
by John Walkenbach

Revised by Jan Karel Pieterse

Excel® 2007 VBA
Programming

FOR

DUMmIES
‰

01_046746 ffirs.qxp  1/12/07  5:50 PM  Page i



Excel® 2007 VBA Programming For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft and Excel are reg-
istered trademarks of Microsoft Corporation in the United States and/or other countries.  All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006939593

ISBN: 978-0-470-04674-6

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

01_046746 ffirs.qxp  1/12/07  5:50 PM  Page ii

www.wiley.com


About the Author
John Walkenbach is the author of more than 50 spreadsheet books and lives
in southern Arizona. Visit his Web site at http://j-walk.com.

Dedication
“This book is dedicated to Jim Kloss and Esther Golton — my two favorite
people in Matanuska-Susitna county. By putting their names in this book, I’m
ensured of at least one sale in Alaska.”

Author’s Acknowledgments
Thanks to all of the talented people at Wiley Publishing for making it so easy
to write these books. And special thanks to Jan Karel Pieterse for his assis-
tance with this edition.

01_046746 ffirs.qxp  1/12/07  5:50 PM  Page iii



Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and 
Media Development

Project Editor: Beth Taylor

Executive Editor: Greg Croy

Copy Editor: Beth Taylor

Technical Editor: Allen Wyatt

Editorial Manager: Jodi Jensen

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Jennifer Theriot

Layout and Graphics: Carl Byers, Stephanie D.
Jumper, Barbara Moore, 
Julie Trippetti

Proofreaders: Laura Albert, John Greenough,
Techbooks

Indexer: Techbooks

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_046746 ffirs.qxp  1/12/07  5:50 PM  Page iv

www.dummies.com


Contents at a Glance
Introduction .................................................................1

Part I: Introducing VBA ................................................9
Chapter 1: What Is VBA?..................................................................................................11
Chapter 2: Jumping Right In............................................................................................21

Part II: How VBA Works with Excel..............................33
Chapter 3: Working In the Visual Basic Editor..............................................................35
Chapter 4: Introducing the Excel Object Model ...........................................................53
Chapter 5: VBA Sub and Function Procedures .............................................................67
Chapter 6: Using the Excel Macro Recorder .................................................................79

Part III: Programming Concepts...................................91
Chapter 7: Essential VBA Language Elements ..............................................................93
Chapter 8: Working with Range Objects......................................................................113
Chapter 9: Using VBA and Worksheet Functions .......................................................125
Chapter 10: Controlling Program Flow and Making Decisions .................................139
Chapter 11: Automatic Procedures and Events..........................................................157
Chapter 12: Error-Handling Techniques ......................................................................177
Chapter 13: Bug Extermination Techniques ...............................................................191
Chapter 14: VBA Programming Examples ...................................................................203

Part IV: Communicating with Your Users ....................221
Chapter 15: Simple Dialog Boxes..................................................................................223
Chapter 16: UserForm Basics........................................................................................239
Chapter 17: Using UserForm Controls .........................................................................255
Chapter 18: UserForm Techniques and Tricks ...........................................................275
Chapter 19: Accessing Your Macros Through the User Interface ............................299

Part V: Putting It All Together ...................................315
Chapter 20: Creating Worksheet Functions and Living to Tell about It...................317
Chapter 21: Creating Excel Add-Ins..............................................................................333

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page v



Part VI: The Part of Tens ...........................................345
Chapter 22: Ten VBA Questions (And Answers) ........................................................347
Chapter 23: (Almost) Ten Excel Resources.................................................................351

Index .......................................................................355

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page vi



Table of Contents
Introduction..................................................................1

Is This the Right Book?....................................................................................1
So You Want to Be a Programmer . . . ............................................................2
Why Bother? .....................................................................................................2
What I Assume about You ...............................................................................3
Obligatory Typographical Conventions Section..........................................4
Check Your Security Settings..........................................................................4
How This Book Is Organized...........................................................................6

Part I: Introducing VBA..........................................................................6
Part II: How VBA Works with Excel ......................................................6
Part III: Programming Concepts............................................................6
Part IV: Communicating with Your Users ............................................6
Part V: Putting It All Together...............................................................7
Part VI: The Part of Tens .......................................................................7

Marginal Icons ..................................................................................................7
Get the Sample Files.........................................................................................8
Now What? ........................................................................................................8

Part I: Introducing VBA .................................................9

Chapter 1: What Is VBA?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Okay, So What Is VBA?...................................................................................11
What Can You Do with VBA?.........................................................................12

Inserting a bunch of text ....................................................................13
Automating a task you perform frequently.......................................13
Automating repetitive operations ......................................................13
Creating a custom command ..............................................................13
Creating a custom button....................................................................14
Developing new worksheet functions................................................14
Creating complete, macro-driven applications ................................14
Creating custom add-ins for Excel .....................................................14

Advantages and Disadvantages of VBA.......................................................14
VBA advantages....................................................................................15
VBA disadvantages...............................................................................15

VBA in a Nutshell ...........................................................................................16
An Excursion into Versions...........................................................................18

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page vii



Chapter 2: Jumping Right In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
First Things First ............................................................................................21
What You’ll Be Doing .....................................................................................22
Taking the First Steps ....................................................................................23
Recording the Macro .....................................................................................23
Testing the Macro ..........................................................................................25
Examining the Macro .....................................................................................25
Modifying the Macro......................................................................................28
Saving Workbooks that Contain Macros .....................................................29
Understanding Macro Security.....................................................................29
More about the NameAndTime Macro ........................................................31

Part II: How VBA Works with Excel ..............................33

Chapter 3: Working In the Visual Basic Editor . . . . . . . . . . . . . . . . . . . .35
What Is the Visual Basic Editor? ..................................................................35

Activating the VBE ...............................................................................35
Understanding VBE components .......................................................36

Working with the Project Explorer...............................................................38
Adding a new VBA module..................................................................39
Removing a VBA module .....................................................................39
Exporting and importing objects .......................................................40

Working with a Code Window.......................................................................40
Minimizing and maximizing windows................................................40
Creating a module ................................................................................42
Getting VBA code into a module ........................................................42
Entering code directly .........................................................................43
Using the macro recorder ...................................................................45
Copying VBA code................................................................................47

Customizing the VBA Environment .............................................................47
Using the Editor tab .............................................................................48
Using the Editor Format tab................................................................50
Using the General tab ..........................................................................52
Using the Docking tab..........................................................................52

Chapter 4: Introducing the Excel Object Model . . . . . . . . . . . . . . . . . . .53
Excel Is an Object? .........................................................................................54
Climbing the Object Hierarchy.....................................................................54
Wrapping Your Mind around Collections....................................................56
Referring to Objects.......................................................................................56

Navigating through the hierarchy ......................................................57
Simplifying object references..............................................................58

Diving into Object Properties and Methods ...............................................59
Object properties .................................................................................59
Object methods ....................................................................................62
Object events ........................................................................................63

Excel 2007 VBA Programming For Dummies viii

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page viii



Finding Out More ...........................................................................................63
Using VBA’s Help system .....................................................................63
Using the Object Browser....................................................................64

Chapter 5: VBA Sub and Function Procedures . . . . . . . . . . . . . . . . . . . .67
Subs versus Functions...................................................................................67

Looking at Sub procedures .................................................................68
Looking at Function procedures.........................................................68
Naming Subs and Functions................................................................69

Executing Sub procedures ............................................................................69
Executing the Sub procedure directly ...............................................71
Executing the procedure from the Macro dialog box ......................72
Executing a macro by using a shortcut key ......................................72
Executing the procedure from a button or shape............................74
Executing the procedure from another procedure ..........................76

Executing Function procedures ...................................................................76
Calling the function from a Sub procedure .......................................77
Calling a function from a worksheet formula....................................77

Chapter 6: Using the Excel Macro Recorder  . . . . . . . . . . . . . . . . . . . . .79
Is It Live or Is It VBA?.....................................................................................79
Recording Basics............................................................................................80
Preparing to Record.......................................................................................82
Relative or Absolute?.....................................................................................82

Recording in absolute mode ...............................................................82
Recording in relative mode .................................................................83

What Gets Recorded? ....................................................................................85
Recording Options .........................................................................................86

Macro name...........................................................................................87
Shortcut key..........................................................................................87
Store Macro In.......................................................................................87
Description............................................................................................87

Is This Thing Efficient? ..................................................................................88

Part III: Programming Concepts ...................................91

Chapter 7: Essential VBA Language Elements  . . . . . . . . . . . . . . . . . . . .93
Using Comments in Your VBA Code ............................................................93
Using Variables, Constants, and Data Types ..............................................95

Understanding variables .....................................................................95
What are VBA’s data types?.................................................................97
Declaring and scoping variables ........................................................98
Working with constants .....................................................................103
Working with strings ..........................................................................105
Working with dates.............................................................................106

ixTable of Contents

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page ix



Using Assignment Statements ....................................................................106
Assignment statement examples......................................................107
About that equal sign.........................................................................107
Other operators..................................................................................108

Working with Arrays ....................................................................................109
Declaring arrays .................................................................................109
Multidimensional arrays....................................................................110
Dynamic arrays...................................................................................111

Using Labels..................................................................................................111

Chapter 8: Working with Range Objects  . . . . . . . . . . . . . . . . . . . . . . . .113
A Quick Review.............................................................................................113
Other Ways to Refer to a Range .................................................................114

The Cells property .............................................................................115
The Offset property ...........................................................................116
Referring to entire columns and rows .............................................116

Some Useful Range Object Properties.......................................................117
The Value property ............................................................................117
The Text property ..............................................................................118
The Count property ...........................................................................118
The Column and Row properties .....................................................118
The Address property........................................................................119
The HasFormula property.................................................................119
The Font property ..............................................................................120
The Interior property.........................................................................120
The Formula property .......................................................................121
The NumberFormat property ...........................................................121

Some Useful Range Object Methods..........................................................122
The Select method .............................................................................122
The Copy and Paste methods...........................................................123
The Clear method...............................................................................123
The Delete method.............................................................................124

Chapter 9: Using VBA and Worksheet Functions  . . . . . . . . . . . . . . . .125
What Is a Function?......................................................................................125
Using Built-in VBA Functions......................................................................126

VBA function examples......................................................................126
VBA functions that do more than return a value ...........................128
Discovering VBA functions ...............................................................129

Using Worksheet Functions in VBA ...........................................................132
Worksheet function examples ..........................................................133
Entering worksheet functions...........................................................136

More about Using Worksheet Functions ...................................................136
Using Custom Functions .............................................................................137

Excel 2007 VBA Programming For Dummies x

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page x



Chapter 10: Controlling Program Flow and Making Decisions . . . . .139
Going with the Flow, Dude ..........................................................................139
The GoTo Statement ....................................................................................140

Decisions, decisions...........................................................................141
The If-Then structure .........................................................................141
The Select Case structure .................................................................146

Knocking Your Code for a Loop .................................................................149
For-Next loops.....................................................................................150
Do-While loop .....................................................................................153
Do-Until loop .......................................................................................154

Looping through a Collection.....................................................................155

Chapter 11: Automatic Procedures and Events  . . . . . . . . . . . . . . . . . .157
Preparing for the Big Event.........................................................................157

Are events useful? ..............................................................................159
Programming event-handler procedures ........................................160

Where Does the VBA Code Go? ..................................................................160
Writing an Event-Handler Procedure .........................................................161
Introductory Examples................................................................................163

The Open event for a workbook.......................................................163
The BeforeClose event for a workbook ...........................................165
The BeforeSave event for a workbook.............................................165

Examples of Activation Events ...................................................................166
Activate and deactivate events in a sheet.......................................166
Activate and deactivate events in a workbook...............................167
Workbook activation events .............................................................168

Other Worksheet-Related Events ...............................................................169
The BeforeDoubleClick event ...........................................................169
The BeforeRightClick event ..............................................................169
The Change event...............................................................................170

Events Not Associated with Objects .........................................................172
The OnTime event..............................................................................172
Keypress events..................................................................................174

Chapter 12: Error-Handling Techniques . . . . . . . . . . . . . . . . . . . . . . . . .177
Types of Errors .............................................................................................177
An Erroneous Example ................................................................................178

The macro’s not quite perfect ..........................................................179
The macro is still not perfect............................................................180
Is the macro perfect yet?...................................................................180
Giving up on perfection .....................................................................181

Handling Errors Another Way.....................................................................182
Revisiting the EnterSquareRoot procedure ...................................182
About the On Error statement ..........................................................183

xiTable of Contents

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xi



Handling Errors: The Details ......................................................................184
Resuming after an error.....................................................................184
Error handling in a nutshell ..............................................................186
Knowing when to ignore errors ........................................................186
Identifying specific errors .................................................................187

An Intentional Error .....................................................................................188

Chapter 13: Bug Extermination Techniques  . . . . . . . . . . . . . . . . . . . . .191
Species of Bugs.............................................................................................191
Identifying Bugs............................................................................................192
Debugging Techniques ................................................................................193

Examining your code .........................................................................193
Using the MsgBox function ...............................................................194
Inserting Debug.Print statements ....................................................195
Using the VBA debugger....................................................................196

About the Debugger.....................................................................................196
Setting breakpoints in your code .....................................................196
Using the Watch window ...................................................................199
Using the Locals Window ..................................................................201

Bug Reduction Tips......................................................................................201

Chapter 14: VBA Programming Examples  . . . . . . . . . . . . . . . . . . . . . . .203
Working with Ranges ...................................................................................203

Copying a range ..................................................................................204
Copying a variable-sized range.........................................................205
Selecting to the end of a row or column..........................................206
Selecting a row or column.................................................................207
Moving a range ...................................................................................207
Looping through a range efficiently.................................................208
Prompting for a cell value .................................................................209
Determining the selection type .......................................................210
Identifying a multiple selection ........................................................211

Changing Excel Settings ..............................................................................211
Changing Boolean settings................................................................212
Changing non-Boolean settings ........................................................212

Working with Charts ....................................................................................213
Modifying the chart type...................................................................214
Looping through the ChartObjects collection................................214
Modifying chart properties ...............................................................215
Applying chart formatting.................................................................215

VBA Speed Tips ............................................................................................216
Turning off screen updating..............................................................216
Turning off automatic calculation ....................................................217
Eliminating those pesky alert messages .........................................218
Simplifying object references............................................................219
Declaring variable types....................................................................219

Using the With-End With structure ............................................................220

Excel 2007 VBA Programming For Dummies xii

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xii



Part IV: Communicating with Your Users.....................221

Chapter 15: Simple Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Why Create UserForms?..............................................................................223
The MsgBox Function..................................................................................224

Displaying a simple message box.....................................................225
Getting a response from a message box..........................................225
Customizing message boxes .............................................................226

The InputBox Function................................................................................229
InputBox syntax..................................................................................229
An InputBox example.........................................................................229

The GetOpenFilename Method...................................................................231
The syntax...........................................................................................232
A GetOpenFilename example............................................................232
Selecting multiple files.......................................................................234

The GetSaveAsFilename Method ...............................................................235
Getting a Folder Name.................................................................................236
Displaying Excel’s Built-in Dialog Boxes....................................................236

Chapter 16: UserForm Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
Knowing When to Use a UserForm ............................................................239
Creating UserForms: An Overview.............................................................240
Working with UserForms.............................................................................241

Inserting a new UserForm .................................................................241
Adding controls to a UserForm ........................................................242
Changing properties for a UserForm control..................................243
Viewing the UserForm Code window...............................................244
Displaying a UserForm.......................................................................245
Using information from a UserForm ................................................245

A UserForm Example ...................................................................................246
Creating the UserForm.......................................................................246
Adding the CommandButtons ..........................................................247
Adding the OptionButtons ................................................................248
Adding event-handler procedures....................................................250
Creating a macro to display the dialog box ....................................251
Making the macro available ..............................................................252
Testing the macro...............................................................................253

Chapter 17: Using UserForm Controls  . . . . . . . . . . . . . . . . . . . . . . . . . .255
Getting Started with Dialog Box Controls .................................................255

Adding controls ..................................................................................255
Introducing control properties.........................................................257

Dialog Box Controls: The Details ...............................................................259
CheckBox control ...............................................................................259
ComboBox control .............................................................................260
CommandButton control...................................................................261

xiiiTable of Contents

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xiii



Frame control......................................................................................262
Image control ......................................................................................262
Label control .......................................................................................263
ListBox control ...................................................................................264
MultiPage control ...............................................................................265
OptionButton control.........................................................................266
RefEdit control ....................................................................................267
ScrollBar control.................................................................................267
SpinButton control .............................................................................268
TabStrip control..................................................................................269
TextBox control ..................................................................................269
ToggleButton control .........................................................................270

Working with Dialog Box Controls .............................................................270
Moving and resizing controls............................................................270
Aligning and spacing controls ..........................................................271
Accommodating keyboard users......................................................272
Testing a UserForm ............................................................................273

Dialog Box Aesthetics..................................................................................274

Chapter 18: UserForm Techniques and Tricks  . . . . . . . . . . . . . . . . . . .275
Using Dialog Boxes.......................................................................................275
A UserForm Example ...................................................................................275

Creating the dialog box......................................................................276
Writing code to display the dialog box............................................278
Making the macro available ..............................................................279
Trying out your dialog box ...............................................................279
Adding event-handler procedures....................................................280
Validating the data..............................................................................282
Now the dialog box works.................................................................282

More UserForm Examples...........................................................................282
A ListBox example..............................................................................282
Selecting a range.................................................................................287
Using multiple sets of OptionButtons..............................................288
Using a SpinButton and a TextBox ...................................................289
Using a UserForm as a progress indicator ......................................291
Creating a tabbed dialog box ............................................................295
Displaying a chart in a dialog box ....................................................296

A Dialog Box Checklist.................................................................................297

Chapter 19: Accessing Your Macros 
Through the User Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

CommandBars and Excel 2007 ...................................................................299
Excel 2007 Ribbon Customization..............................................................301
Working with CommandBars ......................................................................304

Commanding the CommandBars collection ...................................304
Listing all shortcut menus.................................................................304

Excel 2007 VBA Programming For Dummies xiv

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xiv



Referring to CommandBars...............................................................305
Referring to controls in a CommandBar..........................................306
Properties of CommandBar controls ...............................................307

VBA Shortcut Menu Examples....................................................................309
Resetting all built-in right-click menus ............................................309
Adding a new item to the Cell shortcut menu ................................309
Disabling a shortcut menu ................................................................311

Creating a Custom Toolbar .........................................................................312

Part V: Putting It All Together....................................315

Chapter 20: Creating Worksheet Functions 
and Living to Tell about It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

Why Create Custom Functions? .................................................................317
Understanding VBA Function Basics.........................................................318
Writing Functions .........................................................................................319
Working with Function Arguments ............................................................319
Function Examples.......................................................................................320

A function with no argument ............................................................320
A function with one argument ..........................................................320
A function with two arguments ........................................................322
A function with a range argument....................................................323
A function with an optional argument .............................................324
A function with an indefinite number of arguments ......................326

Functions That Return an Array.................................................................327
Returning an array of month names ................................................327
Returning a sorted list .......................................................................328

Using the Insert Function Dialog Box ........................................................330
Displaying the function’s description..............................................330
Argument descriptions ......................................................................331

Chapter 21: Creating Excel Add-Ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . .333
Okay . . . So What’s an Add-In? ...................................................................333
Why Create Add-Ins?....................................................................................334
Working with Add-Ins...................................................................................335
Add-in Basics ................................................................................................336
An Add-in Example.......................................................................................337

Setting up the workbook ...................................................................337
Testing the workbook ........................................................................339
Adding descriptive information .......................................................340
Protecting the VBA code ...................................................................341
Creating the add-in.............................................................................341
Opening the add-in.............................................................................341
Distributing the add-in.......................................................................342
Modifying the add-in ..........................................................................342

xvTable of Contents

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xv



Part VI: The Part of Tens............................................345

Chapter 22: Ten VBA Questions (And Answers) . . . . . . . . . . . . . . . . . .347
The Top Ten Questions about VBA............................................................347

Chapter 23: (Almost) Ten Excel Resources  . . . . . . . . . . . . . . . . . . . . . .351
The VBA Help System..................................................................................351
Microsoft Product Support .........................................................................351
Internet Newsgroups ...................................................................................352
Internet Web Sites ........................................................................................353
Excel Blogs ....................................................................................................353
Google............................................................................................................353
Local User Groups........................................................................................354
My Other Book .............................................................................................354

Index........................................................................355

Excel 2007 VBA Programming For Dummies xvi

02_046746 ftoc.qxp  1/12/07  5:51 PM  Page xvi



Introduction

Greetings, prospective Excel programmer . . .

Thanks for buying my book. I think you’ll find that it offers a fast, enjoyable way
to discover the ins and outs of Microsoft Excel programming. Even if you don’t
have the foggiest idea of what programming is all about, this book can help you
make Excel jump through hoops in no time (well, it will take some time).

Unlike most programming books, this one is written in plain English, and
even normal people can understand it. Even better, it’s filled with information
of the “just the facts, ma’am” variety — and not the drivel you might need
once every third lifetime.

Is This the Right Book?
Go to any large bookstore and you’ll find many Excel books (far too many, 
as far as I’m concerned). A quick overview can help you decide whether this
book is really right for you. This book

� Is designed for intermediate to advanced Excel users who want to
master Visual Basic for Applications (VBA) programming.

� Requires no previous programming experience.

� Covers the most commonly used commands.

� Is appropriate for Excel 2007. 

� Just might make you crack a smile occasionally — it even has cartoons.

If you are using Excel 2000, XP, or 2003, this book is not for you. Excel 2007 is
so different from previous versions. If you’re still using a pre-2007 version of
Excel, locate a book that is specific to that version.

This is not an introductory Excel book. If you’re looking for a general-purpose
Excel book, check out any of the following books, which are all published 
by Wiley:

� Excel 2007 For Dummies, by Greg Harvey

� Excel 2007 Bible, by John Walkenbach (yep, that’s me)

� Excel 2007 For Dummies Quick Reference, by John Walkenbach 
(me again) and Colin Banfield

03_046746 intro.qxp  1/12/07  5:51 PM  Page 1



Notice that the title of this book isn’t The Complete Guide to Excel VBA
Programming For Dummies. I don’t cover all aspects of Excel programming —
but then again, you probably don’t want to know everything about this topic.
In the unlikely event that you want a more comprehensive Excel program-
ming book, you might try Microsoft Excel 2007 Power Programming With VBA,
by John Walkenbach (is this guy prolific, or what?), also published by Wiley.

So You Want to Be a Programmer . . .
Besides earning money to pay my bills, my main goal in writing this book is
to show Excel users how to use the VBA language — a tool that helps you 
significantly enhance the power of the world’s most popular spreadsheet.
Using VBA, however, involves programming. (Yikes! The p word.)

If you’re like most computer users, the word programmer conjures up an
image of someone who looks and behaves nothing like you. Perhaps words
such as nerd, geek, and dweeb come to mind.

Times have changed. Computer programming has become much easier, and
even so-called normal people now engage in this activity. Programming simply
means developing instructions that the computer automatically carries out.
Excel programming refers to the fact that you can instruct Excel to automati-
cally do things that you normally do manually — saving you lots of time and
(you hope) reducing errors. I could go on, but I need to save some good stuff
for Chapter 1.

If you’ve read this far, it’s a safe bet that you need to become an Excel 
programmer. This could be something you came up with yourself or 
(more likely) something your boss decided. In this book, I tell you enough
about Excel programming so that you won’t feel like an idiot the next time
you’re trapped in a conference room with a group of Excel aficionados. And
by the time you finish this book, you can honestly say, “Yeah, I do some 
Excel programming.”

Why Bother?
Most Excel users never bother to explore VBA programming. Your interest in
this topic definitely places you among an elite group. Welcome to the fold! If
you’re still not convinced that mastering Excel programming is a good idea,
I’ve come up with a few good reasons why you might want to take the time to
learn VBA programming.

2 Excel 2007 VBA Programming For Dummies 

03_046746 intro.qxp  1/12/07  5:51 PM  Page 2



� It will make you more marketable. Like it or not, Microsoft’s applications
are extremely popular. You may already know that all applications in
Microsoft Office support VBA. The more you know about VBA, the better
your chances for advancement in your job.

� It lets you get the most out of your software investment (or, more
likely, your employer’s software investment). Using Excel without 
knowing VBA is sort of like buying a TV set and watching only the 
odd-numbered channels.

� It will improve your productivity (eventually). Mastering VBA 
definitely takes some time, but you’ll more than make up for this in 
the amount of time you ultimately save because you’re more productive.
Sort of like what they told you about going to college.

� It’s fun (well, sometimes). Some people really enjoy making Excel do
things that are otherwise impossible. By the time you finish this book,
you just might be one of those people.

Now are you convinced?

What I Assume about You
People who write books usually have a target reader in mind. For this book,
my target reader is a conglomerate of dozens of Excel users I’ve met over the
years (either in person or out in cyberspace). The following points more or
less describe my hypothetical target reader:

� You have access to a PC at work — and probably at home.

� You’re running Excel 2007.

� You’ve been using computers for several years.

� You use Excel frequently in your work, and you consider yourself to be
more knowledgeable about Excel than the average bear.

� You need to make Excel do some things that you currently can’t make it do.

� You have little or no programming experience.

� You understand that the Help system in Excel can actually be useful. Face
it, this book doesn’t cover everything. If you get on good speaking terms
with the Help system, you’ll be able to fill in some of the missing pieces.

� You need to accomplish some work, and you have a low tolerance for
thick, boring computer books.

3Introduction

03_046746 intro.qxp  1/12/07  5:51 PM  Page 3



Obligatory Typographical 
Conventions Section

All computer books have a section like this. (I think some federal law requires
it.) Read it or skip it.

Sometimes, I refer to key combinations — which means you hold down one
key while you press another. For example, Ctrl+Z means you hold down the
Ctrl key while you press Z.

For menu commands, I use a distinctive character to separate menu items.
For example, you use the following command to open a workbook file:

File➪Open

Note, that in Excel 2007, there is no such thing as a “File” menu visible on
your screen. In fact the File menu has been replaced with the Office button, a
little round contraption that shows up on the top-left side of any Office appli-
cation that has implemented what is called the Ribbon. Any text you need to
enter appears in bold. For example, I might say, enter =SUM(B:B) in cell A1.

Excel programming involves developing code — that is, the instructions Excel
follows. All code in this book appears in a monospace font, like this:

Range(“A1:A12”).Select

Some long lines of code don’t fit between the margins in this book. In such
cases, I use the standard VBA line continuation character sequence: a space
followed by an underscore character. Here’s an example:

Selection.PasteSpecial Paste:=xlValues, _
Operation:=xlNone, SkipBlanks:=False, _
Transpose:=False

When you enter this code, you can type it as written or place it on a single
line (omitting the spaces and the underscore characters).

Check Your Security Settings
It’s a cruel world out there. It seems that some scam artist is always trying to
take advantage of you or cause some type of problem. The world of comput-
ing is equally cruel. You probably know about computer viruses, which can

4 Excel 2007 VBA Programming For Dummies 

03_046746 intro.qxp  1/12/07  5:51 PM  Page 4



cause some nasty things to happen to your system. But did you know that
computer viruses can also reside in an Excel file? It’s true. In fact, it’s rela-
tively easy to write a computer virus by using VBA. An unknowing user can
open an Excel file and spread the virus to other Excel workbooks.

Over the years, Microsoft has become increasingly concerned about security
issues. This is a good thing, but it also means that Excel users need to under-
stand how things work. You can check Excel’s security settings by using the
File➪Excel Options➪Trust Center➪Trust Center Settings command. There 
is a plethora of options in there. If you click the Macro Settings tab, your
options are:

� Disable all macros without notification: Macros will not work, 
regardless of what you do.

� Disable all macros with notification: When you open a workbook with
macros you will either see the Message Bar open with an option you can
click to enable macros, or (if the VBE is open), you’ll get a message
asking if you want to enable macros.

� Disable all macros except digitally signed macros: Only macros with a
digital signature are allowed to run (but even for those signatures you
haven’t marked as trusted you still get the security warning).

� Enable all macros (not recommended; potentially dangerous code 
can run).

Consider this scenario: You spend a week writing a killer VBA program that
will revolutionize your company. You test it thoroughly, and then send it to
your boss. He calls you into his office and claims that your macro doesn’t do
anything at all. What’s going on? Chances are, your boss’s security setting
does not allow macros to run. Or, maybe he chose to disable the macros
when he opened the file.

Bottom line? Just because an Excel workbook contains a macro, it is no guar-
antee that the macro will ever be executed. It all depends on the security set-
ting and whether the user chooses to enable or disable macros for that file.

In order to work with this book, you will need to enable macros for the files you
work with. My advice is to use the second security level. Then when you open
a file that you’ve created, you can simply enable the macros. If you open a file
from someone you don’t know, you should disable the macros and check the
VBA code to ensure that it doesn’t contain anything destructive or malicious.

5Introduction

03_046746 intro.qxp  1/12/07  5:51 PM  Page 5



How This Book Is Organized
I divided this book into six major parts, each of which contains several 
chapters. Although I arranged the chapters in a fairly logical sequence, you
can read them in any order you choose. Here’s a quick preview of what’s in
store for you.

Part I: Introducing VBA
Part I has but two chapters. I introduce the VBA language in the first chapter.
In Chapter 2, I let you get your feet wet right away by taking you on a hands-
on guided tour.

Part II: How VBA Works with Excel
In writing this book, I assume that you already know how to use Excel. The
four chapters in Part II give you a better grasp on how VBA is implemented in
Excel. These chapters are all important, so I don’t recommend skipping past
them, okay?

Part III: Programming Concepts
The eight chapters in Part III get you into the nitty-gritty of what program-
ming is all about. You may not need to know all this stuff, but you’ll be glad
it’s there if you ever do need it.

Part IV: Communicating with Your Users
One of the coolest parts of programming in Excel is designing custom dialog
boxes (well, at least I like it). The chapters in Part IV show you how to create
dialog boxes that look like they came straight from the software lab at
Microsoft.

6 Excel 2007 VBA Programming For Dummies 

03_046746 intro.qxp  1/12/07  5:51 PM  Page 6



Part V: Putting It All Together
The chapters in Part VI pull together information from the preceding chap-
ters. You discover how to include your own custom buttons in the Excel user
interface, you find out how to develop custom worksheet functions, create
add-ins, design user-oriented applications, and even work with other Office
applications.

Part VI: The Part of Tens
Traditionally, books in the For Dummies series contain a final part that con-
sists of short chapters with helpful or informative lists. Because I’m a sucker
for tradition, this book has two such chapters that you can peruse at your
convenience. (If you’re like most readers, you’ll turn to this part first.)

Marginal Icons
Somewhere along the line, a market research company must have shown that
publishers can sell more copies of their computer books if they add icons to
the margins of those books. Icons are those little pictures that supposedly
draw your attention to various features, or help you decide whether some-
thing is worth reading.

I don’t know if this research is valid, but I’m not taking any chances. So here
are the icons you encounter in your travels from front cover to back cover:

When you see this icon, the code being discussed is available on the Web.
Download it, and eliminate lots of typing. See “Get the Sample Files” below,
for more information.

This icon flags material that you might consider technical. You may find it
interesting, but you can safely skip it if you’re in a hurry.

Don’t skip information marked with this icon. It identifies a shortcut that 
can save you lots of time (and maybe even allow you to leave the office at 
a reasonable hour).

7Introduction

03_046746 intro.qxp  1/12/07  5:51 PM  Page 7



This icon tells you when you need to store information in the deep recesses
of your brain for later use.

Read anything marked with this icon. Otherwise, you may lose your data,
blow up your computer, cause a nuclear meltdown — or maybe even ruin
your whole day.

Get the Sample Files
This book has its very own Web site where you can download the example
files discussed and view Bonus Chapters. To get these files, point your Web
browser to:

www.dummies.com/go/excel2007vba.

Having the sample files will save you a lot of typing. Better yet, you can 
play around with them and experiment with various changes. In fact, I highly
recommend playing around with these files. Experimentation is the best way
to master VBA.

Now What?
Reading this introduction was your first step. Now, it’s time to move on and
become a programmer (there’s that p word again!).

If you’re a programming virgin, I strongly suggest that you start with Chapter
1 and progress in chapter order until you’ve discovered enough. Chapter 2
gives you some immediate hands-on experience, so you have the illusion that
you’re making quick progress.

But it’s a free country (at least it was when I wrote these words); I won’t sic
the Computer Book Police on you if you opt to thumb through randomly and
read whatever strikes your fancy.

I hope you have as much fun reading this book as I did writing it.

8 Excel 2007 VBA Programming For Dummies 

03_046746 intro.qxp  1/12/07  5:51 PM  Page 8



Part I
Introducing VBA

04_046746 pt01.qxp  1/12/07  5:51 PM  Page 9



In this part . . .

Every book must start somewhere. This one starts by
introducing you to Visual Basic for Applications (and

I’m sure you two will become very good friends over the
course of a few dozen chapters). After the introductions
are made, Chapter 2 walks you through a real-live Excel
programming session.

04_046746 pt01.qxp  1/12/07  5:51 PM  Page 10



Chapter 1

What Is VBA?
In This Chapter
� Gaining a conceptual overview of VBA

� Finding out what you can do with VBA

� Discovering the advantages and disadvantages of using VBA

� Taking a mini-lesson on the history of Excel

This chapter is completely devoid of any hands-on training material. It
does, however, contain some essential background information that

assists you in becoming an Excel programmer. In other words, this chapter
paves the way for everything else that follows and gives you a feel for how
Excel programming fits into the overall scheme of the universe.

Okay, So What Is VBA?
VBA, which stands for Visual Basic for Applications, is a programming lan-
guage developed by Microsoft — you know, the company that’s run by the
richest man in the world. Excel, along with the other members of Microsoft
Office 2007, includes the VBA language (at no extra charge). In a nutshell,
VBA is the tool that people like you and me use to develop programs that
control Excel. 

Imagine an intelligent robot that knows all about Excel. This robot can read
instructions, and it can also operate Excel very fast and accurately. When you
want the robot to do something in Excel, you write up a set of robot instruc-
tions by using special codes. Tell the robot to follow your instructions, while
you sit back and drink a glass of lemonade. That’s kind of what VBA is all
about — a code language for robots. Note, however, that Excel does not come
with a robot or lemonade.

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 11



Don’t confuse VBA with VB (which stands for Visual Basic). VB is a program-
ming language that lets you create standalone executable programs (those EXE
files). Although VBA and VB have a lot in common, they are different animals. 

What Can You Do with VBA?
You’re probably aware that people use Excel for thousands of different tasks.
Here are just a few examples:

� Keeping lists of things such as customer names, students’ grades, or 
holiday gift ideas (a nice fruitcake would be lovely)

� Budgeting and forecasting

� Analyzing scientific data

� Creating invoices and other forms

� Developing charts from data

� Yadda, yadda, yadda

The list could go on and on, but I think you get the idea. My point is simply
that Excel is used for a wide variety of things, and everyone reading this book
has different needs and expectations regarding Excel. One thing virtually
every reader has in common is the need to automate some aspect of Excel.
That, dear reader, is what VBA is all about.

12 Part I: Introducing VBA

A few words about terminology
Excel programming terminology can be a bit
confusing. For example, VBA is a programming
language, but it also serves as a macro lan-
guage. What do you call something written in
VBA and executed in Excel? Is it a macro or is it
a program? Excel’s Help system often refers to
VBA procedures as macros, so I use that termi-
nology. But I also call this stuff a program.

I use the term automate throughout this book. This
term means that a series of steps are completed

automatically. For example, if you write a macro
that adds color to some cells, prints the work-
sheet, and then removes the color, you have auto-
mated those three steps.

By the way, macro does not stand for Messy
And Confusing Repeated Operation. Rather, it
comes from the Greek makros, which means
large — which also describes your paycheck
after you become an expert macro programmer.

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 12



For example, you might create a VBA program to format and print your
month-end sales report. After developing and testing the program, you can
execute the macro with a single command, causing Excel to automatically
perform many time-consuming procedures. Rather than struggle through 
a tedious sequence of commands, you can grab a cup of joe and let your 
computer do the work — which is how it’s supposed to be, right?

In the following sections, I briefly describe some common uses for VBA
macros. One or two of these may push your button.

Inserting a bunch of text 
If you often need to enter your company name, address, and phone number
in your worksheets, you can create a macro to do the typing for you. You can
extend this concept as far as you like. For example, you might develop a
macro that automatically types a list of all salespeople who work for your
company. 

Automating a task you perform frequently
Assume you’re a sales manager and you need to prepare a month-end 
sales report to keep your boss happy. If the task is straightforward, you can
develop a VBA program to do it for you. Your boss will be impressed by the
consistently high quality of your reports, and you’ll be promoted to a new job
for which you are highly unqualified.

Automating repetitive operations
If you need to perform the same action on, say, 12 different Excel workbooks,
you can record a macro while you perform the task on the first workbook and
then let the macro repeat your action on the other workbooks. The nice thing
about this is that Excel never complains about being bored. Excel’s macro
recorder is similar to recording sound on a tape recorder. But it doesn’t
require a microphone.

Creating a custom command
Do you often issue the same sequence of Excel menu commands? If so, save
yourself a few seconds by developing a macro that combines these commands
into a single custom command, which you can execute with a single keystroke
or button click.

13Chapter 1: What Is VBA?

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 13



Creating a custom button
You can customize your Quick Access Toolbar with your own buttons that
execute the macros you write. Office workers tend to be very impressed by
this sort of thing.

Developing new worksheet functions
Although Excel includes numerous built-in functions (such as SUM and 
AVERAGE), you can create custom worksheet functions that can greatly 
simplify your formulas. I guarantee you’ll be surprised by how easy this is. 
(I show you how to do this in Chapter 21.) Even better, the Insert Function
dialog box displays your custom functions, making them appear built in. 
Very snazzy stuff.

Creating complete, macro-driven 
applications
If you’re willing to spend some time, you can use VBA to create large-scale
applications complete with a custom Ribbon, dialog boxes, on-screen help,
and lots of other accoutrements. This book doesn’t go quite that far, but I’m
just telling you this to impress you with how powerful VBA really is.

Creating custom add-ins for Excel
You’re probably familiar with some of the add-ins that ship with Excel. 
For example, the Analysis ToolPak is a popular add-in. You can use VBA to
develop your own special-purpose add-ins. I developed my Power Utility 
Pak add-in by using only VBA, and people all around the world use it.

Advantages and Disadvantages of VBA
In this section, I briefly describe the good things about VBA — and I also
explore its darker side.

14 Part I: Introducing VBA

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 14



VBA advantages
You can automate almost anything you do in Excel. To do so, you write
instructions that Excel carries out. Automating a task by using VBA offers
several advantages:

� Excel always executes the task in exactly the same way. (In most cases,
consistency is a good thing.)

� Excel performs the task much faster than you can do it manually
(unless, of course, you’re Clark Kent).

� If you’re a good macro programmer, Excel always performs the task
without errors (which probably can’t be said about you or me).

� If you set things up properly, someone who doesn’t know anything 
about Excel can perform the task.

� You can do things in Excel that are otherwise impossible — which can
make you a very popular person around the office.

� For long, time-consuming tasks, you don’t have to sit in front of your
computer and get bored. Excel does the work, while you hang out at the
water cooler.

VBA disadvantages
It’s only fair that I give equal time to listing the disadvantages (or potential
disadvantages) of VBA:

� You have to find out how to write programs in VBA (but that’s why 
you bought this book, right?). Fortunately, it’s not as difficult as you
might expect.

� Other people who need to use your VBA programs must have their 
own copies of Excel. It would be nice if you could press a button that
transforms your Excel/VBA application into a stand-alone program, but
that isn’t possible (and probably never will be).

� Sometimes, things go wrong. In other words, you can’t blindly assume that
your VBA program will always work correctly under all circumstances.
Welcome to the world of debugging and, if others are using your macros,
technical support.

� VBA is a moving target. As you know, Microsoft is continually upgrading
Excel. Even though Microsoft puts great effort into compatibility between
versions, you may discover that VBA code you’ve written for Excel 2007
doesn’t work properly with older versions or with a future version of Excel.

15Chapter 1: What Is VBA?

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 15



VBA in a Nutshell
Just to let you know what you’re in for, I’ve prepared a quick and dirty 
summary of what VBA is all about. Of course, I describe all this stuff in 
semi-excruciating detail later in the book.

� You perform actions in VBA by writing (or recording) code in a 
VBA module. You view and edit VBA modules by using the Visual 
Basic Editor (VBE).

� A VBA module consists of Sub procedures. A Sub procedure has noth-
ing to do with underwater vessels or tasty sandwiches. Rather, it’s com-
puter code that performs some action on or with objects (discussed in a
moment). The following example shows a simple Sub procedure called
AddEmUp. This amazing program displays the result of 1 plus 1.

Sub AddEmUp()
Sum = 1 + 1
MsgBox “The answer is “ & Sum

End Sub

� A VBA module can also have Function procedures. A Function proce-
dure returns a single value. You can call it from another VBA procedure
or even use it as a function in a worksheet formula. An example of a
Function procedure (named AddTwo) follows. This Function accepts
two numbers (called arguments) and returns the sum of those values.

Function AddTwo(arg1, arg2)
AddTwo = arg1 + arg2

End Function

� VBA manipulates objects. Excel provides dozens and dozens of objects
that you can manipulate. Examples of objects include a workbook, a work-
sheet, a cell range, a chart, and a Shape. You have many more objects at
your disposal, and you can manipulate them by using VBA code.

� Objects are arranged in a hierarchy. Objects can act as containers for
other objects. At the top of the object hierarchy is Excel. Excel itself is an
object called Application. The Application object contains other objects
such as Workbook objects and Add-In objects. The Workbook object 
can contain other objects, such as Worksheet objects and Chart objects.
A Worksheet object can contain objects such as Range objects and
PivotTable objects. The term object model refers to the arrangement of
these objects. (Object model mavens can find out more in Chapter 4.)

� Objects of the same type form a collection. For example, the Worksheets
collection consists of all the worksheets in a particular workbook. The
Charts collection consists of all Chart objects in a workbook. Collections
are themselves objects.

16 Part I: Introducing VBA

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 16



� You refer to an object by specifying its position in the object hierarchy,
using a dot (that is, a period) as a separator. For example, you can refer
to the workbook Book1.xlsx as

Application.Workbooks(“Book1.xlsx”)

This refers to the workbook Book1.xlsx in the Workbooks collection. 
The Workbooks collection is contained in the Application object (that 
is, Excel). Extending this to another level, you can refer to Sheet1 in
Book1.xlsx as

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1
”)

As shown in the following example, you can take this to still another
level and refer to a specific cell (in this case, cell A1):

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1
”).Range(“A1”)

� If you omit specific references, Excel uses the active objects. If
Book1.xlsx is the active workbook, you can simplify the preceding 
reference as follows:

Worksheets(“Sheet1”).Range(“A1”)

If you know that Sheet1 is the active sheet, you can simplify the 
reference even more:

Range(“A1”)

� Objects have properties. You can think of a property as a setting for 
an object. For example, a Range object has such properties as Value 
and Address. A Chart object has such properties as HasTitle and Type.
You can use VBA to determine object properties and also to change
properties.

� You refer to a property of an object by combining the object name
with the property name, separated by a dot. For example, you can 
refer to the Value property in cell A1 on Sheet1 as follows:

Worksheets(“Sheet1”).Range(“A1”).Value

� You can assign values to variables. A variable is a named element that
stores information. You can use variables in your VBA code to store
such things as values, text, or property settings. To assign the value 
in cell A1 on Sheet1 to a variable called Interest, use the following VBA
statement:

Interest = Worksheets(“Sheet1”).Range(“A1”).Value

17Chapter 1: What Is VBA?

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 17



� Objects have methods. A method is an action Excel performs with 
an object. For example, one of the methods for a Range object is
ClearContents. This method clears the contents of the range.

� You specify a method by combining the object with the method, 
separated by a dot. For example, the following statement clears the 
contents of cell A1:

Worksheets(“Sheet1”).Range(“A1”).ClearContents

� VBA includes all the constructs of modern programming languages,
including arrays and looping. In other words, if you’re willing to spend
a little time mastering the ropes, you can write code that does some
incredible things.

Believe it or not, the preceding list pretty much describes VBA in a nutshell.
Now you just have to find out the details. That’s the purpose of the rest of
this book.

An Excursion into Versions
If you plan to develop VBA macros, you should have some understanding 
of Excel’s history. I know you weren’t expecting a history lesson when you
picked up this book, but bear with me. This is important stuff.

Here are all the major Excel for Windows versions that have seen the light of
day, along with a few words about how they handle macros:

� Excel 2: The original version of Excel for Windows was called Version 2
(rather than 1) so that it would correspond to the Macintosh version.
Excel 2 first appeared in 1987 and nobody uses it anymore, so you can
pretty much forget that it ever existed.

� Excel 3: Released in late 1990, this version features the XLM macro 
language. Nobody uses this version either.

� Excel 4: This version hit the streets in early 1992. It also uses the XLM
macro language. A small number of people still use this version. (They
subscribe to the philosophy if it ain’t broke, don’t fix it.)

� Excel 5: This one came out in early 1994. It was the first version 
to use VBA (but it also supports XLM). Excel 5 users are becoming
increasingly rare.

18 Part I: Introducing VBA

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 18



� Excel 95: Technically known as Excel 7 (there is no Excel 6), this version
began shipping in the summer of 1995. It’s a 32-bit version and requires
Windows 95 or Windows NT. It has a few VBA enhancements, and it 
supports the XLM language. Occasionally, I’ll run into someone who 
still uses this version.

� Excel 97: This version (also known as Excel 8) was born in January,
1997. It has many enhancements and features an entirely new interface
for programming VBA macros. Excel 97 also uses a new file format
(which previous Excel versions cannot open). A fair number of people
continue to use this version.

� Excel 2000: This version’s numbering scheme jumped to four digits.
Excel 2000 (also known as Excel 9) made its public debut in June 1999. 
It includes only a few enhancements from a programmer’s perspective,
with most enhancements being for users — particularly online users.
With Excel 2000 came the option to digitally sign macros, thus enabling
you to guarantee your users that the code delivered is truly yours. Excel
2000 still has a modest number of users.

� Excel 2002: This version (also known as Excel 10 or Excel XP) appeared
in late 2001. Perhaps this version’s most significant feature is the ability
to recover your work when Excel crashes. This is also the first version
to use copy protection (known as product activation). 

� Excel 2003: Of all the Excel upgrades I’ve ever seen (and I’ve seen them
all), Excel 2003 has the fewest new features. In other words, most hard-
core Excel users (including yours truly) were very disappointed with
Excel 2003. Yet people still bought it. I think these were the folks moving
up from a pre-Excel 2002 version.

� Excel 2007: The latest, and without a doubt, the greatest. Microsoft
outdid its corporate self with this version. Excel 2007 has a new look, 
a new user interface, and now supports more than a million rows. This
book is written for Excel 2007, so if you don’t have this version, you’re
reading the wrong book.

So what’s the point of this mini history lesson? If you plan to distribute your
Excel/VBA files to other users, it’s vitally important that you understand
which version of Excel they use. People using an older version won’t be able
to take advantage of features introduced in later versions. For example, if you
write VBA code that references cell XFD1048576 (the last cell in a workbook) ,
those who use an earlier version will get an error because pre-Excel 2007
worksheets only had 65,536 rows and 255 columns (the last cell is IV65536).
Excel 2007 also has some new objects, methods, and properties. If you use
these in your code, users with an older version of Excel will get an error
when they run your macro — and you’ll get the blame.

19Chapter 1: What Is VBA?

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 19



20 Part I: Introducing VBA

05_046746 ch01.qxp  1/12/07  6:16 PM  Page 20



Chapter 2

Jumping Right In
In This Chapter
� Developing a useful VBA macro: A hands-on, step-by-step example

� Recording your actions by using Excel’s macro recorder

� Examining and testing recorded code

� Changing recorded macro

I’m not much of a swimmer, but I have found that the best way to get into a
cold body of water is to jump right in — no sense prolonging the agony. By

wading through this chapter, you can get your feet wet immediately but avoid
getting in over your head. 

By the time you reach the end of this chapter, you may start feeling better
about this Excel programming business, and you’ll be glad you took the
plunge. This chapter provides a step-by-step demonstration of how to
develop a simple but useful VBA macro.

First Things First
Before you can call yourself an Excel programmer, you must go through the
initiation rites. That means you need to make a small change so Excel will 
display a new tab at the top of the screen: Developer.

When you click the Developer tab, the Ribbon displays information that is of
interest to programmers (that’s you!). Figure 2-1 shows how the Ribbon looks
when the Developer tab is selected.

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 21



The Developer tab is not visible when you first open Excel; you need to tell
Excel to show it. Getting Excel to display the Developer tab is easy (and you
only have to do it one time). Follow these steps:

1. Choose Office➪Excel Options.

So now you’re asking me: “Where is that Office tab you’re talking about?”
Well, the answer is: There isn’t an Office tab. Microsoft has introduced a new
graphic element into the user interface, called the Office Button. It is a round
button on the top-left side of the Excel application window. Clicking that icon
(or pressing Alt+F) is what opens the Office menu.

2. In the Excel Options dialog box, select Personalize.

3. Place a check mark next to Show Developer tab in the Ribbon.

4. Click OK.

What You’ll Be Doing
After you read up on the basics, you can start creating your first macro. You
switch on the macro recorder and then perform a couple of actions. The
macro that you’re about to create can:

� Type your name into a cell.

� Enter the current date and time into the cell below.

� Format both cells to display bold.

� Change the font size of both cells to 16 point.

The macro accomplishes all these steps in a single action. As I describe in 
the following sections, you start by recording your actions as you go through
these steps. Then you test the macro to see whether it works. Finally, you
edit the macro to add some finishing touches. Ready?

Figure 2-1:
The

Developer
tab is

normally
hidden, but

it’s easy 
to unhide.

22 Part I: Introducing VBA 

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 22



Taking the First Steps
This section describes the steps you take prior to recording the macro. In
other words, you need to make a few preparations before the fun begins.

1. Start Excel if it’s not already running. 

2. If necessary, create a new, empty workbook (Ctrl+N is my favorite way
to do that).

3. Click the Developer tab, and take a look at the Use Relative
References button in the Code group.

If the color of that button is a different from the other buttons, then
you’re in good shape. If the Use Relative References button is the same
color as the other buttons, then you need to click it.

I explain more about the Use Relative References button in Chapter 6. For
now, just make sure that option is turned on. When it’s turned on, it will be 
a different color.

Recording the Macro
Here comes the hands-on part. Follow these instructions carefully:

1. Select a cell; any cell will do.

2. Choose Developer➪Code➪Record Macro.

The Record Macro dialog box appears, as shown in Figure 2-2.

Figure 2-2:
The Record

Macro
dialog box

appears
when you’re

about to
record a

macro. 

23Chapter 2: Jumping Right In

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 23



3. Enter a name for the macro.

Excel provides a default name, but it’s better to use a more descriptive
name. NameAndTime is a good name for this macro.

4. Click in the Shortcut Key box and enter Shift+N (for an uppercase N)
as the shortcut key.

Specifying a shortcut key is optional. If you do specify one, then you 
can execute the macro by pressing a key combination — in this case,
Ctrl+Shift+N.

5. Make sure the Store Macro In setting is This Workbook.

6. You can enter some text in the Description box if you like. This is
optional. Some people like to describe what the macro does (or is 
supposed to do).

7. Click OK.

The dialog box closes, and Excel’s macro recorder is turned on. From this
point, Excel monitors everything you do and converts it to VBA code. 

8. Type your name in the active cell.

9. Move the cell pointer to the cell below and enter this formula:

=NOW( )

The formula displays the current date and time.

10. Select the formula cell and press Ctrl+C to copy that cell to the
Clipboard.

11. Choose Home➪Clipboard➪Paste➪Paste Values.

This command converts the formula to its value.

12. With the date cell selected, press Shift+up arrow to select that cell and
the one above it (which contains your name).

13. Use the controls in the Home➪Font group to change the formatting to
Bold, and make the font size 16 point.

14. Choose Developer➪Code➪Stop Recording

The macro recorder is turned off.

Congratulations! You just created your first Excel VBA macro. You may want
to phone your mother and tell her the good news. 

24 Part I: Introducing VBA 

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 24



Testing the Macro
Now you can try out this macro and see whether it works properly. To test
your macro, move to an empty cell and press Ctrl+Shift+N.

In a flash, Excel executes the macro. Your name and the current date are 
displayed in large, bold letters. 

Another way to execute the macro is to choose Developer➪Code➪Macros (or
press Alt+F8) to display the Macros dialog box. Select the macro from the list
(in this case, NameAndTime) and click Run. Make sure you select the cell that
will hold your name before executing the macro.

Examining the Macro
So far, you’ve recorded a macro and you’ve tested it. If you’re a curious type,
you’re probably wondering what this macro looks like. And you might even
wonder where it’s stored.

Remember when you started recording the macro? You indicated that Excel
should store the macro in This Workbook. The macro is stored in the work-
book, but you need to activate the Visual Basic Editor (VBE, for short) to see it.

Follow these steps to see the macro:

1. Choose Developer➪Code➪ Visual Basic (or press Alt+F11).

The Visual Basic Editor program window appears, as shown in Figure 2-3.
This window is highly customizable, so your VBE window may look differ-
ent. The VBE program window contains several other windows and is
probably very intimidating. Don’t fret; you’ll get used to it.

2. In the VBE window, locate the window called Project.

The Project window (also known as the Project Explorer window) con-
tains a list of all workbooks and add-ins that are currently open. Each
project is arranged as a tree and can be expanded (to show more infor-
mation) or contracted (to show less information).

25Chapter 2: Jumping Right In

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 25



The VBE uses quite a few different windows, any of which can be either
open or closed. If a window isn’t immediately visible in the VBE, you 
can choose an option from the View menu to display the window. For
instance, if the Project window is not visible, you can choose View➪
Project Explorer (or press Ctrl+R) to display it. You can display any
other VBE window in a similar manner. I explain more about the 
components of the Visual Basic Editor in Chapter 3.

3. Select the project that corresponds to the workbook in which you
recorded the macro.

If you haven’t saved the workbook, the project is probably called
VBAProject (Book1).

4. Click the plus sign (+) to the left of the folder named Modules.

The tree expands to show Module1, which is the only module in 
the project.

5. Double-click Module1.

The VBA code in that module is displayed in a Code window. Figure 2-4
shows how it looks on my screen. Your screen may not look exactly 
the same.

The code in Module1 should look like this:

Figure 2-3:
The Visual

Basic Editor
is where
you view
and edit

VBA code.

26 Part I: Introducing VBA 

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 26



Sub NameAndTime()
‘
‘ NameAndTime Macro
‘
‘ Keyboard Shortcut: Ctrl+Shift+N
‘

ActiveCell.FormulaR1C1 = “John Walkenbach”
ActiveCell.Offset(1, 0).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “=NOW()”
Selection.Copy
Selection.PasteSpecial Paste:=xlPasteValues,

Operation:=xlNone, SkipBlanks _
:=False, Transpose:=False

ActiveCell.Offset(-1, 0).Range(“A1:A2”).Select
ActiveCell.Activate
Selection.Font.Bold = True
With Selection.Font

.Name = “Calibri”

.Size = 16

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ThemeColor = 2

.TintAndShade = 0

.ThemeFont = xlThemeFontMinor
End With

End Sub

At this point, the macro probably looks like Greek to you. Don’t worry. 
Travel a few chapters down the road and all will be as clear as the view 
from Olympus.

The NameAndTime macro (also known as a Sub procedure) consists of 
several statements. Excel executes the statements one by one, from top to
bottom. A statement preceded by an apostrophe (‘) is a comment. Comments
are included only for your information and are essentially ignored. In other
words, Excel skips right over comments.

The first actual VBA statement (which begins with the word Sub) identifies
the macro as a Sub procedure and gives its name — you provided this name
before you started recording the macro. If you read through the code, you
may be able to make sense of some of it. You see your name, the formula you
entered, and lots of additional code that changes the font. The Sub procedure
ends with the End Sub statement.

27Chapter 2: Jumping Right In

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 27



Modifying the Macro
As you might expect, not only can you view your macro in the VBE, you can
also change it. Try making a few changes to the macro, and then rerun it to
see the effects. For example:

� Change the name that’s entered into the active cell.

� Change the font name or size.

� See if you can figure out the appropriate location for a new statement: 

Selection.Font.Bold = True

Figure 2-4:
The VBE

displays the
VBA code in
Module1 of

Book1.

28 Part I: Introducing VBA 

Hey, I didn’t record that!
I’ve noted that the macro recorder is like
recording sound on a tape recorder. When you
play back an audiotape and listen to your own
voice, you invariably say, “I don’t sound like
that.” And when you look at your recorded
macro, you may see some actions that you
didn’t think you recorded.

When you recorded the NameAndTime exam-
ple, you changed only the font size, yet the
recorded code shows all sorts of font-changing
statements. Don’t worry, it happens all the time.
Excel often records lots of seemingly useless
code. In later chapters, you find how to remove
the extra stuff from a recorded macro.

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 28



Working in a VBA code module is much like working in a word-processing
document (except there’s no word wrap and you can’t format the text). On
second thought, I guess it’s more like working in Notepad. You can press
Enter to start a new line, and the familiar editing keys work as expected.

After you’ve made your changes, jump back to Excel and try out the revised
macro to see how it works. Just as you can press Alt+F11 in Excel to display
the VBE, you can press Alt+F11 in the VBE to switch back to Excel.

Saving Workbooks that Contain Macros
If you store one or more macros in a workbook, the file must be saved with
“macros enabled.” In other words, the file must be saved with an XLSM 
extension rather than the normal XLSX extension.

For example, if you try to save the workbook that contains your NameAndTime
macro, the file format in the Save As dialog box defaults to XLSX (a format that
cannot contain macros!). Unless you change the file format to XLSM, Excel dis-
plays the warning shown in Figure 2-5. You need to click No, and then choose
Excel Macro-Enabled Workbook (*.xlsm) from the Save As Type drop-down list.

Understanding Macro Security
Macro security is a key feature in Excel 2007. The reason is that VBA is a 
powerful language — so powerful that even a simple macro can do serious
damage to your computer. A macro can delete files, send information to 
other computers, and even destroy Windows so that your system can’t 
even be started.

Figure 2-5:
Excel warns

you if your
workbook

contains
macros and
you attempt

to save it 
in a non-

macro file
format.

29Chapter 2: Jumping Right In

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 29



The macro security features in Excel 2007 were created to help prevent these
types of problems.

Figure 2-6 shows the Macro Settings section of the Trust Center dialog box.
To display this dialog box, choose Developer ➪ Macro Security.

By default, Excel uses the Disable All Macros With Notification section. With
this setting in effect, if you open a workbook that contains macros (and the
file is not digitally “signed”), Excel displays a warning like the one in Figure
2-7. If you are certain that the workbook comes from a trusted source, click
Enable Macros, and the macros will be enabled.

Perhaps the best way to handle macro security is to designate one or more
folders as trusted locations. All the workbooks in a trusted location are
opened without a macro warning. You designate trusted folders in the
Trusted Locations section of the Trust Center dialog box. 

If you want to find out what the other macro security settings imply, press F1
while the Macro Settings section of the Trust Center dialog box is in view. The
Help screen opens up and the subject Enable or disable macros in Office 
documents is shown in the Help window.

Figure 2-7:
Excel’s

warning that
the file to 

be opened
contains
macros.

Figure 2-6:
The Macro

Settings
section of

the Trust
Center

dialog box.

30 Part I: Introducing VBA 

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 30



More about the NameAndTime Macro
By the time you finish this book, you’ll completely understand how 
the NameAndTime macro works — and you’ll be able to develop more-
sophisticated macros. For now, I wrap up the example with a few 
additional points about the macro:

� For this macro to work, its workbook must be open. If you close the
workbook, the macro doesn’t work (and the Ctrl+Shift+N shortcut has
no effect).

� As long as the workbook containing the macro is open, you can run the
macro while any workbook is active. In other words, the macro’s own
workbook doesn’t have to be active.

� The macro isn’t perfect. It will overwrite existing text with no warning,
and entering the text can’t be undone. 

� Before you started recording the macro, you assigned it a new shortcut
key. This is just one of several ways to execute the macro.

� You can enter this macro manually rather than record it. To do so, you
need a good understanding of VBA. (Be patient, you’ll get there.)

� You can store this macro in your Personal Macro Workbook. If you do so,
the macro is available automatically whenever you start Excel.

� You can also convert the workbook to an add-in file. (More about this in
Chapter 21)

You’ve been initiated into the world of Excel programming. (Sorry, there’s no
secret handshake or decoder ring.) I hope this chapter helps you realize that
Excel programming is something you can actually do — and even live to tell
about it. Keep reading. Subsequent chapters almost certainly answer any
questions you have, and you’ll soon understand exactly what you did in this
hands-on session.

31Chapter 2: Jumping Right In

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 31



32 Part I: Introducing VBA 

06_046746 ch02.qxp  1/12/07  5:52 PM  Page 32



Part II
How VBA Works

with Excel

07_046746 pt02.qxp  1/12/07  5:52 PM  Page 33



In this part . . .

The next four chapters provide the necessary founda-
tion for discovering the ins and outs of VBA. You find

out about modules (the sheets that store your VBA code)
and are introduced to the Excel object model (something
you won’t want to miss). You also discover the difference
between subroutines and functions, and you get a crash
course in the Excel macro recorder.

07_046746 pt02.qxp  1/12/07  5:52 PM  Page 34



Chapter 3

Working In the Visual Basic Editor
In This Chapter
� Understanding the Visual Basic Editor

� Discovering the Visual Basic Editor parts

� Knowing what goes into a VBA module

� Understanding three ways to get VBA code into a module

� Customizing the VBA environment

As an experienced Excel user, you probably know a good deal about
workbooks, formulas, charts, and other Excel goodies. Now it’s time to

expand your horizons and explore an entirely new aspect of Excel: the Visual
Basic Editor (VBE). In this chapter, you find out how to work with the VBE,
and get down to the nitty-gritty of writing some VBA code.

