
by Alan Simpson, Margaret Levine Young,
Alison Barrows, April Wells, Jim McCarter

Access™ 2007
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

Microsoft® Office

01_036494 ffirs.qxp 11/17/06 7:55 AM Page iii

Microsoft® Office Access™ 2007 All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006925890

ISBN-13: 978-0-470-03649-5

ISBN-10: 0-470-03649-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QW/RS/QW/IN

01_036494 ffirs.qxp 11/17/06 7:55 AM Page iv

www.wiley.com

About the Authors
Alan Simpson is the author of over 115 computer books on all sorts of topics:
Windows, databases, Web-site design and development, programming, and
network administration. His books are published throughout the world, in
over a dozen languages, and have sold millions of copies. Though definitely
in the techno-geek category, we let him contribute anyway because some-
times people like that come in handy.

Margaret Levine Young has co-authored several dozen computer books
about the Internet, UNIX, WordPerfect, Access, and (stab from the past)
PC-File and Javelin, including The Internet For Dummies (Wiley) and Windows
XP Home Edition: The Complete Reference (Osborne/McGraw-Hill). She met
her future husband Jordan in the R.E.S.I.S.T.O.R.S., a high-school computer
club before there were high-school computer clubs. Her other passions are
her children, music, Unitarian Universalism (www.uua.org), reading, and
anything to do with cooking or eating.

Alison Barrows has authored or co-authored books on Windows, the
Internet, Microsoft Access, WordPerfect, Lotus 1-2-3, and other topics. In
addition to writing books, Alison writes and edits technical documentation
and training material. In real life she hangs out with her “guys” — Parker, 6,
and Mason, 4, and Evan 2 — and tries to carve out some time to practice
yoga. Alison lives with her family in central Massachusetts.

April Wells is a graduate of the University of Pittsburgh and holds an MBA
from West Texas A&M. She is a database administrator with expertise in a
wide variety of enterprise database software programs, including Oracle, DB2,
MySQL, and Access. She is the author of several books and white papers on
database software and is a frequent public speaker, trainer, and consultant.

01_036494 ffirs.qxp 11/17/06 7:55 AM Page v

Dedication
To Susan, Ashley, and Alec, as always. (AS)

To Matt, Parker, Mason, and Evan. (AB)

To the three people who are always there for me, always support me, and
never let me down — my family, Larry, Adam, and Amandya. (AW)

01_036494 ffirs.qxp 11/17/06 7:55 AM Page vii

Authors’ Acknowledgments
We would like to acknowledge the care of Kyle Looper, Chris Morris, and
Barry Childs-Helton, and all the others who shepherded this book through
the editing and production process, as well as all the folks listed on the
Publisher’s Acknowledgements page who worked on this book.

Alison thanks Dotty, Annie, and Matt for taking great care of my little guys so
I can get work done. Matt (also known as Honey) gets special thanks as my
hardware guru.

01_036494 ffirs.qxp 11/17/06 7:55 AM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Christopher Morris

Acquisitions Editor: Kyle Looper

Senior Copy Editor: Barry Childs-Helton

Technical Editor: Dan DiNicolo

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Senior Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Kristie Rees

Layout and Graphics: Claudia Bell, Carl Byers,
Stephanie D. Jumper, Barbara Moore,
Barry Offringa, Lynsey Osborn,
Heather Ryan, Rashell Smith, Erin Zeltner

Proofreaders: John Greenough, Susan Moritz,
Jennifer Stanley

Indexer: Steve Rath

Anniversary Logo Design: Richard Pacifico

Special Help
Linda Morris

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_036494 ffirs.qxp 11/17/06 7:55 AM Page x

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: Essential Concepts...7
Chapter 1: Introducing Access 2007...9
Chapter 2: Getting Started, Getting Around..17
Chapter 3: Creating a Database from Templates..39
Chapter 4: Designing Your Database the Relational Way ..55

Book II: Tables ...81
Chapter 1: Creating and Modifying Tables ..83
Chapter 2: Entering and Editing Data in Datasheets..111
Chapter 3: Sorting, Finding, and Filtering Data...137
Chapter 4: Importing and Exporting Data ...151
Chapter 5: Avoiding “Garbage In, Garbage Out”...175
Chapter 6: Relating Your Tables and Protecting Your Data191

Book III: Queries ..201
Chapter 1: Creating Select Queries ...203
Chapter 2: Letting Queries Do the Math..233
Chapter 3: Doing Neat Things with Action Queries and Query Wizards.................269
Chapter 4: Viewing Your Data from All Angles

Using Crosstabs and PivotTables ...291

Book IV: Forms ...313
Chapter 1: Designing and Using Forms (and Reports) ..315
Chapter 2: Jazzing Up Your Forms (and Reports)..335
Chapter 3: Creating Smarter Forms ...357
Chapter 4: Doing Calculations in Forms (and Reports) ..385

Book V: Reports..399
Chapter 1: Creating and Spiffing Up Reports ...401
Chapter 2: Printing Beautiful Reports..435
Chapter 3: Creating Charts and Graphs from Your Data ...445

Book VI: Macros: Automating Stuff in Access471
Chapter 1: Making Macros Do the Work..473
Chapter 2: Making Macros Smarter..493

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xi

Book VII: Database Administration509
Chapter 1: Database Housekeeping ...511
Chapter 2: Sharing the Fun — and the Database:

Managing Multiuser Access..527
Chapter 3: Securing Your Access Database ..543

Book VIII: Programming in VBA.................................569
Chapter 1: What the Heck Is VBA? ...571
Chapter 2: Writing Code ..591
Chapter 3: Writing Smarter Code ...615
Chapter 4: Controlling Forms with VBA ..641
Chapter 5: Using SQL and Recordsets ...665
Chapter 6: Debugging Your Code ...677

Appendix: Installing Microsoft Access687

Index ...693

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xii

Table of Contents
Introduction..1

About Access 2007 All-in-One Desk Reference For Dummies.....................1
Conventions..2
Foolish Assumptions ...3
What You Don’t Have to Read ..4
Icons...4
Organization ...5
Where to Go from Here..6

Book I: Essential Concepts ...7

Chapter 1: Introducing Access 2007 .9
The Six Types of Access Objects ...10

Tables for storing your data..10
Queries for selecting your data ..11
Forms for editing and displaying your data......................................12
Reports for printing your data ...13
Macros for saving keystrokes ...13
Modules for writing your own programs ..14

Essential Database Concepts..14

Chapter 2: Getting Started, Getting Around .17
Running Access ..17
Opening a Database ...18

Opening oldies ..20
I have that open already! ...21
Getting around..22

Playing with the Access Sample Databases ...22
Taking Northwind for a spin ...22

The Access Navigation Bar, Ribbon, and File menu23
The Ribbon..23
Minimizing the Ribbon...24
Changing object views...25
Quick Access toolbar ...25
The Office File menu ..27

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xiii

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxiv

Mission Control: The Navigation Pane ..28
Grouping database objects ...29
Filtering the Navigation Pane..30
Sorting objects in the Navigation Pane ...30
Choosing size and details for Navigation Pane objects...................31
Navigation Pane options..31
Creating custom groups ..32
Hiding objects ...33

Creating, Deleting, Renaming, Copying, and Printing Objects34
Using Wizards ...35
Getting Help ..36
Saving Time with Keyboard Shortcuts ..37

Chapter 3: Creating a Database from Templates 39
Finding Templates..40
Exploring a Template...42

Viewing an object’s design ..43
Viewing table relationships...44

Modifying Objects ..46
Modifying tables ...46
Modifying queries...47
Changing forms...48
Modifying reports...51
Exploring buttons...51

Using a Template Database...53

Chapter 4: Designing Your Database the Relational Way 55
What Are Tables, Fields, and Keys? ...55

Data types..56
Primary key fields for your tables..57

What Are Relationships? ...58
How relationships work...59
One-to-many relationships ..59
One-to-one relationships ...60
Many-to-many relationships ...61

Designing a Database...63
Identifying your data..63
Eliminating redundant fields...63
Organizing fields into tables ...64
Add tables for codes and abbreviations ...67
Choosing keys for each table..67
Linking your tables...69
Refining your links..70
Cleaning up the design ..71

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xiv

Table of Contents xv

Tips for Choosing Field Types..72
Choosing between Text and Yes/No fields ..72
Choosing between Text and Memo fields..72
Choosing between Text and Number (or Currency) fields73
Storing names, money, codes, and other stuff74

Storing Single Facts..75
Creating a Database ...76

Book II: Tables..81

Chapter 1: Creating and Modifying Tables .83
About Table Views ...83

Datasheet view..84
Design view ...85

Saving Your Table...85
Creating Tables for Your Data...86

Creating a new table using a table template87
Creating a new table using Datasheet view.......................................88
Defining fields ...90
Creating tables using Design view..93

Refining Your Table Using Design View...94
Choosing field names...96
Using the Caption property...96
Changing a field name..96
Copying a field ..97
Moving a field..97
Adding a field ..98
Deleting a field ..98
Choosing a data type ...98

Formatting Fields with Field Properties..101
Formatting Number and Currency fields...102
Setting the field size ...103
Formatting Date/Time fields ...105
Formatting Text fields..105

Defining the Primary Key ..106
Indexing Fields..107
Printing Table Designs...108

Chapter 2: Entering and Editing Data in Datasheets 111
Looking at a Datasheet ..112
Navigating the Data..113
Adding and Editing Records ...114

Keystrokes that enter data..115
Editing the data you have..115

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xv

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxvi

Entering and Editing Hyperlinks ..117
Entering hyperlinks..117
Editing hyperlinks ..119

Using the Attachment Data Type ...120
Deleting records ...121
Entering special characters ..122

Checking Your Spelling..123
Using AutoCorrect for Faster Data Entry ..124
Formatting a Datasheet ...127

Formatting a field ...127
Changing the font ...127
Taking advantage of rich text..128
Changing gridlines and background color129
Rearranging columns in a datasheet ...130
Changing column width...130
Changing row height ..130
Inserting and deleting columns ..131
Hiding columns...131
Freezing columns..132
Changing default formatting for new tables....................................132

Taking Advantage of Subdatasheets..132
Adding a Totals Row to the Datasheet ..134

Chapter 3: Sorting, Finding, and Filtering Data 137
Sorting the Rows of a Datasheet ..137
Finding (and Replacing) Data ...139

The Find and Replace dialog box and its options140
Replacing the data you find ..141

Filtering a Datasheet ..141
Filtering basics..142
Filtering by selection ...144
Common filters ...145
Filtering using criteria on multiple fields ..145

Filtering Using Advanced Filter/Sort ...148

Chapter 4: Importing and Exporting Data .151
Cutting, Copying, and Pasting ..151

The Office Clipboard..152
Cutting and pasting small to medium-ish amounts of data153
Moving data from Excel to Access ...155

Importing or Linking to Data ...155
What applications are compatible with Access?............................156
To link or to import, that is the question..156
Getting external data ...157
Importing text or spreadsheet data ...160
The Import Spreadsheet and Link Spreadsheet Wizards163

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xvi

Table of Contents xvii

Getting contacts from Outlook into Access164
Managing links ..165
Cleaning up your imported data ..166
Running and scheduling saved imports ..166

Getting Data from Another Access Database ...167
Getting Data Out of Access ...168
Collecting Data with Outlook..169

Chapter 5: Avoiding “Garbage In, Garbage Out” 175
Finding the Right Tool to Keep Garbage Out..175
Using Input Masks to Validate and Format Data177

Using the Input Mask Wizard ..178
Creating an input mask manually...179

Creating a Lookup Field...181
Using the Lookup Wizard ..181
When to use the Allow Multiple Selections option185
Modifying the lookup list...186

Validating Data As It’s Entered ..186

Chapter 6: Relating Your Tables and Protecting Your Data 191
Creating Relationships and Protecting Your Data

with Referential Integrity...193
Deciding on the best path to take ..194
Opening the Relationships window ...195
Adding tables to the Relationships window195
Setting referential integrity between two tables196
Editing and deleting relationships ..197

Referential Integrity with Many-to-Many Relationships..........................198
Printing the Relationships Window ...200

Book III: Queries ...201

Chapter 1: Creating Select Queries .203
Types of Queries ..204
Creating a Query in Design View..205
Creating a Query with the Simple Query Wizard208
Viewing Your Query ...211
Understanding Design View..212

Design view ...212
Working with tables in Design view ...214
Introducing the query design grid ...214
Navigating Design view ...215
Displaying or hiding table names...215

Tips for Creating a Query..215
Adding tables to the query ...215
Inserting fields in a design grid ..216

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xvii

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxviii

Editing a Query...217
Sorting a query ...218
Viewing top values ...218
Hiding fields ..219
Changing the format of a query field ...219

Limiting Records with Criteria Expressions ...220
Querying by example...220
Using dates, times, text, and values in criteria...............................221
Using operators in criteria expressions ..222
Using multiple criteria ...223
Using lookup fields in criteria...224
Queries with multivalue lookup fields...225

Working with Multiple Related Tables...226
Joining tables in Design view..227
Choosing the type of join and setting join properties...................228

Working with Query Datasheets...229
Using the query datasheet to edit data ...230
AutoLookup queries to fill in data automagically230

Saving Queries..231

Chapter 2: Letting Queries Do the Math .233
Doing Math in Queries...233
Writing Expressions in Access ...236

Using operators in expressions ..236
Field names in expressions ...238
Using functions in expressions...239

Using the Expression Builder ...240
Getting help with functions...242
About text in < and > brackets..244
Nesting functions..244

Going Beyond Basic Arithmetic ...244
Formatting calculated numbers in queries246
Avoiding problems with null values...248

Date and Time Calculations ..250
Using literal dates and times in expressions251
Using the Date/Time functions ...252

Manipulating Text with Expressions..254
Adding spaces to text expressions ..254
Using the Access Text functions...255

Writing Decision-Making Expressions ...256
Making comparisons in iif() ..257
Combining comparisons..257
To tax or not to tax? ...258

Testing for Empty Fields..260
Sort by name or company...260

Creating Flexible Parameter Queries...262
Totals, Subtotals, Averages, and Such...264

Calculating subtotals in a query...266
Filtering records based on calculated fields...................................267

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xviii

Table of Contents xix

Chapter 3: Doing Neat Things with Action Queries
and Query Wizards .269

Creating Action Queries ..269
The dangers of the Run button...270
Creating action queries safely ..271

Changing Data with Update Queries..273
Creating New Tables with Make-Table Queries277
Moving Data from One Table to Another with Append Queries280
Deleting Lots of Records with Delete Queries..282
Finding Unmatched Records with a Wizard..285
Finding Duplicate Records..288

Chapter 4: Viewing Your Data from All Angles
Using Crosstabs and PivotTables .291

Aggregating Data in a Crosstab Query ..292
Using the Crosstab Query Wizard ..292
Creating a Crosstab query in Design view297
Modifying your Crosstab query..299

Analyzing Data with PivotTables..301
Creating a blank PivotTable ..301
Displaying data in your PivotTable ..302
Modifying your PivotTable ..306
Working with PivotTable data...307
Formatting PivotTables ...311
Filtering the PivotTable data...312

Book IV: Forms..313

Chapter 1: Designing and Using Forms (and Reports) 315
Forms and Reports Are Secretly Related ..316
Creating Forms with AutoForms and Wizards..316

Your form creation options...316
Using More Forms to create super-speedy forms318
Wizard, make me a form! ...319

Viewing a Form ...322
Creating Forms (and Reports) in Design View ...323

Creating a form (or report) from scratch..323
Changing the layout of an existing form or report.........................324

Configuring the Whole Form or Report...326
Where records come from...327
Deciding the order of the records ..327
One record or many? ...328
Some other cool form properties...329

Sizing Forms..330

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xix

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxx

Storing Your Forms and Reports..330
Form and report management..331
Importing forms and reports from other databases......................331

Editing Data Using Forms..332
Saving your data ...333
Printing forms ...333

Chapter 2: Jazzing Up Your Forms (and Reports) 335
Taking Control of Your Form or Report...337

Form control types...338
Making a new control...340
Setting control properties ...341

Making Controls That Display Text..343
Making and editing labels..343
Putting Text and Memo fields in text boxes345

Displaying Number, Currency, and Date Fields ..346
Moving, Renaming, Resizing, Deleting, and Copying Controls...............347
Formatting Your Text...348

Copying your formatting ...350
Make it red if it’s bad news..350

Creating Check Boxes for Yes/No Fields ...351
Neatening Up Your Controls ...352
Adding Lines, Boxes, and Backgrounds ..354
Controlling Cursor Movement in Your Form ..355

Chapter 3: Creating Smarter Forms .357
Creating and Configuring Combo and List Boxes357

Making combo boxes the really easy way.......................................359
Running the Combo or List Box Wizard ..359
Changing the properties of a combo or list box.............................362

Cool Looks for Yes/No Fields..363
Creating Option Groups ..364
Creating Command Buttons..366
Making a Close Button...367

Making a button to display a related form......................................368
Making a button to print the current record370
Making other cool buttons..370
Customizing your command button ..370
Making a Find box ..371

Adding and Linking Subforms ..372
Creating a subform...373
The properties of subform controls ..375

Adding Form Headers and Footers ..377
Creating Tabbed Forms ...377
You Can’t Type That Here! ..379
Making Switchboards — A Friendly Face for Your Database380

The secret life of switchboards ..380
Switchboard Manager, boss of the switchboards381
The alternative to switchboards ..383

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xx

Table of Contents xxi

Chapter 4: Doing Calculations in Forms (and Reports)385
Doing Elementary Calculations ..385

Making a calculated control..386
Checking your expression...388
Troubleshooting expressions ...388

Calculating and Formatting Numbers..389
Calculating and Formatting Dates..390
Calculating and Formatting Text ..390
Displaying Values That Depend on Conditions ..391
Adding Subtotals and Totals from Subforms..392

Using aggregate functions ...392
Referring to a control on a subform...393
Creating the controls to total a subform...394

Formatting Calculated Controls ...397

Book V: Reports ..399

Chapter 1: Creating and Spiffing Up Reports .401
If You Know Forms, You Already Know Reports401
Creating Reports Automagically ..403

Running the Report Wizard...404
Creating Simple Reports..410

Editing Reports in Design View ..412
Report Sections and How They Work..413

Setting report and section properties ...415
Adding page headers, footers, and numbers..................................416
Adding sections that group your records418
Sorting the records in your report...421
Calculating group subtotals and report totals421

Formatting Tips and Tricks...422
Copying Forms to Reports ..424
Adding and Formatting Subreports ...424

Making a subreport ..426
Printing information from a subreport on the main report428

Displaying Empty or Long Fields ...428
Displaying long text..428

Displaying fields that may be empty ...429
Creating Mailing Labels ...429

Running the Label Wizard ...430
Behind the scenes in a mailing-label report432
Changing the page setup for labels..433

Chapter 2: Printing Beautiful Reports .435
Viewing Your Report..435

Adjusting the view..436
Looking at lots of pages...437
Previewing reports with parameters ...438

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxi

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxxii

Formatting the Page...438
Selecting a printer ..438
Setting margins, paper size, and paper orientation.......................439
Controlling page breaks...439
Avoiding blank pages ...441
Printing only the data ..442

Printing the Report ..442
Sending a Report to Another Application ..442

Chapter 3: Creating Charts and Graphs from Your Data 445
Displaying Information with Charts and Graphs446

Creating charts with the Chart Wizard..446
Making bar charts ..450
Making line and area charts..455
Making pie and doughnut charts ...456
Making bubble and XY scatter plots..457
Changing your chart ..457
Formatting charts with colors, legends, and titles461
Changing how the data is graphed...462
Changing which data is charted...463

Analyzing Your Data Graphically with PivotCharts463
Creating PivotCharts..464
Saving and viewing your PivotChart..466
Sprucing up your PivotCharts ..467

Book VI: Macros: Automating Stuff in Access471

Chapter 1: Making Macros Do the Work .473
What Is a Macro? ..474
Creating and Editing Macros ..474

Taking action! ..476
Specifying arguments to actions ..477
Naming, saving, and editing macros ..479
Adding comments ..479
Storing macros in related groups ...479

Running Macros..481
Running a macro when the database opens482
Assigning macros to keys..482

Opening Databases That Contain Macros...483
Can a macro be a virus?...484
Signing your database..484
Turning down your Access security setting486

Attaching Macros to Forms ..487
Creating command buttons on forms ...490
Referring to form controls in macros ..490
Printing matching records from a form...491

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxii

Table of Contents xxiii

Chapter 2: Making Macros Smarter .493
Only Run This If I Say So ...493

If-then macros ...494
If-then-else macros ...496

Changing the Way Your Form Looks Dynamically497
Setting the properties of form controls...497
Running a macro during data entry ..500

Displaying Forms and Datasheets..501
Setting Up Your Own Main Menu Form ..502

Creating a form that appears when the database opens502
Creating command buttons for your main menu form..................504

Book VII: Database Administration.............................509

Chapter 1: Database Housekeeping .511
Compacting and Repairing Your Database ...511
Making Backups ...512

Backing up your database...513
Backing up specific objects...514

Converting Databases..516
Analyzing and Documenting Your Database...516

Viewing relationships in the Relationships window......................516
Looking at a list of the objects in your database516
Viewing object dependencies ...517
Analyzing database performance...518
Documenting your database...520

Loading and Managing Add-Ins ..521
Running the Add-in Manager ..522
Creating add-ins..522

Locking Up Your Database as an ACCDE File ...523
Creating an ACCDE file...524
Making updates later ...524

Chapter 2: Sharing the Fun — and the Database:
Managing Multiuser Access .527

Putting Your Database Where They Can See It...528
Splitting Your Database into a Front End and a Back End530

Why split? ..530
Let’s split! ..532
Splitting by hand ..533
Handing out front ends..535
Relinking your tables ...535

Putting Your Favorite Objects into Groups...536
Making and unmaking new groups...537

Editing with Multiple Users...537
Fixing exclusive access..538
Managing record-locking ...539

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxiii

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxxiv

Chapter 3: Securing Your Access Database .543
Windows Security ..544
Setting Startup Options...544
Password-Protecting Your Database ...549

Encrypting your database with a password549
Opening a password-protected database..550

Granting Database Access to Specific Users ..551
How user-level security works..551
The default workgroup file ..552
Your new workgroup file ...553
Choosing your users and groups ...553
Securing a database ...555
Opening your secure database...560
Setting passwords ..561
Creating the rest of your users and groups561
Setting permissions for groups...562
Securing your VBA modules ...567
Securing front-end and back-end databases...................................568

Book VIII: Programming in VBA569

Chapter 1: What the Heck Is VBA? .571
Finding VBA Code ..571

Opening a class module...572
Creating or opening a standard module..573

Enabling VBA Code ..575
How code is organized...575

Using the Visual Basic Editor..576
Using the Code window ...579
Using the Immediate window..580
Using the Object Browser..582
Searching the Object Library..583
Referring to objects and collections..585
Choosing object libraries ..586
Closing the Visual Basic Editor...587

Discovering Code as You Go...587
Converting macros to VBA code ..587
Cutting and pasting code ..590

Chapter 2: Writing Code .591
How VBA Works..591
VBA Syntax..592

Arguing with VBA ...594
Module level versus procedure level...596

Declaring Module Options ..597

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxiv

Table of Contents xxv

Writing Your Own VBA Procedures ..597
Creating a new standard procedure...597
Creating a new event procedure...599
Passing arguments to procedures..600
Returning a value from a function..603

Typing and Editing in the Code Window...604
Shortcut keys used in the Code window...605
Typing comments...606
Breaking lines of code..607
Dealing with compile errors..608

Testing and Running Your Code...609
Testing sub procedures ...609
Running sub procedures from Access...611
Testing function procedures ..613
Using function procedures in Access ..614

Chapter 3: Writing Smarter Code .615
Creating Variables and Constants ..615

Make me a variable ..615
Scope and lifetime of variables...617
Defining constants..619
Organizing variables into arrays ..620
Multidimensional arrays..621
Naming conventions for variables ...622

Making Decisions in VBA Code...623
Using If...End If statements..624
Nesting If...End If statements ..626
Using a Select Case block ..627

Executing the Same Code Repeatedly ...630
Using Do...Loop to create a loop ..630
Using While...Wend to create a loop ..632
Using For...Next to create a loop...632
Looping through an array ...634
Analyzing each character in a string ...635

Using Custom Functions ...636

Chapter 4: Controlling Forms with VBA .641
Displaying Custom Messages ...641

Displaying a message box ...641
Responding to what the user clicks...643

Opening Forms with DoCmd...644
Umpteen ways to open a form..645
Closing a form with DoCmd ..647

Changing Form Controls with VBA ..648
Some cool control properties ...648
Controlling properties example..650

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxv

Microsoft Office Access 2007 All-in-One Desk Reference For Dummiesxxvi

Understanding Objects and Collections ...655
Properties, methods, and events ...656
Referring to objects and collections..657
An example: Seeing whether a form is open...................................658
Looping through collections...661
Using With...End With ..663

Chapter 5: Using SQL and Recordsets .665
Recordsets and Object Models ..665

Quick and easy recordsets..666
ADO recordset properties and methods ...667
Looping through a recordset ..667
Defining a recordset’s cursor type ...668
Field names in recordsets ...669

SQL and Recordsets...670
Breaking up long SQL statements ..673

Running Action Queries from VBA...674
Cleaning up connections ...676

Chapter 6: Debugging Your Code .677
Considering Types of Program Errors...677
Fixing Compiler Errors ..678
Trapping Runtime Errors ..679

Fixing the runtime error ..682
Eliminating the runtime error ...683

Dealing with Logical Errors...683
Watching things happen..684
Slowing down procedures ...685
Cleaning up..686

Appendix: Installing Microsoft Access687
Activating Access...690
Repair, Reinstall, or Uninstall Access ..691

Index..693

02_036494 ftoc.qxp 11/17/06 8:16 AM Page xxvi

Introduction

Whoa! What happened to menu bars, toolbars, and all that other stuff I
used to have? Well, in case you haven’t noticed yet, they’re all gone. Of

course, if you never used Access before in your life, then you’re starting fresh,
so never mind. Whether you never used any version of Microsoft Access, and
aren’t even sure what a “version” is, you’ve come to the right book.

The basic idea behind Microsoft Access is to allow individuals and small
businesses to manage large amounts of information the way the big corpora-
tions do — with relational databases. The difference is that while the big
boys spend millions on computer hardware, software, and staffs of nerdy
database-administrator types, Access allows you to do it all yourself with a
run-of-the-mill PC and a realistic software budget.

Microsoft Access 2007 is the latest-and-greatest version of a long line of
Access versions, starting (not surprisingly) with Version 1. Not that this is
the 2,007th version. Somewhere along the way Microsoft switched from
using sequential numbers for versions to using years — an idea first pio-
neered by the automotive industry, which sells things like “2007 Ford
Mustangs” as opposed to “Mustang Version 9.3’s.”

Without going into boring detail about what’s new in Access 2007, you find
the usual kind of stuff you find in new versions these days — more power,
more flexibility, more things you can do with it. And of course — along the
lines of the Holy Grail of Everything Computerish these days — more taking
advantage of everything the Internet has to offer. But the most noticeable
change for the Access-experienced is a whole new look and feel — along
with some new ways of doing things.

About Access 2007 All-in-One
Desk Reference For Dummies

If you ever have the misfortune of trying to read anything written by one of
the aforementioned database-administrator types, you know all about being
faced with a decision among the lesser of three evils:

(Option 1) Try to figure it out by guessing-and-poking until you break
something.

(Option 2) Part with your hard-earned money to hire someone to do the
work for you, only to have someone with poor taste in clothing look at
you like you’re an idiot every time you open your mouth.

(Option 3) Forget computers altogether and stick with index cards.

03_036494 intro.qxp 11/17/06 7:55 AM Page 1

Conventions2

Option 1 is the one most people try first — until they get to the part where
they start breaking things and it starts costing money to get them fixed.
Option 2 is too odious to warrant serious consideration. Option 3 just isn’t
very realistic nowadays unless you’re dealing with a tiny amount of personal
information. Which leaves a new Option 4 — this book.

The nerds who wrote this book are aware of the fact that nobody on the
planet was ever born knowing what any technical term means. In fact, if at all
possible, we avoid technical terms like a root canal. But because you are
probably faced with technical terms outside this book, we do explain what
they mean along the way.

As a rule, big fat computer books aren’t such a great option. For that reason,
this isn’t really a big fat computer book. It’s several smaller computer books
combined into one. Each small book represents a single topic that you can
pursue — or ignore — as your personal tastes and immediate needs dictate.

The idea here is definitely not to try to read the book cover to cover, unless
you’re desperately seeking a cure for insomnia. Rather, use the Table of
Contents up front, or the Index out back, to look up information when trying
to figure it out by guessing just isn’t cutting it.

To prevent this book from topping 3,000 pages, we don’t explain every possi-
ble way to do every possible thing in Access. Instead, we chose what we
think are the most important database-management tasks, and we show you
the best way to do each one.

Conventions
Speaking of insomnia, this book, like most books, follows certain conven-
tions to alert you to different kinds of stuff, as follows:

Boldface: Stuff you actually do while sitting at your computer is shown in
boldface, to distinguish it from boring information you probably don’t care
about anyway.

Italics: When reality rears its ugly head and we’re forced to use a technical
term, we always show that term in italics the first time it’s used. Then we
define that term, right there on the spot. Of course, that doesn’t mean you
won’t forget the definition two minutes later. But you can easily flip back a
few pages and locate the definition amidst all the other words on the page.

Monospace: Monospace text (text in that typeface right back there) repre-
sents code, instructions that are written for computers, rather than people,
to follow. Computers are so stupid, the term “stupid” is a compliment.
Unconscious, non-thinking, non-beings (a.k.a. machines) is more like it.

03_036494 intro.qxp 11/17/06 7:55 AM Page 2

Foolish Assumptions 3

Anyway, when writing instructions for a computer, you really have to spell it
out for them, right down to the blank spaces between words. Monospace
text makes seeing where you have to put the blank spaces to avoid making
Access say “Huh?” easier. (Actually, it can’t even say “Huh?” More likely it
says something really stupid like “Syntax error in something or
other.”)

Foolish Assumptions
Despite the fact that the word “Dummies” is clearly emblazoned on this
book’s cover and elsewhere, we don’t presume that you’re the junior partner
in a ventriloquist act. (The machine you’re working with, yes. You, no.) We
do assume that you already know how to do some things, such as turn on
your computer and click and double-click things with your mouse. Maybe
type with at least one finger.

We also assume you know what those key+key symbols, such as “Ctrl+Esc,”
mean. But just in case you don’t, they always mean “Hold down the first key,
tap the second key, and then release the first key.” Also, we always use the
term “press” when referring to something you do with the keyboard. For
example, the instruction “Press Ctrl+Esc” means “Hold down the Ctrl key on
your keyboard, tap the Esc key, and then release the Ctrl key.” Click, on the
other hand, is something you do with the mouse pointer on your computer
screen and the buttons on your mouse.

We also assume (perhaps foolishly) that you know how to work menus. Not
that there are many menus in Access. But when there is a menu-like
sequence we use the word “Choose” followed by the commands to choose
separated by an ➪ symbol. For example, when we say “Choose Start➪All
Programs➪Microsoft Office➪Microsoft Access Office 2007” that’s short for
“Click the Start button, click All Programs on the Start menu that appears,
click Microsoft Office on the All Programs menu that appears, and then click
Microsoft Office 2007 on the last menu that appears.”

Click, of course, means “rest the mouse pointer on the item, and then tap the
left mouse button.” When we tell you to drag something, we mean for you to
move your mouse pointer to the item, click, and then hold down the left
mouse button while moving the mouse. To drop the item, just release the
mouse button after dragging it.

We also show things like Web site URLs (addresses) — those
www.whatever.com things you see all over the place. We may even throw
in an occasional e-mail address (the somebody@somewhere.com things)
without explaining how to use them. Hopefully these assumptions on our
part aren’t too foolish. But if we had to explain all that stuff here, there
wouldn’t be much space left for talking about Microsoft Access 2007.

03_036494 intro.qxp 11/17/06 7:55 AM Page 3

What You Don’t Have to Read4

What You Don’t Have to Read
Because reading the instructions is something we all do only as a last resort —
after guessing and trying to get help on the phone have failed — we try to
point out things you really don’t have to read. For example, sidebars (which
have a gray background) are little chunks of text with their own titles. If the
title looks boring, skip the whole thing.

We also put little icons (pictures) in the left margin to point out text that you
can maybe skip over. Or in some cases, really shouldn’t skip over. The icons
are pretty self-explanatory. So if you want to skip the next section, that’s fine
by us.

Icons
As far as those presumably self-explanatory icons go, here are the explana-
tions you can probably skip over or, at best, glance at:

This is stuff you probably don’t want to ignore. Because if you do, you may
regret it. Not that you’re gonna blow up your computer or the Internet or any-
thing if you do. But the consequences may be inconvenient or unpleasant
enough to justify spending a few seconds to read what these little notes say.

May be worth reading if you’re looking for a shortcut, or a better way to do
things. Not as important as a warning. But probably worth a few seconds of
your time.

Either stuff we already told you and you probably forgot, or something that’s
at least worth trying to keep in the back of your mind. Even if it’s way back
there. Kinda like where you park your car when you go to the mall.

This is a reference book, and we certainly don’t expect anyone to read it
cover to cover. But sometimes, you just have to know “Subject x” before
“Subject y” even comes close to making any sense. So when we’re forced to
talk about a “Subject y” kind of thing, we use this icon to point out where
“Subject x” is covered.

Stuff that definitely falls into the “insomnia cure” category.

03_036494 intro.qxp 11/17/06 7:55 AM Page 4

Organization 5

Organization
If you already looked at the Contents at a Glance up near the front of this
book, or the Table of Contents right after it, you already know how stuff is
organized here. In that case, you may now skip to the “Where to Go from
Here” section. But because showing the contents a third time is customary
(albeit kinda dumb), without the benefit of page numbers, we follow suit
here. This book is actually eight little books, organized as follows:

Book I: Essential Concepts: If this is your first time using Microsoft Access,
and you really don’t know where else to go, starting here is a good idea. This
is the stuff you really need to know to get anything done with Access.

Book II: Tables: Everything in Access centers around data (information)
stored in tables (not the coffee kind, the columns-and-rows kind). You can’t
do much of anything with Access until you have some information stored in
tables. This book is a good second stop for you newbies (beginners).

Book III: Queries: Data stored in tables tends to be pretty random and, even-
tually, pretty plentiful. This book shows you how to pick and choose the
information you want to see, and how to organize it in a way that’s more
useful, such as alphabetically.

Book IV: Forms: You can definitely get away without making forms in your
Access database. But if you get tired of looking at information stored in rows
and columns, and are up for being creative, forms are definitely worth get-
ting into.

Book V: Reports: Whereas forms are a way to get creative with stuff on your
screen, reports are a way to get creative with stuff you print on your com-
puter’s printer. Here’s where you can do things, for example, printing form
letters, mailing labels, numbers with totals and subtotals, and stuff like that.

Book VI: Macros: Automating Stuff in Access: There’s a technical term for
you — macros. Nothing to be intimidated by, though. They’re just a way of
writing simple instructions that tell Access how to do something you’re sick
of doing yourself. Optional, but more fun than the name implies.

Book VII: Database Administration: Sounds like a real yawn, we know.
Sometimes you just gotta do things such as make backup copies of your
information, or get other people to help you with boring stuff such as typing
information into your tables. This is the place where we cover those kinds
of things.

03_036494 intro.qxp 11/17/06 7:55 AM Page 5

Where to Go from Here6

Book VIII: Programming in VBA: For the aspiring mega-nerd, we didn’t let
this topic slide. This is where the über-technogeeks make their money.
Though you can skip it if you have no such aspirations.

After that comes an appendix on how to install Microsoft Access 2007, in
case you haven’t gotten that far. If Access is already on your computer,
there’s nothing noteworthy here. If you do need to install Access, and don’t
feel like looking there, here’s the condensed version of the appendix: Insert
your Microsoft Office or Microsoft Access CD into your computer’s CD drive,
wait a few seconds, and then follow the instructions that appear on-screen.

Where to Go from Here
If you patiently read the preceding “Organization” section, you probably
know where you need to go next. If not, you beginners should head straight
to Book I, Chapter 1 to get your bearings. For the rest of you who already
know some of the basics of Access, just pick whatever book or chapter talks
about what you’re struggling with right now.

And by the way, thanks for buying (begging, borrowing, or stealing — just
kidding with that last one) this book. We hope it serves you well. For those
of you who bought, an extra thanks for helping us pay down our credit cards
a little.

03_036494 intro.qxp 11/17/06 7:55 AM Page 6

Book I

Essential Concepts

04_036494 pt01.qxp 11/17/06 8:17 AM Page 7

Contents at a Glance
Chapter 1: Introducing Access 2007..9

Chapter 2: Getting Started, Getting Around ..17

Chapter 3: Creating a Database from Templates..39

Chapter 4: Designing Your Database the Relational Way..55

04_036494 pt01.qxp 11/17/06 8:17 AM Page 8

Chapter 1: Introducing
Access 2007

In This Chapter
� Getting a handle on Microsoft Access

� Listing the six types of Access objects

� Laying out some essential database concepts

Access is the Microsoft database-management program, part of the
Microsoft Office suite, that enables you to maintain databases —

collections of data arranged according to a fixed structure. Its structure
makes the information easy to select, sort, display, and print in a variety of
formats. With Access, you can create and maintain as many databases as
you need — you can even share them with other people over a local area
network or the Internet.

Access is a general-purpose program that works with almost any kind of
information. A database can be as simple as a list of addresses to replace
your card file. Or you can create a wine-cellar database with information
about each bottle in your cellar, or a bookstore-inventory database with
information about books, publishers, customers, and special orders. Access
can also handle complex databases that contain lots of types of information
and lots of customized programming.

An Access database can contain lists of records about almost anything, from
sales to sports scores. Unlike a spreadsheet program, Access makes infor-
mation in lots of different formats easy to display — including alphabetical
listings, formatted reports, mailing labels, and fill-in-the-blank forms.

Access 2007 comes as a part of the Microsoft Office 2007 Professional suite of
programs, and is also available as a separate, stand-alone product. Previous
versions of Access have also been part of previous Office editions — Access
2003 in Office 2003, Access 2002 in Office XP, Access 2000 in Office 2000, and
so forth. Because Access is part of Microsoft Office, sharing information with
Word documents and Excel spreadsheets is easy.

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 9

The Six Types of Access Objects10

The Six Types of Access Objects
Access databases are made up of objects — things you can create, edit, and
delete, each with its own name and settings. Object-oriented systems allow
you to create these things one piece at a time, using pieces that fit together.

Access contains various kinds of objects, including objects for storing, dis-
playing, and printing your data, as well as objects that contain programs you
write. At first, you’ll probably use only a few types of objects, but as you cus-
tomize your database, you may end up using them all. You start with tables
for storing data, forms for editing data on-screen, reports for printing data,
and queries for selecting and combining data. Later, you may create macros
and modules, which contain programs that you write.

In this section, we cover each of the main types of Access objects: tables,
queries, forms, reports, macros, and modules.

Tables for storing your data
Tables are where you put your data. A table is an Access object that is made
up of a series of records — the electronic equivalent of the index cards that
make up an address list. Each record contains information in the same format.
In an address list, each record contains information about one person: name,
address, and other facts. Each individual piece of information — such as first
name, last name, or street address — is called a field.

Your database can contain many tables. A bookstore database (for example)
can contain a table of books (with title, publisher, price, and other informa-
tion about each book), a table of vendors from whom you buy books (with
company name, address, discount terms, and other information about each
vendor), and maybe a table of your regular customers (with name, address,
and other information). Figure 1-1 shows a table of names and addresses.
Each row is a record, and the fields are shown in columns.

Figure 1-1:
A table
contains
records
(rows) and
fields
(columns).

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 10

Book I
Chapter 1

Introducing
Access

2007
The Six Types of Access Objects 11

After you set up tables in your database and type in (or import) information,
you can sort the records, select records that match a criterion, and then dis-
play and print the records.

Proper design of your tables — choosing how many tables to create and
which fields are stored in which table — is key to creating a usable and flexi-
ble database. Chapter 3 of this book includes a step-by-step procedure for
designing your database, and Book II explains how to create tables and fill
them with data.

Queries for selecting your data
Queries are operations that slice and dice your data to answer specific data
needs. The most commonly used type of query helps you select data from a
table, perhaps to select which records you want to include in a report. You
can create a query that shows you all the people in your address book who
live in (say) Vermont, or all those for whom you don’t have a phone number.
To create this type of query, you enter criteria that specify what values you
want to match in specific fields in the tables (for example, VT in the State
field to find Vermonters, or nothing in the Phone Number field to find the
phoneless, or both).

You can also use queries to combine information from several tables. A
bookstore database may store book author names in the Books table and
book ordering information in the Purchase Orders table. A query can pull
information from both these tables — to show (for example) all the Terry
Pratchett novels you ordered for the last month. Queries can also create cal-
culated fields, including totals, counts, and averages.

Is a spreadsheet a database?
In two words, not really. Many people use
spreadsheet programs, such as Microsoft Excel
or Lotus 1-2-3, to store lists of records. Some
spreadsheet programs have limited database
capabilities, but they aren’t designed to do as
much as a database program. You can use a
spreadsheet to store an address list — and you
can enter, edit, delete, and sort the addresses
(one per row on the spreadsheet) — but printing

mailing labels or form letters is a major chore.
Spreadsheets don’t (and can’t) think of your
data in terms of tables, records, and fields, but
rather in terms of cells (the basic unit of a
spreadsheet) arranged in rows and columns.
That’s too limited a model for sophisticated
information management — as you’ve probably
suspected if you’re using Access for your data-
base work. It’s the right tool for the job!

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 11

The Six Types of Access Objects12

Another type of query is the action query, which does something to the
records you select — copy records from one table to another, make a change
to all the records you select, delete records you select, that sort of thing.
Crosstab queries help you analyze the information in your tables by summa-
rizing how many records contain specific combinations of values.

Queries are the way you get useful information out of your tables — and
you’ll probably create zillions of them as you play with your database. Book
III explains how to create and use queries of all kinds.

Forms for editing and displaying your data
An easy way to enter data, especially into more than one related table, is to
use a form — a standard database document that displays information from
one or more tables on-screen. You can have all kinds of fun with forms; for
example, you can

✦ edit your data or type in new records

✦ choose the layout of the table’s information on the form

✦ specify the order in which your items appear

✦ group items together with lines and boxes

✦ use pull-down lists, radio buttons, and other types of on-screen controls
for entering and editing data

Figure 1-2 shows a form for entering names and addresses for the Address
Book table shown back in Figure 1-1.

Figure 1-2:
A form
shows
information
from one
table record
at a time.

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 12

Book I
Chapter 1

Introducing
Access

2007
The Six Types of Access Objects 13

But why stop there? You can build intelligence into forms, too — program
some smart boxes that automatically capitalize what you type in, or check
your entry against a table of valid values.

After your database goes into production — that is, you use it for its
intended purpose — forms become the most-used Access object. As go the
forms, so goes the database — so Book IV explains how to design, create,
modify, and use forms.

Reports for printing your data
Forms are primarily designed to appear on-screen; reports (on the other
hand) are designed to be printed out, as shown in Figure 1-3. Like forms,
reports display information from tables; you get to choose the layout of the
information. Most reports are based on queries; you use a query to choose
the information that appears in the report. The report design defines the
order in which records appear, which fields appear where, and which fonts,
font sizes, lines, and spacing to use. (Control freaks, rejoice!)

In addition to reports on normal paper, you can create reports for printing
on envelopes, labels, or other printed forms. Access comes with report wiz-
ards that make creating fancy reports easy. It can also print charts and
cross-tabulations (crosstabs) based on the data in your database.

Book V covers how to create and print reports, charts, and crosstabs.

Macros for saving keystrokes
Access includes two separate programming languages: one for macros and a
separate one (VBA) for larger programs. Macros are programs that automate
the commands you give when you use Access — you “write” them by telling

Figure 1-3:
A report lets
you put
Access data
on paper.

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 13

Essential Database Concepts14

Access to record your keystrokes while you do something on-screen. For
example, you can write a macro that moves the cursor to the last record in
the Orders table whenever you open the Order Entry form. (What are the
chances that you’d want to edit your very first order? Most of us would be
likelier to want to edit the last order or enter a new order.) Or you can write
a macro that moves your cursor to the next applicable blank in a form,
based on the entries you made so far.

After you get some practice at creating macros, you can create buttons on
your forms that run the macros with a quick click. You can also tell your
form to run a macro automatically whenever you move to a field on the
form, or enter data into the field — handy!

You don’t have to be a programmer to create macros. Access helps you write
them by providing menus of commands. Book VI explains how to create nifty
and useful macros to clean up data entry — and a number of other items —
automatically.

Modules for writing your own programs
Okay, now we come to the serious programming stuff: modules — another
term for Visual Basic programs. VBA (Visual Basic for Applications) is a
programming language based on the age-old BASIC language; it’s specifically
geared for working in Access and other Office programs. Macros are fine for
saving a few keystrokes or cleaning up the data you enter in a field, but when
the going gets complex, you can use VBA.

Programming isn’t for the technologically faint of heart. Fortunately, it’s
rarely necessary. But when everything else is done in your database, take
a look at Book VIII for an introduction to VBA programming. Writing small
programs isn’t all that hard — and if you acquire a taste for programming,
who knows what you’ll end up creating!

Essential Database Concepts
Here are the Four Commandments of databases. (Aren’t you relieved there
aren’t 10?). You’ll find lots more important rules and guidelines throughout
this book as you discover how to work with various Access objects, but
these four apply right from the start, no matter what kind of database you
are using:

✦ Store information where it belongs, not where it appears. Where you
store information has nothing to do with where it appears. In a database,
you store information in tables based on the structure of the informa-
tion. (Don’t worry — Chapter 3 of this book explains how to figure out

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 14

Book I
Chapter 1

Introducing
Access

2007
Essential Database Concepts 15

the structure of your data.) Each piece of information likely appears in
lots of different places. For example, in a database for an online book-
store, book titles and authors’ names appear on your invoices, purchase
orders, and sales receipts. But the right place to store those book titles
and author names is in the Books table, not in the Sales table or the
Purchase Orders table.

✦ Garbage in, garbage out (GIGO). If you don’t bother to create a good,
sensible design for your database — and if you aren’t careful to enter
correct, clean data — your database will end up full of garbage. A well-
designed database is easier to maintain than a badly designed one,
because each piece of information is stored only once, in a clearly
named field in a clearly named table, with the proper validation rules in
place. Yes, it sounds like a lot of work, but cleaning up a database of
10,000 incorrect records is (pardon the understatement) even more
work. See Book II, Chapter 5 for ways to avoid GIGO.

✦ Separate your data from your programs. If you create a database to be
shared with (or distributed to) other people, store all the tables in one
database (the back end) and all the other objects in another database
(the front end). Then you link these two databases together to make
everything work. Separating the tables from everything else streamlines
the whole rigmarole of updating queries, forms, reports, or other stuff
later without disturbing the data in the tables. (See Book VII, Chapter 1
for how to separate a database into a front end and back end.)

✦ Back up early and often. Make a backup of your database every day.
With luck, your office already has a system of regular (probably nightly)
backups that includes your database. If not, make a backup copy of your
database at regular intervals, and certainly before making any major
changes. (See Book VII, Chapter 1 for how to make backups.)

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 15

Book I: Essential Concepts16

05_036494 bk01ch01.qxp 11/17/06 8:18 AM Page 16

Chapter 2: Getting Started,
Getting Around

In This Chapter
� Understanding the Access window

� Playing with Access’s sample databases

� Using other Access window elements

� Getting around via the Navigation Pane

� Working with Access objects and wizards

� Saving keystrokes with keyboard shortcuts

Before you can do much with Access, you have to get it installed and
running. If Access isn’t already installed on your computer, see the

appendix for what to do. Then come back to this chapter for pointers on
how to run it and decipher the stuff you see in the Access window.

Running Access
Windows usually provides more than one way to perform a task; starting
Access is no exception. The most popular way to start Access is to click
Start and choose All Programs➪Microsoft Office➪Microsoft Office Access
2007.

Another way to get the program started is by double-clicking the name or
icon of an Access database in Windows Explorer (this method both starts
Access and opens the database you double-click). Or double-click the
Access icon if it appears on your Windows desktop.

When you start Access without opening a database, the Access 2007
window looks like Figure 2-1.

Access 2007 wants to help you get started, and the initial window you see
gives you all sorts of choices for starting to build a database. Chapter 3 of
this minibook covers using Access database templates to build your own
database. This chapter covers opening existing databases, or opening a
brand new empty database.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 17

Opening a Database18

Opening a Database
Before you can work on a database, you have to open it in Access. Okay, but
wait a minute: Before you can open it, you have to create it! If you want to try
Access but you don’t have a database to work with, skip ahead to the
“Playing with the Access Sample Databases” section (later in this chapter) to
try out the Access sample databases.

You can open an existing database from the Getting Started screen, or within
the regular Access window.

Figure 2-1:
The Getting
Started
Access
window.

What’s this weird security error message?
If you try to open a database containing any
programming (in the form of macros, VBA pro-
cedures, or action queries, which we explain in
later books), Microsoft wants you to know that
you are taking a chance. Programming embed-
ded in any document can, after all, include
viruses that could infect your computer.

Before you panic, you need to understand some
things. First, unlike in the real world, in the com-
puter world viruses don’t just happen. A virus is
a program that must be written by a human. In
nature, viruses exist because they’re living
beings (sort of) that can reproduce themselves.
In a computer, viruses are programs, created

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 18

Book I
Chapter 2

Getting Started,
Getting Around

Opening a Database 19

by humans, intentionally written to do bad
things and also to make copies of themselves.

So why the warning? The warning is just a gen-
eral disclaimer that appears whenever you
open any document that contains any macros,
VBA procedures, or action queries. The mes-
sage doesn’t know whether the database con-
tains viruses. The message is just telling you
that programs of some sort — not necessarily
viruses — are in the database.

In general, Access 2007 opens all databases
but turns off the capability to execute code.
(See Book VII, Chapter 3 for more on Access
security settings.)

If the database you open when you see this
message is something you downloaded from
the Internet from some unknown, dubious
source, then you may want to leave the data-
base with content disabled, and look around it
that way. Or to be safer, you could close the
database and, instead, create a new, blank
database and import the tables, queries, forms,

and reports into it (but no macros or VBA code).
If the database comes from someone within
your organization whom you trust not to acci-
dentally infect it with a virus, click the Options
button on the Message Bar, choose Enable This
Content and click OK. This option enables con-
tent until the next time you open the database,
when you’ll have to repeat these steps to
enable content again If you created the data-
base and it’s supposed to contain macros, VBA
procedures, or action queries, you can prevent
Access from displaying the security message
when you open the database. (See Book VI,
Chapter 1 for details.)

If you have antivirus software, you’d do well to
scan any and all files you download from the
Internet for viruses before you actually open
such files. These days, most viruses spread
through e-mail attachments. Virtually all
antivirus programs automatically scan all
incoming e-mail attachments for viruses before
allowing you to open them.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 19

Opening a Database20

To open a database from the Getting Started window, click its name if it
appears in the list of recently used databases (on the right). If the name
doesn’t appear, click the More option at the top of the list of recently opened
databases, and then navigate to the database.

To open a database once you see the regular Access window, follow these
steps:

1. Click the Office Button and choose Open

The Office Button is the round button in the top left corner of all Office
2007 applications.

2. Choose the file name from the Open dialog box that appears.

You may need to browse to it. Use the icons on the left side of the Open
dialog box to see different folders.

3. Click the Open button or double-click the file name.

Access opens the database. If you see an alarming security message,
check out the relevant nearby sidebar, “What’s this weird security error
message?”

Here are some handy pointers for opening databases:

✦ If you want to open a database that you used recently, you can open the
File menu and choose the file name from the right side of the File menu.

✦ From the My Computer or Windows Explorer window, you can double-
click the file name of an existing database to open it.

✦ To start Access and open a recently used file, choose Start➪My Recent
Documents and choose the file.

When you work with a database, additional windows appear within the
Access window. Exactly what you see depends on the database. A simple
database displays the Navigation Pane, described later in this chapter. Some
databases include macros or VBA modules that display a form and hide the
Navigation Pane. The database can also be programmed to hide the standard
Access components entirely.

Opening oldies
Access 2007 introduces a new file format for Access. Instead of creating
.mdb files, Access 2007 creates .accdb files. The new file format enables
integration with Microsoft Windows SharePoint Services 3.0 and Microsoft
Office Outlook 2007, allows creation of multivalued lookup fields, and offers
other new features.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 20

Book I
Chapter 2

Getting Started,
Getting Around

Opening a Database 21

Access 2007 creates .accdb files by default, but if you know someone with an
earlier version of Access who needs to use your database, you can save it in
Access 2002-2003 format, or in Access 2000 format. Click the Office button
and choose Save As to see those options. You should not use the new-to-2007
features if you know you need to save the database in a different format.

Access 2007 can open databases created in previous versions of Access.
Here’s the scoop on what happens when you open such old Access files:

✦ Access 2003: It just opens. If you create new fields or objects that use
new features in Access 2007, those objects will not work in Access 2003.
Otherwise, you can return to Access 2003 if necessary with no issues.

✦ Access 2002 (Office XP):. Access 2003 uses the same file format as 2002.
(If you have Access 2000, however, note that it can’t open Access 2002 or
2003 files.)

✦ Access 2000: It just opens, even though the file format is slightly differ-
ent. The Access title bar says Access 2000 file format but every-
thing should work fine. If you create any new objects in that old file
while it’s open in Access 2007, they won’t work if you open the database
file later in Access 2000, but everything else should work.

✦ Access 2.0, Access 95, or Access 97: When you first open one of these
older-format database files, Access gives you two choices:

• You can enable the database, which means Access 2007 keeps that
file in its usual elderly format so you can reopen it later in the older
version of Access.

• You can convert the old database to Access 2007 format. It’s your
choice; make the call based on whether you (or other people) will
have to open this database in older Access versions. (See Book VII,
Chapter 1 for more information about converting a database from
one Access version to another.)

When you open an enabled database in Access 2007, work only with the
data: You can’t create or modify database objects, such as forms and
reports. Some older VBA modules won’t run in Access 2007, either.

I have that open already!
Access is a multiuser database, which means that more than one person can
open an Access database at the same time. The usual way that this works is
that several computers on a network (usually a local area network in an office)
run Access — and all can open the same database at the same time. Access
keeps track of who is doing what, and prevents the users from (virtually)

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 21

Playing with the Access Sample Databases 22

crashing into each other. Two people trying to edit the same thing at the same
time can be tricky — Access locks out the second person until the first person
is done with the edit.

For more information, see Book VII, Chapter 2.

Getting around
After you have a database open, you’re ready to have a look around. On the
left you’ll see the Navigation Pane that lists objects in the database (if all you
see is a blue vertical stripe, click that to see the Navigation Pane; if you don’t
see a Navigation Pane or a stripe, talk to the database developer to find out
how the database is intended to be used).

You can open Access objects by double-clicking them (unless you’ve
changed the Navigation Options dialog box to let you single-click to open) or
by dragging them into the work area.

You’ll see a tab in the working area for each open object, which makes navi-
gating between open objects easy. To close an open object, click the X on the
same line as the object tab when the object is active, or right-click the tab
and choose Close.

Playing with the Access Sample Databases
Access can download some databases to give you something to play with
while you find out how the program works. They can even help spark ideas
for your own databases.

Taking Northwind for a spin
The Northwind sample database is an order-entry system that an imaginary
mail-order gourmet food company uses for tracking orders, customers, sup-
pliers, and products. The easiest way to open the Northwind database is to
choose it from the Opening window (you may have to close Access, then
open it again). Click Sample from the Template Category Pane on the far left,
then select Northwind from the center pane. The database needs a name in
the right-hand pane — you can leave the default file name or change it. Then
click Download to create the Northwind database on your computer.

You see an introductory screen (actually a form) that instructs you to click
the Options button on the Message Bar and Enable content. Then you see a
log-in form — choose a log-in name from the list (it doesn’t matter which),
and click Login.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 22

Book I
Chapter 2

Getting Started,
Getting Around

The Access Navigation Bar, Ribbon, and File menu 23

Okay, the database opens — you can tell because a window has appeared
with the name of the database as its title. So what can you do with it? How
can you see what’s in it? The next section describes this window, and how to
get it to display all the stuff in the database.

The Access Navigation Bar, Ribbon, and File menu
If you are an old Access user, you will have immediately noticed that the
Access 2007 window looks completely different than any previous version
of Access. In fact, you may have flipped straight to this section to figure out
how to get around the new Access interface. (Good move.)

The Ribbon
First you’ll notice that there is no menu. Instead there are tabs at the top of
the window, and a bunch of buttons. This is the new Ribbon that has replaced
the menu and toolbars.

A number of different tabs on the Ribbon are available, and are accessed
through the tabs at the top of the window. The Home, Create, External Data,
and Database Tools tabs are always available. Additional tabs are available
when particular objects are open — for instance, a Datasheet tab is available
when a Datasheet is active. These are known as contextual tabs.

The Ribbon presents buttons in labeled groups. That’s why this whole book
tells you (for example) to click the Excel button in the Export group of the
External Data tab on the Ribbon. To find that button, first click the External
Data tab to display the External Data tab on the Ribbon. Then find the Export
group in the middle of the Ribbon (the group names are at the bottom of the
Ribbon). Then find the Excel button within that group.

Quick Access Toolbar

Tabs

Groups

Figure 2-2:
Tabs display
different
ribbons, and
below them
the Quick
Access
toolbar is
displayed.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 23

The Access Navigation Bar, Ribbon, and File menu24

Here’s a description of the types of buttons you’ll find on each of the tabs on
the Ribbon:

✦ Home: The first button on this tab is the View button, which allows you
to change the view of the object displayed (for instance, from Design to
Datasheet for a table). Also contains buttons used mainly for dealing
with records: formatting, creating new records, creating totals, and
spelling, as well as sorting, filtering, and finding data.

✦ Create: Buttons for creating a new object in the database.

✦ External Data: Buttons to import data or objects into the current data-
base or export data or objects out of the current database, connect and
synchronize with SharePoint, and collect data via e-mail using Outlook.

✦ Database Tools: Buttons mostly of interest to developers. Buttons to dis-
play the Visual Basic editor, display (and create) relationships between
tables in the database, document and analyze the database, coordinate
with SQL, manage linked tables, create or manage a database switch-
board, encrypt the database, manage database Add-Ins, and make
an ACCDE.

✦ Contextual tabs display buttons for dealing with the current object.
For instance, all the Design views have their own tabs on the Ribbon
with buttons for tasks done in those views.

Every button has a descriptive tooltip — if you put the mouse pointer on the
button you will see the tip with the name of the button, a keyboard shortcut
that can be used instead of the button (for instance, pressing Ctrl+F instead
of clicking the Find button), and a sentence about what the button does.

Minimizing the Ribbon
You can easily minimize the Ribbon to gain more screen real estate. To mini-
mize, double-click the name of the active tab, press Ctrl+F1, or right click a
tab and choose Minimize the Ribbon.

Click any tab or press Ctrl+F1 again to redisplay the Ribbon. However, the
Ribbon will roll up again after you have clicked a button. You can use key-
board shortcuts (covered near the end of this chapter) while the Ribbon is
minimized.

To redisplay the Ribbon, press Ctrl+F1 or right-click a tab and click Minimize
the Ribbon to remove the checkmark.

If you like the Ribbon minimized, you may want to customize the Quick
Access Toolbar to display the Minimize the Ribbon button.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 24

Book I
Chapter 2

Getting Started,
Getting Around

The Access Navigation Bar, Ribbon, and File menu 25

Changing object views
For objects that have multiple views, you can now find View buttons in a
number of places. There is a View button in the first position on the Home
tab, and in the first position on the object’s contextual tab. To change
between the current view and the most recently displayed view, click the
top half of the View button. (When you first display an object, this button
switches between the Design view and the default Object view — for
instance, between Datasheet view and Table Design view, Report Layout
view and Design view, and so on.)

If you want to display a different view of the object, click the bottom half of
the View button to display a drop-down list of all the view options, and
select from that list.

Another option is the view buttons at the bottom-right corner of the Access
window — this small toolbar displays one button for each available view of
the open object. (Tooltips are available if you don’t recognize the buttons).
Yet another option is to right-click the object tab and choose the view you
want.

Quick Access toolbar
Toolbars aren’t completely gone! Access 2007 still contains a small toolbar
(shown in Figure 2-2) that appears immediately above the Ribbon.

On the toolbar are three of the most commonly used buttons that can be
used in most contexts in Access:

✦ Save: Saves changes to the current object.

✦ Undo: Undoes the last undoable action.

✦ Redo: Redoes the last redoable action.

The Quick Access toolbar can be easily customized. Click the fourth button,
the down arrow, or right-click the toolbar to see the customization menu. A
list of buttons that you can add to the Quick Access toolbar displays. Click
any command (that is, Open, Quick Print, and so on) to add its button to the
toolbar. If you don’t see the command you want to add, see if you can find
the button on the Ribbon, right-click it, and choose Add to Quick Access
toolbar.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 25

The Access Navigation Bar, Ribbon, and File menu26

If you can’t find the button you want on the Quick Access toolbar anywhere
on the Ribbon, then add buttons to the Quick Access toolbar by following
these steps:

1. Choose More Commands from the Customize Quick Access toolbar
menu.

Access displays the Customize Quick Access toolbar window of the
Access Options dialog box (you can also display the Access Options
dialog box using the Access Options button on the Office menu). See
Figure 2-3.

2. On the left side at the top, choose the type of command you want to
view from the Choose Commands From drop-down list.

Included in the list are Popular Commands, Commands not in the
Ribbon, All Commands, Macros, and Office Menu. Also listed is each tab
of the Ribbon. Once you have selected a Choose Commands From
option, the buttons from that option appear in the box below.

3. Choose which Quick Access toolbar you are customizing — choose
from the Customize Quick Access toolbar drop-down list on the right
side of the window.

Choose from customizing the Quick Access toolbar for all documents
(that is, all databases), or just for the current database.

Figure 2-3:
Customize
the Quick
Access
toolbar
using the
Customize
panel of the
Access
Options
dialog box.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 26

Book I
Chapter 2

Getting Started,
Getting Around

The Access Navigation Bar, Ribbon, and File menu 27

4. Add buttons that appear on the left to the box on the right that con-
tains the buttons on the Quick Access toolbar.

You can add a command by double-clicking the command, or by select-
ing and clicking the Add button. Note that you can remove a command
from the right-hand box by double-clicking, or by selecting and clicking
Remove.

5. If necessary, change the order of buttons on the Quick Access toolbar
by selecting a command in the right-hand box and clicking the up or
down arrows that appear to the right of the box.

Note that you can reset the Quick Access toolbar to its original buttons
by clicking the Reset button.

6. When you are happy with the list of commands to appear on the
Quick Access toolbar, click OK to see the new, customized toolbar.

The last thing you can do with the Quick Access toolbar is move it below the
Ribbon — display the Customize Quick Access toolbar menu and choose
Show Below the Ribbon.

The Office File menu
Although no menu is visible, Microsoft hasn’t completely abandoned the
menu concept — they’ve just carefully hidden it! The Office Button menu —
the File menu in older versions of Access — is displayed by clicking the
Office Button icon in the top-left corner of the Access window. The Office
Button menu is shown in Figure 2-4.

Options button

Figure 2-4:
The Office
File menu,
displayed by
clicking the
Office icon
in the top-
left corner
of the
Access
window.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 27

Mission Control: The Navigation Pane28

The menu has three important parts: the menu options (in the left column),
the recent documents (in the right column), and the buttons (at the bottom).
Note especially the Access Options button so you know where it is when you
need it!

Mission Control: The Navigation Pane
Where is the Database Window? Gone the way of the dinosaur, and replaced
by the Navigation Pane. The Navigation Pane (shown in Figure 2-5) is the
table of contents for your database. From it, you can open any table, query,
form, report, data-access page, macro, or VBA module in the database — all
simply by double-clicking the object’s name. By right-clicking objects in the
Navigation Pane, you can open the object in an alternate view, change the
name of an object, copy an object, delete an object, import or export an
object, hide or display an object, and view the object’s properties.

F11 toggles the display of the Navigation Pane — it can be rolled up into a
narrow blue vertical ribbon. You can also toggle the display by using the
double arrow at the top-right corner of the pane.

You can make the Navigation Pane narrower or wider by dragging its left
edge.

Toggle navigation pane display

Figure 2-5:
The
Navigation
Pane lists
all the
components
in the
database.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 28

Book I
Chapter 2

Getting Started,
Getting Around

Mission Control: The Navigation Pane 29

Grouping database objects
The Navigation Pane displays the objects in the database in groups. Each
group has a heading, and the group objects can be displayed and hidden by
clicking the arrow at the right of the group name.

By default the Navigation Pane shows database objects in groups of related
objects. To be more specific it displays all tables, and with each table is dis-
played all related objects.

The familiar way to group database objects is by object type, but there are
other choices also. Click the drop-down arrow on the Navigation Pane title
bar to see the grouping options (shown in Figure 2-6). Note that you can
select one option from the Navigate To Category options at the top of the
list, and one from the Filter By Group at the bottom of the list.

The Navigation Pane menu is really two menus displayed as one list — the
blue highlighted lines are the titles for each menu. So choose how to display
database objects in this way:

1. Select from the Navigate To Category list how you want objects
grouped.

2. Use the Filter By Group list to filter objects if you don’t want to see all
of them.

To see all objects sorted by object type (as you used to see them in
Access 2003), select Object Type from the first part of the menu, and All
Access Objects from the bottom part of the menu.

Figure 2-6:
The
Navigation
Pane menu
for grouping
options.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 29

Mission Control: The Navigation Pane30

Navigate To Category Options
Option How it groups database objects

Custom Displays objects grouped in the way that you define.

Object Type Displays objects grouped by object type (Tables, Queries,
Forms, Reports, Macros, Modules), with a heading for each.

Tables and Related Views Displays objects grouped by table — that is, group names are
the same as table names, and the group consists of the table
and objects that are related to it in the database. Objects may
appear in more than one group.

Created Date Displays objects grouped by create date. Groups are Today,
Last Week, Two Weeks Ago, Last Month, and Older.

Modified Date Displays objects grouped by the date they were last modified.
Groups are Today, Last Week, Two Weeks Ago, Last Month,
and Older.

You can also choose how to group your objects by right-clicking the title bar
of the Navigation Pane or empty space at the bottom of the Navigation Pane
and selecting from the Category submenu.

Filtering the Navigation Pane
In a database with lots of objects, the Navigation Pane list can get very long,
so Access 2007 provides the option to filter the list. To filter, display the
Navigation Pane menu and choose an option below the Filter By Group head-
ing. The last option will always display all groups.

The Filter By Group options change when you choose a different Navigate To
Category option to list the relevant choices. For instance, if you choose to
navigate by Object Type, the filter options are different types of objects
(tables, queries, forms, and so on). However, if you choose to navigate by
Tables and Related Views, then the filter options are the names of the tables
in the database.

Sorting objects in the Navigation Pane
You can sort objects within a group in the Navigation Pane by using the short-
cut menu. Right-click the title bar of the Navigation Pane or empty space at
the bottom of the Navigation Pane, then choose from the Sort By menu. Using
the Sort By menu, you can select both a sort order (ascending or descending)
and an attribute to sort by (Name, Type, Created Date, Modified Date). You
can also Remove Automatic Sorts (the last choice on the menu).

You can change the order of groups by using the Navigation Options dialog
box, covered later in this chapter.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 30

Book I
Chapter 2

Getting Started,
Getting Around

Mission Control: The Navigation Pane 31

Choosing size and details for
Navigation Pane objects
To determine how each object is displayed in the Navigation Pane, you can
choose from three options. Right-click the title bar of the Navigation Pane or
the empty space at the bottom of the Navigation Pane, then choose from the
View By menu. The options are

✦ Details: Displays the name of the object, the type of object, the date it
was created, and the date it was last modified.

✦ Icon: Displays a larger icon for each object, leaving more space between
listed objects.

✦ List: This is the default option — which you see in the figures through-
out this book. Each object displays with an icon indicating the type of
object it is, and its name.

Navigation Pane options
The Navigation Pane can be a powerful tool, and there’s a dialog box (shown
in Figure 2-7) to control the way it works. To display the Navigation Options
dialog box, right-click the title bar of the Navigation Pane or the empty space
at the bottom of the Navigation Pane, then choose Navigation Options. In
this dialog box, you can do several things:

Figure 2-7:
The
Navigation
Options
dialog box
controls the
way the
Navigation
pane works.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 31

Mission Control: The Navigation Pane32

✦ Customize group display: You can use the Navigation Options dialog
box to choose multiple groups to display (and hide others), and to
create custom views.

• Choose the category type that you want to customize from the
Categories list. The list of Groups will change to reflect the groups in
the selected category. Use the checkboxes to choose the groups to
display — groups without a check will be hidden.

• To change the order in which groups are displayed when displayed
in Tables and Related Views, select a group name — up and down
arrows are displayed. Click the appropriate arrow until the object
appears in the location where you want it.

✦ Find database objects: Access 2007 has a handy tool to help you find
database objects — a Navigation Pane search bar. Display the search bar
by selecting the Show Search Bar option on the Navigation Options
dialog box.

Use the search bar to find objects by typing characters into the bar. As
you type, the list in the Navigation Pane will update to show only those
objects with those letters in their names. For instance, Figure 2-8 shows
the text orders in the search bar, and only those objects with the word
orders somewhere in their names are displayed in the Navigation Pane.

✦ Open objects with a single click: The Navigation Options dialog box
allows you to select whether to open objects with a single-click or a
double-click. The default is a double-click.

Creating custom groups
Rather than using the default categories for Navigation Pane groups, you can
create your own custom groups using the Navigation Options dialog box,
and then drag database objects into the new groups. Here’s how it’s done:

Figure 2-8:
The search
bar enables
you to find
objects with
orders in
their names.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 32

Book I
Chapter 2

Getting Started,
Getting Around

Mission Control: The Navigation Pane 33

1. To display the Navigation Options dialog box, right-click the title bar
of the Navigation Pane or the empty space at the bottom of the
Navigation Pane, then choose Navigation Options.

2. In the Categories box, select Custom, or create a new custom category
by using the Add Item button beneath the Categories box.

3. Be sure the custom category you created is selected, and create new
groups by using the Add Group button below the Groups box. Change
the order of the groups, if necessary, by using the up and down
arrows that appear when the group is selected.

Be sure to leave the Unassigned Objects category checked until you
have assigned objects to their groups.

4. Click OK to close the Navigation Options dialog box.

5. Click the drop-down arrow on the Navigation Pane title bar, and then
choose a custom category from the menu.

You now see the groups you created in Step 3, and the database objects
in the Unassigned Objects group.

6. Assign objects to groups by following these steps:

a. Select single objects, or select multiple objects by holding down Ctrl
as you select.

b. Drag objects to their new groups, or right-click, select Add to group,
and choose the group name. Note that you can create a new group
using this method.

c. Notice that you are creating shortcuts to the objects (the shortcut
arrow displays with the object type icon). You can rename shortcuts
by right-clicking them and choosing Rename Shortcut.

7. When all objects are assigned to groups, you may choose to hide the
Unassigned Objects group.

You can create more than one custom category, and the custom categories
may be used to take the place of Switchboards that were used in earlier ver-
sions of Access.

Hiding objects
You can hide objects and groups completely, or make them unavailable (they
appear on-screen but they’re transparent). You can choose to hide objects
individually, or you can hide whole groups. The Show Hidden Objects check
box in the Navigation Options dialog box determines whether hidden objects
are completely invisible or just transparent.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 33

Creating, Deleting, Renaming, Copying, and Printing Objects34

To hide objects, first display the Navigation Options dialog box (by right-
clicking the Navigation Pane title bar) and then choose Navigation Options.
To hide an entire group, right-click the group title and choose Hide. You can
also hide a group by using the Navigation Options dialog box (see Customize
Group Display, earlier in this chapter). To redisplay the group, check its box
in the Navigation Options dialog box.

There are two ways to hide an object. You may want to hide it in a single
group, or you may want to hide it so it won’t appear anywhere in the
Navigation Pane. Here are the possibilities:

✦ To hide the object in a single group, right-click the object name and
choose Hide in this Group.

✦ To hide the object completely, right-click and choose Object Properties.
Select the Hidden check box in the Attributes section at the bottom of
the Property sheet.

✦ To redisplay the object, select the Show Hidden Objects check box in
the Navigation Options dialog box to display the object in a transparent
font, and then redisplay the Object Properties dialog box and deselect
the Hidden attribute.

Creating, Deleting, Renaming, Copying,
and Printing Objects

Throughout this book, you hear about how to create and modify tables,
forms, reports, and other Access objects using the Database window. A
couple of tasks that work the same way for all Access objects crop up time
and again, so you may as well find out about them right here.

✦ Creating an object: Display the Create tab on the Ribbon and then click
the appropriate button. You usually see options to create the object by
either running a wizard to step you through the process or by using
Design view — a window with settings for designing the object.

✦ See Book II, Chapter 1 for creating tables; Book III, Chapter 1 for queries;
Book IV, Chapter 1 for forms; Book V, Chapter 1 for reports; Book VI,
Chapter 1 for macros; Book VIII, Chapter 2 for VBA modules. (Ha! It
wasn’t Chapter 1 this time!)

✦ Deleting an object: Select the object and press the Delete key. Simple
enough! Clicking the Delete icon on the Home tab of the Ribbon works,
too, as does right-clicking the object and then choosing Delete. Access
asks whether you’re really, truly sure before blowing the object away.
Just remember that when you delete a table, you delete all its data, too.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 34

Book I
Chapter 2

Getting Started,
Getting Around

Using Wizards 35

✦ Renaming an object: Click the name of the object and press F2. Or right-
click the name and choose Rename. Either way, a box appears around
the object’s name. Type a new name and press Enter. Press Esc if you
change your mind.

✦ Copying an object: Select the object you want to copy, press Ctrl+C, and
press Ctrl+V. (The Copy and Paste buttons on the Ribbon work, too.)
Access pops up a Paste As dialog box, asking what name to use for the
copy. Type a name in and click OK.

When you are creating a form or report, starting with a copy of an exist-
ing report (rather than starting a whole new one from scratch) is faster!

✦ Printing an object: Select or open the object you want to print and then
press Ctrl+P, click the Print button on the Quick Access toolbar (shown
on the left in the margin), or choose Office Button➪Print. If you want to
see what you get before you waste paper on it, click the Office Button,
select the arrow to the right of the Print option, and choose Print Preview
before printing.

✦ Creating a shortcut to an object: If you frequently want to start Access,
open your database, and immediately open a specific object, you can
create a Windows shortcut to the object. The shortcut can live on your
Windows desktop or on your Start menu. Just drag the object from the
Database window to your Windows desktop — Windows creates the
shortcut. You can then drag this shortcut to the Start menu if you want
the shortcut on your Start menu.

You can find lots more about printing in Book V, Chapter 2, which talks
about making and printing reports.

Using Wizards
Years ago, in a land far, far away (Washington state, actually), Microsoft
invented wizards, programs that step you through the process of executing
a commonly used command. Instead of presenting you with a big, hairy-
looking dialog box with zillions of options, a wizard asks you one or two
questions at a time, and uses the information you already provided before
asking for more input. All programs in Microsoft Office, including Access,
come with wizards.

Wizards appear in dialog boxes that pop up in response to a command.
For example, on the Create tab on the Ribbon, click the More button in the
Forms group and choose Form Wizard. The Form Wizard pops up, as shown
in Figure 2-9.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 35

Getting Help36

All Microsoft wizards follow the same pattern of asking a series of questions.
Answer each question and click the Next button at the bottom of the dialog
box — and you move to the next step. If you want to go back and change the
answer you gave on a previous window, click the Back button. You can bag
the whole thing by clicking Cancel. The Finish button is grayed out (and
unclickable) until you provide enough information for the wizard to com-
plete his (her? its?) task.

You can select all items in a list by clicking the double arrow. Select one by
clicking the single arrow. And you can deselect by using the analogous arrow
buttons that point in the opposite direction. It should be clear how to use
other settings; if you have questions, refer to the section of the book about
that particular wizard.

Getting Help
Access offers online help, and it can be quite useful, so it’s worth learning
how to use it. To ask the Access Help system a question, here’s the drill:

1. Click the question mark in the upper-right corner of the Access
window (or press F1).

2. Type some search words in the Help box and then press Enter.

Access first searches its Help system for matches, and then displays any
search results in the window.

3. Click a topic to see more information.

You can also click the book icon on the Help window to see the Table of
Contents pane.

Figure 2-9:
The Form
Wizard
steps you
through the
process of
creating a
new form.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 36

Book I
Chapter 2

Getting Started,
Getting Around

Saving Time with Keyboard Shortcuts 37

The following Web sites we find useful for getting answers to Access
questions:

✦ The Access Web: www.mvps.org/access

✦ Microsoft Support: support.microsoft.com

✦ The MSDN Library (Microsoft Developers’ Network):
msdn.microsoft.com/access

✦ TechNet Online: www.microsoft.com/technet

Saving Time with Keyboard Shortcuts
Some people like to keep their hands on the keyboard as much as possible.
For a fast typist, pressing keys is quicker and more efficient than pointing
and clicking with the mouse. For those nimble-fingered folks, Access (like
most other Windows programs) includes keyboard shortcuts — key combi-
nations that issue the same commands you normally choose from the
Ribbon.

In Access 2007, as in earlier versions of Access, you can use the keyboard
shortcuts to avoid having to leave the keyboard and use the mouse to click
buttons. To activate KeyTips, which help you navigate the Ribbon without
the mouse, follow these steps:

1. Press the Alt key.

If you look carefully, you will see letters pop up on the Ribbon — these
letters correspond to tabs, sections of the Ribbon, buttons, or drop-
down list items.

2. Press the letter for the tab, section, or button you want and more let-
ters will appear. Keep on typing until you’ve executed the command.

• The letters don’t change, so you can memorize common keystrokes
so that you get your work done faster.

• Sometimes more than one character is used for a shortcut, for
instance, FF for font face. Just type what you see to execute the
command.

It’s possible that the old menu commands whose keystrokes you memorized
may still work. Give ‘em a try before you give up and learn the new sequence.

Table 2-2 shows a list of our favorite shortcuts.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 37

Saving Time with Keyboard Shortcuts38

Some of these keystrokes only work in specific situations — for example,
when you edit something or work in a particular kind of window. Throughout
this book, we tell you which keys do what and when.

Table 2-2 Shortcut Keys in Access
Key Combination Action

F1 Displays the Help window.

Ctrl+F1 Hides or displays the Ribbon.

F5 Goes to the record with the record number you type.

F6 Moves the focus to another area of the window.

F7 Checks the spelling in the selected object.

F11 Hides or displays the Navigation Pane.

Del Deletes the selected object.

Alt+Enter Displays the properties of the selected object.

Ctrl+C Copies the selected text or objects to the Clipboard.

Ctrl+F Finds text (with the option to replace it) in the open table, query,
or form.

Ctrl+N Starts a new database.

Ctrl+O Opens a database.

Ctrl+P Prints the selected object.

Ctrl+S Saves the selected object.

Ctrl+V Pastes the contents of the Clipboard to the active window.

Ctrl+X Deletes the selected text or object and saves it in the Clipboard.

Ctrl+Z Undoes the last action that can be undone (our all-time
favorite!).

Ctrl+; Types today’s date.

Ctrl+” Duplicates the entry from the same field in the previous record.

06_036494 bk01ch02.qxp 11/17/06 8:18 AM Page 38

Chapter 3: Creating a Database
from Templates

In This Chapter
� Finding and using templates

� Exploring a template

� Modifying a template to fit your needs

Creating a database is no small feat. It takes planning, design, and plain,
old-fashioned hard work. It also takes some knowledge of how database

systems work: things like database design, tables, one-to-many relation-
ships, primary keys, foreign keys, queries, forms, reports, and many other
things you probably didn’t learn in school.

To make matters worse, when it comes to database development, you really
can’t make things up and figure things out as you go. You have to design
your tables correctly before you do anything else because everything you
do is based on those tables. After you get going and start creating things,
you often can’t easily change your mind and fix the tables: In doing so, you
might break many of those things you created from the original tables.

As its name implies, in Access, a template is a pre-designed database designed
to help with a specific task. The template already has tables and some objects
designed, built, and ready to go. You can use those objects as delivered in the
template, or you can customize them to suit your own needs.

The advantage to a template is that you don’t have to start completely from
scratch. You can leverage the knowledge of someone who has already been
around the block a few times to avoid common pitfalls. If you’re in a hurry, a
template can also save you a lot of time.

When you download a template and save it, you basically create your own
database that’s identical to the template. You can open and close that data-
base as you would a database you created from scratch.

There’s no rule that says you must change a database that you created from
a template. If that database works fine for you, there’s nothing more to do,
other than to spend some time using and understanding that database. (The
Help file that comes with the template should offer some useful information
along those lines.)

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 39

Finding Templates40

If the database that the template created provides some (but not all) of the
capability you need in your own database, consider the template more of a
timesaver than a finished project. It’s a time-saver to the extent that it will
have already done much of the work for you — but you have to do the rest
of the work to change the template so it suits your needs better.

Unfortunately, the template isn’t much of a time-saver if you don’t know
what the heck you’re doing! And you have to know what you’re doing in
order to make an effective change to a template. It’s just the nature of the
beast with database management.

Finding Templates
Templates aren’t really a part of Access 2007. Templates are optional extras
you find on the Internet. There isn’t even a fixed set of templates that we can
tell you about. The templates available to you vary, depending on whatever’s
on the Internet the day you go and check.

That’s not to say that templates go away. When a template is posted, it usu-
ally stays there forever, so you don’t have to worry about missing out on
some great opportunity. It’s just that we have no way of knowing how many
templates will be available by the time you read this. We can’t even predict
exactly how things will look on your screen when you go looking for tem-
plates. All we can do is give you some general pointers on how to find them.

Start by opening Microsoft Office Access 2007. If you already have a database
open in Access, you’ll want to close that so you’re just in the Access program,
not in a specific database. Click the Office Button, shown in Figure 3-1, and
choose Close Database if you’re in a database. If you don’t see anything about
templates on your screen, click the Office Button and choose New.

After you click New, you see options similar to those in Figure 3-2. The left
column shows Template Categories and From Microsoft Office Online. The
names beneath those headings are names of categories. Click a category
name. Templates within that category appear in the main pane to the right.
For example, on the day we wrote this chapter, clicking Business revealed
the templates shown in Figure 3-2. (There may be many others by the time
you read this.)

Each icon in the center pane represents a template. For example, in Figure
3-2, Tasks, Sales Pipeline, Projects, and so forth are all templates. When you
click one of those icons, the pane to the right shows information about the
template. Look through the available templates and try to find one that’s
similar to the database you want to create. If there are several, feel free to
pick any one of them and try it out. If you don’t like it, you can always go
back and try a different one.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 40

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Finding Templates 41

After you’ve decided on a template, clicks its icon. You’ll see a suggested file-
name in the right pane. You can keep that filename or give it a filename of
your own choosing, but don’t change the .accdb filename extension: That
extension identifies the file as an Access database. Click the Download
button. What happens next depends on the template you chose, but typi-
cally you see an “About This Template” help page that provides more infor-
mation about the template. You might want to print that for future reference.
Just click the Print button in the toolbar above the help page. Then you can
close the Access Help window and take a look at the template.

Figure 3-2:
Business
templates
online.

Figure 3-1:
Close
whatever
database
you’re
working
in before
you start
looking for
templates.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 41

Exploring a Template42

The template is now an actual database stored on your computer. At first, it
won’t look like much. On the screen you’ll likely see only a single table or
form. But that’s not the whole database. There’s much more to it, as you’ll
discover in the next section.

Exploring a Template
As we discussed in Chapter 1 of this minibook, a database isn’t a single
object like a Word document or Excel worksheet. Rather, an Access database
is a collection of many different kinds of objects. To see names of objects in
the template you’ve downloaded, click the Navigation Pane at the left side of
Access’s program window. Then click the template name of that pane and
choose Object Type, as shown in Figure 3-3.

The left column shows bars titled Tables, Queries, Forms, Reports, and
Macros. Each represents a type of Access object. Click any bar to show or
hide objects of that type. The exact objects you see depend on the template
you downloaded. Figure 3-4 shows a general example. You’ll likely see other
objects on your own screen because all templates are unique.

To open an object, double-click its name. Most objects open in the main
pane to the right of the Navigation Pane. All of the tables will be empty. The
idea is to enter your own data, or at least make up some sample data to play
around with.

Figure 3-3:
View the
template’s
objects by
type.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 42

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Exploring a Template 43

Viewing an object’s design
The objects in a database don’t just appear out of nowhere. Someone had to
create each object. They did so through the object’s Design view. There are
two ways to get to an object’s design view:

✦ If the object is already open, right-click its tab and choose Design view,
as in the example shown in Figure 3-5.

✦ If the item isn’t already open, right-click its name in the Navigation Pane
and choose Design view.

Figure 3-5:
One way to
an object’s
Design
view.

Figure 3-4:
Viewing
objects in a
database.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 43

Exploring a Template44

Viewing table relationships
Access is a relational database-management system, which means it’s a tool
for managing large volumes of data where there are natural one-to-many rela-
tionships among those data. For example, every one customer may place
many orders. Every one student may enroll in many courses. Any one confer-
ence may be attended by many people. Every family unit contains many
people. Every music category, such as jazz, has many artists, albums, and
songs. We could fill this book with examples of natural one-to-many relation-
ships in the world.

The natural one-to-many relationships among the kinds being managed in
one database must be built into the design of its tables. Access can’t figure
out the one-to-many relationships for you. Designing the tables so they accu-
rately reflect those relationships is your responsibility, unless, of course,
you’re using a template where someone else has already figured all that out.

The names of tables in a database don’t really tell you anything about the
one-to-many relationships among those tables, but you can usually see those
relationships through the Relationships window. Click the Database Tools
tab of the Ribbon and then click the Relationships button in the Show/Hide
group (Figure 3-6). The Relationships window opens.

Each box in the Relationship window that opens represents a table in the
current database. Each name in a box represents a field from that table. You
can move and size those boxes using standard Windows click and drag.
Figure 3-7 shows an example using a template that contains three tables
named Customers, Opportunities, and Employees.

What’s up with the Security Alert?
Whenever you open a database that contains
macros or VBA code, Access displays a Security
Alert under the Ribbon. That’s because people
can use macros and VBA code to create mal-
ware, software that isn’t good for your computer.
There’s no way for Access or the computer to tell
if the macros and code in the database is mal-
ware or not. You have to decide that for yourself
based on the source of the database.

It’s safe to assume that the templates you down-
load from the Office Online Web site do not con-
tain malware. (At least we hope so. It stands to
reason that Microsoft would be foolish to allow

anyone and everyone to post templates without
scrutinizing them for malware before offering
them to the public.) Click the Enable Content
button to allow the macros and VBA code to
work.

Databases or templates that you get unexpect-
edly as e-mail attachments are another matter
and far more risky. In fact, the only safe thing to
do with such attachments is to delete them with
the rest of your junk mail. Don’t open them;
don’t save them. Stick with templates and data-
bases from legitimate businesses and col-
leagues that you know and trust.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 44

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Exploring a Template 45

The lines connecting the tables describe the relationships. The little 1 points
to the primary key of the table on the “one” side of the relationship. The infin-
ity symbol (it looks like a sideways 8) points to the corresponding foreign key
on the “many” side of the relationship. For every one customer record, there
may be many records in the Opportunities table. Apparently employees also
have lots of opportunities because for every one record in the Employees
table, there many be many records in the Opportunities table as well.

You can’t change the relationships among tables in the Relationships
window. Well, physically, you could mess around with the lines connecting
the tables. But the results would probably not be good. All of the other
objects in the database (queries, forms, reports) are built around the tables
and relationships you see in the Relationships window. Any messing around
with connecting lines would almost surely prevent those other objects from
working correctly. Nonetheless, the Relationships window gives you a tech-
nical bird’s-eye view of what the database is about.

To close the Relationships window, or any other open Access object, click its
Close button, which is the X button you see near the upper right corner of
Figure 3-7.

Figure 3-7:
Each box
in the
Relation-
ships
window
represents a
table in the
database.

Figure 3-6:
Database
tools and
relation-
ships.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 45

Modifying Objects46

Modifying Objects
Before you tear into a template and start making changes, you really need to
spend some time working with it. Get to know what it is and how it works.
Get a feel for what’s good for your own personal needs, and what’s not so
good or missing. Because forms and reports act as the main user interface to
a database, you’ll probably want to spend most of your time with those.

There are two ways to use each object.

✦ In Design view: One way is in the Design view, where you actually create
or modify the look and feel of the object. In Design view, you’re playing
the role of the person who is creating the database.

✦ As a user of the database: The other way to use an object is as a user of
the database. The person who uses a database isn’t necessarily the
same person who designed and created the database. The user just uses
the finished database to put data into the database, and get data out of
the database.

Keep in mind that you never use Design view to use an object. To use an
object, you double-click its name in the Navigation Pane; you use Design view
only to change an object. Finally, keep in mind that the data you see in most
forms comes from the underlying tables. If you want to add a field, you actu-
ally have to add the field to an appropriate table before you add it to the form.

Modifying tables
All of the information that an Access database keeps track of is in its tables.
If you need to store more information than a template provides, the first step
is to create a field for that data. You can’t just stick the field in any table
though. It has to be in whichever table is appropriate for the field. For exam-
ple, if you need to store more information about contacts or customers, the
field has to go into the Contacts or Customers table.

To modify a table, open it in Design view. Scroll to the bottom of the list of
fields names already in the table. Or, to insert a new field above an existing
field, right-click the existing field’s name and choose Insert Rows. Then you
can type the new field’s name into the Field Name column (Figure 3-8).

After you type the field name, choose an appropriate data type for the new
field. After you’ve chosen the data type, you can use options under Field
Properties to set a size, format, caption, default value, or whatever is appro-
priate to your field and the data type you chose.

For more information on relationships between tables, see Chapter 4 of this
minibook. For general information on tables, field names, data types, and
field properties, see Book II.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 46

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Modifying Objects 47

The column to the right of the Data Type field is labeled Description (on
your screen). The Description for a field is optional. Feel free to leave it
blank. You can add as many fields as you wish.

Changing the primary key, its field name, or data type will likely cause a
world of problems. You might be thinking of using some other unique value,
like a part number, product ID, Social Security number, e-mail address, or
whatever as a primary key. It’s fine to add such a field to a table. But don’t
mark it as the primary key.

After you’ve added your own custom primary key field, you can set its
Indexed field property to Yes, No Duplicates. That prevents duplicate
records with the same value from being entered into the table. And it won’t
mess up the existing primary key, queries, or other things in the database
that require the table’s current primary key field.

Deleting fields and changing existing field names could result in some prob-
lems as well. The more existing fields you add or change, the more problems
you’re likely to create later down the road for yourself.

Modifying queries
Queries provide a means of sorting and filtering data from a table. They’re
also the tool used to bring data from multiple tables together as though the
data were stored in one big table. They’re used mainly to create a dataset to
which you bind a form or report.

When you add a field to a table, that field doesn’t necessarily get added to all
queries to which the table is bound. It only gets added, automatically, to
queries that contain a * column. The asterisk (*) is the symbol for “all fields
from the table.” Of course, it also only gets added to queries that include the
table to which you added the field. Other queries don’t need the field.

To see to which table (or tables) a query is bound, right-click the query
name and choose Design view. The table(s) to which the query is bound

Figure 3-8:
A table
design with
an empty
row
inserted.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 47

Modifying Objects48

appears as a field list at the top of the query. For example, the query in
Figure 3-9 is bound to the Opportunities table, because a field list for that
table is right at the top of the query.

In Figure 3-9, you can also see that the query already includes all fields from
the Opportunities table. You can tell by the word Opportunities.* in the
first column of the first row. Opportunities.* means “all fields from the
Opportunities table.” Open that same query in Datasheet view, and you’ll see
it already contains all fields from the Opportunities table, including fields
you added yourself.

In short, if you add a field to a table, you only need to add that same field to
queries that are bound to that same table: Don’t use the * symbol to auto-
matically pull all fields from a table.

If a query is bound to a table you’ve changed, and if that query doesn’t use the
* operator to bind to all fields, you can add the field to the query. Just drag
the field’s name from the field list at the top of the query into the query grid.

For more information on queries, see Book III.

Changing forms
Most Access forms are like fill-in-the-blank paper forms, except you fill in the
blanks on-screen rather than on paper. But forms can actually contain just
about anything you want, including pictures, charts, graphs, and columnar
tables.

Most forms get their data from tables or queries that are bound to tables.
When you enter data into a form, you’re really entering it into the underlying
table. When you change or delete data on a form, you’re really making that
change to the underlying table.

Figure 3-9:
A query in
Design
view.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 48

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Modifying Objects 49

As with any object, you open a form by double-clicking its name in the
Navigation window. The form opens in Form view, where you can interact
with data from the underlying table.

When you want to change a form, open it Design view. As always, you can
right-click the form’s name and choose Design view. If the form is already
open, right-click its tab and choose Design view.

Most forms are bound to an underlying table or query. The name of that
table or query shows in the Record Source property when you’re viewing
properties for the form as a whole. So let’s say you’ve opened a form in
Design view and want to know which table or query it’s bound to. Here’s
how you find out:

1. If the Property sheet isn’t already open, press Alt+Enter or click the
Design tab, then click the Property Sheet button in the Tools group in
the Ribbon.

2. Choose Form from the Selection Type drop-down list to view proper-
ties for the form as a whole.

3. Click the Data or All tab so you can see the Record Source property.

You can move and size the sheet, and change column widths using standard
Windows click-and-drag techniques. Figure 3-10 shows an example of a
Property sheet. There you can see where Form is the selection type; the All
tab is selected.

The Record Source property tells you that the form View is bound to an
object named Open Opportunities Extended. You’d find that object
listed under Tables or Queries in the Navigation Pane.

Figure 3-10:
Property
Sheet with
Form
selected
under
Selection
Type.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 49

Modifying Objects50

So, say the form you’re currently working on is bound to a table to which
you’ve added one or more fields of your own. How do you get your field(s)
onto the existing form?

First you have to get to the Field List for the underlying table or query. To do
that, click the Add Existing Fields button from the Tools group of the Design
tab of the Ribbon. Each name in the Field List that opens represents a field
from the underlying table or query. Figure 3-11 shows an example.

Any fields you added to the underlying table should be included in the Field
List. So it’s just a matter of dragging that field name from the Field List onto
the form. (Well, that plus using some basic form-design skills to make things
look clean and tidy.)

See Book IV for the full scoop on designing forms.

If a field that you added to a table doesn’t show up in the Field List, consider
the Record Source. If the current form isn’t bound to the table to which you
added the field, that’s your explanation. Only forms that are bound to the
table to which you added the field will show the new field in the Field List.

If the Record Source is a query, there are a couple of reasons why your field
might not show up in the Field List: for example, if that query isn’t bound to
the table to which you added the field. The table to which you added the
field isn’t relevant to the query or the form. But if the query is bound to your
table, you need to open that query and add your custom new field to that
query’s grid to get that field to show up in the Field List.

All of what we just told you reflects on the fact that you really can’t build
Access database with zero knowledge of databases and zero knowledge of
the template with which you’re working. You really need to understand data-
base design and how to construct tables to accurately reflect the natural

Figure 3-11:
A sample
Field List.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 50

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Modifying Objects 51

one-to-many relationships among the data you’re managing. A template
won’t really help with that part of it. A template just saves you the trouble of
having to develop each and every object from scratch.

Modifying reports
Every report is bound (like a form) to an underlying table or query. The main
difference is that reports are all about printing data on paper. Forms are
about displaying and interacting with data on the screen. But you modify
reports using the same tools and techniques you use with forms:

✦ To view a report, double-click its name in the Navigation Pane.

✦ To print an open report, click the Print icon up by the File button.

✦ To modify a report, open it in Design view.

✦ To see what table or query a report is bound to, choose Report as the
selection type in the Property sheet. Then look at the Record Source
property on the Data or All tab of the Property sheet.

✦ To add your own fields to a report, open the Field List, and then drag
field names onto the report design.

See Book V for the lowdown on report design.

Exploring buttons
As you explore a template, you may find buttons or other clickable items
that perform some action. Or you might find a drop-down list that lets you
choose a person’s name and go straight to that person’s record on the form.
These things are fundamentally different from the controls that show data
from the underlying table. Usually, they’re unbound, meaning they’re not
bound to a field in an underlying query or table.

Buttons, links, and other controls that take action when you click them are
usually tied to a macro or VBA code. To find out how such an item works its
magic, follow three quick steps:

1. In Design view, open the form that contains the button or link.

2. Click the item to select it.

The Property sheet changes to show properties for that selected item.

3. If the item you clicked is a button, link, or other unbound control,
click the Event tab see clues as to how the item works.

In Figure 3-12, we’ve clicked a button named E-mail in a form from a tem-
plate. We’ve also opened the Property sheet and clicked the Event tab.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 51

Modifying Objects52

In Figure 3-12, the Property Sheet tells us three things about the currently
selected item:

✦ It’s a command button. (It says Command Button at the top of the
Property sheet, next to Selection Type.)

✦ Its name is cmdEmail. (The item’s name appears in the drop-down list
at the top of the Property sheet.)

✦ Clicking the button executes an embedded macro. (The On Click
property shows [Embedded Macro].)

To see the embedded macro, first click the words [Embedded Macro]. You
see a button with three dots on it (...). That’s called the Build button.
When you click the Build button, the embedded macro opens in the Macro
Builder, shown in Figure 3-13.

There isn’t really any way to modify a macro by guessing or trying to figure it
out. You need a thorough understanding of what macros are and what they
can do in order to make any useful change to a macro. To leave the Macro

Figure 3-13:
Macro
Builder.

Figure 3-12:
The
selected
button and
Property
Sheet
Event tab.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 52

Book I
Chapter 3

Creating a Database
from

 Tem
plates

Using a Template Database 53

Builder and return to the form, click the Close (X) button, shown above and
to the right of the Comment column heading shown in Figure 3-13.

See Book VI for the story on macros.

Using a Template Database
So far in this chapter we’ve looked at techniques for using a template as the
starting point for creating your own database. But modifying a database isn’t
a requirement. You can use a template database as-is, without making any
modifications whatsoever. Exactly how you use a database varies from one
database template to the next. Hopefully, the Help that came with the tem-
plate will explain that. But basically you just don’t use the Design view to
modify objects. You simply open an object (by double-clicking its name in
the left column) when you want to use it.

For example, the sample Sales Pipeline database in this chapter includes a
form named Customer Details. When you double-click that form name, it
opens as in Figure 3-14. To use the form, you fill in the blanks with informa-
tion about an actual customer. Or, in the case of the picture, you right-click
the generic picture, choose Manage Attachments, and use the Add button to
add one or more pictures.

Figure 3-14:
A sample
form.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 53

Using a Template Database54

You can also enter data directly into tables. For example the Sales Pipeline
table contains tables named Customers, Employees, and Opportunities.
Double-clicking any table name in the Navigation Pane opens the table. You
can type data directly into the table. (The ID field gets filled automatically, so
you can leave that field alone).

Queries, reports, and forms show data from tables. Each time you open one
of those kinds of objects, it automatically reflects data that’s currently in the
tables.

So really, the main advantage to using a template is that someone has already
done the work required to create the database. But you still need to know
quite a bit about Access to modify the template, or even just to use it as-is.
First and foremost, you have to understand what tables are and how to put
data directly into tables. That’s what Book II, Chapter 2 is about.

It’s unlikely that you’d ever need to work directly with queries in a template
database. But you’ll probably want to use the template’s forms and reports.
You can open any form or report just by double-clicking its name in the
Navigation Pane. Most will be empty until you’ve put some data in the tables.
Books IV and V talk about forms and reports in detail.

07_036494 bk01ch03.qxp 11/17/06 8:19 AM Page 54

Chapter 4: Designing Your
Database the Relational Way

In This Chapter
� Designing the tables in which you’ll store your data

� Streamlining your design to make it truly “relational”

� Linking your tables together with joins

� Choosing the right data types for your fields

� Compatibility between Access versions

Relational database design? Yikes! Sounds like a serious programming
project. But what is it, exactly? Designing a database means figuring

out how the information is stored — that is, which information Access
stores in each table of the database, and how it all connects together. Unlike
working with a spreadsheet or word processor, you have to design a data-
base beforehand — you can’t just start typing information in. (Well, sure,
you can, but we don’t recommend it — the result is usually a mess.) How
easy it is later to enter and edit information and create useful queries,
forms, and reports depends on how well your database is designed. A good
database design can streamline your work in Access.

This chapter takes you through the process of designing the table(s) you
need in your database, including the relationships between them. Book II,
Chapter 1 contains the instructions for creating the tables in Access.

What Are Tables, Fields, and Keys?
In Access, you store your data in tables — lists of records that work like
the index cards that make up an address list. Each record contains informa-
tion in the same format, in fields — specified places for individual pieces
of information.

If you want to keep track of the customers of your store, you make a table of
customers, with one record per customer. Each record is made up of the
same set of fields, which could be the customer’s last name, first name,
street address, city, state or province, ZIP or postal code, country, and
phone number (as shown in Figure 4-1).

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 55

What Are Tables, Fields, and Keys?56

After you use Access to create a table, you can really get busy — entering,
editing, deleting, and sorting the records in various ways, and printing many
types of reports (including columnar reports, forms, summaries, mailing
labels, and form letters). Access allows you to create as many tables as you
need in your database.

Designing a database means deciding (for openers) what tables your data-
base will need to include, and what fields are in each table. At the most basic
level, it means designing the needed forms and most likely required reports.
This is the computer equivalent of designing the form or file card onto which
you write the data, specifying which blanks need to be filled in and which
are optional.

Data types
Fields can be different data types. Some fields contain textual alphanumeric
information, such as a last name or street address. Other fields contain num-
bers, such as someone’s age. Others contain logical information — a yes or
no regarding some condition. Still others contain dates or times, such as the
date that the record was added to the database. Table 4-1 contains a list of
the most commonly used Access data types.

Table 4-1 Commonly Used Data Types for Fields
Data Type What It Holds

Text Short chunks of text up to 255 characters, or special codes that contain
non-numeric characters, such as phone numbers ((xxx)xxx-xxxx) and
ZIP codes (xxxxx-xxxx) that require parentheses and hyphens, which
aren’t allowed in numbers.

Memo The same information as a Text field, but more of them — up to 65,536
characters.

Tom Jones
Evan Brown

Robert Jones
Mary Smith
123 Main St
Plainsfield, NJ 08523
609-555-2468

A Record

A Field
Figure 4-1:
File cards
showing
records and
fields.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 56

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
What Are Tables, Fields, and Keys? 57

Data Type What It Holds

Number Only numbers. You may use + or – before the number, and a decimal
point. You can use Number fields in numeric calculations. Number
fields come in a bunch of different sizes, depending on how large the
numbers are and how many decimal places you want to store. (See
Book II, Chapter 1.)

Currency Numbers with a currency sign in front of them ($, ¥, and so on). You can
do numeric calculations with these fields.

AutoNumber Numbers unique to each record and assigned by Access as you add
records, starting at 1.

Date/Time These fields calculate (what else?) dates and times.

OLE Object Linking and Embedding. Here’s where you can embed other
kinds of data in your database — pictures, sound, Word documents,
even video.

Hyperlink This text string is formatted as a hyperlink (if you click the link, it takes
you to the page) — especially useful for databases that would benefit
from having Web pages linked to them.

Yes/No Yes or no (a particular condition is, or isn’t, in effect) — or other two-
word sets, such as True/False, On/Off, or Male/Female.

Primary key fields for your tables
A primary key field (or just key) is a field that uniquely identifies each record
in a table. If (for example) each product in a Products table has a different
product code, then the Product Code field uniquely identifies a record in
this table. If you search the Products table for a product code, you come up
with — at most — one record.

However, not all tables have an obvious key field. You may have to combine
two or three fields to come up with values that are different for every record
in the table. In a Books table, for instance, you may have several books with
the same title. If you assume that an author never writes more than one book
with the same title, a combination of the Title and Author fields may work as
a key field.

For an address list, you may think that the combination of first and last
name would do the trick, but it doesn’t take long before you realize that you
know two Jim Smiths. You could use a combination of first name, last name,
and phone number, but you have another alternative: Have Access issue
each record a unique number, and use that number as the key field. If you
can’t figure out a good set of keys to use for a table, add an AutoNumber
field, and Access automatically numbers the records as you add them.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 57

What Are Relationships?58

Access doesn’t absolutely require every table to have a primary key field (or
fields), but if you plan to set up relationships between your tables, some
tables definitely need them. Also, key fields speed up a search for records;
Access creates an index for each primary key field and can zero in quickly on
any record by using those primary key values.

What Are Relationships?
No trick question here — it’s just that some projects (most projects) require
more than one table. For example, a database for a store has to handle lists
of customers, lists of products, and lists of vendors, for a start. All those bits
of data have to be coordinated in some useful way.

That’s where relational databases fill the bill. A relational database contains
tables that are related — well, no, not as cousins or sisters-in-law. Two tables
are related if they contain fields that match. If you have an online video
store, a relational database system probably includes related Products and
Vendors tables like these:

✦ The Products table: This is a list of the videos and other products you
sell, containing one record for each product. Each record for a product
includes a field that identifies the vendor from whom you buy your
stock.

✦ The Vendors table: This list includes name, address, and other informa-
tion about each vendor.

The Products table and the Vendors table are related because the record for
each video includes the name of a vendor; multiple videos may come from
one vendor. Figure 4-2 shows how such a one-to-many relationship (more
about that in a minute) works.

Six Stories about Little Heroes
Adventures in Asia-National Geographi
The Adventures of Curious George
I've Always Loved Airplanes
Aladdin and the Magic Lamp
Aladdin and the Magic Lamp
The Alamo
Amahl and the Night Visitors
The Amazing Bone and Other Stories

Title
ART
ROU
ROU
CHB
EBA
PV
COL
MOV
ROU

Vendor
Products

Palace Video
Reel.com
Robert's Hard to Find
Rounder Kids
Schunick Productions
Shmoo Patties
Skinnyguy.com

Company
PV
REE
ROB
ROU
SCH
SHM
SKI

Vendor Code

1250 45th Street

1263 Lower Road
2 Winton Court
Bram Layman

Address1
Vendors

Figure 4-2:
A one-to-
many
relationship
links the
Products
and Vendors
tables —
three videos
come from
one vendor.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 58

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
What Are Relationships? 59

Well, sure, you could store product information and vendor information
together, in one big table, but you’d soon be sorry. You may want to add
fields to the Products table to contain the address of the vendor from which
you bought the video. But here’s the problem: Whenever a vendor’s address
changes, you have to make that change in the record for every item you buy
from that vendor. What a pain!

A key principle of database design is: Store each piece of information once. If
you store information more than once, then you have to update it more than
once. (In real life — trust us on this one — if you update it in some places
but not in others, you end up with a mess.)

How relationships work
Sorry, no advice for the lovelorn here — luckily, relationships between tables
are much simpler than relationships between people. For two tables to be
related, you specify one or more fields in one table that match the same
number of fields in the other table. In Figure 4-2, the Product table relates to
the Vendors table because the Vendor field in the Products table contains
values that match the Vendor Code field in the Vendors table. When you look
at a video in the Products field, you can find information about the product’s
vendor by finding the record in the Vendors table that has the same value in
the matching field.

Relationships, also called (less romantically) joins, come in several flavors:

✦ One-to-many: One record in one table matches no, one, or many records
in the other table. The relationship in Figure 4-2 works this way because
one vendor can sell many videos.

✦ One-to-one: One record in one table matches exactly one record in the
other table — no more and no less.

✦ Many-to-many: Zero, one, or many records in one table match zero, one,
or many records in the other table.

The next three sections explain these three types of joins.

One-to-many relationships
This type of relationship is the most common among tables (by analogy,
think of one person with a circle of friends). In a one-to-many relationship,
many records in one table can match one record in another table. Here are
some examples of one-to-many relationships:

✦ Items in customer orders: If you run a store, customers frequently buy
several items at the same time. One record in the Orders table could
match several records in the Products table.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 59

What Are Relationships?60

✦ Vendors and invoices: If your company buys many items from another
company, you end up with a bunch of invoices from (and payments to)
that company. The relationship between the Vendors table and the
Invoices table in an accounting database is one-to-many.

✦ People living in states or provinces: The United States and Canada use
standard two-letter state and province abbreviations, and if you have an
address list, these codes should be correct. (Quick — is Quebec “QU”
or “PQ”? No peeking.) To make sure you type in the valid state and
province codes for the United States and Canada, you can create a
State/Province Codes table against which you can validate entries in the
State field of your Addresses table. One record in the State/Province
Codes table can match many records in the Addresses table.

You use a one-to-many relationship to avoid storing information from the
“one” table multiple times in the “many” table. For example, you don’t want
to store all the information about each student in the record for every class —
unless you want to hear the groan of an overloaded drive. Storing each stu-
dent’s information in one place (the Students table), and storing only the
student’s name and/or student ID in the Classes table is more efficient (and
easier to maintain).

Many database designers call the “one” table the master table and the
“many” table the detail table. In Access, primary key means the matching
field(s) in the master table; foreign key means the corresponding field(s) in
the detail table. In Figure 4-2, the Vendors table is the master table and the
Products table is the detail table. The primary key (in Vendors) is the
Vendor Code field; the foreign key (in Products) is the Vendor field.

One-to-one relationships
This type of relationship — where one record in one table matches exactly
one record in another table — is much less common in database design.
However, you may have reasons (perhaps security reasons) for separating
information into two tables. Suppose, for example, you store information
about the employees of your company. The Employees table contains the
basic information about each employee (name, address, phone, and other
personal information). The Employee Health table contains information
about each employee’s health-insurance policy (in your company, all
employees have insurance). Each record in the Employees table matches
exactly one record in the Employee Health table, and vice versa.

The question is: If you have exactly the same number of records in the
two tables, and they match exactly, why not just combine them into one
table? Most of the time, that’s exactly what you should do. In the employee-
database example, you can just add the health insurance information to the
Employees table and do away with the Employee Health table.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 60

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
What Are Relationships? 61

However, occasionally you have a good reason to separate information into
two tables connected by a one-to-one relationship. We came up with two
such scenarios:

✦ Security: One of the tables contains much more sensitive information
than the other, and you want to restrict who can see the information in
that table. Store the sensitive information in a separate table.

See Book VII, Chapter 3 for how to set up security for a database.

✦ Subset of records: Maybe only some of the employees in your company
have health insurance. (This is the real world, after all.) Rather than
leaving a lot of fields blank in the Employees table, storing insurance
data in a separate, related table is more efficient.

✦ Multiple databases: Some information is stored in a separate database.
When you use one database, you can link to a table in another database
to work with the information in that table as if it were stored in your own
database. If someone else’s database has information you need and you
link to it, you can’t combine the two tables into one table, but you can
set up a relationship.

Don’t be surprised if you almost never create one-to-one relationships
between database tables; we hardly ever do.

For a one-to-one relationship, you need one or more fields that link the two
tables. Make sure that both tables have the same primary key field(s).

Many-to-many relationships
Many-to-many relationships are more complicated than either one-to-one or
one-to-many relationships. That’s because a many-to-many is really two rela-
tionships in one. Here are some examples of tables in which zero, one, or
many records in one table can match zero, one, or many records in the other:

✦ Students in courses: If you create a database to keep track of students in
a school, many students are in each class, and each student takes many
classes. You have many records in the Students table matching one
record in the Courses table. You also have many records in the Courses
table matching one record in the Students table.

✦ Committees: If you set up a database for a club or religious group, you
may want to keep track of who is on what committee. One person can be
on lots of committees, and one committee can have lots of members.
The relationship between the People table and the Committees table is
many-to-many.

✦ Books and authors: One book can be written by a group of authors
(such as this book). And one author can write many books. The relation-
ship between the Books table and the Authors table in a bookstore
inventory database can be many-to-many.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 61

What Are Relationships?62

Figure 4-3 shows a many-to-many relationship between students and
courses. Each student is in several classes; each course has its own bunch of
students.

The problem is that Access (and most other relational-database programs)
can’t handle many-to-many relationships. Access refuses to accept that
these relationships exist. (Don’t we all know people like that?) But don’t
worry — you can work around this problem. You can create an additional
table that saves the day: The new table records the connections between the
two tables.

In the students and courses example, you can make a new table called
Course Registrations. This new table is called a junction table. Each record
in the Course Registration table assigns one student to one course. The
Students table and the Course Relationship table have a one-to-many rela-
tionship: The Students table is the master table and Course Registrations is
the detail table. The Courses table and the Course Registrations table also
have a one-to-many relationship: Again, the Courses table is the master
table. In fact, you probably want that table anyway, because you need some
place to record the student’s grade in that course. (We frequently find that
the new junction table is useful anyway.)

Figure 4-4 shows the relationships among the three tables: Students, Course
Registrations, and Courses. To provide a single primary key field that
uniquely identifies each student, we added a Student ID field to the Students
table. Each record in the Course Registrations connects one student (by
Student ID) to one course (by Class number). In real life, we’d add fields for
the student’s grade, payment date, and other information about the stu-
dent’s enrollment in the course.

Stuart
Neil
Gillian
Tom
Meg
Zac
Parker
Mason

First Name
Williams
Richards
Young
Jones
de Sousa
Arnold
Laighton
Thaxter

Last Name
Students

Intro to Computer Science
Database Design and Concepts
Access 11 Programming

Class Name
CS101
DB210
DB211

Class Number
Courses

Figure 4-3:
Many
students
can be
in each
course,
and each
student can
take many
courses.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 62

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Designing a Database 63

Designing a Database
When you feel at ease with the concepts of tables, fields, and relationships,
you’re ready to design your own relational database. The rest of this chapter
walks you through designing your database tables so your database is easy
to use, flexible, and efficient. We use the example of a bookstore as we go
through the steps to show you how designing works.

Identifying your data
Find out what information is available, who maintains it, what it looks like,
and how it is used. Make a list of the possible fields (don’t worry yet about
which fields end up in which tables). For example, a bookstore needs to
track product descriptions, prices, purchase dates, customer names, who
bought what, shipment dates (for online orders), and other information.

Eliminating redundant fields
Look over the fields you identified — make sure they’re all actually needed
for your application. Is each piece of information something that may appear
on a form or report later, or be needed to calculate something? If not, throw
it out.

In this case, it’s worth repeating: Don’t store the same information in more
than one place. In a database, redundant information makes double the work
when you’re updating the information. Instead, figure out the right place to
store the information, and store it there — once. If you can calculate one
field from another field, then store only one. For example, storing both age
and birth date is pointless; a person’s age changes — the birth date doesn’t.
Store the birth date; you can always get Access to do the math for you.

Zac
Meg
Tom
Parker
Neil
Mason
Stuart
Gillian

First Name
Arnold
de Sousa
Jones
Laighton
Richards
Thaxter
Williams
Young

Last Name
Students

AR1002
DE0014
JO4001
LA0056
RI0014
TH2589
WI0143
YO1567

Student ID

CS101
CS101
DB210

Class Number
DE0014
TH2589
JO4001

DB210RI0014

Student ID

Course
Registrations

Intro to Computer Science
Database Design and Concepts
Access 11 Programming

Class Name
CS101
DB210
DB211

Class Number
Courses

Figure 4-4:
To store a
many-to-
many
relationship,
create a
junction
table that
connects
the two
tables.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 63

Designing a Database64

The same is true for information that you can look up. For codes of all types
(such as state and province codes, product codes, and the like), make a
table for the code that includes a field for the code and a field for the code’s
meaning. Then all the other tables in your database store only the code —
and Access looks up the code’s meaning when you need it to appear in a form
or report. For the online bookstore, you don’t need to store the title and
author of each item that a customer buys; instead, you can just store the
ISBN (unique book number) of each book.

On the other hand, sometimes you can’t avoid redundancy. For example, an
item of information may change in one place but not in another, so you may
have to store it in more than one place. In the bookstore system, when the
price of a book changes, the amount that the previous customers paid for
the book hasn’t changed. In addition to storing the book’s current selling
price, you may want to store the book’s price in the record for each sale.

Organizing fields into tables
Okay, you have a bunch of fields. Are they all in one table, or should you set
up multiple tables?

One way to tell whether your system needs multiple tables is to check
whether you have different numbers of values for different fields. Say the
bookstore carries 200 different products (mainly books, we assume) and you
have about 1,600 customers. You have 200 different product names, prices,
and descriptions — while you have 1,600 different customer names,
addresses, and sets of credit-card information. Guess what — you have two
different tables: a Products table with 200 records and a Customers table
with 1,600 records.

You could start out with a design like this:

Products Customers

ISBN or Product Code First Name

Title Last Name

Author Street Address

Publisher City

Pub. Year State/Province

Price ZIP or Postcode

Cover Photo Payment Method

Taxable (Yes/No) Credit Card Number

Shipping Weight Credit Card Exp. Date

Vendor Name Check Number

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 64

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Designing a Database 65

Products Customers

Discontinued? Tax Exempt (Yes/No)

Product Type Book 1

Product Notes Book 2

Book 3

Shipping Cost

Sales Tax

Total Price

Purchase Date

In this case, you’d soon realize that one customer can make more than one
purchase. Combining customer information with purchase information won’t
work — what happens when a customer buys something else? So you leave
information about the customer in the Customers table — all the facts about
the customer that don’t change from one purchase to the next — and move
information about a specific purchase into a separate Orders table, like this:

Customers Orders

First Name Customer First Name

Last Name Customer Last Name

Street Address Purchase Date

City Book 1

State/Province Book 2

ZIP or Postcode Book 3

Phone Number Shipping Cost

Tax Exempt (Yes/No) Sales Tax

Total Price

Payment Method

Credit Card Number

Credit Card Exp. Date

Check Number

But wait — what if the customer buys more than three books at a time? (We
usually do.) And if you own the bookstore, you don’t want to put an arbi-
trary limit on how many items your customer can buy. (Limit your profit for
the sake of your database? In a word, nope.) Any time your database design
includes a bunch of fields that store essentially the same kind of information
(for example, Book 1, Book 2, and Book 3), something is wrong. An order

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 65

Designing a Database66

can consist of zero, one, or many books — does that sound familiar? Yes, a
one-to-many relationship exists between an order and the items in that
order, so you need to make a separate table for the individual items, like this:

Orders Order Details

Customer First Name ISBN

Customer Last Name Quantity

Purchase Date Price Each

Total Product Cost

Shipping Cost

Sales Tax

Total Price

Payment Method

Credit Card Number

Credit Card Exp. Date

Check Number

Now each time a customer places an order (or comes into your store to
make a purchase), you create one record in the Orders table, along with one
record for each item purchased in the Order Details table. The Order Details
table has room to store the quantity of that item, in case the customer wants
more than one of something. (We’re sure you want to buy a copy of this book
for everyone you know, right?) You should also store the selling price of the
book. Access can calculate the cost of that quantity of each book (price ×
quantity), so you don’t need to store that information.

The following are really good reasons not to store multiple fields (such as
Book 1, Book 2, and Book 3) in one table, and to create a separate table
instead:

✦ You can’t anticipate the right number of fields. If someone buys more
than three things (as in this example), you have to create a separate
order and enter everything twice.

✦ You can’t analyze the information later. What if you want to see a list of
everyone who bought the last Harry Potter book, so you can notify them
that the next one is coming out? If you have multiple fields for this infor-
mation, your query needs to look for orders that contain a Harry Potter
book in Book 1 or Book 2 or Book 3. What a pain.

We don’t want to drive this into the ground, but creating multiple, identical
fields is a problem that many first-time database designers make for them-
selves. Be good to yourself and don’t do it!

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 66

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Designing a Database 67

Add tables for codes and abbreviations
Look at your tables to see whether the fields contain any standard codes,
such as two-letter state and province codes, ZIP codes, or other codes. For
example, the bookstore’s Customers table includes a State/Province field
and a ZIP/Postcode field. The Products table contains a Product Type
field so the bookstore can track sales of books (type B) versus other types of
stuff (such as, F for food or A for audiotapes). Determine whether your
system needs to do one of these tasks with the codes:

✦ Validate the codes. Wrong codes cause trouble later: Validating the
codes when you type them in is always best. If someone types VR for
Vermont, the post office may not deliver your package. And later, when
you analyze your sales by state, you have some Vermonters with the
right code (VT) and some with the wrong code.

✦ Look up the meaning of the code. Codes usually stand for something.
Should your system print or display the meaning of the code? If you
have a report showing total sales of products by type, printing Books,
Food, and Audiotapes (rather than B, F, and A) is nice.

If you want to either validate or look up the codes you store, create a sepa-
rate table to hold a list of your codes and their meanings. For example, you
could add the following two tables to the bookstore database:

States Product Types

State Code Product Type Code

State Name Product Type Description

Although ZIP codes and postal codes are codes (well, yeah), most databases
don’t include tables that list them. The reason is simple: Pretty soon your
system would be overstuffed with them (about 100,000 ZIP codes exist, for
openers). Plus you have to update the table constantly as the post offices
issue — and change — ZIP and postal codes. If you really want to validate
your ZIP codes, you can buy a ZIP code database from the U.S. Postal Service
at www.usps.com.

Choosing keys for each table
The next step in designing your database is to make sure each table has its
own primary key field(s). Each table needs one or more fields that uniquely
identify each record in the table. Look for a field in the table that has a differ-
ent value in each record. For example, in the Products table, each book has a
unique ISBN (International Standard Book Number) — for a convenient
example, look on the back of this book and you can find its ISBN just above
the bar code. If your bookstore sells stuff other than books — say, book-

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 67

Designing a Database68

marks, espresso, and expensive little pastries — then you can make up
codes for them. If one field is different for every record in the table, you’ve
found your primary key field. For lists of codes, the code field is the key.

Autonumbering your records
Well, okay, you may not find a unique field. It happens — tables that list
people (such as the Customers table) can pose such a problem. Some people
have the same name; family members or roommates can share an address
and phone number. Most businesses end up creating and assigning unique
numbers to people to avoid this problem. (For privacy reasons, don’t even
think of asking for anyone’s Social Security number. Make up your own cus-
tomer number!)

Fortunately, assigning each record in a table a unique number is easy in
Access: Just add an AutoNumber field to the table, and Access numbers the
records as you enter them. In your bookstore system, you can add a
Customer Number field to the Customers table.

The advantage of using an AutoNumber key as the primary key field is
that you can’t change its values. After you relate two tables by using an
AutoNumber field as the primary key, breaking the relationship between the
tables if you have to edit the value of the AutoNumber field later is impossible.

For the Orders table, you can use Customer Number (instead of the cus-
tomer’s name) to identify who places the order. However, because one cus-
tomer may make several purchases, you still don’t have a unique key for the
Orders table. One solution is to use a combination of fields as the primary
key. How about using the Customer Number and Purchase Date fields
together as the primary key? This solution works fine as long as a customer
doesn’t make two orders on the same day. (Hmm, that may not work —
people sometimes forget to buy everything they need, and come back later
for one or two more items. Instead, you can add an AutoNumber field to this
table to provide a unique Order Number.)

Two key fields are sometimes better than one
Sometimes using a combination of fields works fine. In the Order Details
table, you’d better add a field for the Order Number, so you can get immedi-
ate access to whatever order contains these items. You don’t need to add a
Customer Number field in this case; after you identify the Order Number,
Access can look up the Customer Number and other customer information.

The Order Number doesn’t uniquely identify records in the Order Details
table because one order can (and a bookseller would really love it to)
include lots and lots of books. Use a combination of the Order Number and
the ISBN as the primary key for the table — that way one order includes one
entry for each book purchased.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 68

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Designing a Database 69

A sample order-entry database design
Here is the new, improved table design for a bookstore system, with aster-
isks by the primary key fields:

Products Customers

* Product Code (ISBN) * Customer Number

Title First Name

Author Last Name

Publisher Street Address

Publication Year City

Price State/Province

Cover Photo ZIP or Postcode

Taxable (Yes/No) Phone Number

Shipping Weight Tax Exempt (Yes/No)

Vendor Name

Discontinued (Yes/No)

Product Type

Product Notes

Orders Order Details

* Order Number * Order Number

Customer Number * Product Code (ISBN)

Purchase Date Quantity

Total Product Cost Price Each

Shipping Cost

Sales Tax

Total Price

Payment Method

Credit Card Number

Credit Card Exp. Date

Check Number

States Product Types

* State Code * Product Type Code

State Name Product Type Description

Linking your tables
If you end up with only one table, you can skip this step — but that situation
is fairly rare. Almost every database ends up with a second table at the very
least — to contain those pesky codes.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 69

Designing a Database70

Look at the tables in your database and see which tables contain fields that
match fields in other tables. Determine whether there’s a one-to-one, one-to-
many, or many-to-many relationship between the two tables (as described in
the section “What Are Relationships?” earlier in this chapter). For each pair
of related tables, you can determine which fields actually relate the tables by
following these guidelines:

✦ One-to-many relationships: Figure out which is the “one” (master) and
which is the “many” (detail) table in this relationship. Make sure that the
detail table has a foreign key field (or fields) to match the primary key
field(s) in the master table. The Customers and Orders tables have a
one-to-many relationship in the bookstore example — because a cus-
tomer may have no, one, or many orders. (Okay, someone who has no
orders is technically not a customer but still counts as a one-to-many
relationship.) The primary key field in the master table (Customers) is
Customer Number. To relate the tables, the Orders table has to have
a Customer Number field as the foreign key.

✦ One-to-one relationships: Make sure both tables have the same primary
key field(s).

✦ Many-to-many relationships: Access can’t store a many-to-many relation-
ship directly. Set up a junction table to connect the two tables, containing
the primary keys of the two tables. In the bookstore example, the Orders
and Products tables have a many-to-many relationship: One order can
have many products and one product can occur in many orders. The
Order Details table provides the junction table, which contains the pri-
mary key of the Orders table (Order Number) and the primary key of
the Products table (Product Code or ISBN). This junction table can
also include additional information (the Order Details table includes the
quantity of the book that’s ordered, as well as the price of each book).

The related fields don’t need to have the same name in the two related
tables. But the types, lengths, and contents of the fields have to match. (We
usually find the two fields having the same names less confusing — preserv-
ing sanity is also good for business.)

Refining your links
The relationships between your tables can be a bit more complex — what
relationship isn’t? — so you may need to make a few more decisions about
how your table relationships work:

✦ Referential integrity: This nifty feature means you can tell Access not to
allow a record to exist in a detail table unless it has a matching record in
the master record. For example, if you turn on referential-integrity
checking for the relationship between the Customers and States fields,
Access won’t allow you to enter a record with a State/Province code if

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 70

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Designing a Database 71

the code doesn’t exist in the State Code field of the States table. It’s a
“No bogus codes!” rule, and doesn’t require any programming (as you
find out in Book II, Chapter 6).

✦ Cascading updates: Another way-cool Access feature updates detail
records automatically when you change the matching master record.
For example, if you find out that you have the wrong ISBN for a book
and you change it in the Product Code field in the Products table,
you can configure Access to update the code automagically in the Order
Details table.

✦ Cascading deletes: As with cascading updates, this feature deletes detail
records when you delete the master record.

This feature is a bit more dangerous than cascading updates, and you
may not want to use cascading deletes for most related tables. If a book
goes out of print and you stop carrying it, deleting it from the Products
table is a bad idea. Consider: What’s supposed to happen to all those
matching records in the Order Details table (assuming that you sold
some copies of the book)? Don’t delete the Order Details records —
because then it looks like you never sold those books. Instead, mark the
book as unavailable (in our example, set the Discontinued field to
Yes) and leave the records in the tables.

Now you have a fully relational database design. The last step is to clean up
the loose ends.

Cleaning up the design
You have tables, you have fields, and you have relationships. What more
could you want in a database design? You’re almost done. Look at each field
in each of your tables and decide on the following for each field:

✦ Data types: The section, “Data types,” earlier in this chapter describes
the types of information you can store in Access fields. Decide what
kinds of information each field contains, how large your Text fields need
to be, and what kinds of numbers your Number fields hold. (Book II,
Chapter 1 explains the sizes of Number fields.) Make sure to use the
same data type and length for related fields. For example, if Product
Code is a Text field that is 10 characters long in the Products table,
make it the same length in the Order Details table.

If you use an AutoNumber field as the primary key in a master table, use
a Long Integer Number field for the foreign key in related tables. What is
a foreign key? A foreign key is a special kind of field in a relational table.
A foreign key matches the primary key column of another table and can
be used to cross-reference tables or ensure that the value in a child table
has a parent in the parent table.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 71

Tips for Choosing Field Types72

✦ Validation: You can set up validation rules for Text, Number, and
Date/Time fields, as described in Book II, Chapter 5. Think about limits
on the legal values for the field. For example, you may want to specify
that the Price field in the Products table can’t be over $200, or that the
Publication Year field must be between 1500 and 2100. (This rule
should work unless you run the bookstore for Hogwarts Academy.)

✦ Defaults: Some fields have the same value for most records. For exam-
ple, the Discontinued field in the Products table will be NO for most
records. (How often would you type in an item that’s already discontin-
ued?) You can set the default value — the value that the field starts out
with — to the most common value; you have to change it only for the
records that have a different value.

✦ Indexes: If you plan to sort your table or search for records based on
the values in a field, tell Access to maintain an index for the field. Like
the index of a book, a database index helps you (or Access) find informa-
tion; Access stores information about the field to speed up searches.
Access automatically indexes primary key fields and foreign key fields,
but you can designate additional fields to be indexed.

