/26/09 10:02 PM10/26/09 10:02 PM

258 Part III: Moving Up to AJAX

 2. Create a class you want to add and remove.

 I build a CSS class called bordered, which simply draws a border

around the element. Of course, you can make a much more sophisti-

cated CSS class with all kinds of formatting if you prefer.

 3. Link an init() method.

 As you’re beginning to see, most jQuery applications require some sort

of initialization. I normally call the first function init().

 4. Call the toggleBorder() function whenever the user clicks a list

item.

 The init() method simply sets up an event handler. Whenever a list

item receives the click event (that is, the list item is clicked), the tog-
gleBorder() function should be activated.

 5. The toggleBorder() function, well, toggles the border.

 jQuery has several methods for manipulating the class of an element.

addClass() assigns a class to the element, removeClass() removes

a class definition from an element, and toggleClass() switches the

class (by adding the class if it isn’t currently attached or removing it

otherwise).

Making an AJAX Request with jQuery
The primary purpose of an AJAX library like jQuery is to simplify AJAX

requests. It’s hard to believe how easy this can be with jQuery. Figure 10-6

shows ajax.html, a page with a basic AJAX query.

Figure 10-6:
The text file

is requested
with an

AJAX call.

Including a text file with AJAX
The ajax.html program is very similar in function to the asynch.html pro-

gram described in Chapter 9, but the code is much cleaner:

16_417997-ch10.indd 25816_417997-ch10.indd 258 10/26/09 10:02 PM10/26/09 10:02 PM

259 Chapter 10: Improving JavaScript and AJAX with jQuery

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <title>ajax.html</title>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(document).ready(getAJAX);

 function getAJAX(){
 $(«#output»).load(«hello.txt»);
 }
 //]]>
 </script>

 </head>

 <body>
 <div id = «output»></div>
 </body>
</html>

The HTML is very clean (as you should expect from jQuery examples). It

simply creates an empty div called output.

The JavaScript code isn’t much more complex. A standard $(document).
ready function calls the getAJAX() function as soon as the document is

ready. The getAJAX() function simply creates a jQuery node based on the

output div and loads the file hello.txt through a basic AJAX request.

 This example does use AJAX, so if it isn’t working, you might need to review

how AJAX works. You should run a program using AJAX through a Web

server, not just from a local file. Also, the file being read should be on the

same server as the program making the AJAX request.

I cover more sophisticated AJAX techniques in Chapter 14. The load()

mechanism is suitable for a basic situation where you want to load a plain

text or HTML code snippet into your pages.

16_417997-ch10.indd 25916_417997-ch10.indd 259 10/26/09 10:02 PM10/26/09 10:02 PM

260 Part III: Moving Up to AJAX

Building a poor man’s CMS with AJAX
AJAX and jQuery can be a very useful way to build efficient Web sites even

without server-side programming. Frequently a Web site is based on a series

of smaller elements that can be swapped and reused. Such a technique is

called a CMS (content management system). You can use AJAX to build a

framework that allows easy reuse and modification of Web content.

As an example, take a look at cmsAJAX shown in Figure 10-7.

Figure 10-7:
This page
is actually

created
dynamically

with AJAX
and jQuery.

Although there’s nothing all that shocking about the page from the user’s

perspective, a look at the code shows some surprises:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

16_417997-ch10.indd 26016_417997-ch10.indd 260 10/26/09 10:02 PM10/26/09 10:02 PM

261 Chapter 10: Improving JavaScript and AJAX with jQuery

 <title>CMS Standard Template</title>
 <link rel = «stylesheet»
 type = «text/css»
 href = «cmsStd.css» />
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«#heading»).load(«head.html»);
 $(«#menu»).load(«menu.html»);
 $(«#content1»).load(«story1.html»);
 $(«#content2»).load(«story2.html»);
 $(«#footer»).load(«footer.html»);
 };
 //]]>
 </script>
 </head>

 <body>
 <div id = «all»>
 <!-- This div centers a fixed-width layout -->
 <div id = «heading»>
 </div><!-- end heading div -->

 <div id = «menu»>
 </div> <!-- end menu div -->

 <div class = «content»
 id = «content1»>
 </div> <!-- end content div -->

 <div class = «content»
 id = «content2»>
 </div> <!-- end content div -->

 <div id = «footer»>
 </div> <!-- end footer div -->

 </div> <!-- end all div -->
 </body>
</html>

The code has these interesting features:

 ✓ The page has no content! All the divs are empty. None of the text

shown in Figure 10-7 is present in this document, but all is pulled from

smaller files dynamically.

16_417997-ch10.indd 26116_417997-ch10.indd 261 10/26/09 10:02 PM10/26/09 10:02 PM

262 Part III: Moving Up to AJAX

 ✓ The page consists of empty, named divs. Rather than any particular

content, the page consists of placeholders with IDs.

 ✓ It uses jQuery. The jQuery library is used to vastly simplify loading data

through AJAX calls.

 ✓ All contents are in separate files. The directory has very simple HTML

files containing small parts of the page. For example, story1.html

looks like this:

<h2>HTML / XHTML CSS All in One for Dummies</h2>

<p>
This book begins at the very beginning, teaching you how to build
great web pages with XHTML and CSS. You’ll learn how to build
standards-compliant pages, and how to dress them up with CSS.
You also learn how to add interactivity with JavaScript, how to
harness the power of server-side programming with PHP, and how to build
databases with MySQL. All the tools necessary are included free on
the CD-ROM.
</p>

<p>

 http://www.aharrisbooks.net/xfd
</p>

 ✓ The init() method runs on document.ready. When the document is

ready, the page runs the init() method.

 ✓ The init() method uses AJAX calls to dynamically load content. It’s

nothing more than a series of jQuery load() methods.

This approach might seem like a lot of work, but it has some very interesting

characteristics. If you’re building a large site with several pages, you usu-

ally want to design the visual appearance once and re-use the same general

template over and over again. Also, you’ll probably have some elements

(such as the menu and heading) that will be consistent over several pages.

You could simply create a default document and copy and paste it for each

page, but this approach gets messy. What happens if you have created 100

pages according to a template and then need to add something to the menu

or change the header? You would need to make the change on 100 different

pages.

The advantage of the template-style approach is code reuse. Just like use of

an external style allows you to multiply a style sheet across hundreds of doc-

uments, designing a template without content allows you to store code snip-

pets in smaller files and reuse them. All 100 pages point to the same menu

16_417997-ch10.indd 26216_417997-ch10.indd 262 10/26/09 10:02 PM10/26/09 10:02 PM

263 Chapter 10: Improving JavaScript and AJAX with jQuery

file, so if you want to change the menu, you change one file and everything

changes with it.

Here’s how you use this sort of approach:

 1. Create a single template for your entire site.

 Build basic HTML and CSS to manage the overall look and feel for your

entire site. Don’t worry about content yet. Just build placeholders for

all the components of your page. Be sure to give each element an ID and

write the CSS to get things positioned as you wish.

 2. Add jQuery support.

 Make a link to the jQuery library, and make a default init() method.

Put code to handle populating those parts of the page that will always

be consistent. (I use the template shown here exactly as it is.)

 3. Duplicate the template.

 When you have a sense how the template will work, make a copy for

each page of your site.

 4. Customize each page by changing the init() function.

 The only part of the template that changes is the init() function. All

your pages will be identical, except they will have customized init()

functions that load different content.

 5. Load custom content into the divs with AJAX.

 Use the init() function to load content into each div. Build more con-

tent as small files to create new pages.

 This is a great way to manage content, but it isn’t quite a full-blown content

management system. Even AJAX can’t quite allow you to store content on the

Web. More complex content management systems use databases rather than

files to handle content. You need some sort of server-side programming (like

PHP) and usually a database (like mySQL) to handle this sort of work. I intro-

duce these topics in Chapter 14.

16_417997-ch10.indd 26316_417997-ch10.indd 263 10/26/09 10:02 PM10/26/09 10:02 PM

264 Part III: Moving Up to AJAX

16_417997-ch10.indd 26416_417997-ch10.indd 264 10/26/09 10:02 PM10/26/09 10:02 PM

Chapter 11

Animating jQuery
In This Chapter
▶ Setting up for animation

▶ Hiding and showing elements with jQuery

▶ Fading elements in and out

▶ Adding a callback function to a transition

▶ Understanding object chaining

▶ Modifying elements

▶ Using selection filters

The jQuery library simplifies a lot of JavaScript coding. One of its biggest

advantages is how it allows you to add features that would be difficult to

achieve in ordinary JavaScript and DOM (document object model) programming.

This chapter teaches you to shake and bake your programs by identifying spe-

cific objects; moving them around; and making them appear, slide, and fade.

Getting Prepared for Animation
To get your jQuery animation career started, take a look at hideShow.html,

shown in Figure 11-1.

The hideShow program looks simple at first, but it does some very interest-

ing things. All of the level-two headings are actually buttons, so when you

click them, fun stuff happens:

 ✓ The Show button displays a previously hidden element. Figure 11-2

demonstrates the new content.

 ✓ The Hide button hides the content. The behavior of the hide button

is pretty obvious. If the content is showing, clicking the button makes it

disappear instantly.

 ✓ The Toggle button swaps the visibility of the content. If the content is

currently visible, clicking the button hides it. If it is hidden, a click of the

button makes it show up.

17_417997-ch11.indd 26517_417997-ch11.indd 265 10/26/09 10:02 PM10/26/09 10:02 PM

266 Part III: Moving Up to AJAX

Figure 11-1:
At first, the

page shows
nothing

much.

 ✓ The Slide Down button makes the content transition in. The slide

down transition acts like a window shade being pulled down to make the

content visible through a basic animation.

 ✓ The Slide Up button transitions the content out. This animation looks

like a window shade being pulled up to hide the content.

 ✓ The Fade In button allows the element to dissolve into visibility. This

animation looks much like a fade effect used in video. As in the sliding

animations, you can control the speed of the animation.

 A special function is called when the fade in is complete. In this example,

I call a function named present as soon as the fade in is complete. This

is a callback function, which I explain in just a bit.

 ✓ The Fade Out button fades the element to the background color. This

technique gradually modifies the opacity of the element so it gradually

disappears.

Here are a couple of details for you to keep in mind:

 ✓ You can adjust how quickly the transition animation plays. For example,

the hideShow program plays the slide down at a slow speed, and slide

up faster. You can even specify exactly how long the transition takes in

milliseconds (1/1000ths of a second).

 ✓ Any transition can have a callback function attached. A callback func-

tion is a function that will be triggered when the transition is complete.

 Of course, the showHide example relies on animation, which isn’t easy to see

in a static book. Please be sure to look at this and all other example pages on

my Web site: www.aharrisbooks.net. Better yet, install them on your own

machine and play around with my code until they make sense to you.

17_417997-ch11.indd 26617_417997-ch11.indd 266 10/26/09 10:02 PM10/26/09 10:02 PM

267 Chapter 11: Animating jQuery

Figure 11-2:
The content

element is
now visible.

The animations shown in this example are useful when you want to selectively

hide and display parts of your page. Being able to show and hide elements is

useful in a number of situations. Menus are one obvious use. You might choose

to store your menu structure as a series of nested lists, displaying parts of the

menu only when the parent is activated. Another common use of this technology

is to have small teaser sentences that expand to show more information when

the user clicks or hovers the mouse pointer over them. This technique is com-

monly used on blog and news sites to let users preview a large number of topics,

kind of like a text-based thumbnail image.

The jQuery library has built-in support for transitions that make these effects

pretty easy to produce. Look over the entire hideShow.html program

before digging in on the details.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/

xhtml»>
<head>
 <meta http-equiv=”content-type” content=”text/xml;

charset=utf-8” />
 <style type = “text/css”>
 #content {

17_417997-ch11.indd 26717_417997-ch11.indd 267 10/26/09 10:02 PM10/26/09 10:02 PM

268 Part III: Moving Up to AJAX

 width: 300px;
 height: 200px;
 font-size: 200%;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 }
 h2 {
 width: 10em;
 border: 5px double black;
 background-color: lightgray;
 text-align: center;
 font-family: sans-serif
 }
 </style>

 <script type = “text/javascript”
 src = “jquery-1.3.2.min.js”></script>

 <script type = “text/javascript”>
 //<![CDATA[
 $(init);

 function init(){
 $(“#content”).hide();
 $(“#show”).click(showContent);
 $(“#hide”).click(hideContent);
 $(“#toggle”).click(toggleContent);
 $(“#slideDown”).click(slideDown);
 $(“#slideUp”).click(slideUp);
 $(“#fadeIn”).click(fadeIn);
 $(“#fadeOut”).click(fadeOut);
 } // end init

 function showContent(){
 $(“#content”).show();
 } // end showContent

 function hideContent(){
 $(“#content”).hide();
 } // end hideContent

 function toggleContent(){
 $(“#content”).toggle();
 } // end toggleContent

 function slideDown(){
 $(“#content”).slideDown(“medium”);
 } // end slideDown

17_417997-ch11.indd 26817_417997-ch11.indd 268 10/26/09 10:02 PM10/26/09 10:02 PM

269 Chapter 11: Animating jQuery

 function slideUp(){
 $(“#content”).slideUp(500);
 } // end slideUp

 function fadeIn(){
 $(“#content”).fadeIn(“slow”, present);
 } // end fadeIn

 function fadeOut(){
 $(“#content”).fadeOut(“fast”);
 } // end fadeOut.

 function present(){
 alert(“I’m here”);
 } // end present
 //]]>
 </script>
 <title>hideShow.html</title>
</head>
<body>
 <h1>Hide and show</h1>
 <h2 id = “show”>Show</h2>
 <h2 id = “hide”>Hide</h2>
 <h2 id = “toggle”>Toggle</h2>
 <h2 id = “slideDown”>Slide Down</h2>
 <h2 id = “slideUp”>Slide Up</h2>
 <h2 id = “fadeIn”>Fade In</h2>
 <h2 id = “fadeOut”>Fade Out</h2>

 <p id = “content”>
 This is the content. It is hidden at first, but it is

hidden and
 shown with jQuery techniques.
 </p>

</body>
</html>

This example might look long and complicated when you view it all at once,

but it isn’t hard to understand when you break it into pieces. The following

sections help you get comfortable with this example.

Writing the HTML and CSS foundation
The HTML used in this example is minimal, as is common in jQuery develop-

ment. It consists of a single level-one heading, a series of level-two headings,

and a paragraph. The level-two headings will be used as buttons in this

example. I use a CSS style to make the <h2> tags look more like buttons

(adding a border and background color). I added an id attribute to every

button so I can add jQuery events later.

17_417997-ch11.indd 26917_417997-ch11.indd 269 10/26/09 10:02 PM10/26/09 10:02 PM

270 Part III: Moving Up to AJAX

 If I wanted the h2 elements to look and act like buttons, why didn’t I just make

them with button tags in the first place? That’s a very good question. At one

level, I probably should use the semantically clear button tag to make a

button. However, in this example, I want to focus on the jQuery and keep the

HTML as simple as possible. jQuery can help you make any element act like a

button, so that’s what I did. Users don’t expect h2 elements to be clickable, so

you need to do some styling (as I did) to help the users understand that they

can click the element. For comparison purposes, the other two examples in

this chapter use actual HTML buttons.

The other interesting part of the HTML is the content div. In this example,

the actual content isn’t really important, but I did add some CSS to make

the content very easy to see when it pops up. The most critical part of the

HTML from a programming perspective is the inclusion of the id attribute.

This attribute makes it easy for a jQuery script to manipulate the component

so that it hides and reappears in various ways. Note that the HTML and CSS

does nothing to hide the content. It will be hidden (and revealed) entirely

through jQuery code.

Initializing the page
The initialization sequence simply sets the stage and assigns a series of event

handlers:

 $(init);

 function init(){
 $(“#content”).hide();
 $(“#show”).click(showContent);
 $(“#hide”).click(hideContent);
 $(“#toggle”).click(toggleContent);
 $(“#slideDown”).click(slideDown);
 $(“#slideUp”).click(slideUp);
 $(“#fadeIn”).click(fadeIn);
 $(“#fadeOut”).click(fadeOut);
 } // end init

The pattern for working with jQuery should now be familiar:

 1. Set up an initialization function.

 Use the $(document).ready() mechanism described in Chapter 12 or

this cleaner shortcut to specify an initialization function.

 2. Hide the content div.

 When the user first encounters the page, the content div should be

hidden.

17_417997-ch11.indd 27017_417997-ch11.indd 270 10/26/09 10:02 PM10/26/09 10:02 PM

271 Chapter 11: Animating jQuery

 3. Attach event handlers to each h2 button.

 This program is a series of small functions. The init() function attaches

each function to the corresponding button. Note how I carefully named

the functions and buttons to make all the connections easy to understand.

Working with callback functions
As you look through the JavaScript and jQuery code in hideShow.html, you’ll

probably spot a pattern. The init() function adds event handlers to several

of the elements on the page. These event handlers specify the names of

various functions. The rest of the JavaScript code is simply the definitions

of these functions.

This technique is heavily used in jQuery programming. When you define an

event, you will often specify a function that should be called when that event

is triggered. Such a function is often referred to as a callback function.

In this context, the function name is treated as a variable, so it doesn’t need

the parentheses you normally use when referring to functions.

Hiding and Showing the Content
All the effects on the page shown earlier in Figure 11-1 are based on hiding

and showing the content div. The hide() and show() methods illustrate

how jQuery animation works.

 function showContent(){
 $(“#content”).show();
 } // end showContent

 function hideContent(){
 $(“#content”).hide();
 } // end hideContent

Each of these functions works in the same basic manner:

 1. Identify the content div.

 Create a jQuery node based on the content div. If you need more infor-

mation on creating jQuery node objects, please check Chapter 10.

 2. Hide or show the node.

 The jQuery object has built-in methods for hiding and showing.

17_417997-ch11.indd 27117_417997-ch11.indd 271 10/26/09 10:02 PM10/26/09 10:02 PM

272 Part III: Moving Up to AJAX

The hide() and show() methods act instantly. If the element is currently

visible, the show() method has no effect. Likewise, hide() has no effect on

an element that’s already hidden.

The following sections describe some fun tricks for revealing or concealing

elements.

Toggling visibility
In addition to hide() and show(), the jQuery object supports a toggle()

method. This method takes a look at the current status of the element and

changes it. If the element is currently hidden, clicking the button makes it

visible. If it’s currently visible, clicking the button hides it. The toggle
Content() function illustrates how to use this method:

 function toggleContent(){
 $(“#content”).toggle();
 } // end toggleContent

Sliding an element
jQuery supports a window blind effect that allows you to animate the appear-

ance and disappearance of your element. The general approach is very similar

to hide() and show(), but the effect has one additional twist:

 function slideDown(){
 $(“#content”).slideDown(“medium”);
 } // end slideDown

 function slideUp(){
 $(“#content”).slideUp(500);
 } // end slideUp

The slideDown() method makes an element appear like a window shade

being pulled down. The slideUp() method makes an element disappear

in a similar manner. These functions take a speed parameter that indicates

how quickly the animation occurs. The speed can be a string value (“fast”,

“medium”, or “slow”) or a numeric value in milliseconds (measured in

1,000th of a second). The value 500 means 500 milliseconds, or half a second.

If you leave out the speed parameter, the default value is “medium”.

The show(), hide(), and toggle() methods also accept a speed parameter.

In these functions, the object shrinks and grows at the indicated speed.

There is also a slideToggle() function available that toggles the visibility

of the element, but using the sliding animation technique.

17_417997-ch11.indd 27217_417997-ch11.indd 272 10/26/09 10:02 PM10/26/09 10:02 PM

273 Chapter 11: Animating jQuery

Fading an element in and out
Another type of animation is provided by the fade methods. These techniques

adjust the opacity of the element. The code should look quite familiar by now:

 function fadeIn(){
 $(“#content”).fadeIn(“slow”, present);
 } // end fadeIn

 function fadeOut(){
 $(“#content”).fadeOut(“fast”);
 } // end fadeOut.

 function present(){
 alert(“I’m here”);
 } // end present

fadeIn() and fadeout() work just like the hide() and slide() tech-

niques. The fading techniques adjust the opacity of the element and then

remove it, rather than dynamically changing the size of the element as the

slide and show techniques do.

I’ve added one more element to the fadeIn() function. If you supply the

fadeIn() method (or indeed any of the animation methods described in this

section) with a function name as a second parameter, that function is a call-

back function, meaning it is called upon completion of the animation. When

you click the fade in button, the content div slowly fades in, and then when

it is completely visible, the present() function gets called. This function

doesn’t do a lot in this example — it simply pops up an alert — but it could

be used to handle some sort of instructions after the element is visible.

If the element is already visible, the callback method will be triggered

immediately.

Changing an Element’s
Position with jQuery

The jQuery library also has interesting features for changing any of an element’s

characteristics, including its position. The animate.html page featured in

Figure 11-3 illustrates a number of interesting animation techniques.

 You know what I’m going to say, right? This program moves things around. You

can’t see that in a book. Be sure to look at the actual page. Trust me; it’s a lot

more fun than it looks in this screen shot.

17_417997-ch11.indd 27317_417997-ch11.indd 273 10/26/09 10:02 PM10/26/09 10:02 PM

274 Part III: Moving Up to AJAX

Figure 11-3:
Click the

buttons, and
the element

moves. (I
added the

arrow to
indicate
motion.)

This page (animate.html) illustrates how to move a jQuery element by

modifying its CSS. (Check Bonus Chapter 2 on the Web site if you’re unfamil-

iar with CSS.) It also illustrates an important jQuery technique called object
chaining as well as a very useful animation method that allows you to create

smooth motion over time. Look over the entire code first, and then in the fol-

lowing sections I break it into sections for more careful review:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <style type = «text/css»>
 #content {
 width: 300px;
 height: 200px;
 font-size: 200%;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 }

17_417997-ch11.indd 27417_417997-ch11.indd 274 10/26/09 10:02 PM10/26/09 10:02 PM

275 Chapter 11: Animating jQuery

 </style>

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«#move»).click(move);
 $(«#glide»).click(glide);
 $(«#left»).click(left);
 $(«#right»).click(right);
 } // end init

 function move(){
 $(«#content»).css(«left», «50px»)
 .css(«top», «100px»);
 } // end move

 function glide(){
 //move to initial spot
 $(«#content»).css(«left», «50px»)
 .css(«top», «100px»);

 //slide to new spot
 $(«#content»).animate({
 «left»: «400px»,
 «top»: «200px»
 }, 2000);
 } // end glide

 function left(){
 $(«#content»).animate({«left»: «-=10px»}, 100);
 } // end left

 function right(){
 $(«#content»).animate({«left»: «+=10px»}, 100);
 } // end left
 //]]>
 </script>

 <title>Animate.html</title>
</head>
<body>
<h1>Animation Demo</h1>
<form action = «»>
 <fieldset>
 <button type = «button»
 id = «move»>
 move

17_417997-ch11.indd 27517_417997-ch11.indd 275 10/26/09 10:02 PM10/26/09 10:02 PM

276 Part III: Moving Up to AJAX

 </button>
 <button type = «button»
 id = «glide»>
 glide
 </button>

 <button type = «button»
 id = «left»>
 <--
 </button>

 <button type = «button»
 id = «right»>
 -->
 </button>

 </fieldset>
</form>

<p id = «content»>
 This content will move in response to the controls.
</p>
</body>
</html>

Creating the HTML framework
The HTML always forms the foundation of a JavaScript program. The animate.
html page is similar to the hideShow page (shown earlier in the chapter),

but I decided to use a real form with buttons as the control panel. Buttons

aren’t difficult to use, but they’re a little more tedious to code because they

must be inside a form element as well as a block-level element, and they

require more coding to produce than h2 elements.

Note that I use < in one of the button captions. (You can find it near the

end of the animate.html listing.) This HTML attribute displays the less-than

symbol. Had I used the actual symbol (<) the browser would have thought I

was beginning a new HTML tag and would have been confused.

The buttons all have id attributes, but I didn’t attach functions to them with

the onclick attribute. When you’re using jQuery, it makes sense to commit

to a jQuery approach and use the jQuery event techniques.

The only other important HTML element is the content div. Once again, this

element is simply a placeholder, but I added CSS styling to make it obvious

when it moves around. It’s important that you set this element to be absolutely

positioned, because the position will be changed dynamically in the code.

17_417997-ch11.indd 27617_417997-ch11.indd 276 10/26/09 10:02 PM10/26/09 10:02 PM

277 Chapter 11: Animating jQuery

Setting up the events
The initialization is all about setting up the event handlers for the various but-

tons. Begin with an init() function called when the document is ready. That

function contains callback functions (such as move and glide) for the various

events, directing traffic to the right functions when a user presses a button:

 function init(){
 $(“#move”).click(move);
 $(“#glide”).click(glide);
 $(“#left”).click(left);
 $(“#right”).click(right);
 } // end init

As usual, naming conventions make it easy to see what’s going on.

Don’t go chaining . . .
jQuery supports a really neat feature called node chaining that allows you to

put several steps into one single line. This makes your code a lot easier to

write, and it allows you to do several things to a particular element or group

of elements at once. As an example, take another look at the move() function

defined in animate.html.

The move function isn’t really that radical. All it really does is use the css()

method described in Chapter 10 to alter the position of the element. After

all, position is just a CSS attribute, right? Well, it’s a little more complex than

that. The position of an element is actually stored in two attributes, top and

left. Your first attempt at a move function would probably look like this:

 function move(){
 $(“#content”).css(“left”, “50px”);
 $(“#content”).css(“top”, “100px”);
 } // end move

Although this approach certainly works, it has a subtle problem. It moves the

element in two separate steps. Although most browsers are fast enough to

prevent this from being an issue, node chaining allows you to combine many

jQuery steps into a single line.

Almost all jQuery methods return a jQuery object as a side effect. So, the line

 $(“#content”).text(“changed”);

not only changes the text of the content node, but actually makes a new

node. You can attach that node to a variable like this if you want:

17_417997-ch11.indd 27717_417997-ch11.indd 277 10/26/09 10:02 PM10/26/09 10:02 PM

278 Part III: Moving Up to AJAX

 var newNode = $(“#content”).text(“changed”);

However, what most jQuery programmers do is simply attach new functionality

onto the end of the previously defined node, like this:

 $(“#content”).text(“changed”).click(hiThere);

This new line takes the node created by $(“#content”) and changes its

text value. It then takes this new node (the one with changed text) and adds

a click event to it, calling the hiThere() function when the content ele-

ment is clicked. In this way, you build an ever-more complex node by chain-

ing nodes on top of each other.

 These node chains can be hard to read because they can result in a lot of code

on one physical line. JavaScript doesn’t really care about carriage returns,

though, because it uses the semicolon to determine the end of a logical line.

You can change the complex chained line so it fits on several lines of the text

editor like this:

 $(“#content”)
 .text(“changed”)
 .click(hiThere);

Note that only the last line has a semicolon because what’s shown is all one

line of logic even though it occurs on three lines in the editor.

Building the move() function
with chaining
Object chaining makes it easy to build the move function so that it moves the

content’s left and top properties simultaneously:

 function move(){
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);
 } // end move

This function uses the css() method to change the left property to 50px.

The resulting object is given a second css() method call to change the top

property to 100px. The top and left elements are changed at the same

time as far as the user is concerned.