What Is the Visual Basic Editor?
The Visual Basic Editor is a separate application where you write and edit
your VBA macros. It works seamlessly with Excel. By seamlessly, I mean that
Excel takes care of opening the VBE when you need it. 

You can’t run the VBE separately; Excel must be running in order for the VBE
to run.

Activating the VBE
The quickest way to activate the VBE is to press Alt+F11 when Excel is active.
To return to Excel, press Alt+F11 again.

You can also activate the VBE by using the Developer➪Code➪Visual Basic
command. If you don’t have a Developer tab at the top of your Excel window,
flip back to Chapter 2 where I explain how to get that handy Developer tab to
show up.

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 35



Understanding VBE components
Figure 3-1 shows the VBE program, with some of the key parts identified.
Because so much is going on in the VBE, I like to maximize the program to
see as much as possible.

Chances are your VBE program window won’t look exactly like what you see
in Figure 3-1. The VBE contains several windows, and it’s highly customiz-
able. You can hide windows, rearrange windows, dock windows, and so on.

Actually, the VBE has even more parts than are shown in Figure 3-1. I discuss
these additional components in Chapter 13 and also in Part IV.

Menu bar
The VBE menu bar works just like every other menu bar you’ve encountered.
It contains commands that you use to do things with the various components
in the VBE. You also find that many of the menu commands have shortcut
keys associated with them.

The VBE also features shortcut menus. You can right-click virtually anything
in the VBE and get a shortcut menu of common commands.

Menu bar

Project Explorer

Tool bar Code window

Properties window

Immediate window

Figure 3-1:
The VBE 

is your
customizable

friend.

36 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 36



Toolbar
The Standard toolbar, which is directly under the menu bar by default (refer
to Figure 3-1), is one of four VBE toolbars available. You can customize the
toolbars, move them around, display other toolbars, and so on. If you’re so
inclined, use the View➪Toolbars command to work with VBE toolbars. Most
people (including me) just leave them as they are.

Project Explorer window
The Project Explorer window displays a tree diagram that shows every 
workbook currently open in Excel (including add-ins and hidden workbooks).
Double-click items to expand or contract them. I discuss this window in more
detail in the “Working with the Project Explorer” section. 

If the Project Explorer window is not visible, press Ctrl+R or use the View➪
Project Explorer command. To hide the Project Explorer window, click the
Close button in its title bar. Or, right-click anywhere in the Project Explorer
window and select Hide from the shortcut menu.

Code window
A Code window (sometimes known as a Module window) contains VBA code.
Every object in a project has an associated Code window. To view an object’s
Code window, double-click the object in the Project Explorer window. For
example, to view the Code window for the Sheet1 object, double-click Sheet1
in the Project Explorer window. Unless you’ve added some VBA code, the
Code window will be empty.

You find out more about Code windows later in this chapter’s “Working with a
Code Window” section.

Immediate window
The Immediate window may or may not be visible. If it isn’t visible, press
Ctrl+G or use the View➪Immediate Window command. To close the Immediate
window, click the Close button in its title bar (or right-click anywhere in the
Immediate window and select Hide from the shortcut menu).

The Immediate window is most useful for executing VBA statements directly
and for debugging your code. If you’re just starting out with VBA, this window
won’t be all that useful, so feel free to hide it and get it out of the way. 

In Chapter 13, I discuss the Immediate window in detail. It may just become
your good friend!

37Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 37



Working with the Project Explorer
When you’re working in the VBE, each Excel workbook and add-in that’s open
is a project. You can think of a project as a collection of objects arranged as
an outline. You can expand a project by clicking the plus sign (+) at the left 
of the project’s name in the Project Explorer window. Contract a project by
clicking the minus sign (-) to the left of a project’s name. Or, you can double-
click the items to expand and contract them. Figure 3-2 shows a Project
Explorer window with three projects listed.

Every project expands to show at least one node called Microsoft Excel
Objects. This node expands to show an item for each sheet in the workbook
(each sheet is considered an object), and another object called ThisWorkbook
(which represents the Workbook object). If the project has any VBA modules,
the project listing also shows a Modules node. And, as you see in Part IV, a

Figure 3-2:
This Project

Explorer
window 

lists three
projects —

Book2
investments.

xlsm, and
PERSONAL.

XLSB.

38 Part II: How VBA Works with Excel 

What’s new in the Visual Basic Editor?
Excel 2007 sports a brand-new user interface.
Menus and toolbars are gone, and the new
“Ribbon” replaces them. If you’ve used the
Visual Basic Editor in a previous version of Excel,
you’ll be in familiar territory. In Office 2007,
Microsoft left the VBE essentially untouched.
The Visual Basic for Applications language has

been updated to accommodate the new Excel
features, but the VBE has no new features, and
the old-style toolbars and menus work exactly
like they always have. Maybe they’ll eventually
get around to updating the VBE, but it just didn’t
make the cut in Office 2007.

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 38



project may also contain a node called Forms, which contains UserForm
objects (which hold custom dialog boxes). 

The concept of objects may be a bit fuzzy for you. However, I guarantee that
things become much clearer in subsequent chapters. Don’t be too concerned
if you don’t understand what’s going on at this point. 

Adding a new VBA module
Follow these steps to add a new VBA module to a project:

1. Select the project’s name in the Project Explorer window. 

2. Choose Insert➪Module.

Or 

1. Right-click the project’s name. 

2. Choose Insert➪Module from the shortcut menu.

When you record a macro, Excel automatically inserts a VBA module to hold
the recorded code. The location of the module depends on where you chose
to store the recorded macro, just before you started recording.

Removing a VBA module
Need to remove a VBA module from a project?

1. Select the module’s name in the Project Explorer window. 

2. Choose File➪Remove xxx, where xxx is the module name. 

Or 

1. Right-click the module’s name. 

2. Choose Remove xxx from the shortcut menu. 

Excel, always trying to keep you from doing something you’ll regret, will
ask if you want to export the code in the module before you delete it.
Almost always, you don’t. (If you do want to export the module, see the
next section.)

You can remove VBA modules, but there is no way to remove the other code
modules — those for the Sheet objects, or ThisWorkbook. 

39Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 39



Exporting and importing objects
Every object in a VBA project can be saved to a separate file. Saving an indi-
vidual object in a project is known as exporting. It stands to reason that you
can also import objects to a project. Exporting and importing objects might
be useful if you want to use a particular object (such as a VBA module or a
UserForm) in a different project.

Follow these steps to export an object:

1. Select an object in the Project Explorer window. 

2. Choose File➪Export File or press Ctrl+E. 

You get a dialog box that asks for a filename. Note that the object
remains in the project; only a copy of it is exported.

Importing a file to a project goes like this:

1. Select the project’s name in the Explorer window. 

2. Choose File➪Import File or press Ctrl+M. 

You get a dialog box that asks for a file. You should only import a file if the file
was exported by using the File➪Export File command.

Working with a Code Window
As you become proficient with VBA, you spend lots of time working in Code
windows. Macros that you record are stored in a module, and you can type
VBA code directly into a VBA module. Just to make sure you’re straight with
the concept, remember that a VBA module holds your VBA code, and a VBA
module is displayed in a Code window.

Minimizing and maximizing windows
If you have several projects open, the VBE may have lots of Code windows at
any given time. Figure 3-3 shows an example of what I mean.

40 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 40



Code windows are much like workbook windows in Excel. You can minimize
them, maximize them, hide them, rearrange them, and so on. Most people
find it much easier to maximize the Code window that they’re working on.
Doing so lets you see more code and keeps you from getting distracted. 

To maximize a Code window, click the maximize button in its title bar (or just
double-click its title bar). To restore a Code window to its original size, click
the Restore button in its title bar.

Sometimes, you may want to have two or more Code windows visible. For
example, you may want to compare the code in two modules or copy code
from one module to another. You can arrange the windows manually, or use
the Window➪Tile Horizontally or Window➪Tile Vertically commands to
arrange them automatically.

You can quickly switch back and forth between code windows by pressing
Ctrl+Tab. If you repeat that key combination you keep cycling through all the
open code windows. Pressing Ctrl+Shift+Tab takes you back in reverse order.

Minimizing a Code window gets it out of the way. You can also click the Close
button in a Code window’s title bar to close the window completely. (Closing
a window just hides it; you won’t lose anything). To open it again, just
double-click the appropriate object in the Project Explorer window.

Figure 3-3:
Code

window
overload

isn’t pretty.

41Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 41



Creating a module
In general, a VBA module can hold three types of code:

� Declarations: One or more information statements that you provide to
VBA. For example, you can declare the data type for variables you plan
to use, or set some other module-wide options.

� Sub procedures: A set of programming instructions that performs 
some action.

� Function procedures: A set of programming instructions that returns a
single value (similar in concept to a worksheet function, such as SUM).

A single VBA module can store any number of Sub procedures, Function 
procedures, and declarations. How you organize a VBA module is completely
up to you. Some people prefer to keep all their VBA code for an application in
a single VBA module; others like to split up the code into several different
modules. It’s a personal choice.

Getting VBA code into a module
An empty VBA module is like the fake food you see in the windows of some
Chinese restaurants; it looks good but it doesn’t really do much for you.
Before you can do anything meaningful, you must have some VBA code in 
the VBA module. You can get VBA code into a VBA module in three ways:

� Enter the code directly.

� Use the Excel macro recorder to record your actions and convert them
to VBA code (see Chapter 6).

� Copy the code from one module and paste it into another.

42 Part II: How VBA Works with Excel 

Pause for a terminology break
I need to digress for a moment to discuss termi-
nology. Throughout this book, I use the terms
Sub procedure, routine, procedure, and macro.
These terms are a bit confusing. Programming
folks usually use the word procedure to
describe an automated task. Technically, a pro-
cedure can be a Sub procedure or a Function

procedure — both of which are sometimes
called routines. I use all these terms inter-
changeably. As detailed in later chapters, how-
ever, there is an important difference between
Sub and Function procedures. For now, don’t
worry about the terminology. Just try to under-
stand the concepts.

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 42



Entering code directly
Sometimes, the best route is the most direct. Entering code directly 
involves — well, entering the code directly. In other words, you type the 
code via your keyboard. Entering and editing text in a VBA module works 
as you might expect. You can select, copy, cut, paste, and do other things 
to the text.

Use the Tab key to indent some of the lines to make your code easier to read.
This isn’t necessary but it’s a good habit to acquire. As you study the code I
present in this book, you’ll understand why indenting code lines is helpful.

A single line of VBA code can be as long as you like. However, you may want
to use the line-continuation character to break up lengthy lines of code. To
continue a single line of code (also known as a statement) from one line to the
next, end the first line with a space followed by an underscore (_). Then con-
tinue the statement on the next line. Here’s an example of a single statement
split into three lines:

Selection.Sort Key1:=Range(“A1”), _
Order1:=xlAscending, Header:=xlGuess, _
Orientation:=xlTopToBottom

This statement would perform exactly the same way if it were entered in a
single line (with no line-continuation characters). Notice that I indented the
second and third lines of this statement. Indenting is optional, but it makes it
clear that these lines are not separate statements.

The VBE has multiple levels of undo and redo. Therefore, if you deleted a
statement that you shouldn’t have, use the Undo button on the toolbar (or
press Ctrl+Z) until the statement shows up again. After undoing, you can use
the Redo button to perform the changes you’ve undone. This undo/redo busi-
ness is more complicated to describe than it is to use. I recommend playing
around with this feature until you understand how it works.

Ready to enter some real live code? Try the following steps:

1. Create a new workbook in Excel.

2. Press Alt+F11 to activate the VBE.

3. Click the new workbook’s name in the Project Explorer window.

4. Choose Insert➪Module to insert a VBA module into the project.

43Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 43



5. Type the following code into the module:

Sub GuessName()
Msg = “Is your name “ & Application.UserName & “?”
Ans = MsgBox(Msg, vbYesNo)
If Ans = vbNo Then MsgBox “Oh, never mind.”
If Ans = vbYes Then MsgBox “I must be

clairvoyant!”
End Sub

6. Make sure the cursor is located anywhere within the text you typed,
and press F5 to execute the procedure. 

F5 is a shortcut for the Run➪Run Sub/UserForm command. If you
entered the code correctly, Excel executes the procedure and you can
respond to the simple dialog box shown in Figure 3-4.

When you enter the code listed in Step 5, you might notice that the VBE makes
some adjustments to the text you enter. For example, after you type the Sub
statement, the VBE automatically inserts the End Sub statement. And if you
omit the space before or after an equal sign, the VBE inserts the space for you.
Also, the VBE changes the color and capitalization of some text. This is all 
perfectly normal. It’s just the VBE’s way of keeping things neat and readable.

If you followed the previous steps, you just wrote a VBA Sub procedure, also
known as a macro. When you press F5, Excel executes the code and follows
the instructions. In other words, Excel evaluates each statement and does
what you told it to do. (Don’t let this newfound power go to your head.) You
can execute this macro any number of times — although it tends to lose its
appeal after a few dozen.

For the record, this simple macro uses the following concepts, all of which
are covered later in this book:

Figure 3-4:
The

GuessName
procedure

displays this
message

box.

44 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 44



� Defining a Sub procedure (the first line)

� Assigning values to variables (Msg and Ans)

� Concatenating (joining) a string (using the & operator)

� Using a built-in VBA function (MsgBox)

� Using built-in VBA constants (vbYesNo, vbNo, and vbYes)

� Using an If-Then construct (twice)

� Ending a Sub procedure (the last line)

Not bad for a beginner, eh?

Using the macro recorder
Another way you can get code into a VBA module is by recording your
actions, using the Excel macro recorder. If you worked through the hands-on
exercise in Chapter 2, you already have some experience with this technique.

There is absolutely no way you can record the GuessName procedure shown
in the preceding section. You can record only things that you can do directly
in Excel. Displaying a message box is not in Excel’s normal repertoire. (It’s a
VBA thing.) The macro recorder is useful, but in many cases you’ll probably
need to manually enter at least some code.

Here’s a step-by-step example that shows you how to record a macro that
turns off the cell gridlines in a worksheet. If you want to try this example,
start with a new, blank workbook and follow these steps:

1. Activate a worksheet in the workbook. 

Any worksheet will do. If the worksheet is not displaying gridlines, add 
a new worksheet that does. You need to start with a worksheet that has
gridlines.

2. Choose Developer➪Code ➪Record Macro. Or, you can click the small
red dot in the left side of the status bar.

Excel displays its Record Macro dialog box.

3. In the Record Macro dialog box, name the macro Gridlines, and use
Ctrl+Shift+F for the shortcut key.

45Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 45



4. Click OK to start recording.

Excel automatically inserts a new VBA module into the project that 
corresponds to the active workbook. From this point on, Excel converts
your actions into VBA code. While recording, the small red dot in the
status bar turns into a small blue square. This is a reminder that the
macro recorder is running. You can also click that blue square to stop
the macro recorder.

5. Choose View➪Show/Hide➪Gridlines.

The gridlines in the worksheet disappear.

6. Choose Developer➪Code➪Stop Recording. Or, click the Stop
Recording button in the status bar (the blue square).

Excel stops recording your actions.

To view this newly recorded macro, press Alt+F11 to activate the VBE. Locate
the workbook’s name in the Project Explorer window. You see that the project
has a new module listed. The name of the module depends on whether you
had any other modules in the workbook when you started recording the
macro. If you didn’t, the module will be named Module1. You can double-click
the module to view the Code window for the module.

Here’s the code generated by your actions:

Sub Macro1()
‘
‘ Macro1 Macro
‘ Macro recorded 9/1/2006 by John Walkenbach
‘
‘

ActiveWindow.DisplayGridlines = False
End Sub

To try out this macro, activate a worksheet that has gridlines displayed and
then press the shortcut key that you assigned in Step 3: Ctrl+Shift+G.

If you didn’t assign a shortcut key to the macro, don’t worry. Here’s how to
display a list of all macros available, and run the one you want.

1. Choose Developer➪Code➪Macros. 

Alternatively, you can click the small green triangle in the status bar.
Keyboard fans can press Alt+F8. Regardless of which of these methods
you choose, Excel displays a dialog box that lists all the available macros. 

2. Select the macro in the list (in this case, Gridlines). 

3. Click the Run button. 

Excel executes the macro and the gridlines magically disappear. 

46 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 46



Of course, you can execute any number of commands and perform any
number of actions while the macro recorder is running. Excel dutifully trans-
lates your mouse actions and keystrokes to VBA code. It works similarly to a
tape recorder, but Excel never runs out of tape.

This recorded macro isn’t really all that useful. After all, it’s easy enough to
turn off gridlines without a macro. It would be more useful if it would toggle
gridlines on and off. To make this change, activate the module and change
the statement to this:

ActiveWindow.DisplayGridlines = _
Not ActiveWindow.DisplayGridlines

This modification makes the macro serve as a toggle. If gridlines are displayed,
the macro turns them off. If gridlines are not displayed, the macro turns them
on. Oops, I’m getting ahead of myself — sorry, but I couldn’t resist that simple
enhancement. By the way, this is another example of a macro that can’t be
recorded. You can record a macro to turn gridlines on, or turn them off — but
you can’t record one that will toggle the gridlines.

Copying VBA code
The final method for getting code into a VBA module is to copy it from
another module. For example, a Sub or Function procedure that you write 
for one project might also be useful in another project. Instead of wasting
time reentering the code, you can activate the module and use the normal
Clipboard copy-and-paste procedures. After pasting it into a VBA module,
you can modify the code if necessary.

Customizing the VBA Environment
If you’re serious about becoming an Excel programmer, you’ll spend a lot of
time with VBA modules on your screen. To help make things as comfortable
as possible (no, please keep your shoes on), the VBE provides quite a few
customization options.

When the VBE is active, choose Tools➪Options. You’ll see a dialog box with
four tabs: Editor, Editor Format, General, and Docking. I discuss some of the
most useful options in the sections that follow.

47Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 47



Using the Editor tab
Figure 3-5 shows the options accessed by clicking the Editor tab of the
Options dialog box. Use the option in the Editor tab to control how certain
things work in the VBE.

Auto Syntax Check option
The Auto Syntax Check setting determines whether the VBE pops up a dialog
box if it discovers a syntax error while you’re entering your VBA code. The
dialog box tells roughly what the problem is. If you don’t choose this setting,
VBE flags syntax errors by displaying them in a different color from the rest
of the code, and you don’t have to deal with any dialog boxes popping up on
your screen. 

I usually keep this setting turned off because I find the dialog boxes annoying
and I can usually figure out what’s wrong with a statement. Before I was a
VBA veteran, I found this assistance quite helpful.

Require Variable Declaration option
If the Require Variable Declaration option is set, VBE inserts the following
statement at the beginning of each new VBA module you insert:

Option Explicit

Changing this setting affects only new modules, not existing modules. If this
statement appears in your module, you must explicitly define each variable
you use. In Chapter 7, I explain why you should develop this habit.

Figure 3-5:
This is the

Editor tab in
the Options
dialog box.

48 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 48



Auto List Members option
If the Auto List Members option is set, VBE provides some help when you’re
entering your VBA code. It displays a list that would logically complete the
statement you’re typing. 

I like this option and always keep it turned on. Figure 3-6 shows an example
(which will make lots more sense when you start writing VBA code).

Auto Quick Info option
If the Auto Quick Info option is set, VBE displays information about functions
and their arguments as you type. This can be very helpful. Figure 3-7 shows
this feature in action.

Figure 3-7:
Auto Quick
Info offers
help about

the InputBox
function.

Figure 3-6:
An example
of Auto List

members.

49Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 49



Auto Data Tips option
If the Auto Data Tips option is set, VBE displays the value of the variable over
which your cursor is placed when you’re debugging code. When you enter the
wonderful world of debugging, as I describe in Chapter 13, you’ll appreciate
this option.

Auto Indent setting
The Auto Indent setting determines whether VBE automatically indents each
new line of code the same as the previous line. I’m big on using indentations
in my code, so I keep this option on.

Use the Tab key to indent your code, not the spacebar. Also, you can use
Shift+Tab to “unindent” a line of code. If you want to indent more than just
one line, select all lines you want to indent. Then press the Tab key.

The VBE’s Edit toolbar (which is hidden by default) contains two useful but-
tons: Indent and Outdent. These buttons let you quickly indent or “unindent”
a block of code. Select the code and click one of these buttons to change the
block’s indenting.

Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move
text by dragging and dropping with your mouse. I keep this option turned on,
but I never use it. I prefer to copy and move by using the keyboard.

Default to Full Module View option
The Default to Full Module View option sets the default state for new 
modules. (It doesn’t affect existing modules.) If set, procedures in the 
Code window appear as a single scrollable list. If this option is turned off, 
you can see only one procedure at a time. I keep this option turned on.

Procedure Separator option
When the Procedure Separator option is turned on, separator bars appear at
the end of each procedure in a Code window. I like the idea of separator bars,
so I keep this option turned on.

Using the Editor Format tab
Figure 3-8 shows the Editor Format tab of the Options dialog box. With this
tab, you can customize the way the VBE looks.

50 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 50



Code Colors option
The Code Colors option lets you set the text color and background color 
displayed for various elements of VBA code. This is largely a matter of per-
sonal preference. Personally, I find the default colors to be just fine. But for 
a change of scenery, I occasionally play around with these settings.

Font option
The Font option lets you select the font that’s used in your VBA modules. For
best results, stick with a fixed-width font such as Courier New. In a fixed-width
font, all characters are exactly the same width. This makes your code more
readable because the characters are nicely aligned vertically and you can
easily distinguish multiple spaces.

Size setting
The Size setting specifies the point size of the font in the VBA modules. This
setting is a matter of personal preference determined by your video display
resolution and your eyesight.

Margin Indicator Bar option
This option controls the display of the vertical margin indicator bar in your
modules. You should keep this turned on; otherwise, you won’t be able to see
the helpful graphical indicators when you’re debugging your code.

Figure 3-8:
Change the
VBE’s looks

with the
Editor

Format tab.

51Chapter 3: Working In the Visual Basic Editor

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 51



Using the General tab
Figure 3-9 shows the options available under the General tab in the Options
dialog box. In almost every case, the default settings are just fine. If you’re
really interested in these options, click the Help button for details.

Using the Docking tab
Figure 3-10 shows the Docking tab. These options determine how the various
windows in the VBE behave. When a window is docked, it is fixed in place
along one of the edges of the VBE program window. This makes it much
easier to identify and locate a particular window. If you turn off all docking,
you have a big, confusing mess of windows. Generally, the default settings
work fine.

Figure 3-10:
The Docking

tab of the
Options

dialog box.

Figure 3-9:
The General

tab of the
Options

dialog box.

52 Part II: How VBA Works with Excel 

08_046746 ch03.qxp  1/12/07  5:53 PM  Page 52



Chapter 4

Introducing the Excel 
Object Model

In This Chapter
� Introducing the concept of objects

� Finding out about the Excel object hierarchy

� Understanding object collections

� Referring to specific objects in your VBA code

� Accessing or changing an object’s properties

� Performing actions with an object’s methods

Everyone is familiar with the word object. Well, folks, forget the definition
you think you know. In the world of programming, the word object has 

a different meaning. You often see it used as part of the expression object-
oriented programming, or OOP for short. OOP is based on the idea that soft-
ware consists of distinct objects that have attributes (or properties) and can
be manipulated. These objects are not material things. Rather, they exist in
the form of bits and bytes.

In this chapter, I introduce you to the Excel object model, which is a hierar-
chy of objects contained in Excel. By the time you finish this chapter, you’ll
have a reasonably good understanding of what OOP is all about — and why
you need to understand this concept to become a VBA programmer. After all,
Excel programming really boils down to manipulating Excel objects. It’s as
simple as that.

The material in this chapter may be a bit overwhelming. But please take my
advice and plow through it, even if you don’t fully grasp it at first. The impor-
tant concepts presented here will make lots more sense as you progress
through the book.

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 53



Excel Is an Object?
You’ve used Excel for quite a while, but you probably never thought of it as
an object. The more you work with VBA, the more you view Excel in those
terms. You’ll understand that Excel is an object and that it contains other
objects. Those objects, in turn, contain still more objects. In other words,
VBA programming involves working with an object hierarchy.

At the top of this hierarchy is the Application object — in this case, Excel
itself (the mother of all objects).

Climbing the Object Hierarchy
The Application object contains other objects. Following is a list of some of
the more useful objects contained in the Excel Application:

� Addin

� CommandBar

� Window

� Workbook

� WorksheetFunction

Each object contained in the Application object can contain other objects.
For example, the following is a list of objects that can be contained in a
Workbook object: 

� Chart

� Name

� VBProject

� Window

� Worksheet

In turn, each of these objects can contain still other objects. Consider a
Worksheet object (which is contained in a Workbook object, which is con-
tained in the Application object). Some of the objects that can be contained
in a Worksheet object are:

� Comment

� Hyperlink

� Name

54 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 54



� Outline

� PageSetup

� PivotTable

� Range

Put another way, if you want to do something with a range on a particular
worksheet, you may find it helpful to visualize that range in the following
manner:

Range➪contained in Worksheet➪contained in Workbook➪contained 
in Excel

Is this beginning to make sense? Figure 4-1 shows you one way to look at the
object model.

You see just a tiny part of the immensely complex Excel object model. Don’t
worry if this overwhelms you. You’ll become more comfortable with the
Excel object model as you read the rest of this book.

Before you come down with a bad case of object overload, it’s important to
understand that you never need to use most of the objects available to you.
In fact, most VBA work involves only a few objects. Even better, you can
almost always find the relevant object by recording a macro while doing
something with that object.

Figure 4-1:
Visualizing a

part of the
Excel object

model.

55Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 55



Wrapping Your Mind around Collections
Collections are another key concept in VBA programming. A collection is a
group of objects of the same type. And to add to the confusion, a collection is
itself an object.

Here are a few examples of commonly used collections:

� Workbooks: A collection of all currently open Workbook objects

� Worksheets: A collection of all Worksheet objects contained in a 
particular Workbook object

� Charts: A collection of all Chart objects (chart sheets) contained in a
particular Workbook object

� Sheets: A collection of all sheets (regardless of their type) contained in a
particular Workbook object

You may notice that collection names are all plural, which makes sense 
(at least I hope).

“What are collections for?” you may rightfully ask. Well, for example they are
very useful when you want to do stuff with not just one worksheet, but with a
couple of them:

Sub ChangeTabColor()
Dim Sht As Worksheet
For Each Sht In Worksheets

Sht.Tab.ColorIndex = 3
Next

End Sub

With a collection it is also very easy to find out how many objects there are
of that kind. Worksheets.Count gives you the number of worksheets in the
active workbook. You can refer to a member of a collection in two ways:

� By the index number: Sheet(1). For sheets, this number reflects the 
relative position starting from the far left.

� By using the member’s name: Sheets (“Sheet1”).

Referring to Objects
I presented the information in the previous sections to prepare you for the
next concept: referring to objects in your VBA code. Referring to an object is
important because you must identify the object that you want to work with.

56 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 56



After all, VBA can’t read your mind — luckily, that feature has been omitted
from Excel 2007.

You can work with an entire collection of objects in one fell swoop. More
often, however, you need to work with a specific object in a collection (such
as a particular worksheet in a workbook). To reference a single object from a
collection, you put the object’s name or index number in parentheses after
the name of the collection, like this:

Worksheets(“Sheet1”)

Notice that the sheet’s name is in quotation marks. If you omit the quotation
marks, Excel won’t be able to identify the object.

If Sheet1 is the first (or only) worksheet in the collection, you can also use
the following reference:

Worksheets(1)

In this case, the number is not in quotation marks. Bottom line? If you refer to
an object by using its name, use quotation marks. If you refer to an object by
using its index number, use a plain number without quotation marks.

Another collection, called Sheets, contains all the sheets (worksheets and
Chart sheets) in a workbook. If Sheet1 is the first sheet in the workbook, you
can reference it as

Sheets(1)

Navigating through the hierarchy
If you want to work with the Application object, it’s easy: you start by 
typing Application. Every other object in Excel’s object model is under the
Application object. You get to these objects by moving down the hierarchy
and connecting each object on your way with the dot (.) operator. To get to
the Workbook object named “Book1.xlsx”, start with the Application object
and navigate down to the Workbooks collection object.

Application.Workbooks(“Book1.xlsx”)

To navigate further to a specific worksheet, add a dot operator and access
the Worksheets collection object.

Application.Workbooks(“Book1.xlsx”).Worksheets(1)

57Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 57



Not far enough yet? If you really want to get the value from cell A1 on the first
Worksheet of the Workbook named Book1.xlsx, you need to navigate one
more level to the Range object.

Application.Workbooks(“Book1.xlsx”).Worksheets(1).Range(“A
1”).Value

When you refer to a Range object in this way, it’s called a fully qualified 
reference. You’ve told Excel exactly which range you wanted, on which 
worksheet and in which workbook, and have left nothing to the imagination.
And that’s a good thing. Imagination is good in people, but not so good in
computer programs.

Simplifying object references
If you had to fully qualify every object reference you make, your code would
get quite long, and may be more difficult to read. Fortunately, Excel provides
you with some shortcuts that can improve the readability (and save you
some typing). For starters, the Application object is always assumed. There
are only a few cases when it makes sense to type it. Omitting the Application
object reference shortens the example from the previous section to

Workbooks(“Book1.xlsx”).Worksheets(1).Range(“A1”).Value

That’s a pretty good improvement. But wait, there’s more. If Book1.xlsx is the
active workbook, you can omit that reference too. Now we’re down to

Worksheets(1).Range(“A1”).Value

Now we’re getting somewhere. Have you guessed the next shortcut? That’s
right, if the first worksheet is the currently active worksheet, then Excel will
assume that reference and allow us to just type

Range(“A1”).Value

Contrary to what some people may think, Excel does not have a Cell object. A
cell is simply a Range object that consists of just one element.

The shortcuts described here are great, but they can also be dangerous.
What if you only think Book1.xlsx is the active workbook? You could get an
error, or worse, get the wrong value and not even realize it’s wrong. For that
reason, it’s often best to fully qualify your object references. 

58 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 58



In Chapter 14, I discuss the With-End With structure, which helps you fully
qualify your references but also helps to make the code more readable and
cuts down on the typing. The best of both worlds!

Diving into Object Properties 
and Methods

Although knowing how to refer to objects is important, you can’t do anything
useful by simply referring to an object (as in the examples in the preceding
sections). To accomplish anything meaningful, you must do one of two things:

� Read or modify an object’s properties.

� Specify a method of action to be used with an object.

With literally thousands of properties and methods available, you can easily
be overwhelmed. I’ve been working with this stuff for years and I’m still over-
whelmed. But as I’ve said before and I say again: You’ll never need to use
most of the available properties and methods.

Object properties
Every object has properties. You can think of properties as attributes that
describe the object. An object’s properties determine how it looks, how it
behaves, and even whether it is visible. Using VBA, you can do two things
with an object’s properties:

� Examine the current setting for a property.

� Change the property’s setting.

For example, a single-cell Range object has a property called Value. The Value
property stores the value contained in the cell. You can write VBA code to
display the Value property, or you may write VBA code to set the Value prop-
erty to a specific value. The following macro uses the VBA built-in MsgBox
function to bring up a box that displays the value in cell A1 on Sheet1 of the
active workbook. See Figure 4-2.

Sub ShowValue()
Contents = Worksheets(“Sheet1”).Range(“A1”).Value
MsgBox Contents

End Sub

59Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 59



60 Part II: How VBA Works with Excel 

Another slant on McObjects, McProperties, 
and McMethods

Here’s an analogy that may help you understand
the relationships between objects, properties,
and methods in VBA. In this analogy, I compare
Excel with a fast-food restaurant chain.

The basic unit of Excel is a Workbook object. In
a fast-food chain, the basic unit is an individual
restaurant. With Excel, you can add a workbook
and close a workbook, and all the open work-
books are known as Workbooks (a collection of
Workbook objects). Similarly, the management
of a fast-food chain can add a restaurant and
close a restaurant, and all the restaurants in the
chain can be viewed as the Restaurants collec-
tion (a collection of Restaurant objects).

An Excel workbook is an object, but it also con-
tains other objects such as worksheets, charts,
VBA modules, and so on. Furthermore, each
object in a workbook can contain its own
objects. For example, a Worksheet object can
contain Range objects, PivotTable objects,
Shape objects, and so on.

Continuing with the analogy, a fast-food restau-
rant (like a workbook) contains objects such as
the Kitchen, DiningArea, and Tables (a collec-
tion). Furthermore, management can add or
remove objects from the Restaurant object. For
example, management may add more tables to
the Tables collection. Each of these objects can
contain other objects. For example, the Kitchen
object has a Stove object, VentilationFan object,
Chef object, Sink object, and so on.

So far, so good. This analogy seems to work. Let
me see if I can take it further.

Excel’s objects have properties. For example, a
Range object has properties such as Value and
Name, and a Shape object has properties such as
Width, Height, and so on. Not surprisingly, objects
in a fast-food restaurant also have properties. 
The Stove object, for example, has properties
such as Temperature and NumberofBurners. The
VentilationFan has its own set of properties
(TurnedOn, RPM, and so on).

Besides properties, Excel’s objects also have
methods, which perform an operation on an
object. For example, the ClearContents method
erases the contents of a Range object. An object
in a fast-food restaurant also has methods. You
can easily envision a ChangeThermostat method
for a Stove object, or a SwitchOn method for a
VentilationFan object.

In Excel, methods sometimes change an object’s
properties. The ClearContents method for a
Range changes the Range’s Value property.
Similarly, the ChangeThermostat method on a
Stove object affects its Temperature property.
With VBA, you can write procedures to manipu-
late Excel’s objects. In a fast-food restaurant, the
management can give orders to manipulate the
objects in the restaurants. (“Turn the stove on
and switch the ventilation fan to high.”)

The next time you visit your favorite fast-food
joint, just say, “I’ll have a Burger object with the
Onion property set to False.”

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 60



MsgBox is a useful function; you often use it to display results while Excel
executes your VBA code. I tell you more about this function in Chapter 15.
The code in the preceding example displays the current setting of a cell’s
Value property. What if you want to change the setting for that property? 
The following macro changes the value displayed in cell A1 by changing 
the cell’s Value property:

Sub ChangeValue()
Worksheets(“Sheet1”).Range(“A1”).Value = 934

End Sub

After Excel executes this procedure, cell A1 on Sheet1 of the active workbook
contains the value 934. By the way, if the active workbook does not have a
sheet named Sheet1, executing that macro will display an error message.

Each object has its own set of properties, although some properties are
common to many objects. For example, many (but not all) objects have a
Visible property. Most objects also have a Name property.

Some object properties are read-only, which means that you can see the
property’s value, but you can’t change it.

As I mention earlier in this chapter, a collection is also an object. This means
that a collection also has properties. For example, you can determine how
many workbooks are open by accessing the Worksheets collection’s Count
property. The following VBA procedure displays a message box that tells you
how many workbooks are open:

Sub CountBooks()
MsgBox Workbooks.Count

End Sub

Figure 4-2:
This

message
box displays

a Range
object’s

Value
property.

61Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 61



Object methods
In addition to properties, objects have methods. A method is an action you
perform with an object. A method can change an object’s properties or make
the object do something.

This simple example uses the Calculate method on a Range object to calcu-
late the formula in cell A1 on Sheet1:

Sub CalcCell()
Worksheets(“Sheet1”).Range(“A1”).Calculate

End Sub

Most methods also take one or more arguments. An argument is a value that
further specifies the action to perform. You place the arguments for a method
after the method, separated by a space. Multiple arguments are separated by
a comma.

The following example activates Sheet1 (in the active workbook) and then
copies the contents of cell A1 to cell B1 by using the Range object’s Copy
method. In this example, the Copy method has one argument — the destina-
tion range for the copy operation:

Sub CopyOne()
Worksheets(“Sheet1”).Activate
Range(“A1”).Copy Range(“B1”)

End Sub

Notice that I omit the worksheet reference when I refer to the Range objects. I
could do this safely because I used a statement to activate Sheet1 (using the
Activate method).

Because a collection is also an object, collections have methods. The following
macro uses the Add method for the Workbooks collection:

Sub AddAWorkbook()
Workbooks.Add

End Sub

As you may expect, this statement creates a new workbook. In other words, it
adds a new workbook to the Workbooks collection.

62 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 62



Object events
In this section, I briefly touch on one more topic that you need to know
about: events. Objects respond to various events that occur. For example,
when you’re working in Excel and you activate a different workbook, an
Activate event occurs. You could, for example, have a VBA macro that is
designed to execute whenever an Activate event occurs.

Excel supports many events, but not all objects can respond to all events.
And some objects don’t respond to any events. The only events you can 
use are those made available by the programmers of Microsoft Excel. The
concept of an event becomes clear in Chapter 11 and also in Part IV. 

Finding Out More
You find out more about objects, properties, and methods in the chapters
that follow this one. You may also be interested in three other excellent tools:

� VBA’s Help system

� The Object Browser

� Auto List Members

Using VBA’s Help system
The VBA Help system describes every object, property, and method available
to you. This is an excellent resource for finding out about VBA and is more
comprehensive than any book on the market.

If you’re working in a VBA module and want information about a particular
object, method, or property, move the cursor to the word you’re interested in
and press F1. In a few seconds you see the appropriate help topic, complete
with cross-references and perhaps even an example or two.

Figure 4-3 shows a screen from the online Help system — in this case, for a
Worksheet object. 

� Click Properties to get a complete list of this object’s properties.

� Click Methods to get a listing of its methods. 

� Click Events to get a listing of the events it responds to.

63Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 63



Using the Object Browser
The VBE includes another tool, known as the Object Browser. As the name
implies, this tool lets you browse through the objects available to you. To
access the Object Browser, press F2 when the VBE is active (or choose
View➪Object Browser). You see a window like the one shown in Figure 4-4.

The drop-down list at the top contains a list of all currently available object
libraries. Figure 4-4 shows All Libraries. If you want to browse through Excel’s
objects, select Excel from the drop-down list.

The second drop-down list is where you enter a search string. For example, 
if you want to look at all Excel objects that deal with links, type link into the
second field and click the Search button. (It has a pair of binoculars on it.)
The Search Results window displays everything in the object library that con-
tains the text link. If you see something that looks like it may be of interest,
select it and press F1 for more information.

Figure 4-3:
An example
from VBA’s

Help
system.

64 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 64



Figure 4-4:
Browsing

for objects
with the

Object
Browser.

65Chapter 4: Introducing the Excel Object Model

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 65



66 Part II: How VBA Works with Excel 

09_046746 ch04.qxp  1/12/07  5:53 PM  Page 66



Chapter 5

VBA Sub and Function Procedures
In This Chapter
� Understanding the difference between Sub procedures and Function procedures

� Executing Sub procedures (many ways)

� Executing Function procedures (two ways)

Several times in preceding chapters I mention Sub procedures and allude
to the fact that Function procedures also play a role in VBA. In this 

chapter, I clear up confusion about these concepts.

Subs versus Functions
The VBA code that you write in the Visual Basic Editor is known as a procedure.
The two most common types of procedures are Sub and Function.

� A Sub procedure is a group of VBA statements that performs an action
(or actions) with Excel.

� A Function procedure is a group of VBA statements that performs a 
calculation and returns a single value.

Most of the macros you write in VBA are Sub procedures. You can think of a Sub
as being like a command: Execute the Sub procedure and something happens.
(Of course, exactly what happens depends on the Sub procedure’s VBA code.)

A Function is also a procedure, but it’s quite different from a Sub. You’re
already familiar with the concept of a function. Excel includes many 
worksheet functions that you use every day (well, at least every weekday).
Examples include SUM, PMT, and VLOOKUP. You use these worksheet func-
tions in formulas. Each function takes one or more arguments (although a 
few functions don’t use any arguments). The function does some behind-the-
scenes calculations and returns a single value. The same goes for Function
procedures that you develop with VBA.

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 67



Looking at Sub procedures
Every Sub procedure starts with the keyword Sub and ends with an End Sub
statement. Here’s an example:

Sub ShowMessage()
MsgBox “That’s all folks!”

End Sub

This example shows a procedure named ShowMessage. A set of parentheses
follows the procedure’s name. In most cases, these parentheses are empty.
However, you may pass arguments to Sub procedures from other procedures.
If your Sub uses arguments, list them between the parentheses.

When you record a macro with the Excel macro recorder, the result is always
a Sub procedure.

As you see later in this chapter, Excel provides quite a few ways to execute a
VBA Sub procedure.

Looking at Function procedures
Every Function procedure starts with the keyword Function and ends with an
End Function statement. Here’s a simple example:

Function CubeRoot(number)
CubeRoot = number ^ (1 / 3)

End Function

This function, named CubeRoot, takes one argument (named number), which
is enclosed in parentheses. Functions can have any number of arguments or
none at all. When you execute the function, it returns a single value — the
cube root of the argument passed to the function.

VBA allows you to specify what type of information (also known as data type)
is returned by a Function procedure. Chapter 7 contains more information on
specifying data types.

You can execute a Function procedure in only two ways. You can execute it
from another procedure (a Sub or another Function procedure) or use it in a
worksheet formula.

You can’t use the Excel macro recorder to record a Function procedure. You
must manually enter every Function procedure that you create.

68 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 68



Naming Subs and Functions
Like humans, pets, and hurricanes, every Sub and Function procedure must
have a name. Although it is perfectly acceptable to name your dog Hairball
Harris, it’s usually not a good idea to use such a freewheeling attitude when
naming procedures. When naming procedures, you must follow a few rules:

� You can use letters, numbers, and some punctuation characters, but the
first character must be a letter.

� You can’t use any spaces or periods in the name.

� VBA does not distinguish between uppercase and lowercase letters.

� You can’t embed any of the following characters in a name: #, $, %, &, @,
^, *, or !.

� If you write a Function procedure for use in a formula, make sure the
name does not look like a cell address (for example, AC12). Actually,
Excel allows such function names, but why make things more confusing
than they are already?

� Names can be no longer than 255 characters. (Of course, you would
never make a procedure name this long.)

Ideally, a procedure’s name should describe the routine’s purpose. A good
practice is to create a name by combining a verb and a noun — for example,
ProcessData, PrintReport, Sort_Array, or CheckFilename.

Some programmers prefer using sentencelike names that provide a complete
description of the procedure. Some examples include WriteReportToTextFile
and Get_Print_Options_and_Print_Report. The use of such lengthy names
has pros and cons. On the one hand, such names are descriptive and unam-
biguous. On the other hand, they take longer to type. Everyone develops a
naming style, but the main objectives should be to make the names descrip-
tive and to avoid meaningless names such as DoIt, Update, Fix, and Macro1.

Executing Sub procedures
Although you may not know much about developing Sub procedures at this
point, I’m going to jump ahead a bit and discuss how to execute these proce-
dures. This is important because a Sub procedure is worthless unless you
know how to execute it.

By the way, executing a Sub procedure means the same thing as running or
calling a Sub procedure. You can use whatever terminology you like.

69Chapter 5: VBA Sub and Function Procedures

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 69



You can execute a VBA Sub in many ways — that’s one reason you can do so
many useful things with Sub procedures. Here’s an exhaustive list of the ways
(well, at least all the ways I could think of) to execute a Sub procedure:

� With the Run➪Run Sub/UserForm command (in the VBE). Excel executes
the Sub procedure in which the cursor is located. This menu command
has two alternatives: The F5 key, and the Run Sub/UserForm button on
the Standard toolbar in the VBE. These methods don’t work if the proce-
dure requires one or more arguments.

� From Excel’s Macro dialog box. You open this box by choosing
Developer➪Code➪Macros). Or you can press the Alt+F8 shortcut key.
And to add to the list: You can also open the Macro dialog box by click-
ing on the play macro button on the status bar (the little green triangle).
When the Macro dialog box appears, select the Sub procedure you want
and click Run. This dialog box lists only the procedures that don’t
require an argument.

� Using the Ctrl+key shortcut assigned to the Sub procedure (assuming
you assigned one).

� Clicking a button or a shape on a worksheet. The button or shape must
have a Sub procedure assigned to it.

� From another Sub procedure that you write.

� From a button on the Quick Access Toolbar. (See Chapter 19.)

� From a custom item on the ribbon you develop. (See Chapter 19.)

� Automatically, when you open or close a workbook. (See Chapter 11.) 

� When an event occurs. As I explain in Chapter 11, these events include
saving the workbook, making a change to a cell, activating a sheet, and
other things.

� From the Immediate window in the VBE. Just type the name of the Sub
procedure and press Enter.

I demonstrate some of these techniques in the following sections. Before I
can do that, you need to enter a Sub procedure into a VBA module. 

1. Start with a new workbook. 

2. Press Alt+F11 to activate the VBE. 

3. Select the workbook in the Project window. 

4. Choose Insert➪Module to insert a new module. 

5. Enter the following into the module:

Sub CubeRoot()
Num = InputBox(“Enter a positive number”)
MsgBox Num ^ (1/3) & “ is the cube root.”

End Sub

70 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 70



This simple procedure asks the user for a number and then displays that
number’s cube root in a message box. Figures 5-1 and 5-2 show what happens
when you execute this procedure.

By the way, CubeRoot is not an example of a good macro. It doesn’t check for
errors, so it fails easily. To see what I mean, try clicking the Cancel button in
the input box or entering a negative number.

Executing the Sub procedure directly
The quickest way to execute this procedure is by doing so directly from the
VBA module in which you defined it. Follow these steps: 

1. Activate the VBE and select the VBA module that contains the 
procedure. 

2. Move the cursor anywhere in the procedure’s code. 

3. Press F5 (or choose Run➪Run Sub/UserForm). 

4. Respond to the input box and click OK. 

The procedure displays the cube root of the number you entered.

Figure 5-2:
Displaying

the cube
root of a

number via
the MsgBox

function.

Figure 5-1:
Using the

built-in VBA
InputBox
function 
to get a
number.

71Chapter 5: VBA Sub and Function Procedures

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 71



You can’t use the Run➪Run Sub/UserForm command to execute a Sub proce-
dure that uses arguments because you have no way to pass the arguments to
the procedure. If the procedure contains one or more arguments, the only
way to execute it is to call it from another procedure — which must supply
the argument(s).

Executing the procedure from 
the Macro dialog box
Most of the time, you execute Sub procedures from Excel, not from the VBE.
The steps below describe how to execute a macro by using Excel’s Macro
dialog box.

1. Activate Excel. 

Alt+F11 is the express route (of course you can skip this step if Excel is
already active).

2. Choose Developer➪Code➪Macros (or press Alt+F8). 

Excel displays the dialog box shown in Figure 5-3. 

3. Select the macro. 

4. Click Run (or double-click the macro’s name in the list box).

Executing a macro by using a shortcut key
Another way to execute a macro is to press its shortcut key. But before you
can use this method, you have to set things up. Specifically, you must assign
a shortcut key to the macro.

Figure 5-3:
The Macro
dialog box

lists all
available

Sub
procedures.

72 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 72



You have the opportunity to assign a shortcut key in the Record Macro dialog
box when you begin recording a macro. If you create the procedure without
using the macro recorder, you can assign a shortcut key (or change an exist-
ing shortcut key) by using the following procedure:

1. Choose Developer➪Code➪Macros.

2. Select the Sub procedure name from the list box.

In this example, the procedure is named CubeRoot.

3. Click the Options button.

Excel displays the dialog box shown in Figure 5-4.

4. Click the Shortcut Key option and enter a letter in the box labeled Ctrl.

The letter you enter corresponds to the key combination you want to
use for executing the macro. For example, if you enter the letter c, you
can then execute the macro by pressing Ctrl+c. If you enter an upper-
case letter, you need to add the Shift key to the key combination. For
example, if you enter C, you can execute the macro by pressing
Ctrl+Shift+C.

5. Click OK or Cancel to close the Macro Options dialog box.

After you’ve assigned a shortcut key, you can press that key combination to
execute the macro.

The shortcut keys you assign to macros override Excel’s built-in shortcut
keys. For example, if you assign Ctrl+C to a macro, you can’t use this shortcut
key to copy data in your workbook. This is usually not a big deal because
Excel always provides other ways to execute commands.

Figure 5-4:
The Macro

Options
dialog box

lets you 
set options 

for your
macros.

73Chapter 5: VBA Sub and Function Procedures

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 73



Executing the procedure from 
a button or shape
You can create still another means for executing the macro by assigning the
macro to a button (or any other shape) on a worksheet. To assign the macro
to a button, follow these steps:

1. Activate a worksheet. 

2. Add a button from the Forms group. 

To display the Forms group, select Developer➪Controls➪Insert 
(See Figure 5-5)

3. Click the Button tool in the Forms group. 

4. Drag in the worksheet to create the button.

After you add the button to your worksheet, Excel jumps right in 
and displays the Assign Macro dialog box shown in Figure 5-6. 

5. Select the macro you want to assign to the button. 

6. Click OK.

Clicking the button will execute the macro.

Note that the dropdown shows two sets of controls. Form controls and
ActiveX controls. These two groups of controls look similar, but they are
actually very different. In practice, the Form controls are easier to use.

Figure 5-5:
The Ribbon

showing the
Developer

tab, after
clicking the

Insert
dropdown

on the
Controls

chunk.

74 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 74



You can also assign a macro to any other shape or object. For 
example, assume you’d like to execute a macro when the user 
clicks a Rectangle object.

1. Add the Rectangle to the worksheet. 

Insert a rectangle by selecting Insert➪Illustrations➪Shapes and 
clicking on a rectangle.

2. Right-click the rectangle.

3. Choose Assign Macro from its shortcut menu. 

4. Select the macro from the Assign Macro dialog box. 

5. Click OK.

After performing these steps, clicking the rectangle will execute 
the macro.

Figure 5-6:
When you

add a button
to a

worksheet,
Excel auto-

matically
displays the

Assign
Macro

dialog box.

75Chapter 5: VBA Sub and Function Procedures

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 75



Executing the procedure 
from another procedure
You can also execute a procedure from another procedure. Follow these
steps if you want to give this a try:

1. Activate the VBA module that holds the CubeRoot routine. 

2. Enter this new procedure (either above or below CubeRoot code — it
makes no difference):

Sub NewSub()
Call CubeRoot

End Sub

3. Execute the NewSub macro. 

The easiest way to do this is to move the cursor anywhere within the
NewSub code and press F5. Notice that this NewSub procedure simply
executes the CubeRoot procedure.

By the way, the keyword Call is optional. The statement can consist of only
the Sub procedure’s name. I find, however, that using the Call keyword makes
it perfectly clear that a procedure is being called.

Executing Function procedures
Functions, unlike Sub procedures, can be executed in only two ways:

� By calling the function from another Sub procedure or Function procedure

� By using the function in a worksheet formula

Oh wait, I forgot one: you can also call a function from the Immediate window.
I tell you more about this useful little screen in Chapter 13.

Try this simple function. Enter it into a VBA module:

Function CubeRoot(number)
CubeRoot = number ^ (1/3)

End Function

This function is pretty wimpy — it merely calculates the cube root of the
number passed to it as its argument. It does, however, provide a starting
point for understanding functions. It also illustrates an important concept
about functions: how to return the value that makes functions so important.
(You remember that functions return values, right?)

76 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 76



Notice that the single line of code that makes up this Function procedure is a
formula. The result of the math (number to the power of 1⁄3) is assigned to the
variable CubeRoot. Notice that CubeRoot is the function name, as well. To tell
the function what value to return, you assign that value to the name of the
function.

Calling the function from a Sub procedure
Because you can’t execute this function directly, you must call it from
another procedure. Enter the following simple procedure in the same VBA
module that contains the CubeRoot function:

Sub CallerSub()
Ans = CubeRoot(125)
MsgBox Ans

End Sub

When you execute the CallerSub procedure (using any of the methods describes
earlier in this chapter), Excel displays a message box that contains the value of
the Ans variable, which is 5.

Here’s what’s going on: The CubeRoot function is executed by using an argu-
ment of 125. The function returns a value. That value is assigned to the Ans
variable. The MsgBox function then displays the value in the Ans variable.
Try changing the argument that’s passed to the CubeRoot function and run
the CallerSub macro again. It works just like it should.

By the way, the CallerSub procedure could be simplified a bit. The Ans vari-
able is not really required. You could use this single statement to obtain the
same result:

MsgBox CubeRoot(125)

Calling a function from a worksheet formula
Now it’s time to call this VBA Function procedure from a worksheet formula.
Activate a worksheet in the same workbook that holds the CubeRoot function
definition. Then enter the following formula into any cell:

=CubeRoot(1728)

The cell displays 12, which is indeed the cube root of 1728.

As you might expect, you can use a cell reference as the argument for the
CubeRoot function. For example, if cell A1 contains a value, you can enter

77Chapter 5: VBA Sub and Function Procedures

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 77



=CubeRoot(A1). In this case, the function returns the number obtained by
calculating the cube root of the value in A1.

You can use this function any number of times in the worksheet. As with
Excel’s built-in functions, your custom functions also appear in the Insert
Function dialog box. Click the Insert Function toolbar button and choose the
User Defined category. As shown in Figure 5-7, the Insert Function dialog box
lists your very own function.

If you want the Insert Function dialog box to display a description of the 
function, follow these steps:

1. Choose Developer➪Code➪Macros. 

Excel displays the Macro dialog box, but CubeRoot doesn’t appear in 
the list. (CubeRoot is a Function procedure, and this list shows only 
Sub procedures.) Don’t fret. 

2. Type the word CubeRoot in the Macro Name box. 

3. Click the Options button. 

4. Enter a description of the function in the Description box. 

5. Close the Macro Options dialog box. 

6. Close the Macro dialog box by clicking the Cancel button. 

This descriptive text now appears in the Insert Function dialog box.

By now, things may be starting to come together for you. (I wish I had had this
book when I was starting out.) You’ve found out lots about Sub and Function
procedures. You start creating macros in Chapter 6, which discusses the ins
and outs of developing macros by using the Excel macro recorder.

Figure 5-7:
The

CubeRoot
function

appears in
the User
Defined

category of
the Insert
Function

dialog box.

78 Part II: How VBA Works with Excel 

10_046746 ch05.qxp  1/12/07  5:54 PM  Page 78



Chapter 6

Using the Excel Macro Recorder
In This Chapter
� Recording your actions by using the Excel built-in macro recorder

� Understanding the types of macros you can record

� Setting the appropriate options for macro recording

You can use two methods to create a macro:

� Record it by using the Excel macro recorder.

� Write it with VBA. 

This chapter deals specifically with the ins and outs of using the Excel 
macro recorder. Recording a macro isn’t always the best approach, and 
some macros simply can’t be recorded, no matter how hard you try. You’ll
see, however, that the Excel macro recorder is very useful. Even if your
recorded macro isn’t quite what you want, the recorder is an excellent 
learning tool.

Is It Live or Is It VBA?
Recording a macro is sort of like using a tape recorder. Turn it on, do your
thing, and then turn it off. This analogy, however, goes only so far. Table 6-1
compares tape recording with macro recording.

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 79



Table 6-1 Tape Recording versus Macro Recording
Tape Recorder Excel Macro Recorder

What equipment A tape recorder and a A computer and a copy 
is required? microphone. of Excel.

What is recorded? Sounds. Actions taken in Excel.

Where is the On magnetic tape. In a VBA module.
recording stored?

How do you play Rewind the tape and Choose Developer➪Code➪
it back? press Play. Macros (or other methods).

Can you edit the Yes, if you have the Yes, if you know what 
recording? proper equipment. you’re doing.

Can you copy the Yes, if you have a second Yes (no additional equipment 
recording? tape recorder. required).

Is the recording Depends on the situation Depends on how you set 
accurate? and the equipment things up when you record 

quality. the macro.

What if you make Rerecord the tape (or Rerecord the macro (or edit it 
a mistake? edit it if possible). if possible).

Can you view the No, it’s just a bunch of Yes, by opening a module in 
recording? magnetic impulses. the VBE.

Can you make Yes, if it’s good (editing Yes, but you need to do a lot 
money with the usually required). of editing first. 
recording?

Recording Basics
You take the following basic steps when recording a macro. I describe these
steps in more detail later in this chapter.

1. Determine what you want the macro to do.

2. Get things set up properly.

This step determines how well your macro works.

3. Determine whether you want cell references in your macro to be 
relative or absolute.

80 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 80



4. Choose Developer➪Code➪Record Macro.

Excel displays its Record Macro dialog box.

5. Enter a name, shortcut key, macro location, and description.

Each of these items — with the exception of the name — is optional.

6. Click OK in the Record Macro dialog box.

Excel automatically inserts a VBA module. From this point, Excel con-
verts your actions into VBA code. It also displays a stop recording
button on your status bar.

7. Perform the actions you want recorded by using the mouse or the
keyboard.

8. After you’re finished, click the Stop Recording button on the status
bar (or choose Developer➪Code➪Stop Recording).

Excel stops recording your actions.

9. Test the macro to make sure it works correctly.

The macro recorder is best suited for simple, straightforward macros. For
example, you might want a macro that applies formatting to a selected range
of cells or that sets up row and column headings for a new worksheet.

The macro recorder is for Sub procedures only. You can’t use the macro
recorder to create Function procedures.

You may also find the macro recorder helpful for developing more complex
macros. Often, I record some actions and then copy the recorded code into
another, more complex macro. In most cases, you need to edit the recorded
code and add some new VBA statements.

The macro recorder cannot generate code for any of the following tasks,
which I describe later in the book:

� Performing any type of repetitive looping

� Performing any type of conditional actions (using an If-Then statement)

� Assigning values to variables

� Specifying data types

� Displaying pop-up messages

� Displaying custom dialog boxes

The macro recorder’s limited capability certainly doesn’t diminish its 
importance. I make this point throughout the book: Recording your actions is
perhaps the best way to master VBA. When in doubt, try recording. Although
the result may not be exactly what you want, viewing the recorded code may
steer you in the right direction.

81Chapter 6: Using the Excel Macro Recorder

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 81



Preparing to Record
Before you take the big step and turn on the macro recorder, spend a minute
or two thinking about what you’re going to do. You record a macro so that
Excel can automatically repeat the actions you record.

Ultimately, the success of a recorded macro depends on five factors:

� How the workbook is set up while you record the macro

� What is selected when you start recording

� Whether you use absolute or relative recording mode

� The accuracy of your recorded actions

� The context in which you play back the recorded macro

The importance of these factors becomes crystal clear when I walk you
through an example.

Relative or Absolute?
When recording your actions, Excel normally records absolute references 
to cells. (This is the default recording mode.) Very often, this is the wrong
recording mode. If you use relative recording, Excel records relative refer-
ences to cells. The distinction is explained in this section.

Recording in absolute mode
Follow these steps to record a simple macro in absolute mode. This macro
simply enters three month names into a worksheet:

1. Choose Developer➪Code➪Record Macro.

2. Type Absolute as the name for this macro.

3. Click OK to begin recording.

4. Activate cell B1 and type Jan in that cell.

5. Move to cell C1 and type Feb.

6. Move to cell D1 and type Mar.

82 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 82



7. Click cell B1 to activate it again.

8. Stop the macro recorder.

9. Press Alt+F11 to activate the VBE. 

10. Examine the Module1 module. 

Excel generates the following code:

Sub Absolute()
‘
‘ Absolute Macro
‘ Macro recorded by John Walkenbach
‘

Range(“B1”).Select
ActiveCell.FormulaR1C1 = “Jan”
Range(“C1”).Select
ActiveCell.FormulaR1C1 = “Feb”
Range(“D1”).Select
ActiveCell.FormulaR1C1 = “Mar”
Range(“B1”).Select

End Sub

When executed, this macro selects cell B1 and inserts the three month
names in the range B1:D1. Then the macro reactivates cell B1.

These same actions occur regardless of which cell is active when you execute
the macro. A macro recorded by using absolute references always produces
the same results when it is executed. In this case, the macro always enters
the names of the first three months into the range B1:D1.

Recording in relative mode
In some cases you want your recorded macro to work with cell locations in a
relative manner. You may want the macro to start entering the month names
in the active cell. In such a case, you need to use relative recording.

You can change the manner in which Excel records your actions by clicking
the Use Relative References button on the Code group on the Developer tab.
This button is a toggle button. When the button appears in a pressed state,
the recording mode is relative. When the button appears normally, you are
recording in absolute mode.

You can change the recording method at any time, even in the middle 
of recording.

83Chapter 6: Using the Excel Macro Recorder

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 83



To see how relative mode recording works, erase the cells in B1:D1 and then
perform the following steps:

1. Activate cell B1.

2. Choose Developer➪Code➪Record Macro.

3. Name this macro Relative.

4. Click OK to begin recording.

5. Click the Use Relative References button to change the recording
mode to relative.

When you click this button, it changes to a different color than the rest
of the ribbon.

6. Activate cell B1 and type Jan in that cell.

7. Move to cell C1 and type Feb.

8. Move to cell D1 and type Mar.

9. Select cell B1.

10. Stop the macro recorder.

Notice that this procedure differs slightly from the previous example. In this
example, you activate the beginning cell before you start recording. This is an
important step when you record macros that use the active cell as a base.

This macro always starts entering text in the active cell. Try it. Move the cell
pointer to any cell and then execute the Relative macro. The month names
are always entered beginning at the active cell.

With the recording mode set to relative, the code Excel generates is quite 
different from absolute mode:

Sub Relative()
‘
‘ Relative Macro
‘ Macro recorded by John Walkenbach
‘

ActiveCell.FormulaR1C1 = “Jan”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Feb”
ActiveCell.Offset(0, 1).Range(“A1”).Select
ActiveCell.FormulaR1C1 = “Mar”
ActiveCell.Offset(0, -2).Range(“A1”).Select

End Sub

To test this macro, activate any cell except B1. The month names are entered
in three cells, beginning with the cell that you activated.