That’s it! You’re done designing your database!

Tips for Choosing Field Types
Here are some guidelines for choosing field types.

Choosing between Text and Yes/No fields
Fields that can have only two values (such as Yes and No, True and False,
or On and Off) are also called Boolean or logical values. You can store
Boolean information in a one-letter Text field, using Y and N. But if you use a
Yes/No field, Access can display the information on forms as a check box,
option button, or toggle button.

Another advantage of going the Yes/No field route is that you can easily switch
between displaying the field as Yes and No, True and False, or On and Off
by changing the Format property for the field. Using a custom format, you can
choose any two text values to display instead of Yes and No. You can display
the values Discontinued and Available for a Yes/No field.

Choosing between Text and Memo fields
Text fields are limited to 255 characters — if you need more than that, use a
Memo field. An Access Memo field can contain over 65,000 characters of tex-
tual information — but the extra elbow room costs you some versatility. You

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 72

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Tips for Choosing Field Types 73

can’t index Memo fields — and they can’t serve as primary or foreign keys. If
you plan to sort or search your records using the contents of this field —
or use the information in it to relate one table to another — a Text field is
usually your best bet. So is brevity.

Some database designers avoid the Memo field altogether, because they find
that databases with Memo fields are more likely to get corrupted (become
unreadable by Access). The same is true of OLE Object fields (used for stor-
ing pictures, spreadsheets, documents, and other large objects) — your
database may get indigestion.

Choosing between Text and Number
(or Currency) fields
Access displays and sorts Number and Currency fields differently from Text
fields. Here are the differences:

✦ When displaying a Number or Currency field, Access drops any leading
zeros (for example, 08540 becomes 8540 or $8,540).

✦ You can format Number and Currency fields in many ways, giving you
control over the number of decimal places, specified currency symbols,
and the use of commas. Access can vertically align these fields on the
decimal points, which makes columns of numbers easier to read.

✦ Access can calculate totals, subtotals, and averages for Number and
Currency fields, as well as doing other numeric calculations.

✦ When sorting a Number or Currency field, values sort from smallest to
largest (at least they do when you’re sorting in ascending order). But
when you sort a Text field, values are sorted alphabetically — starting at
the left end of the field. This difference means that in a Text field, Access
sorts 55 before 6, because the 5 character comes before the 6 character.
The following tables show how Access sorts the same list of numbers in
Number and Text fields.

Number Sort Text Sort

1 1

2 11

5 2

11 21

21 44

44 5

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 73

Tips for Choosing Field Types74

Use Number fields for all numbers except numeric codes (such as ZIP codes
or phone numbers), which are described in the next section. Store any
number you may want to add to a total in a Number or Currency field.
Choose a Currency field for money values.

Storing names, money, codes, and other stuff
Now that you know the concepts and procedure for designing a relational
database, here are a few suggestions for choosing field types for your
information:

✦ People’s names: For lists of people, creating a Name field and putting full
names into it is tempting. Don’t do it: You’ll want to sort records by last
name, or create listings with last name first, or otherwise fool with the
format of people’s names. Create separate First Name and Last Name
fields.

✦ Phone numbers and postcodes: Use Text fields rather than Number
fields, even if you plan to type only digits into the field. The test to use is
this: Is there any chance that you’d ever want to do math with this infor-
mation? If the answer is no, then use a Text field.

✦ Money: Use a Currency field rather than a Number field. Calculations
with Currency fields are faster than those with most Number fields.

✦ Percentages: To store percentages, such as a discount, create a Number
field and enter decimal numbers between 0 and 1 (inclusive) for percent-
ages between 0 and 100. When you create the table, you can format the
Number field as a percent. Then, if you enter a value and habit makes
you type 33%, Access converts the value automatically to 0.33.

Secret keys
The primary key field for a table doesn’t have to
be information that the user sees. In fact, many
programmers prefer to use a primary key field
that has no other use than to uniquely identify
records. If you create an AutoNumber field to
act as a primary key field, the user of your data-
base never has to see or type the values of this
field.

When you sign in to the Amazon Web site to
order a book, you never have to type in your
customer number. Instead, you sign in with your
e-mail address and Amazon looks up your cus-
tomer number automatically. Similarly, when
you order a book or other merchandise, you
never have to type the item number. You just
find the item you want and click the Add This
Item To My Cart button.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 74

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Storing Single Facts 75

✦ Pictures: Access allows you to store pictures in a field — specifically,
you use an OLE Object field — but unless the pictures are small, doing
so turns out to be a bad idea. The database reacts to a large OLE object
like an anaconda trying to swallow a rhino — and its size balloons. If the
pictures are small, go ahead and store them in OLE Object fields so
everything that makes up the database is in one file. If your pictures are
large, if they change frequently, or if you use them for other purposes
and need to store them as separate files anyway, store the pathname
that leads to the files containing the pictures. In the bookstore example
earlier in this chapter, the Products table includes a Cover Photo field.
Instead of making that field into an OLE Object field, you can store all
the cover pictures in a separate folder on the hard drive — and store file
names for each picture in a Text field. If the pictures are in various folders,
store the entire pathname in the field, as in the following example:

D:\Bookstore\Database\Products\Iliad.jpg

✦ Calculations: Don’t create a field that stores the results of calculations
that use other fields in the same table. Fields should contain only raw
data — Access can do the calculations later. The problem with storing
calculated values (other than just plain wasting storage space) is that if
the numbers on which the calculation was based happen to change, the
calculation is then wrong — which fouls up any calculations or reports
based on it. In the bookstore database example, in the Order Details
table, you may want to add a Total Cost field to contain the
Quantity field multiplied by the Price Each field. However, if the cus-
tomer decides to change the quantity of items purchased, the calculated
amount is then wrong. A better approach is to allow Access to do the
work at the last minute — Access can multiply, apply discounts, and
sum up totals when you display information or print reports.

✦ Codes: Decide on the formats to use for phone numbers, invoice num-
bers, credit card numbers, purchase order numbers, and other codes.
Decide whether to use all capital letters, and whether to include or omit
dashes and spaces. If you ask Access to search for someone with a
credit card number 9999–8888–7777–6666 and the card number is stored
as 9999888877776666, the search won’t find the record.

Storing Single Facts
Some pieces of information exist all by themselves. They aren’t part of a list —
there’s just one item. For example, the name of your organization is a single
piece of information, and so is the pathname to the location of your database.
If you want these pieces of information to appear on any reports, forms, or

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 75

Creating a Database76

queries, or used in calculations or importing, typing them willy-nilly into said
reports, queries, or other Access objects is tempting — but in practice this
turns out to be a lousy idea.

Here’s the problem: What happens when one of these facts changes?
Suppose that your organization’s name or address changes, or you move
your database’s location to another folder on another computer. You sure
don’t want to have to root around your database looking for the places
where such information appears.

Instead, create a table called Constants or Facts (or any name you like) with
just one record in it. Create a field for each piece of information you need to
store: maybe your table contains Our Name, Our Address, Our City, Our
State, Our ZIP, and Our Phone Number fields. Wherever you want this
information to appear (reports, mainly), Access can look it up in your table.
Then, if something changes (your telephone area code, most likely), you
have to update it in only one place!

Creating a Database
Okay, if you faithfully read this book every night before bedtime — doesn’t
everybody? — you’re 50 pages or so in by now. If you still haven’t created
your database, enough, already! You’re armed with your database design and
you’re ready to start. (If you haven’t been following along, then maybe you’d
better review those 50 pages before you start.)

When you set out to create a new Access database, you have two options:
create it from scratch or use a template.

After you have a beautiful database design (allow us to recommend the —
ahem — stellar example in this chapter), you can start with a blank database
and create the tables, fields, and relationships. That means running Access
without opening an existing database. Follow these steps:

1. The Microsoft emblem in the upper-left side is a new feature of Access
2007. It’s known as the Office Button. You can create a new database
by clicking it and choosing New (as shown in Figure 4-5) or by clicking
the Blank Database button on the Getting Started with Microsoft
Office Access page as shown in Figure 4-6.

The File Name task on the right side of the window appears, offering the
option of naming the database file in the File Name box (as shown in
Figure 4-6). If you don’t choose to name the database on your own,
Access will name it Database1.accdb (or another number, depending
on how many databases you have created).

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 76

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Creating a Database 77

2. Navigate to the folder where you want to store the new database, and
type the filename into the File Name box. Then click OK.

Changing the folder location where you are going to store your database
is simple; just navigate through your folder list by clicking the cute little
folder icon on the far-right side of the File Name text box in the Getting

Figure 4-6:
File Name
link

Figure 4-5:
Creating a
new
database

Analyzing your table design
Access comes with a wizard that can eyeball
your database design, looking at the way that
you divide your information up into related
tables. Specifically, it helps you fix a table that
contains repeated values in some fields, split-
ting the table into two or more related tables.

The Table Analyzer Wizard (shown in Figure 4-8)
walks you through the process, creating the
new tables and moving the fields and values. To
run the Wizard, simply click the Database Tools
tab, and inside the Analyze section choose
Analyze Table.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 77

Creating a Database78

Started with Microsoft Access page (see Figure 4-6 again). Figure 4-7
shows you what the new navigation location looks like if you choose to
not take the default location for the file. If you are just trying this out,
you can use the filename Test. Access automatically adds the extension
.accdb to Access database files.

After you click OK, you see the Database window, as described in
Chapter 2 of this minibook.

3. Create your tables in the Database window.

Book II, Chapter 1 tells you how to do this. (You define each of the fields
in the database, including the field name, data type, and field length.)

4. Create relationships between the tables.

How to do this is described in Book II, Chapter 6. Access displays a
Relationships window that draws lines between related tables.

You can always rename the database later. Close the database, and run
Windows Explorer by double-clicking My Computer on the desktop or choos-
ing Start➪All Programs➪Accessories➪Windows Explorer. Navigate to the
folder that contains the database and find its filename. Then click the file-
name, press F2, and type a new name for the database file.

See Chapter 2 of this minibook for an account of what happens when you
open older Access databases in Access 2007. Note that Access 2003 can’t
open Access 2007 format databases — if you try, you’ll just get an error
message.

Figure 4-7:
New file
location
change

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 78

Book I
Chapter 4

Designing
YourDatabase

the
Relational W

ay
Creating a Database 79

Database documentation
Access 2007 also comes with a wizard that pro-
vides you with documentation on almost any
aspect of your new database, helps you to
track the changes made to your database, and
provides information to your users. The
Database Documenter Wizard (shown in Figure
4-9) walks you through the process, allowing
you to select the components of your database

that you want to create documentation for and
then creating that documentation automatically
for you. It even allows you to select the format
in which that documentation is stored. To run
the Wizard, simply click the Database Tools tab,
and inside the Analyze section choose
Database Documenter.

Analyzing your database performance
Access 2007 comes with a wizard that can eye-
ball your database design, looking at the way
that you divide your information up into related
tables. Specifically, it can help you fix some of
the places that it infers ought to be relation-
ships (for more information on relationships,
see Book II, Chapter 6) and helps you fix the
relationships that it thinks ought to be there.

The Database Performance Analyzer (shown in
Figure 4-8) walks you through the process,
allowing you to select the things that you want
to analyze and helping you create the new rela-
tionships. To run the Wizard, simply click the
Database Tools tab, and inside the Analyze sec-
tion choose Analyze Performance.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 79

Creating a Database80

Naming things (for serious database designers)
If you create a database that is used with larger
database systems — such as those running on
SQL Server or Oracle — you may want to use a
systematic approach to naming the objects in
your database. First, omit all spaces in your
table and field names, because some database
systems can’t handle them. Even in Access,
avoiding spaces means less typing later on
when you create queries, forms, reports,
macros, and VBA modules. That’s because you
won’t have to enclose your table and field
names in square brackets ([]).

Also, don’t use words that have specialized
meanings to Access, including these words:
Name, Date, Word, Value, Table, Field, and
Form. You can actually confuse Access. It’s not
a pretty sight.

If you really want to impress your programming
friends, consider using prefixes on all your
object names to show what kind of object you’re
naming. Here’s a set of commonly used prefixes:

tbl Table

qry Query

frm Form

rpt Report

mcr Macro

bas Module

dap Data-access page

For example, a serious programmer might
rename the Products table as tblProducts.

Fewer programmers use prefixes for fields, to
show the data type of each field. If you want to,
and if you want to read more about the Reddick
VBA Naming Conventions from which these
prefixes come, go to the www.xoc.net Web
site and click the links for RVBA Conventions.

08_036494 bk01ch04.qxp 11/17/06 8:19 AM Page 80

Book II

Tables

09_036494 pt02.qxp 11/17/06 8:20 AM Page 81

Contents at a Glance
Chapter 1: Creating a Modifying Tables ..83

Chapter 2: Entering and Editing Data in Datasheets ..111

Chapter 3: Sorting, Finding, and Filtering Data ..137

Chapter 4: Importing and Exporting Data ..151

Chapter 5: Avoiding “Garbage In, Garbage Out” ..175

Chapter 6: Relating Your Tables and Protecting Your Data..191

09_036494 pt02.qxp 11/17/06 8:20 AM Page 82

Chapter 1: Creating and
Modifying Tables

In This Chapter
� Making tables using the Datasheet view, Design view, and the Table

Wizard

� Fine-tuning fields using Design view

� Defining a primary key

� Printing your raw data

Tables are the most basic building block in your database — they hold
the data that you need to save and to analyze. Creating tables and enter-

ing data may not be the most glamorous thing you do with your database,
but having well-designed tables and correctly entered data makes your data-
base as useful as possible. Before you begin putting data in tables, however,
you need to consider the design of your database. Book I, Chapter 4
describes how to design a database — read it before you create a bunch of
tables that you then have to reorganize!

This chapter guides you through creating tables and defining fields in Design
view. Chapter 2 of this minibook goes into the details you need to know
about entering and editing data. The other chapters in this book cover all
the other important details that keep your tables — and the data in them —
in good shape for use in queries, forms, reports, and the other objects in
your database.

If you’re a little confused about what fields and records are, refer to Book I,
Chapter 4.

About Table Views
To display an already existing table, find the Tables heading at the top of the
list in the Navigation Pane, followed by the name of all the tables in the data-
base. Double-click the name of the table you want to display, and the table
appears in Datasheet view. (See Book I, Chapter 2 for more information on
displaying database objects.) The Field Templates pane also pops up —
close it if you aren’t using it to create new fields. You’ll learn more about
field templates later in this chapter.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 83

About Table Views84

If you don’t see a heading of Tables followed by all the tables in the database
in the Navigation Pane, here’s how to get a look at them: Right-click the
Navigation bar heading, choose Category, then Object Type. Now you should
see the objects in the database, sorted by object type.

When you look at a table, you probably look at it in one of two views —
Datasheet view or Design view. Datasheet view is used for entering and view-
ing data; Design view is used for refining field definitions and table properties.

Two Pivot views are also available — PivotTable view (covered in Book III,
Chapter 4) and PivotChart view (covered in Book V, Chapter 3) — for when
you’re ready to analyze your data.

Before we start talking about using each view, we want to give you a brief
tour, so that you can recognize the elements of each view. To switch between
Design view and Datasheet view, use the View options on the Status Bar
(look at the bottom-right corner of the Access window). The first View
button displays Datasheet view, and the fourth (and last) displays Design
view. The two in the middle display pivot views.

Datasheet view
A datasheet shows you data. Datasheet view is similar to a spreadsheet — it
displays your data in rows and columns. Rows are the records; columns are
the fields. In Figure 1-1 you see a datasheet with all the parts labeled.

Record Selector Cell Field

Record VCR navigation buttons

Figure 1-1:
Datasheet
view.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 84

Book II
Chapter 1

Creating and
M

odifying Tables
Saving Your Table 85

Use a datasheet to view, enter, edit, and delete data. In Datasheet view, you
can also create and delete fields, sort and filter data, check spelling, and find
data. Datasheet view is covered in more detail in Chapter 2 of this minibook.

Design view
In Design view, you don’t see any data; instead, you define and edit field names
and specify the type of data each field holds. You can also provide a field
description. Design view also contains field properties — more advanced ways
to define fields and help make sure that data entry is accurate. In Figure 1-2
you see a table in Design view, with its various parts labeled.

Saving Your Table
As soon as you enter data, Access saves it. Why do you need to save your
tables? That’s easy: In order to save both the structure of the table and its
field definitions. What you save when you save a table is the table definition,
which includes how the table looks in Datasheet view (such as the size and
order of the columns) and the information in Design view (the field names,
data types, descriptions, and field properties).

Record Selector Fields

Field properties Data Type drop-down list Field description

Figure 1-2:
Design
view.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 85

Creating Tables for Your Data86

Save a table design by using one of these methods:

✦ Click the Save button (it looks like a disk, and is on the toolbar below
the Ribbon).

✦ Press Ctrl+S.

✦ Close Design view and click the Yes button when Access asks whether
you want to save the table.

✦ Click the Office Button in the top-left corner of Access and choose Save
from the menu.

Then, in the Save As dialog box, provide a name that describes the data
stored in the datasheet. Chances are you’ll use a table whenever you create
other database objects; naming each table descriptively saves you time
when you’re looking for the data you need later.

Creating Tables for Your Data
Before you create a table to hold your data, take some time to consider the
design of your database — that is, what fields and tables you need — so that
your data is well-organized and easy to analyze. (Book I, Chapter 4 has all
the information you need to know before you sit down and design your
tables.)

After you figure out how to organize your data, you’re ready to sit down with
Access and create tables. If you are importing data, see Chapter 4 of this
minibook for more information.

You need to create a database to hold your tables. Book I, Chapter 4 covers
how to create a brand-new database. To create a table, first open the data-
base that you want to hold the table. If you have just created a brand-new
database, as soon as you have named the database you will see an empty
table to fill in. If you are adding a table to an existing database, using the first
group of buttons (the Tables group) on the Create tab of the Ribbon (see
Figure 1-3) allows you to create new tables, as follows:

✦ Table: Creates a new, blank table displayed in Datasheet view, allowing
you to immediately enter data.

✦ Table Templates: Displays a list of table templates to choose from.
Available templates are Contacts, Tasks, Issues, Events, and Assets.
Access creates a table with predefined fields into which you can enter
data. Field definitions can be edited, and fields can be added or removed
to customize the table.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 86

Book II
Chapter 1

Creating and
M

odifying Tables
Creating Tables for Your Data 87

✦ SharePoint Lists: Creates a list on a SharePoint site and a table in the
database that links to the newly created list.

✦ Table Design: Creates a new, blank table displayed in Design view, allow-
ing you to define fields.

Notice that you have two options for creating tables from scratch — Table
and Table Design. If you want help creating your table, there are an addi-
tional two options — one is Table Templates, which allows you to choose
from available tables with predefined fields. Another way to get help creating
a table is to use Field Templates — predefined fields you can put in any
table. (We talk about field templates again when we discuss creating new
fields, later in this chapter.)

Don’t stress about deciding whether you want to create a table by defining
fields in Design view or by entering data in Datasheet view. It’s easy to
switch back and forth between Datasheet and Design view to define the
tables and fields exactly the way you want them.

Creating a new table using a table template
Creating a table with a table template is so easy that there isn’t much to
say about it. Unfortunately, there are currently only five table templates
to choose from, and none of them may be a good match for your data.
However, you may want to consider using one of them — even if you
have to change field names and definitions a bit — if it seems easier than
starting from scratch.

Figure 1-3:
Use one of
these
buttons in
the Tables
group on the
Create tab
of the
Ribbon to
create a
new table.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 87

Creating Tables for Your Data88

To create a table with a table template, click the Table Templates button in
the Tables group on the Create tab to see the five template choices:

✦ Contacts: This template includes fields for Company, First Name, Last
Name, E-mail Address, Job Title, Business Phone, Home Phone,
Mobile Phone, Fax Number, Address, City, State/Province, Zip,
Country, Web page, Notes, and Attachments. This is a good tem-
plate to use if you want to store an address book in Access.

✦ Tasks: This template includes fields for Title, Priority, Status, %
Complete, Assigned To, Description, Start Date, Due Date, and
Attachments. This template can be part of a project management
database.

✦ Issues: This template includes fields for Title, Assigned To, Opened
By, Opened Date, Status, Category, Priority, Description, Due
Date, Related Issues, Comments, and Attachments. This table can
store data that records multiple people per record, and tracks assign-
ments with additional information.

✦ Events: This template includes fields for Title, Start Time, End
Time, Description, Location, and Attachments. This table is rela-
tively easy to create from scratch, but contains Time fields for storing
start and end times of events. It could easily be used for a class sched-
ule, with other tables in the database listing teachers, students, grades,
etc.

✦ Assets: This template includes fields for Item, Description,
Category, Condition, Acquired Date, Purchase Price, Current
Value, Location, Manufacturer, Model, Comments, Attachments,
and Retired Date. This template is useful for storing data about pur-
chased items. A shopaholic might find it useful therapy!

When you’ve chosen the template you want to use, wait a second while
Access creates the table. Once it’s created, you can enter data or change the
table (just as you could if you’d created the table yourself).

Creating a new table using Datasheet view
The most straightforward way to create a new table is to create a datasheet
and begin entering data. A datasheet looks like a spreadsheet; if you’re famil-
iar with Excel or another spreadsheet program, creating a table by entering
data into a datasheet may be a good place to start. In a datasheet, fields are
columns, and records are rows. (If you’re confused by this talk of fields and
records, go to Book I, Chapter 4!)

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 88

Book II
Chapter 1

Creating and
M

odifying Tables
Creating Tables for Your Data 89

Follow these steps to create a new table in Datasheet view:

1. Open your database.

If you’re starting a brand-new database, Access immediately creates a
new table in Datasheet view for you. Just skip to Step 4 in this list, and
start entering your data!

2. Display the Create tab on the Ribbon.

3. Click the Table button — the very first option on the Create tab of the
Ribbon.

You see a blank datasheet in Datasheet view, as shown in Figure 1-4.
Access names it Table1 (you can change that when you save the table).
Access automatically creates an ID field to give each record a unique ID
number (this field will get filled automatically).

Notice that the Datasheet tab on the Ribbon appears automatically when
you display a datasheet.

4. Save the table by pressing Ctrl+S.

Access displays the Save As dialog box.

5. Type a name for the table in the Name field and press Enter.

Use a descriptive name so you can find the table in the future.

Figure 1-4:
A new blank
table, ready
for data.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 89

Creating Tables for Your Data90

Now that you have a table, you may want to do one of the following:

✦ Create fields: By entering data, or by using field templates.

✦ Rename fields: Double-click the field name, type a new name, and press
Enter.

✦ Enter data: Press Tab to move from cell to cell. Access automatically
saves the data when you move to the next cell. Type Ctrl++ to move to a
new record, or use the New Record button at the bottom of the
datasheet, or in the Home tab of the Ribbon.

See Chapter 2 of this book for more information about what you can do in a
datasheet.

Defining fields
After you’ve created a table, you’re ready to define fields. Each field stores
one category of data — for instance, first name, or ZIP code. You may define
fields by any of these methods:

✦ By using field templates

✦ By entering data and letting Access figure out what kind of data is in
each field

✦ By defining each field yourself in Table Design view.

You may also choose to use a combination of all these methods. Using Design
view to define fields and field properties is covered in the next section.

Using field templates to create fields
Access 2007 has a number of predefined fields that you can insert into your
table. To see the list, click the New Field button in the Fields and Columns
group of the Datasheet tab of the Ribbon. The Field Templates box (shown in
Figure 1-5) is displayed. Fields are listed in categories. The first category is
Basic Fields, and the other categories are based on the tables available as
table templates: Assets, Contacts, Events, Issues, Projects, and Tasks.

To put a field based on a field template into your table, first click the column
that you want the new field to be to the left of. Then double-click a field
name in the Field Templates box to add the field to your datasheet.

The field template defines the data type, format, and may also include field
properties. You can make the same changes to a field that you create using a
field template that you can make to any field — you can change the data
type, the field name, and any field properties.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 90

Book II
Chapter 1

Creating and
M

odifying Tables
Creating Tables for Your Data 91

Entering data to create fields
Another way to create fields in your table is to enter data. As you enter data,
Access determines the data type. When one (or more) record has been
entered, you can rename the fields and change any field properties as
necessary.

Enter data by clicking on the first cell and starting to type. After each entry,
press Tab or Enter to move to a new field. For example, enter a first name,
last name, street address, city, state, and ZIP code, pressing Tab to move
from one entry to the next. Figure 1-6 shows a table with one record (row) of
data entered.

Figure 1-6:
Enter data,
pressing
Tab to move
between
fields.

Figure 1-5:
Double-click
a field
template to
add a field
to your
table.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 91

Creating Tables for Your Data92

Access uses the Pencil icon in the left border of the row (also called the
record selector) to indicate that you are “writing” — that is, entering or
editing — data. Enter data in as many columns as you think you need in
the table.

If you decide you need additional fields, you can add them using any of the
three methods listed above. For instance, if you created fields by entering
data, you may create an additional field using a field template, or by defining
it in Design view. Access is very versatile, and doesn’t lock you into one
method.

Adding a field from an existing table
If your database contains other tables, you may want to add a field from
another table. Although Access 2007 prominently displays the button that
allows you to do this, it is actually not a common choice.

Use the Add Existing Fields button in the Fields and Columns group of the
Datasheet tab of the Ribbon to display the Field List, shown in Figure 1-7.

The Field List displays existing fields in the database categorized by related
tables and other tables. Click a plus sign next to a table name to see the fields
in that table. Double-click a field name to insert it into your datasheet — the
Lookup Wizard runs. The Lookup Wizard creates a relationship between two

Figure 1-7:
The Field
List displays
existing
fields
categorized
by related
tables and
other tables.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 92

Book II
Chapter 1

Creating and
M

odifying Tables
Creating Tables for Your Data 93

tables by allowing you to pick values from a field in another table while enter-
ing data into the current table. For instance, you could use a lookup list to
enter customer names in the table that stores order details. The Lookup
Wizard, and lookup lists in general, are covered Chapter 5 in this minibook.

You can also start the Lookup Wizard by clicking the Lookup Column button
in the Fields and Columns group of the Datasheet tab of the Ribbon.

Creating tables using Design view
Design view is a good place to create a table if you know a lot about the type
of data you put in the table — and you want the fields you create to be
designed for the data you have to put into them. If you’re creating the table
but don’t yet have any data, Design view is the perfect place to start. Of
course, you can always switch to Datasheet view by clicking the View button
on the Home or Design Ribbon to enter data at any time.

Follow these steps to create a table in Design view:

1. Click the Table Design button in the Tables group on the Create tab of
the Ribbon.

Access opens a blank table in Design view. Notice the flashing cursor in
the first row of the Field Name column.

2. Type the name of the first field. Press Tab to move to the Data Type
column.

The field properties for the field fill in automatically, and the data type is
set to the Text option.

3. Select a data type from the Data Type drop-down list.

Common choices are Text, Memo, Number, Date/Time, and Currency.

4. Type a description of the field in the Description column. (This is
optional, but we recommend it.)

The description can be especially useful if many people use the data-
base, or if you may not use the database for a while. Use the Description
column to explain exactly how you intend the field to be used.

5. Define additional fields in the table by repeating Steps 2 through 4.
You can use Tab to move to the next row where you enter the next
field name. Figure 1-8 shows six fields defined.

6. Click the Save button or press Ctrl+S to save the table. Type a descrip-
tive name in the Name field and press Enter.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 93

Refining Your Table Using Design View94

7. When Access asks whether you want to define a primary key, choose
Yes or No.

Don’t worry; whatever you choose, you can change later. If you feel the
need to make an informed decision now, skip ahead to the section,
“Defining the Primary Key,” later in this chapter. If you choose to create
a primary key now, Access creates a new, numbered field that gives each
record a unique number. (The first field shown in Figure 1-8 is an
AutoNumber field, defined as the primary key.) If you want to skip this
step, be sure you define a primary key manually when you know which
field(s) you want to use to uniquely identify each record.

After you have defined the fields in Design view, you have the option of dis-
playing the table in Datasheet view and entering data. Use the Datasheet
view button on the status bar at the lower right of the Access window.
However, you also have the option of entering data through a form.

Refining Your Table Using Design View
Design view is the place to go when you want to be really specific about
what you want a field to hold. Design view also provides some tools you use
to make sure that the data entered in a field is what you want it to be —
that’s covered in more detail in Chapter 5 of this minibook.

Figure 1-8:
Defining
fields in
Design
view.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 94

Book II
Chapter 1

Creating and
M

odifying Tables
Refining Your Table Using Design View 95

The top part of the Design View window lists the fields in the table, their
data type, and a description, if one has been added.

The bottom part of the Design View window displays field properties —
configuration information about the current field. If you’re a novice Access
user, don’t worry about field properties. You don’t have to do anything with
them at all; if you do need them at some point, however, we tell you exactly
how to use them.

Many (but not all!) tasks you do with Design view can also be done in
Datasheet view. Datasheet view is covered in more detail in Chapter 2 of this
minibook. The Data Type and Formatting group of the Datasheet tab of the
Ribbon contains options for changing the data type, format, and some field
properties (Unique and Is Required) for a selected field.

Design view has its own Ribbon of tools — to display them, click the Table
Tools Design contextual tab that appears at the end of the Ribbon when
Design view is displayed.

Table 1-1 lists Design view Ribbon tools.

Table 1-1 Design View Buttons and Their Functions
Button Name What It Does

Primary Key Makes the selected field the primary key field for
the table.

Builder This button is grayed out in many contexts (when
creating an expression is not an option). Displays
the Expression Builder to help you build a field or
expression. Available when cursor is in Field
Name, Default Value, Validation Rule, or Smart
Tags.

Test Validation Rules Tests Validation Rules. See Chapter 5 of this mini-
book for more information.

Insert Row Adds a row (field) to the table design where
the cursor is, or inserts as many rows as are
selected.

Delete Rows Deletes the current row, or selected rows of the
table design view.

Lookup Column Creates a lookup field — that is, a field that lists
values stored in another field. See Chapter 5 of
this minibook for more information.

(continued)

10_036494 bk02ch01.qxp 11/29/06 4:32 PM Page 95

Refining Your Table Using Design View96

Table 1-1 (continued)
Button Name What It Does

Property Sheet Displays the Properties sheet for the selected
field. A properties sheet allows you to set even
more controls for the field. (Many of the field
properties are covered in Chapter 5 of this
minibook.)

Indexes Displays the Indexes window with the indexed
fields in the table and their index properties.

Choosing field names
When you create fields, give at least a couple of seconds of thought to the
name you give them. Although you can change a field name, thinking of the
name as permanent is safer. Pick a name that is descriptive, not too long,
and easy to figure out. You often see the name without the description when
you are building other objects, so naming fields well now saves you time
later.

Some fields are used to connect tables — for instance, in your Holiday Gifts
database you may have a person’s name (or some other unique identifier) in
the table for listing addresses, as well as the table for listing the gift(s) you
give them each year. Try to use the same name for fields that appear in mul-
tiple tables when the field is, in fact, the same. If the field is similar but not
identical, give it a different name.

Starting every name with a number or a letter, and keeping names to 64 char-
acters or fewer, is a good idea.

If you are even thinking of using your database in a real SQL environment,
don’t use spaces in your field names. SQL does not like spaces.

Using the Caption property
Access gives you the option of giving a field a caption. A caption is text that
is used on the datasheet, forms, and reports instead of the field name. The
field name must still be used in expressions and in code.

To give a field a caption, use the Caption property in Table Design view.

Changing a field name
In the database-building process, changing field names is easier if you do it
sooner rather than later — that is, before you use the field name a zillion

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 96

Book II
Chapter 1

Creating and
M

odifying Tables
Refining Your Table Using Design View 97

times in tables, queries, forms, reports, and in code. Keep a table of old and
new names in case any problems crop up.

You can rename a field in a single table, but if you use the field in other
places in the database, be sure the Name AutoCorrect feature is on. To see
the Name AutoCorrect options, click the Office button in the top-left corner
of the Access window, then click the Access Options button at the bottom of
the menu. Click Current Database in the Navigation Pane of the Access
Options dialog box, and scroll down to see the Name AutoCorrect Options
section. There are three Name AutoCorrect box check boxes — be sure the
second (Perform Name AutoCorrect) is selected.

To change a field name in Datasheet view, right-click the current name, select
Rename from the shortcut menu, type a new name, and press Enter. In
Design view, simply edit the current name.

Copying a field
You can copy a field definition easily — be aware that you only copy the defi-
nition, not the data. You can even copy a field definition from one table to
another — which is an easy way to be sure that related fields have the same
definition. Remember, however, that usually only one field needs the primary
key designation; be sure to remove it from the other field.

To copy a field, follow these steps:

1. Click the record selector (the gray box to the left of the field name) to
select the field.

2. Press Ctrl+C or click the Copy button in the Clipboard group of the
Home tab on the Ribbon.

3. Move the cursor to an empty row in the table into which you want to
copy the field.

4. Press Ctrl+V or click the Paste button in the Clipboard group of the
Home tab on the Ribbon.

5. Type a new name in the Field Name field, if necessary, and press Enter.

The field title is highlighted, so when you type a new name, you replace
the old name.

Moving a field
To move a field, select the row by clicking the record selector — you can
select multiple rows by dragging the row selectors. Then drag the record
selector up or down to where you want to drop it. As you move the mouse,
a dark horizontal line shows where the row moves when you release the
mouse button.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 97

Refining Your Table Using Design View98

Adding a field
If you want to add a field in the middle of a table in Design view, place the
cursor where you want the new field to appear (or select the row) and then
click the Insert Rows button in the Tools group of the Design tab of the
Ribbon. Rows at and below the cursor are pushed down to make room for
the new field.

Deleting a field
You can delete a field in Design view. Deleting a field deletes the field defini-
tion and all the data stored in the field.

Follow these steps to delete a field:

1. Select the field by clicking the record selector (the gray box to the left
of the field name).

2. Press the Delete key or click the Delete Rows button in the Tools
group of the Design tab on the Ribbon.

If the field has no data, Access deletes it. If the field has data, you see a
dialog box that asks you to confirm that you do, indeed, want to perma-
nently delete the field and its data.

Choosing a data type
Access provides eleven data types for you to choose from. Choose the data
type that best describes the data you want to store in the field and that
works with the type of analysis you need to use the field for. For instance,
storing phone numbers in a text field works fine because you probably never
need to add or subtract numbers. Prices, however, should be stored in a
Number or Currency field so you can add, subtract, or even multiply them
by the number of units ordered and create an invoice.

A few fields need data type that may not be obvious, mainly telephone num-
bers and ZIP codes and other such fields. Generally, even though these fields
store numbers, you want to set these fields to text data type. Doing so allows
you to store leading zeros (so that 021538 doesn’t appear as 21538) and add
characters such as dashes and parentheses. The Input Mask Wizard (cov-
ered in Chapter 5 of this minibook) helps you define fields for phone num-
bers, ZIP codes, Social Security numbers, and dates. The Input Mask Wizard
is also useful for any codes you may use in your database, or other types of
fields that may sometimes appear with spaces or dashes or other punctua-
tion (such as credit card numbers) so the data is always entered consis-
tently and you can find it when you need it.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 98

Book II
Chapter 1

Creating and
M

odifying Tables
Refining Your Table Using Design View 99

Table 1-2 lists the data types, and describes when to choose each.

Table 1-2 Data Types
Data Type What It Holds When to Use It

Text Numbers, letters, punctuation, All text fields except really long ones.
spaces, and special characters Also good for ZIP codes and phone
(up to 255 characters). numbers. You can’t do number-type

calculations with a text field.

Memo Text, and lots of it — up to When you have lots of text, such as
65,536 characters. comments. Can’t be indexed, and can’t

be a key field.

Number Numbers. When you select For numbers that you may want to
Number type, you may want to add, multiply, and do other calcula-
change the Field Size tions with. You can also use decimal
property to the option that best points, +, and – in a Number field (to
fits the field. (Field sizes are designate positive and negative
explained in Table 1-3.) numbers).

Date/Time Dates and times. For dates and times. You can do calcu-
lations such as finding the number of
days between two dates, or adding
hours to a time to calculate a new
time.

Currency Numbers with a currency When you store currency data, such
sign in front of them. as prices. Like number fields, a cur-

rency field can do calculations. Holds
monetary values. Calculations with
Currency fields are faster than those
with Single or Double Numbers field
sizes (the kinds of numbers that can
include fractions for cents). Single and
Double field sizes for number fields
are explained in Table 1-3.

AutoNumber A unique number generated When you want each record to have a
by Access for each record. unique value that you don’t have to

type in. The value starts at one and is
incremented for each record.

Yes/No Binary data such as Yes/No, When you have a field that can only
Male/Female, True/False, have two entries. Appears as a check
and so on. box on the datasheet; can appear as a

check box, option button, or toggle
button on forms; can be either “on” or
“off.” Use the Format field property
to define the values — for instance,
true/false, male/female, available/dis-
continued.

(continued)

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 99

Refining Your Table Using Design View100

Table 1-2 (continued)
Data Type What It Holds When to Use It

OLE Object An electronic object such When you want to store something in
as a picture, a sound, or Access or link to something created
another object created with and opened with another application.
OLE-compatible software. The new Attachment data type is usu-

ally preferred over the OLE Object
data type.

Hyperlink URLs, e-mail addresses, When you want to link to a Web page,
and other types of links. e-mail address, or file. See more about

hyperlinks in Chapter 2 of this mini-
book.

Attachment Use to store one or more Ultimately requires less database
attachments (files). space than OLE. Also, more than one

attachment can be entered in a
record.

Lookup Not really a data type — When you want to select a table or a
this option runs the Lookup Wizard list to use as a drop-down list
Wizard. for the field.

Some database designers avoid the Memo field altogether, because they find
that databases with Memo fields are more likely to get corrupted (that is,
become unreadable by Access). The same is true of OLE Object fields, which
are used for storing pictures, spreadsheets, documents, and other large
objects. The new Attachment data type is a good alternative to the OLE
Object type. There is more information on using Hyperlink and Attachment
fields in the next chapter.

When to use AutoNumber fields
AutoNumber fields have one and only one purpose: to act as the primary key
field for tables that don’t have an existing field that uniquely identifies each
record. Don’t use AutoNumber fields for anything else. In fact, most Access
database designers use AutoNumber fields to create primary key fields —
and then make sure those key fields never appear on forms and reports.

Here’s why the key fields are often hidden: You have no control over the num-
bers that Access issues when numbering your records. If you start adding a
record and then cancel it, Access may decide that particular number is
already used — and skip it the next time you add a record. You can’t change
the AutoNumber field’s value. If you need a series of numbers to not end up
with holes (skipped numbers), then don’t use an AutoNumber field.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 100

Book II
Chapter 1

Creating and
M

odifying Tables
Formatting Fields with Field Properties 101

If you use an AutoNumber field to keep track of invoices, and it issues your
invoice numbers, you end up with skipped invoice numbers. If this isn’t a
problem for you, fine — make the Invoice Number category an AutoNumber
field and print it on your invoices. But if missing invoice numbers is a prob-
lem, use a regular Number field for your invoice numbers and don’t use the
unique AutoNumber field on forms and reports. You may want to use the
Index field property setting set to Yes (No Duplicates) if you want to make
sure that each value in the field is unique. Find out more about the Index
field property later in this chapter.

If you want to start numbering invoices at 1001 rather than 1, create an
Invoice Number field. If you want to get fancy, create a macro that auto-
matically fills in the next invoice number in the sequence. But if an incorrect
check number gets entered by mistake, you can go back and make changes
without changing the value of the primary key field.

Formatting Fields with Field Properties
Field properties are generally used for formatting fields. They can also be
used to validate data, which we cover in Chapter 5 of this minibook.

Field properties are defined for each field (not surprisingly!). You can only
see the field properties for one field at a time. To see the field properties for
a field, select the field in the top half of the Design View window. You can
select the field by clicking the record selector (the gray box to the left of the
row) or by clicking anywhere in the row. The selected field has a triangle
arrow to its left. Select a new field to see a whole different set of field proper-
ties. The field properties you see depend on the data type of the field — for
instance, you won’t see the Decimal Places property for a Text field.

Click a field property to see a short description to the right — that tells you
if it’s a formatting property or a data-validation property (some properties
can be used in both ways).

How do you use field properties to format a field? For number fields, you can
define the number of decimal places you want to display. For text fields, you
can tell Access to change the text to all capital letters or all lowercase. You
can even use the Format property to add extra characters to a Text or
Memo field (although for most applications the Input Mask Wizard is easier
to use than the Format property — see more about input masks in Chapter
5 of this minibook).

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 101

Formatting Fields with Field Properties102

Formatting Number and Currency fields
You can use the Field Size and Format properties together to define how
fields display. The common formats for Number and Currency fields are built
right into Access — you can choose from those listed in Table 1-3.

Table 1-3 Number Formats
Number Format How It Works

General Number Displays numbers without commas — and with as many deci-
mal places as the user enters.

Currency Displays numbers with the local currency symbol (determined
by the Regional settings found in the Windows Control Panel),
commas as thousands separators, and two decimal places.

Euro Displays numbers with the Euro symbol, commas as thou-
sands separators, and two decimal places.

Fixed Displays numbers with the number of decimal places speci-
fied in the Decimal Places property (immediately after
the Format property; the default is 2).

Standard Displays numbers with commas as thousands separators and
the number of decimal places specified in the Decimal
Places property.

Percent Displays numbers as percentages — that is, multiplied by 100
and followed by a percent sign.

Scientific Displays numbers in scientific notation.

The Field Size property can affect the format.

You can define your own number format using the following symbols:

Displays a value if one is entered for that place

0 Displays a 0 if no value appears in that place

. Displays a decimal point

, Displays a comma

$ (or other currency Displays the currency symbol
symbol)

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 102

Book II
Chapter 1

Creating and
M

odifying Tables
Formatting Fields with Field Properties 103

% Displays the number in percent format

E+00 Displays the number in scientific notation

To create a number format with comma separators and three decimal places,
type the following: ###,##0.000

You can define a numeric format so the format depends on the value. You
can define formats for positive and negative numbers, for zero, and for null
values (when no value is entered). To use this feature, enter a four-part
format into the Format property, with the parts separated by commas. The
first part is for positive numbers, the second for negatives, the third if the
value is 0, and the fourth if the value is null (for example, #,##0; (#,##0);
“—”; “none”). Using this type of format, you can display positive and nega-
tive numbers in different colors, if you like, such as positive in green and
negative in red. Put the desired color in square brackets in the correct sec-
tion of the expression. The available colors are Black, Blue, Green, Cyan,
Red, Magenta, Yellow, and White. In Forms, conditional formatting is avail-
able and you can specify an expression to determine format — for instance,
displaying unshipped status in red.

To store percentages, such as a discount, create a Number field with a Single
field size (to keep the size of the field small — see the next section) and
enter numbers between 0 and 1 (inclusive) for percentages between 0 and
100. When you create the table, you can format the Number field as a per-
cent. When you enter a value, you type 33% and Access converts the value
to 0.33.

Setting the field size
Using the Field Size property correctly can keep your database efficient;
doing so keeps the field size as small as is practical — making for a smaller,
more compact database. For Text fields, the Field Size property can also
help you screen out incorrect data — if you know that you only need (say)
four characters in a certain field, then set the field size to 4. Anything longer
produces an error message. (For more about screening out incorrect data,
see Chapter 5 of this minibook.)

Using the Field Size property for any of your Number fields is a little
more complicated, but again, using the shortest practical field size makes
your database more efficient. Table 1-4 shows your choices for the field size
of a Number field (these are listed from the smallest amount of space
required to store each value to the largest).

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 103

Formatting Fields with Field Properties104

Table 1-4 Field Sizes for Number Fields
Setting What It Can Hold When to Use It

Byte Integers from 0 to 255. Use if values are small inte-
gers less than 256.

Integer Integers from –32,768 to 32,767. Use for most fields needing
integers, unless you need to
store values greater than
32,768.

Long Integer Integers from –2,147,483,648 to Use when the Integer
2,147,483,647. setting isn’t enough.

Single Numbers from about –3.4E38 Use for numbers with decimal
to –1.4E–45 for negative numbers values. Holds big numbers
and from about 1.4E–45 to 3.4E38 and lots of decimal places —
for positive values. Decimal Double holds even more.
precision to 7 places. Generally speaking, Single

is sufficient, but you can
change the setting to
Double without losing data.

Double Numbers from about –1.7E308 Any values that Single
to –4.9E324 for negative numbers won’t hold.
and from about 4.9E–324 to 1.8E308
for positive values. Decimal
precision to 15 places.

Decimal Numbers from -10^28–1 through Use for values with lots and
10^28–1 in .mdb (Access lots of decimal places.
database) files. Numbers from
–10^38–1 through 10^38–1 in
.adp (Access project) files.
Decimal precision to 28 places.

Replication ID Globally unique identifier (GUID) Use for an AutoNumber field
used for replication. that is the primary key when

you replicate the database
and add more than 100
records between replications.
(Not a common choice!)

The default field size for Text fields is 255; for Number fields, it’s Long
Integer. You can change the default size on the Access Options dialog box
by clicking the Office button in the top-left corner of the Access window and
then clicking the Access Options button at the bottom of the menu. In the
resulting Access Options dialog box, click Object Designers in the Navigation
Pane. The default field sizes are the first three settings on the dialog box.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 104

Book II
Chapter 1

Creating and
M

odifying Tables
Formatting Fields with Field Properties 105

You can change a field size after you enter data, but if you shrink the size,
any Text data longer than the new setting is truncated and any Number data
that doesn’t meet the requirements is rounded (if you choose an Integer set-
ting) or converted to a Null setting if the value is too large or small for the
new setting.

Formatting Date/Time fields
Access provides the most common formats for dates and times — click the
down arrow in the Format field property to see the formats. You can also
create your own Date/Time format (for online help, press F1 or use the Help
button on the toolbar) that provides all the codes you need. Combine them
in the same way you combine the text or number codes to define a format.

Formatting Text fields
Use the Field Size and Format properties together to format Text fields. The
Field Size property limits each entry to the number of characters you
specify. You can change the field size from a smaller size to a larger size with
no problems. If you change a larger size (say, 20) to a smaller size (say, 10),
you lose characters past the 10th character.

You enter symbols into the Format property in a kind of code:

For This Format Type This Format Property

Display text all-uppercase > (greater-than sign)

Display text all-lowercase < (less-than sign)

Display text left-aligned !

Specify a color Enter one of the following colors between
[] square brackets: black, blue, green,
cyan, magenta, yellow, white.

Specify a certain number Enter @ for each required character (see
of characters also Chapter 5 of this minibook)

Specify that no character &
is required

Display predefined text /text (the Default Value property may
also be useful). For instance, enter /NA to
display the text NA. Appears in all records
until another value is entered.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 105

Defining the Primary Key106

Defining the Primary Key
The primary key is a field in each table that uniquely identifies each record
in the field. (Primary keys are described in Book I, Chapter 4, including how
to choose which field or fields to use for your primary key.) The simplest
primary key field is a counter with a value of one for the first record, two
for the second record, and so on. You can create a counter field by using
an AutoNumber field. If you allow Access to create a primary key for you, it
creates an AutoNumber field.

Another example of a primary key is a Social Security number in a table
where each record contains information about a single person and each
person is listed only once in the table. Sometimes each record may be
uniquely identified by the combination of two fields, such as an item number
and the manufacturer. Note that first names and last names may not always
be unique!

After you define a field as a primary key, Access prevents you from enter-
ing a new record with the same primary key value. When in doubt, an
AutoNumber field is a good bet for a primary key, but the AutoNumber
field doesn’t allow Access to help you avoid repeating data as another
field does.

Follow these steps to create a primary key:

1. Display the table in Design view.

2. Click in the row containing the primary key field, or select the row by
clicking the record selector.

To select multiple rows to create a multiple field primary key, click the
first record selector, and then Ctrl+click the record selectors you want
for any additional fields.

3. Click the Primary Key button on the Design tab of the Ribbon or right-
click the row selector and select Primary Key.

Access displays the key symbol in the record selector for the field.

If you already have data in the field and two records have the same
value, you cannot make the field the primary key for the table.

The primary key field has to uniquely identify each record.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 106

Book II
Chapter 1

Creating and
M

odifying Tables
Indexing Fields 107

Indexing Fields
When you index a field, Access sorts and finds records faster using the
Index field. An index can be based on a single field or on multiple fields.
The primary key field in a table gets indexed automatically, and you can
choose other fields to index as well.

Although indexing speeds up many operations, it slows down some action
queries because Access may need to update the indexes as the action is
performed.

To index a field, choose one of the Yes values for the field’s Indexed prop-
erty. Three values for the Indexed property are available:

✦ No: Doesn’t index the field.

✦ Yes (Duplicates OK): Indexes the field, and allows you to input the same
value for multiple records.

✦ Yes (No Duplicates): Indexes the field and doesn’t allow you to input the
same value for more than one record. The primary key automatically
gets this value.

You can see details on the indexed fields by clicking the Indexes button to
see the Indexes window, shown in Figure 1-9.

The Indexes window displays all the fields in the table that are indexes, their
default sort order (which you can change), and their index properties. The
index properties are as follows:

✦ Primary: Yes when the field is the primary key for the table, No
otherwise.

Figure 1-9:
The Indexes
window.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 107

Printing Table Designs108

✦ Unique: Yes when the value of the field for each must be unique, No
otherwise.

✦ Ignore Nulls: Yes when nulls (blanks) are excluded from the index, No
when nulls are included in the index.

Printing Table Designs
Printing the Design view of your table is not as easy as clicking the Print
button — as you may have noticed already, the Print button is not available
when Design view is displayed. Luckily, Access includes a cool feature called
the Documenter dialog box to help you document your database. To print
your field definitions with field properties, follow these steps:

1. Click the Database Documenter button in the Analyze Performance
group of the Database Tools tab on the Ribbon.

Access displays the Documenter dialog box, as shown in Figure 1-10 (of
course, your Documenter dialog box will show different objects).

2. Click the Tables tab to display a list of tables in your database.

3. Select the table(s) you want to print by clicking the check box in front
of the table name.

Alternatively, use the Select button to select the highlighted table(s) or
just click the Select All button to get the whole enchilada — all the
tables.

Figure 1-10:
The
Documenter
dialog box
displays a
tab for each
type of
object in the
database.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 108

Book II
Chapter 1

Creating and
M

odifying Tables
Printing Table Designs 109

4. Click the Options button to display the Print Table Definition dialog
box, as shown in Figure 1-11.

Use the Print Table Definition dialog box to choose those aspects of the
table definition you want to print.

5. When you’re done, click OK to close the Print Table Definition
dialog box.

The Documenter dialog box makes its return.

6. Click OK in the Documenter dialog box to display the object-definition
report in a form that can be printed.

The contents of the report depend on the settings you selected in the
Print Table Definition dialog box, but the default display shows

• the properties of the table at the top

• the name of each field with its properties

• how the table is related to other tables in the database

• the table index fields

• the primary key

A portion of a report is shown in Figure 1-12.

7. Click the Print button on the toolbar, the Print button on the Print
Preview menu, or click the Office Button and choose Print from the
menu to print the report.

Figure 1-11:
The Print
Table
Definition
dialog box.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 109

Printing Table Designs110

Figure 1-12:
A sample of
a table
definition,
ready to
print.

10_036494 bk02ch01.qxp 11/17/06 8:20 AM Page 110

Chapter 2: Entering and Editing
Data in Datasheets

In This Chapter
� Using datasheets to enter and view data

� Navigating a datasheet

� Checking spelling in your datasheet

� Viewing and using related data

� Calculating totals for each field in the datasheet

All the data in your database is stored in tables, probably in more than
one of them. Tables have two views: Design view (covered in Chapter 1

of this book) and Datasheet view, where you see the data in the table.
Although you can work in Access without ever looking at a boring datasheet,
you should know your way around one, just in case you need to look at one.

Not only do datasheets provide an unadorned view of the data in your table,
you can do quite a lot of work in a datasheet. If you enter a lot of data, you
may find that you like entering it into a datasheet rather than a form. Using a
datasheet, you can:

✦ modify and delete data

✦ change the look of the datasheet by moving columns around

✦ change column width and row height to fit your data

✦ freeze columns so that they don’t scroll off the screen

This chapter covers the basics of working with data in a datasheet. Later
chapters in this book cover even more analysis that you can do just by
using the datasheet.

Datasheets are one way to view tables. You can also view queries with
datasheets — you see the result of a query in a datasheet. Everything you
can do with a table you can also do with a query in Datasheet view.

You can easily view the contents of a table, add new records to the table,
and make changes to the data using Datasheet view — the view that shows
data exactly as it is stored: in rows (records) and columns (fields). Opening

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 111

Looking at a Datasheet112

a table in Datasheet view is easy. Just double-click the table’s name in the
Navigation Pane, or click the View button in the Views group on the Home or
Design tabs on the Ribbon when a table is displayed in Design view.

Looking at a Datasheet
A datasheet displays data in a table — it has rows (records), columns
(fields), and cells that hold individual pieces of data. Figure 2-1 shows an
example of an Access datasheet.

To see a table in Datasheet view, double-click a table name in the Navigation
Pane. If you’re looking at a table in Design view, click the View button, the
first button on the Home, Design, and Datasheet tabs on the Ribbon, to see it
in Datasheet view. The View button allows you to switch between Design and
Datasheet views. There is a set of View buttons in the bottom-right corner of
the Access window, just in case you find that more convenient. Let the
cursor rest on a button to see the button name.

The important buttons in Datasheet view live on two tabs on the Ribbon: the
Home tab and the Datasheet tab:

✦ The Home tab contains tools to manage the data displayed in the
datasheet — use them to cut and paste, change the appearance of data
(font, color, justification, and so on.), check spelling, filter the data dis-
played, and find the specific data you’re looking for.

First record

Previous record

Record number Next record

Last record

New record Horizontal scrollbar View buttons

Vertical scrollbar

Figure 2-1:
A datasheet
displays the
data in a
table in
records
(rows) and
fields
(columns).

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 112

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Navigating the Data 113

✦ The Datasheet tab contains tools for manipulating the database through
the datasheet — use it to add and rename fields, change the data type and
format of a field, and view relationships and object dependencies. If there
is something you want to do to the datasheet that you might otherwise do
in Design view, the tool for doing it is probably on the Datasheet tab.

Navigating the Data
Moving around in a datasheet is pretty straightforward. Use the vertical
scrollbar (refer to Figure 2-1) or the Page Up and Page Down keys to move
quickly up and down the datasheet (from record to record). Use the horizon-
tal scrollbar to move from left to right, and press Enter or Tab to move the
cursor from field to field.

If you know the number of the record you want (for example, the fourth
record in the table), type the record number into the Record Number box at
the bottom of the datasheet (refer to Figure 2-1) to jump straight to the
fourth record. Record numbers are relative — records are not assigned a
permanent record number. But when you want to go to the fourth record
listed on the page, type 4 in the Record Number box and then press Enter.
Sorting the datasheet so that records appear in a different order means that
the record that is fourth changes.

You can move around in a datasheet three different ways:

✦ Mouse: Click a cell or use the scrollbars.

✦ Keys: Use Page Up and Page Down and the other keys in Table 2-1.

✦ Buttons: Click the VCR-like record-navigation buttons at the bottom-left
of the datasheet (refer to Figure 2-1), or you can click the New Record
button in the toolbar to jump to the end of your listings.

Table 2-1 Datasheet Navigation Keystrokes
Key Where It Takes You

Page Down Down a page

Page Up Up a page

Tab The next cell

Shift+Tab The previous cell

Home The first field of the current record

End The last field of the current record

Ctrl+↑ First record of the current field

(continued)

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 113

Adding and Editing Records114

Table 2-1 (continued)
Key Where It Takes You

Ctrl+↓ Last record of the current field

Ctrl+Home First record of the first field (top-left corner of the datasheet)

Alt+F5 Puts the cursor in the Record Number box — type a record number
and press Enter to go to that record

Adding and Editing Records
To create a new record, start typing in a blank row. To move to a blank row,
press Ctrl+ the plus sign (+) or click one of the two New Record buttons —
you find one nestled with the record navigation buttons at the bottom-left of
the datasheet and one in the Records group of the Home tab on the Ribbon.
Type your data and press Enter or Tab to move to the next field. When you
get to the last field of a record and press Tab or Enter, Access automatically
moves you to the first field of a new record.

As you enter data, you may come across fields that are check boxes or drop-
down lists. You can easily use the mouse to change a check-box setting or
select from a list, but you can also use the keyboard — in these ways, for
example:

Press the spacebar to change a check-box setting from checked to
unchecked

or

Press F4 to see a drop-down list, press the ↓ key to select your choice,
and then press Enter.

If you change your mind about your entry, press the Esc key to cancel it. If
you already pressed Enter, you can undo the last entry by clicking the Undo
button (a small button on the toolbar under the Ribbon) or by pressing
Ctrl+Z. Another useful keystroke to know is Ctrl+’ — it repeats the value in
the record immediately above the cursor.

Table 2-2 lists all the keystrokes you ever want to use as you enter and
edit data.

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 114

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Adding and Editing Records 115

Table 2-2 Keystrokes in Datasheet View
Keystroke What It Does

Ctrl+ plus sign (+) Moves the cursor to a new record

Enter or Tab Enters the data and moves to the next cell (to the right, or to the
first field of the next record)

Escape Cancels the current entry

Undo or Ctrl+Z Undoes the last entry

F4 Displays a drop-down list (if present) in the current cell

Ctrl+C Copies the selected data

Ctrl+X Cuts the selected data

Ctrl+V Pastes data from the Clipboard

Delete Deletes the selected data

Ctrl+Enter Enters a line break within an entry

Ctrl+– Deletes the current record

Spacebar Switches between the values in a check box or option button

Chapter 4 of this minibook covers cutting, copying, and pasting in detail.

Keystrokes that enter data
Access has a few extremely convenient keystrokes that enter data for you,
which are listed in Table 2-3. You can also use the Windows cut-and-paste
shortcut keys. (Ctrl+C to copy the selected information to the Clipboard,
Ctrl+X to cut the selected information and move it to the Clipboard, and Ctrl+V
to paste the information from the Clipboard at the current cursor location.)
(See Chapter 4 of this minibook for more information on using the Clipboard.)

Table 2-3 Entering Data with Keys
Keystroke Data It Enters

Ctrl+ apostrophe (‘) Repeats the entry for the field from the previous record

Ctrl+ semicolon (;) Inserts the current date

Ctrl+Shift+ colon (:) Inserts the current time

Ctrl+Alt+spacebar Inserts the default value for a field

Editing the data you have
Editing is pretty straightforward. To edit data, simply place your cursor in
the cell containing the data you want to change, use the Backspace or Delete

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 115

Adding and Editing Records116

keys to get rid of unwanted stuff and then type in your replacement stuff. Or,
if you already selected (highlighted) the text or a value, whatever you type
replaces the selection. If you don’t want to replace a selection, press → or F2
or click in the cell to deselect and display the cursor.

Use these tricks when selecting text:

✦ To replace the entire value, move the pointer to the left of the field until
it changes into a big plus sign, and then click to select the whole cell.

✦ Double-click to select a word or value.

✦ Click at the beginning of what you want to select, press the Shift key, and
then click at the end of what you want to select.

If you have lots of text in a cell and want to see it all at once, select the cell
and press Shift+F2 to see the cell in a Zoom box (shown in Figure 2-2). You
can make any changes, and then press Enter or click OK to return to the
datasheet. Use the Font button in the Zoom box to change the font, and per-
haps more importantly, the font size. Any changes you make are retained —
the next time you display the Zoom box, you see the data with the new font
settings.

Table 2-4 lists keystrokes you can use while in editing mode.

Table 2-4 Keystrokes to Use While Editing
Keystroke What It Does

Home Moves to the beginning of the entry

End Moves to the end of the entry

← or → Moves one character to the left or right

Ctrl+ ← or Ctrl+→ Moves one word to the left or right

Figure 2-2:
Press
Shift+F2 to
see the
Zoom dialog
box.

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 116

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Entering and Editing Hyperlinks 117

Keystroke What It Does

Shift+Home Selects from the insertion point to the beginning of the entry

Shift+End Selects from the insertion point to the end of the entry

Shift+← Selects one character to the left

Shift+→ Selects one character to the right

Ctrl+Shift+← Selects one word to the left

Ctrl+Shift+@ra Selects one word to the right

Entering and Editing Hyperlinks
Working with fields with the Hyperlink data type can be a little tricky (but
doesn’t have to be). Fields are defined as hyperlink fields in one of two ways:
If you create a table in Datasheet view, and then type in hyperlink data,
Access may define the field as a hyperlink field (start Web links with http://
to have Access recognize them as hyperlinks); alternatively, if you define the
field in Design view with the Hyperlink data type, then the field you get is a
hyperlink field.

When you type something into a hyperlink field in a datasheet, the text you
type instantly turns to a hyperlink — blue, underlined text that you click to
go to whatever site the link refers to. You can’t click the hyperlinks to edit
them — clicking a hyperlink always takes you to the linked file, which can
prove tricky.

A hyperlink entry can consist of four different parts:

✦ The underlined text you see in a datasheet or form

✦ The address that the hyperlink links to (the only required part)

✦ The sub-address that the hyperlink links to

✦ A screen tip — text that appears in a small box when the cursor hovers
above the hyperlink

Because the full hyperlink entry consists of four parts, you may find the Edit
Hyperlink dialog box an easier way to enter and edit hyperlinks.

Entering hyperlinks
The most common types of hyperlinks are links to Web pages or to files on
your PC or LAN. You can enter those kinds of addresses by simply typing the
address or path of the page or file you want to link to (or — an even easier
method — paste it from your Web browser or Windows Explorer).

11_036494 bk02ch02.qxp 11/17/06 8:20 AM Page 117

Entering and Editing Hyperlinks118

However, you may choose to enter a hyperlink using the Insert Hyperlink
dialog box (shown in Figure 2-3) in order to take advantage of the extra fea-
tures found in this dialog box. To display the Insert Hyperlink dialog box, do
one of the following:

✦ Right-click the hyperlink field and choose Hyperlink➪Edit Hyperlink
from the shortcut menu.

✦ Click in the field (if empty) or tab to the field and press Ctrl+K.

If a hyperlink is in the field, you can’t click it without opening the hyperlink —
instead, use the Tab key to move the cursor to that cell, hover the pointer
over the upper-right corner of the cell until the pointer changes to a plus
sign, and then click, or right-click, to see the shortcut menu.

The Insert Hyperlink dialog box provides different options depending on the
type of link you’re creating. You can create a link to open any of the following:

✦ An existing file or Web page

✦ An e-mail address

Use the buttons on the left side of the dialog box — the ones under the Link
To heading — to select the type of link before you enter any additional infor-
mation about the hyperlink.

The following options always appear in the Insert Hyperlink dialog box, no
matter what you end up linking to:

✦ Text to Display: The text that displays as a hyperlink. This does not
have to be the hyperlink address.

✦ Some way to define the object that you’re linking to: The address or
name of the object.

Figure 2-3:
Press Ctrl+K
to enter or
edit a
hyperlink in
the Insert
Hyperlink
dialog box.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 118

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Entering and Editing Hyperlinks 119

✦ Screen Tip: Click this button to enter text that appears when the cursor
hovers over the hyperlink text.

✦ Remove Link: Deletes the hyperlink.

Other options in the dialog box change depending on the type of link you’re
creating.

If you link to an existing file or Web page, you see browsing options for find-
ing the file or Web page you want the hyperlink to point to:

✦ The Current Folder button displays the current folder on your PC and
allows you to enter a path or browse your PC or LAN.

✦ The Browsed Pages button displays pages recently viewed with your
browser.

✦ The Recent Files button displays the contents of the Windows Recent
Documents folder.

✦ The Browse the Web button opens your browser.

✦ The Browse for File button opens the Link to File dialog box, where you
can browse to a file.

✦ The Address option displays the URL of the file or page. Access fills this
in automatically as you type, or you can type the address in manually.
The drop-down list displays recently used files and URLs.

If you link to an e-mail address, specify the e-mail address and the subject of
the e-mail message that is created when the user clicks the hyperlink.

Editing hyperlinks
Editing hyperlinks can be a bit tricky. Unlike other types of fields, clicking a
hyperlink doesn’t put the cursor in the field in such a way that you can make
changes. Instead, clicking a hyperlink takes you to whatever the hyperlink
points to. You can’t move the cursor around with the mouse! You have to use
one of these methods instead:

✦ Tab to the hyperlink and press Ctrl+K to display the Edit Hyperlink
dialog box.

✦ Right-click the hyperlink and choose Hyperlink➪Edit Hyperlink from the
shortcut menu to display the Edit Hyperlink dialog box.

Using the Edit Hyperlink dialog box, you can either change the text to dis-
play or change the address that the hyperlink points to (near the bottom of
the dialog box).

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 119

Using the Attachment Data Type120

You can also edit a hyperlink by tabbing to it and pressing F2, but what you
get on-screen is the multipart hyperlink separated by # characters — a bit
messy to deal with, to be honest — and you can’t use the mouse to move the
cursor. The dialog-box method is a more surefire method!

You can remove a hyperlink by right-clicking and choosing Hyperlink➪Remove
Hyperlink from the shortcut menu. The text and the hyperlink are both
removed.

Using the Attachment Data Type
There is a new field type in Access 2007: the Attachment data type. When a
field is defined with the Attachment data type, you can store one or more
files for each record in the field. For instance, you may store a picture of a
person, or files containing correspondence about an order. Attachments can
dramatically increase the size of the database, but since the attached file is
stored as part of the database, you are not dependent on network drives
being available as you would be if you included a hyperlink to the file. As a
matter of fact, feel free to delete the original file after you attach it to the
database so that you aren’t storing it twice.

To use the Attachment data type you must be using 2007, and the database
must be in the Access 2007 .accdb format. Individual files cannot be more
that 256Mb, and all attached files cannot exceed 2 Gb (which is the size limit
for an Access database).

Normally, a field holds only a single piece of information for each record. In
an attachment field, however, you can store multiple attachments. (Access
creates a hidden table to normalize your data).

To create an Attachment field in your table, use one of these options:

✦ Insert a field based on the Attachment field template into your datasheet
(see the previous chapter for details on using Field Templates).

✦ Define the field data type as Attachment using the Data Type option in
the Data Type and Formatting group of the Datasheet tab on the Ribbon,
or using the Data Type drop-down list in Table Design view.

In Datasheet view the field appears with a paperclip in the field name box to
indicate that the field is an Attachment field. It cannot be renamed in
Datasheet view, although the name can be changed in Design view. Each
record also contains a paperclip with a number in parentheses. The number
indicates how many attachments the record has.

Manage attachments by double-clicking the paperclip for the record to dis-
play the Attachments dialog box shown in Figure 2-4.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 120

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Using the Attachment Data Type 121

Add an attachment by clicking the Add button in the Attachments dialog
box. Then navigate to the file and click Open. Repeat to attach more files.

To view an attached file, open the Attachments dialog box and double-click
the name of the attached file. It will open in its native application, if the
application is available. (For instance, an .xls file opens in Excel.) You can
make changes to the file and save it. To save files to the database, be sure to
return to Access, click OK in the Attachments dialog box, and click Yes when
asked if you want to save your updates to the database.

The Save and Save All buttons on the Attachments dialog box allow you to
save attachments to your hard drive or another location so that they can be
opened without opening the database.

Deleting records
It’s inevitable that sometimes you want to delete data. Before you do that,
however, here’s a word to the wise . . .

Deleted data cannot be recovered using the Undo button!

Attachment field Attachement field template

Figure 2-4:
Manage
attachment
fields by
using the
Attach-
ments
dialog box.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 121

Using the Attachment Data Type122

With that caveat firmly in mind, you can delete a record by following these
steps:

1. Select the record you want to delete by clicking the record selector to
the left of it (or by putting the cursor anywhere in the record).

Remember that a record is a whole row of data.

2. Press the Delete key or click the Delete Record button.

Access asks you if you are sure you want to delete the data.

3. Click the Yes button to delete.

The row you select is deleted, and the data below the deleted row
moves up to fill the space.

Entering special characters
Occasionally, you may need to enter characters that aren’t on your key-
board. Access doesn’t provide an easy way to do that, but you can do it. If
you know how to find your special character in another program, you may
want to create it in that program first — and then cut and paste it into
Access. Otherwise, follow these steps:

1. Choose Start➪All Programs➪Accessories➪System Tools➪
Character Map.

The Character Map appears. You see a grid of characters. The drop-
down list at the top of the box lists the fonts. The box at the top is
where the characters you select (in Step 3) appear.

2. Browse to find the character you need.

Each font has a different set of characters, so you may need to browse
through the fonts to find the character you want. Use the vertical scroll
bar to see all the characters within a font.

3. Double-click the character or select it and click the Select button to
display it in the Characters to Copy box.

Repeat Step 3 until you have all the characters you need.

4. Click the Copy button.

The contents of the Characters to Copy box copy to the Windows
Clipboard.

5. Return to Access and click the Paste button or press Ctrl+V.

If you don’t see the character you copied, you may have to format it
with the font you selected in Character Map.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 122

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Checking Your Spelling 123

Checking Your Spelling
You can check your spelling in a datasheet or form by clicking the Spelling
button in the Records group on the Home tab of the Ribbon. You can easily
skip some fields that may have words that Access doesn’t recognize, espe-
cially if they are full of codes or abbreviations. (See Table 2-5 on exactly how
to do that.) You may also find selecting a field or two to run a spell check on
rather than checking the whole datasheet makes sense. (You can select a
field by clicking the field name; select several consecutive fields by selecting
the first field and, while holding the Shift key, clicking the last field.)

When you spell check, Access compares the words in the datasheet to the
words in its own dictionary. Anything not found in the dictionary is “mis-
spelled.” Of course, plenty of words that you use may not be in the diction-
ary, such as technical terms or unique product names. Don’t assume that
the Spelling dialog box is always right — your spelling may be just fine —
checking is a good habit.

A routine spell check goes like this:

1. Click the Spelling button in the Records group on the Home tab of the
Ribbon to open the Spelling dialog box (shown in Figure 2-5).

Access finds the first word that is not in its dictionary, and displays it in
the Not In Dictionary box. In the Suggestions box, Access lists possible
correct spellings of the word.

2. You decide how to deal with the word:

• Double-click a word from the Suggestions list to replace the mis-
spelled word, or click the correctly spelled word once and then click
the Change button.

• Click the Ignore button to ignore the word and find the next misspelled
word.

• Click the Cancel button to exit the spell check and correct the word
in the datasheet manually.

Figure 2-5:
The Spelling
dialog box
helps you
find and
correct
potentially
embarras-
sing typos.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 123

Using AutoCorrect for Faster Data Entry124

You may want to use the options in the Spelling dialog box listed in Table 2-5
as you check spelling.

Table 2-5 Buttons in the Spelling Dialog Box
Button What It Does

Ignore “Field name” field Tells Access not to check spelling in the field where it has
found the latest misspelled word.

Ignore Skips the current word and finds the next misspelled word.

Ignore All Skips all instances of the word when it’s found.

Change Changes the misspelled word to the word selected in the
Suggestions box.

Change All Changes all instances of the word to the word selected in the
Suggestions box.

Add Adds the word to the dictionary. Use this carefully as it’s
difficult to undo! Access uses main and custom dictionaries
that are shared by all the Microsoft Office applications. You
can use Microsoft Word to remove words from a custom
dictionary — check Word’s online help for details.

AutoCorrect Adds the misspelled word and the correctly spelled word
selected in the Suggestions box to the AutoCorrect list.
AutoCorrect automatically replaces words when you enter
them or press the spacebar.

Options Displays Access Options; here you can tell Access whether
to suggest words, whether to ignore certain words, and
which dictionary to use (you can specify a foreign language
by using the Custom Dictionary option).

Undo Last Undoes the last change made by the Spelling dialog box.

Cancel Closes the Spelling dialog box and retains any changes made.

Using AutoCorrect for Faster Data Entry
AutoCorrect helps you in two distinct ways:

✦ It corrects misspelled words as you type.

✦ It replaces an abbreviation you type with more complete text, saving
you time.

To change the way that AutoCorrect works, display the AutoCorrect dialog
box, shown in Figure 2-6, by following these steps:

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 124

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Using AutoCorrect for Faster Data Entry 125

1. Click the Office Button (the circle in the top left of the Access window)
to display the File menu.

2. Click the Access Options button on the bottom bar of the File menu.

The Access Options window appears.

3. Click Proofing in the navigation portion of the Access Options window.

Your spelling and AutoCorrect options appear.

4. Click the AutoCorrect Options button.

The AutoCorrect dialog box appears. To turn on AutoCorrect, check to
make sure that the Replace Text as You Type option is selected.

To add a common abbreviation to the AutoCorrect list, display the
AutoCorrect dialog box and follow these steps:

1. Enter the abbreviation in the Replace box.

2. Enter the full term in the With box.

3. Click the Add button.

4. Check that the Replace Text as You Type option is checked.

You can delete an AutoCorrect entry by selecting it in the list and clicking
the Delete button.

By default, all the options in the AutoCorrect dialog box are on (checked).
You may want to turn some or all of them off (unchecked) if Access is
making corrections that you don’t want it to make.

Figure 2-6:
The
AutoCorrect
dialog box
helps you
set up
abbrevia-
tions for
faster data
entry.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 125

Using AutoCorrect for Faster Data Entry126

The Exceptions button displays the AutoCorrect Exceptions dialog box
(shown in Figure 2-7) where you can tell Access not to capitalize after a
period that ends an abbreviation (on the First Letter tab), and when you
want two or more initial caps to stay the way you enter them (on the INitial
CAps tab).

When AutoCorrect is turned on, it will check your typing after you press
space, Tab, or Enter after typing an error or abbreviation found in the Auto-
Correct list. If you have chosen to display the AutoCorrect Options button
(the first check box on the AutoCorrect dialog box), you see the button imme-
diately after AutoCorrect has made a correction. Click the button to see the
menu shown in Figure 2-8. The menu gives you the option of undoing the
autocorrection in this one instance, in all instances, or displaying the
AutoCorrect dialog box.

Figure 2-8:
The
AutoCorrect
Options
button lets
you control
each auto-
correction.

Figure 2-7:
The
AutoCorrect
Exceptions
dialog box
makes
AutoCorrect
more
efficient
without
turning the
whole
feature off.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 126

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Formatting a Datasheet 127

Formatting a Datasheet
Datasheets can’t provide the good-looking output you get with a report or a
form, but you can make some changes to make a datasheet more readable
and attractive. The formatting options are available on the Home tab on the
Ribbon.

Format changes usually cannot be undone using the Undo button or Ctrl+Z.
You can undo changes by closing the table without saving, but of course you
lose all the formatting and design changes you made since the last time you
saved the table.

Formatting a field
Field formats are covered in detail in the previous chapter, but notice that
you can format fields from the datasheet — you don’t have to be in Design
view. Select any value in a field to format the whole field, then use the Data
Type and Formatting options on the Datasheet tab of the Ribbon. If you can’t
make the change you want to make, check the field properties in table
Design view.

Be thoughtful about changing the Data Type — you may want to read the
section in the previous chapter about Data Types, as it is possible to lose
data when changing the Data Type (Access will warn you first, though).

Use the buttons at the bottom of the section to change the way the data is
displayed. You can change numbers to display with a currency symbol, in
percentages, or in the comma number format. You can also increase or
decrease the number of decimal points displayed using the Increase
Decimals and Decrease Decimals buttons.

The Unique check box when checked requires that every value in the field
be unique, that is, not repeated in any other record. The Is Required check
box makes the field a required entry, and the user cannot continue to the
next record until a value is entered for the field.

Changing the font
In an Access datasheet, the font and font size of all the data are the same —
you can’t change the font for just some of the data.

Change the font by using the Font tools on the Home tab on the Ribbon.

Select to change the font, font style, and font size. You can underline text by
using the Underline check box in the Effects box. The Color option changes
the color of the data in the datasheet.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 127

Formatting a Datasheet128

Taking advantage of rich text
Access 2007 supports rich text. This means that you can store formatted
text — words in a particular font, size, color, bold, underline, alignment,
indents, numbering, bullets, and whether the field fills from left to right or
from right to left. In other words, in the right kind of field you can have just
about all the text-formatting capabilities you need to make pretty text.
However, to take advantage of rich text, the field must be a Memo field.
Otherwise, you will end up formatting the whole datasheet, rather than just
part of one field.

To create a field to hold rich text, create a Memo field, and set its Text
Format property to Rich Text. (See Figure 2-9.) For more information on
working in Design view to change the data type and field properties for a
field, see Chapter 1 of this minibook.

Once you have created a rich-text field, view your data in a datasheet or,
even better, in a form, and format away. The formatting options on the Home
tab on the Ribbon will all be available to you. To format text, first use the
mouse to select the text you want to format, and then select the type of for-
matting you want to apply.

Memo data typeRich Text
text format

Figure 2-9:
To create a
rich-text
field, set the
data type to
Memo, and
the Text
Format
field
property to
Rich
Text.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 128

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Formatting a Datasheet 129

Rich text can be displayed in a form or report in a Text Box control. The text
box has a Text Format property that must be set to Rich Text for the
text to appear on-screen with its formatting.

Changing gridlines and background color
Gridlines are the gray horizontal and vertical lines that separate cells in a
datasheet. You can change the color of the gridlines or choose not to display
the gridlines at all. You can even choose a special gridline effect other than
plain lines.

Access 2007 has a secret button used to display the Datasheet Formatting
dialog box (shown in Figure 2-10) — it’s at the bottom-right corner of the
Font group of the Home tab on the Ribbon. Make any changes (changes
reflect in the Sample box), and click OK. You have the option of making the
datasheet work from right to left instead of the usual left-to-right — not an
option often used, but if you need it, you can find it here.

Secret button

Figure 2-10:
Use the
secret
button to
display the
Datasheet
Formatting
dialog box.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 129

Formatting a Datasheet130

Rearranging columns in a datasheet
You can rearrange the order of fields in the datasheet in either Datasheet or
Design view. Follow these steps, in Datasheet view, to move columns:

1. Select the column you want to move by clicking the field name.

You may want to select a block of columns by then Shift+clicking the last
field name in the block.

2. Drag the column(s) to its new position.

As you move the mouse, a dark vertical line shows where the columns
move to when you release the mouse button.

If you can’t move a column, it’s probably frozen. Right-click a field name and
choose Unfreeze All Columns to unfreeze it. For more on freezing columns,
see the aptly named section “Freezing columns,” later in this chapter.

Changing column width
When you initially create a datasheet, all the columns have the same width.
But columns are easy to change, and when you save the table, the new
column widths are saved too.

To change the width of a column, move the pointer to the bar separating
the field names at the top of the column. The mouse pointer changes into a
double-headed arrow (shown in the margin). Drag the bar to the appropriate
width, or you can double-click to size the column for the widest data in the
column.

You can change the width of several adjacent columns at the same time by
selecting them (click the field name of the first column, and then Shift+click
the field name of the last column), and then changing the width of one
column. All the selected columns have the same (new) width.

If you prefer, use the Column Width dialog box to change column width —
right-click a field name and choose the Column Width option from the short-
cut menu. Enter the width in number of characters. You can use the Standard
Width check box to reset the column width to the standard, or the Best Fit
button to fit the column width to its contents. Click OK to close the dialog box.

Changing row height
You change the row height in one of two ways — with the mouse or with the
Row Height dialog box. You only have to change the height of one row — all
the rest change to match. All the rows change to the same height; you can’t
just change one.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 130

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Formatting a Datasheet 131

Changing row height with the mouse is very similar to changing column
width: Move the mouse pointer to the record selectors until the pointer
turns into a double-headed arrow (shown in the margin). Then drag up (to
make the row shorter) or down (to make the row taller).

Alternatively, right-click a record selector and select the Row Height option
from the shortcut menu to display the Row Height dialog box. Enter the row
height in points (there are 72 points in an inch). The Standard Height check
box formats the row height at the standard height for the font size that you
have chosen (the point size of the font, plus a cushion for the top and the
bottom of the row).

Inserting and deleting columns
Remember, columns are fields, so when you insert a column you are adding
a new field, and when you delete a column you delete the field and all its
data. You can add and remove fields in Design view — that’s covered in
Chapter 1 of this minibook.

To insert a field in Datasheet view, follow these steps:

1. Right-click the field name of the column where you want the new,
blank column.

2. Choose the Insert Column option from the shortcut menu.

A column with the name Field 1 (or some other number) is added. The
selected columns and all the columns to the right move to make room.

3. Rename the field name by right-clicking it and choosing the Rename
Column option from the shortcut menu.

4. Type the new name and press Enter.

The new field also appears in Design view.

To delete a field and all its data, right-click the field name and choose the
Delete Column option from the shortcut menu. Click the Yes button to per-
manently delete the field and its data. Buttons to insert, delete, and rename
a field are also available in the Fields and Columns group of the Datasheet
tab on the Ribbon.

Hiding columns
If you want to hide a column in a datasheet (perhaps the data is sensitive),
select the column or columns, right-click the selected field name(s), and
choose Hide Columns. To display hidden columns, right-click any field name
and choose Unhide Columns. A dialog box appears, where you can choose
which columns to redisplay.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 131

Taking Advantage of Subdatasheets132

Freezing columns
When you’re working with a wide datasheet, you may want to freeze one or
more columns so they don’t scroll off the left side of your screen. To freeze
one column, first select it, and then right-click the field name and choose
Freeze Columns from the shortcut menu. The selected column pops to the
left of the datasheet, and stays there. To freeze more than one column, select
them, right-click a field name and then Freeze Columns. To unfreeze
columns, right-click the field name and choose the Unfreeze All Columns
option from the shortcut menu.

Changing default formatting for new tables
Access allows you to change default formatting for tables using the
Datasheet tab of the Access Options window. Any changes you make
only affect new datasheets, and not tables and queries already created.

Display the Options dialog box by clicking the Office Button (the circle
in the top-left corner of the Access window) to display the File menu.
Click the Access Options button on the bottom bar of the File menu to
display the Access Options window. Click Datasheet in the navigation
portion of the Access Options window to display default formatting
options for datasheets in the current database.

Use the options to change colors, font, gridline, and cell-effect options.

Most of the options in this dialog box (default colors, default font, gridlines,
and cell effects) have already been discussed in this chapter.

Taking Advantage of Subdatasheets
Access has a nifty feature that allows you to display data from related tables
in your datasheet. This feature makes related data easy to view and enter —
without using a form.

Access automatically creates subdatasheets in a datasheet if you create a
one-to-one relationship with another table, or if the datasheet is on the one
side of a one-to-many relationship with another table. (You need to define a
relationship in the Relationship window, or use the Lookup Wizard that cre-
ates a relationship as the wizard creates a drop-down list.) Queries may have
subdatasheets also. (See Book I, Chapter 4 and Chapter 6 of this minibook
for more information on relationships.)

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 132

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Taking Advantage of Subdatasheets 133

When a subdatasheet is available, you see a + (plus) sign in the first column
of the table. Click the + sign to see the subdatasheet. When the subdatasheet
displays, the + sign changes to a – (minus) sign. Click the – sign to remove
the subdatasheet. By default, subdatasheets display for one record in the
parent table. To display all data from the related table, click the More button
in the Records group of the Home tab on the Ribbon, choose Subdatasheets➪
Expand All. To hide all subdatasheets, click the More button and choose
Subdatasheets➪Collapse All.

Figure 2-11 shows a datasheet with two levels of subdatasheets. The main
datasheet shows names and addresses of customers. The first-level sub-
datasheet lists order information; the second-level subdatasheet lists order
details (items ordered).

When a subdatasheet is displayed, you can use it as you would use a table —
to view, format, enter, edit, or delete data.

Access determines which table to display as a subdatasheet based on the
relationships you define in the database. However, you can select a table or
query to be used as a subdatasheet on the Table Property Sheet. (Display the
table in Design view and click the Property Sheet button on the Design tab.)

You can use a query as a subdatasheet — doing so allows you to filter the
data displayed in the subdatasheet using criteria defined in the query.

Figure 2-11:
This table
displays two
levels of
subdata-
sheets.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 133

Adding a Totals Row to the Datasheet134

When you select a subdatasheet manually, you need to know the name of the
table or query you use as the subdatasheet, as well as the names of the two
related fields — one in the parent table and the other in the subdatasheet
table. The two fields need to meet the requirements of related fields (see
Chapter 6 of this minibook). Follow these steps to select a table or query to
be used as a subdatasheet:

1. Click the More button in the Records group of the Home tab on the
Ribbon.

2. Choose Subdatasheets➪Subdatasheets from the menu.

The Insert Subdatasheet dialog box (shown in Figure 2-12) appears.

3. Select the table or query you want to use as a subdatasheet.

To view just your tables, click the Tables tab; to view just your queries,
click the Queries tab; to view both tables and queries, click the Both tab.

4. Use the Link Child Fields drop-down menu to select the field from the
subdatasheet table that you want to use to link the two tables.

5. Use the Link Master Fields drop-down menu to choose the field from
the parent table that you want to use to link the two tables.

6. Click OK.

Adding a Totals Row to the Datasheet
Access 2007 has a handy new feature that allows you to add a totals row to a
datasheet. A totals row can be used to count the number of items in a

Figure 2-12:
Use the
Insert Sub-
datasheet
dialog box
when you
want to
specify the
sub-
datasheet.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 134

Book II
Chapter 2

Entering and Editing
Data in Datasheets

Adding a Totals Row to the Datasheet 135

column, calculate a sum, average, or find the minimum or maximum value.
These are all examples of aggregate functions — you can use them in
queries, but now you can also use them in a totals row of a datasheet.

Follow these steps to create a totals row:

1. Display the datasheet and click the Totals button in the Records group
of the Home tab on the Ribbon.

Access creates a row titled Total at the bottom of the datasheet.

2. Click one of the blank cells in the Total row to display an arrow; click
the arrow to display a drop-down list of aggregation options.

3. Choose the kind of total you want to display.

The choices are None, Sum, Average, Count, Maximum, Minimum,
Standard Deviation, or Variance. For Text and Memo fields, you can
choose Count to count the number of entries in the field. For Date fields
the choices are limited to Average, Count, Maximum, and Minimum.

Access displays the aggregate as shown in Figure 2-13. To change the
kind of aggregation, simply select the cell and choose another option
from the drop-down list.

To clear the Totals row, simply click the Totals button again. If you change
your mind and want your aggregates back, Access will remember the type of
aggregation you chose. You may also want to add a Totals row to queries dis-
played in Datasheet view. See the next book for more on queries.

The totals will adjust when a filter is applied to the datasheet. See the next
chapter for more on filters. Totals rows do not appear in subdatasheets.

Figure 2-13:
Click the
Totals
button on
the Home
tab of the
Ribbon, then
choose the
type of
aggregation
you want for
the field.

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 135

Book II: Tables136

11_036494 bk02ch02.qxp 11/17/06 8:21 AM Page 136

Chapter 3: Sorting, Finding,
and Filtering Data

In This Chapter
� Sorting data in a datasheet

� Finding a specific record

� Using filters to find a subset of a datasheet

A datasheet is a good place to start analyzing your data, especially if
you only need to look at the data in one table. Within a datasheet, you

can sort (alphabetize) — using any field and filter — to find records that are
alike or that meet simple criteria. And if you’re looking at a datasheet gener-
ated by a query, these datasheet tools may be just what you need to find the
data you want without redefining the query.

Sorting the Rows of a Datasheet
You may enter data randomly, but it doesn’t have to stay that way. Use the
Sort buttons to sort the records (rows) into an order that makes sense.

Before you sort, decide which field you want to sort, and then place your
cursor somewhere in that field. Then use one of the two Sort buttons on the
Home tab of the Ribbon to sort the datasheet. Another way to sort the field is
to click the down arrow next to the field name — the first two choices on the
drop-down menu are Sort Smallest to Largest and Sort Largest to Smallest.

Sort Button Sort Order

Sorts from smaller to larger and A to Z

Sorts from larger to smaller and Z to A

Clear All Sorts button returns records to their previous order

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 137

Sorting the Rows of a Datasheet138

When you add a new record to a sorted datasheet, the datasheet does not
automatically resort itself — you have to use the sort button again to sort
the new records in with the already existing records.

If you want to return records to their unsorted order, click the Clear All Sorts
button on the Home tab on the Ribbon. However, if you have an order that
you want to be able to return to (for instance, the order in which the records
were entered), it’s a good idea to have a field that you can sort on when you
want to re-create that order.

An AutoNumber field often serves that purpose, but if that won’t work for
the order you want, consider adding a field that you can sort on to get your
data in order. Don’t let the order of records be a hidden clue to your data —
include that information explicitly in a field.

Sort-order oddities
When sorting a Number or Currency field, values
sort from smallest to largest (at least, they do
when you are sorting in ascending order). But
when you sort a Text field, values are sorted
alphabetically, starting at the left end of the field.
This difference between the two fields means
that in a Text field, Access sorts 55 before 6,
because the 5 character comes before the 6
character. For example, Access sorts the same
list of numbers in Number and Text fields like this:

Number Sort Text Sort

1 1

2 11

5 2

11 21

21 44

44 5

If you need to sort the numbers in a text field
into numerical order, Access online help has
an excellent help page on the topic. You’ll have
to create a new field, using an expression to

convert the text into a numerical value — and
then you can sort using that new field. The help
page is called “Sort records on numeric values
stored in a text field.” You can find it in the
Filtering and Sorting section of the help system.

Sometimes you need to know exactly how
Access sorts blanks and special characters. The
sort order, in ascending order, looks like this:

� blanks (null)

� space

� special characters such as !, “, #, %, &, (,
comma, period, [, ^, `, ~ (in that order,
incidentally)

� letters (Access does not distinguish
between uppercase and lowercase letters
when sorting)

� numbers

If you need to know how Access sorts some
characters that aren’t listed here, make a test
table with the characters you need to sort, and
sort them!

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 138

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Finding (and Replacing) Data 139

When you sort a Number field in ascending order, Access lists records from
the smallest number to the largest. When you sort a Text field in ascending
order, records are alphabetized from A to Z. When you sort a Date field in
ascending order, records are listed from oldest date to most recent date.
Descending order is the opposite in all three cases: largest-to-smallest
number, Z to A, or most recent to oldest date.

Finding (and Replacing) Data
Do you like the quick-and-dirty approach, or are you more thoughtful and
refined? Access accommodates both personalities. To search quickly for
data in a datasheet, use the Search box at the bottom of the datasheet; it’s
located to the right of the VCR buttons and to the left of the scroll bar. Type
your search text into the box and with no further ado, Access takes you to
the first instance of the text. You don’t even have to press Enter. In fact, as
you type, Access is moving the focus in the datasheet to the first instance of
the text you’re typing. To find the next instance, press Enter. Continue at will!

If you want to be more specific about what you’re looking for, you may prefer
the Find and Replace dialog box. Access even takes the text you typed in the
Search box and puts it into the Find and Replace box automatically, so you
have it as a starting point.

If you want to look within a single field, put the cursor anywhere in that
field’s column before you begin the search.

Display the Find and Replace dialog box (shown in Figure 3-1) by pressing
Ctrl+F or by clicking the Find button in the Find group of the Home tab on
the Ribbon.

Figure 3-1:
Press Ctrl+F
to see the
Find and
Replace
dialog box.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 139

Finding (and Replacing) Data140

Using the Find and Replace dialog box for quick-and-dirty searches is as easy
as 1-2-3:

1. Press Ctrl+F to display the Find and Replace dialog box.

2. Type what you’re looking for in the Find What box.

3. Press Enter or click the Find Next button.

Access highlights the first instance of the Find What text.

Quick-and-dirty may work just fine for you, but you need to know about a
few refinements to the Find and Replace dialog box — such as telling Access
to limit its search to particular places. The default settings on the Find and
Replace dialog box tell Access to search the field the cursor is in, and to
match your search term word for word. You may find, however, that other
options in the dialog box make it easier to find exactly what you’re looking
for. Keep reading to find out more!

The Find and Replace dialog box and its options
If you don’t know how to use the options in the Find and Replace dialog box,
it won’t help you much with finding what you’re looking for. So a guided tour
is in order.

The Find and Replace dialog box has the following options:

✦ Find What: Here’s where you type in the text or value that you’re look-
ing for.

✦ Look In: Here’s where you tell Access where to look — the field the
cursor is in, a series of fields, or the whole table. If you select a bunch of
fields or records before displaying the Find and Replace dialog box,
Access searches the selected cells — and you can’t change the Look In
option. (Select contiguous fields by clicking the first field name and then
Shift+clicking the last field name.) If you don’t select a particular field,
you can choose either the field where the cursor is, or the whole table
(the table name will be listed).

✦ Match: Choose how the search results match the Find What text. You can
choose from the following options: Any Part of Field, Whole Field, or Start
of Field. The Any Part of Field option finds the most instances. If you
search for Flamingo using the Any Part of Field option, Access finds
Lawn Flamingo. The Whole Field option only finds cells that match the
whole word, Flamingo — it does not find Lawn Flamingo. The Start of
Field option finds cells that begin with Flamingo, such as Flamingos.

✦ Find Next: Finds the next instance of the Find What text.

✦ Search: Choose the direction (from the cursor) to search: Up, Down,
or All.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 140

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Filtering a Datasheet 141

✦ Match Case: Match the case of the text — if you want to find THIS but
not This, use the Match Case option.

✦ Search Fields as Formatted: Finds data according to how it looks, rather
than how it was entered. If you use an input mask on a telephone-
number field (for example), you may input ten digits one after another,
but they appear with parentheses around the area code and a hyphen
after the exchange. If you use the Search Fields as Formatted option, you
can search for (508) to find phone numbers in the 508 area code.

The broadest search uses the following options: Look In Tablename (the whole
table), Match Any Part of Field, Search All, and deselect Match Case. Other
choices in the Look In, Match, and Search options narrow the search — and
may miss particular instances of the Find What text. That’s not necessarily a
bad thing, by the way — especially if you have a very clear idea of where you
want to find what you’re looking for.

Replacing the data you find
To replace data with new data, first define what you’re looking for using the
Find tab, as described in the previous section, and then use the Replace
With option on the Replace tab to define how you want to replace it.

You can replace instances one at a time by using the Replace (to replace)
and Find Next (to skip that instance) buttons. Or you can replace all
instances using the Replace All button.

The Undo button can only undo the last replacement made — it won’t undo
a whole slew of them, so use the Replace All button carefully.

If the Find and Replace dialog box isn’t quite what you need, you may want
to filter your datasheet and then make replacements, or you may want to try
out action queries. For more on filters, see the next section; for more on
action queries, check out Book III.

Filtering a Datasheet
Filtering a datasheet is a way to focus on specific records, rather than all the
records in a table. You can filter out records that aren’t relevant to what
you’re trying to do at the moment.

When you filter data, you use criteria to tell Access what you want to see. A
criterion is a test that the data passes in order to display after the filter applies.
For example, you may ask Access to show you the records with an order date
of 5/1/06. A more advanced criterion is orders with a date on or after 5/1/06.
Access will then show you only the data that meets your criteria. All other
records are hidden until you remove the filter.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 141

Filtering a Datasheet142

Table 3-1 tells you how to use each of the filter options. Access 2007 has new
filtering abilities, enabling you to easily apply common filters, for instance, to
filter data from a particular month. These common filters are built into every
view that displays data. Here we discuss how to use them in Datasheet view.

Table 3-1 Types of Datasheet Filters
Type of Filter When You Should Use It

Common Filters When you want to find dates from a certain month, or text with
certain similar characteristics, or use a logical operator to filter
a number field.

Filter by Selection You have a record with a certain value in a field, and you want
to find all the other records that have the same value in that
particular field.

Filter by Form You have more than one criterion; for instance, you want to find
orders placed before 6/1/06 paid for by credit card.

Advanced Filter/Sort You want to do more than the other filters allow, such as sorting
and applying criteria to multiple fields. Advanced Filter/Sort cre-
ates a query using only one table.

There are some cases when a filter is not the best tool for the job. If you are
looking for the top or bottom values in a field, or unique or duplicate values,
then you need to use a query.

Filtering basics
If you want to get a handle on the whole filtering concept, start out by
taking a look at the parts of a datasheet that relate to filters. To start with,
you can display the filter menu for any field by clicking the arrow next to
the field name. To see what common filters are provided, choose the item
above all the check boxes — in Figure 3-2, it reads Number Filters. To filter
to a particular selection, use the check boxes (more about that in a sec).

Figure 3-2 shows a datasheet with the filter buttons and indicators marked.
This datasheet has a filter applied — you can tell because of the Filtered
datasheet indicators at the bottom of the datasheet. Also, the Toggle Filter
button is highlighted — if it’s clicked again, the filter is removed and all the
records in the datasheet display. If you hover the mouse pointer over the
field name of the filtered field, a screen tip appears, showing the current
filter definition.

You can apply a filter to any datasheet — that includes a table, of course, but
also subdatasheets and datasheets generated by queries. (When you apply a
filter to a subdatasheet, all the data displayed from the subdatasheet table is
filtered, not just the section where you apply the filter.)You can enter and
edit data in a filtered datasheet as usual. Just be aware that the filter has no
effect on any new records until you re-apply the filter.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 142

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Filtering a Datasheet 143

To remove a filter, click the Toggle Filter button in the Sort & Filter group of
the Home tab on the Ribbon. To re-apply the last filter you applied, click
Toggle Filter again. The Filtered/Unfiltered indicator next to the VCR buttons
at the bottom of the datasheet works the same way as the Toggle Filter
button. To clear the filter so that it is not applied when you click Toggle
Filter, choose Advanced➪Clear All Filters from the Sort and Filter group of
the Home tab on the Ribbon.

If you apply a filter to one field, and then apply a filter to another field, Access
will use both filters to choose the records to display. However, only one filter
at a time can be used on each field @md the second filter will override the
first — so it’s a good idea to know how to remove (that is, clear) your filters:

✦ Clear the filters from a single field by clicking the arrow next to the field
name and choosing Clear Filter from field name.

✦ Clear all filters from the table by clicking Advanced and choosing Clear
All Filters.

A filter runs a simple query on one table — a good way to start analyzing
your data. Filtering can help you warm up to creating more complex queries.
If you’re confused about queries, creating a filter can help you figure out how
to write criteria for a query (and so can Book III!). When you create the filter,
click Advanced and choose Advanced Filter/Sort to see it in the design grid.
Look at the Criteria row to see what the criteria look like. To close the design
grid, click the Close button.

Filter menu Filter buttons

Filter indicators

Figure 3-2:
A filtered
datasheet.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 143

Filtering a Datasheet144

If you want to use the filter to create forms and reports, save it while in the
Advanced Filter/Sort window by clicking Advanced and choosing Save as
Query.

Filters appear in the Filter property of the Properties sheet. You can filter
a table by entering an expression there — but almost no one does that
because the filter stays applied, and some records may be filtered out the
moment you open the table.

The next sections detail how to use each type of filter.

Filtering by selection
Filtering by selection is the simplest kind of filter — it finds records with
matching values in one field. To filter by selection, follow these steps:

1. Find a record with the value or text you want to match and then place
your cursor in that cell to match the whole value.

• To find all products with the price of $29.99, place the cursor in a
Price cell with the value 29.99.

• To match the beginning of the value, select the first character and as
many thereafter as you want to match. To find all entries in the field
that start with La, for example, highlight the La in Lawn Flamingo
before filtering.

• To match part of the value, select the characters in the middle of a
value that you want to match. Select 99 to find all values that contain
99, such as 499.

2. Click the Selection button in the Sort & Filter group of the Home tab
on the Ribbon.

3. Select the first choice, Equals X.

Access filters the datasheet to display only records that have the same
value in that field.

To see the entire table, click the Toggle Filter button (which toggles the filter
off and on).

By selecting a value in a datasheet you can easily filter to find values equal
to the value you’re looking for (as you just did), or go after those unequal to
that value (a process known as filtering by exclusion). Depending on the data
type, other options are also available:

✦ Number fields and Date/Time fields: Filter to values greater than or less
than the selected value. The Selection button also offers a Between
option so you can specify an upper and lower limit for the values you
want to see in the filtered datasheet.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 144

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Filtering a Datasheet 145

✦ Text: Filter to records that either contain the selected text or do not con-
tain the selected text. These two options are useful if you have selected
a portion of a text field.

Common filters
New in Access 2007, common filters are built into Access. The filters avail-
able depend on the data type of the field that you are filtering. The most
interesting choices are for Date/Time fields.

Follow these steps to use common filters to filter a field:

1. To see the filters available, click the arrow next to the field name, or
click the Filter button when the cursor is in the field.

At this point you may want to filter to a specific value. To first deselect
all values, click the first check box, Select All. This check box toggles
between two options: selecting all check boxes and deselecting all check
boxes. You can then select the values you want to see when the
datasheet is filtered. Click OK to see the filtered datasheet.

2. To choose from more filtering options, highlight the menu option
immediately above the check boxes.

The name of this menu option changes with each data type. It is called
Date Filters for Date/Time fields, Text Filters, Number Filters, and so on.

3. For Date/Time fields, highlight All Dates In Period to display another
level of choices.

From this submenu, you can choose to see data in one quarter or one
month of the year. Figure 3-3 shows all the filtering options available for
a Date/Time field.

Filtering using criteria on multiple fields
When you have criteria for multiple fields, you can simply apply the filters
to the various fields using the techniques you’ve already learned in this
chapter, and Access will display only the records that meet all the criteria.
Another choice, which is more flexible, is to use the Filter by Form feature
to find the records you need.

To Filter by Form, click the Advanced button in the Sort & Filter group of
the Home tab on the Ribbon, and then choose Filter by Form. Access dis-
plays a form that looks like a single row of the table you’re filtering. Use the
form, as shown in Figure 3-4, to specify the criteria you want to use to filter
your data.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 145

Filtering a Datasheet146

When you filter by form, you not only get to use multiple criteria, you also
get to choose how the data filters through whatever multiple criteria you set
up. Do you want a record to meet all the criteria before it shows up on-screen?
Or is just meeting one criterion enough to display the record on the filtered
datasheet? The following two operators are what you use to tell your criteria
how they should act together:

✦ And: The criteria act together hand in glove — a record has to pass all
criteria in order to display on the filtered datasheet.

✦ Or: A record has to pass only one criterion in order for it to display on
the filtered datasheet.

Figure 3-4:
The Filter by
Form
window.

Figure 3-3:
Date/Time
fields have
many, many
filtering
options.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 146

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Filtering a Datasheet 147

You may use more than two criteria using both the Or and And operators.
The way you put criteria in the form defines how multiple criteria act
together. Use the Look for and Or tabs at the bottom of the form:

✦ Criteria on a single tab act as if they are joined by the And operator.

✦ Criteria on separate tabs act as if they are joined by the Or operator.

To take advantage of all this versatility, follow these steps to filter a
datasheet by form:

1. Click the Advanced button in the Sort & Filter group of the Home tab
on the Ribbon, and choose Filter by Form.

Access displays the Filter by Form window, which looks like an empty
datasheet.

2. Move the cursor to a field you have a criterion for.

For instance, if you only want to see addresses from Pennsylvania, move
the cursor to the State field. A drop-down list arrow appears in the
field.

3. Click the arrow to see the list of entries in the field.

You may want to type the first letter or digit of your criteria to move to
that point in the drop-down list.

4. Select the value in the drop-down list that you want the filtered
records to match.

Access displays the text that the filter is looking for inside quotation
marks.

If you aren’t looking to match the entire field but are looking for a match
in part of the field, type LIKE “value that you’re looking for” (remem-
ber to include the quotation marks). For example, type LIKE “new” in the
City field to find all records with new in the city name. You can use more
complex criteria too — for more information, see Book III, Chapter 3.

5. If you have a criterion for another field that needs to be applied at the
same time as the criterion you set in Step 4, repeat Steps 2 through 4
for the additional field.

Setting up criteria to work together illustrates the usefulness of the And
operator. If you want to find addresses in San Francisco, CA, set the
State field to CA and the City field to San Francisco.

6. If you have a completely different set of rules to filter records by,
click the Or tab at the bottom left of the Filter by Form window.

Access displays a blank Filter by Form tab. When you set criteria on
more than one tab, a record only has to meet all the criteria on any one
tab to appear on the filtered datasheet.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 147

Filtering Using Advanced Filter/Sort148

7. Choose the criteria on the second tab in the same way you choose
those on the first — click the field and choose the value that you want
to match.

If, in addition to all the addresses in San Francisco, you want to see all
the addresses from Boston, MA, set the State field on the Or tab to MA
and the City field to Boston.

When you use an Or tab, another Or tab appears, allowing you to con-
tinue adding as many sets of Or criteria as you need.

8. Click the Toggle Filter button on the Ribbon to see the filtered table.

Filtering Using Advanced Filter/Sort
The Advanced Filter/Sort feature in Access is really a query — the simplest
kind of query. It allows you to find and sort information from one table in the
database. This option is available from a datasheet by clicking Advanced and
choosing Advanced Filter/Sort.

Use Advanced Filter/Sort when you want to use the more familiar Query by
Example (QBE) grid to sort and filter a table. (In fact, you can load filter cri-
teria from an existing query by clicking Advanced➪Load from Query in the
Sort and Filter group of the Datasheet tab on the Ribbon.)

Figure 3-5 shows the Advanced Filter/Sort window.

This section gives you the basics of performing an advanced filter-and-sort
operation, but because the features of the Advanced Filter/Sort window are
nearly identical to the features of queries, you may want to read Book III,
Chapter 1 for more details.

Follow these steps to sort and filter a table using the Advanced Filter/Sort
feature:

1. Open the table you want to filter in Datasheet view.

2. Click the Advanced button in the Sort & Filter group of the Home tab
on the Ribbon and choose Advanced Filter/Sort.

Access displays the Filter window, which has two parts, just like Design
view for queries. Notice that there is now a tab for the table and a tab for
the filter that you are defining.

3. In the top half of the window you see a box with the table name and
all the fields in the table listed. Double-click the first field you want
to use to filter the table.

The field appears in the Field row of the first column of the QBE grid in
the bottom half of the window.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 148

Book II
Chapter 3

Sorting, Finding,
and Filtering Data

Filtering Using Advanced Filter/Sort 149

Instead of double-clicking a field, you can choose a field from the Field
drop-down list in the QBE grid. Click in the Field row of the grid to see
the arrow for the drop-down list.

4. Click the Criteria row in the first column and type the criteria to limit
the records you see.

If you want to see only items that cost more than $10, select the
Selling Price field as the field you want to use as your filter, and
then type >10 in the Criteria row of the same column of the QBE grid.

5. Repeat Steps 3 and 4 to add other fields and criteria to the grid.

6. (Optional) Choose a field by which to sort the resulting table and then
choose Ascending or Descending order.

A drop-down list appears for the Sort row in the column, containing
the field you want to sort. Access sorts the table that results from the
advanced filter in ascending or descending order, using the field listed
in the same column as the sort key.

7. When you finish creating all the criteria you need, click the Toggle
Filter button to see the resulting table.

Access displays all the fields in the original table, but it filters the
records and displays only those that meet the criteria.

Field names

Table name

Query by Example (QBE) grid

Figure 3-5:
The
Advanced
Filter/Sort
window.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 149

Filtering Using Advanced Filter/Sort150

You can do several things with the resulting filtered table:

✦ Filter it again: Use the filter options to filter the table even more.

✦ Print it: Click the Print button.

✦ Sort it: The best way to sort is to use the Sort row in the design grid
(click the tab for the Filter window to display the QBE grid again). But
you can use the Sort Ascending or Sort Descending buttons to sort the
table by the field that the cursor is in.

✦ Fix it: Click the tab for the Filter window to display the Filter window
again to fix the criteria or other information in the grid.

✦ Add data to it: Add data to the table by clicking the New Record button
and typing in the data.

✦ Edit data: Edit data the same way that you do in the datasheet. When
you look at the unfiltered table, you see any changes you made in the fil-
tered table.

✦ Delete records: You can delete entire records if you want — click the
record you want to delete and then click the Delete Record button.

✦ Toggle between the filtered table and the full table: Click the Toggle
Filter button.

• If you’re looking at the full table, clicking the Toggle Filter button dis-
plays the filtered table (according to the last filter that you applied).

• If you’re looking at the filtered table, clicking the Toggle Filter button
displays the full table.

If you want to save your advanced filter, you have to save it in Design view.
After you apply the filter, return to Design view by clicking the tab for the
filter. Right-click the Filter tab and choose Save to save the advanced filter.
You can find the filter, after it’s saved, listed with the Queries button in the
Navigation Pane.

Creating a report or form with a filter
After you get the hang of filtering a datasheet,
you may realize that what you really want to do
is create a form or report with the same filter
you’ve just applied to your datasheet. You can —
and quite easily — by using the buttons on the
Create tab of the Ribbon. First filter the
datasheet, and then select the type of object you

want to create. Access prompts you to save the
table. Then you can either display the new
object (if you select AutoForm or AutoReport) or
display the New Form or New Report dialog box.
You can find the filter you created in the
Filter property of the Properties sheet for the
new object. Pretty slick.

12_036494 bk02ch03.qxp 11/17/06 8:21 AM Page 150

Chapter 4: Importing and
Exporting Data

In This Chapter
� Importing data from other programs into Access

� Linking data from other programs into Access

� Cleaning up your imported data

� Exporting data from Access

� Collecting data though e-mails

Even if you love Access, you may not end up using it for every single
data-oriented task you need to do. Because of that, you may need to get

data from another format (such as an Excel spreadsheet) into Access. Or
you may want to take data from an Access database and use it elsewhere —
say, a statistical report, spreadsheet, or word-processing document.

But never fear — you can get data from other applications into Access. Or, if
you prefer, you can leave your data in other applications and have Access
link to it there (although you should have a really good reason to do that,
because it can get tricky). Access provides a number of ways to import and
export data.

The rest of this chapter covers different methods of getting data into and
out of Access, starting with the easiest method — cutting and pasting.

Cutting, Copying, and Pasting
The most basic way to move information is cutting and pasting (or copying
and pasting) using the Windows Clipboard or the Office Clipboard. Cutting
and pasting is a straightforward (and relatively simple) way to move or copy
information into or out of Access, or from one place to another within Access.

You can use the Cut, Copy, and Paste commands in at least two ways: by
clicking buttons or by pressing shortcut keys. Table 4-1 lists buttons and
keystrokes for cutting, copying, and pasting.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 151

Cutting, Copying, and Pasting152

Table 4-1 Cutting, Pasting, and Copying Options
Button Keystroke What It Does

Ctrl+X Cuts the selection and stores it on the
Clipboard.

Ctrl+C Copies the selection to the Clipboard.

Ctrl+V Pastes the contents of the Clipboard.

To copy or cut and paste data, follow these steps:

1. Select the data or object that you want to cut or copy.

2. Choose your favorite method (Ribbon button or hot key) to cut or
copy what you selected.

You can also right-click the selection and choose Cut or Copy.

When you cut something, it disappears from the screen and is stored on
the Windows Clipboard. When you copy something, it stays where it is,
and Access also places a copy in the Windows Clipboard.

3. Move the cursor to the place where you want the item to appear.

4. Choose your favorite method (shortcut menu, Ribbon button, hot key)
to paste the item.

The Office Clipboard
Using the Windows Clipboard works the same as using the Office Clipboard,
except that the Office Clipboard has more features — mainly, it stores up to
24 clips. The Windows Clipboard stores only one clip. You can use the Office
Clipboard when cutting and pasting within Office applications. You can use
the Windows Clipboard for copying and pasting in any Windows application
that supports its use. When you cut or copy something to the Clipboard, it is
saved on both the Windows and Office Clipboards. When you paste from the
Clipboard using a keystroke or a button, you get the most recent thing you
put on the Clipboard, which is also the top item on the Office Clipboard.

If you always get the most-recently-copied item, what’s the point of the
Office Clipboard storing up to 24 of your recent clips? The Office Clipboard
stores items from all Office applications — Access, Excel, Word, Outlook, and
PowerPoint. If you want to see your clips, click the secret Clipboard button
on the Home tab of the Ribbon (it’s to the right of the word Clipboard, under
the Paste button — see Figure 4-1).

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 152

Book II
Chapter 4

Im
porting and

Exporting Data
Cutting, Copying, and Pasting 153

The Clipboard task pane displays the clips that you cut or copy, along with
an icon to show you what type of clip it is (from Access, Excel, Word, and so
on). Paste any clip — not just the most recent one — at the cursor’s position
by clicking the clip. Delete a clip from the Clipboard by right-clicking the
icon and choosing the Delete option from the shortcut menu. The Paste All
button pastes all the stored items at the cursor’s position.

Close the Clipboard task pane by clicking the Close button in the pane’s
upper-right corner.

If you want to keep track of what’s in the Clipboard, you can set it to appear
automatically whenever you cut or copy more than one item without past-
ing. Just click the Options button at the bottom of the Clipboard task pane
and choose Show Office Clipboard Automatically.

Cutting and pasting small to medium-ish
amounts of data
Cutting and pasting is most useful for small pieces of data, but you may also
use that capability for a number of fields- or even records-worth of data. If
you move lots and lots of data, look at the import and linking options covered

Clipboard button

Clipboard task pane

Clipboard options

Figure 4-1:
The Office
Clipboard.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 153

Cutting, Copying, and Pasting154

later in this chapter — but if you’re copying small or medium amounts of
data, copying and pasting may work just fine. Access gets picky when you
paste more than one piece of data into a datasheet; to help make pasting
work most effectively, follow these guidelines:

✦ Fields (columns) need to be in the same order in the source document
as in Access. You may need to rearrange columns in either Access or the
source document.

✦ The data type needs to match the data type of the field you’re pasting
into. The exceptions are Text and Memo data types, which can accept
any type of data.

✦ You can’t paste a duplicate value into the primary key field (just like you
can’t type a duplicate value into a primary key field).

✦ You can’t paste into a hidden field. Unhide all the fields you’re pasting
data into before you paste what’s in the Clipboard. To unhide, right-click
any field name and choose Unhide Columns. However, if you don’t have
data for one field, and you want to paste into the fields on either side of
it, hiding the field before pasting is a good option.

✦ Data you paste must meet any validation rules and work with any input
masks. (See the next chapter for details on those features.)

✦ You can’t copy data into an AutoNumber field. Access generates
AutoNumber values for copied records.

✦ A good option for pasting data is the Paste Append command. To
append entire records (with the exception of any AutoNumber fields),
paste by using Paste Append — copy the data to the clipboard, display
Access, then click the arrow under the Paste button on the Home tab of
the Ribbon and select Paste Append.

✦ If you are adding data into a datasheet that already has data, you may
want to paste the new data into a temporary datasheet to make sure the
data looks right before you paste it into the permanent datasheet. Another
option is to append the table with the new data to the existing table.
Append Queries, which do that job, are covered in Book III, Chapter 3.

✦ If you choose not to use Paste Append or the Append Tables query, you
have to select multiple cells (fields, records, or both) if you want to paste
content into multiple cells. You don’t have to select the exact number of
cells that you’re copying into — if you don’t know the exact number of
rows or columns that you want to copy data into, just select more than
you think the data will fill. To make new records click the New Record
button. You may need to put a piece of data in each record. The dummy
data will be overwritten when you copy data into the records.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 154

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 155

✦ One easy way to select cells in a worksheet is to click the first cell (in
the upper-left corner of the range), and then Shift+click the last cell (in
the lower-right corner of the range).

✦ You can’t copy into subdatasheets as you copy into the main datasheet.
Copy into one table at a time.

Moving data from Excel to Access
Do you have a relatively small amount of data you want to copy and paste
from Excel to Access? Follow these steps for a very convenient way to copy
and paste into a new Access table:

1. In Access, open the database to which you want to copy the data.

2. In Excel, open the workbook and display the worksheet that contains
your data.

Make sure that the first row of data makes adequate field names (you
can always change them later).

3. Select the data in Excel and press Ctrl+C to copy the data to the
Clipboard.

4. Click any table in the Navigation Pane and press Ctrl+V to paste the
data into a new table.

5. When Access asks if the first row of your data contains column head-
ings, click the Yes button.

Access creates a new table from the Excel data with the same name of
the Excel worksheet that contained the data. You may need to rename
your table, but wasn’t that easy?

Alternatively, you open a new or existing table, arrange your windows so you
can see both the data in Excel and the table where you want to put the data.
Then drag the data from Excel to Access.

If you have large amounts of data, try the Import Spreadsheet Wizard,
explained later in this chapter.

Importing or Linking to Data
If you have large quantities of data that you want to use in your Access data-
base, or if you want to take advantage of the features offered by the Link or
Import Wizards, you can import or link to the data.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 155

Importing or Linking to Data 156

What applications are compatible with Access?
Here’s the scenario: You were lucky enough to find the data you need in
your database, and it’s even in electronic form, but it’s in dBASE, Excel,
Word, another Access database, or some other file format — what do you
do? In most cases, Access knows how to either import the data directly or
create a link to the data. Currently, you can import or link to files in the fol-
lowing formats:

✦ Microsoft Access databases (versions 2.0, 7.0/95, 8.0/97, 9.0/2000,
10.0/Access 2002, 11/Access 2003, 12/Access 2007) and Project (versions
9.0/2000, 10.0/Access 2002, 11.0/Access 2003)

✦ dBASE versions III, IV, 5, and 7 (linking requires updated ISAM drivers
available from Microsoft Technical Support, www.microsoft.com)

✦ Paradox, Paradox for Microsoft Windows 3.x, 4.x, 5.0, and 8.0 (linking
requires updated ISAM drivers available from Microsoft Technical
Support, www.microsoft.com)

✦ Microsoft Excel spreadsheets, versions 3.0, 4.0, 5.0, 7.0/95, 8.0/97,
9.0/2000, 10.0/ 2002, and 11/2003

✦ Lotus 1-2-3 spreadsheets (linking is read-only) in .wks, .wk1, .wk3, and
.wk4 formats

✦ Microsoft Exchange

✦ Delimited text files

✦ Fixed-width text files

✦ HTML versions 1.0 (if a list), 2.0, 3.x (if a table or list)

✦ XML documents

✦ SQL tables, Microsoft Visual FoxPro 2.x, 3.0, 5.0, and 6.x (import only),
and data from other programs and databases that support the ODBC
protocol (An updated list of supported ODBC drivers is available from
the Microsoft Knowledge Base, www.microsoft.com.)

If you have data in a format that your version of Access can’t use, you may
be able to download updated drivers from the Microsoft Web site at
www.microsoft.com. Or you can see if the application allows you to export
the data to one of the accepted formats. Then you can import it into Access.

To link or to import, that is the question
You have a number of choices about how to make your data available in
Access. You must choose whether you want to actually store the data
in Access (import the data) or create a link to the data:

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 156

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 157

✦ Import: Make a copy of the data in Access. (Copying and pasting is the
simplest form of importing.)

✦ Link: Keep the data in another file and tell Access to get the data each
time it is needed.

Some factors to consider when deciding whether to import or link include
the following:

✦ Storage: When you import data, you may be doubling the storage required
because you are storing the data in Access as well as in its original format.

✦ Customization: If the data is stored in a format other than Access and
you want to define a primary key, enforce referential integrity, change
field names, and/or customize field and table properties, you should
import the data.

✦ Maintenance: Does the data get updated, and if so, how? If a system is in
place to update data in another format, leaving the data where it is and
linking to it makes sense, unless you’re prepared to create a system to
update it in Access. However, if the data is not analyzed in its current
format, moving the data to Access and creating a system for updating it
there makes sense.

✦ Accessibility: If you’re leaning towards linking to the data, will the data
always be available when you need it? Is it likely to move, or will you
need it when you are traveling or not on your usual LAN? If the data is
not accessible, Access will not be able to use that data for queries,
reports, and forms.

If you need the data to get started in Access, and will then be using Access
exclusively to update and analyze the data, you should import it. If data is
collected in another format, and is updated in that format, and you will be
using the database from a computer that can always access the data source,
then linking is probably a good option. But in this case scheduled imports
might work, too. You’ll need to evaluate your situation considering the
points above to decide whether linking or importing is the better choice.

Getting external data
After you decide whether to import or link to your data, you’re ready for the
next step. If you can, look at the external data you want to use. Look for the
following factors:

✦ Are fields stored in columns and records in rows? This is relevant to
text and spreadsheet files.

✦ Does the data you need begin at the top of the file? For text and spread-
sheets, Access expects to see one row of names and then the data.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 157

Importing or Linking to Data 158

✦ Is all data within a field of the same type? If not, the field imports as a
Text or Memo field, which can’t be used in mathematical equations.

✦ Is the number of fields in each row the same? This is of particular con-
cern in a text file. If necessary, add null values to make your data line up.

✦ Are the field names in the data you are importing identical to the field
names in the Access table? When you append data, the field names
you’re importing must be identical to the file you’re appending to.

Are you importing the data into a new table, or do you want to append the
data to an existing table? Appending can be tricky because the data in the
external source and in the Access table has to match in data type and in its
relative location — you may want to first import into a new table in Access
and then use an Append Query. (You find more on appending in general later
in this chapter; for more on the Append Query in particular, see Book III,
Chapter 3.)

When your data source is ready, you’re ready to either import or link. The
following are general instructions — followed by some particulars for spe-
cific file formats:

1. In Access, open the database that you want to add external data to.

2. Display the External Data tab on the Ribbon and click the button for
the kind of data that you’re importing.

There are buttons for Access, Excel, SharePoint List, Text File and XML
file. The More button drop-down list contains buttons for ODBC
Database, HTML Document, Outlook Folder, dBASE File, Paradox File,
and Lotus 1-2-3 file.

When you’ve made your choice, Access displays the Get External Data
dialog box (shown in Figure 4-2), where you specify the name of the file
that contains the data you’re importing or linking to.

3. Use the File Name box to specify the source of the data. Click the
Browse button to navigate to your data file.

Navigate through the folders (if necessary) to find the file that contains
the data you want to use. Click the filename so that it appears in the File
name box.

If you are linking, and the file that you are linking to is not on your com-
puter (it is on a LAN or another remote computer), use the universal
naming convention (UNC) path for the file rather than using a drive
letter that is mapped. The UNC path is a more reliable way for Access to
locate the data. A UNC path looks like the following:

\\server\directory\file

You have to know the server name in order to type the UNC.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 158

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 159

4. Choose how you want to store the data in the current database.

You can Import the data into a new table in the current database, Append
the data to an existing table (all the fields must correspond exactly for
this option to work), or Link to the data outside Access. The advantages
and disadvantages to each of these options have been discussed in this
chapter.

5. Click OK.

Depending on the type of file you’re working with, you may see a wizard
that guides you through the process of choosing the data you want to
import or link to.

The windows you see depend on the type of file that contains the data
you’re importing or linking to. (The following sections guide you through
the Text and Spreadsheet Wizards.)

Other data types (including .dbf) immediately import, ready for use.

When the import or link is complete, you see a new table listed in the
Database window. Imported tables appear just like other tables, and you use
them like any other table — you can change field names and properties,
create relationships, enter data, and edit data. Linked tables appear with an
arrow and an icon, indicating the type of file that the link is to (such as dB
for dBASE, X for Excel, and a fox for FoxPro).

You can use most linked tables like any table in the database — some types,
however, are read-only, and you can’t enter and edit data. You cannot change
field properties or enforce referential integrity for linked tables.

Figure 4-2:
The Get
External
Data
dialog box.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 159

Importing or Linking to Data 160

The following sections provide details on using the Import and Link Wizards
for text and spreadsheet files. You may see Import Wizards for other types of
files too, files that are similar to the text and spreadsheet files in the informa-
tion they need — Access wants to know how to get to and use the file, and
how to break the data into fields.

Importing text or spreadsheet data
If you import or link a text file, the Import Text Wizard or Link Text Wizard
starts when you select the appropriate file using the Get External Data dialog
box. The two wizards are very similar, but the Link Text Wizard has fewer
steps.

Are you importing a whole worksheet? If not, you may want to create a named
range in the spreadsheet to make importing exactly the data that you need
easier. Access uses the first eight rows of data to determine the data type. If
Access happens to select the wrong data type (based on the first eight rows),
format the cells in your spreadsheet to the correct data type. For instance, if
the first eight ZIP codes start with a digit other than zero, Access will format
them as numbers. To keep the leading zero, format them in Excel as text.

Follow these steps to complete the Text Wizards:

1. In the first wizard window (shown in Figure 4-3), select the Delimited
option or the Fixed Width option to describe how your data is divided
up, and then click the Next button.

The Delimited option is for situations where commas, tabs, or other
characters separate each field, whereas the Fixed Width option is for sit-
uations in which spaces make the columns line up.

Figure 4-3:
The Import
(or Link)
Text Wizard
can turn
data like this
into fields
and records.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 160

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 161

2. Further define where one field ends and the next begins in the second
window. When done choosing your options, click the Next button.

If you choose the Delimited option in Step 1, you see Figure 4-4, which
asks you what character separates your fields (choose from the options
or use the Other option to specify the character used). Also specify
whether the first row contains field names, and whether you’re using a
text qualifier (symbols that surround text, such as double or single quo-
tation marks). Your data is shown with vertical lines to separate fields.

If you choose the Fixed Width option, you see a similar window, which
shows you where Access guesses the field breaks go. If Access is wrong
about the field breaks, fix them. Create a break by clicking, delete a
break by double-clicking, or move a break by dragging.

If you are linking to a text file, skip to Step 6.

3. In the next window, click a column in the displayed data to change
properties for that field, and then click the Next button.

For example, you can further define each field by typing a field name;
choose the data type, whether or not to index the field, and specify
whether to skip importing or linking to this particular field.

You don’t have to complete this information for each field — you can go
with the choices Access made.

4. In the next window, either select a primary key field, let Access create
a new AutoNumber field as the primary key, or specify that the field
doesn’t have a primary key field. When you’ve finished your selec-
tions, click the Next button.

Figure 4-4:
Help
Access
figure out
where each
field in your
delimited
text file
begins and
ends.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 161

Importing or Linking to Data 162

5. In the last window that appears, name the table by typing a name in
the Table Name box, and then click the Finish button.

The last window of the Import Text Wizard contains a check box that
runs the Table Analyzer Wizard. If you choose to have a wizard analyze
the table, the Table Analyzer Wizard looks for duplicated data and rec-
ommends how to create multiple related tables that don’t contain
repeated data. You may also choose to display the Access Help system
when the wizard is done.

After you click Finish, Access creates the new table and lists it in the
Database window.

Click the Advanced button in the last window of the wizard to display the
Import Specification or Link Specification dialog box again. If this is an import
or link that you may want to repeat, save the specs (using the Save As button).

The Import Specification dialog box, shown in Figure 4-5, displays all the
specifications for the text-file import. You can edit these specs, save them,
or import specs that you created and saved when you did another text-file
import. This dialog box has options that you’ve seen before in the wizard
(such as those for file format, field delimiter, and text qualifier), as well as
the following options:

✦ Language: Select the language for the text in your table.

✦ Code Page: Select a code page. Just keep the default selection unless
you know for certain that the imported data is using one of the other
available options.

Figure 4-5:
The Import
Specifi-
cation
dialog box
saves the
options so
you can
import your
file faster
next time.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 162

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 163

✦ Date Order: MDY (month/day/year) is standard, but you can select
another option as needed to match your date data.

✦ Date Delimiter: Type in the character used to separate month, day,
and year.

✦ Time Delimiter: Type in the character used to separate hours and
minutes.

✦ Four Digit Years: Deselect this option if your data uses only two digits
to designate the year.

✦ Leading Zeros in Dates: Select this option if your data has zeros before
single-digit months (for example, 02 for February).

✦ Decimal Symbol: Type in the character used as a decimal point. In the
United States, the decimal symbol is a period, but in many European
countries, the decimal is a comma.

✦ Field Information: Lists the field name in the file you are importing or
linking (click to edit), the data type that Access has chosen (change by
choosing from the drop-down list), whether the field is indexed (change
by choosing from the drop-down list), and a check box if you want to
skip the field.

✦ Save As: Saves the Import Specifications settings (or Link Specifications)
for use with a later import or link.

✦ Specs: Lists saved specs that you can select from.

When you’re done setting your options, click the OK button.

The Import Spreadsheet and Link
Spreadsheet Wizards
If you import or link a spreadsheet file, the Import Spreadsheet Wizard or
Link Spreadsheet Wizard starts when you select the appropriate file using
the Get External Data dialog box. Follow these steps to complete the
Spreadsheet Wizards:

1. Select the sheet that contains your data in the first window that
appears (as shown in Figure 4-6), and then click the Next button.

You can only import or link to data on one sheet at a time. Use the Show
Named Ranges option to see named ranges in the spreadsheet.

2. In the second window of the wizard, tell Access whether the first row
contains column headings and then click the Next button.

3. In the next window, change properties as necessary for each column:
Click a column in the displayed data, change properties for that field
at the top of the window, and then click Next when you’re happy with
the properties for all the fields.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 163

Importing or Linking to Data 164

This window allows you to further define each field by typing a field
name, choosing data type, choosing whether to index the field, and
choosing to skip importing or linking to this particular field. You don’t
have to complete this information for each field — you can go with the
choices Access made.

4. In the next window, either select a primary key field, let Access create
a new AutoNumber field as the primary key, or specify that the table
doesn’t have a primary key field. When you finish your selections,
click the Next button.

5. In the last window, name the table and then click the Finish button.

The last window of the wizard contains a check box that runs the Table
Analyzer Wizard. If you choose to have the wizard analyze the table, the
Table Analyzer Wizard looks for duplicated data and recommends ways to
create multiple related tables that don’t contain repeated data. You may
also choose to display the Access Help system when the wizard is done.

When the wizard finishes, you see the database window with your new
table listed.