17_417997-ch11.indd 27817_417997-ch11.indd 278 10/26/09 10:02 PM10/26/09 10:02 PM

279 Chapter 11: Animating jQuery

Building time-based animation
with animate()
Using the css() method is a great way to move an element around on the

screen, but the motion is instantaneous. jQuery supports a powerful method

called animate(), which allows you to change any DOM characteristics over

a specified span of time. The glide button on animate.html smoothly

moves the content div from (50, 100) to (400, 200) over two seconds.

 function glide(){
 //move to initial spot
 $(“#content”).css(“left”, “50px”)
 .css(“top”, “100px”);

 //slide to new spot
 $(“#content”).animate({
 “left”: “400px”,
 “top”: “200px”
 }, 2000);
 } // end glide

The function begins by moving the element immediately to its initial spot

with chained css() methods. It then uses the animate() method to control

the animation. This method can have up to three parameters:

 ✓ A JSON object describing attributes to animate: The first parameter

is an object in JSON notation describing name/value attribute pairs. In

this example, I’m telling jQuery to change the left attribute from its

current value to 400px and the top value to 200px. Any numeric value

that you can change through the DOM can be included in this JSON

object. Instead of a numerical value, you can use “hide”, “show”, or

“toggle” to specify an action. Review Chapter 5 for more on JSON

objects if you’re unfamiliar with them.

 ✓ A speed attribute: The speed parameter is defined in the same way as

the speed for fade and slide animations. There are three predefined

speeds: “slow”, “medium”, and “fast”; speed can also be indicated in

milliseconds (so 2000 means 2 seconds).

 ✓ A callback function: This optional parameter describes a function to

be called when the animation is complete. I describe the use of callback

functions earlier in this chapter in the section called “Fading an element

in and out.”

17_417997-ch11.indd 27917_417997-ch11.indd 279 10/26/09 10:02 PM10/26/09 10:02 PM

280 Part III: Moving Up to AJAX

Move a little bit: Relative motion
You can use the animation mechanism to move an object relative to its current

position. The arrow buttons and their associated functions perform this task:

 function left(){
 $(“#content”).animate({“left”: “-=10px”}, 100);
 } // end left

 function right(){
 $(“#content”).animate({“left”: “+=10px”}, 100);
 } // end left

These functions also use the animate() method, but there’s a small differ-

ence in the position parameters. The += and -= modifiers indicate that I want

to add to or subtract from the value rather than indicating an absolute posi-

tion. Of course, you can add as many parameters to the JSON object as you

want, but these are a good start.

Note that since I’m moving a small amount (ten pixels) I want the motion to

be relatively quick. Each motion lasts 100 milliseconds.

 The jQuery animation() method supports one more option: easing. The term

easing refers to the relative speed of the animation throughout its lifespan. If

you watch the animations on the animate.html page carefully, you’ll see that

the motion begins slowly, builds up speed, and slows down again at the end.

This provides a natural-feeling animation. By default, jQuery animations use

what’s called a swing easing style (slow on the ends, fast in the middle, like a

child on a swing). If you want to have a more consistent speed, you can specify

“linear” as the fourth parameter, and the animation will work at a constant

speed. You can also install plugins for more advanced easing techniques.

Modifying Elements on the Fly
The jQuery library supports a third major way of modifying the page: the abil-

ity to add and remove contents dynamically. This is a powerful way to work

with a page. The key to this feature is another of jQuery’s most capable tools:

its flexible selection engine. You’ve already seen how you can select jQuery

nodes using the standard CSS-style selectors, but you can also use numerous

attributes to modify nodes. The changeContent.html page demonstrates

some of the power of these tools (see Figure 11-4).

Of course, the buttons allow the user to make changes to the page dynamically.

Pressing the Add Text button adds more text to the content area, as you can

see in Figure 11-5.

17_417997-ch11.indd 28017_417997-ch11.indd 280 10/26/09 10:02 PM10/26/09 10:02 PM

281 Chapter 11: Animating jQuery

Figure 11-4:
The default

state of
change-

Content is a
little dull.

Figure 11-5:
More text

can be
appended
inside any

content
area.

Click here to add more text to the Content area.

17_417997-ch11.indd 28117_417997-ch11.indd 281 10/26/09 10:03 PM10/26/09 10:03 PM

282 Part III: Moving Up to AJAX

The Clone button is interesting because it allows you to make a copy of an

element and place it somewhere else in the document hierarchy. Pressing the

Clone button a few times can give you a page like Figure 11-6.

It’s possible to wrap an HTML element around any existing element. The Wrap

in Div button puts a div (with a red border) around every cloned element.

You can press this multiple times to add multiple wrappings to any element.

Figure 11-7 shows what happens after I wrap a few times.

For readability, sometimes you want to be able to alternate styles of lists and

tables. jQuery offers an easy way to select every other element in a group and

give it a style. The Change Alternate Paragraphs button activates some code

that turns all odd-numbered paragraphs into white text with a green back-

ground. Look at Figure 11-8 for a demonstration.

Finally, the Reset button demonstrates how you can reset all the changes you

made with the other buttons.

Figure 11-6:
I’ve made

several
clones of

the original
content.

Click the Clone button to copy content.

17_417997-ch11.indd 28217_417997-ch11.indd 282 10/26/09 10:03 PM10/26/09 10:03 PM

283 Chapter 11: Animating jQuery

Figure 11-7:
Now there’s

a red-
bordered

div around
all the

cloned
elements.

Click to add a div.

A div is added to each clone. (I clicked the button three times in this example.)

Figure 11-8:
All odd-

numbered
paragraphs
have a new

style.

Click this button to alternate styles.

17_417997-ch11.indd 28317_417997-ch11.indd 283 10/26/09 10:03 PM10/26/09 10:03 PM

284 Part III: Moving Up to AJAX

The code for changeContent.html seems complex, but it follows the same

general patterns in jQuery programming that I show you earlier in this chapter.

As always, look over the entire code first, and then I break it down.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <style type = «text/css»>
 #content {
 width: 300px;
 background-color: yellow;
 left: 300px;
 top: 100px;
 padding-left: .5em;

 border: 0px none black;
 }

 div {
 border: 2px solid red;
 padding: 3px;
 }
 </style>

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 $(«#reset»).click(reset);
 $(«#addText»).click(addText);
 $(«#wrap»).click(wrap);
 $(«#clone»).click(clone);
 $(«#oddGreen»).click(oddGreen);
 } // end init

 function reset(){
 //remove all but the original content
 $(«p:gt(0)»).remove();
 $(«div:not(#content)»).remove();
 //reset the text of the original content

17_417997-ch11.indd 28417_417997-ch11.indd 284 10/26/09 10:03 PM10/26/09 10:03 PM

285 Chapter 11: Animating jQuery

 $(«#content»).html(«<p>This is the original
content</p>»);

 } // end reset

 function addText(){
 $(«p:first»).append(« ...and this was added

later.»);
 } // end addContent

 function wrap(){
 $(«p:gt(0)»).wrap(«<div></div>»);
 } // end wrap

 function clone(){
 $(«p:first»).clone()
 .insertAfter(«p:last»)
 .css(«backgroundColor», «lightblue»);
 } // end clone

 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements

green
 $(«p:odd»).css(«backgroundColor», «green»)
 .css(«color», «white»);
 } // end oddGreen
 //]]>
 </script>
 <title>changeContent.html</title>
</head>
<body>
 <h1>Adding Content Demo</h1>
 <form action = «»>
 <fieldset>
 <button type = «button»
 id = «reset»>
 reset
 </button>

 <button type = «button»
 id = «addText»>
 add text
 </button>

 <button type = «button»
 id = «clone»>
 clone
 </button>

17_417997-ch11.indd 28517_417997-ch11.indd 285 10/26/09 10:03 PM10/26/09 10:03 PM

286 Part III: Moving Up to AJAX

 <button type = «button»
 id = «wrap»>
 wrap in div
 </button>

 <button type = «button»
 id = «oddGreen»>
 change alternate paragraphs
 </button>
 </fieldset>
 </form>

 <div id = «content»>
 <p>
 This is the original content
 </p>
 </div>
</body>
</html>

I admit, this program has a lot of code, but when you consider how much

functionality this page has, it really isn’t too bad. Look at it in smaller pieces,

and it all make sense.

Building the basic page
As usual, begin by inspecting the HTML. The basic code for this page sets up

the playground.

 1. Create a form with buttons.

 This form becomes the control panel. Add a button for each function

you want to add. Make sure each button has an ID, but you don’t need

to specify an onclick function, because the init() function will take

care of that.

 2. Build a prototype content div.

 Build a div called content, and add a paragraph to the div.

 It’s very important to be careful with your initial HTML structure. The manipu-

lation and selection tricks that you experiment with in this chapter rely on a

thorough understanding of the beginning page structure. Be sure you under-

stand exactly how the page is set up so that you’ll understand how to manipu-

late it. If your standard XHTML page (before any JavaScript/jQuery code is

added) doesn’t validate, it’s unlikely your code will work as expected.

17_417997-ch11.indd 28617_417997-ch11.indd 286 10/26/09 10:03 PM10/26/09 10:03 PM

287 Chapter 11: Animating jQuery

Initializing the code
The initialization section is pretty straightforward. Set up an init() function

and use it to assign event handlers to all the buttons:

 $(init);

 function init(){
 $(“#reset”).click(reset);
 $(“#addText”).click(addText);
 $(“#wrap”).click(wrap);
 $(“#clone”).click(clone);
 $(“#oddGreen”).click(oddGreen);
 } // end init

Adding text
Adding text to a component is pretty easy. The append() method attaches

text to the end of a jQuery node. Table 11-1 shows a number of other

methods for adding text to a node.

Table 11-1 Adding Content to jQuery Nodes
Method Description

append(text) Adds the text (or HTML) to the end of the
selected element(s).

prepend(text) Adds the content at the beginning of the
selected element(s).

insertAfter(text) Adds the text after the selected element
(outside the element).

insertBefore(text) Adds the text before the selected element
(outside the element).

 More methods are available, but these are the ones I find most useful. Be sure

to check out the official documentation at http://docs.jquery.com to see

the other options.

 function addText(){
 $(“p:first”).append(“ ...and this was added

later.”);
 } // end addContent

17_417997-ch11.indd 28717_417997-ch11.indd 287 10/26/09 10:03 PM10/26/09 10:03 PM

288 Part III: Moving Up to AJAX

The append() method adds the new text to the end of the text already inside

the element, so it becomes part of the paragraph contained inside the content
 div. For example, if you have this element: <div>one</div> and you

append two to the div, you’ll get <div>onetwo</div>, not <div>one</
div>two.

The more interesting part of this code is the selector. It could read like this:

$(“p”).append(“ ...and this was added later.”);

That would add the text to the end of the paragraph. The default text has

only one paragraph, so that makes lots of sense. If there are more paragraphs

(and there will be), the p selector will select them all, adding the text to all

the paragraphs simultaneously. By specifying p:first, I’m using a special

filter to determine exactly which paragraph should be affected. Many of the

examples on this page use jQuery filters, so I describe them elsewhere in this

section. For now, note that p:first means the first paragraph. Of course,

there are also p:last and many more. Read on. . . .

Attack of the clones
You can clone (copy) anything you can identify as a jQuery node. This cloning

makes a copy of the node without changing the original. The cloned node isn’t

immediately visible on the screen. You need to place it somewhere, usually with

an append(), prepend(), insertBefore(), or insertAfter() method.

Take a look at the clone() function to see how it works:

 function clone(){
 $(“p:first”).clone()
 .insertAfter(“p:last”)
 .css(“backgroundColor”, “lightblue”);
 } // end clone

 1. Select the first paragraph.

 The first paragraph is the one I want to copy. (In the beginning, there’s

only one, but that will change soon.)

 2. Use the clone() method to make a copy.

 Even though this step makes a copy, it still isn’t visible. Use chaining to

do some interesting things to this copy. (I explain chaining earlier in the

chapter, in the section “Don’t go chaining . . .”)

 3. Add the new element to the page after the last paragraph.

 The p:last identifier is the last paragraph, so insertAfter
(“p:last”) means put the new paragraph after the last paragraph

available in the document.

17_417997-ch11.indd 28817_417997-ch11.indd 288 10/26/09 10:03 PM10/26/09 10:03 PM

289 Chapter 11: Animating jQuery

 4. Change the CSS.

 Just for grins, chain the css() method onto the new element and change

the background color to light blue. This just reinforces that you can

continue adding commands to a node through chaining.

 Note that the paragraphs are still inside the content div. Of course, I

could have put them elsewhere with careful use of selectors, but that’s

where I want them.

 Keeping track of changes to the page is difficult because a standard View

Source command shows you the original source code, not the code that’s

been changed by your jQuery magic. jQuery changes the HTML of your page in

memory, but doesn’t change the text file that contains your page. If your page

isn’t doing what you expect, you need to look at the script-generated source

code to see what’s really going on. Firefox plugins are the key to headache-free

debugging. The Web developer toolbar has a wonderful feature called View

Generated Source (available under the View Source menu), which shows the

page source as it currently exists in memory. If you prefer the Firebug exten-

sion, its inspect mode also inspects the page as it currently is displayed. Both

tools are described in Chapter 1.

Note that the content of the first paragraph is cloned with its current content

and style information copied to the new element. If you clone the paragraph

and then add content to it and clone it again, the first clone has the default

text, and the second clone contains the additional text. If you modify the CSS

of an element and then clone it, the clone also inherits any of the style char-

acteristics of the original node.

It’s a wrap
Sometimes you want to embed an object inside another element (or two).

For example, the wrap button on the changeContent page surrounds each

cloned paragraph with a <div></div> pair. I’ve defined the <div>tag in my

CSS to include a red border. Repeatedly clicking the Wrap button surrounds

all cloned paragraphs with red borders. This would be a very tedious effect to

achieve in ordinary DOM and JavaScript, but jQuery makes it pretty easy to do.

 function wrap(){
 $(“p:gt(0)”).wrap(“<div></div>”);
 } // end wrap

The wrap method is pretty easy to understand. If you feed it any container

tag, it wraps that container around the selected node. You can also use mul-

tiple elements, so if you want to enclose a paragraph into a single item list,

you can do something like this:

 $(“p”).wrap(“”);

17_417997-ch11.indd 28917_417997-ch11.indd 289 10/26/09 10:03 PM10/26/09 10:03 PM

290 Part III: Moving Up to AJAX

The resulting code would surround each paragraph with an unordered list

and list item.

Returning to the wrap function, I’ve decided not to wrap every paragraph

with a div, just the ones that have been cloned. (Mainly I’m doing this so

I can show you some other cool selection filters.) The selector p:gt(0)

means “select all paragraphs with an index greater than zero.” In other

words, ignore the first paragraph but apply the following methods to all other

paragraphs. There is also a less-than filter (:lt), which isolates elements

before a certain index, and an equals filter (:eq), which isolates an element

with a certain index.

Alternating styles
People commonly alternate background colors on long lists or tables of data,

but this can be a tedious effect to achieve in ordinary CSS and JavaScript. Not

surprisingly, jQuery selectors make this a pretty easy job:

 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements

green
 $(“p:odd”).css(“backgroundColor”, “green”)
 .css(“color”, “white”);
 } // end oddGreen

The :odd selector only chooses elements with an odd index and returns a

jQuery node that can be further manipulated with chaining. Of course, you

can use an :even selector for handling the even-numbered nodes. The rest of

this code is simply CSS styling.

Resetting the page
If you can do all this modification to the page, you’ll also need to be able to

restore it to its pristine state. A quick jQuery function can easily do the trick:

 function reset(){
 //remove all but the original content
 $(“p:gt(0)”).remove();
 $(“div:not(#content)”).remove();
 //reset the text of the original content
 $(“#content”).html(“<p>This is the original

content</p>”);
 } // end reset

This function reviews many of the jQuery and selection tricks shown in this

chapter.

17_417997-ch11.indd 29017_417997-ch11.indd 290 10/26/09 10:03 PM10/26/09 10:03 PM

291 Chapter 11: Animating jQuery

 1. Remove all but the first paragraph.

 Any paragraphs with an index greater than zero is a clone, so it needs to

go away. The remove() method removes all jQuery nodes associated

with the current selector.

 2. Remove all divs but the original content.

 I could have used the :gt selector again, but instead I use another inter-

esting selector: :not. This selector means “remove every div that isn’t

the primary content div.” Using this selector removes all divs added

through the wrap function.

 3. Reset the original content div to its default text.

 Set the default text back to its original status so the page is reset.

 Truthfully, all I really need here is the last line of code. Changing the HTML of

the content div replaces the current contents with whatever is included,

so the first two lines aren’t entirely necessary in this particular context. Still,

it’s very useful to know how to remove elements when you need to do so.

More fun with selectors and filters
The jQuery selectors and filters are really fun and powerful. Table 11-2

describes a few more filters and how you can use them.

Table 11-2 Common jQuery Filters
Filter Description

:header Any header tag (h1, h2, h3).

:animated Any element that is currently being animated.

:contains(text) Any element that contains the indicated text.

:empty The element is empty.

:parent This element contains some other element.

:attribute=value The element has an attribute with the specified
value.

:Input, :text,
:radio, :image,
:button, and so on

Matches on the specific element type (especially
useful for form elements that are all variations of the
input tag).

Note that this is a representative list. Be sure to check out the official docu-

mentation at http://docs.jquery.com for a more complete list of filters.

17_417997-ch11.indd 29117_417997-ch11.indd 291 10/26/09 10:03 PM10/26/09 10:03 PM

292 Part III: Moving Up to AJAX

17_417997-ch11.indd 29217_417997-ch11.indd 292 10/26/09 10:03 PM10/26/09 10:03 PM

Chapter 12

Using the jQuery User
Interface Toolkit

In This Chapter
▶ Exploring the jQuery user interface

▶ Installing the UI and templates

▶ Adding date pickers, dialog boxes, and icons

▶ Dragging and dropping

▶ Working with scrollbars

▶ Building a sorting mechanism

▶ Creating an accordion page

▶ Building a tab-based interface

The jQuery library is an incredible tool for simplifying JavaScript program-

ming. The library is so popular and powerful that developers began adding

new features to make it even more useful. Among the most important of these

is the jQuery UI (user interface) framework. This tool adds these welcome

features to Web development:

 ✓ New user interface elements: As a modern user interface tool, HTML is

missing some important tools. Most modern visual languages include

built-in support for devices such as scrollbars, dedicated date pickers,

and multiple tab tools. jQuery UI adds these features and more.

 ✓ Advanced user interaction: The jQuery widgets give users new and

exciting ways to interact with your page. Using the UI toolkit, you can

easily let users make selections by dragging and dropping elements and

expanding and contracting parts of the page.

 ✓ Flexible theme templates: jQuery UI includes a template mechanism

that controls the visual look and feel of your elements. You can choose

from dozens of prebuilt themes or use a tool to build your own particular

look. You can reuse this template library to manage the look of your

other page elements, too (not just the ones defined by the library).

18_417997-ch12.indd 29318_417997-ch12.indd 293 10/26/09 10:03 PM10/26/09 10:03 PM

294 Part III: Moving Up to AJAX

 ✓ A complete icon library: The jQuery UI has a library of icons for use in

your Web development. It has arrows and buttons and plenty of other

doodads that you can change to fit your template.

 ✓ A clean, modern look: You can easily build forward-looking visual designs

with jQuery UI. It supports rounded corners and plenty of special visual

effects.

 ✓ The power of jQuery: As an extension of jQuery, the jQuery UI adds to

the incredible features of the jQuery language.

 ✓ Open source values: The jQuery UI (like jQuery itself) is an open-source

project with quite an active community. You can modify its free library

to suit your needs.

Looking Over the ThemeRoller
The jQuery UI Web site (http://jqueryui.com) is a helpful place to find the

latest information about jQuery, and it also features the marvelous Theme

Roller tool. Figure 12-1 shows the main Web page, which demonstrates many

of the excellent jQuery features.

Before you use ThemeRoller to change themes, use it to become acquainted

with the UI elements. Several useful tools are visible in the figure:

 ✓ Accordion: The upper-left segment of the page has three segments

(Section 1, Section 2, and Section 3). By clicking a section heading, the

user can expand that section and collapse others.

 ✓ Slider: Sliders (or scrollbars) are an essential user interface element

that lets a user choose a numeric value by using an easy visual tool.

You can adjust jQuery sliders in many ways to allow easy and error-free

input.

 ✓ Date picker: Ensuring that users enter dates properly is difficult. The

phenomenally useful date picker control automatically pops a calendar

onto the page and lets the user manipulate the calendar to pick a date.

 ✓ Progress bar: Always design your code so that little delay occurs, but if

a part of your program takes some time to complete, a progress bar is a

useful reminder that something is happening.

 ✓ Tabs: The accordion technique is one way to hide and show parts of

your page, and tabs are another popular technique. You can use this

mechanism to build a powerful multi-tab document without having to do

much work.

18_417997-ch12.indd 29418_417997-ch12.indd 294 10/26/09 10:03 PM10/26/09 10:03 PM

295 Chapter 12: Using the jQuery User Interface Toolkit

Figure 12-1:
ThemeRoller
lets you look

over many
jQuery UI
elements

and modify
their look.

The slider is a scroll bar.

The datepicker is an automatic calendar.

Tabs allow you to organize a large amount of content.

This section is an accordion.

The progress bar allows you to view an event’s progress.

Scrolling down the page, you see even more interesting tools. Figure 12-2

shows some of these widgets in action.

These widgets demonstrate even more of the power of the jQuery UI library:

 ✓ Dialog: Pressing the Open Dialog button pops up what appears to be

a dialog box. It acts much like the JavaScript alert, but it’s much nicer

looking and has features that make it much more advanced.

 ✓ Formatting tools: The jQuery UI includes special tools for setting apart

certain parts of your page as warnings, as highlighted text, or with

added shadows and transparency.

 ✓ Icons: jQuery UI ships with a large collection of icons you can use in your

page. Hover the mouse over each icon on the ThemeRoller to see a descrip-

tion. You can easily use these icons to allow various user interactions.

18_417997-ch12.indd 29518_417997-ch12.indd 295 10/26/09 10:03 PM10/26/09 10:03 PM

296 Part III: Moving Up to AJAX

Figure 12-2:
Even more

exciting
widgets.

Pop-up dialog

Custom icons Elements with shadows and highlights.

Visiting the Theme Park
Impressive as all the jQuery UI widgets are, they’re just a part of the story.

jQuery supports the concept of themes, which are simply visual rule sets. A

theme is essentially a complex CSS document (and some associated graphics

files) designed to be used with the UI library. Go back to the top of the Theme

Roller page and look at the left column. If you click the Gallery tab (yes, it’s

using a jQuery UI tab interface), you can see a list of prebuilt themes. Figure 12-3

 shows the ThemeRoller page with an entirely different theme in place.

The built-in themes are impressive, but of course you can make your own.

Though you’re always free to edit the CSS manually, the whole point of the

ThemeRoller application is to make this process easier.

18_417997-ch12.indd 29618_417997-ch12.indd 296 10/26/09 10:03 PM10/26/09 10:03 PM

297 Chapter 12: Using the jQuery User Interface Toolkit

Figure 12-3:
Now,

ThemeRoller
is using

the Le Frog
theme.

If you go back to the Roll Your Own tab, you see an accordion selection that

you can use to pick various theme options. You can change fonts, choose

rounded corners, select various color schemes, and much more. You can

mess around with these options all you want and create your own visual

style. You can then save that theme and use it in your own projects.

Wanna Drag? Dragging and
Dropping Elements

It’s time to build something. The first example I show you is a simple applica-

tion that lets someone use the mouse to pick up a page element and move

it. Although I tell you how to use JavaScript and the document object model

(DOM) to do this in Chapter 8, you’ll find that you can quite easily create the

same effect by using jQuery UI. Figure 12-4 shows this page in action.

18_417997-ch12.indd 29718_417997-ch12.indd 297 10/26/09 10:03 PM10/26/09 10:03 PM

298 Part III: Moving Up to AJAX

Figure 12-4:
The user

can simply
drag the box

anywhere
on the page.

This example is a good starting place for using the jQuery UI library because

it’s easy to get the project working. Often, the hardest part of writing jQuery

UI applications is making the connections to the library. After you do that

(and it’s not that hard), the rest of the programming is ridiculously easy. Take

a look at the following chunk of code to see what I’m talking about:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <style type = «text/css»>
 #dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 }
 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»

18_417997-ch12.indd 29818_417997-ch12.indd 298 10/26/09 10:03 PM10/26/09 10:03 PM

299 Chapter 12: Using the jQuery User Interface Toolkit

 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 $(init);
 function init(){
 $(«#dragMe»).draggable();
 }
 </script>
 <title>drag.html</title>
</head>

<body>
 <h1>Drag Demo</h1>
 <div id = «dragMe»>
 Drag me
 </div>
</body>
</html>

The basic idea of this program is completely consistent with the jQuery

concepts I describe in Chapter 13. The page uses simple HTML code. An ini-

tialization function creates a special jQuery node and gives it functionality.

That’s all there is to it.

Here are the basic steps:

 1. Create a basic HTML document.

 You can use a standard document. I created one div with the ID

dragMe, which is the div I want to make draggable. (You can, of course,

apply dragging functionality to any element you can select with jQuery.)

 2. Add the standard jQuery library.

 The first <script> tag imports the standard jQuery library. The UI

library requires jQuery to be loaded first.

A ThemeRoller example
ThemeRoller gives you a good overview of the
jQuery UI library and also serves as a great
example of where the Web is going. It’s not
really a Web page as much as it’s an applica-
tion that happens to be written in Web tech-
nologies. Notice that the functionality of the
page (changing styles dynamically) uses many
jQuery and jQuery UI tricks: tabs, accordions,

and dialog boxes, for example. This kind of pro-
gramming, which is almost certainly the direc-
tion in which Web development is heading,
might indeed be the primary form of application
in the future. Certainly, it appears that appli-
cations using this style of user interface, and
AJAX, for data communication and storage will
be important for quite some time.

18_417997-ch12.indd 29918_417997-ch12.indd 299 10/26/09 10:03 PM10/26/09 10:03 PM

300 Part III: Moving Up to AJAX

 3. Add a link to the jQuery UI library.

 A second <script> tag imports the jQuery UI library. (See the section

called “Downloading the Library” for details on how to obtain this library.)

 4. Create an initialization function.

 Use the standard jQuery techniques to build an initialization function for

your page. (As usual, I named mine init().)

 5. Build a draggable node.

 Use standard jQuery selection techniques to isolate the elements you

want to make draggable. Use the draggable() method to make the

element draggable.

 6. Test.

 Believe it or not, that’s all there is to it. As long as everything is set

up properly, your element can be dragged! A user can drag it with the

mouse and place it anywhere on the screen.

Downloading the Library
Writing jQuery UI code isn’t difficult, but getting access to the parts of the

library you need can be a bit confusing. The jQuery UI library is much larger

than the standard jQuery package, so you might not want to include the

entire package if you don’t need it. Previous versions of jQuery UI let you

download the entire package but stored each of the various elements in a

separate JavaScript file. You would commonly have a half-dozen different

script tags active just to put the various elements in place. Worse, there

were some dependency issues, so you had to ensure that certain packages

were installed before you could use other packages — all of which made a

simple library quite complex to use.

Fortunately, the latest versions of the jQuery UI make this process quite a

bit simpler. Whenever you begin to work on a project, you pick (or create)

a visual theme, choose the widgets and tools you want, and download

a custom form of the library that’s tailored to your exact needs. Using

this mechanism, you have much simpler code because you link only one

JavaScript library for the UI no matter how many interface tools and gadgets

you use (though you still need to link the standard jQuery library first).

 Use this technique also to build in multiple themes so that you can easily

switch the look of your program by changing the theme files.

18_417997-ch12.indd 30018_417997-ch12.indd 300 10/26/09 10:03 PM10/26/09 10:03 PM

301 Chapter 12: Using the jQuery User Interface Toolkit

Resizing on a Theme
This section demonstrates two important ideas in the jQuery UI package:

 ✓ Resizable elements: The user can drag an element’s bottom or right

border to change its size. Making an element resizable is similar to

making it draggable.

 ✓ Themes: jQuery features a series of customized visual styles.