84 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 84



Notice that the code generated by the macro recorder refers to cell A1. This
may seem strange because you never used cell A1 during the recording of the
macro. This is simply a byproduct of the way the macro recorder works. (I
discuss this in more detail in Chapter 8 where I talk about the Offset method.) 

What Gets Recorded?
When you turn on the macro recorder, Excel converts your mouse and 
keyboard actions into valid VBA code. I could probably write several pages
describing how Excel does this, but the best way to understand the process
is by watching the macro recorder in action. (Figure 6-1 shows how my
screen looked while I had the macro recorder turned on.)

Follow these steps:

1. Start with a blank workbook.

2. Make sure that the Excel window is not maximized.

3. Press Alt+F11 to activate the VBE (and make sure that this program
window is not maximized).

4. Resize and arrange the Excel window and the VBE window so that
both are visible.

For best results, position the Excel window on top of the VBE window,
and minimize any other applications that are running.

5. Activate Excel and choose Developer➪Code➪Record Macro. 

6. Click OK to start the macro recorder.

Excel inserts a new module (named Module1) and starts recording in
that module.

7. Activate the VBE program window.

8. In the Project Explorer window, double-click Module1 to display that
module in the Code window.

Now play around for a while: Choose various Excel commands and watch 
the code being generated in the VBE window. Select cells, enter data, format
cells, use the menus and toolbars, create a chart, manipulate graphics
objects, and so on — go crazy! I guarantee that you’ll be enlightened as 
you watch Excel spit out the VBA code before your very eyes.

85Chapter 6: Using the Excel Macro Recorder

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 85



Recording Options
When recording your actions to create VBA code, you have several options.
Recall that the Developer➪Code➪Record Macro command displays the
Record Macro dialog box before recording begins, as shown in Figure 6-2.

The Record Macro dialog box, shown in Figure 6-2, gives you quite a bit of
control over your macro. In the following sections, I describe these options.

Figure 6-2:
The Record

Macro
dialog box

provides
several
options.

Figure 6-1:
A convenient

window
arrangement
for watching

the macro
recorder do

its thing.

86 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 86



Macro name
You can enter a name for the Sub procedure that you are recording. By
default, Excel uses the names Macro1, Macro2, and so on for each macro you
record. I usually just accept the default name. If the macro works correctly
and I want to save it, I give it a more descriptive name later on. You, however,
may prefer to name the macro upfront — the choice is yours.

Shortcut key
The Shortcut key option lets you execute the macro by pressing a shortcut
key combination. For example, if you enter w (lowercase), you can execute
the macro by pressing Ctrl+w. If you enter W (uppercase), the macro comes
alive when you press Ctrl+Shift+W.

You can add or change a shortcut key at any time, so you don’t have to 
set this option when recording a macro. See Chapter 5 for instructions on
assigning a shortcut key to an existing macro.

Store Macro In
The Store Macro In option tells Excel where to store the macro that it is
recording. By default, Excel puts the recorded macro in a module in the
active workbook. If you prefer, you can record it in a new workbook (Excel
opens a blank workbook) or in your Personal Macro Workbook.

Your Personal Macro Workbook is a hidden workbook that opens automatically
when Excel starts. This is a good place to store macros that you’ll use with
multiple workbooks. The Personal Macro Workbook is named personal.xls and
it is created the first time you specify it as the location for a recorded macro. 

Description
When you record a macro, the macro begins with five comment lines (three
of them blank) that list the macro name, the user’s name, and the date. You
can put anything you like here or nothing at all. As far as I’m concerned, the
Description option is a waste of time because I always end up deleting these
lines in the module.

87Chapter 6: Using the Excel Macro Recorder

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 87



Is This Thing Efficient?
You might think that recording a macro would generate some award-winning
VBA code — better than you could ever write manually. Think again. In many
cases, the recorder spits out lots of extraneous garbage, and it often generates
code that’s less than efficient.

Don’t get me wrong. I’m a staunch supporter of the macro recorder. It’s a great
tool for helping you master VBA. Except for simple macros, however, I’ve
never used a recorded macro without fixing it up a bit (usually quite a bit).

To demonstrate just how inefficient the macro recorder’s code can be, try this:

1. Turn on the macro recorder.

2. Choose the Page Layout➪Page Setup➪Orientation➪Landscape 
command.

3. Turn off the macro recorder.

To take a look at the macro, activate the Module1 sheet. This single — and
very simple — command generates the following code:

Sub Macro3()
‘
‘ Macro3 Macro
‘

‘
With ActiveSheet.PageSetup

.PrintTitleRows = “”

.PrintTitleColumns = “”
End With
ActiveSheet.PageSetup.PrintArea = “”
With ActiveSheet.PageSetup

.LeftHeader = “”

.CenterHeader = “”

.RightHeader = “”

.LeftFooter = “”

.CenterFooter = “”

.RightFooter = “”

.LeftMargin =
Application.InchesToPoints(0.708661417322835)
.RightMargin =
Application.InchesToPoints(0.708661417322835)
.TopMargin =
Application.InchesToPoints(0.748031496062992)
.BottomMargin =
Application.InchesToPoints(0.748031496062992)
.HeaderMargin =
Application.InchesToPoints(0.31496062992126)

88 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 88



.FooterMargin =
Application.InchesToPoints(0.31496062992126)
.PrintHeadings = False
.PrintGridlines = False
.PrintComments = xlPrintNoComments
.PrintQuality = 300
.CenterHorizontally = False
.CenterVertically = False
.Orientation = xlLandscape
.Draft = False
.PaperSize = xlPaperLetter
.FirstPageNumber = xlAutomatic
.Order = xlDownThenOver
.BlackAndWhite = False
.Zoom = 100
.PrintErrors = xlPrintErrorsDisplayed
.OddAndEvenPagesHeaderFooter = False
.DifferentFirstPageHeaderFooter = False
.ScaleWithDocHeaderFooter = True
.AlignMarginsHeaderFooter = True
.EvenPage.LeftHeader.Text = “”
.EvenPage.CenterHeader.Text = “”
.EvenPage.RightHeader.Text = “”
.EvenPage.LeftFooter.Text = “”
.EvenPage.CenterFooter.Text = “”
.EvenPage.RightFooter.Text = “”
.FirstPage.LeftHeader.Text = “”
.FirstPage.CenterHeader.Text = “”
.FirstPage.RightHeader.Text = “”
.FirstPage.LeftFooter.Text = “”
.FirstPage.CenterFooter.Text = “”
.FirstPage.RightFooter.Text = “”

End With
End Sub

You may be surprised by the amount of code generated by this single 
command. (I was, the first time I tried something like this.) Although you
changed only one print setting, Excel generated code that sets many other
print-related properties.

This is a good example of macro-recording overkill. If you want a macro that
simply switches the page setup to landscape mode, simplify this macro con-
siderably by deleting the extraneous code. This makes the macro faster and
easier to read. You can simplify this macro as follows:

Sub Macro1()
With ActiveSheet.PageSetup

.Orientation = xlLandscape
End With

End Sub

89Chapter 6: Using the Excel Macro Recorder

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 89



I deleted all the code except the line that sets the Orientation property.
Actually, you can simplify this macro even more because you don’t really
need the With.End With construct (I explain more about this construct in
Chapter 14):

Sub Macro1()
ActiveSheet.PageSetup.Orientation = xlLandscape

End Sub

In this case, the macro changes the Orientation property of the PageSetup
object on the active sheet. All other properties are unchanged. By the way,
xlLandscape is a built-in constant that makes things easier. I discuss built-in
constants in Chapter 7.

Rather than record this macro, you can enter it directly into a VBA module.
To do so, you have to know which objects, properties, and methods to use.
Although the recorded macro isn’t all that great, by recording it you realize
that the PageSetup object has an Orientation property. This example shows
how the macro recorder can help you master VBA.

This chapter nearly sums it up when it comes to using the macro recorder.
The only thing missing is experience. Eventually, you discover which
recorded statements you can safely delete. Better yet, you discover how 
to modify a recorded macro to make it more useful.

90 Part II: How VBA Works with Excel 

11_046746 ch06.qxp  1/12/07  5:54 PM  Page 90



Part III
Programming

Concepts

12_046746 pt03.qxp  1/12/07  5:55 PM  Page 91



In this part . . .

This is the part of the book that you’ve been waiting
for. In the next eight chapters, you find out about all

the essential elements of Excel programming. And in the
process, you see some illuminating examples that you can
adapt to your own needs.

12_046746 pt03.qxp  1/12/07  5:55 PM  Page 92



Chapter 7

Essential VBA Language Elements
In This Chapter
� Knowing when, why, and how to use comments in your code

� Using variables and constants

� Telling VBA what type of data you’re using

� Knowing why you may need to use labels in your procedures

Because VBA is a real, live programming language, it uses many elements
common to all programming languages. In this chapter, I introduce you

to several of these elements: comments, variables, constants, data types,
arrays, and a few other goodies. If you’ve programmed with other languages,
some of this material will be familiar. If you’re a programming newbie, it’s
time to roll up your sleeves and get busy.

Using Comments in Your VBA Code
A comment is the simplest type of VBA statement. Because VBA ignores these
statements, they can consist of anything you want. You can insert a comment to
remind yourself why you did something or to clarify some particularly elegant
code you wrote. Use comments liberally and extensively to describe what the
code does (which isn’t always obvious by reading the code itself). Often, code
that makes perfect sense today mystifies you tomorrow. Been there. Done that.

You begin a comment with an apostrophe (‘). VBA ignores any text that fol-
lows an apostrophe in a line of code. You can use a complete line for your
comment or insert your comment at the end of a line of code. The following
example shows a VBA procedure with three comments, although they’re not
necessarily good comments:

Sub CommentsDemo()
‘   This procedure does nothing of value

x = 0   ‘x represents nothingness
‘Display the result
MsgBox x

End Sub

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 93



The “apostrophe indicates a comment” rule has one exception: VBA doesn’t
interpret an apostrophe inside a set of quotation marks as a comment indica-
tor. For example, the following statement doesn’t contain a comment, even
though it has an apostrophe:

Msg = “Can’t continue”

When you’re writing code, you may want to test a procedure without a particu-
lar statement or group of statements. Rather than delete deleting the state-
ments, simply turn them into comments by inserting apostrophes. VBA 
ignores statements beginning with apostrophes when executing a routine.
Simply remove the apostrophes to convert the comments back to statements.

When testing a procedure, you may want to remove some statements 
temporarily. Rather than delete the statements, you can convert them to
comments. Then when testing is completed, convert the comments back to
statements. In the VBE, choose View➪Toolbars➪Edit to display the Edit tool-
bar that you see in Figure 7-1. To convert a block of statements to comments,
select the statements and click the Comment Block button. To remove the
apostrophes, select the statements and click the Uncomment Block button.

Although comments can be helpful, not all comments are created equal. 
For example, the following procedure uses lots of comments, but they add
nothing of value. The code is clear enough without the comments. 

Sub BadComments()
‘   Declare variables

Dim x As Integer
Dim y As Integer
Dim z As Integer

‘   Start the routine
x = 100 ‘ Assign 100 to x
y = 200 ‘ Assign 200 to y

‘   Add x and y and store in z
z = x + y

‘   Show the result
MsgBox z

End Sub

Figure 7-1:
The VBE

Edit toolbar
contains

several
useful

buttons.

94 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 94



Everyone develops his or her own style of commenting. To be useful, how-
ever, comments should convey information that’s not immediately obvious
from reading the code. Otherwise, comments just chew up bytes and make
files larger than necessary.

The following tips can help you make effective use of comments:

� Briefly describe the purpose of each Sub or Function procedure 
you write.

� Use comments to keep track of changes you make to a procedure.

� Use a comment to indicate that you’re using a function or a construct 
in an unusual or nonstandard manner.

� Use comments to describe the variables you use, especially if you don’t
use meaningful variable names.

� Use a comment to describe any workarounds you develop to overcome
bugs in Excel.

� Write comments as you develop code, instead of saving the task for a
final step.

Using Variables, Constants, 
and Data Types

VBA’s main purpose is to manipulate data. VBA stores the data in your 
computer’s memory; it may or may not end up on disk. Some data, such as
worksheet ranges, resides in objects. Other data is stored in variables that
you create.

Understanding variables
A variable is simply a named storage location in your computer’s memory.
You have lots of flexibility in naming your variables, so make the variable
names as descriptive as possible. You assign a value to a variable by using
the equal sign operator. (More about this later in the “Using Assignment
Statements” section.)

The variable names in these examples appear both on the left and on the
right side of the equal signs. Note that the last example uses two variables.

95Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 95



x = 1

InterestRate = 0.075

LoanPayoffAmount = 243089

DataEntered = False

x = x + 1

UserName = “Bob Johnson”

DateStarted = #3/14/2004#

MyNum = YourNum * 1.25

VBA enforces a few rules regarding variable names:

� You can use letters, numbers, and some punctuation characters, but the
first character must be a letter.

� You cannot use any spaces or periods in a variable name.

� VBA does not distinguish between uppercase and lowercase letters.

� You cannot use the following characters in a variable name: #, $, %, &, or !.

� Variable names can be no longer than 255 characters. Of course, you’re
only asking for trouble if you use variable names 255 characters long.

To make variable names more readable, programmers often use mixed case
(for example, InterestRate) or the underscore character (interest_rate).

Don’t wear yourself out typing the entire name of a variable. Just type the
first two or three characters and then hit Control+Space. The VBE will either
complete the entry for you or — if the choice is ambiguous — show you a
pick list to select from. In fact, this slick trick works with reserved words too.

VBA has many reserved words that you can’t use for variable names or pro-
cedure names. These include words such as Sub, Dim, With, End, and For. If
you attempt to use one of these words as a variable, you may get a compile
error (your code won’t run). So, if an assignment statement produces an
error message, double-check and make sure that the variable name isn’t a
reserved word.

96 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 96



What are VBA’s data types?
When I talk about data type, I’m referring to the manner in which a program
stores data in memory — for example, as integers, real numbers, or strings.
Although VBA can take care of these details automatically, it does so at a
cost. (There’s no free lunch.) Letting VBA handle your data typing results 
in slower execution and inefficient memory use. For small applications, this
usually doesn’t present much of a problem. But for large or complex applica-
tions, which may be slow or need to conserve every last byte of memory, you
need to be on familiar terms with data types.

VBA automatically handles all the data details, which makes life easier for
programmers. Not all programming languages provide this luxury. For exam-
ple, some languages are strictly typed, which means the programmer must
explicitly define the data type for every variable used.

VBA has a variety of built-in data types. Table 7-1 lists the most common
types of data that VBA can handle.

Table 7-1 VBA’s Built-in Data Types
Data Type Bytes Used Range of Values

Boolean 2 True or False

Integer 2 –32,768 to 32,767

Long 4 –2,147,483,648 to 2,147,483,647

Single 4 –3.402823E38 to 1.401298E45

Double (negative) 8 –1.79769313486232E308 to
–4.94065645841247E-324

Double (positive) 8 4.94065645841247E–324 to
1.79769313486232E308

Currency 8 –922,337,203,685,477.5808 to
922,337,203,685,477.5807

Date 8 1/1/100 to 12/31/9999

String 1 per char Varies

Object 4 Any defined object

Variant Varies Any data type

User defined Varies Varies

97Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 97



In general, choose the data type that uses the smallest number of bytes but
can still handle all the data you want to store in the variable.

Pretty often, loop counters are declared as Integers. If you use the counter in
order to loop through rows in the worksheet, your program might just error
out! Why? Integers cannot be larger than 32,767, and Excel 2007 has many
more rows. Instead, declare such loop counters as Long.

Declaring and scoping variables
If you read the previous sections, you now know a bit about variables and
data types. In this section, you discover how to declare a variable as a certain
data type.

If you don’t declare the data type for a variable you use in a VBA routine, 
VBA uses the default data type: variant. Data stored as a variant acts like a
chameleon; it changes type depending on what you do with it. For example, 
if a variable is a variant data type and contains a text string that looks like 
a number (such as “143”), you can use this variable for string manipulations 
as well as numeric calculations. VBA automatically handles the conversion,
which may seem like an easy way out — but remember that you sacrifice
speed and memory.

Before you use variables in a procedure, it’s an excellent practice to declare
your variables — that is, tell VBA each variable’s data type. Declaring your
variables makes your program run faster and use memory more efficiently.
The default data type, Variant, causes VBA to repeatedly perform time-
consuming checks and reserve more memory than necessary. If VBA knows 
a variable’s data type, it doesn’t have to investigate and can reserve just
enough memory to store the data.

To force yourself to declare all the variables you use, include the following as
the first statement in your VBA module:

Option Explicit

When this statement is present, you won’t be able to run your code if it 
contains any undeclared variable. 

You need to use Option Explicit only once: at the beginning of your module,
prior to the declaration of any procedures in the module. Keep in mind that
the Option Explicit statement applies only to the module in which it resides.
If you have more than one VBA module in a project, you need an Option
Explicit statement for each module.

98 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 98



Suppose that you use an undeclared variable (that is, a variant) named
CurrentRate. At some point in your routine, you insert the following statement:

CurentRate = .075

This misspelled variable, which is difficult to spot, will probably cause your
routine to give incorrect results. If you use Option Explicit at the beginning of
your module (and declare the CurrentRate variable), Excel generates an error
if it encounters a misspelled variation of that variable.

To ensure that the Option Explicit statement is inserted automatically when-
ever you insert a new VBA module, turn on the Require Variable Definition
option. You find it in the Editor tab of the Options dialog box (in the VBE,
choose Tools➪Options). I highly recommend doing so.

You now know the advantages of declaring variables, but how do you do this?
Before getting into the mechanics, I need to discuss two more topics: a vari-
able’s scope and a variable’s life.

Recall that a workbook can have any number of VBA modules. And a VBA
module can have any number of Sub and Function procedures. A variable’s
scope determines which modules and procedures can use the variable. Table
7-2 describes the scopes in detail.

Table 7-2 Variable’s Scope
Scope How the Variable Is Declared

Procedure only By using a Dim or a Static statement in the 
procedure that uses the variable

Module only By using a Dim statement before the first Sub or
Function statement in the module

All procedures in all modules By using a Public statement before the first Sub
or Function statement in a module

If you’re completely confused at this point, don’t despair. I discuss each of
these variables in the following sections.

Procedure-only variables
The lowest level of scope for a variable is at the procedure level. (A procedure
is either a Sub or a Function procedure.) Variables declared with this scope
can be used only in the procedure in which they are declared. When the pro-
cedure ends, the variable no longer exists (it goes to the big bit bucket in the
sky), and Excel frees up its memory. If you execute the procedure again, the
variable comes back to life, but its previous value is lost.

99Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 99



The most common way to declare a procedure-only variable is with a Dim
statement placed between a Sub statement and an End Sub statement (or
between a Function and an End Function statement). The Dim keyword is
short for dimension, which simply means you are setting aside memory for 
a particular variable. You usually place Dim statements immediately after 
the Sub or Function statement and before the procedure’s code.

The following example shows some procedure-only variables declared by
using Dim statements:

Sub MySub()
Dim x As Integer
Dim First As Long
Dim InterestRate As Single
Dim TodaysDate As Date
Dim UserName As String
Dim MyValue

‘   ... [The procedure’s code goes here] ...
End Sub

Notice that the last Dim statement in the preceding example doesn’t declare 
a data type; it declares only the variable itself. The effect is that the variable
MyValue is a Variant.

By the way, you can also declare several variables with a single Dim statement,
as in the following example:

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

Unlike some languages, VBA doesn’t allow you to declare a group of variables
to be a particular data type by separating the variables with commas. For
example, though valid, the following statement does not declare all the vari-
ables as Integers:

Dim i, j, k As Integer

In this example, only k is declared to be an Integer; the other variables are
declared to be Variants.

If you declare a variable with procedure-only scope, other procedures in 
the same module can use the same variable name, but each instance of the
variable is unique to its own procedure. In general, variables declared at the
procedure level are the most efficient because VBA frees up the memory 
they use when the procedure ends.

100 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 100



Module-only variables
Sometimes, you want a variable to be available to all procedures in a module.
If so, just declare the variable before the module’s first Sub or Function state-
ment — outside any procedures. This is done in the Declarations section, at
the beginning of your module. (This is also where the Option Explicit state-
ment, is located.) Figure 7-2 shows how you know when you are working with
the Declarations section.

As an example, suppose that you want to declare the CurrentValue variable
so that it’s available to all the procedures in your module. All you need to do
is use the Dim statement in the Declarations section:

Dim CurrentValue As Integer

With this declaration in place — and in the proper place — the CurrentValue
variable can be used from any other procedure within the module, and it
retains its value from one procedure to another.

Public variables
If you need to make a variable available to all the procedures in all your VBA
modules in a workbook, declare the variable at the module level (in the
Declarations section) by using the Public keyword. Here’s an example:

Public CurrentRate As Long

The Public keyword makes the CurrentRate variable available to any proce-
dure in the workbook — even those in other VBA modules. You must insert
this statement before the first Sub or Function statement in a module.

Figure 7-2:
Each VBA

module 
has a

Declarations
section,

which
appears

before any
Sub or

Function
procedures.

101Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 101



If you would like a variable to be available to modules in other workbooks,
you must declare the variable as Public and establish a reference to the work-
book that contains the variable declaration. Set up a reference by using the
Tools➪References command in VBE. In practice, sharing a variable across
workbooks is hardly ever done.

Static variables
Normally, when a procedure ends, all the variables are reset. Static variables are
a special case because they retain their value even when the procedure ends.
You declare a static variable at the procedure level. A static variable may be
useful if you need to track the number of times you execute a procedure. You
can declare a static variable and increment it each time you run the procedure.

As shown in the following example, you declare static variables by using the
Static keyword:

Sub MySub()
Static Counter As Integer
Dim Msg As String
Counter = Counter + 1
Msg = “Number of executions: “ & Counter
MsgBox Msg

End Sub

The code keeps track of the number of times the procedure was executed.
The value of the Counter variable is not reset when the procedure ends. 
But it is reset when you close and reopen the workbook.

Even though the value of a variable declared as Static is retained after a variable
ends, that variable is unavailable to other procedures. In the preceding MySub
procedure example, the Counter variable and its value are available only within
the MySub procedure. In other words, it’s a procedure-level variable.

Life of variables
The scope of a variable not only determines where that variable may be 
used, it also affects under which circumstances the variable is removed 
from memory.

You can purge all variables from memory by using three methods:

� Click the Reset toolbar button (the little blue square button on the
Standard toolbar in the VBE).

� Click “End” when a runtime error message shows up.

� Include an “End” statement anywhere in your code.

102 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 102



Otherwise, only procedure level variables will be removed from memory
when the macro code has completed running. Static variables, module level
variables, and global (public) variables all retain their values in between runs
of your code.

If you use module level or global level variables, make sure they have the
value you expect them to have. You never know whether one of the situations
I mentioned above may have caused your variables to loose their content!

Working with constants
A variable’s value may (and usually does) change while your procedure is
executing. That’s why they call it a variable. Sometimes, you need to refer 
to a value or string that never changes — a constant. A constant is a named
element whose value doesn’t change.

As shown in the following examples, you declare constants by using the
Const statement:

Const NumQuarters As Integer = 4

Const Rate = .0725, Period = 12

Const ModName As String = “Budget Macros”

Public Const AppName As String = “Budget Application”

Using constants in place of hard-coded values or strings is an excellent 
programming practice. For example, if your procedure needs to refer to a 
specific value (such as an interest rate) several times, it’s better to declare
the value as a constant and refer to its name rather than the value. This
makes your code more readable and easier to change; should the need for
changes arise, you have to change only one statement rather than several.

Like variables, constants have a scope. Keep these points in mind:

� To make a constant available within only a single procedure, declare the
constant after the procedure’s Sub or Function statement.

� To make a constant available to all procedures in a module, declare the
constant in the Declarations section for the module.

� To make a constant available to all modules in the workbook, use the
Public keyword and declare the constant in the Declarations section of
any module.

103Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 103



If you attempt to change the value of a constant in a VBA routine, you get an
error. This isn’t surprising because a constant is constant. Unlike a variable,
the value of a constant does not vary. If you need to change the value of a
constant, what you really need is a variable.

Excel and VBA contain many predefined constants, which you can use with-
out the need to declare them yourself. In general, you don’t need to know the
value of these constants to use them. The macro recorder usually uses con-
stants rather than actual values.

The following simple procedure uses a built-in constant (xlCalculationManual)
to change the Calculation property of the Application object. (In other words,
this changes the Excel recalculation mode to manual.)

Sub CalcManual()
Application.Calculation = xlCalculationManual

End Sub

I discovered the xlCalculationManual constant by recording a macro that
changed the calculation mode. I also could have looked in the Help system
under “Microsoft Excel Constants.” As shown in Figure 7-3, the Help system
lists all the built-in constants.

Figure 7-3:
The Help

system lists
Excel

constants.

104 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 104



The actual value of the built-in xlCalculationManual constant is –4135.
Obviously, it’s easier to use the constant’s name than to look up the value
(even if you knew where to look). By the way, the constant for changing to
automatic calculation mode is xlCalculationAutomatic; its value is –4105. As
you can see, many of the built-in constants are just arbitrary numbers that
have special meaning to VBA.

To find the actual value of a built-in constant, execute a VBA statement such
as the following:

MsgBox xlCalculationAutomatic

Working with strings
Excel can work with both numbers and text, so it should come as no surprise
that VBA has this same power. Text is often referred to as a string. You can
work with two types of strings in VBA:

� Fixed-length strings are declared with a specified number of characters.
The maximum length is 65,526 characters. As a point of reference, this
chapter contains about half that many characters.

� Variable-length strings theoretically can hold as many as two billion
characters.

Each character in a string takes one byte of storage. In addition, a variable-
length string consumes an additional 16 bytes. Therefore, if you’re striving
for efficiency, it’s better to use fixed-length strings if possible.

When declaring a string variable with a Dim statement, you can specify the
maximum length if you know it (it’s a fixed-length string) or let VBA handle it
dynamically (it’s a variable-length string). The following example declares the
MyString variable as a string with a maximum length of 50 characters. (Use
an asterisk to specify the number of characters, up to the 65,526 character
limit.) YourString is also declared as a string but its length is unspecified:

Dim MyString As String * 50
Dim YourString As String

When declaring a fixed-length string, do not use a comma in the number that
specifies the string size. In fact, never use commas when entering a numeric
value in VBA.

105Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 105



Working with dates
Another data type you may find useful is Date. You can use a string variable
to store dates, but then you won’t be able to perform date calculations. Using
the date data type gives your routines greater flexibility. For example, you
might need to calculate the number of days between two dates. This would
be impossible if you used strings to hold your dates.

A variable defined as a date uses eight bytes of storage and can hold dates
ranging from January 1, 0100 to December 31, 9999. That’s a span of nearly
10,000 years and more than enough for even the most aggressive financial
forecast. You can also use the date data type to work with time data (seeing
as VBA lacks a time data type).

These examples declare variables and constants as a date data type:

Dim Today As Date

Dim StartTime As Date

Const FirstDay As Date = #1/1/2007#

Const Noon = #12:00:00#

In VBA, place dates and times between two hash marks, as shown in the 
preceding examples.

Date variables display dates according to your system’s short date format,
and display times according to your system’s time format (either 12- or 24-
hour). The Windows Registry stores these settings and you can modify them
via the Regional and Language Options dialog box in the Windows Control
Panel. Therefore, the VBA-displayed date or time format may vary, depending
on the settings for the system on which the application is running.

Using Assignment Statements
An assignment statement is a VBA statement that assigns the result of an
expression to a variable or an object. Excel’s Help system defines the term
expression as

“. . . a combination of keywords, operators, variables, and constants that
yields a string, number, or object. An expression can be used to perform
a calculation, manipulate characters, or test data.”

I couldn’t have said it better myself.

106 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 106



Much of your work in VBA involves developing (and debugging) expressions.
If you know how to create formulas in Excel, you’ll have no trouble creating
expressions. With a worksheet formula, Excel displays the result in a cell. A
VBA expression, on the other hand, can be assigned to a variable.

Assignment statement examples
In the assignment statement examples that follow, the expressions are to the
right of the equal sign:

x = 1

x = x + 1

x = (y * 2) / (z * 2)

HouseCost = 375000

FileOpen = True

Range(“TheYear”).Value = 2007

Expressions can be as complex as you need them to be. Use the line 
continuation character (a space followed by an underscore) to make 
lengthy expressions easier to read.

Often, expressions use functions: VBA’s built-in functions, Excel’s worksheet
functions, or functions that you develop with VBA. I discuss functions in
Chapter 9.

About that equal sign
As you can see in the preceding example, VBA uses the equal sign as its
assignment operator. You’re probably accustomed to using an equal sign 
as a mathematical symbol for equality. Therefore, an assignment statement
like the following may cause you to raise your eyebrows:

z = z + 1

How can z be equal to itself plus 1? Answer: It can’t. In this case, the assign-
ment statement is increasing the value of z by 1. Just remember that an
assignment uses the equal sign as an operator, not a symbol of equality.

107Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 107



Other operators
Operators play a major role in VBA. Besides the equal sign operator (dis-
cussed in the previous section), VBA provides several other operators. Table
7-3 lists these operators, with which you are familiar from your worksheet
formulas experience.

Table 7-3 VBA’s Operators
Function Operator Symbol

Addition +

Multiplication *

Division /

Subtraction -

Exponentiation ^

String concatenation &

Integer division (the result is 
always an integer) \

Modulo arithmetic (returns the 
remainder of a division operation) Mod

The term concatenation is programmer speak for “put together.” Thus, if 
you concatenate strings, you are combining strings to make a new and
improved string.

As shown in Table 7-4, VBA also provides a full set of logical operators.
Consult the Help system for complete details.

Table 7-4 VBA’s Logical Operators
Operator What It Does

Not Performs a logical negation on an expression

And Performs a logical conjunction on two expressions

Or Performs a logical disjunction on two expressions

XoR Performs a logical exclusion on two expressions

Eqv Performs a logical equivalence on two expressions

Imp Performs a logical implication on two expressions

108 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 108



The precedence order for operators in VBA is exactly the same as in Excel
formulas. Exponentiation has the highest precedence. Multiplication and divi-
sion come next, followed by addition and subtraction. You can use parenthe-
ses to change the natural precedence order, making whatever’s sandwiched
in parentheses come before any operator. Take a look at this code:

x = 3
y = 2
z = x + 5 * y

The value of z is 13, not 16. That’s because the multiplication operation 
(5 * y) is performed first, and that result is added to x. To avoid ambiguity, 
I prefer to use parentheses even when they aren’t required. For example, I
would write that last assignment statement like this:

z = x + (5 * y)

Don’t be shy about using parentheses even if they aren’t required — 
especially if doing so makes your code easier to understand. VBA doesn’t
care if you use extra parentheses.

Working with Arrays
Most programming languages support arrays. An array is a group of variables
that have a common name; you refer to a specific variable in the array by
using the array name and an index number. For example, you may define an
array of 12 string variables to hold the names of the months of the year. If you
name the array MonthNames, you can refer to the first element of the array as
MonthNames(1), the second element as MonthNames(2), and so on.

Declaring arrays
Before you can use an array, you must declare it. You declare an array with a
Dim or a Public statement, just as you declare a regular variable. However, you
also need to specify the number of elements in the array. You do this by speci-
fying the first index number, the keyword to, and the last index number — all
inside parentheses. The following example shows how to declare an array of
100 integers:

Dim MyArray(1 to 100) As Integer

109Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 109



When you declare an array, you can choose to specify only the upper index.
VBA assumes that 0 is the lower index. Therefore, the following statements
both declare the same 101-element array:

Dim MyArray(0 to 100) As Integer

Dim MyArray(100) As Integer

If you want VBA to assume that 1 is the lower index for your arrays, simply
include the following statement in the Declarations section of your module:

Option Base 1

This statement forces VBA to use 1 as the first index number for arrays that
declare only the upper index. If this statement is present, the following state-
ments are identical, both declaring a 100-element array:

Dim MyArray(1 to 100) As Integer

Dim MyArray(100) As Integer

Multidimensional arrays
The arrays created in the previous examples are all one-dimensional arrays.
Arrays you create in VBA can have as many as 60 dimensions — although you
rarely need more than 2 or 3 dimensions in an array. The following example
declares a 100-integer array with two dimensions:

Dim MyArray(1 to 10, 1 to 10) As Integer

You can think of this array as occupying a 10-x-10 matrix. To refer to a spe-
cific element in this array, you need to specify two index numbers. The fol-
lowing example shows how you can assign a value to an element in this array:

MyArray(3, 4) = 125

This statement assigns a value to a single element in the array. If you’re think-
ing of the array in terms of a 10-x-10 matrix, this assigns 125 to the element
located in the third row and fourth column of the matrix.

You can think of a three-dimensional array as a cube. Visualizing an array of
more than three dimensions is more difficult. Sorry, I haven’t yet mastered
the fourth dimension and beyond.

110 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 110



Dynamic arrays
You can also create dynamic arrays. A dynamic array doesn’t have a preset
number of elements. Declare a dynamic array with a blank set of parentheses:

Dim MyArray() As Integer

Before you can use this array, you must use the ReDim statement to tell VBA
how many elements the array has. Usually, the number of elements in the
array is determined while your code is running. You can use the ReDim state-
ment any number of times, changing the array’s size as often as you need.
The following example demonstrates how to change the number of elements
in a dynamic array. It assumes that the NumElements variable contains a
value, which your code calculated.

ReDim MyArray(NumElements) 

When you redimension an array by using ReDim, you wipe out any values
currently stored in the array elements. You can avoid destroying the old
values by using the Preserve keyword. The following example shows how 
you can preserve an array’s values when you redimension the array:

ReDim Preserve MyArray(NumElements)

If MyArray currently has ten elements and you execute the preceding state-
ment with NumElements equaling 12, the first ten elements remain intact and
the array has room for two additional elements (up to the number contained
in the variable NumElements). If NumElements equals 7 however, the first
seven elements are retained but the remaining three elements are purged
from memory.

The topic of arrays comes up again in Chapter 10, when I discuss looping.

Using Labels
In early versions of BASIC, every line of code required a line number. For
example, if you were writing a BASIC program in the ’70s (dressed, of course,
in your bell bottoms) it may have looked something like this:

010: LET X=5
020: LET Y=3
030: LET Z=X*Y
040: PRINT Z
050: END

111Chapter 7: Essential VBA Language Elements

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 111



VBA permits the use of such line numbers and it even permits text labels. You
don’t typically use a label for each line, but you may occasionally need to use
a label. For example, insert a label if you use a GoTo statement (which I dis-
cuss in Chapter 10). A label must begin with the first nonblank character in a
line and end with a colon.

The information in this chapter becomes clearer as you read subsequent
chapters. If you want to find out more about VBA language elements, I refer
you to the VBA Help system. You can find as much detail as you need, or care
to know.

112 Part III: Programming Concepts 

13_046746 ch07.qxp  1/12/07  5:55 PM  Page 112



Chapter 8

Working with Range Objects
In This Chapter
� Finding out more about Range objects

� Understanding the various ways of referring to ranges

� Discovering some of the more useful Range object properties

� Uncovering some of the more useful Range object methods

In this chapter, I dig a bit deeper into Excel’s dungeons and take a closer
look at Range objects. Excel is all about cells and the range object is a con-

tainer for cells. Why do you need to know so much about Range objects?
Because much of the programming work you do in Excel focuses on Range
objects. You can thank me later.

A Quick Review
A Range object represents a range contained in a Worksheet object. A Range
object can be as small as a single cell (for example, B4) or as large as every
cell on a worksheet (A1:XFD1048576 or 17,179,869,184 cells).

When you refer to a Range object, the address is always surrounded by
double quotes, like this:

Range(“A1:C5”)

Or if the range has a name (created by using Formulas➪Named Cells➪Name
A Range), you can use an expression like this:

Range(“PriceList”)

Unless you tell Excel otherwise, it assumes that you’re referring to a range on
the active worksheet. If anything other than a worksheet is active (such as 
a chart sheet), the range reference fails, and your macro displays an error
message.

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 113



As shown in the following example, you can refer to a range outside the
active sheet by qualifying the range reference with a worksheet name from
the active workbook:

Worksheets(“Sheet1”).Range(“A1:C5”)

If you need to refer to a range in a different workbook (that is, any workbook
other than the active workbook), you can use a statement like this:

Workbooks(“Budget.xlsx”).Worksheets(“Sheet1”).Range(“A1:C5
”)

A Range object can consist of one or more entire rows or columns. You can
refer to an entire row (in this case, row 3) by using syntax like this:

Range(“3:3”)

You can refer to an entire column (column 4 in this example) like this:

Range(“D:D”)

To further confuse matters, you can even work with noncontiguous ranges.
(In Excel, you select noncontiguous ranges by holding down the Ctrl key
while selecting various ranges.) The following expression refers to a two-area
noncontiguous range. Notice that a comma separates the two areas.

Range(“A1:B8,D9:G16”)

Be aware that some methods and properties cause havoc with noncontigu-
ous ranges. You may have to process each area in separately by using a loop. 

Finally, recall that Range objects (like all other objects) have properties
(which you can examine and change) and methods (which perform actions
on the object).

Other Ways to Refer to a Range
The more you work with VBA, the more you realize that it’s a fairly well con-
ceived language and is usually quite logical (despite what you may be think-
ing right now). Often, VBA provides multiple ways of performing an action.
You can choose the most appropriate method for your problem. This section
discusses some of the other ways to refer to a range.

114 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 114



This chapter barely scratches the surface for the Range object’s properties
and methods. As you work with VBA, you’ll probably need to access other
properties and methods. The Help system is the best place to find out about
them, but it’s also helpful to simply record your actions and examine the
code Excel generates.

The Cells property
Rather than use the VBA Range keyword, you can refer to a range via the
Cells property.

Notice that I wrote Cells property, not Cells object or even Cells Collection.
Although Cells may seem like an object (or a collection), it’s really not.
Rather, Cells is a property that VBA evaluates; VBA then returns an object
(more specifically, a Range object). If this seems strange, don’t worry. Even
Microsoft appears to be confused about this issue. In some earlier versions of
Excel, the Cells property was known as the Cells method. Regardless of what
it is, just understand that Cells is a handy way to refer to a range.

The Cells property takes two arguments: row and column. For example, the
following expression refers to cell C2 on Sheet2:

Worksheets(“Sheet2”).Cells(2, 3)

You can also use the Cells property to refer to a multicell range. The following
example demonstrates the syntax you use:

Range(Cells(1, 1), Cells(10, 10))

This expression refers to a 100-cell range that extends from cell A1 (row 1,
column 1) to cell J10 (row 10, column 10).

The following statements both produce the same result; they enter a value of
99 into a 10-by-10 range of cells. More specifically, these statements set the
Value property of the Range object:

Range(“A1:J10”).Value = 99
Range(Cells(1, 1), Cells(10, 10)).Value = 99

The advantage of using the Cells method to refer to ranges becomes apparent
when you use variables rather than actual numbers as the Cells arguments.
And things really start to click when you understand looping, which I cover in
Chapter 10.

115Chapter 8: Working with Range Objects

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 115



The Offset property
The Offset property provides another handy means for referring to ranges.
This property, which operates on a Range object and returns another Range
object, lets you refer to a cell that is a particular number of rows and
columns away from another cell.

Like the Cells property, the Offset property takes two arguments. The first
argument represents the number of rows to offset; the second represents the
number of columns to offset.

The following expression refers to a cell one row below cell A1 and two
columns to the right of cell A1. In other words, this refers to the cell com-
monly known as C2:

Range(“A1”).Offset(1, 2)

The Offset method can also use negative arguments. A negative row offset
refers to a row above the range. A negative column offset refers to a column
to the left of the range. The following example refers to cell A1:

Range(“C2”).Offset(-1, -2)

And, as you may expect, you can use 0 as one or both of the arguments for
Offset. The following expression refers to cell A1:

Range(“A1”).Offset(0, 0)

The Offset method is most useful when you use variables rather than actual
values for the arguments. In Chapter 10, I present some examples that
demonstrate this.

Referring to entire columns and rows
If you need to refer to a range that consists of one or more entire columns,
you can use an expression like the following:

Columns(“A:C”)

And to refer to one or more complete rows, use an expression like this:

Rows(“1:5”)

116 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 116



Some Useful Range Object Properties
A Range object has dozens of properties. You can write Excel programs non-
stop for the next 40 years and never use them all. In this section, I briefly
describe some of the more commonly used Range properties. For complete
details, consult the Help system in the VBE.

Some Range properties are read-only properties, which means that you can
look at their values, but you can’t change them. For example, every Range
object has an Address property (which holds the range’s address). You can
access this read-only property, but you can’t change it.

The examples that follow are typically statements rather than complete pro-
cedures. If you’d like to try any of these (which you should), create a Sub pro-
cedure to do so. Also, many of these statements work properly only if a
worksheet is the active sheet.

The Value property
The Value property represents the value contained in a cell. It’s a read-write
property, so your VBA code can either read or change the value.

The following statement displays a message box that shows the value in cell
A1 on Sheet1:

MsgBox Worksheets(“Sheet1”).Range(“A1”).Value

It stands to reason that you would read the Value property only for a single-
cell Range object. For example, the following statement generates an error:

MsgBox Worksheets(“Sheet1”).Range(“A1:C3”).Value

You can, however, change the Value property for a range of any size. The fol-
lowing statement enters the number 123 into each cell in a range:

Worksheets(“Sheet1”).Range(“A1:C3”).Value = 123

Value is the default property for a Range object. In other words, if you omit a
property for a Range, Excel uses its Value property. The following statements
both enter a value of 75 into cell A1 on Sheet1:

Worksheets(“Sheet1”).Range(“A1”).Value = 75
Worksheets(“Sheet1”).Range(“A1”) = 75

117Chapter 8: Working with Range Objects

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 117



The Text property
The Text property returns a string that represents the text as displayed in a
cell — the formatted value. The Text property is read-only. For example, sup-
pose that cell A1 contains the value 12.3 and is formatted to display two deci-
mals and a dollar sign ($12.30). The following statement displays a message
box containing $12.30:

MsgBox Worksheets(“Sheet1”).Range(“A1”).Text

But the next statement displays a message box containing 12.3:

MsgBox Worksheets(“Sheet1”).Range(“A1”).Value

The Count property
The Count property returns the number of cells in a range (all cells, not just
the nonblank cells). It’s a read-only property. The following statement accesses
a range’s Count property and displays the result (9) in a message box:

MsgBox Range(“A1:C3”).Count

The Column and Row properties
The Column property returns the column number of a single-cell range; the
Row property returns the row number of a single-cell range. Both are read-
only properties. For example, the following statement displays 6 because the
cell is in the sixth column:

MsgBox Sheets(“Sheet1”).Range(“F3”).Column

The next expression displays 3 because cell F3 is in the third row:

MsgBox Sheets(“Sheet1”).Range(“F3”).Row

If the Range object consists of more than one cell, the Column property
returns the column number of the first column in the range, and the Row
property returns the row number of the first row in the range.

Don’t confuse the Column and Row properties with the Columns and Rows
properties (discussed earlier in this chapter). The Column and Row proper-
ties return a single value. Columns and Rows properties return a Range
object.

118 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 118



The Address property
Address, a read-only property, displays the cell address for a Range object 
in absolute notation (a dollar sign before the column letter and before the
row number). The following statement displays the message box shown in
Figure 8-1.

MsgBox Range(Cells(1, 1), Cells(5, 5)).Address

The HasFormula property
The HasFormula property (which is read-only) returns True if the single-cell-
range contains a formula. It returns False if the cell does not have a formula.
If the range consists of more than one cell, VBA returns True only if all cells
in the range contain a formula, or False if all cells in the range don’t have a
formula. The property returns a Null if there is a mixture of formulas and 
nonformulas.

Be careful with the type of variables you use to maintain the results returned
by the HasFormula property. When working with any property that returns a
Null, it is easy to generate errors by using the wrong data types.

For example, assume that cell A1 contains a value and cell A2 contains a for-
mula. The following statements generate an error because the range doesn’t
consist of all formulas or all nonformulas:

Dim FormulaTest As Boolean
FormulaTest = Range(“A1:A2”).HasFormula

To fix this type of situation, the best thing to do is simply make sure that the
FormulaTest variable is declared as a variant rather than as a Boolean. The
following example uses VBA’s handy TypeName function (along with an If-Then
statement) to determine the data type of the FormulaTest variable. If the

Figure 8-1:
This

message
box displays
the Address

property of
a 1-by-5

range.

119Chapter 8: Working with Range Objects

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 119



range has a mixture of formulas and nonformulas, the message box displays
Mixed!

Dim FormulaTest As Variant
FormulaTest = Range(“A1:A2”).HasFormula
If TypeName(FormulaTest) = “Null” Then MsgBox “Mixed!”

The Font property
As I note earlier in this chapter (see “The Cells property”), a property can
return an object. Here’s another example: A Range object’s Font property
returns a Font object.

A Font object, as you may expect, has many accessible properties. To change
some aspect of a range’s font, you must first access the range’s Font object
and then manipulate the properties of that object. This may be confusing at
first but it eventually makes sense.

The following expression returns a Font object for a range:

Range(“A1”).Font

The following statement sets to True the Bold property of the Font object
contained in the Range object. In plain English, this makes the cell display in
boldface:

Range(“A1”).Font.Bold = True

To see other examples of manipulating font objects, record your actions
while you modify some of a range’s font attributes. See Chapter 6 for more
information about recording macros.

The Interior property
Here’s another example of a property that returns an object. A Range object’s
Interior property returns an Interior object (strange name, but that’s what it’s
called). This type of object referencing works the same way as the Font prop-
erty (which I describe in the preceding section).

For example, the following statement changes the Color property of the
Interior object contained in the Range object:

Range(“A1”).Interior.Color = 8421504

In other words, this statement changes the cell’s background to middle gray.

120 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 120



The Color property values range from 0 to 16777215. Another way to specify
colors is to use VBA’s RGB function. This function takes three arguments,
which correspond to the color’s red, green, and blue components. Each of
these arguments can range from 0 to 255. Following are a few examples that
use the RGB function to change a cell’s background color:

Range(“A1”).Interior.Color = RGB(0, 0, 0) ‘black
Range(“A1”).Interior.Color = RGB(255, 0, 0) ‘ pure red
Range(“A1”).Interior.Color = RGB(0, 0, 255) ‘ pure blue
Range(“A1”).Interior.Color = RGB(128, 128, 128) ‘ middle

gray

If you need to use standard colors, you may prefer to use one of the built-in
color constants: vbBlack, vbRed, vbGreen, vbYellow, vbBlue, vbMagenta,
vbCyan, or vbWhite. For example, the following statement makes cell A1
yellow:

Range(“A1”).Interior.Color = vbYellow

Previous versions of Excel supported only 56 different colors for cells. Excel
2007 supports more than 16 million colors, and also has a new feature known
as Themes. Applying a new theme to a workbook can change the colors. Bottom
line? Working with colors has become a lot more confusing. But some of us
think it’s fun.

The Formula property
The Formula property represents the formula in a cell. This is a read-write
property, so you can access it to insert a formula into a cell. For example, the
following statement enters a SUM formula into cell A13:

Range(“A13”).Formula = “=SUM(A1:A12)”

Notice that the formula is a text string and is enclosed in quotation marks.
You can access a cell’s Formula property even if the cell doesn’t have a for-
mula. If you are using the Formula property to determine the formula already
in a cell and the cell doesn’t have a formula, the Formula property returns the
cell’s Value property. You can also use the HasFormula property to determine
if a cell contains a formula.

The NumberFormat property
The NumberFormat property represents the number format (expressed as a
text string) of the Range object. This is a read-write property, so your VBA

121Chapter 8: Working with Range Objects

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 121



code can change the number format. The following statement changes the
number format of column A to percent with two decimal places:

Columns(“A:A”).NumberFormat = “0.00%”

Follow these steps to see a list of other number formats. Better yet, turn on
the macro recorder while you do this:

1. Activate a worksheet. 

2. Access the Format Cells dialog box by pressing Ctrl+1. 

3. Click the Number tab. 

4. Select the Custom category to view and apply some additional
number format strings.

Some Useful Range Object Methods
As you know, a VBA method performs an action. A Range object has dozens
of methods but, again, you won’t need most of these. In this section, I point
out some of the more commonly used Range object methods.

The Select method
Use the Select method to select a range of cells. The following statement
selects a range on the active worksheet:

Range(“A1:C12”).Select

Before selecting a range, make sure that you’ve activated the range’s work-
sheet; otherwise, you get an error or the wrong range is selected. For exam-
ple, if Sheet1 contains the range you want to select, use the following
statements to select the range:

Sheets(“Sheet1”).Activate
Range(“A1:C12”).Select

Contrary to what you may expect, the following statement generates an error.
In other words, you must use two statements rather than just one: one to
activate the sheet and another to select the range.

Sheets(“Sheet1”).Range(“A1:C12”).Select ‘Error when Sheet1
is not active

122 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 122



If you use GoTo method of the Application object to select a range, you can
forget about selecting the right workbook/worksheet first:

Application.Goto Sheets(“Sheet1”).Range(“A1:C12”)

The Copy and Paste methods
You can perform copy and paste operations in VBA by using the Copy and
Paste methods. The Copy method is applicable to the Range object, but the
Paste method is applicable to the Worksheet object. This short macro copies
range A1:A12 and pastes it to the range beginning at cell C1:

Sub CopyRange()
Range(“A1:A12”).Select
Selection.Copy
Range(“C1”).Select
ActiveSheet.Paste

End Sub

Notice that in the preceding example, which the macro recorder generated,
the ActiveSheet object is used with the Paste method. This is a special ver-
sion of the Worksheet object that refers to the currently active worksheet.
Also notice that the macro selects the range before copying it. However, you
don’t have to select a range before doing something with it. In fact, the fol-
lowing procedure accomplishes the same task as the preceding example by
using a single statement:

Sub CopyRange2()
Range(“A1:A12”).Copy Range(“C1”)

End Sub

This procedure takes advantage of the fact that the Copy method can use an
argument that corresponds to the destination range for the copy operation.

The Clear method
The Clear method deletes the contents of a range and all the cell formatting.
For example, if you want to zap everything in column D, the following state-
ment does the trick:

Columns(“D:D”).Clear

You should be aware of two related methods. The ClearContents method deletes
the contents of the range but leaves the formatting intact. The ClearFormats
method deletes the formatting in the range but not the cell contents.

123Chapter 8: Working with Range Objects

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 123



The Delete method
Clearing a range differs from deleting a range. When you delete a range, Excel
shifts the remaining cells around to fill up the range you deleted.

The following example uses the Delete method to delete row 6:

Rows(“6:6”).Delete

When you delete a range that’s not a complete row or column, Excel needs to
know how to shift the cells. (To see how this works, experiment with the
Excel Home➪Cells➪Delete command.)

The following statement deletes a range and then fills the resulting gap by
shifting the other cells to the left:

Range(“C6:C10”).Delete xlToLeft

The Delete method uses an argument that indicates how Excel should shift
the remaining cells. In this case, I use a built-in constant (xlToLeft) for the
argument. I could also use xlUp, another named constant.

124 Part III: Programming Concepts 

14_046746 ch08.qxp  1/12/07  5:56 PM  Page 124



Chapter 9

Using VBA and Worksheet
Functions

In This Chapter
� Using functions to make your VBA expressions more powerful

� Using the VBA built-in functions

� Using Excel worksheet functions in your VBA code

� Writing custom functions

In previous chapters, I allude to the fact that you can use functions in your
VBA expressions. There are two flavors of functions: those built in to VBA

and those built in to Excel. I provide a full explanation in this chapter. Functions
can make your VBA code perform some powerful feats, with little or no pro-
gramming effort required. If you like that idea, this chapter’s for you.

What Is a Function?
All Excel users beyond rank beginners use worksheet functions in their for-
mulas. The most common worksheet function is the SUM function, and you
have hundreds of others at your disposal.

A function essentially performs a calculation and returns a single value. The
SUM function, of course, returns the sum of a range of values. The same
holds true for functions used in your VBA expressions: Each function does its
thing and returns a single value.

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 125



The functions you use in VBA can come from three sources:

� Built-in functions provided by VBA

� Worksheet functions provided by Excel

� Custom functions that you (or someone else) write, using VBA

The rest of this chapter clarifies the differences and (I hope) convinces you
of the value of using functions in your VBA code.

Using Built-in VBA Functions
VBA provides numerous built-in functions. Some of these functions take argu-
ments and some do not.

VBA function examples
In this section, I present a few examples of using VBA functions in code. In
many of these examples, I use the MsgBox function to display a value in a
message box. Yes, MsgBox is a VBA function — a rather unusual one, but a
function nonetheless. This useful function displays a message in a pop-up
dialog box. For more details about the MsgBox function, see Chapter 15.

A workbook that contains all the examples is available at this book’s Web site.

Displaying the system date
The first example uses VBA’s Date function to display the current system date
in a message box:

Sub ShowDate()
MsgBox Date

End Sub

Notice that the Date function doesn’t use an argument. Unlike worksheet
functions, a VBA function with no argument doesn’t require an empty set of
parentheses. In fact, if you provide an empty set of parentheses, the VBE will
remove them.

To get the system date and time, use the Now function rather than the Date
function. Or to get only the time, use the Time function.

Finding a string length 
The following procedure uses the VBA Len function, which returns the length
of a string. The Len function takes one argument: the string. When you execute

126 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 126



this procedure, the message box displays 11 because the argument has 11
characters.

Sub GetLength()
Dim MyString As String
Dim StringLength As Integer
MyString = “Hello World”
StringLength = Len(MyString)
MsgBox StringLength

End Sub

Excel also has a Len function, which you can use in your worksheet formulas.
The Excel version and the VBA function work the same.

Displaying the integer part of a number
The following procedure uses the Fix function, which returns the integer por-
tion of a value — the value without any decimal digits:

Sub GetIntegerPart()
Dim MyValue As Double
Dim IntValue As Integer
MyValue = 123.456
IntValue = Fix(MyValue)
MsgBox IntValue

End Sub

In this case, the message box displays 123.

VBA has a similar function called Int. The difference between Int and Fix is
how each deals with negative numbers. 

� Int returns the first negative integer that’s less than or equal to the argu-
ment (-123.456 turns into -124). 

� Fix returns the first negative integer that’s greater than or equal to the
argument (-123.456 turns into -123). 

Determining a file size 
The following Sub procedure displays the size, in bytes, of the Excel exe-
cutable file. It finds this value by using the FileLen function.

Sub GetFileSize()
Dim TheFile As String
TheFile = “c:\MSOFFICE\EXCEL\EXCEL.EXE”
MsgBox FileLen(TheFile)

End Sub

Notice that this routine hard codes the filename (that is, it explicitly states the
path). Generally, this isn’t a good idea. The file might not be on the C drive, or

127Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 127



the Excel folder may have a different name. The following statement shows a
better approach:

TheFile = Application.Path & “\EXCEL.EXE”

Path is a property of the Application object. It simply returns the name of the
folder in which the application (that is, Excel) is installed (without a trailing
backslash).

Identifying the type of a selected object
The following procedure uses the TypeName function, which returns the type
of the selected object (as a string):

Sub ShowSelectionType()
Dim SelType As String
SelType = TypeName(Selection)
MsgBox SelType

End Sub

This could be a Range, a Picture, a Rectangle, a ChartArea, or any other type
of object that can be selected.

The TypeName function is very versatile. You can also use this function to
determine the data type of a variable.

VBA functions that do more 
than return a value
A few VBA functions go above and beyond the call of duty. Rather than simply
return a value, these functions have some useful side effects. Table 9-1 lists
them.

Table 9-1 Functions with Useful Side Benefits
Function What It Does

MsgBox Displays a handy dialog box containing a message and
buttons. The function returns a code that identifies
which button the user clicks. See Chapter 15 for details.

InputBox Displays a simple dialog box that asks the user for some
input. The function returns whatever the user enters into
the dialog box. I discuss this in Chapter 15.

Shell Executes another program. The function returns the task
ID (a unique identifier) of the other program (or an error
if the function can’t start the other program).

128 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 128



Discovering VBA functions
How do you find out which functions VBA provides? Good question. The best
source is the Excel Visual Basic Help system. I compiled a partial list of func-
tions, which I share with you in Table 9-2. I omitted some of the more special-
ized or obscure functions.

For complete details on a particular function, type the function name into a
VBA module, move the cursor anywhere in the text, and press F1.

Table 9-2 VBA’s Most Useful Built-in Functions
Function What It Does

Abs Returns a number’s absolute value 

Array Returns a variant containing an array

Asc Converts the first character of a string to its ASCII value

Atn Returns the arctangent of a number

Choose Returns a value from a list of items

Chr Converts an ANSI value to a string

Cos Returns a number’s cosine 

CurDir Returns the current path

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been 
added — for example, one month from a particular date

DateDiff Returns an integer showing the number of specified time
intervals between two dates, — for example, the number
of months between now and your birthday 

DatePart Returns an integer containing the specified part of a given 
date — for example, a date’s day of the year 

DateSerial Converts a date to a serial number

DateValue Converts a string to a date

Day Returns the day of the month from a date value

Dir Returns the name of a file or directory that matches 
a pattern

(continued)

129Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 129



Table 9-2 (continued)
Function What It Does

Erl Returns the line number that caused an error

Err Returns the error number of an error condition

Error Returns the error message that corresponds to an 
error number

Exp Returns the base of the natural logarithm (e) raised to 
a power

FileLen Returns the number of bytes in a file

Fix Returns a number’s integer portion 

Format Displays an expression in a particular format

GetSetting Returns a value from the Windows registry

Hex Converts from decimal to hexadecimal

Hour Returns the hours portion of a time

InputBox Displays a box to prompt a user for input

InStr Returns the position of a string within another string

Int Returns the integer portion of a number

IPmt Returns the interest payment for an annuity or loan

IsArray Returns True if a variable is an array

IsDate Returns True if an expression is a date

IsEmpty Returns True if a variable has not been initialized

IsError Returns True if an expression is an error value

IsMissing Returns True if an optional argument was not passed to 
a procedure

IsNull Returns True if an expression contains no valid data

IsNumeric Returns True if an expression can be evaluated as 
a number

IsObject Returns True if an expression references an OLE
Automation object

LBound Returns the smallest subscript for a dimension of an array

LCase Returns a string converted to lowercase

130 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 130



Function What It Does

Left Returns a specified number of characters from the left of
a string

Len Returns the number of characters in a string

Log Returns the natural logarithm of a number to base e

LTrim Returns a copy of a string, with any leading spaces
removed

Mid Returns a specified number of characters from a string

Minute Returns the minutes portion of a time value

Month Returns the month from a date value

MsgBox Displays a message box and (optionally) returns a value

Now Returns the current system date and time

RGB Returns a numeric RGB value representing a color

Replace Replaces a substring in a string with another substring

Right Returns a specified number of characters from the right of
a string

Rnd Returns a random number between 0 and 1

RTrim Returns a copy of a string, with any trailing spaces
removed

Second Returns the seconds portion of a time value

Sgn Returns an integer that indicates a number’s sign 

Shell Runs an executable program

Sin Returns a number’s sine 

Space Returns a string with a specified number of spaces

Split Splits a string into parts, using a delimiting character

Sqr Returns a number’s square root 

Str Returns a string representation of a number

StrComp Returns a value indicating the result of a string 
comparison

String Returns a repeating character or string

(continued)

131Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 131



Table 9-2 (continued)
Function What It Does

Tan Returns a number’s tangent 

Time Returns the current system time

Timer Returns the number of seconds since midnight

TimeSerial Returns the time for a specified hour, minute, and second

TimeValue Converts a string to a time serial number

Trim Returns a string without leading or trailing spaces

TypeName Returns a string that describes a variable’s data type 

UBound Returns the largest available subscript for an array’s
dimension 

UCase Converts a string to uppercase

Val Returns the numbers contained in a string

VarType Returns a value indicating a variable’s subtype 

Weekday Returns a number representing a day of the week

Year Returns the year from a date value

Using Worksheet Functions in VBA
Although VBA offers a decent assortment of built-in functions, you might not
always find exactly what you need. Fortunately, you can also use most of Excel’s
worksheet functions in your VBA procedures. The only worksheet functions
that you cannot use are those that have an equivalent VBA function.

VBA makes Excel’s worksheet functions available through the
WorksheetFunction object, which is contained in the Application object.
(Remember, the Application object is Excel.) Therefore, any statement that
uses a worksheet function must use the Application.WorksheetFunction qual-
ifier. In other words, you must precede the function name with Application.
WorksheetFunction (with a dot separating the two). The following is an
example:

Total = Application.WorksheetFunction.Sum(Range(“A1:A12”))

132 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 132



You can omit the Application part of the expression because it’s assumed.
You can also omit the WorksheetFunction part of the expression; VBA will
determine that you want to use an Excel worksheet function. But if you do so,
then you must include the Application part. In other words, these three
expressions all work exactly the same:

Total = Application.WorksheetFunction.Sum(Range(“A1:A12”))
Total = WorksheetFunction.Sum(Range(“A1:A12”))
Total = Application.Sum(Range(“A1:A12”))

My personal preference is to use the WorksheetFunction part just to make it
perfectly clear that the code is using an Excel function.

Worksheet function examples
In this section, I demonstrate how to use worksheet functions in your VBA
expressions.

Finding the maximum value in a range
Here’s an example showing how to use the MAX worksheet function in a VBA
procedure. This procedure displays the maximum value in the range named
NumberList on the active worksheet:

Sub ShowMax()
Dim TheMax As Double
TheMax = WorksheetFunction.Max(Range(“NumberList”))
MsgBox TheMax

End Sub

You can use the MIN function to get the smallest value in a range. And, as you
might expect, you can use other worksheet functions in a similar manner. For
example, you can use the LARGE function to determine the kth-largest value
in a range. The following expression demonstrates this:

SecondHighest = WorksheetFunction. _
Large(Range(“NumberList”),2)

Notice that the LARGE function uses two arguments; the second argument
represents the kth part — 2 in this case (the second-largest value).

