
by Robert D. Schneider and Darril Gibson

Microsoft® SQL
Server® 2008

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_179543-ffirs.qxp 8/23/08 12:23 AM Page i

01_179543-ffirs.qxp 8/23/08 12:23 AM Page iv

by Robert D. Schneider and Darril Gibson

Microsoft® SQL
Server® 2008

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_179543-ffirs.qxp 8/23/08 12:23 AM Page i

Microsoft® SQL Server® 2008 All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft and SQL Server
are registered trademarks of Microsoft Corporation in the United States and/or other countries. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008933788

ISBN: 978-0-470-17954-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_179543-ffirs.qxp 8/23/08 12:23 AM Page ii

About the Authors
Robert D. Schneider has more than 15 years of experience developing and
delivering sophisticated software solutions worldwide. He has provided tech-
nical and business expertise on topics such as Service Oriented Architecture
(SOA), database optimization, and distributed computing to a wide variety of
enterprises in the financial, technology, and government sectors. Clients have
included Chase Manhattan Bank, VISA, HP, SWIFT, Booz Allen Hamilton, and
the governments of the United States, Mexico, Brazil, and Malaysia.

Robert is the author of Optimizing Informix Applications, Microsoft SQL Server:
Planning and Building a High Performance Database, MySQL Database Design
and Tuning, and SQL Server 2005 Express For Dummies. He has also written
numerous articles on technical and professional services topics and has been
quoted as a subject matter expert in publications worldwide. He can be
reached at Robert.Schneider@Think88.com.

Darril Gibson has been a Microsoft Certified Trainer (MCT) for more than
nine years, providing training on SQL Server (since SQL Server version 7.0)
and a wide variety of other Microsoft technologies. He is currently contracted
with the U.S. Air Force, providing extensive technical training to Air Force
personnel in support of a major network operations support center. He holds
nearly 20 current certifications and has been certified in each SQL Server ver-
sion since SQL Server 7.0.

Darril is the author of MCITP: SQL Server 2005 Database Administration All-In-
One and MCITP: SQL Server 2005 Database Developer All-In-One. He developed
several video training courses for Keystone Learning on several certification
topics including A+, MCSE, and Microsoft Exchange. He has also developed
several courses teaching technical topics at the college and university level,
and for U.S. government clients.

Dedication
To my family for their support, patience, and encouragement.
—Robert D. Schneider

To my loving wife of 16 years who I’m grateful to also call my best friend.
—Darril Gibson

Authors’ Acknowledgments
The authors want to acknowledge the following people for their invaluable
assistance in creating and publishing this work: Carole McLendon, Nicole
Sholly, Kyle Looper, Brian Walls, Toni Settle, Joan K. Griffitts.

01_179543-ffirs.qxp 8/23/08 12:23 AM Page iii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Project Editor: Nicole Sholly

Acquisitions Editor: Kyle Looper

Copy Editor: Brian Walls

Technical Editor: Damir Bersinic

Editorial Manager: Kevin Kirschner

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Katie Key

Layout and Graphics: Carl Byers,
Reuben W. Davis, Ronald Terry

Proofreaders: David Faust, Jessica Kramer,
Toni Settle

Indexer: Joan K. Griffitts

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_179543-ffirs.qxp 8/23/08 12:23 AM Page iv

Contents at a Glance
Introduction ...1

Book I: Essential Concepts...7
Chapter 1: Introducing SQL Server 2008 ...9
Chapter 2: SQL Server Architecture and Key Concepts ..15
Chapter 3: Getting Started, Getting Around..23
Chapter 4: Setting Up SQL Server 2008..35
Chapter 5: Using SQL Server Management Studio ...59

Book II: Designing and Using Databases73
Chapter 1: Setting Up a Database...75
Chapter 2: Care and Feeding of Your Database ..89
Chapter 3: Data Types and How to Use Them..99
Chapter 4: Constructing New Tables ...121
Chapter 5: Looking After Your Tables..141
Chapter 6: Understanding Relationships ..155