You can see in Figure 12-5 that the page has a definite visual style. The ele-

ments have distinctive fonts and backgrounds, and the headers are in a

particular visual style. Though these styles aren’t earth-shattering (after all,

it’s just CSS), the exciting news is that they’re defined by the theme. You can

easily select another theme (created by hand or by using ThemeRoller), and

the visual look of all these elements will reflect the new theme. Themes pro-

vide a further level of abstraction to your Web site that makes changing the

overall visual style much easier than modifying the CSS by hand.

Figure 12-5:
A user can
change the
size of this

lovely
element.

The widget can be resized by dragging the edges or corner.

An ordinary div styled to use the same widget format.

18_417997-ch12.indd 30118_417997-ch12.indd 301 10/26/09 10:03 PM10/26/09 10:03 PM

302 Part III: Moving Up to AJAX

Figure 12-6 shows the page after the Resize Me element has changed sizes,

and you can see that the rest of the page reformats itself to fit the newly

resized element.

Figure 12-6:
When the
element is

resized, the
remainder

of the page
adjusts.

The following chunk of code reveals that most of the interesting visual effects

in Figure 12-6 are simple CSS coding, and the resizing is just more jQuery UI

magic:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»
 href = «jquery-ui-1.7.2.custom.css» />

 <style type = «text/css»>
 h1 {
 text-align: center;
 }

18_417997-ch12.indd 30218_417997-ch12.indd 302 10/26/09 10:03 PM10/26/09 10:03 PM

303 Chapter 12: Using the jQuery User Interface Toolkit

 #resizeMe {
 width: 300px;
 height: 300px;
 text-align: center;
 }
 #sample {
 width: 200px;
 height: 200px;
 margin: 1em;
 }

 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[
 $(init);
 function init(){
 $(«#resizeMe»).resizable();
 themify();
 } // end init

 function themify(){
 //add theme-based CSS to the elements
 $(«div»).addClass(«ui-widget»)
 .addClass(«ui-widget-content»)
 .addClass(«ui-corner-all»);
 $(«:header»).addClass(«ui-widget-header»)
 .addClass(«ui-corner-all»);
 $(«#resizeMe»)
 .append(‘</

span>’);
 }
 //]]>
 </script>
 <title>resize.html</title>
</head>

<body>
 <h1>Resize Demo</h1>
 <div id = «resizeMe»>
 <h2>Resize me</h2>
 <p>
 Drag the right or bottom to resize.
 </p>
 </div>

 <div id = «sample»>
 <h2>Sample Widget</h2>
 <p>

18_417997-ch12.indd 30318_417997-ch12.indd 303 10/26/09 10:03 PM10/26/09 10:03 PM

304 Part III: Moving Up to AJAX

 This is made to look like a widget
 with the theme css code.
 </p>
 </div>

</body>
</html>

Examining the HTML and standard CSS
As usual, the HTML used in the code example in the preceding section is the

foundation of the entire page. It’s clean, and it shows the general structure of

the page. The HTML consists of only three primary elements: a heading and

two divs. Each div contains its own Level 2 heading and a paragraph. The

divs are given IDs to make them easier to style.

I also included a basic CSS section in the example to handle the general

layout of the page. Because I wanted the widgets to have specific initial sizes,

I used ordinary CSS to create this effect.

Importing files
jQuery applications require the importation of JavaScript code libraries. In

this (and most) jQuery UI applications, I import these three files:

 ✓ The main jQuery library: This essential jQuery base library is imported

as described in Chapter 11, as an ordinary JavaScript file.

 ✓ The jQuery UI library: This file is also a standard JavaScript library. To

obtain a custom version of this file, see the section “Downloading the

Library,” earlier in this chapter.

 ✓ The theme CSS file: When you create a theme with ThemeRoller, you’re

provided with a CSS file. This file is your theme. Because it’s a CSS file

rather than a chunk of JavaScript code, use the link tag to attach it to

your page.

 Not all jQuery UI examples require a theme, but most do. As you see in this

example, themes provide some other excellent effects too, so it’s worthwhile

to include a theme CSS file whenever you want to use jQuery UI.

18_417997-ch12.indd 30418_417997-ch12.indd 304 10/26/09 10:03 PM10/26/09 10:03 PM

305 Chapter 12: Using the jQuery User Interface Toolkit

Making a resizable element
Surprisingly, the easiest part of the project is making the resizable element

take on the resizable behavior, as shown in this example:

$(init);
function init(){
 $(“#resizeMe”).resizable();
 themify();
} // end init

It’s a standard jQuery UI trick. Follow these steps:

 1. Begin with an initialization function.

 Like all good jQuery code, this example begins with standard initialization.

 2. Make an element resizable.

 Identify the resizeMe div as a jQuery node, and use the resizable()

method to make it resizable. That’s all there is to it.

 3. Call a second function to add theming to the elements.

 Though the resizable method doesn’t require the use of jQuery themes,

the themes improve the look of the element.

Adding themes to your elements
The jQuery Theme tool helps you quite easily decorate your elements by

using CSS. The outstanding feature of jQuery themes is that they’re semantic:
You specify the general purpose of the element and then let the theme apply

the appropriate specific CSS. You can use the ThemeRoller application to

easily create new themes or modify existing ones. In this way, you can create

quite a sophisticated look and feel for your site and write a minimal amount

of CSS on your own. Many jQuery interface elements (such as the Accordion

and Tab tools, described elsewhere in this chapter) automatically use the

current CSS theme. You can also apply the theme to any of your own ele-

ments, of course, to create a consistent look.

Themes are simply a set of predefined CSS classes. To apply a CSS theme to

an element, you can just add a special class to the object. For example, you

can make a paragraph look like the current definition of the ui-widget by

adding this bit of code to it:

<div class = “ui-widget”>
My div now looks like a widget
</div>

18_417997-ch12.indd 30518_417997-ch12.indd 305 10/26/09 10:03 PM10/26/09 10:03 PM

306 Part III: Moving Up to AJAX

Of course, adding classes into the HTML violates one principle of semantic

design, so you can more efficiently do the work in JavaScript by using jQuery:

function themify(){
 //add theme-based CSS to the elements
 $(“div”).addClass(“ui-widget”)
 .addClass(“ui-widget-content”)
 .addClass(“ui-corner-all”);
 $(“:header”).addClass(“ui-widget-header”)
 .addClass(“ui-corner-all”);
 $(“#resizeMe”)
 .append(‘’);
}

The themify() function adds all the themes to the elements on my page,

using the CSS defined by the theme. I use jQuery tricks to simplify the process.

 1. Identify all divs by using jQuery.

 To style all divs in your page as widgets, use jQuery to identify all div

elements.

 2. Add the ui-widget class to all divs.

 This class is defined in the theme. All jQuery themes have this class

defined, but the specific characteristics (colors and font sizes, for exam-

ple) vary by theme. In this way, you can swap out a theme to change its

appearance and the code still works. The ui-widget class defines an

element as a widget.

 3. Add ui-widget-content.

 The divs need two classes attached, so I use chaining to specify that

divs should also be members of the ui-widget-content class. This

class indicates that the contents of the widget (and not just the class

itself) should be styled.

 4. Specify rounded corners.

 Rounded corners have become a standard feature of Web 2.0 visual

design. This effect is extremely easy to achieve by using jQuery: Just

add the ui-corner-all class to any element that you want to have

rounded corners.

 Rounded corners use CSS3, which isn’t yet supported by all browsers.

Your page won’t show rounded corners in most versions of Internet

Explorer, but the page will still work fine otherwise.

 5. Make all headlines conform to the widget-header style.

 The jQuery themes include an attractive headline style. You can easily

make all heading tags (from <h1> to <h6>) follow this theme. Use the

:header filter to identify all headings, and apply the ui-widget-
header and ui-corner-all classes to these headers.

18_417997-ch12.indd 30618_417997-ch12.indd 306 10/26/09 10:03 PM10/26/09 10:03 PM

307 Chapter 12: Using the jQuery User Interface Toolkit

The jQuery UI package supports a number of interesting classes, as

described in Table 12-1.

Table 12-1 Classes Supported by the jQuery UI Package
Class Used On What It Does

ui-widget Outer container
of widget

Makes the element look like a widget

ui-widget-
header

Heading
element

Applies a distinctive heading
appearance

ui-widget-
content

Widget Applies widget content style to an ele-
ment and its children

ui-state-
default

Clickable
elements

Displays standard (unclicked) state

ui-state-
hover

Clickable
elements

Displays hover state

ui-state-
focus

Clickable
elements

Displays focus state when element has
keyboard focus

ui-state-
active

Clickable
elements

Display active state when mouse is
clicked on element

ui-state-
highlight

Any widget or
element

Specifies that element is highlighted

ui-state-
error

Any widget or
element

Specifies that an element contain an
error message or a warning message

ui-state-
error text

Text elements Allows error highlighting without chang-
ing other elements (mainly used in form
validation)

ui-state-
disabled

Any widget or
element

Demonstrates that widget is disabled

ui-
corner-
all,

ui-corner-
tl (etc)

Any widget or
element

Adds current corner size to element;
corners specified by using tl, tr, bl, br,
top, bottom, left, right

ui-widget-
shadow

Any widget Applies shadow effect to widget

18_417997-ch12.indd 30718_417997-ch12.indd 307 10/26/09 10:03 PM10/26/09 10:03 PM

308 Part III: Moving Up to AJAX

Note there a few other classes are defined in UI themes, but the ones in this

table are the most commonly used. Please see the current jQuery UI docu-

mentation for more details.

Adding an icon
Note the small star that appears inside the resizeMe element in Figure 12-6.

This element is an example of a jQuery UI icon. All jQuery themes support

a standard set of icons, which are small images (16 pixels square). The icon

set includes standard icons for arrows as well as images commonly used in

menus and toolbars (Save and Load or New File, for example). Some jQuery

UI elements use icons automatically, but you can also add them directly.

To use an icon in your programs, follow these steps:

 1. Include a jQuery UI theme.

 The icons are part of the theme package. Include the CSS style sheet that

corresponds with the theme (as you did if you followed the instructions

in Chapter 10).

 2. Ensure that the images are accessible.

 When you download a theme package, it includes a directory of images.

The images included in it are used to create custom backgrounds as well

as icons. The CSS file expects a directory named images to be in the

same directory as the CSS. This directory should contain several images

that begin with ui-icons. These images contain all necessary icons. If

the icon image files aren’t available, the icons aren’t displayed.

 3. Create a span where you want the icon to appear.

 Place an empty span element wherever you want the icon to appear

in the HTML. You can place the span directly in the HTML or add it by

using jQuery. I prefer to add UI elements by using jQuery, to keep the

HTML as pristine as possible.

 4. Attach the ui-icon class to the span.

 This step tells jQuery to treat the span as an icon. The contents of the

span are hidden and the span is resized to hold a 16-pixel-square icon

image.

 5. Attach a second class to identify the specific icon.

 Look at the ThemeRoller page to see the available icons. When you hover

the mouse over an icon on this page, you see the class name associated

with the icon.

18_417997-ch12.indd 30818_417997-ch12.indd 308 10/26/09 10:03 PM10/26/09 10:03 PM

309 Chapter 12: Using the jQuery User Interface Toolkit

You can add the code directly in your HTML:

<p id = “myPara”>
 This is my text

</p>

Or, you can use jQuery to add the appropriate code to your element:

$(“#myPara”).append(‘<span class = “ui-icon ui-icon-
star”>’);

Dragging, Dropping, and Calling Back
JQuery elements look good, but they also have interesting functionality.

Most jQuery UI objects can respond to specialized events. As an example,

look over the dragDrop.html page shown in Figure 12-7.

Figure 12-7:
The page

has a group
of draggable

elements
and a target.

These elements are all draggable.

This element is the target.

When you drop an element on the target, the color and content of the target

change, as shown in Figure 12-8.

18_417997-ch12.indd 30918_417997-ch12.indd 309 10/26/09 10:03 PM10/26/09 10:03 PM

310 Part III: Moving Up to AJAX

Figure 12-8:
The target

“knows”
when

something
has been
dropped

on it.

When a draggable element is dropped on the
target, the target takes on a new style.

The program demonstrates how jQuery simplifies the task of working with a

number of elements.

Take a look at the entire program before you see its smaller segments:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»
 href = «jquery-ui-1.7.2.custom.css» />
 <style type = «text/css»>
 .dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 background-color: white;
 position: absolute;
 z-index: 100;
 }
 #target {
 width: 200px;
 height: 200px;
 border: 1px solid red;
 text-align: center;
 position: absolute;

18_417997-ch12.indd 31018_417997-ch12.indd 310 10/26/09 10:03 PM10/26/09 10:03 PM

311 Chapter 12: Using the jQuery User Interface Toolkit

 left: 300px;
 top: 100px;
 z-index: 0;
 }
 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[
 $(init);

 function init(){
 // make some clones of dragMe
 cloneDragMe();

 //make all drag me elements draggable
 $(«.dragMe»).draggable();

 //set target as droppable
 $(«#target»).droppable();

 //bind events to target
 $(«#target»).bind(«drop», changeTarget);
 $(«#target»).bind(«dropout», resetTarget);

 } // end init

 function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + «»;
 yPos = 100 + (i * 20) + «px»;

 $(«div:first»).clone()
 .insertAfter(«div:first»)
 .css(«top», yPos)
 .css(«zIndex», zValue)
 .append(« #» + i);
 } // end for loop
 } // end cloneDragMe

 function changeTarget(event, ui){
 $(«#target»).addClass(«ui-state-highlight»)
 .html(«Dropped «)
 .append(ui.draggable.text());
 } // end changeTarget

 function resetTarget(event, ui){
 $(«#target»).removeClass(«ui-state-highlight»)
 .html(«Drop on me»);
 } // end reset

18_417997-ch12.indd 31118_417997-ch12.indd 311 10/26/09 10:03 PM10/26/09 10:03 PM

312 Part III: Moving Up to AJAX

 //]]>
 </script>
 <title>dragDrop.html</title>
</head>

<body>
 <h1>Drag and Drop Demo</h1>
 <div class = «dragMe»>
 Drag me
 </div>
 <div id = «target»>
 Drop on me
 </div>
</body>
</html>

Building the basic page
As is typical with jQuery, the HTML code on this page is misleadingly simple.

It has, strikingly, only a single dragMe element, for example. It’s simpler to

build a single element in HTML and then use jQuery and JavaScript to make

as many copies as you need than it would be to build all the elements by

hand in straight HTML. The page also has a single target element. I added

basic CSS (borders) to make the elements easy to see and set all the elements

as absolutely positioned so that I can control their initial positions. Note that

I attached an ID to the target (as there will be a single target on the page),

and made dragMe a class (as I want the capability to have several draggable

elements on the page).

Initializing the page
The initialization process is somewhat elaborate, but it still isn’t too difficult

to follow. The main addition is its capability to respond to some specialty

events:

$(init);

function init(){
 // make some clones of dragMe
 cloneDragMe();

 //make all drag me elements draggable
 $(“.dragMe”).draggable();

 //set target as droppable
 $(“#target”).droppable();

18_417997-ch12.indd 31218_417997-ch12.indd 312 10/26/09 10:03 PM10/26/09 10:03 PM

313 Chapter 12: Using the jQuery User Interface Toolkit

 //bind events to target
 $(“#target”).bind(“drop”, changeTarget);
 $(“#target”).bind(“dropout”, resetTarget);

} // end init

Follow these steps:

 1. Make copies of the dragme element.

 This step isn’t critical. (In fact, I added it after testing a single element.)

However, if you want to have multiple copies of the draggable element,

use a method to encapsulate the process.

 2. Make all dragme elements draggable.

 Use the jQuery draggable() method on all elements with the dragMe

class.

 3. Establish the target as a droppable element.

 The droppable() method sets up an element so that it can receive

events whenever a draggable element is dropped on it. Note that making

something droppable doesn’t have any particular effect on its own. The

interesting part happens when you bind events to the element.

 4. Bind a drop event to the target.

 Droppable elements can have events attached to them, just like any

jQuery object can. However, the mechanism for attaching an event to a

user interface object is a little different from the standard jQuery event

mechanism, which involved a custom function for each event. Use the

bind method to specify a function to be called whenever a particular

event occurs. When the user drops a draggable element on the target

element (the drop event), call the changeTarget() function.

 5. Bind a dropout event to the target.

 You can bind another event, dropout, to occur whenever the user

removes all draggable elements from the target. I told the sample pro-

gram to call the resetTarget() function whenever this event is

triggered.

 You often see programmers using shortcuts for this process. Sometimes

the functions are defined anonymously in the bind call, or sometimes the

event functions are attached as a JSON object directly in the droppable()

method assignment. Feel free to use these techniques if you’re comfortable

with them. I chose my technique based on its being the clearest model to

understand.

18_417997-ch12.indd 31318_417997-ch12.indd 313 10/26/09 10:03 PM10/26/09 10:03 PM

314 Part III: Moving Up to AJAX

Handling the drop
When the user drags a dragMe element and drops it on the target, the tar-

get’s background color changes and the program reports the text of the ele-

ment that was dragged. The code is easy to follow:

function changeTarget(event, ui){
 $(“#target”).addClass(“ui-state-highlight”)
 .html(“Dropped “)
 .append(ui.draggable.text());
} // end changeTarget

To respond to a drop event, follow these steps:

 1. Create a function to correspond to the drop event.

 The drop event is bound to the function changeTarget, so you need to

create such a function.

 2. Include two parameters.

 Bound event functions require two parameters. The first is an object

that encapsulates the event (much like the one in regular DOM program-

ming) and a second element, named ui, which encapsulates information

about the user interface. You use the ui object to determine which drag-

gable element was dropped on the target.

 3. Highlight the target.

 You should signal that the target’s state has changed. You can change

the CSS directly (using jQuery) or use jQuery theming to apply a pre-

defined highlight class. I chose to use the jQuery theme technique to

simply add the ui-state-highlight class to the target object.

 4. Change the text to indicate the new status.

 You normally want to do something to indicate what was dropped. If it’s

a shopping application, for example, add the element to an array so that

you can remember what the user wants to purchase. In this example, I

simply changed the text of the target to indicate that the element has

been dropped.

 5. Use ui.draggable to gain access to the element that was dropped.

 The ui object contains information about the user interface. The

ui.draggable attribute is a link to the draggable element that trig-

gered the current function. It’s a jQuery element, so you can use what-

ever jQuery methods you want on it. In this case, I extract the text from

the draggable element and append it to the end of the target’s text.

18_417997-ch12.indd 31418_417997-ch12.indd 314 10/26/09 10:03 PM10/26/09 10:03 PM

315 Chapter 12: Using the jQuery User Interface Toolkit

Dropping out can be fun
Another function is used to handle the dropout condition, which occurs

when draggable elements are no longer sitting on the target. I bound the

resetTarget function to this event:

function resetTarget(event, ui){
 $(“#target”).removeClass(“ui-state-highlight”)
 .html(“Drop on me”);
} // end reset

 1. Remove the highlight class from the target.

 The theme classes are easily removed. Remove the highlight class and

the target reverts to its original appearance.

 2. Reset the HTML text.

 Now that the target is empty, reset its HTML so that it prompts the user

to drop a new element.

Cloning the elements
You can simply run the program as-is (with a single copy of the dragMe class),

but drag-and-drop is more often used with a number of elements. For example,

you might allow users to drag various icons from your catalog to a shopping

cart. The basic jQuery library provides all the functionality necessary to

make as many copies of an element as you want. Copying an element is a

simple matter of using the jQuery clone() method. The more elaborate

code is used to ensure that the various elements display properly:

function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + “”;
 yPos = 100 + (i * 20) + “px”;

 $(“div:first”).clone()
 .insertAfter(“div:first”)
 .css(“top”, yPos)
 .css(“zIndex”, zValue)
 .append(“ #” + i);
 } // end for loop
} // end cloneDragMe

18_417997-ch12.indd 31518_417997-ch12.indd 315 10/26/09 10:03 PM10/26/09 10:03 PM

316 Part III: Moving Up to AJAX

To build multiple copies of the draggable element, follow these steps:

 1. Create a for loop.

 Any time you’re doing something repetitive, a for loop is a likely tool

for the job. To make four clones numbered 1 through 4, as shown in the

example, you name a variable I, which varies from 1 to 4.

 2. Create a zValue variable for the element.

 The CSS zIndex property is used to indicate the overlapping of ele-

ments. Higher values appear to be closer to the user. In the example, I

gave each element a zOrder of over 100, to ensure that each element

appears over the target. (If you don’t specify zIndex, dragged elements

might be placed under the target and become invisible. The zValue

variable is mapped to zIndex.)

 3. Determine the Y position of the element.

 I want each successive copy of the dragMe element to be a bit lower

than the previous one. Multiplying i by 20 ensures that each element is

separated from the previous one by 20 pixels. Add 100 pixels to move

the new stack of elements near the original.

 4. Make a clone of the first element.

 Use the clone() method to make a clone of the first div. (Use the

:first filter to specify which div you want to copy.)

 5. Remember to insert the newly cloned element.

 The cloned element exists only in memory until it’s added somehow to

the page. I chose to add the element right after the first element.

 6. Set the top of the element with the yPos variable.

 Use the yPos variable you calculated earlier in this function to set the

vertical position of the newly minted element. Use the css() method to

apply the yPos variable to the element’s left CSS rule.

 7. Set zIndex.

 As with the y position, the zValue variable you created is mapped to a

CSS value. In this case, zValue is mapped to the zIndex property.

 8. Add the index to the element’s text.

 Use the append() method to add the value of i to the element’s HTML.

This way, you can tell which element is which.

18_417997-ch12.indd 31618_417997-ch12.indd 316 10/26/09 10:03 PM10/26/09 10:03 PM

Chapter 13

Improving Usability with jQuery
In This Chapter
▶ Creating an accordion page

▶ Building a tab-based interface

▶ Working with scrollbars

▶ Managing selectable items

▶ Building a sorting mechanism

▶ Using the dialog box tool

The jQuery UI adds some outstanding capabilities to your Web pages.

Some of the most interesting tools are widgets, which are user interface

elements not supplied in standard HTML. Some of these elements supple-

ment HTML by providing easier input options. For example, getting users to

enter dates in a predictable manner can be quite difficult. The datePicker

widget’s interface is easy for programmers to add and easy for users to use.

Another important class of tools provided by the jQuery UI helps manage

complex pages by hiding content until it is needed.

Multi-Element Designs
The issue of how to handle page complexity has been constant in Web devel-

opment. As a page grows longer and more complex, navigating it becomes

difficult. Early versions of HTML had few solutions to this problem. The use

of frames was popular because it lets programmers place navigation informa-

tion in one frame and content in another. Frames added usability problems,

however, so they have fallen from favor. Although dynamic HTML and AJAX

seem like perfect replacement technologies, they can be difficult to imple-

ment, especially in a reliable cross-browser manner.

19_417997-ch13.indd 31719_417997-ch13.indd 317 10/26/09 10:04 PM10/26/09 10:04 PM

318 Part III: Moving Up to AJAX

The jQuery UI provides two incredible tools for the management of larger

pages:

 ✓ Accordion tool: Creates a large page but display only smaller parts of it

at a time.

 ✓ Tabs tool: Easily turns a large page into a page with a tab menu.

These tools are incredibly easy to use, and they add tremendously to your

page development options. Both tools help automate and simplify the task of

working with the DOM (document object model) and AJAX, which is neces-

sary to build a large page with dynamic content.

Using the Accordion widget
Some of the most powerful jQuery tools are the easiest to use. The Accordion

widget has become an extremely popular part of the jQuery UI toolset. Take a

look at accordion.html in Figure 13-1 to see how it works.

Figure 13-1:
The original

chapter
outline of

a familiar-
sounding

book.

19_417997-ch13.indd 31819_417997-ch13.indd 318 10/26/09 10:04 PM10/26/09 10:04 PM

319 Chapter 13: Improving Usability with jQuery

When you look at Figure 13-1, you see headings for the first three chapters of

this book. The details for the first chapter are available, but the other chap-

ters’ details are hidden. If you click the heading for Chapter 2, you see the

screen shown in Figure 13-2, where the Chapter 1 TOC is minimized and the

Chapter 2 TOC is expanded.

Figure 13-2:
The Chapter

1 TOC is
minimized;

the Chapter
2 TOC is

expanded.

This marvelous effect lets a user focus on a particular part of a larger context

while seeing the overall outline. It’s called an accordion because the various

pieces expand and contract to let a user focus on a part of the page without

losing track of its position in the whole. Collapsible content has become an

important usability tool made popular by the system bar in the Mac OS and

by other popular usability tools.

The accordion effect is strikingly easy to achieve with jQuery:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»

19_417997-ch13.indd 31919_417997-ch13.indd 319 10/26/09 10:04 PM10/26/09 10:04 PM

320 Part III: Moving Up to AJAX

 href = «jquery-ui-1.7.2.custom.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#accordion»).accordion();
 }
 //]]>
 </script>

 <title>accordion.html</title>
</head>
<body>
<h1>Accordion Demo</h1>

<div id = «accordion»>
 <h2>1 - Gathering Your Tools</h2>

 Picking your computer
 Choosing an editor
 Working with Internet Explorer
 Using Firefox
 Adding extensions to Firefox
 Using other Browsers

 <h2>2 Getting Started with JavaScript</

a></h2>

 Writing your first JavaScript program
 Introducing variables
 Using concatenation
 Understanding String objects
 Managing variable types

 <h2>3 Making Decisions with Conditions</

a></h2>

 Working with random numbers
 Using if to control flow
 Using the else clause
 Using switch for more complex

branching
 Nesting if statements

</div>
</body>
</html>

19_417997-ch13.indd 32019_417997-ch13.indd 320 10/26/09 10:04 PM10/26/09 10:04 PM

321 Chapter 13: Improving Usability with jQuery

As you can see by looking over this chunk of code, it consists mainly of

HTML. The accordion effect is easy to accomplish — follow these steps:

 1. Import all the usual suspects.

 Import the jQuery and jQuery UI JavaScript files and a theme CSS file.

(See Chapter 12 for a refresher.) Also, make sure that the CSS can access

the images directory, with icons and backgrounds, because the CSS uses

some of these images automatically.

 2. Build your HTML page in the normal way.

 Build an HTML page, and pay attention to the sections you want to col-

lapse. You should normally have a heading tag for each element, all at

the same level (Level 2 headings, in my case).

 3. Create a div containing the entire collapsible content.

 Put all collapsible content in a single div with an id. You’ll turn this

div into an accordion jQuery element.

 4. Add an anchor around each heading you want to specify as collapsible.

 Place an empty anchor tag () around each head-

ing you want to use as a collapsible heading. The # sign indicates that

the anchor will call the same page and is used as a placeholder by the

jQuery UI engine. You can add the anchor directly in the HTML or by

using jQuery code.

 5. Create a jQuery init() function.

 Use the normal techniques (described in Chapter 10) to build a jQuery

initializer.

 6. Apply the accordion() method to the div.

 Use jQuery to identify the div containing collapsible content and apply

accordion() to it:

function init(){
 $(“#accordion”).accordion();
}

The accordion tool automatically breaks the page into sections based on the

header elements. Look into the jQuery UI documentation for details on other

options. You can set some other element to indicate section breaks, allow for

all elements to be collapsed at the same time, and other interesting effects.

19_417997-ch13.indd 32119_417997-ch13.indd 321 10/26/09 10:04 PM10/26/09 10:04 PM

322 Part III: Moving Up to AJAX

Building a tabbed interface
Another important technique in Web development is the use of a tabbed

interface. A user can then change the contents of a segment by selecting one

of a series of tabs. Figure 13-3 shows an example.

Figure 13-3:
Another

way to
look at that
hauntingly

familiar
table of

contents.