Calculating a mortgage payment
The next example uses the PMT worksheet function to calculate a mortgage
payment. I use three variables to store the data that’s passed to the Pmt func-
tion as arguments. A message box displays the calculated payment.

133Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 133



Sub PmtCalc()
Dim IntRate As Double
Dim LoanAmt As Double
Dim Periods As Integer
IntRate = 0.0825 / 12
Periods = 30 * 12
LoanAmt = 150000
MsgBox WorksheetFunction.Pmt(IntRate, Periods, -

LoanAmt)
End Sub

As the following statement shows, you can also insert the values directly as
the function arguments:

MsgBox WorksheetFunction.Pmt(0.0825 /12, 360, -150000)

However, using variables to store the parameters makes the code easier to
read and modify, if necessary.

Using a lookup function
The following example uses the simple lookup table shown in Figure 9-1.
Range A1:B13 is named PriceList.

Sub GetPrice()
Dim PartNum As Variant
Dim Price As Double
PartNum = InputBox(“Enter the Part Number”)
Sheets(“Prices”).Activate
Price = WorksheetFunction. _

VLookup(PartNum, Range(“PriceList”), 2, False)
MsgBox PartNum & “ costs “ & Price

End Sub

You can download this workbook from the book’s Web site.

The procedure starts this way:

1. VBA’s InputBox function asks the user for a part number. 

Figure 9-2 shows the Microsoft Excel dialog box that displays when this
statement is executed. 

2. This statement assigns the part number the user enters for the PartNum
variable. 

3. The next statement activates the Prices worksheet, just in case it’s not
already the active sheet.

134 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 134



4. The code uses the VLOOKUP function to find the part number in the
table. 

Notice that the arguments you use in this statement are the same as
those you would use with the function in a worksheet formula. This
statement assigns the result of the function to the Price variable. 

5. The code displays the price for the part via the MsgBox function.

Figure 9-2:
Use the

InputBox
function to

get the
user’s input.

Figure 9-1:
The range,

named
PriceList,
contains

prices for
parts.

135Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 135



This procedure doesn’t have any error handling, and it fails miserably if you
enter a nonexistent part number. (Try it.) Add some error-handling state-
ments for a more robust procedure. I discuss error handling in Chapter 12.

Entering worksheet functions
You can’t use the Excel Paste Function dialog box to insert a worksheet func-
tion into a VBA module. Instead, enter such functions the old-fashioned way:
by hand. However, you can use the Paste Function dialog box to identify the
function you want to use and find out about its arguments. 

1. Activate a worksheet. 

2. Choose Formulas➪Function Library➪Function Wizard (or select one
in that chunk of the Ribbon) as you normally would. 

3. Figure out how the function works. 

4. Type the function and its arguments into your module.

Follow these steps to display the VBE’s Auto List Members option, which dis-
plays a drop-down list of all worksheet functions: 

1. Type Application.WorksheetFunction, followed by a period. 

2. If this feature isn’t working, choose the VBE’s Tools➪Options 
command.

3. Click the Editor tab.

4. Place a check mark next to Auto List Members.

More about Using Worksheet Functions
Newcomers to VBA often confuse VBA’s built-in functions and Excel’s work-
book functions. A good rule to remember is that VBA doesn’t try to reinvent
the wheel. For the most part, VBA doesn’t duplicate Excel worksheet functions.

Bottom line? If you need to use a function, first determine whether VBA has
something that meets your needs. If not, check out the worksheet functions.
If all else fails, you may be able to write a custom function by using VBA.

The WorksheetFunction object contains the worksheet functions available to
VBA procedures. To see a list of these functions, you can use the Object

136 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 136



Browser, as shown in Figure 9-3. Follow these steps to display a complete list
of worksheet functions available in VBA:

1. In the VBE, press F2.

The Object Browser appears.

2. In the Project/Library drop-down list (the one in the upper-left corner
of the Object Browser), select Excel.

3. In the list labeled Classes, select WorksheetFunction.

The ‘Members of’ list shows all the worksheet functions you can use in
your code.

For most worksheet functions that are unavailable as methods of the Applica-
tion object, you can use an equivalent VBA built-in operator or function. For
example, the MOD worksheet function is unavailable in the WorksheetFunction
object because VBA has an equivalent, built-in Mod operator. This is by
design — a VBA operator works faster than an Excel function in a VBA
module. 

Using Custom Functions
I’ve covered VBA functions and Excel worksheet functions. The third category
of functions you can use in your VBA procedures is custom functions. A custom

Figure 9-3:
Use the
Object

Browser to
show the

worksheet
function

available in
VBA.

137Chapter 9: Using VBA and Worksheet Functions

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 137



function (also known as User Defined Function, UDF) is one you develop your-
self by using (what else?) VBA. To use a custom function, you must define it
in the workbook in which you use it.

Here’s an example of defining a simple Function procedure and then using it
in a VBA Sub procedure:

Function MultiplyTwo(num1, num2)
MultiplyTwo = num1 * num2

End Function

Sub ShowResult()
Dim n1 As Double, n2 As Double
Dim Result As Double
n1 = 123
n2 = 544
Result = MultiplyTwo(n1, n2)
MsgBox Result

End Sub

The custom function MultiplyTwo has two arguments. The ShowResult Sub
procedure uses this Function procedure by passing two arguments to it (in
parentheses). The ShowResult procedure then displays a message box show-
ing the value returned by the MultiplyTwo function.

The MultiplyTwo function is fairly useless. It’s much more efficient to perform
the multiplication in the ShowResult Sub procedure. I include it simply to
give you an idea of how a Sub procedure can make use of a custom function.

You can also use custom functions in your worksheet formulas. For example,
if MultiplyTwo is defined in your workbook, you can write a formula such as
this one:

=MultiplyTwo(A1,A2)

This formula returns the product of the values in cells A1 and A2.

Custom worksheet functions is an important (and very useful) topic. So
important (and useful) that I devote an entire chapter to it. See Chapter 20.

138 Part III: Programming Concepts 

15_046746 ch09.qxp  1/12/07  5:56 PM  Page 138



Chapter 10

Controlling Program Flow and
Making Decisions

In This Chapter
� Discovering methods for controlling the flow of your VBA routines 

� Finding out about the dreaded GoTo statement

� Using If-Then and Select Case structures

� Performing looping in your procedures

Some VBA procedures start at the code’s beginning and progress line by
line to the end, never deviating from this top-to-bottom program flow.

Macros that you record always work like this. In many cases, however, you
need to control the flow of your code by skipping over some statements, exe-
cuting some statements multiple times, and testing conditions to determine
what the procedure does next. Ready or not, you find out how to do all that
stuff in this chapter.

Going with the Flow, Dude
Some programming newbies can’t understand how a dumb computer can
make intelligent decisions. The secret is in several programming constructs
that most programming languages support. Table 10-1 provides a quick sum-
mary of these constructs. (I explain all of these later in this chapter.)

Table 10-1 Programming Constructs for Making Decisions
Construct How It Works

GoTo statement Jumps to a particular statement

If-Then structure Does something if something else is true

(continued)

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 139



Table 10-1 (continued)
Construct How It Works

Select Case Does any of several things, depending on something’s value

For-Next loop Executes a series of statements a specified number of times

Do-While loop Does something as long as something else remains true

Do-Until loop Does something until something else becomes true

The GoTo Statement
A GoTo statement offers the most straightforward means for changing a pro-
gram’s flow. The GoTo statement simply transfers program control to a new
statement, which is preceded by a label.

Your VBA routines can contain as many labels as you like. A label is just a
text string followed by a colon. (See Chapter 7 for more label information.)

The following procedure shows how a GoTo statement works:

Sub GoToDemo()
UserName = InputBox(“Enter Your Name: “)
If UserName <> “Bill Gates” Then GoTo WrongName
MsgBox (“Welcome Bill...”)

‘   ...[More code here] ...
Exit Sub

WrongName:
MsgBox “Sorry. Only Bill Gates can run this.”

End Sub

The procedure uses the InputBox function to get the user’s name. If the user
enters a name other than Bill Gates, the program flow jumps to the WrongName
label, displays an apologetic message, and the procedure ends. On the other
hand, if Mr. Gates signs on, the procedure displays a welcome message and
then executes some additional code (not shown in the example). The Exit
Sub statement ends the procedure before the second MsgBox function has a
chance to work.

This simple routine works, but VBA provides several better (and more struc-
tured) alternatives than GoTo. In general, you should use GoTo only when
you have no other way to perform an action. In practice, the only time you
really need to use a GoTo statement is for trapping errors. (I cover this in
Chapter 12.)

140 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 140



Many hard-core programming types have a deep-seated hatred for GoTo state-
ments because using them tends to result in difficult-to-read “spaghetti code.”
Therefore, you should avoid this subject when talking with other programmers.

Decisions, decisions
In this section, I discuss two programming structures that can empower your
VBA procedures with some impressive decision-making capabilities: If-Then
and Select Case.

The If-Then structure
Okay, I’ll say it: If-Then is VBA’s most important control structure. You’ll prob-
ably use this command on a daily basis (at least I do). As in many other aspects
of life, effective decision making is the key to success in writing programs. If
this book has the effect I intend, you’ll soon share my philosophy that a suc-
cessful Excel application boils down to making decisions and acting upon them.

141Chapter 10: Controlling Program Flow and Making Decisions

What is structured programming? Does it matter?
If you hang around with programmers, sooner
or later you hear the term structured program-
ming. This term has been around for decades,
and programmers generally agree that struc-
tured programs are superior to unstructured
programs. So, what is structured programming?
And can you do that using VBA?

The basic premise of structured programming
is that a routine or code segment should have
only one entry point and one exit point. In other
words, a block of code should be a stand-alone
unit. A program cannot jump into the middle of
this unit, nor can it exit at any point except the
single exit point. When you write structured
code, your program progresses in an orderly

manner and is easy to follow — unlike a program
that jumps around in a haphazard fashion. This
pretty much rules out using the GoTo statement.

In general, a structured program is easier to
read and understand. More important, it’s also
easier to modify when the need arises.

VBA is indeed a structured language. It offers
standard structured constructs such as If-Then-
Else, For-Next loops, Do-Until loops, Do-While
loops, and Select Case structures. Furthermore,
it fully supports module code constructions. If
you’re new to programming, you should try to
develop good structure programming habits
early on. End of lecture.

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 141



The If-Then structure has this basic syntax:

If condition Then statements [Else elsestatements]

Use the If-Then structure when you want to execute one or more statements
conditionally. The optional Else clause, if included, lets you execute one or
more statements if the condition you’re testing is not true. Sound confusing?
Don’t worry; a few examples make this crystal clear.

If-Then examples
The following routine demonstrates the If-Then structure without the
optional Else clause:

Sub GreetMe()
If Time < 0.5 Then MsgBox “Good Morning”

End Sub

The GreetMe procedure uses VBA’s Time function to get the system time. If
the current system time is less than .5 (in other words, before noon), the rou-
tine displays a message. If Time is greater than or equal to .5, the routine
ends and nothing happens.

To display a different greeting if Time is greater than or equal to .5, add
another If-Then statement after the first one:

Sub GreetMe()
If Time < 0.5 Then MsgBox “Good Morning”
If Time >= 0.5 Then MsgBox “Good Afternoon”

End Sub

Notice that I used >= (greater than or equal to) for the second If-Then state-
ment. This covers the extremely remote chance that the time is precisely
12:00 p.m.

An If-Then-Else example
Another approach to the preceding problem uses the Else clause. Here’s the
same routine recoded to use the If-Then-Else structure:

Sub GreetMe()
If Time < 0.5 Then MsgBox “Good Morning” Else _
MsgBox “Good Afternoon”

End Sub

Notice that I use the line continuation character (underscore) in the preced-
ing example. The If-Then-Else statement is actually a single statement. But

142 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 142



VBA provides a slightly different way of coding If-Then-Else constructs that use
an End-If statement. Therefore, the GreetMe procedure can be rewritten as:

Sub GreetMe()
If Time < 0.5 Then 

MsgBox “Good Morning” 
Else 

MsgBox “Good Afternoon”
End If

End Sub

In fact, you can insert any number of statements under the If part, and any
number of statements under the Else part.

What if you need to expand the GreetMe routine to handle three conditions:
morning, afternoon, and evening? You have two options: Use three If-Then
statements or use a nested If-Then-Else structure. Nesting means placing an If-
Then-Else structure within another If-Then-Else structure. The first approach,
the three statements, is simplest:

Sub GreetMe2()
Dim Msg As String
If Time < 0.5 Then Msg = “Morning”
If Time >= 0.5 And Time < 0.75 Then Msg = “Afternoon”
If Time >= 0.75 Then Msg = “Evening”
MsgBox “Good “ & Msg

End Sub

The Msg variable gets a different text value, depending on the time of day.
The final MsgBox statement displays the greeting: Good Morning, Good
Afternoon, or Good Evening.

The following routine performs the same action but uses a nested If-Then-
Else structure:

Sub GreetMe3()
Dim Msg As String
If Time < 0.5 Then

Msg = “Morning”
End If
If Time >= 0.5 And Time < 0.75 Then

Msg = “Afternoon”
End If
If Time >= 0.75 Then

Msg = “Evening”
End If
MsgBox “Good “ & Msg

End Sub

143Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 143



The example works fine but could be improved. The routine has to test for all
conditions, be it morning, afternoon, or evening. If the first test is met, no fur-
ther tests are needed. Here’s the modified procedure:

Sub GreetMe4()
Dim Msg As String
If Time < 0.5 Then

Msg = “Morning”
Else

If Time >= 0.5 And Time < 0.75 Then
Msg = “Afternoon”

Else
Msg = “Evening”

End If
End If
MsgBox “Good “ & Msg

End Sub

Using ElseIf
In both of the previous examples, every statement in the routine is executed —
even in the morning. A more efficient structure would exit the routine as soon
as a condition is found to be true. In the morning, for example, the procedure
should display the Good Morning message and then exit — without evaluat-
ing the other superfluous conditions.

With a tiny routine like this, you don’t have to worry about execution speed.
But for larger applications in which speed is important, you should know
about another syntax for the If-Then structure. The ElseIf syntax follows:

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements]] . . .

[Else
[elsestatements]]

End If

Here’s how you can rewrite the GreetMe routine by using this syntax:

Sub GreetMe5()
Dim Msg As String
If Time < 0.5 Then
Msg = “Morning”

ElseIf Time >= 0.5 And Time < 0.75 Then
Msg = “Afternoon”

Else
Msg = “Evening”

End If
MsgBox “Good “ & Msg

End Sub

144 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 144



When a condition is true, VBA executes the conditional statements and the If
structure ends. In other words, VBA doesn’t waste time evaluating the extra-
neous conditions, which makes this procedure a bit more efficient than the
previous examples. The trade-off (there are always trade-offs) is that the
code is more difficult to understand. (Of course, you already knew that.)

Another If-Then example
Here’s another example that uses the simple form of the If-Then structure.
This procedure prompts the user for a quantity and then displays the appro-
priate discount, based on the quantity the user enters:

Sub ShowDiscount()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox(“Enter Quantity:”)
If Quantity > 0 Then Discount = 0.1
If Quantity >= 25 Then Discount = 0.15
If Quantity >= 50 Then Discount = 0.2
If Quantity >= 75 Then Discount = 0.25
MsgBox “Discount: “ & Discount

End Sub

A workbook that contains this section’s examples can be downloaded from
this book’s Web site.

Notice that each If-Then statement in this routine is executed and the value
for Discount can change as the statements are executed. However, the rou-
tine ultimately displays the correct value for Discount.

The following procedure performs the same tasks by using the alternative
ElseIf syntax. In this case, the routine ends immediately after executing the
statements for a true condition.

Sub ShowDiscount2()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox(“Enter Quantity: “)
If Quantity > 0 And Quantity < 25 Then
Discount = 0.1

ElseIf Quantity >= 25 And Quantity < 50 Then
Discount = 0.15

ElseIf Quantity >= 50 And Quantity < 75 Then
Discount = 0.2

ElseIf Quantity >= 75 Then
Discount = 0.25

End If
MsgBox “Discount: “ & Discount

End Sub

145Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 145



Personally, I find these multiple If-Then structures rather cumbersome. I gen-
erally use the If-Then structure for only simple binary decisions. When a deci-
sion involves three or more choices, the Select Case structure offers a
simpler, more efficient approach.

The Select Case structure
The Select Case structure is useful for decisions involving three or more
options (although it also works with two options, providing an alternative to
the If-Then-Else structure).

The syntax for the Select Case structure follows:

Select Case testexpression
[Case expressionlist-n

[statements-n]] . . .
[Case Else

[elsestatements]]
End Select

Don’t be scared off by this official syntax. Using the Select Case structure is
quite easy.

A Select Case example
The following example shows how to use the Select Case structure. This also
shows another way to code the examples presented in the previous section:

Sub ShowDiscount3()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox(“Enter Quantity: “)
Select Case Quantity

Case 0 To 24
Discount = 0.1

Case 25 To 49
Discount = 0.15

Case 50 To 74
Discount = 0.2

Case Is >= 75
Discount = 0.25

End Select
MsgBox “Discount: “ & Discount

End Sub

In this example, the Quantity variable is being evaluated. The routine is
checking for four different cases (0 - 24, 25 -49, 50 - 74, and 75 or greater).

Any number of statements can follow each Case statement, and they all are
executed if the case is true. If you use only one statement, as in this example,

146 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 146



you can put the statement on the same line as the Case keyword, preceded
by a colon — the VBA statement separator character. In my opinion, this
makes the code more compact and a bit clearer. Here’s how the routine looks,
using this format:

Sub ShowDiscount4 ()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox(“Enter Quantity: “)
Select Case Quantity

Case  0 To 24: Discount = 0.1
Case 25 To 49: Discount = 0.15
Case 50 To 74: Discount = 0.2
Case Is >= 75: Discount = 0.25

End Select
MsgBox “Discount: “ & Discount

End Sub

When VBA executes a Select Case structure, the structure is exited as soon as
VBA finds a true case.

A nested Select Case example
As demonstrated in the following example, you can nest Select Case struc-
tures. This routine examines the active cell and displays a message describ-
ing the cell’s contents. Notice that the procedure has three Select Case
structures and each has its own End Select statement.

Sub CheckCell()
Dim Msg As String
Select Case IsEmpty(ActiveCell)

Case True
Msg = “is blank.”

Case Else
Select Case ActiveCell.HasFormula

Case True
Msg = “has a formula”

Case False
Select Case IsNumeric(ActiveCell)
Case True

Msg = “has a number”
Case Else

Msg = “has text”
End Select

End Select
End Select
MsgBox “Cell “ & ActiveCell.Address & “ “ & Msg

End Sub

This example is available at this book’s Web site.

147Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 147



The logic goes something like this:

1. Find out whether the cell is empty.

2. If it’s not empty, see whether it contains a formula.

3. If there’s no formula, find out whether it contains a numeric value or text.

When the routine ends, the Msg variable contains a string that describes the
cell’s contents. As shown in Figure 10-1, the MsgBox function displays that
message.

You can nest Select Case structures as deeply as you need to, but make sure
that each Select Case statement has a corresponding End Select statement.

As you can see, indenting makes this potentially confusing code much more
understandable. If you don’t believe me, take a look at the same procedure
without any indentation:

Sub CheckCell()
Dim Msg As String
Select Case IsEmpty(ActiveCell)
Case True
Msg = “is blank.”
Case Else
Select Case ActiveCell.HasFormula
Case True
Msg = “has a formula”
Case False
Select Case IsNumeric(ActiveCell)
Case True
Msg = “has a number”
Case Else
Msg = “has text”
End Select
End Select
End Select
MsgBox “Cell “ & ActiveCell.Address & “ “ & Msg
End Sub

Fairly incomprehensible, eh?

Figure 10-1:
A message

displayed 
by the

CheckCell
procedure.

148 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 148



Knocking Your Code for a Loop
The term looping refers to repeating a block of VBA statements numerous
times. You may know how many times your program needs to loop, or vari-
ables used in your program’s code may determine this.

There are two types of loops: good loops and bad loops. (Good loops get
rewarded, and bad loops get sent to their room.) 

The following code demonstrates a bad loop. The procedure simply enters
consecutive numbers into a range. It starts by prompting the user for two
values: a starting value and the total number of cells to fill. (Because InputBox
returns a string, I convert the strings to integers by using the CInt function.)
This loop uses the GoTo statement to control the flow. The CellCount variable
keeps track of how many cells are filled. If this value is less than the number
requested by the user, program control loops back to DoAnother.

Sub BadLoop()
Dim StartVal As Long
Dim NumToFill As Long
Dim CellCount As Long
StartVal = InputBox(“Enter the starting value: “)
NumToFill = InputBox(“How many cells? “)
ActiveCell = StartVal
CellCount = 1

DoAnother:
ActiveCell.Offset(CellCount, 0) = StartVal + CellCount
CellCount = CellCount + 1
If CellCount < NumToFill Then GoTo DoAnother _

Else Exit Sub
End Sub

This routine works as intended, so why is it an example of bad looping? As I
mention earlier in this chapter, avoid using a GoTo statement unless it’s
absolutely necessary. Using GoTo statements to perform looping

� Is contrary to the concept of structured programming. (See the sidebar
earlier in this chapter, “What is structured programming? Does it matter?”)

� Makes the code more difficult to read.

� Is more prone to errors than using structured looping procedures.

VBA has enough structured looping commands that you almost never have to
rely on GoTo statements for your decision making. Again, the exception is for
error handling.

Now you can move on to a discussion of good looping structures.

149Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 149



For-Next loops
The simplest type of loop is a For-Next loop. Here’s the syntax for this 
structure:

For counter = start To end [Step stepval]
[statements]
[Exit For]
[statements]

Next [counter]

The looping is controlled by a counter variable, which starts at one value and
stops at another value. The statements between the For statement and the
Next statement are the statements that get repeated in the loop. To see how
this works, keep reading.

A For-Next example
The following example shows a For-Next loop that doesn’t use the optional
Step value or the optional Exit For statement. This routine loops 100 times
and uses the VBA Rnd function to enter a random number into 100 cells:

Sub FillRange()
Dim Count As Long
For Count = 1 To 100

ActiveCell.Offset(Count - 1, 0) = Rnd
Next Count

End Sub

In this example, Count (the loop counter variable) starts with a value of 1 and
increases by 1 each time through the loop. Because I didn’t specify a Step
value, VBA uses the default value (1). The Offset method uses the value of
Count as an argument. The first time through the loop, the procedure enters
a number into the active cell offset by zero rows. The second time through
(Count = 2), the procedure enters a number into the active cell offset by one
row (Count –1), and so on.

Because the loop counter is a normal variable, you can change its value
within the block of code between the For and the Next statements. This, how-
ever, is a very bad practice. Changing the counter within the loop can have
unpredictable results. Take special precautions to ensure that your code
does not directly change the value of the loop counter.

A For-Next example with a Step
You can use a Step value to skip some values in a For-Next loop. Here’s the
same procedure as in the preceding section, rewritten to insert random num-
bers into every other cell:

150 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 150



Sub FillRange()
Dim Count As Long
For Count = 1 To 100 Step 2

ActiveCell.Offset(Count - 1, 0) = Rnd
Next Count

End Sub

This time, Count starts out as 1 and then takes on a value of 3, 5, 7, and so on.
The final Count value is 99. The Step value determines how the counter is
incremented.

This chapter introduces looping via the BadLoop example, which uses a
GoTo statement. Here’s the same example, which is available on this book’s
Web site, converted into a good loop by using the For-Next structure:

Sub FillRange()
Dim StartVal As Long
Dim NumToFill As Long
Dim CellCount As Long
StartVal = InputBox(“Enter the starting value: “)
NumToFill = InputBox(“How many cells? “)
For CellCount = 1 To NumToFill

ActiveCell.Offset(CellCount - 1, 0) = _
StartVal + CellCount - 1

Next CellCount
End Sub

A For-Next example with an Exit For statement
A For-Next loop can also include one or more Exit For statements within the
loop. When VBA encounters this statement, the loop terminates immediately.

The following example, available on the book’s Web site, demonstrates the
Exit For statement. This routine identifies which of the active worksheet’s
cells in column A has the largest value:

Sub ExitForDemo()
Dim MaxVal As Double
Dim Row As Long
MaxVal = Application.WorksheetFunction. _

Max(Range(“A:A”))
For Row = 1 To Rows.Count

If Range(“A1”).Offset(Row - 1, 0).Value = MaxVal
Then
Range(“A1”).Offset(Row - 1, 0).Activate
MsgBox “Max value is in Row “ & Row
Exit For

End If
Next Row

End Sub

151Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 151



The routine calculates the maximum value in the column by using Excel’s
MAX function and assigns the result to the MaxVal variable. The For-Next
loop then checks each cell in the column. If the cell being checked is equal to
MaxVal, the routine doesn’t need to continue looping (its job is finished), so
the Exit For statement terminates the loop. Before terminating the loop, the
procedure activates the cell with the maximum value and informs the user of
its location. Notice that I use Rows.Count in the For statement. The count
property of the Rows objects returns the number of rows in the worksheet.
Therefore, you can use this procedure with Excel 2007 as well as with earlier
versions (which have fewer rows).

A nested For-Next example
So far, all this chapter’s examples use relatively simple loops. However, you
can have any number of statements in the loop and nest For-Next loops
inside other For-Next loops.

The following example uses a nested For-Next loop to insert random numbers
into a 12-row-x-5-column range of cells, as shown in Figure 10-2. Notice that
the routine executes the inner loop (the loop with the Row counter) once for
each iteration of the outer loop (the loop with the Col counter). In other
words, the routine executes the Cells(Row, Col) = Rnd statement 60 times.

Sub FillRange2()
Dim Col As Long
Dim Row As Long
For Col = 1 To 5

For Row = 1 To 12
Cells(Row, Col) = Rnd

Next Row
Next Col

End Sub

Figure 10-2:
These cells
were filled
by using a

nested For-
Next loop.

152 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 152



The next example uses nested For-Next loops to initialize a three-dimensional
array with zeros. This routine executes the statement in the middle of all the
loops (the assignment statement) 1,000 times, each time with a different com-
bination of values for i, j, and k:

Sub NestedLoops()
Dim MyArray(10, 10, 10)
Dim i As Integer
Dim j As Integer
Dim k As Integer
For i = 1 To 10

For j = 1 To 10
For k = 1 To 10

MyArray(i, j, k) = 0
Next k

Next j
Next i

End Sub 

Refer to Chapter 7 for information about arrays.

Do-While loop
VBA supports another type of looping structure known as a Do-While loop.
Unlike a For-Next loop, a Do-While loop continues until a specified condition
is met. Here’s the Do-While loop syntax:

Do [While condition]
[statements]
[Exit Do]
[statements]

Loop

The following example uses a Do-While loop. This routine uses the active cell
as a starting point and then travels down the column, multiplying each cell’s
value by 2. The loop continues until the routine encounters an empty cell.

Sub DoWhileDemo()
Do While ActiveCell.Value <> Empty

ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset(1, 0).Select

Loop
End Sub

Some people prefer to code a Do-While loop as a Do-Loop While loop. This
example performs exactly as the previous procedure but uses a different 
loop syntax:

153Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 153



Sub DoLoopWhileDemo()
Do

ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset(1, 0).Select

Loop While ActiveCell.Value <> Empty
End Sub

Remember this key difference between the Do-While and Do-Loop While
loops: The Do-While loop always performs its conditional test first. If the test
is not true, the instructions inside the loop are never executed. The Do-Loop
While loop, on the other hand, always performs its conditional test after the
instructions inside the loop are executed. Thus, the loop instructions are
always executed at least once, regardless of the test. This difference can have
a profound effect on how your program functions.

Do-Until loop
The Do-Until loop structure is similar to the Do-While structure. The two
structures differ in their handling of the tested condition. A program contin-
ues to execute a Do-While loop while the condition remains true. In a Do-Until
loop, the program executes the loop until the condition is true.

Here’s the Do-Until syntax:

Do [Until condition]
statements]
[Exit Do]
[statements]

Loop

The following example is the same one presented for the Do-While loop but
recoded to use a Do-Until loop:

Sub DoUntilDemo()
Do Until IsEmpty(ActiveCell.Value)

ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset(1, 0).Select

Loop
End Sub

Just like with the Do-While loop, you may encounter a different form of the
Do-Until loop — a Do-Loop Until loop. The following example, which has the
same effect as the preceding procedure, demonstrates an alternate syntax for
this type of loop:

154 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 154



Sub DoLoopUntilDemo()
Do

ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset(1, 0).Select

Loop Until IsEmpty(ActiveCell.Value)
End Sub

There is a subtle difference in how the Do-Until loop and the Do-Loop Until
loop operate. In the former, the test is performed at the beginning of the loop,
before anything in the body of the loop is executed. This means that it is pos-
sible that the code in the loop body will not be executed if the test condition
is met. In the latter version, the condition is tested at the end of the loop.
Therefore, at a minimum, the Do-Loop Until loop always results in the body of
the loop being executed once.

Looping through a Collection
VBA supports yet another type of looping — looping through each object in 
a collection of objects. Recall that a collection consists of a number of the
same type of object. For example, each workbook has a collection of work-
sheets (the Worksheets collection), and Excel has a collection of all open
workbooks (the Workbooks collection).

When you need to loop through each object in a collection, use the For Each-
Next structure. The syntax is

For Each element In collection
[statements]
[Exit For]
[statements]

Next [element]

The following example loops through each worksheet in the active workbook
and deletes the first row of each worksheet:

Sub DeleteRow1()
Dim WkSht As Worksheet
For Each WkSht In ActiveWorkbook.Worksheets

WkSht.Rows(1).Delete
Next WkSht

End Sub

In this example, the variable WkSht is an object variable that represents each
worksheet in the workbook. Nothing is special about the variable name
WkSht — you can use any variable name that you like.

155Chapter 10: Controlling Program Flow and Making Decisions

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 155



The example that follows loops through the cells in a range, checking each
one. The code switches the sign of the values (negative values are made posi-
tive; positive values are made negative). It does this by multiplying each
value times –1. Note that I used an If-Then construct, along with the VBA
IsNumeric function, to ensure that the cell contains a numeric value:

Sub ChangeSign()
Dim Cell As Range
For Each Cell In Range(“A1:E50”)

If IsNumeric(Cell.Value) Then
Cell.Value = Cell.Value * -1

End If
Next Cell

End Sub

Note that the code sample above changes any formulas in the range it loops
through to values, zapping your formulas. That’s probably not what you
want. Here’s another version of the Sub that skips formula cells. It checks
whether the cell has a formula by accessing the HasFormula property:

Sub ChangeSign()
Dim Cell As Range
For Each Cell In Range(“A1:E50”)
If Not Cell.HasFormula Then

If IsNumeric(Cell.Value) Then
Cell.Value = Cell.Value * -1

End If
End If

Next Cell
End Sub

Here’s another example that loops through each chart on Sheet1 (that is,
each member of the ChartObjects collection) and changes each chart to a
line chart. In this example, Cht is a variable that represents each
ChartObject. If Sheet1 has no ChartObjects, nothing happens.

Sub ChangeCharts()
Dim Cht As ChartObject
For Each Cht In Sheets(“Sheet1”).ChartObjects

Cht.Chart.ChartType = xlLine
Next Cht

End Sub

The For Each-Next structure is usually much faster than looping by using the
For-Next construction. So if you’re in a hurry, use For Each-Next.

156 Part III: Programming Concepts 

16_046746 ch10.qxp  1/12/07  5:56 PM  Page 156



Chapter 11

Automatic Procedures and Events
In This Chapter
� Knowing the event types that can trigger an execution 

� Finding out where to place your event-handler VBA code

� Executing a macro when a workbook is opened or closed

� Executing a macro when a workbook or worksheet is activated

You have a number of ways to execute a VBA Sub procedure. One way is
to arrange for the Sub to be executed automatically. In this chapter, I

cover the ins and outs of this potentially useful feature, explaining how to set
things up so that a macro is executed automatically when a particular event
occurs. (No, this chapter is not about capital punishment.)

Preparing for the Big Event
What types of events am I talking about here? Good question. An event is
basically something that happens in Excel. Following are a few examples of
the types of events that Excel can deal with:

� A workbook is opened or closed.

� A window is activated.

� A worksheet is activated or deactivated.

� Data is entered into a cell or the cell is edited.

� A workbook is saved.

� A worksheet is calculated.

� An object, such as a button, is clicked.

� A particular key or key combination is pressed.

� A particular time of day occurs.

� An error occurs.

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 157



Most Excel programmers never need to worry about most of the events in
this list. You should, however, at least know that these events exist because
they may come in handy someday. In this chapter, I discuss the most com-
monly used events. To simplify things, I talk about two types of events: work-
book and worksheet.

Table 11-1 lists most of the workbook-related events. You can access the com-
plete list if you follow these directions:

1. Choose the ThisWorkbook object in the Project window. 

2. Display the Code window. 

Choose View➪Code or press F7 to do this. 

3. Choose the Workbook object in the Object drop-down list (at the top
left of the Code window). 

4. Expand the Procedure drop-down list (at the top right of the Code
window).

Table 11-1 Workbook Events
Event When It’s Triggered

Activate The workbook is activated.

AddinInstall An add-in is installed (relevant only for add-ins).

AddinUninstall The add-in is uninstalled (relevant only for add-ins).

BeforeClose The workbook is closed.

BeforePrint The workbook is printed.

BeforeSave The workbook is saved.

Deactivate The workbook is deactivated.

NewSheet A new sheet is added to the workbook.

Open The workbook is opened.

SheetActivate A sheet in the workbook is activated.

SheetBefore A cell in the workbook is double-clicked.
DoubleClick

SheetBefore RightClick A cell in the workbook is right-clicked. 

SheetCalculate A sheet in the workbook is recalculated.

SheetChange A change is made to a cell in the workbook.

SheetDeactivate A sheet in the workbook is deactivated.

158 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 158



Event When It’s Triggered

SheetFollowHyperlink A hyperlink in a worksheet is clicked.

SheetSelectionChange The selection is changed.

WindowActivate The workbook window is activated.

WindowDeactivate The workbook window is deactivated.

WindowResize The workbook window is resized.

Table 11-2 lists most of the worksheet events. These events are accessible if
you follow these directions:

1. Choose a Worksheet object in the Project window.

2. Display the Code window. 

3. Choose the Worksheet object in the Object list (at the top of the Code
window). 

4. Expand the Procedure drop-down list. 

Table 11-2 Worksheet Events
Event When It’s Triggered

Activate The worksheet is activated.

BeforeDoubleClick A cell in the worksheet is double-clicked.

BeforeRightClick A cell in the worksheet is right-clicked.

Calculate The worksheet is recalculated.

Change A change is made to a cell in the worksheet.

Deactivate The worksheet is deactivated.

FollowHyperlink A hyperlink is activated.

SelectionChange The selection is changed.

Are events useful?
At this point, you may be wondering how these events can be useful. Here’s a
quick example.

159Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 159



Suppose that you have a workbook that other people use for data entry. Any
values entered must be greater than 1,000. You can write a simple macro that
Excel executes whenever someone enters data into a cell. (Entering data is an
event — a WorksheetChange even.) If the user enters a value less than 1,000,
the macro displays a dialog box reprimanding the user.

The Data➪Data Tools➪Data Validation command in Excel provides another
way to perform this type of data-entry checking — without even using VBA.
This is just one example of how you can take advantage of an event. Keep
reading for some more examples.

Just because your workbook contains procedures that respond to events
doesn’t guarantee that those procedures will actually run. As you know, it’s
possible to open a workbook with macros disabled. In such a case, all macros
(even procedures that respond to events) are turned off. Keep this fact in
mind when you create workbooks that rely on event-handler procedures.

Programming event-handler procedures
A VBA procedure that executes in response to an event is called an event-
handler procedure. These are always Sub procedures (as opposed to Function
procedures). Writing these event-handlers is relatively straightforward after
you understand how the process works. It all boils down to a few steps, all of
which I explain later:

1. Identify the event you want to trigger the procedure.

2. Press Alt+F11 to Activate the Visual Basic Editor.

3. In the VBE Project Window, double-click the appropriate object listed
under Microsoft Excel Objects.

For workbook-related events, the object is ThisWorkbook. For a work-
book-related event, the object is a Worksheet object (such as Sheet1).

4. In the Code window for the object, write the event-handler procedure
that is executed when the event occurs.

This procedure will have a special name that identifies it as an event-
handler procedure.

These steps become clearer as you progress through the chapter. Trust me.

Where Does the VBA Code Go?
It’s very important to understand where your event-handler procedures go.
They must reside in the Code window of an Object module. They simply
won’t work if you put them in a standard VBA module. 

160 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 160



Figure 11-1 shows the VBE window with one project displayed in the Project
window. (Refer to Chapter 3 for some background on the VBE.) Notice that
the project consists of several objects:

� One object for each worksheet in the workbook (in this case, three Sheet
objects)

� An object labeled ThisWorkbook

� A VBA module that I inserted manually by using the Insert➪Module 
command.

Double-clicking any of these objects displays the code associated with the
item, if any.

The event-handler procedures that you write go into the Code window for the
ThisWorkbook item (for workbook-related events) or one of the Sheet objects
(for worksheet-related events).

Writing an Event-Handler Procedure
The VBE helps you out when you’re ready to write an event-handler proce-
dure; it displays a list of all events that Excel can recognize.

Figure 11-2 shows a Code window for the ThisWorkbook object (the code
window is maximized to fill the entire code window area). To display this
empty Code window, double-click the ThisWorkbook object in the Project
window. This Code window has two drop-down lists at the top.

Figure 11-1:
The VBE
window
displays

items for a
single

project.

161Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 161



By default, the Object (left) drop-down list in the Code window displays
General. To write an event-handler procedure, you need to select Workbook
from the Object drop-down list. (Workbook is the only other item in the list.)
If the event-handler is for a worksheet, double-click the appropriate Sheet
item in the Project window before selecting Worksheet from the Object drop-
down list.

Figure 11-3 shows the right drop-down list, which consists of all the workbook-
related events that Excel recognizes. When you select an event from the list,
VBE automatically starts creating an event-handler procedure for you. This is
a very useful feature, because you can verify that the proper arguments are
used. (When you first selected Workbook from the Object list, VBE assumed
that you wanted to create an event-handler procedure for the Open event and
created it. You can see this in Figure 11-3.)

Figure 11-3:
The drop-
down list
displays 

all the
workbook-

related
events.

Figure 11-2:
An empty

Code
window 

for the This
Workbook

object.

162 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 162



VBE’s help goes only so far, however. It writes the Sub statement and the End
Sub statement. Writing the VBA code that goes between these two statements
is your job.

Some event-handler procedures use one or more arguments in the Sub state-
ment. For example, if you select SheetActivate from the event list for a
Workbook object, VBE writes the following Sub statement:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

In this case, Sh is the argument passed to the procedure and is a variable that
represents the sheet in the activated workbook. Examples in this chapter
clarify this point.

Introductory Examples
In this section, I provide a few examples so that you can get the hang of this
event-handling business.

The Open event for a workbook
One of the most commonly used events is the Workbook Open event. Assume
that you have a workbook that you use every day. The Workbook_Open pro-
cedure in this example is executed every time the workbook is opened. The
procedure checks the day of the week; if it’s Friday, the code displays a
reminder message for you.

To create the procedure that is executed whenever the Workbook Open event
occurs, follow these steps:

1. Open the workbook.

Any workbook will do.

2. Press Alt+F11 to activate the VBE.

3. Locate the workbook in the Project window.

4. Double-click the project name to display its items, if necessary.

5. Double-click the ThisWorkbook item.

The VBE displays an empty Code window for the ThisWorkbook object.

6. In the Code window, select Workbook from the Object (left) drop-
down list.

The VBE enters the beginning and ending statements for a
Workbook_Open procedure.

163Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 163



7. Enter the following statements:

Private Sub Workbook_Open()
Dim Msg As String
If WeekDay(Now) = 6 Then

Msg = “Today is Friday. Make sure that you “
Msg = Msg & “do your weekly backup!”
MsgBox Msg

End If
End Sub

The Code window should look like Figure 11-4.

Workbook_Open is executed automatically whenever the workbook is
opened. It uses VBA’s WeekDay function to determine the day of the week. If
it’s Friday (day 6), a message box reminds the user to perform a weekly file
backup. If it’s not Friday, nothing happens.

If today isn’t Friday, you might have a hard time testing this procedure. Here’s
a chance to test your own skill at VBA. You can modify this procedure any
way you like. For example, the following version displays a message every
time the workbook is opened. This gets annoying after a while, trust me.

Private Sub Workbook_Open()
Msg = “This is Frank’s cool workbook!”
MsgBox Msg

End Sub

A Workbook_Open procedure can do almost anything. These event-handlers
are often used for the following:

� Displaying welcome messages (such as in Frank’s cool workbook)

� Opening other workbooks

� Activating a particular worksheet in the workbook

� Setting up custom shortcut menus

Figure 11-4:
The event-

handler
procedure is

executed
when the

workbook is
opened.

164 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 164



The BeforeClose event for a workbook
Here’s an example of the Workbook_BeforeClose event-handler procedure,
which is automatically executed immediately before the workbook is closed.
This procedure is located in the Code window for a ThisWorkbook object:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Dim Msg As String
Dim Ans As Integer
Dim FName As String
Msg = “Would you like to make a backup of this file?”
Ans = MsgBox(Msg, vbYesNo)
If Ans = vbYes Then

FName = “F:\BACKUP\” & ThisWorkbook.Name
ThisWorkbook.SaveCopyAs FName

End If
End Sub

This routine uses a message box to ask the user whether he would like to
make a backup copy of the workbook. If the answer is yes, the code uses 
the SaveCopyAs method to save a backup copy of the file on drive F. If you
adapt this procedure for your own use, you probably need to change the
drive and path.

Excel programmers often use a Workbook_BeforeClose procedure to clean up
after themselves. For example, if you use a Workbook_Open procedure to
change some settings when you open a workbook (hiding the status bar, for
example), it’s only appropriate that you return the settings to their original
state when you close the workbook. You can perform this electronic house-
keeping with a Workbook_BeforeClose procedure.

There is a caveat with the Workbook_BeforeClose event. If you close Excel
and any open file has been changed since the last save, Excel will show its
usual “Do you want to save changes...” message box. Clicking the Cancel
button cancels the entire closing process. But the Workbook_BeforeClose
event will have been executed anyway.

The BeforeSave event for a workbook
The BeforeSave event, as its name implies, is triggered before a workbook is
saved. This event occurs when you use either the Office➪Save or Office➪
Save As command.

The following procedure, which is placed in the Code window for a
ThisWorkbook object, demonstrates the BeforeSave event. The routine updates
the value in a cell (cell A1 on Sheet1) every time the workbook is saved. In

165Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 165



other words, cell A1 serves as a counter to keep track of the number of times
the file was saved.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI _
As Boolean, Cancel As Boolean)
Sheets(“Sheet1”).Range(“A1”).Value = _

Sheets(“Sheet1”).Range(“A1”).Value +1
End Sub

Notice that the Workbook_BeforeSave procedure has two arguments, SaveAsUI
and Cancel. To demonstrate how these arguments work, examine the follow-
ing macro, which is executed before the workbook is saved. This procedure
prevents the user from saving the workbook with a different name. If the user
chooses the Office➪Save As command, then the SaveAsUI argument is True. 

When the code executes, it checks the SaveAsUI value. If this variable is True,
the procedure displays a message and sets Cancel to True, which cancels the
Save operation.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI _
As Boolean, Cancel As Boolean)
If SaveAsUI Then

MsgBox “You cannot save a copy of this workbook!”
Cancel = True

End If
End Sub

Examples of Activation Events
Another category of events consists of activating and deactivating objects —
specifically, sheets and windows.

Activate and deactivate events in a sheet
Excel can detect when a particular sheet is activated or deactivated and exe-
cute a macro when either of these events occurs. These event-handler proce-
dures go in the Code window for a Sheet object.

You can quickly access a sheet’s code window by right-clicking on the sheet’s
tab and selecting View Code.

The following example shows a simple procedure that is executed whenever
a particular sheet is activated. This code simply pops up a message box that
displays the name of the active sheet:

166 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 166



Private Sub Worksheet_Activate()
MsgBox “You just activated “ & ActiveSheet.Name

End Sub

Here’s another example that activates cell A1 whenever the sheet is activated:

Private Sub Worksheet_Activate()
Range(“A1”).Activate

End Sub

Although the code in these two procedures is about as simple as it gets,
event-handler procedures can be as complex as you like.

The following procedure (which is stored in the Code window for the Sheet1
object) uses the Deactivate event to prevent a user from activating any other
sheet in the workbook. If Sheet1 is deactivated (that is, another sheet is acti-
vated), the user gets a message and Sheet1 is activated.

Private Sub Worksheet_Deactivate()
MsgBox “You must stay on Sheet1”
Sheets(“Sheet1”).Activate

End Sub

By the way, I don’t recommend using procedures, such as this one, that attempt
to “take over” Excel. It can be very frustrating and confusing for the user.
Rather, I recommend training the user how to use your application correctly.

Activate and deactivate 
events in a workbook
The previous examples use events associated with a worksheet. The
ThisWorkbook object also handles events that deal with sheet activation and
deactivation. The following procedure, which is stored in the Code window
for the ThisWorkbook object, is executed when any sheet in the workbook is
activated. The code displays a message with the name of the activated sheet.

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
MsgBox Sh.Name

End Sub

The Workbook_SheetActivate procedure uses the Sh argument. Sh is a vari-
able that represents the active Sheet object. The message box displays the
Sheet object’s Name property.

167Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 167



The next example is contained in a ThisWorkbook Code window. It consists of
two event-handler procedures. Workbook_SheetDeactivate is executed when a
sheet is deactivated. It stores the sheet that is deactivated in an object variable.
(The Set keyword creates an object variable.) The Workbook_SheetActivate
code checks the type of sheet that is activated (using the TypeName func-
tion). If the sheet is a chart sheet, the user gets a message and the previous
sheet (which is stored in the OldSheet variable) is reactivated. The effect is
that users cannot activate a chart sheet (and are always returned to the pre-
vious sheet if they try).

A workbook that contains this code is available at this book’s Web site.

Dim OldSheet As Object

Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)
Set OldSheet = Sh

End Sub
Private Sub Workbook_SheetActivate(ByVal Sh As Object)

If TypeName(Sh) = “Chart” Then
MsgBox “Sorry, you can’t activate any charts.”
OldSheet.Activate

End If
End Sub

Workbook activation events
Excel also recognizes the event that occurs when you activate or deactivate 
a particular workbook. The following code, which is contained in the Code
window for the ThisWorkbook object, is executed whenever the workbook is
activated. The procedure simply maximizes the workbook’s window.

Private Sub Workbook_Activate()
ActiveWindow.WindowState = xlMaximized

End Sub

The Workbook_Deactivate code, shown next, is executed when a workbook is
deactivated. This procedure minimizes the workbook’s window:

Private Sub Workbook_Deactivate()
ThisWorkbook.Windows(1).WindowState = xlMinimized

End Sub

Notice that I didn’t use ActiveWindow in this code. That’s because the work-
book is no longer the active window when it’s deactivated. Therefore, I used
ThisWorkbook, which refers to the workbook that contains the code.

168 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 168



Other Worksheet-Related Events
In the preceding section, I present examples for worksheet activation and deac-
tivation events. In this section, I discuss three additional events that occur in
worksheets: double-clicking a cell, right-clicking a cell, and changing a cell.

The BeforeDoubleClick event
You can set up a VBA procedure to be executed when the user double-clicks
a cell. In the following example (which is stored in the Code window for a
Sheet object), double-clicking a cell makes the cell bold (if it’s not bold) or
not bold (if it is bold):

Private Sub Worksheet_BeforeDoubleClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
Target.Font.Bold = Not Target.Font.Bold
Cancel = True

End Sub

The Worksheet_BeforeDoubleClick procedure has two arguments: Target and
Cancel. Target represents the cell (a Range object) that was double-clicked. If
Cancel is set to True, the default double-click action doesn’t occur.

Notice that I set the Cancel argument to True. Doing this prevents the default
action from occurring. In other words, double-clicking the cell won’t put
Excel into cell edit mode.

The BeforeRightClick event
The BeforeRightClick event is similar to the BeforeDoubleClick event, except
that it consists of right-clicking a cell. The following procedure checks to see
whether the cell that was right-clicked contains a numeric value. If so, the
code displays the Format Number dialog box and sets the Cancel argument to
True (avoiding the normal shortcut menu display). If the cell does not contain
a numeric value, nothing special happens — the shortcut menu is displayed
as usual.

Private Sub Worksheet_BeforeRightClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
If IsNumeric(Target) And Not IsEmpty(Target) Then

Application.Dialogs(xlDialogFormatNumber).Show
Cancel = True

End If
End Sub

169Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 169



Notice that the code, which is available on this book’s Web site, makes an
additional check to see if the cell is not empty. This is because VBA considers
empty cells to be numeric.

The Change event
The Change event occurs whenever any cell on the worksheet is changed. In
the following example, the Worksheet_Change procedure effectively prevents
a user from entering a nonnumeric value into cell A1. This code is stored in
the Code window for a Sheet object.

Private Sub Worksheet_Change(ByVal Target As Range)
If Target.Address = “$A$1” Then

If Not IsNumeric(Target) Then
MsgBox “Enter a number in cell A1.”
Range(“A1”).ClearContents
Range(“A1”).Activate

End If
End If

End Sub

The single argument for the Worksheet_Change procedure represents the
range that was changed. The first statement sees whether the cell’s address
is $A$1. If so, the code uses the IsNumeric function to determine whether the
cell contains a numeric value. If not, a message appears and the cell’s value is
erased. Cell A1 is then activated — useful if the cell pointer moved to a differ-
ent cell after the entry was made. If the change occurs in any cell except A1,
nothing happens.

Why not use data validation?
You may be familiar with the Data➪Data Tools➪Data Validation command.
This is a handy feature that makes it easy to ensure that only data of the
proper type is entered into a particular cell or range. Although the Data➪
Data Tools➪Data Validation command is useful, it’s definitely not foolproof.
To demonstrate, start with a blank worksheet and perform the following steps:

1. Select the range A1:C12.

2. Choose Data➪Data Tools➪Data Validation.

3. Set up your validation criteria to accept only whole numbers between
1 and 12, as shown in Figure 11-5.

170 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 170



Now, enter some values in the range A1:C12. The data validation works as it
should. But to see it fall apart at the seams, try this:

1. Enter –1 into any cell outside the validation range (any cell not in
A1:C12).

2. Choose Home➪Clipboard➪Copy (or press Ctrl+C to copy the negative
number to the Clipboard.

3. Select any cell in the validation range.

4. Choose Home➪Clipboard➪Paste (or press Ctrl+V).

You find that the paste operation is allowable. Look a little closer, however,
and you find that the cell into which you pasted the negative value no longer
has any validation criteria. Pasting wipes out the data validation criteria! The
severity of this flaw depends on your application. In the next section, I
describe how to use the Change event to provide for better validating.

Pasting wipes out data validation because Excel considers validation a format
for a cell. Therefore, it is in the same classification as font size, color, or other
similar attributes. When you paste a cell, you are replacing the formats in the
target cell with those of the source cell. Unfortunately, those formats also
include your validation rules.

Preventing data validation from being destroyed
The procedure in this section demonstrates how to prevent users from copy-
ing data and wiping out data validation rules. This example assumes that the
worksheet has a range named InputArea, and this input area contains data
validation rules (set up by using the Data➪Data Tools➪Data Validation com-
mand). The range can have any validation rules you want.

Figure 11-5:
These

settings
allow only

whole
numbers

between 1
and 12.

171Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 171



A workbook that contains this code is available at this book’s Web site:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim VT As Long
‘Do all cells in the validation range
‘still have validation?
On Error Resume Next
VT = Range(“InputRange”).Validation.Type
If Err.Number <> 0 Then

Application.Undo
MsgBox “Your last operation was canceled.” & _
“It would have deleted data validation rules.”,

vbCritical
End If

End Sub

The procedure is executed whenever a cell is changed. It checks the valida-
tion type of the range (named InputRange) that is supposed to contain the
data validation rules. If the VT variable contains an error, that means that one
of more cells in the InputRange no longer have data validation (the user prob-
ably copied some data over it). If that’s the case, the code executes the Undo
method of the Application object and reverses the user’s action. Then it dis-
plays a message box.

The net effect? It’s impossible to wipe out the validation rules by copying data.

Events Not Associated with Objects
The events that I discuss previously in this chapter are associated with either
a workbook object or a worksheet object. In this section, I discuss two types
of events that are not associated with objects: time and keypresses.

Because time and keypresses aren’t associated with a particular object such
as a workbook or a worksheet, you program these events in a normal VBA
module (unlike the other events discussed in this chapter).

The OnTime event
The OnTime event occurs when a particular time of day occurs. The follow-
ing example demonstrates how to program Excel so that it beeps and then
displays a message at 3:00 p.m.:

172 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 172



Sub SetAlarm()
Application.OnTime 0.625, “DisplayAlarm”

End Sub

Sub DisplayAlarm()
Beep
MsgBox “Wake up. It’s time for your afternoon break!”

End Sub

In this example, I use the OnTime method of the Application object. This
method takes two arguments: the time (0.625 or 3:00 p.m.) and the name of
the sub procedure to execute when the time occurs (DisplayAlarm).

This procedure is quite useful if you tend to get so wrapped up in your work
that you forget about meetings and appointments. Just set an OnTime event
to remind yourself.

Most people (this author included) find it difficult to think of time in terms of
the Excel numbering system. Therefore, you may want to use the VBA
TimeValue function to represent the time. TimeValue converts a string that
looks like a time into a value that Excel can handle. The following statement
shows an easier way to program an event for 3:00 p.m.:

Application.OnTime TimeValue(“3:00:00 pm”), “DisplayAlarm”

If you want to schedule an event relative to the current time — for example,
20 minutes from now — you can use a statement like this:

Application.OnTime Now + TimeValue(“00:20:00”),
“DisplayAlarm”

You can also use the OnTime method to run a VBA procedure on a particular
day. You must make sure that your computer keeps running and that the
workbook with the procedure is kept open. The following statement runs the
DisplayAlarm procedure at 5:00 p.m. on December 31, 2007:

Application.OnTime DateValue(“12/31/2007 5:00 pm”),
“DisplayAlarm”

This particular code line could come in handy to warn you that you need to
go home and get ready for the New Year’s Eve festivities.

Here’s another example that uses the OnTime event. Executing the
UpdateClock procedures writes the time to cell A1 and also programs another
event five seconds later. This event reruns the UpdateClock procedure. The
net effect is that cell A1 is updated with the current time every five seconds.

173Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 173



To stop the events, execute the StopClock procedure (which cancels the
event). Note that NextTick is a module-level variable that stores the time for
the next event.

Dim NextTick As Date

Sub UpdateClock()
‘   Updates cell A1 with the current time

ThisWorkbook.Sheets(1).Range(“A1”) = Time
‘   Set up the next event five seconds from now

NextTick = Now + TimeValue(“00:00:05”)
Application.OnTime NextTick, “UpdateClock”

End Sub

Sub StopClock()
‘   Cancels the OnTime event (stops the clock)

On Error Resume Next
Application.OnTime NextTick, “UpdateClock”, , False

End Sub

The OnTime event persists even after the workbook is closed. In other words,
if you close the workbook without running the StopClock procedure, the
workbook will reopen itself in five seconds (assuming that Excel is still run-
ning). To prevent this, use a Workbook_BeforeClose event procedure that
contains the following statement:

Call StopClock

The OnTime method has two additional arguments. If you plan to use this
method, you should refer to the online help for complete details.

Keypress events
While you work, Excel constantly monitors what you type. Because of this,
you can set up a keystroke or a key combination to execute a procedure.

Here’s an example that reassigns the PgDn and PgUp keys:

Sub Setup_OnKey()
Application.OnKey “{PgDn}”, “PgDn_Sub”
Application.OnKey “{PgUp}”, “PgUp_Sub”

End Sub

Sub PgDn_Sub()
On Error Resume Next
If TypeName(ActiveSheet) = “Worksheet” _
Then ActiveCell.Offset(1, 0).Activate

174 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 174



End Sub

Sub PgUp_Sub()
On Error Resume Next
If TypeName(ActiveSheet) = “Worksheet” _
Then ActiveCell.Offset(-1, 0).Activate

End Sub

After setting up the OnKey events by executing the Setup_OnKey procedure,
pressing PgDn moves you down one row. Pressing PgUp moves you up one row.

Notice that the key codes are enclosed in braces, not parentheses. For a com-
plete list of keyboard codes, consult the Help system. Search for OnKey.

In this example, I use On Error Resume Next to ignore any errors that are gen-
erated. For example, if the active cell is in the first row, trying to move up one
row causes an error that can safely be ignored. Also, notice that the procedures
check to see which type of sheet is active. The routine only does something
when a worksheet is the active sheet.

By executing the following routine, you cancel the OnKey events:

Sub Cancel_OnKey()
Application.OnKey “{PgDn}”
Application.OnKey “{PgUp}”

End Sub

Using an empty string as the second argument for the OnKey method does
not cancel the OnKey event. Rather, it causes Excel to simply ignore the key-
stroke. For example, the following statement tells Excel to ignore Alt+F4. The
percent sign represents the Alt key:

Application.OnKey “%{F4}”, “”

Although you can use the OnKey method to assign a shortcut key for execut-
ing a macro, you should use the Macro Options dialog box for this task. For
more details, see Chapter 5.

If you close the workbook with the code and leave Excel open, the OnKey
method will not be reset. As a consequence, pressing the shortcut key will
cause Excel to automatically open the file with the macro. To prevent this
from happening, you should include code in your Workbook_BeforeClose
event code (I showed you that event earlier on in this chapter) to reset the
Onkey event.

175Chapter 11: Automatic Procedures and Events

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 175



176 Part III: Programming Concepts 

17_046746 ch11.qxp  1/12/07  5:57 PM  Page 176



Chapter 12

Error-Handling Techniques
In This Chapter
� Understanding the difference between programming errors and run-time errors

� Trapping and handling run-time errors

� Using the VBA on Error and Resume statements

� Finding how you can use an error to your advantage

Errors happen. When working with VBA, you should be aware of two
broad classes of errors: programming errors and run-time errors. (I cover

programming errors, also known as bugs, in Chapter 13.) A well-written pro-
gram handles errors the way Fred Astaire danced: gracefully. Fortunately,
VBA includes several tools to help you identify errors — and then handle
them gracefully.

Types of Errors
If you’ve tried any of the examples in this book, you have probably encoun-
tered one or more error messages. Some of these errors result from bad VBA
code. For example, you may spell a keyword incorrectly or type a statement
with the wrong syntax. If you make such an error, you won’t even be able to
execute the procedure until you correct it.

This chapter does not deal with those types of errors. Instead, I discuss run-
time errors — the errors that occur while Excel executes your VBA code.
More specifically, this chapter covers the following:

� Identifying errors

� Doing something about the errors that occur

� Recovering from errors

� Creating intentional errors (Yes, sometimes an error can be a good thing.)

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 177



The ultimate goal of error handling is to write code that avoids displaying
Excel’s error messages as much as possible. In other words, you want to
anticipate potential errors and deal with them before Excel has a chance to
rear its ugly head with a (usually) less-than-informative error message.

An Erroneous Example
To get things started, I developed a short VBA macro. Activate the VBE,
insert a module, and enter the following code:

Sub EnterSquareRoot()
Dim Num As Double

‘   Prompt for a value
Num = InputBox(“Enter a value”)

‘   Insert the square root
ActiveCell.Value = Sqr(Num)

End Sub

As shown in Figure 12-1, this procedure asks the user for a value. It then
enters the square root of that value into the active cell.

You can execute this procedure directly from the VBE by pressing F5.
Alternatively, you may want to add a button to a worksheet (use Developer➪
Controls➪Insert and select the Form controls button to do this) and then
assign the macro to the button. (Excel prompts you for the macro to assign.)
Then you can run the procedure by simply clicking the button.

Figure 12-1:
The

InputBox
function

displays a
dialog box

that asks
the user for

a value.

178 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 178



The macro’s not quite perfect
Execute the code a couple of times to try it out. It works pretty well, doesn’t
it? Now try entering a negative number when you are prompted for a value.
Oops. Trying to calculate the square root of a negative number is illegal on
this planet. Excel responds with the message shown in Figure 12-2, indicating
that your code generated a run-time error. For now, just click the End button.
Or click the Debug button; Excel suspends the macro so you can use the
debugging tools. (I describe the debugging tools in Chapter 13.)

Most folks don’t find the Excel error messages (for example, Invalid procedure
call or argument) very helpful. To improve the procedure, you need to antici-
pate this error and handle it more gracefully.

Here’s a modified version of EnterSquareRoot:

Sub EnterSquareRoot2()
Dim Num As Double

‘   Prompt for a value
Num = InputBox(“Enter a value”)

‘   Make sure the number is nonnegative
If Num < 0 Then

MsgBox “You must enter a positive number.”
Exit Sub

End If

‘   Insert the square root
ActiveCell.Value = Sqr(Num)

End Sub

Figure 12-2:
Excel

displays 
this error
message
when the

procedure
attempts to

calculate
the square

root of a
negative
number.

179Chapter 12: Error-Handling Techniques

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 179



An If-Then structure checks the value contained in the Num variable. If Num
is less than 0, the procedure displays a message box containing information
that humans can actually understand. The procedure ends with the Exit Sub
statement, so the error never has a chance to occur.