Getting contacts from Outlook into Access
You can import contacts from Outlook into an Access table. Here’s how:

1. Click the More button in the Import group of the External Data tab on
the Ribbon to find the Outlook Folder button. Then click this button.

Access displays the Get External Data dialog box, where you can choose
to Import the data into a new table, append the data to an existing table,
or link to the data (that is, create a new, linked table). Access then asks

Figure 4-6:
The Import
Spreadsheet
Wizard.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 164

Book II
Chapter 4

Im
porting and

Exporting Data
Importing or Linking to Data 165

you to choose a folder or address book to import from. It will look only
at the Outlook files on your computer (there seems to be no way to look
at Outlook files available through network connections). The same rules
apply for appending data to an existing table — the field names and data
types must be the same in the imported data as in the existing table. The
details on how to do this are in this chapter, at the beginning of the sec-
tion on importing and linking data.

2. Choose between importing from your Outlook Address Book and your
Contacts folder.

If you’re not sure which you need, it’s easy enough to try one and then
switch if you find you need the other (click Next to see the data, then
click Back to return to select a different folder).

3. After you have chosen a folder, click Next to see the data.

From this point, the import is identical to importing text or spreadsheet
data. Access shows you the data and allows you to choose the fields you
want. Outlook Contacts creates redundant fields, so check that you have
what you need, and skip those that you don’t (select the field and click
the Do Not Import Field check box). Empty fields (which are displayed
as narrow columns) are created in a new Access table. If you don’t want
them, be sure to check the Do not import field check box. Alternatively,
you can delete the empty fields in Access.

Managing links
If you create links to external data sources, you may need to manage those
links. For instance, when data changes in the source, you can tell Access to
get the new data — and if the source file moves, you have to tell Access
where to find it. Use the Linked Table Manager to manage your links:

1. Display the Database Tools tab on the Ribbon and click the Linked
Table Manager button in the Database Tools group.

Access displays the Linked Table Manager, as shown in Figure 4-7.

Figure 4-7:
The Linked
Table
Manager.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 165

Importing or Linking to Data 166

2. Select the check box(es) for the table(s) whose links you want to
refresh, and then click OK.

Access refreshes the data in the selected tables, using the external file
listed in the table. If the external file isn’t found, you see the Select New
Location Of dialog box, where you can specify the new location. If more
than one table was not found, Access searches the new location for all
the missing tables.

If you want Access always to ask you where the files are, select the
Always Prompt for New Location check box before you click OK to
update your data.

Cleaning up your imported data
If you import large amounts of data, you may need to clean it up a bit to
make it efficient for use in Access. (If you have any doubt about what clean
data looks like, review Book I, Chapter 4 on designing databases.)

One useful tool for cleaning up imported data is the Table Analyzer Wizard.
This wizard looks for repeated data to determine whether to break a table
into two or more tables. The various Import Wizards offer to run the Table
Analyzer Wizard. You can also run it by selecting the table you want to ana-
lyze in the Navigation Pane, or opening that table and clicking the Analyze
Table button on the Database Tools tab of the Ribbon.

If you decide not to use the Table Analyzer Wizard, you may want to inspect
your data for duplicate data. The primary key field cannot have duplicate data.

Your new table may need relationships defined with other tables in the data-
base (see Chapter 6 of this minibook, for more on relationships). You may
also want to edit the table name or field names, and fields may need some
fine-tuning — you can use the Design view to edit data type and properties
(Chapter 1 of this minibook).

Running and scheduling saved imports
If you have saved the definition of an import or export operation while using
the appropriate wizard, you have the option of running the same import or
export again. Click the Saved Exports button in the Export group of the
External Data tab on the Ribbon to open the Manage Data Tasks dialog box.
Here you can see all saved import and export definitions. (There are two
tabs — one for Saved Imports and one for Saved Exports.) From this dialog
box, you can run an operation, create an Outlook task, or delete a saved
operation. You also have the option of changing the source or destination
file — click the file name to change it.

If you create a task in Outlook, you can go to the Outlook task to add a date
or define recurrence. You can run the task straight from Outlook by clicking

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 166

Book II
Chapter 4

Im
porting and

Exporting Data
Getting Data from Another Access Database 167

the Run Export or Run Import button on the Ribbon when the Outlook task
is open.

Getting Data from Another Access Database
If the data you need is already in an Access database, decide whether you
want to import it or link to it. You can also use the procedure below to
import another database object (such as a query, form, report, and so on.)

If you want to import (or link to) a table and all its data from another Access
database, the process is simple — follow these steps:

1. Open the database where you want to use the data.

2. Click the Access button in the Import group of the External Data tab
on the Ribbon.

Access displays the Get External Data dialog box.

3. Browse to the database that has the object you need.

4. Choose Import or Link. Either option results in a new database object —
there is no option that appends data to an existing table.

If necessary, you can use the Append Query to combine two tables after
you have imported the data.

5. Click OK.

Access displays the Import Objects dialog box shown in Figure 4-8 (or
the similar Link Tables dialog box).

Figure 4-8:
The Import
Objects
dialog box
allows you
to import
database
objects from
another
Access
database.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 167

Getting Data Out of Access168

6. Select the table you want from the Tables tab.

To select multiple objects, use Ctrl+click and/or Shift+click. Click the
Select All button to select all objects displayed on the current tab (for
instance, all tables). Click the Deselect All button to deselect all objects
on the current tab.

Click the Options button and choose the Definition Only option if you
don’t want to import the data, just the table definition (table properties
and field definitions).

7. Click OK to import the objects (or create the link).

The new objects appear in the Database window. You can view and edit
them just as you would any other database object.

You can use this method to import any database object — not just tables.

Getting Data Out of Access
You can export any object from an Access database to another Access
database — or to a file that isn’t an Access file (a dBASE or Excel file, for
example). You can also use this technique to create a static HTML file.

Exporting is a convenient way to go about moving data from one Access
database to another. You can also export an object without any data — for
instance, if you want to reuse a query definition. Exporting is similar to
importing — the difference is which database you have open when you start.

You can even save your export definition if you export data to another appli-
cation frequently. Notice the Save Exports button in the Export group of the
External Data tab on the Ribbon.

To export an object, follow these steps:

1. Open the database that contains the object you want to export.

You can export a table with or without the data in it. You may also want
to export a query with its data — which allows you to get specific infor-
mation from your database.

2. Select the object name in the Navigation Pane.

3. Display the External Data tab on the Ribbon.

Find the Export group of the tab.

4. Click the button for the format you want to export to.

There are buttons for Excel, SharePoint List, PDF or XPS, Word, and Text
file. The More button displays export options for Access, XML, ODBC,
HTML, dBASE, Paradox, Lotus 1-2-3, and mail merge with Microsoft Word.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 168

Book II
Chapter 4

Im
porting and

Exporting Data
Collecting Data with Outlook 169

5. Select the file or type a name for a new file to which you want to save
the object by typing the name in the File Name box. Use the Browse
button to choose a folder.

You may also need to select a file format, depending on the application
you are exporting to. You can export to an existing Access database, but
when you export to other file types, you create a new file (which you can
then import into an existing file, if needed).

6. Click OK.

What happens next depends on where the data is going:

• If you’re exporting to a file type other than an Access database, the
object is exported.

• If you’re exporting to an existing Access file, you see the Export
dialog box, where you can rename the object (if you want to) and tell
Access whether you want to export all the data or just the object def-
inition (field names, format, and any expressions).

• When you save a report to HTML, Access asks you for the name of
the HTML template file. You can find out about HTML template files
from the Access Help system.

Access quietly completes the export process and asks whether you want
to save the export.

7. If this is an export you will do again, select Save Export Steps to see
additional options.

You’ll have to name the export; we encourage you to make use of the
Description field to describe the specifics of the export. (What does it
do? When should it be used?) You also have the option of creating an
Outlook task to remind you to repeat the export.

You can make the Outlook task recur if you go into Outlook, choose the
task, and click the Recurrence button.

8. To see whether the operation worked, open the file to which you
exported the object.

Collecting Data with Outlook
Access 2007 allows you to collect data with an e-mail. You can send a form
out via Outlook, and then easily process the replies as you add the collected
data to your database.

Before you begin the process of creating an e-mail message to collect data,
you need a table or query in which to store the data. You may use an existing
table or query, or create a new one. A query is a good way to collect data for
more than one related table — create the query before starting the process

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 169

Collecting Data with Outlook170

of creating the e-mail. When you create the e-mail, you have the opportunity
to select the fields you want to collect data for, so your table may contain
more fields than you ask your recipients to fill in.

Another option with the data-collection feature is sending out existing data
for users to verify. For instance, you can mail out contact information using
the e-mail address in each record, and ask the recipients to edit or add to it.
This option allows recipients to edit the information, and also to add new
information. Note, however, that

✦ The recipients’ e-mail addresses must be stored in the table beforehand
if you’re going to use this option.

✦ Data can be updated for only a single table.

✦ You cannot collect or edit fields that are Attachment type, AutoNumber,
Multi-valued, or OLE.

In order to collect data through Outlook, you must have Access 2007 and
Outlook 2007. You may also want to use InfoPath 2007, as the InfoPath form
is easier to use. However, if you choose this option, all your recipients need
InfoPath 2007 as well — choosing the HTML form is safer (it doesn’t require
recipients to have the extra software). If you don’t use InfoPath, recipients
don’t even need Outlook 2007, and they definitely don’t need Access. They
do, however, need an e-mail client that can read HTML e-mails. Here we
cover how to collect data with — and without — using InfoPath.

Here’s how to start and use the wizard to collect data through e-mail:

1. To start the process, right-click a table name and choose Collect and
Update Data via E-mail, or click the Create E-Mail button in the Collect
Data group of the External Data tab on the Ribbon.

The wizard starts and shows you a page that lists the six steps for gath-
ering data through e-mail messages.

2. Click Next to choose the type of form you want to send.

3. Choose HTML form. Click Next.

InfoPath provides many more features — including drop-down controls
and in-form validation. Although HTML supports these types of controls,
they are blocked by most firewalls and e-mail gateways and can’t gener-
ally be used in e-mail. The HTML forms are simpler, and can be used by
recipients without Access and Infopath.

The next page of the wizard asks you whether you want to collect new
information or update existing information.

Notice that to update existing information, the recipients’ e-mail
addresses must be part of the table. The update option is useful if you
need people to review and update one record of information.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 170

Book II
Chapter 4

Im
porting and

Exporting Data
Collecting Data with Outlook 171

4. Select the fields that you want to collect, using the wizard page shown
in Figure 4-9. When you’ve selected all the fields you want to include
in the e-mail, click Next.

Click the single arrow to move one field at a time, and the double arrow
to move them all. The field names that appear in the box on the right are
those that will be included in the e-mail. You can change the name that
the recipient sees by selecting the field name in the rightmost box and
then changing the Label displayed in the Field Properties box.

Required fields are those whose Required property is set to Yes. The
Read-only option allows you to send a field for the recipient to see, but
not update.

5. Specify how to process replies.

Generally, you’ll want to select Automatically Process Replies And Add
Data To Tablename. When data is automatically processed, it is added to
your Access table when Outlook and Access are open and responses are
received. (Additionally, for responses to be processed automatically, the
database must not be password protected, should be open in Exclusive
mode, and the name and location of the database, requested fields, and
relevant tables must not have changed, and you need to have the
required permissions to add or update the tables or query.)

If you want to store responses in a folder with a name other than Access
Data Collection Replies, click that folder link and then create a new
folder, or rename the folder. (You can get to the folder by clicking the +
next to Inbox on the Select Folder dialog box.)

Figure 4-9:
Select the
fields you
want to
collect.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 171

Collecting Data with Outlook172

You may want to change some collection options. Click the Set
Properties To Control The Automatic Processing link to see the
Collecting Data Using E-Mail Options dialog box shown in Figure 4-10.

If you choose to process replies manually, you must select each reply in
Outlook, right-click, and choose Export data to Microsoft Access. You
can manually process replies that fail to be automatically processed. If
you allow multiple replies from each recipient, second and subsequent
replies must be manually processed.

6. Select e-mail addresses either by using addresses from Outlook
(where you can type in addresses that aren’t in your Outlook address
book), or by using addresses stored in a field in the database. (If you
are updating rather than adding data, this option doesn’t appear.)

You guessed it — more options:

• If you choose Outlook addresses, the next window you see allows
you to customize the e-mail with a title and introductory text. Then
the wizard creates the e-mail, and you can send it to your selected
recipients using Outlook. (You type or select recipients in Outlook,
too). You can also alter the e-mail using Outlook.

• If you choose addresses stored in the database, the next wizard
window asks you to identify the field that contains the addresses.
You can choose from the current table or query, or another table in
the database.

• If you are choosing to use e-mail addresses from an associated table,
first select the field in the current table that joins it to the table with
the addresses. This is probably an ID field — the primary key in one
of the two tables. The next step depends on whether there is more
than one table associated with the original table. If not, simply select
the name of the field with the e-mail addresses. If there is more than
one table, first select the table, then select the field.

Figure 4-10:
Set
properties
for
processing
e-mails
containing
data.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 172

Book II
Chapter 4

Im
porting and

Exporting Data
Collecting Data with Outlook 173

When you use addresses from the database, you cannot preview or cus-
tomize the e-mail in Outlook.

7. That’s just about it! Depending on how addresses are being added to
the e-mails, you either:

• Click Create to create the e-mail if you are adding addresses in
Outlook. The e-mail form will open in Outlook, and you can add
addresses and send the e-mail as you usually do in Outlook.

• If you are using e-mail addresses from the database, you see a list of
recipients with check boxes. Uncheck a box to skip sending the
e-mail to a recipient. Click Send to send the e-mails.

If you see any error messages on the final page of the wizard, you can
use the Back button to go back and make corrections.

Click the Manage Replies button in the Collect Data group of the External
Data tab on the Ribbon to see a summary of data-collection e-mails you have
sent. This dialog box gives you the option of resending the message, and
allows you to change the collation options on the Collecting Data Using
E-mail Options dialog box.

If replies are being processed automatically, you will see new data in the
table you specified as replies are processed. If you are manually managing
replies, you can display the folder where replies are being stored, right-click
each message and choose Export Data to Microsoft Access. If you allow mul-
tiple replies from each recipient, second and subsequent replies must be
manually processed.

The Access Help system has comprehensive help on sending e-mails to col-
lect data.

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 173

Book II: Tables174

13_036494 bk02ch04.qxp 11/17/06 8:21 AM Page 174

Chapter 5: Avoiding “Garbage In,
Garbage Out”

In This Chapter
� Using field properties to get the right data in the right fields

� Defining how data in a field looks with input masks

� Creating drop-down lists with lookup fields

� Filtering data with validation rules

Let’s face it: If the data that goes into your database through tables and
forms is garbage, then any output or analysis you do with queries and

reports will give you garbage too. Fortunately, Access offers lots of tools to
help you make sure that the data that goes in each field is the data that’s
supposed to go in that field.

Access provides a number of tools that help ensure that correct data gets
put in your database. Of course, we’re talking about avoiding mistakes as
data is entered — if someone is purposefully entering erroneous data, these
tools may not help much! Some of these Access features are described in
other chapters, but they deserve a mention here too. The rest are exclusive
to this chapter.

Finding the Right Tool to Keep Garbage Out
You can find many of the tools to keep garbage out in Table Design view. You
can use the data type to keep inappropriate data out of a field, and many of
the other field properties can work that way too.

Field properties appear in the bottom half of Design view — make sure
you’re viewing the field properties for the field you’re working with by click-
ing the field name in the top half of Design view. Field properties are also
covered in Chapter 1 of this minibook.

As you define a field in Design view you can use the following field proper-
ties to make sure that the right data gets into the right field:

✦ Data type: Use the correct data type to eliminate data of the wrong
type. Text and Memo data types accept just about any input, so use
the Number, Date/Time, or Currency data types to screen out data of a

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 175

Finding the Right Tool to Keep Garbage Out176

different type whenever appropriate. (See Chapter 1 of this minibook for
more about choosing data types.)

Although data type is technically not a field property, it appears in
Design view and is your first line of defense against incorrect data.

✦ Field Size: Limits the number of characters. For instance, if you know
that a field should never exceed four characters, set the field size to
4 characters. (See Chapter 1 of this minibook for more about field size.)

✦ Format: Makes the data look right. For instance, you can change text to
all caps or all lowercase. Input masks, explained later in this chapter,
work with the Format field property. (See Chapter 1 of this minibook for
more about the Format field property.)

✦ Input Mask: An input mask limits the information allowed in a field by
specifying what characters you can enter. Use an input mask when you
know the form the data should take — for instance, if an order number
has two letters followed by four digits. Phone numbers and ZIP codes
are other examples of fields where input masks are useful. You find out
lots more about input masks later in this chapter.

✦ Default Value: Defines a value that appears by default if no other
value is entered. The default value appears in the field until another value
is entered.

✦ Validation Rule: A rule that data must pass before it is entered.
This property works with the Validation Text property rule. A
Validation Rule property that applies to a whole record is in the
Properties sheet. (You find more on validation rules later in this chapter.)

✦ Required: Specifies that the field must have a value in order for you to
save the record. When no value is entered, Access doesn’t create a new
record when Tab or Enter is pressed, and the New Record button is
grayed out. Required is also accessible from Datasheet view — it is a
check box on the Datasheet tab of the Ribbon.

✦ Allow Zero Length: Specifies whether a zero-length entry such as “”
(quotes without a space between them) is allowed (only for Text, Memo,
and Hyperlink fields). A zero-length field allows you to differentiate
between information that doesn’t exist, and a null value (blank) that is
unknown or hasn’t been entered. When this option is set, it allows a
zero-length string in a required field. You may want to use an input
mask to make a zero-length field look different from a null value when
both are allowed.

✦ Indexed: When you choose to index a field, you can specify that no dupli-
cate values are allowed in the field. This property is also accessible from
Datasheet view — it is a check box on the Datasheet tab of the Ribbon.

The rules that keep your data honest and help keep bad data out are some-
times called data-integrity rules. You can change a field property that controls
data integrity (filters out garbage data) in a field that already has data —

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 176

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”

Using Input Masks to Validate and Format Data 177

Access tells you (when you ask to view the datasheet) that the data-integrity
rules have changed and gives you the option of checking existing data against
the new rules.

Access only tells you whether existing data violates the new rules — it doesn’t
flag the offending records in any way.

The rest of this chapter covers input masks, validation rules, and the Lookup
Wizard, which allows you to create drop-down lists and pick from existing
data, eliminating the possibility of misspelling a new entry.

When you use both the Format field property and an input mask, the field
property is used and the input mask ignored.

Using Input Masks to Validate and Format Data
An input mask both formats the data and defines the type of characters and
the order they can be entered. Input masks have two intertwined functions:

✦ They format data by adding punctuation or changing the look of cer-
tain values (for example, displaying asterisks instead of the text of
passwords).

✦ They block any data that doesn’t fit the mold from being entered. For
instance, you can’t enter twelve characters if the input mask specifies
four, and you can’t enter a digit followed by three letters if the input
mask specifies two letters followed by two digits.

Use input masks when you know the form the data should take — for instance,
a ten-digit phone number, a nine-digit ZIP code, or an item number that must
be two letters followed by three or more digits. Using the input mask, you can
add formatting characters — for instance, you can add parentheses and a
hyphen to phone numbers, and you can change the way a value appears (for
instance, by choosing to display a date as 27-sep-06 or 9/27/06, or display-
ing hyphens in a Social Security number). The input mask for the field is in
effect when you enter data into the field from either a datasheet or a form.

If the data in a field varies or is not easily described, the field is probably not
a good candidate for an input mask. For example, street addresses come in
too many formats to describe easily, so making an input mask for an Address
field is difficult. You can create input masks for Text, Number, Date/Time,
and Currency field types; other data types don’t have the Input Mask field
property.

You can use an input mask with a validation rule to protect a field from data
that is incorrect or that just doesn’t belong there. Validation rules give you
more flexibility in limiting the data you can enter — and there’s more about
them later in this chapter.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 177

Using Input Masks to Validate and Format Data178

Input masks are commonly defined in Design view, where they become part
of the field definition, and apply in forms also. However, you can also add
input masks to queries and forms where data may be entered, and the input
mask is defined only for that object. In all cases, you have to add an input
mask from the Design view.

Using the Input Mask Wizard
The easiest way to create an input mask is to use the Input Mask Wizard. The
wizard can help you create the input mask for your data — especially if the
data in the field is a common type of data, such as a phone number or a ZIP
code.

If your data is similar to one of the data types in the Input Mask Wizard, you
may want to use the wizard and then edit the input mask in Design view.

To create an input mask with the Input Mask Wizard, follow these steps:

1. Display the table in Design view.

Right-click the table name in the Navigation ane and choose Design view.

2. Select the field you want to apply an input mask to by clicking the
record selector, or put the cursor somewhere in the row for that field
so that you see its field properties.

3. Click the Input Mask field property on the General tab of the field
properties.

Access displays the Build button to the right of the Input Mask line.

4. Click the Build button.

Access displays the Input Mask Wizard, shown in Figure 5-1.

Figure 5-1:
The Input
Mask
Wizard.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 178

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”

Using Input Masks to Validate and Format Data 179

5. Select the input mask that looks the most like the data that you want
to allow in the field.

You may see an exact match for your field, or you may see a pretty close
approximation that you can edit to fit your data.

You can add an input mask to the list displayed in the wizard by clicking
the Edit List button in the first window of the Input Mask Wizard and
then filling in the details of the new input mask.

6. Click in the Try It box and type some text to see how the field appears
with data in it and the input mask applied.

Access displays a Try It box on each window so that you can see the
effect of any changes you make — click in the Try It box to see what the
input mask looks like when you enter data in the field.

7. Click Next to see more questions about the input mask.

The questions you see depend on the type of data you chose in the first
window; you may not see all the options in the next three steps.

8. Edit the input mask, if you want to, using the characters listed in
Table 5-1 (later in this chapter).

Access displays the input mask it has created, and you have the oppor-
tunity to edit it.

9. Choose a placeholder character and then click Next to see the next
window of the wizard.

A placeholder is a character that holds a place for every character that
the user needs to enter. Choose one from the drop-down list.

10. Choose how to store the data and then click Next to display the final
window of the wizard.

If you include punctuation or other additional characters in your input
mask, you can choose how to save the data being entered — either save
the characters entered plus the extra characters, or just the characters
entered. Generally, you don’t need to save the extra characters.

11. Click Finish to tell the wizard to put the input mask it created into the
Input Mask property for the field.

Access displays the Design view with the new input mask.

12. Save the table design by clicking the Save button on the toolbar —
otherwise you may lose your nifty new input mask!

Creating an input mask manually
To create an input mask manually, enter a series of characters in the Input
Mask property of the Field Properties pane to tell Access what kind of data
to expect. Data that doesn’t match the input mask cannot be entered. To

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 179

Using Input Masks to Validate and Format Data180

block data from a field, first figure out exactly what data you want to allow in
a field, and then use the characters in Table 5-1 to code the data in the
Input Mask field property. If you have trouble formulating an input mask,
you may find that a validation rule meets your needs better.

Table 5-1 Creating Input Masks
Input Mask Character What It Allows/Requires

0 Requires a number

9 Allows a number

Allows a space, converts a blank to a space, allows + and -

L Requires a letter

? Allows a letter

A Requires a letter or number

a Allows a letter or number

& Requires any character or a space

C Allows any character or a space

< Converts the following characters to lowercase

> Converts the following characters to uppercase

! Fills field from right to left, allowing characters on the left side
to be optional

\ Displays the character following in the field (\Z appears as Z)

. , Displays the decimal placeholder or thousands separator

; : – / Displays the date separator (the symbol used depends on
the setting in the Regional Settings section of the Windows
Control Panel)

Password Creates a password-entry text box; any character typed is
stored as that character but displays as an asterisk (*)

Here’s how to use characters to create some common input masks:

✦ AA00999: Requires two letters or numbers followed by two digits and
then allows an additional three digits.

✦ 00000-9999: ZIP codes — this mask requires five digits, displays a
hyphen, and provides space for an optional 4 digits.

✦ L0L 0L0: Canadian postal codes — this mask requires a letter, a number,
a letter, displays a space, requires a number, a letter, and a number.

✦ 99:00:00 >LL: Long time format — allows two digits, displays a colon,
requires two digits, displays a colon, requires two digits, displays a
space, requires two letters, which are displayed in uppercase.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 180

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”

Creating a Lookup Field 181

Creating a Lookup Field
You want your database to be as easy to use as possible, right? But you also
want data entered consistently. As orders are entered, for example, you want
the name of each product entered so that Access can find it in the Products
table. But what’s the chance that the product name, entered as part of an
order, actually matches the exact product name listed in the Products table?
Pretty minimal . . . unless you create a lookup field.

A lookup field provides the user with a list of choices, rather than requiring
users to type a value into the datasheet. You could think of it as adding a
field from an existing table to your new table. Access uses the field from the
other table to create a drop-down list of products that you carry for users to
choose from as orders are entered. Lookup fields enable you to keep your
database small and the data entered accurate and consistent. Lookup fields
are very useful — and not as complicated as they sound.

The items on the drop-down list can come from a list you type, or they can
be from a field in another table. Storing values for your drop-down list in a
table gives you much more flexibility if you want to modify the list or store
additional information about the values. (For instance, if your list contains
state abbreviations, you may also decide to include full state names and
even state tax rates.) Storing the drop-down list data in a table enables you
to display one field (for instance, the customer’s full name) and store
another (such as the customer number). Working with the logical relation-
ship you set up between tables, you can store less data — thus keeping the
database compact — and entering and manipulating your data is easy. So
here’s the hint — in almost all cases, it’s better to keep the values for your
lookup in a table; it gives you much more flexibility to work with your data.

When you have two tables with a one-to-many relationship, the values of the
connecting field may be perfect for a lookup field. When you enter records in
the detail table (the many table in the relationship), the foreign key (related
field) needs to match the primary key of the master (one) table. Consider
making the foreign key in the detail table a lookup field — with the primary
field in the master table providing the list of possible values. For example, if
you have a Products table (the master table) and an Order Detail table (the
detail table), make the Product Code field (or whatever field identifies the
product the customer is ordering) in the Order Detail table a lookup field,
using the Product Code field from the Products table as the list of values.
(You can find more information on relationships in Book I, Chapter 4 and in
Chapter 6 of this minibook.)

Using the Lookup Wizard
An easy way to create a lookup field is with the Lookup Wizard. In this exam-
ple, we show you how to use the Lookup Wizard to enter the Customer ID
number (stored in the Address Book table) in the ContactID field in the

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 181

Creating a Lookup Field182

Orders table. The Orders table lists information about each order, one
record per order. Fields include the order date, the contact ID, payment, and
shipping information.

Display the table you want set up to contain the lookup table in Design view
and follow these steps:

1. In the top half of Design view, find the field that you want to contain
the drop-down list. Click the down arrow to display the Data Type
drop-down list. Select the Lookup Wizard option.

Access launches the Lookup Wizard.

Alternatively, if you haven’t yet created a field that will be the lookup
field, display the table in Datasheet view, click any cell in the column
that will be immediately to the left of the new lookup field, and click Add
Existing Field in the Fields and Columns group of the Datasheet tab on
the Ribbon to launch the Lookup Wizard.

2. Tell the wizard whether the values you want to appear on the field’s
drop-down list come from a field in another table or from a list that
you type. Click Next.

Storing the values in a table is easier, even if you have to cancel the
wizard and create a new table!

If you don’t want the drop-down list to display every value in the field in
another table, you can base the drop-down list on a field in a query. Find
out all about queries in Book III. For instance, if you want to retain dis-
continued products in the Products table, but not allow those products
to be entered in new orders (that is, the lookup list), you could create a
query that displays only products that are currently available.

3. Choose the name of the table (or query) that contains the data that
you want to appear in the drop-down list. Click Next.

If you want to see queries, click the Queries button. Click the Both
button to show tables and queries.

If you tell Access that you want to type in the values, a table appears
in which you can type the lookup list. Click in the table in the wizard
window (which currently has only one cell), and type the first entry in
the list. Press Tab — not Enter — to create new cells for additional
entries. Skip to Step 7.

4. Tell Access which field(s) you want to display in the drop-down list by
moving field names from the Available Fields list box to the Selected
Fields list box.

Double-click a field to move it from one column to the other. Select mul-
tiple fields to display multiple fields on the drop-down list. For instance,
you may display the First Name and Last Name fields in the drop-
down list.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 182

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”

Creating a Lookup Field 183

Access always adds the primary key of the table that contains the data
for the drop-down list to the list of selected fields, and it always saves
the value of the primary key field. While you may see and select from
another field — for instance, the First Name and Last Name fields —
the primary key of the Address Book table (which is called ContactID
in this example) is the value that is stored. Generally, this is exactly what
you want (even if you don’t know it). If you’re sure that you don’t want
the primary key stored, you can customize the lookup field after the
wizard finishes its business.

5. If you select more than one field (or only one field that isn’t the primary
key), select a field to sort by, as shown in Figure 5-2. Then click Next.

You can sort by up to four fields. Click the Ascending button to sort in
descending order (the button toggles between ascending and descend-
ing). In this example, we sort first by last name and then by first name.

6. Format your drop-down list — change the width of columns to fit your
data, change the order of columns, and choose whether to hide or dis-
play the primary key field. Then click Next.

This window (shown in Figure 5-3) shows you a table with the values in
the lookup list. You can change the width of the columns by clicking and
dragging the border between field names; to automatically fit the widest
entry, double-click the right edge of the field name that appears at the
top of the column. You can change the order of columns by clicking the
field name to select a column and then dragging the column to a new
position.

The window also contains a check box, which, when selected, hides the
key field. Depending on your application, you may want to display
the key field by deselecting the Hide Key Column check box.

Figure 5-2:
Choose
fields to sort
by, and then
choose a
sort order
for each.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 183

Creating a Lookup Field184

7. In the final window, change the label (the field name) for the lookup
column if you want to, and choose whether you want to display help
for customizing the lookup column.

A new option in Access 2007 enables you to allow the user to select mul-
tiple values in a lookup list. (See Figure 5-4.)

When you have completed the options on the page, click Finish.

Access may tell you that you have to save the table before relationships
are created — why argue? — go ahead and save the table. A relationship
is created automatically when you use the Lookup Wizard (more about
that in a minute).

View your table in Datasheet view to see your new lookup field. When you
click within the field, you see an arrow to display a drop-down list. Go ahead
and display the list. (Ours is shown in Figure 5-5.)

Figure 5-4:
Name the
new field
and decide
whether you
want to
Allow
Multiple
Values.

Figure 5-3:
Change the
way your
lookup list
looks.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 184

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”

Creating a Lookup Field 185

The default setting allows users to choose from the drop-down list or type
in a value. To force users to choose from the drop-down list (or to enter a
value that’s on the drop-down list), click the Lookup tab in the field proper-
ties and change the Limit to List property from the No setting to the
Yes setting. Figure 5-6 shows Lookup properties. You may also want to
enforce referential integrity, as covered in Chapter 6 of this minibook.

Using the Lookup Wizard creates a relationship between the table containing
the lookup field and the table containing the data shown in the drop-down
list for the lookup field — in our example, the relationship is between the
ContactID field in the Orders table and the ContactID field in the Address
Book table. If you display the Relationships window (click the Relationships
button on the Database or Database Tools tab of the Ribbon), you see the
relationship that the Lookup Wizard created. (You can find out more about
relationships in Chapter 6 of this minibook.)

When to use the Allow Multiple Selections option
When you select the Allow Multiple Selections check box in the Lookup
Wizard, your lookup list looks like Figure 5-5. Access creates a hidden join
table to store the many-to-many relationship between the two tables — in
this case, the Products table and the Orders table — involved in the lookup.

Allowing multiple selections in a lookup field can be a tremendously conven-
ient feature. If you are tracking issues, and the same issue is reported by
multiple clients, you can create a lookup list to enter that data quickly and
easily. In the case in Figure 5-5, however, allowing multiple selections in a
lookup field is not the correct choice. Customers may order more than one
of any product — and the drop-down list does not allow that to be entered.
Instead, you need a table that lists each item ordered and also contains a
field for the quantity ordered. This intermediate table is the join table in the

Figure 5-5:
The user
can select
multiple
options in
this drop-
down list.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 185

Validating Data As It’s Entered 186

many-to-many relationship between orders and products. Although it’s more
work to set up the join table yourself, in many situations it is the right choice
to make. You can then create a form to make data entry as quick as it would
be with a multiple-selection lookup field.

Modifying the lookup list
Adding values to an existing lookup list is pretty easy. If the lookup list gets
its values from a table, just add records to the table to see additional choices
in the lookup list. If you typed values for the lookup list yourself, switch to
Design view, click the field with the lookup, and click the Lookup tab in the
field properties (refer to Figure 5-6). You can add options to the Row
Source property — just be sure to separate the values with semicolons.

Validating Data As It’s Entered
Often, you are able to formulate a rule that data must pass before being
entered in a certain field. For instance, you may know that the date is not
before 1999, that the price is zero or greater, or that the entry must be five
characters and begin with P. The Validation Rule field property (in the
field properties) enables you to specify a rule that data in a single field must
pass in order to be entered in a particular field. Field validation rules are
entered in the Validation Rule property for the field. Figure 5-7 shows a
validation rule for the Order Date field.

If you just want to require that a value be entered, set the Required field
property to the Yes setting.

You can also specify a validation rule for a record (rather than a field). Record
validation allows you to create a rule to prevent internal inconsistency in a
record — for instance, you may want to check that the ship date is not before
the order date. You can enter record-validation rules in the Validation
Rule property, one of the table properties. Display Table Properties by click-
ing the Property Sheet button on the Design tab (when the Table Design view
is displayed)). Figure 5-8 shows a record validation rule.

Figure 5-6:
You can use
the Lookup
tab in the
field
properties
to edit the
lookup field.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 186

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”
Validating Data As It’s Entered 187

Table 5-2 shows a few examples of validation rules. If you have a complicated
validation rule, read up on creating expressions. Use expressions the same
way in validation rules as you do in query criteria. If the expression is true,
then the data can be entered; if the expression is false, the validation text dis-
plays and the data cannot be entered. Criteria are covered in Book III, Chapter
1. (Expressions are covered in detail in Book III, Chapter 2.) The Build button
that appears next to the Validation Rule box when you are entering a rule dis-
plays the Expression Builder, which is also covered in Book III, Chapter 2.

Table 5-2 Validation Rule Examples
Rule for the Field Validation Rule

Date not before 1999 >#12/31/98#

Price zero or greater >=0

Five characters beginning with P Like P????

Ship date later than order date [Ship Date]>[Order Date]

If a user attempts to enter data that does not pass a validation rule, the con-
tents of the Validation Text field property pop up to guide the user,

Figure 5-8:
Use the
Validati
on Rule
property on
the Table
property
sheet to
establish a
rule for the
record.

Figure 5-7:
The Order
Date field
uses a
validation
rule to make
sure the
date is after
December
31, 1998.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 187

Validating Data As It’s Entered 188

using the text you enter. Generally, the validation text guides the user to
enter the right data. An exception may be if you don’t want to give away too
much information — maybe PO numbers are always two letters followed by
three or more numbers, but you don’t want users to guess at a PO number.
Your validation text can simply say Enter a valid PO number.

The validation text cannot be longer than 255 characters.

Use operators to tell Access how to validate your data. Operators are sym-
bols, (such as < and >) and words (such as AND, OR, and NOT) that tell
Access how to limit your data. (Although +, –, *, and / are also operators,
you aren’t as likely to use them in validation rules.) You can also use expres-
sions that include functions to create validation rules.

The validation rule cannot be longer than 2,048 characters.

To create a validation rule, follow these steps:

1. Display the table in Design view.

2. Select the field to which you want to add a validation rule.

Place the cursor anywhere in the row that displays the field and data
type, or click the record selector to select the field. When the field is
selected, or when the cursor is anywhere in its row, you see the field
properties for that field.

If you want to create a record validation rule, click the Properties button
on the Design tab of the Ribbon.

3. Click in the Validation Rule property.

4. Type your validation rule.

Table 5-3 tells you how to create your validation rule.

5. Enter an explanatory message in the Validation Text property.

Validation text appears when data entered into the field does not meet
the validation rule. In most cases, you want this script to be helpful for
the user to understand why the input was not accepted. (In some cases,
you may not want someone to make up data that passes the validation
rule, so your validation text may be more cryptic.)

You can test data entered prior to the validation rule by one of two methods:

✦ right-clicking the title bar of the table and choosing the Test Validation
Rules option from the shortcut menu

✦ displaying the datasheet by clicking the View button and clicking the Yes
button when Access asks whether you want to test existing data

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 188

Book II
Chapter 5

Avoiding
“Garbage

In,
Garbage Out”
Validating Data As It’s Entered 189

Table 5-3 Creating Validation Rules
Validation Rule Example How It Works

“Boston” OR “New York” Limits input in the field to just those two cities.

Is Null Allows the user to leave the field blank.

<10 Allows values less than 10.

>10 Allows values greater than 10.

<=10 Allows values less than or equal to 10.

>=10 Allows values greater than or equal to 10.

=10 Allows values equal to 10.

<>0 Allows values not equal to 0.

In(“Boston”, “Concord”) Allows text that is Boston or Concord.

Between 10 And 20 Allows values between 10 and 20.

The Like operator deserves its own explanation. Use the Like operator to
test whether an input matches a certain pattern — use wildcard characters,
such as the ones shown in Table 5-4, to help define the pattern.

Table 5-4 Using the Like Operator
Wildcard What It Signifies

? Any single character

Any single number

* Zero or more characters

For example, you may define a ZIP code field to only allow five digits, as
follows:

Like “#####”

You can also define a field to contain only names that start with the letter S,
as follows:

Like “S*”

According to the preceding rule, a person can choose not to type any char-
acters after the S, because the * wildcard allows zero or more characters. If
you always want a certain number of characters to follow the S, use the ?
wildcard instead. If you want users to type exactly three characters after the
letter S, use this validation rule:

LIKE “S???”

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 189

Validating Data As It’s Entered 190

You can use more than one expression in a validation rule by separating the
expressions with AND, OR, or NOT. AND and NOT limit the entries that pass the
rule. In the case of AND, an entry must pass both rules; in the case of NOT, an
entry must pass one rule and fail the other. Using OR increases the likelihood
that an entry passes the rule, because the entry only needs to pass one of
the two rules separated by OR.

14_036494 bk02ch05.qxp 11/17/06 8:22 AM Page 190

Chapter 6: Relating Your Tables
and Protecting Your Data

In This Chapter
� Creating relationships between tables

� Protecting your relationships with referential integrity

� Using cascading updates and deletes to protect data integrity

� Printing the relationships between tables

Relational database-management systems such as Microsoft Access
exist because the real world often requires that we store large amounts

of data. And often, one-to-many or many-to-many relationships exist
between pieces of data. For example, any one customer may place many
orders (a one-to-many relationship). Any one order may be an order for
many different products. In a school, any one student may enroll in many
courses. Any one course has many students enrolled in it.

When information is spread across multiple tables, the data must always “link
up” correctly. For example, if customer Hortense Higglebottom places an
order on April 1st for five lawn flamingoes, the records from the various tables
that record that information must jibe perfectly, so that she gets what she
ordered, she pays the right amount for what she bought, and her five lawn
flamingoes are sent to the correct address — and so she doesn’t end up get-
ting 37 Golden Whistles instead. The technical term for making absolutely
sure that all the pieces line up correctly, at all times, is referential integrity. But
before we get to the specifics of how you enforce referential integrity in your
database, we provide you with a brief review of all the buzzwords and con-
cepts surrounding the whole idea of storing chunks of data in separate tables.

Book I, Chapter 4 describes relationships among tables from a design
perspective.

When two tables are related in a one-to-many relationship, the table on the
“one”side of the relationship must have a primary key field that uniquely
identifies each record. For this reason, the table on the “one” side is often
referred to as the master table. For the customers-and-orders example, the
Address Book table is on the “one” side of the relationship, and the primary
key field, ContactID, has a unique value for each record — that is, each cus-
tomer listed in the table has a value in the ContactID field that is unique to
him. If we want to refer to a customer anywhere else in the database, we can
use that unique ContactID value as a shortcut. (See Figure 6-1.)

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 191

Chapter 6: Relating Your Tables and Protecting Your Data 192

The table on the “many’ side of the relationship needs to contain a field that
has (preferably) the same name, and (definitely) the same data type and field
length as the primary key in the master table. In the table on the “many” side
of the relationship, that field is referred to as the foreign key. Because that
table contains the foreign key, it’s often referred to as the detail table. In the
customers-and-orders example, the Orders table is the detail table. Each
order placed is listed in the Orders table, and the customer who placed the
order is identified by his ContactID number. Taken together, the primary
key and foreign key are often referred to as the matching keys. (There’s a load
of technical jargon for ya.)

You can see how the one-to-many relationship plays out when the two tables
contain data. In Figure 6-2, looking up which orders are placed by Hortense
Higglebottom is easy; the ContactID happens to be 8.

In any given database, one-to-many relationships likely occur between several
tables. A many-to-many relationship is just two one-to-many relationships
among three tables, as we show in the Students-and-Courses example in Book
I, Chapter 4. And in the orders example, there is a many-to-many relationship
between products and customers. But you don’t have to do anything special
to define a many-to-many relationship. When you link two tables to a common
third table, you create a many-to-many relationship.

Figure 6-3 shows relationships defined in an Access database. In the
Relationships window, field names in boldface are primary keys. The con-
necting lines show how the tables relate. In that example, the number 1 on a
connection line represents the master table — the table on the “one” side of
the relationship. The many symbol (an infinity sign, or sideways 8) repre-
sents the detail table — the table on the “many” side.

Contact ID fieldFigure 6-1:
The Address
Book table
has the
ContactID
field as its
primary key.
The field
value can be
used to
identify
customers
in other
tables in the
database.

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 192

Book II
Chapter 6

Creating Relationships and Protecting Your Data with Referential Integrity 193

Creating Relationships and Protecting Your
Data with Referential Integrity

We’re not referring to your personal relationships. (Well, maybe we are in an
abstract sort of way.) Before you join two tables in the Relationships window,
think about whether you want Access to enforce referential integrity between
those tables. Referential integrity, as the name implies, is all about making
sure that the relationship between two tables doesn’t turn to total garbage.

To see how you convert a one-to-many relationship to garbage, consider the
following scenario. Suppose a table named Products contains a primary key
field named ProductID that uniquely identifies each record. Say a hammer
in that Products table has a ProductID value of 232.

The Order Details table in that same database also has a field named
ProductID, which is the foreign key. Say 100 hammers are ordered to date,

Figure 6-3:
Multiple
one-to-
many
relation-
ships exist
among the
tables in this
database.

Figure 6-2:
The Orders
table
uses the
ContactID
field from
the Address
Book table
to identify
customers.

Relating YourTables
and Protecting

YourData

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 193

Creating Relationships and Protecting Your Data with Referential Integrity194

and 100 records in the Order Details table have the number 232 in their
ProductID fields.

So now someone comes along and decides to change the hammer’s
ProductID code to 98765. Or instead of changing the hammer’s ProductID,
that person just deletes that product from the Products table altogether.
Either way, a record in the Products table no longer has a ProductID value
of 232.

So what becomes of the 100 records in the Order Details table that still have
232 in their ProductID fields? Do we leave them referring to the now non-
existent record 232? If we do that, we destroy the referential integrity of the
relationship between the tables. How, you may ask, did we manage to do
that? Well, a bunch of records in the Order Details table now point to
absolutely nothing — there’s no way to tell what product the customer
bought. The referential relationship between the Products and Order Details
tables has lost its integrity.

Enforcing referential integrity prevents these bad things from happening.
When you enforce referential integrity, you prevent yourself from acciden-
tally messing up your relationships. (Well, okay, that doesn’t apply to your
personal relationships, even abstractly, but you get the point.)

Some rules exist to determine whether you can even choose to enforce refer-
ential integrity. You can only enforce referential integrity when all the follow-
ing are true of the tables in the relationship:

✦ In the master table, the matching field must be a primary key, or a field
with its Indexed property set to the Yes (No Duplicates) setting.

✦ In the detail table, the foreign key is of the same data type as the pri-
mary key. Or, if the primary key is an AutoNumber field, the foreign key
is a Number field with its Field Size property set to the Long width.

✦ Both tables are stored in the same Access database.

Deciding on the best path to take
Assuming all the rules for enforcing referential integrity are met — see the
previous section for a refresher — you’re ready to get started. Just keep in
mind that you have a choice between two distinct types of referential
integrity you can enforce:

✦ Cascade Update Related Fields: This option ensures that if the value of
the primary key field changes in the master table, the same change “cas-
cades” to all records in the detail table. (This option doesn’t apply if the
primary key is an AutoNumber field. Remember: After an AutoNumber
field receives a value, that value never changes.)

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 194

Book II
Chapter 6

Creating Relationships and Protecting Your Data with Referential Integrity 195

✦ Cascade Delete Related Records: This option ensures that if a record is
deleted in the master table, all corresponding records in the detail table
are also deleted.

You can choose to enable referential integrity as soon as you join two tables
in the Relationships window — more about said window later. You can
change or disable referential integrity options at any time, so you’re not
making a lifelong commitment or anything.

Opening the Relationships window
The place where you actually join tables and enforce referential integrity
between them is called the Relationships window, the same window you see
back in Figure 6-3. Clearly then, if you want to be able to set up referential
integrity between two tables, you’re going to need some hints on how to
open the Relationships window. What the heck — how about some explicit
instructions, such as the following . . . ?

1. If any tables are open, close them.

Access can’t create a relationship if one of the tables involved is open.

2. Click the Relationships button on the Database Tools or Datasheet tab
of the Access Ribbon.

The Relationships window may be empty when you first open it, but if we
know you, it won’t be that way for long; you can (and probably will) add
tables to the window at any time, as the next section makes clear. It’s possi-
ble that some relationships may have already been created, too, even if you
don’t remember creating them. There are ways to define relationships that
don’t use the Relationships window, such as using the Lookup Wizard.

Adding tables to the Relationships window
After the Relationships window is open, you can add tables to it by perform-
ing the following steps:

1. Click the Show Table button on the Design tab of the Ribbon.

The Show Table dialog box appears.

2. Click the name of any table you want to add to the Relationships
window, and then click the Add button.

Repeat Step 2 as many times as you wish to add multiple tables to the
Relationships window. You can select multiple tables by holding down
the Ctrl key as you select table names.

3. Click the Close button in the Show Table dialog box.

Relating YourTables
and Protecting

YourData

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 195

Creating Relationships and Protecting Your Data with Referential Integrity196

The Show Table dialog box closes and — voilà — the tables you chose are visi-
ble in the Relationships window. Not the entire table, of course. That would be
too big. Only a field list that shows the names of all the fields in the table dis-
plays for each table you select. You can move those field lists around by drag-
ging their title bars. You can size them by dragging any corner or edge.

Setting referential integrity between two tables
When you have two or more tables in the Relationships window, you can
define their relationship and referential integrity. Here’s how:

1. Click the matching key in either table to select that field name.

For example, if you’re joining the Address Book and Orders tables shown
in Figure 6-3, you click the ContactID field in either table.

2. Drag that selected field name to the corresponding field name in the
other table, and drop it there.

The Edit Relationships dialog box, shown in Figure 6-4, opens.

3. If you want to turn on referential integrity, select the Enforce
Referential Integrity check box.

The Cascading options (beneath the Enforce Referential Integrity check
box) are now enabled.

4. If you want matching records in the detail table to update automati-
cally when the value of a primary key field changes, select the
Cascade Update Related Fields check box.

5. If you want matching records from the detail table deleted automati-
cally after you delete a record in the master table, select the Cascade
Delete Related Records check box.

6. Click the Create or OK button to save your changes and close the Edit
Relationships dialog box.

(The OK button replaces the Create button when you edit an existing
relationship as opposed to creating a new one.)

Figure 6-4:
The Edit
Relation-
ships
dialog box.

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 196

Book II
Chapter 6

Creating Relationships and Protecting Your Data with Referential Integrity 197

If you join two tables without enforcing referential integrity, the connecting
line (or the join line) in the Relationships window is just a thin black line, as
shown in the top two tables in Figure 6-5. If you enforce referential integrity,
the connecting line displays a 1 near the master table, and a “many” symbol
(an infinity sign, or sideways 8) near the detail table, as shown in the bottom
two tables in Figure 6-5.

The relationship you define is not etched in stone. You can change the rela-
tionship between two tables at any time.

Editing and deleting relationships
To change or delete the relationship between two tables in the Relationships
window, you first need to select the relationship you want to change.
Selecting a relationship is trickier than you think. Follow these steps to
select the join line that represents the relationship you want to change:

1. In the Relationships window, right-click the join line that you want to
change or delete.

You see the options shown in Figure 6-6. If you see different options, you
right-clicked too close to a table. Clicking right on the line can be tricky:
Try right-clicking nearer to the center of the join line you want to change.

Figure 6-6:
Right-click a
connecting
line to
delete or
change it.

Figure 6-5:
Joined
tables
without (top)
and with
(bottom)
referential
integrity
enforced.

Relating YourTables
and Protecting

YourData

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 197

Referential Integrity with Many-to-Many Relationships198

2. Choose from the following:

• If you want to delete the line (which deletes the relationship and
turns off referential integrity), choose the Delete option.

• If you want to change something about the relationship, choose the
Edit Relationship option.

If you choose the Edit Relationship option, the Edit Relationships dialog box
opens, where you can change or disable referential integrity. Make your
changes and then choose OK.

The Join Type button in the Edit Relationships window allows you to set a
default join type to be used in queries. Join types have no bearing on refer-
ential integrity. See Book III, Chapter 1 for more on Join Types.

Referential Integrity with Many-to-Many
Relationships

As we discuss in Book I, Chapter 4, a many-to-many relationship often exists
among chunks of data. For example, a school has many students, enrolled in
many different courses. To design a database that contains information
about students, courses, and enrollment, you need three tables. One table,
perhaps named Students, contains a record for each student with a primary
key field named StudentID that uniquely identifies each student.

A second table, perhaps named Courses, contains one record for each
course with a primary key named CourseID that uniquely identifies each
course. To keep track of which students are enrolled in which courses, you
need a third table (called a junction table) that contains a record that pairs a
StudentID with a CourseID. For the sake of the example, say the junction
table is named Enrollments, as in Figure 6-7. When looking at data in the
tables, you see how each record in the Enrollments table links a student to
his or her courses.

The same tables, and same relationships, link any given course to the stu-
dents that are enrolled in it, as shown in Figure 6-8.

While a many-to-many relationship is conceptually its own beast, Access
only recognizes one-to-many relationships. To set up referential integrity
among the tables, you don’t create a “special” many-to-many join. Rather,
you just connect the fields and enforce referential integrity on each join line,
as shown in Figure 6-9.

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 198

Book II
Chapter 6

Referential Integrity with Many-to-Many Relationships 199

Figure 6-9:
The relation-
ships
among the
Students,
Courses, and
Enrollments
tables are
set to
enforce
referential
integrity, as
indicated by
the 1 and
infinity
symbols.

Figure 6-8:
Any one
course
contains
many
students.

Figure 6-7:
Any one
student can
be enrolled
in many
courses.

Relating YourTables
and Protecting

YourData

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 199

Printing the Relationships Window200

Printing the Relationships Window
You can print a copy of your Relationships window at any time. Doing so is
not necessary. But if you’d like to have a printed copy to refer to in the
future, you can just follow these steps:

1. First make sure the Relationships window is open, and looks just the
way you want the printed copy to look.

2. Click Relationship Report on the Design tab.

The printer won’t start churning right away. Instead, a preview of what
the printer will print appears in a new window.

3. Click the Print button on the Ribbon.

Now the printer actually prints the relationships.

4. Click the Close Print Preview button on the Print Preview tab.

A Report Design screen suddenly opens, but don’t be alarmed. It appears
in case you want to save a copy of the Relationships window as an Access
Report. If you haven’t gotten into reports yet, and don’t know what that
means, don’t worry about it. You can just continue with the next step.

5. Click the Close (X) button in the upper-right corner of the Report
Design window, and then click the No button when asked whether
you want to save the changes made to the Report.

You return to your Relationships window. To close the Relationships
window, click the Close (red X) button in its upper-right corner.

As we said, you don’t need to concern yourself with this business of reports
right now, so don’t worry about the weird stuff that happens when you print
your Relationships window. But just so you know, Access Reports are cov-
ered in Book V.

15_036494 bk02ch06.qxp 11/17/06 8:22 AM Page 200

Book III

Queries

16_036494 pt03.qxp 11/17/06 8:22 AM Page 201

Contents at a Glance
Chapter 1: Creating Select Queries ..203

Chapter 2: Letting Queries Do the Math ..233

Chapter 3: Doing Neat Things with Action Queries and Query Wizards269

Chapter 4: Viewing Your Data from All Angles Using Crosstabs and PivotTables........291

16_036494 pt03.qxp 11/17/06 8:22 AM Page 202

Chapter 1: Creating Select Queries

In This Chapter
� What do queries do — and what kind of queries can you make?

� Creating a select query with a wizard

� Creating and editing a select query in Design view

� Getting the data you want out of your queries with criteria and sorting

� Using query datasheets to enter and edit data

� Saving your queries

Queries are a way to ask questions of your data. Do you want to know
who ordered a lawn flamingo? Which customers live in California?

Which orders contain items that have been discontinued? What your top ten
bestselling items are? Queries can tell you all that and more.

Like the tables covered in Book II, queries have two views: Design view and
Datasheet view. In Design view, you define your query — you tell Access
which fields you want to see, which tables they come from, and the criteria
that any record has to meet in order to appear on the resulting datasheet. In
Datasheet view, you see the fields and records Access finds that meet your
criteria.

You can use queries to do the following:

✦ Look at data from related tables

✦ Look at subsets of your data — a selective slice that meets certain crite-
ria that you specify

✦ Sort and alphabetize data

✦ Create new calculated fields

You can make as many queries as you want to — usually some are made on
the fly and not saved, and some are saved — even used as the basis for
forms and reports.

To create a query, you need to know what data — more specifically, which
fields — you want to see and which tables those fields are in. As you define
the query, you may have criteria that limit the data. After you define the

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 203

Types of Queries204

query, you can view the data in a datasheet. The datasheet created by a
query is dynamic — that is, you see the data that meets the query definition
each time you view the datasheet. If data has been added, edited, or deleted,
the query datasheet may display different data.

To create a query, you use either a wizard or Design view (or both) to tell
Access which data you want to see. The easiest way for a beginner to create
a query is to use the Simple Query Wizard, but after you understand queries,
you may prefer to go right to Design view.

We start this chapter by telling you about the different types of queries that
Access offers, and then introduce you to Design view. This chapter concen-
trates on select queries, which are the most common type of query, and the
skills you use to create select queries. Then we guide you through creating a
query using the Simple Query Wizard. But because the Simple Query Wizard
doesn’t allow you to define criteria (such as limiting records to those
ordered this month, or only viewing products that cost more than $20), you
probably want to move quickly to the next sections on using Design view
and criteria. At the end of the chapter, you find all the details on working
with your query data in a datasheet.

Types of Queries
The many different types of queries that Access provides give you many dif-
ferent ways to select and view specific data in your database. You choose
the type of query, choose fields you want to see, and define criteria to limit
the data shown as necessary.

The following list includes the types of queries available in Access:

✦ Advanced Filter/Sort: The simplest kind of query, Advanced Filter/Sort
allows you to find and sort information from a single table in the data-
base. This option is available from any datasheet by clicking Advanced
in the Sort & Filter group of the Home tab on the Ribbon and choosing
Advanced Filter/Sort.

✦ Select Query: A select query selects the data you want from one or
more tables and displays the data in the order in which you want it dis-
played. A select query can include criteria that tell Access to filter
records and display only some of them. Select queries that display indi-
vidual records are called detail queries; those that summarize records
are called Summary or Totals queries.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 204

Book III
Chapter 1

Creating Select
Queries

Creating a Query in Design View 205

✦ Totals or Summary Query: These queries are a subset of select queries,
but they allow you to calculate a sum or some other aggregate (such as
an average) rather than displaying each individual record. (Totals
queries are covered in Chapter 2 of this minibook.)

✦ Parameter Query: A query that asks you for one or more pieces of infor-
mation before displaying the datasheet.

✦ AutoLookup Query: A query that fills in information for you.
(AutoLookup queries are covered later in this chapter.)

✦ Action Query: Action queries change your data based on some set of
criteria. Action queries can delete records, update data, append data
from one or more tables to another table, and make a new table. (We
describe action queries in Chapter 3 of this minibook.)

✦ Crosstab Query: Most tables in Access, including ones generated by
queries, have records down the side and field names across the top.
Crosstab queries produce tables with the values from one field down the
side and values from another field across the top of the table. A crosstab
query performs a calculation — it sums, averages, or counts data that is
categorized in two ways, as defined by the row and column labels.
(Crosstab queries are covered in Chapter 4 of this minibook.)

Select queries are the most common type of queries used in Access. In fact,
select queries are the most general type of query, and all the other query
types add features to select queries. When you define a select query, you use
the design grid to select which fields and records to display in the new
datasheet. The skills you use to define select queries are also used to define
the other types of queries.

Creating a Query in Design View
If you’re completely new to queries, this section is for you. Here we create a
simple select query so you can see what, exactly, a query does.

Just follow these steps to create a simple query:

1. Display the Create tab on the Ribbon.

2. Click the Query Design button in the Other group.

Access displays Design view and the Show Table dialog box, shown in
Figure 1-1.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 205

Creating a Query in Design View206

3. In the Show Table dialog box, select the table that contains the fields
you want to display in the query datasheet, and then click the dialog
box’s Add button.

4. Click the Close button in the Show Table dialog box.

Now Design view displays the table you selected in its top pane and the
empty design grid in its bottom pane.

You can close the Query Property sheet — you don’t need it right now.
Redisplay it at any time by clicking Property Sheet in the Show/Hide
group of the Design tab on the Ribbon.

5. Double-click a field name in the top pane to display that field name in
the bottom pane — the design grid. Repeat to include any additional
fields.

You can drag a field name to the design grid or double-click a field name
to move it to the grid. You can also use the drop-down Field and Table
lists in the design grid to select the fields that you want to use. To select
multiple field names in the Field list, use the standard Ctrl+click or
Shift+click selection techniques, and then drag all selected field names
to the design grid.

Figure 1-2 shows the query we created. Here we are asking to view three
fields from the Products table — the ProductID, Product Name, and
Selling Price fields.

6. Click the View button to see the datasheet with the data selected by
your query.

Our datasheet, shown in Figure 1-3, shows the three fields we put in the
design grid.

Figure 1-1:
Start your
query by
selecting
the table
that has the
data you
need.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 206

Book III
Chapter 1

Creating Select
Queries

Creating a Query in Design View 207

If you want to save the query, click the Save button on the toolbar. Give the
query a name that indicates the data it selects. Remember that the next time
you open the query in Datasheet view, you see updated data — if any
records have been added, deleted, or modified, the query reflects that. You
may choose not to save the query, if you won’t need it again. Just close it
and click the No button when Access asks whether you want to save it.

Now that you have the hang of what a query is, you’re probably ready for
more — getting summary data out of a query, sorting the results, limiting
results with criteria, and so on. Read on!

Figure 1-3:
The
datasheet
shows the
data we
asked for.

QBE grid

Table used in query

Figure 1-2:
This simple
query asks
to see
three fields
from the
Products
table.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 207

Creating a Query with the Simple Query Wizard208

Creating a Query with the Simple Query Wizard
The Simple Query Wizard does a great deal of the work of creating a query
for you. It’s most useful when you want to use fields from different tables
and when you want a query that summarizes your data.

The Simple Query Wizard gives you the option of creating either a summary
(totals) query or a detail query. A detail query lists every record that meets
your criteria. A summary query (also called a totals query) performs calcula-
tions on your data to summarize it. You can create a summary query if the
fields you choose for the query include both of the following:

✦ A field with values

✦ A field with repetitions or a field with dates, used to group the values

A summary query gives you the option of totaling (summing), averaging,
counting the number of values in a field, or finding the minimum or maxi-
mum value in a field. A summary query creates new calculated fields that
you can use in other queries or in reports.

Need an example? Here’s one. If you have a field that lists the amount spent
and a field that lists the dates on which the money was spent, the Simple
Query Wizard creates a summary query for you that sums the amount spent
by date. Pretty neat, huh?

Ready to give the Simple Query Wizard a spin? Just follow these steps to use
the wizard to create a query:

1. Display the Create tab on the Ribbon and click the Query Wizard
button.

2. Select Simple Query Wizard from the New Query dialog box and
click OK.

Access displays the first window of the Simple Query Wizard, as shown
in Figure 1-4.

3. Use the Tables/Queries list box to choose the first table or query that
you want to use fields from.

Many queries are based on tables, but you also have the option of
basing a query on another query. For instance, maybe you already cre-
ated a query to select sales data from only the year 2003. Now, without
modifying the original query, you want to create a query that lists 2003
sales by state, or limits the analysis to just a few salespeople.

When you select a table or query, fields from that object appear in the
Available Fields list box.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 208

Book III
Chapter 1

Creating Select
Queries

Creating a Query with the Simple Query Wizard 209

4. Move the fields you want to use in the query from the Available Fields
list to the Selected Fields list by double-clicking a field name (or by
selecting the field name and then clicking the > button).

5. If you’re using fields from more than one table or query, repeat Steps
2 and 3 to add fields from the additional tables or queries to the
Selected Fields list and then click Next.

From this point on, the windows you see depend upon the types of fields
and the type of query (detail or summary) you choose.

6. Choose the type of query you want: Detail or Summary. Depending on
your selection, do one of the following:

• If you choose a summary query, click the Summary Options button.

• If you choose a detail query, click Next and jump to Step 9.

The Summary Options window displays, shown in Figure 1-5, where you
tell the wizard how to summarize each field.

Figure 1-5:
Choose
how to
summarize
your data
using these
options.

Figure 1-4:
Choose
fields for the
query —
they can
come from
more than
one table.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 209

Creating a Query with the Simple Query Wizard210

7. Choose how to summarize your data and click OK to close the
Summary Options dialog box. Then click Next to see the next window
of the wizard.

Use the check boxes to indicate the new fields you want Access to create.
For example, if you want to add all the values in the Qty field (to calcu-
late how many of each item have been sold), click the Sum check box in
the row for the Qty field.

Don’t overlook the Count check box(es) that may appear in this
window — selecting a Count check box tells the wizard to create a
field that counts the records within each grouping.

8. If the fields being summarized can be grouped by a Time/Date field,
choose the time interval the records should be grouped by and click
Next.

You will not see this window if your data does not contain a Time/Date
field.

For example, if you choose to include the Order Date field in the query
and to sum the Qty field, you can group by month to see how many of
each item you sold in each month. You can choose to display total check
amounts by the following options: Day, Month, Quarter, or Year. The
Unique Day/Time option groups records by each unique date and time;
if your data includes times, each record with the same date and time is
grouped together. If your data only includes a date without the time,
each record from the same day is grouped together (which is the same
as the Day option).

9. Type a name for the query in the box at the top of the window.

Choose from these options:

• Open the Query to View Information: This option shows you the
query in Datasheet view.

• Modify the Query Design: This option shows you the query in
Design view.

• Display Help on Working With the Query: Click this check box if
you want to see the help screen that covers working with a query.

10. Click Finish to view the query.

If you chose the Open the Query to View Information option, you see the
query in Datasheet view. If you chose the Modify the Query Design
option, you see your resulting query datasheet, looking something like
what you see in Figure 1-6.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 210

Book III
Chapter 1

Creating Select
Queries

Viewing Your Query 211

You can edit the query created by the Simple Query Wizard using Design
view, (about which there’s lots more in the rest of this chapter).

The Simple Query Wizard doesn’t allow you to include criteria to choose
which records you want to include in the query datasheet. If you want to
include criteria in your query, open the query created by the wizard in
Design view and add the criteria. (Details of Design view appear throughout
this chapter.)

Viewing Your Query
After you create a query, you can open it in any of these views:

✦ Design view displays the Design view where you can select tables,
fields, create criteria, expressions, define sort order, and all the other
things you need to do to define a query.

✦ Datasheet view displays the fields from the query in a datasheet, just as
if you were looking at a table datasheet.

✦ SQL view displays the query definition as a statement in SQL (Structured
Query Language).

✦ PivotTable and PivotChart views summarize and chart the data from
the query. (See Chapter 4 of this minibook for how to create PivotTables,
and Book V, Chapter 3 for how to create PivotCharts.)

When you open a query, you can open it in Datasheet or Design view by
selecting the query name in the Database window and clicking the Open
button (for Datasheet view) or the Design button (for Design view).

Figure 1-6:
The
datasheet
shows data
summarized
by product
and date.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 211

Understanding Design View212

When a query is already open, you can switch between Design and
Datasheet views by clicking the View button (the left-most button on the
toolbar). To display SQL PivotTable or PivotChart view, click the downward-
pointing triangle at the right side of the View button. Choose the view you
want.

Understanding Design View
If you’re reading the chapter from the beginning, you created a simple, one-
table query, and you used the Simple Query Wizard to create another query.
Queries can do so much more, though, so dive into Design view and figure
out what’s what.

Design view
Design view is where you tell Access about the data you’re looking for. In
Design view you specify the tables (or other queries) where Access finds the
data you want, the fields from those tables that you want to see, and any cri-
teria that the data must pass in order to appear in the datasheet. You also
use Design view to choose the type of query, specify calculations, and define
the sort order of the resulting data.

Here are our two favorite ways to display a query in Design view (shown in
Figure 1-7):

Table names Table paneField names

Pane divider QBE grid

Figure 1-7:
A query
displayed
in Design
view.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 212

Book III
Chapter 1

Creating Select
Queries

Understanding Design View 213

✦ Click Queries in the Navigation Pane, right-click the query name, and
select Design View.

✦ Click the View button when the query is displayed in Datasheet view.

Table 1-1 explains what the most useful buttons on the query’s Design tab on
the Ribbon do.

Table 1-1 Buttons in Design View
Toolbar Button Button Name What It Does

View Displays Datasheet view — the data set defined
by the query.

Save Saves the query design.

Query Type group Choose a query type: Select Query, Crosstab
Query, Make-Table Query, Update Query, Append
Query, or Delete Query.

Run Runs the query. (For a select query, clicking the
Run button does the same thing as clicking the
View button. When the query is an action query,
the Run button performs the action. Use this
button carefully.)

Show Table Displays the Show Table dialog box so that you
can add tables to the query.

Totals Displays the Totals row in the design grid. (Use
the Totals row to create calculations that sum-
marize your data.)

Top Values Limits the result of the query displayed in the
datasheet to the number of records or the per-
centage of records displayed in this option (for
example, All, 5, 25%, and so on). You can choose
from the drop-down list or type values into this
option.

Property Sheet Displays properties for the selected field or Field
list.

Builder Displays the Expression Builder dialog box. (This
button can only be clicked when the cursor is in
the Field or Criteria row.) See more about build-
ing expressions in Chapter 3 of this minibook.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 213

Understanding Design View214

You can change the size of the panes in Design view by dragging the pane
divider. Just move the mouse pointer to the divider, where it changes shape;
then click, hold, and drag to move the divider.

Working with tables in Design view
The tables in the Table pane (the top pane of the Design View window) are
really just little Field lists that you can move and size in the same way that
you move and size windows. Change the size of a table window by moving
the mouse pointer to the border of the window where it turns into a double-
headed arrow; then drag the border to change the size of the window. To
move a table in the Table pane, drag its title bar. This technique may come in
handy when you work with related tables and want a clear look at the rela-
tionships between them.

If your query contains tables that have existing relationships that were previ-
ously defined with lookup fields (or created in the Relationships window),
you see those relationships as lines between the related tables. (You can see
more about relationships in Book II, Chapter 6.)

Introducing the query design grid
The bottom pane of Design view is technically called the Query by Example
(QBE) grid, but is often simply called the design grid. It is your handy visual
aid for defining the data you want to select with your query. Each row in the
design grid has a specific purpose. Table 1-2 lists how to use each of them.

Table 1-2 Rows in the Query Design Grid
Design Grid Row What It Does

Field Displays the name of a field that you want to include in a query.

Table Displays the name of the table that the field comes from. (This row is
not always visible.)

Total Performs calculations in your query. (This row is not always
visible — use the Totals button on the Design tab on the Ribbon
to display or hide it.)

Sort Determines the sort order of the datasheet produced by the query.

Show Shows or hides a field. (If you want to use a field to determine which
records to display on the datasheet, but not actually display the field,
remove the check mark from the Show column for the field.)

Criteria Tells Access the criteria — such as records with values less than 10,
or records with dates after 12/3/2005 — for the field in the same
column.

Or Use for additional criteria.

Each of these query features gets more detailed coverage later in this chapter.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 214

Book III
Chapter 1

Creating Select
Queries

Tips for Creating a Query 215

Navigating Design view
You can work in Design view by using the mouse (to click the pane that you
want) as well as the scroll bars (to see parts of the view that don’t fit on-
screen). Or, if you prefer, you can use the keyboard to move around.

The keys in Table 1-3 move you around Design view.

Table 1-3 Shortcut Keys in Design View
Key What It Does in the Table Pane What It Does in the Design Grid

Tab Moves to the next table Moves to the next row to the right.

Shift+Tab Moves to the previous table Moves to the next row to the left.

Alt+↓ or F4 Nothing Displays the drop-down list (if the row
has one).

Page Down Displays more field names Displays more OR criteria.
in the active table

Home Moves to the top of field names Moves to the first column in the grid.

Displaying or hiding table names
You can view table names for each field in the query design in the Table row,
or you can choose not to see the Table row.

To make the Table row appear or disappear, use one of these methods:

✦ Right-click the design grid and choose the Table Names option from the
shortcut menu.

✦ Click the Table Names button in the Show/Hide group of the Design tab
on the Ribbon.

Tips for Creating a Query
The “Creating a Query in Design View” section (earlier in this chapter)
includes the basics for creating a query in Design view, but you can do so
much more. This section delves into a few more aspects of the Creating
Queries story.

Adding tables to the query
In order to use a table’s fields in a query, you have to display the table name
in the top pane of the Design view.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 215

Tips for Creating a Query216

To do that, you need to view all table names by opening the Show Table
dialog box. Open the Show Table dialog box, using whichever of the follow-
ing methods seems most convenient at the moment:

✦ Right-click the Table pane of Design view and choose the Show Table
option from the shortcut menu.

✦ Click the Show Table button in the Query Setup group of the Design tab
on the Ribbon.

After the Show Table dialog box opens, add a table to the query by using
whichever of the following methods is most convenient:

✦ Double-click the table name in the Show Table dialog box.

✦ Select the table and then click the Add button.

When you add all the tables that you need, click the Close button in the
Show Table dialog box to get back to work in Design view.

To remove a table from a query, all you need do is press the Delete key on
your keyboard when the table in the Table pane is selected (that is, when
any field in the table is highlighted). When a table is deleted from Design
view, all the fields in the design grid from that table are deleted too. Because
deleting a table from a query is so absurdly easy — and can have damaging
consequences for your query — take care when your fingers get close to the
Delete key.

If you want to include a field generated by another query, you can add
queries to a query by clicking either the Queries tab or the Both tab of the
Show Table dialog box, and then double-clicking the query name.

Inserting fields in a design grid
You can move a single field from the Table pane to the design grid in three
easy ways:

✦ Double-click the field name. Access moves the field to the first open
column in the grid.

✦ Drag the field name from the Table pane to the Field row of an unused
column in the design grid. This option is popular among dragging fans,
or when you want to put a field in a specific location in the grid

✦ Use the drop-down list in the Field row of the design grid to choose
the field you want. If you use this method with a multiple-table query,
you may find choosing the table name from the drop-down Table list
before selecting the field name easier. If you don’t have the Table row in
your design grid, see the “Displaying or hiding table names” section, ear-
lier in this chapter.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 216

Book III
Chapter 1

Creating Select
Queries

Editing a Query 217

You can place all the field names from one table into the design grid in two
ways:

✦ Put one field name in each column of the grid: If you have criteria for
all the fields, you can put one field name in each column of the design
grid in just two steps. Double-click the table name in the Table pane of
Design view to select all the fields in the table. Then drag the selected
names to the design grid. When you release the mouse button, Access
puts one name in each column.

✦ Put all the field names in one column: This method is useful if you
want to find something that could be in any field, or if you have one cri-
terion for all the fields in the table. To tell Access to include all field
names in one column, drag the asterisk (above the first field name in
each table window) to the grid. The asterisk is also available as the first
choice in the drop-down Field list in the design grid — it appears as
TableName.*.

Editing a Query
If you want, you can do some major reconstruction to your query in the
design grid — you can move the columns around, delete a column, or delete
all the entries in the grid.

To do any of those things, though, you first have to select the column in the
grid by clicking the column selector — the narrow block at the top of each
column in the grid.

Table 1-4 lists some of the things you can do to make changes in the design
grid.

Table 1-4 Editing Your Query
When You Want To . . . Here’s What to Do

Move a column Click the column selector to select the column, click a
second time, and then drag the column to its new position.

Delete a column Click the column selector to select the column; then press
the Delete key on your keyboard to delete the column.

Insert a column Drag a field from the Table pane in Design view to the
column in the design grid where you want to insert it. Access
inserts an extra column for the new field, moving all other
columns to the right to make space for the new column.

Change the displayed name Use a colon between the display name and the actual name
of the field in the Field row (display name: field name).

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 217

Editing a Query218

Sorting a query
You can sort or alphabetize the results of a query in several ways. The first
way is to use the Sort row in the design grid. Use the Sort row to tell Access
which field to use to sort the datasheet. The second way is to use the Sort
Ascending and Sort Descending buttons on the datasheet toolbar. (For more
on sorting in a datasheet, see Book II, Chapter 3.)

If you sort a query by date, Access alphabetizes the months — which is usu-
ally not what you want. Reports, on the other hand, know how to put months
in chronological order. If you have monthly data that you want to sort, a
report is a better object to use than a query.

To sort by a field, display your query in Design view and follow these steps:

1. Move the cursor to the Sort row in the column that contains the field
by which you want to sort the records that the query selects.

2. Display the drop-down list for the Sort row.

Access displays the options for sorting: Ascending, Descending, and
(not sorted).

3. Choose to sort in ascending order or descending order.

You can use the Sort row in the design grid to sort by more than one field.
You may want to sort the records in the datasheet by last name, for example,
but more than one person may have the same last name. You can specify
another field (perhaps First Name) as the second sort key.

When you sort using more than one field, Access always works from left to
right, first sorting the records by the first field (the primary sort key) that
has Ascending order or Descending order in the Sort row, and then using the
second sort key to sort any records that have the same primary sort-key value.

You cannot sort by the following field types: Memo, OLE, Attachments, or
multivalue Data Type.

Viewing top values
If all you care about are the top values produced by a query, you can tell
Access to find and display only those records. Use the Top Values box in the
Design View toolbar to see the top records produced by the query. A value in
the Top Values box specifies exactly how many records in the datasheet you
want shown; a percentage shows you that percentage of the records that the
query finds.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 218

Book III
Chapter 1

Creating Select
Queries

Editing a Query 219

Note that using a percentage does not show values that fall in the top xper-
cent; it shows you the top xpercent of the values. Say you are looking at test
scores of twenty students. The test scores fall between 0 and 100, but are
mostly in the 80s and 90s. If you ask to see the top 20 percent, Access shows
you the top 4 scores (20 percent of 20 records), not the scores that are 80 or
above. To see the scores that are 80 or above, type the criterion >=80 in the
Test Score column in the design grid.

To display the top values found by a query, follow these steps:

1. Create your query with all the fields and criteria that you need.

2. Choose the field you want to sort by, and then set the Sort row to
either Ascending order or Descending order.

Access uses this to figure out which top values you’re looking for. For
instance, if we sort products using the Selling Price field, and sort in
Ascending order, the cheapest products are at the top of the datasheet.
When we ask for the top five prices, we get the five cheapest products.
To get the most expensive products, we sort in Descending order so the
most expensive products appear at the top of the datasheet.

3. Change the Top Values option by typing in a value or a value followed
by a percent sign.

You can also choose a value from the drop-down list. To see the top three
values, type in 10. To see the top 3 percent of the values, type in 3%.

4. Click the View button to see only the top values in the datasheet.

Hiding fields
You can use fields to sort data — or use criteria for the fields to filter data —
without having to display the field in the query datasheet. Deselect the Show
check box (in the design grid) when you don’t want to display the column in
the datasheet. (The next time you open the query in Design view, you find
that Access has moved the hidden field(s) to the right side of the grid. If the
field is hidden and not used for sort order or criteria, Access removes it from
the grid.)

Changing the format of a query field
The format of fields displayed in a query is determined by the field’s proper-
ties in its native table. If the field is defined as having a currency format in its
table, then that’s what you see in the query. Note, however, that you can
change the format of any field for the query.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 219

Limiting Records with Criteria Expressions220

To change the format of a field, follow these steps:

1. In Design view, right-click anywhere in the column that contains the
field you want to format, and then choose Properties from the short-
cut menu.

If a Properties sheet is displayed already, just clicking the field displays
the properties for that field.

2. Click in the Format property, and then click the arrow to display the
format options.

The list of available formats drops down.

3. Choose a format option from the drop-down list.

The format options in the Properties sheet are exactly the same as the
options for the Format property in the field properties for a table, and you
can use them in exactly the same way. However, when you format a field in a
query, you only affect how that field appears in the query datasheet.
(Formatting fields is covered in detail in Book II, Chapter 1.)

Limiting Records with Criteria Expressions
In addition to using queries to select only a few fields to show, you may also
(even often) use queries to display a limited selection of records. Criteria
enable you to limit the records that the query displays. You use the Criteria
and Or rows in the design grid to tell Access exactly which records you want
to see.

Querying by example
Querying by example — QBE, for short — makes defining criteria easy: If you
tell Access what you’re looking for, Access goes out and finds it. For exam-
ple, if you want to find values equal to 10, the criterion is simply 10. Access
then finds records that match — that are equal to 10.

The most common type of criterion is a logical expression. A logical expres-
sion gives a Yes or No answer. Access shows you the record if the answer is
Yes, but does not show the record if the answer is No. The operators com-
monly used in logical expressions include <, >, AND, OR, and NOT.

Although we use uppercase to distinguish operators and functions, case
does not matter in the design grid.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 220

Book III
Chapter 1

Creating Select
Queries

Limiting Records with Criteria Expressions 221

If you want to find all the addresses in California, the criterion for the State
field is simply the following:

CA

You may want to add another criterion in the next line (OR) to take care of
different spellings, as follows:

California

Access puts the text in quotes for you. The result of the query is all records
that have either CA or California in the State field.

You can find records with null values by using the Is Null criterion. If
you want all records except those with null values, use the Is Not Null
criterion.

Using dates, times, text, and values in criteria
Access does its best to recognize the types of data you use in criteria; it
relies on its best guess when providing characters to enclose the elements
of the criteria expressions you come up with. You are, however, less likely to
create criteria that Access doesn’t understand if you use those characters
yourself.

Table 1-5 lists the types of elements you may include in a criteria
expression — as well as the character to use to make sure Access
knows the element is text, a date, a time, a number, or a field name.

Table 1-5 Dates, Time, and Text in Criteria
Use This Type of Data . . . In an Expression Like This . . .

Text “text”

Date #1-Feb-97#

Time #12:00am#

Number 10

Field name [field name]

You can refer to dates or times by using any allowed format. December 25,
2006, 12/25/06, and 25-Dec-06 are all formats that Access recognizes.
You can use AM/PM or 24-hour time.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 221

Limiting Records with Criteria Expressions222

Using operators in criteria expressions
Don’t be surprised if your criteria are frequently more complicated than “all
records with California in the State field.” You use operators in your cri-
teria expressions to tell Access about more complex criteria.

Table 1-6 lists the operators that you’re likely to use in an expression that
specifies criteria.

Table 1-6 Using Operators in Criteria
Relational Operator What It Does

= Finds values equal to text, a number, or date/time (“equal to” is
understood when you type a criterion without an operator —
you don’t need to type it).

<> Finds values not equal to text, a number, or date/time.

< Finds values less than a given value.

<= Finds values less than or equal to a given value.

> Finds values greater than a given value.

>= Finds values greater than or equal to a given value.

BETWEEN Finds values between or equal to two values.

IN Finds values or text included in a list.

LIKE Finds matches to a pattern.

When you type your criterion, you don’t have to tell Access the field name.
Just put your criterion in the same column as the field, and Access applies
the criterion to the field that appears in the same column.

Table 1-7 explains how different criteria affect the records that appear on-
screen in the query datasheet.

Table 1-7 Examples of Criteria with Operators
When Field1 Has This Criteria These Are the Records You See

<15 Displays records where Field1 is less than 15.

<#9/1/03# Finds records where Field1 contains a date before
September 1, 2003.

>15 Finds records where Field1 is greater than 15.

>#12:00am# Finds records where Field1 is a time value after
12:00 a.m.

>[Max Price] Finds records where Field1 is more than the value
in the field Max Price.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 222

Book III
Chapter 1

Creating Select
Queries

Limiting Records with Criteria Expressions 223

When Field1 Has This Criteria These Are the Records You See

<>15 Finds records where Field1 is not equal to 15.

>10 AND <20 Finds records where Field1 is between 11 and 19.

>=10 AND <=20 Finds records where Field1 is between 10 and 20,
including 10 and 20.

BETWEEN 10 AND 20 The same as >=10 AND <=20.

IN (“Virginia”, “VA”) Finds records where Field1 contains either
Virginia or VA.

LIKE “A*” Finds records where Field1 begins with the letter
A. You can use LIKE with wildcards such as * to tell
Access in general terms what you’re looking for. For
more information on the wildcards that Access recog-
nizes, see Book II, Chapter 5.

Using multiple criteria
Often one criterion is not enough. You may want to prune down the records
displayed by using multiple criteria for a single field or multiple criteria for
different fields. To get the data you want, however, you do need to know how
Access combines your criteria.

When you have criteria for only one field, decide whether you want to see
records that meet all criteria (in which case, join the criteria with AND) or
whether you want records that meet only one criterion (in which case, join
the criteria with OR). Of course, you may have three or more criteria, and
you can join them with both AND and OR.

To join criteria for a single field with AND, type them into the Criteria line of
the grid with AND between them — like this:

<5 And >65

shows you records with values less than five as well as those greater than
sixty-five.

To join multiple criteria for one field with OR, use one of these methods:

✦ Type your expressions into the Criteria row, separating them with OR.

✦ Type the first expression into the Criteria row, and type subsequent
expressions using the Or rows in the design grid.

Whichever approach you take, the result is the same — Access displays
records in the datasheet that satisfy one or more of the criteria expressions.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 223

Limiting Records with Criteria Expressions224

When you have criteria for different fields, you join them with either the OR
or the AND operator. The operator is implied in the way you put the criteria
into the design grid. Here’s how that works:

✦ Criteria on the same row are implicitly joined by AND. Access assumes
that you want to find records that meet all the criteria. If you type crite-
ria on the same row for two fields, a record has to meet both criteria to
be displayed in the datasheet.

✦ Criteria on different rows are joined by OR. Access assumes that you
want to find records that meet at least one criterion. If you type criteria
on different rows for two fields, a record has to meet only one criterion
to be displayed in the datasheet.

✦ When you use multiple rows for criteria, the expressions on each row
are treated as though they are joined by AND, but each row’s worth of
criteria are treated as though they are joined by OR. Access first looks
at one row of criteria and finds all the records that meet all the criteria
on that row. Then Access starts over with the next row of criteria, the Or
row, and finds all the records that meet all the criteria on that row. The
datasheet displays all the records that are found. A record has to meet
all the criteria on only one row to display in the datasheet.

Using lookup fields in criteria
When you define a criterion for a query, you tell Access what you are looking
for — either by entering a value or by using a logical expression. However, if
you use a criterion to limit the number of records displayed from a lookup
field, you have to figure out exactly what value you want to find — and that
may not be the value you see in the table. See Book II for how to create a
lookup field.

How about an example? You want to find orders for the Budget MP3 Player.
The Order Details table stores this data, shown in Figure 1-8. Notice that the
ProductID field is a lookup field — it displays values from the Product
Name field of the Products table, but stores the values from the Products
table primary key field, which is ProductID. The Product table is shown in
Figure 1-9.

Because the ProductID field in the Order Detail table is a lookup field, the cri-
teria need to refer to the value that is stored in the field, not the value that dis-
plays. The value that is stored is the primary key field from the Products table.
The value that displays is the product name. If we enter Budget MP3 Player
for the ProductID criterion and then try to view the datasheet, we see a Data
type Mismatch in Criteria Expression error message. We need to go
back to the Products table and find the ProductID number for the Budget
MP3 Player. (Remember: A lookup field always stores the primary key field.)

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 224

Book III
Chapter 1

Creating Select
Queries

Limiting Records with Criteria Expressions 225

The ProductID for the Budget MP3 Player is 4 (see the highlighted line of
Figure 1-9). With that information we can create the query criteria — it is 4.

Queries with multivalue lookup fields
Multivalue lookup fields make queries a little more complicated. The ques-
tion is whether you want to display the complete multivalue field with each
value separated by a comma, or put each value on its own line in the query
datasheet. If you want to do complicated analysis with multivalue fields, you
might want to reconsider your database design, and add tables and fields in
order to save the same data without the multivalue field.

Although a multivalue lookup field seems cumbersome, it can still give you
the results you want if you simply have your query display the multiple
values separated by commas. If you want to deconstruct your data some —
and ensure each value in a multivalue field has its own line — you’ll need to
add the Value property to the field name. Here’s how: Instead of just multi-
value field name in the query grid, enter Multivalue Field name.Value.

Figure 1-9:
The
Products
table holds
the data
shown in
the Order
Details table
drop-down
list.

Figure 1-8:
The
ProductID
field in the
Order
Details table
is a lookup
field.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 225

Working with Multiple Related Tables226

In addition to the special instructions about multivalue fields, remember the
caveat about lookup fields: The value you see may not be the value that is
actually stored. (Fortunately, the preceding section offers tips on using
lookup fields in your criteria.)

Working with Multiple Related Tables
One powerful feature of queries is the ability to view related fields from differ-
ent tables together in a query datasheet. For instance, using our database, we
can create a query to list customer name and contact information with order
dates and numbers, even though two different tables store the data. The rela-
tionship between the two tables is the ContactID field, which is the primary
key of the Address Book table. The same field, ContactID, is in the Orders
table — it identifies the customers who placed each order. (For more informa-
tion about relating tables, see Book I, Chapter 3 and Book II, Chapter 6.)

In order for Access to display data from different tables, a relationship must
be defined between the tables. A relationship between tables is created in
one of these ways:

✦ A lookup field exists, creating a relationship between two tables. For
more on lookup fields, see Book II, Chapter 5.

✦ A relationship was defined in the Relationships window, as described in
Book II, Chapter 6. (Creating a lookup field automatically creates a corre-
sponding relationship in the Relationships window.)

✦ Access automatically creates a relationship when it finds related fields in
two tables — that is, if the two fields have the same name and data type,
and one of the matching fields is the primary key of its table.

✦ You create a relationship in Design view when defining a query.

When a relationship exists between two tables displayed in Design view, the
tables appear joined by a line, as in Figure 1-10.

If you use data from two tables that are not directly related, you have to
make sure any other tables that relate the fields you want to display in the
query datasheet, appear in the Query Design view.

If referential integrity is enforced, the “1” and “∞” symbols appear on the
relationship line to denote the “one” and “many” sides of the relationship. If
referential integrity is not enforced, those symbols do not appear on the line
(see Book II, Chapter 6 for more on referential integrity).

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 226

Book III
Chapter 1

Creating Select
Queries

Working with Multiple Related Tables 227

Figure 1-11 shows the result of the query shown in Figure 1-10 — each order
is listed once, with the name of the customer. Many customers have multiple
orders, so they appear more than once in the datasheet.

Joining tables in Design view
Although you can create or edit a relationship between two tables in Design
view, remember: The relationship defined in Design view is used only for the
query; it’s not used in any other part of the database. You can use a type of
join that you may not want to use in the database as a whole, but that you
may find useful for a single query (which you may then use as the source
data for a form or report). You can also delete a relationship in Design view
without deleting the same relationship in the Relationships window. (To
delete the join, click the line and then press the Delete key.)

To create a join, you use the Table pane of Design view and follow the same
procedure you use when creating a relationship in the Relationship window —
you first identify the two related fields (each in a different table) you want to
join, and then you drag the field from one table to the related field in the other
table. Voilà — a join!

Figure 1-11:
This
datasheet
shows the
results of
the query
shown in
Figure 1-10.

Figure 1-10:
A query
combining
data from
two related
tables.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 227

Working with Multiple Related Tables228

Choosing the type of join and setting join properties
You can edit the join properties of a relationship for the query in Design view.
To do so, double-click the relationship line to see the Join Properties dialog
box, as shown in Figure 1-12. If you have trouble double-clicking the relation-
ship line, keep trying! The tip of the pointer needs to be right on the line.

The new properties apply only in the current query, and not in any other
objects in the database except those based on this query.

The Join Properties dialog box options are largely self-explanatory, but using
the dialog box effectively requires knowledge of a few buzzwords that
describe particular types of relationships — but don’t appear in the dialog
box. The buzzwords — inner join, left outer join, right outer join — are
included in the descriptions of the following three options:

✦ Option # 1 (Inner join): A query displaying records from both tables dis-
plays only those records that have counterparts in the related table.
Records that don’t have matching partners in the opposite table are
hidden, as though they didn’t even exist. This is the default, meaning
that if you don’t set a join type, this is what you get.

✦ Option # 2 (Left outer join): A query displaying records from both tables
displays all records from the table on the left. From the table on the
right, only records that have matching partners from the table on the
left appear.

✦ Option # 3 (Right outer join): A query displaying records from both
tables displays all records from the table on the right. From the table on
the left, only records that have matching partners from the table on the
right appear.

The line that connects two tables in the Relationships view (and in Design
view as well) reflects information about how the tables are joined, as shown
in Figure 1-13. The arrow points to the table that contributes matching
records — all records from the other table display in the query datasheet.

Figure 1-12:
The Join
Properties
dialog box.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 228

Book III
Chapter 1

Creating Select
Queries

Working with Query Datasheets 229

When would you use an outer join? If you create a sales report and want to
see products that haven’t sold at all, you want an outer join that shows all
the products from the Products table, regardless of whether they appear in
the Order Details table.

If you create a query with fields from two tables that don’t have a relation-
ship defined, Access doesn’t know how to relate records, so every combina-
tion of records between the two tables displays in the datasheet. Generally
(as you might expect) these queries won’t give you meaningful results.

Working with Query Datasheets
A query datasheet looks a great deal like a table datasheet — you can sort,
filter, navigate, and in some circumstances, enter data in the query
datasheet. The data displayed in the query datasheet is sometimes referred
to as a dynaset — a dynamic subset of your data.

Inner join: Only matching records from both tables.

Right outer join: All records from the right table;
only matching records from the left table.

Left outer join:
All records from
the left table;
only matching
records from the
right table.

Figure 1-13:
Join lines
and outer
joins.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 229

Working with Query Datasheets230

The query result reflects changes in the data in your tables. The actual
records displayed in a dynaset aren’t stored in the database; only the design
of the query is stored. Each time you open the query in Datasheet view, the
query definition determines which records appear in the datasheet.

Because working with queries in Datasheet view is similar to working with
tables in Datasheet view, turn to Book II for specific instructions on working
in the Datasheet view.

To toggle between Datasheet and Design view, click the View button, the first
button on the Home and Design/Datasheet tabs on the Ribbon.

Using the query datasheet to edit data
In many cases, you can edit the data in the query datasheet and use the
datasheet to add new records. Any changes you make are reflected in the
table that holds the data you changed — edits are permanent and apply to
the underlying tables and not just to the query.

When your query includes fields from multiple tables, you may see some
funky things on-screen when you edit data — not to worry — they’re all
features!

✦ You may see other data in the datasheet change when you make an edit.
If your query includes related tables, you may see repeated data, such
as the repeated names in Figure 1-11. If you make edits, you see all the
repetitions of the name change when you change one instance. Because
you are changing a single record repeated in the datasheet, the other
instances change to reflect the change in the underlying table. When this
happens, you have happened on an AutoLookup query. The next section
covers AutoLookup queries.

✦ If your query meets the qualifications of an AutoLookup query, Access
may fill in fields after you enter a single value.

If you work with a query datasheet that shows data from multiple related
tables, you may not be able to modify data. The rules get complicated, but
generally all data on the “many” side of a one-to-many relationship can be
updated. Data on the one side usually can be updated if you are not editing
the primary key field.

AutoLookup queries to fill in data automagically
AutoLookup queries can be a terrific tool when you want to enter one value
(such as a customer number) and see other data from the same table (such
as the customer’s name, address, and phone number). You may want to use
this feature as you enter a new order — you can enter a customer number
and see the contact information, and then enter the particulars of the order,

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 230

Book III
Chapter 1

Creating Select
Queries

Saving Queries 231

such as the date and payment method. You can even create an AutoLookup
query and use it as the basis of a form, where it may be more convenient to
enter data. AutoLookup queries may sound complicated, but in fact they’re
pretty simple.

The AutoLookup feature also works in forms.

The key to creating an AutoLookup query is that you must include the Join
field from the “many” side of the one-to-many relationship (also known as
the foreign key). Then when you enter a value for that field, Access fills in
other fields from the “one” side of the relationship automatically.

For instance, the query in Figure 1-14 displays fields from the Orders and
Address Book tables. The ContactID field comes from the Orders table (the
key field on the “one” side, but displayed from the “many” table).

When new orders are entered into the query datasheet, only the customer
number needs to be entered — Access automatically fills in the first name,
the last name, and other contact information from the Address Book table.
The rest of the Order information can then be added.

Saving Queries
A query doesn’t store data — it just pulls data out of tables and puts it in
query datasheets for you to look at. A query is dynamic — as you add to or
change your data, the result of the query also changes. When you save your
query, you’re not saving the table that the query produces — you’re just
saving the query design so you can ask the same question again.

You don’t have to save a query. Often you create queries on the fly to answer
a question. No need to clutter your database with queries you’re unlikely to
need again.

Figure 1-14:
An
AutoLookup
query.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 231

Saving Queries232

That said, you can certainly save a query design when you need to. Use one
of the following methods:

✦ In Design or Datasheet view, click the Save button or press Ctrl+S. If
you haven’t saved the query yet, Access asks you for a name for the
query. Type the name in the Save As dialog box and then click OK.

✦ Close the query (clicking the Close button is a popular method). If
you’ve never saved the query, or if you’ve changed the query design
since you last saved it, Access asks whether you want to save the query.
Click the Yes button to save the query. If you’ve never saved the query,
give it a name in the Save As dialog box and click OK.

Give your new query a name that tells you what the query does. That way, you
won’t have to open one query after another to find the one you’re looking for.

If you want to create a query similar to one you already have in your data-
base, select or open the query and choose Save As from the File menu (click
the icon in the top-left corner of the Access window to display the File
menu) to save the query with a new name. You keep the original query and
make changes to the new copy.

If you want to save the query dynaset, create a snapshot query with the data
(covered in Book V, Chapter 2) or export the data to its own file, using one or
more buttons in the Export group of the External Data tab on the Ribbon. For
more about exporting data, see Book II, Chapter 4.

Importing and exporting queries
If the query you need is in another Access data-
base — or if you create a query that you want
to use in another database — simply import or

export it. Information on importing and export-
ing objects is in Book II, Chapter 4.

17_036494 bk03ch01.qxp 11/17/06 8:23 AM Page 232

Chapter 2: Letting Queries
Do the Math

In This Chapter
� Doing calculations in queries

� Writing expressions for math

� Going beyond basic arithmetic

� Calculating dates and times

� Manipulating text with expressions

� Writing decision-making expressions

� Creating flexible parameter queries

� Calculating totals, subtotals, averages, and such

� Finding duplicate records

If you ever find yourself doing math to figure out what to put into a field,
then you made a mistake when designing your table. A table needs only

the raw data — the factual information that cannot be calculated from
known data. For example, a table may contain Qty and Unit Price fields
to indicate how may items — and at what price — some product was ordered.
But having an Extended Price or Subtotal field in the table is pointless,
because Access is smart enough to determine that on its own by multiplying
the Qty field by the Unit Price field for you.

Letting Access do the math for you has advantages beyond just saving you
the time of doing the calculation yourself. For one thing, Access can do any
mathematical calculation, no matter how complex, in less time than you
take to blink your eye — and the calculations are always correct. No need
to worry about typing a wrong value into an Extended Price field, or for-
getting to change the field after you change the Qty or Unit Price fields.
Just let Access do all the math.

Doing Math in Queries
Access can do the math for you in queries, forms, reports, and macros. In
many cases you should do the math in a query, because that way any forms,
reports, or macros that use the query automatically have access to the calcu-
lated value. To do the math in a query, you create a calculated field within the

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 233

Doing Math in Queries234

query. Unlike a regular field in a query, a calculated field’s name does not match
any of the field names in the tables. In fact, its value doesn’t come directly
from any field in any table. The calculated field exists only in the query.

A calculated field starts out with a field name, followed by a colon, and then
an expression that defines the field’s contents, in this order:

fieldname:expression

where fieldname is any name you want (provided it doesn’t match the
name of a field in a table) and expression is a formula that tells the query
how to do the math.

Take a look at Figure 2-1, which shows a query in Design view. The first four
field names at the top of the Query by Example grid — Order ID, Product
Name, Qty, and Unit Price — are regular fields that get their values from
either the Order Details or Products table in the top pane of the Design View
window. The last field:

ExtPrice: [Qty] * [Unit Price]

is a calculated field. The field name is ExtPrice (short for “extended
price”). The expression is [Qty] * [Unit Price], which means “The Qty
(quantity field) times the Unit Price field.”

Figure 2-2 shows the same query as Figure 2-1, but in Datasheet view. Notice
two things about this Datasheet view:

✦ The ExtPrice field looks just like any other field.

✦ The value shown in the ExtPrice column is equal to the value of the
Qty field times the Unit Price field in each column.

Regular fields from tables Calculated field

Figure 2-1:
The ExtPrice
column is an
example of
a calculated
field in a
query.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 234

Book III
Chapter 2

Letting Queries
Do the M

ath
Doing Math in Queries 235

Even though the ExtPrice column in Datasheet view looks like a regular
field, it doesn’t behave exactly like a regular field. If you try to change the
contents of the ExtPrice field, Access won’t let you. The contents of
the ExtPrice field in this query always show the quantity times the unit
price, and cannot possibly show anything else, because it’s a calculated
field.

However, if you change the Qty or Unit Price field in any record, the
ExtPrice field instantly — and automatically — changes to show the cor-
rect result based on the change you make. If (for example) you change the
Qty field in the first record in Figure 2-1 from 1 to 2, the ExtPrice field for
that record then shows $200.00.

Follow these steps to create calculated fields in queries:

1. Create a normal select query, like any of those shown in Chapter 1 of
this minibook.

2. Add any fields you want the query to display to the Field row of the
QBE grid.

3. To add a calculated field, pick any empty column, type a unique, new
field name into the Field row, followed by a colon (:) and an expres-
sion that performs the calculation.

What you get will look a lot like the ExtPrice calculated field shown in
Figure 2-1.

Figure 2-2:
The query
from
Figure 2-1 in
Datasheet
view.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 235

Writing Expressions in Access236

Your query can contain any number of calculated fields — you’re not limited
to having just one or two. The big trick, of course, is knowing how to write
the expression. When writing expressions, the possibilities are almost end-
less. But some basic tools and rules exist to help you create any expression,
as we discuss next.

Writing Expressions in Access
An expression tells Access how to perform some calculation. An expression
can contain operators, field names, literal text, or all of those — and may
also use any of the Access built-in functions. Built-in functions can be mind-
boggling, but if you take them one step at a time, you’ll soon create them like
a pro.

Literal text, in Access jargon, means text that isn’t the name of some field
or other object. Whereas LastName may be the name of a field in a table,
Smith, Jones, and 123 Oak Tree Lane are all examples of literal text.
Always put your literal text in quotes (“Smith”). For a classic example of
how to use literals, flip ahead in this chapter to the “Using literal dates and
times in expressions” section.

Using operators in expressions
An operator is a character that operates on data. Some of the more com-
monly used operators are listed in Table 2-1. The operators are listed in
order of precedence, meaning the order in which Access does the calcula-
tions when an expression contains two or more operators.

Zooming in on expressions
The tiny space provided in the Field row of the
QBE grid doesn’t exactly make typing lengthy
expressions easy. In fact, the text may be so
small, you have difficulty seeing even when
typing a short expression.

To see what you’re typing, press Shift+F2 while
the cursor is in the calculated field — or right-
click in the calculated field and choose the
Zoom option from the shortcut menu. The Zoom
dialog box opens, showing what you already
typed into the field (if anything). You can use all

the standard Windows text-editing keys and
techniques to type your expression. For exam-
ple, press the End key to move the cursor
quickly to the end of the expression.

To make the text easier to read, click the Font
button. In the Font dialog box that opens,
choose a larger font size and then click OK in
the Font dialog box to accept the change. Type
your expression, and then click OK in the Zoom
dialog box to copy the expression into your cal-
culated field in the QBE grid.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 236

Book III
Chapter 2

Letting Queries
Do the M

ath
Writing Expressions in Access 237

Table 2-1 Operators in Order of Precedence
Operator Purpose Example

() Grouping (2+2)*5 returns 20

^ Exponentiation (raising a number 5^2 returns 25
to a specified power)

* / Multiplication, Division 5*6/3 returns 10

+ – Addition, Subtraction 6+6-2 returns 10

& String concatenation (connecting “Hello” & “There” returns
chunks of text together) HelloThere

The order or precedence that operators follow can be a real “gotcha” if
you’re not careful. Take a look at the following simple expression that
includes an addition operator (+) and a multiplication operator (*):

5+3*2

When you do the math, do you get 16, or do you get 11? If you do the addi-
tion first (5+3 = 8) and then the multiplication (2 * 8), you end up with 16.
But if you do the multiplication first (3*2 = 6) and then the addition (6 + 5),
you end up with 11. So which is the correct answer, 11 or 16?

Give up? 11 is the correct answer (and the one Access comes up with) because
the order-of-precedence rules state that multiplication and division are
always performed before addition or subtraction.

Multiplication and division are at the same order of precedence. If an expres-
sion involves both of those operations, they’re executed in left-to-right order.
In the following expression, the division takes place first, because it’s to the
left of the multiplication:

10/5*3

The result of the expression is 6, because 10 divided by 5 is 2, and 2 times 3
equals 6.

Addition and subtraction work the same way. If an expression includes both
addition and subtraction, the calculations take place in left-to-right order.

You can control the order of precedence using the parentheses. Access
always works from the innermost parentheses to the outermost. The follow-
ing expression is an example:

5^2+((5-1)*3)

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 237

Writing Expressions in Access238

When faced with this expression, Access goes inside the innermost paren-
theses first (5-1) and does that calculation. So the expression (for a brief
instant in time) becomes

5^2+(4*3)

Access next calculates the remaining pair of parentheses in the expression
(4*3). For a brief moment the expression becomes

5^2+12

Because no more parentheses are left, Access uses the regular order of prece-
dence to do the rest of the calculation. Exponentiation has a higher order of
precedence than addition, so for a brief instant the expression becomes

25+12

Access then does the final math and returns the result, 37.

If you’re a real math-head, you’ll appreciate that two more operators have
the same order of precedence as multiplication and division. One is the \
operator, which returns only the integer portion of a quotient, and the
other is MOD (for modulo), which returns only the remainder after division.
For example, while 16/3 (normal division) returns 5.3333, 16\3 returns 5,
and 16 MOD 3 returns 1.

Field names in expressions
If you’re thinking, “Big deal, I could have done those preceding calculations
on my $2.00 calculator,” that’s certainly true. But Access expressions aren’t
limited to numbers and operators. You can use field names in expressions to
perform math on data stored in fields. The sample query shown at the start
of this chapter uses the field names [Qty] * [Unit Price] to multiply
the value in the Unit Price field by the value in the Qty field.

Technically, you only need to enclose field names in square brackets when
the field name contains a blank space, as in [Unit Price]. But you can put
square brackets around any field name, just in case (so to speak). For the sake
of consistency — and to make the field names in expressions stand out —
we always put them in square brackets throughout this book.

The sample expression shown in the first query at the start of this chapter,
[Qty]*[Unit Price], is a prime example of using field names in expressions.
The expression, in English, simply means “the contents of the Qty field in
this record times the contents of the Unit Price field in this same record.”

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 238

Book III
Chapter 2

Letting Queries
Do the M

ath
Writing Expressions in Access 239

Using functions in expressions
Wait, there’s more. An Access expression can also contain any number of
functions. A function is sort of like an operator in that it performs some
calculation and then returns some value. But the way you use a function is
different. Every function includes a name followed by a pair of parentheses.
For example, the Date() function always returns the current date.

Many functions accept arguments, which are enclosed within the parenthe-
ses. To calculate the square root of a number, you use a Sqr() function.
The Sqr() function accepts one parameter — a number, the name of a field,
or an expression that contains a number. The Sqr() function returns the
square root of whatever value passes to it as an argument.

As an example, the following expression returns 9, because the square root
of 81 is 9 (because 9 times 9 is 81). In this example, we use a number as the
argument to the Sqr() function:

Sqr(81)

Note that in the example, we use 81 as the argument to the Sqr() function.
Another way to state that is to say we pass the number 81 to the argument.
In other words, the term pass in this context means to use as an argument in
a function.

The following Sqr() function uses an expression, 5*20, as its argument:

Sqr(5*20)

Because the expression, 5*20, is inside the parentheses, the multiplication
happens first. For a brief instant, the function contains Sqr(100). Then
Sqr(100) returns 10, because 10 is the square root of 100.

You can use field names in functions as well. Suppose you have a table that
contains a number field named bigNumber. The following Sqr() function
returns the square root of whatever value is stored in the bigNumber field:

Sqr([bigNumber])

Dozens of functions are built into Access. In fact, memorizing all of the func-
tions is nearly impossible. We recommend looking up functions as you need
them, using the Expression Builder as your guide. What’s the Expression
Builder? Read on and find out.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 239

Using the Expression Builder240

Using the Expression Builder
The Expression Builder is a tool to help you write meaningful expressions
using any combination of operators, field names, and functions. To use
the Expression Builder while creating a calculated field in a query, do the
following:

1. If you haven’t saved the current query yet, do so now to name it
(press Ctrl+S, type in a name for your query in the Save As dialog box,
and click OK).

2. Type a new field name, followed by a colon (:) in the Field row of an
empty column in the QBE grid.

The Query by Example grid, also known as the QBE grid, is in the bottom
pane of the Design View window. For more on the QBE grid (and its lovely
home, the Design View window), see Chapter 1 of this minibook.

3. Right-click the empty space to the right of the colon you just typed and
choose the Build option from the shortcut menu or click the Build
button on the Design tab on the Ribbon.

The Expression Builder opens, looking like Figure 2-3. Any text you
already typed into the QBE grid is already in the Expression Builder.

Within the Expression Builder, the large white area at the top is where you
compose your expression, as shown in Figure 2-4. You can type and edit in
that large area using the keyboard and all the standard Windows editing
techniques. Or use the buttons and folders below the white area to build an
expression without typing.

Figure 2-3:
The
Expression
Builder.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 240

Book III
Chapter 2

Letting Queries
Do the M

ath
Using the Expression Builder 241

Not everything in the Expression Builder is geared toward creating expres-
sions for queries. Some features of the Expression Builder are better suited
to creating expressions in forms and reports. When you’re working with a
query, the main things you want to focus on are the following:

✦ Operator buttons: Click any of these buttons to insert an operator into
your expression.

✦ Query name: Shows the name of the query that’s currently open.
When you click your query name, fields from that query appear in the
center column. Clicking a field name in that center column adds the
name to the expression.

If you don’t save the query before opening the Expression Builder,
clicking the Query Name folder in the Expression Builder won’t display
anything!

✦ Built-In Functions folder: If you double-click the + sign next to the
Functions folder, a couple of options appear. Click the Built-In Functions
folder to see categories and names of available functions in the center
column. Click a category name in the middle column to see in the right
column, names of functions within that category.

Operator buttons

Query name folder

Expression

Built-In functions
(selected)

Function categories
(math selected)

Math functions

Figure 2-4:
Main options
for creating
expressions
in a query’s
calculated
fields.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 241

Using the Expression Builder242

Whatever you insert into your expression is inserted at the blinking cursor’s
position or at the end of whatever text is currently in the expression if no
blinking cursor is visible. If you need to move the cursor before inserting
something into an expression, just click at the spot where you want to posi-
tion the cursor. You can also use the ←, →, Home, or End keys to position
the cursor. Use the Backspace and Delete (Del) keys to delete text in the
expression. To undo your most recent change to an expression, click the
Undo button in the Expression Builder or press Ctrl+Z.

Getting help with functions
Just seeing the name of a built-in function in the third column of the Expression
Builder doesn’t tell you much. You don’t know what the function does or
how you use it. But you can get instant information by using the Help button.
Follow these steps to access a Help window:

1. In the left column of the Expression Builder, if the Functions folder
has a + sign next to it, first click that + sign to expand the list.

2. Click the Built-In Functions folder in the first column.

The category names appear in the center column.

3. Click a category name in the middle column to see functions within
that category listed in the third column (or click <All> in the middle
column to see all functions in the third column).

The functions for that category appear in the third column.

4. In the third column, click the name of the function you want to find
out more about.

5. Click the Help button on the top-right side of the Expression Builder.

The Help window for that function opens. If you don’t see specific help
for the function, type the function name into the Access Help search
box. Functions are listed by type in the Help system, so if you need to
find a function in the Help system, you’ll be able to find it quicker if you
know if it’s a Financial function, for example.

For instance, select the Financial category of functions in the center column,
click the PV function in the third column, and then click the Help button.
The Help page that opens not only describes what the PV function does, it
also describes the syntax required for using the function. The syntax of a
function describes what information you need to pass (provide) to the func-
tion in order for the function to do its calculation and return a result.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 242

Book III
Chapter 2

Letting Queries
Do the M

ath
Using the Expression Builder 243

The syntax for a function usually looks something like the following:

functionName(arg1, arg2, [arg3])

where functionName is the name of the function, and arg1, arg2, and
arg3 represent arguments the function accepts. The number of arguments
a function accepts varies. Some functions take no arguments, others take
many. If a function accepts two or more arguments, they must be separated
by a comma.

Any argument name in square brackets is optional, meaning you can omit
the entire argument if you wish.

Whether you use an optional argument or not, never type the square brack-
ets into the function.

A function name is always followed by parentheses — even if the function
accepts no arguments. Now(), Sqr(81), and PV(apr, TotPmts,
Income) are all examples of valid function syntax. Note as well that
when typing an argument, you can use a literal value (like the name
“Smith” or the number 10), a field name, or an expression as an argument.
The following three expressions all pass literal values to their functions:

Sqr(100)
PV(.035,120,250)
UCase(“howdy”)

The next three expressions all pass data from fields to the function (provided
that Hypot, Apr, Months, Amount, and Company are the names of fields in the
current query):

Sqr([Hypot])
PV([Apr],[Months],[Amount])
UCase([Company])

In the next examples, we use expressions as arguments:

Sqr(227 * [Hypot])
PV([Apr]/12,[Months]*12,-1*[Amount])
UCase([First Name] & “ “ & [Last Name])

We know these examples look weird, but we do have a reason for the mad-
ness. The ability to pass literal data, field names, and/or expressions to func-
tions gives you a lot of flexibility.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 243

Going Beyond Basic Arithmetic244

About text in < and > brackets
When you use the buttons in the lower half of the Expression Builder to
insert text into your expression, that text often includes placeholders —
text in angle brackets (< >). You may see placeholders, such as <expr>,
<interval>, <npers>, or something equally bizarre in the Expression
Builder. Each of these brackety things is a placeholder for an argument that
you need to type in.

If a placeholder represents an optional argument and you don’t plan to use
that argument, then you can just delete the placeholder. But if the placeholder
represents a required argument, then you need to replace the placeholder
with valid data. Using the Help feature often when working with functions is
very important. We doubt that anybody has ever managed to memorize all
the functions because of the sheer number, all supporting so many different
arguments.

Nesting functions
You can nest functions, meaning you can put a function inside another
function. Because Access always works from the innermost parentheses
outward, the inside function is always calculated first. For example, the
Date() function always returns the current date. (It requires no arguments.)
The WeekDay() function accepts any date as an argument, meaning its
syntax looks like the following:

WeekDay(date)

Because the Date() function always returns a date, you can use it as the
argument to the WeekDay() function. The expression turns out to be

WeekDay(Date())

A number between 1 and 7 returns, indicating which day of the week today
is. If the current date is the 23rd, for example, and that day is a Tuesday, the
WeekDay() function returns the number 3. (Day 1 is Sunday, 2 is Monday,
and so forth).

Going Beyond Basic Arithmetic
Near the start of this chapter, we talked about how you can use the +, –, *,
and / operators in expressions to perform simple arithmetic. As you know,
not all math is quite that simple. Some calculations require more than addi-
tion, subtraction, multiplication, and division.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 244

Book III
Chapter 2

Letting Queries
Do the M

ath
Going Beyond Basic Arithmetic 245

Access offers many mathematical and financial functions to help with more
complex math. These functions all operate on numbers. For example, the math
functions include Cos() (cosine), Tan() (tangent), and Atn() (arctangent),
in case you need to do a little trigonometry in your queries. The financial
functions include things such as IRR() (internal rate of return), Fv()
(future value), Ddb() (double-declining balance depreciation). You’re unlikely
to need financial functions unless your work specifically requires those sorts
of calculations. Rather than list all of the functions that allow you to do com-
plex math, Table 2-2 lists a few examples to give you a sense of how they work.

Table 2-2 Examples of Built-In Math and Financial Functions
Function and Syntax Returns Example

Abs(number) Absolute value (negative numbers Abs(-1) returns 1
convert to positive numbers).

Int(number) Integer portion of a number. Int(99.9) returns 99

Round(number The numerical value number Round(1.56789,2)
[,decimals]) rounded to a specified number of returns 1.57

decimal places (decimals).

Pmt(rate, Payment on a loan or annuity. Pmt(.058/12, 30*12,
nper, pv[, -50000) returns
fv[, type]]) 293.3765 (payment on a

$50,000 30-year loan at 5.8%)

If you need help with any function in the Expression Builder, remember you
can find all the gory details you need to make the function work for you in
the Help system.

What’s with the 12s in the expression?
In case you’re wondering why the sample
expression contains things like /12, *12, and
such, it all has to do with the way the Pmt()
function works. The APR value is the annual
percentage rate, and the term of the loan is
expressed in years. When you want the Pmt()
function to return a monthly payment, you need
to divide the annual percentage rate by 12
([APR]/12). You also need to multiply the
number of years by 12 to get the number of
monthly payments ([Years]*12).

Normally, Pmt() returns a negative number as
the result, because each payment is a debit
(expense). By placing a minus sign in front
of the LoanAmount field name (that is,
–[LoanAmount]), we convert that to a neg-
ative number (a debit), which in turn makes the
calculated monthly payment into a credit (a
positive number).

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 245

Going Beyond Basic Arithmetic246

Formatting calculated numbers in queries
When you create a table and define a field as the Number data type, you can
choose a format, such as Currency, for displaying that number. In a query,
you don’t predefine a field’s data type. The number that appears as the result
of a calculation is often just displayed as a General number — no dollar sign,
no fixed number of decimal places.

Figure 2-5 shows a query based on a hypothetical table named Loan Scenarios.
Within the Loan Scenarios table, the APR (annual percentage rate) is a
Number field with its Format property set to Percent. The LoanAmount
field is a Number field with its Format property set to Currency. Those for-
mats carry over in the results of the query (the query’s Datasheet view).
But the calculated MonthlyPayment field’s result displays as a General
number with no currency sign, no commas, and a lot of numbers to the
right of the decimal point, as you see in the lower half of Figure 2-5.

You can format a calculated field so the result appears in Currency format in
a couple ways. If you intend to build any forms or reports based on this
query, you can just save the query and forget about formatting the field.
Later, when designing a form or report based on the query, you just create
a control for the calculated field as you do any other field in the query.
Then set that control’s Format property to the Currency format in the form
or report. The data looks the way you want in the form or report, and you
don’t have to mess around with the query at all.

Percent format in table

Currency format in table

Calculated field

Figure 2-5:
Calculated
fields often
display in
General
number
format.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 246

Book III
Chapter 2

Letting Queries
Do the M

ath
Going Beyond Basic Arithmetic 247

See Book IV, Chapter 1 for the goods on creating forms and reports. See the
section on setting control properties in Book IV, Chapter 2 for the specifics
on formatting controls.

Optionally, if you have no intention of creating any forms or reports based
on the query, then you can use one of the conversion functions to format the
data. The conversion functions are listed in Table 2-3. They’re all accessible
via the Conversion category of the Built-In Functions folder in the Expression
Builder. As usual, you can click a conversion function name in the third
column of the Expression Builder, and then click the Help button for more
information on the function.

Table 2-3 Main Built-In Conversion Functions
Function Acceptable Expression Type Return Type

CBool(expression) String or number Boolean

CByte(expression) Number from 0 to 255 Byte

CCur(expression) Number Currency

CDate(expression) Date/Time Date

CDbl(expression) Number Double

CDec(expression) Number Decimal

CInt(expression) Whole number from -32,768 to 32,767 Integer

CLng(expression) Whole Number Long

CSng(expression) Number Single

CStr(expression) Any String

CVar(expression) Any Variant

Think of the starting letter C in each conversion function’s name as standing
for “Convert to.” For example, CCur means “Convert to Currency.”

Be careful when you use a conversion function — you’re defining the data
type, as well as the appearance, of the calculated field. Setting the format of
a calculated field in a form or report, rather than directly in the query, is
often easier.

The big trick is to enclose the entire expression (everything to the right of
the field name and colon) within the conversion function’s parentheses in
the QBE grid. For example, to display the MonthlyPayment field from the
sample Loan Scenarios query as Currency data, the entire expression must
be contained within the CCur() parentheses as the following expression:

MonthlyPayment: CCur(Pmt([APR]/12,[Years]*12,-[LoanAmount]))

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 247

Going Beyond Basic Arithmetic248

Figure 2-6 shows the results of using CCur() in the MonthlyPayment calcu-
lated control to display the results of the expression in Currency format.

Avoiding problems with null values
Sometimes a field in a record may be empty because nobody ever typed any
information into that field. The official name used to describe the value of an
empty field is null. If a field contains nothing, we say it contains a null value.

Mathematical calculations don’t automatically treat a null value as being the
same thing as 0 (zero). If any field that’s used in a calculated field contains a
null, then the expression itself also returns null. In Figure 2-7, the SubTotal
calculated field multiplies the contents of the HowMany field by the Price
field. In the query results, shown at the bottom of Figure 2-7, any field that
has a null in the HowMany or Price field ends up with a null value in the
SubTotal field as well.

Use the Nz() function to convert a null to a zero. What Nz() really means
is “if this field contains a null, then make that into a zero, and do the math
using that zero.” To use the Nz() function, put the entire field name within
the function’s parentheses. In Figure 2-8, the modified calculated field uses
the following expression:

SubTotal: Nz([HowMany]) * Nz([Price])

Calculated field

Monthly payment in datasheet view

Figure 2-6:
Monthly
Payment
calculations
shown in
Currency
format.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 248

Book III
Chapter 2

Letting Queries
Do the M

ath
Going Beyond Basic Arithmetic 249

In the Datasheet view of that same query, shown at the bottom of Figure 2-8,
records that contain a null HowMany or Price field yield a zero result, rather
than null, in the SubTotal field. That’s because the modified calculated con-
trol tells Access to use a zero, rather than nothing (a null) to do the math
when a field is null.

Modified calculation field

Calculated result

Figure 2-8:
Nz() function
in the calcu-
lated control
forces
Access to
use zeroes,
rather than
nulls, to
calculate a
result.

Calculated field

Null calculated result

Figure 2-7:
Null fields
in a table
cause
calculations
on those
fields to be
null too.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 249

Date and Time Calculations250

If you want the third column in Figure 2-8 to show results in Currency format
($100.00, $0.00, $0.00, and so forth), enclose the entire expression in a CCur()
function, such as SubTotal: CCur(Nz([HowMany]) * Nz([Price])).

You can also use the IsNull() function to test for a null field. (See the sec-
tion “Testing for empty fields,” later in this chapter, for more information.)

Date and Time Calculations
The built-in Date and Time functions operate on data stored in Date/Time
fields. You can perform some basic calculations, called date arithmetic cal-
culations, on dates using simple + (addition) and – (subtraction) operators.
Date arithmetic calculations follow a couple of simple rules:

✦ If you subtract two dates, you get a number indicating the number of
days between those dates. For example, 1/15/2007 – 1/1/2007
returns 14, because there are 14 days between January 15 and January 1.

✦ If you add a number to, or subtract a number from, a date, you get a
new date, rather than a number. That new date is the date that’s n
number of days away from the original date (where n stands for the
number of days you add or subtract). For example, 1/1/2007 + 30
returns 1/31/2007 because January 31 is 30 days after January 1.
The result of 12/31/2000–999 is 4/7/1998, because April 7, 1998 is
999 days before 12/31/2000.

Figure 2-9 shows a sample query that uses some basic arithmetic in query
calculated fields. In the underlying table, the StartDate and EndDate fields
are each defined as the Date/Time data type (with the Short Date format).
The first calculated field is the following expression:

DaysBetween: [EndDate] - [StartDate]

and calculates and displays the number of days between the StartDate
value and the EndDate value in each record. The ExtendedDate calculated
field

ExtendedDate: [EndDate] + 15

adds 15 days to whatever date is stored in the EndDate field. The lower half
of Figure 2-9 shows the query results in Datasheet view. The DaysBetween
column shows the number of days between the StartDate value and the
EndDate value. The ExtendedDate column shows the date 15 days after
the EndDate value, as specified by the expression in the calculated fields.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 250

Book III
Chapter 2

Letting Queries
Do the M

ath
Date and Time Calculations 251

Using literal dates and times in expressions
When writing expressions that include dates, you can use a literal date, as
opposed to the name of a field that contains a Date/Time value. A literal date
is one that isn’t stored in some field — it’s just a specific date you want to
use in the expression. But you can’t just type in the date using an everyday
format like 12/31/2005, because Access interprets that as “twelve divided by
31, divided by 2005.” And you can’t use quotation marks, because those are
used to define literal text. Instead, you have to use the awkward # character
to delimit (surround) a literal date.

For example, #01/01/2005# is literally the date January 1, 2005. The expres-
sion #01/01/2005# + 14 returns 1/15/2005, the date that’s 14 days after
January 1, 2005. The expression #3/31/2005# - #1/1/2005# returns 89,
because March 31, 2005 is 89 days after January 1, 2005.

To express a literal time, use colons (:) to separate the hours, minutes,
and seconds between the # delimiters. You can also tack on a blank space
followed by AM or PM. For example, #7:30:00# is literally 7:30 AM, as is
#7:30:00 AM#. The literal time #7:30:00 PM# refers to 7:30 at night. You
can use military time as well: The literal time #19:30:00# is also 7:30 PM.

Design view

Datasheet view

Figure 2-9:
Sample
calculated
fields with
Date func-
tions in a
query in
Design
view and
Datasheet
view.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 251

Date and Time Calculations252

Using the Date/Time functions
You’re not limited to basic date arithmetic in Access. Quite a few built-in
Date/Time functions exist in Access that you can use to manipulate dates
and times in other ways. As with all built-in functions, you can find the
Date/Time functions in the Expression Builder. Again, if the Functions folder
in the left column has a + sign next to it, click that + sign to expand the list.
Then click the Built-In Functions subfolder in the left column, and the Date/
Time category in the center column. Then click any function’s name from the
right column and click the Help button for details on the function.

We spare you the details of every available Date/Time function. Chances are,
you may never need to use the more obscure functions. Table 2-4 lists some
of the more commonly used Date/Time functions and provides examples of
their use.

Table 2-4 Examples of Access Date/Time Functions
Function and Syntax Returns Example

Date() The current date. Returns the current date,
according to your computer’s
clock.

Time() The current time. Returns the current time,
according to your computer’s
clock.

Now() The current date and time. Returns the current date and
time, according to your com-
puter’s clock.

CDate(expression) Converts expression, CDate(“Mar 31,
which can be any string that 2004) returns
looks like a date, to an 3/31/2004.
actual Date/Time value.

DateAdd(interval, The date that is number DateAdd(“m”,14,#1/
number, date) of days, weeks, months 1/2004#) returns 3/1/

(interval) from date. 2005, the date that’s 14
months after January 1, 2004.

DateDiff(interval, The number of hours, days, DateDiff(“w”,#1/1/
date1, date2 weeks, (interval) 2004#,#1/1/2005#)
[,firstdayofweek between two dates. returns 52 because there
[,firstweekofyear]]) are 52 weeks between the

two dates.

Day(date) The day of the month Day(#1/15/2004#)
expressed as a number returns 15 because
between 1 and 31. 1/15/2004 falls on the

15th day of the month.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 252

Book III
Chapter 2

Letting Queries
Do the M

ath
Date and Time Calculations 253

Function and Syntax Returns Example

Hour(time) The hour of a time. Hour(Now()) returns a
number representing the
current hour of the day.

MonthName The month of a date, spelled MonthName(12.False)
(monthNumber out (if abbreviate returns December,
[,abbreviate]) is false) or abbreviated MonthName(12,True)

(ifabbreviate is true). returns Dec (because
December is the 12th month
of the year).

As you can see in Table 2-4, the DateAdd() and DateDiff() functions
allow you to specify an interval argument. That argument defines the time
interval used for the calculation.

For example, if you just use plain date arithmetic to subtract two dates, the
difference between the dates automatically displays as the number of days
between those dates. Using the DateAdd() or DateDiff() function, you
can change that so the difference between the dates is expressed in seconds,
minutes, hours, weeks, months, or years — depending on which provides
the accuracy you need.

To specify a time interval argument in a DateAdd() or DateDiff() function,
you use one of the settings (enclosed in quotation marks) listed in the left
column of Table 2-5.

Table 2-5 Settings for the Interval Argument in Date/Time
Functions that Require an Interval

Setting Description

“d” Day

“h” Hour

“m” Month

“n” Minute

“q” Quarter

“s” Second

“w” Weekday

“ww” Week

“y” Day of year

“yyyy” Year

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 253

Manipulating Text with Expressions254

Take a look at an example using an interval in a DateDiff() function. Without
using the DateDiff() function at all, the expression #12/25/2007# -
#12/24/2007# returns 1, because there is one day between those dates,
and “day” is the default interval when subtracting dates. On the other hand,
the expression DateDiff(“h”,#12/24/2007#,#12/25/2007#) returns
24, because the “h” interval specifies hours, and there are 24 hours between
those two dates.

Manipulating Text with Expressions
You can use the contents of Text fields (also called strings, short for “a
string of characters”) in expressions as well. Only adding, subtracting,
multiplying, or dividing with strings doesn’t make sense. After all Smith
times Jones or Smith divided by Jones makes no sense at all.
However, you can use the ampersand (&) operator to concatenate (join
together) strings.

For example, the expression [First Name] & [Last Name] joins
together the contents of the Last Name and First Name fields. If the
Last Name field contains Pines, and the First Name field contains
Tori, then the expression [First Name] & [Last Name] returns
ToriPines.

Adding spaces to text expressions
“But wait,” you say, “shouldn’t that be Tori Pines with a space in between?”
To you and me it should be. But that’s not what the expression says. The
expression says “stick the First Name value and Last Name value together.”
The expression doesn’t say “and put a space between them.” Computers are
literal-minded; you can easily fix the problem by using literal text.

Literal text is any text that doesn’t refer to a field name or function or anything
else that has special meaning to Access. To use literal text in a calculated
field expression, enclose the text in quotation marks. A blank space is a
character — a chunk of literal text. So watch what happens if we rewrite
the previous example expression like this:

[First Name] & “ “ & [Last Name]

The result is Tori Pines with a space in between. The expression says
“the contents of the First Name field, followed by a blank space, followed
by the contents of the Last Name field.”

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 254

Book III
Chapter 2

Letting Queries
Do the M

ath
Manipulating Text with Expressions 255

Two quotation marks right next to each other, with no blank space in
between, is a zero-length string, which is basically nothing at all. So while
[First Name] & “ “ & [Last Name] returns something like Tori
Pines, the expression [First Name] & “” & [Last Name] returns
something like ToriPines (the first and last names with nothing in between).

Suppose a table contains City, State, and ZIP fields. The following expres-
sion displays the city name followed by a comma and a blank space, followed
by the state name, followed by two blank spaces, followed by the ZIP code:

[City] & “, “ & [State] & “ “ & [ZIP]

An example of the preceding expression may look something like this:

Los Angeles, CA 91234

Using the Access Text functions
Access provides several functions for working with text. You find them in the
Text category in the middle column of the Expression Builder. We focus on
some of the more commonly used functions and show examples of their
usage. For information on more Text functions and additional details, use the
Help button in the Expression Builder. Table 2-6 lists the more common Text
functions.