In a tabbed interface, only one element is visible at a time, but all tabs are

visible. The tabbed interface is a little more predictable than the accordion

because the tabs (unlike the accordion’s headings) remain in place. The tabs

change colors to indicate which tab is highlighted, and a tab changes state

to indicate that a user is hovering the mouse over it. Whenever you click

another tab, the main content area of the widget is replaced with the corre-

sponding content. Figure 13-4 shows you what happens when the user clicks

the Chapter 3 tab.

19_417997-ch13.indd 32219_417997-ch13.indd 322 10/26/09 10:04 PM10/26/09 10:04 PM

323 Chapter 13: Improving Usability with jQuery

Figure 13-4:
Clicking a

tab changes
the main

content and
the appear-
ance of the

tabs.

Like the accordion, the tab effect is incredibly easy to achieve. Look over the

following chunk of code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»
 href = «jquery-ui-1.7.2.custom.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){

19_417997-ch13.indd 32319_417997-ch13.indd 323 10/26/09 10:04 PM10/26/09 10:04 PM

324 Part III: Moving Up to AJAX

 $(«#tabs»).tabs();
 }
 //]]>
 </script>

 <title>tabs.html</title>
</head>
<body>
<h1 class = «ui-state-default»>Tab Demo</h1>

<div id = «tabs»>

 Chapter 1
 Chapter 2
 Chapter 3

 <div id = «chap1»>
 <h2>1 - Gathering Your Tools</h2>

 Picking your computer
 Choosing an editor
 Working with Internet Explorer
 Using Firefox
 Adding extensions to Firefox
 Using other Browsers

 </div>

 <div id = «chap2»>
 <h2>2 Getting Started with JavaScript</h2>

 Writing your first JavaScript program
 Introducing variables
 Using concatenation
 Understanding String objects
 Managing variable types

 </div>

 <div id = «chap3»>
 <h2>3 Making Decisions with Conditions</h2>

 Working with random numbers
 Using if to control flow
 Using the else clause
 Using switch for more complex

branching
 Nesting if statements

 </div>
</div>
</body>
</html>

19_417997-ch13.indd 32419_417997-ch13.indd 324 10/26/09 10:04 PM10/26/09 10:04 PM

325 Chapter 13: Improving Usability with jQuery

The mechanism for building a tab-based interface is quite similar to the one

for accordions. Follow these steps:

 1. Add all appropriate files.

 As with most jQuery UI effects, you need jQuery and jQueryUI and a

theme CSS file. You also need to have access to the images directory for

the theme’s background graphics.

 2. Build HTML as normal.

 If you’re building a well-organized Web page anyway, you’re already

close to the organization you’ll need for tabs.

 3. Build a div containing all tabbed data.

 This element is the one you perform the jQuery “magic” on.

 4. Place main content areas in named divs.

 Place each piece of content to be displayed as a page in a div with a

descriptive id. Place each div in the tab div. (See the preceding code

listing for organization if you’re confused.)

 5. Add a list of local links to the content.

 Build a menu of links and place it at the top of the tabbed div. Each link

should be a local link to one of the divs. For example, my index looks

like this:

 Chapter 1
 Chapter 2
 Chapter 3

 6. Build an init function as usual.

 Use the normal jQuery techniques.

 7. Call the tabs() method on the main div.

 Incredibly, one line of jQuery code does all the work!

Using tabs with AJAX
You have an even easier way to work with the jQuery tab interface. Rather

than place all your code in a single file, place the HTML code for each panel

in a separate HTML file. You can then use a simplified form of the tab mecha-

nism to automatically import the various code snippets by using AJAX calls.

The following AJAXtabs.html code is an example:

19_417997-ch13.indd 32519_417997-ch13.indd 325 10/26/09 10:04 PM10/26/09 10:04 PM

326 Part III: Moving Up to AJAX

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»
 href = «jquery-ui-1.7.2.custom.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery-ui-1.7.2.custom.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#tabs»).tabs();
 }
 //]]>
 </script>

 <title>AJAXtabs.html</title>
</head>
<body>
 <h1>AJAX tabs</h1>
 <div id = «tabs»>

 Chapter 1
 Chapter 2
 Chapter 3

 </div>
</body>
</html>

Note: I didn’t provide a figure for the AJAXtabs.html page because it looks

to the user exactly like tabs.html (refer to Figure 13-4).

This version of the code contains none of the actual content. Instead, jQuery

builds the tab structure and then uses the links to make AJAX requests to

load the content. As a default, it finds the content specified by the first tab

(chap1.html) and loads it into the display area. This chunk of code shows

you what chap1.html contains:

19_417997-ch13.indd 32619_417997-ch13.indd 326 10/26/09 10:04 PM10/26/09 10:04 PM

327 Chapter 13: Improving Usability with jQuery

 <h2>1 - Gathering Your Tools</h2>

 Picking your computer
 Choosing an editor
 Working with Internet Explorer
 Using Firefox
 Adding extensions to Firefox
 Using other Browsers

As you can see, chap1.html is simply a code snippet. It doesn’t need the

complete trappings of a Web page (such as a doctype or header) because it’s

meant to be pulled in as part of a larger page.

This technique is marvelous because it lets you build a modular system

quite easily — you can build these code pages separately and include them

in a larger page. You then have a good foundation for a content management

system.

Improving Usability
Although the UI widgets are good looking and fun to use, another important

aspect of these tools is how they can improve usability. Often, Web pages are

used to get information from users. Certain kinds of information can be dif-

ficult for users to enter correctly. The jQuery UI elements include a number

of tools to help you with this specific problem. The UItools.html page,

shown in Figure 13-5, illustrates some of these techniques.

A great deal is happening on this page, but the tabbed interface truly cleans

it up and lets users concentrate on one idea at a time. Using the tabbed inter-

face can simplify your users’ lives.

This page is a bit long because it has a number of sections. I demonstrate

the code in chunks to make it easier to manage. Be sure to look on either

of the Web site (www.dummies.com/go/javascriptandajaxfd or www.
aharrisbooks.net/jad) for the complete code.

19_417997-ch13.indd 32719_417997-ch13.indd 327 10/26/09 10:04 PM10/26/09 10:04 PM

328 Part III: Moving Up to AJAX

Figure 13-5:
The UITools

page uses
a tabbed

interface to
demonstrate

a few input
tools.

Here’s the main HTML code so that you can see the general structure of the

page:

<h1>UI tools</h1>
<div id = “tabs”>

 datePicker
 slider
 selectable
 sortable
 dialog

A main div, named tabs, contains a list of links to the various divs that

will contain the demonstrations. I describe each of these divs in the section

that demonstrates it, later in this chapter. The page also imports jQuery,

jQueryUI, and the theme CSS. The init() method contains most of the

jQuery code:

19_417997-ch13.indd 32819_417997-ch13.indd 328 10/26/09 10:04 PM10/26/09 10:04 PM

329 Chapter 13: Improving Usability with jQuery

$(init);

function init(){
 $(“h1”).addClass(“ui-widget-header”);

 $(“#tabs”).tabs();
 $(“#datePicker”).datepicker();

 $(“#slider”).slider()
 .bind(“slide”, reportSlider);

 $(“#selectable”).selectable();

 $(“#sortable”).sortable();

 $(“#dialog”).dialog();

 //initially close dialog
 $(“#dialog”).dialog(“close”);

} // end init

The details of the init() function are described in the following sections.

The dating game
Imagine that you’re writing a program requiring a birth date or other date

information. Getting date information from a user can be an especially messy

problem because so many variations exist. Users might use numbers, month

names, or abbreviations to indicate the month, for example. Some people use

the format month/day/year, and others use day/month/year. Some people

indicate the year by entering two characters, and other people use four.

Worse, picking a date without a calendar in front of you is difficult.

The Date Picker dialog box is one of the coolest elements in the entire jQuery

UI library. When you add datepicker() functionality to a text box, the text

box becomes a date picker. When a user selects the date box, a calendar

automatically pops up, like the one shown in Figure 13-6.

19_417997-ch13.indd 32919_417997-ch13.indd 329 10/26/09 10:04 PM10/26/09 10:04 PM

330 Part III: Moving Up to AJAX

Figure 13-6:
The

datePicker
element

turns any
text field

into a
calendar.

The user clicks a date in the calendar...

...and the date appears in the text field.

After a user selects a date on the calendar, the date is placed in the text box

in a standard format — there’s no better way to get date input from the user.

Building a date picker couldn’t be easier. Follow these steps:

 1. Begin with a jQuery UI page.

 You need jQuery and jQuery UI and a theme to use datePicker.

 2. Build a form with a text field.

 Any standard text input element will work. Be sure to give the element

an id so that you can refer to it in JavaScript:

<div id = “datePickerTab”>
 <h2>date picker</h2>
 <input type = “text”
 id = “datePicker” />
</div>

 3. Isolate the text input element by using jQuery.

 Build a standard jQuery node from the input element.

19_417997-ch13.indd 33019_417997-ch13.indd 330 10/26/09 10:04 PM10/26/09 10:04 PM

331 Chapter 13: Improving Usability with jQuery

 4. Add datepicker() functionality.

 Use the datePicker() method to convert the text node into a date

picker. The rest of the magic happens automatically. When the user

selects the text area, it is automatically converted to the calendar. When

the user has selected a date on the calendar, the element converts back

to a text area with the appropriate date in place.

$(“#datePicker”).datepicker();

 5. Retrieve data from the form element in the normal way.

 When a user selects a date, it’s placed in the text field automatically. As

far as your program is concerned, the text field is still an ordinary text

field. Retrieve the data as you do for a normal text field.

 The date picker is a powerful tool with a large number of additional options.

Look at the jQuery UI documentation to see how to use it to select date

ranges, produce specific date formats, and do much more.

Picking numbers with the slider
Numeric input is another significant usability problem. When you want users

to enter numeric information, ensuring that the data is truly a number, and

that it’s in the range you want, can be quite difficult. Traditional program-

mers often use sliders (sometimes called scrollbars) to simplify the accep-

tance of numeric input. Figure 13-7 shows a slider in action.

The slider is, like many jQuery UI objects, easy to set up. Here’s the relevant

chunk of HTML code:

<div id = “sliderTab”>
 <h2>slider</h2>
 <div id = “slider”></div>
 <div id = “slideOutput”>0</div>
</div>

The slider tab is a basic div. It contains two other divs. The slider div is

empty. It’s replaced by the slider element when the jQuery is activated. The

other div in this section is used to output the current value of the slider.

Create the slider element in the init() function with some predictable

jQuery code:

$(“#slider”).slider();

The slider() method turns any jQuery element into a slider, replacing the

contents with a visual slider.

19_417997-ch13.indd 33119_417997-ch13.indd 331 10/26/09 10:04 PM10/26/09 10:04 PM

332 Part III: Moving Up to AJAX

Figure 13-7:
Using a
slider to

choose a
number with

the mouse.

 Note that you can add a JSON object as a parameter to set up the slider

with various options. See rgbSlider.html on this book’s Web site (www.
dummies.com/go/javascriptandajaxfd or www.aharrisbooks.net/
jad) for an example of sliders with customization.

You can set up a callback method to be called whenever the slider is moved.

In my example, I chained this callback code to the code that created the

slider in the first place:

$(“#slider”).slider()
.bind(“slide”, reportSlider);

Use the bind method to bind the reportSlider function (described next)

to the slide event.

The reportSlider() function reads the slider’s value and reports it in an

output div:

function reportSlider(){
 var sliderVal = $(“#slider”).slider(“value”);
 $(“#slideOutput”).html(sliderVal);
} // end reportSlider

19_417997-ch13.indd 33219_417997-ch13.indd 332 10/26/09 10:04 PM10/26/09 10:04 PM

333 Chapter 13: Improving Usability with jQuery

To read the value of a slider, identify the jQuery node and invoke its

slider() method again. This time, pass the single word value and you get

the value of the slider. You can pass the resulting value to a variable, as I did,

and then do anything you want with that variable.

Selectable elements
You may have a situation where you want users to choose from a list of ele-

ments. The selectable widget is a useful way to create this functionality

from an ordinary list. Users can drag or Control-click items to select them.

Special CSS classes are automatically applied to indicate that the item is

selected or being considered for selection. Figure 13-8 illustrates the selec-

tion in process.

Figure 13-8:
You can

easily
choose

selectable
items with

the mouse.

Dragging the mouse over these elements changes their style and marks them as selected.

To make a selectable element, follow these steps:

19_417997-ch13.indd 33319_417997-ch13.indd 333 10/26/09 10:04 PM10/26/09 10:04 PM

334 Part III: Moving Up to AJAX

 1. Begin with an unordered list.

 2. Build a standard unordered list in your HTML. Give the ul an id so

that it can be identified as a jQuery node:

<div id = “selectableTab”>
 <h2>selectable</h2>
 <ul id = “selectable”>
 alpha
 beta
 gamma
 delta

</div>

 3. Add CSS classes for selecting and selected states.

 If you want to have a specific appearance when the items are being

selected or have been selected, add CSS classes:

<style type = “text/css”>
 h1 {
 text-align: center;
 }

 #selectable .ui-selecting {
 background-color: gray;
 }
 #selectable .ui-selected {
 background-color: black;
 color: white;
 }
</style>

 4. In the init() function, specify the list as a selectable node. Use the

standard jQuery syntax: selectable():

$(“#selectable”).selectable();

 The ui-selected class is attached to all elements when they have

been selected. Be sure to add some kind of CSS to this class or else you

can’t tell that items have been selected.

If you want to do something with all the items that have been selected, just

create a jQuery group of elements with the ui-selected class:

var selectedItems = $(“.ui-selected”);

19_417997-ch13.indd 33419_417997-ch13.indd 334 10/26/09 10:04 PM10/26/09 10:04 PM

335 Chapter 13: Improving Usability with jQuery

Building a sortable list
Sometimes, you want users to be able to change the order of a list, which is

easily done by using the sortable widget. The top of Figure 13-9 shows the

sortable list in its default configuration. The user can “grab” members of the

list and change their order (see the bottom of Figure 13-9).

Figure 13-9:
Users can

drag the
elements of
an ordinary

list (top) into
different

orders
(bottom).

Making a sortable list is easy. Follow these steps:

 1. Build a regular list.

 2. Add an id.

 Sortable elements are usually lists. The list is a regular list, but with an id:

<div id = “sortableTab”>
 <h2>sortable</h2>
 <ul id = “sortable”>
 alpha
 beta
 gamma
 delta

</div>

19_417997-ch13.indd 33519_417997-ch13.indd 335 10/26/09 10:04 PM10/26/09 10:04 PM

336 Part III: Moving Up to AJAX

 3. Turn it into a sortable node by adding the following code to the

init() method:

$(“#sortable”).sortable();

Creating a custom dialog box
Although JavaScript supplies a few dialog boxes (the alert and prompt dialog

boxes), they’re quite ugly and relatively inflexible. The jQuery UI includes a

technique for turning any div into a virtual dialog box. The dialog box fol-

lows the theme and can be resized and moved. Figure 13-10 shows a dialog

box in action.

Figure 13-10:
This dialog

box is a
jQuery UI

node.

19_417997-ch13.indd 33619_417997-ch13.indd 336 10/26/09 10:04 PM10/26/09 10:04 PM

337 Chapter 13: Improving Usability with jQuery

Building the dialog box isn’t difficult, but you need to be able to turn it on

and off by using code. Follow these steps:

 1. Create the div you intend to use as a dialog box.

 Create a div and give it an id so that you can turn it into a dialog box

node. Add the title attribute, and the title shows up on the title bar of

the dialog box:

<div id = “dialog”
 title = “my dialog”>
 <p>
 The dialog class allows you to have a movable,

sizable
 customized dialog box consistent with the

installed
 page theme.
 </p>
</div>

 2. Turn the div into a dialog box.

 Use the dialog() method to turn the div into a jQuery dialog box node

in the init() function:

$(“#dialog”).dialog();

 3. Hide the dialog box by default.

 Usually, you don’t want the dialog box visible until an event takes place.

In this particular example, I don’t want the dialog box to appear until the

user clicks a button. I added some code that will close the dialog box

in the init() function so that the dialog box doesn’t appear until it’s

summoned.

 4. Close the dialog box.

 Refer to the dialog box node and call the dialog() method on it again.

This time, send the single value “close” as a parameter, and the dialog

box immediately closes:

//initially close dialog
$(“#dialog”).dialog(“close”);

 5. Click the x to close the dialog box.

 The dialog box has a small x icon that looks like the Close icon in most

windowing systems. Users can close the dialog box by clicking this icon.

19_417997-ch13.indd 33719_417997-ch13.indd 337 10/26/09 10:04 PM10/26/09 10:04 PM

338 Part III: Moving Up to AJAX

 6. Write code to manage opening and closing the dialog box.

 My Open and Close buttons call functions that control the behavior of

the dialog box. For example, here’s the function attached to the Open

Dialog button:

function openDialog(){
 $(“#dialog”).dialog(“open”);
} // end openDialog

19_417997-ch13.indd 33819_417997-ch13.indd 338 10/26/09 10:04 PM10/26/09 10:04 PM

Chapter 14

Working with AJAX Data
In This Chapter
▶ Understanding the advantages of server-side programming

▶ Getting to know PHP

▶ Writing a form for standard PHP processing

▶ Building virtual forms with AJAX

▶ Submitting interactive AJAX requests

▶ Working with XML data

▶ Responding to JSON data

AJAX and jQuery are incredibly useful, but perhaps the most important

use of AJAX is to serve as a conduit between the Web page and pro-

grams written on the server. In this chapter, you get an overview of how pro-

gramming works on the Web server. First you look at traditional server-side

programs, and then I explain how AJAX changes the equation. You find out

the main forms of data sent from the server and how to interpret this data

with jQuery and JavaScript.

Getting an Overview of Server-Side
Programming

The JavaScript programming you do throughout this book primarily works

on the Web browser — the client. However, all Web programming also has

a relationship with the machine that hosts Web pages — the server. In the

examples so far, the Web page is retrieved from the server, and then the

JavaScript programs inside the page are executed by the client machine. This

is a very powerful approach, but it does have limitations. Most importantly,

client-side code cannot store data or access external programs for security

reasons.

20_417997-ch14.indd 33920_417997-ch14.indd 339 10/26/09 10:04 PM10/26/09 10:04 PM

340 Part III: Moving Up to AJAX

Fortunately, there’s a solution. You can also write programs that reside on

the Web server. They work a little differently than client-side programs. A

server-side program runs on the Web server, and when it’s done, it produces

an ordinary Web page. The Web page is then sent to the client, where it’s

interpreted by the browser.

 Server-side programs are processed before the data is transmitted to the

browser, and client-side programs are processed after the transmission.

You can do things on the server that aren’t allowed on the client, including

storing data and accessing external programs. These are the two things that

client-side programs can’t do, so server-side programming is a perfect match

for the client-side skills described in this book.

Introducing PHP
Several languages are used for server-side programming. The most popular

of these are PHP, Java, and ASP.NET. For the examples in this book, I concen-

trate on PHP:

 ✓ It’s very popular. PHP is used on thousands of Web sites and has a mas-

sive following among programmers.

 ✓ It’s quite powerful. Although PHP isn’t quite as powerful as some

languages, it’s robust enough to support some very large sites (like

Facebook and Flickr).

 ✓ It’s entirely free. PHP is an open-source language, which means it

doesn’t cost anything and can be freely modified. You also don’t need to

purchase any special editor to write PHP — the text editors you already

use are perfectly fine.

 ✓ It’s readily available. Pretty much every commercial server and even

some free servers support PHP. You generally have to pay more for a

custom server to handle Java or ASP.NET.

 ✓ It’s pretty easy. Although PHP isn’t exactly like JavaScript, it’s quite

similar. You’ll be able to transfer much of your programming knowledge

to PHP with only a few details to worry about.

Although you can practice JavaScript on a standalone computer, PHP only

works through a Web server. If you want to experiment with PHP, you must

have access to a Web server with PHP installed. There are two main ways to

do this:

20_417997-ch14.indd 34020_417997-ch14.indd 340 10/26/09 10:04 PM10/26/09 10:04 PM

341 Chapter 14: Working with AJAX Data

 ✓ Get an online account. If you have a hosting account for your Web

pages, you probably already have support for PHP. You might need

to check your control panel to see whether there are any restrictions

or details you need to know. Many free accounts include PHP access,

so you can try PHP without any cost to see if you like it. (The hosting

service I use offers quite a good free service with PHP access. Check

http://freehostia.com.)

 ✓ Install your own Web server. If you want to practice on your own com-

puter, you can install your own Web server. The best way to do this is

with a complete installation like XAMPP (www.apachefriends.org/
en/xampp.html). The XAMPP package is a complete installation of

all the tools you need including a Web server (Apache) programming

languages (PHP and Perl) a database package (MySQL) and some other

goodies, all configured to work together. XAMPP is available for all

major operating systems, but if you’re running Linux, you might already

have everything you need.

Note that you can write PHP programs on any computer with the same text

editor you use for other Web programming, but you can test PHP programs

only when your program runs directly through a Web server. This is neces-

sary because the Web server actually runs PHP before the user sees the page.

If there is no Web server (or it is not configured properly), the PHP code will

not execute.

 Aptana (see Chapter 1) has a great PHP mode, but you’ll have to download

a free add-on to get this capability. Go to the My Aptana window (from the

Window menu) and click the Plugins tab. You should see a link to download

and install the PHP plugin. With the plugin installed, you’ll have the same fea-

tures (syntax highlighting, syntax completion, integrated help, and so on) with

PHP that you already have for the other Web languages.

Writing a form for PHP processing
The best way to see how server-side programming (and PHP) works is to look

at a simple example. Figure 14-1 illustrates a basic XHTML Web page with a

form.

The page doesn’t look too scary, but it does have an interesting twist.

There is no JavaScript code in this form. When the user clicks the button,

information is sent to the server, which finds a new program. This program

(greetUser.php) examines the contents of the form and composes a new

page in reply, which is shown in Figure 14-2.

20_417997-ch14.indd 34120_417997-ch14.indd 341 10/26/09 10:04 PM10/26/09 10:04 PM

342 Part III: Moving Up to AJAX

Figure 14-1:
This Web
page has

a form.

Figure 14-2:
In server-
side pro-

gramming,
the result is
an entirely

different
page.

This example points out a key difference between client-side and server-side

processing: On the client (in JavaScript), your code resides on the Web page

and modifies the same page. In server-side programming (like PHP), the

request form and the response are entirely different pages. Typical PHP code

involves building an entirely new page from scratch for the result.

Begin by looking at the XHTML source code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/

xhtml»>
 <head>
 <meta http-equiv=”content-type”

content=”text/xml; charset=utf-8” />
 <title>nameForm.html</title>
</head>

<body>
 <h1>Typical HTML Form</h1>
 <form action = “greetUser.php”
 method = “get”>
 <fieldset>

20_417997-ch14.indd 34220_417997-ch14.indd 342 10/26/09 10:04 PM10/26/09 10:04 PM

343 Chapter 14: Working with AJAX Data

 <input type = “text”
 name = “userName”
 value = “Andy” />
 <button type = “submit”>
 submit
 </button>
 </fieldset>
 </form>
</body>
</html>

It’s nothing too shocking, but if you’re used to writing forms for JavaScript,

you’ll see there are a few differences when you write a form for server-side

processing:

 1. No JavaScript is necessary.

 It’s possible to use client and server programming techniques together

(in fact that is the point of AJAX), but it isn’t necessary. For this first

example, all code will be processed on the server.

 2. Designate a target program in the form’s action attribute.

 When you create a form for JavaScript use, the action attribute is

empty, indicating that all processing will happen on the current page.

For server-side processing, indicate the name of the program that will

read the form data (in this case, greetUser.php) in the action

attribute.

 3. Determine the transfer method.

 There are two main ways to transmit form data to the receiving pro-

gram. The get mechanism embeds data in the URL. This technique is

useful for debugging (as the data is visible), but gets awkward for large

forms. The post technique is preferred for larger forms, as it sends the

data through a less visible mechanism.

 4. Add a name attribute to form fields.

 In client-side programming, you typically use the id attribute to identify

fields. Server-side programs prefer the name identifier. You can (and

often will) use both. For this example, I’ve named the single text field

userName.

 5. Include a submit button.

 For client-side processing, you normally use a standard button. Server-

side programming typically requires a submit button instead. When the

user clicks the submit button, all the data in the form is automatically

packaged and sent to the program indicated in the form’s action

attribute.

20_417997-ch14.indd 34320_417997-ch14.indd 343 10/26/09 10:04 PM10/26/09 10:04 PM

344 Part III: Moving Up to AJAX

 If you get an error message when you submit this program, make sure you’re

running it correctly. If the URL in your browser begins with file://, you’re

bypassing the server. This method is fine in client-side programming, but

it doesn’t work when you’re messing with the server. You need to have an

address that begins with http:// in order for server-side programs to work

correctly.

Responding to the request
When the user clicks the submit button of nameForm.html, the form infor-

mation is bundled and passed to the greetUser.php program. If you look

over the code for this program, you might find it surprisingly familiar:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
 <head>
 <meta http-equiv=»content-type»

content=»text/xml; charset=utf-8» />
 <title>greetUser.php</title>
</head>

<body>
 <h1>Greet user Response</h1>
 <?php
 $userName = $_REQUEST[«userName»];
 print «<p>Hi, $userName!</p> «;
 ?>
</body>
</html>

For the most part, a PHP program looks a lot like an XHTML page, because

mostly that’s what it is. The general structure is just like XHTML. There are

only a few key differences.

 1. The filename must end with .php.

 This indicates to the server that the page isn’t ordinary HTML but will

need to be passed through the PHP interpreter before being sent to the

user.

 2. The <?php marker indicates a switch to PHP syntax.

 Most of this page is standard XHTML (and can include CSS and

JavaScript, too). In the middle of the page, I indicate that a section of

code should be processed by PHP. I signify this with the <?php symbol.

(Occasionally you’ll see other variations, but this almost always works.)

 3. Make a variable called $userName.

20_417997-ch14.indd 34420_417997-ch14.indd 344 10/26/09 10:04 PM10/26/09 10:04 PM

345 Chapter 14: Working with AJAX Data

 PHP supports variables just like JavaScript, but PHP variable names

always begin with the dollar sign ($). This turns out to be quite useful

(as you’ll see in a moment).

 $userName = $_REQUEST[“userName”];

 4. Grab the value of the userName field from the previous form.

 PHP has a structure called $_REQUEST, which is a package of all the

data sent from the form. You can find the data in the field called

userName by looking for $_REQUEST[“userName”].

 5. Copy the form data into a PHP variable.

 Now I have a variable called $userName that contains the data from the

userName field in the previous form. Repeat this process for each form

variable you want to retrieve from the form.

 6. Print some new content.

 The print statement in PHP prints text to the current spot in the HTML.

In essence, it allows you to customize parts of the page on the fly. In this

case, I want to add a paragraph with a greeting. Note that you should

still strive for valid XHTML in your print statements.

 print “<p>Hi, $userName!</p> “;

 7. Interpolate variables.

 Notice how I added the $userName variable directly in the print state-

ment. This technique is called interpolation. If PHP sees a term beginning

with a dollar sign being printed, it knows it’s looking at a variable and

replaces the variable name with its value.

 8. End the PHP segment with ?>.

 This symbol indicates the end of PHP processing and takes you back to

XHTML mode.

 Obviously this is a very cursory overview of PHP. It’s a complete language

with a lot more potential than I’m showing in this basic example. If you want

to know more, there are many books on PHP that can take you farther (includ-

ing some I have written.) Take a look at www.php.net or my own site (www.
aharrisbooks.net) for much more information on the PHP language. You

can also visit www.wiley.com to find more great books packed with PHP info.