The macro is still not perfect
So the modified EnterSquareRoot procedure is perfect, right? Not really. Try
entering text rather than a value. Or click the Cancel button in the input box.
Both of these actions generate an error (Type mismatch).

The following modified code uses the IsNumeric function to make sure that
Num contains a numeric value. If the user doesn’t enter a number, the proce-
dure displays a message and then stops. Also, notice that the Num variable is
now defined as a Variant. If it were defined as a Double, the code would gen-
erate an unhandled error if the user entered a nonnumeric value into the
input box.

Sub EnterSquareRoot3()
Dim Num As Variant

‘   Prompt for a value
Num = InputBox(“Enter a value”)

‘   Make sure Num is a number
If Not IsNumeric(Num) Then

MsgBox “You must enter a number.”
Exit Sub

End If

‘   Make sure the number is nonnegative
If Num < 0 Then

MsgBox “You must enter a positive number.”
Exit Sub

End If

‘   Insert the square root
ActiveCell.Value = Sqr(Num)

End Sub

Is the macro perfect yet?
Now this code is absolutely perfect, right? Not quite. Try running the procedure
while the active sheet is a Chart sheet. As shown in Figure 12-3, Excel displays
another message that’s as illuminating as the other error messages you’ve seen.
This error occurs because there is no active cell on a Chart sheet.

180 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 180



The following listing uses the TypeName function to make sure that the selec-
tion is a range. If anything other than a range is selected, this procedure dis-
plays a message and then exits:

Sub EnterSquareRoot4()
Dim Num As Variant

‘   Make sure a worksheet is active
If TypeName(Selection) <> “Range” Then

MsgBox “Select a range first.”
Exit Sub

End If

‘   Prompt for a value
Num = InputBox(“Enter a value”)

‘   Make sure Num is a number

If Not IsNumeric(Num) Then
MsgBox “You must enter a number.”
Exit Sub

End If

‘   Make sure the number is nonnegative
If Num < 0 Then

MsgBox “You must enter a positive number.”
Exit Sub

End If

‘   Insert the square root
ActiveCell.Value = Sqr(Num)

End Sub

Giving up on perfection
By now, this procedure simply must be perfect. Think again, pal. Protect the
worksheet (using the Review➪Changes➪Protect Sheet command) and then

Figure 12-3:
Running the

procedure
when a
chart is

selected
generates
this error.

181Chapter 12: Error-Handling Techniques

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 181



run the code. Yep, a protected worksheet generates yet another error. And I
probably haven’t thought of all the other errors that can occur. Keep reading
for another way to deal with errors — even those you can’t anticipate.

Handling Errors Another Way
How can you identify and handle every possible error? The answer is that often
you can’t. Fortunately, VBA provides another way to deal with errors.

Revisiting the EnterSquareRoot procedure 
Examine the following code. I modified the routine from the previous section
by adding an On Error statement to trap all errors and then checking to see
whether the InputBox was cancelled.

Sub EnterSquareRoot5()
Dim Num As Variant
Dim Msg As String

‘   Set up error handling
On Error GoTo BadEntry

‘   Prompt for a value
Num = InputBox(“Enter a value”)

‘   Exit if cancelled
If Num = “” Then Exit Sub

‘   Insert the square root
ActiveCell.Value = Sqr(Num)
Exit Sub

BadEntry:
Msg = “An error occurred.” & vbNewLine
Msg = Msg & “Make sure a range is selected “
Msg = Msg & “and you enter a nonnegative value.”
MsgBox Msg

End Sub

This routine traps any type of run-time error. After trapping a run-time error,
the revised EnterSquareRoot procedure displays the message box shown in
Figure 12-4.

182 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 182



About the On Error statement
Using an On Error statement in your VBA code causes Excel to bypass its
built-in error handling and use your own error-handling code. In the previous
example, a run-time error causes macro execution to jump to the statement
labeled BadEntry. As a result, you avoid Excel’s unfriendly error messages
and you can display your own (friendlier, I hope) message to the user.

Notice that the example uses an Exit Sub statement right before the BadEntry
label. This statement is necessary because you don’t want to execute the
error-handling code if an error does not occur. 

Figure 12-4:
A run-time
error in the
procedure
generates

this helpful
error

message.

183Chapter 12: Error-Handling Techniques

On Error not working?
If an On Error statement isn’t working as adver-
tised, you need to change one of your settings. 

1. Activate the VBE.

2. Choose the Tools➪Options command.

3. Click the General tab of the Options 
dialog box.

4. Make sure that the Break On All Errors set-
ting is deselected. 

If this setting is selected, Excel essentially
ignores any On Error statements. You normally
want to keep the Error Trapping options set to
Break on Unhandled Errors.

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 183



Handling Errors: The Details
You can use the On Error statement in three ways, as shown in Table 12-1.

Table 12-1 Using the On Error Statement
Syntax What It Does

On Error GoTo label After executing this statement, VBA
resumes execution at the specified line. You
must include a colon after the label so that
VBA recognizes it as a label.

On Error Resume Next After executing this statement, VBA simply
ignores all errors and resumes execution
with the next statement. 

On Error GoTo 0 After executing this statement, VBA
resumes its normal error-checking behavior.
Use this statement after using one of the
other On Error statements or when you want
to remove error handling in your procedure.

Resuming after an error
In some cases, you simply want the routine to end gracefully when an error
occurs. For example, you may display a message describing the error and
then exit the procedure. (The EnterSquareRoot5 example uses this tech-
nique.) In other cases, you want to recover from the error, if possible.

To recover from an error, you must use a Resume statement. This clears the
error condition and lets you continue execution at some location. You can
use the Resume statement in three ways, as shown in Table 12-2.

Table 12-2 Using the Resume Statement
Syntax What It Does

Resume Execution resumes with the statement 
that caused the error. Use this if your error-
handling code corrects the problem and it’s
okay to continue.

184 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 184



Syntax What It Does

Resume Next Execution resumes with the statement imme-
diately following the statement that caused
the error. This essentially ignores the error.

Resume label Execution resumes at the label you specify.

The following example uses a Resume statement after an error occurs:

Sub EnterSquareRoot6()
Dim Num As Variant
Dim Msg As String
Dim Ans As Integer

TryAgain:
‘   Set up error handling

On Error GoTo BadEntry

‘   Prompt for a value
Num = InputBox(“Enter a value”)
If Num = “” Then Exit Sub

‘   Insert the square root
ActiveCell.Value = Sqr(Num)

Exit Sub

BadEntry:
Msg = “An error occurred. Try again?”
Ans = MsgBox(Msg, vbYesNo)
If Ans = vbYes Then Resume TryAgain

End Sub

This procedure has another label: TryAgain. If an error occurs, execution
continues at the BadEntry label, and the code displays the message shown in
Figure 12-5. If the user responds by clicking Yes, the Resume statement kicks
in and execution jumps back to the TryAgain label. If the user clicks No, the
procedure ends.

Figure 12-5:
If an error

occurs, the
user can

decide
whether to

try again.

185Chapter 12: Error-Handling Techniques

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 185



Remember that the Resume statement clears the error condition before con-
tinuing. To see what I mean, try substituting the following statement for the
second-to-last statement in the preceding example:

If Ans = vbYes Then GoTo TryAgain

The code, which is available on this book’s Web site, doesn’t work correctly if
you use GoTo rather than Resume. To demonstrate, enter a negative number:
You get the error prompt. Click Yes to try again and then enter another nega-
tive number. This second error is not trapped because the original error con-
dition was not cleared.

Error handling in a nutshell
To help you keep all this error-handling business straight, I’ve prepared a quick-
and-dirty summary. An error-handling routine has the following characteristics:

� It begins immediately after the label specified in the On Error statement.

� It should be reached by your macro only if an error occurs. This means
that you must use a statement such as Exit Sub or Exit Function immedi-
ately before the label.

� It may require a Resume statement. If you choose not to abort the proce-
dure when an error occurs, you must execute a Resume statement
before returning to the main code.

Knowing when to ignore errors
In some cases, it’s perfectly okay to ignore errors. That’s when the On Error
Resume Next statement comes into play.

The following example loops through each cell in the selected range and con-
verts the value to its square root. This procedure generates an error message
if any cell in the selection contains a nonpositive number:

Sub SelectionSqrt()
Dim cell As Range
If TypeName(Selection) <> “Range” Then Exit Sub
For Each cell In Selection

cell.Value = Sqr(cell.Value)
Next cell

End Sub

186 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 186



In this case, you may want to simply skip any cell that contains a value you
can’t convert to a square root. You can create all sorts of error-checking
capabilities by using If-Then structures, but you can devise a better (and sim-
pler) solution by simply ignoring the errors that occur.

The following routine accomplishes this by using the On Error Resume Next
statement:

Sub SelectionSqrt()
Dim cell As Range
If TypeName(Selection) <> “Range” Then Exit Sub
On Error Resume Next
For Each cell In Selection

cell.Value = Sqr(cell.Value)
Next cell

End Sub

In general, you can use an On Error Resume Next statement if you consider
the errors inconsequential to your task.

Identifying specific errors
All errors are not created equal. Some are serious and some are less serious.
Although you may ignore errors you consider inconsequential, you must deal
with other, more serious errors. In some cases, you need to identify the spe-
cific error that occurred.

When an error occurs, Excel stores the error number in an Error object
named Err. This object’s Number property contains the error number. You
can get a description of the error by using the VBA Error function. For exam-
ple, the following statement displays the error number and a description:

MsgBox Err.Number & “: “ & Error(Err.Number)

Figure 12-6 shows an example of this. Keep in mind, however, that the Excel
error messages are not always very useful — but you already know that.

Figure 12-6:
Displaying

an error
number and

a description.

187Chapter 12: Error-Handling Techniques

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 187



The following procedure demonstrates how to determine which error
occurred. In this case, you can safely ignore errors caused by trying to get
the square root of a nonpositive number (that is, error 5) or errors caused by
trying to get the square root of a nonnumeric value (error 13). On the other
hand, you need to inform the user if the worksheet is protected and the selec-
tion contains one or more locked cells. (Otherwise, the user may think the
macro worked when it really didn’t.) This event causes error 1004.

Sub SelectionSqrt()
Dim cell As Range
Dim ErrMsg As String
If TypeName(Selection) <> “Range” Then Exit Sub
On Error GoTo ErrorHandler
For Each cell In Selection

cell.Value = Sqr(cell.Value)
Next cell
Exit Sub

ErrorHandler:
Select Case Err

Case 5 ‘Negative number
Resume Next

Case 13 ‘Type mismatch
Resume Next

Case 1004 ‘Locked cell, protected sheet
MsgBox “The cell is locked. Try again.”
Exit Sub

Case Else
ErrMsg= Error(Err.Number)
MsgBox “ERROR: “ & ErrMsg
Exit Sub

End Select
End Sub

When a run-time error occurs, execution jumps to the ErrorHandler label.
The Select Case structure (I discuss that structure in Chapter 10) tests for
three common error numbers. If the error number is 5 or 13, execution
resumes at the next statement. (In other words, the error is ignored.) But if
the error number is 1004, the routine advises the user and then ends. The
last case, a catchall for unanticipated errors, traps all other errors and dis-
plays the actual error message.

An Intentional Error
Sometimes you can use an error to your advantage. For example, suppose
you have a macro that works only if a particular workbook is open. How can
you determine whether that workbook is open? Perhaps the best solution is
to write a general-purpose function that accepts one argument (a workbook
name) and returns True if the workbook is open, False if it’s not.

188 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 188



Here’s the function:

Function WorkbookOpen(book As String) As Boolean
Dim WBName As String
On Error GoTo NotOpen
WBName = Workbooks(book).Name
WorkbookOpen = True
Exit Function

NotOpen:
WorkbookOpen = False

End Function

This function takes advantage of the fact that Excel generates an error if you
refer to a workbook that is not open. For example, the following statement
generates an error if a workbook named MyBook.xls is not open:

WBName = Workbooks(“MyBook.xlsx”).Name

In the WorkbookOpen function, the On Error statement tells VBA to resume
the macro at the NotOpen statement if an error occurs. Therefore, an error
means that the workbook is not open, and the function returns False. If the
workbook is open, no error occurs and the function returns True.

Here’s another variation on the WorkbookOpen function. This version uses
On Error Resume Next to ignore the error. But the code checks Err’s Number
property. If Err.Number is 0, no error occurred and the workbook is open. If
Err.Number is anything else, it means that an error occurred (and the work-
book is not open).

Function WorkbookOpen(book) As Boolean
Dim WBName As String
On Error Resume Next
WBName = Workbooks(book).Name
If Err.Number = 0 Then WorkbookOpen = True _
Else WorkbookOpen = False

End Function

The following example demonstrates how to use this function in a Sub 
procedure:

Sub Macro1()
If Not WorkbookOpen(“Prices.xlsx”) Then

MsgBox “Please open the Prices workbook first!”
Exit Sub

End If

‘   [Other code goes here]
End Sub

189Chapter 12: Error-Handling Techniques

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 189



The Macro1 procedure (which must be in the same project as WorkbookOpen)
calls the WorkbookOpen function and passes the workbook name (Prices.xlsx)
as an argument. The WorkbookOpen function returns either True or False.
Therefore, if the workbook is not open, the procedure informs the user of
that fact. If the workbook is open, the macro continues.

Error handling can be a tricky proposition — after all, many different errors
can occur and you can’t anticipate them all. In general, you should trap
errors and correct the situation before Excel intervenes, if possible. Writing
effective error-trapping code requires a thorough knowledge of Excel and a
clear understanding of how the VBA error handling works. Subsequent chap-
ters contain more examples of error handling.

190 Part III: Programming Concepts 

18_046746 ch12.qxp  1/12/07  5:57 PM  Page 190



Chapter 13

Bug Extermination Techniques
In This Chapter
� Defining a bug and why you should squash it

� Recognizing types of program bugs you may encounter

� Using techniques for debugging your code

� Using the VBA built-in debugging tools

If the word bugs conjures up an image of a cartoon rabbit, this chapter can
set you straight. Simply put, a bug is an error in your programming. Here I

cover the topic of programming bugs — how to identify them and how to
wipe them off the face of your module.

Species of Bugs
Welcome to Entomology 101. The term program bug, as you probably know,
refers to a problem with software. In other words, if software doesn’t perform
as expected, it has a bug. Fact is, all major software has bugs — lots of bugs.
It has been said that software that doesn’t contain bugs is probably so trivial
that it’s not worth using. Excel itself has hundreds (if not thousands) of bugs.
Fortunately, the vast majority of these bugs are relatively obscure and appear
in only very unusual circumstances.

When you write VBA programs, your code probably will have bugs. This is a
fact of life and not necessarily a reflection of your programming ability. The
bugs may fall into any of the following categories:

� Logic flaws in your code: You can often avoid these bugs by carefully
thinking through the problem your program addresses.

� Incorrect context bugs: This type of bug surfaces when you attempt to
do something at the wrong time. For example, you may try to write data
to cells in the active sheet when the active sheet is not a worksheet.

� Extreme-case bugs: These bugs rear their ugly heads when you encounter
data you didn’t anticipate, such as very large or very small numbers.

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 191



� Wrong data type bugs: This type of bug occurs when you try to process
data of the wrong type, such as attempting to take the square root of a
text string.

� Wrong version bugs: This type of bug involves incompatibilities
between different Excel versions. For example, you may develop a work-
book with Excel 2007 and then find out that the workbook doesn’t work
with Excel XP or 2003. You can usually avoid such problems by avoiding
version-specific features. Often, the easiest approach is to develop your
application by using the lowest version number of Excel that users
might have. In all cases, however, you should test your work on all ver-
sions you expect it will be used with.

� Beyond-your-control bugs: These are the most frustrating. An example
occurs when Microsoft upgrades Excel and makes a minor, undocu-
mented change that causes your macro to bomb.

Debugging is the process of identifying and correcting bugs in your program.
Developing debugging skills takes time, so don’t be discouraged if this
process is difficult at first.

It’s important to understand the distinction between bugs and syntax errors. A
syntax error is a language error. For example, you might misspell a keyword,
omit the Next statement in a For-Next loop, or have a mismatched parenthesis.
Before you can even execute the procedure, you must correct these syntax
errors. A program bug is much subtler. You can execute the routine, but it
doesn’t perform as expected.

Identifying Bugs
Before you can do any debugging, you must determine whether a bug actu-
ally exists. You can tell that your macro contains a bug if it doesn’t work the
way it should. (Gee, this book is just filled with insight, isn’t it?) Usually, but
not always, you can easily discern this.

A bug often (but not always) becomes apparent when Excel displays a run-
time error message. Figure 13-1 shows an example. Notice that this error mes-
sage includes a button labeled Debug. More about this later in the “About the
Debugger” section.

It’s important to remember that bugs often appear when you least expect
them. For example, just because your macro works fine with one data set
doesn’t mean you can assume it will work equally as well with all data sets.

192 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 192



The best debugging approach is thorough testing, under a variety of real-life
conditions. And because any workbook changes made by your VBA code
cannot be undone, it is always a good idea to use a backup copy of the work-
book that you use for testing. I usually copy some files into a temporary
folder and do my testing there. 

Debugging Techniques
In this section, I discuss the four most common methods for debugging Excel
VBA code:

� Examining the code

� Inserting MsgBox functions at various locations in your code

� Inserting Debug.Print statements

� Using the Excel built-in debugging tools

Examining your code
Perhaps the most straightforward debugging technique is simply taking a
close look at your code to see whether you can find the problem. If you’re
lucky, the error jumps right out and you can quickly correct it.

Notice I said, “If you’re lucky.” That’s because often you discover errors when
you have been working on your program for eight hours straight, it is 2:00 a.m.,
and you are running on caffeine and willpower. At times like that, you are lucky
if you can even see your code, let alone find the bugs. Thus, don’t be surprised
if examining your code alone doesn’t expunge all the bugs it contains.

Figure 13-1:
An error

message
like this

often means
that your

VBA code
contains

a bug.

193Chapter 13: Bug Extermination Techniques

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 193



Using the MsgBox function
A common problem in many programs involves one or more variables not
taking on the values you expect. In such cases, monitoring the variable(s)
while your code runs is a helpful debugging technique. Do this by inserting
temporary MsgBox functions in your routine. For example, if you have a vari-
able named CellCount, you can insert the following statement:

MsgBox CellCount

When you execute the routine, the MsgBox function displays CellCount’s
value.

If your message box shows something unexpected, hit control-break and click
the debug button. Excel will take you to the VBE and highlight the next state-
ment for you to step through.

It’s often helpful to display the values of two or more variables in the message
box. The following statement displays the current value of LoopIndex and
CellCount, as shown in Figure 13-2:

MsgBox LoopIndex & “ “ & CellCount

Notice that I combine the two variables with the concatenation operator (&)
and insert a space character between them. Otherwise, the message box
strings the two values together, making them look like a single value. You can
also use the built-in constant, vbNewLine, in place of the space character.
vbNewLine inserts a line-feed break, which displays the text on a new line.
The following statement displays three variables, each on a separate line:

MsgBox LoopIndex & vbNewLine & CellCount & vbNewLine & MyVal

Figure 13-2:
Using a

message
box to

display the
value of two

variables.

194 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 194



This technique isn’t limited to monitoring variables. You can use a message
box to display all sorts of useful information while your code is running. For
example, if your code loops through a series of sheets, the following state-
ment displays the name and type of the active sheet:

MsgBox ActiveSheet.Name & “ “ & TypeName(ActiveSheet)

I use MsgBox functions frequently when I debug my code. Just make sure that
you remove them after you identify and correct the problem. 

Inserting Debug.Print statements
As an alternative to using MsgBox functions in your code, you can insert one
or more temporary Debug.Print statements. Use these statements to print the
value of one or more variables in the Immediate window. Here’s an example
that displays the value of three variables:

Debug.Print LoopIndex, CellCount, MyVal

Notice that the variables are separated with a comma. You can display as many
variables as you like with a single Debug.Print statement. If VBE’s Immediate
window is not visible, press Ctrl+G.

After you’ve debugged your code, make sure to remove all the Debug.Print
statements. Even big companies like Microsoft occasionally forget to remove
their Debug.Print statements. In several previous versions of Excel, every
time the Analysis ToolPak add-in was opened, you’d see several strange mes-
sages in the Immediate window (as shown in Figure 13-3). That problem was
fixed in Excel 2007.

Figure 13-3:
Even

professional
programmers

sometimes
forget to

remove their
Debug.Print
statements.

195Chapter 13: Bug Extermination Techniques

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 195



Using the VBA debugger
The Excel designers are intimately familiar with the concept of bugs. Conse-
quently, Excel includes a set of debugging tools that can help you correct prob-
lems in your VBA code. The VBA debugger is the topic of the next section.

About the Debugger
In this section, I discuss the gory details of using the Excel debugging tools.
These tools are much more powerful than the techniques I discuss in the pre-
vious section. But along with power comes responsibility. Using the debug-
ging tools takes a bit of setup work.

Setting breakpoints in your code
Earlier in this chapter, I discuss using MsgBox functions in your code to mon-
itor the values of certain variables. Displaying a message box essentially halts
your code in mid-execution, and clicking the OK button resumes execution. 

Wouldn’t it be nice if you could halt a routine’s execution, take a look at any
of your variables, and then continue execution? Well, that’s exactly what you
can do by setting a breakpoint. 

You can set a breakpoint in your VBA code in several ways:

� Move the cursor to the statement at which you want execution to stop;
then press F9.

� Click in the gray margin to the left of the statement at which you want
execution to stop.

� Position the insertion point in the statement at which you want execu-
tion to stop. Then use the Debug➪Toggle Breakpoint command.

� Right-click a statement and choose Toggle➪Breakpoint from the short-
cut menu.

The results of setting a breakpoint are shown in Figure 13-4. Excel highlights
the line to remind you that you set a breakpoint there, and also inserts a
large dot in the gray margin.

196 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 196



When you execute the procedure, Excel goes into Break mode when the line
with the breakpoint is executed. In Break mode, the word [break] is displayed
in the VBE title bar. To get out of Break mode and continue execution, press
F5 or click the Run Sub/UserForm button in the VBE toolbar. See “Stepping
through your code” later in this chapter to find out more.

To quickly remove a breakpoint, click the large dot in the gray margin or
move the cursor to the highlighted line and press F9. To remove all break-
points in the module, press Ctrl+Shift+F9.

There is also a VBA keyword that forces Break mode:

Stop

When your code reaches the Stop keyword, VBA enters Break mode. The
handy thing about this Stop word is that if your code is protected, it will be
ignored.

What is Break mode? You can think of it as a state of suspended animation.
Your VBA code stops running and the current statement is highlighted in
bright yellow. In Break mode, you can

� Type VBA statements in the Immediate window. (See the next section for
details.)

� Step through your code one line at a time to check various things while
the program is paused.

� Skip the next statement(s) and continue execution there (or even go
back a couple of statements).

� Edit a statement and then continue.

Figure 13-4:
The

highlighted
statement

marks a
breakpoint

in this
procedure.

197Chapter 13: Bug Extermination Techniques

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 197



In Break mode, you can move the mouse pointer over a variable to display its
value in a small pop-up window. Figure 13-5 shows an example.

Using the Immediate window
The Immediate window may not be visible in the VBE. You can display the
VBE’s Immediate window at any time by pressing Ctrl+G.

In Break mode, the Immediate window (see Figure 13-6) is particularly useful
for finding the current value of any variable in your program. For example, if
you want to know the current value of a variable named CellCount, enter the
following in the Immediate window and press Enter:

Print CellCount

Figure 13-6:
The

Immediate
window in

action.
The cell’s

current
value is 32.

Figure 13-5:
In Break

mode, move
the mouse

pointer over
a variable to

display its
current

value. In this
example, the

cell has a
value of 32.

198 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 198



You can save a few milliseconds by using a question mark in place of the
word Print, like this:

? CellCount

The Immediate window lets you do other things besides check variable
values. For example, you can change the value of a variable, activate a differ-
ent sheet, or even open a new workbook. Just make sure that the command
you enter is a valid VBA statement.

You can also use the Immediate window when Excel is not in Break mode. I
often use the Immediate window to test small code snippets (whatever you
can cram on a single line) before incorporating them into my procedures.

Stepping through your code
While in Break mode, you can also step through your code line by line. One
statement is executed each time you press F8. Throughout this line-by-line
execution of your code, you can activate the Immediate window at any time
to check the status of your variables.

You can use your mouse to change which statement VBA will execute next. If
you put your mouse pointer in the gray margin to the left of the currently
highlighted statement (which will usually be yellow), your pointer changes to
a right-pointing arrow. Simply drag your mouse to the statement you want
done next and watch that statement turn yellow.

Using the Watch window
In some cases, you may want to know whether a certain variable or expres-
sion takes on a particular value. For example, suppose that a procedure loops
through 1,000 cells. You notice that a problem occurs during the 900th itera-
tion of the loop. Well, you could insert a breakpoint in the loop, but that
would mean responding to 899 prompts before the code finally gets to the
iteration you want to see (and that gets boring real fast). A more efficient
solution involves setting a watch expression.

For example, you can create a watch expression that puts the procedure into
Break mode whenever a certain variable takes on a specific value — for
example, Counter=900. To create a watch expression, choose Debug➪Add
Watch to display the Add Watch dialog box. See Figure 13-7.

199Chapter 13: Bug Extermination Techniques

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 199



The Add Watch dialog has three parts:

� Expression: Enter a valid VBA expression or a variable here. For exam-
ple, Counter=900 or just Counter.

� Context: Select the procedure and the module you want to watch. Note
that you can select All Procedures and All Modules.

� Watch Type: Select the type of watch by clicking an option button. Your
choice here depends on the expression you enter. The first choice,
Watch Expression, does not cause a break; it simply displays the expres-
sion’s value when a break occurs.

Execute your procedure after setting up your watch expression(s). Things
run normally until your watch expression is satisfied (based on the Watch
Type you specified). When that happens, Excel enters Break mode (you
did set the Watch Type to “Break When Value is True”, didn’t you?). From
there, you can step through the code or use the Immediate pane to debug
your code.

When you create a watch, VBE displays the Watches window shown in
Figure 13-8. This window displays the value of all watches that you’ve
defined.

The best way to understand how this Watch business works is to use it and
try various options. Before long, you realize what a useful tool it is.

Figure 13-8:
The

Watches
window

displays all
watches.

Figure 13-7:
The Add

Watch
dialog box

lets you
specify a
condition

that causes
a break.

200 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 200



Using the Locals Window
Another useful feature is the Locals window. You can show this window by
selecting View➪Locals Window from the VBE’s menu. When you are in Break
mode, this window will show you a list of all variables that are local to the
current procedure (see Figure 13-9). The nice thing about this window is that
you don’t have to add a load of watches manually if you want to look at the
content of many variables. The VBE has done all the hard work for you.

Bug Reduction Tips
I can’t tell you how to completely eliminate bugs in your programs. Finding
bugs in software can be a profession by itself, but I can provide a few tips to
help you keep those bugs to a minimum:

� Use an Option Explicit statement at the beginning of your modules.
This statement requires you to define the data type for every variable
you use. This creates a bit more work for you, but you avoid the
common error of misspelling a variable name. And it has a nice side ben-
efit: Your routines run a bit faster.

� Format your code with indentation. Using indentations helps delineate
different code segments. If your program has several nested For-Next
loops, for example, consistent indentation helps you keep track of
them all.

� Be careful with the On Error Resume Next statement. As I discuss in
Chapter 12, this statement causes Excel to ignore any errors and con-
tinue executing the routine. In some cases, using this statement causes
Excel to ignore errors that it shouldn’t ignore. Your code may have bugs
and you may not even realize it.

� Use lots of comments. Nothing is more frustrating than revisiting code
you wrote six months ago and not having a clue as to how it works. By
adding a few comments to describe your logic, you can save lots of time
down the road.

Figure 13-9:
The Locals

window
displays all

local
variables
and their
content.

201Chapter 13: Bug Extermination Techniques

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 201



� Keep your Sub and Function procedures simple. By writing your code
in small modules, each of which has a single, well-defined purpose, you
simplify the debugging process.

� Use the macro recorder to help identify properties and methods.
When I can’t remember the name or the syntax of a property or method,
I often simply record a macro and look at the recorded code.

� Understand Excel’s debugger. Although it can be a bit daunting at first,
the Excel debugger is a useful tool. Invest some time and get to know it.

Debugging code is not one of my favorite activities (it ranks right up there
with getting audited by the IRS), but it’s a necessary evil that goes along with
programming. As you gain more experience with VBA, you spend less time
debugging and become more efficient at doing so.

202 Part III: Programming Concepts 

19_046746 ch13.qxp  1/12/07  5:58 PM  Page 202



Chapter 14

VBA Programming Examples
In This Chapter
� Exploring VBA examples 

� Making your VBA code run as fast as possible

My philosophy for figuring out how to write Excel macros places heavy
emphasis on examples. I find that a well-thought-out example often

communicates a concept much better than a lengthy description of the
underlying theory. Because you’re reading this book, you probably agree with
me. This chapter presents several examples that demonstrate common VBA
techniques.

I organize these examples into the following categories:

� Working with ranges

� Changing Excel settings

� Working with charts

� Speeding up your VBA code

Although you may be able to use some of the examples directly, in most
cases you must adapt them to your own needs.

Working with Ranges
Most of your VBA programming probably involves worksheet ranges. (For a
refresher course on Range objects, refer to Chapter 8.) When you work with
Range objects, keep the following points in mind:

� Your VBA doesn’t need to select a range to work with it.

� If your code does select a range, its worksheet must be active.

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 203



� The macro recorder doesn’t always generate the most efficient code.
Often, you can create your macro by using the recorder and then edit
the code to make it more efficient.

� It’s a good idea to use named ranges in your VBA code. For example,
using Range(“Total”) is better than using Range(“45”). In the latter case,
if you add a row above row 45, you need to modify the macro so that it
uses the correct range address (D46). Note that you name a range of
cells by choosing Formulas➪Defined Names ➪Name A Range.

� When running a macro that works on the current range selection, the
user might select entire columns or rows. In most cases, you don’t want
to loop through every cell in the selection (that could take a long time).
Your macro should create a subset of the selection consisting of only the
nonblank cells.

� Excel allows multiple selections. For example, you can select a range,
press Ctrl, and select another range. (Do your range selection with the
mouse, of course.) Your code can test for a multiple selection and take
appropriate actions.

The examples in this section, which are available at this book’s Web site,
demonstrate these points.

If you prefer to enter these examples yourself, press Alt+F11 to activate the
VBE. Then insert a VBA module and type the code. Make sure that the work-
book is set up properly. For instance, if the example uses two sheets named
Sheet1 and Sheet2, make sure that the workbook has sheets with those names.

Copying a range
Copying a range ranks right up there as one of the most favorite Excel activi-
ties of all time. When you turn on the macro recorder and copy a range from
A1:A5 to B1:B5, you get this VBA macro:

Sub CopyRange()
Range(“A1:A5”).Select
Selection.Copy
Range(“B1”).Select
ActiveSheet.Paste
Application.CutCopyMode = False

End Sub

204 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 204



Notice the last statement. This statement was generated by pressing Esc,
which cancels the marching ants display that appears in the worksheet when
you copy a range. 

This macro works fine, but you can copy a range more efficiently than this.
You can produce the same result with the following one-line macro, which
doesn’t select any cells:

Sub CopyRange2()
Range(“A1:A5”).Copy Range(“B1”)

End Sub

This procedure takes advantage of the fact that the Copy method can use an
argument that specifies the destination. I found that by consulting the VBA
Help system. This example also demonstrates that the macro recorder doesn’t
always generate the most efficient code.

Copying a variable-sized range
In many cases, you need to copy a range of cells but don’t know the exact
row and column dimensions. For example, you might have a workbook that
tracks weekly sales. The number of rows changes as you add new data.

Figure 14-1 shows a range on a worksheet. This range consists of several
rows, and the number of rows can change from day to day. Because you don’t
know the exact range address at any given time, writing a macro to copy the
range can be challenging. Are you up for the challenge?

Figure 14-1:
This range

can consist
of any

number of
rows.

205Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 205



The following macro demonstrates how to copy this range from Sheet1 to
Sheet2 (beginning at cell A1). It uses the CurrentRegion property, which
returns a Range object that corresponds to the block of cells around a partic-
ular cell. In this case, that cell is A1.

Sub CopyCurrentRegion()
Range(“A1”).CurrentRegion.Copy
Sheets(“Sheet2”).Select
Range(“A1”).Select
ActiveSheet.Paste
Sheets(“Sheet1”).Select
Application.CutCopyMode = False

End Sub

Using the CurrentRegion property is equivalent to choosing Home➪Editing➪
Find & Select➪Goto Special (which displays the Go To Special dialog box),
and choosing the Current Region option. To see how this works, record your
actions while issuing that command. Generally, the CurrentRegion consists of a
rectangular block of cells surrounded by one or more blank rows or columns.

You can make this macro even more efficient by not selecting the destination.
The following macro takes advantage of the fact that the Copy method can
use an argument for the destination range:

Sub CopyCurrentRegion2()
Range(“A1”).CurrentRegion.Copy _

Sheets(“Sheet2”).Range(“A1”)
Application.CutCopyMode = False

End Sub

Selecting to the end of a row or column
You’re probably in the habit of using key combinations such as Ctrl+Shift+Right
Arrow and Ctrl+Shift+Down Arrow to select a range that consists of everything
from the active cell to the end of a row or a column. Not surprisingly, you can
write macros that perform these types of selections.

You can use the CurrentRegion property to select an entire block of cells. But
what if you want to select, say, one column from a block of cells? Fortunately,
VBA can accommodate this type of action. The following VBA procedure
selects the range beginning at the active cell and extending down to the cell
just above the first blank cell in the column. After selecting the range, you
can do whatever you want with it — copy it, move it, format it, and so on.

Sub SelectDown()
Range(ActiveCell, ActiveCell.End(xlDown)).Select

End Sub

206 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 206



This example uses the End method of the ActiveCell object, which returns a
Range object. The End method takes one argument, which can be any of the
following constants:

� xlUp

� xlDown

� xlToLeft

� xlToRight

Keep in mind that it’s unnecessary to select a range before doing something
with it. The following macro applies bold formatting to a variable-sized
(single column) range without selecting the range:

Sub MakeBold()
Range(ActiveCell, ActiveCell.End(xlDown)) _

.Font.Bold = True
End Sub

Selecting a row or column
The following procedure demonstrates how to select the column that con-
tains the active cell. It uses the EntireColumn property, which returns a
Range object that consists of a full column:

Sub SelectColumn()
ActiveCell.EntireColumn.Select

End Sub

As you may expect, VBA also offers an EntireRow property, which returns a
Range object that consists of an entire row.

Moving a range
You move a range by cutting it to the Clipboard and then pasting it in another
area. If you record your actions while performing a move operation, the
macro recorder generates code like the following:

Sub MoveRange()
Range(“A1:C6”).Select
Selection.Cut
Range(“A10”).Select
ActiveSheet.Paste

End Sub

207Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 207



As with the copying example earlier in this chapter, this is not the most effi-
cient way to move a range of cells. In fact, you can move a range with a single
VBA statement, as follows:

Sub MoveRange2()
Range(“A1:C6”).Cut Range(“A10”)

End Sub

This macro takes advantage of the fact that the Cut method can use an argu-
ment that specifies the destination. Notice also that the range was not
selected. The cell pointer remains in its original position.

Looping through a range efficiently
Many macros perform an operation on each cell in a range, or they might per-
form selected actions based on each cell’s content. These macros usually
include a For-Next loop that processes each cell in the range.

The following example demonstrates how to loop through a range of cells. In
this case, the range is the current selection. A variable named Cell refers to the
cell being processed. Within the For-Next loop, the single statement evaluates
the cell and changes its interior color if the cell contains a positive value.

Sub ProcessCells()
Dim Cell As Range
For Each Cell In Selection

If Cell.Value > 0 Then Cell.Interior.Color = vbRed
Next Cell

End Sub

This example works, but what if the selection consists of an entire column or
row? This is not uncommon because Excel lets you perform operations on
entire columns or rows. In such a case, the macro seems to take forever
because it loops through each cell in the selection — even the blank cells.
To make the macro more efficient, you need a means for processing only the
nonblank cells.

The following routine does just that by using the SpecialCells method. (Refer
to the VBA Help system for specific details about its arguments.) This routine
uses the Set keyword to create two new Range objects: the selection’s subset
that consists of cells with constants and the selection’s subset that consists
of cells with formulas. The routine processes each of these subsets, with the
net effect of skipping all blank cells. Pretty slick, eh?

Sub SkipBlanks()
Dim ConstantCells As Range
Dim FormulaCells As Range
Dim cell As Range

‘   Ignore errors

208 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 208



On Error Resume Next
‘   Process the constants

Set ConstantCells = Selection _
.SpecialCells(xlConstants)

For Each cell In ConstantCells
If cell.Value > 0 Then

cell.Interior.Color = vbRed
End If

Next cell
‘   Process the formulas

Set FormulaCells = Selection _
.SpecialCells(xlFormulas)

For Each cell In FormulaCells
If cell.Value > 0 Then

cell.Interior.Color = vbRed
End If

Next cell
End Sub

The SkipBlanks procedure works equally fast, regardless of what you select.
For example, you can select the range, all columns in the range, all rows in
the range, or even the entire worksheet. It’s a vast improvement over the
ProcessCells procedure presented earlier in this section.

Notice that I use the following statement in this code:

On Error Resume Next

This statement tells Excel to ignore any errors that occur and simply process
the next statement (see Chapter 12 for a discussion of error handling). This
statement is necessary because the SpecialCells method produces an error if
no cells qualify.

Using the SpecialCells method is equivalent to choosing the Home➪Editing➪
Find & Select➪Goto Special command, and selecting the Constants option or
the Formulas option. To get a feel for how this works, record your actions
while you issue that command and select various options.

Prompting for a cell value
As shown in Figure 14-2, you can use VBA’s InputBox function to get a value
from the user. Then you can insert that value into a cell. The following proce-
dure demonstrates how to ask the user for a value and place the value in cell
A1 of the active worksheet, using only one statement:

Sub GetValue()
Range(“A1”).Value = InputBox( _

“Enter the value for cell A1”)
End Sub

209Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 209



If you try out this example, you find that clicking the Cancel button in the
Input Box erases the current value in cell A1. The following macro demon-
strates a better approach: using a variable (x) to store the value entered by
the user. If the value is not empty (that is, the user didn’t click Cancel), the
value of x is placed into cell A1. Otherwise, nothing happens.

Sub GetValue2()
Dim x as Variant
x = InputBox(“Enter the value for cell A1”)
If x <> “” Then Range(“A1”).Value = x

End Sub

The variable x is defined as a variant because it could be a number or an
empty string (if the user clicks Cancel).

Determining the selection type 
If you design your macro to work with a range selection, the macro must be
able to determine whether a range is actually selected. If something other
than a range is selected (such as a chart or a shape), the macro will probably
bomb. The following procedure uses the VBA TypeName function to identify
the type of object that is currently selected:

Sub SelectionType()
MsgBox TypeName(Selection)

End Sub

Figure 14-2:
Use the

VBA
InputBox

function to
get a value

from the
user.

210 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 210



If a Range object is selected, the MsgBox displays Range. If your macro works
only with ranges, you can use an If statement to ensure that a range is
selected. This example displays a message and exits the procedure if the cur-
rent selection is not a Range object:

Sub CheckSelection()
If TypeName(Selection) <> “Range” Then

MsgBox “Select a range.”
Exit Sub

End If
‘   ... [Other statements go here]
End Sub

Identifying a multiple selection
As you know, Excel allows multiple selections by pressing Ctrl while choosing
objects or ranges. This can cause problems with some macros. For example,
you can’t copy a multiple selection that consists of nonadjacent cells. (Try it
if you don’t believe me.)

The following macro demonstrates how to determine whether the user made
a multiple selection so that your macro can take appropriate action:

Sub MultipleSelection()
If Selection.Areas.Count > 1 Then

MsgBox “Multiple selections not allowed.”
Exit Sub

End If
‘   ... [Other statements go here]
End Sub

This example uses the Areas method, which returns a collection of all objects
in the selection. The Count property returns the number of objects in the
collection.

Changing Excel Settings
Some of the most useful macros are simple procedures that change one or
more of Excel’s settings. For example, simply changing the recalculation
mode from automatic to manual requires numerous steps. You can save your-
self some keystrokes and menu choices (not to mention time) by creating a
macro that automates this task.

211Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 211



This section presents two examples that show you how to change settings in
Excel. You can apply the general principles demonstrated by these examples
to other operations that change settings.

Changing Boolean settings
Like a light switch, a Boolean setting is either on or off. For example, you
might want to create a macro that turns the worksheet page break display on
and off. After you print or preview a worksheet, Excel displays dashed lines
to indicate the page breaks. Some people (author included) find this annoy-
ing. Unfortunately, the only way to get rid of the page break display is to open
the Excel Options dialog box, click the Advanced tab, and scroll down until
you find the Show Page Breaks check box. If you turn on the macro recorder
when you change that option, Excel generates the following code:

ActiveSheet.DisplayPageBreaks = False

On the other hand, if page breaks are not visible when you record the macro,
Excel generates the following code:

ActiveSheet.DisplayPageBreaks = True

This may lead you to suspect that you need two macros: one to turn on the
page break display and one to turn it off. Not true. The following procedure
uses the Not operator to effectively toggle the page break display from True
to False and from False to True:

Sub TogglePageBreaks()
On Error Resume Next
ActiveSheet.DisplayPageBreaks = Not _
ActiveSheet.DisplayPageBreaks

End Sub

The first statement ignores an error that occurs if the active sheet is a chart
sheet. (Chart sheets don’t display page breaks.) 

You can use this technique with any settings that have Boolean (True or
False) values.

Changing non-Boolean settings
Use a Select Case structure for non-Boolean settings. This example toggles
the calculation mode between manual and automatic and displays a message
indicating the current mode:

212 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 212



Sub ToggleCalcMode()
Select Case Application.Calculation

Case xlManual
Application.Calculation =

xlCalculationAutomatic
MsgBox “Automatic Calculation Mode”

Case xlAutomatic
Application.Calculation = xlCalculationManual
MsgBox “Manual Calculation Mode”

End Select
End Sub

You can adapt this technique for changing other non-Boolean settings.

Working with Charts
Charts are packed with different objects, so manipulating charts with VBA
can be a bit of a challenge. The challenge increases with Excel 2007, because
Microsoft decided to omit recording macros for all the new and fancy format-
ting stuff. To get a feel for this, turn on the macro recorder, create a chart,
and perform some routine chart-editing tasks. You may be surprised by the
amount of code Excel generates. And at the same time, you’ll be disappointed
about how much does not get recorded. Basic chart creation things do get
recorded, thankfully. But all chart formatting you do after that is not
recorded. For example, if you’d like to find out how to add a shadow to a
chart, the macro recorder is useless. You need to use other tools such as the
object browser, the Auto List Members feature, and the Help system.

After you understand the objects in a chart, however, you can create some
useful macros.

To write macros that manipulate charts, you must understand some terminol-
ogy. An embedded chart on a worksheet is a ChartObject object. You can acti-
vate a ChartObject much like you activate a sheet. The following statement
activates the ChartObject named Chart 1:

ActiveSheet.ChartObjects(“Chart 1”).Activate

After you activate the chart, you can refer to it in your VBA code as the
ActiveChart. If the chart is on a separate chart sheet, it becomes the active
chart as soon as you activate that chart sheet.

When you click an embedded chart, Excel actually selects an object inside
the ChartObject object. You can select the ChartObject itself by pressing Ctrl
while clicking the embedded chart. 

213Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 213



Modifying the chart type
Here’s a confusing statement for you: A ChartObject object acts as a con-
tainer for a Chart object. 

To modify a chart with VBA, you don’t have to activate the chart. Rather, the
Chart method can return the chart contained in the ChartObject. Are you thor-
oughly confused yet? The following two procedures have the same effect —
they change the chart named Chart 1 to an area chart. The first procedure acti-
vates the chart first; the second one doesn’t. The built-in constant xlArea repre-
sents an area chart.

Sub ModifyChart1()
ActiveSheet.ChartObjects(“Chart 1”).Activate
ActiveChart.Type = xlArea

End Sub

Sub ModifyChart2()
ActiveSheet.ChartObjects(“Chart 1”).Chart.Type =

xlArea
End Sub

Looping through the ChartObjects 
collection
This example changes the chart type of every embedded chart on the active
sheet. The procedure uses a For-Next loop to cycle through each object in
the ChartObjects collection, access the Chart object in each, and change its
Type property.

Sub ChartType()
Dim cht As ChartObject
For Each cht In ActiveSheet.ChartObjects

cht.Chart.Type = xlArea
Next cht

End Sub

The following macro performs the same function but works on all the chart
sheets in the active workbook:

Sub ChartType2()
Dim cht As Chart
For Each cht In ActiveWorkbook.Charts

cht.Type = xlArea
Next cht

End Sub

214 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 214



Modifying chart properties
The following example changes the Legend font for all charts on the active
sheet. It uses a For-Next loop to process all ChartObject objects:

Sub LegendMod()
Dim cht As ChartObject
For Each cht In ActiveSheet.ChartObjects

With cht.Chart.Legend.Font
.Name = “Calibri”
.FontStyle = “Bold”
.Size = 12

End With
Next cht

End Sub

Note that the Font object is contained in the Legend object, which is con-
tained in the Chart object, which is contained in the ChartObjects collection.
Now do you understand why it’s called an object hierarchy?

Applying chart formatting
This example applies several different types of formatting to the active chart.
I created this macro by recording my actions as I formatted a chart. Then I
cleaned up the recorded code by removing irrelevant lines.

Sub ChartMods()
ActiveChart.Type = xlArea
ActiveChart.ChartArea.Font.Name = “Calibri”
ActiveChart.ChartArea.Font.FontStyle = “Regular”
ActiveChart.ChartArea.Font.Size = 9
ActiveChart.PlotArea.Interior.ColorIndex = xlNone
ActiveChart.Axes(xlValue).TickLabels.Font.Bold = True
ActiveChart.Axes(xlCategory).TickLabels.Font.Bold = _

True
ActiveChart.Legend.Position = xlBottom

End Sub

You must activate a chart before executing the ChartMods macro. Activate an
embedded chart by clicking it. To activate a chart on a chart sheet, activate
the chart sheet.

215Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 215



To ensure that a chart is selected, you can add a statement to determine if a
chart is active. Here’s the modified macro, which displays a message (and
ends) if a chart is not activated:

Sub ChartMods2()
If ActiveChart Is Nothing Then

MsgBox “Activate a chart.”
Exit Sub

End If    ActiveChart.Type = xlArea
ActiveChart.ChartArea.Font.Name = “Calibri”
ActiveChart.ChartArea.Font.FontStyle = “Regular”
ActiveChart.ChartArea.Font.Size = 9
ActiveChart.PlotArea.Interior.ColorIndex = xlNone
ActiveChart.Axes(xlValue).TickLabels.Font.Bold = True
ActiveChart.Axes(xlCategory).TickLabels.Font.Bold = _

True
ActiveChart.Legend.Position = xlBottom

End Sub

VBA Speed Tips
VBA is fast, but it’s not always fast enough. (Computer programs are never
fast enough.) This section presents some programming examples you can use
to speed up your macros.

Turning off screen updating
When executing a macro, you can sit back and watch all the on-screen action
that occurs in the macro. Although doing this can be instructive, after getting
the macro working properly, it’s often annoying and can slow down the
course of your macro considerably. Fortunately, you can disable the screen
updating that normally occurs when you execute a macro. To turn off screen
updating, use the following statement:

Application.ScreenUpdating = False

If you want the user to see what’s happening at any point during the macro,
use the following statement to turn screen updating back on:

Application.ScreenUpdating = True

216 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 216



To demonstrate the difference in speed, execute this simple macro, which
fills a range with numbers:

Sub FillRange()
Dim r as Long, c As Integer
Dim Number as Long
Number = 0
For r = 1 To 50

For c = 1 To 50
Number = Number + 1
Cells(r, c).Value = Number

Next c
Next r

End Sub

You see each value being entered into the cells. Now insert the following
statement at the beginning of the procedure and execute it again:

Application.ScreenUpdating = False

The range is filled up much faster, and you don’t see the end result until the
macro is finished running.

When debugging code, sometimes program execution ends somewhere in the
middle, without having turned Screen updating back on (and yes, this hap-
pens to me too). This sometimes causes Excel’s application window to
become totally unresponsive. The way out of this frozen state is simple: Go
back to the VBE and type the following statement in the Immediate window.
Press the enter key to let the VBE execute this command.

Application.ScreenUpdating = True

Turning off automatic calculation
If you have a worksheet with many complex formulas, you may find that you
can speed things up considerably by setting the calculation mode to manual
while your macro is executing. When the macro finishes, set the calculation
mode back to automatic.

The following statement sets the Excel calculation mode to manual:

Application.Calculation = xlCalculationManual

217Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 217



Execute the next statement to set the calculation mode to automatic:

Application.Calculation = xlCalculationAutomatic

If your code somehow uses cells with formula results, remember that turning
off calculation will mean that the cells will not have been recalculated unless
you explicitly tell Excel to do so!

Eliminating those pesky alert messages
As you know, a macro can automatically perform a series of actions. In many
cases, you can start a macro and then go hang out at the water cooler while
Excel does its thing. Some operations performed in Excel, however, display
messages that require a human response. For example, if your macro deletes
a nonempty sheet, Excel displays the message shown in Figure 14-3. These
types of messages mean that you can’t leave Excel unattended while it exe-
cutes your macro.

To avoid these alert messages, insert the following VBA statement in your
macro:

Application.DisplayAlerts = False

When the procedure ends, Excel automatically resets the DisplayAlerts prop-
erty to True (its normal state). 

Figure 14-3:
You can
instruct

Excel to not
display

these types
of alerts

while
running a

macro.

218 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 218



Simplifying object references
As you probably already know, references to objects can become very
lengthy. For example, a fully qualified reference to a Range object may look
like this:

Workbooks(“MyBook.xlsx”).Worksheets(“Sheet1”) _
.Range(“InterestRate”)

If your macro frequently uses this range, you may want to create an object
variable by using the Set command. For example, the following statement
assigns this Range object to an object variable named Rate:

Set Rate = Workbooks(“MyBook.xlsx”) _
.Worksheets(“Sheet1”).Range(“InterestRate”)

After defining this object variable, you can use the variable Rate rather than
the lengthy reference. For example, you can change the value of the cell
named InterestRate:

Rate.Value = .085

This is much easier to type (and understand) than the following statement:

Workbooks(“MyBook.xlsx”).Worksheets(“Sheet1”). _
Range(“InterestRate”) = .085

In addition to simplifying your coding, using object variables also speeds up
your macros considerably. After creating object variables, I’ve seen some
macros execute twice as fast as before.

Declaring variable types
You don’t usually have to worry about the type of data you assign to a vari-
able. Excel handles all the details for you behind the scenes. For example, if
you have a variable named MyVar, you can assign a number of any type to
that variable. You can even assign a text string to it later in the procedure.

But if you want your procedures to execute as fast as possible (and avoid
some potentially nasty problems), tell Excel what type of data will be
assigned to each of your variables. This is known as declaring a variable’s
type. (Refer to Chapter 7 for complete details.) Get into the habit of declaring
all variables that you use.

219Chapter 14: VBA Programming Examples

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 219



In general, you should use the data type that requires the smallest number of
bytes yet can still handle all the data assigned to it. When VBA works with
data, execution speed depends on the number of bytes VBA has at its dis-
posal. In other words, the fewer bytes data uses, the faster VBA can access
and manipulate the data.

If you use an object variable (as described in the preceding section), you can
declare the variable as a particular object type. Here’s an example:

Dim Rate as Range
Set Rate = Workbooks(“MyBook.xlsx”) _

.Worksheets(“Sheet1”).Range(“InterestRate”)

Using the With-End With structure
Do you need to set a number of properties for an object? Your code runs
faster if you use the With-End With structure. An additional benefit is that
your code may be easier to read.

The following code does not use With-End With:

Selection.HorizontalAlignment = xlCenter
Selection.VerticalAlignment = xlCenter
Selection.WrapText = True
Selection.Orientation = 0
Selection.ShrinkToFit = False
Selection.MergeCells = False

Here’s the same code, rewritten to use With-End With:

With Selection
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlCenter
.WrapText = True
.Orientation = 0
.ShrinkToFit = False
.MergeCells = False

End With

If this structure seems familiar to you, it’s probably because the macro
recorder uses With-End With whenever it can.

220 Part III: Programming Concepts 

20_046746 ch14.qxp  1/12/07  5:58 PM  Page 220



Part IV
Communicating
with Your Users

21_046746 pt04.qxp  1/12/07  5:59 PM  Page 221



In this part . . .

The five chapters in this part show you how to develop
custom dialog boxes (also known as UserForms). This

VBA feature is fairly easy to use, after you get a few basic
concepts under your belt. And, if you’re like me, you may
actually enjoy creating dialog boxes.

21_046746 pt04.qxp  1/12/07  5:59 PM  Page 222



Chapter 15

Simple Dialog Boxes
In This Chapter
� Saving time by using any of several alternatives to UserForms

� Using the InputBox and MsgBox functions to get information from the user

� Getting a filename and path from the user

� Getting a folder name from the user

� Writing VBA code to display any of the Excel built-in dialog boxes

You can’t use Excel very long without being exposed to dialog boxes.
They seem to pop up almost every time you select a command. Excel —

like most Windows programs — uses dialog boxes to obtain information, clar-
ify commands, and display messages. If you develop VBA macros, you can
create your own dialog boxes that work just like those built into Excel. Those
custom dialog boxes are called UserForms in VBA.

This chapter doesn’t tell you anything about creating UserForms. Rather, it
describes some techniques you can use in place of UserForms. 

Why Create UserForms?
Some of the VBA macros you create behave the same every time you execute
them. For example, you may develop a macro that enters a list of your employ-
ees into a worksheet range. This macro always produces the same result and
requires no additional user input.

You might develop other macros, however, that behave differently under vari-
ous circumstances or that offer the user options. In such cases, the macro
may benefit from a custom dialog box. A custom dialog box provides a simple
means for getting information from the user. Your macro then uses that infor-
mation to determine what it should do. 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 223



UserForms can be quite useful, but creating them takes time. Before I cover
the topic of creating UserForms in the next chapter, you need to know about
some timesaving alternatives.

VBA lets you display four different types of dialog boxes that you can some-
times use in place of a UserForm. You can customize these built-in dialog
boxes in some ways, but they certainly don’t offer the options available in a
UserForm. In some cases, however, they’re just what the doctor ordered.

In this chapter you read about

� The MsgBox function

� The InputBox function

� The GetOpenFileName method

� The GetSaveAsFileName method

I also describe how to use VBA to display the Excel built-in dialog boxes —
the dialog boxes that Excel uses to get information from you.

The MsgBox Function
You’re probably already familiar with the VBA MsgBox function — I use it
quite a bit in the examples throughout this book. The MsgBox function,
which accepts the arguments shown in Table 15-1, is handy for displaying
information and getting simple user input. 

Here’s a simplified version of the syntax for the MsgBox function:

MsgBox(prompt[, buttons][, title])

Table 15-1 MsgBox Function Arguments
Argument What It Does

prompt Supplies the text Excel displays in the message box

buttons Specifies which buttons (and what icon) appear in the
message box (optional)

title Defines the text that appears in the message box’s title bar
(optional)

224 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 224



Displaying a simple message box
You can use the MsgBox function by itself or assign its result (that is, the
button clicked by the user) to a variable. If you use this function by itself,
don’t include parentheses around the arguments. The following example
simply displays a message and does not return a result:

Sub MsgBoxDemo()
MsgBox “Click OK to begin printing.”

End Sub

Figure 15-1 shows how this message box looks.

Getting a response from a message box
If you display a message box that has more than just an OK button, you’ll
probably want to know which button the user clicks. Fortunately, the MsgBox
function returns a value that represents which button is clicked. You can
assign the result of the MsgBox function to a variable. In the following code, I
use some built-in constants (which I describe later in Table 15-2) that make it
easy to work with the values returned by MsgBox:

Sub GetAnswer()
Dim Ans As Integer
Ans = MsgBox(“Continue?”, vbYesNo)
Select Case Ans

Case vbYes
‘       ...[code if Ans is Yes]...

Case vbNo
‘       ...[code if Ans is No]...

End Select
End Sub

When you execute this procedure, the Ans variable is assigned a value of
either vbYes or vbNo, depending on which button the user clicks. The Select
Case statement uses the Ans value to determine which action the routine
should perform.

Figure 15-1:
A simple
message

box.

225Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 225



You can also use the MsgBox function result without using a variable, as the
following example demonstrates:

Sub GetAnswer2()
If MsgBox(“Continue?”, vbYesNo) = vbYes Then

‘       ...[code if Yes is clicked]...
Else

‘       ...[code if Yes is not clicked]...
End If

End Sub

Customizing message boxes
The flexibility of the buttons argument makes it easy to customize your mes-
sage boxes. You can specify which buttons to display, determine whether an
icon appears, and decide which button is the default. Table 15-2 lists some of
the built-in constants you can use for the buttons argument. If you prefer, you
can use the value rather than a constant (but I think using the built-in con-
stants is a lot easier).

Table 15-2 Constants Used in the MsgBox Function
Constant Value What It Does

vbOKOnly 0 Displays OK button only

vbOKCancel 1 Displays OK and Cancel buttons

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons

vbYesNo 4 Displays Yes and No buttons

vbRetryCancel 5 Displays Retry and Cancel buttons

vbCritical 16 Displays Critical Message icon

vbQuestion 32 Displays Warning Query icon

vbExclamation 48 Displays Warning Message icon

vbInformation 64 Displays Information Message icon

vbDefaultButton1 0 First button is default

vbDefaultButton2 256 Second button is default

vbDefaultButton3 512 Third button is default

vbDefaultButton4 768 Fourth button is default

226 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 226



To use more than one of these constants as an argument, just connect them
with a + operator. For example, to display a message box with Yes and No
buttons and an exclamation icon, use the following expression as the second
MsgBox argument:

vbYesNo + vbExclamation

Or, if you like to make your code less understandable, use a value of 52 (that
is, 4 + 48).

The following example uses a combination of constants to display a message
box with a Yes button and a No button (vbYesNo) as well as a question mark
icon (vbQuestion). The constant vbDefaultButton2 designates the second
button (No) as the default button — that is, the button that is clicked if the
user presses Enter. For simplicity, I assign these constants to the Config vari-
able and then use Config as the second argument in the MsgBox function:

Sub GetAnswer3()
Dim Config As Integer
Dim Ans As Integer
Config = vbYesNo + vbQuestion + vbDefaultButton2
Ans = MsgBox(“Process the monthly report?”, Config)
If Ans = vbYes Then RunReport

End Sub

Figure 15-2 shows the message box Excel displays when you execute the
GetAnswer3 procedure. If the user clicks the Yes button, the routine executes
the procedure named RunReport (which is not shown). If the user clicks the
No button (or presses Enter), the routine ends with no action. Because I omit-
ted the title argument in the MsgBox function, Excel uses the default title,
Microsoft Excel.

Figure 15-2:
The

MsgBox
function’s

buttons
argument

determines
what

appears 
in the

message
box.

227Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 227



The following routine provides another example of using the MsgBox function:

Sub GetAnswer4()
Dim Msg As String, Title As String
Dim Config As Integer, Ans As Integer
Msg = “Do you want to process the monthly report?”
Msg = Msg & vbNewLine & vbNewLine
Msg = Msg & “Processing the monthly report will “
Msg = Msg & “take approximately 15 minutes. It “
Msg = Msg & “will generate a 30-page report for “
Msg = Msg & “all sales offices for the current “
Msg = Msg & “month.”
Title = “XYZ Marketing Company”
Config = vbYesNo + vbQuestion
Ans = MsgBox(Msg, Config, Title)
If Ans = vbYes Then RunReport

End Sub

This example demonstrates an efficient way to specify a longer message in a
message box. I use a variable (Msg) and the concatenation operator (&) to
build the message in a series of statements. The vbNewLine constant inserts
a line break character that starts a new line. I also use the title argument to
display a different title in the message box. Figure 15-3 shows the message
box Excel displays when you execute this procedure.

Previous examples have used constants (such as vbYes and vbNo) for the
return value of a MsgBox function. Besides these two constants, Table 15-3
lists a few others.

Table 15-3 Constants Used as Return Values 
for the MsgBox Function

Constant Value What It Means

vbOK 1 User clicked OK.

vbCancel 2 User clicked Cancel.

vbAbort 3 User clicked Abort.

vbRetry 4 User clicked Retry.

Figure 15-3:
The dialog

box
displayed by
the MsgBox

Function.

228 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 228



Constant Value What It Means

vbIgnore 5 User clicked Ignore.

vbYes 6 User clicked Yes.

vbNo 7 User clicked No.

The InputBox Function
The VBA InputBox function is useful for obtaining a single value from the
user. This is a good alternative to developing a UserForm when you need to
get only one value.

InputBox syntax
Here’s a simplified version of the syntax for the InputBox function:

InputBox(prompt[, title][, default])

The InputBox function accepts the arguments listed in Table 15-4.

Table 15-4 InputBox Function Arguments
Argument What It Does

prompt Supplies the text displayed in the input box

title Specifies the text displayed in the input box’s title bar (optional)

default Defines the default value (optional)

An InputBox example
Here’s an example showing how you can use the InputBox function:

TheName = InputBox(“What is your name?”, “Greetings”)

When you execute this VBA statement, Excel displays the dialog box shown
in Figure 15-4. Notice that this example uses only the first two arguments and
does not supply a default value. When the user enters a value and clicks OK,
the routine assigns the value to the variable TheName.

229Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 229



The following example uses the third argument and provides a default value.
The default value is the username stored by Excel (the Application object’s
UserName property).