Table 2-6 Examples of Built-in Text Functions
Function and Syntax Returns Example

LCase(string) string converted to LCase(“AbCdEfG”)
lowercase returns abcdefg

UCase(string) string converted to UCase(“AbCdEfG”)
uppercase returns ABCDEFG

Left(string,n) Leftmost n characters of Left(“abcdefg”,3)
string returns abc

Right(string,n) Rightmost n characters of Right(“abcdefg”,2)
string returns fg

Mid(string, Middle length characters Mid(“abcmnyz”,4,2)
start[, length]) of string starting at start returns mn

Len(string) Length of string Len(“Howdy”) returns 5

Trim(string) stringwith any leading and Trim(“ abc “)
trailing spaces trimmed off returns abc

InStr([start,] Position of string2 in InStr(“abcxdef”,”x”)
string1, string2) string1 starting at start returns 4 (because x is the

fourth character in string1)

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 255

Writing Decision-Making Expressions256

Writing Decision-Making Expressions
One of the most useful functions in Access is the Immediate If function,
iif(), which accepts three arguments, as the following shows:

iif(conditionalExpression, doThis, elseDoThis)

where:

✦ conditionalExpression is an expression that results in a True or
False value.

✦ doThis is what the function returns if the conditionalExpression
proves True.

✦ elseDoThis is what the function returns if the
conditionalExpression proves False.

The value of the iif() function lies in its ability to make a decision about
what to return based on the current situation. For example, suppose your
business requires charging 7.25% sales tax to New York residents and no
sales tax to everyone else. The State field in the underlying table contains
the state to which the order is shipped. The following expression says,
“If the State field contains NY, then return 0.7.25%, otherwise return
0 (zero)”:

iif([State]=”NY”, 0.0725, 0)

Note, in the preceding expression, that 0.0725 is just a way of expressing
7.25% as a regular decimal number (remove the % sign and shift the decimal
point two places to the left).

Another example of an iif() function is where a Paid field in a table is a
Yes/No field. A Yes/No field can only contain either a True or False value.
The field name alone is a sufficient conditional expression for an iif() func-
tion, as in the following sample expression:

iif([Paid], “Receipt”, “Invoice”)

In English, the expression says, “If the Paid field contains True (or Yes),
return the word Receipt. Otherwise (if the Paid field contains False)
return the word Invoice.”

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 256

Book III
Chapter 2

Letting Queries
Do the M

ath
Writing Decision-Making Expressions 257

Making comparisons in iif()
Access offers several comparison operators that you can use to define
expressions that result in the True or False values. Buttons for these
operators appear alongside the arithmetic operators in the Expression
Builder. Table 2-7 describes the Access comparison operators.

Table 2-7 Built-in Comparison Operators
Comparison Operator Name Meaning

= Equals is equal to

> Greater than is greater than

>= Greater than or equal to is greater than or equal to

< Less than is less than

<= Less than or equal to is less than or equal to

<> Not equal to is not equal to

Between Between is within the range of

An example of an iif() function — using the >= comparison operator to make
a decision based on the contents of a field named Qty — is the following:

iif([Qty]>=10, “Discount”, “No discount”)

In English, the expression says, “If the Qty field contains a value greater than
or equal to 10, then return Discount. Otherwise return No Discount.”

Combining comparisons
You can use the Access built-in logical operators to combine several compar-
isons into a single expression that results in a True or False value. The log-
ical operators are listed in Table 2-8.

Table 2-8 Built-in Logical Operators
Logical Operator Meaning

And Both conditions are True.

Or One, or both, conditions are True.

Xor Exclusive “or” — one condition, but not both conditions, are True.

Not Not True.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 257

Writing Decision-Making Expressions258

As an example, take a look at the following iif() function which uses the
And operator:

iif([Last Name]=”Pines” And [First Name]=”Tori”,”No Charge”,”Charge”)

The conditional expression, [Last Name]=”Pines” And [First
Name]=”Tori” says, “If the Last Name field contains Pines and the First
Name field contains Tori.” So one condition is that the Last Name field con-
tain Pines. The other condition is that the First Name field contain Tori.
If both those conditions are True, the expression returns No Charge. If either
one, or both, of those conditions is False, then the expression returns Charge.

Another example using the Or operator is the following expression:

iif([State]=”NY” Or [State]=”NJ”, “Tax”, “No Tax”)

In the preceding example, the first condition is that the State field contain
NY. The second condition is that the State field contain NJ. The Or opera-
tor says that either one (or both) of the conditions must be met for the
whole conditional expression to return True. If the State field contains NY
or NJ, the expression returns Tax. If the State field contains anything other
than NY or NJ, then the expression returns No Tax.

To tax or not to tax?
A practical example of using an iif() function in calculated field expres-
sions is whether to tax. Suppose you have a query like the one in Figure 2-10.
Your business requires that you charge 7.25% tax to all orders shipped within
the state of New York. You charge no sales tax on orders shipped outside of
New York. The StateProv field in the query contains the state to which the
order is shipped.

Obviously, you can’t see all the expressions in the query — the QBE grid
isn’t wide enough to show all that. The following is a quick summary of what
each field in the query represents:

✦ StateProv: A regular Text field from the underlying Address Book
table, representing the state to which the order is being shipped.

✦ Qty: A regular Number field from the Order Details table, representing
the quantity of items ordered.

✦ Unit Price: A regular Currency field from the Order Details table, rep-
resenting the unit price of the item ordered.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 258

Book III
Chapter 2

Letting Queries
Do the M

ath
Writing Decision-Making Expressions 259

✦ ExtPrice: A calculated field, ExtPrice:[Qty]*[Unit Price], that
multiplies the contents of the Qty field by the contents of the Unit
Price field.

✦ Sales Tax Rate: A calculated field, SalesTaxRate:iif
([StateProv]=”NY”,0.0725,0), meaning “If the StateProv field
contains NY, then put 0.0725 into this field. Otherwise put 0 (zero)
into this field.”

✦ SalesTaxAmt: A calculated field, SalesTaxAmt:CCur
([SalesTaxRate]*[ExtPrice]), that multiplies the extended price
by the sales tax rate. The CCur() function makes the result appear in
Currency format, rather than as a General number.

✦ TotalWithTax: A calculated field, TotalWithTax: [ExtPrice] +
[SalesTaxAmt], that adds the extended price to the sales tax
amount.

Figure 2-11 shows the results of the query. Records that have NY in the
StateProv field show a sales tax rate of 7.25% (0.0725). Records that
don’t have NY in the StateProv field show 0 (zero) as the sales tax rate.
The SalesTaxAmt and TotalWithTax fields show the results of adding
sales tax. (Because the SalesTaxRate value is zero outside of NY, those
records end up getting no sales tax added to them.)

Figure 2-10:
Query
containing
regular and
calculated
fields
(calculated
fields are
partially
hidden).

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 259

Testing for Empty Fields260

Testing for Empty Fields
Sometimes having an expression know if a field is empty, or null, is useful.
Access includes an IsNull() function that you can use to test if a field is
empty. The syntax of the function is pretty straightforward:

IsNull[fieldname])

where fieldname is the name of the field you want to test.

If the specified field is empty, IsNull() returns a True value. If the specified
field isn’t empty, then IsNull() returns a False value. The next section
provides an example of using IsNull() in an expression.

To treat a null field as a zero in mathematical expressions, use the Nz()
function described in the section, “Avoiding problems with null values,”
earlier in this chapter.

Sort by name or company
A fairly common problem comes up in tables that store names and addresses.
Some records in such a table may list a person’s name, but no company
name. Some records may contain a company name, but no person name.
If you sort records in such a table by the Last Name, First Name, and
Company fields, as in Figure 2-12, the records with empty Last Name and
First Name fields are listed first.

Figure 2-11:
Results
(Datasheet
view) of
the query
shown in
Figure 2-10.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 260

Book III
Chapter 2

Letting Queries
Do the M

ath
Testing for Empty Fields 261

Suppose you would prefer to see names listed in alphabetical order by
person name — or by company name if there is no person name. In that
case, create a calculated field in Design view. You can name this field
anything you want, but in Figure 2-13, we named the field CustLookup.
The expression for that field reads:

CustLookup: iif(IsNull([Last Name]),[Company],[Last Name] & “, “ & [First Name])

The iif() expression says, “If the Last Name field is null, put the company
name in this field. Otherwise, put the person’s last name followed by a
comma, space, and the person’s first name (for example, Pines, Tori) into
this field.” Setting the Sort row for that calculated field to Ascending order
puts records into alphabetical order by last name or company (if there is no
last name), as shown in Figure 2-13.

Sort by Last Name, First Name, Company fields

In query results (Datasheet view), records with null
Last Name fields are listed first.

Figure 2-12:
Sorting by
name and
company
fields puts
empty name
fields at
the top.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 261

Creating Flexible Parameter Queries262

Creating Flexible Parameter Queries
A parameter query is a query intentionally missing a piece of needed informa-
tion, so that you can enter the information on the fly when you open the
query in Datasheet view. For example, suppose you create a query that
shows orders from all records in a table (or tables) from all records in your
database. You also like to have queries that show orders from each month.

Rather than create 12 different queries (one for each month), you can create
a parameter query that asks for the month number. Then, as soon as you
enter a month number, the query shows orders for just the month you speci-
fied. In other words, the month number that you’re interested in becomes a
parameter that you define and pass (provide) to the query just before the
query opens.

To create a parameter query, start by creating just a normal select query
(as detailed in the previous chapter). You can add tables and field names
just as you would any other query. Then follow these steps to make your
query into a parameter query:

Calculated field

Alphabetized by name or company

Figure 2-13:
Sorting by
calculated
field sorts
by name, or
company if
last name
is blank.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 262

Book III
Chapter 2

Letting Queries
Do the M

ath
Creating Flexible Parameter Queries 263

1. In the Design View window, click Parameters in the Show/Hide group
of the Design tab on the Ribbon.

The Query Parameters dialog box appears.

2. Enter a parameter name and its Data Type in the appropriate columns.

The parameter name can be any name you like, so long as it doesn’t match
the name of a regular field or calculated field already included in the table.
The data type matches the type of data that the parameter will ask for,
such as Text for text, Currency for a dollar value, or Date/Time for a date or
time. You can repeat this step to create as many parameters as you wish.

3. Click OK to close the Query Parameters dialog box.

In the QBE grid, you can then treat the parameter name as you do a value
from a field. In fact, you enclose the parameter’s name in square brackets,
just as you would a field name.

In Figure 2-14, we created a Month Number parameter that contains an inte-
ger. In the Criteria row for the Order Date field in the QBE grid, we used
the parameter name in the following expression, as shown in Figure 2-14. The
criterion tells the query to show only those records where the month of the
order date is equal to whatever we type in as the Month Number parameter.

Month([Order Date]) = [Month Number]

Month number parameter defined

Month number used in criteria

Figure 2-14:
Defining and
using a
query
parameter.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 263

Totals, Subtotals, Averages, and Such264

After defining your parameter and using it in the QBE grid, you can save the
query as you do any other query. The parameter doesn’t really come into
play until you open the query in Datasheet view. When you do, an Enter
Parameter Value dialog box, like the one shown near the top of Figure 2-15,
opens on-screen. You type in a value for the parameter and click OK. For the
sake of our example, say you type 9 to view September orders only.

When you click the OK button in the Enter Parameter Value dialog box, the
query opens in Datasheet view, using the parameter value you specified.
In this example, the query shows only records that have 9 as the month
number in the Order Date field, as shown in the bottom half of Figure 2-15.

You will also see the Enter Parameter Value dialog box if you have a typo or
another error where Access doesn’t recognize a field name in your query
design.

Totals, Subtotals, Averages, and Such
So far, all the calculations in our queries operate on individual fields within
records. Suppose you want a different sort of total — such as the total dollar
amount of all sales, in all records? You can perform such calculations in two
ways. The best — and perhaps easiest — way is to use a report rather than a
query. Reports provide more flexibility, and allow you to display the informa-
tion in more meaningful ways than queries do.

Before a query opens, you provide a parameter value.

The opened query shows orders only for September (month 9)

Figure 2-15:
The result of
opening a
parameter
query and
specifying
9 as the
Month
Number.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 264

Book III
Chapter 2

Letting Queries
Do the M

ath
Totals, Subtotals, Averages, and Such 265

For the goods on creating reports with totals and subtotals, see Book V,
Chapter 1.

The other approach is to use a totals query. A totals query doesn’t give you
the flexibility or pretty output that a report does. But a totals query is useful
when you just want to perform some quick calculations on the fly without
formatting a fancy report.

If you just want to do some quick subtotals, totals, or other multirecord
calculations — and don’t really care how the data looks on-screen or in
print — you can use a query to do the math. As to the other multirecord
calculations we just mentioned, Table 2-9 lists all the calculations you can
do in a totals query.

Table 2-9 Operations Available in a Totals Query
Choice Returns

Avg Average of records in field

Count How many records

First Value stored in first record

Group by Nothing — this is used only for grouping

Last Value stored in last record

Max Highest value in all records

Min Lowest value in all records

StDev Standard deviation

Sum Sum of records in field

Var Variance

To create a query that performs calculations on multiple records, start with
a normal select query that contains the table (or tables) on which you want
to perform calculations. Then do either one of the following:

✦ Click the Totals button in the Show/Hide group of the Design tab on the
Ribbon.

✦ Right-click the query grid and choose Totals from the shortcut menu.

The only change you see is a new row, titled Total, in the QBE grid. The next
step is to drag any field name on which you want to perform math down to
the Field row of the grid. Optionally, you can create a calculated field and
then perform a calculation on that value.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 265

Totals, Subtotals, Averages, and Such266

After the field is in place, click the Total row, and then choose an option from
the drop-down list, as shown in Figure 2-16. Repeat this process for each
field on which you want to perform a calculation.

When you switch to Datasheet view to see the results of the query, don’t be
shocked if your large table, which consists of many records, is suddenly
reduced to many fewer records. No, you didn’t make an error — Totals
queries work this way. The query shown in Figure 2-17 results in a datasheet
that has one record for each product sold. The SumOfQty field is created
automatically by the Totals query (using the Qty field that we included in
the query.) The ExtPrice field lists the net income for each product.

To see a single value, the total income for all products, delete the
ProductID field from the query design.

Calculating subtotals in a query
To calculate subtotals, use another field in the query that identifies the field
the subtotals should be based on. Set the Total row for that field to a Group
By value. In the top half of Figure 2-16, we added the ProductID field from
the Order Details table to the QBE grid and set its Total row to a Group By
value.

Figure 2-16:
The Total
row in a
Totals query
allows you
to pick a
calculation.

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 266

Book III
Chapter 2

Letting Queries
Do the M

ath
Totals, Subtotals, Averages, and Such 267

The bottom half of Figure 2-17 shows the results of that query in Datasheet
view. We get the total extended price of orders for each individual product.
The totals group by product. So we sold $200.00 worth of Golden Whistles,
$2000.00 worth of Kozmik Video Cameras, and so forth.

The results of a totals query aren’t always easy to interpret. Alas, the small
amount of detail in the query results can make it difficult to see what the cal-
culated values are based on. The lack of detail in queries is, in fact, the most
important reason that reports are so much better than queries for totals and
subtotals. In a report, you can include all the details you want — and
arrange things in such a way that you can easily grasp the meaning of every
calculated total just by looking at the report.

Filtering records based on calculated fields
You can filter records based on the results of a calculated field. Suppose you
want to do a query like the one in Figure 2-16, but you only want to see
records where the total extended price is greater than or equal to $1,000. In
that case, just set the Criteria row for the calculated field to >=1000. In the
Datasheet view, only those products with sales totals results greater than or
equal to $1,000 show up on-screen.

Figure 2-17:
The query
design
shown in
Figure 2-16
produces
this data-
sheet, with
one line
for each
ProductID
(the Group
By field).

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 267

Book III: Queries268

18_036494 bk03ch02.qxp 11/17/06 8:23 AM Page 268

Chapter 3: Doing Neat Things with
Action Queries and Query Wizards

In This Chapter
� Using action queries safely

� Using update queries to change data into tables

� Creating new tables with make-table queries

� Adding data from one table to another table with append queries

� Gathering stray sheep with the Find Unmatched Wizard

� Getting the hang of the Find Duplicates Wizard

Chapter 1 of this minibook concentrates on creating select queries,
which are the most common type of query created by Access users.

You may not realize, though, that Access has other types of queries. Use
action queries to make changes to your data — for example, you can set up
a query to make a change to all the records that match a criterion. And two
query wizards — the Find Duplicates Query Wizard and the Find Unmatched
Query Wizard can help you clean up the data in your database.

Creating Action Queries
Action queries are a way to make global corrections to your database. They
are very powerful — which means they can be tremendously useful and
save you a lot of time. They can also make an enormous mess of your data-
base if used incorrectly.

Action queries differ significantly from select queries. A select query shows
you data that meet your criteria; an action query looks for the data that
meets your criteria, and then does something with it, such as making
changes to the data or moving records to a new table.

Four kinds of action queries, corresponding to four very specific tasks,
exist. You may find that creating an action query saves you tons of time if
you want to do any of the following things:

✦ Delete some records (delete query)

✦ Copy data from one table to another table (append query)

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 269

Creating Action Queries270

✦ Update (change) information in some records (update query)

✦ Create a new table from data stored in other tables (make-table query)

Make a backup before you run an action query. Action queries can make
huge changes to your database — and even if you’re careful, you may make a
mistake. Making a backup doesn’t take much time, especially compared to
the time spent fixing what an action query did. You may want to back up the
whole database or just the tables affected by the query. (To find out about
making copies of a database object, see Book I, Chapter 2; to find out about
backing up a database, see Book VII, Chapter 1.)

The usual way to create a query is to click the Query Wizard or Query
Design button on the Create tab of the Ribbon. When you create a query
using either of these methods, Access automatically creates a select query.
You can change the query type of any query, whether it’s brand new or well
used. To change the query type, choose the type of query you want from the
Query Type group of the Design tab on the Ribbon (when the query is shown
in Design view). (You can choose Make Table, Append, Update, or Delete
Query to create an action query.)

The dangers of the Run button
As you may realize by now, action queries make changes; they don’t just dis-
play data. You need to know how to safely create an action query without
running it before you finish defining exactly how you want the query to
work. The key is in when you use the View and Run buttons, and how you
open the query:

✦ When you work with a select query, the View and Run buttons do the
same thing.

✦ When you work with an action query, the View and Run buttons do com-
pletely different jobs:

✦ The View button displays Datasheet view with all the records that match
your selection criteria, which is a good way to preview what records will
change when you run the action query. The View button is a safe way to
look at the datasheet of an action query to see whether the query will
work the way you want it to.

✦ The Run button executes the action — deletes or changes data in your
database. You cannot undo the action after you click the Run button in
an action query, so be very sure you set up the query correctly before
you run it — and be sure to have backups of the affected tables just in
case disaster strikes. (To find out about making copies of a database
object, see Book I, Chapter 2.)

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 270

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Creating Action Queries 271

You also need to be careful how you open an action query. Action queries
are always rarin’ to go. When you open an action query from the Database
window by double-clicking the query name, or by selecting it and clicking
the Open button, you tell Access to run the query (not just to show it).
Access warns you that you are about to run an action query that changes
the database by updating records, deleting records, or whatever and gives
you a chance to change your mind. If all you want to do is work on the
design, be sure to right-click the query and choose Design view from the
shortcut menu.

Recognizing action queries in the Navigation Pane is easy because their
icons are a little different from the icons that select queries have — all
action-query icons have an exclamation point.

By default, Access disables all action queries unless your database resides in
a trusted location, or unless the database itself is signed and trusted.

It is possible that when you try to run an action query, nothing will happen
except a message in the message bar or status bar that reads This action
or event has been blocked by Disabled Mode. This is the easiest
way to persuade Access to run an action query, as follows:

1. If you don’t see the message bar, display it by selecting the Message
Bar check box in the Show/Hide group of the Database Tools tab of
the Ribbon.

The message bar appears under the Ribbon.

2. Click the Options button on the message bar to display the Microsoft
Office Security Options dialog box.

3. Click Enable This Content to allow macros, code, and action queries
to run.

The change only lasts until you close the database. The next time you
open the database, you’ll have to repeat these steps.

After you click the Options button, the Message Bar option on the Database
Tools tab is disabled. It will be enabled the next time you open the database.

Creating action queries safely
You need to perfect an action query before you run it so that you don’t
wreck your data. (Of course, if you make a mistake you have a backup —
right?) You make it, look at it, maybe test it on a few records in a test table,
and then finally run it.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 271

Creating Action Queries272

The process for creating an action query is as follows:

1. Back up your database, or make copies of the tables that the action
query will change.

Because action queries can do so much work (good or bad), make a
backup before you run the query.

2. Create the query as a select query.

In the Database window, click the Queries button and click one of the
wizard icons. Add tables (or queries) and fields to the design grid.
Define criteria and sort order as needed.

The point is to create a query that displays the records that the action
query acts on.

3. View the records that the query will act on by clicking the View button.

You see the records that the query will act on. Make sure you see the
data you need.

4. Use the Query Type buttons to choose the type of action query you
need — Make Table, Update, Append, or Delete.

5. Add the information about what you want the query to do — update
data, append data, make a table, or delete data.

The details are covered in the following sections on each type of query.

You may want to use the View button again to see the records the query
will act on.

6. Click the Run button to run the query.

Access warns you that you are about to make changes that you can’t
undo.

If you see a message that the action has been blocked, refer to the steps
at the end of the previous section.

7. Click the Yes button to run the query.

Access runs the query.

8. Check your results.

Checking the results in the underlying tables is a good idea. If the action
query acts on a field that you use in a criterion, you may not see the
records that change after the query has run — you may have to look at
the table, or create a new query to view the results.

The append and make-table queries create new tables. View those
results in the affected tables, and not in the query datasheet.

9. If you won’t be using the action query again, delete it.

They are dangerous things to have lying around!

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 272

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Changing Data with Update Queries 273

After you add an action query, each time you open your database you see a
security warning telling you that certain content in the database has been
disabled.. Unless you suspect a virus may actually exist, you can click
Options and then click Enable this Content.

Changing Data with Update Queries
You can use an update query to change a pile of data at the same time — to
raise prices by 10 percent, for example, or to replace a product number with
a new product number.

For instance, you may create a query to find orders that haven’t yet been
shipped that include a Golden Whistle, an item that is discontinued but has a
substitute. You could then use the update query to change the item number
in records that meet those criteria to New Golden Whistle, the replace-
ment item.

Using the update query when you work on lots and lots of data or when you
want to update multiple fields makes sense. But before you delve into the
complexities of an action query, consider whether you can use the much
simpler Find and Replace dialog box to find and replace data instead. (See
Book II, Chapter 2 for more information on the Find and Replace dialog box.)
You can use the Find and Replace dialog box in a datasheet created by a
query; if you change the data in the query, the table holding the underlying
data reflects the change.

To create an update query, follow these steps:

1. Back up the database and/or make copies of the tables that will be
affected by the update.

Update queries can be hard to get right, so play it safe in case you need
to get your data back the way it was before you ran the update query.

2. Create a new select query in Design view.

See Chapter 1 of this minibook for more information on creating a query.

Include tables that you plan to update or for which you need to use
fields to establish the update criteria.

3. Put fields in the design grid.

Add the fields you want to see in the datasheet, the fields you want to
use with criteria to tell Access exactly what to update, and the fields you
want to change by using the update query.

See Chapter 1 of this minibook for more on using the design grid.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 273

Changing Data with Update Queries274

4. Add the criteria to tell Access how to choose the records you want to
update.

Figure 3-1 shows the select query that finds all unshipped orders for the
Golden Whistle. You see two fields included in the query — the Shipped
field, because we are looking for orders that haven’t been shipped (this
is a Yes/No field, and we are looking for No values), and the Product ID
field, because we are looking for orders that contain the Golden Whistle
product.

5. Click the View button to view the datasheet to check if all the records
you want to update, and none that you don’t, are included.

Edit the query as needed until you see only the records you want to
update in the datasheet. Figure 3-2 shows the datasheet for the query
shown in Figure 3-1.

If you use an expression to define how a record is updated, you may
want to create a test field now to write your expression and make sure it
works in the way you want. For instance, if you want to increase prices
by 10 percent, you can create a new field: [New Price]: [Selling
Price]*1.10. The test field appears in the datasheet when you view it,
and you can check it for accuracy. For more information about writing
expressions, see Chapter 2 of this minibook.

6. Click the Update Query button in the Query Type group of the Design
tab on the Ribbon to change the query to an update query.

Access adds an Update To row in the design grid.

Figure 3-1:
This select
query finds
all orders
for the
Golden
Whistle that
haven’t
shipped.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 274

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Changing Data with Update Queries 275

7. Use the Update To row to tell Access how to update the field.

The easiest update is to change one value to another by simply typing
the new value in the Update To box for the appropriate field. More com-
plex updates include expressions that tell Access exactly how to update
the field. For example, to increase the Selling Price field in a table
by 10 percent, you use the expression [Selling Price]*1.10. You
can use the Expression Builder to help you build an expression for the
Update To row; just click in the box and then click the Build button. (See
Chapter 2 of this minibook for more information on using the Expression
Builder to create expressions.)

If you created a test field in Step 5, move the expression to the Update
To row for the field that will be updated, and delete the field you created
to test the expression. Note that you move the expression so it appears
after the colon.

Figure 3-3 shows the update query that finds all orders for the Golden
Whistle and changes them to orders for the New Golden Whistle.

8. Click the View button.

Access displays the datasheet with the records the query changes when
you run it. If the data is not correct, return to Design view to correct the
fields and criteria. This is the same data that you displayed in Step 5.
You display it again to be sure you’re making the changes you want to
make. Check Design view over carefully to be sure that the Update To
row is correct.

Figure 3-2:
The
datasheet
for the
query in
Figure 3-1,
showing the
Golden
Whistle
orders that
haven’t
shipped.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 275

Changing Data with Update Queries276

You can display only those fields in the datasheet that the update query
is updating. If you want to get a fuller picture of the records you’re
updating (see the data for all the fields, for example), you can change
the query back to a select query, add additional fields, and view the
datasheet that your criteria produce. When you change the query back
to an update query, the Update To options you added are still there. You
need to remove any additional fields from the query grid before you run
the update.

Only fields that are updated or used for criteria are allowed in update
queries.

Be aware that the datasheet shows the data that will be changed. You
can’t see what is changed until you run the query. If you use an expres-
sion in the Update To row, testing that your expression produces the
desired result by using a calculated field in a select query is important
(see Step 5).

9. Click the Run button to run the update.

Access warns you that after the records update, you can’t undo the
changes, as shown in Figure 3-4.

10. Click the Yes button to update the data.

Figure 3-3:
This query
finds all
orders for
Golden
Whistles
(Product
ID 2) that
haven’t
shipped,
and
changes
them to
New Golden
Whistle
(Product
ID 19).

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 276

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Creating New Tables with Make-Table Queries 277

11. Check the tables with affected fields to see whether the update query
worked correctly.

Figure 3-5 shows the Orders table with the Order Details subtable. Golden
Whistles in unshipped orders are replaced by New Golden Whistles.

12. Delete the query if you won’t be using it again; press Ctrl+S to save it
if you will need it again.

Creating New Tables with Make-Table Queries
A make-table query is useful if you need to make a new table to export or to
serve as a backup. You can use a make-table query to make a new table that
contains a copy of the data in a table or query. The new table can contain
some or all of the fields and records from an existing table, or combine the
fields from two or more tables — similar to the results of a select query.

Figure 3-5:
Go to the
underlying
tables to
see
changes
made by the
update
query.

Figure 3-4:
When you
click the
Run button
to run an
update
query, you
see a
warning like
this one.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 277

Creating New Tables with Make-Table Queries 278

For instance, you can use a make-table query to create a table of customers
who bought Golden Whistles — you decided to share their addresses with a
school that offers whistle lessons.

To create a table with a make-table query, follow these steps:

1. Create a select query that produces the records you want in a
new table.

See Chapter 1 of this minibook for more information on creating a select
query.

Figure 3-6 shows a select query that finds the contact info for all cus-
tomers who ever ordered Golden Whistles. Notice that although we only
need fields from the Address Book and Order Details tables, the Orders
table is also included in the query to define the relationship between the
Order Details and the Address Book tables.

2. Click the View button on the toolbar to view the results.

Figure 3-7 shows the datasheet for our query.

3. Click the View button on the toolbar to display Design view.

We don’t want to include the ProductID field in the table that the make-
table query creates, so we return to Design view and de-select the check-
mark in the Show row for the ProductID field.

4. Change the query type to a make-table query by clicking the Make
Table button in the Query Type group of the Design tab on the Ribbon.

Access immediately displays the Make Table dialog box shown in
Figure 3-8.

Figure 3-6:
The select
query finds
customers
who ordered
Golden
Whistles
(item
number
2) and lists
their
names and
addresses.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 278

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Creating New Tables with Make-Table Queries 279

5. In the Table Name box, type the name of the table you’re creating.

Although you’re offered a drop-down list, you’ll probably want to create
a brand-new table with a brand-new name, so type a name for the table
that isn’t the name of any table currently in your database.

6. Choose whether to create the new table in the current database or in
another database.

If you choose the Another Database option, you can browse for an exist-
ing database.

You cannot create a new database using a make-table query, only a new
table in an existing database.

7. Click OK to close the dialog box.

If you need to change the settings in the Make Table dialog box, click the
Make Table button again to display the Make Table dialog box.

8. Click the View button to see the records that will be in the new table.

You may need to return to Design view to edit the query until all the
records you want in the new table appear in the datasheet when you
click the View button.

Figure 3-8:
The Make
Table
dialog box.

Figure 3-7:
The
datasheet
shows the
customers
and contact
info of
Golden
Whistle
purchasers.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 279

Moving Data from One Table to Another with Append Queries 280

9. Click the Run button to create the new table.

Access asks whether you’re sure — because you won’t be able to undo
your changes.

10. Click the Yes button to create the new table.

Access quietly creates the new table.

11. Check the new and old tables to make sure you get what you need in
the new table.

You may want to edit the table design — the new table does not inherit
the field properties or the primary key setting from the original table.
(See Book II, Chapter 1 for more information on table design.)

Moving Data from One Table to
Another with Append Queries

An append query copies data from one or more tables or queries in your
database and adds the data selected by the query as new records to an exist-
ing table. As with other queries, you can use criteria to tell Access exactly
which data to append.

Append queries are used to archive information, to move data between data-
bases, as well as other useful housecleaning chores.

Cutting and pasting may be an easier way to append records from one table
to another if you are only appending a few records. (See Book II, Chapter 4
for more information.)

Access gets a little picky about data that you append using an append query,
especially with primary key fields. You must follow these rules when append-
ing records to another table:

✦ Data that you want to append must have unique values in the primary
key field. Each value in the primary key field must be unique in the table
to which the data is being added, because by definition, no value can
repeat in a primary key field. If the field is blank, or if the same value
already exists in the table, Access does not append the records.

✦ If an AutoNumber field is in the table to which the data is being
appended, do not append data in that field — Access automatically gen-
erates new numbers in the AutoNumber field for the new records; old
values cannot be appended.

✦ The data type of each field you’re appending must match the data type
of fields in the table to which they’re being added.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 280

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Moving Data from One Table to Another with Append Queries 281

To create an append query, follow these steps:

1. Create a select query that produces the records that you want to add
to another table. Display the query in Design view.

See Chapter 1 of this minibook for details on creating a select query.

You can check the criteria by viewing the datasheet to see whether the
query is selecting the data you want to append. Click the View button on
the toolbar to display the datasheet, and click the View button again to
return to Design view.

2. Change the query type to an append query by clicking the Query
Type button.

Click the Append button in the Query Type group of the Design tab on
the Ribbon.

Access immediately displays the Append dialog box shown in Figure 3-9.

3. Choose the table to which you want to append the records in the
Table Name box.

You can display the names of all the tables in the open database by dis-
playing the Table Name drop-down list.

You can add the records to a table in another database — find the data-
base by clicking the Browse button.

4. Click OK.

Access adds an extra row to the design grid: the Append To row. If the
field names match the names of the fields you’re appending, Access
automatically fills in the Append To row with the names of the fields in
the table you’re appending records to.

Figure 3-9:
The Append
dialog box
tells Access
where you
want to
append
data.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 281

Deleting Lots of Records with Delete Queries282

5. Carefully check the Append To row of the query grid and make any
necessary changes.

The Field and Table rows show where the field comes from, and the
Append To row shows where the data will be appended.

If some of the fields don’t have field names in the Append To row, display
the drop-down list in the Append row and select the name of the field you
want to append to. When you’re finished, check each column to ensure
that

• The Field row contains the name of the field that contains data that
you want to append to another table.

• The Table row contains the name of the table that contains the data.

• The Append To row contains the name of the field that the data will
be appended to.

• No field appears more than once in the Append To row.

6. Click the Run button to run the append query.

Access tells you that you’re about to append rows and that you won’t be
able to undo the changes.

Be careful about running this query. If you run it twice, you append the
records twice!

7. Click the Yes button to run the query.

Access adds the records to the table you specified. You now have the
same information in two tables.

8. Save the query by pressing Ctrl+S if you think you’ll use it again;
otherwise, close it without saving.

9. Check your results.

Check the table you appended to as well as the table you appended from
to make sure that Access copied all the records you wanted copied.

Deleting Lots of Records with Delete Queries
A delete query deletes whole records from tables, usually based on criteria
you provide (although you can also use delete queries to delete all records
in a table while keeping the field and table properties intact). Obviously,
delete queries are a powerful feature, and should be treated with respect!
Delete queries are dangerous — they permanently delete data from the
tables in your database.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 282

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Deleting Lots of Records with Delete Queries 283

Always make sure that you have a backup before you run a delete query. You
may want to back up the whole database or just the tables affected by the
delete query.

Because delete queries can wreak such havoc with your database, you
may want to consider whether manually deleting records meets your needs.
You can delete a record by selecting it (click the record selector, the gray
box to the left of the record) and pressing the Delete key on your keyboard
or clicking the Delete Record button on the toolbar. You can select a group
of records by double-clicking the first record selector and dragging to the
last in the group, or by selecting the first record and then Shift+clicking
the last in the group.

Before you run a delete query you need to be aware of how the table you’re
deleting data from is related to other tables in the database. In some cases,
running a delete query can delete records in related tables. If the table
you’re deleting data from is on the one side of a one-to-many relationship,
and cascading deletes are enabled for the relationship, Access looks for
related data to delete. For instance, the Products table (which holds informa-
tion for all the sold products) is related to the Order Details table (where
ordered items are listed). The relationship is one-to-many, with Products on
the “one” side. When you created the relationship between the two tables
using the Edit Relationships dialog box (displayed from the Relationships
window), if you selected Enforce Referential Integrity and Cascade Delete
Related Records, then deleting records from the Products table results in
Access deleting records from the Order Details table. Customers may not get
the products they ordered, and no record of them ordering that item exists in
the database. In this case, adding a Discontinued field to the Products table
may be a better solution than deleting the records! (For more information on
one-to-many relationships, see Book I, Chapter 4. For more information on
referential integrity, see Book II, Chapter 6.)

When you tell Access to create a delete query, the Sort and Show rows in the
design grid — the grid in the bottom pane of Design view — are removed
and the Delete row is added. The Delete row has a drop-down list with two
options that you only see with delete queries: the Where option and the From
option. Use these two options to define the fields you want to see and the
fields that you are using to define criteria to select the fields that will be
deleted by the query:

✦ Where: Tells Access to use the criteria for the field to determine which
records to delete.

✦ From: Displays the field when you view the datasheet for the query. You
can choose the From option only when you use the * choice in the Field
row to include all fields from a table. The asterisk appears as the first field
for each table shown in the top half of Design view — when dragged to
the design grid, Access displays all fields from the table. Viewing all fields

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 283

Deleting Lots of Records with Delete Queries284

from a table in the datasheet gives you a more complete picture of the
data you’re deleting; otherwise, all you see in the datasheet are the values
from the fields included in the design grid with criteria — rather than the
entire record that the delete query will actually delete when you run it.

Follow these steps to create a delete query:

1. In Design view, create a select query that produces the records you
want to delete.

See Chapter 1 of this minibook for details on how to create a select
query. Make sure you add to the query all tables containing records you
want to delete.

2. Drag the * option from each field list in the top half of Design view to
the design grid to display all fields from the table or tables that con-
tain records you want to delete.

Using the * option allows you to view all fields in the table. When you
change the query to a delete query, only the * allows you to display
fields not being used for criteria.

3. Add fields to the design grid that you have criteria for, and then
define those criteria.

4. Click the View button on the toolbar to view the datasheet.

The records you see are the records that you want the delete query to
delete.

5. Click the View button again to return to Design view.

Make any changes needed so the query selects only those records that
you want to delete.

6. Change the query type to a delete query by clicking the Delete button
in the Query Type group of the Design tab on the Ribbon.

When you change the query type from select to delete, Access changes
the rows in the design grid. The Sort and Show rows are removed, and
the Delete row is added.

7. Choose a value for the Delete row (if it’s not set automatically) from
the drop-down list in the following way: Set the fields that you want to
view to the From option; set the fields that define criteria to the
Where option.

Figure 3-10 shows an example of a delete query that will delete records
with the ProductID value of 35 from the Order Details and Products
tables. Note that when you view the datasheet you are seeing data from
two different tables. All that data will be deleted, so data will be deleted
from both tables.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 284

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Finding Unmatched Records with a Wizard 285

8. Click the View button to view the datasheet again. Check to make sure
that you see only the records that the delete query should delete.

If you see data in the datasheet that shouldn’t be deleted — or if data
that you want to delete is missing — correct the design of the query
before you run it.

A delete query deletes entire records.

9. Return to Design view by clicking the View button.

10. Click the Run button to run the query.

Access deletes the data that you saw in Datasheet view — it’s gone
for good!

Finding Unmatched Records with a Wizard
Access has two categories of Neat Things You Can Do with Queries — action
queries and the two query wizards covered here. The Find Unmatched
Query Wizard finds records in one table that have no matching records in
another, related table. For example, you may store orders in one table and
details about customers in another table. If the tables are linked by, say, a
Customer Number field, the Unmatched Query Wizard can tell you whether
you have any customers listed in the Orders table who aren’t listed in the
Customers table.

Figure 3-10:
This delete
query
deletes
records with
the
ProductID
value of 35
from the
Order
Details and
Products
tables.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 285

Finding Unmatched Records with a Wizard286

Use the Find Unmatched Query Wizard to find unmatched records in the fol-
lowing way:

1. Display the Create tab on the Ribbon.

2. Click the Query Wizard button in the Other group on the Ribbon.

The New Query dialog box opens.

3. Select the Find Unmatched Query Wizard option, and then click OK.

The first window of the wizard appears.

4. Select the table (or query) that may have unmatched records in a
second table, and then click Next.

For instance, if you’re looking for customers with no orders, select the
table that holds the names of customers in this window. If you are look-
ing for orders for which you don’t have the customer address, select the
Orders table in this step. The final result of the query lists records from
the table that you select in this step that don’t have matching records
in the table you select in the next step.

If you want to choose a query, click the Queries or Both radio button.

5. Select the table (or query) that should contain the matching records
for the data in the table you selected in the previous step, and then
click Next.

For instance, if you are looking for customers with no orders, select the
table that holds the order information. If you’re looking for orders that
don’t have the customer address, select the table that holds customer
addresses when you do this step.

6. Check to make sure that Access correctly guessed the related fields in
the two tables you selected in the third window of the wizard (shown
in Figure 3-11); if it did, click Next.

Figure 3-11:
Select
related
fields to find
unmatched
records.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 286

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Finding Unmatched Records with a Wizard 287

The window shows field names in the two tables you selected. The
names of the related fields are probably highlighted. Click the related
field in each table if Access has not selected the correct related fields.
The two fields that you select should contain the same information and
be of the same data type.

7. Select the fields you want to see in the query results in the next
window of the wizard, and then click Next.

To select all fields, click the double arrow pointing to the right.

8. Accept the name Access gives the query or name the query yourself
in the final window of the Find Unmatched Query Wizard.

9. Choose whether you want to view the results or modify the design
and click Finish.

Access displays the query in Design or Datasheet view as you requested.

If now isn’t a good time to modify the design, you can do that later.

Note that you don’t have to use a wizard to create this kind of query. The
query shown in Figure 3-12 finds unmatched records in the Address Book
table by using an inner join between the tables and the Is Null criteria for the
related field in the table where matching records are stored. (For more about
inner joins, see Chapter 1 of this minibook.)

In order to avoid unmatched records, define the relationship between the
tables to enforce referential integrity. Define referential integrity in order to
avoid creating orders for customers in the Orders table when you don’t have
contact information for them in the Address Book table. You may still find

Figure 3-12:
Find
unmatched
records by
using an
inner join
and the
Is Null
criterion.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 287

Finding Duplicate Records288

using the Find Unmatched Query Wizard useful though — for instance, you
may want to find customers who have not placed any orders, or products
that have not been ordered. (For more information on referential integrity,
see Book II, Chapter 6.)

Finding Duplicate Records
When a table contains hundreds or thousands of records, spotting dupli-
cates is not always easy. But the Find Duplicates Query Wizard can find them
in an instant. Before you use the wizard, though, you need to really think
about which combination of fields in a record constitutes a duplicate. For
example, in a table of names and addresses, you wouldn’t necessarily con-
sider two records with the name Jones in the Last Name field duplicates,
because two different people in your table may have the name Jones.

Not even the First Name and Last Name fields combined necessarily pin-
point duplicate records, because more than one Joe Jones or Chuma Jones
can be in your table. On the other hand, if two or more records in your table
contain the same information in the Last Name, First Name, Address1,
and ZIP Code fields, then there’s a good chance that those records are
duplicates. If you do mass mailings, you may be sending two or more of
every item to the customers whose records are duplicated.

Before you go looking for duplicate records, think about which combination
of fields in your table will indicate records that are likely duplicates. Then use
the Find Duplicates Query Wizard to seek out those records. Since the Find
Duplicate Query Wizard only finds duplicates, you can use your judgment to
delete records that look like duplicates. Follow these steps to run the wizard:

1. Display the Create tab on the Ribbon.

2. Click the Query Wizard button in the Other group of the Ribbon.

The New Query dialog box opens.

3. Select the Find Duplicates Query Wizard option, and then click OK.

The Find Duplicates Query Wizard starts.

4. Click the name of the table you want to search in the first window of
the wizard, and then click Next.

Optionally, you can click the Queries option and choose a query to use
as the basis for the search.

5. Use the > button to copy fields from the Available Fields list to the
Duplicate-Value Fields list in the second window of the wizard, and
then click Next.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 288

Book III
Chapter 3

Doing N
eat Things

w
ith Action Queries

and Query W
izards

Finding Duplicate Records 289

Be sure to include all of the fields that contain the data needed to define
duplicate records. For example, in Figure 3-13 we’re about to find
records that have identical information in the Address 1, Address 2,
City, and StateProv fields.

6. Choose the fields to be shown for additional information in the third
window of the wizard, and then click Next.

The fields you specify aren’t used for comparing records. But they will
appear in the query results to help you better identify any duplicate
records. If your table has a primary key and/or date entered field, both
are good candidates for this third field.

7. Give the query a name.

Change the suggested name for the query, if you wish, or use the sug-
gested name in the last window of the wizard.

8. Choose the View the Results option, and then click the Finish button.

The results of the query appear on-screen in Datasheet view. If no records
appear, that means no records have identical values in the fields you speci-
fied in the wizard. You have nothing to worry about.

On the other hand, if records do appear, then you know you have duplicates.
For example, in Figure 3-14, two records for Frankly Unctuous appear. Note
the identical First Name, Last Name, and Address fields. The ContactID
field allows us to see that two records for this customer are, indeed, in the
table.

Figure 3-13:
Specify
fields to
compare in
the second
window of
the Find
Duplicates
Query
Wizard.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 289

Finding Duplicate Records290

Figure 3-14:
Frankly
Unctuous
has two
records in
the table.

The handy Unique Values and
Unique Records properties

Sometimes, rather than finding duplicates and
deleting them, you just want to hide them. For
instance, you may only need to see a list of states
that your customers come from — you don’t
need to see Massachusetts fifty-six times (if you
have fifty-six customers in Massachusetts).

The Properties sheet has two properties that
allow you to hide duplicate values:

� Unique Values: Set the Unique Values
property to the Yes value when you want
to see only unique values for the fields dis-
played in the query. The Unique Values
property omits duplicate data for the fields
selected in the query. Every row displayed
in the query datasheet is different.

� Unique Records: Set the Unique
Records property to the Yes value when
you want to see only unique records based

on all fields in the underlying tables. The
Unique Records property only affects
fields from more than one table. A record
is considered unique if a value in at least
one field is different from a value in the
same field in another record. Note that the
primary key fields are included when
records are compared.

To display the Properties sheet, right-click an
empty part of the Table pane (the top half of the
design grid) and choose the Properties option
from the shortcut menu or click the Properties
button on the toolbar.

The Unique Valuesand Unique Records
properties apply only to select, append, and
make-table queries. Note that when both are set
to the No value (which is the default), the query
returns all records.

19_036494 bk03ch03.qxp 11/17/06 8:24 AM Page 290

Chapter 4: Viewing Your Data
from All Angles Using Crosstabs
and PivotTables

In This Chapter
� Understanding Crosstab queries

� Running the Crosstab Query Wizard

� Creating Crosstab queries in Design view

� Understanding PivotTables

� Using PivotTable view

� Selecting filter, data, and category fields for your PivotTable

Sometimes, instead of viewing your data in records, you want to see it
organized and categorized (what a concept). You may want to see sales

of each product by month and you may want to see that information in a
compact table, with months as the column titles, product names as the row
titles, and the sum of sales in the body of the table. Access creates that kind
of table in two ways — with a Crosstab query or a PivotTable. Both
Crosstabs and PivotTables organize data and create totals using the aggre-
gate function of your choice — sum, average, and count being the most pop-
ular. You create Crosstab queries in Design view, while the PivotTable view
is all mouse driven — you drag and drop fields where you want them, use
check boxes to create filters, and do nearly everything else with buttons
and menu commands.

If you want to look at your data in lots of different ways in a short period of
time, you’ll prefer PivotTables — you can look first at product sales by month
and then quickly shift the view to see which salespeople are selling the most
of which product, and then shift again to see which states your customers
come from for each product. But if you know exactly what you want and don’t
need to look at the data in another way (or if you want to use the results of
the query as the record source for a report), you may prefer Crosstab queries.
Take your pick — they’re both covered in this chapter.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 291

Aggregating Data in a Crosstab Query292

Aggregating Data in a Crosstab Query
A Crosstab query is a specialized query for summarizing data. Instead of cre-
ating a table with rows showing record data and columns showing fields, you
can choose a field and group it using two other fields as row and column
labels. Access groups the data the way you tell it to and aggregates the
grouped field in the body of the table — you can choose between the usual
aggregate functions such as sum, average, minimum, maximum, count, and
all other available functions. For instance, if you chose the Product field for
the column labels, the Sales Month field for the row labels, and the field
that contains the sales subtotal for the product (price × quantity) as the
information to put in the body of the table, and you tell Access to sum the
result, the Crosstab query appears, shown in Figure 4-1, where sales of each
product are shown by quarter. The result is a compact, spreadsheet-like
presentation of your data.

If you want to aggregate data without using a Crosstab query, see Chapter 2
of this minibook.

Using the Crosstab Query Wizard
The Crosstab Query Wizard provides an automated way to create a Crosstab
query. The wizard works only with one table or query. If the fields you want
to use in the Crosstab query are not in one table, you have to create a query
that combines those fields before you use the Crosstab Query Wizard.
However, because the wizard does give you the option of aggregating date

Figure 4-1:
This
Crosstab
query
shows sales
by product
and quarter.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 292

Book III
Chapter 4

Aggregating Data in a Crosstab Query 293

data (taking a Date/Time field and combining the data into months), you
don’t have to write an expression to aggregate data yourself. For instance,
the Orders table saves the time and day an order is submitted. The Crosstab
Query Wizard takes that date field and converts it to just the month (or the
year, quarter, or day). In order to have the option to aggregate data, you
must use the date field as a column heading.

Start the Crosstab Query Wizard by following these steps:

1. Display the Create tab on the Ribbon.

2. Click the Query Wizard button in the Other group on the Ribbon.

The New Query dialog box opens.

3. Select the Crosstab Query Wizard option and click OK.

Access starts the Crosstab Query Wizard, shown in Figure 4-2.

4. Select the table or query that contains all the fields you need for your
Crosstab query, and then click Next.

If you create a query to hold the fields you need, click the Queries or
Both button to see the query name.

5. In the new window that appears, shown in Figure 4-3, select the
field(s) whose values you want to use as row headings and click Next.

You can select up to three fields to fine-tune the breakdown of your data.
As you select fields, the sample at the bottom changes to reflect how
your finished query will look.

Figure 4-2:
Choose the
table or
query that
contains the
fields you
want to use
in the
Crosstab
query.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 293

Aggregating Data in a Crosstab Query294

Generally, the fields you select as row and column headings contain
repeated data that is grouped in the Crosstab query. For instance, the
ProductID field comes from the Order Details table and identifies prod-
ucts in each order. The Crosstab query can show you how many times a
product is ordered, or how many units of each product is sold.

If you want the option of grouping date values, don’t pick a Date/Time
field here — use it for column headings instead.

6. In the new window that appears, shown in Figure 4-4, select the field(s)
whose values you want to use as column headings and click Next.

You can only select one field to use as the column headings. You may
want to use a field containing dates and tell Access to group date values.

Figure 4-4:
Choose the
field you
want to use
as column
headings.

Figure 4-3:
Choose the
field(s) that
contains the
data used
as the row
headings for
the Crosstab
query.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 294

Book III
Chapter 4

Aggregating Data in a Crosstab Query 295

7. If you select a date field as the column headings, you see the window
shown in Figure 4-5. Choose how to group dates from the list and
click Next.

Choose one of the options listed. The Date/Time option shows data by
unique Date and Time — data isn’t grouped at all unless you have data
with exactly the same time and date.

8. In the new window that appears, shown in Figure 4-6, choose the field
whose values you want to see grouped by the row and column head-
ings that you selected.

Figure 4-6:
Choose the
field that
contains
values for
the Crosstab
query, and
how you
want to
aggregate
them.

Figure 4-5:
Choose how
to group
date and
time data.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 295

Aggregating Data in a Crosstab Query296

The field you select usually contains numerical data that can be aggre-
gated in some way (added together, averaged, and so on). The exception
is if you want to count instances — then the field doesn’t need to con-
tain numbers.

Figure 4-6 uses the Extended Price field, which is price × quantity —
the dollar amount of sales for each product.

9. Select a grouping method from the Functions list.

You can find out more about these functions in Chapter 2 of this mini-
book. You can easily change this function in Design view if you change
your mind after you view the Crosstab query.

10. Choose whether to include row sums, and then click Next.

If you choose to include row sums, Access creates an extra column that
contains the sum of the row — in this example, the total sales for the
product.

11. Name the query (or use the name that Access suggests), choose how
you want to view the query (viewing the query datasheet or viewing
the query in Design view), and then click Finish to see the Crosstab
query.

See Figure 4-7 to see how our sample Crosstab query turned out!

Look at the results of the Crosstab Query Wizard in Design view to get ideas
about how to create a Crosstab query from scratch. You can get your Crosstab
query started with the Crosstab Query Wizard, and then put the finishing
touches on the query in Design view, which is covered in the next section.

Figure 4-7:
This
Crosstab
query
shows sales
of each
product by
month.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 296

Book III
Chapter 4

Aggregating Data in a Crosstab Query 297

Creating a Crosstab query in Design view
A simple Crosstab query has three fields:

✦ One used for row headings (Date, for example)

✦ One used for column headings (Product, for example)

✦ The Value field, which contains the data that you want to appear in the
cells of the table (such as an item subtotal). Tell Access how to summa-
rize your data in the Crosstab query by choosing from these choices:
Sum, Avg, Min, Max, Count, StDev, Var, First, or Last.

Follow these steps to create a simple Crosstab query:

1. Create a new select query in Design view with the tables that contain
the fields you want to use in the Crosstab query.

Chapter 1 of this minibook covers creating select queries.

2. Change the query to a Crosstab query by using the Crosstab button in
the Query Type group of the Design tab on the Ribbon.

Access displays a Crosstab row in the design grid — the grid in the
bottom half of the Design window. You use the Crosstab row to tell
Access how to build the Crosstab query. Access also displays the Total
row in the design grid, which allows you to choose from the aggregate
functions or choose the Group By option.

In the next steps you double-click fields in the Table pane of Design view
to move them to the design grid, and then choose from the Crosstab row
drop-down list the way each field is used to create the Crosstab.

3. Double-click the field you want to use for row labels in the Table pane
in the top half of Design view.

When you double-click the field name, Access moves it to the design grid.

If you need to create the field with an expression, do that now.

4. Click in the Crosstab row and then click the down arrow. Choose the
Row Heading option from the drop-down list.

Set the Total row to the Group By option for this column in the grid.

5. Double-click the field you want to use for column labels in the
Table pane.

Access places the field in the design grid.

If you need to create the field with an expression, do that now.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 297

Aggregating Data in a Crosstab Query298

6. Click in the Crosstab row for the new field and then click the down
arrow. Choose the Column Heading option from the drop-down list.

Set the Total row to the Group By option for this column in the grid —
chances are you won’t have to make this change. (Click in the Total row
to display the arrow for the drop-down list.)

7. Double-click the field containing the values you want aggregated in
your Crosstab query in the Table pane to put it in the grid.

This field — the Value field — provides the values that fill up the
Crosstab query.

8. Click in the Crosstab row for the new field in the grid and then click
the down arrow in the Crosstab row. Choose the Value option from
the drop-down list.

9. Choose the option to summarize the data from the drop-down list in
the Total row for the Value field column.

Sum and average are common, but one of the other options may be the
one you need. See Chapter 2 of this minibook for more on these aggre-
gate options.

Figure 4-8 shows the Design view for a Crosstab query that creates a
query similar to the one created by the Crosstab Query Wizard in the
previous section.

10. Click the View button to view your new Crosstab query.

You may want to edit your query design, or make some of the modifica-
tions described in the next section.

Figure 4-8:
This
Crosstab
query
shows sales
by product
and quarter.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 298

Book III
Chapter 4

Aggregating Data in a Crosstab Query 299

Modifying your Crosstab query
After you figure out the basics of creating a Crosstab query — choosing
fields for the row headings, column headings, and the value field, and then
specifying how the data is aggregated — you may want to do any of the fol-
lowing to add more to the query design.

Using criteria
You can include criteria to narrow the data aggregated in a Crosstab query.
You add criteria in the design grid to the fields used for row headings and
column headings, but not to the field used for values. If you want to specify a
criterion for the value field, you can put the field in the query a second time,
set its Total row to the Group By option, leave the Crosstab row option
blank, and define the criteria. Using the same method, you can add any field
to the design grid and define criteria — just leave the Crosstab row blank.

Multiple fields for row headings
You can use more than one field for row headings. The resulting Crosstab
query groups rows using both fields. Figure 4-9 shows hours grouped by
company and project.

To use multiple fields to group data by row, specify more than one field as a
row heading in the design grid. Access figures out in which order to use the
fields — the field on the “one” side of a one-to-many relationship displays
first. Figure 4-10 shows the design grid for the same query.

Figure 4-9:
This
Crosstab
query uses
two fields as
row labels to
group hours
worked —
the
Company
field and the
Project
Descrip-
tion field.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 299

Aggregating Data in a Crosstab Query300

Adding aggregate columns
A calculated column is an additional column in the query that totals rows
displayed in the query. For instance, you may add a column that calculated
the total number of the product sold to a query that displays sales by month
and product.

You can add calculated columns to a Crosstab query — they are added as
row headings, and appear by default as the first column after the actual row
headings. If you include row sums in a Crosstab query, a calculated column
is automatically created as a row heading that uses the Sum option in the
Total row. You may want to calculate other values using other aggregate
functions.

Getting months in order
By default, Access sorts column and row headings in alphabetical or numeri-
cal order. But usually, calculated dates (specifically months) need to appear
in chronological order, rather than alphabetical and numerical order.
PivotTables (described in the next section) are better at sorting data
grouped in this way, but you can fix your Crosstab query to appear in
chronological order in one of two ways:

✦ Move columns manually in Datasheet view — click the column heading to
select the column, and then drag the column heading to its new position.

✦ Specify the sort order in the Property sheet for the query. First display
the Property sheet from within Design view by clicking the Property
Sheet button on the Design tab on the Ribbon, and then type out the
column headings in order in the Column Headings property, using
quotes around the date and separating dates with commas as shown in
Figure 4-11. Be sure to use the dates as they appear on the datasheet.

Figure 4-10:
Specifying
two fields as
row labels
to group
hours
worked —
the
Company
field and the
Project
field.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 300

Book III
Chapter 4

Analyzing Data with PivotTables 301

Analyzing Data with PivotTables
A PivotTable is an interactive tool to help you analyze your data. When you
work with a PivotTable, you can quickly drag fields and create new totals to
present an entirely new view of your data, or drill down to see the individual
pieces of data that make up a total. PivotTables are closely related to
Crosstab queries in the way they present your data — they group data into
rows and columns, with the row and column headings defined by fields. Using
a PivotTable, you can select how to categorize data into rows and columns,
choose fields to be summarized in the body of the table, and filter the data.
And rather than using Design view to define the table, you create and make
changes to a PivotTable just by clicking the table and dragging field names or
choosing from automatically created drop-down menus that reflect your data.

Creating a blank PivotTable
For many objects we recommend that you start with the wizard and then use
Design view to make refinements that the wizard can’t manage. However, the
PivotTable Wizard doesn’t do much for you except allow you to use fields
from multiple tables or queries. You may choose to use the wizard for this
reason, or you may want to gather all the fields you need into a single query,
and go from there.

To create a blank PivotTable, shown in Figure 4-12, first create a query that
contains all the fields you want in your PivotTable, and then use one of the
following options:

✦ Open the query containing your data, and then click the PivotTable View
button in the bottom-right corner of the Access window — it’s the
second in the group of five tiny buttons.

Figure 4-11:
Use the
Column
Headings
property to
list column
headings in
order.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 301

Analyzing Data with PivotTables302

✦ Select the query containing your data in the Navigation Pane. Then
Display the Create tab on the Ribbon and click the More Forms button in
the Forms group. Select PivotTable from the drop-down list.

After you create a PivotTable using one of the methods, you see a blank
PivotTable with a PivotTable Field List. If you don’t see the Field list, click
the Field List button on the Design tab on the Ribbon.

Displaying data in your PivotTable
To see data after you create a blank PivotTable, you need to drag and drop
fields into the drop areas. Each field name in the PivotTable Field List has a
plus sign (expand indicator) or a minus sign (collapse indicator) next to it.
Click an expand indicator in the PivotTable Field List to see more options for
fields to drag and drop. In particular, Access adds fields to categorize date
data by week, month, quarter, and so on.

The four drop areas are as follows:

✦ Totals or Detail Fields: Drag the name of the field that contains the
values you want displayed in the body of the PivotTable to this drop
area. The values in this field are organized by the values in the column
and row fields. After you drag a field to the Totals or Detail Fields drop
area, you see data in your PivotTable.

✦ Column Field: Drag the name(s) of the field(s) you want to show as
column headings to this area.

Figure 4-12:
At first your
PivotTable is
blank.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 302

Book III
Chapter 4

Analyzing Data with PivotTables 303

✦ Row Field: Drag the name(s) of the field(s) you want to show as row
headings to this area.

✦ Filter Fields: Drag the names of any fields you want to use for filtering
purposes to this area.

You can start dragging fields in any order. After you drop a detail field onto
the PivotTable, you see data in the table. Figure 4-13 shows a PivotTable with
the Product Name field in the rows drop area, the Order Date by Month
field in the columns drop area, and the ExtPrice field in the body of the
table. (The ExtPrice field is equal to price × quantity, and is the amount
spent on the item — it accounts for records in which a single person bought
more than one of the item.) Fields used in the PivotTable appear in bold in
the Field list.

Use these steps to see data in your PivotTable:

1. Drag and drop a field from the PivotTable Field List into the main part
of the PivotTable — the part labeled Drop Totals or Detail Fields Here.

Choose the field that you want to see organized using other fields.

If the drop areas aren’t visible in your PivotTable, click Drop Zones in
the Show/Hide section of the Design tab.

A cell for each record of data appears. Now, by adding row and column
labels, you can categorize that data. Later, you summarize it using the
AutoCalc button.

Figure 4-13:
A PivotTable
showing
ExtPrice
organized
by Product
Name and
Order Date.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 303

Analyzing Data with PivotTables304

If you prefer not to drag and drop, select the field in the Field list, use
the drop-down list at the bottom of the Field list to tell Access where
you want to use the field, and click the Add To button.

Fields used in the PivotTable appear in bold in the PivotTable Field List,
as shown in Figure 4-14.

2. Drag and drop a field into the Drop Row Fields Here section of the
PivotTable — the section on the left — to create row labels.

You may want to click an expand indicator in the PivotTable Field List to
see more options for fields to drag and drop. In particular, Access adds
fields to categorize date data by week, month, quarter, and so on.

3. Drag and drop a field into the Drop Column Fields Here section of the
PivotTable to create column labels.

Your table may look something like Figure 4-13.

The resulting table may be confusing because you see each record
rather than data totals. However, changing that isn’t difficult.

4. Click a column label that names the field displayed in the body of the
table to see the totaled data. (In Figure 4-13, that’s the ExtPrice
column.)

All like-named column headings are selected automatically.

5. Click the AutoCalc button on the Design tab on the Ribbon and choose
the type of total you want to use.

Figure 4-14:
Bolded field
names are
used in the
PivotTable.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 304

Book III
Chapter 4

Analyzing Data with PivotTables 305

See Chapter 2 of this minibook for more information about the aggrega-
tion choices. For Text fields, your only option is the Count total.

You now see a Total column at the far right of the table and a Total row
at the bottom of the table. Each cell in the table also gains an extra piece
of information at the bottom of the cell: the sum, count, or other aggre-
gation of the data in the cell. Also, the new field is added to the Pivot
Table Field List.

6. Click the Hide Details button on the Design tab on the Ribbon.

The table now displays aggregates, shown in Figure 4-15. You can show
or hide the details for each row or column by clicking the expand (+) or
collapse (–) indicator in the row or column heading.

You can now add or remove categories to see your aggregated data in
several different ways.

When you use a lookup field in a PivotTable, you see the data that Access
stores in the field, not the data usually displayed. (Remember: A lookup field
displays a drop-down list of data to choose from that is stored in a table or a
list.) In general, you use the descriptive field in the PivotTable rather than
the lookup field to see the appropriate data. We use the Product Name field
rather than the Product ID field in this chapter, even though (in most
views) those two fields display the same data. (For more on lookup fields,
see Book II, Chapter 5. For information on using lookup fields in queries, see
Chapter 1 of this minibook.)

Figure 4-15:
This
PivotTable
shows
aggregate
data — total
sales for
each
product for
each month.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 305

Analyzing Data with PivotTables306

Modifying your PivotTable
After you have a basic PivotTable, you can modify it to look exactly how you
want. You can add fields, move fields around to different drop areas, format
your data, create new fields, expand and collapse details, and more.

For much of the work involved in modifying a PivotTable, your best friend
is the PivotTable Tools Design tab on the Ribbon. Table 4-1 lists the buttons
in the PivotTable tab and what they do.

If the data in your database changes while your PivotTable is open, be sure
that the table reflects the most current data by clicking the Refresh Pivot
button on the PivotTable toolbar.

Table 4-1 PivotTable Buttons
Name What It Does

Save Saves the format of the object, which includes the format of the
PivotTable.

View View the PivotTable in another view. PivotChart is always available. The
other options depend on which kind of object you use to create the
PivotTable — table or query.

Field List Displays or hides the Field list available for this PivotTable.

Working with dates
You may have noticed that the PivotTable Field
List has a + next to each field name. Click the
expand indicator (+) to see an indented list of
fields, which is most useful when working with
Date/Time fields.

Access does some neat things with Date/Time
fields in the PivotTable Field List — it automat-
ically creates fields to aggregate date data by
year, quarter, month, week, day, hour, minute,
and second. (Refer to Figure 4-14 to see date
fields in the Field list.)

The two different date headings, Order Date By
Week and Order Date By Month, allow you to

use a date as a column field and a date as a row
field — but you must select the dates from dif-
ferent indented lists. For instance, you may want
to see years in columns and months in rows to
compare monthly sales from year to year.

To view data by month, find the Months field
in one of the date fields and drop it in the
PivotTable.

After you have a date field in the columns or
rows heading, you can expand the heading
using the expand indicator (+) next to the field
in the PivotTable (not in the Field list) to display
date data in more detail.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 306

Book III
Chapter 4

Analyzing Data with PivotTables 307

Name What It Does

Drop Zones Displays or hides the labels for the areas where you can drop
field names (that is, Drop Filters Here).

Drill Button Displays or hides the + and – buttons that allow you to drill down
into data.

Hide Details Hides detail values (one value for each record of data) and dis-
plays only totals (if any are defined).

Show Details Shows detail values (one value for each record of data).

Group Allows you to create groups on the fly by selecting rows or
columns and clicking the Group button.

Ungroup Ungroup a group by clicking to select it, and then clicking this
button.

Sort Ascending Sorts the selected part of the PivotTable in ascending order.

Sort Descending Sorts the selected part of the PivotTable in descending order.

AutoFilter Applies (or removes) a filter already defined (such as a Show
Top/Bottom Items filter).

Show Top/Bottom Items Choose to see top or bottom values. Choose either a percentage
of values or a number of data points that you want to see. Click
again to cancel the filter.

Refresh Displays new and updated data.

Export to Microsoft Exports the PivotTable to Microsoft Excel (usually to make use of
Excel PivotTable functionality in Excel).

Expand Expands the selected cell, column, or row.

Collapse Collapses the selected cell, column, or row.

Move Displays a drop-down list allowing you to move the field to Field
Area, Column Area, Filter Area, or Detail Area.

Remove Removes the selected totals field.

Property Sheet Displays PivotTable properties.

AutoCalc Calculates an aggregate field by selecting the field to aggregate
by clicking a field name in the table and then choosing from the
AutoCalc drop-down list.

Subtotal Calculates subtotals when the PivotTable has at least one total
field and at least two fields as either row or column headings.

Formulas Creates a new, calculated, total, or detail field.

Show As Displays the values or percentage of a total.

Working with PivotTable data
Changing the way your PivotTable displays data is the fun part! Drag fields
around, in, and out of the table to your heart’s content — or until you have a
table that shows the data you need in an easy-to-analyze format.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 307

Analyzing Data with PivotTables308

To change the data in your PivotTable, you have two basic options:

✦ Add additional row and column categories: Drag fields from the
PivotTable Field List or from one part of the PivotTable to another. A
blue line appears to show you where the field will drop. Watch the blue
line — particularly the ends of the line — that tells you where you are
dropping a field.

✦ Remove categories: Drag a field name off the table (until you see an X
next to the pointer) to remove it from the table.

If you want to save the PivotTable data, export it to Excel using the Export to
Microsoft Excel button.

Showing/hiding details
By default, Access shows detail data, which means you see a heck of a lot of
data. But you may be interested only in summary data, such as totals.

You may have noticed that every row and column label on the PivotTable
has expand (+) and collapse (–) indicators. When a category expands, you
see details; when it collapses, you see only the total. Use these buttons to
see more — or less — of the data. You can change an individual row or
column, or you can expand or collapse an entire category by clicking a head-
ing and then clicking the Collapse or Expand buttons on the toolbar.

Adding totals and grand totals
Use the AutoCalc button to create totals. Select the field you want to total;
then click the AutoCalc button and choose how to total the values. (See the
section, “Displaying data in your PivotTable,” earlier in this chapter.)

Here’s how to add grand totals to the PivotTable:

1. Scroll to the far-right column of the PivotTable until you get to the
Grand Total column.

2. Drag the name of the field you want totaled to the Grand Total
column, and drop it there.

You can drag the field name from the Field list or somewhere else in the
PivotTable. The empty Grand Total column fills with totals.

Grouping data
You can easily group data on the fly in a PivotTable. For instance, if you want
to create groups of products to see subtotals, just select the products in a
group by clicking the first product and Ctrl+clicking subsequent products;
then click the Group button. Figure 4-16 shows products sorted into two

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 308

Book III
Chapter 4

Analyzing Data with PivotTables 309

groups. The Other group can be further sorted as necessary: All you have
to do is select the products you want to group and then click the Group
button again.

After groups have been created, you can use them to filter the PivotTable.
Here’s how:

1. Click the drop-down arrow for Group parent (in Figure 4-16, that’s the
Product Name1 cell).

The filter options appear.

2. Then click the group(s) that you want to display.

3. Click OK to see the resulting PivotTable.

The data is displayed with some groups hidden, and totals updated to
match the new data. To unfilter, repeat these steps and choose All in the
Filter options.

Adding a calculated field
You can also create a new, calculated field while in PivotTable view.
Calculated fields are new fields that you create with an equation, known in
Access-speak as an expression. When you create a calculated field in
PivotTable view, you have the choice of creating a total or a detail field. A
detail field has a value for every record, while a total field has only a value
for every category shown on the PivotTable. For more about creating calcu-
lated fields, see Chapter 2 of this minibook.

Figure 4-16:
This
PivotTable
shows the
products
sorted into
two groups
using the
Group
button.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 309

Analyzing Data with PivotTables310

Follow these steps:

1. Click the Formulas button in the Tools group of the Design tab on the
Ribbon.

Access displays a drop-down list.

2. Choose the Create Calculated Total option or the Create Calculated
Detail Field option.

Access displays the Calculation tab of the Properties sheet, shown in
Figure 4-17.

3. Name the new field.

Type a descriptive name for the new field in the Name box.

4. Write the expression to calculate the new field.

You write the expression in the usual way (see Chapter 2 of this mini-
book). You can also use the Insert Reference To button to put a field
name into the expression.

You can use functions, but you must know the exact syntax. (You may
prefer to create the new field in Design view — see the tip after these
steps.)

5. Click the Change button to create the new field.

6. Close the Properties sheet.

The new field appears in the PivotTable Field List. If the new field is a
total field, it appears indented under the Totals category, at the top of
the Field list.

After you create a new field, you can drag it into the table.

Figure 4-17:
Create a
new field
using the
Calculation
tab of the
Properties
sheet.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 310

Book III
Chapter 4

Analyzing Data with PivotTables 311

You can also create a new field in Design view. If you work in the PivotTable
view of a query, switch to Design view (click the View button) and create a
new detail field. When you switch back to PivotTable view, the new field is
available in the PivotTable Field List. You can use the Expression Builder
when you create a new field using Design view — useful if you create an
expression that uses functions.

Charting your PivotTable
You may find you want to view your PivotTable graphically. You can — with
PivotChart view. Click the View button and choose the PivotChart option
from the drop-down menu. PivotChart view reflects the layout of the
PivotTable. (See Book V, Chapter 3 for more on how to use PivotCharts.)

If you change the layout of your PivotChart, your PivotTable reflects those
changes — and vice versa. If you want both a PivotChart and a PivotTable to
work with, create two identical objects (queries or forms) — one for the
chart, and one for the table.

Formatting PivotTables
PivotTables do have some formatting options. You find some of the normal
text-formatting options through the Properties sheet: Click the Property
Sheet button. When the Properties sheet appears (as shown in Figure 4-18),
click the Format tab.

Before you select format options, click the Select drop-down list to tell
Access what part of the PivotTable you are formatting. To make changes to
the whole table, follow these steps:

1. Select the Microsoft Office PivotTable option.

If you prefer, rather than choosing a field from the drop-down list, click a
part of the PivotTable while the Properties sheet is open.

Figure 4-18:
The Format
tab of the
Properties
sheet
changes
text
formatting.

View
ing Your Data

from
 All Angles

Using Crosstabs and
PivotTables

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 311

Analyzing Data with PivotTables312

The Select option changes to reflect the part of the PivotTable that you
clicked.

2. Use the Delete button (which looks like an x) to remove the field that
appears in the Select box from the PivotTable, and the Sort buttons to
sort the field.

The other formatting options allow you to change the text format, align-
ment (where in the cell the data appears — left, center, or right), font, font
color, font size, number format, background color, and column width.

3. Select the Autofit check box to select the best size for the column.

You can also change column width without the Properties sheet, by using
the drag method that you use in a datasheet.

Another formatting option that you may want to use is the Caption prop-
erty on the Captions tab of the Properties sheet. Using the Caption prop-
erty, you can change the label used for the field. Here’s the drill:

1. Select the label you want to change — by using the Select Caption
drop-down list or by clicking the caption in the table.

The Properties sheet remains open.

2. Type the new caption in the Caption property.

You can change the format of the caption too, using the formatting
options.

Filtering the PivotTable data
You can filter data in a PivotTable in several ways. PivotTables can filter
data, but they are set up for very simple criteria, such as excluding a single
value at a time. To filter within a PivotTable, you select from a list of values.
If you have a lot of data — as well as criteria that include a range of values —
you may want to create criteria in a query, and then use the query data to
create the PivotTable.

When you filter within the PivotTable, you can use a field in any drop area. If
you don’t want to use a field for the structure of the PivotTable (row,
column, or data), then simply drop it in the Filter drop area, and use it only
to filter the data in the PivotTable.

Every field used in the PivotTable has an arrow to display a drop-down list.
Use the drop-down arrow to display a check list of displayed data — click to
remove check marks for data you don’t want displayed.

Filter settings are retained when you remove a field. If you remove a field and
later add the field back to the layout, the same items are again hidden.

20_036494 bk03ch04.qxp 11/17/06 8:24 AM Page 312

Book IV

Forms

21_036494 pt04.qxp 11/17/06 8:25 AM Page 313

Contents at a Glance
Chapter 1: Designing and Using Forms (and Reports) ..315

Chapter 2: Jazzing Up Your Forms (and Reports)..335

Chapter 3: Creating Smarter Forms ..357

Chapter 4: Doing Calculations in Forms (and Reports) ..385

21_036494 pt04.qxp 11/17/06 8:25 AM Page 314

Chapter 1: Designing and Using
Forms (and Reports)

In This Chapter
� Understanding and using forms

� Understanding the difference between forms and reports

� Creating a form using a wizard (the easy way)

� Creating a form using Design view (the way with more options)

� Controlling what records appear, and in what order

� Using your new form to enter and edit records

� Saving, copying, printing, importing, and renaming your forms

Although datasheets are convenient for looking at, entering, and editing
the information in tables and queries, there’s a lot to dislike about

them as well. Datasheets show records one per row, and if your table or
query has a lot of fields, you need to scroll left and right to see all the fields.
Datasheets rarely look anything like the paper forms that your information
may be coming from. And datasheets display information from only one
table or query at a time, even though when you enter or edit data, you may
need to make changes in related tables at the same time.

Forms to the rescue! When you design your own forms to display informa-
tion on-screen, you choose where fields appear, what explanatory text
appears, and what lines and boxes to add. Your forms can include calcula-
tions (such as the total number of items that a customer is ordering). You
can also include subforms, which are small forms that display information
(usually more than one record’s worth) from a related table or query.

After you design a form (a first draft, anyway), you can save the form design
as part of your database, and you can use it any time to view the table or
query with which the form is associated. You can always change the design
of a form later — no one makes a perfect form the first time. This chapter
describes how to make simple forms (either by using a wizard or from
scratch). Chapter 2 of this minibook explains how to modify the design of a
form after you create it. Chapters 3 and 4 of this minibook cover fancier
forms, including forms with calculations, totals, and subforms.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 315

Forms and Reports Are Secretly Related316

Forms and Reports Are Secretly Related
This chapter describes how to make and edit forms, but it secretly also
describes how to make and edit reports. Forms and reports are very similar.
You create them with the same commands, tools, and properties to make
stuff look good on-screen and on paper. But how you use forms and reports
is different. Forms are for interacting with data on-screen, while reports are
for printing data on paper.

If you need to know how to make reports, take a look at Book V, which is all
about reports. But come back to this minibook, too, for the details of report
layout and formatting.

Creating Forms with AutoForms and Wizards
Access provides several ways to create forms. The method you use depends
on whether you want Access to do the work, whether you want complete con-
trol over what you see, or whether you want some combination of laziness
and control.

You can go a long way in your form design by using a wizard — we encourage
starting that way. Save the form the wizard creates, even if it’s not exactly
right, and then use all your know-how to gussy up the form in Design view.

Your form creation options
As with most objects, you create forms from the Database window. Open
your database and follow these steps to create a form from scratch:

1. In the Ribbon at the top of your Database window, select the Create
tab, and navigate to the Forms group.

2. Examine the Forms button on the Forms group of the Create tab of the
Ribbon.

Access displays a list of the forms in this database in the left-hand menu
and all open forms as tabs on the right-hand pane. If you haven’t made
any forms yet, you don’t see much — just the Tables/Forms/Reports/
Other options for creating new objects.

3. Click the button on the Create tab of the Forms group for the kind
of form you want to create on the Database window’s Ribbon (see
Figure 1-1).

4. Choose the method you want to use to create the form from the list.

See Table 1-1 for a summary of your options.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 316

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Creating Forms with AutoForms and Wizards 317

5. Select the table or query on which you want to base the form from the
drop-down list.

Choose the table or query that contains most of the information on the
form — the one for which the form usually displays one record at a time.

6. Click OK.

The appropriate wizard or AutoForm runs, or you see a blank form in a
Design view window — a Form Design View window, to be precise.

Table 1-1 Methods of Creating Forms
Options What It Does Where to Find More Info

Form Allows you to design your own form from “Creating a form (or report)
Design scratch, with a little help from View from scratch,” later in this

chapter.

Form Walks you through the creation of a form, help- “Wizard, make me a form!”
Wizard ing you to choose fields from multiple tables later in this chapter.

and queries and to add summary calculations.
The results are bland and standard, but you
can use Design view later to make changes.

AutoForm: Creates a quick and easy form for the table, “Using More Forms to create
Form query, or report you have open or selected. super-speedy forms,” later in

You enter information into this kind of form one this chapter.
record at a time.

AutoForm: Creates a PivotTable from a single table or Book III, Chapter 4 for more
PivotTable query. A PivotTable is an interactive table on PivotTables.

that summarizes data by multiple fields.

AutoForm: Creates a PivotChart from a single table Book V, Chapter 3 for more
PivotChart or query. A PivotChart graphically analyzes on PivotCharts.

data as a bar or line chart.

Chart Creates a form consisting of a chart. Book V, Chapter 3 for more on
Wizard charts.

(continued)

Figure 1-1:
Access
includes a
bunch of
automated
form
builders
in the
New Form
dialog box.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 317

Creating Forms with AutoForms and Wizards318

Table 1-1 (continued)
Options What It Does Where to Find More Info

More Forms Creates a form that keeps the focus and must “Creating a form (or report)
Modal be closed to return to where you came from. from scratch,” later in this
Dialog It is often confused with a dialog box. chapter.

PivotTable Creates a PivotTable from multiple Book III, Chapter 4 for more
Wizard tables or queries. on PivotTables.

Using More Forms to create super-speedy forms
The easiest way to create a form is to use one of the predefined forms
choices. You don’t have a lot of options — none, actually — but you get a
usable form with no waiting. Display the Database window, click the Create
tab from the Objects list, select the table or query for which you want a form
created, and click the More Forms button on the Ribbon to create the new
form. Choose the correct button (Form, Split Form, or Multiple Items)
depending on which type of form you want to create. Voilà — a form!

If you like the form, save it by clicking the Save icon (the floppy disk in the
upper left-hand corner of your screen) and typing a name for the form in the
Save As dialog box . (We usually name the form after the table or query whose
data it displays.) If you don’t like it, just close it and decline to save it when
Access asks. See the section “Storing Your Forms and Reports” at the end of
this chapter.

The first three types of AutoForms are the following:

✦ Columnar: You get a form with the fields arranged in a column, with the
field names to the left, as shown in Figure 1-2. If Access runs out of space
on-screen for your fields, it starts a second column of fields.

✦ Tabular: Access creates a form arranged like a datasheet, with records
in rows and fields in columns, as shown in Figure 1-3.

Field names Fields

Figure 1-2:
A Columnar
AutoForm
lists the
fields in
your table or
query, one
per line, in
columns.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 318

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Creating Forms with AutoForms and Wizards 319

✦ Datasheet: Access creates exactly the same form as for the Columnar
AutoForm, but displays it in Datasheet view, so it looks like a spreadsheet
with one row per record. (See “Viewing a Form” later in this chapter for
how to view a form in Datasheet view.)

Two other types of AutoForms, PivotTable and PivotChart Automatic Forms,
are described in Book III, Chapter 4 and Book V, Chapter 3. We don’t cover
them here because these two views are for summarizing and graphing your
data, not for entering and editing data.

Wizard, make me a form!
The Form Wizard is a step up from AutoForms — you choose which fields to
include and in what order to place the fields. This wizard is especially useful
if you want to create a form that includes data from more than one table or
query. The wizard can create subforms for you, and even apply formatting to
make the form look a little less vanilla. The Form Wizard can be a great way
to get started with a complex form — you may not like the exact look of the
finished form, but it works and it has all the fields you want. After the wizard
finishes, you can make all the changes you want in Design view.

Follow these steps to create a form with the Form Wizard:

1. Press F11 to display the Database window. Click the Create tab on the
Ribbon and then the More Forms button in the Forms group.

Access displays a list of the forms in this database. If you haven’t made
any forms yet, you don’t see much — just two options for creating forms.

2. Click the More Forms drop-down list and select the Form Wizard icon
to start the Form Wizard.

When you have launched the Form Wizard, you see the Form Wizard
window, which looks like Figure 1-4.

Figure 1-3:
A Tabular
AutoForm
looks a lot
like a
datasheet,
but you can
customize
the field
sizes later.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 319

Creating Forms with AutoForms and Wizards320

3. Use the Tables/Queries drop-down list to choose the first table or
query for which you want to include fields.

Choose the table or query from which the form gets the data to display.

4. In the Available Fields list, select the fields that you want to appear on
the form. Move them to the Selected Fields list by double-clicking
them or by selecting them and clicking the right arrow (>) button.

The order doesn’t matter. If you decide you don’t want a field after all,
double-click it in the Selected Fields list — or select the field and click the
left arrow button (<) button — to move it back to the Available Fields list.

5. Repeat Steps 3 and 4 to choose fields from other tables or queries.

The additional tables or queries have to be related to the first table or
queries. Otherwise, Access asks you to use the Relationships window to
create relationships, and you have to start the wizard over. See Book II,
Chapter 6 for how to create relationships between tables.

6. When all the fields that you want to display in the form appear in the
Selected Fields list, click the Next button.

The Form Wizard displays the next window. If you select fields from only
one table or query, skip right to Step 11. Otherwise, the window asks
how you want to view your data, as shown in Figure 1-5.

7. Choose the organization you want for your form by clicking the table
or query by which you want to group records.

In Figure 1-5, the form includes fields from the Address Book table
(which contains a record for each customer) and the Orders table (with
one record for each order). Do you want the form to display one cus-
tomer, with all the orders for that customer? Or do you want to display
one order, with all its customers? (The second option makes no sense,
because each order is placed by only one customer.) You decide, by
clicking an option from the list on the left side of the wizard’s window.

Figure 1-4:
The Form
Wizard
steps you
through the
process of
creating a
new form.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 320

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Creating Forms with AutoForms and Wizards 321

8. Choose whether to include the second table or query as a subform or
as a second form.

If you choose the Form with Subforms option, you end up with one form,
with the records from the second table or query in a box (subform) on
the form. If you choose the Linked Forms option, you get two separate
forms, each in its own window, with a button on the first form to display
the second form. When in doubt, try subforms (see Chapter 3 of this
minibook for how subforms work).

9. Click Next.

Access displays a window that asks you to choose the layout for the
subform, if you’re creating one. Otherwise, skip to Step 11.

10. Choose the layout and click Next.

You can click a layout option to see what it looks like. If you’re not sure
which option to use, stick with the Tabular layout — using and editing
the layout is easy.

11. Choose the style for the form and click Next.

Click a style to see a sample of a form formatted with that style. None of
the styles are gorgeous (in our humble opinions), so pick one and plan
to fix it up later in Design view.

12. Give the form a name in the last window. If you created a subform or
second form, give it a name, too. Choose whether to open the form
now (in Form view) or to make changes to the form design (in Design
view). Then click Finish to create the form.

Why not open it first, to see how it looks? You can always edit the design
later.

Figure 1-6 shows a form with a subform as created by the Form Wizard.

Figure 1-5:
The Form
Wizard can
create a
form with a
subform for
information
from a
related table
or query.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 321

Viewing a Form322

When you’re done admiring your new form, close it with the Close button.
To change its design, see Chapter 2 of this minibook.

Viewing a Form
After you create a form, you can open it in any of three views. When the form
is open, you can switch views by clicking the Views drop-down box on the
Views group on the Home tab of the Ribbon. The View button changes
depending on which view you’re in. The three views (and their icons on
the View button) are

✦ Form view displays the form as you (or the Form Wizard or AutoForm)
designed it, as shown in Figure 1-6.

✦ Datasheet view displays the fields from the form as a datasheet, just as
if you were looking at a table or query. The datasheet includes only the
fields included on the form, in the same order as on the form, even if
your table includes additional fields.

✦ Design view displays the Design View window, in which you can move
form elements around, change them, add them, and delete them, as
described in the next section.

When you open a form, you can open it in Layout or Design view by right-
clicking the form name in the Database window (press F11 if it’s not visible)
and clicking the Layout button or the Design button.

When a form is already open in any view, you can switch among the views by
right-clicking the title bar of the form. Choose the view you want.

Subform

Figure 1-6:
A sample
form
created by
the Form
Wizard.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 322

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Creating Forms (and Reports) in Design View 323

The View button provides different possible views depending on what type
of object you’re working on. The views available for tables and queries are
different from those for forms.

When you’re in Design view, the default for the View button is Form view,
and when you’re in Form view, the default is Design view. If you want to
switch back and forth between Form and Design views (to make changes to
your form and then see the results), just click the View button.

Creating Forms (and Reports) in Design View
As you work with forms, you’ll find yourself using Design view in two situa-
tions: to create a form from scratch, and to change the layout of an existing
form. Either way, you see controls — the objects on the form that tell Access
what to display.

The information in this section (and most of the rest of the sections in this
chapter) works for creating and editing reports, too. Just substitute the word
“report” for “form” and give it a try!

Creating a form (or report) from scratch
To create a new form using Design view, follow these steps:

1. Press F11 if the Database window isn’t visible, and then click the
Forms button on the Objects list in the Database window.

To make a report, click the Reports button.

2. Click the New button on the Database window toolbar.

You see the New Form dialog box (refer to Figure 1-1). If you’re making a
report, it’s the New Report dialog box, but it works the same way.

3. Choose the Design View option from the list.

Chances are, it’s already selected.

4. From the drop-down list, choose the table or query that contains the
fields you want to display on this form.

5. Click OK.

You see a blank form (or report) in Design view, as shown in Figure 1-7.
(The Property sheet and Field list may not appear — yet.) After you
create the form, you’re ready to add controls to it, as explained in the
section “Changing the layout of an existing form or report,” later in this
chapter.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 323

Creating Forms (and Reports) in Design View324

You’d think that another easy way to start a form in Design view would be to
click the Create Form in Design View icon in the list of forms in the Database
window. However, this method doesn’t allow you to select the table or query
on which you want to base the form. If you create a form this way, you need to
select the table or query that has the data, as described in the section “Where
records come from,” later in this chapter, before you click the Create Form
button in the Design View group that is located on the Create tab of the Ribbon.

Changing the layout of an existing form or report
To change the layout of an existing form or report, first put it in Design view
by clicking its name in the Database window and clicking the Views drop-
down list button on the Views group of the Home tab on the Ribbon.

Design view shows the controls that make up your form or report, and
enables you to create, move, and delete the controls. You can also set the
properties of your controls to change how they look and act.

We can hear you asking, what’s a control? A control is an object on a form or
report that displays some information. Some controls display text, while
others display check boxes, command buttons, drop-down menus, or pictures.
You choose what information appears on your form or report by making con-
trols to display that information. Figure 1-8 shows some of the all-time most
popular controls: a text box (to show text, usually from a field in your table), a
label (to show explanatory text), a combo box (to show a drop-down menu),
and a command button (to run a little program, either a macro or a VBA
module). Chapter 2 of this minibook includes a list of other types of controls.

Figure 1-7:
A blank form
in Design
view.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 324

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Creating Forms (and Reports) in Design View 325

Other things you may see in Design view are the following:

✦ Grid: Access displays a grid of lines and dots in the background of the
Design View window to help you align objects neatly, as well as rulers at
the top and left of the window. Figure 1-8 shows the grid.

✦ Design tab: The Controls group on the Design tab of the Ribbon (view-
able when a form is open in Design view) contains a button for each type
of control you may want to create (refer to Figure 1-9 for what it looks
like). See Chapter 2 of this minibook for what each button does.

✦ Field list: This floating window shows a list of the fields in the table or
query that this form or report is based on (refer to Figure 1-8). You use it
when creating a new control to display a field from your table or query.
Display the Field list by clicking the Add Existing Fields button on the
Tools group of the Design tab of the Form Design Tools Ribbon.

Figure 1-9:
The tools of
the Controls
group on the
Design tab
of the
Ribbon.

Label Text box

Figure 1-8:
Controls on
a form in
Design
view.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 325

Configuring the Whole Form or Report326

✦ Property sheet: This window (shown in Figure 1-10) displays the proper-
ties of the selected object, which can be the whole form or report, a sec-
tion of the form or report, or an individual control. Tabs display the
different types of properties. The properties listed depend on the type of
object that you select. Click the All tab to see all the properties of the
selected item in one long list.

Display the Property sheet by clicking the Property Sheet button in the
Tools group on the Design tab of the Ribbon. To change which control’s
properties display, you can choose another control name from the drop-
down list at the top of the Property sheet. You can also move and size
the Property sheet.

Configuring the Whole Form or Report
Some properties apply to an entire form, such as what records appear in the
form or report, how many records appear at the same time, and what scroll
bars and buttons appear around the edges. This section explains how to set
these form and report properties, and why you’d want to.

Reports have additional properties and sections, which are described in
Book V, Chapter 1.

Follow these steps to display the properties that apply to the whole form or
report:

1. To select the entire form or report, click in the upper-left corner of the
Design View window, in the little box where the two rulers intersect.

Refer to Figure 1-8 to see where this box is.

2. If the Property sheet isn’t already open, click the Property Sheet
button in the Tools group of the Design tab on the Ribbon to display it.

Refer to Figure 1-10 to see the Property sheet.

Figure 1-10:
The
properties
of a control.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 326

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Configuring the Whole Form or Report 327

Here are two other ways to see the properties of the whole form or report:

✦ Double-click the gray area behind the grid.

✦ If the Property sheet is already open, choose Form or Report from its
drop-down list.

The next few sections describe the most useful form and report properties.

Where records come from
When you created your form or report, you probably chose the record
source — the table or query that provides the records to display. You rarely
want to change the record source — if you want to use different data, you
may as well start with a new form or report. An exception would be if you
decide to use a query to sort or filter the data, but you’re still displaying
the same fields. To see or change the record source, open the form or
report in Design view, display its properties, and follow these steps:

1. Click the Data or All tab in the Property sheet.

Either way, the first property listed is the Record Source property. It
shows the name of the table or query from which the form or report dis-
plays records.

2. If you want to change the record source to a different table or query,
click the down-pointing triangle button at the right end of the Record
Source property and choose a different table or query from the list
that appears.

If the form or report is based on a query and you want to modify the
query, click the Expression Builder button (the ... button to the right of
the Record Source property). (See Book III for the details of how
queries work.)

If you’re going to change the record source, do it before you spend a lot of
time working on the design of the form. Having the correct record source
makes creating and editing your form or report much easier, because Access
already knows what fields may appear on it (the fields from the record
source you choose appear in the floating Field list, making them easy to drag
to the Design View window).

Deciding the order of the records
You can also control the order in which records appear. You may want to
browse through your address book by last name or by city. Normally, Access
displays the records in the same order as the record source. If the record
source is a table, records appear in primary-key order from that table. If the
record source is a query, records are in the sort order specified in the query.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 327

Configuring the Whole Form or Report328

However, you can change the order of the records by changing the Order By
property of the form or report, which appears on the Data tab of the
Property sheet. Type the field name into the Order By property (refer to
Figure 1-11). If you want the records to appear in reverse order, type a space
and DESC after the field name (for descending order).

One record or many?
You usually want your form to show only one record at a time, like a paper
form. Most forms display one record at a time. For example, the Address
Book form in the MOM database displays one record from an Address Book
table. But sometimes you want to see more than one record at a time, as in
the form in Figure 1-12. (Reports use a different system to determine
whether one or many records appear on the report, as described in Book V,
Chapter 1.) To accomplish the display of more than one record at a time, you
can make a simple change to the form’s Default View property. To display
one record at a time, you set this property to Single Form; to display multi-
ple records, you change this to Continuous Forms. The following list shows
you what each option in this property’s drop-down list does.

A form’s Default View property determines whether the form displays one or
several records. Display the form properties, click the Format tab of the
Property sheet, and look at the second property, Default View. The first three
options are

✦ Single Form: Displays one record at a time. This setting is the default.

✦ Continuous Forms: Repeats the form for as many records as fit in the
window, as shown in Figure 1-12.

✦ Datasheet: Displays a datasheet with the same fields that are included
on the form. This option is used primarily for subforms, which are
described in Chapter 3 of this minibook.

Order By property

Figure 1-11:
The Order
By property
in the
Property
sheet.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 328

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Configuring the Whole Form or Report 329

The last two options, PivotTable and PivotChart, are described in Book III,
Chapter 4 and in Book V, Chapter 3.

Some other cool form properties
A few other useful form properties appear on the Property sheet for the
form. Here’s what they do:

✦ Title bar text: The Caption property, which appears on the Format tab,
controls the text that appears in the title bar of the form. Normally, the
title bar shows the same name as the form, but you can change this.

✦ Scroll bars and navigation buttons: Normally forms include horizontal
and vertical scroll bars if the form is too large to fit in the window. You
also see navigation buttons to move to the first, previous, next, and last
records. You can turn the scroll bars and navigation buttons on and off
using the Scroll Bars and Navigation Buttons properties, both of
which appear on the Format tab.

✦ Record selectors: A gray box — the record selector — appears to the
right of the information for one record. When you’re editing records
using your form, you can delete or copy a record by clicking its record
selector and pressing the Delete key or Ctrl+C. You can control whether
the record selectors appear on the form by setting the form’s Record
Selectors property, which appears on the Format tab.

Figure 1-12:
An Address
Book form
showing the
change to
show
Continuous
Forms in the
Property
sheet.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 329

Sizing Forms330

✦ Read-only forms: You can make the information in a form read-only —
that is, not editable (look, but don’t touch!) — by setting the Allow
Edits property, which appears on the Data tab. This property is nor-
mally set to the Yes value, but you can change it to the No value. You
can prevent adding new records by setting the Allow Additions prop-
erty to the No value, and you can prevent deletions by setting the Allow
Deletions property to the No value.

Sizing Forms
How big will your form look on-screen? You can control two sizes: the height
and width of the form itself, and the height and width of the window in
which it appears.

To adjust the size of the form itself, drag the right and bottom edges of the
form up, down, left, or right in the Design View window. You can’t make the
form smaller than the area that the controls occupy. We usually start with a
large form, leaving lots of room to move things around, and then snuggle the
controls closer together near the end of the design process, shrinking the
edges of the form to match.

You adjust the size of the window in Form view. (You can adjust it in Design
view, but it’s easier in Form view.) Switch to Form view and drag the window
borders. When you save the design of the form, you save the size of the
window, too.

If a form is too large to fit in its window, consider creating tabs, as described
in Chapter 3 of this minibook.

The size of the window doesn’t matter for reports, because it doesn’t affect
how the report looks when it’s printed. The size of the report itself does
matter, because the report needs to fit on your paper. See Book V, Chapter 2
for how to fit a report to the paper on which it can print.

Storing Your Forms and Reports
You spend oodles of time and energy getting your form or report looking just
right. You don’t want to lose all that hard work, do you? Save your form or
report by clicking the Save button on the toolbar or pressing Ctrl+S. When
Access displays the Save As dialog box, type a name. This name usually
appears in the title bar of the form, although you can change this. (See the
“Some other cool form properties” section, earlier in this chapter, for a look
at how.)

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 330

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Storing Your Forms and Reports 331

When you’re done designing your form or report (or you’re done for now,
anyway), close it by clicking its Close button (the X in the upper-right
corner). If you haven’t saved it, Access asks whether you want to do so.

You can display the form or report any time from the Database window —
click the Forms or Reports button in the All Access Objects list and then
double-click the name. If you want to change the design some more, right-
click the name and click the Design button.

Form and report management
You can rename, delete, and copy forms and reports from the Database
window, too. To rename one, click its name, press F2, edit the name in the
little box that appears, and press Enter. To delete it, select the name and
press the Delete key. And to copy it, select its name, press Ctrl+C, press
Ctrl+V, and type a name for the new copy.

Importing forms and reports from other databases
What if you create a terrific form or report in one database and you want to
use the same one in another database? You can import a form or report from
another Access database:

1. Choose External Data➪Import➪Access to display the Import Objects
dialog box.

2. Choose the name of the database file (either browse for it or type the
path in), select Import tables, queries, forms, reports, macros, and
modules into the current database, and click OK.

You see the Import Objects dialog box (shown in Figure 1-13).

Figure 1-13:
Import
Objects
dialog box.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 331

Editing Data Using Forms332

3. Click either the Forms tab or the Reports tab.

4. Choose the form (or forms) or report (or reports) you want to import.

You can select a group of items by clicking the first one and Shift+clicking
the last. You can add a form or report to the ones you already selected
by Ctrl+clicking it.

5. Click OK.

If you already have an object of the same type with the same name,
Access adds a 1 to the end of the name.

Read Chapter 2 of this minibook if you want to add controls to your forms.
Chapter 3 of this minibook describes advanced controls such as drop-down
menus, sets of radio buttons, and subforms. If you’re creating reports, jump
to Book V.

Editing Data Using Forms
After you design and create your form, you can enter, edit, and display
records. To open a form in Form view, double-click its name in the Database
window. The data that a form displays comes directly from tables in the
database, and any changes you make are stored in the tables. When you add
a record via a form, Access stores the record in the table(s). If your form has
subforms, as described in Chapter 3 of this minibook, you can edit records
from several tables at the same time.

In general, you use all the same keystrokes you use when editing records in
Datasheet view, as described in Book II, Chapter 2. You can also use the navi-
gation buttons at the bottom of the form to move to different records, and
you press Tab or Enter to move from one field to another.

If you prefer to use the keyboard to move around a form, the keys to use and
where they move the cursor are listed in Table 1-2.

Table 1-2 Using the Keyboard to Move in a Form
To Move Here in a Form. . . Press This Key

Following field Tab, Enter, or →
Previous field Shift+Tab or ←
First field of current record Home

Last field of current record End

Subform Ctrl+Tab

Main form Ctrl+Shift+Tab

New record Ctrl+(+) (Plus sign)

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 332

Book IV
Chapter 1

Designing and
Using Form

s
(and

Reports)
Editing Data Using Forms 333

You can cut and paste, search, and filter your records just as if you were
working in Datasheet view, as described in Book II, Chapter 3. To select an
entire record, click the record selector (the gray box at the left edge of the
window). You can cut and paste a record from another table into your form
as long as the field names match: For all the fields with matching names,
Access pastes the data into the correct field on the form.

Saving your data
Access saves the record when you move to another record. You can also
save what you typed so far by pressing Ctrl+S, choosing the Microsoft Office
button➪Save, or clicking the Save button on the toolbar.

Printing forms
Forms aren’t designed to be printed — reports are the Access objects that
give you the most printing and formatting options — but you can print them
anyway. However, don’t just click the Print button on the toolbar when
you’re using a form in Form view. Instead of printing just the record you’re
looking at, Access prints the form for every single record in the table or
query, not just the record you’re viewing!

One method of printing the form for just the current record is to apply a
filter to select only the current record, and then click the Print button. Be
sure to remove the filter before trying to move to any other records.

Book II, Chapter 3 explains how to create, apply, and remove a filter. Book VI,
Chapter 2 describes how to create a command button on your form that
prints just the current record.

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 333

Book IV: Forms334

22_036494 bk04ch01.qxp 11/17/06 8:25 AM Page 334

Chapter 2: Jazzing Up Your
Forms (and Reports)

In This Chapter
� Creating new controls on your form (or report)

� Adding controls to display text, numbers, dates, and Yes/No fields

� Spiffing up your form with lines and boxes

� Arranging and formatting the controls on your form

� Controlling how the cursor moves from field to field when you use
the form

Chapter 1 of this book explains how to make a form or report by using
either a wizard or your bare hands. In this chapter, you find out how to

create controls — the objects on the form (or report) that actually display
information. You use controls to add lines, boxes, and pictures to forms,
too. You use Design view to fool around with your form (or report) and
make it as clear and easy to use as possible.

The basic system is as follows:

1. Switch to the Database window and click the Forms or Reports drop-
down list in the All Access Objects list on the left.

If the Database window isn’t visible, press F11.

2. Open the form or report in Design view by selecting its name from
the list on the left and clicking the View button on the Home tab of
the Ribbon. Select Design View from the resulting drop-down list.

See Chapter 1 of this minibook for an explanation of the items that you
see in Design view.

3. Make a change — add a control, change an existing control, turn the
background purple, or whatever.

Read on to find out how to make all kinds of specific changes.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 335

Jazzing Up Your Forms (and Reports)336

4. To see how your form looks with the change, switch to Form view by
clicking the View button on the View group of the Home tab of the
Ribbon.

When the Design tab is selected, the View button on the Ribbon
shows a tiny form — it defaults to Form view. Clicking the View
button when it’s in tiny-form-mode tells Access to display your form
in Form view — including a record from the table or query that the
form is based on — so you can see whether you made the form better
or worse. (See Chapter 1 of this minibook for the views available for
forms.)

For reports, you may often want to preview what the report will look like
after it is printed. To do this, click the Office Button with a report in
Design view and roll your mouse over the Print link. Click the Print
Preview link to display the Print Preview tab on the Ribbon. (Figure 2-1
shows a good example of this.) The result allows you to see how the
report will look on paper.

5. Switch back to Design view by clicking the View button again.

When you’re in Form view (or Print Preview of a report), the View
button shows a triangle, ruler, and pencil (which you maybe use if
you create a paper form by hand!), which is the Access icon for
Design view.

Figure 2-1:
The
available
Print
Preview
options.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 336

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Taking Control of Your Form or Report 337

6. Repeat Steps 3 through 5 until your form or report is gorgeous and
works perfectly.

Be smart: Click the Save button on the toolbar every few minutes to save
your work, even before you’re completely finished.

7. Close the form’s or report’s window (it doesn’t matter whether you’re
in Design view, Form view, or Print Preview). If you haven’t saved the
form or report recently, Access asks whether you want to do so now —
click the Yes button.

Taking Control of Your Form or Report
The heart of form design is the controls — the objects that appear on forms
and reports. Controls on forms include boxes that display text and numeric
data from fields, check boxes for Yes/No fields, drop-down menus for lookup
fields, buttons you click to run a macro or VBA procedure, and other stuff
you’re used to seeing on computer screens. (On reports, all controls just sit
there on the paper.)

To display or edit a field, you have to create a bound control — a control that
is connected to a field in your table or query — so Access knows what infor-
mation to display in the control. You can also display unbound controls that
contain information that’s not stored in your table or query, such as the
form’s title or explanatory text.

Form and report design tips
When designing your form, keep the following
design tips in mind for perfect, or at least taste-
ful, forms:

� Make sure that the Snap To Grid feature is
turned on. This feature tells Access to make
all the edges of your controls line up with
the grid that appears in Design view, which
makes your form or report look neater. To
turn this feature on, with the report open in
Design view, click the Arrange tab from the
Ribbon and see whether the Snap to Grid
button appears to be selected in the Control
Layout group. If it doesn’t appear to be
selected, the feature is turned off: Click the
Snap to Grid button to turn the feature on.

� Before you make any big changes to your
form or report, be sure to save it (by click-
ing the Save button on the toolbar or by
pressing Ctrl+S). If you want to be double-
sure, save it with a different name (like
“Address Book Test”) and fool around with
the big change you’re planning to make on
the copy. Either way, if you don’t like the
results, close the modified version without
saving it.

� If you make a change and you’re instantly
sorry, press Ctrl+Z or choose Undo (the
button with the backward curvy arrow) in
the Quick Access toolbar to reverse your
change. Whew!

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 337

Taking Control of Your Form or Report338

Designing a form or report (or changing the design of an existing one) consists
mainly of adding controls where you want them to appear, getting rid of con-
trols you don’t like, and moving or configuring the controls that you’ve got.

Form control types
Table 2-1 lists the types of controls that can appear on forms and reports
when the report is open in Design view, along with the buttons on the Design
tab that create each type of control. As with any button, hover the mouse
pointer over a button to see the button’s name.

To display the Toolbox window if it’s not already on-screen, open a form in
Design view and the Form Design Tools will appear on the Ribbon. You can
choose the Design or Arrange tabs. Figure 2-2 shows this new section of the
Ribbon.

The first three groups on the Ribbon don’t create controls:

✦ Views: This button will allow you to toggle between different views of
this form.

✦ Font: This group will allow you to change the font of the tabs associated
with the controls.

✦ Gridlines: This group controls the appearance of the gridlines on the
Design view.

Figure 2-2:
The Form
Design
Tools on the
Ribbon.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 338

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Taking Control of Your Form or Report 339

Table 2-1 Types of Controls on Forms
Toolbox Button Control Type Description

Label Text, not editable — hyperlinks are special types of labels
(see the sidebar “It’s a link!”)

Text Box Contents of a field

Option Group Group of option (radio) buttons, check boxes, or toggle
buttons

Toggle Button that is either on (pressed) or off (not pressed)

Option Button Option (radio) button that is part of an option group

Check Box Box that contains or doesn’t contain a check mark

Combo Box Drop-down menu from which you can choose an option
or type in a new one

List Box Drop-down menu from which you can choose an option,
but you can’t type new values

Command Button that performs an action when clicked
Button

Image Bitmap picture

Unbound OLE or embedded object (graph, picture, sound file, or
Object Frame video) that is not stored in a field in a table

Bound Object OLE or embedded object (graph, picture, sound file, or
Frame video) that is stored in a field in a table

Page Break Division between one form page and the next

Tab A tab for displaying different controls (like those at the
top of Controlmany dialog boxes)

Subform/ Adds a subform or subreport to the form
Subreport

Line A line, for visual effect

Rectangle A rectangle, for visual effect

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 339

Taking Control of Your Form or Report340

Making a new control
Making most forms and reports consists mainly of setting up the bound con-
trols to display the fields from the record source (table or query). Access
makes this easy, with a quick drag-and-drop procedure. With your form open
in Design view, follow these steps to create a bound control:

1. If the Field list isn’t already displayed, display it by clicking the Add
Existing Fields button in the Tools group of the Design tab on the
Ribbon. Figure 2-3 shows you the selection and the resulting Field list.

You see a list of the fields in your table or query. If your form or report
doesn’t have a record source, or the fields look like the wrong ones, see
Chapter 1 of this minibook.

2. Drag the field from the Field list to the Design View window, dropping
it where you want a control for that field.

Access creates a control (usually a text box) and a label control. The label
control contains the name of the field, followed by a colon. The text box
(or other control) is where the contents of the field will appear.

OrderID label

Figure 2-3:
Displaying
Field lists.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 340

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Taking Control of Your Form or Report 341

The Field list helps you create a control for your field, but you don’t get to
decide what kind of control to make. If you don’t like what the Field list pro-
vides, or if you want to create an unbound control (one that doesn’t display a
field from the Field list), there is another way to create controls. To make any
kind of control using the Controls group in the Design tab on the Ribbon,
follow these steps:

1. Click the appropriate Controls button for the type of control you want.

The chosen Controls button turns a different color and has a box around
it, so you know it’s selected.

2. Click the place in the Design View window where you want the con-
trol to appear.

Access creates a new control, and for some control types, runs a wizard
to help you configure it.

Whether you use the Field list or the Controls to create a control, you usu-
ally need to configure it by setting its properties on the Property sheet, as
shown in Figure 2-4. You can change the text of a table control, change the
field that a text box control displays, make text bold, huge, or a different
color, and other changes. The rest of this chapter describes how to config-
ure your controls. In the figure, you will notice that you can change the
properties of any of the components of the form, from text box properties
to the background color of the form itself.

This chapter tells you everything you need to know about making and con-
figuring text boxes, labels, and check boxes, along with drawing lines and
boxes on your form. The next chapter of this book describes how to create
and configure more advanced controls, including combo boxes, list boxes,
toggle buttons, option groups (of radio buttons), and command buttons.

Setting control properties
After you create a control on a form or report, you can change what informa-
tion the control displays, how the control looks, and how the control acts by
changing its properties. To see or change a control’s properties, display the
Property sheet (by clicking the Property Sheet button in the Tools group on
the Design tab of the Ribbon) and then click the control in Design view or
choose the control’s name from the drop-down list at the top of the Property
sheet. (In Figure 2-4, the Property sheet displays the properties of the Orders
Main Form.)

Advanced form designers can make macros run when users move the cursor
in or out of the controls on the form. (See Book VI for how to create macros
and connect them to form events.)

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 341

Taking Control of Your Form or Report342

The most important property of most controls is the Control Source
property, which tells Access what information to display in the control.
The Control Source property is usually a field in a table or query that
is the record source for the form. For example, if a form’s record source is
the Products table in an order entry database, one text box may have the
Product Code field as its control source — the text box displays the con-
tents of the Product Code field in the current record of the Products table.

A control’s name is usually the same as its control source, but not always.
You can have a text box named TextBox123 for which the control source is
the Selling Price field in the Products table. Naming your controls with
the same names as the fields that they display is good practice, though, and
cuts down on the confusion. When you drag a field from the Field list to the
Design View window, Access usually names the new control after the field
that it displays. In Figure 2-5, for example, the Unit Price text box has the
Unit Price field as its control source.

Figure 2-4:
The Property
sheet for a
text box.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 342

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Making Controls That Display Text 343

Making Controls That Display Text
Face it: The most important information on most forms and reports is text.
Pictures are interesting, but text is usually where the heart of the matter is.
Access has several types of controls that display text on forms and reports:

✦ Label controls display fixed text — text that isn’t based on the record
that you’re displaying on the form.

✦ Text box controls display information from fields in the record source of
the form, or calculated information.

✦ List box and combo box controls display drop-down menus of values,
usually for a field in the record source.

This section describes how to create and format labels and text boxes. For
combo and list boxes, see Chapter 3 of this minibook.

Making and editing labels
Every form has a title in the title bar of its window, which you can set by
editing the Caption property of the form (as described in Chapter 1 of this
minibook). But you may want some other titles on the form, including expla-
nations of how to use the forms, headings for different sections of the form,
or labels that apply to the controls for specific fields. Labels are unbound
fields (they don’t take their information from a table).

For reports, you use labels wherever you want to display text that doesn’t
come from the record source — such as the report title, the date, instruc-
tions, or any other text that’s not stored in a table. (For more formatting
options that are available on reports, see Book V, Chapter 1.)

To make a label, follow these steps:

1. Click the Label button on the Controls group of the Design tab of the
Ribbon.

2. Click and drag in the Design View window to create a box the right
size and position for your label.

Figure 2-5:
Property
sheet for
Unit Price
Text Box.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 343

Making Controls That Display Text344

Don’t worry — you can always move and resize it later.

3. Type the text that you want to appear in the label and press Enter.

If you want more than one line of text to appear in the label box, press
Ctrl+Enter to start a new line.

Figure 2-6 shows a label that says “Order ID.” When you create a label con-
trol, you may see a little error symbol — an exclamation mark in a yellow
diamond. Access thinks that you may have made a mistake: Are you sure
that you don’t want this label to be associated with another control? Most
labels are associated with text boxes or other controls, to provide a visible
name or prompt for that control.

If you see the error warning icon, click it to see your options. The first item on
the shortcut menu that appears is the name of the error (in this case, New
Unassociated Label). If the label isn’t associated with another control — for
example, it’s a title for the whole form, or part of the form — choose the Ignore
Error option. If the label applies to a nearby control, choose the Associate
Label with a Control option and choose a control from the list that appears.
The convenient thing about associating a label with the control to which it
applies is that when you move the other control around, the label moves, too.

Figure 2-6:
The Order
ID label.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 344

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Making Controls That Display Text 345

To edit any text you entered, click the label box once to select it; then press
F2 to edit the text. Press Enter when your edits are complete, or the Esc key
to cancel editing. To change the font, size, or color of the label, see the sec-
tion “Formatting Your Text,” later in this chapter.

Putting Text and Memo fields in text boxes
Text, Memo, Hyperlink, and calculated fields usually appear in text boxes.
You can adjust the size, shape, font size, and other features of each text box.
You may want to make the most important fields appear in larger type, or in
boldface.

To make a text box for a Text or Memo field, drag the field name from the
Field list onto the form or report where you want the text box to appear. Or
choose the Text Box button on the Toolbox and draw an outline where you
want the text box to appear. Access makes a text box the size you indicated,
along with a label control with the name of the field.

It’s a link!
You can make a special kind of label that con-
sists of a Web address (hyperlink) that you click
to display a Web page. This kind of label may
be nice if you want to provide helpful informa-
tion about using the form on a Web site, or if
you’re using data access pages for data entry.

Instead of clicking the Label button, choose the
Hyperlink button (a little globe picture with a set
of chain links at the bottom) from the Controls
group of the Design tab on the Ribbon, type the
text that you want to appear on your form in the
Text to Display box, type the Web address into

the Address box, and click OK. (See the follow-
ing figure.) You get a clickable label control that
displays the text you specified. In Form view,
clicking the label switches to your browser (or
runs it, if it’s not already running) and displays
the Web page you specified.

You can turn an existing label into a hyperlink
label by changing its Hyperlink Address
property. In the Property sheet for the label
control, click the Format tab and type a Web
address into the Hyperlink Address box.

Hyperlink button

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 345

Displaying Number, Currency, and Date Fields346

After you have the text box in place, you can make the text large, bold, or
purple (or all three!) as described in the “Formatting Your Text” section later
in this chapter. The next chapter explains ways to make your text boxes
smarter, starting with preset default values and validating the information
that people type in.

How long should your text box be to fit the information that it may contain?
Access has a nifty command that adjusts the width of a text box to match
the width of the field that it contains. Select the text box and choose
Format➪Size➪To Fit.

You can format the contents of Text, Memo, and Hyperlink fields a bit,
mainly controlling capitalization. Book II, Chapter 1 lets you in on how to dis-
play text in upper- or lowercase, limit what you type to a certain number of
characters, or add preset characters to a field (such as dashes or parenthe-
ses to phone numbers) — you find out what magic characters to type in the
Format property of your text box. For other types of formatting, such as fonts
and colors, see the section “Formatting Your Text,” later in this chapter.

Displaying Number, Currency, and Date Fields
Number, Currency, and Date fields appear in text boxes, too, just like Text
and Memo fields. You create text box controls to display Number, Currency,
and Date fields the same way you create them for Text fields, using the Field
list or Toolbox.

You can set the format of numbers in a text box to display a currency sign
(such as a dollar sign), to control the number of decimal places that appear,
and to display thousands separators (in the U.S. and Canada, we use
commas for this). On the Format tab of the Property sheet for the text box,
click in the Format property and then click the downward-pointing triangle
at the right end of the setting. You see a big, long list of formats to choose
from, starting with date formats and continuing with numeric formats. To
control the number of decimal places that appear, set the Decimal Places
property (the Auto setting means that Access decides how many places to
display).

For dates in a text box, you can control the order of the month, day, and
year; whether to omit the day or year; how many digits to show for the year;
and whether to display the name or number of the month. Make your choice
from the Format property on the Format tab of the Property sheet.

If you want to make fancier numeric or date formats, see Book II, Chapter 1.
Forms and reports can include calculated numbers and dates, too. For exam-
ple, an order form can display the sales tax based on the total amount of the
order. See Chapter 4 of this minibook for how to get Access to do your arith-
metic for you.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 346

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Moving, Renaming, Resizing, Deleting, and Copying Controls 347

Moving, Renaming, Resizing, Deleting,
and Copying Controls

The first step in doing all the stuff listed in the nice heading above is to
select the control, so go ahead and click the control to select it. You can tell
when the control is selected, because little boxes, called handles, appear
around it, as shown in Figure 2-7. If the control has a label associated with it,
handles appear around the label control, too.

After you tell Access which control you want to work on (by selecting the
control), here are some things you can do:

✦ Moving a control: Drag the control to a new location with your mouse.

✦ Renaming a control: Change the Name property of the control, which
appears on the Other tab of the control’s Property sheet.

✦ Resizing a control: Drag one of the handles to move that edge of the
control. Exactly what happens depends on the control: Some controls
can’t be resized (such as a radio button). For labels, text boxes, and
many other controls, the control stretches or shrinks as you drag its
edge around the form or report.

✦ Deleting controls: Press the Del key. (Oops! If you didn’t mean to delete
it, then press Ctrl+Z or choose the curved backward arrow at the top
right hand corner of the page.)

✦ Copying controls: Press Ctrl+C to copy the control to the Windows
Clipboard. Then press Ctrl+V to paste a copy from the Clipboard back
into the Design View window. Then drag the copy where you want it to
be. Cleverly, if you press Ctrl+V again to paste another copy of the con-
trol, Access tries to figure out where you want the new one based on
where you dragged the last copy (a nice feature, we thought). After you
copy and paste the control, you can modify it as you like.

Handles

Figure 2-7:
Drag the
handles to
resize a
control.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 347

Formatting Your Text348

You can select the label associated with a control separately from the con-
trol itself. To select only the control and not the label, click the handle in the
upper-left corner of the control (the mouse pointer turns into a little hand
when you point to this handle). To select only the label, click the handle in
the label’s upper-left corner. This method enables you to move the label
closer or farther away from its control.

You can also change the type of a control. For example, if you make a text
box and wish later that it were a combo box (described in the next chapter),
you don’t have to delete the control and start over. Instead, right-click the
control and choose the Change To command from the shortcut menu that
appears. Access shows a submenu listing the types of controls to which you
can change this control.

Formatting Your Text
You can format the label and text box controls in lots of ways, almost as if
you were using a word processor. In fact, when you select a control with text
in it, you can use the tools in the Font group of the Design tab on the Ribbon
to change the font characteristics. Figure 2-8 shows the Font group of the
Design tab on the Ribbon.

Here are some of the properties of labels (and some other controls) that you
may want to set:

✦ Color (Capital A with a color beneath it): Text doesn’t have to be
boring black on ho-hum gray. With the control selected, click the down-
ward-pointing triangle on the right side of the Fill/Back Color button on
the Font group of the Design tab on the Ribbon and choose the color
you want as the background color. Click the triangle on the Font/Fore
Color button and choose the text color.

If you want more colors, you can set them using the Format tab of the
Property sheet for the control. Set the Back Color property to the
background color you want and the Fore Color property to the color

Figure 2-8:
The tools of
the Font
group of the
Design tab
on the
Ribbon.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 348

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Formatting Your Text 349

for the text itself. These properties start as horrendous-looking 10-digit
numbers, but they are easy to change. Click in the property and a Build
button (it looks like an ellipsis) appears to its right. Click this button to
display the Color dialog box, shown in Figure 2-9 (unfortunately, black-and-
white printing really doesn’t do this dialog box justice). Click a color and
click OK. If you want an even fancier color that doesn’t appear in this
dialog box, click the More Colors button, then Standard (for predefined
colors) or Custom (for more creative build-it-yourself colors) tab, and go
to town.

✦ Box: You can put a box around the control by clicking the downward-
pointing triangle on the Line/Border Color button of the Format tab in
the Property Sheet box and choosing a color, or by setting the Border
Color property on the Format tab of the Property sheet. To change the
thickness of the box, you can set the Border Width property by click-
ing the triangle on the Line/Border Width button in the Format tab of the
Property Sheet box and choosing a line width.

✦ Special Effect: You can make all selected labels and controls look sunken,
raised (like a button), or shadowed. Click the downward-pointing triangle
to the right of the Special Effect button in the Format tab of the Property
Sheet box, and choose from the palette of options. (Or right-click the
control and choose the Special Effect command from the shortcut menu.)
If you wonder what a particular special effect does, hover your mouse
pointer over it until a description pops up.

✦ Font: You can control the typeface of the label text by editing the Font
box on the Font group of the Design tab of the Ribbon (or the Font Name
property on the Format tab of the Property sheet). It’s usually set to MS
Sans Serif; don’t try anything really fancy, or your text will be unreadable.
(For the figures in this chapter, we used a font named Calibri.) Adjust the
size of the text by typing a point size into the Font Size box on the Font
group of the Design tab of the Ribbon, which also has buttons for bold-
face, italics, and underlining.

Figure 2-9:
Changing
the back-
ground and
foreground
colors.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 349

Formatting Your Text350

✦ Alignment: To left-align, right-align, or center the text within the edges
of the control, click the Align Left, Center, or Align Right buttons from
the Font group of the Design tab of the Ribbon, or set the Text Align
property on the Format tab of the Property sheet. If you really want to
get weird, you can even display the text sideways within the box, by set-
ting the Vertical setting on the Other tab of the Property sheet to Yes .

Copying your formatting
After you go to the effort of prettifying one control, why reinvent the wheel
to make another control to match it? You can simply copy the formatting
from one control to another by using the Format Painter. The Format Painter
copies all formatting — colors, fonts, font sizes, border sizes, alignment, and
anything else that you can think of. Select the beautifully formatted control
and click the Format Painter button from the Font group on the Design tab of
the Ribbon. Your mouse-pointer now has a paintbrush attached to it, so you
know the tool is active. Click the control that you want formatted like the
original control.

Make it red if it’s bad news
Access has a cool feature called conditional formatting that lets you make a
control look one way normally and a different way — maybe boldface and
red — under special circumstances. For example, the total amount of an
order for an online store ought to be a positive, unless the customer is due a
refund. Wouldn’t it be great if the form reaches out and grabs you if the total
order amount turns out to be negative? Well, Access can’t reach out of the
screen, but it can make the control appear in bright red, boldface, or both.

To set up conditional formatting, follow these steps:

1. Right-click the control in Design view and choose the Conditional
Formatting option from the shortcut menu that appears. Or choose the
Conditional button in the Font group on the Design tab of the Ribbon.

You see the Conditional Formatting dialog box, shown in Figure 2-10.
The Default Formatting section of the dialog box shows you how the
control looks normally. The Condition 1 section shows how it will look
under circumstances that you’re about to specify.

Figure 2-10:
The
Conditional
Formatting
dialog box.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 350

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Creating Check Boxes for Yes/No Fields 351

2. Set Condition 1 by choosing an option from the drop-down list and
filling in the rest of the boxes.

The drop-down list displays these options:

• Field Value Is: The formatting depends on the value of the field dis-
played in this control. You set the rest of the boxes to the right of the
drop-down list to tell Access the value(s) for which you want the
conditional formatting to take effect.

• Expression Is: The formatting depends on a calculation that you type
into the box to the right of the drop-down list.

• Field Has Focus: The formatting takes effect when the control is
active (when the user clicks in it or moves to it with the keyboard).
This option is useful if you want to make it screamingly obvious
when the user is editing this particular field.

3. Set the format by clicking the formatting buttons in the Condition
1 box.

If you want more than one condition, you can click the Add button to
add a Condition 2 section to the dialog box and create a second set of
conditions and formatting for the control.

4. Click OK.

Creating Check Boxes for Yes/No Fields
When you drag a Yes/No field from the Field list to the Design View window
of your form or report, Access assumes that you want to display the field
as a check box — a Yes value appears as a checked box, and a No value
appears as a blank box. You can’t change the size of a check box — dragging
its edges expands the box around it, but the check box just sits there.

Another way to create a check box is by clicking the Check Box button on
the Controls group of the Design tab of the Ribbon and then clicking in the
Design View window where you want a check box to appear. If you use this
method, you need to set the check box’s Control Source property on the
Data tab of its Property sheet to be the name of the field.

Alternatively, you can display different information depending on whether
the Yes/No field is Yes or No. For example, for tax-exempt companies, your
order form can display a Tax Exempt ID box that only appears if the Tax
Exempt field is set to the Yes value. See Chapter 3 of this minibook for how
to display information that depends on other fields in this way.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 351

Neatening Up Your Controls352

Neatening Up Your Controls
You can spend hours fooling with the formatting of your forms and reports,
moving controls around, getting all the labels to match, and choosing fonts
and colors. (We certainly have!) One important aspect of design is neatness —
forms are easier to use and reports are easier to read if they look neat and
organized. People can find the information they are looking for — or the
entries that they need to make — more easily if everything lines up nicely.

Luckily, Access has features that make it easy to line up your controls, so
you don’t have to squint at the screen and drag each control left or right by
microscopic amounts. Instead, you can select a bunch of controls and deal
with them all at the same time. To select more than one control, click one
control and Shift-click the rest of the controls. Or drag around the group of
controls with your mouse pointer: Access selects all the controls that are
within that area (even if only part of the control is in the area). In Figure 2-11,
the City, State/Province, and ZIP/Postal Code text boxes (and their labels)
are selected. Notice that on the Form Design Tools portion of the Ribbon, we
now have the Arrange tab selected.

Figure 2-11:
Selecting
more than
one control
at a time.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 352

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Neatening Up Your Controls 353

After you select a bunch of controls, you can do the following things with them:

✦ Moving groups of controls: If you want to move a bunch of controls
together, select them all and then drag them to a new location. Access
leaves the space between the controls unchanged.

✦ Making controls the same size: You can tell Access to make all the
selected controls the same height or width. To make the widths all the
same, choose Arrange➪Size➪To Widest from the Ribbon to make all the
controls as wide as the widest control you selected. Or choose Arrange➪
Size➪To Narrowest to match the narrowest (left to right). To make the
heights of the controls the same, choose Arrange➪Size➪To Tallest or
Arrange➪Size➪To Shortest. For example, in Figure 2-12, choosing the To
Widest option makes all the text boxes as wide as the ContactID box.

✦ Lining up your controls: You can adjust the edges of your controls to
line up with the grid lines that appear in Design view. With the controls
selected, choose Arrange➪Control Layout➪Snap to Grid. Access moves
the edge of each control to the nearest gridline.

Figure 2-12:
Making all
of the fields
fit the
widest field.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 353

Adding Lines, Boxes, and Backgrounds354

You can also get Access to move all the selected controls so they are left-
aligned (that is, the left edges line up) or right-aligned. Choose Arrange➪
Control Alignment➪Left, or Arrange➪Control Alignment➪Right. We like
to see labels right-aligned next to text boxes that are left-aligned, but it’s
a matter of taste!

✦ Spacing controls evenly: Controls look better if there is a consistent
amount of vertical space between one control and the next — for exam-
ple, one gridline or two gridlines. Rather than moving controls up and
down by hand, Access can do this task for you. Select the controls you
want to space and choose Arrange➪Position➪Equal Vertical. You can
also move all the controls together or apart by choosing Arrange➪
Position➪Decrease Vertical or Arrange➪Position➪Increase Vertical.

✦ Setting the properties of all the controls: After you select a group of
controls, the Property sheet changes to the Multiple Selections sheet.
If you change the settings of any properties, Access makes the change to
all the controls. Similarly, you can make changes on the Formatting tool-
bar to format all the controls at the same time.

✦ Letting Access set the format: Access has some preset formats that
don’t look half-bad. To change the formats of all the selected controls
to one of the Access AutoFormats, choose Arrange➪AutoFormat➪
AutoFormat from the Ribbon, select an AutoFormat (you have choices
like Industrial and International), and click OK. If you don’t like the
results, choose the AutoFormat command again and choose the
Standard AutoFormat, which looks like the Access default controls.

Adding Lines, Boxes, and Backgrounds
Some forms and reports have several sections, and they are easier to use if
you separate the sections by lines or boxes. For example, an order form may
have one section with information about the customer, another section show-
ing what items were ordered, and a third section with payment information.

To draw a line, click the Line button on the Controls group of the Design tab
of the Ribbon, and draw the line in the Design View window using your mouse.

Drawing a box works the same way. Click the Rectangle button on the Controls
group of the Design tab of the Ribbon and draw the box, starting at one corner
and dragging the mouse to the opposite corner.

You can set the colors and thickness of a line or box by using the Line/
Border Color and Line/Border Width buttons on the Format tab of the
Property Sheet box.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 354

Book IV
Chapter 2

Jazzing Up Your
Form

s (and Reports)
Controlling Cursor Movement in Your Form 355

You can specify a picture to display in the background of the form or report.
Picture backgrounds seem like a demented idea to us — we hate forms and
reports with clouds or sunsets in the background, because they make forms
look busier and more confusing. But if you want to jazz up your form or report,
set the Picture property, which is on the Format tab of the Property sheet,
to the file name of a picture — click the Build button (it shows an ellipsis) to
its right to navigate to the file.

Controlling Cursor Movement in Your Form
You made a bunch of controls and formatted them nicely, and your form
looks pretty spiffy. But here’s a question you may not have thought about:
When you (or other people) are using the form to enter or edit data, how
does the cursor move from control to control? That is, when you press
Enter or Tab to leave a text box or other control that allows you to edit
information, which control does your cursor move to? Access calls this the
tab order of the form.

Access stores the tab order for each form, which is a list of the editable con-
trols on the form (that is, controls that allow data entry or editing in Form
view). When you press Enter or Tab in Form view, your cursor moves from
control to control in the same order as the Access list. Here’s the problem:
When you create a new control, Access adds it to the bottom of the list, even
if the control is at the top of the form. As a result, your cursor skips around
when you try to use the form.

The solution is to adjust the tab order of the form. To see the tab order list,
follow these steps:

1. With the form in Design view, from the Ribbon, choose Arrange➪
Control Layout➪Tab Order.

You see the aptly named Tab Order dialog box.