Sending Requests AJAX-Style
So far all the AJAX work in this book has involved importing a preformatted

HTML file. That’s a great use of AJAX, but the really exciting aspect of AJAX

is how it tightens the relationship between the client and server. Figure 14-3

shows a page called AJAXtest.html, which uses a JavaScript function to

call a PHP program and incorporates the results into the same page.

20_417997-ch14.indd 34520_417997-ch14.indd 345 10/26/09 10:04 PM10/26/09 10:04 PM

346 Part III: Moving Up to AJAX

Figure 14-3:
This page
gets data
from PHP

with no
form!

Sending the data
The AJAX version of this program is interesting because it has no form, uses

exactly the same PHP program as nameForm.html, and incorporates the

results of the PHP program directly onto the same page. Begin by looking

over the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

20_417997-ch14.indd 34620_417997-ch14.indd 346 10/26/09 10:04 PM10/26/09 10:04 PM

347 Chapter 14: Working with AJAX Data

 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $.get(«greetUser.php», { «userName»: «Andy» },

processResult);
 }

 function processResult(data, textStatus){
 $(«#output»).html(data);
 }
 //]]>
 </script>

 <title>AJAXTest.html</title>
</head>
<body>
<h1>AJAX Test</h1>

<div id = «output»>
 This is the default output
</div>

</body>
</html>

This program uses a jQuery function to simulate a form. It generates its own

virtual form and passes it directly to the PHP program. The PHP program

then processes the form data and produces text results, which are avail-

able for JavaScript to handle directly. In essence, JavaScript and jQuery are

directly managing the server request (rather than allowing the browser to do

it automatically), so the programmer has more control over the process.

Here’s how it works:

 1. Begin with an XHTML framework.

 As always, XHTML forms the spine of any Web program. The XHTML

here is quite simple: a heading and a div for output. Note that this

example doesn’t include a form.

 2. Include the jQuery library.

 It’s possible to do AJAX without jQuery, but there’s not much reason to

do that. The jQuery library makes life much easier and manages cross-

browser issues to boot. You can also incorporate the jQuery UI and a

theme if you choose, but they aren’t absolutely necessary.

20_417997-ch14.indd 34720_417997-ch14.indd 347 10/26/09 10:04 PM10/26/09 10:04 PM

348 Part III: Moving Up to AJAX

 3. Initialize as usual.

 As soon as this program runs, it’s going to get data from the server. (In

the next example, I show you how to make this process more interac-

tive.) Set up an init() function in the normal way to handle immediate

execution once the page has loaded.

 4. Use the .get() function to set up an AJAX call.

 jQuery has a number of interesting AJAX functions. The .ajax func-

tion is a very powerful tool for managing all kinds of AJAX requests, but

jQuery also includes a number of utility functions that simplify particu-

lar kinds of requests. The .get() function used here sets up a request

that looks to the server just like a form submitted with the get method.

(Yep, there’s also a post() function that acts like a post form.)

 5. Indicate the program to receive the request.

 Typically your AJAX requests will specify a program, which should

respond to the request. I’m using greetUser.php, the exact same pro-

gram called by the simpler nameForm.html page.

 6. Pass form data as a JSON object.

 Encapsulate all the data you want to send to the program as a JSON

object. (Check Chapter 5 for a refresher on JSON.) Typically this is a

series of name/value pairs. In this example, I’m simply indicating a field

named userName with the value “Andy”.

 7. Specify a callback function.

 Normally you’ll want to do something with the results of an AJAX call.

Use a callback function to indicate which function should execute when

the AJAX call is completed. In this example, I call the processResult

function as soon as the server has finished returning the form data.

Responding to the results
The greetUser.php program on the server will be run by the AJAXTest.
html page. As far as greetUser.php knows, the data came from an ordi-

nary form. This means I can use exactly the same program to work with the

AJAX request that I used for the previous example. I don’t re-create the PHP

code here because it hasn’t changed.

Back in the HTML, I need a function to process the results of the AJAX

request after it has returned from the server. The processResult() func-

tion has been designated as the callback function, so take another look at

that function:

20_417997-ch14.indd 34820_417997-ch14.indd 348 10/26/09 10:04 PM10/26/09 10:04 PM

349 Chapter 14: Working with AJAX Data

 function processResult(data, textStatus){
 $(“#output”).html(data);
 }

This function is pretty simple with jQuery:

 1. Accept two parameters.

 AJAX callback functions accept two parameters. The first is a string con-

taining whatever output was sent by the server (in this case, the greet-

ing from processResult.php). The second parameter contains the

text version of the HTTP status result. The status is useful for testing in

case the AJAX request was unsuccessful.

 2. Identify an output area.

 I just make a jQuery node from the output div.

 3. Pass the data to the output.

 You’ll sometimes do more elaborate work with AJAX results, but for now

my results are plain HTML that I can just copy straight to the div.

Building a More Interactive Form
Although AJAX can replace the form mechanism, it’s usually used in conjunc-

tion with ordinary forms to produce effects that would otherwise be difficult

to achieve. For example, you might see a form that fills in some information

for you by guessing at your data based on the first few characters of input.

While it’s pretty easy to get real-time interaction on the client, it’s much more

difficult to achieve this effect with server-side programs, because the server

typically rebuilds the entire page at each pass. With AJAX, you can have the

quick interaction of client-side programming along with the power of server-

side programming. The interactiveForm.html demo, shown in Figure

14-4 shows a simple variation of this concept.

 This example produces a complete round-trip to the server on each keystroke.

That’s a lot of overkill for this simple example (which could be achieved with

ordinary JavaScript) but imagine how powerful it could be. On each trip to the

server, the program can check my name against a list of hundreds of names,

and it can provide a hint as soon as it has enough letters. A server-side pro-

gram can perform data searches against huge databases. You’ve probably

seen this effect on pages you’ve used. You need a little more knowledge of

server-side programming and databases than I can provide in this book to

achieve the entire effect, but you can clearly see from this example how the

AJAX part works.

20_417997-ch14.indd 34920_417997-ch14.indd 349 10/26/09 10:04 PM10/26/09 10:04 PM

350 Part III: Moving Up to AJAX

Figure 14-4:
This page

has a form.
As the user
types data

in, that data
is copied to
the output.

Creating an AJAX form
You can create a form for AJAX use much like any other form. Here’s the full

code for interactiveForm.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[

 function getGreeting(){
 var userName = $(«#userName»).val();

20_417997-ch14.indd 35020_417997-ch14.indd 350 10/26/09 10:04 PM10/26/09 10:04 PM

351 Chapter 14: Working with AJAX Data

 $.get(«simpleGreet.php», { «userName»: userName },
processResult);

 }

 function processResult(data, textStatus){
 $(«#output»).html(data);
 }
 //]]>
 </script>

 <title>InteractiveForm.html</title>
</head>
<body>
<h1>Interactive Form</h1>

 <form action = “”>
 <fieldset>
 <input type = “text”
 id = “userName”
 value = “Andy”
 onkeyup = “getGreeting()” />
 </fieldset>
 </form>

<div id = “output”>
 This is the default output
</div>

</body>
</html>

As you look over the XHTML code, you’ll notice that the form is set up more

for JavaScript than server-side processing:

 1. Include jQuery.

 Have I mentioned how cool jQuery is?

 2. The form action can be null.

 This time you’re going to read the form in JavaScript and produce an

AJAX request. The form action can (and should) be null, because you

want JavaScript to submit the request, not the browser.

 3. You don’t need to specify a transmission method in the form.

 As far as the form is concerned, it’s a client-side form, so you don’t need

to specify whether it is sent as a get or post request. (The AJAX call

takes care of that.)

20_417997-ch14.indd 35120_417997-ch14.indd 351 10/26/09 10:04 PM10/26/09 10:04 PM

352 Part III: Moving Up to AJAX

 4. The input element has an id attribute but no name.

 It can have a name, but it isn’t necessary, because the server won’t pro-

cess it directly. You use the id attribute to get access to this element

and then package your own JSON object to send to the PHP program

through AJAX.

 5. The event is called when the text field changes.

 Often AJAX requests are meant to happen automatically, without requir-

ing the user to press a submit button. To get this effect, you can use the

onkeyup event handler. This event handler calls a function whenever

the specified element has the focus and a key has been pressed and

released.

Writing the JavaScript code
The JavaScript code is even simpler than normal. For one thing, this particu-

lar program doesn’t require an init() because nothing needs to be initial-

ized. Of course, it’s likely that you’ll have a more elaborate project that might

involve initialization (with jQuery UI elements, for example), but I kept this

example simple for clarity.

The getGreeting() function extracts data from the form and uses it to

send an AJAX request:

 function getGreeting(){
 var userName = $(“#userName”).val();
 $.get(“simpleGreet.php”, { “userName”: userName },

processResult);
 }

The getGreeting() function encapsulates the process of sending a form.

 1. Extract the value of the userName field.

 Create a jQuery node from the userName field and use the val()

method to extract its value.

 2. Store the value in a variable.

 Store the value in a variable also called userName.

 3. Use the get() method to set up an AJAX call.

 The jQuery get() method simulates sending a form through the get

method. (Of course, there’s also a post() method, if you prefer.)

20_417997-ch14.indd 35220_417997-ch14.indd 352 10/26/09 10:04 PM10/26/09 10:04 PM

353 Chapter 14: Working with AJAX Data

 4. Indicate the program that will respond to the data.

 For this example, I use a variation of the greetUser.php program

called simpleGreet.php. Look at the next section to see how AJAX can

simplify your PHP code.

 5. Send form fields as a JSON object.

 The virtual form (which in this case is based on a real form) has one

field called userName. I send it the value of the userName variable.

 6. Specify a callback function.

 Most AJAX calls have a callback function that should be executed

when the data transmission is complete. In this example, I’m using the

processResult function.

Processing the result
The processing is quite easy in this case because I simply want to copy the

results of the PHP program directly to the output div:

 function processResult(data, textStatus){
 $(“#output”).html(data);
 }

The data parameter contains the text data returned from the AJAX call. I

simply grab that text and pass it to the output div.

Simplifying PHP for AJAX
One of the nice things about AJAX is how it simplifies your server-side pro-

gramming. If you look back at greetUser.php, you’ll see that it creates an

entire XHTML page. Most PHP programs work that way, creating an entire

page every time. However, because you’re using AJAX, the PHP result doesn’t

have to be an entire Web page. The PHP can simply create a small snippet of

HTML.

Take a look at simpleGreet.php and you’ll see it’s very stripped down:

 <?php
 $userName = $_REQUEST[“userName”];
 print “<p>Hi, $userName!</p> “;
 ?>

20_417997-ch14.indd 35320_417997-ch14.indd 353 10/26/09 10:04 PM10/26/09 10:04 PM

354 Part III: Moving Up to AJAX

Although this program works just like greetUser.php, it’s a lot simpler.

All it needs to do is grab the user name and print it back out. The JavaScript

function takes care of making the code go in the right place. Without AJAX,

each PHP program has to re-create the entire page. When you’re using AJAX,

the HTML page stays on the client, and JavaScript makes smaller calls to the

server. The PHP is simpler, and the code transmission is generally smaller

and faster, because there’s less repeated structural information.

Working with XML Data
Server-side work normally involves storage of data, as that’s one thing that’s

easy to do on the server and difficult to do on the client. Data can be stored

in many ways: plain text files, HTML, or XHTML, or in a specialized system

called a relational database (a specialized program that allows you to store

and query data efficiently). The database approach is most common because

it’s incredibly powerful and flexible. Normally programmers use a PHP pro-

gram to request information from a Web page, and then use this informa-

tion to prepare a request for the database in a special language called SQL

(Structured Query Language). The data request is passed to the database

management system, which returns some kind of result set to the PHP pro-

gram. The PHP program then typically builds an HTML page and passes the

page back to the browser.

 Data management is beyond the scope of this book. See my Web site for more

information about creating your own databases: www.aharrisbooks.net.

The process can be easier when you use AJAX because the PHP program

doesn’t have to create an entire Web page. All that really needs to be passed

back to the JavaScript program are the results of the data query. Normally,

you do this using a special data format so the JavaScript program can easily

manage the data.

Review of XML
The XML format has become an important tool for encapsulating data for

transfer between the client and the server. If you’re using XHTML, you are

already familiar with XML. XHTML is simply HTML following the stricter XML

standard.

However, XML is much more than XHTML. It can actually be used to store

any kind of data. For example, take a look at the following file (pets.xml):

20_417997-ch14.indd 35420_417997-ch14.indd 354 10/26/09 10:04 PM10/26/09 10:04 PM

355 Chapter 14: Working with AJAX Data

<?xml version=”1.0” encoding=”utf-8”?>
<pets>
 <pet>
 <animal>cat</animal>
 <name>Lucy</name>
 <breed>American Shorthair</breed>
 <note>She raised me</note>
 </pet>
 <pet>
 <animal>cat</animal>
 <name>Homer</name>
 <breed>unknown</breed>
 <note>Named after a world-famous bassoonist</note>
 </pet>
 <pet>
 <animal>dog</animal>
 <name>Muchacha</name>
 <breed>mutt</breed>
 <note>One of the ugliest dogs I’ve ever met</note>
 </pet>
</pets>

If you look over pets.xml, you can see it looks a lot like HTML. HTML/

XHTML tags are very specific (only a few are legal) but XML tags can be any-

thing as long as they follow a few simple (but familiar) rules:

 1. Begin with a doctype.

 Formal XML declarations often have doctypes as complex as the XHTML

doctype definition, but basic XML data usually uses a much simpler

definition:

<?xml version=”1.0” encoding=”utf-8”?>

 Any time you make your own XML format (as I’m doing in this example),

you can use this generic doctype.

 2. Create a container for all elements.

 The entire structure must have one container tag. I’m using pets as my

container. If you don’t have a single container, your programs will often

have trouble reading the XML data.

 3. Build your basic data nodes.

 In my simple example, each pet is contained inside a pet node. Each pet

has the same data elements (but that isn’t a requirement).

 4. Tags are case-sensitive.

 Be consistent in your tag names. Use camel case and single words for

each element.

20_417997-ch14.indd 35520_417997-ch14.indd 355 10/26/09 10:04 PM10/26/09 10:04 PM

356 Part III: Moving Up to AJAX

 5. You can add attributes.

 You can add attributes to your XML elements just like the ones in

XHTML. As in XHTML, attributes are name/value pairs separated by an

equal sign (=), and the value must always be encased in quotes.

 6. Nest elements as in XHTML.

 Be careful to carefully nest elements inside each other like you do with

XHTML.

You can get an XML file in a number of ways. Most databases can export data

in XML format. More often, a PHP program reads data from a database and

creates a long string of XML for output. For this simple introduction, I just

wrote the XML file in a text editor and saved it as a file.

You can manipulate XML in the same way with JavaScript whether it comes

directly from a file or is passed from a PHP program.

Manipulating XML with jQuery
XML data is actually familiar because you can use the tools you used to work

with XHTML. Better, the jQuery functions normally used to extract elements

from an XHTML page work on XML data with few changes. You can use all the

standard jQuery selectors and tools to manage an XML file in the same way

you use them to manage parts of an HTML page.

The readXML.html page featured in Figure 14-5 shows a JavaScript/jQuery

program that reads the pets.xml file and does something interesting with

the data. In this case, it extracts all the pet names and puts them in an unor-

dered list. (See the following code.)

Figure 14-5:
The pet
names

came from
the XML file.

20_417997-ch14.indd 35620_417997-ch14.indd 356 10/26/09 10:04 PM10/26/09 10:04 PM

357 Chapter 14: Working with AJAX Data

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $.get(«pets.xml», processResult);
 } // end init

 function processResult(data, textStatus){
 //clear the output
 $(«#output»).html(«»);
 //find the pet nodes...
 $(data).find(«pet»).each(printPetName);
 } // end processResult

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find(«name»).text();

 //add list item elements around it
 thePet = «» + thePet + «»;

 //add item to the list
 $(«#output»).append(thePet);
 } // end printPetName
 //]]>
 </script>

 <title>readXML.html</title>
</head>
<body>
<h1>Reading XML</h1>

<ul id = «output»>
 This is the default output

</body>
</html>

20_417997-ch14.indd 35720_417997-ch14.indd 357 10/26/09 10:04 PM10/26/09 10:04 PM

358 Part III: Moving Up to AJAX

Creating the HTML
Like most jQuery programs, the readXML.html page begins with a basic

HTML framework. This one is especially simple: a heading and a list. The list

has an id attribute (so it can be recognized through jQuery easily) and a

single element (which will be replaced by data from the XML file).

Retrieving the data
The init() function sets up an AJAX request:

 $(init);

 function init(){
 $.get(“pets.xml”, processResult);
 } // end init

This function uses the get() function to request data:

 1. Use the jQuery get() mechanism to set up the request.

 Because I’m just requesting a static file (as opposed to a PHP program),

the get() function is the best AJAX tool to use for setting up the

request.

 2. Specify the file or program.

 Normally you call a PHP program to retrieve data, but for this example,

I pull data straight from the pets.xml file. The get() mechanism can

be used to retrieve plain text, HTML, or XML data. My program will be

expecting XML data, so I should call an XML file or a program that pro-

duces XML output.

 3. Set up a callback function.

 When the AJAX is complete, specify a function to call. My example calls

the processResult function after the AJAX transmission is complete.

Processing the results
The processResult() function accepts two parameters: data and

textStatus.

20_417997-ch14.indd 35820_417997-ch14.indd 358 10/26/09 10:04 PM10/26/09 10:04 PM

359 Chapter 14: Working with AJAX Data

 function processResult(data, textStatus){
 //clear the output
 $(“#output”).html(“”);
 //find the pet nodes...
 $(data).find(“pet”).each(printPetName);
 } // end processResult

The processResult() function does a few simple tasks:

 1. Clear the output ul.

 The output element is an unordered list (ul). Use its html() method

to clear the default list item.

 2. Make a jQuery node from the data.

 The data (passed as a parameter) can be turned into a jQuery node. Use

$(data) for this process.

 3. Find each pet node.

 Use the find() method to identify the pet nodes within the data.

 4. Specify a command to operate on each element.

 Use the each() method to specify you want to apply a function sepa-

rately to each of the pet elements. Essentially, this creates a loop that

calls the function once per element. The each mechanism is an example

of a concept called functional programming. (Drop that little gem at your

next computer science function.)

 5. Run the printPetName function once for each element.

 The printPetName is a callback function.

Printing out the pet name
The printPetName function will be called once for each pet element in the

XML data. Within the function, the $(this) element refers to the current ele-

ment as a jQuery node.

 function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find(“name”).text();

 //add list item elements around it
 thePet = “” + thePet + “”;

 //add item to the list
 $(“#output”).append(thePet);
 } // end printPetName

20_417997-ch14.indd 35920_417997-ch14.indd 359 10/26/09 10:04 PM10/26/09 10:04 PM

360 Part III: Moving Up to AJAX

 1. Retrieve the pet’s name.

 Use the find() method to find the name element of the current pet

node.

 2. Pull the text from the node.

 The name is still a jQuery object. To find the actual text, use the text()

method.

 3. Turn the text into a list item.

 I just used string concatenation to convert the plain text of the pet name

into a list item.

 4. Append the pet name list item to the list.

 The append() method is perfect for this task.

Of course, you can do more complex things with the data, but it’s just a

matter of using jQuery to extract the data you want and then turning it into

HTML output.

Working with JSON Data
A new data format called JSON is becoming increasingly important. In fact,

some are suggesting that JSON will replace XML as the standard data trans-

mission format for AJAX.

XML has been considered the standard way of working with data in AJAX (in

fact, the X in AJAX stands for XML.) Although XML is easy for humans (and

computer programs) to read, it’s a little verbose. All those ending tags can

get a bit tedious and can add unnecessarily to the file size of the data block.

Although XML isn’t difficult to work with on the client, it does take some get-

ting used to.

Understanding JSON
AJAX programmers are beginning to turn to JSON (JavaScript Object

Notation) as a data transfer mechanism. JSON is nothing more than the

JavaScript object notation described in Chapter 5 and used throughout this

book. JSON has a number of very interesting advantages:

 ✓ Data is sent in plain text. Like XML, JSON data can be sent in a plain text

format that’s easy to transmit, read and interpret.

 ✓ The data is already usable. Client programs are usually written in

JavaScript. Because the data is already in a JavaScript format, it’s ready

to use immediately, without the manipulation required by XML.

20_417997-ch14.indd 36020_417997-ch14.indd 360 10/26/09 10:04 PM10/26/09 10:04 PM

361 Chapter 14: Working with AJAX Data

 ✓ The data is a bit more compact than XML. JavaScript notation doesn’t

have ending tags, so it’s a bit smaller. It can also be written to save even

more space (at the cost of some readability) if needed.

 ✓ Lots of languages can use it. Any language can send JSON data as a long

string of text. You can then apply the JavaScript eval() function on the

JSON data to turn it into a variable.

 ✓ PHP now has native support for JSON. PHP version 5.2 and later sup-

ports the json_encode() function, which automatically converts a

PHP array (even a very complex one) into a JSON object.

 ✓ jQuery has a getJSON() method. This method works like the get() or

post() methods, but it’s optimized to receive a JSON value.

 If a program uses the eval() function to turn a result string to a JSON

object, there’s a potential security hazard: Any code in the string is treated

as JavaScript code, so bad guys could sneak some ugly code in there. Be sure

you trust whoever is providing you the JSON data.

The pet data described in pets.xml looks like this when it’s organized as a

JSON variable:

{
 “Lucy”: { “animal”: “Cat”,
 “breed”: “American Shorthair”,
 “note”: “She raised me”},
 “Homer”: { “animal”: “Cat”,
 “breed”: “unknown”,
 “note”: “Named after a world-famous

bassoonist”},
 “Muchacha”: { “animal”: “Dog”,
 “breed”: “mutt”,
 “note”: “One of the ugliest dogs I’ve ever

met”}
}

Note that the data is a bit more compact in JSON format than it is in XML.

Also, note that there’s no need for an overarching variable type (like pets

in the XML data) because the entire entity is one variable (most likely called

pets). JSON takes advantages of JavaScript’s flexibility when it comes to

objects:

 1. An object is encased in braces ({}).

 The main object is denoted by a pair of braces.

 2. The object consists of key/value pairs.

 In my data, I used the animal name as the node key. Note that the key is

a string value.

20_417997-ch14.indd 36120_417997-ch14.indd 361 10/26/09 10:04 PM10/26/09 10:04 PM

362 Part III: Moving Up to AJAX

 3. The contents of a node can be another node.

 Each animal contains another JSON object, which holds the data about

that animal. You can nest JSON nodes (like XML nodes), so they have

the potential for complex data structures.

 4. The entire element is one big variable.

 JavaScript will see the entire element as one big JavaScript object that

can be stored in a single variable. This makes it quite easy to work with

JSON objects on the client.

Reading JSON data with jQuery
As you might expect, jQuery has some features for simplifying the (already

easy) process of managing JSON data.

Figure 14-6 shows readJSON.html, a program that reads JSON data and

returns the results in a nice format.

Figure 14-6:
This pro-

gram got the
data from

a JSON
request.

20_417997-ch14.indd 36220_417997-ch14.indd 362 10/26/09 10:04 PM10/26/09 10:04 PM

363 Chapter 14: Working with AJAX Data

Here’s the complete code of readJSON.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/

xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml;

charset=utf-8» />
 <style type = «text/css»>
 dt {
 font-weight: bold;
 float: left;
 width: 5em;
 margin-left: 1em;
 clear: left;
 }
 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>

 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $.getJSON(«pets.json», processResult);
 } // end init

 function processResult(data){
 $(«#output»).text(«»);
 for(petName in data){
 var pet = data[petName];
 $(«#output»).append(«<h2>» + petName + «<h2>»);
 $(«#output»).append(«<dl>»);
 for (detail in pet){
 $(«#output»).append(« <dt>» + detail +

«</dt>»);
 $(«#output»).append(« <dd>» + pet[detail] +

«</dd>»);
 } // end for
 $(«#output»).append(«</dl>»);

 } // end for
 } // end processResults

 //]]>
 </script>

 <title>readJSON.html</title>
</head>

20_417997-ch14.indd 36320_417997-ch14.indd 363 10/26/09 10:04 PM10/26/09 10:04 PM

364 Part III: Moving Up to AJAX

<body>
<h1>Reading JSON</h1>

<div id = «output»>
 This is the default output
</div>

</body>
</html>

Managing the framework
The foundation of this program is the standard XTML and CSS. Here are the

details:

 1. Build a basic XHTML page.

 Much of the work happens in JavaScript, so an h1 and an output div

are all you really need.

 2. Put default text in the output div.

 Put some kind of text in the output div. If the AJAX doesn’t work, you

see this text. If the AJAX does work, the contents of the output div are

replaced by a definition list.

 3. Add CSS for a definition list.

 I will print out each pet’s information as a definition list, but I don’t like the

default formatting for <dl>. I add my own CSS to tighten up the appearance

of the definitions. (I like the <dt> and <dd> on the same line of output.)

Retrieving the JSON data
The jQuery library has a special AJAX function for retrieving JSON data. The

getJSON() function makes an AJAX call and expects JSON data in return.

 $(init);

 function init(){
 $.getJSON(“pets.json”, processResult);
 } // end init

It isn’t difficult to get JSON data with jQuery:

 1. Set up the standard init() function.

 In this example, I’m pulling the JSON data in as soon as the page has

finished loading.

20_417997-ch14.indd 36420_417997-ch14.indd 364 10/26/09 10:04 PM10/26/09 10:04 PM

365 Chapter 14: Working with AJAX Data

 2. Use the getJSON() function.

 This tool gets JSON data from the server.

 3. Pull data from pets.json.

 Normally you make a request to a PHP program, which does some kind

of database request and returns the results as a JSON object. For this

simple example, I’m just grabbing data from a JSON file I wrote with a

text editor.

 4. Specify a callback function.

 Like most AJAX methods, getJSON() allows you to specify a callback

function that is triggered when the data has finished transferring to the

client.

Processing the results
The data returned by a JSON request is already in a valid JavaScript format,

so all you need is some for loops to extract the data. Here’s the process:

 function processResult(data){
 $(“#output”).text(“”);
 for(petName in data){
 var pet = data[petName];
 $(“#output”).append(“<h2>” + petName + “<h2>”);
 $(“#output”).append(“<dl>”);
 for (detail in pet){
 $(“#output”).append(“ <dt>” + detail +

“</dt>”);
 $(“#output”).append(“ <dd>” + pet[detail] +

“</dd>”);
 } // end for
 $(“#output”).append(“</dl>”);

 } // end for
 } // end processResults

 1. Create the callback function.

 This function expects a data parameter (like most AJAX requests). In

this case, the data object will contain a complete JSON object encapsu-

lating all the data from the request.

 2. Clear the output.

 I will replace the output with a series of definition lists.

$(“#output”).text(“”);

20_417997-ch14.indd 36520_417997-ch14.indd 365 10/26/09 10:04 PM10/26/09 10:04 PM

366 Part III: Moving Up to AJAX

 3. Step through each petName in the list.

 This special form of for loop finds each element in a list. In this case, it

gets each pet name found in the data element.

for(petName in data){

 4. Extract the pet as a variable.

 The special form of for loop doesn’t actually retrieve the pets, but the

key associated with each pet. Use that pet name to find a pet and make

it into a variable using an array lookup.

var pet = data[petName];

 5. Build a heading with the pet’s name.

 Surround the pet name with <h2> tags to make a heading and append

this to the output.

$(“#output”).append(“<h2>” + petName + “<h2>”);

 6. Create a definition list for each pet.

 Begin the list with a <dl> tag. Of course, you can use whichever format-

ting you prefer, but I like the definition list for this kind of name/value

data.