Sub GetName()
Dim DefName As String
Dim TheName As String
DefName = Application.UserName
TheName = InputBox(“What is your name?”, _

“Greetings”, DefName)
End Sub

VBA’s InputBox function always returns a string, so if you need to get a value,
you’ll need to do some additional checking.  The following example uses the
InputBox function to get a number. It uses the IsNumeric function to check
whether the string is a number. If the string does contain a number, all is fine.
If the user’s entry cannot be interpreted as a number, the code displays a
message box.

Sub GetName2AddSheet()
Dim Prompt As String
Dim Caption As String
Dim DefValue As Integer
Dim NumSheets As String
Prompt = “How many sheets do you want to add?”
Caption = “Tell me...”
DefValue = 1
NumSheets = InputBox(Prompt, Caption, DefValue)
If NumSheets = “” Then Exit Sub ‘Canceled
If IsNumeric(NumSheets) Then

If NumSheets > 0 Then Sheets.Add Count:=NumSheets
Else

MsgBox “Invalid number”
End If

End Sub

Figure 15-5 shows the dialog box that this routine produces.

Figure 15-4:
The

InputBox
function

displays this
dialog box.

230 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 230



The information presented in this section applies to VBA’s InputBox function.
In addition, you have access to the InputBox method, which is a method of
the Application object. One advantage of using the InputBox method is that
your code can prompt for a range selection. Here’s a quick example that
prompts the user to select a range. (The Help system has complete details.)

Sub GetRange()
Dim Rng As Range
On Error Resume Next
Set Rng = Application.InputBox _
(prompt:=”Specify a range:”, Type:=8)

If Rng Is Nothing Then Exit Sub
MsgBox “You selected range “ & Rng.Address

End Sub

The GetOpenFilename Method
If your VBA procedure needs to prompt the user for a filename, you could use
the InputBox function. An InputBox usually isn’t the best tool for this job,
however, because most users find it difficult to remember paths and direc-
tory names, and it’s far too easy to make a typographic error.

For a better solution to this problem, use the GetOpenFilename method of
the Application object, which ensures that your application gets a valid file-
name, including its complete path. The GetOpenFilename method displays
the familiar Open dialog box (the same dialog box Excel displays when you
choose Office➪Open). 

The GetOpenFilename method doesn’t actually open the specified file. This
method simply returns the user-selected filename as a string. Then you can
write code to do whatever you want with the filename.

Figure 15-5:
Another

example of
using the
InputBox
function.

231Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 231



The syntax
The official syntax for this method is as follows:

object.GetOpenFilename([fileFilter], [filterIndex],
[title],
[buttonText], [multiSelect])

The GetOpenFileName method takes the optional arguments shown in 
Table 15-5.

Table 15-5 GetOpenFileName Method Arguments
Argument What It Does

fileFilter Determines the types of files that appear in the dialog box
(for example, *.TXT). You can specify several different fil-
ters from which the user can choose.

filterIndex Determines which of the file filters the dialog box displays
by default.

title Specifies the caption for the dialog box’s title bar.

buttonText Ignored (used only for the Macintosh version of Excel).

multiSelect If True, the user can select multiple files.

A GetOpenFilename example
The fileFilter argument determines what appears in the dialog box’s Files of
Type drop-down list. This argument consists of pairs of file filter strings fol-
lowed by the wild card file filter specification, with commas separating each
part and pair. If omitted, this argument defaults to the following:

All Files (*.*), *.*

Notice that this string consists of two parts:

All Files (*.*)

and

*.*

232 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 232



The first part of this string is the text displayed in the Files of Type drop-
down list. The second part determines which files the dialog box displays.
For example, *.* means all files.

The code in the following example brings up a dialog box that asks the user
for a filename. The procedure defines five file filters. Notice that I use the VBA
line continuation sequence to set up the Filter variable; doing so helps sim-
plify this rather complicated argument.

Sub GetImportFileName()
Dim Finfo As String
Dim FilterIndex As Integer
Dim Title As String
Dim FileName As Variant

‘   Set up list of file filters
FInfo = “Text Files (*.txt),*.txt,” & _

“Lotus Files (*.prn),*.prn,” & _
“Comma Separated Files (*.csv),*.csv,” & _
“ASCII Files (*.asc),*.asc,” & _
“All Files (*.*),*.*”

‘   Display *.* by default
FilterIndex = 5

‘   Set the dialog box caption
Title = “Select a File to Import”

‘   Get the filename
FileName = Application.GetOpenFilename(FInfo, _

FilterIndex, Title)

‘   Handle return info from dialog box
If FileName = False Then

MsgBox “No file was selected.”
Else

MsgBox “You selected “ & FileName
End If

End Sub

Figure 15-6 shows the dialog box Excel displays when you execute this proce-
dure. In a real application, you would do something more meaningful with the
filename. For example, you may want to open it by using a statement such as
this:

Workbooks.Open FileName

Notice that the FileName variable is declared as a variant data type. If the
user clicks Cancel, that variable contains a Boolean value (False). Otherwise,
FileName is a string. Therefore, using a variant data type handles both 
possibilities.

233Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 233



Selecting multiple files
If the MultiSelect argument for the GetOpenFilename method is True, the user
can select multiple files in the dialog box. In this case, the GetOpenFilename
method returns an array of filenames. Your code must loop through the array
to identify each selected filename, as the following example demonstrates:

Sub GetImportFileName2()
Dim FileNames As Variant
Dim Msg As String
Dim I As Integer
FileNames =

Application.GetOpenFilename(MultiSelect:=True)
If IsArray(FileNames) Then

‘      Display full path and name of the files
Msg = “You selected:” & vbNewLine

For I = LBound(FileNames) To UBound(FileNames)
Msg = Msg & FileNames(i) & vbNewLine

Next i
MsgBox Msg

Else
‘       Cancel button clicked

MsgBox “No files were selected.”
End If

End Sub

Figure 15-6:
The

GetOpenFile
name

method
displays a
customiz-

able dialog
box and

returns the
selected

file’s path
and name. It

does not
open the

file.

234 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 234



Figure 15-7 shows the result of running this procedure. The message box dis-
plays the filenames that were selected.

Notice that I use a named argument for the GetOpenFilename method. I set
the MultiSelect argument to True. The other arguments are omitted, so they
take on their default values. Using named arguments eliminates the need to
specify arguments that aren’t used.

The FileNames variable is defined as a variant data type. I use the IsArray
function to determine whether FileName contains an array. If so, the code
uses the VBA LBound and UBound functions to determine the array’s lower
and upper bounds and build a message that consists of each array element. If
FileNames is not an array, the user clicked the Cancel button. Remember that
the FileNames variable contains an array even if only one file is selected.

The GetSaveAsFilename Method
The Excel GetSaveAsFilename method works just like the GetOpenFilename
method, but it displays the Excel Save As dialog box rather than its Open
dialog box. The GetSaveAsFilename method gets a path and filename from
the user but doesn’t do anything with it.

The syntax for this method follows:

object.GetSaveAsFilename([initialFilename], [fileFilter],
[filterIndex], [title], [buttonText])

The GetSaveAsFilename method takes Table 15-6’s arguments, all of which
are optional.

Figure 15-7:
Select

multiple
filenames by

using the
GetOpenFile

name
method.

235Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 235



Table 15-6 GetSaveAsFilename Method Arguments
Argument What It Does

initialFilename Specifies a default filename that appears in the File 
Name box.

fileFilter Determines the types of files Excel displays in the dialog box
(for example, *.TXT). You can specify several different filters
from which the user can choose.

filterIndex Determines which of the file filters Excel displays by default.

title Defines a caption for the dialog box’s title bar.

Getting a Folder Name
Sometimes, you don’t need to get a filename, you need to get a folder name. If
that’s the case, the FileDialog object is just what the doctor ordered.

The following procedure displays a dialog box that allows the user to select a
directory. The selected directory name (or “Canceled”) is then displayed by
using the MsgBox function.

Sub GetAFolder()
With Application.FileDialog(msoFileDialogFolderPicker)
.InitialFileName = Application.DefaultFilePath & “\”
.Title = “Please select a location for the backup”
.Show
If .SelectedItems.Count = 0 Then

MsgBox “Canceled”
Else

MsgBox .SelectedItems(1)
End If

End With
End Sub

The FileDialog object lets you specify the starting directory by specifying a
value for the InitialFileName property. In this case, the code uses Excel’s
default file path as the starting directory.

Displaying Excel’s Built-in Dialog Boxes
You can write VBA code that performs the equivalent of selecting an Excel
menu command and making choices in the resulting dialog box — although
Excel doesn’t actually display the dialog box.

236 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 236



For example, the following statement has the same effect as choosing the
Home➪Editing➪Find & Select➪Go To command, specifying a range named
InputRange, and clicking OK:

Application.Goto Reference:=”InputRange”

When you execute this statement, the Go To dialog box does not appear. This
is almost always what you want to happen; you don’t want dialog boxes flash-
ing across the screen while your macro executes.

In some cases, however, you may want your code to simply display one of
Excel’s many built-in dialog boxes and let the user make the choices in the
dialog box. You can do this by using the Application object’s Dialogs prop-
erty. Here’s an example:

Result = Application.Dialogs(xlDialogFormulaGoto).Show

When executed, this statement displays the Go To dialog box, as shown in
Figure 15-8. The user can specify a named range or enter a cell address. This
dialog box works exactly as it does when you choose Home➪Editing➪Find &
Select➪Go To or press F5.

You may think that the value assigned to the Result variable is the range that
the user selects in the Go To dialog box. Actually, the value assigned to
Result a Boolean value: True if the user clicks OK, and False if the user clicks
Cancel or presses Escape. 

The preceding example uses the predefined constant xlDialogFormulaGoto.
This constant determines which dialog box Excel displays. To display Excel’s
Open dialog box, use this statement:

Application.Dialogs(xlDialogOpen).Show

Figure 15-8:
The Go To

dialog box,
displayed by

using VBA
code.

237Chapter 15: Simple Dialog Boxes

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 237



You can get a list of available dialog box constants by using the Object
Browser. Follow these steps:

1. In the VBE, press F2.

The Object Browser appears.

2. In the Project/Library drop-down list (the one at the upper-left corner
of the Object Browser), select Excel.

3. In the Search Text drop-down list (just below the Project/Library drop-
down list) type xlDialog.

4. Click the Search button (the button with the binoculars).

Figure 15-9 shows the Object Browser displaying a list of the dialog box 
constants.

Unfortunately, these dialog box constants are not documented in the Help
system. Therefore, you may need to use a bit of trial and error to figure out
which is appropriate for your needs. You’ll find that some Excel dialog boxes
don’t have a corresponding dialog box constant. Even worse, some of the
dialog box constants just don’t work.

If you try to display a built-in dialog box in an incorrect context, Excel dis-
plays an error message. For example, one of the dialog box constants is
xlDialogAlignment. This dialog box sets text alignment in a cell. If you try to
display this dialog box when something other than a range is selected, Excel
displays an error message because that dialog box is appropriate only for
worksheet cells.

Figure 15-9:
Use the
Object

Browser 
to get a 

list of the
dialog box
constants.

238 Part IV: Communicating with Your Users 

22_046746 ch15.qxp  1/12/07  5:59 PM  Page 238



Chapter 16

UserForm Basics
In This Chapter
� Finding out when to use UserForms

� Understanding UserForm objects

� Displaying a UserForm

� Creating a UserForm that works with a useful macro

A UserForm is useful if your VBA macro needs to get information from a
user. For example, your macro may have some options that can be spec-

ified in a UserForm. If only a few pieces of information are required (for exam-
ple, a Yes/No answer or a text string), one of the techniques I describe in
Chapter 15 may do the job. But if you need to obtain more information, you
must create a UserForm. In this chapter, you find out what essential skills you
need to create and work with UserForms.

Knowing When to Use a UserForm
This section describes a situation in which a UserForm is useful. The follow-
ing macro changes the text in each cell in the selection to uppercase letters.
It does this by using the VBA built-in UCase function.

Sub ChangeCase()
Dim WorkRange As Range

‘   Exit if a range is not selected
If TypeName(Selection) <> “Range” Then Exit Sub

‘   Process only text cells, no formulas
On Error Resume Next
Set WorkRange = Selection.SpecialCells _

(xlCellTypeConstants, xlCellTypeConstants)
For Each cell In WorkRange

cell.Value = UCase(cell.Value)
Next cell

End Sub

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 239



You can make this macro even more useful. For example, it would be nice if
the macro could also change the text in the cells to either lowercase or proper
case (capitalizing the first letter in each word). One approach is to create two
additional macros (one for lowercase and one for proper case). Another
approach is to modify the macro to handle the other options. Regardless of
the approach, you need some method of asking the user which type of change
to make to the cells.

The solution is to display a dialog box like the one shown in Figure 16-1. You
create this dialog box on a UserForm in the VBE and display it by using a VBA
macro. In the next section, I provide step-by-step instructions for creating
this dialog box. But before I get into that, I set the stage with some introduc-
tory material.

In VBA, the official name for a dialog box is a UserForm. But a UserForm is
really an object that contains what’s commonly known as a dialog box. This
distinction isn’t important, so I tend to use these terms interchangeably.

Creating UserForms: An Overview
To create a UserForm, you usually take the following general steps:

1. Determine how the dialog box will be used and where it will be dis-
played in your VBA macro.

2. Press Alt+F11 to activate the VBE and insert a new UserForm object.

A UserForm object holds a single UserForm.

3. Add controls to the UserForm.

Controls include items such as text boxes, buttons, check boxes, and list
boxes.

Figure 16-1:
You can get
information

from the
user by

displaying a
UserForm.

240 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 240



4. Use the Properties window to modify the properties for the controls
or for the UserForm itself.

5. Write event-handler procedures for the controls (for example, a macro
that executes when the user clicks a button in the dialog box).

These procedures are stored in the Code window for the UserForm
object.

6. Write a procedure (stored in a VBA module) that displays the dialog
box to the user.

Don’t worry if some of these steps seem foreign. I provide more details in 
the following sections, along with step-by-step instructions for creating a
UserForm.

When you are designing a UserForm, you are creating what developers call
the Graphical User Interface (GUI) to your application. Take ample time to
consider what your form should look like and how your users are likely to
want to interact with the elements on the UserForm. Try to guide them
through the steps they need to take on the form by carefully considering the
arrangement and wording of the controls.

Working with UserForms
Each dialog box that you create is stored in its own UserForm object — one
dialog box per UserForm. You create and access these UserForms in the
Visual Basic Editor.

Inserting a new UserForm
Insert a UserForm object with the following steps:

1. Activate the VBE by pressing Alt+F11.

2. Select the workbook in the Project window.

3. Choose Insert➪UserForm.

The VBE inserts a new UserForm object, which contains an empty 
dialog box. 

Figure 16-2 shows a UserForm — an empty dialog box.

241Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 241



Adding controls to a UserForm
When you activate a UserForm, the VBE displays the Toolbox in a floating
window, as shown in Figure 16-3. You use the tools in the Toolbox to add con-
trols to your UserForm. Just click the desired control in the Toolbox and drag
it into the dialog box to create the control. After you add a control, you can
move and resize it by using standard techniques.

Table 16-1 indicates the various tools, as well as their capabilities. To deter-
mine which tool is which, hover your mouse button over the control and
read the small pop-up description.

Figure 16-3:
You use the
tools in the

Toolbox 
to add

controls to a
UserForm.

Figure 16-2:
A new

UserForm
object.

242 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 242



Table 16-1 Toolbox Controls
Control What It Does

Label Stores text

TextBox Allows the user to enter text

ComboBox A drop-down list

ListBox A list of items

CheckBox Useful for on/off or yes/no options

OptionButton Used in groups, allows the user to select one of several
options

ToggleButton A button that is either on or off

Frame Contains other controls

CommandButton A clickable button

TabStrip Displays tabs

MultiPage Tabbed container for other objects

ScrollBar Draggable bar

SpinButton Clickable button often used for changing a value

Image Contains an image

RefEdit Allows the user to select a range

Changing properties for 
a UserForm control
Every control you add to a UserForm has a number of properties that deter-
mine how the control looks or behaves (the UserForm itself also has its own
set of properties). You can change these properties with the Properties
window, as shown in Figure 16-4. The Properties window appears when you
press F4, and the properties shown in this window depend on what is
selected. If you select a different control, the properties change to those
appropriate for that control. To hide the Properties window, click the close
button in its title bar.

243Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 243



Properties for controls include the following:

� Name

� Width

� Height

� Value 

� Caption

Each control has its own set of properties (although many controls have many
common properties). Chapter 17 tells you everything you need to know about
working with dialog box controls.

If you select the UserForm itself (not a control on the UserForm), you can use
the Properties window to adjust UserForm properties.

Viewing the UserForm Code window
Every UserForm object has a Code module that holds the VBA code (the
event-handler procedures) executed when the user works with the dialog
box. To view the Code module, press F7. The Code window is empty until you
add some procedures. Press Shift+F7 to return to the dialog box. 

Figure 16-4:
Use the

Properties
windows to
change the
properties

of UserForm
controls.

244 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 244



Another way to switch between the Code window and the UserForm display:
Use the View Code and View Object buttons in the Project window’s title bar.
You find out more about the Code window in Chapter 17.

Displaying a UserForm
You can display a UserForm by using the UserForm’s Show method in a VBA
procedure.

The macro that displays the dialog box must be in a VBA module — not in
the Code window for the UserForm.

The following procedure displays the dialog box named UserForm1:

Sub ShowDialog()
UserForm1.Show

‘   Other statements can go here
End Sub

When Excel displays the dialog box, the macro halts until the user closes the
dialog box. Then VBA executes any remaining statements in the procedure.
Most of the time, you won’t have any more code in the procedure. As you
later see, you can put your macro code in the Code window for the UserForm.

Using information from a UserForm
The VBE provides a name for each control you add to a UserForm. The con-
trol’s name corresponds to its Name property. Use this name to refer to a par-
ticular control in your code. For example, if you add a CheckBox control to a
UserForm named UserForm1, the CheckBox control is named CheckBox1 by
default. The following statement makes this control appear with a check mark:

UserForm1.CheckBox1.Value = True

Most of the time, you write the code for a UserForm in the UserForm’s code
module. If that’s the case, you can omit the UserForm object qualifier, and
write the statement like this:

CheckBox1.Value = True

245Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 245



Your VBA code can also check various properties of the controls and take
appropriate actions. The following statement executes a macro named
PrintReport if the check box (named CheckBox1) is checked:

If CheckBox1.Value = True Then Call PrintReport

I discuss this topic in detail in Chapter 17.

I recommend that you change the default name the VBE has given to your
controls to something more meaningful. You might consider naming the
check box described above “cbxPrintReport.” Note that I precede the name
with a three-letter prefix, indicating the type of control. It is a matter of taste
whether you think doing so is a good practice or not.

A UserForm Example
This section’s UserForm example is an enhanced version of the ChangeCase
macro from the beginning of the chapter. Recall that the original version of
this macro changes the text in the selected cells to uppercase. This modified
version uses a UserForm to ask the user which type of change to make:
uppercase, lowercase, or proper case.

This dialog box needs to obtain one piece of information from the user: the
type of change to make to the text. Because the user has three choices, your
best bet is a dialog box with three OptionButton controls. The dialog box also
needs two more buttons: an OK button and a Cancel button. Clicking the OK
button runs the code that does the work. Clicking the Cancel button causes
the macro to finish without doing anything.

This workbook is available at the book’s Web site. However, you get more out
of this exercise if you follow the steps provided here and create it yourself.

Creating the UserForm
These steps create the UserForm. Start with an empty workbook.

1. Press Alt+F11 to activate the VBE.

2. If multiple projects are in the Project window, select the project that
corresponds to the workbook you’re using.

3. Choose Insert➪UserForm.

The VBE inserts a new UserForm object with an empty dialog box.

246 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 246



4. Press F4 to display the Properties window.

5. In the Properties window, change the dialog box’s Caption property
to Change Case.

6. The dialog box is a bit too large, so you may want to click it and use
the handles to make it smaller.

Step 6 can also be done after you position all the controls in the 
dialog box. 

Adding the CommandButtons
Ready to add two CommandButtons — OK and Cancel — to the dialog box?
Follow along:

1. Make sure that the toolbox is displayed. If it isn’t, choose
View➪Toolbox.

2. If the Properties window isn’t visible, press F4 to display it.

3. In the toolbox, drag a CommandButton into the dialog box to create a
button.

As you see in the Properties box, the button has a default name and cap-
tion: CommandButton1.

4. Make sure that the CommandButton is selected. Then activate the
Properties window and change the following properties:

Property Change To

Name OKButton

Caption OK

Default True

5. Add a second CommandButton object to the UserForm and change the
following properties:

Property Change To

Name CancelButton

Caption Cancel

Cancel True

6. Adjust the size and position of the controls so your dialog box looks
something like Figure 16-5.

247Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 247



Adding the OptionButtons
In this section, you add three OptionButtons to the dialog box. Before adding
the OptionButtons, you add a Frame object that contains the OptionButtons.
The Frame isn’t necessary, but it makes the dialog box look better.

1. In the toolbox, click the Frame tool and drag in the dialog box.

This step creates a frame to hold the options buttons.

2. Use the Properties window to change the frame’s caption to Options.

3. In the Toolbox, click the OptionButton tool and drag in the dialog box
(within the Frame).

Doing this creates an OptionButton control.

4. Select the OptionButton and use the Properties window to change the
following properties:

Property Change To

Name OptionUpper

Caption Upper Case

Accelerator U

Value True

Setting the Value property to True makes this OptionButton the default.

5. Add another OptionButton and use the Properties window to change
the following properties:

Figure 16-5:
The

UserForm
with two

Command-
Button

controls.

248 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 248



Property Change To

Name OptionLower

Caption Lower Case

Accelerator L

6. Add a third OptionButton and use the Properties window to change
the following properties:

Property Change To

Name OptionProper

Caption Proper Case

Accelerator P

7. Adjust the size and position of the OptionButtons, Frame, and 
dialog box.

Your UserForm should look something like Figure 16-6.

The Accelerator property determines which letter in the caption is 
underlined — more important, it determines what alt-key combination
selects that control. For example, you can select the Lower Case option by
pressing Alt+L because the L is underlined. 

You may wonder why the OptionButtons have accelerator keys but the
CommandButtons go without. Generally, OK and Cancel buttons never have
accelerator keys because they can be accessed from the keyboard. Pressing
Enter is equivalent to clicking OK because the control’s Default property is
True. Pressing Esc is equivalent to clicking Cancel, because the control’s
Cancel property is True.

Figure 16-6:
This is the
UserForm

after adding
three Option

Button
controls
inside a

Frame
control.

249Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 249



Adding event-handler procedures
Here’s how to add an event-handler procedure for the Cancel and OK buttons:

1. Double-click the Cancel button.

VBE activates the Code window for the UserForm and inserts an empty
procedure:

Private Sub CancelButton_Click()

The procedure named CancelButton_Click is executed when the Cancel
button is clicked, but only when the dialog box is displayed. In other
words, clicking the Cancel button when you’re designing the dialog box
won’t execute the procedure. Because the Cancel button’s Cancel prop-
erty is set to True, pressing Esc also triggers the CancelButton_Click
procedure.

2. Insert the following statement inside the procedure (before the End
Sub statement):

Unload UserForm1

This statement simply closes the UserForm (and removes it from
memory) when the Cancel button is clicked.

3. Press Shift+F7 to return to the UserForm.

4. Double-click the OK button.

VBE activates the code window for the UserForm and inserts an empty
Sub procedure called

Private Sub OKButton_Click()

Clicking OK executes this procedure. Because this button has its Default
property set to True, pressing Enter also executes the OKButton_Click
procedure.

5. Enter the following code inside the procedure:

Private Sub OKButton_Click()
Dim WorkRange As Range

‘   Process only text cells, no formulas
On Error Resume Next
Set WorkRange = Selection.SpecialCells _

(xlCellTypeConstants, xlCellTypeConstants)
‘   Upper case

If OptionUpper Then
For Each cell In WorkRange
If Not cell.HasFormula Then

250 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 250



cell.Value = UCase(cell.Value)
End If
Next cell

End If
‘   Lower case

If OptionLower Then
For Each cell In WorkRange
If Not cell.HasFormula Then

cell.Value = LCase(cell.Value)
End If
Next cell

End If
‘   Proper case

If OptionProper Then
For Each cell In WorkRange
If Not cell.HasFormula Then

cell.Value = Application. _
WorksheetFunction.Proper(cell.Value)

End If
Next cell

End If
Unload UserForm1

End Sub

The preceding code is an enhanced version of the original ChangeCase macro
that I present at the beginning of the chapter. The macro consists of three sep-
arate blocks of code. This code uses three If-Then structures; each one has a
For Each loop. Only one block is executed, according to which OptionButton
the user selects. The last statement unloads (closes) the dialog box after the
work is finished.

Notice that VBA has a UCase function and an LCase function, but not a func-
tion to convert text to proper case. Therefore, I use Excel’s PROPER work-
sheet function (preceded by Application.WorksheetFunction) to do the actual
conversion. Another option is to use the VBA StrConv function. (See the Help
system for details.) The StrConv function is not available in all Excel versions,
so I use the PROPER worksheet function instead.

Creating a macro to display the dialog box
The only thing missing is a way to display the dialog box. Follow these steps
to make the procedure that makes the dialog box appear:

1. In the VBE window, choose Insert➪Module.

The VBE adds an empty VBA module (named Module1) to the project.

251Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 251



2. Enter the following code:

Sub ChangeCase()
‘   Exit if a range is not selected

If TypeName(Selection) = “Range” Then
‘       Show the dialog box

UserForm1.Show
End If

End Sub

This procedure is simple. It checks to make sure that a range is selected. If
not, the macro ends with no action. If a range is selected, the dialog box is
displayed (using the Show method). The user then interacts with the dialog
box and the code stored in the UserForm’s Code pane is executed.

Making the macro available
At this point, everything should be working properly. But you still need an
easy way to execute the macro. Assign a shortcut key (Ctrl+Shift+C) that exe-
cutes the ChangeCase macro:

1. Activate the Excel window via Alt+F11.

2. Choose Developer➪Code➪Macros or press Alt+F8.

3. In the Macros dialog box, select the ChangeCase macro.

4. Click the Options button.

Excel displays its Macro Options dialog box.

5. Enter an uppercase C for the Shortcut key.

See Figure 16-7.

6. Enter a description of the macro in the Description field. 

7. Click OK.

8. Click Cancel when you return to the Macro dialog box.

Figure 16-7:
Assign a

shortcut key
to execute

the Change
Case macro.

252 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 252



After you perform this operation, pressing Ctrl+Shift+C executes the
ChangeCase macro, which displays the UserForm if a range is selected.

Testing the macro
Finally, you need to test the macro and dialog box to make sure they work
properly:

1. Activate a worksheet (any worksheet in any workbook).

2. Select some cells that contain text.

3. Press Ctrl+Shift+C.

The UserForm appears. Figure 16-8 shows how it should look.

4. Make your choice and click OK.

If you did everything correctly, the macro makes the specified change to
the text in the selected cells.

Figure 16-9 shows the worksheet after converting the text to uppercase.

Figure 16-8:
The

UserForm is
in action.

253Chapter 16: UserForm Basics

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 253



As long as the workbook is open, you can execute the macro from any other
workbook. If you close the workbook that contains your macro, Ctrl+Shift+C
no longer has any function.

If the macro doesn’t work properly, double-check the preceding steps to
locate and correct the error. Don’t be alarmed; debugging is a normal part of
developing macros. As a last resort, download the completed workbook from
this book’s Web site.

Figure 16-9:
The text 

has been
converted to

uppercase.

254 Part IV: Communicating with Your Users 

23_046746 ch16.qxp  1/12/07  6:00 PM  Page 254



Chapter 17

Using UserForm Controls
In This Chapter
� Understanding each type of dialog box control

� Changing each control’s properties 

� Working with dialog box controls

Auser responds to a custom dialog box (also known as a UserForm) by
using the various controls (buttons, edit boxes, option buttons, and so

on) that the dialog box contains. Your VBA code then makes use of these
responses to determine which actions to take. You have lots of controls at
your disposal, and this chapter tells you about them.

If you worked through the hands-on example in Chapter 16, you already have
some experience with UserForm controls. This chapter fills in the gaps.

Getting Started with Dialog Box Controls
In this section, I tell you how to add controls to a UserForm, give them mean-
ingful names, and adjust some of their properties.

Before you can do any of these things, you must have a UserForm, which you
get by choosing Insert➪UserForm in the VBE. When you add a UserForm,
make sure that the correct project is selected in the Project window (if more
than one project is available).

Adding controls
Oddly enough, the VBE doesn’t have menu commands that let you add con-
trols to a dialog box. You must use the Toolbox, which I describe in Chapter 16

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 255



to add controls. Normally, the Toolbox pops up automatically when you acti-
vate a UserForm in the VBE. If it doesn’t, you can display the Toolbox by
choosing View➪Toolbox.

Follow along to add a control to the UserForm:

1. Click the Toolbox tool that corresponds to the control you want 
to add. 

2. Click in the UserForm. 

3. Drag the control into position. 

Alternatively, you can simply drag a control from the Toolbox to the
UserForm to create a control with the default dimensions. Figure 17-1
shows a UserForm that contains a few controls.

A UserForm may contain vertical and horizontal grid lines, which help align
the controls you add. When you add or move a control, it snaps to the grid. If
you don’t like this feature, you can turn off the grids: 

1. Choose Tools➪Options in the VBE. 

2. In the Options dialog box, select the General tab. 

3. Set your desired options in the Form Grid Settings section.

Figure 17-1:
A UserForm

with a few
controls

added.

256 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 256



Introducing control properties
Every control that you add to a UserForm has properties that determine how
the control looks and behaves. You can change a control’s properties at these
two times:

� At design time — when you’re designing the UserForm. You do so manu-
ally, using the Properties window.

� At run time — while your macro is running. You do so by writing VBA
code. Changes made at run time are always temporary; they were made
to the copy of the userform you are showing, not to the actual userform
object you designed.

When you add a control to a UserForm, you almost always need to make some
design-time adjustments to its properties. You make these changes in the
Properties window. (To display the Properties window, press F4.) Figure 17-2
shows the Properties window, which displays properties for the object
selected in the UserForm — which happens to be a CheckBox control.

To change a control’s properties at run time you must write VBA code. For
example, you may want to hide a particular control when the user clicks a
check box. In such a case, you write code to change the control’s Visible
property.

Figure 17-2:
Use the

Properties
window 
to make

design-time
changes to
a control’s
properties.

257Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 257



Each control has its own set of properties. All controls, however, share some
common properties, such as Name, Width, and Value. Table 17-1 lists some of
the common properties available for most controls.

Table 17-1 Common Control Properties
Property What It Does

Accelerator The letter underlined in the control’s caption. The user
presses this key in conjunction with the Alt key to select
the control.

AutoSize If True, the control resizes itself automatically based on
the text in its caption.

BackColor The control’s background color.

BackStyle The background style (transparent or opaque).

Caption The text that appears on the control.

Value The control’s value.

Left and Top Values that determine the control’s position.

Width and Height Values that determine the control’s width and height.

Visible If False, the control is hidden.

Name The control’s name. By default, a control’s name is based
on the control type. You can change the name to any valid
name, but each control’s name must be unique within the
dialog box.

Picture A graphics image to display. The image must be contained
in a file; it can’t be copied from the Clipboard.

When you select a control, that control’s properties appear in the Properties
window. To change a property, just select it in the Properties window and
make the change. Some properties give you some help. For example, if you
need to change the TextAlign property, the Properties window displays a
drop-down list that contains all valid property values, as shown in Figure 17-3.

258 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 258



Dialog Box Controls: The Details
In the following sections, I introduce you to each type of control you can use
in custom dialog boxes and discuss some of the more useful properties. I
don’t discuss every property for every control because that would require a
book that’s about four times as thick (and it would be a very boring book).

The Help system for controls and properties is thorough. To find complete
details for a particular property, select the property in the Properties window
and press F1. Figure 17-4 shows the online help for the ControlSource property.

All the sample files in this section are available at this book’s Web site.

CheckBox control
A CheckBox control is useful for getting a binary choice: yes or no, true or
false, on or off, and so on. Figure 17-5 shows some examples of CheckBox
controls.

The following is a description of a CheckBox control’s most useful properties: 

� Accelerator: A letter that lets the user change the value of the control
by using the keyboard. For example, if the accelerator is A, pressing
Alt+A changes the value of the CheckBox control (from checked to
unchecked, or from unchecked to checked).

Figure 17-3:
Change

properties
by selecting
from a drop-

down list 
of valid

property
values.

259Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 259



� ControlSource: The address of a worksheet cell that’s linked to the
CheckBox. The cell displays TRUE if the control is checked or FALSE if
the control is not checked.

� Value: If True, the CheckBox has a check mark. If False, it does not have
a check mark.

ComboBox control
A ComboBox control is similar to a ListBox control (I describe this in this
chapter’s “ListBox control” section). A ComboBox, however, is a drop-down
box and displays only one item at a time. Another difference is that the user

Figure 17-5:
CheckBox

controls.

Figure 17-4:
The Help

system
provides

lots of
information

for each
property

and control.

260 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 260



may be allowed to enter a value that does not appear in the list of items.
Figure 17-6 shows two ComboBox controls.

The following is a description of some useful ComboBox control properties:

� BoundColumn: If the list contains multiple columns, this property deter-
mines which column contains the returned value.

� ColumnCount: The number of columns in the list.

� ControlSource: A cell that stores the value selected in the ComboBox.

� ListRows: The number of items to display when the list drops down.

� ListStyle: The appearance of the list items.

� RowSource: A range address that contains the list of items displayed in
the ComboBox.

� Style: Determines whether the control acts like a drop-down list or a
combo box. A drop-down list doesn’t allow the user to enter a new value.

� Value: The text of the item selected by the user and displayed in the
ComboBox.

If your list of items is not in a worksheet, you can add items to a ComboBox
control by using the AddItem method. More information on this method is in
Chapter 18.

CommandButton control
CommandButton is simply a clickable button. It is of no use unless you pro-
vide an event-handler procedure to execute when the button is clicked.
Figure 17-7 shows a dialog box with a few CommandButtons. Two of these
buttons feature a clipart image (specified by copying the clipart and then
pasting it into the Picture field in the Properties window).

Figure 17-6:
ComboBox

controls.

261Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 261



When a CommandButton is clicked, it executes a macro with a name that con-
sists of the CommandButton’s name, an underscore, and the word Click. For
example, if a command button is named MyButton, clicking it executes the
macro named MyButton_Click. This macro is stored in the Code window for
the UserForm.

The following is a description of some useful CommandButton control 
properties:

� Cancel: If True, pressing Esc executes the macro attached to the button
(only one of the form’s buttons should have this option set to True).

� Default: If True, pressing Enter executes the macro attached to the
button. (Again: just one button should have this option set to True.)

Frame control
A Frame control encloses other controls. You do so either for aesthetic pur-
poses or to logically group a set of controls. A frame is particularly useful
when the dialog box contains more than one set of OptionButton controls.
(See “OptionButton control,” later in this chapter.)

The following list describes some useful Frame control properties:

� BorderStyle: The frame’s appearance.

� Caption: The text displayed at the top of the frame. The caption can be
an empty string if you don’t want the control to display a caption.

Image control
An Image control displays an image. You may want to use an Image control to
display your company’s logo in a dialog box. Figure 17-8 shows a dialog box
with an Image control that displays a photo of some guy who writes Excel
books.

Figure 17-7:
Command

Button
controls.

262 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 262



The following list describes the most useful Image control properties:

� Picture: The graphics image that is displayed.

� PictureSizeMode: How the picture is displayed if the control size does
not match the image size.

When you click the Picture property, you are prompted for a filename.
However, the graphics image is stored in the workbook. That way, if you dis-
tribute your workbook to someone else, you don’t have to include a copy of
the graphics file.

Excel’s clipart collection is a great source of images. Use Insert➪Illustrations➪
Clipart, and choose an image to place in your worksheet. Select the image, and
press Ctrl+C to copy it to the clipboard. Then activate your UserForm, click the
Image control and select the Picture property in the Properties box. Press
Ctrl+V to paste the copied image. You can then delete the clipart image in the
worksheet.

Some graphics images are very large and can make your workbook size
increase dramatically. For best results, use an image that’s as small as possible.

Label control
A Label control simply displays text in your dialog box. Figure 17-9 shows a
few Label controls. As you can see, you have a great deal of influence over
the formatting of a Label control.

Figure 17-8:
An Image

control
displays a

photo.

263Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 263



ListBox control
The ListBox control presents a list of items from which the user can choose
one or more. Figure 17-10 shows a dialog box with two ListBox controls.

ListBox controls are very flexible. For example, you can specify a worksheet
range that holds the ListBox items, and the range can consist of multiple
columns. Or you can fill the ListBox with items by using VBA code (did I tell
you I prefer that method?).

The following list is a description of the most useful ListBox control properties:

� BoundColumn: If the list contains multiple columns, this property deter-
mines which column contains the returned value.

� ColumnCount: The number of columns in the list.

� ControlSource: A cell that stores the value selected in the ListBox.

� IntegralHeight: This is True if the ListBox height adjusts automatically
to display full lines of text when the list is scrolled vertically. If False, the
ListBox may display partial lines of text when it is scrolled vertically.

Figure 17-10:
ListBox

controls.

Figure 17-9:
Label

controls 
are easily

molded.

264 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 264



Note that when this property is True, the actual height of your ListBox
may be slightly different when your userform is shown, from what you
had set it originally. Visual Basic may adjust the height to ensure that
the last entry is entirely visible.

� ListStyle: The appearance of the list items.

� MultiSelect: Determines whether the user can select multiple items from
the list.

� RowSource: A range address that contains the list of items displayed in
the ListBox.

� Value: The text of the selected item in the ListBox.

If the ListBox has its MultiSelect property set to 1 or 2, then the user can
select multiple items in the ListBox. In such a case, you cannot specify a
ControlSource; you need to write a macro that determines which items are
selected. Chapter 18 demonstrates how to do so.

MultiPage control
A MultiPage control lets you create tabbed dialog boxes, like the Format Cells
Dialog (the one that appears when you press Ctrl+1). Figure 17-11 shows an
example of a custom dialog box that uses a MultiPage control. This particular
control has three pages, or tabs.

Descriptions of the most useful MultiPage control properties follow: 

� Style: Determines the appearance of the control. The tabs can appear
normally (on the top), on the left, as buttons, or hidden (no tabs — your
VBA code determines which page is displayed).

� Value: Determines which page or tab is displayed. A Value of 0 displays
the first page, a Value of 1 displays the second page, and so on.

Figure 17-11:
Use a

MultiPage
control to

create a
tabbed

dialog box.

265Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 265



By default, a MultiPage control has two pages. To add pages, right-click a tab
and select New Page from the resulting Context menu.

OptionButton control
OptionButtons are useful when the user needs to select from a small number
of items. OptionButtons are always used in groups of at least two. Figure 17-12
shows two sets of OptionButtons (Report Destination and Layout). One set
uses graphics images (set with the Picture property).

The following is a description of the most useful OptionButton control 
properties:

� Accelerator: A letter that lets the user select the option by using the
keyboard. For example, if the accelerator for an option button is C, then
pressing Alt+C selects the control.

� GroupName: A name that identifies an option button as being associ-
ated with other option buttons with the same GroupName property.

� ControlSource: The worksheet cell that’s linked to the option button.
The cell displays TRUE if the control is selected or FALSE if the control is
not selected.

� Value: If True, the OptionButton is selected. If False, the OptionButton is
not selected.

If your dialog box contains more than one set of OptionButtons, you must
change the GroupName property for all OptionButtons in a particular set.
Otherwise, all OptionButtons become part of the same set. Alternatively, you
can enclose each set of OptionButtons in a Frame control, which automati-
cally groups the OptionButtons in the frame.

Figure 17-12:
Two sets of

Option
Button

controls,
each

contained in
a Frame
control.

266 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 266



RefEdit control
The RefEdit control is used when you need to let the user select a range in a
worksheet. Figure 17-13 shows a custom dialog box with two RefEdit controls.
Its Value property holds the address of the selected range.

The RefEdit control sometimes causes trouble on more complex userforms.
For best results, do not place a RefEdit control inside a Frame or MultiPage
control.

ScrollBar control
The ScrollBar control is similar to a SpinButton control (described later). The
difference is that the user can drag the ScrollBar’s button to change the con-
trol’s value in larger increments. Figure 17-14 shows a ScrollBar control. Its
Value property is displayed in a Label control.

The following is a description of the most useful properties of a ScrollBar
control:

� Value: The control’s current value.

� Min: The control’s minimum value.

� Max: The control’s maximum value.

Figure 17-14:
A ScrollBar

control, with
a Label
control

below it.

Figure 17-13:
Two RefEdit

controls.

267Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 267



� ControlSource: The worksheet cell that displays the control’s value.

� SmallChange: The amount that the control’s value is changed by a click.

� LargeChange: The amount that the control’s value is changed by click-
ing either side of the button.

The ScrollBar control is most useful for specifying a value that extends
across a wide range of possible values.

SpinButton control
The SpinButton control lets the user select a value by clicking the control,
which has two arrows (one to increase the value and the other to decrease
the value). Figure 17-15 shows a dialog box that uses two SpinButton con-
trols. Each control is linked to the Label control on the right (by using VBA
procedures).

The following descriptions explain the most useful properties of a SpinButton
control:

� Value: The control’s current value.

� Min: The control’s minimum value.

� Max: The control’s maximum value.

� ControlSource: The worksheet cell that displays the control’s value.

� SmallChange: The amount that the control’s value is changed by a click.
Usually this property is set to 1, but you can make it any value.

If you use a ControlSource for a SpinButton, you should understand that the
worksheet is recalculated every time the control’s value is changed. Therefore,
if the user changes the value from 0 to 12, the worksheet is calculated 12 times.
If your worksheet takes a long time to calculate, you may want to avoid using a
ControlSource to store the value.

Figure 17-15:
SpinButton

controls.

268 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 268



TabStrip control
A TabStrip control is similar to a MultiPage control, but it’s not as easy to use.
In fact, I’m not sure why this control is even included. You can pretty much
ignore it and use the MultiPage control instead.

TextBox control
A TextBox control lets the user enter text. Figure 17-16 shows a dialog box
with two TextBox controls. 

The following is a description of the most useful TextBox control properties:

� AutoSize: If True, the control adjusts its size automatically, depending
on the amount of text.

� ControlSource: The address of a cell that contains the text in the
TextBox.

� IntegralHeight: If True, the TextBox height adjusts automatically to 
display full lines of text when the list is scrolled vertically. If False, the
TextBox may display partial lines of text when it is scrolled vertically.

� MaxLength: The maximum number of characters allowed in the TextBox.
If 0, the number of characters is unlimited.

� MultiLine: If True, the TextBox can display more than one line of text.

� TextAlign: Determines how the text is aligned in the TextBox.

� WordWrap: Determines whether the control allows word wrap. 

� ScrollBars: Determines the type of scroll bars for the control: horizontal,
vertical, both, or none.

Figure 17-16:
TextBox

controls.

269Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 269



When you add a TextBox control, its WordWrap property is set to True and
its MultiLine property is set to False. The net effect? Word wrap doesn’t work!
So, if you want the words to wrap in a TextBox control, make sure that you
set the MultiLine property to True.

ToggleButton control
A ToggleButton control has two states: on and off. Clicking the button toggles
between these two states, and the button changes its appearance when
clicked. Its value is either True (pressed) or False (not pressed). Figure 17-17
shows a dialog box with four ToggleButton controls.

I hardly ever use ToggleButton controls. I prefer to use CheckBox controls.

Working with Dialog Box Controls
In this section, I discuss how to work with dialog box controls in a UserForm
object.

Moving and resizing controls
After you place a control in a dialog box, you can move it and resize it by
using standard mouse techniques. Or for precise control, you can use the
Properties window to enter a value for the control’s Height, Width, Left, or
Top property.

Figure 17-17:
Toggle
Button

controls.

270 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 270



You can select multiple controls by Ctrl+clicking the controls. Or you can
click and drag to “lasso” a group of controls. When multiple controls are
selected, the Properties window displays only the properties common to all
selected controls. You can change those common properties and the change
will be made to all controls you selected, which is much quicker than doing
them one at the time.

A control can hide another control; in other words, you can stack one control
on top of another. Unless you have a good reason for doing so, make sure
that you do not overlap controls.

Aligning and spacing controls
The Format menu in the VBE window provides several commands to help you
precisely align and space the controls in a dialog box. Before you use these
commands, select the controls you want to work with. These commands
work just as you might expect, so I don’t explain them here. Figure 17-18
shows a dialog box with several CheckBox controls about to be aligned.

When you select multiple controls, the last selected control appears with
white handles rather than the normal black handles. The control with the
white handles is the basis for aligning or resizing the other selected controls
when you use the Format menu.

Figure 17-18:
Use the

Format➪
Align

command to
change the

alignment of
UserForm
controls.

271Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 271



Accommodating keyboard users
Many users (including me) prefer to navigate through a dialog box by using
the keyboard: Pressing Tab and Shift+Tab cycles through the controls, while
pressing a hot key instantly activates a particular control.

To make sure that your dialog box works properly for keyboard users, you
must be mindful of two issues:

� Tab order

� Accelerator keys

Changing the tab order
The tab order determines the order in which the controls are activated when
the user presses Tab or Shift+Tab. It also determines which control has the ini-
tial focus — that is, which control is the active control when the dialog box first
appears. For example, if a user is entering text into a TextBox, the TextBox has
the focus. If the user clicks an OptionButton, the OptionButton has the focus.
The first control in the tab order has the focus when Excel first displays a
dialog box.

To set the control tab order, choose View➪Tab Order. You can also right-click
the dialog box and choose Tab Order from the shortcut menu. In either case,
Excel displays the Tab Order dialog box shown in Figure 17-19.

The Tab Order dialog box lists all the controls in the UserForm. The tab order
in the UserForm corresponds to the order of the items in the list. To move 
a control, select it and then click the arrow buttons up or down. You can
choose more than one control (click while pressing Shift or Ctrl) and move
them all at one time.

Rather than use the Tab Order dialog box, you can set a control’s position in
the tab order by using the Properties window. The first control in the tab
order has a TabIndex property of 0. If you want to remove a control from the
tab order, set its TabStop property to False.

Figure 17-19:
The Tab

Order 
dialog box. 

272 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 272



Some controls (such as Frame or MultiPage controls) act as containers for
other controls. The controls inside a container control have their own tab
order. To set the tab order for a group of OptionButtons inside a Frame control,
select the Frame control before you choose the View➪Tab Order command.

Setting hot keys
Normally, you want to assign an accelerator key, or hot key, to dialog box 
controls. You do so by entering a letter for the Accelerator property in the
Properties window. If a control doesn’t have an Accelerator property (a
TextBox, for example), you can still allow direct keyboard access to it by
using a Label control. That is, assign an accelerator key to the Label and put
the Label directly before the TextBox in the tab order.

Figure 17-20 shows a UserForm with three TextBoxes. The Labels that
describe the TextBoxes have accelerator keys, and each Label precedes its
corresponding TextBox in the tab order. Pressing Alt+D, for example, acti-
vates the TextBox next to the Department Label.

Testing a UserForm
The VBE offers three ways to test a UserForm without calling it from a VBA
procedure:

� Choose the Run➪Run Sub/UserForm command.

� Press F5.

� Click the Run Sub/UserForm button on the Standard toolbar.

When a dialog box is displayed in this test mode, you can try out the tab
order and the accelerator keys.

Figure 17-20:
Use Labels
to provide

direct
access to

controls that
don’t have

accelerator
keys.

273Chapter 17: Using UserForm Controls

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 273



Dialog Box Aesthetics
Dialog boxes can look good, bad, or somewhere in between. A good-looking
dialog box is easy on the eye, has nicely sized and aligned controls, and
makes its function perfectly clear to the user. Bad-looking dialog boxes con-
fuse the user, have misaligned controls, and give the impression that the
developer didn’t have a plan (or a clue).

Try to limit the number of controls on your form. If you do need many con-
trols (a rule- of -thumb: more than 10 controls), consider using a MultiPage
control to split the task the user has to do into logical (and smaller) steps. 

A good rule to follow is to try to make your dialog boxes look like the Excel
built-in dialog boxes. As you gain more experience with dialog box construc-
tion, you can duplicate almost all the features of the Excel dialog boxes.

274 Part IV: Communicating with Your Users 

24_046746 ch17.qxp  1/12/07  6:00 PM  Page 274



Chapter 18

UserForm Techniques and Tricks
In This Chapter
� Using a custom dialog box in your application

� Creating a dialog box: A hands-on example

The previous chapters show you how to insert a UserForm (which con-
tains a custom dialog box), add controls to the UserForm, and adjust

some of the control’s properties. These skills, however, won’t do you much
good unless you understand how to make use of UserForms in your VBA
code. This chapter provides these missing details and presents some useful
techniques and tricks in the process.

Using Dialog Boxes
When you use a custom dialog box in your application, you normally write
VBA code that does the following:

� Initializes the UserForm controls. For example, you may write code that
sets the default values for the controls.

� Displays the dialog box by using the UserForm object’s Show method.

� Responds to the events of the various controls.

� Validates the information provided by the user (if the user did not
cancel the dialog box). This step is optional.

� Takes some action with the information provided by the user (if the
information is valid).

A UserForm Example
This example demonstrates the five points I describe in the preceding sec-
tion. You use a dialog box to get two pieces of information: a person’s name
and sex. The dialog box uses a TextBox control to get the name and three

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 275



OptionButtons to get the sex (Male, Female, or Unknown). The information
collected in the dialog box is then sent to the next blank row in a worksheet.

Creating the dialog box
Figure 18-1 shows the finished custom dialog box for this example. For best
results, start with a new workbook with only one worksheet in it. Then follow
these steps:

1. Press Alt+F11 to activate the VBE.

2. In the Project window, select the empty workbook and choose
Insert➪UserForm.

An empty UserForm is added to the project.

3. Change the UserForm’s Caption property to Get Name and Sex. 

If the Properties window isn’t visible, press F4.

This dialog box has eight controls:

� A Label. I modified the following properties for this control:

Property Value

Accelerator N

Caption Name

TabIndex 0

� A TextBox. I modified the following properties for this control:

Property Value

Name TextName

TabIndex 1

Figure 18-1:
This dialog

box asks the
user to
enter a

name and 
a sex.

276 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 276



� A Frame object. I modified the following properties for this control:

Property Value

Caption Sex

TabIndex 2

� An OptionButton. I modified the following properties for this control:

Property Value

Accelerator M

Caption Male

Name OptionMale

TabIndex 0

� Another OptionButton. I modified the following properties for this 
control:

Property Value

Accelerator F

Caption Female

Name OptionFemale

TabIndex 1

� Another OptionButton. I modified the following properties for this 
control:

Property Value

Accelerator U

Caption Unknown

Name OptionUnknown

TabIndex 2

Value True

� A CommandButton. I modified the following properties for this button:

Property Value

Caption Enter

Default True

Name EnterButton

TabIndex 3

277Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 277



� Another CommandButton. I modified the following properties for this
button:

Property Value

Caption Close

Cancel True

Name CloseButton

TabIndex 4

If you’re following along on your computer (and you should be), take a few
minutes to create this UserForm by using the preceding information. Make
sure to create the Frame object before adding the OptionButtons to it.

In some cases, you may find copying an existing control easier than creating
a new one. To copy a control, press Ctrl while you drag the control.

If you prefer to cut to the chase, you can download the example from this
book’s Web site.

Writing code to display the dialog box
After you’ve added the controls to the UserForm, your next step is to develop
some VBA code to display this dialog box:

1. In the VBE window, choose Insert➪Module to insert a VBA module.

2. Enter the following macro:

Sub GetData()
UserForm1.Show

End Sub

This short procedure uses the UserForm object’s Show method to dis-
play the dialog box.

By issuing the UserForm1.Show method under the hood, Excel automatically
creates a copy in memory of the Userform you created. So when you are
manipulating properties of controls of UserForm1, you only change those
properties for the copy of UserForm1, not for the “designer object” called
UserForm1. One way to understand this is by considering the userform you
create in the Editor as a blueprint. By calling the show method for that form
you tell Excel to create a form (in memory) based on your blueprint.

278 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 278



Making the macro available
The next set of steps makes executing this procedure an easy task:

1. Activate Excel.

2. Choose Developer➪Controls➪Insert, and click the Button icon in the
Forms section.

3. Drag in the worksheet to create the button.

The Assign Macro dialog box appears.

4. Assign the GetData macro to the button.

5. Edit the button’s caption so that it reads Data Entry.

If you want to get really fancy, you can add an icon to your Quick Access
Toolbar (QAT). Then clicking the icon runs the GetData macro. To set this 
up, right-click your QAT and choose Customize Quick Access Toolbar, which
displays the Customize tab of the Excel Options dialog box. In the Choose
Commands From drop-down menu, select Macros. Then select the GetData
macro and click Add. If you like, you can click the Modify button and change
the icon. The new icon is displayed at all times, but it only works when the
workbook that contains the GetData macro is active.

Trying out your dialog box
Follow these steps to test your dialog box.

1. Click the Data Entry button on the worksheet. Or, click the QAT icon if
you set one up.

The dialog box appears, as shown in Figure 18-2.

Figure 18-2:
Executing

the GetData
procedure

displays the
dialog box.

279Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 279



2. Enter some text into the edit box. 

3. Click OK or Cancel. 

Nothing happens — which is understandable because you haven’t cre-
ated any procedures yet.

4. Click the Close button in the dialog box’s title bar to get rid of the
dialog box.

Adding event-handler procedures
In this section, I explain how to write the procedures that handle the events
that occur when the dialog box is displayed.

1. Press Alt+F11 to activate the VBE.

2. Make sure the UserForm is displayed; double-click the Close button.

The VBE activates the Code window for the UserForm and provides an
empty procedure named CloseButton_Click.

3. Modify the procedure as follows:

Private Sub CloseButton_Click()
Unload UserForm1

End Sub

This procedure, which is executed when the user clicks the Close button,
simply unloads the dialog box from memory.

4. Press Shift+F7 to redisplay UserForm1.

5. Double-click the Enter button and enter the following procedure:

Private Sub EnterButton_Click()
Dim NextRow As Long

‘   Make sure Sheet1 is active
Sheets(“Sheet1”).Activate

‘   Determine the next empty row
NextRow = Application.WorksheetFunction. _

CountA(Range(“A:A”)) + 1

‘   Transfer the name
Cells(NextRow, 1) = TextName.Text

‘   Transfer the sex
If OptionMale Then Cells(NextRow, 2) = “Male”

280 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 280



If OptionFemale Then Cells(NextRow, 2) = “Female”
If OptionUnknown Then Cells(NextRow, 2) =

“Unknown”

‘   Clear the controls for the next entry
TextName.Text = “”
OptionUnknown = True
TextName.SetFocus

End Sub

6. Now activate Excel and run the procedure again by clicking the Data
Entry button.

The dialog box works just fine. Figure 18-3 shows how this looks in
action.

Here’s how it works:

� First, the procedure makes sure that the proper worksheet (Sheet1) is
active. 

� It then uses the Excel COUNTA function to count the number of entries
in column A and to determine the next blank cell in the column. 

� Next, the procedure transfers the text from the TextBox to Column A. 

� It then uses a series of If statements to determine which OptionButton
was selected and writes the appropriate text (Male, Female, or Unknown)
to column B. 

� Finally, the dialog box is reset to make it ready for the next entry. Notice
that clicking the Enter button doesn’t close the dialog box. To end data
entry, click the Close button.

Figure 18-3:
Use the
custom

dialog box
for data

entry.

281Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 281



Validating the data
Play around with this routine some more and you find that the macro has a
small problem: It doesn’t ensure that the user actually enters a name into the
TextBox. The following code — which is inserted in the EnterButton_Click
procedure before the text is transferred to the worksheet — ensures that the
user enters some text in the TextBox. If the TextBox is empty, a message
appears and the routine stops.

‘  Make sure a name is entered
If TextName.Text = “” Then

MsgBox “You must enter a name.”
Exit Sub

End If

Now the dialog box works
After making these modifications, you find that the dialog box works flaw-
lessly. In real life, you’d probably need to collect more information than just
name and sex. However, the same basic principles apply. You just have to
deal with more UserForm controls.

More UserForm Examples
I could probably fill an entire book with interesting and useful tips for work-
ing with custom dialog boxes. Unfortunately, this book has a limited number
of pages, so I wrap it up with a few more examples.

A ListBox example
ListBoxes are useful controls, but working with them can be a bit tricky.
Before displaying a dialog box that uses a ListBox, fill the ListBox with items.
Then when the dialog box is closed, you need to determine which item(s) the
user selected.

When dealing with list boxes, you need to know about the following proper-
ties and methods:

282 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 282



� AddItem: You use this method to add an item to a ListBox.

� ListCount: This property returns the number of items in the ListBox.

� ListIndex: This property returns the index number of the selected item
or sets the item that’s selected (single selections only). The first item
has a ListIndex of 0 (not 1).

� MultiSelect: This property determines whether the user can select more
than one item from the ListBox.

� RemoveAllItems: Use this method to remove all items from a ListBox.

� Selected: This property returns an array indicating selected items
(applicable only when multiple selections are allowed).

� Value: This property returns the selected item in a ListBox.

Most of the methods and properties that work with ListBoxes also work with
ComboBoxes. Thus, after you have figured out how to handle ListBoxes, you
can transfer that knowledge to your work with ComboBoxes.

Filling a list box
For best results, start with an empty workbook. The example in this section
assumes the following:

� You’ve added a UserForm.

� The UserForm contains a ListBox control named ListBox1.

� The UserForm has a CommandButton named OKButton.

� The UserForm has a CommandButton named CancelButton, which has
the following event-handler procedure:

Private Sub CancelButton_Click()
Unload UserForm1

End Sub

The following procedure is stored in the Initialize procedure for the
UserForm:

1. Select your UserForm and press F7 to find this predefined procedure. 

The VBE displays the Code window for your form and stands ready 
for you to input the code for the Click event. (The procedure is
UserForm_Click.)

2. Using the Procedure drop-down list at the top of the Code window,
choose Initialize. 

3. Add the initialization code for the form:

283Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 283



Sub UserForm_Initialize()
‘   Fill the list box

With ListBox1
.AddItem “January”
.AddItem “February”
.AddItem “March”
.AddItem “April”
.AddItem “May”
.AddItem “June”
.AddItem “July”
.AddItem “August”
.AddItem “September”
.AddItem “October”
.AddItem “November”
.AddItem “December”

End With

‘   Select the first list item
ListBox1.ListIndex = 0

End Sub

This initialization routine runs automatically whenever your UserForm 
is loaded. Thus, when you use the Show method for the UserForm, the
code is automatically run and your list is populated with 12 items, each
added via the AddItem method.

You can now delete the empty “Userform_Click” procedure, as it is not
needed in this example.

4. Create a VBA module with a small Sub procedure to simply display
the dialog box:

Sub ShowList()
UserForm1.Show

End Sub

It is not mandatory to use the Initialize event procedure to populate your lists.
You could do so in a regular VBA procedure. Using an Initialize event procedure
just seems like a natural place to take care of such a mundane (though impor-
tant) step. Note that the Initialize event runs when the UserForm is created in
memory (you know, that blueprint stuff I was talking about earlier in this chap-
ter). If you hide the UserForm by using UserForm1.Hide and later on show the
form again (UserForm1.Show), the Initialize event does not fire again.

Determining the selected item
The preceding code merely displays a dialog box with a ListBox filled with
month names. What’s missing is a procedure to determine which item in the
ListBox is selected.

284 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 284



Add the following to the OKButton_Click procedure:

Private Sub OKButton_Click()
Dim Msg As String
Msg = “You selected item # “
Msg = Msg & ListBox1.ListIndex
Msg = Msg & vbNewLine
Msg = Msg & ListBox1.Value
MsgBox Msg
Unload UserForm1

End Sub

This procedure displays a message box with the selected item number and
the selected item. Figure 18-4 shows how this looks.

The first item in a ListBox has a ListIndex of 0, not 1 (as you may expect).
This is always the case, even if you use an Option Base 1 statement to change
the default lower bound for arrays.

This example is available at this book’s Web site.

Determining multiple selections
If your ListBox is set up so the user can select more than one item, you find
that the ListIndex property returns only the last item selected. To determine
all selected items, you need to use the Selected property, which contains an
array.

To allow multiple selections in a ListBox, set the MultiSelect property to
either 1 or 2. You can do so at design time by using the Properties window or
at run time by using a VBA statement such as this:

UserForm1.ListBox1.MultiSelect = 1

Figure 18-4:
Determining

which item
in a ListBox
is selected.

285Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 285



The MultiSelect property has three possible settings. The meaning of each is
shown in Table 18-1.

Table 18-1 Settings for the MultiSelect Property
Value VBA Constant Meaning

0 fmMultiSelectSingle Only a single item can be selected.

1 fmMultiSelectMulti Clicking an item or pressing the space
bar selects or deselects an item in the
list.

2 fmMultiSelectExtended Items are added to or removed from the
selection set in the traditional manner:
holding down the Shift or Ctrl key as you
click items.

The following procedure displays a message box that lists all selected items
in a ListBox. Figure 18-5 shows an example.

Private Sub OKButton_Click()
Dim Msg As String
Dim i As Integer
Msg = “You selected” & vbNewLine
For i = 0 To ListBox1.ListCount - 1

If ListBox1.Selected(i) Then
Msg = Msg & ListBox1.List(i) & vbNewLine

End If
Next i
MsgBox Msg
Unload UserForm1

End Sub

Figure 18-5:
Determining
the selected

items in a
ListBox
allows

multiple
selections.