Book III: Interacting with Your Data175
Chapter 1: Using Proper Normalization Techniques ...177
Chapter 2: The SQL Server Optimizer ...187
Chapter 3: Using the Query Designer ..201
Chapter 4: Setting Query Options ..213
Chapter 5: Searching for Information ..231
Chapter 6: Organizing Query Results ..257
Chapter 7: Modifying Your Data ...265
Chapter 8: Taking Advantage of Views ..273
Chapter 9: Advanced Query Topics ...291

Book IV: Database Programming................................313
Chapter 1: Understanding Transact-SQL...315
Chapter 2: Stored Procedures and Functions...331
Chapter 3: Triggers...349
Chapter 4: Working with Visual Studio ..361
Chapter 5: Web Services..375
Chapter 6: Developing Remote Applications ..385
Chapter 7: Advanced Development Topics...401

02_179543-ftoc.qxp 8/23/08 12:23 AM Page v

Book V: Reporting Services..419
Chapter 1: Introduction to SQL Server Reporting Services421
Chapter 2: Creating Reports with Report Builder ..435
Chapter 3: Creating Reports with Report Designer ...449
Chapter 4: Integrating Reports ...469

Book VI: Analysis Services ..477
Chapter 1: Introduction to SQL Server Analysis Services...479
Chapter 2: Creating Business Intelligence Solutions with BIDS................................493
Chapter 3: Data Mining and Maintaining Analysis Services Objects517

Book VII: Performance Tips and Tricks529
Chapter 1: Working with the SQL Server Optimizer ..531
Chapter 2: Using Performance Monitoring Tools...541
Chapter 3: Data Access Strategies..569
Chapter 4: Tuning SQL Server ..587

Book VIII: Database Administration601
Chapter 1: Configuring SQL Server ..603
Chapter 2: Performing Major Administrative Tasks ..619
Chapter 3: Security: Keeping SQL Server Safe..647
Chapter 4: Integration and Your Database..661
Chapter 5: Replication ...677
Chapter 6: Spreading the Load with Partitioning...693

Book IX: Appendixes ...701
Appendix A: Ten Sources of Information on SQL Server 2008..................................703
Appendix B: Troubleshooting SQL Server 2008 ...707
Appendix C: Glossary ..715

Index ...725

02_179543-ftoc.qxp 8/23/08 12:23 AM Page vi

Table of Contents
Introduction..1

About This Book...1
Foolish Assumptions ...1
Conventions Used in This Book ...2
What You Don’t Have to Read ..2
How This Book Is Organized...3

Book I: Essential Concepts ..3
Book II: Designing and Using Databases..3
Book III: Interacting with Your Data ...4
Book IV: Database Programming ..4
Book V: Reporting Services...4
Book VI: Analysis Services ..4
Book VII: Performance Tips and Tricks ...4
Book VIII: Database Administration ...5
Book IX: Appendixes ..5

Icons Used in This Book..5
Where to Go from Here..6

Book I: Essential Concepts ...7

Chapter 1: Introducing SQL Server 2008 .9
SQL Server 2008: An Evolution, Not a Revolution..9

More development productivity...10
Improved integration ...11
Enhanced security..12
Streamlined administration ..12

Understanding SQL Server’s Editions..13

Chapter 2: SQL Server Architecture and Key Concepts 15
Relational Databases: The Heart of Modern Computing Solutions15
Understanding Key SQL Server 2008 Concepts..16

Reliability...16
Security..17
Flexibility ...17

Administration..17
Application Development ...18
Business Intelligence ...19
Reporting...20
Integration...20

02_179543-ftoc.qxp 8/23/08 12:23 AM Page vii

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesviii

Chapter 3: Getting Started, Getting Around .23
Hardware and Software Requirements..23
Converting to SQL Server 2008 ..25

Upgrading from earlier versions of SQL Server................................25
Converting from a different database..27

Tools at Your Disposal...29
Administration..29
Performance..30
Software development ...33

Chapter 4: Setting Up SQL Server 2008 .35
Installing SQL Server ...35
Creating and Maintaining Configurations ...43