$(“#output”).append(“<dl>”);

 7. Get the detail names from the pet.

 The pet is itself a JSON object, so use another for loop to extract each

of its detail names (animal, breed, and note).

for (detail in pet){

 8. Set the detail name as the definition term.

 Surround each detail name with a <dt></dt> pair.

$(“#output”).append(“ <dt>” + detail + “</dt>”);

 9. Surround the definition value with <dd><dd>.

 This step provides appropriate formatting to the definition value.

$(“#output”).append(“ <dd>” + pet[detail] + “</dd>”);

 10. Close up the definition list.

 After the inner for loop is complete, you’re done describing one pet, so

close up the definition list.

$(“#output”).append(“ <dd>” + pet[detail] + “</dd>”);

As you can see, JSON is pretty easy to work with, so it’s becoming much

more common as a data transfer mechanism.

20_417997-ch14.indd 36620_417997-ch14.indd 366 10/26/09 10:04 PM10/26/09 10:04 PM

Part IV
The Part of Tens

21_417997-pp04.indd 36721_417997-pp04.indd 367 10/26/09 10:05 PM10/26/09 10:05 PM

In this part . . .

The Part of Tens feature is a staple of For Dummies

books, but I’ve saved some of the best treats for

the end.

Chapter 15 highlights a number of jQuery plugins. These

tools add incredible features to JavaScript, like the ability

to automatically translate your page to a foreign language,

image galleries, graphing plugins, and much more.

Chapter 16 lists a number of other great places to get fur-

ther information. Learn about other libraries, online com-

munities, and great reference sites.

21_417997-pp04.indd 36821_417997-pp04.indd 368 10/26/09 10:05 PM10/26/09 10:05 PM

Chapter 15

Ten Amazing jQuery Plugins

The jQuery library is amazing enough on its own, but it has yet another

wonderful surprise up its sleeve: a marvelous plugin interface that makes

new plugins or extensions to the library easy to add.

The plugins do many things, from changing the way your page looks to

including audio and simplifying certain AJAX calls. This chapter contains a

sampling of jQuery plugins I’ve found useful, but there are many more avail-

able at the jQuery main site (http://plugins.jquery.com/).

Using the Plugins
Each plugin is different, but the general approach to using them is the same:

 1. Visit the appropriate Web page.

 Check the jQuery main site for a list of jQuery plugins (http://
plugins.jquery.com). You can download each plugin from the

jQuery site or get a link to the plugin’s home page, where you’ll gener-

ally find more complete help information.

 2. Download the plugin.

 Most plugins are simply JavaScript files. Often other support material is

available as well, including documentation, CSS files, and examples. Be

sure to install the files you need in the working directory.

 3. Create a basic XHTML page.

 Check the documentation to see what elements you need. Most jQuery

plugins modify or replace some existing element in the Web page.

 4. Add an init() function.

 Most jQuery functions (including plugins) require some sort of initializa-

tion function.

22_417997-ch15.indd 36922_417997-ch15.indd 369 10/26/09 10:05 PM10/26/09 10:05 PM

370 Part IV: The Part of Tens

 5. Call the appropriate jQuery function.

 Most plugins just add new functions to jQuery. For the most part, you’ll

apply these functions to jQuery nodes just as you would for a normal

use of jQuery.

 6. Customize.

 In this introduction, I tend to show the most basic form of each plugin

for simplicity’s sake. Be sure to check the documentation for each plugin

to see how you can customize it; many plugins do far more than I have

the space to show you in this chapter.

 I’ve tended to include the simpler and more representative plugins in this

chapter. I’ve omitted a number of especially useful plugins because they either

require a special license (as the Google Maps plugin does) or require support

for a database or PHP (as many of the cooler AJAX plugins do). Spend some

time at http://plugins.jquery.com/ to see the astonishing variety of

plugins available.

ipwEditor
One very popular AJAX technique is to make a portion of the Web page edit-

able. The ipwEditor plugin (www.spacebug.com/IPWEditor_In-Place_
WYSIWYG_Editor) combines two different approaches to this issue, making

it easy to turn ordinary pages into a simple content management system.

First, take a look at the editable plugin (included with ipwedit or avail-

able on its own).

Adding a basic editor with editable
First, take a look at a very basic editor in Figure 15-1.

When you click the paragraph, it turns into an editable text area. The user

can place her own text or HTML in the area and click the Done button to save

the text. See Figure 15-2 for the editor in action.

The changes made are not permanent, but you could easily add an AJAX

function to send the new data to a server-side script to make a permanent

change to the page.

 You obviously don’t want to allow just anybody to make page changes. You’ll

probably want to have some sort of login system to ensure that only autho-

rized people get access to the version of the page with editing enabled.

22_417997-ch15.indd 37022_417997-ch15.indd 370 10/26/09 10:05 PM10/26/09 10:05 PM

371 Chapter 15: Ten Amazing jQuery Plugins

Figure 15-1:
This page
has a hid-

den feature.

 Click here to see the hidden feature.

Figure 15-2:
The editor
automati-
cally pops

up and lets
the user

change the
page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.js»></script>
 <script type = «text/javascript»
 src = «jquery.editable.wysiwyg-1.3.3.1.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){

 //create the simple editor
 $(«#basicEdit»).editable({submit: ‘done’});
 }

22_417997-ch15.indd 37122_417997-ch15.indd 371 10/26/09 10:05 PM10/26/09 10:05 PM

372 Part IV: The Part of Tens

 //]]>
 </script>

 <title>basicEditor.html</title>
</head>
<body>
<h1>Basic Editing Demo</h1>

<h2>Basic Edit</h2>
<div id = «basicEdit»>
Click me for a basic edit
</div>

</body>
</html>

Here’s what you do to incorporate the simple editor:

 1. Include the jquery.editable or jquery.editable.wysiwyg script.

 All the functionality you need for this example is provided in the

jquery.editable plugin. However, the jquery.editable.wysiwyg

plugin includes both this script and the more elaborate wysiwyg editor

as well.

 2. Create an HTML area to edit.

 In this example, I edit a div called basicEdit. In a production example,

you might make each div or paragraph editable.

 3. Apply the editable function.

 After the editable plugin is available, you can simply apply the

editable function to all the jQuery elements you want to have editable

behavior.

 4. Specify the button text.

 The second parameter of the plugin is the text that will go on the sup-

plied button.

22_417997-ch15.indd 37222_417997-ch15.indd 372 10/26/09 10:05 PM10/26/09 10:05 PM

373 Chapter 15: Ten Amazing jQuery Plugins

 5. Save the data.

 This particular example does nothing with the changed text, so it has

limited functionality. In a production version of the program, you’ll

probably write some sort of AJAX code to package up all the new text

and send it to a server-side program for processing and saving.

Incorporating more advanced
editing with FCKedit
The ipwEditor includes the simple plugin (called the jquery editable plugin)

and a second more sophisticated plugin. This second plugin allows a much

more sophisticated editor to appear, with a word-processor-like user inter-

face. If you’ve played around with content management systems, the chances

are you’ve seen this interface, shown in Figure 15-3.

Figure 15-3:
Now the

page has
two editable

areas.

This example keeps the basic editor, but if you click the second paragraph, a

much more elaborate editor appears, shown in Figure 15-4.

22_417997-ch15.indd 37322_417997-ch15.indd 373 10/26/09 10:05 PM10/26/09 10:05 PM

374 Part IV: The Part of Tens

Figure 15-4:
This editor
looks a lot

like a word
processor.

The wysiwyg plugin adds the functionality of another very popular library

called FCKedit (www.fckeditor.net/). This popular editor is used in many

content management systems, and it’s quite powerful and easy to modify.

The FCKedit library is included with the ipwEditor plugin. The editable.

wysiwyg plugin makes it easy to add FCKedit to your pages. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.js»></script>
 <script type = «text/javascript»
 src = «jquery.editable.wysiwyg-1.3.3.1.js»></script>
 <script type=»text/javascript»
 src=»fckeditor/fckeditor.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){

22_417997-ch15.indd 37422_417997-ch15.indd 374 10/26/09 10:05 PM10/26/09 10:05 PM

375 Chapter 15: Ten Amazing jQuery Plugins

 //create an instance of fckeditor (only needed for wysiwyg version)

 var myFCKeditor = new FCKeditor(‘editor’);
 myFCKeditor.BasePath = «./fckeditor/»;

 //create the simple editor
 $(«#basicEdit»).editable({submit: ‘done’});

 //set up the wysiwyg version
 $(«#wysiwygEdit»).editable(
 {type: «wysiwyg»,
 editor: myFCKeditor,
 onSubmit: finished,
 submit: «done»
 });

 } // end init

 function finished(content){
 alert(content.current);
 } // end finished

 //]]>
 </script>

 <title>editor.html</title>
</head>
<body>
<h1>In-Place Editing Demo</h1>

<h2>Basic Edit</h2>
<div id = «basicEdit»>
Click me for a basic edit
</div>

<h2>WYSIWYG Edit</h2>
<div id = «wysiwygEdit»>
Click me to edit with a complete editor
</div>

</body>
</html>

This code is a bit more elaborate than the standard editable plugin,

because it requires initialization of the (included) fckEdit library. Here’s how

it works:

 1. Be sure to have the fckeditor folder in your working directory.

 This library is included with the jquery.editable.wysiwyg

download.

22_417997-ch15.indd 37522_417997-ch15.indd 375 10/26/09 10:05 PM10/26/09 10:05 PM

376 Part IV: The Part of Tens

 2. Build a Web page with editable areas.

 Build your XHTML page as normal, considering which segments you

want editable.

 3. Include the fckeditor script.

 The fckeditor script is a js file available in the fckeditor folder.

Include this script so your page will have access to the editor.

 4. Create an instance of the fckeditor class.

 In your initialization function, create a single fckeditor variable. This

will initialize fckeditor.

 5. Indicate the fckeditor base path.

 This helps fckeditor find all its helper files in the subdirectory.

 6. Apply the editable function to any elements you want to make

editable.

 This process works exactly the same as the basic editable plugin.

 7. Set the type to wysiwyg.

 The wysiwyg version of the editable plugin adds the capability to

change your editor type.

 8. Apply the editor.

 Set the editor parameter to the fckeditor variable you created in

Step 4.

 9. Set the text of the Submit button.

 As in the simpler editable area, a Submit button appears automati-

cally. Set the text of this button with this parameter.

 10. Set a callback function if you want.

 You can apply a callback function to editable objects; it indicates a func-

tion to send after submission is complete. Usually this function does

some error-checking and then sends the new contents to a server-side

script via AJAX. My version just displays the new contents.

The results of any edit are still HTML, which is ultimately plain text. You

should be cautious with any changes you allow the user to make, because

malicious users can cause you some major headaches.

jQuery Cookies
Cookies are a useful Web tool, even if they are somewhat misunderstood. A

cookie is a simple text message that can be stored and received on the client

22_417997-ch15.indd 37622_417997-ch15.indd 376 10/26/09 10:05 PM10/26/09 10:05 PM

377 Chapter 15: Ten Amazing jQuery Plugins

by either the client or server programs. The type of data is severely limited,

but this can still be a very useful tool:

 ✓ Each cookie is a name / value pair: You can think of a cookie as a vari-

able you can save on the client.

 ✓ Cookies are simply text data: If you want another kind of data, convert

it to text for storage.

 ✓ Cookies are saved in a large text file: Different browsers have different

mechanisms, but in essence all the cookies saved by a particular user on

a particular browser are saved in one text file.

 ✓ Cookies have size limits: It’s not appropriate to store (for example) an

entire database in a cookie. It’s more common to keep login status so

the system can make a request to a server-side database.

 ✓ Cookies are mainly used to store state data: The most common use of

cookies is to keep track of a user’s status with the application. Usually

the server does all the heavy lifting.

Managing cookies is not difficult, but it’s made even easier by a couple of

tools. There’s an amazing plugin called jquery.cookies (http://code.
google.com/p/cookies/), which makes this job extremely painless.

Take a look at the code for cookies.html, which uses this plugin:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.cookies.2.1.0.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $.cookies.set(«myCookie», «Hi there!»);
 $(«#output»).html($.cookies.get(«myCookie»));
 }
 //]]>
 </script>

 <title>cookies.html</title>
</head>
<body>

22_417997-ch15.indd 37722_417997-ch15.indd 377 10/26/09 10:05 PM10/26/09 10:05 PM

378 Part IV: The Part of Tens

<h1>jQuery cookies Demo</h1>

<div id = «output»>
default content
</div>

</body>
</html>

The process is painless:

 1. Include the jquery.cookies script.

 As always, include jQuery and the script for this plugin.

 2. Use the $.cookies function to manage cookies.

 This function encapsulates the content of the cookies library.

 3. Use $.cookies.set() to create a cookie and set its value.

 If the cookie does not exist, it is created, and the specified value is

added to the cookie.

 4. Use $.cookies.get() to retrieve the value of the cookie.

 The get() function is an easy way to retrieve data from a cookie.

 5. Look over the documentation for more options.

 The cookies library has more features — including the capability to

check whether the browser is accepting cookies, to determine whether a

cookie exists, to delete cookies, and more.

 I didn’t provide a screen shot for this program, because all the interesting

stuff happens under the hood. Take a look at cookies.html on the Web page

for the book to see it in action.

flot
Sometimes your Web pages need to display some kind of data. You can use

any of various powerful graphing plugins for that purpose. One easy and

powerful option is called flot, available at http://code.google.com/p/
flot/. Figure 15-5 shows this tool in action.

To build a graph with flot, you’ll need to have a data set available. I just

made up a data set in this simple example, but often you’ll pull data from a

database or other application. Look over the code first:

22_417997-ch15.indd 37822_417997-ch15.indd 378 10/26/09 10:05 PM10/26/09 10:05 PM

379 Chapter 15: Ten Amazing jQuery Plugins

Figure 15-5:
This chart

was created
automati-
cally with

a jQuery
plugin.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />
 <style type = «text/css»>
 #simpleChart{
 height: 300px;
 width: 600px;
 }
 </style>
 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = “jquery.flot.js”></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 var myData = {
 data: [[1,10], [2,12], [3,9], [4, 14], [5, 13]],
 color: «red»
 };
 $.plot($(«#simpleChart»), [myData]);
 }
 //]]>
 </script>

 <title>flot.html</title>
</head>

22_417997-ch15.indd 37922_417997-ch15.indd 379 10/26/09 10:05 PM10/26/09 10:05 PM

380 Part IV: The Part of Tens

<body>
<h1>flot charting demo</h1>

<div id = «simpleChart»></div>
</body>
</html>

Here’s the general process:

 1. Import the libraries.

 It won’t surprise you that you need jQuery. You’ll also need to bring

in the jquery.flot script. Note that flot also includes some other

scripts, which you’ll need to make available (notably excanvas, which

simulates the <canvas> tag on IE browsers).

 2. Build your page.

 As usual, the page doesn’t require a lot. Just add an empty div that will

become your chart.

 3. Generate the data.

 The data sets in flot are jQuery objects. Each object must have some

data, but it can also have other attributes.

 4. Note that the data itself is a 2D array.

 Each data point is an array of two integers, and the data set is an array

of these objects.

 5. You can also specify the color and other attributes for the data.

 See the flot documentation for many more attributes you can modify.

 6. Use the $.plot() function to draw the graph.

 Note that the syntax is not exactly what you’ve used before. Use the

jQuery $.plot() function to draw a plot on a particular jQuery node.

 7. Add as many data sets as you want.

 My example has only one data set, but the plot() function expects an

array of data ranges, so you can add more if you wish.

As you might guess, the flot plugin features many more incredible effects.

Tag Cloud
In recent years it has become popular to offer data visualizations, or ways

to illustrate data. One such mechanism is the tag cloud. Essentially this tool

places a number of words in semi-random positions. In a typical tag cloud,

the position, size, and color of the words are used to represent the relative

22_417997-ch15.indd 38022_417997-ch15.indd 380 10/26/09 10:05 PM10/26/09 10:05 PM

381 Chapter 15: Ten Amazing jQuery Plugins

strength and relationship of the terms. See Figure 15-6 for a simple example

of a tag cloud. Here the text was originally in an unordered list. The tag cloud

changes the size and darkness of each element based on a ranking value.

Figure 15-6:
This tag

cloud fea-
tures the

main topics
of this book.

The jquery tagcloud plugin (http://code.google.com/p/jquery-
tagcloud/) makes it quite easy to build your own basic tag clouds. Here’s

the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=»EN» dir=»ltr» xmlns=»http://www.w3.org/1999/xhtml»>
<head>
 <meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
 <link rel = “stylesheet”
 type = “text/css”
 href = “jquery-ui-1.7.2.custom.css” />

 <script type = “text/javascript”
 src = “jquery-1.3.2.min.js”></script>
 <script type = “text/javascript”
 src = “jquery.tagcloud.min.js”></script>
 <script type = “text/javascript”
 src = “jquery.tinysort.min.js”></script>
 <script type = “text/javascript”>
 //<![CDATA[

 $(init);

 function init(){
 $(“#techList”).tagcloud({height: 100,
 width: 100})
 .css(“width”, “200px”);
 }
 //]]>
 </script>

 <title>tagCloud.html</title>

22_417997-ch15.indd 38122_417997-ch15.indd 381 10/26/09 10:05 PM10/26/09 10:05 PM

382 Part IV: The Part of Tens

head>
<body>
<h1>Tag Cloud Demo</h1>

<ul id = “techList”>
 <li value = “4”>HTML
 <li value = “9”>XHTML
 <li value = “6”>CSS
 <li value = «10»>JavaScript
 <li value = «7»>DOM
 <li value = «9»>AJAX
 <li value = «4»>PHP
 <li value = «3»>MySQL

</body>
</html>

A tag cloud is a pretty fun element to build:

 1. Import the libraries.

 You’ll need the jquery and jquery.tagcloud scripts.

 2. Build a list.

 The tagcloud library works on ordered lists and unordered lists.

 3. Add numeric values to list items if you wish.

 If you want the elements to have different weights, add a value attri-

bute to each. Those with small values will be very lightly colored and

show up in a very small font size. Larger values will be darker colors and

have larger fonts.

 4. Add the tagcloud() function to the ul with jQuery.

 Use the standard mechanism to transform the jQuery node based on the

ul into a tag cloud.

Note that the value attribute is not standard XHTML, so your page will no

longer validate as strict XHTML. Most of the time, the value will be assigned

through JavaScript code. (For example, count the number of times a word

appears in a document and use that as the term’s value.) Because primary

validation happens before the code executes, you won’t see any validation

problems.

22_417997-ch15.indd 38222_417997-ch15.indd 382 10/26/09 10:05 PM10/26/09 10:05 PM

383 Chapter 15: Ten Amazing jQuery Plugins

Tablesorter
AJAX programs often involve retrieving data, which is frequently displayed

in an HTML table. The tablesorter plugin (http://tablesorter.com/
docs/) allows the user to sort a table easily by clicking a heading. The top

part of Figure 15-7 shows a standard HTML table. When the user clicks the

“first name” header, the table is sorted by first names alphabetically, as

shown in the bottom part of Figure 15-7.

Figure 15-7:
Here is a

basic table.

Click the “first name” header again to sort by first name in inverse order.

The default behavior of the tablesorter plugin allows you to sort by any

header field. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»

22_417997-ch15.indd 38322_417997-ch15.indd 383 10/26/09 10:05 PM10/26/09 10:05 PM

384 Part IV: The Part of Tens

 href = «jquery-ui-1.7.2.custom.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.tablesorter.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#myTable»).tablesorter();
 }
 //]]>
 </script>

 <title>tablesorter.html</title>
</head>
<body>
<h1>Table Sorter Demo</h1>

<table id = “myTable”
 border = “1”>
 <thead>
 <tr>
 <th>last name</th>
 <th>first name</th>
 </tr>
 </thead>

 <tbody>
 <tr>
 <td>Fred</td>
 <td>Flintstone</td>
 </tr>

 <tr>
 <td>Barney</td>
 <td>Rubble</td>
 </tr>

 <tr>
 <td>Scooby</td>
 <td>Doo</td>
 </tr>

 <tr>
 <td>George</td>
 <td>Jetson</td>

22_417997-ch15.indd 38422_417997-ch15.indd 384 10/26/09 10:05 PM10/26/09 10:05 PM

385 Chapter 15: Ten Amazing jQuery Plugins

 </tr>

 </tbody>
</table>

</body>
</html>

The process is standard jQuery magic:

 1. Import jquery and the jquery.tablesorter scripts.

 The tablesorter plugin can also work with the jQuery UI for better-

looking tables.

 2. Build a table.

 The plugin requires that your table headings be surrounded by a

<thead></thead> pair and the body be surrounded by <tbody>
</tbody>. Otherwise you can build your table however you like.

 3. Add tablesorter() to the table’s jQuery node.

 In the init() function, just specify the table as a tablesorter node,

and you’re ready to go.

The tablesorter plugin has dozens of options that make it a real power-

house. Check the official documentation at http://tablesorter.com/
docs/.

Note that a form of tablesorter was previously included in the jQuery UI,

but now it’s a separate plugin.

Jquery-translate
The jQuery translate plugin (http://code.google.com/p/jquery-
translate/) is an incredibly useful tool for language translation. Take a

look at the basic page shown in the top half of Figure 15-8. When the user

clicks the paragraph, watch what happens (see the bottom half of Figure 15-8).

22_417997-ch15.indd 38522_417997-ch15.indd 385 10/26/09 10:05 PM10/26/09 10:05 PM

386 Part IV: The Part of Tens

Figure 15-8:
The user

can change
this para-

graph from
English to
Spanish!

The translate plugin connects to the Google language API and automati-

cally translates the text of its node to one of several languages. The code that

does the trick looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.translate-1.3.9.min.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#contents»).bind(«click», translate);
 } // end init

 function translate(){
 $(«#contents»).translate(«Spanish»);

22_417997-ch15.indd 38622_417997-ch15.indd 386 10/26/09 10:05 PM10/26/09 10:05 PM

387 Chapter 15: Ten Amazing jQuery Plugins

 } // end translate

 //]]>
 </script>

 <title>translate.html</title>
</head>
<body>
<h1>Translate Demo</h1>

<div id = «contents»>
This div contains some text in English. Click it to change it to
Spanish.
</div>

</body>
</html>

Considering how powerful this trick can be, it’s almost embarrassingly easy

to do:

 1. Include the jquery and jquery.translate scripts.

 As usual, this program uses jQuery and an additional plugin to perform

its magic.

 2. Create content to translate.

 The translate API can only handle a limited number of characters at a

time, so don’t try to translate the entire page in one pass. Instead, send

smaller chunks (such as a div or paragraph). In this example, I’m trans-

lating only one div.

 3. Bind the click event to your elements.

 In this example, I want my div to begin in English and switch to Spanish

when the user clicks it. I bind the click event to a function called

translate().

 4. The translate() function calls the language API, sending the

contents.

 You can determine the original language as well as the translated lan-

guage. Dozens of languages are available. The contents of the div are

replaced with translated text.

 Machine-generated translation only goes so far. Often the general intent of the

message will be discernable, but the translation will not be nearly as reliable

as a human translation. The API has a particularly difficult time with colloqui-

alism and technical language.

22_417997-ch15.indd 38722_417997-ch15.indd 387 10/26/09 10:05 PM10/26/09 10:05 PM

388 Part IV: The Part of Tens

This plugin has many useful parameters. Check the documentation at

http://code.google.com/p/jquery-translate/ and experiment!

Droppy
Drop-down menus have become an important usability tool in Web sites.

There are hundreds of jQuery plugins to handle this feature. I like droppy

(http://onehackoranother.com/projects/jquery/droppy/) because

it’s very easy to use.

Figure 15-9 shows a simple version of droppy in action.

Figure 15-9:
The droppy
plugin turns
a list of links

into a nice
menu.

Most navigation systems are ultimately nested lists of links. The droppy

plugin simply takes an unordered list with a bunch of links (nested as deeply

as you want) and turns it into a nicely formatted drop-down menu. Take a

look at the code:

22_417997-ch15.indd 38822_417997-ch15.indd 388 10/26/09 10:05 PM10/26/09 10:05 PM

389 Chapter 15: Ten Amazing jQuery Plugins

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />
 <link rel = «stylesheet»
 type = «text/css»
 href = «droppy.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.droppy.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#nav»).droppy();
 }
 //]]>
 </script>

 <title>droppy.html</title>
</head>
<body>
<h1>Droppy drop-down menu demo</h1>

<ul id = «nav»>
 English

 One
 Two
 Three

 Japanese

 Ichi
 Ni
 San

<div>
 - lorem ipsum filler text deleted for space -
</div>

</body>
</html>

22_417997-ch15.indd 38922_417997-ch15.indd 389 10/26/09 10:06 PM10/26/09 10:06 PM

390 Part IV: The Part of Tens

The general process should be familiar to you by now, but here it is anyway:

 1. Include the necessary scripts.

 This plugin requires jquery.js and jquery.droppy.js. It also

requires an (included) CSS file called droppy.css.

 2. Create an unordered list for navigation.

 In your HTML code, place the unordered list where you want the menu

to be (typically this will be at the top of your page; droppy creates hori-

zontal menus.)

 3. Make each top-level element an anchor.

 The droppy plugin uses the anchor <a> tags for formatting, so

make sure the top-level elements (in my example, the language names)

are embedded in anchors. It doesn’t matter where the anchor goes, so

set the anchor to link back to the page with the # character.

 4. Make each interior element a link as well.

 Typically the interior elements will be links to other places in your

system (or external pages). In my example, I made them empty links, but

the important thing is that they contain link elements.

 5. Be sure your lists validate.

 If you’re sloppy with your nested lists, the plugin will have a hard time

figuring out what you’re trying to accomplish, and will probably fail.

 6. Build another level of menus if you like.

 You can build the navigation structure as deep as you want.

 7. Modify the CSS for customization.

 You can change the droppy.css file to make the menus fit your needs

more closely. The most common changes are colors and fonts, to fit the

overall look of the site where the menu will be installed.

galleria
Image galleries are another very popular plugin topic. There are many image

galleries available to play with. I’m demonstrating galleria (http://
devkick.com/lab/galleria/) because it’s popular, powerful, and doesn’t

require any server-side scripting. Figure 15-10 shows this beautiful tool in

action.

22_417997-ch15.indd 39022_417997-ch15.indd 390 10/26/09 10:06 PM10/26/09 10:06 PM

391 Chapter 15: Ten Amazing jQuery Plugins

Figure 15-10:
The galleria
plugin auto-

matically
turns a list
of images

into a
gallery.

The default image gallery has some great features:

 ✓ Images are pre-loaded. Each image is loaded into memory when the

page initializes, so there will be no delay when the user switches

between images.

 ✓ The galleria tool automatically creates thumbnail images. The

smaller index (thumbnail) images are automatically created and added

to the page.

 ✓ Clicking a thumbnail expands it into the viewing area. The larger view-

ing area contains a larger version of the current image.

 ✓ Click the viewing area to view the next image. The default behavior

lets you easily cycle through images with mouse clicks.

 ✓ The output is based on CSS. Use the included CSS file to manage the

display of your page, including how and where the thumbnails go, how

large the display image is, and more.

 ✓ It has many options. The galleria plugin is very customizable. It fea-

tures many advanced options. Check the documentation for more.