2. Change the order of the controls by dragging them up or down the list
with your mouse.

Alternatively, click the Auto Order button to tell Access to put the con-
trols into order based on their positions — from top to bottom and
left to right — on the form.

Access reorders the controls, and you can look at the new order to see if
Access got it right.

3. Click OK when the controls are in the right order.

You probably already guessed this, but this whole tab-order discussion doesn’t
apply to reports.

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 355

Book IV: Forms356

23_036494 bk04ch02.qxp 11/17/06 8:26 AM Page 356

Chapter 3: Creating Smarter Forms

In This Chapter
� Making drop-down menus (combo boxes) and lists of values (list boxes)

you can choose from

� Displaying Yes/No fields as option or toggle buttons

� Making groups of radio buttons

� Making a Find box so you can search for records

� Adding command buttons that display forms, print reports, and other
cool commands

� Adding headers and footers to your forms

� Making forms with tabs

� Validating what people type

� Creating a switchboard for your database

In Chapters 1 and 2 of this minibook, we explain how to make forms (and
reports) and add labels, text boxes, check boxes, lines, and rectangles to

them. You can go a long way with just those controls, but you’ll miss a lot of
the power of Access. If your database includes related tables, combo boxes
and list boxes enable you (or your users) to choose values from lists instead
of typing values in. If a field contains a small number of possible values, you
may want to present them as radio buttons. And best of all, forms display
records from more than one table through subforms. This chapter explains
all this — and more.

This chapter doesn’t apply to reports. Because you can’t use reports for
entering and editing data, the interactive features discussed in this chapter
just don’t work for reports (at least, not unless you have much fancier paper
than we do!).

Creating and Configuring Combo and List Boxes
Combo boxes and list boxes are two controls that work like the drop-down
lists that you see in Windows programs. Each box displays a list of values
from which you can choose one value. The difference between the controls
is how many values they display. A combo box shows only the currently
selected value; you click the downward-pointing triangle on its right side to
get the list to drop down so you can select a different value. A list box

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 357

Creating and Configuring Combo and List Boxes358

shows all the possible values (or as many as fit in the control, with a scroll
bar to see the rest of the values), of which one is selected. Figure 3-1 shows a
combo box and a list box.

List boxes take up more room on forms than combo boxes, so they are used
far less often. On the other hand, they allow you to see more values at the
same time. We explain how to create both list and combo boxes (the process
is almost the same), but our examples concentrate on combo boxes.

Before you create a combo or list box, consider the following questions:

✦ Where will the values come from? The combo or list box displays a list
of values. Are the values stored in a table, or will you type them in when
creating the control? If you use this list of values in any other control
on another form anywhere in your entire database, put the values in a
table — just a plain old table, with one field for the value, and additional
fields if you store other facts about each value. Make sure that the table
has a primary key to uniquely identify each record. For example, if your
bookstore has three types of products, these product codes need to be
in a table, because you’re sure to use them in lots of different forms and
reports. Don’t type them in as the values of a combo or list box.

✦ If the values are stored in a table, which field (or fields) of the table do
you want to appear in the control? You can choose one or more fields, but
don’t choose too many or the list gets enormous. For example, a combo or
list box for a StateAndProvince field can display the two-letter state or
province abbreviation, the full state or province name, or both.

✦ When the user of the form makes a choice from this control, what
happens to the selected information? Most forms are used for editing
the records in a table or query (the record source for the form). If the
purpose of the combo box or list box is to help the user enter a value in
a field, then make a note of the field name. On the other hand, you may
want to use the combo or list box for another purpose, such as allowing
the user to find a record (as described in the section, “Making a Find
box,” later in this chapter).

Figure 3-1:
You can use
a combo box
or list box to
enable
people to
choose from
a list of
values.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 358

Book IV
Chapter 3

Creating Sm
arter

Form
s

Creating and Configuring Combo and List Boxes 359

For example, for an order entry database, you may want a combo box that lists
the states and provinces in the United States and Canada. You have the two-
letter abbreviations and full names stored in a table called StateAndProvince.
You can have your combo box or list box display only the state or province
name on the form, but have the control store only the abbreviation for the
selected state or province in the order-entry table that you’re editing.

Making combo boxes the really easy way
If you set up a field as a lookup field — a field that must match the primary
key field in a table of codes — Access creates a combo box when you drag it
from the Field list to the Design View window of the form. Easy enough! By
configuring the field as a lookup field, you’ve already told Access what table
and field to use for the list of values.

To find out how to make a lookup field, see Book II, Chapter 5.

Running the Combo or List Box Wizard
To make a combo box or list box when you didn’t designate the field as a
lookup field, a wizard steps you through the process. Before you start, deter-
mine where the list of values comes from, as described in the previous sec-
tion. The Combo Box and List Box Wizards ask the same questions that we
pose, so you’d better have the answers. We describe the Combo Box Wizard,
because combo boxes outnumber list boxes 10 zillion to one in actual usage,
but the List Box Wizard is similar.

To create a combo box with the Combo Box Wizard, follow these steps:

1. Open the form in Design view.

Select the form in the Forms section of the Database window and click
the Design button.

If Design view is new to you, jump back to Chapter 1 of this minibook for
an overview of Design view.

2. Under the Form Design Tools Ribbon, click Design➪Controls and click
the Combo Box button.

3. Click where you’d like the upper-left corner of the combo box to
appear.

Don’t worry if the combo box isn’t in exactly the right spot — you can
always move the edges later. Access displays the Combo Box Wizard
shown in Figure 3-2.

4. Choose where the list of values comes from, and click Next.

If the list comes from an existing table or query, choose the first option
and go to Step 5. If the list of options doesn’t exist in a table, choose
the second option and go to Step 9. The third option is for creating a

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 359

Creating and Configuring Combo and List Boxes360

combo box that lets you jump to a specific record in your table (see the
“Making a Find box” section later in this chapter).

5. If the list of values is already stored in your database, choose the
table or query (as shown in Figure 3-3) and click Next.

The wizard displays all the tables, all the queries, or both, so you can
choose the table or query that you want. If the table doesn’t have a pri-
mary key field, you can’t choose it.

6. When the wizard shows you a list of the fields in the table or query,
choose the fields to display in the combo box, and click Next.

You can choose more than one field if you want more than one to appear
in the combo box.

Figure 3-3:
Usually,
your combo
box displays
a list from a
table or
query in a
database,
so you can
use the
same list
in other
combo
boxes or
lookups.

Figure 3-2:
The Combo
Box Wizard
steps you
through
creating a
combo box
(drop-down
list) on your
form.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 360

Book IV
Chapter 3

Creating Sm
arter

Form
s

Creating and Configuring Combo and List Boxes 361

7. Choose the order in which you want the records to appear in the
combo box, and click Next.

The wizard allows you to choose Ascending or Descending order for up
to four fields. Be sure that the field on which you’re sorting also appears
in the combo box, or the order can be confusing. For example, if you
sort states and provinces by their two-letter codes, the names don’t
appear in order, which looks weird if the codes don’t also appear.

8. Adjust the widths of the columns by dragging the column divider left
or right, and then click Next. Skip to Step 11 unless you’re typing in
values instead of using a table.

If you want the primary key field to appear in the combo box (for exam-
ple, the two-letter code in a list of states), uncheck the Hide Key Column
check box.

9. If you choose to type in the list of values, type them into the
datasheet, one per row, and click Next.

The wizard displays a datasheet into which you can type the list. When
typing in a list of values, you can create more than one column (for
example, a code and its meaning), of which one will be stored in the
record source of the form.

10. Choose the field that identifies each row of the combo box, and click
Next.

The wizard asks which field uniquely identifies each row in the combo
box — the equivalent of the primary key field in a stored table. (Aren’t
you beginning to wish you’d just stored the list in the table? Hint, hint!)

11. Choose whether to remember the value for later use or store it in a
field, as shown in Figure 3-4. Click Next.

The wizard asks what you want to do with the value of the field when
the form user chooses from the combo box: Remember the value for
later use (for example, refer to it in a query parameter, macro, or VBA
module); or store it in a field of the table or query that is the record
source for the form. Most of the time, you want to store the value in a
field; choose the field name from the list.

12. Type a label for the combo box and click Finish.

The wizard creates your combo box.

13. Adjust the edges of the control to resize the combo box. Drag its label
to the right place.

We never get the size and position of a combo or list box right the first
time, and Access never puts its label in the right place. Good thing
Access gives us a chance to touch things up a bit!

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 361

Creating and Configuring Combo and List Boxes362

When the wizard finishes, you end up with a combo or list box that looks like
Figure 3-5, which shows one of each in Design view.

The next section describes the properties you may want to change if you
don’t like the way your combo or list box turns out.

Changing the properties of a combo or list box
You can change the way a combo or list box works by editing its properties —
you’re never stuck with what a wizard creates. You can display its properties
and change them on the Property sheet (click the Property Sheet button on
the Tools group of the Design tab of the Ribbon to display the Property sheet).
The properties you’re most likely to change are shown in the following table.

Combo box

List box

Figure 3-5:
A combo
box or a list
box
provides
values from
which the
user can
choose, but
combo
boxes take
up less
space.

Figure 3-4:
If you’re
using the
combo box
to choose
values for
a field
displayed on
the form,
choose to
store the
value in the
field.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 362

Book IV
Chapter 3

Creating Sm
arter

Form
s

Cool Looks for Yes/No Fields 363

Property Description

Control Source Field in the record source in which Access stores the value that
you choose from the combo or list box

Row Source Type Where the items on the list come from: Table/Query, Value List, or
Field List (that last option displays a list of the fields in a table or
query)

Row Source If you choose the Table/Query or Field List options for the Row
Source Type property, enter the name of a table or query (or
a SQL statement). If you choose the Value List setting, type
a list of values separated by semicolons (;).

Column Count Number of columns to display in the combo or list box

Column Heads Whether or not to display headings for the columns of values

Column Widths Widths of the column(s). If you’ve got more than one column,
separate the widths with semicolons.

Bound Column Column number in the combo or list box of the column that gets
stored in the control source

List Rows Number of rows that appear in the drop-down list of a combo
box. (Not used for list boxes, because the size of the list box con-
trol on the form determines how many rows appear.)

Limit to List Whether entries in the combo box are limited to values on the
drop-down menu. Choose the No setting if you want to be able to
type other values into the control. (Not used for list boxes, which
are always limited to the values listed.)

Cool Looks for Yes/No Fields
Chapter 1 of this minibook describes how to create a check box for a Yes/No
field, which looks pretty spiffy. But you have other options for Yes/No fields:
option buttons (little round radio buttons) and toggle buttons (rectangular
buttons that appear pressed in when selected). You can display a Yes/No
field in a text box, too, but the Yes value appears as –1 and the No value
appears as 0, which may not be what you want. Figure 3-6 shows a check
box, option button, and toggle button.

Check box
Option button
Toggle button

Figure 3-6:
Display a
Yes/No field
as a check
box, option
button, or
toggle
button.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 363

Creating Option Groups364

One of the easiest ways to make a toggle or option button for a Yes/No field
is to create a check box for it, and then change it into a toggle or option
button. Choose the Check Box option from the Controls group of the Design
tab on the Ribbon, click on the desired location on your form, and drop it
where you want the control. Access makes a check box for the field. Right-
click the field and choose Change To➪Option Button, or Change To➪Toggle
Button from the shortcut menu that appears. Adjust the size and position of
the control and its label, and you’re done!

Creating Option Groups
If a field is set to one of a small number of numeric, integer values — such as
1 to 10 — you can display the values in a box, with an option button by each
value. When editing records using the form, you click the option for the
value to which you want to set the field. Only one option can be selected at a
time; clicking one option deselects the other options.

Making a group of option buttons for a field requires creating an option
group — a rectangle within which you put an option button for each possible
value of the field. Figure 3-7 shows option buttons in an option group. Luckily,
Access comes with the Option Group Wizard that creates the option group
and all the option buttons.

Before you run the Option Group Wizard, make a note of the values that the
field takes. After the wizard is running, you can’t open another table to see
the values to which the field is limited. You may want to keep the table that
lists the possible values open and visible in the corner of the Access window
while you run the wizard.

Note that option groups work only with integer, numeric values. You can
show any label you want next to each option button, but the value that
Access stores for the option group has to be a whole number. In the option
group shown in Figure 3-7, the actual category codes may be the numbers
from 1 to 6.

Figure 3-7:
An option
group
contains an
option
button for
each value
that the field
can take.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 364

Book IV
Chapter 3

Creating Sm
arter

Form
s

Creating Option Groups 365

An option group can contain option (radio) buttons, check boxes, or toggle
buttons. However, most people expect check boxes and toggle buttons to
stand by themselves, not to be in a group of mutually exclusive options. We
recommend sticking with option buttons in option groups.

To make an option group and option buttons for a field, display your form in
Design view and follow these steps:

1. Click the Group icon in the Control Layout group of the Arrange tab
on the Ribbon. Drag the mouse from one corner to the opposite
corner of the area you want the option group to occupy.

Access draws a box for the option group and then runs the Option
Group Wizard. (It may not be installed on your computer; if it isn’t,
Access asks whether you want to install it now. Get your Microsoft Office
CD and follow the prompts.)

2. The wizard prompts you for a list of the labels for the individual
option buttons. Type them in, one per line, and click Next.

Don’t press Enter after typing in a value; the wizard thinks you’re click-
ing Next. Instead, press Tab or the down arrow to move to the next row
in the datasheet. (If you accidentally press Enter, click the Back button
to get back to this screen.)

3. In the next window, choose whether one of the choices that you just
typed should be selected by default when you create a new record in
the table. Choose the default value for the field, or choose the No I
Don’t Want a Default option. Click Next.

4. You see a list of the labels that you typed in Step 2. In the right-hand
column, type the number to store for each value, as shown in Figure
3-8. Click Next.

Each label must have a different value, and all the values have to be
whole numbers.

Figure 3-8:
When you
create an
option
group, you
specify a
label and a
value for
each option
button in the
group.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 365

Creating Command Buttons366

5. Choose to save the value for later use or to store it in a field (and spec-
ify the field). Click Next.

If you’re creating a form for editing a table, choose the Store the Value in
This Field option. If the form is unbound (not connected to a record
source) and the options are for use as an input to a query, macro, or
VBA module, choose the Save the Value for Later Use option. (See Book
VI, Chapter 1 for how to run macros from a form, possibly using inputs
from the form.)

6. Choose whether the options appear as option buttons, check boxes, or
toggle buttons, and choose the style for the option group box. Click
Next.

We strongly recommend choosing option buttons (the default), because
most people expect option buttons to be in groups of mutually exclusive
options and check boxes and toggle buttons to work independently of
each other.

7. Type a caption (label) for the option group and click Finish.

The caption appears at the top of the option group. When you click
Finish, the wizard creates your option group and an option button (or
check box or toggle button, if you callously disregarded our advice) for
each value you specified.

After the wizard finishes, you can resize the option group box and move the
option buttons around inside it.

If you change the list of possible values later, the option buttons on your
form don’t change automatically. For example, if a set of option buttons
shows all the categories of products that your store sells and you add a new
product category, you need to remember to edit the form and add a new
option button to the option group. For this reason, combo boxes are used
more frequently to provide lists of possible values, because when you
update a table from which the combo box gets its list of values, the combo
box updates automatically the next time you open the form.

Creating Command Buttons
Dialog boxes contain command buttons, such as Save and Cancel, and your
forms can, too. When you create a command button, you tell Access what pro-
gram the button should run. Programs can take two forms: macros (described
in Book VI) and VBA modules (described in Book VIII). Luckily, wizards can do
a lot of the work for you. You don’t need to know how to create either macros
or VBA modules to make nifty command buttons on your forms.

This section covers how to run the Command Button Wizard to make com-
mand buttons that do useful stuff. The wizard creates a VBA module for the

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 366

Book IV
Chapter 3

Creating Sm
arter

Form
s

Making a Close Button 367

form to contain the programs for the buttons on the form. The wizard makes
buttons with actions that it divides into these categories:

✦ Record Navigation: These commands are for moving from record to
record. Most of them duplicate the navigation controls that appear at the
bottom of most forms (Go to First Record, Go to Previous Record, Go to
Next Record, and Go to Last Record), but you can also make a Find Record
button that displays the Find and Replace dialog box or a Find Next
button to repeat the previous search. If you want to make a box right on
the form into which you can type a value and a Find button that searches
for that value, see the section, “Making a Find box,” later in this chapter.

✦ Record Operations: This category includes buttons for adding, deleting,
duplicating, printing, saving, and undoing the edits to a record (the cur-
rent record, in most cases). The Duplicate Record button adds a new
record that is a duplicate of the current record. The Print Record button
prints the form with the data for the current record.

✦ Form Operations: These commands apply or edit filters (which are
described in Book II, Chapter 3), close this form, open another form, or
print another form. (Warning: If you print another form, you get all the
records in that form, so you may want to come up with another
method.) You can also make a button that reloads the data on the form,
in case it has changed since you loaded the form.

✦ Report Operations: You can make command buttons to preview, print,
mail, or save a report to a file. However, there’s no way to restrict the
report to a specific record without editing the code behind the form.

✦ Application: These commands run other Microsoft Office programs (like
Word or Excel) or other applications.

✦ Miscellaneous: This last group of commands includes commands to dial
a phone number (assuming that your computer is connected to a dial-up
modem and a phone), print a table in Datasheet view, run a macro, or
run a query and display the resulting datasheet.

Making a Close Button
Who needs a Close button when forms already have a big X button in the
upper-right corner? Some people like to have a Close button anyway, and it’s
easy enough to make. Here’s how:

1. With your form open in Design view, click the Command Button
button from the Controls group on the Design tab of the Ribbon.

2. Click in the form where you want the button to appear.

Don’t worry about the exact location; you can always move it later.
Access starts the Command Button Wizard shown in Figure 3-9.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 367

Making a Close Button368

3. Choose the Form Operations category and the Close Form action.
Click Next.

4. Choose whether you’d like to have text or a picture on the button, and
click Next.

If you choose the Text option, you can edit the text in the box. If you
choose the Picture option, you can choose from the list of suggested
icons, or click the Browse button to look at the full set of icons Access
provides. You can use any bitmap (.bmp) file as an icon.

5. Type a name for your new control and click Finish.

The wizard creates a command button control where you originally
clicked the form. Now you can drag the edges of the button to resize it,
or drag the whole button to another location.

After creating a command button using the wizard, you edit its properties, as
described in the “Customizing your command button” section, later in this
chapter.

Making a button to display a related form
You can make a command button to display another form. You can display
any old form in the database, but this kind of command button is most pow-
erful when you use it to display a form that shows the records of a table that
relates to the records in your original form. For example, you may be work-
ing on an Order form that displays information about each order of your
online store. You can add a command button that opens the Address Book
form showing the record for the customer that placed the current order,
including the customer’s address, phone number, and other information.

Figure 3-9:
The
Command
Button
Wizard
includes
lots of
prepro-
grammed
commands
for your
button to
run.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 368

Book IV
Chapter 3

Creating Sm
arter

Form
s

Making a Close Button 369

Here’s how to add a button to display another form:

1. With the form open in Design view, click the Command Button button
on the Controls group of the Design tab of the Ribbon.

2. Click in the form where you want the button to appear.

The Command Button Wizard fires up to create your button.

3. Choose the Form Operations category and the Open Form action.
Click Next.

4. Choose the form name you want the button to open from the list, and
click Next.

5. In the next window, choose whether to display the form with all
records available, or display a specific record on the form. Choose the
Open the Form and Find Specific Data to Display option, and click Next.

This option tells the wizard that you want to display a specific record —
in the next step, you tell the wizard which record you want to see.

6. Choose the fields from the two forms that match. Click Next.

You see two lists of fields, as shown in Figure 3-10: The left-hand list
shows the field in the record source of the current form, and the right-
hand list shows the fields in the record source of the form you want the
button to open.

7. Choose the text or picture to appear on the form, click Next, type a
name for the control, and click Finish.

The wizard makes the command button. Switch to Form view by clicking
the View button on the toolbar. Try out your new button!

Figure 3-10:
You can
display a
form with
the record
that
matches the
current
record of
the current
form.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 369

Making a Close Button370

Making a button to print the current record
The Command Button Wizard offers a number of print actions, but most of
them don’t work the way you might wish. The Print a Form action prints a
form once for every single record in the form, so you need to come up with a
way to restrict the records to the one(s) you want. If you want to print the
current record in the current form, run the Command Button Wizard and
choose the Record Operations category and the Print Record action.

If you want to print a report for just the record in the current form, you need
to do some extra work. Specifically, you need to make a macro that the
button runs, and you need to set up the macro to print the report with the
records limited to those records that match the record currently displayed
on the form.

Luckily, this macro is short and easy to make — see Book VI, Chapter 1 for
specific directions.

Making other cool buttons
You can run the Command Button Wizard to make lots of other useful but-
tons. Command buttons do some of our favorite things. The following list
shows how the wizard creates them:

✦ Add a new record that’s a duplicate of the current record: Choose the
Record Operations category and the Duplicate Record action.

✦ Save the current record: Choose the Record Operations category and
the Save Record action.

✦ Display the results of a query in Datasheet view: Choose the
Miscellaneous category and the Run Query action.

✦ Run a macro: Choose the Miscellaneous category and the Run Macro
action. (Book VI describes how to make macros that do all kinds of
things.)

Customizing your command button
You can edit the properties of a command button after you create it. To do
so, display the button’s Property sheet, double-click the command button in
Design view, or click the Property Sheet button from the Tools group on the
Design tab of the Ribbon and select the command button.

Some of the most useful properties and what they do are in the following
table.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 370

Book IV
Chapter 3

Creating Sm
arter

Form
s

Making a Close Button 371

Property Description

Caption Text that appears on the button unless it displays a picture. (If the
Picture property specifies a picture, the button shows the picture, not
the caption.)

Picture Picture (icon) that appears on the button. The term (bitmap) indicates that
you selected a picture. Click the Build button to the right of the property to
select a different picture. If the picture is blank, Access displays the
Caption text.

On Click What program (macro or VBA module) Access runs when you click the
button.

You can tell Access to run programs when you click, double-click, move into,
or move away from the button (and at other times, too). (See Book VI,
Chapter 1 for instructions.)

Making a Find box
When you’re using a form, press Ctrl+F to display the Find and Replace
dialog box that you can use to jump directly to a record that matches the cri-
teria you specify. But wouldn’t it be nice to have a combo box right on the
form with the Find button next to it, so you can locate a record without
bringing up a separate dialog box? Access makes this surprisingly easy.

For example, on an Address Book form, you could create a combo box that
would list all the customers in your Address Book. When you choose a cus-
tomer, the macro takes you right to that customer’s record.

Follow these steps to create a Find box:

1. With your form open in Design view, click the Combo Box button on
the Controls group of the Design tab of the Ribbon.

2. Click in your form where you want the Find box to appear.

The Combo Box Wizard runs, as described in the “Running the Combo
or List Box Wizard” section earlier in this chapter.

3. Choose the Find a Record on My Form Based on the Value I Selected
in My Combo Box option, and click Next.

Access displays a list of the fields in the record source of the form.

4. Choose the table or query that contains the list of values from which
the user can choose when finding a record. Click Next.

If you choose a field that is unique for each record (for example, the
OrderID field for a form that displays orders), the combo box provides
you with a list of the values for the field, and choosing a value takes you
right to the order. If you choose a field that’s not unique, the combo box
displays a list with duplicate values and finds records unpredictably.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 371

Adding and Linking Subforms372

5. Adjust the width of the column to set the width of the drop-down list
by dragging the column divider. Then click Next.

6. Type a name for the combo box control and click Finish.

The wizard creates the combo box. Switch to Form view by clicking the
View button on the toolbar, and then test it out.

Adding and Linking Subforms
You use subforms to display related data from different tables. For example,
for an online store, if you have a form that shows information about one
order from your Orders table, it would be nice if you could also see a list of
the items that were included in the order, which may be stored in the related
Order Details table. Figure 3-11 shows an example. The main form displays
records from the “one” side of a one-to-many relationship and the subform
displays records from the “many” side. As a result, the subform displays
many records that relate to the “one” record on the main form.

Before you create a subform, make sure that the tables displayed by the form
and proposed subform have a one-to-many relationship. Book I, Chapter 4
describes one-to-many relationships, master and detail records, and primary
and foreign keys. Book II, Chapter 6 shows you how to tell Access about the
relationships between tables by using the Relationships window.

A subform can have its own form layout and navigation buttons for moving
around the records within the subform. One form can have more than one

Subform

Figure 3-11:
A subform
shows the
list of
matching
records
from a
related
table.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 372

Book IV
Chapter 3

Creating Sm
arter

Form
s

Adding and Linking Subforms 373

subform, if there’s more than one table with a one-to-many relationship to
the table shown in the main form.

Each subform is stored as a separate form in Access — you see the sub-
form’s name in the Database window. To display it as part of another form,
you create a subform control on the main form, showing Access how and
where you want the subform to appear on the main form.

If you want the main form to contain totals or counts of the records in the
subform, see Chapter 4 of this minibook. For example, if a subform of an
Orders form lists the items on the order, displaying the total cost of the
items ordered on the Orders form is nice.

Creating a subform
The easiest way to create a form is by using a wizard (surprise, surprise!).
You can always edit and improve the subform later. (If you’re creating a
report, see the section on subreports in Book V, Chapter 1.)

To add a subform to a form, follow these steps:

1. Display the main form in Design view.

2. Display the Design tab of the Form Design Tools Ribbon.

3. Click the Subform/Subreport button from the Controls group of the
Design tab of the Ribbon to tell Access that you want to add a subform
to the form.

4. On the form, drag the mouse to create a box in which the subform
will appear.

Access runs the SubForm Wizard to lead you through the process of cre-
ating the subform. (If the wizard isn’t installed on your system, Access
offers to install it; get out your Microsoft Office CD and follow the
instructions on-screen.)

5. Unless you already have a form that works as a subform, choose the
Use Existing Tables and Queries option. If you already created a form,
choose the Use an Existing Form option. Click Next.

If you choose the Use Existing Tables and Queries option, then the
wizard needs to know the name of the related table, and which fields in
that table you want to display. You can choose to display records from a
query, if the query contains a unique field that can act as the primary
field in a one-to-many relationship with the records on the main form.

If you choose the Use an Existing Form option, skip to Step 7.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 373

Adding and Linking Subforms374

6. In the Tables/Queries box, choose the table or query from which you
want to display records. Then choose the fields you want to display
by selecting fields and clicking the > button. Click Next when you’re
finished.

Alternatively, you can double-click a field name to move it from one list
to the other. If you want to display all the fields, click the >> button. As
you select fields, they move from the Available Fields list to the Selected
Fields list. Don’t choose too many fields — you have to fit them all into
the subform!

Don’t choose to include the foreign key, which relates to the record in
the main form. For example, if you’re adding an order detail subform to
an orders form, the main form displays one order at a time, including its
order number. The subform displays all the order detail records that
have the same order number. If you include the order number on the
subform, you just see the same order number over and over, once for
each record in the subform. What a waste of screen space!

7. Choose a relationship from the list, or select the Define My Own option
and choose the matching fields on the form and subform. Click Next.

The wizard needs to know how the records in the subform relate to the
records in the main form, as shown in Figure 3-12. It displays a list of the
relationships known, and this list usually contains the right relationship.
For example, in Figure 3-12, the wizard suggests Show Order Details
for each record in Orders Main Qry using OrderID — it
uses the OrderID field in the Order Details table to match the OrderID
field in the Orders Main Qry query (the record source of the main form).

If you choose the Define My Own option, the wizard’s window changes
to allow you to choose the matching fields on the form (the “one” side of
the relationship) and the subform (the “many” side).

Figure 3-12:
Tell the
SubForm
Wizard how
the records
in the
subform
relate to the
records in
the main
form: What
fields
match?

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 374

Book IV
Chapter 3

Creating Sm
arter

Form
s

Adding and Linking Subforms 375

8. Type a name for the subform or accept the wizard’s suggestion. Click
Finish.

The wizard creates the subform as a separate form in your database. It
also creates a subform control on the main form, as shown in Figure 3-13.
You can adjust the edges of the subform control by dragging them.

The subform may look totally wrong in Design view but fine in Form view.
The subform appears in Datasheet view when the main form is in Form view,
so the exact placement of the controls, background color, and other features
doesn’t matter.

To adjust the column widths of the subform, which is usually in Datasheet
view, just drag the column dividers left or right in Form view. After you have
nice-looking columns, switch the main form back to Design view and adjust
the width of the subform control until it’s the right size to fit your columns.

The properties of subform controls
After you create the subform, you edit it from the main form or in its own
Design View window. In the Database window, you can click the Forms
button to see your list of forms, select the form you want to edit, click the
Design button, and make your changes. When you save the changes and
reopen the main form, you see the changes in your subform, too. However,
updating a subform’s design is easier: Open the main form in Design view
and double-click the subform control. Now you can edit the subform right
within the main form. When you save your main form, Access saves changes
to your subform, too.

Subform control

Figure 3-13:
A subform
control
displays the
subform in
Design
view.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 375

Adding and Linking Subforms376

While you’re fooling with the fields on the subform, you may want to change
the properties of the subform control that displays the subform on the main
form. To see the properties of the subform control, display the main form in
Design view, display the Property sheet by clicking Design➪Tools➪Property
Sheet button from the Ribbon, and then click in the subform.

Don’t click in the gray box in the upper-left corner of the subform, or you
end up seeing the properties of the form you’re using as a subform, rather
than the properties of the subform control.

At this point, the box at the top of the Property sheet should show the name
of the subform control; if it doesn’t, click the drop-down list and choose the
subform control name.

Some useful entries you can change on the Property sheet for the subform
control are the following:

✦ Source Object: The name of the form you’re displaying in this subform
control.

✦ Link Child Fields: The field name in the record source of the subform.
This field must match the Link Master Fields field.

✦ Link Master Fields: The field name in the record source of the main
form. This field must match the Link Child Fields field.

Other properties have to be changed in the subform itself. Open the subform
in Design view and click the Properties button to display the properties of the
form. Or, with the main form open in Design view, click the subform control to
select it, and then click the gray box in the upper-left corner of the subform
to select the form properties. Some properties you may want to change are

✦ Default View: The default setting is Datasheet view, in which the subform
appears as a small datasheet of records. You can change the Default
View property to the Continuous Forms setting if you prefer: Then you
simply adjust the layout of the subform to make it look right.

✦ Navigation Buttons: If a subform doesn’t show many records, you may
not want to waste space on navigation buttons. Having two sets of navi-
gation buttons — one for the subform and one for the main form — can
be confusing, too. However, without navigation buttons, you have to
click or use the keyboard to move from record to record in the subform.

If you’re editing the properties of a subform in Design view of the main form,
click elsewhere on the main form to tell Access to update the subform prop-
erties. Otherwise, your changes don’t appear to have taken effect when you
switch to Form view.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 376

Book IV
Chapter 3

Creating Sm
arter

Form
s

Creating Tabbed Forms 377

Adding Form Headers and Footers
Normally, a form contains one section: the Detail section. You can see the
Detail header at the top of the Design View window (take a look at Figure
3-13, for example). You can usually ignore this section header (and the idea
that forms have sections at all).

However, you may want to display information at the top and bottom of your
form. Yes, you can just put controls at the top and bottom of the Detail sec-
tion of your form, and most people do just that. However, if the window dis-
playing the form is too small for the whole form to fit, the information may
not always be visible.

You can add a Form Header and Form Footer section to your form by open-
ing the form in Design view, right-clicking on the form or report where you
want the object, and choosing Form Header/Footer. (You can get rid of the
sections by giving the same command again.) Access creates a new, blank
Form Header section at the top of the Design View window and a matching
new, blank Form Footer at the bottom. Next, you can add controls to these
sections, using the tools found in the Controls group of the Design tab on the
Ribbon or the Field list.

When you switch to Form view by clicking the View button, the controls in
the header and footer sections are always visible, no matter what the size of
your Form window.

Creating Tabbed Forms
Sometimes you need to fit tons of information on a form, and you can see
that the form is getting to be the size of Nebraska. In addition to not fitting
on the screen, large forms are confusing: Where is the right box in which to
type this information?

One way to fit lots of information on a form while keeping the window size
down and making the form less confusing is to divide the form up into tabs.
We’re talking about the kind of tabs that stick up from the tops of folders.
Lots of dialog boxes have them: Take a look at the Property sheet for a nice
example. Your forms can have tabs, too, with different controls on each one.
The entire form can be on the tabs, or the tabs can occupy part of the form,
with controls that remain visible regardless of which tab you’re looking at.
(We recommend the latter approach.)

To create tabs, you create a tab control on the form, and then you create con-
trols on the tab. Before you start, decide how many tabs you want, and what
controls go on each tab. Then follow these steps:

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 377

Creating Tabbed Forms378

1. With your form open in Design view, make some space on your form
where you want the tabs to go.

If your form is already crowded, just expand the form outrageously by
dragging its bottom edge downward, and drag groups of controls out of
the way of your new tabs.

2. Click the Tab Control button from the Controls group of the Design
tab of the Ribbon.

3. Click in the form where you want the upper-left corner of the tabs to
appear.

Access creates a tab control and two tabs (also called pages), usually
named Page1 and Page2, as shown in Figure 3-14.

4. Drag the edges of the tab control to fix the size of the control.

If you want to move the whole tab control, click the first page (usually
Page1) so it’s selected, and drag the black handle that appears in its
upper-left corner.

After you have a tab control, the things you can do with it are as follows:

✦ Rename the pages: Page1 and Page2 are probably not what you want to
call your tabs. Click the tab to select the page, display the Property
sheet by clicking the Properties button on the toolbar, and change the
Name property on the Property sheet.

✦ Add, delete, or reorder the pages: If you want more than two pages,
right-click the tab control (or any of its pages) and choose the Insert Page
option from the shortcut menu that appears. To delete a page, select it,
right-click it, and choose the Delete Page option from the shortcut menu.
To switch the order of the pages, right-click any of the pages and choose
the Page Order option; on the Page Order dialog box that appears, use
the Move Up and Move Down buttons to reorganize the list of pages.

Figure 3-14:
The Tab
Control
button
creates tabs
on your
form.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 378

Book IV
Chapter 3

Creating Sm
arter

Form
s

You Can’t Type That Here! 379

✦ Put controls on the pages: This is the good part — you can drag existing
controls from the rest of the form, or you can create new controls on the
form in the same way you create controls for the rest of the form. Click
the page on which you want to put the controls, so the page appears “on
top.” Then move or create the controls you want.

Figure 3-15 shows a form with three tabs in Design view.

You Can’t Type That Here!
The main purpose of forms is to provide easy-to-use on-screen display and
editing for your records. Most people use forms rather than datasheets for
entering and editing data. Book II, Chapter 5 describes how to create
defaults and validation rules for your tables, to prevent the dreaded
“garbage in, garbage out” syndrome that so many databases suffer from. You
can add validation to your form controls, too.

Use validation in your tables when you want data to follow rules all the time,
no matter how it is entered. Use validation in form controls when you want
to validate one field against another. For example, you may want to make
sure the Ship Date can’t be earlier than the Order Date, which you can’t
enforce using field validation in the table design.

Form controls that display data have properties with which you can validate
and format that data. In fact, they are the very same properties that you can
set as part of your table design:

✦ Default Value: The starting value for this field when you add a new record.

✦ Input Mask: A pattern for field data to follow, including where letters,
numbers, and punctuation appear, and how letters are capitalized.

✦ Validation Rule: A rule Access applies to values entered in this field.

✦ Validation Text: An error message you see if you try to enter data that
breaks the validation rule.

Figure 3-15:
This tab
control
contains
three pages,
and each
page
contains
controls.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 379

Making Switchboards — A Friendly Face for Your Database380

These settings appear on the Data tab of the Property sheet for controls. For
help with creating input masks and validation rules (which can be a little
complicated, frankly), click in the setting on the Property sheet and then
click the Build button (to the right of the setting). For input masks, you see
the Input Mask Wizard, and for validation rules, you see the Expression
Builder. (For details about using these settings, see Book II, Chapter 5.)

Making Switchboards — A Friendly Face
for Your Database

If you use an Access template to create your database, the database proba-
bly includes a special kind of form called a switchboard. Switchboards are
forms that contain buttons for different database maintenance tasks, usually
including adding records, printing reports, and closing the database. For
example, if you use the Contact Management template to create a database,
you see the switchboard shown in Figure 3-16 when you open the database.
Choosing Enter/View Other Information displays another switchboard with
other options, and choosing Preview Reports displays a switchboard listing
the reports that the template created. Very nice!

The secret life of switchboards
A switchboard is a special kind of Access form. One form, called
Switchboard (good choice of names, we thought), appears in the list of
forms in the Database window. To open the main switchboard, double-click
the Switchboard file name on the Forms list in the Database window. You
can’t open the other switchboards directly from the Database window —
you must open them from the main switchboard.

You may want to make changes to the switchboards in your databases. For
example, if you create a few really useful reports, adding them to the Preview

Figure 3-16:
A switch-
board
serves as
Mission
Control for
your
database.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 380

Book IV
Chapter 3

Creating Sm
arter

Form
s

Making Switchboards — A Friendly Face for Your Database 381

Reports switchboard is a good idea. You can open a switchboard in Design
view to make changes. However, the list of buttons and what they do is
stored in an unusual (and clever) way — your database includes a Switchboard
table with one record for each switchboard button. There’s one table for the
buttons on all your switchboards. When Access displays a switchboard, it
uses the information in the Switchboard table to create the buttons and the
labels next to them.

You can edit switchboards by using Design view or by editing the values in
the Switchboard table, but we don’t recommend it. Instead, you can use the
Switchboard Manager to create and edit switchboards.

Switchboard Manager, boss of the switchboards
To start the Switchboard Manager (shown in Figure 3-17), from the Ribbon,
choose Database Tools➪Database Tools➪Switchboard Manager. You see a
list of the switchboard pages. (Switchboard pages are the different switch-
boards that appear in this database; Access thinks of them as different pages
of the same switchboard. Whatever!)

The Switchboard Manager lists all the switchboard pages. One of the pages
is shown as the default; this page is the starting page — the page that
appears first, and from which you can display all the other pages. The
default page usually has a name like Main Switchboard.

If you want to change the entries on a switchboard, follow these steps:

1. Display the Switchboard Manager by choosing Database
Tools➪Database Tools➪Switchboard Manager from the Ribbon.

2. Select the switchboard page you want to change, and click the Edit
button.

You see the Edit Switchboard Page window, with a list of the items (but-
tons) on the switchboard.

Figure 3-17:
Use the
Switchboard
Manager to
change your
switch-
boards or to
create new
ones.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 381

Making Switchboards — A Friendly Face for Your Database382

3. To edit what a switchboard button does or what its label says, click
the entry on the Items on This Switchboard list and click the Edit
button.

The Edit Switchboard Item dialog box appears, as shown in Figure 3-18.

4. Change the entries for the item and click OK.

You can edit the contents of the Text box to change the label that
appears next to the button. To change what the button actually does,
choose a different Command entry. For most commands, you see a third
entry in which you can specify more information about the command
(for example, which switchboard page to open or which report to print).

5. To get rid of a switchboard button, select it, click the Delete button,
and click the Yes button to confirm the deletion.

6. To create a new switchboard button, click the New button.

The Edit Switchboard Item dialog box appears.

7. Specify the text (label for the button), command (what the button
does), and other information. Then click OK.

The new button appears on the Items on This Switchboard list.

8. To change the order of the buttons on the switchboard, select a button
and click the Move Up or Move Down button.

9. Click the Close button to return to the Switchboard Manager window.

You see the list of switchboard pages again.

10. If you want a different page to be the default (starting) page, select it
and click the Make Default button.

The default page should have buttons that display each of the other
pages. Otherwise, you have no way to display the other switchboard
pages. Most default pages also have an Exit This Database button.

11. When you finish making changes, click the Close button.

Figure 3-18:
Change
what
switchboard
buttons do
and what
their labels
say.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 382

Book IV
Chapter 3

Creating Sm
arter

Form
s

Making Switchboards — A Friendly Face for Your Database 383

The alternative to switchboards
You don’t have to use switchboards to make a main menu form for your data-
base. You can use a regular old form with command buttons on it instead.

To make a main menu form, create an unbound form (a form for which the
Record Source property for the form is blank). (See Chapter 1 of this mini-
book for how to set the record source of a form.) Use labels to give the form
a title (such as “Main Menu”) and create a command button for each com-
mand you want available on the form.

Many people use a one-record table to contain constants about their busi-
nesses or projects (see Book I, Chapter 3). If you use this trick, you may
want to set this table as the record source of your main menu form. The
form shown in Figure 3-19 contains two controls at the bottom of the form,
showing data from a Constants table. These controls make seeing and edit-
ing these values easy for a database user.

Figure 3-19:
You can use
a regular
form with
lots of
command
buttons as a
main menu,
too.

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 383

Book IV: Forms384

24_036494 bk04ch03.qxp 11/17/06 8:26 AM Page 384

Chapter 4: Doing Calculations
in Forms (and Reports)

In This Chapter
� Including calculated results on your forms (and reports)

� Using numbers in calculations

� Using dates in calculations

� Using strings, that is, text in calculations

� Totaling and counting information from subforms (and subreports)

The first three chapters in Book IV explain how to make forms with all
kinds of controls, showing information in all kinds of ways. In the

process, you find out how to create reports, because creating and editing
reports is so similar to working with forms. However, up to this point all the
information we deal with is sitting there waiting for us, nicely contained in
tables and queries. How about calculating data that isn’t stored anywhere?
Your forms and reports can calculate and display information, which you
can also store in the record source for the form (that is, store the results so
you can use them in other objects). For example, you may want the Order
form for an online store to calculate the total price of all items ordered, the
sales tax, and the grand total for the order.

In addition to calculating numbers, you can also do text, date, and logical
calculations. For example, you can give Access instructions such as, “If Tax
Exempt is True, then Sales Tax is 0; otherwise it’s Tax Rate times
Product Total.” Text calculations include things such as keeping only the
first five digits of a ZIP code, or capitalizing a text entry.

Doing Elementary Calculations
Sounds like algebra class, doesn’t it? Don’t worry; creating calculated values
for your forms won’t cause you to scream in terror like your high school
algebra teacher did. You’ll recognize some arithmetic signs (especially the
equal sign), but the calculations are all easy.

A calculated value is a value that Access creates by doing a calculation
based on other information, usually using fields from your tables. For exam-
ple, Access can add the product total to the shipping cost for an order, to
come up with the total cost.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 385

Doing Elementary Calculations386

To include a calculated value on a form or report, create a text box and then
enter an expression in the Control Source property of the text box. An
expression is a formula that tells Access how to calculate an answer from
field values and other values. Expressions start with an equal sign (=). If field
names include spaces, enclose them in square brackets. (Actually, we
enclose all field names in square brackets, just so we don’t forget.) For exam-
ple, this is an expression:

= [Product Total] + [Shipping Cost]

And here’s another one:

= “Your total will be “ & [GrandTotal] & “.”

The expressions you use on forms and reports are the same as the expres-
sions you use to create calculated fields in queries. Turn to Book III, Chapter
3 for how expressions work in queries, including the operators and functions
they can include.

Making a calculated control
A calculated control is a control that uses an expression, rather than the field
name, as its Control Source property (as explained in Chapter 2 of this
minibook). Usually, it’s a textbox control. To create a calculated control,
follow these steps:

1. With the form or report open in Design view, choose Design➪
Controls➪Text Box from the Ribbon.

For an introduction to the tools in the Controls group, see Chapter 1 of
this minibook. You have to use the tools from the Controls group, rather
than the Field list, to create a control with a blank control source. (A
control with no control source is called an unbound control.)

2. Click the form where you want the text box, or drag from one corner
to the other in the space where you want the text box to appear.

A text box appears, with Unbound showing in it. The control has no
Control Source — Access doesn’t know what to display in the text box.

3. Display the Property sheet for the control by clicking the Property
Sheet button on the toolbar. Click the Data tab on the Property sheet
that appears.

The Control Source property is the first property on the Data tab —
and lo! It’s blank.

4. Type an expression in the Control Source property of the text box.

You can click in the text box on the form and type the expression, as
shown in Figure 4-1. Or click in the Control Source property on the
Property sheet. Your choice.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 386

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Doing Elementary Calculations 387

If you want to edit the expression later, you can change your entry on the
Property sheet.

Another way to enter or edit an expression is to click the Build button — the
button to the right of the Control Source box — or press Ctrl+F2 to run the
Expression Builder, which steps you through writing an expression. See Book
III, Chapter 3 for how the Expression Builder works.

Expressions can get long, and it can be hard to see them. When editing an
expression, press Shift+F2 to display it in a Zoom box, as shown in Figure 4-2.

Don’t name the text box control with the same name as a field in the record
source for the form or report! For example, if the table or query that pro-
vides the records has a field called Full Name, don’t create a calculated
text box with that name. Two items with the same name confuse Access if
you refer to that name — Access doesn’t know whether you want the field or
the control.

Figure 4-2:
A Zoom box
displays an
expression.

Expression

Figure 4-1:
When you
type an
expression
as the value
of a text
box, be sure
to start it
with an
equal sign.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 387

Doing Elementary Calculations388

Checking your expression
After you type an expression into the Control Source property of a text
box (or use the Expression Builder to create it), you see the expression itself
in the text box. What about the answer?

To check whether the expression works, switch to Form view by clicking the
View button or by choosing Views➪Form View from the Form Layout Tools
tab on the Ribbon. (For reports, switch to Print Preview.) Check the answer
in several records to see whether the expression works as you expect.

Troubleshooting expressions
If you make a mistake in your expression, you may see one of three things in
Form view or Print Preview: a wrong answer, #Name?, or another error mes-
sage that starts with a #. If you find an error, check out these ideas for fixing
your calculated text box and its expression:

✦ #Name? indicates that Access can’t understand a field name in your
expression. The most likely reason is that you forgot the equal sign (=)
at the beginning of the expression. Or you may have misspelled a field
name, or you may have forgotten to enclose it in square brackets. If your
text box control has the same name as a field, Access can’t tell which
one you’re referring to, so check the name of the text box, too. (It’s the
Name property on the All tab of the Property sheet.)

✦ #Div/0! means you’re dividing something by zero, which is impossible
in standard arithmetic. Check the fields in your expression to see if one
might be zero for some records.

✦ #Error indicates some other problem — check the expression carefully.

Should you put your calculations in queries
or on forms and reports?

When you want to include a calculated value in
a form or report, you can do it in one of two
ways:

� In a query, which you use as the record
source for the form or report

� In a text box control on the form or report

Both methods work fine. If you plan to use the
calculated value to select which records to
include in the form or report, you need to calcu-
late the value in a query, and then set the Sort
row for that field to ascending or descending.
We usually calculate values in a query if we plan
to sort or select by the calculation, or display the
calculation in more than one form or report.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 388

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Calculating and Formatting Numbers 389

Calculating and Formatting Numbers
To display a numeric calculation on a form or report, you can use the arith-
metic operators that we describe in Book III, Chapter 3. Access also has
numeric functions, described in the same section.

Some sample numeric expressions (you can guess what the fields contain
from their names) are included in the following table.

Numeric Expression Purpose

=[TaxableTotal]*[SalesTaxRate] Sales tax on an order

=3.50 + ([ItemCount] * 2) Shipping is $3.50 plus $2 per item

=[OrderSubtotal] + [SalesTax] Grand total for an order
+ [Shipping]

After you type an expression in the Control Source property of a text box
and switch to Form view or Print Preview to check that it works, you usually
want to format the number — you may not like the number of decimal places,
use of commas, or lack of a currency symbol in your calculated text box.

To format a number, display the properties of the text box and click its
Format tab, as shown in Figure 4-3. For a text box with numeric values, you
can click in the Format property and click the down arrow at the right end
of the property to see a list of numeric formats. Details about numeric for-
mats are in Book II, Chapter 1 — they are the same formats you can use to
format the fields in your tables.

Figure 4-3:
Formatting a
calculated
value in a
text box.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 389

Calculating and Formatting Dates390

Calculating and Formatting Dates
Access includes operators and functions that work on dates, including find-
ing the number of days between two dates, separating a date into its compo-
nent parts (day, month, year, hour, minute, and second), and adding days to
a date. Book III, Chapter 3 describes the operators and functions you can
use. A few examples are in the following table.

Date Expression Purpose

=DateDiff(“w”, [OrderDate], Number of weeks between ordering and
[ShipDate]) shipping

=[InvoiceDate] + 30 30 days after the invoice date

=Date() + 10 10 days after today

=DatePart(“q”, [OrderDate]) Quarter in which order was placed

Access gives you lots of date formats to choose from, as listed in Book II,
Chapter 1.

Calculating and Formatting Text
For forms and reports, you want things to look just right, and text expres-
sions allow you to do all kinds of things to slice and dice the text that appears
in your text boxes. Book III, Chapter 3 describes the operators and functions
you can use with text values. A few examples are in the following table.

Text Expression Purpose

=[FirstName] & “ “ & First and last names, with a space in between
[LastName]

=[LastName] & “, “ & Last name first, then first name, with a
[FirstName] comma in between

=UCase([LastName]) Last name, in all capital letters

=Left([ProductCode], 2) First two characters of the product code

You can create a so-called input mask that determines the formatting of a cal-
culated text box, as we describe in Book II, Chapter 1. For example, an input
mask can add parentheses and dashes to a phone number, or dashes to a
Social Security number. A nifty way to explore input masks is to click in the
Input Mask property on the Data tab of the Property sheet for your text
box, and then click the Build button to its right. The Input Mask Wizard runs
and shows you a list of input masks you can use, as shown in Figure 4-4. (See
Book II, Chapter 5 for more information on input masks.)

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 390

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Displaying Values That Depend on Conditions 391

Displaying Values That Depend on Conditions
Some calculations have an if-then component — basically, if this is true, then
we do this. For example, if the order is from your home state, then charge
sales tax; otherwise, don’t. Or if the order is above $100, then shipping is
free. Access handles these types of if-then calculations using its iif()
(immediate-if) function, which we describe in Book III, Chapter 3.

For example, if you charge sales tax only for Vermont orders, then you use
this expression:

= iif([State]=”VT”, [TaxableTotal]*.05, 0)

The condition ([State]=”VT”) is either true or false; if it’s true, the
expression is [TaxableTotal]*.05 (5 percent of the taxable total); if it’s
false, the expression is 0.

The condition can be a Yes/No field: if the field is Yes (true), the function
returns the first value, and if it’s No (false), you get the second value. For
example, the following expression looks at the Yes/No field, TaxExempt, to
determine whether this customer is exempt from sales taxes. For taxable
customers, the function returns the value of the TaxableTotal field. For
tax-exempt customers, it returns zero:

= iif([TaxExempt], 0, [TaxableTotal])

Here’s the mind-boggling part: You can nest functions, including the iif()
function — that is, you can use a function inside another function. The follow-
ing expression (for example) combines the last two examples to calculate
sales tax based on both the customer’s tax-exempt status and the customer’s
state:

= iif([State]=”VT”, iif([TaxExempt], 0, [TaxableTotal]*.05), 0)

Figure 4-4:
The Input
Mask
Wizard
helps format
text in a
form or
report.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 391

Adding Subtotals and Totals from Subforms392

Adding Subtotals and Totals from Subforms
If your form includes a subform (or your report includes a subreport), and
the information shown in the subform includes quantities, you may want to
display a total on the main form. For example, on an Orders form that con-
tains an Order Details subform, the main form can include the total cost of
all the items in the subform, and maybe a count of the records in the sub-
form. Figure 4-5 shows an Orders form with a subform listing the items that
the customer is buying.

Unfortunately, you can’t make a control on the main form that calculates a
total for the records on the subform. You can, however, make a control on
the subform that calculates the total, and then make a control on the main
form that displays the value of this control. Seems like an extra step to us,
but it works. The following sections cover what you need to know to create
totals and counts of subform records.

Using aggregate functions
An aggregate function is a function that combines a bunch of values together.
For example, the Sum() function adds a bunch of numbers together. (Simple
enough!) When doing calculations based on a bunch of records, you can use
the aggregate functions outlined in the following table.

Function Description

Sum() Totals the values

Count() Counts the values

Avg() Averages the values (sum divided by count)

Figure 4-5:
Wouldn’t it
be nice if
the Orders
form could
include a
total of the
cost of the
items in
the Order
Details
subform?

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 392

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Adding Subtotals and Totals from Subforms 393

Function Description

Min() Calculates the smallest value (for numeric values), the earliest date (for
date values), or the first value in alphabetical order (for text values)

Max() Calculates the largest value (for numeric values), the latest date (for date
values), or the last value in alphabetical order (for text values)

First() Uses the value from the first record

Last() Uses the value from the last record

Aggregate functions work only where Access knows what set of records you
want to work with. On forms, they work in the form footer of a subform. (See
Chapter 3 of this minibook for a description of a form footer, unless you
already guessed that a form footer is a section that appears at the bottom of
a form.)

For example, in Figure 4-5, the total of the Qty field in the Order Details sub-
form tells the shipping clerk how many items need to be shipped for this
order. The expression is

= Sum([Qty])

If a field name contains spaces, you have to enclose it in square brackets. We
enclose all field names in square brackets, just to be safe.

You can also total a calculation. To come up with the total cost of the items
ordered, you use this expression:

= Sum([Unit Price] * [Qty])

If you want to total, average, or count all the records in an entire table or
query, or selected records in a table or query, use the functions described in
the sidebar, “Summarizing lots of records.”

Referring to a control on a subform
To create a control on the main form that shows information from the sub-
form, you need to know how to refer to a control on the subform. The format
of an expression that displays a value from a subform is the following:

= [subform control name].Form![control name]

(This looks hideous, but hold on!) Replace subform control name with
the name of the subform control on the main form that displays the subform.
Replace control name with the name of the text box on the subform that
displays the value you want to see.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 393

Adding Subtotals and Totals from Subforms394

For example, if your main form is the Orders form shown in Figure 4-5, its
subform control is called Order Details subform. If you want to display
the information from that subform’s Order Subtotal text box, the expression
would look like this:

= [Order Details subform].Form![Order Subtotal]

Creating the controls to total a subform
To calculate a total (or a count) of the values of a control on the subform and
to display it on the main form, you create two controls: one in the form footer

Summarizing lots of records
In addition to the functions that work with the
field values in the current record, Access has
domain aggregate functions — functions that
work with field values in some or all of the
records in a table or query. (A domain is a fancy
name for a table or query.) For example, you
may want a form to display the grand total of all
the orders so far this year, or the amount of the
largest order placed. To total the value of a field
for a bunch of records, you use the DSum func-
tion, which has this syntax:

DSum(expression, domain,
criterion)

Replace expression with the field name
that you want to total (or an expression such
as [Price] * [Qty]), in quotes. Replace
domainwith the table or query name, in quotes.
Optionally, you can include a criterion that
limits which records to include.

For example, the following expression totals the
extended price (price times quantity) for all the
records in the Order Details table:

DSum(“[Price] * [Qty]”, “Order
Details”)

Some of the other domain aggregate functions
you can use (they have the same syntax as
DSum) are

� DAvg: Averages the values

� DCount: Counts the values

� DFirst: Value for the first record

� DLast: Value for the last record

� DMin: Minimum value (for numbers it’s the
smallest; for text it’s the first in alphabetical
order; and for dates it’s the earliest)

� DMax: Maximum value (for numbers it’s the
largest; for text it’s the last in alphabetical
order; and for dates it’s the latest)

One other useful domain aggregate function is
DLookup, which returns the value of a spe-
cific field for a specific record in a table or
query. For example, the following expression
returns the date of OrderID 5000 from the
Orders table:

DLookup(“[Order Date]”,
“Orders”, “[OrderID] =
5000”)

In this DLookup function, the expression is
“[Order Date]”, the date of the order. The
domain is the Orders table. The criterion is
“[OrderID] = 5000” — which limits the
records to include only the record with that
specific ID.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 394

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Adding Subtotals and Totals from Subforms 395

of the subform and one on the main form, wherever you want the total to
appear.

Be careful when entering the expressions for calculating and displaying the
total: In some cases, you type the name of the field while in other cases you
type the name of the control that displays the field. It can get confusing!

Follow these steps to display the subform total on the main form:

1. Open the subform in Design view and display its Property sheet by
clicking the Property Sheet button.

If you already have the main form open in Design view, you can right-
click in the subform control and choose Subform in New Window.

2. Add a Form Footer section (assuming that it doesn’t already have one)
by right-clicking on the location on the form you want to add a header
or footer to and click Form Header or Form Footer.

Figure 4-6 shows a form in Design view with header and footer sections.
(See Chapter 3 of this minibook for more about form headers and footers.)

3. Note the name of the field (not the control on the form) that contains
the values you want to count or total.

Frequently, the control that displays a field has the same name as the
field itself, but not always. Be sure to use the field name, not the name of
any control on the form that displays the field.

4. In the Form Footer, make a text box by clicking the Text Box button
on the Controls group of the Design tab of the Ribbon and clicking in
the form footer.

5. Open the Property sheet for the text box, and enter the expression
that you want to calculate in the Control Source property.

For example, type = Sum([Unit Price] * [Qty]) into the Control
Source property, as shown in Figure 4-6.

Figure 4-6:
Create a
calculated
control in
the form
footer to
calculate
totals of
records on
the form.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 395

Adding Subtotals and Totals from Subforms396

6. Enter a descriptive name for the control in the Name property.

Make a note of the control name, because you need it to display the
value on the main form. For example, you may name the control
OrderSubTotal.

7. Switch to Form view by clicking the View button, to make sure that
the new text box works.

Because you’re looking at the subform as an independent form, the sub-
form shows all the records in its record source, and the calculation
totals all the records, not just those for one order. But when this form is
used as a subform, the linkage between the subform and the main form
restricts the records in the subform to one order at a time, and the con-
trol totals the records for only the current order.

8. If you plan to display the subform in Form view, not just in Datasheet
view, hide the Form Footer section by setting its Visible property to
a No setting.

Otherwise, you display the subtotal once on the subform and once on
the main form, which looks odd. Most subforms appear in Datasheet
view, which don’t display form headers and footers.

9. Save and close the subform.

Press Ctrl+S to save your changes, and go ahead and close its Design
View window — you’re done with it.

10. Open the main form in Design view. Click the Property Sheet button
to display the Property sheet.

11. Create a text box to hold the total, by clicking the Text Box button and
clicking in the Design View window where you want the calculated
control.

You get a new unbound control, ready to display your calculated total.

12. Set the text box’s Control Source property to an expression that
refers to the calculated control on the subform.

For example, the expression referring to the calculated control shown in
Figure 4-6 is this:

= [Order Details subform].Form![Order Subtotal]

13. Format the new control with the numeric format you want and switch
to Form view to test it out.

If you don’t format the text box, Access usually displays way too many
decimal places for calculated values. On the Format tab of the Property
sheet, set the Format property to the Currency setting, or whatever
format you prefer.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 396

Book IV
Chapter 4

Doing Calculations
in Form

s
(and

Reports)
Formatting Calculated Controls 397

If you see #Name or #Error instead of the subtotal, check the expres-
sion for the control on the main form carefully, and make sure that you
entered the expression, the name of the control on the subform, and the
name of the subform control — the control you put on the main form —
correctly. (What a zoo!)

Formatting Calculated Controls
When you display calculated values on a form, the value isn’t editable in
Form view — that is, you can’t type a different value in its place, or delete it.
The expression controls what appears in the text box.

To make it clear which text boxes are editable, we like to make calculated
text boxes look different from text boxes we type in. We recommend that you
display the Format tab on the Property sheet for each calculated control and
make the following changes:

✦ Set the Back Style property to the Transparent setting, so the back-
ground of the calculated value matches the background of the form itself.

✦ Set the Special Effect property to the Flat setting, so the value
doesn’t appear in a box at all.

Figure 4-7 shows the Orders form with three calculated controls at the
bottom.

Figure 4-7:
Order
Subtotal,
Sales Tax,
and Order
Total are
calculated
controls.

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 397

Book IV: Forms398

25_036494 bk04ch04.qxp 11/17/06 8:27 AM Page 398

Book V

Reports

26_036494 pt05.qxp 11/17/06 8:27 AM Page 399

Contents at a Glance
Chapter 1: Creating and Spiffing Up Reports ..401

Chapter 2: Printing Beautiful Reports ..435

Chapter 3: Creating Charts and Graphs from Your Data ..445

26_036494 pt05.qxp 11/17/06 8:27 AM Page 400

Chapter 1: Creating and
Spiffing Up Reports

In This Chapter
� Getting a handle on how reports are like forms

� Creating reports by running wizards and AutoReports

� Editing reports in Design view

� Adding page headers and footers

� Creating groupings and subtotals

� Including subreports on your report to print information from related
tables

� Making reports that print mailing labels

Reports are the best way to put information from your database onto
paper. In a report, you can choose how to display your data, including

which information to include (which tables and fields); where to print each
field on the page; text fonts, font sizes, and spacing; and printing lines,
boxes, and pictures.

Reports can include information from different tables — for instance, you
can display the customer information, followed by all the items that the cus-
tomer has bought from all orders. The Report Wizard simplifies creating
reports that list, summarize, and total your data. You can also use calcula-
tions in reports to create totals, subtotals, and other results. You can create
invoices, packing slips, student rosters, and all kinds of other reports.
Thanks to the trusty Label Wizard, reports are also the best way to create
mailing labels from addresses in your database.

This chapter explains how to create and modify reports so they’re ready to
print. The next chapter talks about previewing and printing them. Chapter 3
of this minibook describes graphical reports — graphs and charts.

If You Know Forms, You Already Know Reports
Reports and forms are used very differently, but you create them in similar
ways. You can create both forms and reports by running wizards. You can
create or modify both forms and reports in Design view, where you can
create, move, and customize controls and their properties.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 401

If You Know Forms, You Already Know Reports402

To see a list of the reports in your database — and, eventually, to open or
modify a report — scroll down in the Navigation Pane until you get to the
Reports section, where you’ll see a nice list of all the reports in your database,
as shown in Figure 1-1. If you don’t see the Reports section in the Navigation
Pane, click the title bar of the Navigation Pane and select All Access Objects.

You can look at a report in three views:

✦ Design view: Here’s where you can look behind the scenes at what fields
the report displays where.

✦ Print Preview: This view shows how the report will look when you print it.

✦ Layout view: This view looks like Print Preview, but allows you to make
changes to your report.

To see a report in Design view, click its name in the Navigation Pane and
click the down arrow on the View button on the Home tab of the Ribbon.
You’ll see a drop-down list. To see the report in Print Preview, click its name
in the list. If you already opened the report in Design view, switch to Print
Preview by clicking the down arrow on the View button on the Home tab and
selecting Print Preview. You can also cycle between Layout view and Print
Preview by clicking the View button.

This chapter describes how to make reports by running wizards, as well as
how to customize reports in ways that don’t work for forms. For information
about how to create and customize reports in Design view, including adding
controls and setting properties, see Book IV, Chapter 1.

Figure 1-1:
The
Navigation
Pane lists all
your
reports.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 402

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Reports Automagically 403

However, reports can include features that don’t appear on forms, including
these:

✦ Grouping and sections: When you design a report, you frequently want to
have information grouped together. For example, a monthly sales report
may list sales by product, with subtotals for each product. A mailing-
label report may start a new page for each new ZIP code, and print the
total number of labels that are in each ZIP code. You can have up to four
grouping levels. You can add grouping levels by adding section headers
to your report in Design view (see the section, “Adding sections that
group your records,” later in this chapter).

✦ Page headers, footers, and numbers: Most reports have page numbers
and many need other information printed at the top or bottom of every
page. See the section, “Adding page headers, footers, and numbers,”
later in this chapter.

✦ Margins, paper size, and paper orientation: Reports usually end up on
paper, and you can configure your report to fit. See the section,
“Creating Mailing Labels,” later in this chapter, along with most of the
sections in Chapter 2 of this minibook.

But first, we cover how to create some reports the easy way — by using the
wizard.

Creating Reports Automagically
You create a report the same way that you create other objects in your data-
base. Follow these steps:

1. Display the Create tab of the Ribbon by clicking it.

2. Select the method you want to use to create the report by clicking one
of the buttons on the Reports group of the Create tab on the Ribbon,
shown in Figure 1-2.

Table 1-1 lists the choices on the Reports group of the Create tab.

Don’t click New on the Microsoft Office Button menu — doing that
makes a new database!

Figure 1-2:
Access
provides
several ways
to create
reports.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 403

Creating Reports Automagically404

Table 1-1 Buttons on the Reports Group of the Create Tab
Option When to Use It Where to Find More Info

Design View When you want to design your See Book IV, Chapter 1.
report from scratch in Design view

Report Wizard When you want Access to create a See the next section in this chapter.
report, using the fields, grouping,
and sorting that you provide

Report When you want to create a simple Just click the button and Access
report based on the table or query 2007 automatically creates a report
that is currently selected. You can based on the currently selected
customize the report later. table or query.

AutoReport: When you want to create a report See “Creating Simple Reports,” later
Tabular from one table or query and arrange in this chapter.

the fields in a table, with field
names at the tops of the columns
and data from each record
displayed as a row in the table
(as in a datasheet).

Chart Wizard When you want to create a chart See Chapter 3 of this minibook.
from data stored in one table or
query.

Label Wizard When you want to print data from See “Creating Mailing Labels,” later
one table or query on labels. in this chapter.

Running the Report Wizard
The first step in creating almost any report is to run the Report Wizard —
especially if you want to create a report that groups data using one or more
fields, with headings or subtotals for each group. When the wizard finishes,
you can switch to Design view and add your own formatting touches.

One big advantage of using the Report Wizard is that you can choose fields
for the report from more than one table or query — you don’t have to gather
all the data you want into one query. For example, using the MOM sample
database (which stores order and customer information for a mail-order
store), you may want to create a report that lists all the orders for each cus-
tomer. The information for this report comes from several tables: Address
Book (which stores one record for each customer, including name and
address), Orders (with one record for each order, including the order date),
and Order Details (with one record for each item in an order, including the
quantity ordered and the price per item).

If you want your report to include a calculated field, you need to create a
query that calculates the field. For example, for our customer-order listing,
we need the extended price (price × quantity) for each item in each order, so
we can calculate the total amount of each order. (Book III, Chapter 2 shows

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 404

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Reports Automagically 405

how to create calculated fields in queries.) Alternatively, you can add a cal-
culated control to your report in Design view. (See the “Formatting Tips and
Tricks” section, later in this chapter, for a look at how this works.)

The Report Wizard asks different questions depending on the data in the
record source and on options you select, so don’t be surprised if you don’t
see every window each time you run it. Follow these steps to create a report:

1. Click the Create tab of the Ribbon. Then click the Report Wizard
button in the Reports group.

Access displays the first Report Wizard window, as shown in Figure 1-3.

2. Use the Tables/Queries drop-down list to select the table or query that
stores the records you want to include in the report.

If you plan to use information from several tables or queries, choose one
of them. The Available Fields box lists the fields in the selected table or
query.

3. Select the fields you want to display in the report in the Available
Fields box and add them to the Selected Fields list by clicking the >
button.

Double-clicking a field name also adds it to the Selected Fields list. Click
the >> button to add all the fields.

4. Repeat Steps 2 and 3 for fields in other tables or queries until all the
fields you want to include in the report appear in the Selected Fields list.

You can use some fields from tables and other fields from queries. For
our customer-order listing, we select fields from the Address Book table,
the Orders table, and the Order Details Qry query (which includes the
Ext Price field, a calculated field that equals Price × Qty).

Figure 1-3:
The Report
Wizard can
build a
report from
one or more
tables and
queries.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 405

Creating Reports Automagically406

5. Click Next to see the wizard’s next window.

Access gives you a chance to choose how you want to group the data.
For example, in our customer order report, grouping by customer is a
good idea in order for all the information about one customer to be
together. Within the section for each customer, the secondary grouping
is by order, so that all the items in each order are listed together.

If your report includes fields from more than one table or query, Access
makes an educated guess about how you want to group your data, based
on the relationships among the source tables. In Figure 1-4, the report
includes records from the Address Book table (the customer list), the
Orders table, and the Order Details Qry query, and Access has automati-
cally created three ways of grouping your data: one by customer
(Address Book table), one by order (Orders table), and one by Order
Details Qry. Click an option in the How Do You Want to View Your Data
list and look at the example on the right side of the window. For the
selected way of grouping your data, Access shows how it plans to
arrange your data in the report.

In this example, if you choose the By Address Book option, the report
prints information about a customer, followed by all of the customer’s
orders, each with its order-detail information. Then the next customer,
with that customer’s orders, prints.

6. Click the option that’s the closest to the way you want to organize
your report, and click Next.

Click an option to see how the
wizard plans to group your data.

The wizard shows groupings
for your selection.

Figure 1-4:
The Report
Wizard
guesses
how you
want to
group the
information
in the report,
based on the
relationships
between the
underlying
tables.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 406

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Reports Automagically 407

The guesses Access makes about how to group data are not always on
the mark, so the wizard gives you a chance to make your own changes,
as shown in Figure 1-5.

7. Add or change the grouping fields if you want, and then click Next.

The wizard displays the grouping levels that you chose in the previous
step on the right side of the window. To add an additional level of group-
ing, select a field from the list and click the > button. You can remove it
by selecting it and clicking the < button. Here are some handy things to
know about groups:

• You can’t change the groupings that the wizard created in Steps 5
and 6. Instead, you have to click the Back button and choose a differ-
ent way to group your records.

• After you add a field, you can change the importance (grouping
level) of a field by selecting the field and clicking the up-arrow and
down-arrow Priority buttons (refer to Figure 1-5).

• In the customer-order report, the wizard’s suggested groups are
right, so you wouldn’t have to make any changes.

• Clicking the Grouping Options button (which is not always available,
depending on your groupings) displays the Grouping Intervals dialog
box. There you can specify exactly how to group records using the
fields you choose.

• For date fields, you can group by day, month, or year. For number
fields, you can group by 10s, 50s, 100s, 500s, 1,000s, 5,000s, and
10,000s so you can categorize values by magnitude.

• For text fields, you can group on the first 1, 2, 3, 4, or 5 characters.
Click OK to exit the Grouping Intervals dialog box and return to the
main wizard window.

Figure 1-5:
You can
adjust how
the Report
Wizard
plans to
group the
records in
your report.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 407

Creating Reports Automagically408

8. Choose how you want to sort the records within the lowest-level
grouping, and click Next.

Access automatically sorts by the fields on which you are grouping
records. For example, if you are grouping records by customer and then
by order, the customers appear in alphabetical order by name or in
order of customer number. Within the lowest level of grouping, you can
choose what order the records appear in — and specify up to four fields
on which to sort. If you aren’t grouping your records at all, you can still
sort them here.

Click in the 1 box (shown in Figure 1-6), choose a field, and click the
Ascending button if you want to switch to a descending sort. Additional
sort fields are used only when the 1 sort field is identical in two or more
records — in which case, the 2 field is used. If the 1 and 2 fields are
identical in two records, Access sorts by the 3 and then the 4 field.

In the customer-order report, you don’t need to sort your records — the
groupings take care of all the sorting you need.

9. Click the Summary Options button if you want to print counts, aver-
ages, or totals; specify which numeric fields to summarize; choose
between the Detail and Summary and the Summary Only options;
then click OK and click Next.

Access displays a list of the numeric fields in your report, with a check
box for Sum (total), Avg (average), Min (minimum or smallest value),
and Max (maximum or largest value), as shown in Figure 1-7. If you want
only the summary values, without information for individual records,
click the Summary Only radio button. If you want Access to calculate
the percent of the total that each grouping represents (for example, the

Figure 1-6:
You can sort
the records
in your
report
within the
lowest-level
grouping.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 408

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Reports Automagically 409

percentage of orders that each customer represents), click the Calculate
Percent of Total for Sums check box.

In the customer-order report we’re cooking up here, you click the Sum
check box for the Ext Price field if you want to get a total of the items
in each order and for each customer.

10. Choose the layout for your report from among the Access canned lay-
outs, and click Next.

You can preview the layout options by clicking one of the Layout radio
buttons. The sample box on the left changes to show what your chosen
layout looks like. If you want to print your report sideways on the paper,
click the Landscape radio button.

11. Choose the style — typefaces, colors, lines, and boxes — for your
report, and click Next.

Access has many preset styles to choose from. Click a style to see a
sample.

12. Type a title for the report. Choose whether to display the report in
Print Preview or in Design view, and click Finish.

The title appears at the top of the report. The Report Wizard takes a
moment to create the report, and then displays it in the view you chose.

The report may look close to perfect, or it may look like a complete wreck.
For example, the customer-order report as created by the Report Wizard
contains the right information, but it looks lousy (take a look at Figure 1-8).
Luckily, you can switch to Design view to fix it up. Click the View button on
the Ribbon or choose View➪Design View. Then see Book IV, Chapter 1 for
how to make changes in Design view.

Figure 1-7:
The Report
Wizard can
add totals,
subtotals,
averages,
percentages,
and other
summary
statistics to
your report.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 409

Creating Reports Automagically410

Creating Simple Reports
Access 2007 provides a Simple Report Tool that you can use to create a
report using the data from a single table or query. The Simple Report Tool
doesn’t allow the flexibility that the Report Wizard provides — you can’t
group data from related tables, for example — but it is an excellent way to
get your data into a report quickly. After you create a report using the Simple
Report Tool, you can customize it as you would any other report — just
open the report in Design view and have at it.

The Simple Report Tool creates a nicely formatted tabular report that looks
similar to a datasheet, with data in columns and field names as the column
headers, as in Figures 1-9 and 1-10.

To create a report using the Simple Report Tool, follow these steps:

1. Click the Create tab on the Ribbon.

2. In the Navigation Pane, choose the table or query from which you
want the data to come.

3. Click the Report button in the Reports group of the Ribbon.

Access creates a report in tabular format, containing all the fields and
records in the table or query, and displays it in Layout view.

Figure 1-8:
The Report
Wizard’s
creation
rarely looks
right on the
first try.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 410

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Reports Automagically 411

The Simple Report Tool does a pretty nice job of formatting your tabular
report. Still, if you don’t like the results, you can use Design view to get rid of
the unwanted fields, widen the controls for the fields and field names you
want to keep, or switch to landscape printing (or all three).

Figure 1-10:
The tabular
report looks
like a
datasheet.

Figure 1-9:
The
columnar
report lists
field names
and values.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 411

Editing Reports in Design View412

Editing Reports in Design View
Book IV, Chapter 1 describes how to edit forms in Design view; most of that
same information holds true for editing reports. Figure 1-11 shows a report
in Design view (specifically, a report created by the Simple Report Tool).

You can modify your report in many ways, some of which work just as they do
when modifying a form. Check out the following list for some of the ways —
and for the chapter in Book IV that describes each one:

✦ Creating, editing, moving, and deleting controls: Controls are the
boxes on the Design grid that display labels, data from fields, and other
information. See Book IV, Chapter 2 for the lowdown.

✦ Drawing lines and boxes: Book IV, Chapter 2 has a section devoted to this.

✦ Setting report properties: See Book IV, Chapter 1 for details.

✦ Saving, importing, copying, and renaming reports: See Book IV,
Chapter 1 for details.

When you are in Design view, the Access Ribbon looks like Figure 1-12, with
most of the same buttons that are used when designing a form.

However, some things work differently for forms and reports. Reports don’t
have command buttons and drop-down lists (they wouldn’t work on paper!).
Reports also have to fit correctly on the printed page and need page head-
ers, footers, and headings for subsections. The rest of this chapter describes
report-specific features, and the next chapter describes controlling how
reports print.

Figure 1-11:
A report in
Design
view.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 412

Book V
Chapter 1

Creating and
Spiffing Up Reports

Report Sections and How They Work 413

Report Sections and How They Work
In Design view, your report is broken into parts called sections. The main
part of the report is the Detail section — which shows information from
fields in the table or query that is the record source for the report. The other
sections come in pairs around the Detail section.

Sections provide headers and footers for your pages and allow you to group
data using a particular field. If you have a number of reports with the same
value in a field, you can display those records together in the report. For
example, if your record source has a Date/Time field, you can create a sec-
tion for that field and group records that have the same date, with subtotals
by date. Table 1-2 lists the different sections that a report can include, with
tips for how to use the section.

Table 1-2 Sections of Reports
Report Section Where It Appears and How to Use It

Report Header and Footer Appears at the beginning and end of the report. These sec-
tions are for summary information about the entire report.
The Report Header can include a title page. The Report
Footer can include totals for all the records in the report.

Page Header and Footer Appears at the top and bottom of each page, and usually
includes the report name, the date, and the page number.

Section Header and Footer Appears at the top and bottom of each grouping (before the
first record and after the last record) in a group that has the
same value for a specific field. Your report may have more
than one Section Header and Footer: You get one pair for
each grouping. The Section Footer may include subtotals.
Format Section Headers and Footers to make the hierarchy of
the report obvious (for instance, larger fonts for first-level
groups and smaller fonts for second-level groups).

Detail Appears after each Section Header or after the Report
Header if your report has no additional sections. Displays
values for each record and can contain calculated fields.

Gridlines group Controls group Tools group

Figure 1-12:
The Access
Ribbon in
Design view.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 413

Report Sections and How They Work414

In Design view, each section has a specific place. The gray bar names the
section, and the controls appearing underneath the bar appear every time
that section of the report prints. In the report shown in Figure 1-13, the
Report Header prints only once, at the very beginning of the report. The
Page Header section is blank, so nothing prints at the top of each page.
Records are grouped by company name, with the company name and
address printing at the beginning of the section for each company (in the
Company Header). The Detail section prints information about each prod-
uct, with the products for each company appearing under its Company
Header. The Company Footer section is blank (a little space is left before the
next company). The Page Footer section includes the current date and time,
the page number, and the total number of pages in the report. The Report
Footer section is blank. Figure 1-14 shows the report when printed.

Most sections are repeated many times in the report when you print it. For
example, the Company Header in Figure 1-13 prints once for each company
that has products. The Detail section prints once for each product. The Page
Header and Page Footer sections print once (each) per page.

When you create a report using a Report Wizard, you get sections for each
field on which you grouped the records. When you create a report from
scratch in Design view, Access gives you just the Page Header, Detail, and
Page Footer sections. You can add or delete sections in Design view, as
described in the next two sections of this chapter. You can also adjust the
size of each section by dragging the section dividers upward and downward.

Figure 1-13:
Report
sections
determine
what prints
at the
beginning
and end of
the report, in
each section
of the
report, and
at the top
and bottom
of the page.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 414

Book V
Chapter 1

Creating and
Spiffing Up Reports

Report Sections and How They Work 415

You can’t delete the Detail section. You can leave it blank, though, if you
want a summary report with subtotals and totals but no data for individual
records. Drag its lower edge (the top of the next section divider) upward to
shrink the section to nothing. (In Figure 1-13, the Page Header section is
shrunk to nothing.)

Setting report and section properties
As with most Access objects, each section and control in your report — as
well as the entire report itself — has properties. You can display and change
the properties on the Property sheet (see Figure 1-15). To display the
Property sheet for the whole report, double-click the report selector (the
gray box in the top-left corner of the Design View window) or right-click the
ruler at the top of the Design View window and choose Properties from the
context menu. Click the tabs to see the different categories of properties (or
click the All tab to see all of them). Click in a property to change it.

To see or change the properties of a particular section, double-click the sec-
tion header or select the section header and click the Property Sheet button
on the Tools chunk of the Design tab of the Ribbon. After the Property sheet
is visible, you can click a section header or control to see its properties.

You can quickly display or hide the Property sheet by pressing Alt + Enter.

Report HeaderCompany Header Detail

Figure 1-14:
The printed
report
includes
product
information
grouped by
company
(vendor).

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 415

Report Sections and How They Work416

Adding page headers, footers, and numbers
To add Report or Page Header or Footer sections, click the Report
Header/Footer button on the Show/Hide group of the Arrange tab on the
Ribbon. You can also right-click anywhere in the Report Design window and
select Report Header/Footer from the context menu. Access adds these in
pairs: If you have a Page Header, you have a Page Footer. You can leave one
or the other blank, though. To delete the Page or Report Header or Footer
sections, choose the same command again: Access deletes the
Header/Footer pair and all the controls in the sections.

If you want just a header or just a footer, change the height of the section
you want to hide by dragging the bottom border of the section up to the top
border.

Adding page numbers
After you have a Page Header or Footer to put controls in, you can create con-
trols in those sections, or drag them there from other sections. The easiest
way to add page numbers — probably one of the most common controls you
find in a report — is to click the Insert Page Numbers button on the Controls
group of the Design tab on the Ribbon. When you see the Page Numbers
dialog box (shown in Figure 1-16), choose the format of the numbering, the
position, and the alignment (Left, Center, Right, Inside, or Outside). Inside and
Outside page numbering refers to alternating left and right positions on odd
and even pages. You can also omit the page number on the first page by dese-
lecting the Show Number on First Page check box.

Figure 1-15:
You can set
the
properties
of the entire
report or of
individual
sections or
controls.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 416

Book V
Chapter 1

Creating and
Spiffing Up Reports

Report Sections and How They Work 417

If you’d rather make your own page-numbering controls, you can create your
own text box control by following these steps:

1. With the report open in Design view, display the Design tab on the
Ribbon.

2. Create a text box control in the Page Header or Footer section by
clicking the Text Box button on the Controls group of the Design tab
on the Ribbon, and clicking in the header or footer section.

Don’t worry if the text box doesn’t appear in exactly the right place —
you can drag it there later.

3. If Access created a label to go with the text box, delete the label by
clicking in the label and then pressing the Delete key.

Your page number doesn’t need a label.

4. Display the Property sheet if it’s not already on-screen by clicking the
Property Sheet button on the Tools group of the Design tab on the
Ribbon.

You see the Property sheet with the properties of the text box you just
created.

5. Click the Data tab on the Property sheet, click in the Control
Source property, and type the following expression:

= Page

To display the word Page as well as the number, type

= “Page “ & Page

Adding the date and time
If you want to include the current date or time on your report, follow the
same steps as in the preceding section, but type the following expression
into the Control Source property of another text box:

= Now()

Figure 1-16:
Adding
page
numbers to
your report.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 417

Report Sections and How They Work418

The Now() function returns both the date and time (for example, 6/25/04
1:55:48 PM). If you want to print only the current date, format the box as a
date using the Format property. (In the Property sheet for the text box, click
the Format tab and set the Format property to one of the date formats,
which omit the time.)

Controlling which pages get page headers and footers
You can also choose whether the Page Header and Footer sections print on
all pages, all but the Report Header page (so your cover page isn’t num-
bered), all but the Report Footer page, or all but the Report Header and
Footer pages. The following steps explain how to change the Page Header
and Footer sections properties:

1. With the report open in Design view, double-click the report selector
(the gray box in the top-left corner of the Design window, where the
rulers intersect) or right-click the title bar of the Design View window
and choose the Properties option.

You see the Property sheet for the report (refer to Figure 1-15).

2. Click the Format tab.

3. Set the Page Header and Page Footer properties.

Your options are All Pages, Not With Rpt Hdr, Not With Rpt
Ftr, and Not With Rpt Hdr/Ftr.

Displaying the first value of a field in the Page Header section to make a
telephone-book-style header is easy. Just create a text box in the Page
Header section that displays the field. When you print the report, the text
box shows the value for the first record on the page. You can also print the
value of the last record on the page in the Page Footer section.

Adding sections that group your records
To create grouping sections (also known as group sections), you tell Access to
group the records in your report by the value of one or more fields. For each
field, you get a header and footer section for that field. For example, on a
report that lists products, you may want to group the records by category,
and within category by vendor. If you choose to add both a header and
footer section for the group, you end up with Category Header, Vendor
Header, Vendor Footer, and Category Footer sections (in that order).

To create new grouping sections, display the report in Design view and
follow these steps:

1. With the report open in Design view, click the Group & Sort button in
the Grouping and Totals group of the Design tab on the Ribbon.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 418

Book V
Chapter 1

Creating and
Spiffing Up Reports

Report Sections and How They Work 419

Access displays the Group, Sort, and Total pane, as shown in Figure 1-17.
You see any fields that are currently used for sorting or grouping the
records on your report. If more than one field appears, the topmost field
is the major grouping and other fields are subgroups.

2. Click the Add a Group button and select a field from the
Field/Expression drop-down list to add a section (grouping).

You see a list of the fields in the record source for your report. After you
select a field, Access automatically uses an ascending sort (with A at the
top) for the new field.

3. To sort this field in descending order, click the down arrow next to
“with A on top” and select “with Z on top.”

Click the More button in the Group, Sort, and Total pane to show the
properties for the selected grouping. The default settings for a new
grouping have a header section, do not have a footer section, and don’t
keep all records in each group together on a page.

4. You can choose to hide or display headers and footers for the group
by using the drop-down arrows next to the appropriate settings. As
soon as you choose to hide or display a group footer or header, Access
reflects your changes in the Design view.

Use the Group Header or Group Footer property if you want to print
something before the first record or after the last record in the group.

5. Close the Sorting and Grouping dialog box by clicking its X button.

Access makes a new grouping with a header and/or footer, as shown in
Figure 1-18. You can also use the Group, Sort, and Total pane to delete
groupings, and you can set the group properties shown in Table 1-3 by
changing the properties in the Group, Sort, and Total pane.

Figure 1-17:
The Sorting
and
Grouping
dialog box
defines how
the records
in your
report are
grouped for
subtotals.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 419

Report Sections and How They Work420

Table 1-3 Properties of Report Groups
Group Property What It Does

Group on Specifies the field on which the group is based

with A on top Specifies whether the group will be sorted in
ascending or descending order

by entire value Specifies whether you want the group to be
sorted by the entire field value, the first character,
or the first two characters

with totals Specifies whether you want to include totals and
how they should be displayed

with a header section Specifies whether you want to include a Group
Header

with a footer section Specifies whether you want to include a Group
Footer

Do not keep together Specifies whether you want to keep the header
on one page and first record together on a page, keep the

whole group together on a page, or don’t care

with title Lets you choose a title for your group

Prints before each group of records Subtotal for each group

Prints after each group of records

Prints at the end of the report Total for entire report

Figure 1-18:
You can add
header and
footer
sections
that print
information
at the
beginning
and end of
each group
of records.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 420

Book V
Chapter 1

Creating and
Spiffing Up Reports

Report Sections and How They Work 421

You have some control over whether your groups start on a new page, or
can be broken and printed on several pages. If you want to start a new page
each time a new group starts, change the Force New Page property to the
Before Section setting on the Format tab of the Property sheet for the
group header section. You can also set the Keep Together property for the
group header: The Yes setting keeps the entire group together on one page,
and the No setting allows Access to break a group over multiple pages.

Sorting the records in your report
You can sort a report by sorting the record source — the table or query that
provides the records for the report — before you print. But a more foolproof
method is to use the Group, Sort, and Total pane to make a group for the
field(s) by which you want to sort, even if you don’t want to print anything
extra when the field value changes. When you tell Access to group by a field,
you get sorting thrown in for free. Selecting without a header section and
without a footer section in the Group, Sort, and Total pane tells Access to
sort by the field — but not to print any grouping sections.

To sort the records in a report by two fields, decide which field is the pri-
mary sort field and which is the secondary one. The secondary sort field
works like a tiebreaker, used only when two or more records have the same
value for the primary sort field. For example, to sort order records by cus-
tomer name, you usually sort by last name (primary sort field) and first
name (secondary sort field).

When you add a group to your report, Access automatically sorts the group
in ascending order (you can change this to descending order) based on the
field on which you grouped the report. If you have a large number of
records, you may want additional sort fields (for example, you could sort a
mailing list by ZIP code, then last name, and then first name).

You can sort by a calculated value that is not one of the fields in the record
source of the report. Just enter an expression in the Field/Expression column
of the Sorting and Grouping dialog box. See Book III, Chapter 2 for an intro-
duction to expressions. For example, if you print a listing of products, you may
want to sort them by profit margin — by [Selling Price] –[Purchase
Price]. You can type that expression into the Field/Expression column
(hence the name of the column!).

Calculating group subtotals and report totals
If you use the Report Wizard to create a report, and you use the Summary
Options button to request sums, averages, minimum values, or maximum
values for each group, you already have subtotals and totals on your report.
But you can make them yourself in Design view, too.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 421

Formatting Tips and Tricks422

After you group your report on one or more fields, you can add subtotals. In
the group footer section, create a text box control for each sum, count, or
other summary information that you want to print. To print totals and
counts for the entire report, make a text box in the Report Header or Report
Footer section. Then type an expression in the Control Source property
for the text box, using aggregate functions such as Sum(), Avg(), and
Count(). (See Book IV, Chapter 4 for the scoop.)

When you use aggregate functions in a group header or footer section,
Access automatically restricts the records to those in the current group. For
example, the Sum() function totals the values of a field for all the records in
the group. To subtotal the amount paid for each product in the current
group, you use the following expression in a text-box control:

= Sum([Price])

To print the number of records in the report, type the following expression
in the Control Source property (located on the Data tab of the Property
sheet) for a text box in the Report Header or Report Footer section:

= Count(*)

Don’t use aggregate functions in the Page Header or Page Footer sections of
a report; you get an #Error message.

Figure 1-18 (earlier in this chapter) shows a report in Design view with
Sum() functions in both the SortName Footer and Report Footer sections.
The Sum() function in the SortName Footer section prints a subtotal of the
shipping charges for each month’s orders, and the Sum() function in the
Report Footer section prints the total shipping charges for the whole report.

Formatting Tips and Tricks
The following list details a few tricks for making nicely formatted controls for
your reports. Most of them involve setting report, section, or control proper-
ties on the Property sheet:

✦ Printing calculations: Print a calculated field — a field decided by an
expression — the same way you display one on a form: Create a text box
and enter an expression in the Control Source property. Be sure to
set the control’s Format property, too. (Book IV, Chapter 4 has the
excruciating details of displaying calculations on forms; the same meth-
ods work for reports.)

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 422

Book V
Chapter 1

Creating and
Spiffing Up Reports

Formatting Tips and Tricks 423

✦ Prompting for information to print: Just as Access can prompt for
information when running a query (as described in Book III, Chapter 2),
you can use parameters when printing a report. Parameters allow you to
specify information — usually in the Report or Page Header or Footer
sections — that you want to print. Create a text box control where you
want the information to print. For the Control Source property of the
text box, enter the parameter prompt in square brackets, so it looks
something like the following:

[Enter title line]

✦ Avoiding space between fields: When you display several fields in a
row, you may not want to leave gaps between them. For example, in a
mailing label or form letter, you may want to print fields containing first
names and last names with only one space between them. To eliminate
extra space between fields, regardless of the length of the values in the
fields, concatenate them (glue them together) using the & operator. (We
describe calculated fields and the & operator in Book III, Chapter 2.)
Create a textbox control and type an expression in its Control Source
property, such as the following expression:

= [First Name] & “ “ & [Last Name]

This expression glues the first name, a space, and the last name
together. If the first name were Elvis and the last name were Presley,
you end up with Elvis Presley (the name, anyway).

✦ Using conditional calculations: You can print one thing in some circum-
stances and another thing in others by using the iif() function. (For
more on the iif() function, see Book IV, Chapter 4.) For example, you
may make a report that can print either an invoice or a receipt, depending
on whether the customer has paid. At the top, you include a text box with
an expression in the Control Source property that spells out that
Access should print either an invoice or a receipt, depending on the value
of the Paid field. That expression looks something like the following:

= iif([Paid], “Receipt”, “Invoice”)

✦ Calculating a running sum: You can tell Access to sum the values of a
numeric field, showing the total of the current record (a running sum).
Set the Running Sum property of the textbox control displaying that
field to Yes. You may want to include two text box controls for the
numeric field: one to show the value for the current record (with the
Running Sum property set to No), and one to show the running sum
(with the Running Sum property set to Yes).

✦ Hiding duplicate values: If a group of records have the same value for a
control, and you want the value to print only the first time it appears,
you can set the Hide Duplicates property of the field to the Yes set-
ting. This setting is especially useful in tabular reports, in which each
field appears in a separate column.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 423

Copying Forms to Reports424

Don’t use a field name as the control name for a calculated control. When
you create controls, Access names them automatically, although you can
change the names later. If you rename a calculated control, make sure that
the name you assign isn’t the same as any field mentioned in the expression
(or any field in the record source of the report). Access gets confused about
whether references to that name are to the field or to the control and the
report displays the #Error message.

Copying Forms to Reports
If you have a form that you want to print, you can certainly print it as is, but
you have a lot more control over the format if you turn the form into a
report first. You can then change the design for the report to print nicely
without changing the format of the original form.

To save a form as a report, select the form in the Navigation Pane, click the
Office Button, and choose Save As from the menu. When you see the Save As
dialog box, type a name for the new report and set the drop-down list to the
Report option. Access creates a new report based on the design of the form.

Most forms have gray backgrounds. After saving a form as a report, be sure
to change the background of your new report to white before printing the
report. Otherwise, you waste a lot of ink (or toner). Just right-click the back-
ground of each section, choose the Fill/Back Color option from the shortcut
menu that appears, and choose the white box in the palette of colors.

Adding and Formatting Subreports
A subreport provides detail information from other tables. For example, if
you have a report about customers, a subreport can list the orders for each
customer. Figure 1-19 shows a report with two subreports in Design view,
and Figure 1-20 shows the same report in Print Preview.

You can create a subreport control to print another report as part of your
report. An unbound subreport is not connected to the records in the main
report: No relationship exists between the record source of the main report
and the subreport. The unbound subreport in Figure 1-19 displays informa-
tion from the My Business table, which contains one record, with the busi-
ness’s name, address, and other information. (We like to create a My
Business table to store this information in one place, for use in all the forms
and reports in the database. If your phone number changes, for example,
you change it in the My Business table, and all your forms and reports are
updated automatically.)

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 424

Book V
Chapter 1

Creating and
Spiffing Up Reports

Adding and Formatting Subreports 425

With an unbound subreport, Access prints the same information for each
record in the main report. In Figures 1-19 and 1-20, the business information
from the My Business table is printed at the top of each invoice.

Unbound subreport prints the same data for every record

Bound subreport prints data that relates to the current record

Figure 1-20:
An unbound
report prints
the same
thing for all
records. A
bound
report prints
records
from a
related
table.

Unbound subreport

Bound subreport

Figure 1-19:
A subreport
can be
bound or
unbound to
the main
report.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 425

Adding and Formatting Subreports426

A bound subreport provides detail from other tables. In Figures 1-19 and 1-20,
the bound subreport lists the items in the current order, pulling the informa-
tion from the Order Details table. Bound subreports help you print information
from a one-to-many relationship: The main report displays records from the
master (one) table and the subreport displays records from the detail (many)
table.

If you always print two or more reports at the same time, include them as
unbound subreports in a new, unbound report. When you print the new
report, Access prints each of the subreports. Just make sure that all the
reports require the same kind of paper!

Making a subreport
To create a subreport, whether bound or unbound, follow these steps:

1. Create the report you plan to use as a subreport and save it.

For example, to make the report in Figures 1-19 and 1-20, you make one
report appear as the unbound subreport, with the My Business table as
its record source. You create another report as the bound subreport,
with the Order Details table as its record source. When you preview the
report by itself, Access displays all the records in the record source —
but when a report serves as a subreport, Access restricts the records
whenever the subreport prints, printing out only the records that match
the current record in the main report.

When you create this report, nothing about it says “subreport” — but
any report can be used as a subreport. We like to use the word “subre-
port” in the names of reports that never print on their own; they only
exist as subreports of other reports.

2. Open the main report in Design view.

3. Make space for the subreport control (also called a Subreport/
Subform control) in the Detail section of the report.

Drag your other controls out of the way.

4. In the Navigation Pane, scroll down to the Reports section.

This gets you ready to drag the subreport from the Database window to
the Design View window.

5. Select the subreport-to-be from the Reports list in the Navigation Pane
and drag it into the Design View window, dropping it where you want
the subreport to appear.

Access creates a subreport control on the main report, containing the
report you selected. The Source Object property for the subreport
control contains the name of the report that you dragged.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 426

Book V
Chapter 1

Creating and
Spiffing Up Reports

Adding and Formatting Subreports 427

6. Delete the label that Access created for the subreport if you don’t
like it.

Access creates a label for the subreport with the name of the report, but
you can select it and delete it if you want.

7. Move and size the subreport control.

Drag the control to the location you want and drag its edges to adjust
its size.

8. Click in the subreport control and then click the Property Sheet
button on the Tools group of the Design tab on the Ribbon to display
the Property sheet for the subreport control.

Figure 1-21 shows the Property sheet for a subreport control with the
Data tab selected. (While you’ve got the Property sheet displayed, you
can adjust the format properties, too.)

9. Check the Link Child Fields and Link Master Fields proper-
ties on the Data tab of the Property sheet.

These properties contain the names of the fields that relate the main
and subreports. The Link Master Fields property should contain
the name of the field in the record source of the main report that relates
to a field in the subreport. The Link Child Fields property contains
the name of the matching field in the record source of the subreport.

Figure 1-21:
The
properties
of a
subreport
control
include the
link
between
records
in the
subreport
and those in
the main
report.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 427

Displaying Empty or Long Fields 428

Printing information from a subreport
on the main report
Just as you can display totals from a subform on a main form, you can print
totals from a subreport on the main report. (See Book IV, Chapter 4 for how
to create a control on the main report to display a total from a subreport.)

When entering the expression in the textbox control on the main report, use
this format:

= [subreport control name].Report![total control]

Replace subreport control name with the name of the subreport con-
trol. Replace total control with the name of the text box control in the
subreport that displays the total. For example, the following expression may
display the total extended price (price times quantity) for the records in the
report that display in the Order Detail Subreport subreport control:

= [Order Detail Subreport].Report![Total Ext Price]

Displaying Empty or Long Fields
Text and Memo fields can pose problems on reports, because they can con-
tain one or hundreds of characters. Anticipating how much space to leave for
them is hard. Luckily, Access has some features to help deal with long fields.

Displaying long text
If a Text or Memo field in your report contains more than a few words,
you may want the field to wrap onto additional lines. For example, the
Description field in a Products table may contain a whole paragraph
about the product. You could display the field in a very large text box con-
trol that can fit the largest description in the table, but Access would leave a
large empty space in the report after short descriptions. Instead, each text
box can expand or shrink vertically to fit the amount of text in the field for
each record.

To make a text box grow, start off by making it big enough to fit just one line
of text. (See Book IV, Chapter 2 for how to make a textbox control.) Display
its Property sheet by clicking the Property Sheet button on the Tools group
of the Design tab on the Ribbon. Then set its Can Grow property (which is
on the Format tab) to Yes. When Access prints each record, the textbox con-
trol expands until the entire value of the field fits. The remaining controls
move down the page.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 428

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Mailing Labels 429

When you set a control’s Can Grow property to Yes, Access sets the Can
Grow property for the section that contains the property, too. When Access
prints the report, the section expands as well as the control, so nothing gets
cut off. If you don’t want the section to expand, you can change its Can
Grow property back to No to omit information that doesn’t fit in the section.
Set the Can Grow property to No when printing on forms of a predetermined
size, such as mailing labels. (Later in this chapter, we show you how to set
up a report that prints mailing labels.)

Displaying Fields That May Be Empty
To avoid leaving blank lines when a field is blank, set the Can Shrink prop-
erty for the text box to Yes. (This setting is on the Format tab of the
Property sheet.) For example, many address lists are stored in tables that
have two lines for the street address. If the second line is empty, the mailing
label looks better if the city/state/zip line prints right below the first address
line with no gap.

To make a textbox control that shrinks when the value is blank, make the
text box big enough to fit the longest value in the table. Then set its Can
Shrink property to Yes. When printing the report, Access omits the control
if the field value is blank.

When you set the Can Shrink property of a control to the Yes setting,
Access does not automatically change the Can Shrink property of the sec-
tion that contains the control. Leave the Can Shrink properties of the
Detail section set to the No setting if the Detail section must always be the
same size — as with mailing labels or other pre-printed forms. Otherwise,
set these properties to Yes.

Creating Mailing Labels
A perennial database task is printing mailing labels from lists of names
and addresses. The easiest way to create a report that prints on labels is
to use the Label Wizard, which contains a long list of preset formats for
all standard Avery brand and compatible labels. (Most boxes of label
sheets include an Avery number that specifies the size of your labels.)
After you create a report with the wizard, you can make further changes in
Design view.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 429

Creating Mailing Labels430

Running the Label Wizard
To run the Label Wizard, follow these steps:

1. In the Navigation Pane, specify what you want to print out:

a. Select the table or query that contains the information you want to
print on your labels.

b. Display the Create tab on the Ribbon.

2. On the Ribbon, click the Labels button on the Reports group.

You see the Label Wizard, as shown in Figure 1-22.

3. Choose the type of label from the Product Number list. Click Next.

Access normally shows the labels according to the numbers assigned by
Avery, a major manufacturer of labels. But you can see other types of
labels by changing the Filter by Manufacturer box:

• If you plan to print continuous-feed labels (where the sheets are con-
nected together) rather than sheets of labels, change the Label Type
setting.

• If you are printing on custom-printed labels, click the Customize
button, click the New button in the New Label Size dialog box that
appears, and tell Access about your labels.

4. Choose the font, font size, weight (light, normal, or bold, among
others), and color. Click Next.

Access uses these settings for the text boxes in the report.

5. Choose the fields that you want to include on the label, as shown in
Figure 1-23. Click Next.

Figure 1-22:
The Label
Wizard
knows the
sizes and
shapes of
most sheets
of labels.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 430

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Mailing Labels 431

The Prototype Label box shows the layout of fields on the label, includ-
ing spaces, punctuation, and text that prints on every label (for example,
“First Class” or your return address). You arrange the fields and
other information in the Prototype Label box. One line in the Prototype
Label box is selected (it’s gray), showing that new fields are added to
this line. You can press the ↑ and ↓ keys to move to a different line.

To print a field on your mailing labels, click the field in the Available
Fields box and then click the > button to add it to the current line of the
Prototype Label box. (Double-clicking a field does the same thing.) To
add text, such as a space, comma, other punctuation, or words, just
move your cursor to the location in the Prototype Label box where you
want the text to appear, and type it.

For example, the first line of a mailing label usually consists of the first
name, a space, and the last name. With the first line of the Prototype
Label box selected, you double-click the First Name field (whatever
it’s called in your table), type a space, and double-click the Last Name
field. To move to the next line, press Enter or ↓.

If you put a field in the wrong place, click it in the Prototype Label box
and press the Delete key to remove it.

Be sure to type a comma and a space between city and State/
Province fields in the Prototype Label box, and a space between
State/Province and Zip/Postcode fields, too.

6. Choose the field(s) by which to sort the records. Click Next.

For example, to sort by last name within zip code, choose the ZIP field
and then the Last Name field.

7. Type a name for the report and click Finish.

Figure 1-23:
You tell the
Label
Wizard
what fields
you want on
your label
and the
wizard
creates the
textbox
controls.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 431

Creating Mailing Labels432

If the label report looks good in Print Preview, print it on a blank piece of
paper before you start printing sheets of labels. Hold the printed sheet up to
a blank sheet of labels and see whether the names and addresses line up
with the labels. This method avoids wasting sheets of expensive labels while
you refine your label report.

Behind the scenes in a mailing-label report
The Label Wizard makes a report that looks like Figure 1-24 in Design view.
You see the fields and text that you told the wizard to include, followed by
enough blank space to reach down to where the text should start on the next
label. Where more than one field (or text) appears on a line, the Label Wizard
has cleverly written expressions (starting with =) that use the & operator to
concatenate (glue together) the information. In expressions, the wizard
encloses each field name in square brackets [] because, for field names
that contain spaces, these brackets prevent the spaces from confusing
Access. The wizard also uses the Trim() function to eliminate any extra
spaces at the ends of fields.

For example, the first line of the label in Figure 1-24 contains a text box with
this expression as its Control Source property:

=Trim([First Name] & [Last Name])

This scary-looking expression glues the first name, a space, and the last
name together — and then discards any spaces at the right end.

Figure 1-24:
The Label
Wizard
creates a
report the
size of a
single label.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 432

Book V
Chapter 1

Creating and
Spiffing Up Reports

Creating Mailing Labels 433

If you don’t like the way information appears on your mailing labels, you can
delete the text boxes, add new ones, alter the expressions in the existing text
boxes, and change the formatting of the text boxes — the same kinds of
changes you can make to the controls in any report.

Changing the page setup for labels
Unexpectedly, the report is only the size of a single label. You don’t see a
whole page full of labels. How does Access know how many labels to print
across a row? The Page Setup dialog box for the report contains this informa-
tion. If you specified the wrong Avery number in the Label Wizard (or if you
have labels that don’t have Avery numbers), you can change these settings.

With the report open in Design view, click the Columns button on the Page
Layout group of the Page Setup tab on the Ribbon to display the Page Setup
dialog box (as shown in Figure 1-25). You see the following settings:

✦ Number of Columns: How many columns of labels per page.

✦ Row Spacing: How much blank space to leave between one row of labels
and the next (usually zero, because Access includes this space in the
report design).

✦ Column Spacing: How much blank space to leave between one column
and the next (that is, between one label and the next across each row).

✦ Column Size Width and Height: The size of the labels. If you leave the
Same as Detail check box selected, Access sets these settings to be the
same size as the Detail section of the report.

✦ Column Layout: The order in which the labels print on each page.

Figure 1-25:
The
Columns tab
of the Page
Setup dialog
box defines
how your
report prints
on sheets of
labels.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 433

Creating Mailing Labels434

See the next chapter for how to print labels and other reports. The Page
Layout group is also visible from the Print Preview screen.

You can use the settings on the Columns tab of the Page Setup dialog box to
create newspaper-style “snaking” columns for any report, not just mailing
labels. Make the Detail section of the report narrower than half the width of
the paper, specify two columns, and set the Column Layout property to the
Down Then Across setting.

27_036494 bk05ch01.qxp 11/17/06 8:28 AM Page 434

Chapter 2: Printing
Beautiful Reports

In This Chapter
� Previewing your report on-screen

� Controlling report margins and page orientation

� Choosing which printer to print on

� Including Access reports in other Office documents

After you create a good-looking report on-screen, the next step is to see
whether it looks good on paper. To make it perfect (okay, close to per-

fect), you have to be able to control how the printer prints the report. This
chapter describes page formats, margins, and other printer settings.

Viewing Your Report
You can see how the printed report will look before you spend the time,
paper, and ink or toner to print it. Using Print Preview, you can see on-
screen whether your controls are positioned as you want them, whether the
right information appears in each control, and whether your headers and
footers appear correctly. To see how your report looks in Print Preview, try
the following:

✦ With the report open in Design view, click the Office Button and select
Print ➪ Print Preview.

✦ If the report is not currently open, double-click the report name in the
Navigation Pane.

The Print Preview window appears, showing you the top of the first page of
your report, looking a lot like Figure 2-1. (Of course, the details of your own
report will look different.)

You can display almost any Access object in Print Preview and then print it.
When you’re looking at a table in Datasheet view or a form in Form view,
Print Preview is available on the Microsoft Office Button menu. Reports
have more formatting options than any other type of object in Access, but
sometimes datasheets and forms are worth printing, too.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 435

Viewing Your Report436

When the Print Preview window is active, the Ribbon looks like Figure 2-2.

Adjusting the view
Notice that when you’re in Print Preview mode, your cursor changes to a
magnifying glass and your report is shrunk to display an entire page on the
screen. Click anywhere on the report to zoom in. Click the report a second
time to shrink it back to fit on the screen. Alternatively, you can use the
Zoom control located in the bottom right of the Access window. Click the
minus (–) button to reduce the size by 10 percent. Click the plus (+) button
to increase the size by 10 percent. Drag the slide control to change the size
in 1 percent increments.

Preview group Data group

Figure 2-2:
The tools on
the Print
Preview tab
of the
Ribbon.

Figure 2-1:
A report in
Print
Preview.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 436

Book V
Chapter 2

Printing Beautiful
Reports

Viewing Your Report 437

Use the vertical scroll bar or press the Down Arrow, Up Arrow, Page Down,
and Page Up keys on your keyboard to scroll the report up and down within
the Print Preview window. Use the horizontal scroll bar or press the Left
Arrow and Right Arrow keys on your keyboard to pan sideways. To see other
pages of the report, use the navigation buttons in the lower-left corner of the
Print Preview window.

Looking at lots of pages
You can zoom way out by displaying two or more pages at the same time.
Click the Two Pages button on the Print Preview tab on the Ribbon to display
two pages at a time, side by side. Though useless for close proofreading, with
this view you can tell where section breaks come and how full the pages are,
as shown in Figure 2-3. To see more than two pages, click the More Pages
button on the Print Preview tab on the Ribbon and choose an arrangement of
pages: Your options are Four, Eight, and Twelve pages. Use the Zoom button
to zoom in and out on Two Pages view and More Pages views.

Right-click the report and select a Zoom value of 5% to 1000% or type your
own value in the Zoom menu option.

Figure 2-3:
You can see
two pages
at a time,
but you
can’t
necessarily
read them.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 437

Formatting the Page438

Right-click the report and point to Multiple Pages. You can select from 1 × 1,
1 × 2, 1 × 3, 2 × 1, 2 × 2, or 2 × 3.

Previewing reports with parameters
Some reports use parameters — the record source for the report or one or
more report controls that contain prompts for information. (See Chapter 1 of
this minibook for how to make a control that prompts for a parameter; see
Book III, Chapter 2 for how to make a parameter query.) If your report has
parameters, Access prompts you to type values for the parameters each
time you preview the report. After you look at the report, you may want to
try different values for the parameter(s). To enter new parameters, close the
report and reopen it or switch to Design view and back to Print Preview.

Formatting the Page
Access stores print setup information with each report, so you can design
different reports to be used with different printers or with different paper.

Selecting a printer
When formatting your report in Print Preview, Access takes into account the
size and shape of the paper you plan to use. (Okay, most paper is rectangu-
lar, but you know what we mean.) Before you’re ready to print, specifying
what printer you plan to use is important.

If you plan to use the Windows default printer, you don’t have to do any-
thing. If you want to print to a different printer, choose the printer when
you’re ready to print. Click the Print button in the Print group (it’s the only
button in the Print group) to display the Print dialog box, shown in Figure 2-4.
Select your printer from the Name drop-down list.

Figure 2-4:
Selecting
your printer.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 438

Book V
Chapter 2

Printing Beautiful
Reports

Formatting the Page 439

Click the Size button in the Page Layout group of the Print Preview tab on
the Ribbon and select your paper size from the drop-down list.

To see what printers your computer is configured to use — including the
default — choose Start➪Printers and Faxes (or Start➪Control Panel➪
Printers and Other Hardware➪Printers and Faxes, depending on how
Windows is configured). The Printers and Faxes window appears, listing all
the printers that your computer is configured for. The printer with an icon
that includes a little check mark is the default printer. Right-click a printer
and choose the Properties option from the shortcut menu to see how the
printer is configured. To make a particular printer the default printer, right-
click its name and choose the Set as Default Printer option from the shortcut
menu that appears.

Setting margins, paper size, and paper orientation
Other print settings you can configure from the Print Preview tab on the
Ribbon are the following:

✦ Margins: Click the Margins button to select Normal, Wide, or Narrow
from the drop-down list.

✦ Paper orientation: Click the Portrait button to print normally on the
page, or click the Landscape button to print sideways.

✦ Paper size: Click the Size button and choose the size of the paper (or
envelope or sheet of labels) on which you plan to print the report.

If you end up changing the margins for almost every report you create, you
can change the default margins for all new reports. Click the Microsoft Office
Button, then click the Access Options button to display the Access Options
dialog box shown in Figure 2-5. Click the Advanced button and change the
default Printing margin settings.

Controlling page breaks
Normally, Access fills each page from top to bottom, starting a new page only
when the previous one is full. However, you can insert a page break (start a
new page) at other times. You can add page breaks to a report in several ways:

✦ After each record (print one page per record): Set the Force New Page
property of the Detail section to either the Before Section or After
Section setting. If you choose the Before & After setting for this
property, Access prints a blank page both before and after the page(s) for
each record. With the report in Design view, double-click the gray bar at
the top of the Detail section to display the Property sheet for the section,
and then click the Format tab to see the Force New Page property.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 439

Formatting the Page440

✦ After each group of records: See Chapter 1 of this minibook for how
to group records. Set the Force New Page property for the Group
Footer to the After Section setting. Access prints the Group
Header section, the Detail section for each record in the group, the
Group Footer section, and then starts a new page for the next group
of records.

✦ Within a section of your report: Use a page-break control. For example,
the Detail section of the report may print a packing slip and an invoice
for each order on separate pages. To add a page-break control to the
Detail section of the report, click the Insert Page Break button on the
Controls group of the Design tab on the Ribbon, and then click where
you want the page break to occur. Access puts the page-break control at
the left margin of the report.

Don’t place page-break controls in the Page Header or Page Footer sections.
Doing so starts a new page at the top or bottom of every page, which just
creates confusion (and an error).

Figure 2-5:
Set your
margins
using the
Access
Options
dialog box.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 440

Book V
Chapter 2

Printing Beautiful
Reports

Formatting the Page 441

Avoiding blank pages
Almost every Access user winds up with blank pages between each printed
page of a report. The blank pages appear in Print Preview, but what causes
them?

Access knows the width of your paper and how much space to leave for the
left and right margins because these sizes are specified in the report’s
Property sheet. Access adds the width of your report to the left and right
margins to come up with the total width of the printed report. If the total is
wider than your paper, Access splits the report into vertical bands, and
prints the left and right halves of the report onto separate pieces of paper,
so you can tape them together to create a very wide report.

If the report is just a little bit too wide to fit across one piece of paper, the
text of the report is all in the left half, leaving the right half blank. These
blank right halves are the blank pages that Access prints. To get rid of them,
follow these steps:

1. Choose Access Options ➪ Advanced from the Office Button menu.

You see the Access Options dialog box. If you don’t see the Printing sec-
tion, scroll up or down until it is displayed (refer to Figure 2-5).

2. Subtract the left and right margin settings from the width of your
paper to get the maximum width of the report.

Standard U.S. paper is 81⁄2 inches wide. If the left and right margins are
too wide, make them smaller in this dialog box, and then use the new
values in your calculation. For example, if your paper is 81⁄2 inches wide
and you have half-inch left and right margins, your report can’t be more
than 71⁄2 inches wide.

3. Click OK to exit the Access Options dialog box.

4. In Design view of the report, note the report’s width — the location
along the ruler of the right edge of the grid area.

Alternatively, look at the Width property of the report in the Property
sheet. (Double-click the gray box in the upper-left corner of the Design
View window where the rulers meet to display the Property sheet.)

5. If the report is too wide to fit on the page, drag the right edge of the
report leftward.

If the edge won’t move, a control extends to the right of where you want
the page to end. Move or shrink any control that extends too far to the
right and move the right edge of the report to the left. Alternatively,
change the Width property of the report.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 441

Printing the Report442

Another possible reason for blank pages is an incorrect setting for the
Force New Page property of one of the sections of the report. See the pre-
ceding section for how to control page breaks before or after groups.

Printing only the data
If you’re printing on a form, rather than on blank sheets of paper, you can
design a report that looks like the form, including labels and lines that match
the form. When you print the report, you can skip printing the labels and
lines and print only the data. In Print Preview, check the Print Data Only
checkbox in the Page Layout group. Access updates the Print Preview to
show only your report data.

Printing the Report
After you have your page and margin options set, you’re ready to risk wasting
paper to print your report. You can print your report when it’s open in Print
Preview, in Design view, or not open at all. Choose the report you want to
print, either by selecting the report in the Navigation Pane or by opening the
report in Design view or Print Preview. Then click the Print button on the Print
Preview tab on the Ribbon, click the Office Button and choose Print, or press
Ctrl+P. Microsoft Access displays the Print dialog box shown in Figure 2-4 (the
same Print dialog box that most Microsoft programs display). Click the Setup
button if you want to take a look at the Page Setup dialog box. Otherwise, click
OK to send your report to the printer.

To send your report directly to the printer without displaying the Print
dialog box, click the Office Button and select Print ➪ Quick Print. Make sure
you’re really ready to print before you click!

You may want to print only part of a report — say, just the first page to see
how the margins look — or reprint a specific page. On the Print dialog box
(shown in Figure 2-4), in the Print Range section, click the Pages radio button
and enter the starting and ending page numbers in the From and To boxes.

Sending a Report to Another Application
The nice thing about Microsoft Office is that all the programs are designed to
work together. Sometimes they even do work together.

For example, what if you want to include a report from your Access database
in a Word document? Office has a cool feature called OfficeLinks that makes
this incredibly easy. To use it, follow these steps:

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 442

Book V
Chapter 2

Printing Beautiful
Reports

Sending a Report to Another Application 443

1. In the Navigation Pane, click the report you want to export to
Microsoft Word.

2. Click the External Data tab on the Ribbon.

3. Click the Word button on the Export group of the External Data tab on
the Ribbon.

The Export — RTF File dialog box shown in Figure 2-6 opens.

4. Type a name for the exported report in the File Name text box.

If you want to open the exported report automatically in Microsoft
Word, check the Open The Destination File After The Export Operation
Is Complete check box.

5. Click OK.

That’s all there is to it! The exported file is a normal RTF (Rich Text Format)
file and can be opened in Microsoft Word or any other program that sup-
ports RTF.

If you want to use a table or query with the Microsoft Word merge feature,
you can. Select the table or query in the Navigation Pane. Click the More
button on the Export group of the External Data tab on the Ribbon, choose
Merge It with Microsoft Office Word, and follow the prompts of the Microsoft
Word Mail Merge Wizard. When you open the document in Word into which
you want to merge your data, click Insert Word Field to include a field from
your table or query in the document.

Figure 2-6:
The Export –
RTF File
dialog box.

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 443

Book V: Reports444

28_036494 bk05ch02.qxp 11/17/06 8:29 AM Page 444

Chapter 3: Creating Charts and
Graphs from Your Data

In This Chapter
� Making charts and graphs using the Chart Wizard

� Drawing bar charts

� Crafting line and area charts

� Displaying pie and doughnut charts

� Doing XP scatter and bubble charts

� Changing the format of your chart

� Making PivotCharts from PivotTables, tables, and queries

� Tweaking your PivotChart

Charts and graphs often communicate the meaning of your data better
than columns of names and numbers. (What’s the difference between a

chart and a graph? Actually, they are two words for the same thing.) Microsoft
Office 2007 comes with a charting component called Microsoft Graph (also
called Microsoft Chart) that you can use from within Access to create a wide
variety of graphs. You can run a Chart Wizard to create charts using Microsoft
Graph.

PivotCharts are another Microsoft Office component that you can use with
Access. A PivotChart is dynamic, which means that you can easily adjust it
while you’re looking at it. As you drag field names around the PivotChart, or
make choices from drop-down lists, the chart changes immediately on-screen.

Which should you use — charts or PivotCharts? Depends on what you want
to do with what you get:

✦ PivotCharts are designed for the screen, where you can fool around
with their settings and explore your data graphically.

✦ Regular charts (the kind that Microsoft Graph draws) are designed to
print out, and include many more formatting options.

PivotTables are like PivotCharts — they also let you analyze your data on-
screen. PivotTables display your data as text, while PivotCharts graph your
data. For more information about PivotTables, see Book III, Chapter 4.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 445

Displaying Information with Charts and Graphs446

Displaying Information with Charts and Graphs
Access databases contain different types of objects: tables, queries, forms,
reports, and the rest. But what about charts? Where are they stored?

Strangely, Access stores charts as controls on forms or reports. Before you
make a chart, you create a new form or report — or open an existing one —
and then add a chart control. In this chapter, we describe storing your chart
controls in reports, but you can include them in forms if you prefer —
depending on whether you want to view the charts on-screen or print
them out.

Actually, storing charts as controls on forms or reports makes sense if you
know what’s going on behind the scenes. Access itself doesn’t include any
graph-drawing features at all. Instead, chart controls are object frame controls
that can contain a wide variety of things, including pictures, Word docu-
ments, Excel spreadsheets, sound files, video clips — you name it. What we
call a chart control is actually an object frame control that contains a
Microsoft Graph chart object. Luckily, you don’t need to worry about object
frames — you can just create your new chart control using a wizard. If you
insist on making a chart control manually, see the sidebar, “Making charts the
old-fashioned way,” later in this chapter, but don’t say we didn’t warn you.

We recommend starting with the Chart Wizard and then customizing the
chart afterward. Heck, why not make the wizard do most of the work?

The Access Chart Wizard is very limited — Microsoft Graph can draw more
types of charts. If you want to create a stacked bar chart, radar chart, or
multi-ring doughnut chart, the wizard can’t help you. You can make a similar
chart with the wizard, and then modify the chart afterwards using Design
view. Another method of making better charts is to export your data to
Microsoft Excel 2007 — yet another component of Microsoft Office 2007 —
and use its more powerful Chart Wizard. See Book II, Chapter 4 for how to
export records from Access to Excel.

Creating charts with the Chart Wizard
If you want to create charts in Access, the Chart Wizard is the only good way
to start. You may want to add a chart to an existing report, or create a chart
that stands alone (no other controls are on the report). The Chart Wizard
allows you to do either.

Whether you create a new report for your chart or add a chart to an existing
report, you start at the Reports list in the Navigation Pane of the Database
window. If the Navigation Pane isn’t visible, press the Shutter Bar Open/Close
button (>>). Then scroll to see the list of your existing reports.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 446

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 447

Starting the Chart Wizard to add a chart to an existing report
You can add a chart to a report that you already created by adding a chart
control to your report. Follow these steps:

1. Open the report in Design view (by right-clicking the report and
selecting Design View) and click the Insert Chart button in the
Controls group of the Design tab on the Ribbon.

Access gives you no clue that you have, in fact, issued this (or any
other) command — except one: When you move your mouse pointer
back to the Design View window, it appears as a teeny little graph.

2. Click the section of the report where you want the chart to appear.

The Chart Wizard starts.

3. Click the Tables, Queries, or Both radio button to display the list from
which to make your choice. Make your selection and click Next.

The wizard is now up, running, and ready to ask lots more questions
about what you want your chart to look like. (Skip forward to the rele-
vant section, “Answering the Chart Wizard’s questions.”)

Starting the Chart Wizard to create a chart in a new report
Perhaps you’d like to make a stand-alone chart — one that is all by itself in a
report. You can create a new report with a new chart object in it by following
these steps:

1. Click the Report Design button in the Reports group of the Create tab
on the Ribbon.

A blank Report makes an appearance in Design view.

2. Click the Insert Chart button on the Design chunk, then click and drag
to choose the size and placement of your chart.

The Chart Wizard appears.

3. Choose the table or query containing the data you want to chart, and
click Next.

Read on to find out how to tell the wizard how you want your chart to
look.

Answering the Chart Wizard’s questions
After you start the Chart Wizard and choose the table or query that provides
the data, follow these steps to create a chart:

1. Choose the fields you want to chart by moving them from the
Available Fields list to the Fields for Chart list, and then click Next.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 447

Displaying Information with Charts and Graphs448

To move a field from one list to the other, select the field and click the
arrow button between the two lists, as shown in Figure 3-1.

If you are charting values by date, make sure that you include the field
that contains the date value. For example, if you want to chart sales per
week for each week of the year, you need to choose both the field that
contains the sales numbers and the field that contains the dates of the
sales. The fields don’t have to be weekly totals: The Chart Wizard can
total your fields for you.

In Step 3, you tell the wizard how to represent each field, and you don’t
have to represent all the fields you choose here. Go ahead and include
any field that you may want to include on the chart.

2. In the next window of the Chart Wizard (see Figure 3-2), select the
type of chart that you want to create, and then click Next.

When you select a chart type, the wizard displays the name of that type
of chart as well as some information about that type of chart and the
kind of data that it displays best.

3. Drag fields onto the chart on the left side of the wizard window and
tell the wizard how to use the fields you’ve selected, as shown in
Figure 3-3.

The chart shows three labels: the Axis (the horizontal X-axis on most
types of graphs), the Data (usually the vertical Y-axis), and the Series
(usually fields displayed in the chart as bars, lines, or other shapes).
The fields that you choose appear as buttons on the right side of the
window. You specify how to use each field by dragging its field name to
the sample chart. If Access guessed wrong about how to use the fields,
you can drag the field name from the chart on the left side back to the
field list at the right.

Figure 3-1:
Choose
which fields
to include in
the chart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 448

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 449

Double-click a field’s box to see more detail. You see a dialog box that
allows you to change the totaling or grouping for that field.

How the Axis, Data, and Series settings work depends on the type of
chart you are creating. The next four sections describe how to specify
fields for bar, line, pie, and other types of charts. Remember: You don’t
have to use all the fields.

4. Click the Preview Chart button in the top-left corner of the window to
see how your chart looks so far. Check out the results and click the
Close button to return to the Chart Wizard window.

The Sample Preview window (shown in Figure 3-4) helps you figure out
whether you chose the right fields for the X-axis, Y-axis, and Series settings.

Data Series

Axis Available fields

Figure 3-3:
Laying out
your fields
on the chart.

Figure 3-2:
You’re not
limited to
boring old
bar and line
charts!

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 449

Displaying Information with Charts and Graphs450

5. Repeat Steps 3 and 4 until the chart looks right. When it does, click
Next.

6. Specify a title, whether to display legends, and whether to open the
report containing the new chart control in Design view or Print
Preview. After making your selections, click Finish.

The title for your report appears at the top of the report. The wizard
suggests the name of the table or query you chose as the record source.
Legends show what the colors of the bars, lines, or pie sections mean.

The wizard creates a new chart control in your new or existing report.

After the Chart Wizard creates your chart control, you can move the control
around your report by dragging it. You can also resize the chart by selecting
the control and then dragging the black handles on the edges of the control.
(If you double-click the chart control, you find yourself in a strange new edit-
ing mode described in the “Formatting charts with colors, legends, and
titles” section, later in this chapter.)

In Design view, Access shows a sample chart, not the actual chart. The chart
is of the type that you select, but with sample data. Don’t worry, your real
chart is on the report — switch to Print Preview to see the actual chart.

A report can contain more that one chart control. You may want to make a
report that contains three chart controls that display three different charts.
Just make the additional controls in Design view by clicking the Insert Chart
button and clicking and dragging where you want the new control to appear.

Now you know how to use the Chart Wizard to create a chart. The next few
sections describe popular types of charts — bar, line, and pie charts.

Making bar charts
The Chart Wizard can make a bunch of different kinds of bar charts. The
types of bar charts in which the bars run vertically appear on the first row of
buttons in Figure 3-2:

Figure 3-4:
Preview
your chart
to see
whether you
have
correctly
specified
which fields
go where.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 450

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 451

✦ Column Chart: Flat, vertical bars.

✦ 3-D Column Chart: Three-dimensional-looking vertical bars.

✦ Cylinder Column Chart: Same thing as a column chart, but the bars are
cylindrical.

✦ Cone Column Chart: Another column chart, but with cones instead
of bars.

✦ Pyramid Column Chart: Ditto, but with pyramids.

You can also make the same charts run horizontally (these appear on the
second row of buttons in Figure 3-2):

✦ Bar Chart: Flat, horizontal bars.

✦ 3-D Bar Chart: Three-dimensional-looking horizontal bars.

✦ 3-D Cylinder Bar Chart: Same thing as a bar chart, but the bars are
cylindrical.

✦ 3-D Cone Bar Chart: Ditto, with horizontal cones (they look rather odd,
we think).

✦ 3-D Pyramid Bar Chart: Ditto, with horizontal pyramids (which look
even odder).

To see little pictures of these, look at the top two rows of buttons in Figure 3-2,
earlier in this chapter. Unfortunately, the Chart Wizard can’t draw stacked bar
charts — to make them, you have to choose another type of bar chart in the
Chart Wizard, and then change the chart type to a stacked bar chart later (see
the section, “Changing your chart,” later in this chapter).

The key to creating bar charts with the Chart Wizard is to specify the right
fields for the Axis, Data, and Series — the field selections you made in Step 3
of the previous section. Keep reading to find out how the Axis, Data, and
Series settings work.

The X-Axis setting
For graphs with vertical bars (or other vertical shapes), set the X-Axis to the
field that determines the labels that run along the bottom of the graph. For
horizontal bar graphs, the X-Axis runs up the left side of the graph. This set-
ting also determines what bars sprout up from the x-axis. A bar graph has
one bar (or group of bars) for each value (or range of values) of the X-Axis
setting. Figure 3-5 shows two bar charts, one vertical (select Column Chart
to get this particular chart type) and one horizontal (select Bar Chart for
this one). The X-Axis setting in Figure 3-5 is the Order Date field and the
Y-Axis setting is the Qty field.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 451

Displaying Information with Charts and Graphs452

If you use a Date/Time field for the X-Axis setting, you can choose to group
the dates into time periods such as a month or year. The X-Axis setting in the
Chart Wizard window tells you how Access plans to group the information
by date: An Order Date field may appear as “Order Date by month” —
refer to Figure 3-3. To change the grouping, double-click the X-Axis field to
display the Group dialog box, as shown in Figure 3-6. You can choose to
group your data by year, quarter, month, and so on. The Group dialog box
also allows you to choose to limit the values plotted on your graph to values
within a specified date range. Just select the Use Data Between check box
and enter the beginning and end dates you want for your chart. Access
ignores records with dates outside that range.

Strangely, you can’t control how numeric or text values are grouped, or limit
their ranges on the graph.

The Y-Axis setting
For vertical bar charts, drag the fields that determine the heights of the
bars — along with the values that appear up the left side of the chart — to
the Y-Axis setting. On horizontal bar charts, the Y-Axis fields control the
lengths of the bars and the values that run along the bottom of the chart. In
Figure 3-5, the Y-Axis field contains the number of items sold; it runs up the
left side of the chart on the vertical bar chart and across the bottom of the
chart on the horizontal bar chart.