SQL Server communication protocols...43
Reporting services configuration...45
SQL Server features..47

Streamlining Administration...47
SQL Server Maintenance Plan Wizard ...47
Policy-based management ..51

Chapter 5: Using SQL Server Management Studio 59
Menu Structure and Icons...60
Object Explorer ..60
Template Explorer..62
Solution Explorer ...63
Running Queries...64

Query-specific user interface features...64
Creating a query ...66
Using the Query Designer ...68

Book II: Designing and Using Databases.......................73

Chapter 1: Setting Up a Database .75
System Databases ..75
Connecting to a Database Server...76
Exploring an Existing Database..78
Understanding the Major Database Objects...79
Creating a New Database ..80
Using SQLCMD to Create a Database...86
Scripting Your Database..87

Chapter 2: Care and Feeding of Your Database 89
Renaming a Database ..89
Changing Database Parameters ...90

General...91
Files ..92

02_179543-ftoc.qxp 8/23/08 12:23 AM Page viii

Table of Contents ix

Filegroups..93
Options ..93
Permissions...95
Extended properties ..95
Mirroring..96
Transaction log shipping...96

Deleting a Database ...97

Chapter 3: Data Types and How to Use Them .99
Traditional Data Types ..99

Numeric data types ..101
Character data types ...104
Date and time data types...106
Binary data types ...107
Other data types...108

Enhanced Data Types ..110
XML ..110
FILESTREAM..113
SQL_VARIANT ...114
Spatial data..114

Creating Your Own Data Types ..115
Assigning a Data Type ...117

Chapter 4: Constructing New Tables .121
Building a New Table ...121
Additional Column Options ..129
Viewing Table Properties ..135
Creating Views..136
Creating a Table via SQLCMD ...140

Chapter 5: Looking After Your Tables .141
Getting a List of Your Tables...141
Determining Dependencies...143
Viewing the Table’s Contents ...145
Modifying a Table...146

Viewing a script for the table..146
Renaming the table ..147
Renaming a column..147
Adding one or more columns to the table148
Changing a data type for a column ..149
Changing a column’s properties...149
Removing a column..150
Understanding table properties ...151

Deleting a Table ..153
Altering a Table via SQLCMD..153

02_179543-ftoc.qxp 8/23/08 12:23 AM Page ix

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesx

Chapter 6: Understanding Relationships .155
Relationships: Making Data Meaningful ..155
Relationship Types ..156

One-to-one ...157
One-to-many..157
Many-to-many ...157
Constraints..158

Creating Relationships ..160
The SQL Server Management Studio and relationships................160
SQL and Relationships...169

Managing Relationship Errors ..170
Primary key violation...170
Foreign key violation..171
CHECK constraint violation ..172
NOT NULL violation ...172

Book III: Interacting with Your Data...........................175

Chapter 1: Using Proper Normalization Techniques177
Normalizing Your Database ..177
First Normal Form: No Repeating Groups...179

No repeating groups within a column..179
No repeating groups across columns ..180
Atomicity ...181

Second Normal Form: Dependent on the Whole Key182
Third Normal Form ..183
Denormalizing Your Database ..184

Chapter 2: The SQL Server Optimizer .187
Why You Need the Optimizer ...187
How the Optimizer Works ...188

The cost of a query ..189
Examining a query plan ...190

Using Execution Plans to Figure Out What’s Happening.........................193
Client Statistics: Helping the Optimizer Do Its Job..................................196

Understanding the density of an index ...197
Understanding the selectivity of an index198
Using statistics..198
Automatically creating and maintaining statistics.........................199

Chapter 3: Using the Query Designer .201
Creating a New Query..201

Exploring the Query Designer ..203
Launching the Query Designer via the Views container205

Editing Your Query ..207

02_179543-ftoc.qxp 8/23/08 12:23 AM Page x

Table of Contents xi

Exporting Your Query or Results ...209
Saving the query...210
Saving the results ...211

Chapter 4: Setting Query Options .213
Configuring Query Options with Performance and