22_417997-ch15.indd 39122_417997-ch15.indd 391 10/26/09 10:06 PM10/26/09 10:06 PM

392 Part IV: The Part of Tens

My favorite part of the galleria plugin is how easy it is to use. Take a look

at the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />
 <style type = «text/css»>
 body {
 color: white;
 background-color: black;
 }
 </style>

 <link rel = «stylesheet»
 type = «text/css»
 href = «galleria.css» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.galleria.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«ul.gallery»).galleria();
 }
 //]]>
 </script>

 <title>galleria.html</title>
</head>
<body>
<h1>Galleria Image Viewer Demo</h1>

<ul class = «gallery»>

</body>
</html>

22_417997-ch15.indd 39222_417997-ch15.indd 392 10/26/09 10:06 PM10/26/09 10:06 PM

393 Chapter 15: Ten Amazing jQuery Plugins

Using galleria is much like any other jQuery plugin. Add the appropriate

scripts, write some basic HTML, and add a magical jQuery node:

 1. Import the scripts.

 You’ll need jquery as always, as well as jquery.galleria and the

galleria.css CSS stylesheet.

 2. Create a list of images.

 Make each list item an image.

 3. Add the galleria() node to the list.

 That’s really all you need to do!

 4. Play with the options.

 Look over the documentation for some great options, including the abil-

ity to use custom thumbnails, specify your own output container, and

run callback functions when the user selects an image or thumbnail.

Jmp3
The Web has become a phenomenal multimedia experience, but some impor-

tant tools are missing. HTML 5 promises (at long last) an audio tag that will

allow you to add audio directly to Web pages. Integrating audio (and other

multimedia elements) into Web pages has been very complex so far. Most

pages use some sort of plugin technology (such as Flash or various media

players). The jmp3 plugin (www.sean-o.com/jquery/jmp3/) is a wonder-

ful compromise. It uses a very small Flash component (pre-built — you don’t

need to know anything about Flash) to load an audio file you specify and

place that file in your page.

Figure 15-11 illustrates a page with an mp3 file embedded in it.

The mp3 files are actually played by a small Flash program, which you can

configure in a number of ways — setting the colors and width, and determin-

ing whether the player includes a Download button. Take a look at the code

to see how it works:

22_417997-ch15.indd 39322_417997-ch15.indd 393 10/26/09 10:06 PM10/26/09 10:06 PM

394 Part IV: The Part of Tens

Figure 15-11:
This page

has an
attractive
and func-

tional MP3
player.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <meta http-equiv=»content-type» content=»text/xml; charset=utf-8» />

 <script type = «text/javascript»
 src = «jquery-1.3.2.min.js»></script>
 <script type = «text/javascript»
 src = «jquery.jmp3.js»></script>
 <script type = «text/javascript»>
 //<![CDATA[

 $(init);

 function init(){
 $(«#song»).jmp3();
 $(«#external»).jmp3({
 filepath: «http://www.aharrisbooks.net/jad/»,
 backcolor: «000066»,
 forecolor: «ffffff»,
 showdownload: «true»,
 width: 300

22_417997-ch15.indd 39422_417997-ch15.indd 394 10/26/09 10:06 PM10/26/09 10:06 PM

395 Chapter 15: Ten Amazing jQuery Plugins

 });
 } // end init
 //]]>
 </script>

 <title>jmp3.html</title>
</head>
<body>
<h1>jmp3 Demo</h1>

<div>
 <h2 id = «song»>Do You Know Him.mp3</h2>
 <p>
 This song was written and performed by a friend of mine - Daniel Rassum.
 He’s earned the right to sing the blues - He sings about hard life and
 redemption. If you like this song, I encourage you to check out his
 album at www.

noisetrade.com.
 It’s a «free trade» music site where you pay what you think is fair for an

artist’s work.
 </p>
 <h2>External link version</h2>
 <p id = «external»>Do You Know Him.mp3</hp>

</div>

</body>
</html>

Using jmp3 follows a familiar pattern:

 1. Include the necessary files.

 jmp3 uses jquery and jquery.jmp3. It also requires the (included)

singlemp3player.swf file be available in the working directory. It’s

easiest if the mp3 files are also in the current directory, but not

absolutely necessary.

 2. Create elements containing the file name.

 The plugin uses the text of the element to determine the song file. The

node can contain nothing except the filename of the mp3 file. Be sure to

use appropriate capitalization.

 3. Apply the jmp3() method to appropriate elements.

 Apply the jmp3() method to jquery nodes that contain the mp3 file.

(It’s perfectly feasible to apply this method to an entire class, as the

filename is determined by the contents of the element rather than a

jquery parameter.)

22_417997-ch15.indd 39522_417997-ch15.indd 395 10/26/09 10:06 PM10/26/09 10:06 PM

396 Part IV: The Part of Tens

 4. Add any parameters you prefer.

 You can add parameters by attaching a JSON object to the jmp3() call.

 5. Change colors.

 You can specify foreground and background colors (but note the non-

standard color syntax: forecolor instead of color, and no # symbol

on color numbers).

 6. Set the width.

 You can also determine the width of the Flash element. Non-default

widths will also include a small scrubber so the user can find a particu-

lar part of the song.

 7. Specify a file path.

 The filepath parameter allows you to link to a file on a remote server.

Be sure you have the permission of the file owner to do this. When the

user plays the file, the Flash player will begin a progressive download

of the file and begin playing as soon as a sufficient fraction of the file is

available.

 8. Allow downloads.

 The showdownload feature allows you to add a small widget to the

Flash player. If the user clicks this button, she is given the option to save

the mp3 file.

 As always, ensure you have the rights to distribute the file before using

this option.

22_417997-ch15.indd 39622_417997-ch15.indd 396 10/26/09 10:06 PM10/26/09 10:06 PM

Chapter 16

Ten Great Resources

JavaScript and AJAX are phenomenal tools, but one of the most interesting

(and frustrating) aspects of Web development is how fast it’s changing —

and how much there is to learn. Here’s a list of ten interesting resources for

further exploration. Some are reference sites; some are other libraries and

frameworks you may want to investigate. All are resources I think you might

enjoy.

Have fun!

jQuery PHP library
http://jquery.hohli.com/

Very frequently you’ll write AJAX code with a server-side language, often

PHP. This library adds a jquery object to PHP. You can use jQuery-style

syntax within PHP, and the library automatically writes the jQuery code and

sends it to your browser.

JSAN — JavaScript Archive Network
www.openjsan.org/index.html

This repository for JavaScript code offers a library that simplifies importing

multiple scripts. If you want to try something in JavaScript, check here to see

whether somebody’s already done it. If you come up with a clever new trick,

post it here for the community to share.

23_417997-ch16.indd 39723_417997-ch16.indd 397 10/26/09 10:06 PM10/26/09 10:06 PM

398 Part IV: The Part of Tens

W3Schools tutorials and examples
www.w3schools.com/default.asp

W3Schools has become a go-to site for tutorials. There are a lot of tutorials

about a lot of topics. The quality varies, but most are quite good. Note that

some of the tutorials are out of date. Standards have changed over the years,

and it’s hard to tell which tutorials are following standards from several

years ago, and which are using the current best practices. Still, this is a site

worth bookmarking, and if you can’t find what you’re looking for in this book,

you might find it there.

Google AJAX APIs
http://code.google.com/apis/ajax/

Google has been extremely committed to the AJAX and open-source move-

ment. The company has released a number of incredible APIs that allow

developers access to powerful Google tools. Investigate how to connect to

Google Maps, Google searching, visualization tools, and even Google Earth!

Aflax
www.aflax.org/

This really promising Flash/JavaScript project brings the functionality of

Flash into the JavaScript environment.

MochiKit
http://mochikit.com/

A complete JavaScript library heavily influenced by Python. Support for

functional programming, simplified syntax, and an interactive interpreter. If

you’re a Python programmer, you’ll love MochiKit. If not, you might still look

it over to see what the buzz is all about.

23_417997-ch16.indd 39823_417997-ch16.indd 398 10/26/09 10:06 PM10/26/09 10:06 PM

399 Chapter 16: Ten Great Resources

Dojo
www.dojotoolkit.org/

A powerful alternative to jQuery, Dojo has a very strong user interface

library. Dojo widgets (dijits) are the Dojo answer to user-interface objects.

The many very powerful dijits in Dojo include tools for date and time input,

data tables (which automatically retrieve data from an AJAX request and

then populate an HTML table), and menu systems.

Ext JS
http://extjs.com/products/extjs/

If you outgrow the capabilities of jQuery (hard to believe, but it happens),

extJS will likely serve your needs. This extremely powerful JavaScript/AJAX

toolkit is a bit more complex than jQuery, but it does just about everything.

YUI
http://developer.yahoo.com/yui/

As Yahoo has built cutting-edge AJAX applications, it has also released its

own development library for programmers. The Yahoo User Interface (YUI)

is an incredibly powerful application tool with DOM support, event manage-

ment, and a huge number of components.

DZone
www.dzone.com/links/index.html

My favorite feature of this very nice developers’ news site is its reference

cards. The site has a huge library of quick-reference cards on just about

any development topic you might consider. Each card is available as a free,

downloadable PDF. (I actually wrote the XHTML reference card.)

23_417997-ch16.indd 39923_417997-ch16.indd 399 10/26/09 10:06 PM10/26/09 10:06 PM

400 Part IV: The Part of Tens

23_417997-ch16.indd 40023_417997-ch16.indd 400 10/26/09 10:06 PM10/26/09 10:06 PM

Index
• Symbols and
Numerics •
@ (ampersand), 171

* (asterisk), 179

\ (backward slash), 148, 178

^ (beginning of string

character), 174, 176–177

: (colon), 66–67

// (comment character), 36

{ } (curly brace), 179

$ (end of string character),

174, 176–177

== (equal operator), 60–61

/ (forward slash), 148, 176

$() function, 247–249

> (greater than operator),

60

>= (greater than or equal to

operator), 60

{ (left brace), 59

< (less than operator), 60

<= (less than or equal to

operator), 60

/* */ (multi-line comment

character), 36

!= (not equal operator), 60

. (period), 174, 177

+ (plus sign), 50–51, 179

} (right brace), 59

; (semicolon), 37

[] (square bracket), 110

200 HTTP response code,

233

400 HTTP response code,

233

404 HTTP response code,

233

408 HTTP response code,

233

500 HTTP response code,

233

• A •
<a> tag, B1–12

absolute positioning,

B2–31, B2–32, B2–33,

B2–34

accordion effect, 319–321

Accordion tool, 294,

318–321

accordion.html

program, 318–320

account, PHP, 341

action attribute, 343

action button, B1–27

active state, 307

ActiveX technology, 230

addClass() method, 258

addInput program, 52

additive color, B2–13

Adobe graphics editor, 17

AJAX

about this book, 4–5

asynchronous

transaction, 225–228,

234–235

basic description of, 15

client-server

communication, 224

CMS (content

management system),

260–263

connection, 227–229

overview, 224.225

technological

advancement, 1–2

uses for, 226

what it is, 224

what it’s not, 223

ajax.html program,

258–259

AJAXtabs.html program,

325–327

alert dialog box, 37

alert() method, 36, 52, 96

Alfax Web site, 398

alignment, text, B2–19

alphabetical comparison,

60

ampersand (@), 171

Animate button, 12

animate() method,

206–207, 218, 279

:animated fi lter, 291

animation

compound image, 209–213

fading technique, 272

image-swapping, 203–209

natural-feeling, 280

positioning technique,

273–277

relative motion, 280

sliding animation

technique, 272

speed parameter, 272, 279

swing easing style, 280

time-based, 279

append() method, 287–288

Aptana editor

basic description of, 23

code completion, 32

Debug perspective, 89–93

directory structure, 245

error warning, 33, 79–80

example of, 24

help fi le, 33

integrated help option, 33

jQuery library with,

243–245

syntax highlighting, 32

Web Project Wizard, 244

archive, 397

argument, function,

103–104

Ari SpriteLib Web site, 211

24_417997-bindex.indd 40124_417997-bindex.indd 401 10/26/09 10:06 PM10/26/09 10:06 PM

402 JavaScript & AJAX For Dummies

array

accessing data in, 110

defi ned, 97, 109

length, 112

with for loop, 111–113

pre-loaded value in, 111

storing list of data in,

109–110

two-dimensional, 114–118

assignment operator, 61

asterisk (*), 179

asynch.html program,

258

Asynchronous JavaScript

And XML. See AJAX

asynchronous transaction,

225–228, 234–235

:attribute=value fi lter,

291

automatic movement,

200–202

• B •
\b (word boundary

character), 174, 178

background color, 134, 137

background image, B2–21,

B2–22, B2–23

backgroundColor

variable, 134

background-image

property, 211–212

backgroundPosition

attribute, 214

backward for loop, 73–74

backward slash (\), 148,

178

bad request HTTP response

code, 233

basicAjax.html

program, 227–229

beginning of string

character (^), 174,

176–177

big() method, 44

binary format, 49–50

binary notation, 63

bind call, 313, 332

block element, B2–27

Bluefi sh editor, 20

body onload value, 248

<body> tag, 184, 249, B1–6

bold font, B2–18

bookmarklet, 84

border, B2–20

border() function, 255

bounce movement, 190

break statement, 66–67

breakpoint, 87–88

browser

Chrome, 26

cross-browser

compatibility, 228

Firefox, 25–29, 33, 82

Internet Explorer 6, 25

Internet Explorer 7 and

8, 26

Legacy, 25

Opera, 26

Safari, 26

selection consideration,

33

specialty, 26

standardization, 24–25

browser war, 25

button

JavaScript and, 10

radio, 167–168, 170

button event, 137–139

:button fi lter, 291

button tag, 270

• C •
cache, 243

callback function, 127, 250,

266, 271

carriage return, 112

Cascading Style Sheet. See
CSS

case-sensitivity

tag, 355

XHTML, B1–3

CDATA marker, 36

chaining

node, 277–278

object, 274, 278

Change Alternate

Paragraphs button, 282

change event, 256

changeColor() function,

140–141, 159

changeContent.html

program, 284–286

changeTarget() function,

313

character

punctuation, 178

in regular expression, 176

special, 177–178

character class, 177

character data, 36

character set, B1–8

Cheat Sheet, 6

check box

basic description of, 164

building page for, 165–166

how to build, B1–25

responding to, 166–167

checkBounds() function,

188–189

checkData() function, 236

checked property, 166

Chrome browser, 26

class

defi ned, 122

jQuery UI supported, 307

methods, 258

name, 122

as new data type, 123

paragraph in, B2–9

class attribute, B2–10

class.html program,

256–257

clean code, B1–1

click event, 256

24_417997-bindex.indd 40224_417997-bindex.indd 402 10/26/09 10:06 PM10/26/09 10:06 PM

403403 Index

client-server

communication, 224,

234, 237–238

client-side program,

339–340

Clone button, 282

clone() function, 288–289,

315–316

cloud, 244

CMS (content management

system), 260–263

code

accordion effect, 319–320

accordion.html

program, 319–320

addInput program, 52

ajax.html program, 259

AJAXtabs.html

program, 325–327

array, 109–110

asynchronous

transaction, 235–236

automatic movement,

200–201

backward for loop, 73

basicAjax.html

program, 228

beginning block of, 59

changeContent.html

program, 284–286

check box, 165–166

class.html program,

257

clean, B1–1

compound image, 211–214

content management

system, 261

cookies.html program,

377–378

DOM, 139–140

drag and drop, 298–299

dragDrop.html

program, 310–312

drop-down list, 158–159

droppy plugin, 389

embedding, 35–36

endless loop, 78

followMouse.html

program, 197–198

form, B1–18, B1–19

function, 99, 101–103

galleria plugin, 392

getAJAX() function,

236–237

Hello, World! program, 34

hideShow program,

267–269

hover.html program,

254–255

if else statement, 63

images, adding, B1–9

image-swapping

animation, 204–208

interactiveForm.html

program, 350–351

ipwEditor plugin, 371–372

jmp3 plugin, 394–395

JSON format, 124

keyboard page, 192

length property, 44

method example, 45

move() function, 278

move.html program, 183

multi-selection list box,

161

nested if statement, 68

number, adding together,

48

object, 118–119

“one expression with lots

of values” situation,

64–65

order() function,

166–167

radio button, 168–170

random number

generation, 56–57

readXML.html program,

356–357

request.readyState

property, 238

reset() method, 290

resizing element, 302–304

run.js program, 216–217

setInterval() function,

204–205

sprite movement, 187

styleElement.html

program, 251–252

tabbed interface, 323–324

table structure, B1–16

tablesorter plugin,

383–385

tag cloud plugin, 381–382

translate plugin, 386–387

valid, B1–2

while loop, 75–76

XHTML framework,

143–144

code completion, 23, 32

codetch editor, 21–22

collapsible content,

319–321

colon (:), 66–67

color

additive, B2–13

background, 134, 137

border, B2–20

changeColor() function,

140–141, 159

document, 134, 136

font, 44

foreground, 137

hex, B2–13, B2–14, B2–15

named, B2–4

setColor() function, 139

subtractive, B2–13

variable, 41

combination movement,

190

comment

HTML, B1–6

multi-line, 36

nested if statement

and, 70

comment character (//), 36

comparison operator,

60–61

completed value, 238

complex relationship, JSON

format, 127

24_417997-bindex.indd 40324_417997-bindex.indd 403 10/26/09 10:06 PM10/26/09 10:06 PM

404 JavaScript & AJAX For Dummies

compound image

basic description of,

209–210

demo, 210

global variable, 212–213

HTML and CSS setup,

211–212

image preparation, 211

initialization, 213

rows and columns, 211

size, 211

sprite animation, 213–214

computer

selection consideration,

15–16

what you need, 2

concatenation, 40–42

condition

Boolean function, 60

Boolean variable, 60

break statement, 66–67

comparison operator,

60–61

fl ow control, 58–61

for loop, 72

if else statement, 61–64

multiple, 64

“one expression with lots

of values” situation,

64–65

random number

generation, 55–57

switch statement, 65–67

constant, 186

constructor, 121

constructor property, 44

container tag, 355

:contains fi lter, 291

content management

system (CMS), 260–263

continue movement, 190

conversion function, 51–52

cookie

cookies.html program,

377–378

defi ned, 376

name/value pair, 377

size, 377

corner, rounded, 306

Count button, 11

critical path, 202

cross-browser

compatibility, 228

CSS (Cascading Style Sheet)

basic description of, 15

clean code, B2–3

introduction to, B2–1

level, B2–10

overview, B2–2

refresher on, 12

css() method, 277–278

CSS theme, 305

CSS View and Edit option

(Firebug), 28

curly brace ({ }), 179

customized dialog box,

336–338

• D •
\d (single numerical digit

character), 174, 178

data model, jQuery library,

247

data parameter, 358, 365

data type

array and object, 50

basic description of, 38

Boolean, 50

fl oating-point number, 50

integer, 50

new class as, 123

string, 50

data visualization, 380–381

database

MySQL, 341

relational, 354

date format, 329–330

Date Picker tool, 294,

329–331

datepicker() function,

329, 331

dblClick event, 256

debugger

alert() method, 96

Aptana Debug

perspective, 89–93

basic description of, 86

breakpoint, 87–88

features, 87

Firebug, 94–96

pause mode, 87

running the, 88

support, 18

testing, 87

defi nition list, 364

delta-x parameter, 187

delta-y parameter, 187

design, multi-element,

317–318

dialog box

alert, 37

customized, 336–338

modal, 36

prompt statement, 39

dialog() method, 337

dijit (Dojo widget), 399

disabled widget, 307

Div button, 282

div element, 147

divOutput variable, 148

doctype, 355, B1–3

document

color, 134, 136

multiple document

support, 18

writing to the, 146–148

document object, 132

Document Object Model.

See DOM

document.ready

parameter, 250

DOJO library, 240

Dojo widget (dijit), 399

DOM (Document Object

Model)

basic description of, 131

code, 139–140

24_417997-bindex.indd 40424_417997-bindex.indd 404 10/26/09 10:06 PM10/26/09 10:06 PM

405405 Index

document variable, 132

in Firefox, 132–133

history variable, 132

location variable, 132

primary objects of, 132

property, 132–133

status variable, 132

window object, 134

domain registration, 16

dot notation, 124, 127

drag and drop

building the page, 312

dragDrop.html

program, 309–312

draggable element copy,

315–316

dropout element, 315

example, 297–300

initialization, 312–313

page demo, 13

responding to event, 314

dragDrop.html program,

309–312

draggable() method, 300,

313

dragme element, 313

drop-down list

code, 158–159

extracting data from,

157–159

how to build, B1–23

reading the, 159–160

dropout element, 315

droppable() method, 313

droppy plugin, 388–390

dx property, 187

dy property, 187

• E •
e parameter, 195

each() method, 359

easing, 280

editor

Aptana, 23–24, 32–33, 244

Bluefi sh, 20

codetch, 21–22

emacs, 19

graphics, 17

jEdit, 21–22

notepad++, 20

programmer’s, 18

vi, 19

visual, 17

WYSIWYG, 17

else statement, 62–63

emacs editor, 19

embedding code, 35–36

empty element, 291

:empty fi lter, 291

end of string character ($),

174, 176–177

end tag, B1–4

endless loop, 78–79

equal operator (==), 60–61

error. See also debugger

Aptana error notifi cation,

79–80

debugging support, 18

Firebug error-handing,

82–83

Firefox error-handling, 82

highlighting, 307

HTTP error code, 233

IE error indication, 81–82

logic, 84–86

error detection, 23

error warning, 33

eval() method, 52, 361

event

adding to object, 252–256

button, 137–139

change, 256

click, 256

dblClick, 256

defi ned, 42

focus, 256

hover, 256

jQuery, 256

keydown, 256

mouseDown, 256

select, 256

event object, 195

event-driven programming,

142–143

event-handling, 193–194

expert, JavaScript, 15

extJS Web site, 399

• F •
Fade In button, 266

Fade Out button, 266

fadeIn() method, 272

fadeOut() method, 272

fast speed parameter, 279

FCKedit library, 373–376

<fieldset> tag

filepath parameter, 396

fi lter, jQuery library, 291

find() method, 359–360

Firebug feature

AJAX Monitoring option,

29

CSS View and Edit feature,

28

debugger, 94–96

error-handling, 82–83

Firebug lite option, 29, 84

formatted printing syntax,

86

Inspect Window feature,

28

JavaScript Debugging

option, 28–29

Live code view, 29

logic error-handing, 84–85

source code, viewing,

154–155

Firefox browser

advantage of, 26–27

basic description of, 25

DOM in, 132–133

error-handling, 82

Firebug extension, 28–29

HTML Validator

extension, 27–28

JavaScript console

feature, 33

24_417997-bindex.indd 40524_417997-bindex.indd 405 10/26/09 10:06 PM10/26/09 10:06 PM

406 JavaScript & AJAX For Dummies

Firefox browser (continued)

View Source page, 27

Web Developer Toolbar,

27

500 HTTP response code,

233

Flash Game Programming
For Dummies (Harris),

219

Flash program, 393

Flash/Javascript project,

398

float attribute, B2–28

fl oating position, B2–24,

B2–25, B2–26

fl oating-point number, 50,

52

fl ot plugin, 378–380

fl ow control, 58–61

focus event, 256

focus state, 307

font

color, 44

size, B1–5

style, B2–18

fontColor() method, 44

for loop

array with, 111–113

backward version of,

73–74

basic description of, 71

condition, 72

counting by fi ve example,

74–75

initialization, 72

lap++ operator, 73

modifi cation, 72

foreground color, 137

form

code, B1–18, B1–19

frameset, B1–3

HTML, 230

interactive, 349–353

for layout, B1–2

margin, B2–29

PHP language, 341–344

request response, 344–345

strict, B1–3

tag, B1–21

transmission method, 351

form element, 146–148, 152

<form> tag, B1–21

formatted HTML, 226

formatted printing syntax,

86

formatting tool,

ThemeRoller tool, 295

forward slash (/), 148, 176

400 HTTP response code,

233

404 HTTP response code,

233

408 HTTP response code,

233

frame variable, 206, 217

frameset form, B1–3

function. See also method

$(), 247–249

argument, 103–104

Boolean, 60

border, 255

breaking code into, 97–99

callback, 127, 250, 266, 271

changeColor(), 140–141

changeTarget(), 313

checkBounds(), 188–189

checkData(), 236

clone(), 288–289,

315–316

code example, 99, 101–103

conversion, 51–52

datepicker(), 329, 331

defi ned, 97

getAJAX(), 230, 236, 259

getGreeting(), 352–353

init(), 255

initialization, 248–250

JQuery, 245

json_encode(), 361

keyListener(), 194

lambda, 255–256

loadImages(), 209

Math.random(), 55–56

move(), 277–278

moveSprite(), 195–196

name, 122

named-function approach,

256

noBorder(), 255

order(), 166–167

parameter, 104

passing data into and out

of, 100–105

plot(), 380

present(), 272

processResult(),

348–349, 358–359

reportSlider(), 332

resetTarget(), 313

returned value of, 101–102

scope, 105–108

setColor(), 139

setInterval(), 201

showChoices(), 162

structure of, 98–99

themify(), 306

toggleBorder(), 258

translate(), 387

updateImage(), 218

updatePosition(),

218–219

function call, 201

functional programming,

359

• G •
galleria plugin, 390–393

Gallery tab (ThemeRoller

tool), 296

Game Programming: The L
Line (Harris), 219

generated source, 153–155

generated-code technique,

153–154

get attribute, 343, 352

getAJAX() function, 230,

236–237, 259

24_417997-bindex.indd 40624_417997-bindex.indd 406 10/26/09 10:06 PM10/26/09 10:06 PM

407407 Index

getElementById()

method, 144–145

getGreeting() function,

352–353

getJSON() method, 361,

364–365

Gimp graphics editor, 17

global variable

basic description of, 106

compound image, 212–213

image-swapping

animation, 206

movement example,

185–186

Google Ajax API, 398

Google Earth, 398

Google Maps, 398

graphics editor, 17

greater than operator (>),

60

greater than or equal to

operator (>=), 60

greeting, 40–42, 352–353

• H •
<h2> tag, 269–270

Harris, Andy

Flash Game Programming
For Dummies, 219

Game Programming: The L
Line, 219

HTML, XHTML, and
CSS All-in-One Desk
Reference For Dummies,

2, 34, B1–5

Web site, 4–6

<head> tag, B1–5

:header fi lter, 291

header tag, 291

heading, 269–270, 307, B1–6

Hello, World! program,

34–35

help fi le (Aptana editor), 33

hex color, B2–13, B2–14,

B2–15

hidden fi eld, 148–150

Hide button, 265

hide() method, 271–272

hideShow program

code, 267–269

Fade In button, 266

Fade Out button, 266

Hide button, 265

Show button, 265

Slide Down button, 266

Slide Up button, 266

Toggle button, 265

highlighted element, 307

highlighting

error, 307

syntax, 18, 23

history object, 132

<h1> tag, 252

hosting service, 16

hover event, 256

hover state, 307

hover.html program,

253–255

href attribute, B1–12

HTML (Hypertext Markup

Language)

basic description of, 9, 15

basic page example, B1–4

comment, B1–6

form, 230

formatted, 226

innerHTML property, 146,

148

structure, B1–2

XHTML versus, B1–2

html() method, 247, 359

HTML Tidy program, 27–28

HTML Validation program,

27–28

HTML, XHTML, and CSS All-
in-One Desk Reference
For Dummies (Harris),

2, 34, B1–5

HTTP error code, 233

<h2> tag, 269–270

Hypertext Markup

Language. See HTML

• I •
icon

about this book, 5

adding to page, 308–309

icon library, jQuery UI,

294–295

ID, 252

id element, 150

IE (Internet Explorer),

81–82

if else statement, 61–63

if statement, 59, 67–70

image

adding, B1–10

background, B2–21,

B2–22, B2-23

background-image

property, 211–212

compound, 209–213

pre-loaded, 391

image gallery, 390–393

image-swapping animation

animate() method,

206–207

building the page, 204–205

fi le format, 204

frame variable, 206

global variable, 206

preloading, 207–209

preparation

considerations,

203–204

setInterval() function,

204

small image, 204

spriteImage variable,

206

transparency, 204

 tag, B1–10

imgList variable, 217

indentation

line after if statement, 59

nested if statement and,

69

support, 18

indexOf() method, 44, 46

24_417997-bindex.indd 40724_417997-bindex.indd 407 10/26/09 10:06 PM10/26/09 10:06 PM

408 JavaScript & AJAX For Dummies

inheritance, 122

init() method

compound image, 213

jQuery object, 255

keyboard movement, 193

movement, 186–187

initialization

compound image, 213

drag and drop, 312–313

for loop, 72

mouse controlled

movement, 199

moving image-swap

animation, 218

initialization function,

248–250

innerHTML property, 146,

148

:input fi lter, 291

insertAfter() method,

287

insertBefore() method,

287

Inspect Window feature

(Firebug), 28

installation, jQuery library,

242

integer

converting fl oating-point

number to, 52

converting text to, 51

integer data type, 50

interactive form, 349–353

interactive value, 238

interactiveForm.html

program, 350–351

internal server found HTTP

response code, 233

international keyboard, 197

Internet Explorer 6

browser, 25

Internet Explorer 7

browser, 26

Internet Explorer 8

browser, 26

Internet Explorer (IE),

81–82

interpolation, 345

ipwEditor plug-in

editable plugin, 370–372

editable text area, 370

FCKedit library, 373–376

• J •
Java language, 15, 32

JavaScript

about this book, 3, 5

advantage of, 32

basic description of, 15

development of, 31

expert, 15

reason for using, 10–12

technological

advancement, 1–2

JavaScript Archive Network

(JSAN) Web site, 397

JavaScript console feature,

33

JavaScript Object Notation.