If you group dates together along the X-axis, you can specify how the values
are combined into the bars. If you want to graph sales by year and your
record source has one record for each order, you may set the Y-Axis field to

Figure 3-6:
How would
you like to
group
values by
date?

Figure 3-5:
Vertical and
horizontal
bar charts,
with Order
Date as the
Axis setting.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 452

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 453

be the Grand Total field of each order. You can then specify how to com-
bine the values of the orders into years — you may want the total value of all
the orders for the year, or you may want the average value. The Y-Axis set-
ting in the Chart Wizard window indicates how the values are combined:
In Figure 3-3, the Y-Axis setting contains two variables, SumOfQty and
SumOfExtPrice, so Access sums up the Qty and Ext Price fields for the
orders in each year.

To change how Access combines the values of a Y-Axis field, double-click the
Y-Axis field to display the Summarize dialog box, as shown in Figure 3-7.
Then choose how you want the values for each time period combined: Sum,
Avg (average), Min (minimum value), Max (maximum value), or Count
(number of records).

Unlike the X-Axis setting, the Y-Axis setting can be more than one field. If you
drag more than one field to the Y-Axis setting, you see a listing of the Y-Axis
fields, as shown in Figure 3-8. For each Y-Axis setting, you get a separate bar.

Two fields for the Data setting

Two bars appear in each chart entry

Figure 3-8:
This chart
has two sets
of bars for
each month:
one for
Quantity and
one for
Extended
Price.

Figure 3-7:
How do you
want to
combine the
values for
each bar?

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 453

Displaying Information with Charts and Graphs454

You can drag the same field to the Y-Axis setting twice — for example, you
may want to see the count and the total of the same field.

The Series setting
Unlike the X-Axis and Y-Axis settings, the Series setting in the Chart Wizard is
optional — most charts leave this setting blank. The field used for the Series
setting tells Access how to break down the bars (or columns, cones, or pyra-
mids) into a group of smaller bars.

If you graph sales by month, each bar normally shows the total of the sales
records for that month. If you drag a field to the Series setting, Access divides
the bar for each month up into several bars according to the value of the
Series field. If you set the Series setting to a field that represents what type of
product was sold in each order, you get a group of bars for each month, with
one bar for each type of product. Figure 3-9 shows the Chart Wizard settings
for a graph that separates sales by Category, and Figure 3-10 shows the result-
ing chart (there are five categories).

If you choose three or more fields to use in your chart, the Chart Wizard usu-
ally guesses that you want to use one of the fields as the Series setting. But
for most charts, you use only the X-Axis and Y-Axis settings — just leave the
Series setting blank. If the wizard puts a field there, drag it back over to the
list of fields on the right side of the wizard’s window.

Data Series

Axis

Figure 3-9:
The
Category
field is used
as the
Series
setting,
which splits
each
month’s
sales into
separate
bars for
each
product
category.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 454

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 455

Making line and area charts
Line and area charts work similarly to bar charts. A bar chart draws a bar
(or other shape) for each value of the X-Axis series, with its height deter-
mined by the Y-Axis series. A line chart works the same way, but instead of
drawing a bar, Access draws a dot where the top of the bar would be, and
then connects the dots. An area chart is basically the same thing, but Access
colors in the area under the line, as shown in Figure 3-11. Line and area
charts appear on the third row of buttons in Figure 3-2 (they are all but the
last button in that row).

Figure 3-11:
Line and
area charts
work
the same
way bar
charts do.

Figure 3-10:
The Axis
field
contains
sales dates
grouped by
month, the
Data field
contains the
values of
the products
sold, and the
Series field
contains the
product
category
(Computer,
Media, and
so on).

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 455

Displaying Information with Charts and Graphs456

In a line or area chart, the X-Axis series defines the labels that run along the
bottom of the graph and the Y-Axis series defines the distance from the bottom
of the chart up to each dot that the lines connect. If you have two or more
Y-Axis series, Access draws a line for each one and (for an area chart) colors
the area between one line and the next (see the left-hand chart in Figure 3-12).

As with bar charts, Access uses the Series field to split the amounts for each
line into several, lower lines. The right-hand chart in Figure 3-12 shows a line
chart with Category as the Series field. (This is the same data that Figure
3-10 displays as a bar chart.)

Making pie and doughnut charts
A pie chart shows how a total amount is split up by percentages. Access
needs to know what field contains the numbers you want summed to make
the total amount as well as what field contains the information by which to
split this total into pie slices. A doughnut chart is a line pie chart with a hole
in the middle, except that you can specify more than one field, and you get a
concentric ring for each field. Pie and doughnut charts appear on the fourth
row of buttons in Figure 3-2.

When you run the Chart Wizard, choose just two fields to include in the chart:

✦ The Y-Axis field is the one that contains numbers for Access to sum up
to create the total pie. For a doughnut chart, you should be able to spec-
ify more than one Y-Axis field, and get a concentric ring for each field. If
you can’t specify all the fields in the Chart Wizard, you can add them
later; see “Changing which data is charted,” later in this chapter.

Figure 3-12:
An area
chart with
two Data
fields shows
one area in
front of the
other (left).
The Series
field splits
the quantity
of the Data
field into
several lines
or areas
(right).

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 456

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 457

✦ The Series field can be numeric, text, Yes/No fields, or Date/Time fields.
Access makes a separate pie slice for each value of this field.

The left-hand chart in Figure 3-13 shows a pie chart in which the Y-Axis field
is a numeric field with the total amount of each order, and the Series field is
a category field. The rightmost chart shows the same information repre-
sented as a doughnut chart.

Making bubble and XY scatter plots
An XY scatter plot needs two numeric fields and plots one field against the
other. For each record, you see a point with the horizontal and vertical posi-
tion determined by the numbers in the fields. A bubble chart works the same
way, except that Access draws a circle instead of a point, and the numeric
value of a third field determines the size of the circle.

You can try making these graphs in the Chart Wizard, but we haven’t had
much luck. (Consider exporting the data to Microsoft Excel and charting it
there.) If you want to try the Chart Wizard, drag the numeric field you want to
graph along the horizontal (X) axis to the Series setting, and drag the field you
want to graph along the vertical (Y) axis to the Data setting. If the wizard
decides to aggregate either of the fields (you see “Sum Of” — the field name),
double-click the field name and change the aggregation to the None setting.

Changing your chart
The Access Chart Wizard can’t make all the types of charts the Microsoft
Graph can draw. It can’t even make all the charts that the Excel Chart Wizard
can make — wouldn’t you think that these two wizards would get together
sometime and compare notes? Luckily, you can change the settings of a
chart after the wizard creates it. You can fix charts that don’t look quite
right, as well as create charts that the Chart Wizard doesn’t know about.

To modify a chart, you change the properties of the chart control on the
report that contains the chart. This section gives you the general idea of
how to modify a chart after you make it, while the next two sections provide
more details.

Figure 3-13:
A pie chart
(left) and a
doughnut
chart (right).

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 457

Displaying Information with Charts and Graphs458

To modify an existing chart, follow these steps:

1. Open the report that contains the chart in Design view. (Right-click
the report in the Navigation Pane and select Design View.)

If the report is already open in Print Preview, then click the down arrow
on the View button to switch to Design view. You see the report in
Design view, including the chart control that defines the chart.

In Design view, the chart control displays sample data, not the actual
data. Don’t worry — Access hasn’t forgotten the actual data you want to
plot. Just switch to Print Preview to see the real chart.

2. Click once in the chart control to select it.

Now you can drag it to a different location on the report, or resize it.

You can tell when the chart control is selected because a selected con-
trol sprouts handles — little black squares at the corners and the middle
of the sides — as shown in Figure 3-14. Drag anywhere in the middle of
the chart control to move the chart. Drag a handle to resize the chart
control.

Making charts the old-fashioned way
By far the best way to create a chart is by using
the Chart Wizard. However, if you want to create
one without a wizard, be our guest — just don’t
say we didn’t warn you. Follow these steps:

1. With a report or form open in Design view,
display the Design tab on the Ribbon.

2. Click the Unbound Object Frame button on
the Controls group on the Ribbon, and then
click in the Design View window where
you want your chart to appear.

You see a Microsoft Access dialog box
(which really ought to be called something
like the Insert Object dialog box).

3. If you’ve created a graph in some other
program (perhaps in Excel or Word),

choose the Create from File option, click
the Browse button, and choose the file. If
you are making a new chart, choose the
Create New option and choose Microsoft
Graph Chart from the Object Type list. Then
click OK.

Yes, that’s “Microsoft Graph Chart,” which
sounds redundant, but the point is that you
are creating a chart by using the Microsoft
Graph program. Makes sense!

Access creates a sample bar chart based
on sample data that appears in a Datasheet
window. To replace the data with your own
data, type your own headings and numbers in
the Datasheet window. To change the type of
chart, see the section, “Changing your chart.”

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 458

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 459

When the chart control is selected, click the Property Sheet button on
the toolbar to display the Property sheet, which is also shown in Figure
3-14. In the Property sheet, you can change configuration settings for the
graph, as described in the next two sections.

The chart control appears as an Unbound Object Frame, because the
chart frame contains information that comes from another program,
Microsoft Graph. The chart control is unbound because it’s not con-
nected to the records in a table or query.

3. Double-click the chart control to start the Microsoft Graph program.

When Microsoft Graph is running, the chart control appears with a
hatched line around it, as shown in Figure 3-15.

Three new (actually old) toolbars appear: the Microsoft Graph Standard,
Formatting, and Drawing toolbars. Your Microsoft Access Ribbon
goes away and is replaced by the Microsoft Graph menus and toolbars.
The next two sections describe what some of the buttons on these tool-
bars do.

Inexplicably, Microsoft Graph also displays a datasheet containing the
sample data it uses to make the graph that appears in Design view. Editing
this sample data changes the chart in Design view; however — and this is
important — editing the sample data has absolutely no effect on the real
chart that appears in Print Preview (or on the data in the database).

Click the View button to get rid of the datasheet, which just clutters up
the screen.

Figure 3-14:
A chart
control in
Design
view.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 459

Displaying Information with Charts and Graphs460

4. Make changes to your chart, as described in the next three sections.

The next three sections explain how to change colors, legends, titles,
fields, and chart type.

5. Exit Microsoft Graph by clicking in the Design View window, outside
the chart control.

The extra toolbars disappear, the funny border around the control dis-
appears, and you are back in Access.

6. Click the View or Print Preview button to see how your graph looks now.

Repeat these steps until you have the chart the way you want it. When you
save the report that contains the chart control, you save the changes to the
control, too.

The next three sections describe changes you can make to your chart. You
make some of these changes in the Property sheet for the chart control,
some using buttons on the various Microsoft Graph toolbars, and some by
giving commands while Microsoft Graph is running. (Don’t worry — we let
you know when to do what.)

Formatting toolbarStandard toolbar

Drawing toolbar Datasheet with useless sample data

Figure 3-15:
Microsoft
Graph is
running,
although
you may not
know it.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 460

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Displaying Information with Charts and Graphs 461

Formatting charts with colors, legends, and titles
The Chart Options dialog box, shown in Figure 3-16, enables you to change
the titles, axis labels, gridlines, legends, data labels (which appear on the
graph itself), and data table placement. To display it, first double-click the
chart control in the Design View window to get Microsoft Graph up and run-
ning, and then choose Chart➪Chart Options from the main menu.

Some other ways you can format your graph when Microsoft Graph is run-
ning (that is, when the chart control has a hatched border) are the following:

✦ Background color: Click a part of the graph and then click the down
arrow to the right of the Fill Color button on the Standard toolbar and
choose a color. You can also right-click the plot area (the graph itself) or
a blank part of the chart and choose the Format Chart/Plot Area option
from the shortcut menu that appears.

✦ Gridlines: To add or remove gridlines within the chart, click the Category
Axis Gridlines and Value Axis Gridlines buttons on the Standard toolbar.

✦ Title: To change the title that appears on the graph, just double-click the
title and edit the text. Move the title by selecting it (with one click) and
dragging. You can also change the font by right-clicking it and choosing
the Format Chart Title option from the shortcut menu that appears.

✦ Legends: To display or remove the legend — the table that explains the
meanings of the colors or symbols in the graph — click the Legend
button on the Standard toolbar. Move the legend by dragging it to a new
location within the chart control. Change the fonts by double-clicking
the legend to display the Format Legend Entry dialog box.

✦ Data table: Click the Data Table button on the Standard toolbar to add a
table to the chart showing the data used in the table.

Figure 3-16:
The Chart
Options
dialog box
contains
lots of
formatting
settings for
your graph.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 461

Displaying Information with Charts and Graphs462

You can choose how the border of the graph looks by setting the following
options. These options are available only when you’ve selected the chart
control but have not yet double-clicked the control to get Microsoft Graph
up and running:

✦ Border: To set the color of the border, click the down arrow to the right
of the Line/Border Color button on the Formatting toolbar and choose a
color. Then set the width of the border by clicking the down arrow to the
right of the Line/Border Width button.

✦ 3-D effect: You can give the edge of the chart a raised, sunken, or 3-D
shadow effect by clicking the down arrow to the right of the Special
Effect button on the Formatting toolbar and selecting the look you like.

Changing how the data is graphed
You can modify what type of chart you get and what data it shows, but you
have to get Microsoft Graph up and running again before you start scram-
bling things around.

Just double-click the chart control in Design view to call up Microsoft Graph.

✦ Type of chart: If you want to switch from a bar chart to a line chart,
from one kind of bar chart to another kind of bar chart, or if you want to
make one of the types of charts that the Chart Wizard doesn’t even know
about, click the down arrow to the right of the Chart Type button and
choose a different type of chart. For more options, choose Chart➪Chart
Type from the main menu, or right-click the chart control and choose
the Chart Type option from the shortcut menu that appears.

✦ Axes: Because Microsoft Graph treats your data as if it were stored in a
spreadsheet — graphing the data row by row or column by column —
switching which field is represented along which axis of the chart is
pretty easy. To see other ways of representing your data on the same
type of graph, just click the By Row and By Column buttons on the
Standard toolbar.

Save your chart first, in case you don’t like the results. Switching your
chart back to its original format is not always easy.

✦ Trendline: If your graph shows information over time (a Date/Time field
is shown along one axis), you can add a trendline that shows the general
direction of growth or decline in the numbers. Choose Chart➪Add
Trendline.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 462

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Analyzing Your Data Graphically with PivotCharts 463

Changing which data is charted
If you want to change the fields included in the chart, you can change the
Row Source setting of the chart control. Display the Property sheet for the
chart control by single-clicking (not double-clicking) the chart control in the
Design View window and clicking the Property Sheet button. (Microsoft
Graph can’t be running when you do this; to exit Microsoft Graph, click in
the Design View window outside the chart control.)

The Row Source setting (on the Property sheet Data tab) may contain an SQL
statement that describes the fields to be graphed. (See Book VIII, Chapter 5
for information about SQL.) You can change the statement by clicking in the
Row Source setting and then clicking the Build button to its right. Set the Row
Source Type setting to Table/Query, then click in the Row Source setting to
see the Build button. You see the SQL Query Builder window, which looks just
like the Design View window when creating queries. Each column in the QBE
grid corresponds to a field in the graph, although the exact number and use
of the columns depends on the type of the chart.

If you make changes to the QBE grid, Access asks whether you want to save
your changes when you close the window. (Or press Ctrl+S or click the Save
button on the Quick Access toolbar before closing the window.) When you
switch the report containing the chart control to Print Preview, you see the
results of your changes.

Access 2007 doesn’t provide a handy Build button for changing your data
source. Instead, you set the Row Source Type property of the chart object
to the Table/Query setting, and the Row Source property to a table or
query in your database.

Analyzing Your Data Graphically with PivotCharts
A PivotChart, like a PivotTable, is an interactive tool that helps you analyze
your data, selecting and summarizing your data by the fields that you desig-
nate. Both PivotTables and PivotCharts cross-tabulate records in a table or
query, but a PivotTable presents the results as text while a PivotChart
graphs the results. Unlike a regular chart, you can instantly make changes to
a PivotChart by dragging field names to the chart or choosing from drop-
down lists that reflect your data. Figure 3-17 shows a PivotTable that ana-
lyzes orders for Computers, Media, Miscellaneous, Office Supplies, and
Personal Electronics by month. Figure 3-18 shows the same information as a
chart. The beauty of PivotCharts is that you don’t have to create a whole
bunch of different charts to show different types of data. Instead, create one
flexible PivotChart that can be tweaked to show whatever you’re interested
in seeing at the moment. (PivotCharts were new in Access 2002.)

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 463

Analyzing Your Data Graphically with PivotCharts464

You can read all about PivotTables in Book III, Chapter 4.

Creating PivotCharts
You can display the information from any table, query, or PivotTable as a
PivotChart. When you create a PivotChart, you modify the layout of a table
or query.

Figure 3-18:
When you
view a
PivotTable
as a
PivotChart,
Access
uses the
same fields
that you
specified
for the
PivotTable.

Figure 3-17:
A PivotTable
analyzes
your data
and shows it
as text.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 464

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Analyzing Your Data Graphically with PivotCharts 465

To create a PivotChart from any table or query, follow these steps:

1. In the Navigation Pane, double-click the table or query on which you
want to base the PivotChart.

The new PivotChart opens.

2. Right-click the table’s (or query’s) Title tab and then select PivotChart
View.

Access creates a new layout and a control containing the PivotChart.
The Chart Field list also appears, showing the fields from the table or
query on which the PivotChart is based, as shown in Figure 3-19. A new
set of tools also appears on the Ribbon: the PivotChart tools.

3. Specify what’s on your chart by dragging fields from the Chart Field
list to the PivotChart drop areas.

If the Chart Field list doesn’t appear, click the Field List button on the
Show/Hide chunk of the Design tab on the Ribbon. The Chart Field list is
like the Field list that appears when you edit a form: It lists the fields you
have available to drag to the PivotChart.

The PivotChart drop areas are

• Filter fields: Fields you want to use to filter the data shown in the
chart. To filter the data, click the drop-down list and click to remove
check marks — only checked data is included in the chart. This drop
area works like the Criteria row in an Access query.

Figure 3-19:
You create a
PivotChart
by dragging
fields to the
blank chart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 465

Analyzing Your Data Graphically with PivotCharts466

• Data fields: Fields containing the data you want to chart (for exam-
ple, the numbers that are represented by the heights of the bars of a
bar chart). The values of these fields are measured by the numbers
on the Y-axis.

• Category fields: Fields that contain values that you want to run
along the bottom edge (X-axis) of the chart.

• Series fields: Different values in these fields are represented by dif-
ferent lines in a line chart, different bars in a bar chart, or different
colored graph elements. To display legends for the series, click the
Legend button on the Show/Hide chunk of the PivotChart Ribbon. If
you want a stacked or clustered bar chart, a line graph with more
than one line, or a multi-ring doughnut chart, drag more than one
field to the Series drop area.

4. Make changes to the type of chart, which fields are graphed, and
which values of each field are included.

See the section, “Sprucing up your PivotCharts,” at the end of this chap-
ter, for details.

5. To see the chart better, close the Chart Field list by clicking its
X button.

You can always open it again if you want to add more fields: Right-click
in the PivotChart and choose the Field List option from the shortcut
menu that appears.

Saving and viewing your PivotChart
Like PivotTables, a PivotChart is a special view of an Access object (tables
and queries have pivot views available to them, too). When you close a
PivotChart, Access asks if you want to save the changes to the layout of the
query or table. When you close a PivotChart view of a table or query, Access
just saves the information as part of the table or query. You can save your
changes while editing a PivotChart by clicking the Save button on the Quick
Access toolbar or pressing Ctrl+S.

To open a PivotChart again, open its table or query by double-clicking it
in the Navigation Pane. Then right-click the Title tab of the open table or
query and choose PivotChart View. Access displays the PivotChart view
of your table or query. The Title tab of the PivotChart View window shows
the name of the table or query that provides the record source for the
chart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 466

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Analyzing Your Data Graphically with PivotCharts 467

You can switch to other views by right-clicking the Title tab of the table or
query and choosing one of the following: Design View, SQL View (if you have a
query open), Datasheet View, PivotTable View, and PivotChart View. Switching
to PivotTable view shows the same information as rows and columns of text.
Switching to Datasheet or Design views is usually pointless, though — you see
only the datasheet or design of the underlying table or query.

Sprucing up your PivotCharts
After you create a PivotChart, you can change the type of chart, which fields
appear where, and which values are included. As you make your changes,
Access redraws the PivotChart immediately — unlike the charts made by
Microsoft Graph, an Access PivotChart doesn’t make you switch views to see
your results.

Another dynamic aspect of PivotCharts is that you can see what each part of
the chart means by simply hovering the mouse pointer over it. Figure 3-20
shows a chart of the products that an online video and CD store sells, with
a bar for each vendor from which the product is purchased. When you point
to a section of the stacked bar chart shown in Figure 3-20, Access displays a
pop-up box with the values that make up that bar, along with its numeric value .

Filter records Count of Product Name field

Vendor Code field Detail of selected item Selling Price field

Figure 3-20:
The parts of
a PivotChart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 467

Analyzing Your Data Graphically with PivotCharts468

The following list details some changes you can make to your PivotChart
with it open in PivotChart view:

✦ Changing chart type: If you don’t want a bar chart (the default chart
type), change the chart type by clicking the Change Chart Type button
on the Design tab on the Ribbon. Or right-click a blank place on the
chart and choose the Change Chart Type option from the shortcut menu
that appears. Either way, you see the Properties sheet for the PivotChart
with the Type tab selected, as shown in Figure 3-21. Click a type from the
list at the left, and then a format from the examples shown.

✦ Changing which fields are graphed: For each field on the PivotChart,
you see a gray button with a downward-pointing triangle — a field
button. Figure 3-20 shows buttons for the Count of Product Name,
Vendor Code, and Selling Price fields. You can change or add the
fields to the graph. Display the Chart Field list by clicking the Field List
button on the Design tab on the Ribbon. Then drag a field from the Chart
Field list to one of the drop areas. (Turn to the “Creating PivotCharts”
section, earlier in this chapter, if you need a refresher on drop areas.)
You can have more than one field in each of the drop areas. To remove a
field from a drop area, drag it anywhere outside the PivotChart window.

✦ Switching data and series fields: You can switch the Data and Series
fields (the fields shown along the X-axis and the fields shown by colors
or symbols) by clicking the Switch Row/Column button on the Active
Field group of the Design tab on the Ribbon. Click the button again to
switch back.

Figure 3-21:
Change the
type of chart
from the
Properties
sheet for a
PivotChart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 468

Book V
Chapter 3

Creating Charts
and

Graphs
from

Your Data
Analyzing Your Data Graphically with PivotCharts 469

✦ Changing which values are included: When you click a field button on
the PivotChart (for example, the Vendor Code or Selling Price but-
tons in Figure 3-20), the button expands into a list of the values for that
field (as shown in Figure 3-22). The field button(s) at the top-left corner
of the chart are for fields that don’t appear on the chart, but which are
used to filter the records included. In the list of values, you can clear the
check box for any value that you don’t want included in the chart.

✦ Displaying or hiding legends: Click the Legend button on the Design tab
on the Ribbon to display or hide the legend that shows the meanings of
the colors and symbols on the chart.

✦ Changing other properties: Click an item in the PivotChart and click the
Property Sheet button on the Tools group of the Design tab on the
Ribbon to see the Property sheet for that item. You can set the colors
and borders of the bars, the background color, gridlines, fonts, and
other settings.

Another way to change which fields are on the PivotChart, which values are
included, and how they are arranged is to switch to PivotTable view (right-
click the Title tab and choose PivotTable View) and make your changes
there. When you switch back to PivotChart view, the same data is included
in the chart.

Figure 3-22:
Click a
field’s
button
on the
PivotChart
to see a list
of values to
include in
the chart.

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 469

Book V: Reports470

29_036494 bk05ch03.qxp 11/17/06 8:29 AM Page 470

Book VI

Macros: Automating
Stuff in Access

30_036494 pt06.qxp 11/17/06 8:30 AM Page 471

Contents at a Glance
Chapter 1: Making Macros Do the Work ..473

Chapter 2: Making Macros Smarter ..493

30_036494 pt06.qxp 11/17/06 8:30 AM Page 472

Chapter 1: Making Macros
Do the Work

In This Chapter
� What macros do

� Creating a macro

� Macro actions and arguments

� Running macros

� Making your forms smarter with macros

Access is a pretty smart program. Throughout the program are thou-
sands of nice little features that make Access so intelligent, such as val-

idation rules and formats that allow Access to help you keep your data neat
and tidy. However, sometimes you want Access to be even smarter. You may
want to format a field in a way Access doesn’t allow. Or you may want your
form to include a command button that the Command Button Wizard doesn’t
make. No problem — you can make Access even smarter by writing your
own programs within Access.

Strangely, Access includes two (count ‘em) ways of putting a program
together: macros and VBA. The differences between the two are

✦ Macros are the original Access do-it-yourself program makers, dating
back to the Dawn of Access (1991). However, Microsoft is phasing out
macros, and suggests that you not use them for any major programming
tasks.

✦ Visual Basic for Applications (VBA) is the newer create-a-program-
in-Access programming language. VBA is a version of Visual Basic
that works with all the programs in Microsoft Office. Microsoft recom-
mends VBA for all significant programs. We describe VBA in detail in
Book VIII.

So why use macros at all? Here’s why: If you want to do something small and
simple, making a little macro is a piece of cake (as you find out in this chap-
ter). And you can always convert the macro to VBA later with the Access
conversion command.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 473

What Is a Macro?474

What Is a Macro?
A macro is a list of actions that happen when you run the macro. (That’s a
general definition that works for almost any programming language, actu-
ally.) For example, you may have a macro that performs these actions when
you click a button on a form:

1. Saves the current record.

2. Prompts you to put a blank mailing label in the printer.

3. Prints a report, filtering the records to include only those that match the
record currently displayed on the form.

Most macros are short and sweet, like this example. For more complex pro-
grams, you need VBA.

Creating and Editing Macros
Creating a macro is easy:

1. Click the New Object button in the Other group of the Create tab on
the Ribbon (you may need to click its down arrow if the button says
Module or Class Module).

Access displays the Macro window, in which you enter the actions that
make up the macro. Figure 1-1 shows a macro with one action already
entered.

Figure 1-1:
You use the
Macro
window to
create and
edit macros.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 474

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Creating and Editing Macros 475

The upper part of the Macro window shows the list of actions, with
space for a comment after each action. The Action Arguments part of
the window shows the arguments — additional information that Access
needs to perform the action — of the currently selected action.

Press F11 if the Navigation Pane isn’t visible. Access shows you
the macros that already exist (you may have to scroll down to see the
Macros section) in the database, as shown in Figure 1-2.

2. Enter the action that you want the macro to take in the first row of the
Macro window.

When you click in the Action column and then click the downward-
pointing button at the right side of the column, a drop-down menu
appears listing all the Access macro actions. Choose the one you want.
For example, choose the OpenForm action to display a form on-screen,
or the SetValue action to set a field or control to a specific value. The
next section lists many useful actions.

After you choose an action, a description of the action appears in the
lower-right part of the Macro window. Access also displays the argu-
ments of that action in the lower half of the Macro window — the Action
Arguments pane.

Figure 1-2:
The
Navigation
Pane shows
you the
macros in
your
database.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 475

Creating and Editing Macros476

3. For each action, specify the arguments for that action in the Action
Arguments pane.

Click in each box in turn and set the value of the argument. For some
arguments you type a value, and for others you can choose from a list. If
a downward-pointing triangle button appears at the right end of the box,
click it to see a drop-down menu of your options.

4. Repeat Steps 2 and 3 for each action you want the macro to take.

When you run the macro, Access executes the actions you specified,
starting on the first row of the macro and proceeding until Access
reaches a blank row.

Taking action!
To tell Access what to do when running the macro, you specify actions and
arguments to actions. Access provides you with 56 actions that you can use
in your macros. Table 1-1 lists the most commonly used actions.

Table 1-1 Macro Actions
Action Comments

Apply Filter Applies a filter to the records in a datasheet, form, or
report. Set the Filter Name argument to the name
of an existing query or type an SQL WHERE statement
as the Where Condition argument.

Beep Beeps. (You were perhaps expecting it to do something
else?)

Close Closes an Access object. Set the Object Type to
Query, Form, Report, or other object. Set the
Object Name to the specific object you want to
close. Set Save to specify whether to save any
changes.

FindNext Repeats the last search you performed. (Perfect for a
Find Next button on a form!)

FindRecord Searches the current datasheet or form for the record
you specify in the Find What and other arguments.

GoToControl Moves the focus (cursor) to the control you specify in
the Control Name argument. Useful on forms.

MsgBox Displays a message box with the text you specify in the
Message argument.

OpenDataAccessPage Opens a page in Browse or Design view.

OpenForm Opens a form in Form or Design view or in Print Preview.
You specify the Form Name. The Filter Name
and Where Condition arguments let you filter the
records that appear in the form.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 476

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Creating and Editing Macros 477

Action Comments

OpenQuery Opens a query in Datasheet or Design view or Print
Preview.

OpenReport Opens a report in Design or Print Preview, or just prints
the report, depending on what you specify for the View
argument. The Filter Name and Where
Condition arguments let you filter the records that
appear in the report.

OpenTable Opens a table in Datasheet or Design view or in Print
Preview.

OutputTo Exports the data from the specified object to an Excel
spreadsheet file, Rich Text Document (RTF), text file,
Web page (HTML), or Snapshot Report.

PrintOut Prints the object that you specify. You can specify the
page range and the number of copies to print.

ReQuery Recalculates the value of the current control, or reruns
the record source query.

RunApp Runs another program. The Command Line argu-
ment specifies the program name.

RunCode Runs a VBA function. (See Book VIII.)

RunCommand Runs an Access menu command. You specify the com-
mand by choosing from a long list.

RunMacro Runs another macro. When the other macro finishes
running, the first macro continues with the next action.

Save Saves the object that you specify.

SelectObject Selects the object that you specify.

SendKeys Types the keystrokes that you specify in the
Keystrokes argument, as if you were typing the
keystrokes in the current application.

SetValue Sets the value of a control, field, or property to the
value you specify (which can be an expression).

ShowAllRecords Removes any filter from the current table, query,
or form.

Specifying arguments to actions
After you select an action, Access displays its arguments in the Action
Arguments pane of the Macro window (refer to Figure 1-1). Click in an argu-
ment’s box to set it. Pressing F6 switches between the list of actions in the
top part of the Macro window and the Action Arguments pane.

When you click in the box for an argument, Access displays information
about that argument in a box on the right side of the Action Arguments pane.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 477

Creating and Editing Macros478

Some arguments start out blank, while others start with a default value. For
example, the OpenForm action has a View argument that specifies which
view you want the form to appear in. The default value for the View argu-
ment is Form view (you usually want forms to open in Form view).

For example, Figure 1-3 shows a macro that prints three reports. The
macro contains three OpenReport actions. Each OpenReport action
has the Report Name argument set to a different report — three reports
that print at the end of each month. For each action, the View argument
is set to the Print mode, which prints the report rather than displaying it
on-screen. Running the macro prints the three reports. Note, however, that
only the action arguments for the currently selected action are visible in
the window. You only see the action arguments for the third macro action
in Figure 1-3.

These arguments appear in many macro actions:

✦ View: What view Access opens the object in. For example, the
OpenForm action includes the View argument, and you can choose the
Form, Design, Print Preview, Datasheet, PivotTable,
PivotChart, or Layout arguments from a drop-down menu — all the
possible views for a form.

✦ Object Type: Type of object. Access provides a drop-down menu from
which you choose the Table, Query, Form, Report, Macro, Modules,
Data Access Page, Server View, Diagram, Stored Procedure, or
Function objects.

✦ Object Name: Name of the object (table, query, form, report, macro,
modules, or data access page) the action affects. Choose the Object

Figure 1-3:
This macro
prints three
reports, one
after the
other.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 478

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Creating and Editing Macros 479

Type argument first, and Access provides a drop-down menu of the
objects of that type. For example, the Close action uses this argument
to tell Access what to close.

✦ Filter Name: Name of a query (or filter saved as a query) that speci-
fies which records to include in the action.

✦ Where Condition: Expression that specifies which records to include.
Click the Build button to the right of the argument to display the
Expression Builder.

Naming, saving, and editing macros
Before you run a macro, you need to save it with a name. Press Ctrl+S, click
the Save button on the Quick Access toolbar, or click the Close button and
click the Yes button to save the macro. The Save As dialog box appears the
first time you save a macro. Name the macro and click OK.

You can edit your macro by right-clicking the macro name and choosing
the Design View option from the shortcut menu that appears. You see the
Macro window again, with the name of the macro appearing in the title bar
of the Macro window. (In Figure 1-3, the macro is called Print Monthly
Reports.)

In the Macro window, you can change actions and arguments as described
in the preceding sections. You can also insert rows if you need to add macro
actions in the middle of a macro: Click the Insert Row button in the Rows
group of the Macro Tools tab on the Ribbon to add a row above the current
row. You can delete a row by clicking the gray box at the left of the row to
select the row, and then pressing the Delete key.

Adding comments
You can type anything you like in the Comment column in the Macro window.
We usually explain what each action is supposed to do. You can also leave
a blank row or two at the top of the macro, with no actions in the rows, and
type the name and purpose of the macro in the Comment column.

Storing macros in related groups
Because most macros are short — frequently only one or two actions —
storing them in groups is efficient. We like to store all the macros used
for each form in one macro group. To create a macro group, follow these
steps:

1. Create a new macro by clicking the New Object: Macros button in the
Other group of the Create tab.

You see the Macro window.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 479

Creating and Editing Macros480

2. Press Ctrl+S or click the Save button on the toolbar to save your new,
blank macro group. Type a name for the group and click OK.

For example, if these macros run from the Purchase Order form, name
the group something like Purchase Order Form. So far, this macro looks
just like a single macro, not like a macro group, but stay tuned!

3. Click the Macro Names button in the Show/Hide group of the Macro
Tools tab on the Ribbon.

Access adds a column to the Macro window: the Macro Name column.
This new column provides a place to specify the names of the individual
macros in the group.

4. For the first macro you want to store in the group, type the name in
the Macro Name column.

For example, if you’re writing a macro to print the current purchase
order, type Print in the Macro Name column. The full name of the macro
is the group name followed by a dot and the macro name. Your macro
may end up with the name Purchase Order Form.Print.

5. Enter the macro’s actions and arguments as usual, using as many rows
as you need.

6. For the next macro you want to store in the group, type the name in
the Macro Name column on the next row.

For readability, you can leave a blank row between one macro and the
next, but you don’t need to. Each macro starts on the line where its
name appears and ends on the line just before the next macro’s name
appears.

7. Enter the next macro’s actions and arguments as usual.

8. Repeat Steps 6 and 7 for all the macros in the group.

9. Save and close the macro group the same way you save and close a
single macro: Press Ctrl+S or click the Save button on the Quick
Access toolbar to save your changes, and click the X button to
close the Macro window.

Figure 1-4 shows a macro group that includes macros named
CopySellPrice, CopyTaxRate, and PaymentInfo. The name of
the group is Purchase Order Form (hmm, sounds like these macros
must be used on the Purchase Order form). The full names of these
macros are Order Form Macros.CopySellPrice, Order Form
Macros.CopyTaxRate, and Order Form Macros.PaymentInfo.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 480

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Running Macros 481

Leave a row with no action above each macro name, to separate one macro
from the next. Type the name and purpose of the macro in the Comment
column.

Running Macros
You can run a macro directly by right-clicking the macro in the Navigation
Pane and choosing Run!. You can also run the macro by double-clicking it.
If you stored a bunch of macros in a macro group, Access runs just the first
macro in the group.

For example, to run the Print Monthly Reports macro (refer to
Figure 1-3), right-click the Print Monthly Reports macro from the list
of macros, and select Run! from the menu. Or just double-click the macro
name.

The most common way to run a macro, however, is to assign it to an event
on a form — for example, the On Click event of a command button. You
specify the full name of the macro (macro group name, a dot, and the name
of the individual macro) in one of the properties of a command button. But
before we cover macros with forms (later in this chapter), you can run
macros in two other cool ways: auto-execution when the database opens and
execution when certain keystrokes are used.

Figure 1-4:
You can
store a
group of
macros
together.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 481

Running Macros482

Running a macro when the database opens
We like our databases to automatically display a Main Menu form, or some
other commonly used form, as soon as the database opens. If the first thing
you usually do after opening the database is to open the Order Entry form,
why not tell Access to open it for you? You may have other actions you’d like
Access to take when your database opens — you may want to prompt the
user for his or her name, or display a list of reports.

In order to tell Access to do something automatically when the database
opens, you can write a macro with the actions you want Access to take, and
then tell Access to run the macro on startup.

Running a macro when the database opens is a snap: Just name the macro
AutoExec. That’s the whole thing. When you open a database, Access looks
in the database for a macro named AutoExec, and if there is one, Access
runs the macro. Enter the actions and arguments for the AutoExec macro in
the usual way — in the Macro window.

If you don’t want the AutoExec macro to run when you open the database,
hold down the Shift key while the database is loading.

Assigning macros to keys
Your database can contain a key-assignment macro — a macro that
assigns keys on the keyboard to run macros. If you create a macro group
named AutoKeys, and it contains macros with the names of keys (or key
combinations) on the keyboard, then Access runs the appropriate macro
when you press the key. Figure 1-5 shows an AutoKeys macro with macros
assigned to Ctrl+T, Ctrl+1, and Ctrl+P.

To name a key-assignment macro, use ^ to indicate the Ctrl key, + for the
Shift key, and { } around key names that are more than one letter long.
Table 1-2 shows the names of the keys you can use: You’re restricted to
letters, numbers, Insert, Delete, and the function keys, used in conjunction
with the Shift and Ctrl keys. A few examples of key-assignment macros are
the following:

✦ ^G: means Ctrl+G

✦ +{F2}: means Shift+F2

✦ {INS}: means the Insert key

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 482

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Opening Databases That Contain Macros 483

Table 1-2 Key Names in AutoKeys
Key Name Key

A A letter key (ditto for the rest of the letter and number keys)

{F1} F1 function key (ditto for the rest of the function keys)

{INS} Insert or Ins key

{DEL} Delete or Del key

If you assign a macro to a key that normally does something else (such as
Ctrl+F, which usually summons the Find and Replace dialog box), your
macro overrides the Access command.

Opening Databases That Contain Macros
Access 2007 has a new feature to guard against databases that contain
viruses in the form of macros. Unfortunately, this feature also guards
against normal databases that contain macros, action queries, and VBA
procedures. When you open a database that contains one of these types of
objects, you may see a dialog box asking whether you really want to take a
chance on running the macros in the database. You can choose whether to
open the database with the macros enabled. (See Book I, Chapter 2 for
details.)

Figure 1-5:
An
AutoKeys
macro
group
assigns
macros to
keystrokes.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 483

Opening Databases That Contain Macros484

Can a macro be a virus?
Writing a virus is no small feat, and requires pretty advanced programming
skills. In order to qualify as a virus, the macro has to be intentionally written
to do bad things to your computer, and to replicate itself. Writing code that
does harmful things is not easy. If you’re concerned that you may acciden-
tally create a virus, you can stop worrying about that. Creating a virus by
accident is about as likely as writing an entire book, or driving across coun-
try, by accident.

If the database is something you created yourself, then it’s absolutely, posi-
tively, 100 percent safe to enable the macros. You have three options:

✦ Put up with the annoying security warning message every time you open
the database, and choose the Enable Content button each time.

✦ Set your Access Trust Center Macro Settings to Enable all macros, so
Access never notifies you when you open a database that may contain
viruses. See the section, “Turning down your Access security settings,”
later in this chapter.

✦ Digitally sign your database by adding the security code that tells
Access, “It’s okay, this is my own database, and I can vouch for its
safety.” This digital signature works only when you open the database
on your own computer. The next section describes how to sign your
database.

We recommend this last option: you don’t have to put up with annoying mes-
sages, and you don’t want to open up your Access program to viruses from
other people.

Signing your database
Signing a database for your own use is easy to do. First you create your own
digital signature, and then you use it to sign your databases. This signature
works only on your own computer: When other people open your database,
they still see the security warning message. If you want to create a digital
signature that works everywhere, then you need to contact a certification
authority and buy one.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 484

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Opening Databases That Contain Macros 485

Follow these steps to create a digital signature for use on your own
computer:

1. Choose Start➪Programs➪Microsoft Office➪Microsoft Office Tools➪
Digital Certificate For VBA Projects.

Windows prompts you to install this program, unless you’ve used it
before.

2. Follow the prompts to install Digital Signature For VBA Projects.

You probably need your Microsoft Office CD. When the program is
installed you see the window shown in Figure 1-6.

3. Type a name for your certificate (such as your own name) and
click OK.

The program reports that it created a certificate, or digital signature.

4. Click OK.

If you plan to distribute your database to other people and you need a cer-
tificate that works on computers other than yours, you need to buy a digital
certificate. See the VeriSign Web site:

www.verisign.com/products/signing

Figure 1-6:
Creating a
digital
signature
for use with
your own
databases.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 485

Opening Databases That Contain Macros486

After you have a digital certificate, sign your database with the following
steps:

1. With your database open, click the Database Tools tab of the Ribbon
and click the Visual Basic button on the Macro group (or press
Alt+F11).

You see the Microsoft Visual Basic window, which is described in Book
VIII, Chapter 1.

2. Choose Tools➪Digital Signature.

You see the Digital Signature dialog box shown in Figure 1-7.

3. Click the Choose button and choose from a list of the digital signature
certificates stored on your computer. Click OK twice.

4. Choose File➪Close and Return to Microsoft Office Access.

Now, when you open your own database, Access doesn’t complain. Whew!

Turning down your Access security setting
If you don’t expect to open any database that you or your trusted associates
didn’t create, you can tell Access not to warn you about any databases.
Follow these steps:

1. From the Microsoft Office Button menu, choose Access Options.

You see the Access Options dialog box.

2. Click Trust Center in the left pane of the Access Options dialog box.

3. Click the Trust Center Settings button in the right pane of the Access
Options dialog box.

4. Click Macro Settings in the left pane, then select the Enable all
macros (not recommended, potentially dangerous code can run)
radio button, as shown in Figure 1-8.

Figure 1-7:
You can add
your own
digital
signature
to your
database.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 486

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Attaching Macros to Forms 487

5. Click OK twice.

Access no longer displays warning messages when you open databases that
contain macros.

Attaching Macros to Forms
Most macros are used with forms — to make form controls smarter or to
power command buttons. Every control in a form has events connected
to it — things that happen when the user clicks the control. You can tell
Access to run a macro when an event happens.

Events are properties of the control. To tell Access to run a macro when the
event happens (for example, any time the value of a field changes or a com-
mand button is clicked), you enter the macro name in the event property for
the control or for the whole form. Follow these steps:

Figure 1-8:
Options for
handling
macro
security in
all Access
databases.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 487

Attaching Macros to Forms488

1. Create and save the macro you want to run.

You can store the macro by itself, or as part of a macro group. (We usu-
ally create one macro group for each form, and store all the macros for
that form in the group.) Save the macro before continuing. (But you can
keep the Macro window open if you plan to make further changes to
your macro.)

2. Open the form in Design view.

Refer to Book IV, Chapter 2 for how to edit a form in Design view.

3. Display the Property sheet by clicking the Property Sheet button on
the Tools group of the Design tab on the Ribbon. Click the Event tab.

See Book IV, Chapter 1 for information about the Property sheet. The
Event tab displays all the events for the selected object.

4. If you’re attaching a macro to a control (such as a command button),
click that control. If you want to attach the macro to the form itself,
click the box where the rulers intersect in the upper-left corner of
the form.

Now the Property sheet shows the available events for the form or
control.

5. Click in the event property you want to use.

For example, if you’re attaching a macro to a command button, click in
the On Click property to run the macro when the user clicks the com-
mand button. If you want the macro to run whenever you insert a record
using the form, click in the Before Insert property.

6. Click the downward-pointing arrow at the right end of the property
and choose the name of the macro.

Access lists all the individual macros as well as macros in groups, in
alphabetical order. For example, if the Order Form Macros macro
group contains a macro named AddRecord, choose Order Form
Macros.AddRecord.

Most controls have a number of different events to which you can assign a
macro, including when your cursor enters and exits the control, when you
click or double-click it, or when its value changes. Figure 1-9 shows the Event
tab of the Property sheet for a textbox control, with a macro name in the
After Update event property of a combo box.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 488

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Attaching Macros to Forms 489

Table 1-3 shows the most commonly used events that can happen to con-
trols in a form.

Table 1-3 Some Form Control Events
Event Description

Before Update When the control or record is about to be updated

After Update Immediately after the control or record is updated

On Not in List When a user tries to enter a value in combo and list boxes
that’s not in the list of values

On Enter When focus (cursor) moves to the control

On Exit When focus (cursor) leaves the control

On Click When you click the control

On Dbl Click When you double-click the control

Figure 1-9:
The Event
properties
of a combo-
box control
on a form.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 489

Attaching Macros to Forms490

For example, you can make a macro for an order form that automatically
moves you to the last record in the table. (You rarely want to edit the oldest
order in the table, but you more likely want to continue editing the newest
order.) The macro runs when you open the form. The macro, which we
named LastRecord and stored in our Order Form Macros macro group, is

Action Arguments

GoToRecord Record: Last

To make the macro run each time you open the form, set the form’s OnOpen
event property to the name of the macro, Order Form
Macros.LastRecord.

Creating command buttons on forms
Book IV, Chapter 3 describes how to make command buttons on a form. The
Command Button Wizard can write VBA procedures for many tasks that you
may want a button to do, such as going to the first or last record, applying a
filter, or finding a record. However, you may want a command button to do
something that the wizard doesn’t know how to do. In that case, you have to
write your own macro or VBA procedure and link it to an Event property of
the command button. (Book VIII explains how to write VBA.)

For example, if you want to make a button that prints three end-of-month
reports, you use the Button (Form Control) button in the Controls group of
the Design tab on the Ribbon to create a new command button control and
then set its On Click event to the name of the macro you created for print-
ing those three reports.

Referring to form controls in macros
When you write a macro that runs from a form, the macro has to refer fre-
quently to the current value of a control on the form. In the arguments you
use to specify macro actions, you can just type the name of the control that
displays either the field or the field name. For example, to set the shipping
charge to three dollars per item, you use this macro:

Action Arguments

SetValue Item: [Shipping & Handling]Expression:
[Total Qty] * 3

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 490

Book VI
Chapter 1

M
aking M

acros
Do

the W
ork

Attaching Macros to Forms 491

However, if you’re referring to a control on a form other than the form from
which the macro was called, you need to specify which form the control is
on, such as

[Forms]![formname]![controlname]

Replace formname with the name of your form and controlname with the
name of the control on the form.

For example, the OpenReport action displays or prints a report. You can
use its Where Condition argument to restrict the records that appear in
the report. If you want the report to include only records with the same
Order No value as the order displayed on the Orders form, you type this
value in the Where Condition argument of the OpenReport action:

[Order No] = [Forms]![Orders]![Order No]

In the Where Condition argument of many actions (an argument you use
to filter records), you must always use this longer version of the name of the
control you want to refer to.

Printing matching records from a form
Now you know everything to create a very useful command button: a button
that prints a report for the record displayed in the form. For example, an
order form may have an Internal Report button to print an internal report, a
Mailing Label button to print the Mailing Label report, and an
Invoice/Receipt button to print the Invoice or Receipt report — all filtered to
include only the order that is currently displayed in the form. Put all these
macros into a macro group for the form (for example, the Order Form
macro group).

The Internal Report macro saves any changes made to the current
record on the form, and then prints the Internal Report for the cur-
rent record:

Action Arguments

RunCommand SaveRecord

OpenReport Report Name: Internal ReportView:
PrintWhere Condition: [Order No] =
[Forms]![Orders]![Order No]

For each macro, you create a button that calls the macro via the button’s On
Click property. Figure 1-10 shows the Property sheet for the
InternalReport command button.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 491

Attaching Macros to Forms492

Figure 1-10:
Macros that
print a
report for
only the
order
currently
displayed on
the order
form.

31_036494 bk06ch01.qxp 11/17/06 8:30 AM Page 492

Chapter 2: Making
Macros Smarter

In This Chapter
� Making macros run conditionally

� Changing form control properties with a macro

� Creating your own switchboard or main menu form

While macros are simple and powerful, they aren’t the full-featured
programming language that VBA is. (We want to repeat this bit of

practical advice: For writing programs of any size, use VBA, not macros.)
This chapter describes some nifty ways to use macros with your forms,
including how to create a “Mission Control” or switchboard form for your
database.

If you create a macro and decide later that you wish you’d written a VBA pro-
cedure to do the job, Access can convert the macro to VBA. See Book VIII,
Chapter 1 for how to convert a macro to a VBA program. If you want to use
the Access built-in switchboards rather than regular forms, see Book IV,
Chapter 3.

Only Run This If I Say So
Every programming language worth its salt has an if-then feature, which
ensures that a command is only carried out under specific circumstances.
For instance, you may want Access to print a report for the current order
only if the order number isn’t blank: If the order number is blank, don’t
print the report and if the order number isn’t blank, then do print the
report. The technical term for such an if-then situation is conditional
execution.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 493

Only Run This If I Say So494

If-then macros
The way you add a condition to a macro action is by adding a Condition
column to the Macro window and then typing a condition into the column.
Follow these steps:

1. Display the Navigation Pane (by pressing F11), scroll to the Macros
section in the Object list, right-click your macro in the list of macro
names, and select the Design View.

You see the Macro window with your macro, ready to edit. (See Chapter
1 of this minibook for how the Macro window works.)

2. Click the Conditions button on the Show/Hide group of the Design tab
on the Ribbon, or right-click the title of the Macro window and choose
Conditions to add a Condition column to the Macro window.

The Condition column appears to the left of the Action column, as
shown in Figure 2-1.

3. Enter actions and arguments.

Click in the Action column, click the downward-pointing triangle button
at the right side of the Action box, and choose the action from the drop-
down list. Then enter the arguments for the action in the Action
Arguments pane in the lower half of the Macro window.

Figure 2-1:
The
Condition
column in
the Macro
window is
where you
type in a
condition
that controls
whether
Access
performs an
action.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 494

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Only Run This If I Say So 495

4. When you get to a conditional action, type the condition into the
Condition column.

For example, you may want to print a report for the current order (using
the OpenReport action), but you don’t want to print a blank report if no
order is displayed. You use the [Order No] Is Not Null condition
to specify that Access performs the action only if an order number
appears on the form.

For the condition, you can use any expression that comes out to be
either True (Yes) or False (No). Conditions work just like the criteria
that you use when creating queries, as described in Book III, Chapter 1.
You can compare values using comparison operators such as =, <, and
>, and you can use Is Null and Is Not Null to spot (respectively)
blank and non-blank values.

5. If you want to perform several actions based on the same condition,
type the condition in the Condition column on the row for the first
action, and type . . . (three periods) in the Condition column for the
other actions.

The . . . condition means “use the condition from the preceding row.”

For example, the following macro (the same one shown in Figure 2-1) saves
the current record and prints a report with records that match the current
record but only if the current record isn’t blank:

Condition Action Arguments

[Order No] RunCommand Command: SaveRecordNull
Is Not Null

. . . OpenReport Report Name: Packing
SlipView: PrintWhere
Condition: [Order No]
=[Forms]![Orders]![Order No]

On the first line, the RunCommand action only happens if the Order No con-
trol isn’t blank (null). On the second line, the . . . condition means to use
the same condition for this line, too — only print the report if the order
number isn’t blank. (Otherwise, you would get a blank report!)

In the second row of the macro, the OpenReport action prints the Packing
Slip report, printing only the records for the current order. The Where
Condition argument makes the selection, comparing the Order No control
in the record source for the report to [Forms]![Orders].[Order No],

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 495

Only Run This If I Say So496

the Order No control on the Orders form. (This long and confusing way of
referring to a control on a form is described near the end of Chapter 1 of this
minibook.)

If-then-else macros
If you want an if-then-else condition — you want to run one set of actions if
the condition is True and another set if the condition is False — you use
the StopMacro action. Your macro looks like this:

Condition Action Arguments

condition action

. . . action

. . . StopMacro Ends the macro execution

action

On the first line, you enter the condition and the first command to run if that
condition is True. On the following lines, enter . . . (three periods) as the con-
dition and choose the additional actions that you want to happen when the
condition is True. On the line after the final action that happens when the
condition is True, enter . . . (three periods) for the condition and StopMacro
for the action. This line tells the macro to stop executing, but Access only
runs this action if the condition is True. On the following lines, leave the con-
dition blank and enter the actions that happen if the condition is False.

When you run an if-then-else macro, Access checks whether the condition
is True. If it is, Access runs the actions, line by line, until it reaches the
StopMacro action, and then stops. If the condition is False, Access skips
down to the first line that has a blank condition, and starts executing there.

For example, the macro shown in Figure 2-2 prints a report if the Order No
condition isn’t blank, and displays a message if it is:

Condition Action Arguments

[Order No] RunCommand Command: SaveRecord
Is Not Null

. . . OpenReport Report Name: Packing
SlipView: PrintWhere
Condition: [Order No]
=[Forms]![Orders]![Order No]

. . . StopMacro

MsgBox Message: Order No. is
blankBeep: Yes

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 496

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Changing the Way Your Form Looks Dynamically 497

Changing the Way Your Form Looks Dynamically
A really smart form changes in response to the information you type into it.
Making smart forms isn’t hard: You need only know how to make a macro
display, hide, enable, and/or disable controls on the form in response to
what you enter.

Setting the properties of form controls
Macros have no problem changing the values of controls — a macro can
copy a value from one control to another, for example, or store a calculation
in a control. But that’s not all. Macros can also change the properties of con-
trols, in essence changing how controls look or act on-screen. The following
properties, for example, are all eminently changeable once a macro gets its
hands on them:

✦ Fore Color: We’re guessing Fore Color is short for “Foreground
Color.” In any event, Fore Color refers to the text color property of a
label. Changing the Fore Color property makes the text appear in a
different color. Why is this neat? A macro can change the color of a label
to, say, bright red based on whether an order is paid for or not, which
makes tracking down deadbeats much easier for you.

Figure 2-2:
An if-then-
else macro
does one
set of
actions if a
condition is
True, and
another
set if the
condition
is False.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 497

Changing the Way Your Form Looks Dynamically498

✦ Visible: If the Visible property is set to No, the control is hidden.
You can have a macro make controls invisible based on the values of
other controls. For example, if an order is paid by check, the credit card
controls aren’t needed and can be hidden.

✦ Enabled: If the Enabled property is set to No, the cursor won’t move to
it, and you can’t change the control’s value. You can make a macro that
sets the value of some controls and then disables them so that the value
can’t be changed.

Follow these steps to add an action to a macro that changes the properties
of a form control:

1. Open your macro in the Macro window. (Right-click the macro in the
Navigation Pane and select DesignView.)

If you want to create a new macro instead of adding to an existing
macro, click the Macro button on the Other group of the Design tab on
the Ribbon.

2. Display the Condition column if you want to make your action condi-
tional by clicking the Conditions button on the Show/Hide group of
the Design tab on the Ribbon.

In Figure 2-3, the macro hides a label if a control is blank (null) and dis-
plays the label if the control isn’t blank.

3. In the Condition column, type the condition under which you want to
change the property of the control.

In Figure 2-3, the condition for the first row of the macro is [Notes] Is
Null. This condition means perform this action if the Notes control on the
current form is blank.

4. Click in the Action column, click the downward-pointing arrow at the
right end of the box, and choose the SetValue action from the menu.

The SetValue action works for setting properties, too.

5. In the Item argument box, type the name of the control whose prop-
erty you want to set, followed by a dot and the name of the property.

If the control name includes spaces, enclose it in square brackets. (If
there are no spaces, the square brackets can’t hurt.) Access adds
brackets around the property name for you. In Figure 2-3, the Item
argument is [SeeNotes].[Visible] — the Visible property of
the SeeNotes label.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 498

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Changing the Way Your Form Looks Dynamically 499

6. In the Expression argument box, type the value to which you want to
set the property.

To hide the SeeNotes label when the Notes field is empty, the macro in
Figure 2-3 sets the Visible property to No.

When you set the Item argument of the SetValue action to the property
you want to change, you can click the Build button to the right of the Item
box to use the Expression Builder. In the Expression Builder window, delete
anything in the box at the top of the window where the finished expression
appears. Double-click the Forms option in the left-hand column, double-click
the All Forms option (or Loaded Forms, if the form is currently open on-
screen), and double-click the name of the form that contains the control. In
the middle column of the Expression Builder window, click or double-click
the name of the control. In the rightmost column, double-click the property.
The complete expression appears in the box at the top of the window. Click
OK to return to the Macro window — your new expression appears in the
Item box.

Figure 2-3:
The
SeeNotes-
Flag macro
changes the
Visible
property of
the Notes
field.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 499

Changing the Way Your Form Looks Dynamically500

By default, Microsoft Access displays only the actions that are allowed in
databases that have not been trusted. Click the Show All Actions button on
the Show/Hide group of the Design tab on the Ribbon to see the complete
list of actions in the Action drop-down list.

Running a macro during data entry
If you want to run a macro in response to a value entered in a control, set the
control’s After Update property to run the macro: Any change in the value
of the control runs the macro. The After Update property is on the Event
tab of the Property sheet for the control.

For example, an order form may have a PaymentMethod combo box from
which you choose Cash, Check, Purchase Order, or Credit Card. You can run
a macro based on the value of the PaymentMethod combo box that enables
the appropriate other controls: PONo (purchase order number), CCNo (credit
card number), CCMonth (credit card expiration month), CCYear (credit card
expiration year), and CheckNo (check number). The macro, which is run by
the Payment Method’s After Update property, looks like this:

Condition Action Arguments

SetValue Item: [PONo].
[Enabled]Expression:
False

SetValue Item: [CCNo].
[Enabled]Expression:
False

SetValue Item: [CCMonth].[Enabled]
Expression: False

SetValue Item: [CCYear].[Enabled]
Expression: False

SetValue Item: [CheckNo].
[Enabled]Expression:
False

[PaymentMethod]= SetValue Item: [PONo].
“PO” [Enabled]Expression:

True

. . . GoToControl Control Name: PONo

[PaymentMethod]= SetValue Item: [CCNo].
“CC” [Enabled]Expression:

True

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 500

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Displaying Forms and Datasheets 501

Condition Action Arguments

. . . SetValue Item: [CCMonth].
[Enabled]Expression:
True

. . . SetValue Item: [CCYear].
[Enabled]Expression:
True

. . . GoToControl Control Name: CCNo

[PaymentMethod]= SetValue Item: [CheckNo].
“CH” [Enabled]Expression:

True

. . . GoToControl Control Name: CheckNo

First the macro disables all the controls specific to purchase orders, credit
cards, and checks. Then the macro uses the SetValue action to set the
Enabled property of each of these controls to False (disabled). Then it
enables only the appropriate controls, based on the value of the
PaymentMethod control. For each payment type, the macro also moves the
cursor to one of the enabled controls, using the GoToControl action.

You can also make a macro run when you move your cursor to a control
(using the On Entry property) or when you move your cursor out of the
control (the On Exit property).

Displaying Forms and Datasheets
Making a macro that opens another form or a table or query in Datasheet
view is easy. Just use the OpenForm, OpenTable, or OpenQuery action in
your macro. For example, you may want a button on the Access database
Orders form that displays the Products form, so you can see detailed
information about the products that a customer is thinking of ordering. The
macro looks like this:

Action Argument

OpenForm Form Name: ProductsView: Form

Simple enough!

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 501

Setting Up Your Own Main Menu Form502

Setting Up Your Own Main Menu Form
If you create a database using an Access template (as we describe in Book I,
Chapter 3), Access makes a switchboard, a form with bunches of buttons for
opening forms and printing reports. (See Figure 2-4.) You can make your own
main menu form by creating an unbound form (a form with no record source)
with command buttons that run macros. For some commands, you can use
the Command Button Wizard to write VBA code instead of having to write a
macro. Here’s the sequence:

1. As the next few sections explain, create the main menu form.

2. Create the AutoExec macro so Access displays the form automatically
when you open the database.

3. Create each command button that you want on the main menu form.

4. For command buttons that do something that the Command Button
Wizard doesn’t offer, write a macro for the command button to run
(and create a macro group to store these macros in).

Creating a form that appears
when the database opens
To create an unbound form (a form with no record source) that appears
when you open the database, follow these steps:

Figure 2-4:
A
completed
custom
switch-
board.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 502

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Setting Up Your Own Main Menu Form 503

1. Create a new form by clicking the Form Design button on the Forms
group of the Create tab on the Ribbon.

Access opens a form in Design view.

2. Save the form by clicking the Save button on the Quick Access toolbar
or by pressing Ctrl+S. In the Save As dialog box, type a name for the
form and click OK.

Call the form something like Main Menu. Leave the form open — you
make buttons for it in Step 11.

Now you are ready to make the AutoExec macro that opens the form
automagically.

3. Click to display the Create tab on the Ribbon.

4. Click the Macro button on the Other group of the Ribbon to create a
new macro.

A blank macro appears in the Macro window.

5. Choose the OpenForm action from the drop-down menu in the first
row of the Action column of the Macro window.

6. In the Action Arguments section of the Macro window, set the Form
Name argument for the OpenForm action to the name of the form you
just created.

You click in the Form Name argument, click the down-arrow button, and
choose the form from the list that appears.

7. Close the macro, click the Yes button to save it, and name it
AutoExec.

You have to name your macro AutoExec if you want the macro to run
automatically each time you open the database.

8. Click the Macro button on the Other group of the Create tab on the
Ribbon to make another macro.

Your main menu form needs a macro group for the macros.

A blank macro appears in the Macro window.

9. Click the Macro Names button on the Show/Hide group of the Design
tab on the Ribbon.

The Macro Name column appears in the Macro window, which enables
you to give each macro in the group a name.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 503

Setting Up Your Own Main Menu Form504

10. Click the Save button or press Ctrl+S to save the new macro group,
type a name for the macro group, and click OK.

You don’t have to name the macro group with the same name as the
switchboard form — but you’ll find yourself less confused if you do! If
you took our advice in Step 2, name the macro group Main Menu or
Main Menu Form.

Now you are ready to return to your main menu form (the one you cre-
ated back in Step 1 — remember?) and add command buttons.

11. Click in the Design View window for the form (you may have to move
or minimize the Macro window), and click the Design tab of the
Ribbon so that the Controls group is visible.

12. Click the Label (Form Control) button in the Toolbox.

13. Click and drag in the upper-left corner of the form to create the label
box. Type a title for the form: We suggest the name of the database.

Main Menu is also an appropriate title for this form — use whatever
text makes the function of the form clear. Format the title any way you
want (how about large and centered?).

The form is ready and appears when you open the database — all it needs is
buttons!

Creating command buttons for your main menu form
For each button you want on the main menu form, create a command button
and (if necessary) a macro for it to run. When you create a command button,
the Command Button Wizard writes VBA procedures to open forms, print
reports, and run queries. The most useful Command Button Wizard choices
for buttons on a main menu form are

✦ Open Form (in the Form Operations category): Opens any other form.

✦ Preview Report (in the Report Operations category): Opens a report in
Print Preview.

✦ Print Report (in the Report Operations category): Prints a report with-
out previewing it.

✦ Run Query (in the Miscellaneous category): Runs an action query or
opens a select query in Datasheet view.

✦ Run Macro (in the Miscellaneous category): Runs a macro. The macro
needs to exist before you create the command button.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 504

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Setting Up Your Own Main Menu Form 505

If you want to do something else, you need to create a macro in your macro
group and then tell the command button to run it. The next two sections
describe both ways to make a command button — letting the Command
Button Wizard write a VBA procedure for your button, or writing your own
macro for your button.

Letting the wizard make your command button
If the Command Button Wizard knows how to write the VBA procedure for
your button, use the wizard. Open your main menu form in Design view, and
follow these steps:

1. Click the Button (Form Control) button on the Controls group of the
Design tab on the Ribbon and then click the form where you want the
button to appear.

Access starts the Command Button Wizard. (See Book IV, Chapter 2 for
the details.)

2. Look in the categories and actions that the wizard offers for the action
that you want the button to do. Choose the category and the action
and click Next.

Depending on which action you choose, the wizard asks for specific infor-
mation about what you want to do. For example, if you choose Open Form
for the action, the wizard asks which form you want to open — and
whether you want it to display all or specific records.

3. Answer the wizard’s questions about what form you want to display,
what report you want to preview or print, or what query you want to
open or run. Click Next.

4. When the wizard asks what the button should look like, click Text or
Picture and specify the text or icon to appear on the button. Click
Next.

5. Type a short name for the command button. Choose a name that has
something to do with what the button does, and then click Finish.

The wizard creates the command button and sets the button’s On
Click property to execute the VBA code it just wrote. This property
causes Access to run the VBA procedure when someone clicks the com-
mand button.

6. Move or resize the command button as you like and create a label to
go next to it.

If the button displays text, it may not need a label.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 505

Setting Up Your Own Main Menu Form506

The Command Button Wizard sets the On Click property of each command
button to a VBA procedure that it writes. In the Property sheet, you see
Event Procedure in the property, which means that this event runs a VBA
procedure rather than a macro; click the Build button to see the VBA code.
(See Book VIII for what the code means and how to change it.)

If you want to change the button to run a macro, you can click in the On
Click property on the Event tab of the Property sheet, click the down-arrow
button for the property, and choose your macro from the list that appears.

If you’re not sure whether the Command Button Wizard can write a VBA pro-
cedure for the task you want the button to perform, run the wizard accord-
ing to the preceding steps to find out. In Step 2, browse through the various
programs that the wizard knows how to write. If you don’t see the program
you need, cancel the wizard and try the steps in the next section of this
chapter.

Making command buttons that run your macros
You ran the Command Button Wizard, but couldn’t find the VBA program
you need — the wizard just doesn’t do everything. Instead, you can create
a button and then write a macro for the button to run.

If you followed the steps in the section, “Creating a form that appears when
the database opens,” earlier in this chapter, you already created a macro
group for the macros run by command buttons on your main menu form.
Follow these steps for each command button that runs a macro:

1. Open the macro group in the Macro window by right-clicking the
macro name in the Navigation Pane and selecting Design View.

The Macro window opens, showing the macro group in which you store
the macro for your new command button. If you already created macros
for this form, this macro group already contains macros. No problem!
Just skip down to the first blank row in the Macro window. (Or skip
down an extra row or two, to leave some blank space between one
macro and the next.)

If the Macro Name column doesn’t appear in the Macro window, click the
Macro Names button on the Show/Hide group of the Design tab on the
Ribbon to display the column.

2. Type a macro name in the Macro Name column — we suggest typing
the name of the command button that will run this macro.

For example, if the Print Packing Slip command button will run this
macro, why not name it Print Packing Slip, too?

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 506

Book VI
Chapter 2

M
aking M

acros
Sm

arter
Setting Up Your Own Main Menu Form 507

3. Create the macro by choosing the actions and entering the arguments.

Chapter 1 of this minibook describes how to choose the actions and
arguments for a macro.

4. Save the macro group by pressing Ctrl+S or clicking the Save button
on the Quick Access toolbar.

You can’t assign the macro name to the command button’s On Click
property if the macro isn’t saved.

5. Switch to the form’s Design View window.

If your main menu form isn’t open in Design view, open it now. (In the
Navigation Pane, right-click the form name, and select Design View.)

6. Click the Button (Form Control) button on the Controls group of the
Design tab on the Ribbon and then click the form where you want the
button to appear.

Access starts the Command Button Wizard.

7. Choose the Miscellaneous category and the RunMacro action. Click
Next.

8. When the wizard asks which macro you want to run, choose the
macro name from the list. Click Next.

The macro name is macrogroup.macroname. For example, if the macro
group is named Main Menu and the macro name is OrderForm, choose
Main Menu.OrderForm.

9. Click Text or Picture and specify the text or icon to appear on the
button. Click Next.

10. Type a short name that has something to do with what the button
does, and click Finish.

The wizard creates the command button.

11. Move or resize the command button as you like, and create a label to
go next to it.

If the button displays text, it may not need a label.

The Command Button Wizard writes a VBA procedure that runs the macro
you specified, and sets the command button’s On Click property to run the
procedure. We think running a VBA procedure to run a macro is a little odd,
but that’s the way the wizard works.

If you’d rather run the macro directly (so no VBA procedure is involved), or
you want to change to running a different macro, double-click the command
button you just created (to display its Property sheet), click the Event tab,
and set its On Click property to the macro you want to run.

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 507

Book VI: Macros: Automating Stuff in Access508

32_036494 bk06ch02.qxp 11/17/06 8:31 AM Page 508

Book VII

Database
Administration

33_036494 pt07.qxp 11/17/06 8:31 AM Page 509

Contents at a Glance
Chapter 1: Database Housekeeping ..511

Chapter 2: Sharing the Fun — and the Database: Managing Multiuser Access527

Chapter 3: Securing Your Access Database ..543

33_036494 pt07.qxp 11/17/06 8:31 AM Page 510

Chapter 1: Database Housekeeping

In This Chapter
� Taking out the garbage (compacting your database)

� Backing up part or all of the database

� Analyzing how the objects in your database work together

� Loading Access add-ins

� Creating an ACCDE file

An Access database can get big and complicated, with hundreds of dif-
ferent objects — tables, queries, forms, reports, macros, and other

stuff you find out about in other parts of the book. Given this fact, you need
to keep your database neat and tidy, or the file size balloons and it becomes
just plain confusing to use. This chapter describes how to compact, repair,
back up, analyze, and configure your database.

Compacting and Repairing Your Database
As you make changes to your database, Access stores new information in the
database file and marks the old information for deletion. However, the old
information isn’t actually removed from your database file right away. In fact,
most database files have a tendency to get larger and larger, just because
Access (like most other programs) isn’t very good at taking out the garbage.
To shrink your database back down, you have to compact the database file.

The process of compacting a database also repairs errors that crop up in
the file. Occasional Access bugs, Windows bugs, or cosmic rays from the
planet Jupiter can cause objects in the database to become corrupted — or
broken, if you prefer a more straightforward term. Compacting the database
repairs these corrupted objects.

To compact and repair your database when the database is open, follow
these steps:

1. Close all tables, queries, forms, reports, and other database objects,
including the Visual Basic Editor.

Access can’t compact the database if objects are open.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 511

Making Backups512

2. Click the Office Button. In the resulting dialog box, choose
Manage➪Compact and Repair Database.

Access compacts the database. When the status indicator at the bottom
of the Access window hits 100 percent and the mouse pointer no longer
looks like an hourglass, the compacting is done. If you don’t see any
error messages, the compacting worked perfectly, and no repairs were
needed.

If your computer is on a network and you suspect other people may be using
your database, make sure that no one else has your database open before
compacting it.

You can also compact a database that’s not open. Access leaves the original
database unchanged and asks you for a new filename to use for the com-
pacted version — the original database is left as a backup. With no database
open, follow these steps:

1. Click the Office Button. In the resulting dialog box, choose
Manage➪Compact and Repair Database.

Access displays the Database to Compact From dialog box, which looks
just like an Open dialog box.

2. Choose the name of the database you want to compact and click the
Compact button.

The Compact Database Into dialog box, which looks just like a Save As
dialog box, appears.

3. Type a new name for the compacted database and click the Save
button.

Access compacts the database and saves it with the new name.

Making Backups
Backing up your database is vital. If you’re not sure about this, think about
the amount of effort required if the database vanishes from your hard disk.
Think about your boss’s fury. Think about the killing boredom of typing all
that information in again. Okay, you get the idea — backups are a good thing.

Ideally, you should back up your entire hard disk, or at least the files that
you create or edit. (Backing up program files is usually pointless: You should
have all the CDs to reinstall your programs, if need be.) A good backup

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 512

Book VII
Chapter 1

Database
Housekeeping

Making Backups 513

system creates backup copies of all your files — perhaps all the files in the
My Documents folder of your computer — on a regular basis (nightly?) on
tapes, Zip disks, writable CDs, or writable DVDs.

To download Windows-compatible backup programs, go to the Microsoft
Windows Marketplace site and search for Backup and Recovery.

For more information about backups, see Troubleshooting Your PC For
Dummies, by the amazing Dan Gookin (published by Wiley Publishing, Inc.).

Backing up your database
We can’t force you to make backup copies of all the files on your hard drive,
but we can suggest in the strongest terms possible that you at least create
regular backup copies of your Access database. Follow these steps:

1. Make sure all the objects in your database are closed: Click the X
(Close) button in the upper-right corner of all windows in your Access
window except the Database window. (Clicking that particular X
closes the database itself.)

If the Microsoft Visual Basic window is open, close that, too.

2. Click the Office Button. In the resulting dialog box, choose Manage➪
Back Up Database.

You see the Save Backup As dialog box, which looks just like a Save As
dialog box. In the File Name box, Access suggests a filename for the
backup copy, consisting of the original filename with today’s date stuck
on the end — an excellent suggestion, in our opinion.

3. Change the folder or filename if you want, and then click Save.

Access creates a duplicate copy of your database.

Backing up your database on the same hard disk that stores the original
database is a good first step, but what if your hard disk dies? Consider back-
ing up the database on a Zip disk or CD-R or DVD-R disc.

✦ To make a backup copy on a Zip disk or on another hard drive, click the
Office Button within Access and choose Manage➪Back Up Database
command, or use Windows Explorer (My Computer) to copy the file.

✦ To make a copy on a CD-R disc (recordable CD) or a DVD-R (recordable
DVD), use the software that came with your CD or DVD burner.
(Windows XP users can also use its CD-burning feature, which is built
into Windows Explorer.)

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 513

Making Backups514

Backing up specific objects
You may also want to back up only part of your database — maybe only a
few tables contain data that changes frequently. You can export objects to
another Access database for backup. The first order of business is to create
a blank database to which you can export objects; then, when they have
someplace to go, you can export them.

Follow these steps to create a new, blank database:

1. Click the Office Button. In the resulting dialog box, choose Close
Database or just close the Database window to close the database
you’re working with (if any).

Don’t close the Access window — you still need to use Access for this
task.

2. Click the Office Button. In the resulting dialog box, choose New, press
Ctrl+N, or click the New Database icon on the primary Access pane.

Access displays the New File task pane.

3. Click the Blank Database link in the New section of the task pane.

You see the File New Database dialog box, which looks just like a Save As
dialog box.

4. Type a name for the database (how about “Backup” followed by the
name of your main database?) and click the Create button.

Access makes the new database and opens its Database window.

5. Close your new backup database.

It’s ready to hold backup copies of your most important Access objects.

Now follow these steps each time you want to back up an object in your
Access database:

1. Open the database that contains the object that you want to export.

While you’re at it, display its Database window (press F11).

2. In the Database window, select the object that you want to export.

For example, click the Tables button in the All Access Objects list of the
Database window and, from the list that appears in the window’s right
pane, click the table whose data changes the most often.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 514

Book VII
Chapter 1

Database
Housekeeping

Making Backups 515

3. Choose External Data➪Export.

You see the Export To dialog box. Actually, the dialog box title includes
the type and name of the object you’re exporting, such as Export Table
Orders To.

4. Select the name of the backup database that you created earlier and
click the Export button.

The Export dialog box appears, as shown in Figure 1-1, listing which
object is exporting and what its name is in the backup database.

5. Edit the name that the object will have in the backup database.

For example, if it’s Christmas Eve and you’re exporting the Orders table,
you may want to name it Orders 12-24-03. We like to use filenames
that sort in chronological order, so we’d name it Orders 03-12-24.

6. Choose whether to export the structure only or the data, too, if you’re
exporting a table.

Select the Definition and Data radio button if you want all the records in
the table, or the Definition Only radio button if you want a blank table
with no records. For backup purposes, go with the Definition and Data
option.

7. Click OK.

Access creates a duplicate object in the backup database with the same
information stored in the current database.

Figure 1-1:
Exporting a
table to a
backup
database.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 515

Converting Databases516

Converting Databases
Access 2007 uses an entirely new file format (compared to previous versions
of Access) for storing its database. Book I, Chapter 4 describes how to
choose between previous file formats. See Book I, Chapter 2 for what hap-
pens when you open older Access databases in Access 2007.

You can tell what version a database is by opening it in Access and looking
at the title bar of the Database window. (Press F11 if the Database window
isn’t visible.) The title bar may say “(Access 2000 file format)” or “(Access
2002-2003 file format).” If the title bar says nothing at all about file formats,
your file is in Access 2007 format.

To convert a database from an older file format to the Access 2007 format,
open the database, close all the windows except the Database window, and
click the Office Button. In the resulting dialog box, choose Convert. Type a
new file name for the converted database and click the Save button. Access
creates a new database with all the objects in the old database, but stored
in the new format.

Analyzing and Documenting Your Database
Access includes a number of commands that help you analyze your data-
base, especially in terms of how the objects in your database connect
together. The following sections detail some of them.

Viewing relationships in the Relationships window
Keeping the relationships straight between tables can be a tricky business.
For help, choose the Relationships button in the Show/Hide group on the
Database Tools tab of the Ribbon to display the Relationships window,
which shows you how your tables connect together. For example, in an
order-entry database, your Customers table has a one-to-many relationship
with your Orders table, because one customer may place zero, one, or many
orders. (See Book II, Chapter 6 for how to use this window — including how
to move stuff around.)

Looking at a list of the objects in your database
Need a handy list of all the objects in your database? Click the Office Button.
In the resulting dialog box, choose Manage➪Database Properties to display
the Properties sheet for your database. Click the Contents tab, shown in
Figure 1-2, to see a list of all the objects in the database, listed by type. This
list is cool, but printing is impossible.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 516

Book VII
Chapter 1

Database
Housekeeping

Analyzing and Documenting Your Database 517

Viewing object dependencies
Access can show you a list of the tables, queries, forms, and reports that
depend on an object. Say you have a query in your database that you never
use, but you’re not sure you can delete it because it may very well be the
record source for a form or report. Access can ease your worried mind on this
subject. To display the Object Dependencies task pane shown in Figure 1-3,
click an object in the Database window and choose the Object Dependencies
button from the Show/Hide group on the Database Tools tab of the Ribbon.

At the top of the Object Dependencies task pane is the name of the object
that you’re analyzing. In Figure 1-3, the object in question is Table: Address
Book. (It has to be a table, query, form, or report; Access can’t show the
dependencies of data-access pages, macros, or VBA modules.) After each
object name are two options:

✦ Objects That Depend On Me: Choosing this option lists the tables,
queries, forms, and reports that use this object as a data source. The
objects that depend on a table include the queries based on the table and
the forms and reports that use the table as a record source. The objects
that depend on a form include forms of which this is a subform.

✦ Objects That I Depend On: Choosing this option lists the tables,
queries, forms, and reports that directly provide input for this object.
The objects that a report depends on include the query or table that
makes up its record source, as well as any reports used as subreports
on this report.

Figure 1-2:
The
Contents
tab in the
Properties
sheet for a
database.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 517

Analyzing and Documenting Your Database518

After the Object Dependencies task pane displays information about one
object, you can’t simply switch to another object. To see the dependencies
for another object, right-click the object in the Database window and choose
the Object Dependencies option from the shortcut menu. When you’re done
looking at object dependencies, click the X button in the upper-right corner
of the Objects Dependencies task pane to make the task pane disappear.

Analyzing database performance
The Performance Analyzer looks at and improves the speed and efficiency of
your database, and it also suggests changes, such as shrinking unnecessarily
large fields and adding indexes. Creating indexes for fields in your tables
speeds up sorting and searching. (See Book II, Chapter 1 for how to create an
index for a field in a table.)

To improve your database’s performance, follow these steps:

1. Open the database and then close all the objects in it — except the
Database window itself.

2. On the Ribbon, choose Database Tools➪Analyze➪Analyze
Performance.

You see the Performance Analyzer dialog box, shown in Figure 1-4.

Figure 1-3:
What tables,
queries,
forms, and
reports
depend on
this query?

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 518

Book VII
Chapter 1

Database
Housekeeping

Analyzing and Documenting Your Database 519

3. Select the objects you want to analyze.

To do so, click whichever object types you want (you can choose from
the Tables, Queries, Forms, Reports, Macros, or Modules tabs) and then
click the check boxes next to the specific objects you want to include in
the analysis. To select all the objects of a type, click the tab for the type
and click the Select All button. On the Current Database tab, click the
Relationships check box to ask Access to look at the relationships
among your tables. If you want Access to analyze everything, click the
All Object Types tab and the Select All button.

4. Click OK to begin the analysis.

This may take a few minutes. When the analysis is complete, a new
Performance Analyzer dialog box appears, as shown in Figure 1-5. Each
result on the list is classified as a Recommendation (a change that
Access recommends and can fix for you), a Suggestion (a change that
may have some drawbacks, but that Access can make for you), or Idea
(a change that Access can’t make, but that you can make yourself).
When you click a result, more information about the result appears in
the lower part of the Performance Analyzer dialog box.

Figure 1-5:
The
Perform-
ance
Analyzer
lists its
results.

Figure 1-4:
The Per-
formance
Analyzer
improves
your
database’s
perform-
ance.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 519

Analyzing and Documenting Your Database520

5. For each recommendation or suggestion that you want Access to fix
for you, select the result and click the Optimize button.

Access tries to make any recommended or suggested change, and dis-
plays a message about its success or lack thereof.

6. Make a note of the ideas that you may want to try.

Write down any of the ideas that you want to look into, because you
can’t print out the ideas, and you can’t give any commands until you
close the Access windows.

7. Click the Close button to close the Performance Analyzer dialog box.

We haven’t found the Performance Analyzer’s suggestions to be particularly
useful, but giving it a try is worth the effort — we expect Microsoft to improve
this feature in future versions of Access. The Performance Analyzer does a
good job of spotting fields that should be indexed to speed up searches and
sorts.

Documenting your database
You can create reports that describe the design and properties of the
objects in your database. With the database open and all objects other than
the Database window closed, choose Database Tools➪Analyze➪Database
Documenter to open the Documenter dialog box, shown in Figure 1-6.

The Documenter dialog box works (and looks) just like the Performance
Analyzer dialog box shown in Figure 1-4 — you click tabs and select check
boxes to specify which objects in your database you want to document.

Figure 1-6:
Access
prints doc-
umentation
about the
objects
in your
database
from the
Documenter
dialog box.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 520

Book VII
Chapter 1

Database
Housekeeping

Loading and Managing Add-Ins 521

When you click OK, Access creates a report showing details about the
properties of the object. If you select a table, the report looks similar to
Figure 1-7, with information about the table itself as well as about each field
(column) in the table. The report about a form or report includes the proper-
ties of all the controls in the form or report design.

Choose just one object to document at a time — the report about each docu-
ment can be many pages long!

Loading and Managing Add-Ins
As with all of the programs in Microsoft Office, Access allows you to extend
the functionality of Access through the use of add-ins. An add-in is a custom
component, usually created by professional programmers. If you work in a
large corporation that has an Information Technology (IT) department, pro-
grammers may create an add-in to make Access easier to use with your
company’s data.

Figure 1-7:
The Docu-
menter’s
report
includes the
gory details
about a
table.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 521

Loading and Managing Add-Ins522

Running the Add-in Manager
To use an add-in, you must first copy it to your computer’s hard disk. To do
that, you need the name and location of the add-in. If the add-in was created
by your company’s IT department, they can tell you the name and location
of that add-in. After you copy the add-in to your hard drive, using the add-in
is simple. Just follow these steps:

1. Click the Add-Ins button from the Database Tools group on the
Database Tools tab on the Ribbon. From the menu that appears,
choose Add-In Manager.

The Add-in Manager dialog box appears, as shown in Figure 1-8.

2. To install an add-in, click the Add New button.

An Open dialog box opens.

3. Navigate to the folder in which the add-in is stored, and then click the
Open button.

4. Repeat Steps 2 and 3 to add as many add-ins as you wish. Then click
the Close button in the Add-in Manager dialog box.

To remove an add-in, from the Ribbon, choose Database Tools➪Database
Tools➪Add-Ins➪Add-In Manager. In the Add-in Manager dialog box, select
the name of the add-in you want to remove, and then click the Uninstall
button.

Creating add-ins
Creating add-ins is the turf of serious programmers. Read this section if
you’re already a programmer — it’s one big “Technical Stuff” section. This
section points out the main things that you need to be aware of, such as cre-
ating wizards, custom menu items, or custom builders for Access. If you’re
not a programmer, skip to the next section of this chapter.

Figure 1-8:
The Add-in
Manager
allows you
to add and
remove
add-ins.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 522

Book VII
Chapter 1

Database
Housekeeping

Locking Up Your Database as an ACCDE File 523

Office versus Access add-ins
Be aware that you can create two different types of add-ins. One is the
Component Object Model (COM) add-in. A COM add-in works in multiple
Office 2003 applications. You can write a single COM add-in to perform the
same function in Access, Word, Excel, and PowerPoint. To create a COM add-
in, you need to use Microsoft Visual C++, C#, J++, J#, or any of the languages
available in the Microsoft Office 2003 Developer Edition. COM add-ins are
dynamic link libraries (.dll files), and need to be registered with the operat-
ing system to allow them to be loaded by Microsoft Office 2007 applications.

The second of the two types of add-ins is the application-specific add-in,
which works only in a single application, such as Microsoft Access. An
Access add-in is designed only to work with Access. Access add-ins are
easier to create than COM add-ins, and you don’t need an entirely separate
programming language. You can create Access add-ins using Visual Basic for
Applications (VBA), which comes with Access. Access add-ins are stored in
files that have .mda or .mde extensions.

To see what Visual Basic for Applications is all about, see Book VIII.

Types of add-ins
Even though Access add-ins are easier to create than COM add-ins, they’re
still far from simple to create. You really need to be fluent in VBA first in
order to create any code at all. You can create three main types of add-ins:

✦ Wizards: Custom wizards are similar to the many wizards available
throughout Access, to help less sophisticated users with complex tasks
in a step-by-step manner.

✦ Builders: Custom builders, similar to the Expression Builder, help users
create complex expressions.

✦ Menu Add-Ins: Make complex procedures available as options on the
Access menu.

In order for your custom code to function as an add-in, you also need to
create a USysRegInfo table that defines a subkey or value to be added to the
Windows Registry. For details, go to the Microsoft Developer Network Web
site at msdn.microsoft.com and search for the phrase Access+Add-In.

Locking Up Your Database as an ACCDE File
If you make an Access database for other people — especially people who
may be a teeny bit clueless about Access — you may want to lock up your
database to prevent other users from making changes that may break it.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 523

Locking Up Your Database as an ACCDE File524

Chapter 3 of this minibook talks about adding security in the form of user
names and passwords, but a simpler option is to turn your database from an
ACCDB file to an ACCDE file.

What’s an ACCDE file, we hear you asking. An ACCDE file is the same as a reg-
ular Access ACCDB database file, with the following changes:

✦ All VBA procedures are compiled — converted from human-readable code
(more or less readable, anyway) to a format that only the computer under-
stands. This change prevents a database user from reading or changing
your VBA code. (See Book VIII for how to write VBA procedures.)

✦ No one can create forms or reports or modify the existing ones (you
can’t even open them in Design view). You can’t import any, either.

Be sure to keep a copy of your original ACCDB file! If you need to make
changes to your VBA code, forms, or reports (or create new ones), you need
to use the ACCDB file, not the ACCDE file. ACCDE files are most commonly
used for the front-end database when you split an application into two data-
bases (front end and back end), as we describe in Chapter 2 of this minibook.

Creating an ACCDE file
Saving your ACCDB file as an ACCDE file is easy. Follow these steps:

1. Make sure your database is in Access 2007 file format by opening the
database.

Take a look at the title bar of the Database window. (Press F11 if it’s not
visible.) If the title bar says anything but (Access 2007 file format), you
need to convert it to the latest file format. (See the “Converting
Databases” section, earlier in this chapter.)

2. On the Ribbon, choose Database Tools➪Database Tools➪Make ACCDE.

Access closes the database to do the conversion. Then you see the Save
ACCDE As dialog box.

3. Specify the folder and file name for the file and click the Save button.

Access creates the new ACCDE file while leaving the original ACCDB file
untouched. Then the new ACCDE file opens.

If Access runs into a problem while making the ACCDE file, a message appears
with a Show Help button. Click the button to find out what’s wrong.

Making updates later
Sooner or later, you’re going to want to make a new report or fix an annoying
typo in a form. You have to go back to your ACCDB file to make these kinds
of changes because you can’t make changes in an ACCDE file.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 524

Book VII
Chapter 1

Database
Housekeeping

Locking Up Your Database as an ACCDE File 525

If the ACCDE file is a front-end file, with no data stored in it, you can just
make your changes to the original ACCDB file and resave it as an ACCDE file.
Because all your data lives in the back-end database, you’re all set. (If you’re
wondering what the heck we’re talking about, see Chapter 2 of this minibook.)

However, if your ACCDE file contains tables full of valuable information, you
can’t just abandon it. If you use the ACCDE file to do data entry and editing,
that file contains your up-to-date tables. The original ACCDB file has editable
forms, reports, and VBA code, but doesn’t have the latest version of the data
stored in your tables.

Not a problem. Follow these steps:

1. Rename your ACCDE file as a backup file.

For example, add today’s date to the end of the file name (right before
the .mde part). You’re about to create a new ACCDE file, but you don’t
want to lose the data in this file.

2. Open the original ACCDB file and make any changes to contain the
forms, reports, and VBA code that you want.

If you plan to make drastic changes, make a backup copy of the MDB
first.

3. Choose Database Tools➪Database Tools➪Make ACCDE from the
Ribbon and save it as an ACCDE file with the name that your ACCDE
file originally had.

Now you have an updated ACCDE file with new, improved forms,
reports, and VBA procedures, but with old data. You also have an
updated ACCDB file with your new, improved forms, reports, and VBA
code — but out-of-date tables.

4. Delete all the tables from this new ACCDE file.

In the Database window, click the All Tables button in the Database
Window, or the All Tables heading in the Access All Objects list, click
each table in the list that appears in the right pane, and then press the
Delete key for each table. You have to confirm each deletion by clicking
the Yes button. Deleting tables sounds dangerous, but remember: You
have all these tables stored safely in your old ACCDE file.

5. Import the tables from the old ACCDE file to the new one.

From the Ribbon, choose External Data➪Import➪Access and choose the
name you gave your old ACCDE file in Step 1.

You see the Import Objects dialog box, with tabs for Tables, Queries,
Forms, Reports, and other objects.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 525

Locking Up Your Database as an ACCDE File526

6. Click the Select All button with the Tables tab selected and then
click OK.

Access imports your tables from the original ACCDE to the new ACCDE
files, replacing the older data in the tables.

7. Import any queries or macros in the old ACCDE database that you cre-
ated or changed.

Repeat Steps 5 and 6, but use the Queries and Macros tabs on the
Import Objects dialog box to import whatever changed.

If you’re going to do this often, consider splitting your table into a front end
and a back end, as described in Chapter 2 of this minibook. With a split data-
base, you don’t have to re-import your updated tables: You can just leave
them in the unchanged back-end database.

34_036494 bk07ch01.qxp 11/17/06 8:32 AM Page 526

Chapter 2: Sharing the Fun —
and the Database: Managing
Multiuser Access

In This Chapter
� Sharing an Access database over a LAN

� Splitting your database into a front end (for each user) and a back end
(where the data lives)

� Setting up groups of objects that people use frequently

� Editing data when someone else may be editing the same record

Your database probably contains such terrific information that lots
of people in your organization want to use it. If the database stores

customer names and addresses, your colleagues may want to use this
information — and wouldn’t it be great if only one person had to enter an
address correction in a shared address book, instead of everyone maintain-
ing a separate one?

Well, Access has been a multiuser database right from the beginning. More
than one person can get at the information in your database, in these ways:

✦ Everyone uses Access to open the database. If your computer is on a
LAN (local area network), you can store your Access database on a
shared network drive and other people can run Access and open your
database — keep reading to find out more.

✦ Some people see the database information via Web-based forms. You
can allow anyone on your LAN (anyone with access to the database file,
anyway) to see and/or edit database information by using a Web
browser.

✦ Store your data in a big, industrial-strength database server applica-
tion. Everyone uses Access to see the database. If your database gets
really large, or you want a lot of people to be able to see and maintain it
simultaneously (more than, say, 40 or 50 people), Access may not be

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 527

Putting Your Database Where They Can See It528

able to handle the load. Not a big problem. Move the tables to a data-
base server program such as Oracle or SQL Server and continue to use
your Access queries, forms, or reports to work with it. You just link your
Access database to the tables in the database server. Because this is an
increasingly common situation, Access 2007 comes with an option to
migrate the data to an SQL Server database. To get started migrating
your data to an SQL Server Database, click the SQL Server button on the
Move Data group of the Database Tools tab of the Ribbon.

How you link an Access database to a database server depends on
which server you use. Book II, Chapter 4 tells you how to link to tables
in other database programs.

✦ Use database replication. Access has a feature that allows you to make
copies of a database and pass them out to people who can make changes
to the database. When you get the updated copies of your database back,
Access combines all the information together. However, this method is
complicated and (in our experience) error-prone; we recommend avoid-
ing database replication unless you simply can’t use another method.

This chapter describes how to set up a database in order for more than one
person to open it at the same time, using computers that connect to a LAN.

Putting Your Database Where They Can See It
For other people on a LAN to be able to open your Access database, you
need to store it in a shared folder — a share, for short. Follow these steps to
make a shared folder in Windows XP:

1. Choose Start➪My Computer to start Windows Explorer.

You see the My Computer window, listing your folders and disks. (See
Windows XP For Dummies, by Andy Rathbone, if you want to know more
about it.)

2. Move to your Shared Documents folder.

In Windows XP, other LAN users can be allowed to have access to this
folder.

3. Choose File➪New➪Folder from the menu, type in a name for the
folder, and press Enter.

Shared Databases or Databases may be a good name for the folder.

4. Right-click on the folder you just created; on the pop-up menu, select
Sharing and Security. In the resulting pop-up window, check the Share
This Folder Over The Network box.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 528

Book VII
Chapter 2

Putting Your Database Where They Can See It 529

5. Give your share a name that others can use to identify the share (by
default, the share name is the name of the folder) and check the Allow
Network Users To Change My Files check box.

Figure 2-1 shows an example of sharing the folder from a Windows XP
computer over the network.

If you store your database file in this new folder, other people on the LAN
can open it. Check with your LAN administrator to find out how to see a
shared folder from each computer on the LAN that may want to use your
database.

You don’t have to make this folder in the Shared Documents folder. If you
create it somewhere else, though, you need to share the folder with other
people. Here’s how:

1. In Windows Explorer, right-click the new folder.

A shortcut menu appears.

2. Choose the Sharing and Security option.

A Properties dialog box appears for the folder, with the Sharing tab
selected.

3. Choose the Share This Folder on the Network option and type a name
in the Share Name box so other people can identify the folder.

4. Click OK.

You can tell that a folder is shared because its icon includes a little hand.

Figure 2-1:
Sharing
over the
network
from
Windows
XP.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 529

Splitting Your Database into a Front End and a Back End530

If you store a shared database on your computer, everyone else depends on
the stability and speed of your computer. If you restart Windows after
installing the latest update to your favorite game of Solitaire, everyone else
loses the edits they make to the database. If you decide to run a big, hairy
application that slows your computer down to a crawl, the other users of
your database crawl, too. If your database is important, consider storing it
on a network server, or at least on a little-used or lightly used PC.

Splitting Your Database into a
Front End and a Back End

If you create a multiuser database, consider splitting your database into two
pieces: the data (the tables and the relationships among them) and everything
else. The database with the data is called the back end and the database with
everything else — the queries, forms, reports, macros, and VBA procedures —
is called the front end. You and other database users open the front-end data-
base, which contains links to the tables in the back-end database.

Why split?
Splitting your database in two has some advantages. Two scenarios you
could come across that have nothing to do with multiuser databases are

✦ You don’t need to back up the front end nearly as often as the back end,
because the front end rarely changes. By splitting your database into
two files, you can back up just the back end, where the constantly
updated data lives. (You do back up your data every day, right? See
Chapter 1 of this minibook to find out how.)

✦ If you create a database that you plan to hand out to other people and
each person has his or her own data, storing data in a separate back-end
database is important. But all the users have the same front-end database.
When you improve the front-end database, you replace everyone’s old
front-end database with your new one, without messing up each person’s
data, which is stored safely in the back end. For example, you may create
a church management database program that tracks church members,
committees, and donations, and then sell the database to zillions of con-
gregations. By splitting the database, you can provide updates to the front
end later (with improved forms, reports, and programming) without dis-
turbing each congregation’s data in the back-end database.

Splitting your database is even more important if you create a multiuser
database in which everyone opens the same forms and edits the same data,
possibly at the same time. Here’s why:

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 530

Book VII
Chapter 2

Splitting Your Database into a Front End and a Back End 531

✦ Each person has his or her own front-end database with user-specific
forms and reports. But all the front ends can connect to the same
shared back-end database.

✦ You can protect the front-end database by saving it as an ACCDE file.
(See Chapter 1 of this minibook.) People can’t change the VBA code,
macros, forms, or reports in an ACCDE file.

✦ If the database grows into a huge project, the back-end part can
migrate to a larger database system, such as MySQL or SQL Server,
without changing the Access front end. Your Access front end can link
to large corporate databases as well as to an Access back-end database.

Of course, a few disadvantages exist:

✦ You need to keep track of both files. You can’t get far with only one of
the two databases. If you need to move your database to another com-
puter, be sure to move both files. Back up both files regularly, too.

✦ If you want to change the design of the tables in your database, you
need to remember to make your changes in the back-end database.
Then make sure that the links still work from the front end.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

What if some people have
older versions of Access?

Be aware of what Access version you use for
your database files. Access 2007 uses an
entirely new file format. If anyone uses older
versions of Access, you have two options:
Upgrade this person to Access 2007 or later, or
make your database readable by earlier ver-
sions. You can choose to create your database
in Access 2000 format or Access 2002/2003
format or Access 2007 (by default). If people are
using versions of Access earlier than Access
2000, make them upgrade — too much has
changed since Access 95 and Access 97!

If you have to support older Access users, your
back-end database must be stored in the
appropriate format. In Access 2007, choose the
appropriate file format when you’re creating

your database. Put this database — in place of
your Access 2007 version — in the shared
folder, which everyone now links to.
Fortunately, because of the differences in the
file format and file extensions, these older ver-
sions can have the same name and reside in
the same location as your Access 2007 version.

You also need to create a front end in the same
version of Access as the back end that you just
created. The best idea is usually to maintain as
many front ends as you have database users:
one version in Access 2007, one in Access 2000
(for your 2000 users), and one in Access
2002/2003 (for your 2002 and 2003 users). Tell
your users to copy the appropriate version to
their computers for their use.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 531

Splitting Your Database into a Front End and a Back End532

Let’s split!
Access comes with a Database Splitter Wizard that splits a database into
front and back ends — and even creates the links between the two databases.

To split your database into front-end and back-end databases, follow these
steps:

1. Make a backup copy of your database.

You never know what could go wrong, and you certainly don’t want your
entire database to be trashed. (See Chapter 1 of this minibook for info
on backing up your database.)

2. Open the database in Access and close all the windows except the
Database window.

Close all tables and anything that may refer to a table because the
wizard can’t run if any are open.

3. On the Ribbon, choose Database Tools➪Move Data➪Access Database.

The Database Splitter Wizard appears, as shown in Figure 2-2.

4. Click the Split Database button.

You see the Create Back-End Database dialog box, which looks just like a
Save As dialog box.

5. Type a name for the back-end database and click the Split button.

The wizard suggests the same name as your original database, followed
by -be (for back end). You may want to use the original name plus the
word Data.

Figure 2-2:
Database
Splitter
Wizard.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 532

Book VII
Chapter 2

Splitting Your Database into a Front End and a Back End 533

Access creates a new, empty database with the name you specify. Each
table exports to this new database, including the relationships among
the tables, and then attaches the tables in the new back-end database to
the current database, which has become the front-end database.

The wizard displays a message when it’s finished, indicating whether the
split was successful.

6. Click OK.

If you open the back-end database directly in Access, you find only tables —
no queries, forms, reports, macros, or VBA modules. If you open the original
database (which is now the front end), the tables are replaced by links to the
tables in the back end.

Splitting by hand
Some people just don’t trust wizards. If you’d rather split your database by
hand rather than using the wizard, follow these steps:

1. Create a blank database in your shared folder and name it
filename_be.accdb, where filename is the original database name
(or whatever name you want to use for the database).

This database is the back end. Make sure to store it in the shared folder
where the back-end database lives and where other users can access it.
Refer to Book I, Chapter 3 for more information on how to create a new
database.

2. On the Ribbon, choose External Data➪Import ➪Access, with the new
database open.

The Get External Data dialog box, shown in Figure 2-3, appears.

3. Choose the name of the database you want to split (either type in the
path, or browse for it).

4. Click the Import Tables, Queries, Forms, Reports, Macros, and
Modules Into The Current Database radio button. From the Import
Objects window that appears, select the Tables tab and click Select All
for the tables you want to import.

Access imports all the tables from your original database — and their
names appear in the Database window. The back-end database is ready
to roll!

Alternatively, you could choose to link to the data source by creating a
linked table. Access creates a table in the new database that links
directly to the source data. Changes in the data in either database are
reflected in the other.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 533

Splitting Your Database into a Front End and a Back End534

5. Close the back-end database.

6. In Windows Explorer (My Computer), make a copy of the database you
want to split. Name the copy with the same name you used in Step 1,
but ending with _fe instead of _be.

This copy is the front end. You’re making a copy so you leave your origi-
nal database untouched, just in case something goes wrong.

7. Open the new front-end database.

8. Click the Tables button in the All Access Objects list of the Database
window to see all your tables — the ones you just imported into the back-
end database — displayed in the right pane of the Database window.

9. Delete all the tables, one by one, by selecting each one, pressing the
Delete key, and clicking the Yes button to confirm the deletion.

If Access reports that a relationship exists between the table you’re
deleting and other tables, click the Yes button to delete it.

10. From the Ribbon bar, choose External Data➪Import➪Access➪Link
Tables.

You see the Link dialog box, which is the bottom half of the Import
dialog box.

11. Choose your back-end database and click the Link button.

The Link Tables dialog box, with a list of the tables in the back-end data-
base, appears.

Figure 2-3:
Use the Get
External
Data dialog
box to split
databases.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 534

Book VII
Chapter 2

Splitting Your Database into a Front End and a Back End 535

12. Click the Select All button and then OK to make links to all the tables
in the back-end database.

Your table names reappear in the Database window, but with an arrow
next to the icon for each one, to indicate that the table links from another
database. Access even imports the relationships between the tables!

Handing out front ends
Each person who uses your shared database needs a copy of the front-end
database on his or her own computer. (You can open a front-end database
from a shared folder, but it loads and runs much more slowly.) You can copy
the front end to each person’s computer, or copy the front end to a shared
folder and tell everyone to copy the file.

Before you pass out the front-end database, consider saving it as an ACCDE
file, so people can’t accidentally mess up the forms, reports, or VBA code.
(See Chapter 1 of this minibook for more on saving a database file as an
ACCDE file.) If you do, save a copy of the ACCDB file, too, so you have a
way to make updates.

Relinking your tables
The links between the two databases work only as long as the files are in the
same positions relative to each other. If you create the back-end database in
the same folder as the original database, the two databases need to be in the
same folder to work. If you need to move one of the files (for example, if you
decide that you need to move the back-end database to a network drive
where you can share it with other users on a LAN, and give copies of the
front-end to the computers of various people in your office), you have to re-
link the tables. To do so, follow these steps:

1. Put the front and back ends in their new locations.

The two databases need to be in their new positions to ensure that
everything works.

2. Open the front-end database and click the Tables button in the
Database window.

All your tables appear in the right pane of the Database window.

Now you’re ready to re-link tables.

3. Right-click any table name and choose the Linked Table Manager
option from the shortcut menu that appears, or choose Database
Tools➪Database Tools➪Linked Table Manager from the Ribbon.

The Linked Table Manager opens.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 535

Putting Your Favorite Objects into Groups536

4. Click the Select All button, and then click the OK button.

The Select New Location Of dialog box opens.

5. Navigate to the folder in which you put the back-end database, and
click the icon for that back-end database.

6. Click the Open button in the dialog box where you selected the name
of the database you want to work with, and then click the Close
button in the Linked Table Manager dialog box.

Now Access knows the correct locations of your linked tables.

See Book II, Chapter 4 for more on how to create a link in one database to a
table in another database.

Putting Your Favorite Objects into Groups
The All Access Objects list in the Database window has a button for each
type of object that makes up an Access database, but having to click and
scroll around the list to find the forms and reports you use most can be
annoying. If several people use a database, each person may have favorite
objects in daily use.

Access has a solution to this problem — groups. A group is like a folder in
which you can put shortcuts to your favorite objects. Instead of having to
search in the list for the forms and reports (or other objects) that you usu-
ally open, you can collect shortcuts to them in one place.

To put a shortcut to an object into a group, follow these steps:

1. Click the All Access Objects link in the list of values in the Database
window to see the usual Objects list, and then click the button for the
type of object you want a shortcut for.

If you want to add the Orders form to your Favorites group, click the
Forms button.

2. Right-click the object you want and choose the Add to Group option
from the shortcut menu that appears. Then choose the name of the
group to which you want to add it.

If you haven’t created any groups yet, your only option is the Favorites
group.

Nothing appears to happen, but if you click the Groups button and the
group name, a shortcut icon now appears in the Database window.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 536

Book VII
Chapter 2

Editing with Multiple Users 537

Making and unmaking new groups
If only one person (you) uses the database, you can simply use the Favorites
group. But if several people use this database (whether it’s a single-file data-
base or a front-end database), you can make a group for each person — or
group of people — who use the database. For example, you may make
groups for Accounting, Shipping, and Returns because the people in these
three departments tend to use different forms and reports.

To create a new group, right-click on the title bar of the Navigation Pane in
the Database window, select Navigation Options, and in the resulting
window, choose Add Group.

To rename a group, right-click it and choose the Rename Group option from
the shortcut menu that appears. Type a new name and click OK. If you want
to get rid of a group, right-click it and choose the Delete Group option from
the shortcut menu that appears. Click the Yes button to continue. Don’t
worry — the original objects aren’t deleted, only the shortcuts.

Why bother creating groups and putting shortcuts to objects in them? You’ll
like having shortcuts to all your favorite objects in one place. To open any
object in a group, just double-click it. After you add all your favorite forms
and reports to a group, you can use the group as a sort of main menu for the
database.

Editing with Multiple Users
Actually, to set up Access for more than one person to open your database,
you don’t have to do a thing other than store the database file in a shared
folder. Access has multiuser features built in! Just open the database once on
your computer and again from a second computer. Poof! You’re both using
the database!

Everything works fine if multiple people use front-end and back-end data-
bases, too. One back-end database lives in a shared folder and multiple
people have copies of the front-end database running on their computers.
When several people open the front end at the same time, they all link to
tables in the back end. No problem!

Multiuser access works just great as long as everyone looks at the data with-
out making any changes. Two people can look at the same table — even the
same record — at the same time. People can open forms and print reports.
Peachy.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 537

Editing with Multiple Users538

Fixing exclusive access
Well, okay, you may have to do one thing. If the second person who tries
to open your database gets an error message saying that the database is
already in use, it means that the database is in exclusive mode, in which the
database can only be opened by one person at a time. (How very exclusive!)
If this happens, the person who has the database open must follow these
steps:

1. Click the Office Button. In the dialog box that appears, click the
Access Options button and the Access Options dialog box, shown in
Figure 2-4, appears.

2. Click Advanced in the pane on the left and then choose the Shared
radio button under Default Open Mode. Click OK.

3. Close the database and reopen it.

Access now opens the database in shared mode.

Figure 2-4:
Use the
Access
Options
dialog box
to choose
Shared or
Exclusive
mode.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 538

Book VII
Chapter 2

Editing with Multiple Users 539

Managing record-locking
Okay, everyone can look at the information in the database. But what hap-
pens when two people want to edit a table at the same time? Or worse, two
people want to edit the same record at the same time? The Access record-
locking feature handles this situation.

To turn on the record-locking feature, Click on the Office Button. In the
resulting dialog box, choose Access Options➪Advanced, scroll down to the
Advanced section, and look at the Default Record Locking section. You have
three options: No Locks, All Records, and Edited Record. The following sec-
tions detail how these three options work.

No Locks (no record-locking)
Multiuser editing works as follows without record-locking, when you
uncheck the No Locks check box in the Options dialog box:

1. Person A opens a table or query (or a form based on a table or query)
and begins editing a record.

2. Person B opens the same table or query, or a form or other query based
on the same table that Person A is editing. Person B starts making
changes to the exact same record that Person A is editing.

3. When Person A or Person B tries to save the record, Access displays the
Write Conflict dialog box shown in Figure 2-5.

If the person clicks the Save Record button, his or her changes write
over whatever changes the other person made to the record. Not good.
If the person clicks the Drop Changes button, he or she loses the
changes in process. Also not good. Clicking the Copy to Clipboard
button allows the person to compare the two people’s changes and
either choose between them or combine them. (This process is usually
a pain — you have to check with the other person, compare changes,
and decide which to keep.)

Figure 2-5:
Two people
are trying to
change this
record at
the same
time.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 539

Editing with Multiple Users540

Sometimes Access just beeps, or beeps and displays a message that says
that the record is locked, even though you turned locking off.

The No Locks option is usually a bad choice, because people can end up
losing changes to records. Why not let Access prevent this from happening?
Sometimes the computer really does know best.

The solution is for Access to lock the information that someone is editing.
While the user is editing the information, no one else can make any changes.
When the first person saves all changes, the next person can start editing —
each takes a turn; simple enough.

All Records (lock the whole table)
If you choose the All Records option, when someone starts editing a record,
Access locks the entire table that contains the record. When someone else
tries to edit any record in the table, Access just beeps and refuses to allow
changes. This option means that two people can’t change different records
at the same time. Some databases require this option — for example, if each
record contains information based on the records before it. However, for
most databases, each record stands on its own; you can allow simultaneous
editing of separate records.

Records versus pages
Sometimes, Access locks more than just the
record being edited. Access (and most other
programs) stores information in chunks called
disk pages or pages . Access retrieves infor-
mation from your hard disk a page at a time,
and Access can lock an entire page worth of
information much more easily than locking a
single record, which is usually smaller than a
page. (How many records fit in a page depends
on how big each record is. If your table has
large records with lots of fields, a record may
even be larger than a single page of storage.)

Rather than locking individual records, this
system is called page-level locking rather than

real record-level locking. Page-locking is faster
and easier for Access than real record-locking,
but in some applications, page-locking just isn’t
good enough. If you have several people enter-
ing and editing orders in an order-entry data-
base at the same time, they may end up
constantly locking each other out of records —
very annoying.

You can control whether Access does true
record-level locking or just page-level locking.
On the Advanced tab of the Options dialog box
(refer to Figure 2-4), check the Open Databases
by Using Record-Level Locking check box to
use record-level locking.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 540

Book VII
Chapter 2

Editing with Multiple Users 541

Edited Record (lock one record)
Our favorite record-locking setting is to just lock the record you’re editing.
Leave the rest of them available for other people to edit.

If you try to edit a record that someone else is editing, Access beeps and
doesn’t allow you to make changes. The international “don’t even think
about it” symbol also appears in the record selector when a record is locked,
as shown in Figure 2-6. Within a few seconds after the other person saves the
changes, Access displays the changes on-screen, too. Then you can make
your changes.

Programming your locks
If you use forms to edit your tables (and most people do), you can control
how each form locks records when someone uses the form to edit a record.
Display the form in Design view by selecting the form in the Database
window, right-clicking the form, and choosing Design View from the pop-up
menu. Display the Properties sheet for the form by clicking the Properties
button on the toolbar. Click the Data tab on the Properties sheet and look at
the Record Locks property of the form. You can set it to the No Locks, All
Records, or Edited Record (the default) option.

You can also write VBA code to control the way that tables and records
are locked. See Book VIII, Chapter 5 for how to write VBA code that edits
records.

If you want different people to have permission to see or change different
information, you need to find out about the Access security features, which
we describe in Chapter 3 of this minibook.

Record is locked

Figure 2-6:
The icon
shows this
record is
locked.

Sharing the Fun —
and the Database:

M
anaging M

ultiuser
Access

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 541

Editing with Multiple Users542

What’s happening behind the scenes
Whenever anyone opens an Access database,
Access creates a Locking Information File that
contains information about who’s doing what
with the information in the database. Even if only
one person opens the database, Access makes
the file in the same folder and with the same file

name as the database, but with the extension
.ldb (people usually refer to this file as the LDB
file). When you close the database, Access
deletes the file. If more than one person has the
database open, Access doesn’t delete the folder
until the last person closes the database.

35_036494 bk07ch02.qxp 11/17/06 8:33 AM Page 542

Chapter 3: Securing Your
Access Database

In This Chapter
� Surveying the types of Access security

� Configuring your startup options to secure the database

� Setting a database password

� Understanding how user-level security works

� Creating a workgroup information file

� Creating user accounts and user groups in your database

� Assigning permissions to groups of users

� Password-protecting your VBA modules

After you create a database, you may want to be able to control who can
open it, look at the data, and change the data. If you’re creating a data-

base in which many people link to a shared back-end database, you should
design security from the beginning — otherwise, your data is sure to deteri-
orate as different people use the database in different ways. Consistency
may be the hobgoblin of little minds, but it’s vital for clean data. You owe
the users of your database protection from them accidentally doing some-
thing dumb.

Be sure to use validation in your tables and forms, too — read all about it in
Book II, Chapter 5.

Access has several mechanisms for adding security to your database:

✦ Startup options that you use to display your own forms, menus, and
toolbars instead of the standard Access ones. See the “Setting Startup
Options” section, later in this chapter.

✦ Password-protecting your database. See the “Password-Protecting Your
Database” section, later in this chapter.

✦ Converting your database to an ACCDE file to prevent anyone from
editing forms, reports, and VBA modules. Chapter 1 of this minibook
describes this process.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 543

Windows Security544

✦ User-level security, which allows you to create a system of users and
permissions for what each user can do in your database. See the
“Granting Database Access to Specific Users” section, later in this chap-
ter, for the lowdown.

In addition, you can encrypt (encode) your database, regardless of what
other security systems you use. (See the “Encrypting your database with a
password” section, later in this chapter.)

Windows Security
Your first line of defense for your Access database — no matter what Access
security options you choose — is securing the computer where you store
the database. Be sure you set a Windows password. If the database lives in a
shared folder on a local area network, check with your LAN administrator to
make sure that only the right people have access to the shared folder.

Part of security is making sure no one walks off with your database — such
as copying it and taking it off-site — or deletes it! That’s why Windows-level
and LAN-level security is important.

For information about networking and Windows security, see Networking For
Dummies (by Doug Lowe), Windows XP For Dummies (by Andy Rathbone), or
Windows Vista For Dummies, Special Preview Edition (also by Andy
Rathbone) — all are published by Wiley Publishing, Inc.

Setting Startup Options
If you don’t want users entering data (except in the forms you create); modi-
fying your tables, queries, forms, and other database objects; and generally
screwing up your lovely Access system, you can prevent them from using (or
even seeing) the normal toolbars and menus in Access. In both regular
Access databases (accdb.mdb files) and Access projects, you can set the
startup options to control what the database user can see and do.

Click the Office Button and from the resulting window select Access Options
to display the Access Options box, shown in Figures 3-1 and 3-2, which is
where most of the action takes place. The settings in the dialog box apply to
the current database (or project). If you change them, many don’t take effect
until you exit and reopen the database. Table 3-1 lists the settings that con-
trol what users see and can do when they open your application.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 544

Book VII
Chapter 3

Securing
YourAccess

Database
Setting Startup Options 545

Figure 3-2:
The bottom
half of the
Access
Options Box.

Figure 3-1:
The top half
of the
Access
Options box.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 545

Setting Startup Options546

Table 3-1 The Access Options Box Settings
Setting What It Does

Application Options

Application Title Sets the title of the application in the title bar

Application Icon Sets a unique icon that is associated with the appli-
cation. Overrides the default “Access” icon

Display Form Designates the form that is shown first by default

Display Status Bar Specifies whether or not the status bar shows up at
the bottom of the Access window

Document Window Options Overlapping Windows—Specifies that you want the
default action of having windows opened one at a
time and overlapping each other

Tabbed Documents—Specifies that you want your
new windows to be opened as one document with
tabs rather than each individual window on its own

Use Access Special Keys Sets the database to allow the use of Show
Navigation Pane, Show Immediate Window, Show
VB Window, and Pause Execution

Compact on Close Sets the database to automatically compact on close
rather than only when you compact it deliberately

Remove personal information Removes your personal information from the
from file properties on save database properties when you close the database

Use Windows Themed Controls Overrides the Access controls with those that would
on Forms match the Windows defaults of the user

Enable Layout View for this database Allows users to view (and usually alter) forms and
reports in Layout view

Enable design changes for tables Allows users to make design changes to tables in the
in Datasheet view for this database database when they view them in Datasheet view

Check for truncated number fields Makes sure that you are not losing significant digits
in numbers. For example, if users are entering num-
bers that are 10 digits and your field is only defined
as 8 digits, you would lose information unless you
check for truncated number fields.

Picture Property Storage Format Preserve Source Image Format (smaller file size) is
the new Access 2007 version. This allows you to
store TIFF or JPG or GIF images as in their original
format rather than converting them to bitmap
images.

Convert all picture data to bitmaps (compatible with
Access 2003 and earlier). This converts all images to
bitmaps and is the default for older versions of the
database.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 546

Book VII
Chapter 3

Securing
YourAccess

Database
Setting Startup Options 547

Setting What It Does

Navigation

Display Navigation Pane Allows all users to be able to see the Navigation Pane.
(Clicking the Navigation Options button under the
Display Navigation Pane checkbox launches a window
with the additional options. See Figure 3-3.)

Grouping options Tables and Related Views groups objects on the
Navigation Pane by tables and their related views.

Object Type groups objects on the Navigation Pane by
object type.

Custom allows you to create custom groupings on the
Navigation Pane.

Display Options Show Hidden Objects allows all users to see any
hidden objects.

Show Search Bar allows users to use the search bar
to search for fields in the database.

Show System Objects riskily allows any user to see
the system control objects. Use this with caution.

Open Objects With Single-Click lets people open objects with just one
click.

Double-Click makes people use the historically typical
Windows double-click to open objects.

Ribbon and Toolbar Options

Ribbon Name Allows users to set a custom Ribbon bar for the appli-
cation

Shortcut Menu Bar Allows users to set a custom Shortcut Menu Bar

Allow Full Menus Allows users to see the full menu options for all menus

Allow Default Shortcut Menus Allows users to use the default shortcut menus as well
as any new custom ones

Name AutoCorrect Options

Track Name AutoCorrect Info Tracks anything that Access automatically corrects
(any information that it feels is misspelled)

Perform Name AutoCorrect If Track is turned on, this appears not grayed out, and
if checked, sets Access up to automatically correct
misspellings.

Log name AutoCorrect Changes If Perform is turned on, you can choose to log all of the
AutoCorrect actions that Access takes. This is often
the safest method of running in AutoCorrect mode as it
allows you to go back later and fix anything that might
have gotten messed up.

(continued)

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 547

Setting Startup Options548

Table 3-1 (continued)
Setting What It Does

Filter lookup options for <database name> Database

Show List of Values in: This set of options allows you to determine how lists
of values are displayed. You can select multiple
selections.

Local indexed fields Allows you to use lists of values to narrow down
selections based on indexed fields

Local nonindexed fields Allows you to use lists of values to search more
quickly through non-indexed fields

ODBC fields ODBC is Open Database Connectivity, and this field
allows you to use lists of values across multiple
databases connected in this manner.

Don’t display lists where more than Limits the amount of resources that are consumed
this number of records read (human as well as computing) in creation and

searching through the resulting lists of values.

Default 1000 Max 999999999

After you customize a database Access Options dialog box, when you (or
anyone) open this database, Access performs the startup actions you speci-
fied. Then Access runs the AutoExec macro, if any, which performs addi-
tional actions. (See Book VI, Chapter 2 for how to create an AutoExec
macro.)

Figure 3-3:
The Display
Navigation
Pane
options box.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 548

Book VII
Chapter 3

Securing
YourAccess

Database
Password-Protecting Your Database 549

Sometimes you need to bypass the settings in the Current Database section
of the Access Options dialog box. No problem! Hold down the Shift key while
the database opens. Of course, if other people use this shortcut, you have a
huge security hole. You can set the AllowBypassKey property to the False
setting for your database (using a macro or VBA procedure), but then you
won’t have a way in either. Be sure to save a version of your database with-
out this command!

Password-Protecting Your Database
Halt — who goes there? You can tell Access not to allow anyone to open
your database until he or she types in the right password.

This system is all-or-nothing, which is a problem: After you allow someone
to open the database, he or she can do anything to the database unless you
take additional security measures. You also can’t set a password on an
Access project file, only on a regular database file (accdb.mdb file).

Setting a database password ensures that no one opens it in Access without
the password. By using Access 2007, it is now impossible for anyone to
simply open the database in a programming editor (a text editor that can
deal with the control characters that live in data files). Encryption — writing
the database file in a scrambled format that can be unscrambled only with
the password — doesn’t do any good if you haven’t also protected the data-
base from Access, either by setting a password or by creating user-level
security, as described in the “Granting Database Access to Specific Users”
section, later in this chapter.

Access makes it so much easier in version 2007 by combining password pro-
tection and encryption in one easy step. The database doesn’t appear (to
you at least) to have changed at all because Access decrypts the database
automatically when you open and work with the database. The database
may work a little more slowly, however, because Access has to encrypt and
decrypt the information every time it reads or writes the database file.

Encrypting your database with a password
Follow these steps to encrypt your database with a password:

1. Make a backup copy of the database and store it somewhere safe.

This copy doesn’t have a password. If you lose the password to the data-
base, at least you have this backup. You may want to burn it to a CD and
store the CD in something heavy that’s locked.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 549

Password-Protecting Your Database550

2. Make sure no one else has the database open.

You need sole access to the database to assign a password. In fact, you
need exclusive access, in which everyone is temporarily locked out.

3. Close the database. Then click the Office Button, and from the dialog
box choose Open and select the name of the database.

4. Click the little arrow to the right of the Open button in the Open
dialog box (instead of the Open button) and choose the Open
Exclusive option from the menu that appears.

Access opens the database with exclusive access.

5. On the Ribbon, choose Database Tools➪Database Tools➪Encrypt with
Password.

You see the Set Database Password dialog box, shown in Figure 3-4.

6. Type the database password once in each box and click OK.

If you don’t type the password the same way in both boxes, Access com-
plains, and you have to type them again.

Note that capitalization counts in passwords. A password can be up to
20 characters, and can include letters, numbers, and some punctuation.

Opening a password-protected database
After you set a password, whenever you (or anyone else) try to open the
database, you see the Password Required dialog box, shown in Figure 3-5.

Figure 3-5:
You can’t
open this
database
until you
type the
right
password.

Figure 3-4:
Setting a
password
for a
database.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 550

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 551

If you forget your database password, you are hosed. No command, service,
or secret incantation can get your password back.

But what happens if another database (one with no password) links to your
password-protected database? Answer: When you create a link to a password-
protected database, Access asks you for the password. If you don’t know it,
you can’t create the link. However, after you create the link, Access saves
the password so you can see the linked table in the future without entering
a password — and that means you have an unguarded backdoor into your
password-protected database (at least, to the linked tables in your database).
Oops.

Granting Database Access to Specific Users
For most databases (and computer systems in general), giving different
people permission to do different things makes sense. A data-entry clerk
may have permission to enter information, but not to edit existing informa-
tion or delete anything. The system manager may have permission to do
almost anything. And other users fall somewhere in between.

Access has a system of user-level security in which you can create users and
groups of users. You grant specific permissions to specific users or groups.
When each user opens the database, he or she types a user name and pass-
word, so Access always knows who is using the database and allows or disal-
lows commands accordingly. This system works with both Access databases
(accdb. files) and Access projects.

This section covers the basics of converting a regular database to a secured
database using user-level security. For a detailed, if slightly out-of-date,
write-up about Access user-level security, see the following Web page:

http://office.microsoft.com/en-
us/assistance/HA011381161033.aspx

How user-level security works
With user-level security, Access maintains a database of users and groups.
Users can log in to Access and use your database. Groups are objects to
which users can belong. For example, you can have users named Zac, Neil,
and Stuart, and they can all belong to a group named Users. Zac may also
belong to a group called Administrators and Neil and Stuart may
also belong to a group named Managers.

This database of users and groups is stored in a workgroup information file
or workgroup file or system database with the file name extension .mdw
(Microsoft Database Workgroup). Each time Access opens a database, it
looks for a workgroup file, checks whether users are required to log in with
passwords, and then asks for user names and passwords if those are needed.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 551

Granting Database Access to Specific Users552

After you set up your users and your groups, you grant permissions to them.
You give a user or group permission to use a database object in a specific
way — you can give the Managers group permission to create reports, but
not to change the design of tables. When you grant permission to a group,
you grant it to all the members of that group. When you use a database with
user-level security, each time you open, print, or otherwise work with a data-
base object, Access checks the permissions of your user account to make
sure that the action is allowed.

Every object in an Access database has an owner — a user or group that
owns the object. The owner of an object has full permission to do anything
with that object. The person who creates the object is initially the owner of
the object, but you can transfer ownership to someone else.

The default workgroup file
Actually, all Access databases have user-level security — you’ve been
secretly using it since you started using Access. Access comes with a
generic workgroup file that contains one user — Admin — and two groups —
Users and Admins. The Admin user has no password and full permission to
do anything to any database object. Whenever you run Access, Access logs
you in as the Admin user. You never encounter the user-level security
system until you secure your database.

The Admin user owns all the objects in an unsecured database, because you
log in as the Admin user when you create all the objects. You normally have
full permission to do anything with all database objects, because you are
their owner.

If you want to create a secure database where theonly people who can open
or change things are the people you designate, you need to create users and
groups and grant permissions to those users and groups. But you also need
to remove ownership and permissions from the Admin user, because every
Access installation has the same Admin user: Whatever your Admin user has
permission to do, someone using the generic workgroup file can do, too.
Similarly, the Users group has full rights to all database objects. You need to
revoke those rights, leaving only the specific permissions you want to give
to specific users and groups.

The generic workgroup file is called System.mdw and is stored in this folder:

C:\Documents And Settings\username\Application
Data\Microsoft\Access

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 552

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 553

(Replace username with your actual Windows username.) To secure your
database, you stop using this workgroup file and create a new one.

Windows also has a system of users and passwords, which you can control
by choosing Start➪Control Panel➪User Accounts (in Windows XP). Access
user-level security is unconnected to Windows security; no relationship
exists between Windows users and Access users.

Your new workgroup file
When you secure your database, you make a new workgroup file. You have
two options:

✦ Make the new workgroup file the default for all the databases you open
in Access.

✦ Leave your default workgroup file alone and continue to use it with data-
bases that don’t need to be secure. Tell Access to use your new work-
group file only with specific databases.

Choosing your users and groups
The first step in setting up user-level security is to choose your users and
groups. Choosing your users is easy — just make a list of all the people who
may possibly use your database. Make each one a user.

Next, create a group for each department, committee, or other group of
people who need the same access to database objects. A user can be in
more than one group — the sales manager can be in both the Sales group
and the Managers group. A user gets all the permissions from all the groups
of which he or she is a member. If you are a member of the Accounting and
Admins groups, you have the permissions from both groups.

The default groups
All workgroups include two default groups:

✦ Users: Includes all the users. Every Access workgroup file has a Users
group, and they are all identical internally. Any permissions that your
Users group has can be exploited by someone with a copy of the
default Access workgroup file.

✦ Admins: Includes all administrative users — users to whom you want to
grant permission to administer the security system, create users and
groups, change passwords, and grant permissions. The Admins group
must have at least one member (say, you), or no one is able to fix secu-
rity problems.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 553

Granting Database Access to Specific Users554

User and group dos and don’ts

Some tips for choosing your users and groups include the following:

✦ Don’t assign permissions to users, only to groups. Having a group with
only one user is okay. When a receptionist is promoted to the Sales
Department, you can move him or her from the Receptionists group
to the Sales group, with all the rights and privileges thereunto apper-
taining. Moving someone from one group to another is easy: Changing
the permissions for every object in the database to which this person
does (or should) have access is a pain.

✦ Don’t plan for people to share a user name. If three people work as the
company receptionist over the course of the day, and spend their spare
time doing data entry, don’t create a user named Receptionist.
Instead, create individual user accounts for each person, and a group
named Receptionists or Data Entry Folks. This method allows
you to grant extra permissions to someone who takes on an additional
responsibility, without giving the same permissions to anyone else —
you just add the person to an additional group.

✦ Use plural words for the names of groups and singular words for the
names of users. This system clarifies what’s a user and what’s a group
and avoids the situation where you try to give a user and a group the
same name. Department or committee names for groups can be an
exception to the rule (for example, Accounting or Marketing).

PIDs, GIDs, and SIDs
When you create a user or group, you type in three pieces of information:

✦ User name: Use a consistent naming convention to avoid confusion. Use
first names followed a last initial, or full names, or last names only.

✦ Company name: If you’re not part of an organization, make something
up. Use the same entry for all the users and groups.

✦ Personal identifier (PID) or Group identifier (Group ID or GID): A
string of letters and numbers that you make up, from 4 to 20 characters
long. Capitalization counts.