Control Parameters ..213
General: Configure basic query options..214
Advanced: Configure advanced execution settings215
ANSI: Configuring ANSI parameters ...219

Selecting Results Formatting Options ...223
Configuring the grid output ..226
Configuring the text output...227
Configuring the multiserver output ...229

Chapter 5: Searching for Information .231
Using AdventureWorks2008..231

Obtaining AdventureWorks2008...233
Installing AdventureWorks2008..233

Retrieving Data from a Single Table...235
Using IntelliSense ...235
Running a query in the SSMS query window..................................236
Building Queries with the SELECT statement.................................237
Building queries with the Query Designer238

Retrieving Data from Multiple Tables..240
Joining two tables...242
Joining more than two tables..244

Filtering Information..248
Comparing values...249
Looking for strings ...250
Adding Boolean logic to your query ..252
Searching for ranges of data ...255
Searching for nothing and the unknown ...255

Chapter 6: Organizing Query Results .257
Using ORDER BY to Sort Your Results...257

Order your results in ascending or descending order258
Using TOP to limit the number of rows...259

Grouping Results with GROUP BY ...260
Grouping results into summary rows ..261
Using the HAVING clause to filter your results...............................262

Chapter 7: Modifying Your Data .265
Using DML Commands ..265
Adding Data to Your Database ...266
Modifying Data in your Database...268
Removing Data from Your Database..270

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xi

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesxii

Chapter 8: Taking Advantage of Views .273
Tying Information Together with Views..273
Creating a View...275

Creating a view with the View Designer ..275
Creating a view with T-SQL ...278

Using a View..279
Retrieving data with a view...279
Modifying data with a view ...282

Maintaining a View...284
Modifying a view with the View Designer285
Modifying a view with T-SQL...287

Deleting a View ...288
Deleting a view using SSMS Object Explorer288
Dropping a view using T-SQL ..289

Chapter 9: Advanced Query Topics .291
Using Transactions to Protect Your Data..291

Understanding implicit and explicit transactions..........................293
Creating a transaction..293
Performing error checking ..295

Finding Information with Full-Text Search..296
Enabling full-text search capabilities...297
Using full-text queries ..299

Understanding Outer Joins ...301
Using an INNER JOIN..302
Using RIGHT OUTER JOIN ...302
Using LEFT OUTER JOIN..303
Using FULL OUTER Join...304

Querying XML Data..304
Using the query XML method...305
Using the value XML method..307
Using the exist XML method...308
Using the nodes XML method...309
Using the modify XML method ...310

Book IV: Database Programming313

Chapter 1: Understanding Transact-SQL .315
Key Language Concepts ..315

Using Data Definition Language (DDL) statements........................316
Using Data Manipulation Language (DML) statements317

Situations Where It Makes Sense to Use Transact-SQL...........................319
Scenarios When It’s Time to Use Another Programming Language320

Creating an assembly using a .NET language321
Registering the assembly in SQL Server..322
Creating a CLR integrated stored procedure323

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xii

Table of Contents xiii

Creating a Script...324
Creating a script to create a database...325
Creating a script to create database objects326
Running a script ...327

Modifying a Script ..328
Creating a script to check databases manually..............................329
Modifying your script to automatically identify

databases and check them..329

Chapter 2: Stored Procedures and Functions .331
Why You Need Stored Procedures and Functions331

Understanding stored procedures ...332
Understanding system stored procedures......................................334
Understanding functions ...335
Understanding built-in functions..336
Understanding user-defined functions ..337

Creating Stored Procedures and Functions ..338
Creating user-defined stored procedures338
Creating user-defined functions ...341
Creating CLR integrated functions ...344

Chapter 3: Triggers .349
DML Triggers: Letting Your Database Look After Itself349

Understanding DML trigger benefits..351
Understanding DML trigger drawbacks...352

DDL Triggers: Letting Your Server or Your Database
Look After Itself ..352

Logon Triggers: Monitoring and Controlling Login Events.....................353
Creating Triggers..354