286 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 286



This routine uses a For-Next loop to cycle though each item in the ListBox.
Notice that the loop starts with item 0 (the first item) and ends with the last
item (determined by the value of the ListCount property minus 1). If an item’s
Selected property is True, it means that the list item was selected.

This example is available at this book’s Web site.

Selecting a range
In some cases, you may want the user to select a range while a dialog box is
displayed. An example of this choice occurs in the second step of the Excel
Chart Wizard. The Chart Wizard guesses the range to be charted, but the user
is free to change it from the dialog box.

To allow a range selection in your dialog box, add a RefEdit control. The fol-
lowing example displays a dialog box with the current region’s range address
displayed in a RefEdit control, as shown in Figure 18-6. The current region is
the block of nonempty cells that contains the active cell. The user can accept
or change this range. When the user clicks OK, the procedure makes the
range bold.

This example assumes the following:

� You have a UserForm named UserForm1.

� The UserForm contains a CommandButton control named OKButton.

� The UserForm contains a CommandButton control named CancelButton.

� The UserForm contains a RefEdit control named RefEdit1.

Figure 18-6:
This dialog

box lets the
user select

a range.

287Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 287



The code is stored in a VBA module and shown here. This code does two
things: initializes the dialog box by assigning the current region’s address to
the RefEdit control, and displays the UserForm.

Sub BoldCells()
‘   Exit if worksheet is not active

If TypeName(ActiveSheet) <> “Worksheet” Then Exit Sub

‘   Select the current region
ActiveCell.CurrentRegion.Select

‘   Initialize RefEdit control
UserForm1.RefEdit1.Text = Selection.Address

‘   Show dialog
UserForm1.Show

End Sub

The following procedure is executed when the OK button is clicked. This pro-
cedure does some simple error checking to make sure that the range speci-
fied in the RefEdit control is valid.

Private Sub OKButton_Click()
On Error GoTo BadRange
Range(RefEdit1.Text).Font.Bold = True
Unload UserForm1
Exit Sub

BadRange:
MsgBox “The specified range is not valid.”

End Sub

If an error occurs (most likely an invalid range specification in the RefEdit
control), the code jumps to the BadRange label and a message box is dis-
played. The dialog box remains open so the user can select another range.

Using multiple sets of OptionButtons
Figure 18-7 shows a custom dialog box with three sets of OptionButtons. If your
UserForm contains more than one OptionButtons set, make sure that each set
of OptionButtons works as a set. You can do so in either of two ways:

� Enclose each set of OptionButtons in a Frame control. This approach is
the easiest, and also makes the dialog box look better. It’s easier to add
the Frame before adding the OptionButtons. You can, however, also drag
existing OptionButtons into a Frame.

288 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 288



� Make sure that each set of OptionButtons has a unique GroupName prop-
erty (which you specify in the Properties box). If the OptionButtons are in
a Frame, you don’t have to be concerned with the GroupName property.

Only one OptionButton in a group can have a value of True. To specify a
default option for a set of OptionButtons, just set the Value property for the
default item to True. You can do this directly in the Properties box or do it by
using VBA code:

UserForm1.OptionButton1.Value = True

This example is available at this book’s Web site. It also has code that dis-
plays the selected options when the user clicks OK.

Using a SpinButton and a TextBox
A SpinButton control lets the user specify a number by clicking arrows. This
control consists only of arrows (no text), so you usually want a method to
display the selected number. One option is to use a Label control, but this
has a disadvantage: The user can’t type text in a Label. A better choice is to
use a TextBox.

A SpinButton control and TextBox control form a natural pair. Excel uses
them frequently. (Check out the Print dialog box for a few examples.) Ideally,
the SpinButton and its TextBox should be in sync: If the user clicks the
SpinButton, the SpinButton’s value should appear in the TextBox. And if the
user enters a value directly into the TextBox, the SpinButton should take on
that value. Figure 18-8 shows a custom dialog box with a SpinButton and a
TextBox.

Figure 18-7:
This dialog

box
contains

three sets 
of Option

Button
controls.

289Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 289



This UserForm contains the following controls:

� A SpinButton named SpinButton1, with its Min property set to 1 and its
Max property set to 100

� A TextBox named TextBox1

� A CommandButton named OKButton 

The event-handler procedure for the SpinButton follows. This procedure han-
dles the Change event, which is triggered whenever the SpinButton value is
changed. When the SpinButton’s value changes (when it’s clicked), this proce-
dure assigns the SpinButton’s value to the TextBox. To create this procedure,
double-click the SpinButton to activate the Code window for the UserForm. 

Private Sub SpinButton1_Change()
TextBox1.Text = SpinButton1.Value

End Sub

The event-handler for the TextBox, which is listed next, is a bit more compli-
cated. To create this procedure, double-click the TextBox to activate the
Code window for the UserForm. This procedure is executed whenever the
user changes the text in the TextBox. 

Private Sub TextBox1_Change()
Dim NewVal As Integer

NewVal = Val(TextBox1.Text)
If NewVal >= SpinButton1.Min And _

NewVal <= SpinButton1.Max Then _
SpinButton1.Value = NewVal

End Sub

This procedure uses a variable, which stores the text in the TextBox (con-
verted to a value with the Val function). It then checks to ensure that the
value is within the proper range. If so, the SpinButton is set to the value in
the TextBox. The net effect is that the SpinButton’s value is always equal to

Figure 18-8:
A UserForm

with a
SpinButton

and a
companion

TextBox.

290 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 290



the value in the TextBox (assuming that the SpinButton’s value is in the
proper range).

If you use F8 to single step through the code, you will notice that when the
line SpinButton1.Value = NewVal is executed, the change event of the
SpinButton immediately fires. In turn, the SpinButton1_Change event sets the
value of TextBox1. Luckily, this in turn does not fire the TextBox1_Change
event, because its value is not actually changed by the SpinButton1_Change
event. But you can imagine this effect can cause surprising results in your
UserForm... Confused? Just remember that if your code changes the Value of
a control, the Change event of that control will fire.

This example is available at this book’s Web site. It also has a few other bells
and whistles that you may find useful. 

Using a UserForm as a progress indicator
One of the most common Excel programming questions I hear is “How can I
make a UserForm display the progress of a lengthy macro?”

Answer: Use a UserForm to create an attractive progress indicator, as shown in
Figure 18-9. Such a use of dialog boxes does, however, require a few tricks —
which I’m about to show you.

Creating the progress indicator dialog box
The first step is to create your UserForm. In this example, the dialog box dis-
plays the progress while a macro inserts random numbers into 50 columns and
100 rows of the active worksheet. To create the dialog box, follow these steps:

Figure 18-9:
This

UserForm
functions as

a progress
indicator for

a lengthy
macro.

291Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 291



1. Activate the VBE and insert a new UserForm.

2. Change the UserForm’s caption to Progress.

3. Add a Frame object and set the following properties:

Property Value

Caption 0%

Name FrameProgress

SpecialEffect 2 — fmSpecialEffectSunken

Width 204

Height 28

4. Add a Label object inside the Frame and set the following properties:

Property Value

Name LabelProgress

BackColor &H000000FF& (red)

Caption (no caption)

SpecialEffect 1 — fmSpecialEffectRaised

Width 20

Height 13

Top 5

Left 2

5. Add another Label above the frame and change its caption to Entering
random numbers. . ..

The UserForm should resemble Figure 18-10.

Figure 18-10:
The

progress
indicator

UserForm.

292 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 292



The procedures
This example uses two procedures and a module level variable.

� The module level variable: Located in a VBA module. This variable
holds the copy of the userform:

Dim ProgressIndicator as UserForm1

� EnterRandomNumbers: It does all the work and is executed when the
UserForm is shown. Notice that it calls the UpdateProgress procedure,
which updates the progress indicator in the dialog box:

Sub EnterRandomNumbers ()
‘   Inserts random numbers on the active worksheet

Dim Counter As Integer
Dim RowMax As Integer, ColMax As Integer
Dim r As Integer, c As Integer
Dim PctDone As Single

‘   Create a copy of the form in a variable
Set ProgressIndicator = New UserForm1

‘   Show ProgressIndicator in modeless state 
ProgressIndicator.Show vbModeless
If TypeName(ActiveSheet) <> “Worksheet” Then

Unload ProgressIndicator
Exit Sub

End If

‘   Enter the random numbers
Cells.Clear
Counter = 1
RowMax = 200
ColMax = 50
For r = 1 To RowMax

For c = 1 To ColMax
Cells(r, c) = Int(Rnd * 1000)
Counter = Counter + 1

Next c
PctDone = Counter / (RowMax * ColMax)
Call UpdateProgress(PctDone)

Next r
Unload ProgressIndicator
Set ProgressIndicator = Nothing

End Sub

293Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 293



� UpdateProgress: This procedure accepts one argument and updates the
progress indicator in the dialog box:

Sub UpdateProgress(pct)
With ProgressIndicator

.FrameProgress.Caption = Format(pct, “0%”)

.LabelProgress.Width = pct * (.FrameProgress _
.Width - 10)

End With
‘   The DoEvents statement is responsible for the form

updating
DoEvents

End Sub

How this example works
When the EnterRandomNumbers procedure is executed, it loads a copy of
Userform1 into the module variable named ProgressIndicator. Then it sets
the width of the LabelProgress label to 0, and displays the UserForm in mode-
less state (so the code will continue to run).

The EnterRandomNumber procedure checks the active sheet. If it’s not a
worksheet, the UserForm (ProgressIndicator) is closed and the procedure
ends with no action. If the active sheet is a worksheet, the procedure does
the following:

1. Erases all cells on the active worksheet.

2. Loops through the rows and columns (specified by the RowMax and
ColMax variables) and inserts a random number.

3. Increments the Counter variable and calculates the percentage com-
pleted (which is stored in the PctDone variable).

4. Calls the UpdateProgress procedure, which displays the percentage
completed by changing the width of the LabelProgress label and updat-
ing the caption of the frame control.

5. Last, the UserForm is unloaded.

If you adapt this technique for your own use, you need to figure out how to
determine the macro’s progress, which varies, depending on your macro.
Then call the UpdateProgress procedure at periodic intervals while your
macro is executing.

294 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 294



This example is available at this book’s Web site.

Creating a tabbed dialog box
Tabbed dialog boxes are useful because they let you present information in
small, organized chunks. The Excel Format cells dialog box (which is displayed
when you right click a cell and choose Format Cells...) is a good example. This
dialog box uses three tabs to add some organization to some of Excel’s display
options.

Creating your own tabbed dialog boxes is relatively easy, thanks to the
MultiPage control. Figure 18-11 shows a custom dialog box that uses a
MultiPage control with three pages, or tabs. When the user clicks a tab, a 
new page is activated and only the controls on that page are displayed.

Notice that this is a modeless dialog box. In other words, the user can keep it
displayed while working. Each of the controls has an immediate effect, so
there is no need to have an OK button.

Keep the following points in mind when using the MultiPage control to create
a tabbed dialog box:

� Use only one MultiPage control per dialog box.

� Make sure to use the MultiPage control, not the TabStrip control. The
TabStrip control is more difficult to use.

Figure 18-11:
The three
tabs of a

MultiPage
control.

295Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 295



� Make some controls (such as OK, Cancel, or Close buttons) visible at all
times. Place these controls outside the MultiPage control.

� Right-click a tab on the MultiPage control to display a shortcut menu
that lets you add, remove, rename, or move a tab.

� At design time, click a tab to activate the page. After it is activated, add
other controls to the page by using normal procedures.

� To select the MultiPage control itself (rather than a page on the control),
click the border of the MultiPage control. Keep your eye on the
Properties window, which displays the name and type of the selected
control. You can also select the MultiPage control by selecting its name
from the drop-down list in the Properties window.

� You can change the look of the MultiPage control by changing the Style
and TabOrientation properties.

� The Value property of a MultiPage control determines which page is dis-
played. For example, if you write code to set the Value property to 0, the
first page of the MultiPage control is displayed.

This example is available at this book’s Web site.

Displaying a chart in a dialog box
If you need to display a chart in a UserForm, you find that Excel doesn’t pro-
vide any direct way to do so. Therefore, you need to get creative. This sec-
tion describes a technique that lets you display one or more charts in a
UserForm. 

Figure 18-12 shows an example, which displays three charts. The UserForm
has an Image control. The trick is to use VBA code to save the chart as a GIF
file and then specify that file as the Image control’s Picture property. The
Previous and Next buttons switch the displayed chart.

Figure 18-12:
Displaying a

chart in a
UserForm.

296 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 296



In this example, which is also available on this book’s Web site, the three
charts are on a sheet named Charts. The Previous and Next buttons deter-
mine which chart to display, and this chart number is stored as a Public vari-
able named ChartNum, which is accessible to all procedures. A procedure
named UpdateChart, which is listed here, does the actual work.

Private Sub UpdateChart()
Dim CurrentChart As Chart
Dim Fname As String

Set CurrentChart = _
Sheets(“Charts”).ChartObjects(ChartNum).Chart

CurrentChart.Parent.Width = 300
CurrentChart.Parent.Height = 150

‘   Save chart as GIF
Fname = ThisWorkbook.Path & “\temp.gif”
CurrentChart.Export FileName:=Fname, FilterName:=”GIF”

‘   Show the chart
Image1.Picture = LoadPicture(Fname)

End Sub

This procedure determines a name for the saved chart and then uses the
Export method to export the GIF file. Finally, it uses the VBA LoadPicture
function to specify the Picture property of the Image object.

A Dialog Box Checklist
I wrap up this chapter with a checklist for use when creating dialog boxes:

❑ Are the controls aligned with each other?

❑ Are similar controls the same size?

❑ Are controls evenly spaced?

❑ Does the dialog box have an appropriate caption?

❑ Is the dialog box overwhelming? If so, you may want to use a series of
dialog boxes or divide them over a multipage control.

❑ Can the user access every control with an accelerator key?

❑ Are any accelerator keys duplicated?

❑ Are the controls grouped logically, by function?

297Chapter 18: UserForm Techniques and Tricks

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 297



❑ Is the tab order set correctly? The user should be able to tab through
the dialog box and access the controls sequentially.

❑ If you plan to store the dialog box in an add-in, did you test it thoroughly
after creating the add-in? 

❑ Will your VBA code take appropriate action if the user cancels the dialog
box or presses Esc?

❑ Does the text contain any misspellings? Unfortunately, the Excel spell
checker doesn’t work with UserForms, so you’re on your own when it
comes to spelling.

❑ Will your dialog box fit on the screen in the lowest resolution to be used
(usually 800×600 mode)? In other words, if you develop your dialog box
by using a high-resolution video mode, your dialog box may be too big
to fit on a screen in lower resolution.

❑ Do all TextBox controls have the appropriate validation setting? If you
intend to use the WordWrap property, is the MultiLine property also set
to True?

❑ Do all ScrollBars and SpinButtons allow valid values only?

❑ Do all ListBoxes have their MultiSelect property set properly?

The best way to master custom dialog boxes is by creating dialog boxes —
lots of them. Start simply and experiment with the controls and their proper-
ties. And don’t forget about the Help system; it’s your best source for details
about every control and property.

298 Part IV: Communicating with Your Users 

25_046746 ch18.qxp  1/12/07  6:01 PM  Page 298



Chapter 19

Accessing Your Macros Through
the User Interface

In This Chapter
� Excel 2007: A sneak peek into customizing the Ribbon

� Adding items to a right-click menu

� Adding a button to the Quick Access Toolbar (manually)

Before Excel 2007, users had access to dozens of built-in toolbars, and
creating new toolbars was a snap. But, as Bob Dylan wrote, “the times

they are a changing.” This chapter describes what has changed in Excel 2007
and shows you a little bit of what you can do to show your macros in the user
interface.

CommandBars and Excel 2007
When programming in Excel 2003 and before, you wrote code to create a tool-
bar (called a CommandBar in VBA). The toolbar contained buttons to allow
the user (or yourself) to access your macros. Excel 2007 — and its new
Ribbon user interface — changes the picture drastically. There is good news
and bad news.

The good news is that most of the old CommandBar code will still work.

The bad news is that your finely crafted VBA code that tries to add a button
or command to a menu is intercepted by Excel 2007. Instead of displaying
your well-thought-out interface enhancement, Excel 2007 simply dumps your
customized menus into a catchall section of the Ribbon called Add-Ins➪Menu
Commands. 

If you’re used to creating custom toolbars, I’m about to disappoint you again:
You no longer will be able to do just that. A custom toolbar that looked terrific
in Excel 2003 and before, is at best mediocre in Excel 2007. Excel crams all
custom toolbars into the Add-Ins➪Custom Toolbars group.

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 299



Figure 19-1 shows the menu and toolbar created by my Power Utility Pak add-
in in Excel 2003. 

Figure 19-2 shows how the menu and toolbar appear in Excel 2007. Needless
to say, I’ll be modifying this add-in so it presents a user interface that’s in the
Excel 2007 style.

Figure 19-2:
A custom
menu and

toolbar
created in

Excel 2003,
displayed in
Excel 2007.

Figure 19-1:
A custom
menu and
toolbar in

Excel 2003.

300 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 300



Luckily, Excel 2007 provides a Quick Access Toolbar, to which you can add a
button that fires your macro and you can still manipulate the right-click
menus to add your commands there.

Excel 2007 Ribbon Customization
Excel 2007 offers its very own way of customizing the Ribbon, which is far
more complex than manipulating the CommandBars collection. The new
approach involves writing XML code in a text editor, copying that XML file
into the workbook file (all outside of Excel!), editing a bunch of XML files
(which also are stashed away inside the new Excel file format, which is really
nothing more than a zipped container of individual — but related — files),
and then writing VBA procedures to handle the clicking of the controls you
put in the XML file. 

Explaining all the intricate details involved in customizing the Ribbon is well
beyond the scope of this book. However, I walk you through a quick example
that demonstrates the steps required to (manually) add a new Ribbon group
to the Home tab. The new Ribbon group is named Excel VBA For Dummies,
and it contains one button, labeled Click Me. Clicking that button runs a VBA
macro named ShowMessage.

1. Create a new Excel workbook, insert a VBA module, and enter this 
procedure:

Sub ShowMessage(control As IRibbonControl)
MsgBox “Congrats. You found the new ribbon

command.”
End Sub

2. Save the workbook, and name it Ribbon ModificationModification.xlsm.

3. Close the workbook.

4. Activate the folder that contains the Ribbon Modification.xlsm file and
create a folder named customUI. 

5. Inside of that folder, use a text editor (such as Windows Notepad) to
create a text file named customUI.xml, with the following XML code:

<customUI
xmlns=’http://schemas.microsoft.com/office/200
6/01/customui’>

<ribbon>
<tabs>
<tab idMso=’TabHome’>
<group  id=’Group1’ label=’Excel VBA For Dummies’>
<button id=’Button1’ 

label=’Click Me’ 

301Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 301



size=’large’
onAction=’ShowMessage’ 
imageMso=’FileStartWorkflow’ />

</group>
</tab>
</tabs>
</ribbon>
</customUI>

6. Open Windows Explorer and locate the Ribbon Modification.xlsm file.

7. Add a .zip extension to the file by pressing F2 and then changing the
filename to Ribbon Modification.xlsm.zip. This way, you will be able to
edit and view the actual contents of the Excel file by using your favorite
file compression program. This includes adding/removing files to the zip
container.

8. Drag the customUI folder you created in Step 4 into the Ribbon
Modification.xlsm.zip file. (Windows treats ZIP files as if they were 
folders.) 

9. Every Excel file (in the new file format) has a folder named rels.
Double-click the rels folder within the ZIP file. This folder contains one
file, named .rels.

10. Drag the .rels file to a location outside of the ZIP file (your Desktop,
for example).

11. Open the .rels file (which is an XML file) with a text editor, such as
Notepad.

12. Add the following line to the .rels file, before the </Relationships> tag:

<Relationship
Type=”http://schemas.microsoft.com/office/2006
/relationships/ui/extensibility”
Target=”/customUI/customUI.xml”/>

13. Drag the .rels file back into the ZIP file, overwriting the original 
version.

14. Remove the .zip extension so that the file is back to its original name:
Ribbon Modification.xlsm.

If all went well, you see the new Ribbon group (Excel VBA For Dummies) when
you open the workbook. If you’re lucky, your screen will look like Figure 19-3.

Scary stuff, eh? No one should actually have to go through these steps.
Remember, this book was published when Excel 2007 was just released. By
the time you actually read this book, tools should be available to simplify this
daunting task. Try searching the Web for office custom UI editor.

302 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 302



But even with a good tool to help, you still need to understand XML. If that
sounds appealing to you, check the bookstores. I suspect that there will be
many books devoted exclusively to customizing the Ribbon interface in
Office 2007. This isn’t one of them.

You can download a sample file from this book’s Web site, which contains
this customization. If you want to take a look at the internals, rename the file
by appending .zip to its name. Then you can open the file in any popular
unzip program, such as WinZip or even in Windows XP or Vista, which has
native support for zip files. The file containing the XML I showed you above is
called “customUI.xml”.

Figure 19-3:
A new

command 
in a new

Ribbon
group.

303Chapter 19: Accessing Your Macros Through the User Interface

Adding a button to the Quick Access Toolbar
If you create a macro that you use frequently,
you may want to add a new button to the Quick
Access Toolbar (QAT). Doing so is easy, but you
must do it manually. The QAT is intended to be
customized by end users only — not program-
mers. Here’s how to do it:

1. Right-click the QAT and select Customize
Quick Access Toolbar to display 
the Customize tab of the Excel Options
dialog box.

2. In the drop-down box labeled Choose
Commands From, select Macros.

3. Select your macro from the list.

4. Click the Add button, and the macro is
added to the QAT list on the right.

5. If you like, click the Modify button to change
the icon and (optionally) the display name.

Unfortunately, the new QAT button only works
when the workbook that contains the macro is
open. Even worse, the macro works only when
that workbook is the active workbook. 

In order to run a macro from the QAT when any
workbook is active, store the macro in your
Personal Macro Workbook.

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 303



Because this XML stuff is way too complex for the beginner VBA programmer,
the remainder of this chapter focuses on UI customization that uses the old
method (VBA only). It’s not as slick as the Ribbon, but it’s a lot easier, and
still provides quick access to your macros.

Working with CommandBars
A CommandBar object is used for three Excel user interface elements:

� Custom menus

� Custom toolbars

� Customs shortcut (right-click) menus 

In Excel 2007, the CommandBar object is in a rather odd position. If you write
code to customize a menu or a toolbar, Excel intercepts that code and ignores
many of your commands. As I’ve noted earlier in this chapter, menu and tool-
bar customizations end up in the Add-Ins➪Menu Commands or the Add-Ins➪
Custom Toolbars group. So, for all practical purposes, you’re limited to the
shortcut menus. 

In this section, I provide some background information that you simply must
know before you start mucking around with CommandBars.

Commanding the CommandBars collection
There are three types of CommandBars, differentiated by their Type property.
The Type property can be any of these three values:

� msoBarTypeNormal: A toolbar (Type = 0)

� msoBarTypeMenuBar: A menu bar (Type = 1)

� msoBarTypePopUp: A shortcut menu (Type = 2)

Even though toolbars and menu bars aren’t used in Excel 2007, they are still
included in the object model for compatibility with older applications.

Listing all shortcut menus
The procedure listed here uses the CommandBars collection. It displays, in 
a worksheet, the names of all shortcut menus — CommandBars that have a
Type property of 2. For each CommandBar, the procedure lists its Index and
Name.

304 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 304



Sub ShowShortcutMenusName()
Dim Row As Long
Dim cbar As CommandBar
Row = 1
For Each cbar In Application.CommandBars

If cbar.Type = msoBarTypePopup Then
Cells(Row, 1) = cbar.Index
Cells(Row, 2) = cbar.Name
Row = Row + 1

End If
Next cbar

End Sub

Figure 19-4 shows a portion of the result of running this procedure, which is
available at this book’s Web site. The first shortcut menu, named Autofill, has
an Index of 11. As you can see, Excel 2007 has quite a lot of CommandBars
left to tamper with (65, by my count).

Referring to CommandBars
You can refer to a particular CommandBar by its Index or by its Name. If you
refer to Figure 19-4, you see that the Cell right-click menu has an Index of 36
or 39. This is because the content of the cell right-click menu differs when
Excel 2007 is in a different state. Number 36 is the one you get when Excel is
in Normal view mode, number 39 shows when you are in Page Break Preview
mode. You can refer to the shortcut menu in either of two ways:

Figure 19-4:
A VBA
macro

produced
this list of all

shortcut
menu

names.

305Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 305



Application.CommandBars(36)

or

Application.CommandBars(“Cell”)

Even though there are two Cell CommandBars, the second line of code above
always addresses the one with index 36. For some reason, Microsoft isn’t 
consistent in naming the CommandBars. You would expect each separate
CommandBar to have its own unique name, but they obviously don’t. Right-
click menus that differ in content — depending on the state Excel is in —
appear more than once in the list of available commandbars. In such cases,
referring to them by their index is best. But even that can cause problems
because the Index numbers have not always remained constant across the
different Excel versions.

Referring to controls in a CommandBar
A CommandBar object contains Control objects, which are buttons, menus,
or menu items. The following procedure displays the Caption property for
the first Control in the cell’s right-click menu:

Sub ShowCaption()
MsgBox Application.CommandBars(“Cell”). _

Controls(1).Caption
End Sub

When you execute this procedure, you see the message box shown in 
Figure 19-5. The ampersand is used to indicate the underlined letter in the
text — the keystroke that will execute the menu item. 

In some cases, Control objects on a shortcut menu contain other Control
objects. For example, the Filter control on the Cell right-click menu contains
other controls.

Figure 19-5:
Displaying

the Caption
property for

a control.

306 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 306



Each control has a Name and an Id property. You can access a control by using
both properties (locating a control by its Id is slightly more complex though):

Sub AccessControlByName()
MsgBox CommandBars(“Cell”).Controls(“Copy”).Caption

End Sub

Sub AccessControlById()
MsgBox CommandBars(“Cell”).FindControl(ID:=19).Caption

End Sub

You should never use the Caption to access a control if you are writing code
that may be used by users with a different language version of Excel. The
Caption is language specific, so your code will fail on those users’ systems.
Instead, use the FindControl method in conjunction with the Id of the control
(which is language independent). Luckily, the CommandBar names are not
internationalized.

Properties of CommandBar controls
CommandBar controls have a number of properties that determine how the
controls look and work. This list contains some of the more useful properties
for CommandBar controls:

� Caption: The text displayed for the control. If the control shows only an
image, the Caption appears when you move the mouse over the control.

� FaceID: A number that represents a graphics image displayed next to
the control’s text.

� BeginGroup: True if a separator bar appears before the control.

� OnAction: The name of a VBA macro that executes when the user clicks
the control.

� BuiltIn: True if the control is an Excel built-in control.

� Enabled: True if the control can be clicked.

� Visible: True if the control is visible. Many of the shortcut menus con-
tain hidden controls.

� ToolTipText: Text that appears when the user moves the mouse pointer
over the control.

The ShowShortcutMenuItems procedure lists all the first-level controls on
every shortcut menu. In addition, it identifies hidden controls by placing
their Caption in angle brackets. 

307Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 307



Sub ShowShortcutMenuItems()
Dim Row As Long, Col As Long
Dim Cbar As CommandBar
Dim Ctl As CommandBarControl
Row = 1
Application.ScreenUpdating = False
For Each Cbar In Application.CommandBars
If Cbar.Type = msoBarTypePopup Then
Cells(Row, 1) = Cbar.Index
Cells(Row, 2) = Cbar.Name
Col = 3
For Each Ctl In Cbar.Controls
If Ctl.Visible Then
Cells(Row, Col) = Ctl.Caption

Else
Cells(Row, Col) = “<” & Ctl.Caption & “>”

End If
Col = Col + 1

Next Ctl
Row = Row + 1

End If
Next Cbar

End Sub

Figure 19-6 shows a portion of the output. 

The ShowShortcutMenuItems procedure is available at this book’s Web site. 
If you run the macro, you can see that many of the shortcut menus contain
hidden controls.

Figure 19-6:
Listing all
top-level

controls in
all shortcut

menus.

308 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 308



This has been a quick and dirty overview of CommandBars. There’s a lot
more to CommandBars, of course, but this is as far as I take it in this book.
The next section provides some examples that may help clear up any confu-
sion you have.

With the introduction of the new Ribbon user interface, a lot has changed.
Some of the changes are for the better, and some for worse. The possibilities
for gaining control over the user interface by using just VBA are now very
limited.

VBA Shortcut Menu Examples
This section contains a few examples of using VBA to manipulate the Excel
right-click menus — commonly known as shortcut menus. These examples
give you an idea of the types of things you can do, and they can all be modi-
fied to suit your needs.

Resetting all built-in right-click menus
The following procedure resets all built-in toolbars to their original state:

Sub ResetAll()
Dim cbar As CommandBar
For Each cbar In Application.CommandBars

If cbar.Type = msoBarTypePopup Then
cbar.Reset
cbar.Enabled = True

End If
Next cbar

End Sub

This procedure will have no effect unless someone has executed some VBA
code that adds items, removes items, or disables shortcut menus.

Adding a new item to the 
Cell shortcut menu
In Chapter 16 I describe the Change Case utility. You can enhance that utility
a bit by making it available from the Cell shortcut menu.

309Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 309



This example is available at this book’s Web site. 

The AddToShortcut procedure adds a new menu item to the Cellshortcut
menu. Recall that Excel has two Cell shortcut menus. This procedure modi-
fies the normal right-click menu, but not the right-click menu that appears in
Page Break Preview mode.

Sub AddToShortCut()
Dim Bar As CommandBar
Dim NewControl As CommandBarButton
DeleteFromShortcut
Set Bar = Application.CommandBars(“Cell”)
Set NewControl = Bar.Controls.Add _

(Type:=msoControlButton, ID:=1, _
temporary:=True)

With NewControl
.Caption = “&Change Case”
.OnAction = “ChangeCase”
.Style = msoButtonIconAndCaption

End With
End Sub

When you modify a shortcut menu, that modification remains in effect until
you restart Excel. In other words, modified shortcut menus don’t reset them-
selves when you close the workbook that contains the VBA code. Therefore,
if you write code to modify a shortcut menu, you almost always write code to
reverse the effect of your modification.

The DeleteFromShortcut procedure removes the new menu item from the
Cell shortcut menu.

Sub DeleteFromShortcut()
On Error Resume Next
Application.CommandBars(“Cell”).Controls _
(“&Change Case”).Delete

End Sub

Figure 19-7 shows the new menu item displayed after right-clicking a cell.

The first actual command after the declaration of a couple of variables calls
the DeleteFromShortcut procedure. This statement ensures that only one
Change Case menu item appears on the shortcut Cell menu. Try commenting
out that line (put an apostrophe at the start of the line) and running the pro-
cedure a few times — now don’t get carried away! Right-click a cell and you
can see multiple instances of the Change Case menu item. Get rid of all the
entries by running DeleteFromShortcut multiple times (once for each extra
menu item). 

310 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 310



Finally, we need a way to add the shortcut menu item when the workbook is
opened, and delete the menu item when the workbook is closed. Doing this is
easy . . . if you’ve read Chapter 11. Just add these two event procedures to
the ThisWorkbook code module:

Private Sub Workbook_Open()
Call AddToShortCut

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Call DeleteFromShortcut

End Sub

The Workbook_Open procedure is executed when the workbook is opened,
and the Workbook_BeforeClose procedure is executed before the workbook
is closed. Just what the doctor ordered.

Disabling a shortcut menu
If you’re so inclined, you can disable an entire shortcut menu. For example,
you can make it so that right-clicking a cell does not display the normal
shortcut menu. The following procedure, which is executed automatically
when the workbook is opened, disables the Cell shortcut menu:

Figure 19-7:
The Cell
shortcut

menu
showing a

custom
menu item.

311Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 311



Private Sub Workbook_Open()
Application.CommandBars(“Cell”).Enabled = False

End Sub

And here’s its companion procedure that enables the shortcut menu when
the workbook is closed.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Application.CommandBars(“Cell”).Enabled = True

End Sub

Keep in mind that changes to CommandBars are permanent. If you don’t exe-
cute the procedure to enable the disabled shortcut menu, that shortcut menu
will not be available until you restart Excel. The ResetAll procedure earlier in
this chapter shows you how to get all of your CommandBars back to their
bare-bones state again.

Creating a Custom Toolbar
Custom toolbars are not as versatile in Excel 2007 as they are in Excel 2003
and before because they always appear in the Add-Ins➪Custom Toolbars tab
(and they can’t be moved). But custom toolbars are still a viable option if
you’re willing to put up with the limitations. For this reason, I include a
simple example of creating a custom toolbar.

The code that follows creates a new toolbar (with two buttons) that is dis-
played in the Add-ins tab in the Custom Toolbars group of the Ribbon:

Sub CreateToolBar()
Dim cBar As CommandBar
Dim cControl As CommandBarControl
RemoveToolBar

‘   Create toolbar
Set cBar = Application.CommandBars.Add
cBar.Name = “ExcelVBADummies”
cBar.Visible = True

‘   Add a control
Set cControl = cBar.Controls.Add
With cControl

.FaceId = 23

.OnAction = “ToolButtonOpen_Click”

.TooltipText = “Excel VBA for Dummies Demo: Open”
End With

‘   Add another control

312 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 312



Set cControl = cBar.Controls.Add
With cControl

.FaceId = 3

.OnAction = “ToolButtonSave_Click”

.TooltipText = “Excel VBA for Dummies Demo: Save”
End With

End Sub

Notice that I set the FaceID property when I added a control. This property
determines the icon on the button. The OnAction property specifies the macro
to execute when the button is clicked. The TooltipText property contains text
that is displayed when the user hovers the mouse pointer over the control.
Figure 19-8 shows the result of running the code:

The custom toolbar is removed with this procedure:

Sub RemoveToolBar()
On Error Resume Next
Application.CommandBars(“ExcelVBADummies”).Delete

End Sub

And last but not least, here are the two procedures that respond to the
button clicks:

Sub ToolButtonOpen_Click()
Application.CommandBars.ExecuteMso “FileOpen”

End Sub

Sub ToolButtonSave_Click()
Application.CommandBars.ExecuteMso “FileSave”

End Sub

Figure 19-8:
The Add-ins

tab of the
Ribbon

shows the
result of

running the
CreateTool

Bar routine.

313Chapter 19: Accessing Your Macros Through the User Interface

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 313



These two procedures execute the appropriate Ribbon commands.

This example is available on the book’s Web site. You can also find a work-
book that contains a list of all the Excel 2007 Ribbon commands.

When you create a custom toolbar, it remains part of the UI until it is deleted.
If the workbook that contains the macros is closed, that workbook is
reopened if you click a button on the toolbar.

314 Part IV: Communicating with Your Users 

26_046746 ch19.qxp  1/12/07  6:02 PM  Page 314



Part V
Putting It All

Together

27_046746 pt05.qxp  1/12/07  6:02 PM  Page 315



In this part . . .

The preceding 19 chapters cover quite a bit of material.
At this point, you may still feel a bit disjointed about

all the VBA stuff. The chapters in this part fill in the gaps
and tie everything together. You learn how to include your
own custom buttons in the Excel user interface. I discuss
custom worksheet functions (a very useful feature),
describe add-ins, provide more programming examples,
and wrap up with a discussion of user-oriented applications.

27_046746 pt05.qxp  1/12/07  6:02 PM  Page 316



Chapter 20

Creating Worksheet Functions 
and Living to Tell about It

In This Chapter
� Knowing why custom worksheet functions are so useful

� Exploring functions that use various types of arguments

� Understanding the Insert Function dialog box

For many people, VBA’s main attraction is the capability to create custom
worksheet functions — functions that look, work, and feel just like those

that Microsoft built into Excel. A custom function offers the added advantage
of working exactly how you want it to (because you wrote it). I introduce
custom functions in Chapter 5. In this chapter, I get down to the nitty-gritty
and describe some tricks of the trade.

Why Create Custom Functions?
You are undoubtedly familiar with Excel’s worksheet functions — even Excel
novices know how to use common worksheet functions, such as SUM, AVER-
AGE, and IF. By my count, Excel contains more than 350 predefined worksheet
functions. And if that’s not enough, you can create functions by using VBA.

With all the functions available in Excel and VBA, you may wonder why you
would ever need to create functions. The answer: to simplify your work. With
a bit of planning, custom functions are very useful in worksheet formulas and
VBA procedures. Often, for example, you can significantly shorten a formula
by creating a custom function. After all, shorter formulas are more readable
and easier to work with.

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 317



Understanding VBA Function Basics
A VBA function is a procedure that’s stored in a VBA module. You can use
these functions in other VBA procedures or in your worksheet formulas. 

A module can contain any number of functions. You can use a custom func-
tion in a formula just as if it were a built-in function. If the function is defined
in a different workbook, however, you must precede the function name with
the workbook name. For example, assume you developed a function called
DiscountPrice (which takes one argument), and the function is stored in a
workbook named pricing.xlsm.

To use this function in the pricing.xlsm workbook, enter a formula such as this:

=DiscountPrice(A1)

If you want to use this function in a different workbook, enter a formula such
as this:

=pricing.xlsm!discountprice(A1)

If the custom function is stored in an add-in, you don’t need to precede the
function name with the workbook name. I discuss add-ins in Chapter 21.

Custom functions appear in the Insert Function dialog box, in the User
Defined category. Pressing Shift+F3 is one way to display the Insert Function
dialog box.

318 Part V: Putting It All Together 

What custom worksheet functions can’t do
As you develop custom functions for use in your
worksheet formulas, it’s important that you
understand a key point. VBA worksheet
Function procedures are essentially passive.
For example, code within a Function procedure
cannot manipulate ranges, change formatting,
or do many of the other things that are possible
with a Sub procedure. An example may help.

It might be useful to create a function that
changes the color of text in a cell based on the

cell’s value. Try as you might, however, you can’t
write such a function. It always returns an error
value. It is even impossible to call a routine from
a function that does that.

Just remember this: A function used in a work-
sheet formula returns a value — it does not per-
form actions with objects.

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 318



Writing Functions
Remember that a function’s name acts like a variable. The final value of this
variable is the value returned by the function. To demonstrate, examine the
following function, which returns the user’s first name:

Function FirstName()
Dim FullName As String
Dim FirstSpace As Integer
FullName = Application.UserName
FirstSpace = InStr(FullName, “ “)
If FirstSpace = 0 Then

FirstName = FullName
Else

FirstName = Left(FullName, FirstSpace - 1)
End If

End Function

This function starts by assigning the UserName property of the Application
object to a variable named FullName. Next, it uses the VBA InStr function to
locate the first space in the name. If there is no space, FirstSpace is equal to 0
and FirstName is equal to the entire name. If FullName does have a space, the
Left function extracts the text to the left of the space and assigns it to
FirstName.

Notice that FirstName is the name of the function and is also used as a vari-
able name in the function. The final value of FirstName is the value that’s
returned by the function. Several intermediate calculations may be going on
in the function, but the function always returns the last value assigned to the
variable that is the same as the function’s name.

All the examples in this chapter are available at this book’s Web site.

Working with Function Arguments
To work with functions, you need to understand how to work with argu-
ments. The following points apply to the arguments for Excel worksheet func-
tions and custom VBA functions:

� Arguments can be cell references, variables (including arrays), constants,
literal values, or expressions.

� Some functions have no arguments.

319Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 319



� Some functions have a fixed number of required arguments (from 1 
to 60).

� Some functions have a combination of required and optional arguments.

Function Examples
The examples in this section demonstrate how to work with various types of
arguments.

A function with no argument
Like Sub procedures, Function procedures need not have arguments. For
example, Excel has a few built-in worksheet functions that don’t use argu-
ments, including RAND, TODAY, and NOW.

Here’s a simple example of a function with no arguments. The following func-
tion returns the UserName property of the Application object. This name
appears in the Excel Options dialog box (Popular tab). This simple but useful
example shows the only way you can get the user’s name to appear in a work-
sheet formula:

Function User()
‘   Returns the name of the current user

User = Application.UserName
End Function

When you enter the following formula into a worksheet cell, the cell displays
the current user’s name:

=User()

As with the Excel built-in functions, you must include a set of empty paren-
theses when using a function with no arguments.

A function with one argument
The single-argument function in this section is designed for sales managers
who need to calculate the commissions earned by their salespeople. The
commission rate depends on the monthly sales volume; those who sell more
earn a higher commission rate. The function returns the commission amount
based on the monthly sales (which is the function’s only argument — a
required argument). The calculations in this example are based on Table 20-1.

320 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 320



Table 20-1 Commission Rates by Sales
Monthly Sales Commission Rate

$0–$9,999 8.0%

$10,000–$19,999 10.5%

$20,000–$39,999 12.0%

$40,000+ 14.0%

You can use several approaches to calculate commissions for sales amounts
entered into a worksheet. You could write a lengthy worksheet formula such
as this:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,IF(AND(A1>=10000,
A1<=19999.99),A1*0.105,IF(AND(A1>=20000,A1<=39999.99),
A1*0.12,IF(A1>=40000,A1*0.14,0))))

A couple reasons make this a bad approach. First, the formula is overly com-
plex. Second, the values are hard-coded into the formula, making the formula
difficult to modify if the commission structure changes.

A better approach is to create a table of commission values and use a
LOOKUP table function to compute the commissions:

=VLOOKUP(A1,Table,2)*A1

Another approach, which doesn’t require a table of commissions, is to create
a custom function:

Function Commission(Sales)
‘   Calculates sales commissions

Dim Tier1 As Double, Tier2 As Double
Dim Tier3 As Double, Tier4 As Double
Tier1 = 0.08
Tier2 = 0.105
Tier3 = 0.12
Tier4 = 0.14
Select Case Sales

Case 0 To 9999.99: Commission = Sales * Tier1
Case 10000 To 19999.99: Commission = Sales * Tier2
Case 20000 To 39999.99: Commission = Sales * Tier3
Case Is >= 40000: Commission = Sales * Tier4

End Select
Commission = Round(Commission, 2)

End Function

321Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 321



After you define this function in a VBA module, you can use it in a worksheet
formula. Entering the following formula into a cell produces a result of 3,000.
The amount of 25000 qualifies for a commission rate of 12 percent:

=Commission(25000)

Figure 20-1 shows a worksheet that uses the Commission function.

A function with two arguments
The next example builds on the preceding one. Imagine that the sales man-
ager implements a new policy: The total commission paid increases by 1 per-
cent for every year the salesperson has been with the company.

I modified the custom Commission function (defined in the preceding sec-
tion) so that it takes two arguments, both of which are required arguments.
Call this new function Commission2:

Function Commission2(Sales, Years)
‘   Calculates sales commissions based on years in service

Dim Tier1 As Double, Tier2 As Double
Dim Tier3 As Double, Tier4 As Double
Tier1 = 0.08
Tier2 = 0.105
Tier3 = 0.12
Tier4 = 0.14
Select Case Sales

Case 0 To 9999.99: Commission2 = Sales * Tier1
Case 10000 To 19999.99: Commission2 = Sales *

Tier2

Figure 20-1:
Using the

Commission
function in a

worksheet.

322 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 322



Case 20000 To 39999.99: Commission2 = Sales *
Tier3

Case Is >= 40000: Commission2 = Sales * Tier4
End Select
Commission2 = Commission2 + (Commission2 * Years /

100)
Commission2 = Round(Commission2, 2)

End Function

I simply added the second argument (Years) to the Function statement and
included an additional computation that adjusts the commission before exit-
ing the function. This additional computation multiplies the original commis-
sion by the number of years in services, divides by 100, and then adds the
result to the original computation.

Here’s an example of how you can write a formula by using this function. (It
assumes that the sales amount is in cell A1; cell B1 specifies the number of
years the salesperson has worked.)

=Commission2(A1,B1)

A function with a range argument
Using a worksheet range as an argument is not at all tricky; Excel takes care
of the behind-the-scenes details.

Assume that you want to calculate the average of the five largest values in a
range named Data. Excel doesn’t have a function that can do this, so you
would probably write a formula:

=(LARGE(Data,1)+LARGE(Data,2)+LARGE(Data,3)+
LARGE(Data,4)+LARGE(Data,5))/5

This formula uses Excel’s LARGE function, which returns the nth largest value
in a range. The formula adds the five largest values in the range named Data
and then divides the result by 5. The formula works fine, but it’s rather
unwieldy. And what if you decide that you need to compute the average of
the top six values? You would need to rewrite the formula — and make sure
that you update all copies of the formula.

Wouldn’t this be easier if Excel had a function named TopAvg? Then you
could compute the average by using the following (nonexistent) function:

=TopAvg(Data,5)

323Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 323



This example shows a case in which a custom function can make things much
easier for you. The following custom VBA function, named TopAvg, returns
the average of the N largest values in a range:

Function TopAvg(InRange, N)
‘   Returns the average of the highest N values in InRange

Dim Sum As Double
Dim I As Long
Sum = 0
For i = 1 To N

Sum = Sum + _
Application.WorksheetFunction.LARGE(InRange, i)

Next i
TopAvg = Sum / N

End Function

This function takes two arguments: InRange (which is a worksheet range) and
N (the number of values to average). It starts by initializing the Sum variable
to 0. It then uses a For-Next loop to calculate the sum of the N largest values
in the range. Note that I use the Excel LARGE function within the loop. Finally,
TopAvg is assigned the value of Sum divided by N.

You can use all Excel worksheet functions in your VBA procedures except
those that have equivalents in VBA. For example, VBA has a Rnd function
that returns a random number. Therefore, you can’t use the Excel RAND func-
tion in a VBA procedure.

A function with an optional argument
Many Excel built-in worksheet functions use optional arguments. An example
is the LEFT function, which returns characters from the left side of a string.
Its official syntax follows:

LEFT(text[,num_chars])

The first argument is required, but the second is optional. If you omit the
optional argument, Excel assumes a value of 1. Therefore, the following for-
mulas return the same result:

=LEFT(A1,1)
=LEFT(A1)

The custom functions you develop in VBA also can have optional arguments.
You specify an optional argument by preceding the argument’s name with the
keyword Optional, followed by an equal sign and the default value. If the
optional argument is missing, the code uses the default value.

324 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 324



The following example shows a custom function that uses an optional argument: 

Function DrawOne(InRange, Optional Recalc = 0)
‘   Chooses one cell at random from a range

‘   Make function volatile if Recalc is 1
If Recalc = 1 Then Application.Volatile True

‘   Determine a random cell
DrawOne = InRange(Int((InRange.Count) * Rnd + 1))

End Function

This function randomly chooses one cell from an input range. The range passed
as an argument is actually an array (I explain arrays in chapter 7), and the func-
tion selects one item from the array at random. If the second argument is 1, the
selected value changes whenever the worksheet is recalculated. (The func-
tion is made volatile.) If the second argument is 0 (or is omitted), the function
is not recalculated unless one of the cells in the input range is modified.

You can use this function for choosing lottery numbers, selecting a winner
from a list of names, and so on.

325Chapter 20: Creating Worksheet Functions and Living to Tell about It

Debugging custom functions
Debugging a Function procedure can be a bit
more challenging than debugging a Sub proce-
dure. If you develop a function for use in work-
sheet formulas, you find that an error in the
Function procedure simply results in an error
display in the formula cell (usually #VALUE!). In
other words, you don’t receive the normal run-
time error message that helps you locate the
offending statement.

You can choose among three methods for
debugging custom functions:

� Place MsgBox functions at strategic 
locations to monitor the value of specific
variables. Fortunately, message boxes in
Function procedures pop up when you 

execute the procedure. Make sure that only
one formula in the worksheet uses your
function, or the message boxes appear for
each formula that’s evaluated — which
could get very annoying.

� Test the procedure by calling it from a Sub
procedure. Run-time errors appear nor-
mally in a pop-up window, and you can
either correct the problem (if you know it) or
jump right into the debugger.

� Set a breakpoint in the function and then
use the Excel debugger to step through the
function. You can then access all the usual
debugging tools. Refer to Chapter 13 to find
out about the debugger.

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 325



A function with an indefinite 
number of arguments
Some Excel worksheet functions take an indefinite number of arguments. A
familiar example is the SUM function, which has the following syntax:

SUM(number1,number2...)

The first argument is required, but you can have as many as 254 additional
arguments. Here’s an example of a SUM function with four range arguments:

=SUM(A1:A5,C1:C5,E1:E5,G1:G5)

Here’s a function that can have any number of single-value arguments. This
function doesn’t work with multicell range arguments.

Function Concat(string1, ParamArray string2())
‘   Demonstrates indefinite number of function arguments

Dim Args As Variant

‘   Process the first argument
Concat = string1

‘   Process additional arguments (if any)
If UBound(string2) <> -1 Then

For Args = LBound(string2) To UBound(string2)
Concat = Concat & “ “ & string2(Args)

Next Args
End If

End Function

This function is similar to the Excel CONCATENATE function, which combines
text arguments into a single string. The difference is that this custom function
inserts a space between each pair of concatenated strings.

The second argument, string2(), is an array preceded by the ParamArray key-
word. If the second argument is empty, the UBound function returns –1 and
the function ends. If the second argument is not empty, the procedure loops
through the elements of the string2 array and processes each additional argu-
ment. The LBound and UBound functions determine the beginning and ending
elements of the array. The beginning element is normally 0 unless you either
declare it as something else or use an Option Base 1 statement at the begin-
ning of your module.

326 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 326



ParamArray can apply to only the last argument in the procedure. It is always
a variant data type, and it is always an optional argument (although you don’t
use the Optional keyword). Figure 20-2 shows this function in use. Examine
the figure to see how the results differ from those produced by the Excel
CONCATENATE function, which doesn’t insert a space between the concate-
nated items.

Functions That Return an Array
One of Excel’s most powerful features is array formulas. If you’re familiar with
array formulas, you’ll be happy to know that you can create VBA functions
that return an array. 

Returning an array of month names
I’ll start out with a simple example. The MonthNames functions returns a 12-
element array of — you guessed it, month names.

Function MonthNames()
MonthNames = Array(“January”, “February”, “March”, _
“April”, “May”, “June”, “July”, “August”, _
“September”, “October”, “November”, “December”)

End Function

To use the MonthNames function in a worksheet, you must enter it as a 12-cell
array formula. For example, select range A1:L1 and enter =MonthNames().
Then use Ctrl+Shift+Enter to enter the array formula in all 12 selected cells.
Figure 20-3 shows the result.

Figure 20-2:
Using the

Concat
function.

327Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 327



If you want the month names to display in a column, select 12 cells in a
column and use this array formula (don’t forget to enter it by using
Ctrl+Shift+Enter):

=TRANSPOSE(MonthNames())

Returning a sorted list
Suppose that you have a list of names you want to show in sorted order in
another range of cells. Wouldn’t it be nice to have a worksheet function do
that for you?

The custom function in this section does just that: It takes a single-column
range of cells as its argument, and then returns an array of those cells sorted.
Figure 20-4 shows how it works. Range A2:A13 contains some names. Range
C2:C13 contains this multicell array formula (Remember, the formula must be
entered by pressing Ctrl+Shift+Enter):

=Sorted(A2:A13)

Here’s the code for the Sorted function:

Function Sorted(Rng As Range)
Dim SortedData() As Variant
Dim Cell As Range
Dim Temp As Variant, i As Long, j As Long
Dim NonEmpty As Long

‘   Transfer data to SortedData
For Each Cell In Rng

If Not IsEmpty(Cell) Then
NonEmpty = NonEmpty + 1
ReDim Preserve SortedData(1 To NonEmpty)
SortedData(NonEmpty) = Cell.Value

Figure 20-3:
Using the

Month
Names

function to
return a 

12-element
array.

328 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 328



End If
Next Cell

‘   Sort the array
For i = 1 To NonEmpty

For j = i + 1 To NonEmpty
If SortedData(i) > SortedData(j) Then

Temp = SortedData(j)
SortedData(j) = SortedData(i)
SortedData(i) = Temp

End If
Next j

Next i

‘   Transpose the array and return it
Sorted = Application.Transpose(SortedData)

End Function

The Sorted function starts by creating an array named SortedData. This array
contains all the nonblank values in the argument range. Next, the SortedData
array is sorted, using a bubble sort algorithm. Because the array is a horizon-
tal array, it must be transposed before it is returned by the function.

The Sorted Function works with a range of any size, as long as it’s in a single
column or row. If the unsorted data is in a row, your formula needs to use
Excel’s TRANSPOSE function to display the sorted data horizontally. For
example:

=TRANSPOSE(Sorted(A16:L16))

This book’s Web site includes a sample file with this function.

Figure 20-4:
Using a
custom

function to
return a

sorted
range.

329Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 329



Using the Insert Function Dialog Box
The Excel Insert Function dialog box is a handy tool that lets you choose a
worksheet function from a list and prompts you for the function’s arguments.
And, as I note earlier in this chapter, your custom worksheet functions also
appear in the Insert Function dialog box. Custom functions appear in the
User Defined category.

Function procedures defined with the Private keyword do not appear in the
Insert Function dialog box. Therefore, if you write a Function procedure that’s
designed to be used only by other VBA procedures (but not in formulas), you
should declare the function as Private.

Displaying the function’s description
The Insert Function dialog box displays a description of each built-in func-
tion. But, as you can see in Figure 20-5, a custom function displays the follow-
ing text as its description: No help available. 

To display a meaningful description of your custom function in the Insert
Function dialog box, perform a few additional, (nonintuitive) steps:

1. Activate a worksheet in the workbook that contains the custom function.

2. Choose Developer➪Code➪Macros (or press Alt+F8).

The Macro dialog box appears.

Figure 20-5:
By default,
the Insert
Function

dialog box
does not

provide a
description
for custom
functions.

330 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 330



3. In the Macro Name field, type the function’s name.

Note that the function does not appear in the list of macros; you must
type the name in.

4. Click the Options button.

The Macro Options dialog box appears.

5. In the Description field, type a description for the function.

6. Click OK.

7. Click Cancel.

Now the Insert Function dialog box displays the description for your func-
tion; see Figure 20-6.

Custom functions are always listed under the User Defined category. Creating
a new function category for your custom functions is fairly complicated, and
is beyond the scope of this book.

Argument descriptions
When you access a built-in function from the Insert Function dialog box, the
Function Arguments dialog box displays a description of each argument. (See
Figure 20-7.) Unfortunately, there is no direct way to provide such descrip-
tions for custom functions. You can, however, make your argument names
descriptive — which is a good idea.

Figure 20-6:
The custom

function
now

displays a
description.

331Chapter 20: Creating Worksheet Functions and Living to Tell about It

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 331



This chapter provides lots of information about creating custom worksheet
functions. Use these examples as models when you create functions for your
own work. As usual, the online help provides additional details. Turn to
Chapter 21 if you want to find out how to make your custom functions more
accessible by storing them in an add-in.

Figure 20-7:
The

Function
Arguments
dialog box

displays
function

argument
descriptions

for built-in
functions

only.

332 Part V: Putting It All Together 

28_046746 ch20.qxp  1/12/07  6:02 PM  Page 332



Chapter 21

Creating Excel Add-Ins
In This Chapter
� Using add-ins: What a concept!

� Knowing why you might want to create your own add-ins

� Creating custom add-ins

One of the slickest features of Excel — at least in my mind — is the capa-
bility to create add-ins. In this chapter, I explain why I like this feature

and show you how to create add-ins by using only the tools built into Excel.

Okay . . . So What’s an Add-In?
What’s an add-in? Glad you asked. An Excel add-in is something you add to
enhance Excel’s functionality. Some add-ins provide new worksheet functions
you can use in formulas; other add-ins provide new commands or utilities. If
the add-in is designed properly, the new features blend in well with the origi-
nal interface, so they appear to be part of the program.

Excel ships with several add-ins. Some of the more popular ones include the
Analysis ToolPak, Conditional Sum Wizard, and Solver. You can also get Excel
add-ins from third-party suppliers or as shareware. My Power Utility Pak is an
example of an add-in (it adds about 60 new features to Excel).

Any knowledgeable user can create add-ins (but VBA programming skills are
required). An Excel add-in is basically a different form of an XLSM workbook
file. More specifically, an add-in is a normal XLSM workbook with the follow-
ing differences:

� The IsAddin property of the Workbook object is True.

� The workbook window is hidden and can’t be unhidden by using the
View➪Window➪Unhide command.

� The workbook is not a member of the Workbooks collection. Rather, it’s
in the AddIns collection.

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 333



You can convert any workbook file into an add-in, but not all workbooks are
good candidates. Because add-ins are always hidden, you can’t display work-
sheets or chart sheets contained in an add-in. However, you can access an
add-in’s VBA Sub and Function procedures and display dialog boxes con-
tained on UserForms.

Excel add-ins usually have an XLAM file extension to distinguish them from
XLSM worksheet files.

Why Create Add-Ins?
You might decide to convert your Excel application into an add-in for any of
the following reasons:

� Make it more difficult to access your code: When you distribute an
application as an add-in (and you protect its VBA project), casual users
can’t view the sheets in the workbook. If you use proprietary techniques
in your VBA code, you can make it more difficult for others to copy the
code. Excel’s protection features aren’t perfect though, and password-
cracking utilities are available.

� Avoid confusion: If a user loads your application as an add-in, the file is
invisible and therefore less likely to confuse novice users or get in the way.
Unlike a hidden workbook, the contents of an add-in can’t be revealed.

� Simplify access to worksheet functions: Custom worksheet functions
that you store in an add-in don’t require the workbook name qualifier.
For example, if you store a custom function named MOVAVG in a work-
book named NEWFUNC.XLSM, you must use syntax like the following to
use this function in a different workbook:

=NEWFUNC.XLSM!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can use much
simpler syntax because you don’t need to include the file reference:

=MOVAVG(A1:A50)

� Provide easier access for users: After you identify the location of your
add-in, it appears in the Add-Ins dialog box, with a friendly name and a
description of what it does. The user can easily enable or disable your
add-in.

� Gain better control over loading: Add-ins can be opened automatically
when Excel starts, regardless of the directory in which they are stored.

� Avoid displaying prompts when unloading: When an add-in is closed,
the user never sees the Save change in...? prompt.

334 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 334



Working with Add-Ins
The most efficient way to load and unload add-ins is by choosing Office➪
Excel Options➪Add-Ins. Select Excel Add-Ins from the drop-down list at the
bottom of this dialog screen and click Go. This command displays the Add-
Ins dialog box shown in Figure 21-1. The list box contains the names of all
add-ins that Excel knows about. In this list, check marks identify any cur-
rently open add-ins. You can open and close add-ins from the Add-Ins dialog
box by selecting or deselecting the check boxes.

As you have probably noted, it takes quite some steps to get at the Add-ins
dialog. If you find that you open and close add-ins frequently, you might want
to add a new button to your Quick Access Toolbar (QAT). Right-click the QAT
and choose Customize Quick Access Toolbar. In the Customize tab of the
Excel Options dialog box, choose All Commands from the drop-down and
locate Add-Ins in the list. Click the Add button, and your QAT now gives you
one-click access to the Add-Ins dialog box.

You can also open most add-in files (as if they were workbook files) by choos-
ing the Office➪Open command. An add-in opened in this manner does not
appear in the Add-Ins dialog box. In addition, if the add-in was opened by
using the Open command, you can’t close it by choosing Office➪Close. You
can remove the add-in only by exiting and restarting Excel or by writing a
macro to close the add-in.

When you open an add-in, you may or may not notice anything different. In
many cases, however, the Ribbon changes in some way — Excel displays
either a new tab or one or more new groups on an existing tab. For example,
opening the Analysis ToolPak add-in gives you a new item on the Data tab:

Figure 21-1:
The Add-Ins

dialog box
lists all the

add-ins
known to

Excel.

335Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 335



Analysis➪Data Analysis. If the add-in contains only custom worksheet func-
tions, the new functions appear in the Insert Function dialog box and you’ll
see no change to Excel’s user interface.

Add-in Basics
Although you can convert any workbook to an add-in, not all workbooks ben-
efit from this conversion. Workbooks that consist only of worksheets (and no
macros) become unusable because the add-ins are hidden. In other words,
you are unable to see the worksheets.

In fact, the only types of workbooks that benefit from being converted to an
add-in are those with macros. For example, a workbook that consists of gen-
eral-purpose macros (Sub and Function procedures) makes an ideal add-in.

Creating an add-in is easy. Use the following steps to create an add-in from a
normal workbook file:

1. Develop your application and make sure that everything works 
properly.

Don’t forget to include a method for executing the macro or macros. You
might want to define a shortcut key or customize the user interface in
some way (see Chapter 19). If the add-in consists only of functions,
there’s no need to include a method to execute them.

2. Test the application by executing it when a different workbook is
active.

Doing so simulates the application’s behavior when it’s used as an add-
in because an add-in is never the active workbook.

3. Activate the VBE and select the workbook in the Project window;
choose Tools➪VBAProject Properties and click the Protection tab;
select the Lock Project for Viewing check box and enter a password
(twice); click OK.

This step is necessary only if you want to prevent others from viewing
or modifying your macros or UserForms. 

4. In Excel, choose Office➪Prepare➪Properties. 

Excel displays its Document Properties pane below the Ribbon.

5. In the Document Properties panel, enter a brief descriptive title in the
Title field and a longer description in the Comments field. 

Steps 4 and 6 are not required but make the add-in easier to use,
because the descriptions you enter appear in the add-ins dialog when
your add-in is selected.

336 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 336



6. Choose Office➪Save As.

7. In the Save As dialog box, select Excel add-in (*.xlam) from the Save
as Type drop-down list.

8. Specify the folder that will store the add-in.

Excel proposes a folder named AddIns, but you can save the file in any
folder you like.

9. Click Save.

You’ve just created an add-in! A copy of your workbook is converted to an add-
in and saved with an XLAM extension. Your original workbook remains open.

An Add-in Example
In this section, I discuss the basic steps involved in creating a useful add-in.
The example is based on the Change Case text conversion utility that I
describe in Chapter 16. 