Access combines the user name, company name, and PID or GID to create a
secret security ID (SID) for each user and group. Access uses this SID to keep
track of what the user or group has permission to do to each object in the
database.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 554

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 555

If you lose the workgroup file that contains all the users and groups, you can
recreate the file by entering the exact same user names, company names,
and PIDs — with the same inputs, Access creates the exact same SID for
each user and group, and your database is up and running. Keep a list of the
PIDs that you use: You may lose the workgroup file and have to re-create it.
Keep this list secret, so no malefactor can create the workgroup file and use
it to break into your database.

Securing a database
For your database to be safe, you need to create a new workgroup file with
your new users and groups, remove ownership and permissions from the
Admin user and Users group, encrypt the new database, and grant owner-
ship and permissions to your new users and groups for each object in the
Access database. Sounds like a lot of work! Luckily, Access comes with a
wizard that can do a lot of it — the User-Level Security Wizard.

To get the User-Level Security Wizard working for you, follow these steps:

1. Open the database for which you want user-level security.

Making a backup beforehand wouldn’t be a dreadful idea, either.

2. To launch the User-Level Security Wizard, click the button on the
Quick Access toolbar next to the Office Button.

The Security Wizard window opens, and asks whether you want to
create a new workgroup file or edit an existing one. If you haven’t
already created a workgroup file, the second option isn’t available.

3. Make sure that the Create a New Workgroup Information File option is
selected and click Next.

The Security Wizard window now looks like Figure 3-6.

Figure 3-6:
Creating a
workgroup
file with the
User-Level
Security
Wizard.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 555

Granting Database Access to Specific Users556

4. Enter the following information, which Access needs to create a new
workgroup file:

• File Name: The name and location of the new workgroup file you are
creating. The default is Secured.mdw, located in the same folder in
which the database is stored, but you can click the Browse button to
choose a different location.

• WID: A string of numbers and letters, from 4 to 20 characters long,
that Access uses to create an encrypted Workgroup SID (security ID).
The Workgroup SID is what makes your new workgroup file different
from the default workgroup file. Type a series of characters that no
one is likely to guess.

• Your Name: Optional.

• Company: Optional.

You may want to write down all this information, because you need
it to re-create the workgroup file. Fortunately, however, you don’t
have to — because in Step 12 you print an Access report that includes
this information.

5. Choose whether to use this workgroup file as the default whenever
you run Access, or just for this database. Then click Next.

If you choose the I Want to Make This My Default Workgroup Information
File option, the wizard configures Access (via your Windows Registry) to
use this new workgroup file whenever you run Access, unless you over-
ride the default for a specific database.

If you choose the I Want to Create a Shortcut to Open My Security-
Enhanced Database option, your default workgroup file is unchanged.
The wizard creates a shortcut on the Windows desktop that runs
Access, opens the database, and tells Access to use this workgroup file.
(See the sidebar, “Starting Access with a specific workgroup,” later in
this chapter.)

If you decide to replace your default workgroup file (System.mdw),
make a backup of the original version first. (See the “The default work-
group file” section, earlier in this chapter, for the default location.)

6. Leave all the objects selected, as shown in Figure 3-7, and then click
Next.

A tab for each type of database object is in this window, except VBA mod-
ules, which are secured separately. (See the “Securing your VBA modules”
section, later in this chapter.)

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 556

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 557

7. For each group that you want Access to create, click its check box and
type a Group Identifier (GID), as shown in Figure 3-8. Then click Next.

You can make a note of the name of each group you choose to create,
along with the exact GID that you type, at least until you print a report
that includes this information (in Step 12).

8. Choose whether the Users group will have any permissions (we rec-
ommend that you choose No), as shown in Figure 3-9, then click Next.

Figure 3-8:
The User-
Level
Security
Wizard can
create some
groups
for you.

Figure 3-7:
Select all
the objects
for which
you want
user-level
security.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 557

Granting Database Access to Specific Users558

If you choose to grant permissions to the Users group, keep one thing
in mind: You’re not just granting permission to the users you create in
your workgroup file. Anyone with an Access installation can use his or
her default workgroup file — with its default Users group — to open the
database and use the permissions that you grant. We recommend that
unless you don’t mind just anyone waltzing in and doing anything, leave
this option set to the No setting. Why risk hijinks? You can create your
own groups and give them permissions

If you do decide to ignore our advice and grant the Users group permis-
sions, see the “Setting permissions for groups” section, later in this
chapter, for what the various permissions mean.

9. Enter the information in order for Access to create each user name
and click Add This New User to the List, as shown in Figure 3-10.
When you finish, click Next.

The pieces of information you need to enter include the following:

• User Name: The name for the user account. Be consistent with your
names. Use each person’s first and last names (spaces are allowed).

• Password: The starting password for this user. The user can change
it later.

• PID: A string of numbers and letters, from 4 to 20 characters long,
that Access uses to create an encrypted SID (security ID). Access
uses the SID when storing permissions in databases. Type a series of
characters that no one is likely to guess.

Figure 3-9:
Granting
users
permissions
in the User-
Level
Security
Wizard.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 558

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 559

You can edit the password and PID for a user by clicking the user name
on the list and editing the entries. Click the Add New User option on the
list to continue adding users. (You may want to write down this informa-
tion, but you’ll print it all out in a report in Step 12.)

The wizard creates a user — you — using your Windows user name. You
can’t delete or change this name.

10. Assign at least one user to the Admins group, as shown in Figure 3-11.
If you create other groups, you can assign users to those groups, too.
Then click Next.

The wizard creates the Admins group no matter what, which is the
group of users who have administrative permissions (permission to
create and edit users, groups, and passwords). It puts you (the user
name created for you) in the Admins group.

You can look at one user at a time or one group at a time, whichever you
find easier. To switch, choose the Select a User and Assign the User to
Groups options or the Select a Group and Assign Users to the Group
option.

11. Change the name or path for the backup copy of the database if you
don’t like the one that the wizard suggests, and then click Finish.

Access proposes to use the same name and folder as the original data-
base, with the extension .bak, for an unsecured backup version.

The wizard creates a workgroup file, creates the user and groups that
you specified, creates a copy of the database, transfers ownership of the
database objects that you selected from Admin to your user name,
encrypts the new database, and displays a report about its success.

Figure 3-10:
Creating
users in the
User-Level
Security
Wizard.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 559

Granting Database Access to Specific Users560

12. Print the report, which lists all the information you need if you ever
need to re-create the workgroup file.

Access saves the report as an RTF file, which you can open with Word,
WordPerfect, WordPad (which comes with Windows), or most other
word processors.

13. Click OK when the wizard displays a message confirming it created a
new, encrypted version of your database. Then close Access.

You need to close and restart Access to open the new workgroup file.

14. Copy the RTF file and the snapshot report to a diskette or burn them
to a CD, stick it in a sealed envelope with the printout of the security
report, and store it somewhere safe. Then delete the RTF file from
your hard drive.

This information enables anyone who finds it to create a workgroup
information file and open your database, so keep it safe.

Okay, you have a new workgroup file, a partially secured database, and your
workgroup information backed up.

Opening your secure database
After the User-Level Security Wizard secures your database, you may need
to open the database in a different way. If you chose to make your new work-
group file the default for all databases, you don’t need to do anything differ-
ently: Whenever you open a database from now on, Access uses your new
workgroup file.

Figure 3-11:
Which
users are in
which
groups?

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 560

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 561

However, if you chose to make a workgroup file for use with one (or more)
specific database(s), the wizard creates a shortcut that runs Access and
opens the database with the workgroup file you just created. Look on your
Windows desktop for a new icon that shows the name of your database.
Double-click this shortcut to open your secured database. You can copy this
shortcut to any folder, or drag it to the Start menu.

See the “Starting Access with a specific workgroup” sidebar for how secure
database shortcuts work.

To check whether your database is secure and to see the name of the work-
group file you are using, choose Workgroup Administrator. You can use the
Create button on the Workgroup Administrator dialog box to create a new
workgroup, but we recommend using the User-Level Security Wizard instead,
because creating a workgroup doesn’t do much good unless you change the
Admin and Users settings, encrypt the database, and do all the other good
stuff that the wizard does for you. You can click the Join button to switch
which workgroup file this database uses.

Setting passwords
The database isn’t secure until you enter a password for your user account —
you find the account in the Admins group — and the rest of the Admins users
set their passwords. To set your password, choose User and Group Accounts
to display the User and Group Accounts dialog box, and then click the Change
Logon Password tab. Type your old password (if you typed one when you cre-
ated the user) and then a new password two times.

If someone forgets a password, clear the password by clicking the Users tab
on the User and Group Accounts dialog box, setting the Name box to the
user, and clicking the Clear Password button. Then tell the person to log in
to the database with a blank password and set a password (as described in
the preceding paragraph) right away.

Never clear the password for the Admin user! Access only prompts for user
names and password if the Admin user has a password. If you secure a data-
base and you clear the Admin password, the next time you open the data-
base, you get a message that you don’t have permissions for this database,
and you have no chance to log in.

Creating the rest of your users and groups
You may create all your users in the User-Level Security Wizard, but creating
all your groups with the wizard is unlikely. That’s because the wizard doesn’t
provide many options for group names. Fortunately, you can create more
users and groups any time: Simply choose User and Group Accounts from

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 561

Granting Database Access to Specific Users562

the same drop-down box icon that launched the User-Level Security Wizard
and select the User and Group Accounts dialog box (shown in Figure 3-12)
and have at it.

On the Users tab, you can create new user accounts, delete existing user
accounts, and assign users to groups. When you choose a user name in the
User section of the dialog box, Access lists the groups of which the user is a
member in the Member Of list. Click the Add and Remove buttons to move
group names from the Available Groups list to the Member Of list.

The Groups tab allows you to create additional groups. Then switch back to
the Users tab to add people to your new group. Access stores the changes to
your users and groups in the workgroup file, not in the database.

When you create new users or groups, be sure to type something into the
Personal ID box. This entry is the PID or GID that Access uses to create the
SID for the user or group. Write down your entries, taking careful note of the
exact text (including capitalization) of the user name and PID, or group name
and GID, in case you ever need to re-create the workgroup file.

The Admin user can’t be deleted, and it creates a security hole in your data-
base if you give Admin any permissions. Remove the Admin user from all
groups except the Users group. (Remember: The Admin user account is a
different thing from the Admins group.)

Setting permissions for groups
The information about specific permissions is stored in your database, not
in the workgroup file. When you log in, you tell Access who you are, and

Figure 3-12:
Creating or
deleting
user and
group
accounts,
and
assigning
users to
groups.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 562

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 563

Access knows your SID (security ID). Each time you try to open a database
object, Access checks whether your SID has permission to use that object in
the way you are trying to use it — creating, editing, displaying, printing, and
so on.

Types of permissions
For each type of database object (including the database as a whole), you
can set the permissions listed in Table 3-2.

Don’t grant these permissions to individual users: Grant them to groups, and
then add specific users to those groups.

Starting Access with a specific workgroup
You may not want to use the same workgroup
file for all the databases you create. You may
want most of your databases to remain wide
open, with no user-level security, while secur-
ing one specific database.

You can tell Access which workgroup file to
use with which database. Access uses only
one workgroup file at a time, and you have to
exit Access and restart to switch to another
workgroup. If the same group of people use
several secured databases, using the same
workgroup file for all the databases makes
sense — you make changes to users and
groups in just one place.

When you start Access, you provide the name
of the database, the name of the workgroup file,
and even the user you want to log in as. You
specify this information as part of a shortcut to
the Access database. Make a shortcut to each
secured Access database that includes the
workgroup file required to open that database.

A shortcut is a Windows feature — you see
them on your Windows desktop. Shortcuts can
live in folders, too. You can tell a shortcut by
examining its icon: If the icon includes a little
bent arrow, it’s a shortcut.

Luckily, you don’t have to make a shortcut if you
want a specific database opened with a spe-
cific workgroup file, because the User-Level
Security Wizard creates one for you on the
Windows desktop.

If you know how to create Windows shortcuts,
you can make your own. The Target box needs
to include

� Path to Access program: Usually
“C:\Program Files\Microsoft
Office\Office11\Msaccess.exe”
(with the quotes, because the pathname
includes spaces).

� Database pathname: The full pathname of
your database file.

� Workgroup pathname:/WRKGRP followed
by the full pathname of your workgroup file.

Here is a shortcut target for the Northwind.
accdb database using the Secured.mdw
workgroup:

“C:\Program Files\Microsoft Office\
office11\Msaccess.exe””D:\
Databases\Northwind.mdb”
/WRKGRP “D:\Databases\
Secured.mdw”

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 563

Granting Database Access to Specific Users564

Table 3-2 Permissions for Database Objects
Object Permission What It Lets You Do

Database Open/Run Open database

Open Exclusive Open database for exclusive access

Administer Set database password; change startup
options

Table Read Design View table in Design view

Modify Design Edit table in Design view; delete table

Administer Anything, plus assign permissions

Read Data View records

Update Data View and edit records

Insert Data View and insert records

Delete Data View and delete records

Query Read Design View query in Design view

Modify Design Edit query in Design view; delete query

Administer Anything, plus assign permissions

Read Data View records

Update Data View and edit records

Insert Data View and insert records

Delete Data View and delete records

Form Open/Run Open form

Read Design View form in Design view

Modify Design Edit form in Design view; delete form

Administer Anything, plus assign permissions

Report Open/Run Open report in Print Preview

Read Design View report in Design view

Modify Design Edit report in Design view; delete report

Administer Anything, plus assign permissions

Macro Open/Run Run macro

Read Design View macro in Design view

Modify Design Edit macro in Design view; delete macro

Administer Anything, plus assign permissions

Granting permission for an object to a user or group
After you run the User-Level Security Wizard, the Users group has no per-
missions, and neither do any of the other groups, except for the Admins

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 564

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 565

group, which has full permissions. The next step in securing your database
is to grant permissions to the groups you created.

To assign permissions, choose User and Group Permissions from that same
handy drop-down box to display the User and Group Permissions dialog box.
On the Permissions tab, shown in Figure 3-13, click the Groups radio button
in the List options to assign permissions to groups.

Figure 3-13:
Assigning
permissions
to groups to
access
specific
objects.

Converting a secured database
from an older version of Access

Access has had user-level security since ver-
sion 2.0. If you want to upgrade a secured data-
base from an older Access version to the latest
version, create a new workgroup file in Access
2007 that exactly matches your old workgroup
file. You need the Workgroup ID and all the
group IDs (GIDs) and personal IDs (PIDs) used
to create the original workgroup file. Then
upgrade the database by Clicking the Office
Button and selecting Convert Database.

If you don’t have this information, you can’t
create a replacement workgroup file. In this

case, removing the security, upgrading the
database, and then re-creating the security is
the best method. (You probably have some
better ideas for the design of your users and
groups, anyway!) To remove security, grant full
permissions to the Users group, in order for
everyone to do anything within the database.
Add the Admin user to the Admins group (for
a database to be secure, the default Admin
user can never be in the Admins group), and
remove the password for the Admin user.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 565

Granting Database Access to Specific Users566

For each group, follow these steps:

1. Select the group from the User/Group Name list.

2. Set the Object Type option to the Database type and, in the
Permissions section of the dialog box, choose the check boxes next to
those permissions you want to assign for the entire database.

Normally, only the Admins group has Administer permission for the
database.

3. Set the Object Type option to the Table type.

The Object Name box lists all the tables in the database.

4. With <New Tables/Queries> selected, use the Permissions check
boxes to set the default permissions you want this group of users to
have for any new objects of that type.

Setting default permissions saves having to set them for each new object
that you create later. Refer to Table 3-2 for what the permissions mean
for this type of object.

5. Select each object in turn, and set the permissions that you want this
group to have for this object.

6. Repeat Steps 3 through 5, setting the object type to the Query, Form,
Report, and Macro types — one at a time.

7. Click OK to close the dialog box.

The Admins group normally has all permissions for all objects — and you
should probably leave it that way. Don’t chance locking yourself out of your
own database!

Displaying or changing an object’s owner
The owner of an object has full permissions for that object, regardless of
what other permissions you do or don’t grant. You can see who owns any
database object by looking at the Change Owner tab of the User and Group
Permissions dialog box, shown in Figure 3-14.

To see an object’s owner, set the Object Type option to the type of the object
and find the object from the Object list — the owner’s user name appears to
its right. To change ownership, select the object, set the New Owner option
to another user or group name, and click the Change Owner button.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 566

Book VII
Chapter 3

Securing
YourAccess

Database
Granting Database Access to Specific Users 567

Securing your VBA modules
Before Access 2000, you used the same user-level security system to protect
VBA modules that you use for the rest of your database objects. Starting
with Access 2000, however, you’ve had to use a separate password to secure
your VBA procedures.

To set a password for viewing or editing your VBA procedures, follow these
steps:

1. Choose Database Tools➪Macro➪Visual Basic (or press Alt+F11).

You see the Microsoft Visual Basic window, which we describe in
Book VIII.

2. Click the Office Button. In the resulting dialog box, choose Manage➪
Database Properties.

You see the Project Properties dialog box.

3. Click the Protection tab, and type the same password in the Password
and Confirm Password text boxes.

4. Click OK.

To remove the password, follow the same steps but delete the entries in
the Password and Confirm Password text boxes.

Figure 3-14:
You can
change the
owner of
any object
in the
database.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 567

Granting Database Access to Specific Users568

Securing front-end and back-end databases
If you split your Access application into a front end and a back end (as
described in Chapter 2 of this minibook), how do you secure it? After all,
you need to secure both databases. No problem; follow these steps:

1. Secure both the front-end and back-end databases, using the same
workgroup.

2. Create users and groups.

3. In the back end, grant permissions to groups to view and/or edit the
records.

Users access only the tables in the back-end database. What permissions
they have for other database objects doesn’t matter.

4. In the front end, grant Open/Run permission to all groups for the
Database object. Also grant groups permission to use the appropriate
forms and reports.

Not granting any permissions in the back-end database is another approach.
Instead, create queries in the front-end database that include tables in the
back-end database, and you set the RunPermissions property of each
query to provide the needed permissions — search for RunPermissions
in Access Help for more information.

36_036494 bk07ch03.qxp 11/17/06 8:33 AM Page 568

Book VIII

Programming in VBA

37_036494 pt08.qxp 11/17/06 8:34 AM Page 569

Contents at a Glance
Chapter 1: What the Heck Is VBA?..571

Chapter 2: Writing Code ..591

Chapter 3: Writing Smarter Code ..615

Chapter 4: Controlling Forms with VBA ..641

Chapter 5: Using SQL and Recordsets ..665

Chapter 6: Debugging Your Code ..677

37_036494 pt08.qxp 11/17/06 8:34 AM Page 570

Chapter 1: What the Heck Is VBA?

In This Chapter
� Understanding Visual Basic for Applications (VBA)

� Using the Visual Basic Editor

� Discovering code as you go

Visual Basic for Applications — often abbreviated VBA — is a program-
ming language you can use to extend the functionality of Microsoft

Access and other products in the Microsoft Office suite of programs. A pro-
gramming language is a means of writing instructions for the computer to
execute (perform). Programmers often refer to the written instructions as
code because the instructions aren’t in plain English. Rather, they’re in a
code that the computer can interpret and execute.

You can create sophisticated Access databases without using VBA at all. In
most cases, the other objects offered by Access — tables, queries, forms,
reports, and macros — offer more than enough flexibility and power to
create just about any database imaginable. But once in a while, you come
across a situation where you want to do something that none of those other
objects can do. That’s where VBA comes in. If you can find no other way to
accomplish some goal in Access, writing code is usually the solution.

Finding VBA Code
So what the heck is VBA code, anyway? To the untrained eye, VBA code
looks like gibberish — perhaps some secret code written by aliens from
another planet. But to Access, the code represents very specific instruc-
tions on how to perform some task.

Within any given database, Access stores code in two places:

✦ Class modules (Code-Behind Forms): Every form and report you create
automatically contains a class module (also called a code-behind form),
as illustrated in Figure 1-1. The class module for a given form or report
is empty unless you place controls that require VBA code on that form
or report.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 571

Finding VBA Code572

✦ Standard modules: Code can also be stored in standard modules. Code in
standard modules is accessible to all objects in your database, not just a
single form or report.

Opening a class module
If you want to view or change the code for a form or report’s class module,
first open, in Design view, the form or report to which the module is attached.
Then click the View Code button, shown near the mouse pointer in Figure 1-2.

Figure 1-2:
The View
Code
button.

Class module (Code Behind Form)

Form

Figure 1-1:
Every form
and report
has a class
module
behind it.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 572

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Finding VBA Code 573

You can also get to a class module from the Event tab of the Property sheet
in the Design View window. The Property sheet allows you to zoom right in
on the VBA code that’s associated with a given control. For example, some
controls contain code created by wizards. When you click such a control and
then click the Events tab in the Property sheet, the property value chose
[Event Procedure]. When you click [Event Procedure], you see a
button with three dots, like the one near the mouse pointer in Figure 1-3.
That’s the Build button. Click it to see the code that executes in response to
the event.

To write custom code for a control, select the control in Design view, open
the Property sheet, click the Event tab, click the event to which you want to
attach some custom code, click the Build button, and then choose Code
Builder.

After you open a module, you’re taken to an entirely separate program
window called the Visual Basic Editor, where you see the module in all its
glory.

Creating or opening a standard module
Standard modules contain VBA code that isn’t associated with a specific
form or report. The code in a standard module is available to all tables,
queries, forms, reports, macros, and other modules in your database. You
won’t see Module as an option when you’re viewing All Access Objects in the
shutter bar until you create at least one standard module. You have to go
looking for options to create and work with modules.

Figure 1-3:
Look for the
code that
executes in
response to
the event.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 573

Finding VBA Code574

To create a new module, click the Create tab. Then click the arrow under the
Macros button and choose Module (Figure 1-4). The Visual Basic Editor
opens.

Standard modules don’t show up automatically in the shutter bar, not even
when you’re viewing all Access object types. To view standard modules in
your database, you have to click the drop-down button and choose Modules,
as in Figure 1-5. If you’ve already created and saved a standard module, you
can open it by double-clicking its name. If the current database contains no
standard Modules, you won’t even see Modules as a category.

Regardless of whether you create or open a module, you end up in the Visual
Basic Editor. The editor is a completely separate program with its own
taskbar button. The editor retains the old-style Windows look and feel. We
cover that in more detail in a moment. For now, keep in mind that you can
close the Visual Basic Editor and return to Access at any time. Just click the
Close (X) button in the Editor’s upper-right corner.

Figure 1-5:
Open a
pane to see
standard
modules.

Figure 1-4:
Create a
new
module.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 574

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Enabling VBA Code 575

Enabling VBA Code
Like any programming language, people can use VBA to create code that
does good things or code that does bad things. Whenever you open a data-
base that contains code, Access displays a warning in the Security bar. The
warning doesn’t mean that there’s “bad code” in the database; it just means
that there is code in the database. Access has no way of determining
whether the code is beneficial or malicious. That’s a judgment call only a
human can make.

If you trust the source of that code, you have to click the Enable Content
button to make the code executable. Otherwise, the code is disabled, as are
many features of the Visual Basic Editor.

How code is organized
All modules organize their code into a Declaration section at the top, fol-
lowed by individual procedures, as shown in Figure 1-6. The Declaration
section contains options, written in code format, that apply to all procedures
in the module. Each procedure is also a chunk of VBA code that, when exe-
cuted, performs a specific set of steps.

Declarations

Sub procedure

Function procedure

Figure 1-6:
Modules
consist of
declarations
and
procedures.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 575

Using the Visual Basic Editor576

Procedures in a module fall into two major categories: sub procedures and
function procedures. Both types of procedures use VBA code to perform
some task. The next sections outline some subtle differences in how and
where they’re used.

Sub procedures
A sub procedure is one or more lines of code that make Access perform a par-
ticular task. Every sub procedure starts with the word Sub (or Private
Sub) and ends with End Sub, using one of the following general structures:

Sub name()
...code...

End Sub

Private Sub name()
...code...

End Sub

name is the name of the procedure, and ...code... is any amount of VBA
code.

Text that appears to be written in plain English within a module represents
programmer comments — notes for other programmers. The computer
ignores the comments. Every comment starts with an apostrophe (‘).

Function procedures
A function procedure is enclosed in Function...End Function state-
ments, as the following code shows:

Function name()
<...code...>

End Function

Unlike a sub procedure, which simply performs some task, a function proce-
dure performs a task and returns a value. In fact, an Access function proce-
dure is no different from any of the built-in functions you use in Access
expressions. And you can use a custom function procedure wherever you
can use a built-in procedure.

Using the Visual Basic Editor
Regardless of how you open a module, you end up in the Visual Basic Editor.
The Visual Basic Editor is where you write, edit, and test your VBA code. The
Visual Basic Editor is entirely separate from the Access program window. If

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 576

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 577

you click outside the Visual Basic Editor window, the window may disappear
as whatever window you clicked comes to the front.

The Visual Basic Editor retains the view it had in previous versions of Access.
There is no Ribbon or shutter bar. In fact, the Visual Basic Editor is virtually
identical to Microsoft’s Visual Studio, the IDE (Integrated Development
Environment) used for all kinds of programming with Microsoft products.

Like all program windows, the Visual Basic Editor has its own Windows
taskbar button, as shown in the top half of Figure 1-7. If the taskbar is partic-
ularly crowded with buttons, the editor and Access may share a taskbar
button, as in the bottom half of Figure 1-7. If you suddenly lose the VBA
Editor window, click its taskbar button to bring the window back to the top
of the stack of program windows on your desktop.

In most versions of Windows, you can right-click the Windows taskbar and
choose the Tile Windows Vertically option from the shortcut menu to make
all open program windows visible on-screen without overlap.

Figure 1-7:
Taskbar
buttons for
Access and
the Visual
Basic Editor.

Talkin’ the talk
Programmers have their own slang terms to
describe what they do. For example, the term
code, which refers to the actual instructions
written in a programming language, is always
singular, like the terms hardware and software.
You don’t add hardwares and softwares to your
computer system. You add hardware and soft-
ware. Likewise, you never write, or cut and
paste codes. You write, or cut and paste, code.

The term GUI (pronounced goo-ey) refers to
Graphical User Interface. Anything you can
accomplish by using a mouse (that is, without

writing code) is considered part of the GUI. You
create tables, queries, forms, reports, data
access pages, and macros using the GUI. You
only need to write code in modules.

A database may be referred to as an app, which
is short for application. If a programmer says, “I
created most of the app with the GUI; I hardly
wrote any code at all,” he means he spent most
of his time creating tables, queries, forms,
reports, data access pages, and macros —
using the mouse — and relatively little time
typing code in VBA.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 577

Using the Visual Basic Editor578

The Visual Basic Editor provides many tools designed to help you write
code. Most of the tools are optional and can be turned on or off using the
View menu in the Visual Basic Editor menu. The windows are shown in
Figure 1-8. We provide more information on each of the optional windows
when they become relevant to the type of code we’re demonstrating. For
now, knowing how to make them appear and disappear is sufficient.

You can move and size most of the windows in the Visual Basic Editor using
standard methods. For instance, you can move most windows by dragging
their title bars. You size windows by dragging any corner or edge. Most of
the time, you won’t need to have all those optional windows open to write
code. Feel free to close any optional window open in your editor by clicking
its Close (X) button. To open a window, choose View from the menu, and
click the name of the window you want to open.

If you have multiple monitors connected to your computer, you can put the
Access window on one monitor and the Visual Basic Editor window on the
other.

Locals windowProject Explorer

Properties
window

Code
window

Immediate
window

Watches
window

Figure 1-8:
Visual Basic
Editor
components.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 578

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 579

Using the Code window
The Code window is where you type your VBA code. Similar to a word
processor or text editor, the Code window supports all the standard
Windows text-editing techniques. You can type text and use the Backspace
and Delete keys on your keyboard to delete text. You can use the Tab key to
indent text. You can select text by dragging the mouse pointer through it.
You can copy and paste text to, and from, the Code window. In short, the
Code window is a text editor.

The Code window acts like the document window in most other programs.
Click its Maximize button, shown near the mouse pointer at the top of
Figure 1-9, to enlarge it. To restore it to its previous size, click the Restore
Window button, shown at the bottom of that same figure.

Tools in the Code window are pointed out in Figure 1-10 and summarized
in the following list:

✦ Object box: When you’re viewing a class module, this box shows the
name of the object associated with the current code and allows you to
choose a different object. In a standard module, only the word General
appears because a standard module isn’t associated with any specific
form or report.

✦ Procedure/Events box: When you’re viewing a class module, this box
lists events supported by the object whose name appears in the Object
box. When viewing a standard module, the Procedure/Events box lists
the names of all procedures in that module. To jump to a procedure or
event, just choose its name from the drop-down list.

Figure 1-9:
Code
Windows
Maximize
and Restore
Window
buttons.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 579

Using the Visual Basic Editor580

✦ Split bar: This divvies up the screen for you. Drag the Split bar down to
separate the Code window into two independently scrollable panes.
Drag the Split bar back to the top of the scroll bar to unsplit the window.

✦ Procedure view: When clicked, it hides declarations, and only proce-
dures are visible.

✦ Full Module view: When clicked, it makes declarations and procedures
visible.

✦ Sizing handle: Drag it to size the window. (You can drag any corner or
edge as well.)

Using the Immediate window
The Immediate window, or debug window, in the Visual Basic Editor allows
you to run code at any time, right on the spot. Use the Immediate window for
testing and debugging (removing errors from) code. If the Immediate window
isn’t open in the Visual Basic Editor, you can bring it out of hiding at any
time by choosing View➪Immediate Window from the editor’s menu.

Object box

Procedure/ Events box

Split box

Procedure view

Full module view Sizing handle

Figure 1-10:
The Code
window
tools.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 580

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 581

When the Immediate window is open, you can anchor it to the bottom of the
Visual Basic Editor just by dragging its title bar to the bottom of the window.
Optionally, you can make the Immediate window free-floating by dragging its
title bar up and away from the bottom of the Visual Basic Editor program
window. You can also dock and undock the Immediate window by right-
clicking within the Immediate window and choosing the Dockable option
from the shortcut menu that appears.

The Immediate window allows you to test expressions, run VBA procedures
you create, and more. To test an expression, you can use the debug.print
command, or the abbreviated ? version, followed by a blank space and the
expression. Which command you use doesn’t matter, although obviously,
typing the question mark is easier. You may think of the ? character in the
Immediate window as standing for “What is . . . ?” Typing ? 1+1 into the
Immediate window and pressing Enter is like asking, “What is one plus one?”
The Immediate window returns the answer to your question, 2, as shown in
Figure 1-11.

If you see a message about macro content being blocked, switch over to
the Access program window and click the Enable Content button on the
Security bar.

If you want to re-execute a line that you already typed into the Immediate
window, you don’t need to type that same line in again. Instead, just move
the cursor to the end of the line that you want to re-execute and press Enter.
To erase text from the Immediate window, drag the mouse pointer through
whatever text you want to erase. Then press the Delete (Del) key or right-
click the selected text and choose the Cut option from the shortcut menu.

You see many examples of using the Immediate window in the forthcoming
chapters of this book. For the purposes of this chapter, knowing the
Immediate window exists and basically how it works is enough.

Figure 1-11:
The free-
floating
Immediate
window
solves 1 + 1
calculation.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 581

Using the Visual Basic Editor582

Do bear in mind that the Immediate window is just for testing and debug-
ging. The Code window is where you type (or paste in) VBA code.

Using the Object Browser
VBA code can manipulate Access objects programmatically. Remember,
everything in Access is an object — tables, forms, reports, and even a single
control on a form or report are objects. Every Access object you see on-
screen in Access is managed either interactively or programmatically. When
you work with objects in the Access program window, using your mouse and
keyboard, you use Access interactively. You do something with your mouse
and keyboard and the object responds accordingly.

When you write code, you write instructions that tell Access to manipulate
an object programmatically, without user intervention. You write instructions
to automate some task that you may otherwise do interactively with mouse
and keyboard. In order to manipulate an object programmatically, you write
code that refers to the object by name.

All the objects that make up Access and the current database are organized
into an object model, which comprises one or more object libraries. An object
library is an actual file on your hard drive that provides the names of objects
that VBA refers to and manipulates.

Each object consists of classes, where each class is a single programmable
object. Each class has members, and some members are properties.
Properties are characteristics of the class, such as its name, or the number
of items it contains. Other members are methods, which expose things you
can do to the class programmatically.

The object model is huge and contains many libraries and classes. There’s
no way to memorize everything in the object model. It’s just too darn big.
The Visual Basic Editor provides an Object Browser that acts as a central
resource for finding things as well as getting help with things in the model.
It’s especially useful for deciphering other peoples’ code, like the examples
you’ll see in this book.

To view the objects that VBA can access, follow these steps to open the
Object Browser:

1. Make sure you’re in the Visual Basic Editor.

2. Click the Object Browser button in the toolbar, choose View➪Object
Browser from the menu, or press the F2 key.

The Object Browser opens. Figure 1-12 shows the Object Browser and points
out some of the major features of its window. The following list describes
each component:

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 582

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 583

✦ Project/Library list: This allows you to choose a single library or proj-
ect to work with, or <All Libraries>.

✦ Search tools: Use these tools to help you find information in the libraries.

✦ Classes list: This shows the names of all classes in the currently selected
library or project name (or all libraries).

✦ Members list: When you click a name in the Classes list, this pane shows
the members (properties, methods, events, functions, objects) that
belong to that class.

✦ Details pane: When you click a member name in the Members list, the
Details pane shows the syntax for using the name as well as the name
of the library to which the member belongs. You can copy text from
the Details pane to the Code window.

✦ Split bar: Drag the Split bar left or right to adjust the size of the panes.
(Drag any edge or corner of the Object Browser window to size the
window as a whole.)

Searching the Object Library
For a beginning programmer, the sheer quantity of items in the Object
Browser is daunting. However, learning about the pre-written code you pick
up elsewhere is useful. Suppose you find and use a procedure that has a
DoCmd object in it. You’re wondering what this DoCmd thingy is.

Project/Library list Search tools Members list

Classes list Split bars Details pane

Figure 1-12:
The Object
Browser.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 583

Using the Visual Basic Editor584

You can search the Object Library for information about any object, includ-
ing DoCmd, by following these steps:

1. In the Object Browser, type the word you’re searching for in the
Search box.

In this example, type DoCmd, as shown in Figure 1-13.

2. Click the Search button.

The search results appear in the Search Results pane.

3. Click the word you searched for.

4. Click the Help (question mark) button on the Object Browser toolbar.

Figure 1-14 shows the Help window for the DoCmd object. For the absolute
beginner, even the information in the Help text may be a bit advanced.
However, as you gain experience and dig a little deeper into VBA, you’ll find
the Object Browser and Help windows useful for constructing references to
objects, properties, and methods from within your code.

Search box

Search button Show/Hide search results

Help

Search results

Figure 1-13:
Object
Browser
search
tools.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 584

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Using the Visual Basic Editor 585

Referring to objects and collections
Objects in the object model all have a syntax that works like this: You start
with the largest, most encompassing object, and work your way down to the
most specific object, property, or method. Sort of like a path to a filename,
as in C:\My Documents\MyFile.doc, where you start with the largest
container (disk drive C:), down to the next container (the folder named My
Documents), and then to the specific file (MyFile.doc).

For example, the Application object refers to the entire Access pro-
gram. It includes a CurrentProject object. If you were to look up the
CurrentProject object in the Object Browser and view its Help window,
you see CurrentProject houses several collections, including one named
AllForms. The AllForms collection contains the name of every form in the
current database.

The AllForms collection, in turn, supports a Count property. That property
returns the number of forms in the collection. Say that you have a database
open and that database contains some forms. If you go to the Immediate
window and type

? Application.CurrentProject.AllForms.Count

and then press Enter, the Immediate window displays a number matching
the total number of forms in the database.

Figure 1-14:
Help for the
DoCmd
object.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 585

Using the Visual Basic Editor586

At the risk of confusing matters, typing the following line in the Immediate
window returns the same result:

? CurrentProject.AllForms.Count

The shortened version works because the Application option is the
default parent object used if you don’t specify a parent object before
CurrentProject. (The Application object is the parent of Current-
Project because CurrentProject is a member of the Application
object library.)

The bottom line is that when you see a bunch of words separated by dots in
code (such as CurrentProject.AllForms.Count), be aware that those
words refer to some object. In a sense, the words are a path to the object —
going from the largest object down to a single, specific object, property,
method, or event. You can use the Object Browser as a means of looking up
the meanings of the words to gain an understanding of how the pre-written
code works.

As you gain experience, you can use the Object Browser to look up informa-
tion about objects, collections, properties, methods, events, and constants
within your code. For now, consider the Object Browser as a tool for discov-
ering VBA as you go.

Choosing object libraries
Most likely, the object libraries that appear automatically in the Object
Browser’s Project/Library drop-down list are all you need. However, should a
given project require you to add some other object library, follow these
steps to add it:

1. Choose Tools➪References from the Visual Basic Editor main menu.

The References dialog box opens.

2. Choose any library name from the list.

In the unlikely event that you need a library that isn’t in the list — but
you know you stored it on your hard drive — click the Browse button,
navigate to the folder that contains the object library you need, click its
name, and then click the Open button.

3. Click OK when the object libraries you need have check marks.

The Project/Library list in the Object Browser now includes all the
libraries you selected in the References dialog box.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 586

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Discovering Code as You Go 587

Closing the Visual Basic Editor
When you’re done working in the Visual Basic Editor, you can close it by
using whichever of the following techniques is most convenient for you:

✦ Choose File➪Close and return to Microsoft Access from the Visual Basic
Editor main menu.

✦ Click the Close button in the upper-right corner of the Visual Basic
Editor program window.

✦ Right-click the Visual Basic Editor button on the taskbar, and then
choose the Close option from the shortcut menu.

✦ Press Alt+Q.

Access continues to run even after you close the Visual Basic Editor window.

Discovering Code as You Go
Most beginning programmers start by working with code they pick up else-
where, such as code generated by code wizards, or code copied from a Web
site. You can also create VBA code, without writing it, by converting any
macro to VBA code.

Converting macros to VBA code
Any macro you create in Access can be converted to VBA code. Converting
macros to code is easier than writing code from scratch. For example, say
you need to write some code because a macro can’t do the job. But a macro
can do 90 percent of the job. If you create the macro and convert it to VBA
code, 90 percent of your code is already written. You just have to add the
other ten percent (which is especially helpful if you can’t type worth beans).

See Book VI, Chapter 1 for how macros work and how to create them.

As an example, suppose you click the Create tab, click the last Other button,
and then choose Macros, as in Figure 1-15, to create a new macro.

Then you create your macro. The macro can be as large or as small as you
want. Figure 1-16 shows a small simple example of a macro that shows a mes-
sage on the screen. After you create your macro, close and save it. For this
example, say I saved the macro in Figure 1-16 with the name TinyMacro.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 587

Discovering Code as You Go588

When you convert a macro to VBA code, you actually convert all the macros
in the macro group to code. Follow these steps for the basic procedure of
converting macros to VBA:

1. Choose Macros from the top of the Navigation Pane. Or choose All
Access Objects and expand the Macros category.

2. Click the name of the macro you want to convert.

3. Click the Database Tools tab.

4. Click the Convert Macros to Visual Basic button shown at the mouse
pointer in Figure 1-17.

Figure 1-17:
Convert
Macros to
Visual Basic
button.

Figure 1-16:
Sample
TinyMacro
macro.

Figure 1-15:
Create a
new macro.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 588

Book VIII
Chapter 1

W
hat the Heck

Is
VBA?

Discovering Code as You Go 589

A dialog box appears, asking whether you want to include error-handling
code or comments in the code. If you want to keep the code relatively
simple, you can clear the first option and select only the second option.

5. Click the Convert button and then click OK when your conversion is
complete.

To see the name of the converted macro, expand the Modules category as in
Figure 1-18. The name of the module is Converted Macro - followed by
the name of the macro you converted.

To see the converted macro as VBA code, double-click its name. Like all VBA
code, the code from the converted macro opens in the Visual Basic Editor
Code window, as shown in Figure 1-19.

Figure 1-19:
Converted
macro in
Code
window.

Figure 1-18:
TinyMacro
converted
to module
named
Converted
Macro -
Tiny
Macro.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 589

Discovering Code as You Go590

Cutting and pasting code
Many VBA programmers post examples of code they’ve written on Web
pages. When you come across some sample code you want to incorporate
into your own database, retyping it all into the Visual Basic Editor is not nec-
essary. Instead, just use standard Windows cut-and-paste techniques to copy
the code from the Web page into the Visual Basic Editor.

Say you come across some code in a Web page you want to use in your own
database. Here’s the sequence:

1. In the Web page, you drag the mouse pointer through the code you
want to copy to select that code. Then press Ctrl+C to copy that
selected code to the Windows Clipboard.

2. Back in Access, create a new module or open an existing module in
which you want to place the code.

3. In the Code window, click at the position where you want to put the
copied code. Then paste the code to the cursor position by pressing
Ctrl+V.

Bear in mind, however, that just pasting code into the Code window doesn’t
make the code do anything. Most code examples are based on a sample
database. Just dropping the example into your database may not be enough
to get it to work.

When you copy and paste from a Web page, you might get some HTML tags,
weird characters, weird spacing, and so forth. If that happens, you can copy
the code from the page and paste it into a simple text editor like Notepad first.
That should get rid of any unusual tags and characters. Then copy and paste
the text from the Notepad document into the VBA Editor’s Code window.

But even if you do find an example that’s generic enough to work in any data-
base, the code won’t actually do anything until some event in your database
triggers it into action. We’ll look at the many ways you can trigger code into
action in the next chapter.

38_036494 bk08ch01.qxp 11/17/06 8:34 AM Page 590

Chapter 2: Writing Code

In This Chapter
� Understanding VBA syntax

� Writing your own custom VBA procedures

� Running and testing your custom procedures

Writing VBA code is different from writing in English or some other
human language. When you write in English, you’re presumably

writing to another human being who speaks the same language. If your
English isn’t so great (bad spelling, poor grammar), your recipient can
probably still figure out what your message means. Humans have flexible
brains that can figure things out based on context.

Not so for computers. Computers don’t have brains and can’t figure out
anything based on context. When you write code, the computer does exactly
what the code tells it to do. If the computer can’t read and process a state-
ment, the procedure stops running and an error message appears on-screen.

Before you start writing your own custom code, you need to know about
syntax and also the resources available for finding the syntax for the tasks
you want to program. And you need to know at least some basic techniques
for testing your code to see whether it’s going to work — before you try
putting it to use.

How VBA Works
VBA code is organized into procedures. Each procedure contains any
number of lines of code called statements. Each statement instructs VBA
to perform some action. The procedure sits in its module, doing nothing,
until some event calls the procedure.

When a procedure is called, each statement executes (runs) one at a time.
VBA fully executes the first statement, then fully executes the second state-
ment, and so forth, until the End Sub or End Function statement, which
marks the end of the procedure. At that point, the code stops executing.
Figure 2-1 summarizes how procedures work.

The top-to-bottom flow of execution can be altered using loops and
decision-making code, as we describe in Chapter 3 of this minibook.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 591

VBA Syntax592

VBA Syntax
Each statement within a procedure must follow strict rules of syntax. You
can’t just write text that looks like VBA code. All languages, including English
and VBA, have rules of syntax. Rules of syntax define the order in which
words must be placed so a statement makes sense. For example, the follow-
ing sentence — which is English, by the way, and not VBA — doesn’t make
sense because grammar rules are broken (similar to the way they’re mangled
in some of those e-mails we get):

moon the yapped sullen dog at irritating the.

If we rearrange the letters and words of that sentence so they follow the cor-
rect rules of syntax for the English language, the sentence makes sense:

The irritating dog yapped at the sullen moon.

The rules of VBA syntax are more rigid than the rules of human language.
Even the slightest misspelling or missing punctuation mark causes a state-
ment to fail.

Most statements start with a keyword, which is a word that has a specific
meaning in VBA. As soon as you type a complete keyword you typically see a
brief Quick Info syntax chart for the keyword. Figure 8-2 shows an example. If
you don’t see the syntax chart, you can right-click the keywords and choose
Quick Info.

Figure 2-2:
A Quick Info
syntax
chart.

Figure 2-1:
Code
execution
from top to
bottom.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 592

Book VIII
Chapter 2

W
riting Code

VBA Syntax 593

The Quick Info syntax chart doesn’t give you any details. Instead, it just
guides you through typing the entire statement according to the syntax
rules. For detailed information on each item in the syntax chart, you have to
look in the Help. There are several ways to get to the help for a keyword:

✦ Type the keyword in the Type a Question for Help box in the upper-right
corner of the VBA editor and then press Enter.

✦ Select the keyword in the Code window and press Help (F1).

✦ Search the Object Browser for the keyword and use its Help, as
described in the previous chapter.

When you get to the help page, you see a description of what the keyword
performs. You also see a syntax chart similar to the one in Quick Info, but
you get a lot more information, too. You see the meaning of each part,
acceptable values of each part, one or more examples, and perhaps links to
related help pages. Figure 8-3 shows a small portion of the Help screen for
the MsgBox keyword. Use the scroll bar at the right side of the window to
scroll through it all.

Figure 2-3:
Help for the
MsgBox
keyword.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 593

VBA Syntax594

The most important things to know about the syntax charts are quick to list:

✦ In the Quick Info syntax chart, boldface indicates the part you’re about
to type.

✦ Items in square brackets are optional and can be omitted from the state-
ment you’re typing.

✦ Never type the square brackets into your statement.

✦ If you skip over an optional part, you must still type the comma.

Arguing with VBA
Each part that follows the keyword is generally referred to as an argument.
Most arguments are actually expressions, similar to expressions used in cal-
culated controls. A string expression can be a literal string enclosed in quo-
tation marks (such as “Smith” or “Jones”), or the name of a field — or, for
that matter, the name of a variable (as described in the next chapter of this
book) that contains a string, such as [LastName] (which refers to a field in
a table).

A numeric expression can be anything that results in a valid number. For
example, 10 is a valid numeric expression, as is 2*5 (two times five), as is the
name of a field or variable that contains a number.

Given all this information, take a look at some MsgBox statements that
follow the rules of syntax and are considered valid:

MsgBox(“Slow children at play”)

The preceding statement is valid because the one-and-only required named
argument — the Prompt argument — is included. When executed, the
MsgBox() statement displays that prompt as shown in Figure 2-4.

Figure 2-4:
Result of
MsgBox
statement.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 594

Book VIII
Chapter 2

W
riting Code

VBA Syntax 595

As you scroll through the Help for the MsgBox function, you find there are
many ways to use it. For example, the following statement is perfectly valid
syntax for the MsgBox keyword, where vbYesNo is the setting that tells the
box to display Yes and No buttons — and replaces the placeholder text but-
tons in the MsgBox syntax chart — and “Question” is literal text that
appears in the title bar of the message box (and replaces the placeholder
text title in the same chart).

x = MsgBox (“Are we having fun yet?”,vbYesNo,”Question”)

That variation displays the message shown in Figure 2-5 and stores the
user’s answer to the question in a variable named x. (We talk about variables
in the next chapter.)

You can combine two or more options for the Buttons argument using a plus
sign. For example, the preceding MsgBox statement uses the vbYesNo and
vbQuestion constants to specify that the box show a question mark icon as
well as the Yes/No buttons:

x= MsgBox (“Are we having fun yet?”,vbYesNo+vbQuestion, “Question”)

When executed, the above statement shows the box in Figure 2-6. Unlike the
previous example, this new box shows a question mark icon because of the
+vbQuestion added to the second argument.

Figure 2-6:
MsgBox
with a
question
mark icon.

Figure 2-5:
Result of
MsgBox
function
with three
arguments.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 595

VBA Syntax596

Although you have some flexibility in how you express values for arguments,
you have almost no flexibility in terms of the order in which you place the
arguments within a statement. For example, if you want to use just the first
and third arguments in a syntax chart, such as the Prompt and Title
arguments of the MsgBox function, you still need to include a comma for the
second argument to make clear that the last argument is the title, as in the
following example:

x = MsgBox(“Howdy”,,”I am the Title”)

The first comma after the “Howdy” prompt shows the start of the second
argument. No argument shows between the two commas because you’re not
using that argument. The second comma then shows that the next argument
is actually the third one, Title (hence the text, “I am the Title”
appears in the title bar of the message box). Because there is no value for
the Buttons argument, the box shows only the default OK button.

Module level versus procedure level
As you work with the VBA Help windows and syntax charts, you often come
across the terms module level and procedure level. These terms refer to the
location of code within the module. Simply stated, anything that’s defined
near the top of the module above the first Function or Sub procedure is a
module-level declaration. Anything defined within a procedure is said to be
defined at the procedure level, as illustrated in Figure 2-7.

All procedures that you add to a module should be placed below the decla-
rations section of the module. When you see one or more Option state-
ments at the top of a module, make sure that any procedures you add to the
module start below all the Option statements at the top of the module.

Module level

Procedure level

Figure 2-7:
Module
level and
procedure
level.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 596

Book VIII
Chapter 2

W
riting Code

Writing Your Own VBA Procedures 597

Declaring Module Options
When you create a new standard module, it has just one declaration at the
top. Typically it reads Option Compare Database, which doesn’t even
seem to make any sense. And frankly, changing or deleting that is extremely
unlikely. However, the declaration actually has meaning.

The word Option tells the VBA to set an option. The specific option to set is
the Compare option. The Compare option tells VBA what rules to use when
comparing values. The word Database means to use the same rules that the
rest of the database uses when comparing values. Using the same rules is
always a good idea because otherwise things could get very confusing.
However, the other two possible settings are the Binary and Text options:

✦ Option Compare Binary: When comparing strings, uppercase letters are
considered to be smaller than lowercase letters. (With Option Compare
Database, uppercase and lowercase letters are considered equal.)

✦ Option Compare Text: The sort order of your system’s locale (the coun-
try and spoken language of your location) is used to compare strings.
This option may be useful when creating a database that’s used in
non–English-speaking countries.

Writing Your Own VBA Procedures
All the code you write will be contained within procedures. A procedure is a
single chunk of code that performs a series of actions when called. A sub
procedure always begins with a Sub statement or a Private Sub state-
ment, and ends with an End Sub statement. A function procedure begins
with a Function statement and ends with an End Function statement.
You can add new procedures to class modules or standard modules. How
you do so depends on where you want to place the procedure.

Creating a new standard procedure
A procedure in a standard module is available to all Access objects and isn’t
tied to any particular control or event. To create a new procedure in a stan-
dard module

1. Create a new standard module as described in Book VIII, Chapter 1.

or

Open an existing module by double-clicking its name in the shutter bar.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 597

Writing Your Own VBA Procedures598

2. Choose Insert➪Procedure from the Visual Basic Editor menu.

The Add Procedure dialog box opens, as shown in Figure 2-8.

3. Type a name for the procedure in the Name box.

The name can be anything you choose but must start with a letter and
cannot contain any blank spaces.

4. Under Type, choose Sub to create a sub procedure or Function to
create a function procedure.

The Property option in the Type list has to do with creating custom
objects, which isn’t relevant to the topic at hand.

5. Choose either the Public procedure type (to make the procedure avail-
able to all Access objects) or the Private procedure type (to make the
procedure visible only to the current module) in the Scope section.

If you’re not sure whether to choose the Public procedure or the Private
procedure, choose Public.

Private procedures are generally used only in class modules, not stan-
dard modules.

6. Select the All Local Variables as Statics check box if you want to ensure
that variables in the procedure retain their values between calls.

If you’re not sure what to do with the All Local Variables as Statics
option, your best bet is to leave it unselected.

7. Click OK in the Add Procedure dialog box.

You see a new, empty procedure in the Code window.

Figure 2-8:
Add
Procedure
dialog box.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 598

Book VIII
Chapter 2

W
riting Code

Writing Your Own VBA Procedures 599

If you chose the Function procedure type, the procedure looks something
like this:

Public Function name()
End Function

If you chose the Sub procedure type, the code looks something like this:

Public Sub name()
End Sub

where name is the name you typed into the Add Procedure dialog box.

Creating a procedure through the Add Procedure dialog box is not really nec-
essary. You can just type the Function statement or Sub statement into the
Code window, and VBA automatically adds a corresponding End Function
or End Sub statement.

The statements that the Add Procedure dialog box adds to the module use
only the bare minimum of optional arguments supported by the Function
and Sub statements. Depending on what the procedure does, you may need
to define some additional arguments, as discussed in the section, “Passing
arguments to procedures,” later in this chapter.

Creating a new event procedure
Recall that an event procedure is already tied to some event, such as clicking
a button on a form. If you want to create a new event procedure for a control
on a report or form, follow these steps:

1. In Design view, open the form or report that contains the control for
which you want to create a new procedure.

In the Database window, right-click the object’s name and choose Design
View.

2. Select the control for which you want to create a procedure.

3. Click the Event tab in the Property sheet.

If the Property sheet isn’t open, right-click the selected control, choose
the Properties option from the shortcut menu to see its properties, and
then click the Event tab.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 599

Writing Your Own VBA Procedures600

4. Click in the event that should trigger the procedure into action and
then click the Build (...) button that appears.

For example, if the selected control is a button and you want a user to
click that button to trigger the procedure into action, click in the On
Click event and then click its Build button.

The Choose Builder dialog box opens.

5. Click the Code Builder button and then click OK.

The class module for the form or report opens in the Visual Basic Editor,
with the cursor resting in a new procedure.

The name of the new procedure is a combination of the control’s name and
the event that triggers the procedure into action. The name is one that
appears at the top of the All tab in the Property sheet. For example, if you
right-clicked a button named MyButton and then built the procedure from
the On Click event on the Event tab of the Property sheet, the procedure
looks like this:

Private Sub MyButton_Click()

End Sub

Passing arguments to procedures
When you create your own expressions in Access, you often use built-in
functions that are capable of accepting arguments. For example, there’s a
built-in UCase() function that takes any string of text as an argument. The
argument is text or a number that you hand over to the function to operate
on. The function does its thing on the argument and then returns the results.

To pass an argument to a built-in function, you place it in the parentheses
after the function name. If you’re passing a literal string, that string must be
enclosed in quotation marks. For example, say you type the following into
the Immediate window in the Visual Basic Editor:

? UCase(“howdy world”)

In this example, UCase() is the function and “howdy world” is the argu-
ment, the value being passed to the function. The UCase() function returns
that same chunk of text with all the letters converted to uppercase, HOWDY
WORLD.

When you create your own procedures, you can define what arguments, if
any, the procedure is capable of accepting. If you create a function proce-
dure, you can also define what the procedure returns. (A sub procedure
doesn’t return a value.)

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 600

Book VIII
Chapter 2

W
riting Code

Writing Your Own VBA Procedures 601

If you were to look at the syntax chart for the Sub statement, and take away
some of the optional stuff from that chart, you see the syntax for the Sub
statement looks something like this:

Sub name [(arglist)]
End Sub

The simplified syntax for the Function statement (with some of the
optional stuff removed) looks similar, as the following:

Function name [(arglist)] As type
End Function

In both cases, the arglist is optional, as indicated by the square brackets.
But even the optional arglist has a syntax, the simplified version of
which is

name [As type]

where name is a name you make up. You can list multiple arguments by sepa-
rating their names with commas.

The type component specifies the data type of the data. Like Access tables,
VBA supports multiple data types. These data types are similar (but not
identical) to data types defined for fields in the structure of a table. For
example, the String data type in VBA is similar to the Text data type in an
Access table, in that both contain text.

What’s with the simplified syntax?
Many of the optional arguments available in
VBA statements represent very advanced con-
cepts that are difficult to describe out of con-
text. This book often shows a simplified version
of the syntax for a given statement, focusing
just on those arguments you either need to use
or are likely to want to use. When you compare
the simplified syntax shown in this book with
the actual syntax shown in the Visual Basic
Editor Help windows, the two may not be the
same. Don’t be alarmed. It’s not a mistake.

Using the simplified syntax in this book allows
you to discover VBA programming in a manner
that focuses on the most basic — and most
important — stuff first. You can work your way
to the more advanced — and mostly optional —
stuff as needed. The simplified syntax may well
be all you ever need to use when writing your
own code.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 601

Writing Your Own VBA Procedures602

Table 2-1 lists the VBA data types that work best with Access. The Storage Size
column shows how many bytes each data type assumes. The Declaration
Character column shows an optional character used at the end of a name
to specify a data type. For example, the name PersonName$, defines
PersonName as containing a string. But in the real world, you really need
not concern yourself too much with those columns. The first two columns
in the table provide the information you really need to know.

Table 2-1 VBA Data Types
Data Type Acceptable Values Storage Declaration

Size Character

Boolean True (–1) or False (0) 2 bytes

Byte 0 to 255 1 byte

Currency –922,337,203,685,477.5808 to 8 bytes @
922,337,203,685,477.5807

Date January 1, 100 to December 31, 9999 8 bytes

Double –1.79769313486231E308 to 8 bytes #
–4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive
values

Integer –32,768 to 32,767 2 bytes %

Long –2,147,483,648 to 2,147,483,647 4 bytes &

Object Name of any object 4 bytes

Single –3.402823E38 to –1.401298E-45 for negative 4 bytes !
values; 1.401298E-45 to 3.402823E38 for
positive values

String (fixed Any text from 1 to 65,400 characters 10 + string $
length) in length length

You define the names and data types of arguments within the parentheses
that follow the name of the procedure. Separate the name from the data type
using the word As. For example, the following Sub statement defines a sub
procedure named SampleSub(). That sub procedure accepts two argu-
ments: a single-precision number named Amount and a string named Payee:

Sub SampleSub(Amount As Single, Payee As String)
...code...
End Sub

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 602

Book VIII
Chapter 2

W
riting Code

Writing Your Own VBA Procedures 603

Unlike a sub procedure, a function procedure can return a value. You define
the data type of the returned value after the parentheses and the word As.
The returned data doesn’t need a name, just a data type. For example, the
following Function statement defines a function procedure named
IsOpen(). That function accepts one argument — a string. The name
FormName refers to that passed string within the function. The function
returns either a True or False value (the Boolean data type).

Function IsOpen(FormName As String) As Boolean

...code...
End Function

Don’t bother to type either of the preceding procedures because they don’t
actually do anything. They just demonstrate the syntax of the Sub and
Function statements. Figure 2-9 further points out the purpose of the vari-
ous components of the sample Function statement.

Returning a value from a function
Any function can return a value. To define the value that a function returns,
you use the following syntax within the body of the function:

functionName = value

where functionName is the name of the function and value is the value
that the function returns. The following function is an example:

Function WithTax(AnyNumber As Currency) As Currency
WithTax = AnyNumber * 1.065

End Function

Function name
IsOpen()

Returns true
or false

Accepts one string argument

Figure 2-9:
Components
of a sample
function
procedure.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 603

Typing and Editing in the Code Window604

Multiplying a number by 1.065 is equivalent to adding 6.5 percent sales tax
to that number. Do this little trick with any sales tax rate. For example, to
add 7.75 percent sales tax, you would multiply by 1.0775.

The WithTax() function is a complete VBA procedure that actually works. If
you type it into a standard module you can use it anywhere in your database
just as you would a built-in function. You could even test it out in the
Immediate window. For example, after you type the WithTax function into
the Code window, you can type the following into the Immediate window and
press Enter:

? WithTax(10)

The Immediate window displays 10.65 because 10 times 1.065 equals 10.65.
Figure 2-10 shows the function and the Immediate window.

Typing and Editing in the Code Window
In order for a procedure to actually do anything, it has to contain some valid
VBA code. As you type statements in the Code window, the VBA Editor offers
a little help along the way. Figure 2-11 shows an example. As you type your
line of code and get to a place where only certain words are allowed, a drop-
down menu appears to let you know what those words are.

Figure 2-10:
Sample
function
tested in the
Immediate
window.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 604

Book VIII
Chapter 2

W
riting Code

Typing and Editing in the Code Window 605

As you continue to type, the drop-down menu moves down to the first item
that matches what you’ve typed so far. Rather than type the whole word,
you can type until the selected item in the drop-down menu matches what you
intend to type, then press Enter. The word in the menu replaces what you’ve
typed so far. This saves you some typing and also ensures that the word
you typed is spelled correctly.

Shortcut keys used in the Code window
While typing in the Code window, you can use the various shortcut keys
listed in Table 2-2 to navigate, make changes, and so forth. Most of the short-
cut keys are identical to those found in other text-editing programs and word
processors.

Table 2-2 Shortcut Keys You Can Use in the Code Window
Action Shortcut Key

Move cursor right one character →
Select character to right Shift+→
Move cursor right one word Ctrl+→
Select to end of word Shift+Ctrl+→
Move cursor left one character ←
Select character to left of cursor Shift+←
Move cursor left one word Ctrl+←
Move cursor to start of line Home

Select text to start of line Shift+Home

Move cursor to end of line End

Select text to end of line Shift+End

Move cursor up a line ↑
Move cursor down a line ↓
Move cursor to next procedure Ctrl+↓

(continued)

Figure 2-11:
Drop-down
menu of
acceptable
words.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 605

Typing and Editing in the Code Window606

Table 2-2 (continued)
Action Shortcut Key

Move cursor to previous procedure Ctrl+↑
Scroll up one screen PgUp

Scroll down one screen PgDn

Go to top of module Ctrl+Home

Select all text to top of module Shift+Ctrl+Home

Go to bottom of module Ctrl+End

Select all text to bottom of module Shift+Ctrl+End

Cut selection Ctrl+X

Copy selection Ctrl+C

Paste Ctrl+V

Cut current line to Clipboard Ctrl+Y

Delete to end of word Ctrl+Delete

Delete character or selected text Delete (Del)

Delete character to left of cursor Backspace

Delete to beginning of word Ctrl+Backspace

Undo Ctrl+Z

Indent line Tab

Outdent line Shift+Tab

Find Ctrl+F

Replace Ctrl+H

Find Next F3

Find Previous Shift+F3

View Object Browser F2

View Immediate window Ctrl+G

View Code window F7

View shortcut menu Shift+F10 (or right-click)

Get help with currently selected word F1

Run a Sub/UserForm F5

Stop code execution Ctrl+Break

Typing comments
When typing VBA code, you can mix in programmer comments (usually
called comments for short). A comment is plain-English text for human con-
sumption only. VBA ignores all comments and processes only the code. As

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 606

Book VIII
Chapter 2

W
riting Code

Typing and Editing in the Code Window 607

such, comments are entirely optional. The purpose of a comment is simply
to “jot down notes” within the code, either as a future reminder to yourself
or to other programmers working on the same project.

The first character of a comment must be an apostrophe (‘). In the Code
window, comments appear as green text. Each comment is on its own line
or follows a line of VBA code. Never put VBA code to the right of a comment
on the same line because VBA assumes all text after the apostrophe (on
the same line) is just a comment and ignores everything to the right of the
apostrophe.

Breaking lines of code
Unlike a word processor, where long lines of text are word-wrapped (broken
between words as necessary), text in the Visual Basic Editor never wraps.
You (and Access) really need to be able to see each line independently. If the
Visual Basic Editor were to word-wrap, you wouldn’t really know exactly
where one line ends and the next one begins.

Sometimes you may end up typing a statement that extends beyond the right
border of the window. For example, the line that begins with AnyText = in
Figure 2-12 is actually much longer than it appears. Most of the line is invisi-
ble, cut off at the right margin. The statement works as is. Still, you may
want to see the entire statement when writing, testing, or modifying your
code.

If you want to break a single long statement into two or more lines, you must
insert a continuation character (an underscore _) at the end of the line, just
before you press Enter to break the line. Essentially, the continuation charac-
ter tells Access, “The line break that follows isn’t the end of this statement.
Rather, I want to break up this lengthy line.” Figure 2-13 shows the lengthy
line broken into three shorter lines using the continuation character.

Figure 2-12:
Line starting
with
AnyText=
is cut off in
window.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 607

Typing and Editing in the Code Window608

Although you can break a statement into two or more lines using the contin-
uation character, you cannot break a literal string in the same manner. A lit-
eral string is text enclosed in quotation marks, as in the following example:

SomeChunk = “A literal string is text in quotation marks”

If you try to break a literal string into two lines by using a continuation
character, as the following example does, you get an error message:

SomeChunk = “A literal string is _
text in quotation marks”

To break a literal string, you need to terminate the top line with a quotation
mark (“), followed by an ampersand (&), and then the continuation charac-
ter (_). On the next line, enclose the entire second half of the literal text in
quotation marks, as the following example shows:

SomeChunk = “A literal string is “ & _
“text in quotation marks”

Because breaking up lines is entirely optional, you may never have to con-
cern yourself with these nitpicky details of breaking lines within literal text.
However, when you cut and paste code written by others, you may find that
the programmer has broken up lengthy lines to make them more readable.
Just be aware that an underscore (_) at the end of a line means, “The line
below is a continuation of this line, not a new and separate statement.”

Dealing with compile errors
Each statement in VBA code must be syntactically correct, complete, and
must be either on its own line or correctly broken across several lines by
using the continuation character. If you press Enter to end the line before
you type a complete, syntactically correct statement, an error message
appears on-screen.

Figure 2-13:
Line starting
with
AnyText=
broken into
three lines.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 608

Book VIII
Chapter 2

W
riting Code

Testing and Running Your Code 609

For example, Figure 2-14 shows what you see if you type MsgBox(“Hello
World” and press Enter. The MsgBox() statement requires a closing paren-
thesis, missing in this example — so the editor displays an error message. In
the Code window, the faulty line is shown in red.

The compile error means that the line you typed cannot be translated to
instructions that Access can perform. Access can only compile and execute
syntactically correct and complete statements. The part that says Expected:
list separator or) tells you that Access expected to find either a
comma (to separate the first argument from the second) or a closing
parenthesis.

The box displaying the error message contains two buttons:

✦ OK: Closes the error message box so you can type in the correction

✦ Help: Provides some general information about the type of error discov-
ered and provides some suggestions for fixing the problem

Regardless of which button you click, you need to correct the statement
before it can work correctly. After you type the correct statement and press
Enter, the error message no longer appears, and the line no longer displays
in red.

Testing and Running Your Code
A completed procedure is generally called from some object, such as a
button on a form. But as you write code, you may want to make sure it will
work before you start attaching a procedure to objects in your database. You
can use the Immediate window to run the procedure right on the spot. The
syntax varies depending on whether you’re testing a sub procedure or func-
tion as well as whether the procedure accepts arguments.

Testing sub procedures
To test a sub procedure that accepts no parameters, you simply type the
name of the sub procedure into the Immediate window, and then press Enter.

Figure 2-14:
Sample
compile
error.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 609

Testing and Running Your Code610

The following procedure accepts no parameters and displays a message box
when called:

Sub ShowThanks()
MsgBox (“Thank you”)

End Sub

To test the preceding procedure, simply type its name without the parenthe-
ses into the Immediate window, as the following:

ShowThanks

The procedure switches to the Access window and shows a message. Then
close the message box and switch back to the Visual Basic Editor to con-
tinue writing code.

If a sub procedure accepts arguments, then you follow the procedure name
by a blank space and the value to pass to the sub procedure. For example,
the following sub procedure accepts one argument:

Sub WarnUser (msg as String)
x=MsgBox(msg,vbCritical,”Warning”)

End Sub

Access assumes that the passed parameter is a string. To test the procedure,
you need to pass some text to it. Type the following into the Immediate
window to test this procedure:

WarnUser “Don’t move!”

When you press Enter, the procedure executes, displaying a message box in
the Access window. Close the message box and return to the Visual Basic
Editor.

If a procedure accepts more than one argument, separate the arguments by a
comma. The following procedure accepts two string arguments:

Sub TakeTwo(msg as String, tBar As String)
x = msgbox(msg,vbOKOnly,tBar)

End Sub

To test the procedure, you need to pass two parameters to it from the
Immediate window, as in this example:

TakeTwo “Hello World”, “Sample”

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 610

Book VIII
Chapter 2

W
riting Code

Testing and Running Your Code 611

The result is a message box with “Hello World” on-screen, a single OK
button, and “Sample” in the title bar. The result is the same if you execute
this statement directly:

x = msgbox(“Hello World”,vbOKOnly,”Sample”)

Running sub procedures from Access
The real goal of a sub procedure, of course, is to run when appropriate from
within Access. Sub procedures in a class module are usually tied to a control
on the corresponding form or report. To actually run a procedure, open the
corresponding form or report and trigger the event that causes the code to
run. For example, if the code is attached to the On Click event of a button
on a form, you need to open the form in Form view and click the button that
runs the code.

Calling a procedure from another procedure
Any VBA procedure can call another procedure, using exactly the same
syntax used to test the procedure in the Immediate window. If the sub proce-
dure accepts no arguments, just call the procedure by name. If the sub pro-
cedure does contain arguments, include the passed values in the command.

You can use the Call keyword in front of the procedure name as a reminder
that you’re calling some other procedure, but the Call keyword is optional.

Figure 2-15 shows two sub procedures: one named SampleSub(), and the
other named SecondSub(). The SampleSub() procedure includes a Call
statement that calls upon SecondSub() to do its job. What happens when
you execute SampleSub() is the following:

Figure 2-15:
One sub
procedure
calls
another.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 611

Testing and Running Your Code612

✦ Statement1A and Statement2A in SampleSub() are each executed.

✦ The Call SecondSub (“Howdy World”) statement is executed, caus-
ing Statement1B and Statement2B in SecondSub() to be executed.

✦ The End Sub statement at the end of SecondSub() returns control to
the next line in the calling procedure — Statement3A.

✦ Both Statement3A and Statement4A in SampleSub() are executed
next.

✦ The End Sub statement at the end of the SampleSub() procedure is
executed, and no more VBA code is executed.

Running sub procedures from macros
You can also call VBA sub procedures from macros, though technically, a
macro only calls a function procedure, not a sub procedure. You have two
choices if you still like to have a macro call a sub procedure:

✦ Convert the sub procedure to a function procedure.

✦ Write a function procedure that calls the sub procedure, and then call
the function procedure from the macro.

Converting a sub procedure to a function procedure is a simple matter of
changing the Sub keyword at the top of the procedure to Function, and the
End Sub statement at the bottom of the procedure to End Function.

If you want to leave the procedure as is and call it from a function, place the
call to the sub procedure within a function procedure. When executed, the
following DoMySub() function procedure calls the MySub() sub procedure.

‘The sub procedure below is named MySub()
Sub MySub()

MsgBox (“MySub Ran”)
End Sub

‘Function procedure below calls MySub sub procedure.
Function DoMySub()

Call MySub
End Function

To run MySub from a macro, you choose RunCode as the macro action. Then
type the name of the function procedure — in this example, DoMySub() —
as the Action Argument for the RunCode action, as shown in Figure 2-16.

For a reminder on defining macro actions, see Book VI, Chapter 1.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 612

Book VIII
Chapter 2

W
riting Code

Testing and Running Your Code 613

Testing function procedures
Unlike sub procedures, which return no value, a function procedure always
returns a value. To test a function from the Immediate window, use the ?
(“What is . . . ?”) symbol, followed by the function name — and, if necessary,
use the values that pass to the function.

For example, the following custom function accepts no arguments. When
called, the day of the week is returned:

Function Today() As String
Today = WeekDayName(Weekday(Date))

End Function

To test the function, type the following into the Immediate window and press
Enter:

? Today()

The Immediate window then displays the value returned by the function. If
you ran the test on a Monday, the function would return

Monday

The following function procedure accepts a single number as an argument
(and returns a number).

Function Area(radius As Double) As Double
Area = 3.141592654 * (radius ^ 2)

End Function

To test the function, call it with the ? symbol and pass some number to it, as
in this example:

? Area(10)

Figure 2-16:
Run a sub
procedure
from a
macro.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 613

Testing and Running Your Code614

The Immediate window then displays the value returned by the function, as
the following shows:

314.1592654

If the function accepts multiple arguments, you just separate the arguments
with commas, as when using the Access built-in functions.

Using function procedures in Access
When you create a function procedure in VBA, you can use that function any
place within the database where you use a built-in function. Wherever you
use an expression in Access, that expression can contain built-in functions,
custom function procedures, or both. Here are some examples:

✦ In an expression used in the Control Source property of a calculated
control on a form or a report

✦ In an expression that defines a calculated field in a select query

✦ In an expression in the Update To row of an update query

✦ In an expression used in a macro

✦ As a custom action called from a macro, such as the example shown
back in Figure 2-16

In Access, function procedures are generally easier to use than sub proce-
dures. Calling a function procedure from within any expression is easy. Most
pre-written custom VBA code you may find on the Web is organized into
function procedures rather than sub procedures.

39_036494 bk08ch02.qxp 11/17/06 8:35 AM Page 614

Chapter 3: Writing Smarter Code

In This Chapter
� Using variables and constants to store temporary data

� Having your code make decisions

� Executing the same code repeatedly

� Managing data with custom VBA functions

As with all programming languages, VBA offers certain concepts and
statements designed to allow you to write the code necessary to make

a computer do — well, anything. Those concepts and statements are the
subject of this chapter.

We must point out, though, that the underlying VBA concepts described in
this chapter aren’t unique to VBA. Virtually all programming languages are
built around these same concepts. If you ever have aspirations of learning
to program in any language — be it Java, JavaScript, C++, C#, VBScript, or
whatever — the concepts you discover in this chapter apply equally to most
programming languages.

Creating Variables and Constants
Within a procedure, you define and use variables. A variable is a name — a
placeholder — for any data that may change. You make up your own vari-
able names — choose names that indicate what information the variable
contains, so you don’t have to wonder later. Variable names must begin with
a letter, cannot contain spaces or punctuation, and cannot be the same as
any built-in keyword.

Unlike data stored in a table, data stored in a variable is not permanent.
Data stored in a variable is fleeting and exists only for as long as VBA needs
the information contained within the variable.

Make me a variable
You can create variables in a couple of ways in VBA code. The quick-and-dirty
way is to simply make up a variable name and assign a value by following
the name with an equal sign (=) and the value to be stored in the variable.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 615

Creating Variables and Constants616

The following VBA statements define three variables named x, y, and
ExtPrice. The variable x stores the number 10, the variable y stores the
number 9.99, and the variable ExtPrice stores the result of multiplying
the contents of x by the contents of y (or 99.9 by the time all three lines
are executed):

x = 10
y = 9.99
ExtPrice = x * y

These statements are all examples of implicit variable declarations.

Explicit variable declaration, as the name implies, requires that you assign a
data type to each variable before you assign the variable a value. Explicit
variable declaration is a little more work, but your code runs more smoothly
and efficiently because Access doesn’t have to figure out the best data type
to use when it encounters the data lurking in the variable.

Two steps go into using a variable explicitly. First you define (or declare) the
variable, which gives the variable a data type. After the variable exists, you
assign a value using the same syntax as for implicit declarations:
variableName = value.

The command for defining a variable explicitly is Dim, short for dimension.
But thinking of Dim as standing for “Define In Memory” may be easier
because variables exist only in the computer’s random access memory
(RAM). The simplified syntax for the Dim statement looks like this:

Dim varname [As type] [,...]

where varname is a name of your own choosing. The type refers to one of
the acceptable VBA data types or object types. The data types you assign to
variables in a Dim statement are the same as those used in defining argu-
ments in a Function or Sub statement.

The comma and ellipsis in the syntax chart mean that you can define multi-
ple variables, separated by commas, within a single statement. For example,
the following statement declares one variable, named ReportName, as a
string (textual data):

Dim ReportName as String

The following sample Dim statement declares two variables: a string named
ReportName and a long integer named Qty. The lines after the Dim statement

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 616

Book VIII
Chapter 3

W
riting Sm

arter
Code

Creating Variables and Constants 617

then assign a value to each variable using the standard variableName =
value syntax:

Dim ReportName as String, Qty as Long
ReportName = “Sales Summary Report”
Qty = 50

Scope and lifetime of variables
All variables and constants have a scope and a lifetime. The scope of a vari-
able defines to which procedures the variable is visible. You determine the
scope of a variable when you declare the variable. Variables declared at the
beginning of a module (before the first procedure in the module) can be
either private (visible only to procedures within the same module) or public
(visible to all procedures in all modules). These variables have module-level
scope.

If you use the Public keyword (rather than Dim) to declare a variable at the
module level, the variable is visible to all procedures in all modules. On the
other hand, if you use a Dim or Private statement to define a variable at
the module level, the variable is private to the module. All procedures
defined within the same module can see the variable, but the variable is
invisible to procedures defined in other modules.

When you define a variable within a procedure, that variable has procedure-
level scope, meaning that the variable is private (visible only) to the proce-
dure in which it is defined. Only the procedure in which the variable is
defined can see, and use, the variable.

Figure 3-1 shows a module with several variables declared using Dim,
Private, and Public keywords. Comments in the code describe the scope
of the variables declared within the module as follows:

Figure 3-1:
Scopes of
sample
variables.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 617

Creating Variables and Constants618

✦ Public farReaching As String: The variable named
farReaching is visible to all procedures in all modules because it’s
declared by using the Public keyword.

✦ Private notSoFarReaching As String and Dim alsoNotSoFar-
Reaching As String: These variables are visible to all procedures in
the same module but are not visible to procedures defined in other mod-
ules. Dim and Private have the same meaning in this context.

✦ Dim existsOnlyHere As String: Because this variable is declared
within a procedure, the variable is visible only to that procedure.

The lifetime of a variable defines how long a variable retains a value. When
you open a database, variables defined at the module level of standard mod-
ules are created and can be assigned a new value at any time. The lifetime of
such variables is lengthy — these variables exist and can contain values for
the entire session — from the time you open the database to the time you
close it.

Variables declared with a Dim keyword at the procedure level have a much
shorter lifetime. The variable retains its value only for as long as the proce-
dure runs. A second call to the same procedure re-creates the variables and
assigns new values to them.

Though it’s rare to do so, you may want to make one or more variables
retain their values between calls to the procedure in some instances. For
example, you may have a variable that keeps track of how many times the
procedure is called. In that case, you can use the Static keyword, rather
than Dim, to declare the variable or variables. The following statement
defines a static variable named howMany, which stores an integer (whole
number).

Static howMany as Integer

You can make all variables declared within a procedure static by preceding
the Sub or Function keyword with Static. All variables defined within the
following procedure are static because the Static keyword in front of the
word Function makes all that procedure’s variables static:

Static Function myFunction()
‘Both variables below are static
Dim var1 As String
Dim var2 As Byte

End Function

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 618

Book VIII
Chapter 3

W
riting Sm

arter
Code

Creating Variables and Constants 619

If you find this terribly confusing, you rarely need to be so picky about the
scope and lifetimes of variables. In fact, if you never use the Public,
Private, or Static keywords in any code you write, chances are the code
will still work perfectly — the default scope and lifetime assigned to a vari-
able through the Dim statement is usually exactly what you need. Exceptions
are few and far between, and are not likely to show up until you start devel-
oping huge and complex databases.

Defining constants
A constant is similar to a variable: It has a name, a data type, and a value.
However, unlike a variable (whose contents can change at any time), a con-
stant’s value never changes. Constants are often used to assign a short name
to some value that must be used repeatedly throughout the code, but never
changed.

To declare a constant, you use the Const keyword. The simplified syntax for
the Const keyword is

Const name [As type]=value [, name [As type]=value]...

You define the name, data type (type), and value of the constant on a single
line. The rules for coming up with a name are the same as those for a vari-
able: It must start with a letter, cannot contain blank spaces or punctuation,
and cannot be the same as a VBA keyword.

As an example of creating a constant, the following statement defines a
constant named pi as a double-precision number containing the value
3.141592654:

Const pi As Double = 3.141592654

You can declare multiple constants in a single Const statement by separat-
ing them with a comma. For example, the following statement declares two
constants, a number named x of the Byte data type with a value of 10, and a
string named myName containing the text “Alan”:

Const x As Byte = 10, myName As String = “Alan”

Constants tend to be private to the module in which they’re defined. If you
want to ensure that a constant is available to all objects and all modules
within the database, precede Const with the Public keyword, as the
following shows:

Public Const pi As Double = 3.141592654

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 619

Creating Variables and Constants620

Organizing variables into arrays
An array is a collection of variables organized into a list or table. Each item’s
name is the same, but each has one or more subscripts that uniquely identify
each item in the array based on its position in the array. The subscript is one
or more numbers, enclosed in parentheses, that follow the name. If Colors
is the name of an array, Colors(1) (pronounced colors sub 1), is the first
item in the list, Colors(2) is the second item in the list, and so forth.

In a sense, an array is like a database table, in that the data can be organized
into rows and columns. And you can use VBA to manipulate data stored in
tables. The only time you really want to use an array is when you work with
a small amount of data that either never changes or changes only while the
code is running. The data in an array is defined in code, not in a table, so get-
ting to the data stored in the array is not easy.

The syntax for declaring an array is almost identical to that of creating a vari-
able. However, you need to define the number of dimensions in the array and
the number of elements in each dimension of the array. An array can have up
to 60 dimensions and virtually any number of elements within each dimen-
sion. The basic syntax for declaring an array using the Dim statement is

Dim varname[([subscripts])] [As type] [,varname[([subscripts])] [As type]] . .

In this statement

✦ varname is the name assigned each element in the array.

✦ subscripts is the number of elements in each dimension, with each
dimension separated by a comma. It can contain the optional keyword
To to specify the starting and ending subscripts.

✦ type is any valid VBA data type.

All arrays are zero-based unless you specify otherwise, which means that
the first item in the array has a subscript of zero, rather than one. The
number of elements specified is actually one less than the total number of
elements that the array contains.

For example, the following Dim statement declares a one-dimensional array
named Colors that contains four string elements (numbered 0, 1, 2, and 3):

Dim Colors(3) as String

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 620

Book VIII
Chapter 3

W
riting Sm

arter
Code

Creating Variables and Constants 621

The following lines of code show how you can then assign a value to each
element in the array. Because the first item always has a subscript of zero,
you actually place four, rather than three, items into the array:

Colors(0)=”black”
Colors(1)=”red”
Colors(2)=”blue”
Colors(3)=”green”

Having the first element in an array start with a zero can be counterintuitive
for us humans, who tend to think of the first item in a list as being number 1.
You can force the first element to be 1 by specifying a range (rather than a
number) of elements in the Dim statement. The following Dim statement
declares an array of three elements, with subscripts ranging from 1 to 3. The
lines after the Dim statement assign a value to each of those elements:

Dim Colors(1 To 3) as String
Colors(1)=”red”
Colors(2)=”blue”
Colors(3)=”green”

Another alternative, if you want all your arrays to start at 1 rather than 0, is
to simply put the following statement up in the Declarations section of
the module, before the first procedure in the module:

Option Base 1

After you add the Option Base 1 statement to the top of a module,
all arrays within that module start at 1 rather than zero. Thus the Dim
Colors(3) statement creates an array of three elements, numbered 1, 2, 3,
as you expect. There is no Colors(0) when the optional base for arrays is
set to 1 via the Option Base 1 module declaration.

Multidimensional arrays
A multidimensional array is one that offers more than one subscript per name.
The simplest example is a two-dimensional array, which you can envision as a
table. The first subscript in a two-dimensional array represents the element’s
row position in the array. The second subscript represents the element’s
column position in the array. For example, in the following array, State(3,2)
refers to “row 3, column 2” in the States array, which contains “AZ”.

State(1,1)=”Alabama” State(1,2)=”AL”

State(2,1)=”Alaska” State(2,2)=”AK”

State(3,1)=”Arizona” State(3,2)=”AZ”

State(50,1)=”Wyoming” State(50,2)=”WY”

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 621

Creating Variables and Constants622

The Dim statement that creates a two-dimensional array named States,
with 50 row elements and 2 column elements, is shown with the following
statement. If you use the Option Base 1 statement in the Declarations
section, the starting number for each array is 1:

Dim States (50,2) as String

The code to populate the array (that is, to assign a value to each variable)
looks like this:

State(1,1)=”Alabama”
State(1,2)=”AL”
State(2,1)=”Alaska”
State(2,2)=”AK”
State(3,1)=”Arizona”
State(3,2)=”AZ”
...
State(50,1)=”Wyoming”
State(50,2)=”WY”

Although all programming languages support multidimensional arrays, you
won’t use them in Access very often. Instead, you can use a table to store
lists and tables of data, and then use Access code to extract data, as needed,
from that table.

Naming conventions for variables
Some programmers use naming conventions to identify the data type of a
variable as part of the variable’s or constant’s name. The naming conven-
tions are entirely optional — you don’t have to use them. But a lot of VBA
programmers follow them, so you’re likely to see them in any code you
happen to come across.

The idea behind a naming convention is simple. When you define a new vari-
able, make the first three letters of the name (referred to as the tag) stand
for the type of variable or object. The following line creates an Integer
variable named intMyVar, where int is short for integer.

Dim intMyVar As Integer

The tag added to the front of the name doesn’t affect how the variable is
stored or how you can use it. The tag serves only as a reminder that MyVar
is an Integer. Table 3-1 summarizes the tags you’ll most likely encounter
when reading other people’s code. In the Sample Declaration column of the
table, the italicized word Name means that you can put in any variable name
of your own choosing.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 622

Book VIII
Chapter 3

W
riting Sm

arter
Code

Making Decisions in VBA Code 623

Table 3-1 Naming Conventions Used Among VBA Programmers
Tag Stands For Sample Declaration

byt Byte data type Dim bytName As Byte

cur Currency data type Dim curName As Currency

dtm Date/Time data type Dim dtmName As Date

dbl Double data type Dim dblName As Double

int Integer data type Dim intName As Integer

lng Long integer data type Dim lngName As Long

sng Single data type Dim sngName As Single

bln Boolean data type Dim blnName As Boolean

str String data type Dim strName As String

var Variant data type Dim varName As Variant

Making Decisions in VBA Code
Decision-making is a big part of programming — most programs need to be
smart enough to figure out what to do depending on circumstances. Often,
you want your code to do one thing “if such-and-such is true,” and do some-
thing else “if such-and-such is false.” You use conditional expressions to
determine if something is true or false. A conditional expression is one that
generally follows the syntax

Value ComparisonOperator Value

where Value is some chunk of information and the ComparisonOperator
is one of those listed in Table 3-2.

Table 3-2 Comparison Operators
Operator Meaning

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal to

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 623

Making Decisions in VBA Code624

For example, the expression

[Last Name] = “Smith”

compares the contents of the Last Name field to the string “Smith”. If the
[Last Name] field does, indeed, contain the name Smith, the expression is
(or returns) True. If the [Last Name] field contains anything other than
Smith, the expression returns False.

Another example is the following statement:

[Qty] >= 10

The content of the Qty field is compared to the number 10. If the number
stored in the Qty field is 10 or greater, the expression returns True. If the
number stored in the Qty field is less than 10, the expression returns False.

You can combine multiple conditional expressions into one using the logical
operators summarized in Table 3-3.

Table 3-3 Logical Operators
Operator Meaning

and Both are true

or One or both are true

not Is not true

xor Exclusive or: One — but not both — is true

The following conditional expression requires that the [Last Name] field
contain “Smith” and the [First Name] field contain “Janet” in order for
the entire expression to be True:

[Last Name]=”Smith” and [First Name]=”Janet”

An example of an expression that returns True if the State field contains
either NJ or NY is the following:

[State]=”NJ” or [State]=”NY”

Using If...End If statements
You can have VBA code make decisions as the code is running in several
ways. One method is to use the If...End If block of code. The syntax for
If...End If looks like this:

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 624

Book VIII
Chapter 3

W
riting Sm

arter
Code

Making Decisions in VBA Code 625

If condition Then
[statements]...

[Else
[statements]...

End If

where condition is an expression that results in True or False, and
statements refers to any number of valid VBA statements. If the condition
proves True, the statements between Then and Else execute, and all other
statements are ignored. If the condition proves False, only the statements
after the Else statement execute, as illustrated in Figure 3-2.

As an example, imagine that a State variable contains some text. The fol-
lowing If...End If block checks to see whether the State variable con-
tains NY. If the State variable does contain NY, the TaxRate variable
receives a value of 0.075 (7.5%). If the State variable does not contain
NY, the TaxRate variable receives a value of 0.

If State=”NY” Then
TaxRate=0.075

Else
TaxRate=0

End If

You have a little bit of flexibility when using If...End If. If only one line of
code executes for a True result and only one line executes for a False
result, you can put the whole statement on a single line and omit the End If
statement, as the following shows:

If State=”NY” Then TaxRate=0.075 Else TaxRate=0

If Condition proves True, do these statements

If Condition proves False, do these statements

Figure 3-2:
Basic idea
behind
If...End
If.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 625

Making Decisions in VBA Code626

Because you can use any built-in function in VBA, and Access supports the
use of the iif() (immediate if) function, you can also write the preceding
statement as an expression:

TaxRate = iif([State]=”NY”,0.075,0)

In the block format, you can also write code that tests for more than just two
possible conditions, using the optional ElseIf statement. Suppose the
Reply variable stores a string of text. If Reply contains the word “Yes”,
your code does one thing. If Reply contains “No”, your code does some-
thing else. If Reply contains neither “Yes” nor “No”, then you want your
code to do something else instead. You could set up an If...End If block
to test for and respond to all three conditions, as the following:

If Reply = “Yes” Then
statements for “Yes” reply

ElseIf Reply=”No” Then
statements for “No” reply

Else
statements for any other reply

End If

When the code has to make a decision from many possibilities, you may find
using a Select Case...End Select block is easier, described in the sec-
tion, “Using a Select Case block,” later in this chapter.

Nesting If...End If statements
What if you have more than two possible scenarios? No problem — you can
nest If...End If blocks, meaning you can put one complete If...End
If block inside another If...End If block. For example, in the code
shown in Figure 3-3, the innermost statements execute only if Condition1
and Condition2 result in True.

Executed only if Condition1 and Condition2 both true

Figure 3-3:
Nested
If...End
If blocks.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 626

Book VIII
Chapter 3

W
riting Sm

arter
Code

Making Decisions in VBA Code 627

You can see why the nested If...End If statements work if you look at
what happens when either test proves False. For example:

✦ If condition1 proves False, all code down to the last End If state-
ment is skipped over. The inner If...End If block isn’t seen or
executed.

✦ If condition1 proves True, but condition2 proves False, all the
statements in the nested block are ignored. The innermost statements
still don’t execute.

✦ If both condition1 and condition2 prove True, no code is skipped
over and the innermost statements execute normally.

You can nest If...Else...End If blocks as deeply as you want.
However, you have to make sure each one has its own End If statement.

Using a Select Case block
But what if you have more than two or three cases to check for? For exam-
ple, what if you need to perform different statements depending on which of
ten product types a person ordered? You could nest a lot of If...End If
blocks, but it would be confusing. Luckily, Access provides a better way.

A Select Case block of code is one that performs a particular set of instruc-
tions depending on some value. Typically, the value is stored in a variable or
field in a table, and is a number that represents some previously made selec-
tion. The basic syntax of a Select Case block of code looks like this:

Select Case value
[Case possibleValue [To possibleValue]

[statements]]
[Case possibleValue [To possibleValue]

[statements]]...
[Case Else

[statements]]
End Select

where value is some value, like a number, and possibleValue is any value
that could match the value. You can have any number of Case
possibleValue statements between the Select Case and End Select
statements. Optionally, you can include a Case Else statement, which
specifies statements that execute only if none of the preceding Case
possibleValue statements prove True.

Each Case statement can have any number of statements beneath it. When
the code executes, only those statements after the Case statement that
match the value at the top of the block execute. Figure 3-4 shows the idea.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 627

Making Decisions in VBA Code628

As an example, suppose you create a custom option group named WhereTo
and a command button named OKButton on a form like the one in Figure
3-5. When the user chooses an option and clicks OK, you want to have the
appropriate form open.

In the class module for that form, a sub procedure named OKButton_Click()
executes whenever someone clicks OK. The sub procedure, as shown in
Figure 3-6, opens a form, exits Access, or does nothing, depending on what’s
selected in the WhereTo option group.

Option group named WhereTo

Button named OKButton

Figure 3-5:
Option
group and
button on
a form.

If value equals possibleValue1 do these

If value equals possibleValue2 do these

If value equals no possibleValue above do these

These executed no matter what

Figure 3-4:
A Select
Case...
End
Select
block.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 628

Book VIII
Chapter 3

W
riting Sm

arter
Code

Making Decisions in VBA Code 629

The OKButton_Click() procedure does its job this way: When called, the
following statement executes first:

Select Case Me!WhereTo.Value

This statement uses the Me!WhereTo.Value expression to refer to the
value of the WhereTo option group on the form. The word Me! is used
mainly in class modules to refer to the form or report to which the class
module is attached. Me!WhereTo.Value is a number between 1 and 5 when
the code executes. If no option is selected, Me!WhereTo.Value equals
Null. In that case, the code after the Case Else statement executes.

If you omit the Case Else statement from the sample code, no code within
the Select Case...End Case block executes when Me!WhereTo.Value
contains something other than a number from 1 to 5. Execution still contin-
ues normally, however, at the first line after the End Case statement.

The optional To keyword of the Case statement can be used to specify a
range of values to compare against. In the following code, statements after
Case 1 To 9 execute only if SomeNumber contains a value from 1 to 9.
Statements after Case 10 To 99 execute only if SomeNumber contains a
value from 100 to 999, and so forth.

Select Case SomeNumber
Case 1 to 9

Statements for when SomeNumber is between 1 and 9
Case 10 to 99

Statements for when SomeNumber is between 10 and 99
Case 100 to 999

Statements for when SomeNumber is between 100 and 999
End Select

Figure 3-6:
Sub
procedure
to handle
OKButton
_click().

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 629

Executing the Same Code Repeatedly630

Executing the Same Code Repeatedly
Occasionally, a situation occurs where you want to execute one or more VBA
statements multiple times. Say you write some VBA statements that need to
operate on each record in a table, and there are 1,000 records in the table.
You have two choices: Write each set of statements 1,000 times, or create a
loop that repeats the one set of statements 1,000 times. Needless to say,
typing the statements once rather than 1,000 times saves you a lot of time.
A loop is your best bet.

Using Do...Loop to create a loop
The Do...Loop block is one method of setting up a loop in code to execute
statements repeatedly. Two syntaxes for using Do...Loop exist. The first
syntax evaluates the condition of the loop, as the following shows:

Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]

Loop

The second syntax provides the option of defining the condition at the
bottom of the loop, using this syntax:

Do
[statements]
[Exit Do]
[statements]

Loop [{While | Until} condition]

As an example of the first syntax, the code in the following Do Until loop
executes once for each record in a recordset named rst. (A recordset, as
discussed in Chapter 4 of this minibook, is the VBA equivalent of a table in
Access.)

‘Example assumes recordset named rst already exists.
rst.MoveFirst
Do Until rst.EOF()

Debug.Print rst.Fields(“Product Name”)
rst.MoveNext

Loop

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 630

Book VIII
Chapter 3

W
riting Sm

arter
Code

Executing the Same Code Repeatedly 631

How the loop works is as follows: The rst.MoveFirst statement moves the
cursor to the first record in the table. At that point, EOF() (which stands for
End Of File) is False because EOF() means “past the last record in the
table.” Because the cursor is at the first record, EOF() is False.

Within the loop, the rst.MoveNext statement moves the cursor to the next
record in the table. But EOF() remains False until rst.MoveNext executes
a sufficient number of times to have visited every record in the table. After
visiting the last record, rst.MoveNext moves the cursor to the end of the
file — past the last record. When the cursor is past the last record, EOF()
becomes True, and the loop doesn’t repeat anymore. Instead, Access
resumes executing your code normally at the first statement after the Loop
statement.

Using the alternative syntax, where you define the condition at the bottom,
rather than at the top of the loop, you can construct that same sort of loop
as follows:

‘Example assumes recordset named rst already exists.
rst.MoveFirst
Do

Debug.Print rst.Fields(“Product Name”)
rst.MoveNext

Loop Until rst.EOF()

You’ll notice one subtle difference between setting the loop condition at the
top of the loop rather than at the bottom of the loop. Access checks the con-
dition before the loop executes for the first time (and each time thereafter).
When you set the condition at the top of the loop, none of the statements in
the loop may execute. Forgetting about recordsets and tables for the
moment, consider the following more generic example:

Counter = 101
Do While Counter < 100

Counter = Counter +1
Loop
‘Statements below the loop.

Because Counter already has a value of 101 when the Do While Counter
< 100 statement executes, the looping condition is False right off the bat.
Thus, everything between the Do While and Loop statements is skipped
over completely, and code execution resumes at the statements after the
loop.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 631

Executing the Same Code Repeatedly632

In the following code, we move the looping condition, While Counter <
100, to the bottom of the loop:

Counter = 101
Do

Counter = Counter +1
Loop While Counter < 100
‘Statements below the loop.

In the preceding loop, Counter receives a value of 101. The Do statement
doesn’t specify a condition for starting the loop, so the Counter =
Counter + 1 statement within the loop executes. The Loop While
Counter < 100 condition then proves False (because Counter = 102
by then), so code execution continues at the statements after the Loop
statement at the bottom of the loop.

In short, when you define the condition for the loop at the top of the loop, the
code within the loop may not execute at all. But if you define the condition at
the bottom of the loop, the code within the loop executes at least once.

Using While...Wend to create a loop
The While...Wend loop is similar to Do...Loop, but it uses the simpler
(and less flexible) syntax shown in the following code:

While condition
[statements]

Wend

where condition is an expression that results in a True or False value,
and statements are any number of VBA statements, all of which execute
with each pass through the loop.

The condition is evaluated at the top of the loop. If the condition proves
True, all lines within the loop execute (down to the Wend statement) and
then the condition at the top of the loop is evaluated again. If the condition
proves False, all statements within the loop are ignored, and processing
continues at the first line after the Wend statement.

Using For...Next to create a loop
When you want to create a loop that keeps track of how many times the loop
repeats, you can use the For...Next block of statements. The syntax for a
For...Next loop is as follows:

For counter = start To end [Step step]
[statements]
[Exit For]

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 632

Book VIII
Chapter 3

W
riting Sm

arter
Code

Executing the Same Code Repeatedly 633

[statements]
Next [counter]
where

✦ counter is any name you want to give to the variable that keeps track
of passes through the loop.

✦ start is a number that indicates where the loop should start counting.

✦ end is a number that indicates when the loop should end.

✦ step is optional and indicates how much to increment or decrement
counter with each pass through the loop. If omitted, counter incre-
ments by 1 with each pass through the loop.

✦ statements are any number of VBA statements that execute with each
pass through the loop.

Figure 3-7 shows a simple example of a For...Next loop within a sub pro-
cedure. This loop starts at 1 and increments the Counter variable by 1 with
each pass through the loop. The loop continues until Counter reaches a
value of 10, at which point the loop is done and processing continues at the
first line after the Next statement. Within the loop, the Debug.Print state-
ment simply prints the current value of the Counter variable to the
Immediate window.

The results of testing the procedure in the Immediate window are shown in
Figure 3-7. As you can see, the Counter value displays once with each pass
through the loop. Then processing continues at the lines that use
Debug.Print to display a blank line and the words “All done”.

Figure 3-7:
A simple
For...
Next loop
in a sub
procedure.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 633

Executing the Same Code Repeatedly634

Note that if you change the loop so that it counts from 2 to 10 and adds 2
(rather than 1) to Counter with each pass through the loop, the code looks
like the following:

For counter = 2 to 10 Step 2
Debug.Print counter

Next

Running the preceding loop displays the following in the Immediate window:

2
4
6
8
10
All done

Looping through an array
You can use the Counter variable for a For...Next loop as the subscript
for elements in an array. You can use the LBound() (lower boundary) and
UBound() (upper boundary) functions to automatically return the lowest
and highest subscripts in the array. You can use those values as the start
and end values in the For... statement. The following code creates an
array of four elements and assigns a value — a color name — to each ele-
ment in the array. The For...Next loop that follows the array prints the
contents of each array element by using the Counter value as the subscript
for each pass through the loop:

Sub LoopArrayDemo()
‘Declare and variable and an array.
Dim counter As Integer
Dim Colors(3) As String

‘Fill the array.
Colors(0) = “Black”
Colors(1) = “Red”
Colors(2) = “Green”
Colors(3) = “Blue”

‘Create a loop that shows array contents.
For counter = LBound(Colors) To UBound(Colors)

Debug.Print Colors(counter)
Next

End Sub

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 634

Book VIII
Chapter 3

W
riting Sm

arter
Code

Executing the Same Code Repeatedly 635

In the For statement, LBound(Colors) and UBound(Colors) auto-
matically fill in the lowest and highest subscript numbers. On the first
pass through the loop, the Debug.Print statement prints the contents
of Colors(0). On the second pass through the loop, Debug.Print dis-
plays the contents of Colors(1), and so forth, until all array elements
print.

Analyzing each character in a string
You can also use a For...Next loop to look at each character in a string.
First, be aware that these two built-in Access functions help with the loop:

✦ Len(string): Returns the length of a string in number of characters

✦ Mid(string,start,length): Returns a portion of string starting at
character start that’s length characters long

As an example, if string is “Hello World”, Len(string) returns 11
because there are 11 characters in “Hello World” (counting the blank
space that separates the two words). The expression Mid(string,7,3)
returns a substring of string that starts at the seventh character and is
three characters in length. In this case, that would be Wor (because W is
the seventh character, and the returned substring is three characters in
length).

Text-handling functions are described in more detail in Book III, Chapter 3.

To create a loop that looks at each character in a string, one at a time,
start the loop at 1 and end it at Len(string). Within the loop, use
Mid(string,counter,1) to isolate the single character at the position
indicated by Counter. A simple loop that just prints each character from
the string names strFull in the Immediate window looks like this:

Sub LookAtEachCharacter()
‘Declare a couple of string variables.
Dim strFull As String, thisChar As String
‘Give strFull a value.
strFull = “Hello World”
‘Now isolate and display each character from strFull.
For Counter = 1 to Len(StrFull)

thisChar = Mid(strFull,Counter,1)
Debug.Print thisChar

Next
End Sub

The For Each...Next loop is a slight variation on the For...Next loop,
and is discussed in Chapter 4 of this minibook.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 635

Using Custom Functions636

Using Custom Functions
Access has many built-in functions that you can use in expressions. One
of the beauties of VBA is that you can create your own custom functions.
They’re commonly referred to as user-defined functions or UDFs. After you’ve
created such a function in a standard module, you can use it throughout
your database as you would a built-in function.

To illustrate, we’ll show you a function that converts numbers like 123.45
to words like One Hundred Twenty Three and 45/100. It’s handy for
printing checks. This function also requires using a little bit of everything
that VBA has to offer — variables, arrays, loops, and decision-making. So it
works as an example of how programmers combine all aspects of program-
ming languages to come up with solutions to problems. Comments through-
out the function explain what’s going on, but it’s not important to
understand everything about how it works. Rather, it’s just an example of
what a large custom function might look like.

To create a custom function that’s accessible to all objects in a database,
you have to put the function in a standard module. The listing below shows
the NumWord() custom function used to convert numbers to words as it
would appear in a module under the words Option Compare Database in
the module:

‘Declare variables for NumWord to use
Dim English As String, strNum As String
Dim Chunk As String, Pennies As String
Dim Hundreds As Integer, Tens As Integer
Dim Ones As Integer, LoopCount As Integer
Dim StartVal As Integer, TensDone As Boolean
Dim EngNum(90) As String

‘NumWord converts a number to its words,
‘Useful for printing checks.
Function NumWord(AmountPassed As Currency) As String

‘Just bail out if no valid check amount passed.
If AmountPassed <= 0 Then

NumWord = “Void”
Exit Function

End If

‘Set up the array of words for numbers.
EngNum(0) = “”
EngNum(1) = “One”
EngNum(2) = “Two”
EngNum(3) = “Three”
EngNum(4) = “Four”
EngNum(5) = “Five”
EngNum(6) = “Six”

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 636

Book VIII
Chapter 3

W
riting Sm

arter
Code

Using Custom Functions 637

EngNum(7) = “Seven”
EngNum(8) = “Eight”
EngNum(9) = “Nine”
EngNum(10) = “Ten”
EngNum(11) = “Eleven”
EngNum(12) = “Twelve”
EngNum(13) = “Thirteen”
EngNum(14) = “Fourteen”
EngNum(15) = “Fifteen”
EngNum(16) = “Sixteen”
EngNum(17) = “Seventeen”
EngNum(18) = “Eighteen”
EngNum(19) = “Nineteen”
EngNum(20) = “Twenty”
EngNum(30) = “Thirty”
EngNum(40) = “Forty”
EngNum(50) = “Fifty”
EngNum(60) = “Sixty”
EngNum(70) = “Seventy”
EngNum(80) = “Eighty”
EngNum(90) = “Ninety”

‘** Copy amount passed to a string with leading zeroes.
strNum = Format(AmountPassed, “000000000.00”)

‘** Put last two digits in Pennies variable for later use.
Pennies = Mid(strNum, 11, 2)

‘Set starting values for some local variables.
English = “”
LoopCount = 1
StartVal = 1

‘** Now do each 3-digit section of number.
Do While LoopCount <= 3

Chunk = Mid(strNum, StartVal, 3) ‘3-digit chunk
Hundreds = Val(Mid(Chunk, 1, 1)) ‘Hundreds portion
Tens = Val(Mid(Chunk, 2, 2)) ‘Tens portion
Ones = Val(Mid(Chunk, 3, 1)) ‘Ones portion

‘** Do the hundreds portion of 3-digit number
If Val(Chunk) > 99 Then

English = English & EngNum(Hundreds) & “ Hundred “
End If

‘** Do the tens & ones portion of 3-digit number
TensDone = False
‘** Is it less than 10?
If Tens < 10 Then

English = English & “ “ & EngNum(Ones)
TensDone = True

End If

‘** Is it a teen?
If (Tens >= 11 And Tens <= 19) Then

English = English & EngNum(Tens)
TensDone = True

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 637

Using Custom Functions638

End If
‘** Is it evenly divisible by 10?
If (Tens / 10) = Int(Tens / 10) Then

English = English & EngNum(Tens)
TensDone = True

End If
‘** Or is it none of the above?
If Not TensDone Then

English = English & EngNum((Int(Tens / 10)) * 10)
English = English & “ “ & EngNum(Ones)

End If

‘** Add the word “Million” if necessary
If AmountPassed > 999999.99 And LoopCount = 1 Then

English = English + “ Million “
End If

‘** Add the word “Thousand” if necessary
If AmountPassed > 999.99 And LoopCount = 2 Then

English = English + “ Thousand “
End If

‘** Do pass through next three digits
LoopCount = LoopCount + 1
StartVal = StartVal + 3

Loop

‘** Done: Return English with Pennies/100 tacked on
NumWord = Trim(English) & “ and “ & Pennies & “/100”

End Function

You can test any custom function you create right at the Immediate window.
For example, to test the NumWord() function, you’d use a question mark fol-
lowed by a space and then NumWord with some number you want to convert
to words. For example, suppose you type the following and press Enter:

? NumWord(123456.78)

NumWord() does its thing and spits back the result:

One Hundred Twenty Three Thousand Four Hundred Fifty Six and 78/100

Of course, in real life, you’d most likely use NumWord() in a database that
has the ability to print checks. For example, suppose that in the same data-
base as the NumWord() function, you have a table like the one in Figure 3-8
that contains information for writing checks.

Figure 3-8:
Table of
data for
printing
checks.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 638

Book VIII
Chapter 3

W
riting Sm

arter
Code

Using Custom Functions 639

Next you’d need to create a report format that can print on pre-printed checks.
Most of the controls on that report come straight from the table, except that
you need one calculated control to print the check amount in words. That cal-
culated control uses the expression =NumWord(CheckAmount). In other
words, it uses the NumWord() function in the same way you use a built-in
Access function. Figure 3-9 shows what that report design looks like.

Of course, the tricky thing is getting all the boxes on the report format to
line up correctly with areas on the pre-printed checks, but that’s something
you do in the report design. VBA is out of the loop on that part of the deal.
The NumWord() function just saves you from having to hand-write the check
amounts in words on all of the printed checks.

Figure 3-9:
Report
format for
printing
checks.

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 639

Book VIII: Programming in VBA640

40_036494 bk08ch03.qxp 11/17/06 8:36 AM Page 640

Chapter 4: Controlling
Forms with VBA

In This Chapter
� Displaying — and responding to — custom messages

� Opening a form with the DoCmd object

� Changing form controls with VBA

� Using objects and collections in code

When you create a database for other people to use, making things
as automatic as possible is to your advantage. The more automated

your overall database, the less likely users — the people who actually use
the database — will make mistakes (even if the user is you!). This chapter
explores some techniques for using Visual Basic for Applications (VBA) to
display custom messages to users, to automatically open and close forms,
to change form controls, and more.

Displaying Custom Messages
In your day-to-day work with your computer, programs occasionally pop
little messages on-screen to ask you questions, such as, “Are you sure
you want to delete . . .?” You can then click the Yes or OK button
to delete, or click the No or Cancel button to change your mind. You can add
similar custom messages to your database.

Displaying a message box
As we discuss in Chapter 2 of this minibook, VBA can also display custom
messages. By using a variable and the MsgBox() function, you can display a
question and then have VBA perform some task based on the user’s answer
to that question. The syntax for creating such an interactive message box is

Dim myVar as Byte
myVar = MsgBox(prompt[, buttons] [, title])

where the Dim statement defines a variable as the Byte data type, a number
in the range of 0 to 255. myVar is any variable name of your choosing, prompt
is the text of the message, and title is the text to appear in the title bar of

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 641

Displaying Custom Messages642

the message. The buttons argument is a constant, or sum of constants, that
specify the buttons and icons to show in the box, as summarized in Table 4-1.

Table 4-1 Constants Used for the MsgBox Buttons Argument
Constant Description

vbOKOnly Display OK button only

vbOKCancel Display OK and Cancel buttons

vbAbortRetryIgnore Display Abort, Retry, and Ignore buttons

vbYesNoCancel Display Yes, No, and Cancel buttons

vbYesNo Display Yes and No buttons

vbRetryCancel Display Retry and Cancel buttons

vbCritical Display Critical icon

vbQuestion Display Question icon

vbExclamation Display Warning icon

vbInformation Display Information icon

For example, the following statement shows a message box that contains a
Question icon and Yes and No buttons. Figure 4-1 shows the message box
that the code displays when executed.

Dim myVar as Byte
myVar = MsgBox(“Are you sure?”,vbYesNo+vbQuestion)

When someone clicks a button in the message box, the variable (myVar in
this example) receives a value. That value tells you which button the person
clicked, as summarized in Table 4-2.

Table 4-2 Values That MsgBox Passes to the Variable
Button Clicked Variable Receives Numeric Value

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Figure 4-1:
Sample
MsgBox
message.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 642

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Displaying Custom Messages 643

Button Clicked Variable Receives Numeric Value

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

Responding to what the user clicks
By using decision-making code, you can then have your VBA procedure do
something when someone clicks a button on your message box, based on
the contents of the myVar variable. For example, the sample message box
displays a Yes button and a No button. If the user clicks the Yes button,
myVar contains vbYes (or 6). If the user clicks the No button, myVar con-
tains vbNo (or 7). The skeletal structure of the code that decides what to
do — based on the button clicked (where Do these statements . . .
can be any number of VBA statements) — is the following:

‘Show a message box with Yes and No buttons.
Dim myVar as Byte
myVar = MsgBox(“Are you sure?”,vbYesNo+vbQuestion)
‘Decide what to do next based on button clicked in box.
If myVar = vbYes Then

‘Do these statements if Yes
Else

‘Do these statements if No
End If

You can use either the constant or the numeric value to refer to the contents
of the myVar variable. The following code works exactly the same as the pre-
ceding code:

‘Show a message box with Yes and No buttons.
Dim myVar as Byte
myVar = MsgBox(“Are you sure?”,vbYesNo+vbQuestion)
‘Decide what to do next based on button clicked in box.
If myVar = 6 Then

‘Do these statements if Yes
Else

‘Do these statements if No
End If

If you need three buttons, you can use a Select Case statement to
choose what to do. For example, the following code displays a message
box with Yes, No, and Cancel buttons. The Select Case block of code then
decides what to do based on the button that was clicked. (Again, Do these
statements . . . represents any number of VBA statements.)

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 643

Opening Forms with DoCmd644

‘Show a message box with Yes, No, and Cancel buttons.
Dim myVar as Byte
myVar = MsgBox(“Overwrite?”,vbYesNoCancel+vbQuestion)
‘Decide what to do next based on button clicked in box.
Select Case myVar

Case vbYes
‘Do these statements if Yes clicked

Case vbNo
‘Do these statements if No clicked

Case vbCancel
‘Do these statements if Cancel clicked

End Select

Message boxes are handy for presenting short little messages on-screen.
Often, though, you want your code to open an entire form.

Opening Forms with DoCmd
Although you can access countless objects in VBA, the DoCmd object (pro-
nounced do command) is one of the easiest and handiest for manipulating
Access objects. The DoCmd object gives you access to all the commands —
including options on all menus, toolbars, and shortcut menus — found in
the Access program window. The basic syntax of a DoCmd statement is as
follows:

DoCmd.methodName(arglist)

where methodName is any method that’s supported by the DoCmd object,
and arglist represents required and optional arguments that a given
method accepts.

Like with any VBA keyword, as soon as you type DoCmd into the Code
window, a menu of acceptable words that you can type next appears, as
shown in Figure 4-2. Use the scroll bar at the right side of the list to see all
your options.

Figure 4-2:
Sample
drop-down
menu that
appears as
you type in
VBA.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 644

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Opening Forms with DoCmd 645

Of course, you can also use the VBA Help system to find more information
on the DoCmd object and its methods. For instance, type DoCmd in the Type a
question for help box in the VBA editor. Then click the DoCmd Object
option to get help with that object.

Umpteen ways to open a form
Although many methods are available to choose from in the DoCmd object, the
OpenForm method provides a good example. The syntax of the OpenForm
method is

DoCmd.OpenForm FormName, [View], [FilterName],
[WhereCondition], [DataMode], [WindowMode], [OpenArgs]

where

✦ FormName represents the name of the form that you want to open.

✦ View represents the view in which you want to open the form using the
built-in constants:

• acNormal: Form view. This view is used if you omit the View argu-
ment in the statement.

• acDesign: Design view.

• acFormDS: Datasheet view.

• acFormPivotChart: PivotChart view.

• acFormPivotTable: PivotTable view.

• acPreview: Print Preview.

✦ FilterName specifies the name of a query within the current database,
which limits records displayed by the form. If omitted, no query filter is
applied.

✦ WhereCondition represents an expression, enclosed in quotation
marks, that specifies records to include. If omitted, all records are avail-
able. For example, entering a WhereCondition such as “[State] =
‘CA’ “ displays only records that have CA in the State field.

✦ DataMode specifies the data entry mode in which the form opens, using
one of the following constants:

• acFormatPropertySettings opens the form in its default
view as specified in the form’s AllowEdits, AllowDeletions,
AllowAdditions, and DataEntry properties. If you don’t specify a
DataMode argument in the statement, this setting is used by default.

• acFormAdd: Opens the form with the ability to add new records
enabled and the cursor in a new, empty record

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 645

Opening Forms with DoCmd646

• acFormEdit: Opens the form with the ability to edit records con-
tained within the table

• acFormReadOnly: Opens the form in read-only mode, so the user
can view, but not change, the data

✦ WindowMode specifies the appearance of the form window upon open-
ing, using any of the following options:

• acWindowNormal: Opens the form in its normal view. If you omit
this argument, acWindowNormal is the setting that’s applied
automatically.

• acDialog: Opens the form by using a fixed-size, dialog-box-style
border.

• acHidden: Opens the form so that the code can have access to the
form’s controls and data but doesn’t make the form visible on-screen.

• acIcon: Opens the form minimized to an icon in the Access program
window.

✦ OpenArgs can be used to pass data to the form’s class module, where
other code can use it.

When you type a DoCmd.OpenForm statement into the Code window, the
Quick Info syntax chart keeps you posted on which argument you’re cur-
rently typing (by showing that argument in boldface). When you get to an
argument that requires a constant, the Code window displays a drop-down
list of acceptable constants. You can just double-click, rather than type, the
constant that you want to use.

Look at some examples of using the OpenForm method of the DoCmd object.
The following line opens a form named Products Form:

DoCmd.OpenForm “Products Form”

Macros and the DoCmd object
Access macros (Book VI) use the DoCmd
object to carry out most of their actions. Often,
you can use macros to write a series of DoCmd
statements without the complexities of manu-
ally typing each statement by hand. Create a
macro to do whatever you want your code to
do. Then convert the macro to VBA code, as we

discuss in Chapter 1 of this minibook. When you
open the converted macro in VBA Editor, you
see that most, if not all, of its actions are con-
verted to DoCmd statements. You can then cut
and paste those statements into some other
procedure that you’re writing. Or, just add any
necessary code to the converted macro.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 646

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Opening Forms with DoCmd 647

Because no optional arguments are specified, no filter is applied, and all
other optional settings take on their default values. Opening the form by
double-clicking its name in the Database window accomplishes the same
thing.

The following statement opens a form named Products Form, displaying
only those records where the Selling Price field contains a number
greater than 100:

DoCmd.OpenForm “Products Form”, , , “[Selling Price] > 100”

The following statement opens a form named Sales Tax Calcs with the
Window Mode property set to the dialog box style:

DoCmd.OpenForm “Sales Tax Calcs”, , , , , acDialog

As you can see, the DoCmd object offers a lot of flexibility in specifying how
you want to open a form. The same is true of many other methods of the
DoCmd object. These few examples don’t even come close to showing all the
variations. The important thing is knowing that the DoCmd object exists and
that you can perform many Access actions on objects within your database.

Closing a form with DoCmd
Just like you can open a form with DoCmd, you can also close it. The syntax
to close an object using DoCmd is

DoCmd.Close(ObjectType, ObjectName, Save)

Each argument in the syntax represents the following:

✦ ObjectType: The type of object that you want to close expressed using
one of the available constants, such as acForm, acReport, acTable,
acQuery

✦ ObjectName: A string expression that identifies an object currently
open

✦ Save: One of the following constants:

• acSaveNo: Closes the object without saving any changes

• acSavePrompt: (Default) Displays the standard “Do you want to
save . . .” message so the user can choose whether to save

• acSaveYes: Saves all changes to the form and then closes it

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 647

Changing Form Controls with VBA648

If you want to close a form, from code, and save the user’s changes without
prompting, use the following syntax:

DoCmd.Close acForm, formName, acSaveYes

where formName is the name of the form that you want to close. If you want
a line of code to close a form named Products Form, the syntax is

DoCmd.Close acForm, “Products Form”, acSaveYes

Changing Form Controls with VBA
When a form is open, you can use VBA code to change the contents and
even the appearance of the form — from the big picture down to the individ-
ual controls on the form. Suppose you have a form that includes a control
for choosing a payment method. When the user chooses a payment method,
you want to enable or disable other controls on the form based on the
selected payment method. Or, you might want to auto-fill some other con-
trols on the form. You might even want to make some controls visible or
invisible, depending on which payment method the user selected.

Figure 4-3 shows a few examples. When the user selects Cash, the Paid
field is marked True and all other fields are disabled. When the user selects
Credit Card, the fields for entering credit card information are enabled.
When the user selects Purchase Order, the P.O. Number control is
enabled and the Paid check box is emptied.

Within VBA, use the following syntax to change a control’s property:

ControlName.PropertyName = Value

where ControlName is the complete name of a control on an open form,
PropertyName is the name of the property that you want to change, and
Value is the new value for the property. A dot separates the control name
from the property name. The complete name means that the name has to
contain both the name of the form and the name of the control. However, in
a class module, you can use the keyword Me to stand for the form name. The
keyword Me means “the form to which this class module is attached.”

Some cool control properties
To make a control invisible, use the following syntax:

Me.ControlName.Visible = False

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 648

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Changing Form Controls with VBA 649

To make the control visible, use the syntax

Me.ControlName.Visible = True

To disable a control so that it’s dimmed and doesn’t respond to mouse clicks
or the keyboard, set the control’s Enabled property to a False value as
below:

Me.ControlName.Enabled = False

To set the control back to its normal Enabled status, use this syntax:

Me.ContolName.Enabled = True

To change the value (contents) of a control, set the control’s Value property
equal to the value you want to put in that control. Here’s the syntax:

Me.ControlName.Value = desiredValue

Cash selected

Credit Card selected

Purchase Order selected

Figure 4-3:
Enabling/
disabling
controls
with VBA.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 649

Changing Form Controls with VBA650

The desiredValue part has to be an appropriate data type for the control.
For example, suppose there’s a control named Paid on the form that’s bound
to a Yes/No field in the underlying table. The statement below makes that
control True, thereby putting a check mark in its check box:

Me.Paid.Value = True

To clear that check mark, use

Me.Paid.Value = False

To insert new text into a text box, use the standard syntax but enclose the
new text in quotation marks. For example, if the current form has a Text
Box control named Product Name that’s bound to a Text field, the state-
ment below puts the text in quotation marks into that control:

Me.ProductName.Value = “9-Passenger Lear Jet”

To increase or decrease a value in a numeric field, set the Value property of
its control to an expression that does the appropriate math. Suppose that a
form contains a UnitPrice control that’s a Currency field. The following
statement increases that control’s current value by 10 percent:

Me.UnitPrice.Value = 1.10 * Me.UnitPrice.Value

Controlling properties example
Take a look now at how you might use the above techniques to control what
happens to controls in the payment method example shown near the start of

Why not just show everything?
In case you’re wondering why we don’t show
all the methods of the DoCmd object, or all the
objects, properties, and methods available in all
the object libraries, the truth of the matter is
this: It’s too many words. No, we’re not too lazy
to type that many words. Rather, there aren’t
enough pages in this entire book to fit that many
words.

The sheer quantity of information makes remem-
bering every detail of every VBA statement and

object nearly impossible, so it wouldn’t do much
good to print that information here anyway. Even
professional programmers spend a lot of time
looking up the syntax of keywords and objects
in the Help system (or the Object Browser). The
sooner you become fluent in using the VBA
Editor’s Help or the Object Browser (or both), the
better off you are. See Chapters 1 and 2 of this
minibook for more information on the Object
Browser and VBA Help.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 650

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Changing Form Controls with VBA 651

this chapter. Figure 4-4 shows those controls on a form, in Design view, so
that you can see the actual control names. The Label control named
ExpireLabel doesn’t show a name, so we’ve pointed that one out. We’ve
also selected that control — and are showing its Property sheet — so you
can see its Name property and some of the other properties it offers. The
Property sheet for a control is how you find out exactly what properties the
control offers.

The Payment Method control in the example is named Payment Method.
It’s a combo box that allows the user to choose one of four possible payment
methods: Cash, Check, Credit Card, or Money Order. As soon as the user
makes a selection from that combo box, we want some VBA code to change
some other controls. In particular, we want it to disable controls that aren’t
relevant to the selected payment method. We can also have it mark the Paid
field as False when Purchase Order is selected. And just as an example,
we’ll have it hide the ExpireLabel control when the user selects anything
except Credit Card.

So the first question is, when should this custom VBA code be executed?
The After Update event is the best event for this situation because that

Selected control
(ExpireLabel)

Properties of selected control

Figure 4-4:
Properties
of a control
in Design
view form.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 651

Changing Form Controls with VBA652

event occurs after a new value is selected, and any validation criteria for the
field have already been met. So in this case, you click the Payment Method
control (in Design view) to select it. If the Property sheet isn’t already open,
right-click that control and choose Properties. Click the Event tab in the
Property sheet. Click the After Update event, click its Build button, and
then choose the Code Builder from the dialog box that appears, as illus-
trated in Figure 4-5.

After you click Code Builder and OK in the Choose Builder dialog box, the
class module for the form opens. The first and last lines of the procedure are
already typed in for you. In this example, the lines look like this in the
module:

Private Sub Payment_Method_AfterUpdate()
End Sub

When writing the procedure, be sure to put all the lines between the
Private Sub and End Sub statements. We typed in the necessary code
in the following block. Just to make things even fancier, we threw in a few
DoCmd.GoToControl statements to position the cursor to the next control
that the user would likely type in next. For example, the statement DoCmd.
GoToControl “CCType” means “move the blinking cursor into the control
named CCType.”

Private Sub Payment_Method_AfterUpdate()
‘First, disable controls and hide the label,
‘to create a simple starting point.

Event tabSelected control Build...

Code Builder

Figure 4-5:
Manually
creating an
event
procedure.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 652

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Changing Form Controls with VBA 653

Me.CheckNo.Enabled = False
Me.PONumber.Enabled = False
Me.CCType.Enabled = False
Me.CCNumber.Enabled = False
Me.CCExpireMonth.Enabled = False
Me.CCExpireYear.Enabled = False
Me.CCAuthorization.Enabled = False
Me.ExpireLabel.Visible = False

‘Now selectively show and enable controls,
‘and fill the Paid field, based on the
‘contents of the Payment Method control
Select Case Me.[Payment Method].Value

‘If selection is Cash...
Case “Cash”

Me.Paid.Value = True

‘If selection is Check...
Case “Check”

Me.CheckNo.Enabled = True
Me.Paid.Value = True
‘Move cursor to CheckNo control
DoCmd.GoToControl “CheckNo”

‘If selection is Credit Card...
Case “Credit Card”

Me.CCType.Enabled = True
Me.CCNumber.Enabled = True
Me.CCExpireMonth.Enabled = True
Me.CCExpireYear.Enabled = True
Me.CCAuthorization.Enabled = True
Me.ExpireLabel.Visible = True
Me.Paid.Value = True
‘Move cursor to CCType control
DoCmd.GoToControl “CCType”

‘If selection is Purchase Order...
Case “Purchase Order”

Me.PONumber.Enabled = True
Me.Paid.Value = False
‘Move cursor to PONumber control
DoCmd.GoToControl “PONumber”

End Select
End Sub

The code and comments should be fairly easy to read. For starters, the sub
procedure name, Payment_Method_AfterUpdate(), tells you that this

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 653

Changing Form Controls with VBA654

code executes after a user makes a selection from the Payment Method
control, and Access accepts that change.

The first lines under the Sub statement disable most controls and hide the
expiration label, just so that we know the status of each control before the
Select Case statement executes.

The Select Case Me.[Payment Method].Value statement uses the
value (contents) of the Payment Method control to make a decision about
which controls to enable and make visible. When the Cash option is selected,
only this code is executed, filling the Paid check box with a check mark:

Case “Cash”
Me.Paid.Value = True

When the Check option is selected, the following lines execute to enable the
CheckNo control, place a check mark in the Paid check box, and move the
cursor to the CheckNo control:

Looks can be deceiving
When you create a lookup field, what you see
in that field may not match what Access has
actually stored in the field. For example, you
may have a ContactID field that shows a
customer name in the format Jones, Hank.
But Access actually stores that person’s
ContactID as a number (perhaps 39 or
whatever).

VBA sees what Access sees — the ContactID
number in the preceding example, not the
name. Any code that you write needs to take
that into consideration. To create an If state-
ment that makes a decision based on the con-
tents of the ContactID field, use something
like this:

If Me.ContactID.Value = 39

If you use the following statement instead, the
code either generates an error message or per-
haps doesn’t give the result that you think it
should:

If Me.ContactID.Value =
“Jones. Hank”

You can add a Debug.Print statement to
your code and run it from the Immediate
window to see what type of data is stored in a
control. For example:

Debug.Print
Me.ContactID,Value

displays the contents of the ContactID con-
trol. If that’s a number, you know that the
ContactID field in every record contains a
number.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 654

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Understanding Objects and Collections 655

Case “Check”
Me.CheckNo.Enabled = True
Me.Paid.Value = True
‘Move cursor to CheckNo control
DoCmd.GoToControl “CheckNo”

And so it goes, each Case statement modifying certain controls and position-
ing the cursor based on the current value of the Payment Method control.

After typing in the code, close the Code window and Visual Basic Editor to
return to your form. There you can save the form, open it in Form view, and
try out your code.

If you have difficulty with your own code, you may find some of the debug-
ging techniques described in Chapter 6 of this minibook useful for diagnos-
ing and fixing problems.

Understanding Objects and Collections
Working with controls on a form or report from within a class module is
greatly simplified by the Me keyword, which refers to the form or report to
which the class module is attached. Things become more complicated when
you write code in standard modules, where the keyword Me doesn’t refer to
anything because a standard module isn’t attached to any particular form or
report. The moment you step outside a class module, you have to think
more in terms of the object models.

As you (hopefully) know, just about everything you work with in Access is
an object — tables, queries, and forms are all objects. Some objects are very
much alike; tables are alike in that they all contain data. Forms are alike in
that they all present data from tables in a certain format. A group of like
objects forms a collection. For example, all the tables within your database
represent that database’s tables collection.

In some cases, a single object may be a collection as well. A single form is
one object in the collection of forms, but a single form is also a collection in
its own right — a collection of controls. Each control on a form is also an
object in its own right, but even a single control is a collection. A control has
lots of properties, as you can see on any control’s Property sheet in Design
view. Figure 4-6 shows how a collection is a bunch of objects that have some-
thing in common, and how any given object can also be a collection.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 655

Understanding Objects and Collections656

Properties, methods, and events
All objects have some combination of properties, methods, and events.
Objects in the real world as well as objects in Access have properties, meth-
ods, and events. You can describe a car in terms of its properties (make,
model, size, color, and so forth), methods (you drive a car), and events (you
press the brake pedal, which causes a series of actions that slow the car
down). But getting back to Access, we define those terms as follows:

✦ Property: A property of an object (or collection) is some characteristic
of that object, such as size, color, font, and so forth.

✦ Method: A method is something that you can do to the object. Every
form has an Open method and a Close method because you can open
and close forms. (The DoCmd object that we mention earlier in this chap-
ter provides access to the methods provided by most Access objects.)