Creating a DML trigger...354
Creating a DDL trigger ...356

Maintaining Triggers..359

Chapter 4: Working with Visual Studio .361
Introducing Visual Studio..361

Get a free trial edition of Visual Studio..363
Launching Visual Studio ..364

Navigating an SQL Server Database with Visual Studio..........................365
Exploring tables and views from Visual Studio366
Exploring stored procedures from Visual Studio369
Using Visual Studio for other SQL Server tasks374

Chapter 5: Web Services .375
Using Web Services to Distribute Data..375

Requesting data and getting a response ...377
Seeing a Web service in action ...378

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xiii

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesxiv

Using Web Services in Conjunction with SQL Server379
Creating HTTP endpoints to support Web services380
Exploring the SOAP request and the SOAP response....................383

Chapter 6: Developing Remote Applications .385
Data Everywhere: Remote Applications to the Rescue!..........................385

Enabling ad hoc queries ..388
Using OPENDATASOURCE ...388
Using OPENROWSET..389

Determining When It Makes Sense to Access Data Remotely390
Using Linked Servers ...391

Creating a linked server...392
Creating logins for a linked server ...396
Querying data from a linked server ...399

Chapter 7: Advanced Development Topics .401
Better Messaging through SQL Server Service Broker............................401

Understanding the Service Broker elements402
Enabling Service Broker ..405
Using Service Broker..406

Automating Administration with SQL Server Management Objects408
Installing SMO ...409
Tools used to create an SMO application..409
Creating a simple SMO application ..409

Integrated Application Development with the .NET Framework...........413
Enabling CLR integration...413
Creating a CLR integrated stored procedure414

Book V: Reporting Services ..419

Chapter 1: Introduction to SQL Server Reporting Services 421
What Reporting Services Provides to You and Your Users421
Understanding Reporting Services Components.....................................423

Planning a deployment mode for SSRS..427
Installing Reporting Services..428

Chapter 2: Creating Reports with Report Builder 435
Developing Reports Faster with Report Builder435
Designing a New Report ..437
Publishing Reports...446
Maintaining Reports ..448

Chapter 3: Creating Reports with Report Designer 449
Generating Sophisticated Output with Report Designer449

Exploring the Report Designer ...453
Exploring the Report Builder 2.0..456

Understanding Report Definition Language (RDL)459

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xiv

Table of Contents xv

Designing, Publishing, and Maintaining Reports459
Using the BIDS Report Designer ...460
Using Report Builder 2.0..464

Chapter 4: Integrating Reports .469
Tying Reports Together with SharePoint..469

Understanding Web Parts..470
Integrating SQL Server and SharePoint ...470

Using Familiar Microsoft Office Tools to View Reports471
Exporting reports ...473
Viewing exported reports..474

Exposing Report Information with Web Services474

Book VI: Analysis Services ...477

Chapter 1: Introduction to SQL Server Analysis Services 479
Introducing SQL Server Analysis Services (SSAS)479

Understanding key OLAP terms ...480
Improvements in Analysis Services ...482
Interacting with Microsoft Office products.....................................483

Leveraging the Power of Multidimensional Data483
Unifying your business data ...483
Data mining ...486
Querying multiple dimensional data ...487

Choosing an Environment for Analysis Services490
Using Business Intelligence Development Studio490
Using SQL Server Management Studio (SSMS)...............................491

Chapter 2: Creating Business Intelligence Solutions with BIDS . . .493
Understanding Business Intelligence ..493
Understanding Analysis Services Scripting Language (ASSL)................495
Creating a SQL Server Analysis Project...497

Creating a data source ...499
Creating a data source view..500
Creating a cube ...502

Exploring a SQL Server Analysis Services Project...................................503
The Cube Structure tab ...506
The Dimension Usage tab..506
The Calculations tab ..507
The Key Performance Indicators (KPIs) tab508
The Actions tab ..510
The Partitions tab...511
The Aggregations tab...512
The Perspectives tab ...512
The Translations tab..513
Viewing cube data ..514

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xv

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesxvi

Chapter 3: Data Mining and Maintaining
Analysis Services Objects .517

An Introduction to Data Mining..517
Easy Integration with Business Intelligence Development Studio.........519