See JSON

jEdit editor, 21–22

jmp() method, 395

jmp3 plugin, 393–396

jQoutput variable,

247–248

jQuery library

advantages of, 241–242

animate() method, 279

animation support, 241

basic description of, 241

callback function, 250

cookie, 376–378

cross-platform support,

241

data model, 247

download, 242, 300

droppy plugin, 388–390

enhanced event

mechanism, 241

event, 256

fi lter, 291

fl exible selection

mechanism, 241,

280–281

fl ot plugin, 378–380

function, 245

galleria plugin, 390–392

hideShow program,

265–269

importing from Google,

242–243

initialization function,

248–250

installation, 242

introductory application,

245–248

ipwEditor plugin, 370–376

jmp3 plugin, 393–396

node, 247–248

node chaining, 277–278

object, 250–253

PHP library, 397

plugins, how to use,

369–370

positioning technique,

273–277

project, building with

Aptana, 243–245

selecting object in,

252–253

tablesorter plugin,

383–385

tag cloud, 380–382

translate plugin, 385–388

user interface widget

support, 241

window blind effect, 272

jQuery UI (user interface)

Accordion tool, 318–321

advanced user

interaction, 293

classes supported by, 307

Date Picker tool, 329–331

features, 293–294

formatting tool, 295

icon library, 294

24_417997-bindex.indd 40824_417997-bindex.indd 408 10/26/09 10:06 PM10/26/09 10:06 PM

409409 Index

importing fi le into, 304

new user interface

element, 293

open source value, 294

power of, 294

resizable element, 301

selectors and fi lters, 291

Tabs tool, 318

ThemeRoller tool, 294–297

Web site, 294

JSAN (JavaScript Archive

Network) Web site, 397

JSON (JavaScript Object

Notation)

advantage of, 127, 360–361

basic description of, 124

callback function, 127

complex structure

example, 125–126

data retrieval, 364–365

plain text data, 360

readJSON.html

program, 362–364

results processing,

365–366

storing data in, 124–125

support, 127

json_encode() function,

361

• K •
keyboard movement,

191–195

keyboard page, 191–193

keyboard script, 193

keyboard.html page, 192

keyboard.js script fi le,

192

keycode, 196–197

keyCode property, 195

keydown event, 256

keyListener() function,

194

keystroke response, 194–196

key/value pair, 361

• L •
<label> tag, B1–21

lambda function, 255–256

language, B1–7

lap++ operator, 73

Leet (L337) gamer, 67

left brace ({), 59

left property, 187

left-arrow key, 196

Legacy browser, 25

<legend> tag, B1–21

length

array, 112

string, 43–44

length property, 43–44

less than operator (<), 60

less than or equal to

operator (<=), 60

library

directory structure, 245

DOJO, 240

FCKedit, 373–376

jQuery, 241

MochiKit, 240

Prototype, 240

reference, 241

reusable, 239

update, 243

YUI Yahoo! Interface, 241

license, plugin, 370

linear parameter, 280

link, B1–11, B1–12, B1–13

link tag, 304

list

alternating style of, 282

building, B1–13, B1–14,

B1–15

defi nition, 364

drop-down, B1–23

sortable, 335–336

literal, 41

Live code view (Firebug), 29

load() method, 259

loaded value, 238

loadImages() function,

209

loading value, 238

local variable, 106

location object, 132

logic error, 84–86

loop

bad-natured, 77–79

endless, 78–79

for, 71–75

reluctant, 77–78

while, 75–77

lowercase, 44, 46

• M •
macro, 18

main() function, 117

margin, B2–29

match

pattern, 179–180

specifying number of, 179

match() method, 174, 176

Math.ceil() method, 52,

56–57

Math.floor() method, 52

Math.random() function,

55–56

Math.round() method, 52

MAX_X variable, 217

medium speed parameter,

279

memory, pattern match,

179–180

menu, 267

meta tag, B1–8

method. See also function

addClass(), 258

adding to objet, 120–121

alert(), 36, 52, 96

animate(), 206–207, 218,

279

append(), 287–288

big(), 44

class, 258

code example, 45

24_417997-bindex.indd 40924_417997-bindex.indd 409 10/26/09 10:06 PM10/26/09 10:06 PM

410 JavaScript & AJAX For Dummies

method (continued)

css(), 277–278

defi ned, 42

dialog(), 337

draggable(), 300, 313

droppable(), 313

each(), 359

eval(), 52, 361

fadeIn(), 272

fadeOut(), 272

find(), 359–360

fontColor(), 44

getElementById(),

144–145

getJSON(), 361, 364–365

hide(), 271–272

html(), 247, 359

indexOf(), 44, 46

init(), 184, 186–187

insertAfter(), 287

insertBefore(), 287

jmp(), 395

load(), 259

match(), 174, 176

Math.ceil(), 52, 56–57

Math.floor(), 52

Math.round(), 52

object, 118

onload(), 216, 249

onReadyState
Change(), 230

open(), 230, 232

parameter, 45

parseFloat(), 52

parseInt(), 51, 145

prepend(), 287

processForm(), 152

readyState(), 230, 235,

238

removeClass(), 258

replace(), 44, 174

reset(), 290–291

resizable(), 305

responseText(), 230

search(), 44

send(), 230

show(), 271–272

slice(), 44

slideDown(), 272

slider(), 331–332

slideToggle(), 272

slideUp(), 272

status(), 230, 233–234

statusText(), 230

string, 44–46

substring(), 44, 46

tabs(), 325

text(), 360

text manipulation, 44–46

toggle(), 272

toggleClass(), 258

toLowerCase(), 44, 46

toString(), 52

toUpperCase(), 44, 46

val(), 352

wrap(), 289

Microsoft Word word

processor, 16

MochiKit library

basic description of, 240

overview, 398

Web site, 240, 398

modal dialog box, 36

mouse controlled

movement

followMouse.html

program, 197–198

HTML setup, 199

initialization, 199

mouse listener, 199–200

mouseDown event, 256

move() function, 277–278

movement

automatic, 200–202

bounce, 190

bouncing ball example,

182

boundaries, checking for,

189–190

combination, 190

compound image, 209–213

continue, 190

drag and drop, 297–300

global variable, 185–186

image-swapping

animation, 203–209

init() method, 186–187

keyboard, 191–195

mouse controlled, 197–200

move.html program

example, 183

moving code to external

fi le, 185

moving image-swap

animation, 214–218

relative, 280

sprite, 187–189

stop, 190

timer-based, 200–202

moveSprite() function,

195–196

mp3 fi le, 393–394

multi-element design,

317–318

multi-line comment

character (/* */), 36

multi-line text box, B1–22

multiple condition, 64

multi-selection list box,

160–162

MySQL database, 341

• N •
\n (newline character),

112, 177

name

class, 122

cookie, 377

function, 122

variable, 38

name attribute, 169

named paragraph, B2–9

nested if statement

basic description of, 67

code, 68

comment use, 70

how to use, 69

24_417997-bindex.indd 41024_417997-bindex.indd 410 10/26/09 10:06 PM10/26/09 10:06 PM

411411 Index

indentation and, 69

testing, 70

newline character (\n),

112, 177

noBorder() function, 255

node chaining, 277–278

node, jQuery library,

247–248

not equal operator (!=), 60

not found HTTP response

code, 233

notebook keyboard, 197

notepad++ editor, 20

Notepad tool, 16–17

number

adding together, 47–48

binary format, 49–50

fl oating-point, 50

integer, 50

rounding downward, 52

rounding upward, 52

special characters for, 178

numeric comparison

operator, 60

numeric index, 124

numeric input, 331–333

• O •
object. See also JSON

adding event to, 252–256

adding methods to,

120–121

basic code example,

118–119

basic description of, 42–43

class, 122

constructor, 121

document, 132

event, 42, 195

history, 132

inheritance, 122

jQuery library, 250–253

location, 132

method, 42, 118

property, 42, 118

prototyping, 122

re-usable, 121

select, 159, 162

status, 132

window, 134

XMLHTTPRequest,

230–232

object chaining, 274, 278

object-oriented

programming (OOP),

42–43

offset variable, 214

offsetList variable, 212

onclick parameter, 141

onkeyup event handler,

352

online hosting service, 16

onload() method, 216, 249

onReadyStateChange()

method, 230

OOP (object-oriented

programming), 42–43

open() method

description of, 230

fi le/program name, 232

request() method, 232

synchronization trigger,

232

Opera browser, 26

operation system, 2

operator

comparison, 60

overloaded, 51

regular expression,

174–175

repetition, 178–179

order() function, 166–167

organization, about this

book, 3–4

output data

div element, 147

divOutput variable, 148

jQoutput variable,

247–248

overloaded operator, 51

• P •
padding attribute, B2–30

paragraph

adding text to end of, 288

in class, B2–9

named, B2–9

odd-numbered, 282

ordinary, B2–8

parameter

function, 104

method, 45

:parent fi lter, 291

parseFloat() method,

52, 145

parseInt() method, 51,

145

password fi eld, 148–150,

B1–22

pattern match, 179–180

pause mode, debugger, 87

Pederick, Christ (Web

Developer Toolbar), 27

period (.), 174, 177

Photoshop graphics editor,

17

PHP language

account, 341

availability, 340

basic description of, 15

ease of use, 340

free use of, 340

overview, 340–341

popularity of, 340

request response, 344–345

writing form for, 341–344

PHP library (jQuery

library), 397

plain text data, 360

plot() function, 380

plugin

droppy, 388–390

fl ot, 378–380

galleria, 390–392

how to use, 369–370

24_417997-bindex.indd 41124_417997-bindex.indd 411 10/26/09 10:06 PM10/26/09 10:06 PM

412 JavaScript & AJAX For Dummies

plugin (continued)

ipwEditor, 370–376

jmp3, 393–396

license, 370

tablesorter, 383–385

tag cloud, 380–382

translate, 385–388

wysiwyg, 374

plus sign (+), 50–51, 179

post attribute, 343, 352

pre-loaded image, 391

prepend() method, 287

present() function, 272

printing, 359–360

processForm() method,

152

processResult()

function, 348–349,

358–359

program. See code

progress bar, ThemeRoller

tool, 294

project fi le, 18

prompt statement, 39

property

defi ned, 42

DOM, 132–133

object, 118

Prototype library, 240

prototype property, 44

prototyping, 122

punctuation character, 178

pwd element, 150

• Q •
quote, 141

• R •
radio button

adding, B1–26

basic description of,

167–168

code, 168–170

group, 169

name attribute, 169

:radio fi lter, 291

random number generation

application used by, 55

code, 56–57

fl oating point value, 56

Math.ceil() function,

56–57

Math.random() function,

55–56

random seed, 56

readJSON.html program,

363–364

readKeys parameter, 197

readXML.html program,

356–357

readyState() method,

230, 235, 238

red circle error indicator,

80

red squiggly line error

indicator, 80

reference, 145, 241

registration, domain, 16

regular expression

basic description of,

170–171

characters in, 176

operator, 174–175

textbox element, 175

validation, 171–173

Reiner’s Tilesets Web site,

203

relational database, 354

relative motion, 280

removeClass() method,

258

repetition operator,

178–179

repetitive task. See loop

replace() method, 44,

174

reportSlider() function,

332

request() method, 232

request response, 344–345,

348–349

request, sending, 345–347

request timeout HTTP

response code, 233

request.readyState

property, 238

request.status

property, 234

Reset button, 282

reset() method, 290–291

resetTarget() function,

313

resetting the page, 290–291

resizable() method, 305

Resize menu (Web

Developer Toolbar), 27

resizing, on theme, 301–302

response, to request, 39,

344–345

responseText() method,

230

result, 353

right brace (}), 59

Roll Your Own tab

(ThemeRoller tool), 297

rounded corner, 306

rounding downward, 52

rounding upward, 52

ruler, 27

run.js program, 216–217

• S •
Safari browser, 26

scope, 105–108

<script> tag, 35

scrollbar, 331

search() method, 44

seed, random, 56

select event, 256

select object, 159, 162

selectable element, 333–334

24_417997-bindex.indd 41224_417997-bindex.indd 412 10/26/09 10:06 PM10/26/09 10:06 PM

413413 Index

selection mechanism,

jQuery library, 280–281

semantic theme, 305

semicolon (;), 37

send() method

basket analogy, 233

description of, 230

sending request and

parameter, 232–233

sentry variable, 72, 77

server

client-server

communication, 232,

234

cloud structure, 244

opening connection to,

232

server-side program,

339–340

setColor() function, 139

setInterval() function,

201, 204

shadow, 307

Show button, 265

Show Code button, 13

show() method, 271–272

showChoices() function,

162

showdownload feature, 396

single numerical digit

character (\d), 174, 178

site. See Web site

size

compound image, 211

cookie, 377

font, B1–5

slice() method, 44

Slide Down button, 266

Slide Up button, 266

slideDown() method, 272

slider() method, 331–332

slider, ThemeRoller tool,

294

slideToggle() method,

272

slideUp() method, 272

sliding animation

technique, 272

slow speed parameter, 279

sortable list, 335–336

source code, viewing, 154

spaces in concatenated

phrase, 41–42

special character, 177–178

specialty browser, 26

speed, animation, 272, 279

sprite movement, 187–189

sprite variable, 217

spriteImage variable,

206, 217

square bracket ([]), 110

src attribute, 245

statement

break, 66–67

else, 62–63

if, 59, 67–68

if else, 61–64

switch, 65–67

static document, 13

status() method

description of, 230

HTTP error code, 233

request.status

property, 234

status object, 132

statusText() method,

230

stop movement, 190

strict form, B1–3

string

defi ned, 42

length, 43–44

method, 44–46

substring, 46

text manipulation method,

44–46

string data, 42

string data type, 50

style

alternating, 290

border, B2–20

element, 251–252

font, B2–18

of list, 282

of table, 282

style attribute, 214

style sheet, B2–17

styleElement.html

program, 251–252

submit attribute, 343

substring() method, 44,

46

subtractive color, B2–13

sum variable, 48

support

debugging, 18

indentation, 18

JSON format, 127

multiple document, 18

syntax, 18

swing easing style, 280

switch statement, 65–67

synchronization trigger, 232

syntax error. See error

syntax highlighting, 18, 23

syntax support, 18

• T •
tab cloud plugin, 380–381

tabbed interface, 322–325

table

alternating style of, 282

building, B1–13, B1–14,

B1–15

for layout, B1–2

structure, B1–17

table of contents (TOC),

319

tablesorter plugin, 383–385

tabs() method, 325

Tabs tool (jQuery UI), 318

tag

<a>, B1–12

<body>, 184, 249

button, 270

case-sensitivity, 355

container, 355

24_417997-bindex.indd 41324_417997-bindex.indd 413 10/26/09 10:06 PM10/26/09 10:06 PM

414 JavaScript & AJAX For Dummies

tag (continued)

end, B1–4

<fieldset>, B1–21

<form>, B1–21

<h1>, 252

<h2>, 269–270

<head>, B1–5

header, 291

<label>, B1–21

<legend>, b1–21

link, 304

meta, B1–8

<script>, 35

single-element, 146

<title>, B1–6

target element, 312

technological

advancement, 1

template, 262–263

testing

debugger, 87

nested if statement, 70

text

adding new, 287–288

alignment, B2–19

bold, B2–18

converting to fl oating-

point value, 52

converting to integer, 51

font color, 44

font size, B1–5

indicated, 291

multi-line text box, B1–22

plain text data, 360

underlined, B2–19

wrapped, 289–290

text area, 148–149, 151

text editor, 17

text fi eld

hidden fi eld, 148–150

password fi eld, 148–150

text area, 148, 151, 1479

text input, B1–21

text() method, 360

text-alignment

attribute, B2–30

textarea element, 151

textbox element, 175

TextEdit text editor, 17

textStatus parameter,

358

theme

adding to element,

305–306

built-in, 296–297

CSS, 305

resizing on a, 301–302

rounded corner, 306

semantic, 305

ThemeRoller tool

Accordion tool, 294

date picker tool, 294

Gallery tab, 296

progress bar, 294

Roll Your Own tab, 297

Sliders, 294

tabs, 294

themify() function, 306

thumbnail view, 391

Tidy program (HTML), 27

time interval, 201

time-based animation, 279

timer-based movement,

200–202

title attribute, 337

<title> tag, B1–6

TOC (table of contents),

319

Toggle button, 265

toggle() method, 272

Toggle Style button, 12

Toggle Visibility button, 11

toggleBorder() function,

258

toggleClass() method,

258

toggling visibility, 272

toLowerCase() method,

44, 46

toolbar, Web Developer, 27

top property, 187

toString() method, 52

toUpperCase() method,

44, 46

translate() function, 387

translate plugin, 385–388

transparency, 204

tutorial, 398

200 HTTP response code,

233

two-dimensional array

defi ned, 114

distance calculator

example, 114–116

main() function, 117

setting up, 115–116

txtArea element, 151
txtName variable, 145

type attribute, 35

• U •
ui-corner-all class, 307

ui-corner-tl class, 307

ui-icon class, 308

ui-state-active class,

307

ui-state-default class,

307

ui-state-disabled

class, 307

ui-state-error class,

307

ui-state-error text

class, 307

ui-state-focus class,

307

ui-state-highlight

class, 307

ui-state-hover class,

307

ui-widget class, 307

ui-widget-content

class, 307

ui-widget-header class,

307

ui-widget-shadow class,

307

24_417997-bindex.indd 41424_417997-bindex.indd 414 10/26/09 10:06 PM10/26/09 10:06 PM

415415 Index

unclicked state, 307

underlined text, B2–19

uninitialized value, 238

update, library, 243

updateImage() function,

218

updatePosition()

function, 218–219

uppercase, 44, 46

usability improvement,

327–329

user information, 39

userName variable, 352–353

• V •
val() method, 352

valid code, B1–2

validation, 27–28, B1–28

validation tool (Web

Developer Toolbar), 27

value property, 166

var statement, 38

variable

assigning value to, 48

basic description of, 37

Boolean, 60

characteristic, 38

color, 41

combining with text

example, 40

constant, 186

conversion function, 51–52

creating for data storage,

38

data type, 38

global, 106

initial value, 38

literal comparison, 41

local, 106

name, 38

name re-use, 108

prompt statement, 39

sentry, 72, 77

sum, 48

variable scope, 106–108

vi editor, 19

view source command,

153

View Source page (Firefox),

27

visibility, 272

visual editor, 17

• W •
Web browser. See browser

Web Developer Toolbar

Edit CSS option, 27

outline table design, 27

Resize menu, 27

ruler options, 27

source code view, 154

validation tool, 27

Web Project Wizard, 244

Web site

Afl ax, 398

Ari SpriteLib, 211

DOJO, 240

DZone, 399

extJS, 399

Harris, Andy, 4–6

jQuery UI, 294

JSAN (JavaScript Archive

Network), 398

MochiKit, 240, 398

Prototype, 240

Reiner’s Tilesets, 203

YUI (Yahoo User

Interface), 399

Web 2.0 technology, 240

what you see is what you

get (WYSIWYG) editor,

17

while loop, 75–77

widget

content style, 307

disabled, 307

making element look like,

307

width, border, B2–20

window blind effect, 272

window object, 134

word boundary character

(\b), 174, 178

word processor, 16

Wrap button, 282

wrap() method, 289

wrapping, 189

W3C (World Wide Web

Consortium), 25

W3Schools tutorial, 398

wysiwyg plug-in, 374

WYSIWYG (what you see is

what you get) editor, 17

• X •
x variable, 186

XAMPP package, 341

XHTML

basic description of, 15

basic page creation, B1–7

case-sensitivity

HTML versus, B1–2

refresher on, 12

XHTML framework, 143–144

XML data

doctype, 355

fi le example, 354–356

readXML.html program,

356–357

XMLHTTPRequest object

onReadyStateChange()

method, 230

open() method, 230, 232

overview, 230

readyState() method,

230

responseText()

method, 230

send() method, 230,

232–233

status() method, 230,

233–234

statusText() method,

230

24_417997-bindex.indd 41524_417997-bindex.indd 415 10/26/09 10:06 PM10/26/09 10:06 PM

416 JavaScript & AJAX For Dummies

• Y •
y variable, 186

yPos variable, 316

YUI Yahoo! Interface

Library, 241

YUI (Yahoo User Interface)

Web site, 399

• Z •
zero or more element, 179

zIndex property, 316

Zone Web site, 399

zOrder property, 316

zValue property, 316

24_417997-bindex.indd 41624_417997-bindex.indd 416 10/26/09 10:06 PM10/26/09 10:06 PM

Andy Harris
Author of HTML, XHTML, and CSS
All-in-One For Dummies

Learn to:
• Master basic JavaScript as a Web design

and application development tool

• Write your own programs

• Use JavaScript with AJAX, XML, and
JSON

• Design an interface, animate images,
program menus, and manage cookies

JavaScript
® & AJAX

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/go/

javascriptandajaxfd to find two additional chapters and all

the programming code used in the book

 Open the book and find:

• How to choose a test browser

• How to discuss string
concatenation with a straight face

• Tips for debugging your code

• How to add useful information to a
dropdown list

• Why AJAX connections should be
asynchronous

• The exciting possibilities of the
jQuery library

• How to use the Aptana editor

• Online resources for JavaScript
programmers

Andy Harris is a lecturer in computer science at Indiana University/

Purdue University at Indianapolis. He was instrumental in developing

the university’s certificate program in applied computer science and has

taught courses in Web development as well as several programming

languages.

$29.99 US / $35.99 CN / £21.99 UK

Programming Languages/JavaScript

ISBN 978-0-470-41799-7

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Learn to use these powerful
tools together and build
Web sites that work
If you want to build Web pages that offer real value to
your site’s visitors, JavaScript and AJAX are top tools for
the job. Even if you’re new to Web programming, this book
helps you create sites any designer will admire. With easy-
to-understand steps and an emphasis on free tools, you’ll
be able to jump right into building a site using the same
techniques as the pros.

• Down to basics — learn your way around JavaScript and choose
an editor and test browser

• Manage complexity — use functions, arrays, and objects to
create more sophisticated programs

• Page magic — discover how to control what happens on your
pages, animate objects, and put pages in motion

• Get beautiful — Use the jQuery User Interface library to add
sliders, tabbed interfaces, and custom dialogs to a site

• Come clean with AJAX — build AJAX requests into your
programs, use jQuery, and work with AJAX data

JavaScrip
t

® &
 A

JA
X

Harris

spine=.864”

	JavaScript & AJAX for Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	What You Will Need
	How This Book Is Organized
	It’s Even on the Internet!
	Icons Used in This Book
	Where to Go from Here
	A Final Word

	Part I: Programming with JavaScript
	Chapter 1: Taking the Web to the Next Level
	Building Something Cool
	Getting Started
	Picking an Editor
	Creating Your Browser Collection
	Turning Firefox into a Development Machine

	Chapter 2: Writing Your First Program
	Becoming a Programmer
	Introducing Variables
	Using Concatenation to Build Better Greetings
	Understanding the string Object
	Understanding Variable Types
	Changing Variables to the Desired Type

	Chapter 3: Changing Program Behavior with Conditions
	Working with Random Numbers
	Using if to Control Flow
	Do What I Say or Else
	It’s Time to Switch Your Thinking
	Nesting if Statements

	Chapter 4: Loops and Debugging
	Building Counting Loops with for
	Looping for a while
	Introducing Some Bad Loops
	Debugging Your Code
	Catching Logic Errors
	Using an Interactive Debugger

	Chapter 5: Functions, Arrays, and Objects
	Breaking Code into Functions
	Passing Data into and out of Functions
	Managing Scope
	Building a Basic Array
	Working with Two-Dimensional Arrays
	Creating Your Own Objects
	Introducing JSON

	Part II: Using JavaScript to Enhance Your Pages
	Chapter 6: Talking to the Page
	Understanding the Document Object Model
	Harnessing the DOM through JavaScript
	Managing Button Events
	Interacting with Text Input and Output
	Writing to the Document
	Working with Other Text Elements

	Chapter 7: Getting Valid Input
	Getting Input from a Drop-Down List
	Managing Multiple Selections
	Check, Please — Reading Check Boxes
	Working with Radio Buttons
	Working with Regular Expressions
	Working with Special Characters
	Repetition Operations
	Working with Pattern Memory

	Chapter 8: Moving and Grooving
	Making Things Move
	Reading Input from the Keyboard
	Following the Mouse
	Automatic Motion
	Image-Swapping Animation
	Working with Compound Images
	Movement and Swapping

	Part III: Moving Up to AJAX
	Chapter 9: AJAX Essentials
	AJAX: Return to Troy
	AJAX Spelled Out
	Making a Basic AJAX Connection
	All Together Now: Making the Connection Asynchronous

	Chapter 10: Improving JavaScript and AJAX with jQuery
	Introducing JavaScript Libraries
	Getting to Know jQuery
	Writing Your First jQuery App
	Creating an Initialization Function
	Investigating the jQuery Object
	Adding Events to Objects
	Making an AJAX Request with jQuery

	Chapter 11: Animating jQuery
	Getting Prepared for Animation
	Hiding and Showing the Content
	Changing an Element’s Position with jQuery
	Modifying Elements on the Fly

	Chapter 12: Using the jQuery User Interface Toolkit
	Looking Over the ThemeRoller
	Visiting the Theme Park
	Wanna Drag? Dragging and Dropping Elements
	Downloading the Library
	Resizing on a Theme
	Dragging, Dropping, and Calling Back

	Chapter 13: Improving Usability with jQuery
	Multi-Element Designs
	Improving Usability

	Chapter 14: Working with AJAX Data
	Getting an Overview of Server-Side Programming
	Sending Requests AJAX-Style
	Building a More Interactive Form
	Working with XML Data
	Working with JSON Data

	Part IV: The Part of Tens
	Chapter 15: Ten Amazing jQuery Plugins
	Using the Plugins
	ipwEditor
	jQuery Cookies
	flot
	Tag Cloud
	Tablesorter
	Jquery-translate
	Droppy
	galleria
	Jmp3

	Chapter 16: Ten Great Resources
	jQuery PHP library
	JSAN — JavaScript Archive Network
	W3Schools tutorials and examples
	Google AJAX APIs
	Aflax
	MochiKit
	Dojo
	Ext JS
	YUI
	DZone

	Index