✦ Event: An event is something that happens to an object. When you click
a button on a form, you trigger its On Click event (or Click event).

Virtually everything in Access is an object that has properties, methods, and
events. If you open a form in Design view, you can click any control to see its
properties in the Property sheet. If the Property sheet isn’t open, press
Alt+Enter or right-click a control and choose Properties.

Collection of Forms Collection of Controls Collection of Properties

Figure 4-6:
Collections
are
everywhere
in Access.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 656

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Understanding Objects and Collections 657

Many objects support methods. For example, if you right-click a form name
in the shutter bar, you see a shortcut menu like the one in Figure 4-7. Most of
the items you see on the shortcut menu are methods — things you can do to
the object.

Of course, when you’re working in VBA, the visual interactive tools that
Access offers — tools such as shortcut menus and Property sheets — aren’t
visible. In VBA, you write code to access collections, objects, properties,
methods, and events.

Referring to objects and collections
Manipulating an object through VBA code starts with a two-step process:

1. Declare an object variable (by using Dim) as the appropriate object or
collection type.

2. Set the object variable (by using the Set keyword) to a specific object
or collection within your database.

The syntax of the statements for performing those two steps looks like this:

Dim anyName As objectType
Set anyName = specificObject

where anyName is a variable name of your choosing, the objectType is one
of the keywords shown in the first column of Table 4-3, and
specificObject represents a specific named object.

Figure 4-7:
Form
methods.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 657

Understanding Objects and Collections658

Table 4-3 Common Types for Object Variables
Object Type Use to Declare

AccessObject Any type of Access object in AllForms, AllReports,
and other collections

Form A form

Report A report

Control A control on a form or report

Property A property of an object

RecordSet A group of records (see Chapter 5 of this minibook)

At the highest level of the object model, you can use the AllForms,
AllReports, and other collections contained within the CurrentProject
object to refer to any form or report — even forms and reports that aren’t
open. Each object in those collections has a general type called AccessObject.

For a detailed explanation of the CurrentProject object and the collec-
tions it supports, look up the CurrentProject object in the VBA Editor’s
Help and look at the CurrentProject Object link.

If you want to create a reference to a form named Products Form, in code,
and give that form a short variable name, like myForm, declare myForm as
an AccessObject. Then set that variable’s value to the form by using the
syntax Set myForm = CurrentProject.AllForms(“FormName”), as
the following shows:

Dim myForm As AccessObject
Set myForm = CurrentProject.AllForms(“Products Form”)

After the code runs, the variable named myForm refers to the form named
Products Form.

An example: Seeing whether a form is open
You can create a custom VBA function that uses a collection and an object
variable. You can prevent your code and macros from opening multiple
copies of a form. The name of this custom function is isOpen() and is
shown in Figure 4-8.

The isOpen() function is stored in a standard module, rather than a class
module, so you can access it freely from anywhere in your database.

You use the isOpen() custom function, just like you would a built-in func-
tion, by passing a form name to the function, as the following shows:

isOpen(“Products Form”)

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 658

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Understanding Objects and Collections 659

When called, the isOpen() function returns True if the specified form is
open or False if the specified form is closed. The first statement of the
isOpen() function is the following:

Function IsOpen(FormName As String) As Boolean

which defines the name of the function as isOpen, accepting a single string
value that is referred to as FormName within the procedure. This custom
function returns either True or False (a Boolean value).

The ByVal keyword, used in front of an argument name in a Sub or Function
statement, passes the value directly instead of as a reference to the object.
ByVal, although optional, can speed the processing.

Figure 4-8:
The
IsOpen()
function
determines
if a form is
open.

Naming conventions for object variables
In this chapter, we use the letters my at the
start of variable names, just to provide some
consistency. Some programmers, however,
follow certain naming conventions, replacing
the letters my with a tag that represents the
object type that the variable refers to. If an
object variable refers to an AccessObject,
programmers may use obj as the first letters
of an object variable name, as in Dim
objForm as AccessObject. Some may

use ctl as the first letters of an object vari-
able that refers to a control, as in Dim
ctlProductID as Control.

Naming conventions are especially useful in
large projects where many different program-
mers work with code. They help identify the
object type each variable refers to. However,
naming conventions are also entirely optional.
Don’t feel that you must use them in your own
code.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 659

Understanding Objects and Collections660

The next line sets the initial value to be returned by the function to False.
Later code in the procedure turns that to True if the form is open in Form or
Datasheet view:

isOpen = False

The next line in the code declares an object variable named myForm and sets
its type to AccessObject:

Dim myForm As AccessObject

The next line then makes the myForm object variable refer to the specific
form, based on the name that passes to the function:

Set myForm = CurrentProject.AllForms(strFormName)

If you call the function by using isOpen(“Products Form”), the variable
name myForm refers to the Products Form after the line is executed.

The next statement uses the built-in IsLoaded property to determine
whether the form is open. If the form is open, isLoaded returns True. If the
form is closed, isLoaded returns False:

If myForm.IsLoaded Then

If (and only if) the form is indeed open, the next statement uses the
CurrentView property to see whether the form is currently open
in Design view. (CurrentView is a property of all form objects;
acCurViewDesign is a constant that means “currently open in
Design view”):

If myForm.CurrentView <> acCurViewDesign Then

If (and only if) the form is open — but not open in Design view — the follow-
ing statement sets isOpen to True. If the form isn’t open or is open in
Design view, the next line doesn’t execute, so isOpen retains its original
value of False:

isOpen = True

The rest of the procedure just contains an End If statement for each If
block, and the End Function statement to mark the end of the procedure.

To see some practical uses of the custom isOpen() function, imagine that
you already added that custom function to a standard module in your data-
base. Now you want to use the function to see whether a form is open before

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 660

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Understanding Objects and Collections 661

you execute code to open that form. In particular, you want the code to see
whether Products Form is open — and, if it isn’t, to go ahead and open the
form. Use the following code to open a form:

‘Open Products Form, but only if it isn’t open already.
If Not isOpen(“Products Form”) Then

DoCmd.OpenForm “Products Form”
End If

Suppose you want a procedure to close the form, but you want to make sure
the form is indeed open before using DoCmd.Close to close the form. In that
case, use these statements:

‘Close Products Form if it is currently open.
If isOpen(“Products Form”) Then

DoCmd.Close acForm, “Products Form”, acSaveNo
End If

In a macro, you can use isOpen() in the Condition column to ensure that
the macro doesn’t try to open a form that’s already open. You can also use
isOpen() to make sure that a form is open before you close it, as shown in
Figure 4-9.

Looping through collections
Access provides a slight variation on the For...Next loop, known as the
For Each...Next loop, that’s designed to specifically repeat once for each
item within a collection. With each pass through the loop, the object vari-
able used in the For Each...Next loop refers to the next object in the col-
lection. The syntax of the For Each...Next loop is

For Each element In collection
[statements]

[Exit For]
[statements]

Next [element]

Figure 4-9:
Using
IsOpen
function in
macro
Condition
column.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 661

Understanding Objects and Collections662

where element is an object variable of the appropriate type for the collec-
tion, collection is the name of a collection, and statements are any
number of statements to be executed within the loop.

Whether you ever need a For Each...Next loop in your own code
depends on how fancy things get. However, if you use other peoples’ code,
you may come across an occasional For Each...Next loop, so you need
to have an idea of what that loop does.

For example, recall that the AllForms collection in the CurrentProject
object contains all the forms in the current database. Each form in the col-
lection is a type of AccessObject.

The Forms collection contains only the forms that are currently open. The
AllForms collection includes both closed and open forms.

In the following example, we use the Dim statement to declare an object vari-
able named myForm as an AccessObject. Then we use a For Each...Next
loop to loop through the AllForms collection and print the Name property
of every form in the database:

Dim myForm as AccessObject
For Each myForm In CurrentProject.AllForms

‘Code to be performed on every form.
Debug.Print myForm.Name

Next

Running the code prints the name of each form in the current database to
the Immediate window.

Recall, too, that a form is a collection in its own right — a collection of con-
trols. To set up a loop that looks at each control on a form, you first need
to make sure that the form is open. Then, define an object variable as the
Control element type. The collection name used in the For Each...Next
loop needs to be a specific open form.

The following code snippet opens a form named Products Form. The Dim
statement creates an object variable, named myCtl, as the generic Control
type of object. The For Each...Next loop specifies all the controls on the
current form as the collection. With each pass through the loop, the Debug.
Print statement prints the name of the current control:

DoCmd.OpenForm “Products Form”
Dim myCtl as Control
For Each myCtl In Forms![Products Form]

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 662

Book VIII
Chapter 4

Controlling Form
s

w
ith VBA

Understanding Objects and Collections 663

‘Code to be performed on every control goes below.
Debug.Print myCtl.Name

Next

A control, as you may recall, is also a collection: A collection of properties
defines the control’s name, contents, appearance, type, and behavior. If you
want to set up a loop that accesses each property that a control supports,
first ensure that the form is open. With that accomplished, define an object
variable of the Property type and use the specific control’s name as the
collection name in the For Each...Next loop, as the following shows:

DoCmd.OpenForm “Products Form”
Dim myProp as Property
For Each myProp In Forms![Products Form].[Product Name]

‘Code to be performed on every control goes below.
Debug.Print myProp.Name & “ = “ & myProp.Value

Next

The first line opens a form named Products Form. The next line defines
an object variable named myProp as the Property type. Then the For
Each...Next loop displays the name and value of every property for the
Product Name field.

Using With...End With
If you need to change a whole bunch of properties associated with an object,
you can save a little typing by using a With...End With block. The syntax
for the block is

With objectName
.property = value
End With

where objectName is the name of an open object, or the object variable
name that points to the object; .property is a valid property for that
object; and value is the value you want to assign to that object. Assuming
that myCtl refers to a control on an open form, as in the following example,
you can use a With myCtl...End With block to change several proper-
ties of that control:

Dim myCtl As Control
Set myCtl = myForm.[Selling Price]
With myCtl

.Visible = True

.SpecialEffect = Flat

.FontBold = True

.Value = 1.1 * myCtl
End With

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 663

Understanding Objects and Collections664

The With...End With block changes the Visible property of the Selling
Price control to True, sets its Special Effect property to Flat, sets its
font to bold, and increases the value stored in that field by 10 percent.

As in the case of the For Each...Next loop, the With...End With state-
ment is optional and not something you must use in any code you write. Our
main purpose is to take the mystery out of it in case you should ever come
across With...End With in someone else’s code.

41_036494 bk08ch04.qxp 11/17/06 8:36 AM Page 664

Chapter 5: Using SQL
and Recordsets

In This Chapter
� Creating quick and easy recordsets

� Using SQL to create recordsets

� Running action queries from VBA code

Working with data in tables and queries through Visual Basic for
Applications (VBA) is — in a word — weird. You don’t exactly work

with a table or query directly in VBA. Instead, you work with a recordset. As
the name implies, a recordset is a set of records. A recordset can be all the
records in a given table, all the records in the results of a query involving
two or more tables, or a subset of particular records from any table or
query. In other words, a recordset can contain any records from any tables
you want.

Recordsets and Object Models
Because Access offers two different object models for the purpose of work-
ing with recordsets, you may find recordsets confusing. One is DAO (Data
Access Objects); the other is ADO (ActiveX Data Objects). The DAO model
is the older of the two. DAO works only with Access tables. ADO, the newer
of the two, works either with Access tables or external data sources, such as
Oracle and Microsoft SQL Server.

At first glance you may think, “Well, I’ll never use external data sources, so
I’ll stick with the DAO object model.” Picking an object model, though, isn’t
that easy. The newer ADO model is currently favored by Microsoft, meaning
that ADO will continue to grow and get better while DAO remains in mainte-
nance mode, which generally spells doom for a technology. If a technology
is in maintenance mode today, that pretty much guarantees that it won’t
exist at all in the not-too-distant future.

Given the bias of Microsoft, we stick with ADO in this book. To make sure
the stuff that we do in this chapter works on your computer, make sure
the ADO object model is loaded in your copy of Access. To do so, open the

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 665

Recordsets and Object Models666

Visual Basic Editor, choose Tools➪References from the VBA Editor menu,
and select the Microsoft ActiveX Data Objects 2.8 Library option. (See Figure
5-1.) If you don’t see that one in your References dialog box, you’ll have to
scroll down to find it.

Because ADO is evolving quickly, you’ll likely find several versions of the
ActiveX Data Objects library in your References dialog box. Select only the
most recent one — the one with the highest version number. Then click OK.

Quick and easy recordsets
If your goal is to create a recordset that contains all the fields and records
from a single table in your database, the job is fairly straightforward. Just
type the following code, exactly as shown, into a procedure — but replace
tableName with the name of the table that you want to open:

If you don’t yet know how to type code into a procedure, see Chapter 2 of
this minibook.

Dim myConnection as ADODB.Connection
Set myConnection = CurrentProject.Connection
Dim myRecordset as New ADODB.Recordset
myRecordSet.activeConnection = myConnection
myRecordset.Open “tableName”, , adOpenStatic, adLockOptimistic

After all the lines execute, the myRecordSet object variable refers to all the
fields and records in whatever table you specified as tableName in the last
line of code.

Figure 5-1:
The
References
dialog box.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 666

Book VIII
Chapter 5

Using SQL and
Recordsets

Recordsets and Object Models 667

ADO recordset properties and methods
Most ADO recordsets support the following methods, which allow you to
manipulate the data in the recordset with VBA code:

✦ .AddNew: Adds a new, blank record to the recordset

✦ .MoveFirst: Moves the cursor to the first record in the recordset

✦ .MoveNext: Moves the cursor to the next record in the recordset

✦ .MovePrevious: Moves the cursor to the previous record in the
recordset

✦ .MoveLast: Moves the cursor to the last record in the recordset

✦ .Move numrecords, start: Specifies the number of records to move
through and the starting point

✦ .Open: Opens a new recordset

✦ .Close: Closes a recordset

✦ .Update: Saves any changes made to the current row of a recordset

✦ .UpdateBatch: Saves all changes made to the current recordset

Some properties you can use to determine the number of records in a
recordset, as well as the current position of the cursor within the recordset,
are the following:

✦ .RecordCount: Returns the total number of records in the recordset

✦ .AbsolutePosition: Returns a number indicating which row the
cursor is in (1 is the first record, 2 is the second record, and so forth.)

✦ .BOF: Beginning Of File; returns True when the cursor is above the first
record in the recordset

✦ .EOF: End Of File; returns True when the cursor is past the last record
in the recordset

Looping through a recordset
When a recordset is open, you can use a loop to step through each record
within the recordset. As an example, Figure 5-2 shows some code that cre-
ates a recordset named myRecordSet. The While...Wend loop steps
through each record in the recordset — one record at a time — and prints
the record’s position and the contents of the first couple of fields in each
record.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 667

Recordsets and Object Models668

Needless to say, the code in Figure 5-2 isn’t exactly simple. The sections that
follow, however, shed some light on some of its meaning.

Flip to Chapter 3 of this minibook to review While...Wend loops.

Defining a recordset’s cursor type
When you open a table in Datasheet or Form view, you see the blinking
cursor and move it around freely using your mouse or keyboard. With
recordsets, you can choose from different types of cursors. These types of
cursors have nothing to do with how the cursor looks because in a record-
set, you can’t see the cursor (or the data)! Rather, the cursor type in a
recordset defines how the cursor behaves within the recordset. You can
define a recordset’s cursor type two separate ways: One is to change the
recordset’s CursorType property by using the following syntax:

recordsetName.CursorType = constant

where recordsetName is the name of the recordset, and constant is one
of the constants listed in the first column of Table 5-1. You must define the
recordset’s cursor type before opening a recordset.

Figure 5-2:
Sample sub
procedure
loops
through
records in a
recordset.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 668

Book VIII
Chapter 5

Using SQL and
Recordsets

Recordsets and Object Models 669

You can also specify the cursor type when opening the recordset by using
this syntax:

myRecordset.Open “tableName/SQL”, , CursorType

where tableName/SQL is the name of the table in the current database or a
valid SQL statement (which we discuss in a moment), and CursorType is
one of the constants listed in Table 5-1.

Many of the cursor type options are only relevant to multiuser databases.
When working with a single-user database, the adOpenStatic setting is the
easiest to work with.

Table 5-1 Recordset Cursor Types
Constant Name Description

adOpenDynamic Dynamic Cursor Allows unrestricted cursor movement.
You can modify data in the recordset.
Changes made by other users in a multi-
user setting reflect in the recordset.

adOpenStatic Static Cursor Recordset is a nonchanging version of
the table. Changes made by other users
have no effect on the recordset.

adOpenForwardOnly Forward-Only Same as Static Cursor, but the cursor
Cursor moves only forward through the table.

This setting is the default if you don’t
specify a cursor type.

adOpenKeyset Keyset Cursor Like a Dynamic Cursor, but records
added by other users aren’t added to the
recordset. Records deleted by other
users are inaccessible to your recordset.

The .RecordCount and .AbsolutePosition properties only return cor-
rect values when you’re using a static cursor type, which is another reason
why we use adOpenStatic as the cursor type in our examples. When using
a dynamic cursor, .RecordCount and .AbsolutePosition always return
-1. because the number and position of the records in the recordset may
change.

Field names in recordsets
In a recordset, each record is a collection of fields. You can refer to fields by
their position in the record. myRecordSet.Fields(0) refers to the first

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 669

SQL and Recordsets670

field in the record, myRecordset.Fields(1) refers to the second field,
and so forth. You can also refer to fields by their names. The syntax is

myRecordSet.Fields(“fieldname”)

where fieldname is the name of the field as defined in the table.

SQL and Recordsets
You don’t have to base a recordset on a single table. You can base it on a
query if you like. However, you can’t use the query’s name in the
myRecordset.Open statement because only table names are allowed there.
If you want to base a recordset on a query, you need to use the query’s SQL
statement to create the query.

SQL (pronounced see-quel), stands for Structured Query Language. You can’t
get very far in database management without hearing some reference to
SQL, because SQL is “the” standard language for extracting information from
data stored in Access tables, Microsoft SQL Server, Oracle, and a whole
bunch of other database products.

As a language, SQL is pretty simple. The syntax of a SQL statement looks
something like this:

SELECT fields1 FROM table(s) [WHERE criterion] [ORDER BY
fields2]

where fields1 represents a list of fields from the table (or * for all fields),
table(s) represents the name of the table (or tables) where the data are
stored, criterion represents an expression that filters records (for exam-
ple, State=”CA”), and fields2 represents fields to use for sorting the
records. The WHERE and ORDER BY portions are optional.

Writing SQL statements is fairly easy; you rarely need to write them by hand.
Every time that you create a query by using Design view, you actually write a
SQL statement. The fields that you choose for the query become the fields
included in the recordset, although only those fields that have a check mark
in the Show box are actually included. The FROM table that you select
records from is plainly visible at the top of the grid. The Sort row defines the
ORDER BY clause. The Criteria row specifies the WHERE clause, as illustrated
in Figure 5-3.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 670

Book VIII
Chapter 5

Using SQL and
Recordsets

SQL and Recordsets 671

To see the SQL statement for any query you create, right-click the title bar of
your query (in Design view) and choose the SQL option from the shortcut
menu. Or, choose View➪SQL View from the Access menu. You see the SQL
statement the query uses to get the data specified, as shown in Figure 5-4.
The SQL statement may already be selected (highlighted); copy it, if you
wish, by pressing Ctrl+C.

If the SQL statement isn’t already selected, drag the mouse pointer
through the entire SQL statement to select it, and then press Ctrl+C. After
you copy the SQL statement to the Clipboard, you can paste it into a
myRecordSet.Open statement in VBA code where indicated by the SQL
statement here:

myRecordset.Open “SQL statement here”, , cursorType

Figure 5-4:
Sample SQL
statement
produced by
a query.

Select (fields)

From (tables)

Where

Order by

Figure 5-3:
Every query
contains
components
of a SQL
query.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 671

SQL and Recordsets672

Unfortunately, just pasting the SQL statement isn’t quite enough to get the
job done. You have to change some things in the VBA code, namely:

✦ You must remove the semicolon (;) from the end of the SQL statement.

✦ If the pasted SQL statement breaks across multiple lines, gather the lines
together into one long line. (Or break up the line by using the continua-
tion character, as we discuss in a moment.)

✦ If the SQL statement contains any double quotation marks (“), replace
them with single quotation marks (‘).

Take a look at Figure 5-4 (earlier in this chapter) for an example of a big SQL
statement. The first step is to select the SQL statement by dragging the
mouse pointer through it until you highlight all the text. Then press Ctrl+C
or choose Edit➪Copy from the Access menu to put a copy of the SQL state-
ment on the Clipboard.

Within your procedure in the Code window, type out the recordset.Open
statement, followed by two sets of double quotation marks. Place the cursor
between the two quotation marks, as in the following example(where the |
character represents the cursor):

myRecordSet.Open “|”

Press Ctrl+V to paste the SQL statement between the quotation marks.

The cursor lands at the end of the SQL statement, just to the right of the
semicolon at the end of the statement. Press the Backspace key to delete the
semicolon.

If the SQL statement breaks into multiple lines, you need to unbreak it. Move
the cursor to the end of the first line. If a quotation mark is at the end of the
first line, delete it. Then press the Delete (Del) key to delete the line break
and bring the next line up to the current line. Leave a blank space between
any whole words. Repeat this process until the entire SQL statement is one
big, long line in the Code window.

Finally, look through the SQL statement for any double quotation marks.
Don’t disturb the quotation marks surrounding the whole SQL statement.
Just change any double quotation marks within the statement, as in the fol-
lowing example:

WHERE (((Address Book].State=”CA” ORDER BY

to single quotation marks as the following shows:

WHERE (((Address Book].State=’CA’ ORDER BY

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 672

Book VIII
Chapter 5

Using SQL and
Recordsets

SQL and Recordsets 673

When everything is clean, the Code window accepts the statement without
showing any red lines or Compile Error messages.

Breaking up long SQL statements
In the previous section, we said that in order for a copied SQL statement to
work in your code, you have to treat it as one extremely long line. An alterna-
tive to the one-extremely-long-line approach is to store the SQL statement as
a string variable. Then use that variable name in your myRecordset.Open
statement. Within the code, build the lengthy SQL statement by joining short
chunks of text together.

The first step is to declare a string variable, perhaps named mySQL, to store
the SQL statement, as the following variable shows:

Dim mySQL As String

Assign the SQL statement to the string. Use the following rules to assign the
SQL statement:

✦ Each chunk is fully enclosed in quotation marks.

✦ If a blank space is after a word, leave that blank space in the line.

✦ Follow each line with an ampersand (&) character (the join strings oper-
ator), a blank space, and the continuation character (_).

✦ Use the variable name in the recordset.Open statement.

Don’t forget: You still have to convert any embedded double quotation
marks to single quotation marks, and then remove the ending semicolon.

The following example shows an original SQL statement. (Just imagine that
the code stretches out as one long line, which the margins of this book pre-
vent us from actually showing.)

SELECT Orders.*, [Address Book].* FROM [Address Book] INNER JOIN Orders ON
[Address Book].ContactID = Orders.ContactID WHERE ((([Address
Book].State)=”NY”)) ORDER BY Orders.[Order Date];

The following statements show some VBA code to store that SQL statement
in a mySQL string variable. The myRecordSet.Open statement creates the
recordset from the SQL statement:

‘Form a SQL statement from “chunks”.
Dim mySQL As String
mySQL = “SELECT Orders.*, [Address Book].* FROM [Address Book] “ & _

“INNER JOIN Orders ON [Address Book].ContactID = Orders.ContactID “ & _
“WHERE ((([Address Book].State)=’NY’)) “ & _
“ORDER BY Orders.[Order Date]”

‘Fill the recordset with data defined by the SQL statement.
myRecordSet.Open mySQL

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 673

Running Action Queries from VBA674

Notice a few essential characteristics of this code:

✦ Each chunk of the SQL string is enclosed in double quotation marks.

✦ The blank space after a word is included at the end of the line.

✦ The ampersand and continuation character, separated by single blank
spaces, end each line.

✦ The myRecordSet.Open statement then uses the mySQL variable name
in place of the lengthy SQL statement.

Figure 5-5 shows how this all looks in the Code window.

Running Action Queries from VBA
Everything we discussed about SQL so far in this chapter is about select
queries — queries that select data from tables to display but don’t in any
way alter the data from the tables. Action queries actually change the con-
tents of tables.

Book III, Chapter 3 introduces the update and append form of action queries.

To execute an action query from VBA, you don’t need to define a recordset
or use a RecordSet.Open statement. Instead, use the RunSQL method of
the DoCmd object as follows:

DoCmd.RunSQL SQLstatement

Follow the same rules for executing an action query as you do a select
query, as described in the “SQL and Recordsets” section earlier in this chap-
ter. Figure 5-6 shows a sample action query to update records in Design view
and SQL view.

Figure 5-5:
A SQL
statement
stored in a
String
variable
named
mySQL.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 674

Book VIII
Chapter 5

Using SQL and
Recordsets

Running Action Queries from VBA 675

In the VBA Code window, store the SQL statement in a string variable and
follow the DoCmd.RunSQL statement with that variable name — as in the fol-
lowing example, where mySQL is the name of the variable that stores the SQL
statement:

Sub RunUpdateQry()
‘Declare a string variable named mySQL
Dim mySQL As String
‘Store an action SQL statement in the mySQL variable.
mySQL = “UPDATE Orders SET Orders.LabelPrinted = True “ & _

“WHERE (((Orders.LabelPrinted)=False))”
‘Run the action query.
DoCmd.RunSQL mySQL

End Sub

Normally, when you run an action query — whether from Access or from
VBA — Access displays a warning before the query actually runs, stating
that you’re about to change records in a table — which gives you a chance
to change your mind. In many cases, though, you won’t want that warning
to appear. For example, if you know the query does what it purports to do
and you’re writing code for other people to use, presenting them with a
warning message that they may not know how to respond to is pointless.

To prevent that warning from appearing when your code executes, and
in order for the query to run without asking for permission, use the
SetWarnings method of the DoCmd object to disable the warnings. In
Figure 5-7, the code includes a DoCmd.SetWarnings False to turn off
permission-asking just before executing a RunSQL statement. The code
then turns the normal warning messages back on (DoCmd.SetWarnings
True) after the query runs.

Design view SQL view

Figure 5-6:
An update
query in
Design and
SQL views.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 675

Running Action Queries from VBA676

When you run an update, append, make a table, or delete a query from
within a VBA procedure, use the query’s SQL statement as the argument to a
RunSQL statement in your code.

Cleaning up connections
Before your procedure ends, you may want to close both the recordset and
the active connection to the local tables. Doing so prevents those objects
from remaining open after your code moves on to other tasks. To close a
recordset, follow the recordset’s name with a .Close method, as in the fol-
lowing example:

myRecordSet.Close

To terminate the connection to the local tables in the database and remove
the recordset and connection objects, set each one to the keyword
Nothing, as below:

Set myRecordSet = Nothing
Set myConnection = Nothing

So that’s what SQL and recordsets are all about in VBA. Will there ever come
a time where you need to write all this complex code to perform some task?
It depends on how complex your database projects are. But one thing is for
sure: If you ever inherit a database that someone else wrote and come
across a bunch of code with SQL statements and recordsets, the information
in this chapter will at least help you better understand what’s going on with
that code.

Figure 5-7:
Code used
to execute
action query
without
warning
messages.

42_036494 bk08ch05.qxp 11/17/06 8:37 AM Page 676

Chapter 6: Debugging Your Code

In This Chapter
� Identifying types of errors (bugs)

� Figuring out how to solve compiler errors

� Trapping and fixing runtime errors

� Digging out logical errors

Instant gratification is rare in the world of programming. Nobody writes
perfect code every time. Usually it takes some trial and error: You write

a little code, test it, find and fix any bugs (errors), write a little more, test a
little more, and so on until the code is fully debugged (free of errors) and
runs smoothly every time. With the help of some debugging tools built into
Visual Basic for Applications (VBA) and the VBA Editor, you can usually
track down, and fix, any problems that are causing your code to fail.

Considering Types of Program Errors
Many things can go wrong while writing code, especially for a beginner. The
ability to identify what type of error you’re dealing with is helpful. The three
types of errors that all programmers have to contend with are

✦ Compiler errors: These indicate a problem with the code that prevents
the procedure from running at all. Messages alerting you to compiler
errors often appear right in the Code window — such as when you type
a faulty VBA statement and press Enter before you catch the goof.

✦ Runtime errors: The code compiles okay but fails to run properly in
practice, often because of a problem in the environment. For example, if
a procedure assumes that a certain form is already open in Form view,
but the form is not, the code crashes — stops running — before the pro-
cedure completes its task.

✦ Logical errors: The code compiles and runs without displaying any
error messages, but the code doesn’t do what it’s supposed to do.

Fortunately, the VBA Editor contains tools that help you track down, catch,
and fix all these different errors. We start with compiler errors because you
have to fix them before the code can do anything at all.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 677

Fixing Compiler Errors678

Fixing Compiler Errors
When you write code, the stuff that you’re writing is referred to as source
code. Before your code executes, VBA compiles your source code to an even
stranger language that the computer executes very rapidly. You never actu-
ally see that compiled code — humans only work with source code. If a prob-
lem in the source code prevents compilation, though, you definitely see the
error message.

Most compiler errors happen immediately. For example, if you type just
DoCmd. and press Enter, you get a compiler error. The DoCmd. statement
alone on a line isn’t enough for VBA to compile the line. You need to follow
DoCmd. with some method that’s specific to the DoCmd object.

Not all compiler errors are caught the moment that you press Enter.
Furthermore, code may be in your database (or project) that’s never been
compiled. When you call the code, it compiles on the spot and then exe-
cutes. That extra step slows performance. To compile all the code in a data-
base (or project) — both to check for errors and to improve performance —
follow these steps:

1. If you’re currently in the Microsoft Access window, go to the VBA
Editor.

When you’re in the Microsoft Access window, you can press Alt+F11 to
quickly switch to the VBA Editor.

2. Choose Debug➪Compile name (where name is the name of the cur-
rent database or project) from the VBA Editor menu.

Doing so compiles all the code in all standard and class modules. If any
errors lurk anywhere, you see a Compile Error message box. The
message provides a brief, general description of the problem, as in the
example shown in Figure 6-1.

The location of the error is highlighted in gray. The Compile Error mes-
sage box in Figure 6-1 shows that the compiler was expecting an End
Sub statement at the gray highlight. You can click the Help button for

Figure 6-1:
A sample
Compile
Error
message.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 678

Book VIII
Chapter 6

Debugging
Your Code

Trapping Runtime Errors 679

more information about the error — although in this example, the fix is
pretty easy. Every sub procedure needs an End Sub statement, and one
of the procedures in this module has no End Sub statement. Click OK to
close the error message box. Then type in the missing End Sub state-
ment at the gray highlight.

When you can choose Debug➪Compile name without seeing any error mes-
sages, you know that all your code is compiled and free of compiler errors.
The Compile command on the Debug menu is also disabled (dimmed)
because no uncompiled code is left to compile. Any remaining errors are
runtime or logical errors.

Trapping Runtime Errors
Some VBA errors may be caused by events in the environment rather than in
the code. Here are a couple of examples:

✦ Your code performs some operation on data in an open form. If the form
isn’t open when the code executes, code execution stops, a runtime error
occurs, and an error message pops up on-screen.

✦ Another example may be when an expression performs division using
data from a table, and the divisor ends up being zero. Because dividing
a number by zero doesn’t make sense, code execution stops, a runtime
error occurs, and an error message appears.

If people who know nothing about Access use the database that you create,
the error messages that pop up on-screen won’t likely help those users much.
What you want to do is anticipate what kinds of errors may occur, trap them
(that is, tell Access to let you know when they happen), and fix them when
they occur. To do this, you add an error handler to your code, which is a
chunk of code within the procedure that intercepts the error and fixes the
problem without stopping code execution or displaying an error message.

To create an error handler, the first order of business is to add an On Error
statement to your code — preferably just after the Sub or Function state-
ment that marks the beginning of the procedure. Use one of the following
three different ways to create an On Error statement:

✦ On Error Goto label: When an error occurs as a statement runs,
code execution jumps to the section of code identified by label within
the same procedure.

✦ On Error Resume Next: If an error occurs as a statement runs, that
statement is ignored, and processing just continues with the next line of
code in the procedure.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 679

Trapping Runtime Errors680

✦ On Error GoTo 0: This disables any previous On Error Goto or
On Error Resume Next statements, so VBA handles future runtime
errors rather than your own code.

You can use the Resume statement in any error-handling code to tell VBA
exactly where to resume code execution after the runtime error occurs. The
syntax for the Resume statement can take any of the following forms:

✦ Resume: Causes VBA to re-execute the statement that caused the error.
You only want to use this statement if the error-handling code fixed the
problem that caused the error in the first place. Otherwise, executing
the same statement again just causes the same error again.

✦ Resume Next: Causes execution to resume at the first statement after
the statement that caused the error. The statement that caused the error
does not execute at all.

✦ Resume label: Causes execution to resume at the label specified.

In addition to the On Error statements, VBA includes a helpful object
known as an ErrObject, which stores the error message that pops up on-
screen when an error occurs. Each of those built-in error messages has its
own number and text. The ErrObject stores that number and text, so you
can write code to identify the error and work around it. The ErrObject has
several properties. The two main ones — essential to understand first — are

✦ Err.Number: Returns either the number (integer) of the error that
occurred or 0 for no error.

✦ Err.Description: Returns the textual description of the error that
occurred as a string.

The ErrObject also supports a couple of methods, whose jobs can be
summed up like this:

✦ Err.Raise(errNo): Causes the error specified by errNo to occur.
Generally used for testing error-handling code. (No practical reason
exists to intentionally cause an error in actual working code.)

✦ Err.Clear(): Clears all current properties of the ErrObject.
(Err.Number returns to zero, Err.Description returns to a null
string, and so forth.)

Code created by Control Wizards and macro conversions may already have
error-handling code written into it. Fortunately, you can easily enter such
code into any procedure that you write. As a rule, you want the On Error
Goto label: statement to execute early in the procedure. That way, no

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 680

Book VIII
Chapter 6

Debugging
Your Code

Trapping Runtime Errors 681

matter where an error occurs in the procedure, execution passes to the
error handler.

The label text can be any text at all, provided that it starts with a letter and
contains no blank spaces. Using the word Err and an underscore, followed
by the procedure name and a colon, is customary. (The colon is mandatory.)

Place the error-handling code at the bottom of the procedure, just before the
End function or End Sub statement. You need to place an Exit Sub state-
ment, as well, before the error handler. That prevents code execution from
reaching the error-handler code when no runtime error occurs.

Because you can’t always anticipate every conceivable runtime error, having
the error handler display the error number and error description is best —
that way, at least, you know what caused the error. The following example
shows an error message, where [main body of code] stands for all the
code that makes up the actual procedure.

Sub myProcedure()
On Error GoTo Err_myProcedure

[main body of code]
Exit_MyProcedure:

Exit Sub ‘Returns control to whomever called procedure.
‘Error handler starts below.
Err_MyProcedure:

Msg = Err.Description & “ - “ & Err.Number
MsgBox Msg
Resume Exit_MyProcedure

End Sub

The following list details what happens when a runtime error occurs while
code in [main body of code] executes:

✦ On Error GoTo Err_myProcedure: Because this statement told VBA
to transfer execution to the Err_myProcedure label, execution does
not stop cold. Instead, execution continues at the first line after the
Err_myProcedure label.

✦ Msg = Err.Description & “ - “ & Err.Number: Creates a string
of text that contains the description of the error and the error number.

✦ MsgBox Msg: Displays the error message text and number in a message
box with an OK button. Code execution stops until the user clicks the
OK button in the message box.

✦ Resume Exit_MyProcedure: Causes execution to resume at the first
line after the Exit_MyProcedure label.

✦ Exit Sub: Causes the procedure to exit without any further error messages.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 681

Trapping Runtime Errors682

Error-handling code, by itself, doesn’t fix the error or allow the procedure to
continue its job. However, if an error does occur, you see the message (text)
and the number that identifies that message. So then you can add code to
your custom error handler to fix the problem and resume code execution
normally.

Suppose that the main body of the code is just trying to move the cursor
into a control named Company on the current form, using the statement
DoCmd.GoToControl “Company”. If you run the procedure when the form
that contains the Company field isn’t open, a runtime error occurs. The error
handler displays the message box, shown in Figure 6-2. Code execution stops
because nothing in the error handler takes care of the problem.

The error description and number (2046) display in the error message. In
this particular example, the GoToControl action isn’t available because the
form that the code expects to be open isn’t open. The solution is to come up
with a means of making sure that the appropriate form is open before the
code executes.

Fixing the runtime error
One way to handle the problem is to use an If...End If block (or Select
Case...End Select block) to provide a solution to error 2046. Because
error 2046 is telling us that a form the code expects to be open is in fact
closed, the solution is to open the appropriate form, as in the following
example:

[code above handler]
Err_MyProcedure:

‘Trap and fix error 2046.
If Err.Number = 2046 Then

DoCmd.OpenForm (“Address Book Form”)
Resume ‘Try again now that form is open.

End If
‘Errors other than 2046 still just show info and exit.
Msg = Err.Description & “ - “ & Err.Number

Figure 6-2:
A sample
message
displayed by
an error
handler.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 682

Book VIII
Chapter 6

Debugging
Your Code

Dealing with Logical Errors 683

MsgBox Msg
Resume Exit_MyProcedure

End Sub

Eliminating the runtime error
A cleaner, more elegant solution to the problem, though, is to rewrite the
procedure so that the runtime error can’t possibly occur. In the following
example, the procedure starts by checking to see whether the required form
is already open. If it’s not, the procedure opens the form before the DoCmd.
GoToControl statement executes:

Sub myProcedure1()
On Error GoTo Err_myProcedure

‘Make sure Address Book form is open.
If Not isOpen(“Address Book Form”) Then

DoCmd.OpenForm “Address Book Form”, acNormal
End If

‘Now move the cursor to the Company field.
DoCmd.GoToControl “Company”

Exit_myProcedure:
Exit Sub

Err_myProcedure:
Msg = Err.Description & “-” & Err.Number
MsgBox (Msg)

End Sub

The IsOpen() function used in the preceding example isn’t built into
Access. (See Chapter 4 of this minibook for a description of the IsOpen()
function.)

Dealing with Logical Errors
After your code is free of compile and runtime errors, Access executes every
statement perfectly. But that doesn’t necessarily mean that the code does
exactly what you intended. If you were thinking one thing but wrote code
that does something else, an error in the logic of the code occurs — a logical
error.

Logical errors can be tough to pinpoint because when you run a procedure,
everything happens so fast. You’ll find slowing things down and watching
what happens while the procedure runs helpful. Several tools in Access can
help with that.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 683

Dealing with Logical Errors684

Watching things happen
You can use the Debug.Print statement anywhere in your code to print the
value of a variable, a constant, or anything else. Because all output from the
Debug.Print statement goes to the Immediate window, those statements
don’t disrupt the normal execution of your procedure.

Imagine writing a procedure that’s supposed to make some changes to all
the records in a table with the help of a loop embedded in your code. When
you run the procedure, though, the expected result doesn’t happen. You can
put a Debug.Print statement inside the loop to display the current value of
some counting variable within the loop, as in this example:

Function Whatever()
[code]
For intCounter = LBound(myArray) To UBound(myArray)

‘Show value of inCounter with each pass through loop
Debug.Print “intCounter = “ & intCounter

[Code]
Next
[maybe more code]

End Function

If you run the procedure with the Immediate window open, the Immediate
window displays something like this:

intCounter = 0
intCounter = 1
intCounter = 2
etc..

If some problem with the loop’s conditional expression exists (the logic that
makes the loop repeat x number of times), you may just see something like
the following:

intCounter = 0

The preceding output tells you the loop repeats only once, with a value of
zero. You need to go back into the code, figure out why the loop isn’t repeat-
ing as many times as you expect, fix that problem, and then try again.

After you solve the problem, remove the Debug.Print statements from
the code because they serve no purpose after the debugging phase is done.
Optionally, you can comment out the Debug.Print statement by adding an
apostrophe to the beginning of its line, thereby making it appear as a com-
ment to VBA. After you comment out a statement, it is no longer executed in

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 684

Book VIII
Chapter 6

Debugging
Your Code

Dealing with Logical Errors 685

the code. To reactivate the Debug.Print statement in the future, uncom-
ment it by removing the leading apostrophe.

Slowing down procedures
Another way to check for logical errors in code is to slow things way down
to see exactly what’s happening, step by step, while the procedure runs. To
do this, you set a breakpoint at the line of code, right where you want to
start slowing things down.

If you want the entire procedure to run slowly, you can set the breakpoint in
the first line of the procedure (the Sub or Function statement). To set a
breakpoint, right-click the line where you want to set the breakpoint and
then choose Toggle➪Breakpoint from the shortcut menu, as in Figure 6-3.
The line where you set the breakpoint is highlighted in yellow — and has a
large dot to the left.

You can also open the Locals window to watch the values of variables
change as the code is running in break mode. (After you set a breakpoint,
the code runs in break mode, or one line at a time.) To open the Locals
window, choose View➪Locals Window from the VBA Editor main menu. Like
other windows in the VBA Editor, you can dock the Locals window to the
VBA Editor program window or drag it away from the window border to
make it free-floating.

Figure 6-3:
Setting a
breakpoint.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 685

Dealing with Logical Errors686

After you set a breakpoint, just run the code normally. Before executing a
line of code, VBA highlights the line that’s about to execute and shows an
error to the left of that line. You have three choices at that point:

✦ To execute the one line (only), press F8 or choose Debug➪Step Into.

✦ To skip the currently selected line without executing it, press Shift+F8 or
choose Debug➪Step Over.

✦ To bail out of break mode, press Ctrl+Shift+F8 or choose Debug➪
Step Out.

Some types of runtime errors cause VBA to go into break mode automati-
cally. You see the yellow highlight line when that happens.

While your code executes, the highlight moves from line to line. Each time
that an executed statement changes the value of a variable, the Locals
window updates to reflect that change, as in Figure 6-4.

Cleaning up
When you finish debugging or just want to start over with a clean slate, do
one of the following:

✦ To clear the Locals window, right-click any text within the window and
then choose the Reset option from the shortcut menu that appears.

✦ To clear all breakpoints from your code, choose Debug➪Clear All
Breakpoints.

Of course, you can also close the Locals window by clicking the Close button
in the window’s upper-right corner.

Figure 6-4:
Stepping
through
code.

43_036494 bk08ch06.qxp 11/17/06 8:37 AM Page 686

Appendix: Installing
Microsoft Access

If Microsoft Access is already on your computer, you don’t need to read
this appendix, unless you want to change something related to your cur-

rent installation. If Microsoft Access 2007 isn’t on your computer, you need
to install it before you can use it. Microsoft Office Access 2007 isn’t a pro-
gram that comes free with Windows. You have to purchase it separately.

If you’ve just bought Access new, don’t even think about throwing away the
packaging until after the installation is complete. And never throw away
the Product Key. You never know when you might need it to re-install the
program again at some time in the future.

To install Access 2007 you need a Microsoft Office Professional 2007 or
Microsoft Office Access 2007 disc, and the 25-character Product Key that
came with it. You find the Product Key on the yellow sticker that’s included
with the rest of the packaging that came with your product. To get started
with the installation, follow these steps:

1. If you’re currently using any programs, close them and save your
work.

You don’t need to close programs whose icons show in the notification
area, just the application programs on the desktop.

2. Insert your Microsoft Office Professional or Microsoft Access disc into
your computer’s CD or DVD drive.

Wait a minute for the installation program to start. If no program starts
automatically, choose Start➪My Computer, right-click the icon for your
CD or DVD drive, and choose the AutoPlay option from the shortcut
menu.

3. You may see some security warnings asking for permission to pro-
ceed. These are standard warnings that appear whenever you install
any program. It’s okay to proceed with the installation.

4. After a brief delay, the installation program prompts you to enter
your Product Key (see Figure A-1).

You don’t need to type the hyphens in the key. You can use lowercase
letters.

44_036494 appa.qxp 11/17/06 8:38 AM Page 687

Appendix: Installing Microsoft Access688

5. When you’ve correctly typed the key, you see a green check mark to
the right. Click Continue.

6. The End-User License Agreement (EULA) appears next, containing the
usual legalese about licensing. Read the agreement (yeah, sure),
which says you won’t sell or give away copies of the program — and
then check the I accept the terms in the agreement check box and
click Continue.

7. If you have a previous version of Access (or other Office programs)
installed, the next page asks whether you want to upgrade or cus-
tomize. Before you choose, keep these points in mind:

• Upgrade: Your current versions of Access and any other programs
you’re installing will be replaced by the new 2007 versions, which
means you can’t use the old versions anymore.

• Customize: You can opt to keep your old versions and still have the
new 2007 versions, too. Not a bad idea because it takes some time to
get used to the new interface in 2007.

8. If you choose Upgrade, click the Upgrade button. Follow any remain-
ing on-screen instructions to completion. You can ignore the steps to
follow.

If you want to use Access’s new ability to use e-mail as a means of popu-
lating a table, you must upgrade to Outlook 2007. You cannot keep
Outlook 2003 on your system. However, you will not lose your existing
e-mail messages, contacts, or other Outlook information. All of that will
appear automatically in Outlook 2007.

9. If you click the Customize button, your first decision is whether to
remove all previous versions, keep all previous versions, or just
replace certain ones, as in Figure A-2.

If you want to keep your previous version of Access, be sure to choose
Keep All Previous Versions. Alternatively, you can choose the option to
remove only certain programs, but be sure to clear the check box for
Access.

Figure A-1:
Enter the
Product
Key.

44_036494 appa.qxp 11/17/06 8:38 AM Page 688

Appendix

Installing M
icrosoft

Access
Appendix: Installing Microsoft Access 689

10. To install all of Microsoft Access 2007, click the Installation Options
tab, and choose Run from My Computer, as shown in Figure A-3.

If you’re installing a full Microsoft Office suite, you can make similar
selections for other programs.

Selections you make here will not override selections you previously
made concerning upgrading versus keeping old versions.

Each time you choose Run from My Computer to install a component,
the Total Space Required on Drive indicator (in the lower-right corner of
the Installation Options window) shows how much hard-drive space the
program will use, as compared to available disk space (shown in the
Space Available on Drive indicator).

Figure A-3:
More
installation
options.

Figure A-2:
Options
for a
Customized
installation.

44_036494 appa.qxp 11/17/06 8:38 AM Page 689

Activating Access690

11. Optionally, you can click the File Location tab and choose a different
location for the installed programs.

It isn’t necessary to change the File Location to keep previous versions
of programs. Use that tab only if you have some other good and com-
pelling reason to store the installed programs on another drive or a
folder other than the Program Files folder.

12. (Optional) Click the User Information tab and enter information about
yourself.

User information is used by some programs to identify you as author or
reviser of documents.

13. Click Install Now and follow the on-screen instructions.

14. Wait.

The rest of the process is largely automatic. If you see any additional on-
screen instructions, follow them. But the installation should proceed on its
own from this point forward. When it’s done, you’ll see a Register for Online
Services option. It’s a good idea to do that because those services might
prove to be a valuable resource for future information. But if you miss that
opportunity, no big deal. You can register for online services at any time.

If you see an option to Delete Installation Files, best to leave that alone. The
installation files make it easier to install any components you might have
skipped on the first pass. If you choose that option, you can still install those
components; you’ll just need to insert the original CD to do so.

Be sure to store your original disc and Product Key in a safe place where you
can easily find them in the future. You just never know when a bad disk
crash or nasty virus will force you to reinstall Access from scratch!

Activating Access
Microsoft now requires product activation, which is a process designed to
prevent people from installing their products on multiple computers. The
first time you start Access (or some other Office application program),
you’re prompted to activate the product. Just go ahead and follow the
instructions on-screen to activate.

When Microsoft came out with product activation, many people were
alarmed that Microsoft would spy on them, correlating their Access usage
with their personal information, and other appalling privacy invasions. As
it turns out, product activation doesn’t do any of those things. Product

44_036494 appa.qxp 11/17/06 8:38 AM Page 690

Appendix

Installing M
icrosoft

Access
Repair, Reinstall, or Uninstall Access 691

activation is unconnected with product registration, which is when you give
Microsoft your name and address. Activation just connects your Office
Product Key with your specific computer, so no one else can install your
Office license on his or her computer. Go ahead and activate Office with no
worries!

Repair, Reinstall, or Uninstall Access
If something bad happens to your hard drive and you can’t start Access on
your computer, you may have to reinstall or repair it. Or, if you opted to omit
some optional components, you may later change your mind and want to
install some component you previously declined.

First, close the program you want to change or repair. Then get to your list
of installed programs in one of these ways:

✦ In Windows XP, click Start➪Control Panel➪Add or Remove Programs.

✦ In Windows Vista, click Start➪Control Panel➪Programs ➪ Programs and
Features.

Click the Microsoft Office Access 2007 or Microsoft Office 2007 suite that
contains your Access installation. Then click the Change button. You’re
taken to a set of options similar to those shown in Figures A-2 and A-3, where
you can repair or remove a program, or add missing components.

44_036494 appa.qxp 11/17/06 8:38 AM Page 691

Access 2007 All-in-One Desk Reference For Dummies692

44_036494 appa.qxp 11/17/06 8:38 AM Page 692

Symbols and Numerics
+ (addition) operator, 237
<> (angle brackets), 244
* (asterisk), 47
: (colon), 251
& (concatenation) operator, 237, 432
/ (division) operator, 237
= (equal sign), 615
= (equals) operator, 257, 623
^ (exponentiation) operator, 237
>= (greater than or equal to) operator,

257, 623
> (greater than) operator, 257, 623
() (grouping) operator, 237
\ (integer) operator, 238
<= (less than or equal to) operator,

257, 623
< (less than) operator, 257, 623
* (multiplication) operator, 237
<> (not equal to) operator, 257, 623
– (subtraction) operator, 237
_ (underscore character), 608
3-D bar charts, 451

A
abbreviations, tables, 67
Abs() function, 245
.accdb files

defined, 21
extension, not changing, 41

ACCDE files
ACCDB files versus, 524
creating, 524
defined, 524
as front-end files, 525
importing tables from, 525
locking databases as, 523–526

renaming, 525
tables, 525

Access 2.0 databases, opening, 21
Access 95 databases, opening, 21
Access 97, databases, opening, 21
Access 2000 databases

format, 531
opening, 21

Access 2002
databases, opening, 21
format, 531

Access 2003
databases, opening, 21
format, 531

Access Options dialog box
accessing, 441, 486
Application Options section, 546
Customize panel, 26
customizing, 548
displaying, 132, 544
Exclusive mode, 538
Filter lookup options, 548
illustrated, 545
Name AutoCorrect Options section, 547
Navigation section, 547
Ribbon and Toolbar Options

section, 547
Shared mode, 538
Trust Center option, 486
Trust Center Settings button, 486

Access Web, 37
Access window

PivotTable View button, 301
Zoom control, 436

action queries. See also queries
append, 269, 280–282
backups before, 270
creating, 269–273
default, 271

Index

45_036494 bindex.qxp 11/17/06 8:38 AM Page 693

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies694

action queries (continued)

defined, 12, 205, 269
delete, 269, 282–285
make-table, 270, 277–280
recognizing, 271
results, checking, 272
Run button in, 270–272
running, 271–272
running from VBA, 674–676
select queries versus, 269
types of, 269–270
update, 270, 273–277
View button in, 270
warning, 675

actions, macro. See also macros
arguments, 476–479
commonly used, 476–477
conditional, 495
defined, 474
entering, 475
list, 475
on multiple conditions, 495

activation, Access, 690–691
ActiveX Data Objects. See ADO
Add Procedure dialog box, 598–599
Add-in Manager, 522
add-ins

builder, 523
creating, 522–523
defined, 521
loading, 522
menu, 523
Office versus Access, 523
removing, 522
types, 523
wizard, 523

addition (+) operator, 237
ADO (ActiveX Data Objects)

defined, 665
evolution, 666
methods, 667
properties, 667

Advanced Filter/Sort feature. See also
filtering; filters

defined, 148
displaying, 148
queries, 204
uses, 148
window, 148–149

After Update event, 651–652
aggregate columns, 300
aggregate functions. See also functions

defined, 392
domain, 394
list of, 392–393
using, 392–393

aggregating data, 292–301
Allow Deletions property, 330
Allow Zero Length property, 176
And operator, 257, 624
angle brackets (<>), 244
antivirus software, 19
Append dialog box, 281
append queries. See also action queries;

queries
Append To row, 282
creating, 281–282
defined, 269, 280
moving data with, 280–282
rules, 280
Run button, 282
saving, 282
uses, 280

Apply Filter action, 476
apps (applications), 577
APR (annual percentage rate), 246
area charts, 455–456
arguments. See also actions, macro

blank, 478
common, 478–479
data types, 602
default values, 478
information, 477
passing, to procedures, 600–603

45_036494 bindex.qxp 11/17/06 8:38 AM Page 694

Index 695

selecting, 476
specifying, 477–479
sub procedure, 610

arrays
declaration syntax, 620
defined, 20
dimensions, 620
looping through, 634–635
multidimensional, 621–622
one-dimensional, 620
subscripts, 620
variables, 620–621

Assets template, 88
assumptions, this book, 3
asterisk (*), 47
Attachment fields

contents, 100
creating, 120
defined, 120
template, 120
uses, 100

attachments
number of, 120
storage, 100, 120
viewing, 121

Attachments dialog box, 120–121
AutoCorrect

entries, deleting, 125
list, adding abbreviations to, 125
options, 124–125
uses, 124

AutoCorrect Exceptions dialog box, 126
AutoForms

Columnar, 318
Datasheet, 319
PivotChart, 319
PivotTable, 319
Tabular, 318

AutoLookup queries
for automatically filling data, 230–231
creating, 231
defined, 205
illustrated example, 231

AutoNumber fields. See also data types;
fields

adding, 68
contents, 99
defined, 57
on forms/reports, 101
as primary key, 71
uses, 99–101

Avg() function, 392
Avg operation, 265

B
Back Color property, 348
Back Style property, 397
back-end databases. See also splitting

databases
multiuser, 537
permissions, 568
security, 568
tables list, 534

background color, 129
background pictures, 355
backup programs, 513
backups

ACCDE files as, 525
before action queries, 270
before delete queries, 283
before encrypting, 549–550
on CD-R disc, 513
creating, 512–516
exporting tables to, 515
frequency, 15
specific objects, 514–515
steps, 513
on Zip disk, 513

bar charts. See also charts
3-D, 451
column, 451
cone, 451
creating, 450–455
cylinder, 451
pyramid, 451

45_036494 bindex.qxp 11/17/06 8:38 AM Page 695

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies696

bar charts (continued)

Series setting, 454–455
types, 451
X-Axis setting, 451–452
Y-Axis setting, 452–454

Beep action, 476
Between operator, 257
blank pages, avoiding, 441–442
boldface, this book, 2
Boolean values, 72
Border Color property, 349
Border Width property, 349
borders

chart, 462
control, 346

Bound Column property, 363
bound controls

creating, 339–340
defined, 337

bound subreports. See also subreports
defined, 426
illustrated, 425
printing, 425

boxes
colors, 354
defined, 339
drawing, 354
thickness, 354

breakpoints. See also debugging
clearing, 686
defined, 685
setting, 685
stepping through code with, 686

bubble charts, 457
builder add-ins, 523
Business templates, 40–41
buttons. See also specific buttons

command, 52
contextual tab display, 24
create, 24
database tool, 24
external data, 24
finding, 23

groups, 24
templates, 51–53
with three dots (...), 52
tooltips, 24

ByVal keyword, 659

C
calculated columns, 300
calculated controls. See also controls

creating, 386–387
defined, 386
in form footer, 395
formatting, 397
illustrated, 397
to total subform, 394–397

calculated fields. See also fields
creation steps, 235
with Date functions, 251
defined, 233–234, 309
illustrated example, 234
literal text, 254
PivotTables, 309–311
printing, 422
query example with, 259
record filtering based on, 267
sequence, 234
sorting by, 262

calculated values
defined, 385
formatting, 389
on reports and forms, 386

calculations
conditional, 423
date, 390
expressions, checking, 388
expressions, troubleshooting, 388
fields, 75
in forms and reports, 385–397
group subtotal, 421–422
if-then component, 391
number, 389
printing, 422

45_036494 bindex.qxp 11/17/06 8:38 AM Page 696

Index 697

in queries, 388
running sum, 423
text, 390–391
totaling, 393

Can Grow property, 428–429
Can Shrink property, 429
Caption property, 312, 329, 371
captions, field, 96
cascading deletes, 71
cascading updates, 71
CCur() function, 247–248
CDate() function, 252
cells, selecting, 155
Character Map, 122
chart controls. See also controls

adding to reports, 447
defined, 446
double-clicking, 459
moving, 450
multiple, 450
selecting, 458
storing charts as, 446

Chart Wizard
Available Fields list, 447–448
creating charts with, 446–450
Preview Chart button, 449
questions, answering, 447–450
starting, 446–447
X-Axis setting, 448–449, 451–452
Y-Axis setting, 448–449, 452–454

charts
3-D, 451
3-D effect, 462
area, 455–456
axes, 462
background color, 461
bar, 450–455
borders, 462
bubble, 457
changing, 457–460
column, 451
cone, 451

creating, manually, 458
creating, with Chart Wizard, 446–450
cylinder, 451
data, changing, 463
data table, 461
doughnut, 456
existing, modification steps, 458–460
field layout, 449
formatting, 461–462
gridlines, 461
labels, 448
legends, 450, 461
line, 455–456
moving, 458
pie, 456–457
previewing, 450
properties, 459
pyramid, 451
resizing, 450, 458
Series setting, 448
storing as controls, 446
titles, 450, 461
trendline, 462
types, 449
types, selecting, 448
X-Axis setting, 448
XY scatter plot, 457
Y-Axis setting, 448

check boxes. See also controls
creating, 351
defined, 339
information display, 351
list boxes versus, 357–358
for Yes/No fields, 351–352

class modules
defined, 571
opening, 572–573

classes, 582
Close action, 476
Close button. See also command buttons

creating, 367–368
need for, 367

45_036494 bindex.qxp 11/17/06 8:38 AM Page 697

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies698

Close method, 647–648
code. See VBA code
Code window. See also Visual Basic

Editor
allowed words drop-down menu,

604–605
comments, 606–607
converted macro in, 589
defined, 579
illustrated, 579–580
shortcut keys, 605–606
tools, 579–580
typing in, 604–607

code-behind form, 571
codes

fields, 75
meaning lookup, 67
storing, 75
tables for, 67
validation, 67

Collecting Data Using E-Mail Options
dialog box, 172

collections
AllForms, 662
controls, 656
defined, 655
forms, 656
Forms, 662
looping through, 661–663
properties, 656
referring to, 585–586, 657–658

colon (:), 251
colors

background, 129, 348–349
background, charts, 461
controls, 348–349
datasheet data, 127
foreground, 348–349
lines/boxes, 354

column charts, 451
Column Count property, 363
Column Headings property, 300–301

Column Heads property, 363
column selector, design grid, 217
Column Width dialog box, 130
Column Widths property, 363
Columnar AutoForms, 318
columnar reports, 411
columns (datasheet)

aggregate, 300
deleting, 131
freezing, 132
hiding, 131
inserting, 131
rearranging, 130
width, changing, 130

columns. See fields
Combo Box Wizard

combo box creation steps, 359–361
defined, 359
Find box creation, 371–372
list of values, 359–360
opening, 359
record order, 361

combo boxes. See also controls
column widths, 361
creating, 359
creating with Combo Box Wizard,

359–362
defined, 339, 343, 357
edges, adjusting, 361
illustrated, 362
list boxes versus, 357–358
planning, 358–359
properties, changing, 362–363
record order, 361
resizing, 361
selected information, 358–359
values, 358

Command Button Wizard
Application buttons, 367
button creation, 505–506
button options, 370
defined, 366–367

45_036494 bindex.qxp 11/17/06 8:38 AM Page 698

Index 699

Form Operations button, 367
Form Operations category, 369
Miscellaneous buttons, 367
opening, 369
Record Navigation buttons, 367
Record Operations buttons, 367
Report Operations buttons, 367
VBA procedures, 490, 504

command buttons
Close, 367–368
creating, 366–367
customizing, 370–371
defined, 339
to display related form, 368–369
macro, 490
main menu form, 504–507
moving, 505, 507
naming, 505
printing current record, 370
program forms, 366
properties, editing, 370–371
resizing, 505, 507
running macros, 506–507
uses, 370

comments
defined, 606
first character, 607
macro, 479
purpose, 607
typing, in Code window, 606–607

common filters, 142, 145
compacting databases, 511–512
comparison operators

built-in, 257
VBA code, 623

compile errors. See also errors;
VBA code

box buttons, 609
debugging, 678–679
defined, 609, 677
immediate occurrence, 678
location, 678

occurrence, 608
sample, 609
sample message, 678

concatenation (&) operator, 237, 432
conditional actions, 495
conditional calculations, 423
conditional execution, 493
conditional expressions

comparison operators, 623
defined, 624
If...End If, 624–626
logical operators, 624
multiple, combining, 624
Select Case block, 627–629
syntax, 623

conditional formatting
defined, 350
options, 351
setting up, 350–351

Conditional Formatting dialog box,
350–351

cone charts, 451
Const keyword, 619
constants

defined, 619
defining, 619
for MsgBox buttons argument, 642

contacts, Outlook, 164–165
Contacts template, 88
contextual tabs, 23–24
continuation characters, 607
Control Source property, 342, 363,

386, 388, 396, 614
controls. See also forms; reports;

specific controls
borders, 349
bound, 337
calculated, 386–387, 394–397
changing, 341
changing with VBA, 648–655
chart, 446
collections, 656

45_036494 bindex.qxp 11/17/06 8:38 AM Page 699

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies700

controls (continued)

color, 348–349
copying, 347
creating, 339–342
data, viewing with VBA, 654
defined, 337
deleting, 347
enabling/disabling in VBA, 648–649
events, 488–489
form, properties, 497–500
formatting, copying, 350
groups, moving, 353
groups, sizing, 353
lining up, 353–354
moving, 347
multiple, selecting, 352
naming, 342
properties, 342
properties, changing in VBA, 648
properties, setting, 354
referencing in macros, 490–491
referencing on subforms, 393–394
renaming, 347
resizing, 347
spacing, 354
special effects, 349
for subform total, 394–397
subreport, 424, 427
text, formatting, 348–351
text alignment, 350
text display, 343–346
type, changing, 348
types of, 337, 339
unbound, 337
values, changing in VBA, 649–650

conventions, this book, 2–3
conversion functions, 247
converting databases, 516
copying data, 151–155
Count() function, 392
Count operation, 265

Create tab
AutoReport: Tabular button, 404
Chart Wizard button, 404
Design View button, 404
Field Templates button, 87
Forms button, 316
Label Wizard button, 404
Macro button, 503
More Forms button, 302, 319
New Object button, 474, 479
Query Design button, 205, 270
Query Wizard button, 270, 286
Report button, 404
Report Design button, 447
Report Wizard button, 404–405
SharePoint Lists button, 87
Table button, 86, 89
Table Design button, 87
Table Templates button, 86–88

criteria
Crosstab query, 299
on different rows, 224
joining, 223
lookup fields in, 224–225
multiple, 223–224
on same row, 224

criteria expressions
dates, 221
elements, 221
limiting records with, 220–226
logical, 220
multiple criteria, 223–224
operators, 222
QBE, 220
text, 221
times, 221
values, 221

Crosstab queries. See also queries
aggregate columns, 300
aggregating data in, 292–301
column headings field, 297

45_036494 bindex.qxp 11/17/06 8:38 AM Page 700

Index 701

creating, 291
creating in Design view, 297–298
creating with Crosstab Query Wizard,

293–296
criteria, 299
date field, 293
defined, 12, 205, 292
fields, 292, 297
grouping methods, 296
illustrated, 292, 296, 298–299
modifying, 299–301
months in order, 300–301
multiple fields for row headings,

299–300
row headings field, 297
viewing, 298

Crosstab Query Wizard
date and time data grouping, 295
defined, 292
field aggregation, 295–296
field selection, 293–294
Functions list, 296
illustrated, 293
opening, 293
results, 296
use steps, 293–296

Currency fields. See also data
types; fields

contents, 99
defined, 57
display/sort, 73
formatting, 102–103
for money, 74
sorting, 138
in text boxes, 346
uses, 99

CurrentProject object, 658
cursor types, recordset, 668–669
CursorType property, 668
custom functions. See also functions

creating, 636–638
defined, 636

isOpen(), 658–661
NumWord(), 636–638
testing, 638

custom messages
displaying, 641–644
message box, 641–643
user click response, 643–644

cutting/pasting data, 152–155
cylinder charts, 451

D
DAO (Data Access Objects), 665
data

accessibility, 157
aggregating, 292–301
analyzing, 301–312
analyzing with PivotCharts, 463–469
collecting with Outlook, 169–173
color, changing, 127
copying, 151–155
cutting/pasting, 151–155
displaying in PivotTable, 303–305
editing, 115–117
editing with query datasheet, 230
exporting, 168–169
filtering, 312
finding, 139–141
grouping, 307–309
identifying, 63
imported, cleaning up, 166
importing, 155–157
maintenance, 157
moving between tables, 280–282
moving from Excel to Access, 155
navigating, 113–114
from other Access databases, 167–168
replacing, 141
separation from programs, 15
validating as entered, 186–190
variables, 615

Data Access Objects (DAO), 665

45_036494 bindex.qxp 11/17/06 8:38 AM Page 701

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies702

data collection. See also Outlook
defined, 169–170
e-mail addresses, 172–173
field selection, 171
reply processing, 171–172
user verification, 170

data entry
AutoCorrect, 124–126
cells, moving to, 90
to create fields, 91–92
keystrokes, 115
tables, 54

data types
Attachment, 100, 120–122
AutoNumber, 57, 99
changing, 47
common, 56–57
correct, using, 175–176
Currency, 57, 73–74, 99
Date/Time, 57, 99
defined, 56
Hyperlink, 57, 100, 117–120
input masks, 177
Lookup, 100
Memo, 56, 72–73, 99
Number, 57, 73–74, 99
OLE Object, 57, 100
pasting and, 154
selecting, 98–101
Text, 56, 72–74, 99
VBA, 602
Yes/No, 57, 72, 99

Database Documenter Wizard, 79
Database performance Analyzer, 79
database replication feature, 528
Database Splitter Wizard, 532–533
Database to Compact From dialog

box, 512
Database Tools tab

Linked Table Manager button, 165
Make ACCDE button, 525
Object Dependencies button, 517
Relationships button, 44, 516

databases
analyzing, 516–520
backup frequency, 15
blank, 76
blank, creating, 514
compacting, 511–512
concepts, 14–15
converting, 516
creating, 76–78
creating from templates, 39–54
defined, 9
designing, 55–80
documentation, 79, 520–521
housekeeping, 511–526
information storage, 14–15
locking up, 523–526
multiuser, 21
naming, 514
navigating, 22
old, converting, 21
opening, 18–22
passwords, 549–551
performance, analyzing, 79, 518–520
permissions, 564
relational, 58
repairing, 511–512
sample, 22–23
secure, 555–561
shared mode, 538
signing, 484–486
splitting, 530–536
spreadsheets versus, 11
types of, 9

data-integrity rules, 176–177
Datasheet AutoForms, 319
Datasheet Formatting dialog box, 129
Datasheet tab

Add Existing Fields button, 92
appearance, 89
defined, 113
Lookup Column button, 93
New Field button, 90
Relationships button, 195

45_036494 bindex.qxp 11/17/06 8:38 AM Page 702

Index 703

Datasheet view
defined, 84
forms in, 322
illustrated, 84
keystrokes, 115
queries in, 211, 234–235
saving queries in, 232
switching to Design view, 212
table creation in, 88–90
uses, 85
viewing in, 112
working with queries in, 229–231

datasheets
blank, 89
column width, 130
columns, arranging, 130
columns, deleting, 131
columns, freezing, 132
columns, hiding, 131
columns, inserting, 131
data color, 127
defined, 88, 112
dynamic, 204
fields, formatting, 127
filtering, 141–150
fonts, formatting, 127
formatting, 127–132
illustrated, 112
macros displaying, 501
moving in, 113
navigation keystrokes, 113–114
Record Number box, 113
row height, 130–131
rows, sorting, 137–139
select query, 206–207
subdatasheets, 132–134
summary queries, 211
totals row, 134–135
working with, 229–231

Date() function, 244–245, 252
Date functions

calculated fields with, 251
examples, 252–253
using, 252–254

DateAdd() function, 252–253
DateDiff() function, 252–254
dates

in criteria expressions, 221
delimiter, 163
expressions, 390
leading zeros, 163
literal, 251
PivotTable, 306
report, 417–418
subtracting, 250
in text boxes, 346

Date/Time fields. See also data
types; fields

contents, 99
defined, 57
filtering options, 146
formatting, 105
sorting, 139
in text boxes, 346
uses, 99
X-Axis setting, 452

Day() function, 252
Debug.Print statement, 684–685
debugging

breakpoints, 685–686
cleanup, 686
compile errors, 678–679
logical errors, 683–686
runtime errors, 679–683

decimal symbol, 163
decision-making expressions, 256–260
Default Value property, 176, 379
defaults, 72
delete queries. See also action queries;

queries
backup before, 283
caution, 283
creating, 283, 284–285
defined, 269, 282
Delete row value, 284
deleting records with, 282–285
illustrated, 285
options, 283–284

45_036494 bindex.qxp 11/17/06 8:38 AM Page 703

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies704

delete queries (continued)

Run button, 285
View button, 284–285

dependencies, object, 517–518
design, database

cleaning up, 71–72
codes, 67
data types, 56
field organization, 64–66
field type selection, 72–75
key selection, 67–69
links, creating, 69–70
links, refining, 70–71
primary keys, 57–58
process, 63–72
relationships, 58–63
sample order-entry, 69
store information once principle, 59
table, analyzing, 77

design grid
column selector, 217
defined, 214
fields, inserting, 216–217
fields, selecting, 216
parameter queries, 263
rows, 214

Design tab
Add Existing Fields button, 325
AutoCalc button, 304
Builder button, 213
Check Box button, 351
Command Button button, 367
Conditions button, 494
Crosstab button, 297
Delete Rows button, 95, 98
Drop Zones button, 303
Existing Fields button, 50
Field List button, 302
Formula button, 310
Hide Details button, 305
Hyperlink button, 345
Indexes button, 96
Insert Row button, 95, 98

Label button, 343
Lookup Column button, 95
Macro Names button, 503
Make Table button, 278
Page Numbers button, 416
Parameters button, 263
Primary Key button, 95, 106
Property Sheet button,

96, 213, 326, 415, 427
Query Type button, 213
Relationships Report button, 200
Run button, 213
Save button, 213
Show Table button, 195, 213
Subform/Subreport button, 373
Table Names button, 215
Text Box button, 386
Top Values button, 213
Totals button, 213
Update Query button, 274
View button, 213

Design view
Builder button, 95
buttons, 213
Crosstab query creation in, 297–298
defined, 85, 212
editing reports in, 412–413
field format, changing, 219–220
Field list, 325
field properties, displaying, 95
fields, hiding, 219
forms, creating in, 323–326
forms in, 322
illustrated, 85
joining tables, 227
modifying objects in, 46
modifying tables in, 46
navigation, 215
opening, 43
panes, sizing, 213
queries, creating, 205–207
queries, displaying, 212–213
queries, saving, 232

45_036494 bindex.qxp 11/17/06 8:38 AM Page 704

Index 705

queries in, 48, 211–212
query design grid, 214, 216–217
shortcut keys, 215
switching to Datasheet view, 212
tables, creating, 93–94
tables, refining, 94–101
tables, working with, 214
Tables pane, 214, 216, 227
Top Values box, 218–219
understanding, 212–215
update query in, 675
uses, 212

detail queries. See also queries;
select queries

creating, 208–211
defined, 204
selecting, 209

Detail section, 413, 415
detail tables, 60, 192
digital certificates

creating, 485
signing databases with, 486

Dim keyword, 617–618
dimensions, array, 620–622
disk pages, 540
division (/) operator, 237
Do...Loop. See also loops

alternative syntax, 630–631
defined, 630
loop conditions at loop bottom, 632
loop conditions at loop top, 631–632
syntax, 630

DoCmd object
acceptable words, 644
Close method, 647–648
closing forms with, 647–648
defined, 644
flexibility, 647
Help window, 584–585
information, 584, 645
macros and, 646
OpenForm method, 645–647
opening forms with, 644–647

SetWarnings method, 675
statement syntax, 644

documentation
database, 79, 520–521
printing, 520–521

Documenter dialog box
defined, 108
illustrated, 520
opening, 520
reports, 521

domain aggregate functions, 394
doughnut charts, 456–457
duplicate records. See also records

finding, 288–290
hiding, 290
indications, 288

dynasets, 229, 232

E
Edit Hyperlink dialog box, 119
Edit Relationship dialog box,

196, 198, 283
e-mail addresses

data-collection, summary, 173
selecting, 172–173

e-mail replies
manual management, 173
processing, 171–172

Enabled property, 498
End-User License Agreement (EULA), 688
Enter Parameter Value dialog box, 264
equal sign (=), 615
ErrObject, 680
error handlers

creating, 679
defined, 679
Resume statement, 680

errors
compile, 608–609, 677
logical, 677
runtime, 677

45_036494 bindex.qxp 11/17/06 8:38 AM Page 705

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies706

event procedures. See also
VBA procedures

creating, 599–600
events, 599
manually creating, 652
naming, 600

event properties
of combo-box control, 489
selecting, 488
types of, 489

events
After Update, 651–652
defined, 656
displaying, 488
form control, 489
On Click, 611

Events template, 88
Excel data, moving to Access, 155
explicit variable declaration, 616
exponentiation (^) operator, 237
Export - RTF File dialog box, 443
Export To dialog box, 515
exporting

data, 168–169
database structure, 515
defined, 168
to existing Access database, 169
objects, 168–169
PivotTables, 307
queries, 232
reports, 442–443
tables to backup database, 515

Expression Builder
Built-In Functions folder, 241
composing, 240
cursor, 242
defined, 240
function lookup, 239
illustrated, 240
opening, 240
operator buttons, 241
using, 240–244

expressions
12s in, 245
conditional, 623–624
in Control Source property, 388
creation options, 241
criteria, 220–226
decision-making, 256–260
defined, 309
field names, 238
functions, 239
literal dates/times in, 251
manipulating text with, 254–255
operator precedence, 236–237
operators, 236–238
spaces, adding, 254–255
troubleshooting, 388
writing, 236–239
zooming, 236

External Data tab
Access button, 167
Manage Replies button, 173
Outlook Folder button, 164
Saved Exports button, 166

F
Field list

in creating controls, 340
defined, 196
displaying, 50, 340
illustrated, 92
moving, 196

field properties. See also properties
clicking, 101
defined, 95
display, 101
formatting fields with, 101–105

Field Size property, 102–103, 105, 176
field templates

creating fields with, 90–91
defined, 90
double-clicking, 91

45_036494 bindex.qxp 11/17/06 8:38 AM Page 706

Index 707

Field Templates pane, 83
fields. See also records

abbreviations, 67
adding, 48, 95, 98
adding from existing table, 92–93
all symbol, 47
Attachment, 100, 120–122
AutoNumber, 57, 68, 99
calculated, 233–234
calculation, 75
captions, 96
chart, 449
codes, 67, 75
copying, 97
creating, in Design view, 94
creating with data entry, 91–92
creating with field templates, 90–91
Crosstab query, 292, 297
Currency, 57, 73–74, 99, 102–103
data types, 56–57
Date/Time, 57, 99
defaults, 72
defined, 10, 55
defining, 90–93
deleting, 47, 95, 131
empty, displaying, 429
empty, testing for, 260–262
filter menu, 142
format, changing, 219–220
formatting, 101–105, 127
hidden, 154
hyperlink, 57, 100, 117–120
illustrated, 10
indexing, 96, 107–108
inserting, 131
inserting in design grid, 216–217
list of, 50
long, 428–429
lookup, 95, 100, 181–186
Memo, 56, 72–73, 99
money, 74
moving, 97
multiple, filtering criteria on, 145–148

multiple, for row headings, 299–300
multiple identical, in separate tables, 66
names, 74
names, changing, 47, 96–97
names, creating, 96
names in expressions, 238
names in recordsets, 669–670
null, 248–249
Number, 57, 73–74, 99, 102–103
OLE Object, 57, 100
organizing into tables, 64–66
pasting, 154
percentages, 74
phone number, 74
pictures, 75
PivotChart, 465–466
postcode, 74
primary key, 57–58
properties sheet, 96
redundant, eliminating, 63–64
renaming, 90, 131
report, adding, 51
report, grouping, 407
report, space between, 423
size, setting, 103–105
Text, 56, 72–74, 99
type selection, 72
updated, 276
validation rules, 186
Yes/No, 57, 72, 99

File Name task, 76–77
files
.accdb, 21, 41
ACCDE, 523–526
LDB, 542
MDE, 531
RTF, 560
workgroup, 552–553

Filter by Form window, 145–148
Filter property, 144, 150
filtering

with Advanced Filter Sort, 148–150
basics, 142–144

45_036494 bindex.qxp 11/17/06 8:38 AM Page 707

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies708

filtering (continued)

criteria on multiple fields, 145–148
Date/Time fields, 146
defined, 141
indicator, 143
as query warmup, 143
by selection, 144–145

filters
applying, 142–143
common, 142, 145
forms with, 150
re-applying, 142
removing, 143
reports with, 150
by selection, 142, 144–145
types, 142

Find and Replace dialog box
data replacement, 141
data search, 140–141
illustrated, 139
opening, 139
options, 140–141
using, 140

Find box, 371–372
Find Duplicates Query Wizard

defined, 288
illustrated, 289
opening, 288
results, 289
use steps, 288–289

Find Unmatched Query Wizard
defined, 285
opening, 286
use steps, 286–287

finding
duplicates, 288–290
unmatched records, 285–288

FindNext action, 476
FindRecord action, 476
First() function, 393
First operation, 265
Font dialog box, 236

Font Name property, 349
fonts

changing, 127
label text, 349

footers, form, 377
For...Next. See also loops
Counter variable, 633–634
defined, 632
Immediate window display, 634
sample, 633
syntax, 632–633

For Each...Next
collection name, 663
defined, 661
example use, 662–663
syntax, 661–662
with With...End With, 664

Force New Page property, 439, 442
Fore Color property, 348–349, 497
foreign keys. See also keys

defined, 71, 192
in one-to-many relationships, 60

Form view
as default, 323
defined, 322
subforms in, 396
switching from, 336
switching to, 336, 396

Form Wizard
Available Fields list, 320
defined, 317, 319
form creation steps, 319–321
form name, 321
illustrated, 36, 320
layout selection, 321
opening, 319
sample form, 322
Selected Fields list, 320
style selection, 321
subforms, 321
Tables/Queries drop-down list, 320
using, 319–322

45_036494 bindex.qxp 11/17/06 8:38 AM Page 708

Index 709

Format property, 167
formatting

calculated controls, 397
calculated numbers in queries, 246–248
calculated values, 389
charts, 461–462
conditional, 350
control text, 348–351
Currency fields, 102–103
datasheets, 127–132
Date/Time fields, 105
default, changing, 132
fields, 101–105, 127
Number fields, 102–103
numbers, 389
PivotTables, 311–312
reports, 422–424
text box contents, 346
Text fields, 105

forms
AutoForms, 319–320
AutoNumber fields on, 101
background pictures, 355
benefits, 315
bound to table, 49–50
buttons, displaying, 368–369
calculated values, 386
calculations in, 385–397
changing, 48–51
Close button, 367–368
closing, 331
closing with DoCmd, 647–648
collections, 656
configuring, 326–330
controlling with VBA, 641–664
controls, 337–448
copying, to reports, 424
creating in Design view, 323–326
creating with AutoForms, 316–322
creating with Form Wizard, 319–321
creation methods, 317–318
creation options, 316–318

cursor movement, controlling, 355
custom messages, 641–644
data, saving, 333
data control properties, 379–380
in Datasheet view, 322
date expressions, 390
Default View property, 328
defined, 10, 12
design tips, 337
in Design view, 322
editing data with, 332–333
elements, 315
with filter, 150
Find box, 371–372
footers, 377
formatting, 352–354
headers, 377
HTML, 170
illustrated, 12
importing, 331–332
keyboard to move in, 332
layout, 321
layout, changing, 324–326
list, 316
macros, 487–492
macros, displaying, 501
main menu, 502–507
management, 331
methods, 657
modifying, 335
naming, 321
navigation buttons, 329
numeric calculations, 389
open, determining, 658–661
opening, 322
opening, in Design view, 335
opening, with DoCmd, 644–647
permissions, 564
predefined, 318–319
previewing, 336
printing, 333
programming, 13

45_036494 bindex.qxp 11/17/06 8:38 AM Page 709

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies710

forms (continued)

properties, 49, 327, 328–329
properties, setting, 497–500
purpose, 379
read-only, 330
record order, 328
record selectors, 329, 333
record source, 328
reports versus, 316, 401
saving, 330
scroll bars, 329
sizing, 330
storing, 330–332
style, 321
subforms, 315, 372–376
subtotals, 392–397
switchboards, 380–383
tab order, 355
tabbed, 377–379
text expressions, 390
totals, 392–397
unbound, 383, 502
uses, 12
viewing, 322–323
whole, selecting, 326

front-end databases. See also
splitting databases

copies on user computers, 535
multiuser, 537
permissions, 568
saving, as MDE file, 531
securing, 568

Function keyword, 618
function procedures. See also

VBA procedures
calling, 613–614
components, 603
converting sub procedures to, 612
defined, 576
in pre-written code, 614
testing, 613–614
using, 614

values, returning, 603–604
WithTax(), 604

functions
Abs(), 245
aggregate, 392–393
Avg(), 392
built-in, 239
CCur(), 247–248
CDate(), 252
conversion, 247
Count(), 392
custom, 636–639
Date(), 245, 252
Date, 250–254
DateAdd(), 252–253
DateDiff(), 252–254
Day(), 252
defined, 239
domain aggregate, 394
in expressions, 239
First(), 393
help, 242–243
Hour(), 253
iif(), 256–260
InStr(), 255
Int(), 245
isOpen(), 658–661
Last(), 393
LCase(), 255
Left(), 255
looking up, 239
Max(), 393
Mid(), 255
Min(), 393
MonthName(), 253
MsgBox(), 641–643
nesting, 244, 391
Now(), 252, 418
NumWord(), 636–638
Nz(), 248–249
Pmt(), 245
Right(), 255

45_036494 bindex.qxp 11/17/06 8:38 AM Page 710

Index 711

Round(), 245
Sqr(), 239
Sum(), 392
syntax, 242
text, 255
Time(), 252
Time, 250–254
Trim(), 255
UCase(), 255, 600
WeekDay(), 244
WithTax(), 604

G
garbage in, garbage out (GIGO)

avoiding, 175–190
defined, 15, 175
tools, 175–177

Get External Data dialog box,
158–159, 164, 533–534

Getting Started screen, 18, 20
GoToControl action, 476
gridlines

changing, 129
chart, 461
defined, 129
Design view, 325

Group by operation, 265
Group dialog box, 452
group identifiers (GIDs)

defined, 554
typing, 557

group sections
creating, 418–421
defined, 418
properties, 420

grouping
macros, 479–481
objects, 536
operator (()), 237

grouping, report
fields, 407
record sorting, 408
subtotals, 421–422

groups
creating, 537
defined, 536
object shortcuts, 536
objects in, 536–537
renaming, 537

groups, user. See also user-level security
Admins, 559, 564–566
choosing, 553–555
creating, 557, 561–562
database storage, 551
default, 553
deleting, 562
dos/don’ts, 554
information, 554
ownership, 552
permissions, 552, 562–567
Users, 564

GUI, 577

H
headers, form, 377
Help window, 36
hidden fields, 154
Home tab

Advanced button, 145, 147–148
Clear All Sorts button, 138
Clipboard button, 152
defined, 112
Delete button, 34
Find button, 139
Paste button, 97
Sort buttons, 137
Spelling button, 123
Toggle Filter button, 143, 148
Totals button, 135
View button, 322, 336

Hour() function, 253
hyperlinks

address, 117
contents, 110
as controls, 345
converting labels into, 345

45_036494 bindex.qxp 11/17/06 8:38 AM Page 711

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies712

hyperlinks (continued)

defined, 57
editing, 119–120
entering, 117–119
entry parts, 117
removing, 119–120
screen tips, 117, 119
sub-address, 117
text display, 118
underlined text, 117
uses, 100

I
icons

Navigation Pane objects, 31
template, 40–41
this book, 4

If...End If. See also conditional
expressions; VBA code

flexibility, 625
logic, 625
nesting, 626–627
syntax, 624–625
testing/responding to three

conditions, 626
if-then macros. See also macros

actions/arguments, 494
conditional actions, 495
creating, 494–495

if-then-else macros. See also macros
defined, 496
example, 496–497
running, 496

iif() function
comparisons, 257
comparisons, combining, 257–258
defined, 256
example, 258–260
support, 626
syntax, 256
uses, 256
value, 256

images, 339
Immediate window. See also Visual

Basic Editor
defined, 580
function testing in, 604
illustrated, 581
lines, re-executing, 581
opening, 580
in running procedures, 609
testing function procedures from,

613–614
uses, 581

implicit variable declaration, 616
Import Objects dialog box

Forms tab, 332
illustrated, 167, 331
opening, 167, 331
Reports tab, 332
Tables tab, 168

Import Specification dialog box, 162–163
Import Spreadsheet Wizard

illustrated, 164
starting, 163
use steps, 163–164

Import Text Wizard
Advanced button, 162
Delimited option, 160
Fixed Width option, 160
primary key field options, 161
starting, 160
use steps, 160–162

imported tables
cleaning up, 166
using, 159

importing
ACCDE file tables, 525
forms, 331–332
queries, 232
reports, 331–332

importing data
considerations, 157–158
defined, 157
linking versus, 156–157

45_036494 bindex.qxp 11/17/06 8:38 AM Page 712

Index 713

Outlook contacts, 164–165
saved imports, 166–167
spreadsheet data, 160–163
steps, 158–159
storage, 157
text, 160–163

Indexed property, 107, 176
indexes

defined, 72
properties, 107–108

Indexes window, 96, 107
InfoPath 2007, 170
inner joins. See also joins

defined, 228
for finding unmatched records, 287

Input Mask property, 176, 379
Input Mask Wizard

creating input masks with, 178–179
in field definition, 98
illustrated, 178
opening, 178
text formatting, 390–391
using, 178–180

input masks
calculated values, 390
characters, 180
creating manually, 179–180
creating with Input Mask Wizard,

178–179
data types, 177
for data validation/format, 177–180
defined, 176, 390
editing, 179
functions, 177
uses, 177
with validation rules, 177

Insert Hyperlink dialog box, 118–119
Insert Subdatasheet dialog box, 134
installation, Access

25-character Product Key, 687, 690
custom, 688
disc, 687

EULA, 688
options, 689
program location, 690
requirements, 687
space requirement, 689
upgrade, 688
user information, 690

InStr() function, 255
Int() function, 245
integer (\) operator, 238
isOpen() function

calling functions with, 660
defined, 658–659
in macros, 661
practical uses, 660–661
return, 659
using, 658–659

Issues template, 88
italics, this book, 2

J
join lines. See also relationships

defined, 226
illustrated, 229
Relationships window, 197–198
symbols, 226

joins
creating, 227
inner, 228
outer, 228
properties, 229
types, 228

junction tables, 62–63, 198

K
key-assignment macros, 482–483
keyboard shortcuts

Code window, 605–606
defined, 37
Design view, 215

45_036494 bindex.qxp 11/17/06 8:38 AM Page 713

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies714

keyboard shortcuts (continued)

KeyTips, 37
list, 38
for moving in forms, 332
Ribbon, 24

key-key symbols, 3
keys. See also primary keys

AutoNumber, 68
foreign, 60, 71, 192
matching, 192
multiple, 68
secret, 74
selecting, 67–69

keystrokes
data entry, 115
datasheet navigation, 113–114
in Datasheet view, 115
editing, 116–117
macros, 13–14

KeyTips, 37
keywords. See also statements;

VBA code
ByVal, 659
Const, 619
defined, 592
Dim, 617–618
Function, 618
looking up, 650
Private, 617–619
Public, 617–619
Static, 618–619
Sub, 618, 652, 654
To, 629

L
Label Wizard

defined, 429
illustrated, 430–431
Prototype Label box, 431
running, 430–432

labels. See also controls; mailing labels
chart, 448
color, 348–349

control association, 344
converting into hyperlinks, 345
creating, 340, 343–344
defined, 339, 343
editing, 345
error symbol, 344
link, 345
properties, 348–350
selecting, 348
special effects, 349
text, 343

Last() function, 393
Last operation, 265
Layout tab, 416
Layout view, 402
LCase() function, 255
LDB files, 542
Left() function, 255
left outer joins, 228
legends

chart, 450–451
PivotChart, 469

lifetime, variable, 618–619
Like operator, 189
Limit to List property, 363
line charts, 455–456
lines

adding, 354
colors, 354
defined, 339
thickness, 354

Link Child Fields property, 427
Link dialog box, 534
Link Master Fields property, 427
Link Specification dialog box, 162–163
Link Spreadsheet Wizard

starting, 163
use steps, 163–164

Link Tables dialog box, 534
Link Text Wizard

Advanced button, 162
Delimited option, 160
Fixed Width option, 160
primary key field options, 161

45_036494 bindex.qxp 11/17/06 8:38 AM Page 714

Index 715

starting, 160
use steps, 160–162

Link to File dialog box, 119
Linked Table Manager, 165–166, 535–536
linked tables, 159
linking data

accessibility, 157
considerations, 157–158
defined, 157
importing data versus, 156–157
steps, 158–159

links
creating, 69–70
exploring, 51–53
managing, 165–166
refining, 70–71

List Box Wizard, 359
list boxes. See also controls

advantages, 358
combo boxes versus, 357–358
creating with List Box Wizard, 359–362
defined, 339, 343, 357
illustrated, 362
planning, 358–359
properties, changing, 362–363
selected information, 358–359
space, 358
values, 358

List Rows property, 363
literal dates, 251
literal text, 254
literal times, 251
Locals window, 686
Locking Information File, 542
logical errors. See also errors; VBA code

breakpoints, 685–686
with Debug.Print statement, 684–685
debugging, 683–686
defined, 677
slowing procedures, 685–686

logical expressions, 220

logical operators
built-in, 257–258
VBA code, 624

Lookup fields. See also data types; fields
contents, 100
creating, 95
creating in Lookup Wizard, 181–185
in criteria, 224–225
defined, 181
drop-down list, 181–185
help, 184
multiple selections, 185–186
multivalue, queries with, 225–226
naming, 184
in PivotTables, 305
uses, 100, 181
viewing, 184
viewing with VBA, 654

lookup list
appearance, 184
displaying, 184–185
field display, 182
format, 183
modifying, 186
table data, 182
user selection, 185
values, 183
values, adding, 186

lookup table, setup, 182–184
Lookup Wizard

Allow Multiple Selections option,
185–186

drop-down list, 132
table relationship, 92–93
using, 181–185

loops
array, 634–635
collections, 661–663
Do...Loop, 630–632
For...Next, 632–634
For Each...Next, 661–663
string character analysis, 635
While...Wend, 632

45_036494 bindex.qxp 11/17/06 8:38 AM Page 715

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies716

M
Macro Builder, 52
macro groups

opening, 506
saving, 507

Macro window
Action Arguments section, 475, 477
Action column, 498
Comment column, 479
Condition column, 498
defined, 474
displaying, 474
illustrated, 474

macros
actions, 474–479
assigning to keys, 482–483
attaching to controls, 488
attaching to forms, 487–492
Build button, 52
command buttons, 490
comments, 479
converting VBA code, 587–589
creating, 474–476
datasheet display, 501
defined, 10, 13, 473–474
DoCmd object use, 646
editing, 479
embedded, viewing, 52
form control references, 490–491
form display, 501
form properties, 497–500
if-then, 494–496
if-then-else, 496–497
isOpen() function in, 661
list, 475
main menu form, 502–507
naming, 479
opening databases containing, 483–487
permissions, 564
reasons for using, 473
running, 481–483

running during data entry, 500–501
running when database opens, 482
running with command buttons,

506–507
running sub procedures from, 612–613
saving, 479
security, 486–487
storing in groups, 479–481
uses, 14
viruses and, 484

mailing labels. See also reports
creating, 429–434
fields, layout, 431
fields, printing, 431
with Label Wizard, 430–432
page setup, changing, 433–434

main menu form. See also macros
appearance at database open, 502–504
command buttons, 504–507
creating, 502–507
Open Form button, 504
Preview Report button, 504
Print Report button, 504
Run Macro button, 504
Run Query button, 504

Make Table dialog box, 278–279
make-table queries. See also queries

creating tables with, 277–280
defined, 270, 277
Run button, 280
use steps, 278–280
View button, 278

Manage Data Tasks dialog box, 166
many-to-many relationships. See

also relationships
Access handling of, 62
creating, 70, 192
defined, 59, 61, 192
examples, 61
illustrated, 62
junction table, 62–63, 198
referential integrity, 198–199

45_036494 bindex.qxp 11/17/06 8:38 AM Page 716

Index 717

margins, report, 403, 439–440
master tables, 60, 191
matching keys, 192
math, in queries, 233–236
Max() function, 393
Max operation, 265
members, 582
Memo fields. See also data types; fields

contents, 99
in database design, 72–73
defined, 56
in reports, 428–429
in text boxes, 345–346
uses, 99

menu add-ins, 523
Message Bar, 19, 22
message box

buttons, user clicking, 643–644
Compile Error, 678–679
creation syntax, 641
displaying, 641–643
illustrated, 642

methods
ADO recordset, 667
Clear, 680
Close, 647–648
defined, 582, 656
form, 657
OpenForm, 645–647
Raise, 680
SetWarnings, 675

Microsoft Access 2007
activating, 690–691
application compatibility, 156
defined, 1, 9
format, converting to, 21
installing, 687–690
previous versions, 9
registration, 691
reinstalling, 691
repairing, 691

running, 17–22
uninstalling, 691

Microsoft Graph
illustrated, 460
starting, 459, 462
using, 459–460

Microsoft Office 2007 Professional, 9
Microsoft Office Security Options dialog

box, 271
Microsoft Support, 37
Mid() function, 255
Min() function, 393
Min operation, 265
MOD operator, 238
module-level scope, variable, 617
money fields, 74
monospace, this book, 2–3
MonthName() function, 253
MSDN Library, 37
MsgBox action, 476
MsgBox function

argument constants, 642
defined, 641
Help, 595
result, 594–595
values passed to variable, 642–643

multidimensional arrays. See also arrays
defined, 621
population, 622
subscripts, 621
support, 622

multiplication (*) operator, 237
multiuser access

database location, 528–530
editing with, 537–541
exclusive, 538
methods, 527–528
object groups, 536–537
from Windows XP, 529

multivalued lookup fields, 225–226

45_036494 bindex.qxp 11/17/06 8:38 AM Page 717

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies718

N
Name AutoCorrect feature, 97
Name property, 396, 651
naming conventions

defined, 622
object variables, 659
tags, 622
variables, 622–623
VBA programming, 623

navigation
buttons, 329
datasheet, keystrokes, 113–114
Design view, 215

Navigation Buttons property, 329
Navigation Options dialog box,

22, 31–33
Navigation pane

as database table of contents, 28
defined, 22
displaying/hiding, 20, 28
filtering, 30
illustrated, 28
macros list, 475
menu, 29
objects, size/details, 31
objects, sorting, 30
options, 31–32
search bar, 32
using, 28–34
width, changing, 28

nested If...End If, 626–627
nesting, functions, 244, 391
Networking For Dummies, 544
New Form dialog box, 150, 317, 323
New Query dialog box, 286, 288
New Report dialog box, 150
Northwind sample database, 22
Not operator, 257, 624
Now() function, 252, 418
null fields

defined, 248
illustrated, 249

Number fields. See also data types; fields
contents, 99
defined, 57
display/sort, 73
field sizes, 104
formatting, 102–103
for percentages, 74
sorting, 138–139
in text boxes, 346
uses, 74, 99

number formats
with comma separators, 103
defining, 102–103
list, 102

numbers
calculated, formatting, 246–248
calculating, 389
formatting, 389
general, 246

NumWord() function, 636–638
Nz() function, 248–249

O
Object Browser

components, 582–583
Help system, 650
illustrated, 583
for information lookup, 586
opening, 582
Project/Library list, 586
search tools, 584

Object Dependencies task pane, 517–518
object frames, 339
object groups

assigning objects to, 33
creating, 29–30
custom, creating, 32–33
default, 29
display, 32
options, 30

object libraries
defined, 582
selecting, 586

45_036494 bindex.qxp 11/17/06 8:38 AM Page 718

Index 719

Object Library, 583–584
Object Linking and Embedding. See OLE
object model

DAO, 665
defined, 582
recordsets, 665

Object Properties dialog box, 34
object-oriented systems, 10
objects. See also specific object types

assigning to groups, 33
backing up, 514–515
copying, 35
creating, 34
defined, 10
deleting, 34
dependencies, viewing, 517–518
deselecting, 168
design, viewing, 43
details, 31
display options, 30
exporting, 168–169
filtering, 29
finding, 32
grouping, 536–537
hiding, 33–34
icons, 31
list, 516–517
manipulating programmatically, 582
modifying, 46–53
multiple, selecting, 168
name prefixes, 80
names, viewing, 42
opening, 22, 42
opening, with single click, 32
owner, 552, 566–567
printing, 35
redisplaying, 34
renaming, 35
selecting, 168
shortcuts, creating, 35
size, 31
sorting, 30
template, viewing, 42

types, 10
using, 46
viewing, in database, 43
views, changing, 24–25
working area, 22

objects (object model)
CurrentProject, 658
defined, 582
DoCmd, 583–585, 644–648
ErrObject, 680
events, 656
looking up, 650
methods, 656
properties, 656
referring to, 585–586, 657–658
understanding, 655–664
variables, 658

Office Clipboard
clips, viewing, 152
defined, 152
illustrated, 153
showing automatically, 152
task pane, 153

Office File menu, 27–28, 109
Office icon, 27
OKButton_Click() procedure, 628–629
OLE (Object Linking and Embedding)

Object fields
contents, 100
defined, 57
for pictures, 75
uses, 100

On Click event, 611
On Click property, 371, 491, 506–507
one-to-many relationships. See also

relationships
creating, 70
defined, 59
examples, 59–60
foreign key, 60
illustrated, 59
primary key, 60
subforms, 372
uses, 60

45_036494 bindex.qxp 11/17/06 8:38 AM Page 719

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies720

one-to-one relationships. See also
relationships

creating, 70
defined, 59–60
examples, 60
uses, 60

OpenDataAccessPage action, 476
OpenForm action, 476, 501, 503
OpenForm method
DataMode, 645–646
defined, 645
examples, 646–647
FilterName, 645
FormName, 645
OpenArgs, 646
syntax, 645–646
View, 645
WhereCondition, 645
WindowMode, 646

opening databases
already open, 21–22
pointers, 20
previous Access versions, 21
recently used, 20
steps, 20
warning, 18–19

OpenQuery action, 477, 501
OpenReport action, 477
OpenTable action, 477, 501
operators. See also specific operators

comparison, 257
comparison, VBA, 623
in criteria expressions, 222–223
defined, 236
in expressions, 236–238
inserting, 241
logical, 257–258
logical, VBA, 624
order of precedence, 236–237
totals query, 265

option buttons. See also controls
creating, 364
defined, 339
in option groups, 366

Option Group Wizard
defined, 365–366
illustrated, 365
opening, 365
using, 365–366

option groups
caption, 366
creating, 364–366
defined, 339, 364
illustrated, 364
option appearance, 366

Or operator, 257, 624
Order By property, 328
organization, this book, 5–6
orientation, report, 403, 439
outer joins. See also joins

defined, 228
left, 228
right, 228–229

Outlook
collecting data with, 169–173
contacts, getting into Access, 164–165
tasks, 166–167

OutputTo action, 477
owners

changing, 566–567
defined, 552

P
page breaks

after each record, 439
after each record group, 440
controlling, 439–440
defined, 339
within sections, 440

Page Footer section
adding, 416
defined, 413
printing, 418

Page Header section
adding, 416
defined, 413

45_036494 bindex.qxp 11/17/06 8:38 AM Page 720

Index 721

first value, displaying, 418
printing, 418

page numbers. See also reports
adding, 416–417
defined, 403

Page Setup dialog box, 433–434
Page Setup tab, 433
page-level locking, 540
pages

adding, 378
blank, avoiding, 441–442
defined, 540
deleting, 378
formatting, 438–442
multiple, viewing, 437–438
putting controls on, 379
records versus, 540
renaming, 378
reordering, 378

paper size, reports, 403, 439
parameter queries. See also queries

conversion steps, 262–263
creating, 262–264
defined, 205, 262
parameter definition, 263–264
parameter name, 263
saving, 264
using, 263

parameters, reports, 438
password-protected databases. See

also security
encrypting, 549–550
opening, 550–551
setting, 549

passwords
removing, 567
setting, 561
VBA procedure, 567

Paste As dialog box, 35
pasting. See also copying;

cutting/pasting
guidelines, 154–155
with Office Clipboard, 152–153
with Paste Append command, 154

Pencil icon, 92
percentages

fields, 74
storing, 103

performance
analyzing, 518–519
improving, 518–520
recommendations, 520

Performance Analyzer dialog box,
518–519

permissions
back-end database, 568
database, 564
form, 564
front-end database, 568
granting, 564–566
group, 562–567
macro, 564
not granting, 568
Open/Run, 568
query, 564
report, 564
table, 564
types, 563–564
user, checking, 552
user, granting, 558

personal identifiers (PIDs)
defined, 554
editing, 559
list, 555

phone number fields, 74
picture fields, 75
Picture property, 355, 371
PIDs. See personal identifiers
pie charts, 456–457
PivotCharts

category fields, 466
changing, 463, 467–468
Chart Field list, 465
chart type, changing, 468
creating, 464–466
data analysis with, 463–469
data fields, 466
data/series fields, switching, 468

45_036494 bindex.qxp 11/17/06 8:38 AM Page 721

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies722

PivotCharts (continued)

defined, 445, 463
drop areas, 465–466
dynamic aspects, 467
fields, changing, 468
fields, dragging, 465
filter fields, 465
illustrated, 464
legends, displaying/hiding, 469
parts, 467
properties, changing, 469
queries in, 211
saving, 466
series fields, 466
values, changing, 469
view, displaying, 212
viewing, 466–467

PivotTables
AutoCalc button, 307–308
blank, creating, 301–302
buttons, 306–307
calculated fields, 309–311
charting, 311
Column Fields, 302
column size, 312
data, displaying, 302–305
data, filtering, 312
data, working with, 307–311
data change options, 308
data display steps, 303–305
dates, 306
defined, 301, 445
detail, hiding/showing, 307, 308
drop areas, 302–303
Drop Column Fields, 304
Drop Row Fields, 304
expanding/collapsing, 307
exporting, 307
Field list, 302, 304, 306
fields, dragging/dropping, 302
Filter Fields, 303
formatting, 311–312
grand totals, 308

groups, 307–309
illustrated, 303, 309, 464
lookup fields, 305
modifying, 306–307
mouse driven, 291
properties, 307
queries in, 211
Refresh Pivot button, 306–307
Row Field, 303
saving, 306
sort order, 307
subtotals, 307
totals, 308
Totals or Detail Fields, 302
view, displaying, 212
viewing, 306

Pmt() function, 245
postcode fields, 74
prefixes, name, 80
primary keys

AutoNumber, 68, 71
changing, 47
defined, 57, 106
defining, 95, 106–107
examples, 106
multiple, 68
need for, 58
in one-to-many relationships, 60

Print dialog box, 438
Print Preview

reports, 402, 435–436
tab, 436

Print Table Definition dialog box, 109
printers

list, 439
selecting, 438–439
Windows default, 438

printing
calculations, 422
current record button, 370
documentation, 520–521
forms, 333
mailing label fields, 431

45_036494 bindex.qxp 11/17/06 8:38 AM Page 722

Index 723

objects, 35
only data, 442
Page Header and Footer sections, 418
preview, 35
preview options, 336
Relationships window, 200
reports, 51, 442
from subreports, 428
table designs, 108–110

PrintOut action, 477
Private keyword, 617–619
private variables, 617
product activation, 690–691
Product key, 687, 690
product registration, 691
programming. See also VBA (Visual Basic

for Applications)
languages, 571
record-locking, 541
terminology, 577

Project Properties dialog box, 567
properties

ADO recordset, 667
Allow Deletions, 330
Allow Zero Length, 176
Back Color, 348
Back Style, 397
Border Width, 349
Bound Column, 363
Can Grow, 428–429
Can Shrink, 429
Caption, 312, 329, 371
changing, in VBA, 648
chart, 459
collection, 656
Column Count, 363
Column Headings, 300–301
Column Heads, 363
Column Widths, 363
combo box, 362–363
command button, 370–371
control, 342
Control Source, 342, 363,

386, 388, 396, 614

controlling, with VBA, 650–655
CursorType, 668
Default Value, 176, 379
Enabled, 498
event, 488–489
Field Size, 102–103, 105, 176
Filter, 144, 150
Font Name, 349
Force New Page, 439, 442
Fore Color, 348–349, 497
form, 49, 327–330
Format, 167
illustrated, 326
Indexed, 107, 176
Input Mask, 176, 379
Limit to List, 363
Link Child Fields, 427
Link Master Fields, 427
list box, 362–363
List Rows, 363
Name, 396, 651
Navigation Buttons, 329
object, 656
On Click, 371, 491, 506–507
Order By, 328
Picture, 355, 371
PivotChart, 469
Record Selectors, 329
report, 327, 415–416
report groups, 420
Required, 176
Row Source, 363, 463
Row Source Type, 363
RunPermissions, 568
Scroll Bars, 329
section, 415–416
Source Object, 426
Special Effects, 397
subform control, 375–376
subreport control, 427
Text Align, 350
Text Format, 129
Unique Records, 290
Unique Values, 290

45_036494 bindex.qxp 11/17/06 8:38 AM Page 723

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies724

properties (continued)

Update, 500
Validation Rule, 176, 186, 188, 379
Validation Text, 188, 379
Value, 650
Visible, 498
Width, 441

Properties dialog box, 529
Property sheets

All tab, 327, 600
Calculation tab, 310
Captions tab, 312
Data tab, 327, 417
defined, 326
displaying, 96, 290, 326, 516
Event tab, 573, 599
Format tab, 311, 328
sort order, 300
text box, 341–342

Public keyword, 617–619
public variables, 617
pyramid charts, 451

Q
queries. See also tables

action, 12, 205, 269–273
action, running from VBA, 674–676
adding tables to, 215–216
Advanced Filter/Sort, 204
append, 269, 280–282
AutoLookup, 205, 230–231
closing, 232
creating, 203, 204
creating in Design view, 205–207
creating similar, 232
creating with Simple Query Wizard,

208–211
creation tips, 215–217
criteria, 11
Crosstab, 12, 205
data sheets, working with, 229–231

datasheet creation, 204
in Datasheet view, 211
defined, 10, 11, 203
delete, 269, 282–285
in Design view, 48, 211
detail, 204, 208
editing, 211, 217–220
exporting, 232
field format, changing, 219–220
fields, hiding, 219
importing, 232
make-table, 270, 277–280
math, 233–236
modifying, 47–48
with multivalue lookup fields, 225–226
naming, 207, 232
opening methods, 211
parameters, 205, 262–264
permissions, 564
in PivotChart view, 211
in PivotTable view, 211
saved, 203
saving, 207, 231–232
select, 204
sorting, 218
SQL statements, 671
in SQL view, 211
subdatasheets, 132–133
summary, 204–205, 208
tables to which bound, 47–48
top values, viewing, 218–219
totals, 204–205
types, 204–205
update, 270, 273–277
uses, 11, 47, 203
viewing, 211–212

Query by Example (QBE) grid. See
design grid

Query Parameters dialog box, 263
Quick Access toolbar

button order, changing, 27
buttons, 25

45_036494 bindex.qxp 11/17/06 8:38 AM Page 724

Index 725

buttons, adding, 26–27
customizing, 25–27
defined, 25
moving, 27
Print button, 35

Quick Info syntax chart, 592–594

R
read-only forms, 330
record selectors, 92, 329, 333
Record Selectors property, 329
Record Source, 50
record-locking

all records, 540
managing, 539–541
no locks, 539–540
one record, 541
programming, 541
turning on, 539

records. See also fields; tables
adding, 114
autonumbering, 68
blank row, moving to, 114
current, printing, 370
current, saving, 370
defined, 10, 55, 122
deleting, 121–122
deleting, with delete query, 282–285
duplicate, 288–290
editing, 115
filtering based on calculated fields, 267
illustrated, 10
limiting with criteria expressions,

220–226
number, moving to, 113
order, 327–328
pages versus, 540
report, sorting, 421
source, 327
summarizing, 394
unmatched, 285–288
validation rules, 186
value, repeating, 114

recordsets
ADO, 667
closing, 676
cursor type, defining, 668–669
field names in, 669–670
looping through, 667–668
object models, 665
quick and easy, 666
removing, 676
SQL and, 670–674

Reddick VBA Naming Conventions, 80
redundancy, 63–64
References dialog box, 666
referential integrity

between two tables, 196–197
Cascade Delete Related Records

option, 195–196
Cascade Update Related Fields option,

194, 196
defined, 70–71, 191, 193
enabling, 195–196
enforcing, 194, 199
with many-to-many relationships,

198–199
types, 194–195

registration, Access, 691
reinstallation, 691
relational databases, 58
relationships

creating, 70, 78, 193–198
defined, 58
deleting, 198
editing, 196–198
many-to-many, 59, 61–63, 70, 192
one-to-many, 44, 58–60, 70
one-to-one, 59, 60–61, 70
in Relationships window, 45
viewing, 44–45, 516

Relationships window
boxes, 44–45
closing, 45
defined, 195
empty, 195
join lines, 197–198

45_036494 bindex.qxp 11/17/06 8:38 AM Page 725

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies726

Relationships window (continued)

opening, 195
printing, 200
relationships, 45
tables, adding, 195–196
viewing relationships in, 516

repair, Access, 691
repairing databases, 511–512
Report Design screen, 200
Report Footer section, 413, 416
Report Header section, 413, 416
Report Wizard

advantage, 404
data grouping, 406
defined, 401
field selection, 405
illustrated, 405
opening, 404–405
report illustration, 410
report layout selection, 409
report organization, 406–407
running, 404–410
Summary Options button, 408
Tables/Queries drop-down list, 405

reports
AutoNumber fields in, 101
background pictures, 355
benefits, 264
blank pages, avoiding, 441–442
bound to table, 51
calculated values, 386
calculations in, 385–397
chart controls, 447
closing, 331
columnar, 411
configuring, 326–330
controls, 337–348
copying forms to, 424
creating from scratch, 323–324
creating with Report Wizard, 403–411
date, 417–418
date expressions, 390

defined, 10, 13
design, 13
design tips, 337
in Design view, 402
displaying, 409
Documenter, 521
duplicate values, hiding, 423
editing in Design view, 412–413
empty fields, displaying, 429
exporting, 442–443
features, 403
fields, adding, 51
with filter, 150
footers, 403
formatting, 352–354
formatting tips and tricks, 422–424
forms versus, 316, 401
grouping, 403
grouping fields, 407
headers, 403
illustrated, 13
importing, 331–332
layout, 409
layout, changing, 324–326
in Layout view, 402
list of, 402
mailing label, 428–434
management, 331
margins, 403, 439–440
Memo fields, 428–429
modifying, 51, 335
multiple pages, viewing, 437–438
naming, 409
numeric calculations, 389
object-definition, 109
opening, in Design view, 335
organizing, 406–407
orientation, 403, 439
page breaks, 439–440
page numbers, 403, 416–417
pages, formatting, 438–442
paper size, 403, 439

45_036494 bindex.qxp 11/17/06 8:38 AM Page 726

Index 727

with parameters, previewing, 438
permissions, 564
previewing, 336
Print Preview, 402, 435–436
printing, 51, 442
properties, 327, 415–416
records, printing number of, 422
records, sorting, 421
saving, 330
sections, 403, 413–422
sending, to other applications, 442–443
simple, creating, 410–411
space between fields, 423
storing, 330–332
subreports, 424–428
tabular, 411
text expressions, 390
Text fields, 428–429
time, 417–418
uses, 401
viewing, 51, 435–438
views, 402
views, adjusting, 436–437
whole, selecting, 326
workgroup file, 560

ReQuery action, 477
Required property, 176
Ribbon

buttons groups, 23
Create tab, 34, 86, 89, 150, 205
Database Tools tab, 44, 165, 516
Datasheet tab, 89, 90, 113, 195
defined, 23
Design tab, 50, 95–96, 98, 106, 195, 213
in Design view, 413
displaying, 24
External Data tab, 164, 166
Form Layout Tools tab, 388
Home tab, 97, 112, 123, 135, 137
keyboard shortcuts, 24
Layout tab, 416
minimizing, 24

Page Setup tab, 433
Print Preview tab, 436
tabs, 23
using, 23

rich text
advantage, 128–129
defined, 128
display, 129

Right() function, 255
right outer joins, 228
Round() function, 245
Row Height dialog box, 131
Row Source property, 363, 463
Row Source Type property, 363
rows, datasheet

height, changing, 130–131
sorting, 137–139
totals, 134–135

rows. See records
Run button, 270–271
RunApp action, 477
RunCode action, 477
RunCommand action, 477
RunMacro action, 477
running sums, 423
RunPermissions property, 568
runtime errors. See also errors;

VBA code
defined, 677
eliminating, 683
error-handling code, 682
fixing, 682–683
occurrence, 681
trapping, 679–682

S
Save ACCDE As dialog box, 524
Save action, 477
Save As dialog box, 86, 330
Save Backup As dialog box, 513
saved imports, 166–167

45_036494 bindex.qxp 11/17/06 8:38 AM Page 727

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies728

saving
current record, 370
forms, 330
macro groups, 507
macros, 479
PivotCharts, 466
PivotTables, 306
queries, 207, 231–232
reports, 330
tables, 85–86, 89

scope, variable, 617–618
scroll bars, forms, 329
Scroll Bars property, 329
searches

broad, 141
Find and Replace dialog box, 139–141
narrow, 141

sections. See also reports
Detail, 413
grouping, 418–421
illustrated, 414
Page Footer, 413, 416–418
Page Header, 413, 416–418
properties, 415–416
for record grouping, 418–421
repetition, 414
Report Footer, 413, 416–418
Report Header, 413, 416–418
Section Footer, 413
Section Header, 413

secure databases
converting, 565
creating, 555–560
identifying, 561
opening, 560–561
passwords, 561

security
back-end database, 568
database access, 551–568
front-end database, 568
mechanisms, 543–544
password-protection, 549–551

setting, turning down, 486–487
user-level, 544, 551–552
VBA module, 567
Windows, 544
workgroup file, 552–553

Security Alert, 44
security IDs (SIDs), 554, 562
security message

defined, 18
display of, 18–19
turning off, 19

Select Case block
Case statements, 627
End Select, 628
syntax, 627
using, 627–629

Select New Location Of dialog box, 536
select queries. See also queries

action queries versus, 269
adding tables to, 215–216
creating in Design view, 205–207
creating with Simple Query Wizard,

208–211
creation tips, 215–217
datasheet, 206–207
defined, 204
detail, 204, 208
editing, 217–220
field names, 206
naming, 207
saving, 207
sorting, 218
summary, 204–205, 208
use, 205

SelectedObject action, 477
SendKeys action, 477
Series setting. See also Chart Wizard;

charts
bar charts, 454–455
defined, 448
field type, 454
in pie/doughnut charts, 457

45_036494 bindex.qxp 11/17/06 8:38 AM Page 728

Index 729

SetValue action, 477, 499
SetWarnings method, 675
shared mode, 538
shortcuts. See also keyboard shortcuts

defined, 563
object, creating, 34

Show Table dialog box, 195–196,
205–206, 216

ShowAllRecords action, 477
Simple Query Wizard

creating queries with, 208–211
detail query, 208
field selection, 209
opening, 208
query display, 210–211
query editing, 211
query naming, 210
query type selection, 209
summary query, 208
Tables/Queries list box, 208

Simple Report Tool, 410–411
single facts, storing, 75–76
sorting

by calculated fields, 262
datasheet rows, 137–139
Date fields, 139
by name/company, 260–262
Navigation Pane objects, 30
Number/Currency fields, 138–139
order, 138, 149
PivotTables, 307
queries, 218
report records, 408, 421

Sorting and Grouping dialog box, 419
Source Object property, 426
special characters, entering, 122
Special Effects property, 397
spelling, checking, 123–124
Spelling dialog box, 123–124
splitting databases. See also back-end

databases; front-end databases
advantages, 530–531
with Database Splitter Wizard, 532–533

disadvantages, 531
by hand, 533–535

spreadsheets
data, importing, 160–163
databases versus, 11
defined, 11

SQL
defined, 670
recordsets and, 670–674
view, 211, 675

SQL statements
assigning, to strings, 673
breaking up, 673–674
broken into multiple lines, 672
example, 671
pasting, 672
stored in String variable, 674
syntax, 670
writing, 670

Sqr() function, 239
standard modules. See also VBA

modules
code, 573
creating, 574
defined, 572
opening, 574
procedures, creating, 597–599
viewing, 574

statements. See also VBA procedures
arguments, passing, 600–603
defined, 591
execution, 591
keywords, 592
multiple execution, 630–635
Option, 596
simplified syntax, 601
syntax, 592–596
syntax chart, 592

Static keyword, 618–619
StDev operation, 265
strings

adding spaces to, 254–255
assigning SQL statements to, 673

45_036494 bindex.qxp 11/17/06 8:38 AM Page 729

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies730

strings (continued)

breaking, 608
characters, analyzing, 635
defined, 254

Structured Query Language. See SQL;
SQL statements

Sub keyword, 618, 652, 654
sub procedures. See also

VBA procedures
arguments, 610
calling from procedures, 611–612
converting to function procedures, 612
defined, 576
name, 653–654
running, 611–613
running from macros, 612–613
testing, 609–611

subdatasheets. See also datasheets
advantages, 132–134
automatic creation, 132
availability identification, 133
display identification, 133
illustrated, 133
manual selection, 134
query, 132–133

SubForm Wizard
opening, 373
records relationship, 374
subform name, 375
Use Existing Tables and Queries

option, 373
subforms. See also forms

adding, 339
column widths, 375
control, 373
control properties, 375–376
control reference on, 393–394
creating, 373–375
defined, 315
in form view, 396
illustrated, 372
layout, 372
naming, 375
one-to-many relationship, 372

storage, 373
totals, on main form, 395–396
uses, 372

subreport control
defined, 424
moving, 427
properties, 427
sizing, 427

subreports. See also reports
adding, 339
bound, 425–426
creating, 426–427
defined, 424
printing information from, 428
unbound, 424–425

subscripts
Counter, 634
defined, 620
multidimensional array, 621

subtotals
calculating in queries, 266–267
group, calculating, 421–422

subtraction (-) operator, 237
Sum() function, 392
Sum operation, 265
Summarize dialog box, 453
Summary Options dialog box, 209–210
summary queries. See also queries;

select queries
creating, 208–211
defined, 204, 208
example, 208
fields, 210
illustrated, 211
options, 208–210
selecting, 209

Switchboard Manager
entries, changing, 381–382
page listings, 381
starting, 381

switchboards
alternative to, 383
buttons, editing, 382
changes, 380–381

45_036494 bindex.qxp 11/17/06 8:38 AM Page 730

Index 731

custom, 502
defined, 380
in Design view, 381
entries, changing, 381–382
illustrated, 380
opening, 381

syntax charts
comma, 616
defined, 592
ellipse, 616
guidelines, 594
Quick Info, 592–593

T
tab control. See also controls

creating, 378–379
defined, 377
illustrated, 379
sizing, 378
uses, 378–379

tab order, 355
tabbed forms, 377–378
Table Analyzer Wizard, 77, 162, 164, 166
Table Property Sheet, 133
table templates

creating tables with, 87–88
types of, 88

tables. See also fields; records
abbreviation, 67
ACCDE files, 525
adding to queries, 215–216
blank, 86–87
code, 67
creating, 78, 86–94
creating with Datasheet view, 88–90
creating with Design view, 93–94
creating with table template, 87–88
default formatting, changing, 132
defined, 10, 55
definitions, 109–110
design, 11
design, analyzing, 77

design, printing, 108–110
design illustration, 47
in Design view, 214
detail, 60, 192
displaying, 83
entering data into, 54
filtered, 150
illustrated, 10
imported, 159
joining in Design view, 227
junction, 62–63, 198
key selection, 67–69
linked, 159
master, 60, 191
modifying, 46–47
multiple related, 226–229
names, 44, 89
names, displaying/hiding, 215
one record, 76
organizing fields into, 64–66
permissions, 564
primary keys, 57–58
referential integrity between, 196–197
Relationship window, 195–196
relationships, 44–45
relinking, 535–536
saving, 85–86, 89
viewing methods, 111–112
views, 83–85

tabs. See Ribbon; specific tabs
Tabular AutoForms. See also AutoForms

defined, 318
illustrated, 319

tabular reports, 411
Tasks template, 88
TechNet Online, 37
templates

advantages, 39, 54
Attachment field, 120
Business, 40, 41
buttons, 51–53
Contact Management, 380
database creation from, 39–54

45_036494 bindex.qxp 11/17/06 8:38 AM Page 731

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies732

templates (continued)

as databases, 42
defined, 39
exploring, 42–45
field, 90–91
finding, 40–42
icons, 40, 41
objects, viewing, 42
table, 87–88
as timesavers, 40
uses, 99
using, 53–54
without modifications, 53

testing code. See also VBA code
custom functions, 638
function procedures, 613–614
sub procedures, 609–611

text
in angle brackets (<>), 244
control, formatting, 348–351
in criteria expression, 221
data, importing, 160–163
data, linking, 160–163
expressions, 390
filtering by selection, 145
functions, 255
label, 343
language, 162
literal, 236, 254
manipulating, with expressions,

254–255
rich, 128–129
selection tricks, 116
validation, 188
viewing, 116

Text Align property, 350
text boxes. See also controls

calculations in, 388
contents, formatting, 346
creating, 340
Currency fields, 346
Date fields, 346
defined, 339, 343
length, 346

Memo fields, 345–346
Number fields, 346
Property sheet, 341–342
rich text display, 129
text, inserting with VBA, 650
Text fields, 345–346
Yes/No fields, 363

Text fields. See also data types; fields
contents, 99
default field size, 104
defined, 56
in design, 72–74
formatting, 105
for phone numbers, 74
in reports, 428–429
in text boxes, 345–346

Text Format property, 129
text qualifiers, 161
Time() function, 252
time

in criteria expressions, 221
delimiter, 163
literal, 251
report, 417–418

Time functions, 252–254
To keyword, 629
toggle buttons. See also controls

creating, 364
defined, 339

tooltips, 24–25
totals queries. See also queries

defined, 204, 265
illustrated, 266
operations, 265
results, 267
subtotals calculation, 266–267

totals row
clearing, 135
creating, 135
defined, 134–135

trendline, chart, 462
Trim() function, 255
Troubleshooting Your PC For

Dummies, 513

45_036494 bindex.qxp 11/17/06 8:38 AM Page 732

Index 733

U
UCase() function, 255, 600
unbound controls, 337
unbound forms, 502
unbound subreports. See

also subreports
defined, 424
illustrated, 425
printing, 425

underscore (_) character, 608
Undo button, 114
uninstalling Access, 691
Unique Records property, 290
Unique Values property, 290
universal naming conventions (UNC)

path, 158
unmatched records, finding, 285–288
Update property, 500
update queries. See also queries

changing data with, 273–277
creating, 273–277
defined, 270
deleting, 277
in Design view, 675
field display, 276
results, checking, 277
Run button, 276–277
running, 276
saving, 277
in SQL view, 675
Update To row, 275
View button, 274

User and Group Accounts dialog
box, 561

User and Group Permissions dialog
box, 565

user-level security. See also security
creating, 555–560
defined, 544
functioning of, 551–552
object selections, 557

user permissions, 558
users/groups database, 551

User-Level Security Wizard
defined, 555
group creation, 557
opening, 555
user creation, 559
workgroup file creation, 559

users
Admin, 552
creating, 561–562
creating, in User-Level Security

Wizard, 559
database, 551
deleting, 562
dos/don’ts, 554
information, 554
modifying objects as, 46
name, 554
owners, 552
permissions, 552, 558

V
Validation Rule property,

176, 186, 188, 379
validation rules

creating, 188–189
defined, 72, 176
examples, 187
fields, 186
input masks with, 177
length, 188
Like operator, 189
multiple expressions, 190
records, 186
testing, 188
use illustration, 187

validation text, 188
Validation Text property, 188, 379
Value property, 650
Var operation, 265

45_036494 bindex.qxp 11/17/06 8:38 AM Page 733

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies734

variables. See also VBA procedures
in arrays, 620–621
creating, 615
data in, 615
defined, 615
explicit declaration, 616
implicit declarations, 616
lifetime, 618–619
lifetime, default, 619
module-level scope, 617
in multidimensional arrays, 621–622
multiple, defining, 616
naming conventions, 622–623, 659
object, 658
private, 617
public, 617
scope, 617–618
scope, default, 619
tags, 622

VBA (Visual Basic for Applications)
action queries, running from, 674–676
control properties, changing, 648
custom functions, 636–639
for custom messages, 641–644
data types, 602
defined, 473, 571
form control changes with, 648–655
form control with, 641–664
functioning of, 591–592
as programming language, 571
property control, 650–655
syntax, 592–597
uses, 14

VBA code
in class modules, 571
comments, 606–607
comparison operators, 623
compile errors, 608–609
constants, 615–623
continuation characters, 607
custom, writing, 573

cutting/pasting, 590
debugging, 677–686
decisions, 623–629
Do...Loop, 630–632
enabling, 575–576
error message box, 609
execution, 591–592
finding, 571–572
For...Next, 632–634
For Each...Next, 661–663
If...End If statements, 624–626
lines, breaking, 607–608
literal strings, breaking, 608
logical operators, 624
macro conversion to, 587–589
organization, 575
repeated execution, 630–635
running, 609–614
Select Case block, 627–629
smart, writing, 615–639
in standard modules, 572–573
stepping through, 686
testing, 609–614
underscore character (_), 608
variables, 615–623
While...Wend, 632
With...End With, 663–664
writing, 591–614

VBA modules
Binary option, 597
class, 571–573
Compare option, 597
creating, 574
Declaration section, 575
defined, 10, 14
elements, 575
level, 596
options, 597
securing, 567
standard, 573–574
Text option, 597

45_036494 bindex.qxp 11/17/06 8:38 AM Page 734

Index 735

VBA procedures
categories, 575
Command Button Wizard for, 490, 507
constants, 619
creating, 506, 597–599
defined, 575
event, creating, 599–600
execution, 591–592
first/last lines, 652
function, 576, 603
level, 596
naming, 598, 600
passing arguments to, 600–603
passwords, 567
to run macros, 507
running, 609–614
slowing down, 685–686
in standard module, 597–599
statements, 591
sub, 576
testing, 609–614
variables, 615–623
writing, 597–604, 652

view buttons (Access window), 25
views

Datasheet, 84–85, 211–212, 322
Design, 43, 46, 48, 85, 211–212, 322
Form, 322
Layout, 402
PivotChart, 84, 211–212, 466–467
PivotTable, 84, 211–212
Print Preview, 402
query, 211–212
report, 402
SQL, 211
table, 83–85

viruses, 18–19
Visible property, 498
Visual Basic Editor. See also VBA (Visual

Basic for Applications)
closing, 587
Code window, 579–580
components, 578

defined, 576
Help system, 650
illustrated, 578
Immediate window, 580–582
Object Browser, 582–583
using, 576–587
view, 577
windows, moving, 578
windows, sizing, 578
Windows taskbar button, 577

Visual Basic for Applications. See VBA
Visual Studio, 577

W
Web-based forms, 527
WeekDay() function, 244
While...Wend loop. See also loops

defined, 632
in looping through recordsets, 667–668

Width property, 441
Windows shortcuts, 563
Windows XP For Dummies, 528, 544
With...End With

defined, 663
For Each...Next loop with, 664
syntax, 663
Visible property, 664

WithTax() function, 604
wizards. See also specific wizards

add-ins, 523
defined, 35
questions, 36
using, 35–36

workgroup file
creating, 555–556, 559
default, 552–553
defined, 551
lost, 555
new, 553
report, 560

workgroups, starting Access with, 563

45_036494 bindex.qxp 11/17/06 8:38 AM Page 735

Microsoft Office Access 2007 All-in-One Desk Reference For Dummies736

X
X-Axis setting. See also Chart Wizard;

charts
bar charts, 451–452
Date/Time field, 452
defined, 448

Xor operator, 257, 624
XY scatter plots, 457

Y
Y-Axis setting. See also Chart

Wizard; charts
bar charts, 452–453
defined, 448

multiple fields, 453
in pie/doughnut charts, 456

Yes/No fields
advantage, 72
appearance, 363–364
check boxes, 351–352
contents, 99
defined, 57
in design, 57
in text boxes, 363
uses, 99

Z
Zoom control, 436
Zoom dialog box, 116, 236

45_036494 bindex.qxp 11/17/06 8:38 AM Page 736