The XLSM version of this example is available at this book’s Web site. You
can create an add-in from this workbook.

Setting up the workbook
The workbook consists of one blank worksheet, a VBA module, and a
UserForm. In Chapter 19, I already added code to the workbook that creates a
new menu item on the Cell right-click shortcut menu. 

The original version of the utility included options for uppercase, lowercase,
and proper case. For the add-in version, I added two new options to the user-
form, so it has the same options as the built-in tool in Microsoft Word:

� Sentence Case: Makes the first letter uppercase, and all other letters
lowercase. 

� Toggle Case: All uppercase characters are converted to lowercase, and
vice versa. 

Figure 21-2 shows UserForm1. The five OptionButton controls are inside of a
Frame control. In addition, the UserForm has a Cancel button (named
CancelButton) and an OK button (named OKButton).

337Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 337



The code executed when the Cancel button is clicked is very simple. This
procedure simply unloads the UserForm with no action:

Private Sub CancelButton_Click()
Unload UserForm1

End Sub

The code executed when the OK button is clicked follows. This code does all
the work:

Private Sub OKButton_Click()
Dim TextCells As Range
Dim cell As Range
Dim Text As String
Dim i As Long

‘   Create an object with just text constants
On Error Resume Next
Set TextCells = Selection.SpecialCells(xlConstants, _

xlTextValues)

‘   Turn off screen updating
Application.ScreenUpdating = False

‘   Loop through the cells
For Each cell In TextCells

Text = cell.Value
Select Case True
Case OptionLower ‘lowercase

cell.Value = LCase(cell.Value)
Case OptionUpper ‘UPPERCASE

cell.Value = UCase(cell.Value)
Case OptionProper ‘Proper Case

Figure 21-2:
The

UserForm
for the

Change
Case add-in.

338 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 338



cell.Value = _

Application.WorksheetFunction.Proper(cell.Value
)

Case OptionSentence ‘Sentence case
Text = UCase(Left(cell.Value, 1))
Text = Text & LCase(Mid(cell.Value, 2,

Len(cell.Value)))
cell.Value = Text

Case OptionToggle ‘tOGGLE CASE
For i = 1 To Len(Text)
If Mid(Text, i, 1) Like “[A-Z]” Then

Mid(Text, i, 1) = LCase(Mid(Text, i, 1))
Else

Mid(Text, i, 1) = UCase(Mid(Text, i, 1))
End If

Next i
cell.Value = Text

End Select
Next

‘   Unload the dialog box
Unload UserForm1

End Sub

In addition to the two new options, this version of the Change Case utility dif-
fers from the version in Chapter 16 in two other ways:

� I use the SpecialCells method to create an object variable that consists
of the cells in the selection that contain a text constant (not a formula).
This technique makes the routine run a bit faster if the selection con-
tains many formula cells. See Chapter 14 for more information on this
technique. 

� I added the Change Case menu item to the Row and the Column shortcut
menus. So now, you can execute the utility by right-clicking a range
selection, a complete row selection, or a complete column selection.

Testing the workbook
Test the add-in before converting this workbook. To simulate what happens
when the workbook is an add-in, you should test the workbook when a differ-
ent workbook is active. Remember, an add-in is never the active sheet nor
workbook, so testing it when a different workbook is open may help you iden-
tify some potential errors. Because this workbook has a Workbook_Open pro-
cedure (to add shortcut menu items), save the workbook as an XLSM file
(you might name it Change Case.xlsm), close it, and then reopen it to ensure
that this procedure is working correctly.

339Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 339



1. Open a new workbook and enter information into some cells. 

For testing purposes, enter various types of information, including text,
values, and formulas. Or just open an existing workbook and use it for
your tests — remember that any changes to the workbook cannot be
undone, so you may want to use a copy.

2. Select one or more cells (or entire rows and columns). 

3. Execute the ChangeCase macro by choosing the new Change Case
command from your Cell (or Row or Column) right-click menu.

If the Change Case command doesn’t appear on your right-click menu, the
most likely reason is that you did not enable macros when you opened the
Change Case.xlsm workbook. Close the workbook and then reopen it — and
make sure that you enable macros.

Adding descriptive information
I recommend entering a description of your add-in, but this isn’t required. 

1. Activate the change case.xlsm workbook.

2. Choose Office➪Prepare➪Properties command. 

Excel displays the Document Properties panel above the Formula bar.
See Figure 21-3.

3. Enter a title for the add-in in the Title field. 

This text appears in the list of add-ins in the Add-Ins dialog box. For this
example, enter Change Case.

4. In the Comments field, enter a description. 

This information appears at the bottom of the Add-Ins dialog box when
the add-in is selected. For this example, enter Changes the case of text in
selected cells. Access this utility by using the right-click shortcut menu.

Figure 21-3:
Use the

Document
Properties

panel to
enter

descriptive
information
about your

add-in.

340 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 340



Protecting the VBA code
If you want to add a password to prevent others from viewing the VBA code:

1. Activate the VBE and select the change case.xlsm workbook in the
Project window.

2. Choose Tools➪VBAProject Properties and click the Protection tab on
the dialog box that appears.

3. Select the Lock Project for Viewing check box and enter a password
(twice).

4. Click OK.

5. Save the workbook by selecting File➪Save from the VBE’s menu, or by
going back to the Excel window and selecting Office➪Save.

Creating the add-in
At this point, you’ve tested the change case.xlsm file, and it’s working cor-
rectly. The next step is to create the add-in:

1. If needed, reactivate Excel.

2. Activate the change case.xlsm workbook and choose Office➪Save As.

Excel displays its Save As dialog box.

3. In the Save as Type drop-down, select Add-In (*.xlam).

4. Click Save.

A new add-in file (with an XLAM extension) is created, and the original XLSM
version remains open.

Opening the add-in
To avoid confusion, close the XLSM workbook before opening the add-in cre-
ated from that workbook.

Open the add-in with these steps:

1. Choose Office➪Excel Options➪Add-ins tab. Select Excel Add-ins from
the Manage dropdown control and click Go.

Excel displays the Add-Ins dialog box. 

2. Click the Browse button.

3. Locate and select the add-in you just created.

341Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 341



4. Click OK to close the Browse dialog box.

After you find your new add-in, the Add-Ins dialog box lists the add-in.
As shown in Figure 21-4, the Add-Ins dialog box also displays the
descriptive information you provided in the Properties dialog box.

5. Make sure that the Add-Ins dialog box has a check mark for your new
add-in. Click OK to close the dialog box and open the add-in.

Distributing the add-in
If you’re in a generous mood, you can distribute this add-in to other Excel
users by simply giving them a copy of the XLAM file (they don’t need the
XLSM version). When they open the add-in, the new Change Case command
appears on the shortcut menu when they select a range, one or more rows,
or one or more columns. If you locked the VBA project with a password,
others cannot view your macro code (unless they know the password).

Modifying the add-in
If you ever need to modify the add-in (and you protected the VBA project
with a password), you need to unlock it: 

1. Open your XLAM file if it’s not already open.

2. Activate the VBE.

Figure 21-4:
The Add-Ins

dialog box
has the new

add-in
selected.

342 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 342



3. Double-click the project’s name in the Project window. 

You are prompted for the password. 

4. Enter your password and click OK.

5. Make your changes to the code.

6. Save the file from the VBE by choosing File➪Save.

If you create an add-in that stores information in a worksheet, you must set
the workbook’s IsAddIn property to False to view the workbook. You do this
in the Property window when the ThisWorkbook object is selected (see
Figure 21-5). After you’ve made your changes to the workbook, make sure
that you set the IsAddIn property back to True before you save the file.

You now know how to work with add-ins and why you might want to create
your own add-ins. One example in this chapter shows you the steps to create
an add-in that changes the case of text in selected cells. The best way to dis-
cover more about add-ins is by creating some.

Figure 21-5:
Making an
add-in not
an add-in.

343Chapter 21: Creating Excel Add-Ins

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 343



344 Part V: Putting It All Together 

29_046746 ch21.qxp  1/12/07  6:03 PM  Page 344



Part VI
The Part of Tens

30_046746 pt06.qxp  1/12/07  6:03 PM  Page 345



In this part . . .

For reasons that are historical — as well as useful —
all the books in the For Dummies series have chapters

with lists in them. The next two chapters contain my own
“ten” lists, which deal with frequently asked questions
and other resources.

30_046746 pt06.qxp  1/12/07  6:03 PM  Page 346



Chapter 22

Ten VBA Questions (And Answers)
In This Chapter
� Storing worksheet function procedures

� Limitation of the macro recorder

� Speeding up your VBA code

� Declaring variables explicitly

� Using the VBA line continuation character

In this chapter, I answer the questions most frequently asked about VBA.

The Top Ten Questions about VBA
I created a custom VBA function. When I try to use it in a formula, the for-
mula displays #NAME?. What’s wrong?

You probably put your function code in the wrong location. VBA code for
worksheet functions must be in a standard VBA module — not in a module
for a sheet or in ThisWorkbook. In the VBE, use Insert➪Module to insert a
standard module.

Can I use the VBA macro recorder to record all of my macros?

No. Normally you use it only to record simple macros or as a starting point
for a more complex macro. It cannot record macros that use variables, loop-
ing, or any other type of program flow constructs. In addition, you cannot
record a Function procedure in the VBA macro recorder. Unfortunately, Excel
2007 refuses to record many actions that are related to the new features that
have been added to Excel. For example, the macro recorder ignores your
actions while you apply many formatting commands while working on a
chart.

31_046746 ch22.qxp  1/12/07  6:03 PM  Page 347



How can I prevent others from viewing my VBA code?

1. In the VBE, choose Tools➪VBA Project Properties. 

2. In the dialog box, click the Protection tab and select Lock Project for
Viewing. 

3. Enter a password (twice) and click OK. 

Doing so prevents casual users from viewing your code, but password protec-
tion is certainly not 100 percent secure. Password-cracking utilities exist.

What’s the VBA code for increasing or decreasing the number of rows and
columns in a worksheet?

No such code exists. The number of rows and columns is fixed and cannot be
changed. No way. However, if you open a workbook that has been created by
using an earlier Excel version, the text Compatibility mode shows up on the
title bar. This notice indicates that this workbook is limited to the old 256-x-
65536 cell grid. You can get out of this mode (and thus get the new bigger cell
grid) by saving the file as a normal workbook and then closing and reopening
this new file.

When I refer to a worksheet in my VBA code, I get a “subscript out of
range” error. I’m not using any subscripts. What gives?

This error occurs if you attempt to access an element in a collection that
doesn’t exist. For example, this statement generates the error if the active
workbook doesn’t contain a sheet named MySheet:

Set X = ActiveWorkbook.Sheets(“MySheet”)

Is there a VBA command that selects a range from the active cell to the last
entry in a column or a row? (In other words, how can a macro accomplish
the same thing as Ctrl+Shift+↓ or Ctrl+Shift+ →?)

Here’s the VBA equivalent for Ctrl+Shift+↓:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

For the other directions, use the constants xlToLeft, xlToRight, or xlUprather
than xlDown.

How can I make my VBA code run as fast as possible?

348 Part VI: The Part of Tens 

31_046746 ch22.qxp  1/12/07  6:03 PM  Page 348



Here are a few tips:

� Make sure to declare all your variables as a specific data type. (Use
Option Explicit in each module’s Declarations section to force yourself
to declare all variables.)

� If you reference an object (such as a range) more than once, create an
object variable using the Set keyword.

� Use the With-End With construct whenever possible.

� If your macro writes data to a worksheet and you have lots of complex
formulas, set the calculation mode to Manual while the macro runs. (but
make sure you do a calculation when you need to use the results!)

� If your macro writes information to a worksheet, turn off screen updat-
ing by using Application.ScreenUpdating = False.

Don’t forget to reinstate these last two settings to their starting value when
your macro is finished.

How can I display multiline messages in a message box?

The easiest way is to build your message in a string variable, using the
vbNewLine constant to indicate where you want your line breaks to occur.
The following is a quick example:

Msg = “You selected the following:” & vbNewLine
Msg = Msg & UserAns
MsgBox Msg

I wrote some code that deletes worksheets. How can I avoid showing
Excel’s warning prompt?

Insert this statement before the code that deletes the worksheets:

Application.DisplayAlerts = False

Why can’t I get the VBA line-continuation character (underscore) to work?

The line continuation sequence is actually two characters: a space followed
by an underscore. Make sure to use both characters and press Enter after the
underscore.

349Chapter 22: Ten VBA Questions (and Answers)

31_046746 ch22.qxp  1/12/07  6:03 PM  Page 349



350 Part VI: The Part of Tens 

31_046746 ch22.qxp  1/12/07  6:03 PM  Page 350



Chapter 23

(Almost) Ten Excel Resources

This book is only an introduction to Excel VBA programming. If you hunger
for more information, you can feed on the list of additional resources I’ve

compiled here. You can discover new techniques, communicate with other
Excel users, download useful files, ask questions, access the extensive
Microsoft Knowledge Base, and lots more.

Several of these resources are online services or Internet resources, which
tend to change frequently. The descriptions are accurate at the time I’m writ-
ing this, but I can’t guarantee that this information will remain current.

The VBA Help System
I hope you’ve already discovered VBA’s Help system. I find this reference
source particularly useful for identifying objects, properties, and methods.
It’s readily available, it’s free, and (for the most part) it’s accurate. So use it.

Microsoft Product Support
Microsoft offers a wide variety of technical support options (some for free,
others for a fee). To access Microsoft’s support services (including the useful
Knowledge Base), go here:

http://support.microsoft.com

And don’t forget about Microsoft’s Office site, which has lots of material
related to Excel:

http://office.microsoft.com

32_046746 ch23.qxp  1/12/07  6:04 PM  Page 351



Another great resource is the Microsoft Developer Network site (MSDN). It
has lots and lots of information aimed at the developer (yes, that is you!).
Here is a link to the pages on Excel 2007:

http://msdn.microsoft.com/office/program/excel/2007/
default.aspx

Internet Newsgroups
Microsoft’s newsgroups are perhaps the best place to go if you have a ques-
tion. You can find hundreds of newsgroups devoted to Microsoft products —
including a dozen or so newsgroups just for Excel. The best way to access
these newsgroups is by using special newsreader software. (Microsoft
Outlook Express is a good choice.). Set your newsreader software to access
the news server at msnews.microsoft.com.

The more popular English-language, Excel-related newsgroups are listed here:

microsoft.public.excel.charting

microsoft.public.excel.misc

microsoft.public.excel.printing

microsoft.public.excel.programming

microsoft.public.excel.setup

microsoft.public.excel.worksheet.functions

If you prefer to access the newsgroups by using your Web browser, you have
two choices:

http://support.microsoft.com/newsgroups/

http://groups.google.com

Without even knowing what your question is, I’m willing to bet that it has
already been answered. To search old newsgroup messages by keyword,
point your Web browser to:

http://groups.google.com

352 Part VI: The Part of Tens 

32_046746 ch23.qxp  1/12/07  6:04 PM  Page 352



Internet Web Sites
Several Web sites contain Excel-related material. A good place to start your
Web surfing is my very own site, which is named The Spreadsheet Page. After
you get there, you can check out my material and then visit my links pages,
which lead you to hundreds of other Excel-related sites. The URL for my site
follows: 

www.j-walk.com/ss/

Excel Blogs
You can find literally millions of blogs (short for weblogs) on the Web. A blog
is basically a frequently updated diary about a particular topic. A few blogs
are devoted exclusively to Excel. Dick Kusleika writes one of my favorites
(and I make occasional posts there as well). You can read Dick’s Daily Dose of
Excel here:

www.dailydoseofexcel.com/

Google
When I have a question about any topic (including Excel programming), my
first line of attack is Google — currently the world’s most popular search site.

www.google.com

Enter a few key search terms and see what Google finds. I get an answer
about 90 percent of the time. If that fails, then I search the newsgroups
(described earlier) by using this URL:

http://groups.google.com

353Chapter 23: (Almost) Ten Excel Resources

32_046746 ch23.qxp  1/12/07  6:04 PM  Page 353



Local User Groups
Many larger communities and universities have an Excel user group that
meets periodically. If you can find a user group in your area, check it out.
These groups are often an excellent source for contacts and sharing ideas.

My Other Book
Sorry, but I couldn’t resist the opportunity for a blatant plug. To take VBA
programming to the next level, check out my Excel 2007 Power Programming
with VBA (published by Wiley).

354 Part VI: The Part of Tens 

32_046746 ch23.qxp  1/12/07  6:04 PM  Page 354



• Symbols •
+ (addition) operator, 108
‘ (apostrophe), 93
= (assignment statement), 107
/ (division) operator, 108
^ (exponentiation) operator, 108
\ (integer division) operator, 108
* (multiplication) operator, 108
& (string concatenation) operator, 108
- (subtraction) operator, 108

• A •
Abs function, 129
absolute mode, recording macros, 82–83
Accelerator property, 249, 258
Activate event, 158, 159
activation events, 166–167
active objects, 17
Add Watch dialog box, 200
AddinInstall event, 158
add-ins

creating, 14, 336–337, 341
descriptive information, 340
distributing, 342
modifying, 342–343
opening, 341–342
overview, 333–334
reasons for, 334
VBA code, protecting, 341
workbook setup, 337–339
workbook testing, 339–340
working with, 335–336

Add-Ins dialog box, 335
AddinUninstall event, 158
addition (+) operator, 108
Address property, 119
alert messages, macro speed, 218
And logical operator, 108
apostrophe (‘), 93
Application object, introduction, 16

applications, macro driven, 14
arguments

Cells property, 115
functions, 319–320
GetOpenFilename method, 232
MsgBox function, 224

Array function, 129
arrays

declaring, 109–110
dynamic, 111
introduction, 18
multidimensional, 110

Asc function, 129
assignment statements, 106–109
Atn function, 129
automatic calculation, macro speed,

217–218
AutoSize property, UserForm controls, 258

• B •
BackColor property, UserForm 

controls, 258
BackStyle property, UserForm 

controls, 258
BeforeClose event, 158, 165
BeforeDoubleClick event, 159, 169
BeforePrint event, 158
BeforeRightClick event, 159, 169
BeforeSave event, 158, 165–166
BeginGroup property, 307
blogs, 353
Boolean data type, 97
Boolean settings, 212
breakpoints, setting (debugging), 196–199
bugs. See also debugging

beyond your control bugs, 192
breakpoints, 196–199
extreme-case bugs, 191
identifying, 192–193
incorrect context bugs, 191
logic flaws, 191
Option Explicit statement, 201

Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 355



bugs. See also debugging (continued)
reduction tips, 201–202
syntax errors, 192
wrong data type, 192
wrong version, 192

built-in data types, 97
built-in dialog boxes, 236–238
built-in functions

Abs, 129
Array, 129
Asc, 129
Atn, 129
Choose, 129
Chr, 129
Cos, 129
CurDir, 129
Date, 129
DateAdd, 129
DateDiff, 129
DatePart, 129
DateSerial, 129
DateValue, 129
Day, 129
Dir, 129
Erl, 130
Err, 130
Error, 130
Exp, 130
file size, 127–128
FileLen, 130
Fix, 130
Format, 130
GetSetting, 130
Hex, 130
Hour, 130
InputBox, 130
InStr, 130
Int, 130
integer portion of value, 127
introduction, 126
IPmt, 130
IsArray, 130
IsDate, 130
IsEmpty, 130
IsError, 130
IsMissing, 130
IsNull, 130

IsNumeric, 130
IsObject, 130
LBound, 130
LCase, 130
Left, 131
Len, 131
Log, 131
LTrim, 131
Mid, 131
Minute, 131
Month, 131
MsgBox, 131
Now, 131
object type, 128
Replace, 131
RGB, 131
Right, 131
Rnd, 131
RTrim, 131
Second, 131
Sgn, 131
Shell, 131
Sin, 131
Space, 131
Split, 131
Sqr, 131
Str, 131
StrComp, 131
String, 131
string length, 126–127
system date display, 126
Tan, 132
Time, 132
Timer, 132
TimeSerial, 132
TimeValue, 132
Trim, 132
TypeName, 132
UBound, 132
UCase, 132
Val, 132
VarType, 132
Weekday, 132
Year, 132

BuiltIn property, 307
built-in toolbars, 309
buttons, custom, 14

356 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 356



• C •
Calculate event, 159
calculation, automatic, macro speed,

217–218
Cancel command button

creating in UserForms, 247
event-handler procedure, adding, 250–251

Caption property, 258, 307
cell references, 58
Cell shortcut menus, adding new item,

309–311
cell value, prompting for, 209–210
Cells property, 115
Change event, 159, 170
ChangeCase UserForm

CommandButtons, adding, 247–248
creating, 246–247
OptionButtons, adding, 248–249
shortcut key, creating, 252–253
testing, 253–254

ChartObject collection, looping 
through, 214

charts
activating, 213
as collections, 56
embedded, 213
formatting, applying, 215–216
macro recorder, 213
properties, modifying, 215
type, modifying, 214

CheckBox control
properties, 259–260
UserForms, 243

Choose function, 129
Chr function, 129
Clear method, 123
code

copying, 42, 47
entering in module, 42, 43–45
macro recorder, 42, 45–47
speed, 348–349
viewing, preventing, 348

Code module window (UserForms),
viewing, 244–245

Code window, VBE, 37, 40–41

collections
ChartObject, 214
charts as, 56
introduction, 16
looping through, 155–156
sheets as, 56
workbooks as, 56
worksheets as, 56

Column property, 118
columns

referencing, 116
selecting, 207
selecting to end, 206–207

ComboBox control, 243, 261
CommandBars

controls, properties, 307–309
controls, referencing, 306–307
introduction, 299–301
menu bar, 304
shortcut menu, 304
shortcut menu, listing all, 304–305
toolbar, 304

CommandButton control
properties, 262
UserForms, 243
UserForms, adding to, 247–248

commands, custom, 13
comments

apostrophe, 93
converting statements to, 94
debugging, 201
tips, 95

constants
built-in, value, 105
declaring, 103
introduction, 103
scope, 103

controls
aligning, 271
CheckBox, 243, 259–260
ComboBox, 243, 260–261
CommandButton, 243, 261–262
CommandButton, adding to UserForms,

247–248
Frame, 243, 262
hot keys, 273
Image, 243, 262–263

357Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 357



controls (continued)
keyboard navigation of, enabling, 272–273
Label, 243, 263–264
ListBox, 243, 264–265
moving, 270–271
MultiPage, 243, 265–266
OptionButton, 243
OptionButton, adding to UserForms,

248–249
properties, 257–258
properties, help for, 259
RefEdit, 243, 267
resizing, 270–271
ScrollBar, 243, 267–268
spacing, 271
SpinButton, 243, 268
tab order, 272–273
TabStrip, 243, 269
TextBox, 243, 269–270
ToggleButton, 243, 270
UserForms, accessing programmatically,

245–246
UserForms, adding to, 242–243, 255–256
UserForms, changing properties, 243–244
UserForms, naming, 246

Copy method, 123, 205
copying

code, 47
ranges, 204–205
ranges, variable-sized, 205–206

Cos function, 129
Count property, 118
CurDir function, 129
currency data type, 97
CurrentRegion property, 206
custom buttons, 14
custom functions

introduction, 126
overview, 137–138

• D •
data types, built-in, 97
data validation, 170–172
date

data type, 97
system date display, 126
variables, 106

Date function, 126, 129

DateAdd function, 129
DateDiff function, 129
DatePart function, 129
DateSerial function, 129
DateValue function, 129
Day function, 129
Deactivate event, 158, 159
deactivation events, 166–167
debugging. See also bugs

breakpoints, setting, 196–199
code examination, 193
comments, 201
custom functions, 325
Debug.Print statement, 195
definition, 192
Function procedures, 201
Immediate window, 198–199
indentations, 201
Locals window, 201
MsgBox function, 194–195
stepping through code, 199
Sub procedures, 201
watch expressions, 199–200
Watch window, 199–200

Debug.Print statement, 195
decision making, programming constructs,

139–140
declaring

arrays, 109–110
constants, 103
variables, 98–103

Delete method, 124
description, macro, 87
design time, changing control 

properties, 257
Developer tab, 21–22
dialog boxes. see also UserForms

built-in, 236–238
displaying in UserForms, 240
displaying, macro for, 251–254

Dim keyword, 100
Dir function, 129
division (/) operator, 108
Docking tab, VBE, 52
dot notation, 17–18
double data type, 97
Do-Until Loop, 154–155
Do-While loop, 153–154
dynamic arrays, 111

358 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 358



• E •
Editor Format tab, VBE, 51
Editor tab, VBE

Auto Data Tips option, 50
Auto Indent setting, 50
Auto List Members option, 49
Auto Quick Info option, 49
Auto Syntax Check option, 48
Default to Full Module View option, 50
Drag-and-Drop Text Editing option, 50
Procedure Separator option, 50
Require Variable Declaration option, 48

embedded charts, 213
Enabled property, 307
End method, 207
EntireColumn property, 207
EntireRow property, 207
equal sign (=), assignment statement, 107
Eqv logical operator, 108
Erl function, 130
Err function, 130
Error function, 130
error-handling

example, 178–182
On Error statement, 182
Resume statement, 184–186
summary, 186

errors
ignoring, 186–187
intentional, 188–190
specific, identifying, 187–188
types of, 177

event-handler procedures
Code window, 160–161
programming, 160
UserForms, adding to, 250–251, 280–281
writing, 161–163

events
Activate, 158, 159
activation, 166–168
AddinInstall, 158
AddinUninstall, 158
BeforeClose, 158, 165
BeforeDoubleClick, 159, 169
BeforePrint, 158
BeforeRightClick, 159, 169
BeforeSave, 158, 165–166
Calculate, 159

Change, 159, 170
Deactivate, 158, 159
FollowHyperlink, 159
Help system, 63–64
introduction, 157–159
keypress, 174–176
NewSheet, 158
objects, 63
OnTime, 172–174
Open, 158, 163–164
SelectionChange, 159
SheetActivate, 158
SheetBeforeDoubleClick, 158
SheetBeforeRightClick, 158
SheetCalculate, 158
SheetChange, 158
SheetDeactivate, 158
SheetFollowHyperlink, 159
SheetSelectionChange, 159
triggers, 158–159
usefulness of, 159–160
WindowActivate, 159
WindowDeactivate, 159
WindowResize, 159

Excel 2007 Power Programming with VBA
(Walkenbach), 354

Excel versions, 18–19
executing

Function procedures, 76–78
Sub procedures, 69–71
Sub procedures directly, 71–72
Sub procedures from another 

procedure, 76
Sub procedures from button or shape,

74–75
Sub procedures from Macro dialog 

box, 72
Sub procedures using shortcut key, 72–73

Exp function, 130
exponentiation (^) operator, 108
exporting objects to projects, 40
expressions, assignment statements,

106–109

• F •
FaceID property, 307
FileLen function, 127–128, 130

359Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 359



files
selecting multiple, 234–235
size, 127–128

Fix function, 127, 130
fixed-length strings, 105
FollowHyperlink event, 159
Font property, 120
Format function, 130
formatting, charts, 215–216
Formula property, 121
For-Next loops

Exit For statement, 151–152
looping through ranges, 208
nested, 152–153
Step values, 150–151

Frame control
properties, 262
UserForms, 243

Function procedures
calling functions from worksheet 

formula, 77
debugging, 201
definition, 67
executing, 76–78
introduction, 16
modules, 42
naming, 69
overview, 68

functions
Abs, 129
arguments, 319–320
Array, 129
array of month names, 327–328
Asc, 129
Atn, 129
built-in, 126
calling from Sub procedure, 77
Choose, 129
Chr, 129
Cos, 129
creating, 14
CurDir, 129
custom, 126, 137–138, 317
custom, debugging, 325
Date, 126, 129
DateAdd, 129
DateDiff, 129
DatePart, 129

DateSerial, 129
DateValue, 129
Day, 129
Dir, 129
Erl, 130
Err, 130
Error, 130
Exp, 130
FileLen, 127–128, 130
Fix, 127, 130
Format, 130
GetSetting, 130
Hex, 130
Hour, 130
indefinite number of functions, 326–327
InputBox, 128, 130, 209–210
InStr, 130
Int, 130
introduction, 125
IPmt, 130
IsArray, 130
IsDate, 130
IsEmpty, 130
IsError, 130
IsMissing, 130
IsNull, 130
IsNumeric, 130
IsObject, 130
LBound, 130
LCase, 130
Left, 131
Len, 126–127, 131
Log, 131
LTrim, 131
Mid, 131
Minute, 131
Month, 131
MsgBox, 128, 131, 211
no argument, 320
Now, 131
optional argument, 324–325
overview, 318
PROPER (Excel), using in UserForms, 251
range argument, 323–324
Replace, 131
RGB, 131
Right, 131
Rnd, 131

360 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 360



RTrim, 131
Second, 131
Sgn, 131
Shell, 128, 131
Sin, 131
single argument, 320–322
sorted list, 328–329
Space, 131
Split, 131
Sqr, 131
Str, 131
StrComp, 131
StrConv, 151
String, 131
Tan, 132
Time, 132
Timer, 132
TimeSerial, 132
TimeValue, 132
Trim, 132
two arguments, 322–323
TypeName, 128, 132
UBound, 132
UCase, 132
UCase, UserForms, 239–240
Val, 132
VarType, 132
Weekday, 132
worksheet, 126, 132–133
writing, 319
Year, 132

• G •
General tab, VBE, 52
GetAFolder method, 236
GetOpenFilename method

arguments, 232
example, 232–234
introduction, 231
syntax, 232

GetSaveAsFilename method, 235–236
GetSetting function, 130
Google, 353
GoTo statement, 140–141
GUI (Graphical User Interface), 

UserForms, 241

• H •
HasFormula property, 119–120
Height property, UserForm controls, 258
Help system

control properties, 259
events, 63–64
methods, 63–64
properties, 63–64
as support, 351

Hex function, 130
hierarchy, objects, 57–58
Hour function, 130

• I •
If-Then structure

ElseIf, 144–145
examples, 142
If-Then-Else, 142–144
introduction, 141–142

Image control
properties, 263
UserForms, 243

Immediate window, VBE, 37
Imp logical operator, 108
importing objects to projects, 40
InputBox function, 128, 130, 209–210
Insert Function dialog box

argument descriptions, 331–332
function description, 330–331

InStr function, 130
Int function, 130
integer data type, 97
integer division (\) operator, 108
integers, built-in function, 127
Interior property, 120–121
Internet newsgroups, 352
IPmt function, 130
IsArray function, 130
IsDate function, 130
IsEmpty function, 130
IsError function, 130
IsMissing function, 130
IsNull function, 130
IsNumeric function, 130
IsObject function, 130

361Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 361



• K •
keypress events, 174–176
keywords

Dim, 100
Public, 101

• L •
Label control, UserForms, 243
labels, 111–112
LBound function, 130
LCase function, 130
Left function, 131
Left property, UserForm controls, 258
Len function, 126–127, 131
line-continuation character, 349
ListBox control

properties, 264–264
UserForms, 243, 282–298

Locals window, debugging, 201
Log function, 131
logical operators

And, 108
Eqv, 108
Imp, 108
Not, 108
Or, 108
XoR, 108

long data type, 97
loops

ChartObject collection, 214
collections, 155–156
Do-Until, 154–155
Do-While, 153–154
For-Next, 150–153, 208
introduction, 18, 149
ranges, 208–209

LTrim function, 131

• M •
macro-driven applications, 14
macros

description, 87
modifying, 28–29
naming, 87
programs, 12

recording, 23–24, 347
recording, code, 45–47
recording, tape recording comparison, 80
saving workbooks containing, 29
security, 29–30
shortcut key, 87
speeding up, 216–220
storing, 87
testing, 24
UserForms, changing character case,

239–240
UserForms, displaying, 251–254
UserForms, making available, 279

Macros dialog box, 25
maximizing Code window, 40–41
menu bar, VBE, 36
menus. See shortcut menus
message boxes

customizing, 226–229
displaying, 225
multiline messages, 349
responses, 225–226

messages, alert messages, macro speed, 218
methods

Clear, 123
Copy, 123, 205
Delete, 124
End, 207
GetAFolder, 236
GetOpenFilename, 231–235
GetSaveAsFilename, 235–236
Help system, 63–64
objects, 18, 62
Paste, 123
ProcessCells, 208
Select, 122–123
Show, displaying UserForms, 245
SpecialCells method, 209

Microsoft Product Support, 351
Mid function, 131
minimizing Code window, 40–41
Minute function, 131
Mod (modulo arithmetic) operator, 108
module-only variables, 101
modules

adding to projects, 39
code, entering, 43–45
declarations, 42
editing, 16

362 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 362



Function procedures, 16, 42
functions, 318
removing from projects, 39
Sub procedures, 16, 42
viewing, 16

modulo arithmetic (Mod) operator, 108
Month function, 131
mortgage payment calculation, 133–134
moving ranges, 207–208
MsgBox function

arguments, 224
debugging, 194–195
definition, 128, 131

multidimensional arrays, 110
MultiPage control

properties, 265
UserForms, 243

multiplication (*) operator, 108

• N •
#NAME, 347
Name property, UserForm controls, 258
naming

macros, 87
variables, 96

nested
For-Next loops, 152–153
Select Case structure, 147–148

newsgroups, 352
NewSheet event, 158
Not logical operator, 108
Now function, 131
NumberFormat property, 121–122

• O •
Object Browser, 64–65
object data type, 97
object model, 16
object-oriented programming (OOP), 53
objects

active objects, 17
collections, 16
as containers, 16
definition, 53
events, 63
Excel as, 54
exporting from projects, 40

hierarchy, 16, 54, 57–58
hierarchy, dot notation, 17
importing to projects, 40
manipulation, 16
methods, 18, 62
properties, 17, 59–61
referencing, 56–59
type, 128
Worksheet Function Object, 136–137

Offset property, 116
OK command button

creating in UserForms, 247
event-handler procedure, adding, 250–251

On Error Resume Next statement, 201
On Error statement, 182–184
OnAction property, 307
OnKey event, 175
OnTime event, 172–174
OOP (object-oriented programming), 53
Open event, 158, 163–164
operators, 108
Option Explicit statement, 201
OptionButton control

Accelerator property, 249
properties, 266
UserForms, 243
UserForms, adding to, 248–249
Value property, 248

Or logical operator, 108

• P •
parentheses, Sub procedures, 68
Paste method, 123
Picture property, UserForm controls, 258
procedure-only variables, 99–100
procedures

definition, 42
event-handler, adding to UserForms,

250–251
Function, 16
Sub, 16

ProcessCells method, 208
programs, macros, 12
Project Explorer window, VBE, 37
Project window, opening, 25
projects

contracting, 38
expanding, 38

363Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 363



projects (continued)
modules, adding, 39
modules, removing, 39
nodes, 38
objects, exporting/importing, 40
Project Explorer window, VBE, 37

PROPER function (Excel), using in
UserForms, 251

properties
Address, 119
BeginGroup, 307
BuiltIn, 307
Cancel command button, 247
Caption, 307
Cells, 115
charts, modifying, 215
CheckBox control, 259–260
Column, 118
ComboBox control, 261
CommandBar controls, 307–309
CommandButton control, 262
controls, 257–258
Count, 118
CurrentRegion, 206
Enabled, 307
EntireColumn, 207
EntireRow, 207
FaceID, 307
Font, 120
Formula, 121
Frame control, 262
HasFormula, 119–120
Help system, 63–64
Image control, 263
Interior, 120–121
ListBox control, 264–264
MultiPage control, 265
NumberFormat, 121–122
objects, 17, 59–61
Offset, 116
OK command button, 247
OnAction, 307
OptionButton control, 266
OptionButton control, Accelerator

property, 249
OptionButton control, Value property, 248
Row, 118
ScrollBar control, 267–268

SpinButton control, 268
Text, 118
TextBox control, 269
ToggleButton control, 270
ToolTipText, 307
UserForm controls, changing, 243–244
Value, 117
Visible, 307

Properties Window, UserForms, 243–244
Public keyword, 101
public variables, 101–102
purging variables, 102–103

• Q •
Quick Access toolbar, adding buttons, 303

• R •
Range objects

columns, 114
noncontiguous ranges, 114
overview, 113
rows, 114
worksheet names, 114

ranges
copying, 204–205
copying variable-sized, 205–206
looping through, 208–209
moving, 207–208
named, 204

Record Macro dialog box, 23–24, 86
recording macros

absolute mode, 82–83
description, 87
efficiency, 88–90
introduction, 23–24
naming, 87
options, 86–87
overview, 80–81
relative mode, 83–85
shortcut keys, 87
storing macros, 87
tape recording comparison, 80

RefEdit control, UserForms, 243
referencing CommandBars, 305–306
referencing controls, CommandBars,

306–307

364 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 364



referencing objects
cells, 58
columns, 116
introduction, 56–57
macro speed, 219
rows, 116

relative mode, recording macros, 83–85
Replace function, 131
response from message boxes, 225–226
Resume statement, 184–186
RGB function, 131
Ribbon

customizing, 301–304
Developer tab, 21–22

Right function, 131
Rnd function, 131
routines, 42
Row property, 118
rows

referencing, 116
selecting, 207
selecting to end, 206–207

RTrim function, 131
run time, changing control properties, 257
run-time errors, 177

• S •
saving workbooks containing macros, 29
scope

constants, 103
variables, 98–103

screen updating, speed, 216–217
ScrollBar control

properties, 267–268
UserForms, 243

Second function, 131
security

macros, 29–30
trusted locations, 30

Select Case structure
example, 146–147
nested, 147–148

Select method, 122–123
selecting

columns, 207
end of row/column, 206–207

files, multiple, 234–235
multiple selections, 211
object type, determining, 210–211
rows, 207

SelectionChange event, 159
settings, changing, 211–213
Sgn function, 131
SheetActivate event, 158
SheetBeforeDoubleClick event, 158
SheetBeforeRightClick event, 158
SheetCalculate event, 158
SheetChange event, 158
SheetDeactivate event, 158
SheetFollowHyperlink event, 159
sheets as collections, 56
SheetSelectionChange event, 159
Shell function, 128, 131
shortcut keys

ChangeCase UserForm, creating, 252–253
macros, 87

shortcut menus
built-in toolbars, resetting, 309
Cell shortcut menu, new item, 309–311
CommandBars, 304–305
disabling, 311–312

Show method, UserForms, displaying, 245
Sin function, 131
single data type, 97
SkipBlanks procedure, 209
Space function, 131
SpecialCells method, 209
speeding up macros

alert messages, 218
automatic calculation, 217–218
object references, 219
screen updating, 216–217
variable types, 219–220

SpinButton control
properties, 268
UserForms, 243

Split function, 131
Sqr function, 131
statements

assignment statements, 106–109
Debug.Print, 195
GoTo, 140–141
On Error, 182–184

365Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 365



statements (continued)
On Error Next Resume, 201
Option Explicit, 201
Resume, 184–186

static variables, 102
storing macros, 87
Str function, 131
StrComp function, 131
StrConv function, character case,

changing, 251
string concatenation (&) operator, 108
string data type, 97
String function, 131
strings

fixed-length, 105
length, 126–127
variable-length, 105

structured programming, 141
Sub procedures

calling function from, 77
debugging, 201
definition, 67
executing directly, 71–72
executing from another procedure, 76
executing from button or shape, 74–75
executing from Macro dialog box, 72
executing, introduction, 69–71
executing with shortcut key, 72–73
introduction, 16
modules, 42
naming, 69
overview, 68
parentheses, 68

subscript out of range error, 348
subtraction (-) operator, 108
support

blogs, 353
Excel 2007 Power Programming with VBA

(Walkenbach), 354
Google, 353
Help system, 351
Microsoft Product Support, 351–352
user groups, 354
Web sites, 353

syntax errors, bugs, 192
system date, displaying, 126

• T •
TabStrip control, UserForms, 243
Tan function, 132
testing

macro, displaying UserForms, 253–254
UserForms, 273–274, 279–280

testing, macros, 24
text, inserting, 13
Text property, 118
TextBox control

properties, 269
UserForms, 243

Time function, 132
Timer function, 132
TimeSerial function, 132
TimeValue function, 132
ToggleButton control

properties, 270
UserForms, 243

toolbars
built-in, resetting, 309
custom, 312–314
VBE, 37

Toolbox (VBE)
controls, adding to UserForms, 255–256
displaying, 242
tools, identifying, 242

ToolTipText property, 307
Top property, UserForm controls, 258
Trim function, 132
Trust Center dialog box, 30
trusted locations, security, 30
TypeName function, 128, 132

• U •
UBound function, 132
UCase function

introduction, 132
UserForms macro, 239–240

user defined data type, 97
user groups, 354
UserForms. see also dialog boxes

aesthetics, 274
ChangeCase example, adding command

buttons, 247–248

366 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 366



ChangeCase example, adding option
buttons, 248–249

ChangeCase example, creating, 246–247
ChangeCase example, creating shortcut

key, 252–253
ChangeCase example, testing, 253–254
Code module window, viewing, 244–245
common VBA code for, 275
controls, accessing programmatically,

245–246
controls, adding to, 242–243, 255–256
controls, changing properties, 243–244
controls, naming, 246
creating, 240–241, 276–278
dialog boxes, displaying, 240
displaying, 245
displaying, code for, 278
displaying, macro for, 251–254
event-handler procedures, adding,

250–251, 280–281
inserting into VBE, 241–242
ListBox example, 282–298
macros, making available, 279
overview, 239
reasons for, 223–224
testing, 273–274, 279–280
Toolbox, displaying in VBE, 242
Toolbox, identifying tools, 242
usefulness of, 239–240
validating data, 282

• V •
Val function, 132
Value property

introduction, 117
OptionButton control, 248
UserForm controls, 258

values
cells, prompting for, 209–210
variables, 17

variable-length strings, definition, 105
variables

date variables, 106
declaring, 98–103
module-only, 101

naming, 96
procedure-only, 99–100
public, 101–102
purging, 102–103
scope, 98–103
static, 102
types, macro speed, 219–220
values, 17
values, assigning, 95

variant data type, 97
VarType function, 132
VBA

advantages, 15
automation, 13
custom commands, 13
disadvantages, 15
introduction, 11–12
modules, 16
objects, 16
text insertion, 13
uses, 12–14
VB versus, 12

VBE (Visual Basic Editor)
activating, 35
Code window, 37
Docking tab, 52
Editor Format tab, 50–51
Editor tab, 48–50
environment, customizing, 47–52
General tab, 52
Immediate window, 37
menu bar, 36
modules, 16
overview, 35
Project Explorer window, 37
toolbar, 37
Toolbox, displaying, 242
Toolbox, identifying tools, 242
UserForms, inserting, 241–242

versions of Excel, 18–19
Visible property

CommandBar controls, 307
UserForm controls, 258

Visual Basic Editor program window,
opening, 25

367Index

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 367



• W •
Walkenbach, John (Excel 2007 Power

Programming with VBA), 354
warning prompt, 349
watch expressions, debugging, 199–200
Web sites, 353
Weekday function, 132
Width property, UserForm controls, 258
WindowActivate event, 159
WindowDeactivate event, 159
WindowResize event, 159
With-End-With structure, 220
workbook events

Activate, 158
AddinInstall, 158
AddinUninstall, 158
BeforeClose, 158, 165
BeforePrint, 158
BeforeSave, 158, 165–166
Deactivate, 158
NewSheet, 158
Open, 158, 163–164
SheetActivate, 158
SheetBeforeDoubleClick, 158
SheetBeforeRightClick, 158
SheetCalculate, 158
SheetChange, 158
SheetDeactivate, 158
SheetFollowHyperlink, 159
SheetSelectionChange, 159
WindowActivate, 159
WindowDeactivate, 159
WindowResize, 159

workbooks
activate events, 167–168
as collections, 56

deactivate events, 167–168
saving, containing macros, 29

worksheet events
Activate, 159
BeforeDoubleClick, 159, 169
BeforeRightClick, 159, 169
Calculate, 159
Change, 159, 170–172
Deactivate, 159
FollowHyperlink, 159
SelectionChange, 159

Worksheet Function Object, 136–137
worksheet functions

entering, 136
introduction, 126
lookup function, 134–136
maximum value in range, 133
mortgage payment calculation, 133–134
overview, 132–133

worksheets
as collections, 56
functions, 14
rows/columns, increasing/decreasing, 348

writing functions, 319

• X •
XML code, Ribbon customization, 301
XoR logical operator, 108

• Y •
Year function, 132

368 Excel 2007 VBA Programming For Dummies 

33_046746 bindex.qxp  1/12/07  6:04 PM  Page 368



Bonus Chapter 1

Interacting with Other
Office Applications

In This Chapter
� Starting or activating another application from Excel

� Controlling Word from Excel and vice versa

� Sending personalized e-mail from Excel

If you use Excel, you likely use other applications that comprise Microsoft
Office. Just about everyone uses Word, and you’re probably familiar with

PowerPoint or Access.

In this bonus chapter, I present some simple examples that demonstrate how
to use Excel VBA to interact with other Microsoft Office applications.

Starting Another Application from Excel
Starting another application from Excel is often useful. For example, you
might want to launch another Microsoft Office application or even a DOS
batch file from an Excel VBA macro.

Using the VBA Shell function
The VBA Shell function makes launching another program relatively easy. The
following example starts the Windows Calculator program, which is named
CALC.EXE:

Sub StartCalculator()
Dim Program As String
Dim TaskID As Double
On Error Resume Next
Program = “calc.exe”

046746 bc01.qxp  1/12/07  3:10 PM  Page BC1



TaskID = Shell(Program, 1)
If Err <> 0 Then

MsgBox “Can’t start “ & Program
End If

End Sub

Figure BC01-1 shows the Windows calculator displayed as a result of running
this procedure.

The Shell function returns a task identification number for the application.
You can use this number later to activate the task (which is why I declared
the variable above the procedure: It will keep its value). The second argu-
ment for the Shell function determines how the application is displayed. (1 is
the code for a normal-size window, with the focus.) Refer to the Help system
for other argument values.

If the Shell function is unsuccessful, it generates an error. Therefore, this pro-
cedure uses an On Error statement to display a message if the executable file
cannot be found or if some other error occurs.

But what if the Calculator program is already running? The StartCalculator
procedure simply opens another instance of the program. In most cases, you
want to activate the existing instance. The following modified code solves
this problem:

Public TaskIDSub StartCalculator2()
Dim Program As String
Dim TaskID As Double
Program = “calc.exe”
On Error Resume Next
AppActivate “Calculator”
If Err <> 0 Then

Err = 0

Figure
BC01-1:

The
Windows

Calculator
program.

BC2 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC2



TaskID = Shell(Program, 1)
If Err <> 0 Then MsgBox “Can’t start “ & Program

End If
End Sub

This modified procedure uses an AppActivate statement to activate the appli-
cation (Windows Calculator in this case) if it’s already running. The argument
for AppActivate is the Caption of the application’s title bar. If the AppActivate
statement generates an error, it means the Calculator isn’t running. If it’s not
running, the routine starts the application with the Shell function.

Here’s another example of using the Shell function. The OpenFolder proce-
dure displays the folder that holds the workbook:

Sub OpenFolder()
Dim Program As String
Dim Folder As String
Program = “explorer.exe”
Folder = ThisWorkbook.Path
Shell Program & “ “ & Folder, 1

End Sub

In this case, the program is explorer.exe, and the folder is specified by the
Path property of the Workbook object. If you specify a path that doesn’t exist,
you see an error message from Windows (not from Excel).

Activating a Microsoft Office application
If the application that you want to start is one of several Microsoft applica-
tions, use the Application object’s ActivateMicrosoftApp method. For exam-
ple, the following procedure starts Word:

Sub StartWord()
Application.ActivateMicrosoftApp xlMicrosoftWord

End Sub

If Word is already running when the preceding procedure is executed, it is
activated. Other constants are available for this method:

� xlMicrosoftPowerPoint (PowerPoint)

� xlMicrosoftMail (Outlook)

� xlMicrosoftAccess (Access)

� xlMicrosoftFoxPro (FoxPro)

� xlMicrosoftProject (Project)

� xlMicrosoftSchedulePlus (SchedulePlus)

BC3Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp  1/12/07  3:10 PM  Page BC3



Using Automation in Excel
You can write an Excel macro to control other applications, such as Microsoft
Word. More accurately, Excel macros control the most important component
of Word: the so-called automation server. In such circumstances, Excel is
called the client application, and Word is the server application.

The concept behind automation is quite appealing. A developer who needs to
generate a chart, for example, can reach into another application’s grab bag
of objects, fetch a Chart object, and then manipulate its properties and use
its methods. Automation, in a sense, blurs the boundaries between applica-
tions. For example, using automation, an end user might be working with a
Word document inside Excel and not even realize it.

Some applications, such as Excel, can function as either a client application
or a server application. Other applications can function only as client appli-
cations or only as server applications.

In the following sections, I demonstrate how to use VBA to access and manip-
ulate the objects exposed by other applications. The examples use Microsoft
Word, but the concepts apply to any application that exposes its objects for
automation.

Getting Word’s version number
The following example demonstrates how to create a Word object to provide
access to the objects in Word’s object model. This procedure creates the
object, displays the version number, closes the Word application, and then
destroys the object, freeing up the memory that it used:

Sub GetWordVersion()
Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)
MsgBox WordApp.Version
WordApp.Quit
Set WordApp = Nothing

End Sub

The Word object that’s created in this procedure is invisible. If you want to
see the object while it’s being manipulated, set its Visible property to True,
as follows:

WordApp.Visible = True

BC4 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC4



Most of the automation examples in this chapter use late binding as opposed
to early binding. What’s the difference? When you use early binding, you must
establish a reference to a version-specific object library, using Tools➪
References in the VBE. When you use late binding, setting that reference is
not required. Both approaches have pros and cons.

Controlling Word from Excel
The example in Figure BC01-2 demonstrates an automation session by using
Word. The MakeMemos procedure creates three customized memos in Word
and then saves each memo to a separate file. The information used to create
the memos is stored in a worksheet.

The code for the MakeMemos procedure is too lengthy to list here, but you
can go to this book’s Web site to check it out.

The MakeMemos procedure starts by creating an object called WordApp. The
routine cycles through the three rows of data in Sheet1 and uses Word’s prop-
erties and methods to create each memo and save it to disk. A range named
Message (in cell E7) contains the text used in the memo. All the action occurs
behind the scenes (Word is not visible). Figure BC01-3 shows a document cre-
ated by the MakeMemos procedure.

Controlling Excel from Word
As you might expect, you can also control Excel from another application
(such as another programming language or a Word VBA procedure). For
example, you might want to perform some calculations in Excel and return
the result to a Word document.

Figure
BC01-2:

Word auto-
matically

generates
three

memos
based on
this Excel

data.

BC5Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp  1/12/07  3:10 PM  Page BC5



You can create any of the following Excel objects with the adjacent functions:

� Application object: CreateObject(“Excel.Application”)

� Workbook object: CreateObject(“Excel.Sheet”)

� Chart object: CreateObject(“Excel.Chart”)

The example described in this section is a Word macro that creates an Excel
Workbook object (whose moniker is Excel.Sheet) from an existing workbook
named projections.xlsx. The Word macro prompts the user for two values and
then creates a data table and chart, which are stored in the Word document.

The initial workbook is shown in Figure BC01-4. The MakeExcelChart proce-
dure (in the Word document) prompts the user for two values and inserts the
values into the worksheet.

Recalculating the worksheet updates a chart. The data and the chart are then
copied from the Excel object and pasted into a new document. The results
are shown in Figure BC01-5.

Figure
BC01-3:

An Excel
VBA

procedure
created this

Word
document.

BC6 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC6



Figure
BC01-5:

The Word
VBA

procedure
uses Excel

to create
this

document.

Figure
BC01-4:

A VBA
procedure

in Word
uses this

worksheet.

BC7Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp  1/12/07  3:10 PM  Page BC7



The code for the MakeExcelChart procedure follows:

Option Explicit

Sub MakeExcelChart()
Dim XLSheet As Object
Dim StartVal, PctChange
Dim Wbook As String

‘   Insert a new page
Selection.EndKey Unit:=wdStory
Selection.InsertBreak Type:=wdPageBreak

‘   Prompt for values
StartVal = InputBox(“Starting Value?”)
PctChange = InputBox(“Percent Change? For example,

‘5.2%’”)

‘   Create Sheet object
Wbook = ThisDocument.Path & “\projections.xlsx”
Set XLSheet = GetObject(Wbook,

“Excel.Sheet”).Activesheet

‘   Put values in sheet
XLSheet.Range(“StartingValue”) = StartVal
XLSheet.Range(“PctChange”) = PctChange
XLSheet.Calculate

‘   Insert page heading
Selection.Font.Size = 14
Selection.Font.Bold = True
Selection.TypeText “Monthly Increment: “ & _
Format(PctChange, “0.0%”)

Selection.TypeParagraph
Selection.TypeParagraph

‘   Copy data from sheet & paste to document
XLSheet.Range(“data”).Copy
Selection.Paste

‘   Copy chart and paste to document
XLSheet.Chartobjects(1).CopyPicture
Selection.Paste

‘   Kill the object
Set XLSheet = Nothing

End Sub

This example is available at the book’s Web site. 

BC8 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC8



Sending Personalized E-Mail
byUsingOutlook

The example in this section demonstrates automation with Microsoft
Outlook. The code creates personalized e-mail messages by using data stored
in an Excel worksheet.

Figure BC01-6 shows a worksheet that contains data used in e-mail messages:
name, e-mail address, and bonus amount. This procedure loops through the
rows in the worksheet, retrieves the data, and creates an individualized mes-
sage (stored in the Msg variable). 

Sub SendEmail()
Dim OutlookApp As Object
Dim MItem As Object
Dim cell As Range
Dim Subj As String
Dim EmailAddr As String
Dim Recipient As String
Dim Bonus As String
Dim Msg As String

‘Create Outlook object
Set OutlookApp = CreateObject(“Outlook.Application”)

‘Loop through the rows
For Each cell In  _
Columns(“B”).Cells.SpecialCells(xlCellTypeConstants)
If cell.Value Like “*@*” Then
‘Get the data
Subj = “Your Annual Bonus”
Recipient = cell.Offset(0, -1).Value
EmailAddr = cell.Value
Bonus = Format(cell.Offset(0, 1).Value, “$0,000.”)

‘Compose message
Msg = “Dear “ & Recipient & vbCrLf & vbCrLf

Figure
BC01-6:

This
information

is used in
the Outlook

e-mail
messages.

BC9Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp  1/12/07  3:10 PM  Page BC9



Msg = Msg & “I am pleased to inform you that “
Msg = Msg & “your annual bonus is “
Msg = Msg & Bonus & vbCrLf & vbCrLf
Msg = Msg & “William Rose” & vbCrLf
Msg = Msg & “President”

‘Create Mail Item and send it
Set MItem = OutlookApp.CreateItem(0)
With MItem
.To = EmailAddr
.Subject = Subj
.Body = Msg
.Display

End With
End If

Next
End Sub

This example uses the Display method, which simply displays the e-mail mes-
sages. To actually send the messages, use the Send method instead. Note
however, that due to security measures, Outlook asks you for permission to
actually issue the send command. See Figure BC01-7.

Notice that two objects are involved: Outlook and MailItem. The Outlook
object is created with this statement:

Set OutlookApp = CreateObject(“Outlook.Application”)

The MailItem object is created with this statement:

Set MItem = OutlookApp.CreateItem(0)

Figure
BC01-7:
Outlook

asks you for
permission

to send
e-mails
through

VBA code.

BC10 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC10



The code sets the To, Subject, and Body properties, and then uses the Send
method to send each message. Figure BC01-8 shows one of the e-mails cre-
ated by Excel.

This example is available on this book’s Web site. To use this example, you
must have Microsoft Outlook installed.

Figure
BC01-8:

Create a
personal-

ized e-mail
by using

Excel.

BC11Bonus Chapter 1: Interacting with Other Office Applications

046746 bc01.qxp  1/12/07  3:10 PM  Page BC11



BC12 Excel 2007 VBA Programming For Dummies 

046746 bc01.qxp  1/12/07  3:10 PM  Page BC12



Bonus Chapter 2

Ten VBA Do’s and Don’ts

If you are reading this bonus chapter, you’ve probably read most of the
content of this book and are familiar with Excel VBA. This chapter gives you

some advice you should take into account when you start developing your
own VBA solutions. Following these guidelines is no panacea to keep you out
of (programming) trouble, but can help you avoid pitfalls that others have
stumbled over.

Do Declare All Variables
How convenient it is: simply start typing your VBA code without having to go
through the tedious chore of declaring each and every variable you want to
use. Although Excel allows you to use undeclared variables, doing so is
simply asking for trouble.

If you lack self-discipline, add “Option Explicit” at the top of your modules.
That way, your code won’t even run if it includes one or more undeclared
variables. Not declaring all variables has only one advantage: You save a few
seconds of time. But using undeclared variables will eventually come back to
haunt you. And I guarantee that it will take you more than a few seconds to
figure out the problem.

Don’t Confuse Passwords with Security
You spent months creating a killer Excel app, with some amazing macros.
You’re ready to release it to the world, but you don’t want others to see your
incredible macro programming. Just password-protect the VBA Project and
you’re safe, right? Wrong.

Using a VBA password can keep most casual users from viewing your code. But
if someone really wants to check it, he’ll figure out how to crack the password.
Bottom line? If you absolutely, positively need to keep your code a secret, Excel
isn’t for you.

046746 bc02.qxp  1/12/07  3:00 PM  Page BC13



Do Clean Up Your Code
After your app is working to your satisfaction, you can clean it up. Code
housekeeping tasks include the following:

� Make sure every variable is declared.

� Make sure all the lines are indented properly so the code structure is
apparent.

� Rename any poorly named variables. For example, if you use the vari-
able MyVariable, there’s a pretty good chance that you can make the
variable name more descriptive. You’ll thank yourself later.

� If you’re like me, your modules probably have a few “test” procedures
that you wrote while trying to figure something out. They’ve served
their purpose, so delete them.

� Add comments so you’ll understand how the code works when you
revisit it six months from now.

� Make sure everything is spelled correctly — especially text in UserForms
and messages boxes.

� Check for redundant code. If you have two or more procedures that have
identical blocks of code, consider creating a new procedure that others
can call. 

Don’t Put Everything in One Procedure
Want to make an unintelligible program? An efficient way to accomplish that
is by putting all your code inside one nice big procedure. If you ever revisit
this program again to make changes to it, you’re bound to make mistakes and
introduce some fine-looking bugs in there.

Do you see the problem? The solution is modular code. Split your program
into smaller chunks, where each chunk is designed to perform a specific task.
After you pick up this habit, you find that writing bug-free code is easier than
ever. 

Do Consider Other Software
Excel is an amazingly versatile program, but it’s not suitable for everything.
When you’re ready to undertake a new project, take some time and consider
all your options. To paraphrase an old saying, “When all you know is Excel
VBA, everything looks like a VBA macro.”

BC14 Excel 2007 VBA Programming For Dummies 

046746 bc02.qxp  1/12/07  3:00 PM  Page BC14



Don’t Assume That Everyone
EnablesMacros

As you know, Excel allows you to open a workbook with its macros disabled.
In fact, it’s almost as if the designers of Excel 2007 want to encourage users to
disable macros. 

Enabling macros when you open a workbook from an unknown source is not
a good idea, of course. So you need to know your users. In some corporate
environments, all Microsoft Office macros are disabled and the user has no
choice in the matter. 

One thing to consider is adding a digital signature to the workbooks that you
distribute to others. That way, the user can be assured that it actually comes
from you, and that it hasn’t been altered. Consult the Help system for more
information about digital signatures.

Do Get in the Habit of Experimenting
When I work on a large-scale Excel project, I usually spend a significant
amount of time writing small VBA “experiments.” For example, if I’m trying to
find out about a new object, method, or property, I’ll just write a simple Sub
procedure and play around with it until I’m satisfied that I have a thorough
understanding of how it works — and the potential problems. Setting up
simple experiments is almost always much more efficient that incorporating
a new idea into your existing code without the understanding that those
experiments bring.

Don’t Assume That Your Code Will Work
with Other Excel Versions

Currently, at least five different versions of Excel for Windows are in use
around the world. When you create an Excel app, you have absolutely no guar-
antee that it will work flawlessly in older versions or in newer versions. In
some cases, the incompatibilities will be obvious (for example, if your code
refers to cell XDY877322, you know that it won’t work in versions prior to
Excel 2007 because those versions used a smaller worksheet grid. But, you’ll
also find that things that should work with an earlier version, don’t work.

BC15Bonus Chapter 2: Ten VBA Do’s and Don’ts

046746 bc02.qxp  1/12/07  3:00 PM  Page BC15



And if Excel for Macintosh users will use your application, you should defi-
nitely plan on incompatibilities. 

The only way to be sure that your application works with versions other than
the one you created it with is to test it on those versions.

Do Keep Your Users in Mind
Excel apps fall into two main categories: those that you develop for yourself,
and those that you develop for others to use. If you develop apps for others,
your job is much more difficult because you can’t make the same types of
assumptions. For example, you can be more lax with error handling if you’re
the only user. If an error crops up, you’ll have a pretty good idea of where to
look so you can fix it. If someone else is using your app and the same error
appears, they’ll be out of luck. And, when working with your own application,
you can usually get by without instructions.

You need to understand the skill level of those who will be using your work-
books, and try to anticipate problems that they might have. Try to picture
yourself as a new user of your application, and identify all areas that may
cause confusion or problems.

Don’t Forget About Backups
Nothing is more discouraging than a hard drive crash without a backup. If
you’re working on an important project, ask yourself a simple question: If my
computer dies tonight, what will I have lost? If your answer is more than a few
hours’ work, then you need to take a close look at your data backup procedure.
You do have a data backup procedure, right?

BC16 Excel 2007 VBA Programming For Dummies 

046746 bc02.qxp  1/12/07  3:00 PM  Page BC16