Understanding the DMX Language...523
Creating New Scripts ...524

Generating ASSL scripts ..525
Creating queries ...525

Managing Existing Analysis Services Objects ..526

Book VII: Performance Tips and Tricks529

Chapter 1: Working with the SQL Server Optimizer 531
Understanding How an Optimizer Works..531
Communicating with the Optimizer...533
Helping Your Optimizer Help You ..538

Create effective indexes ..538
Write well-designed queries..538
Enable and maintain statistical information...................................539

Chapter 2: Using Performance Monitoring Tools 541
Laying the Right Foundation for Performance Monitoring.....................541

Change one variable at a time ..542
Focus on graphical tools ...542
Set performance policies...542
Collect performance statistics..542

Getting a Complete Picture with Windows Task Manager543
The Windows System Monitor ...544
Taking Advice from the Database Engine Tuning Advisor......................547
Viewing Graphical Performance Information with

SQL Server Profiler...552
Gathering trace information ...553
Opening and replaying existing traces ..559

Enforcing Control with the Resource Governor.......................................559
Key Resource Governor concepts and architecture......................560
Enabling Resource Governor ..561
Resource Governor in action ..563
Tracking Resource Governor activity ..565

Chapter 3: Data Access Strategies .569
Setting a Good Foundation..569

Design your database with performance in mind570
Use graphical tools to assist in monitoring throughput570

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xvi

Table of Contents xvii

Take advantage of virtual machines ..572
Use data loading tools to simulate realistic

information volume ..573
Use testing tools to simulate realistic usage573
Use replication to spread the workload ..574

Using Indexes to Enhance Performance..574
Always define a primary key...574
Use foreign key indexes when appropriate.....................................576
Index filter columns ...576
Place indexes on join columns ...577
Understand clustered indexes..577
Don’t forget to index temporary tables...577
Avoid highly duplicate indexes ..577
Take advantage of index-only access...578
Support your local Optimizer ...578

Designing High-Velocity Queries ..578
Understand query execution plans..579
Avoid leading wildcards ..579
Take advantage of views..581
Put stored procedures and functions to work................................581
Use the TOP clause to preview large result sets581

Changing Data Quickly ..582
Insert optimization...582
Update optimization ..585
Delete optimization ..586

Chapter 4: Tuning SQL Server .587
Tuning: The Last Resort for Improving Performance..............................588

Solid database design ..588
Good indexing strategy..588
Well-planned data interaction...588

Memory and Processor Settings ..589
Determining if there’s a problem..589
Adjusting memory parameters...591
Adjusting processor parameters..592

Disk Settings ...593
Disk defragmentation...594
Data compression...595
Encryption...597
Partitioning..598

Communication Settings ...598
Network speed..598
Communication protocol ..599

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xvii

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesxviii

Book VIII: Database Administration............................601

Chapter 1: Configuring SQL Server .603
SQL Server Configuration Tools ...603

SQL Server Configuration Manager..604
SQL Server Surface Area Configuration Tool604
sp_configure..604
SQL Server Management Studio ...605

Adjusting Server Properties ...605
General properties ...607
Memory properties ..607
Processor properties ...608
Security properties ..609
Connection properties...610
Database Setting properties..611
Advanced properties ...613
Permission properties ...614

Generating Configuration Scripts...615

Chapter 2: Performing Major Administrative Tasks 619
Controlling Database State ...621

Taking a database off-line..621
Bringing a database online..622
Viewing database logs ...622

Managing Disk Space ...624
Adding new disk storage ...625
Removing disk storage ..626

Moving Databases ..627
Detaching databases..628
Attaching databases...629
Copying databases ...631
Importing and exporting data...633

Backing Up and Restoring Information ...637
Backing up data ..637
Restoring a backup ..641

Automating Things with Maintenance Plans ..643

Chapter 3: Security: Keeping SQL Server Safe647
The Value of Security ...647
What Can You Secure? ...648
Who Can You Let Use Your Database? ..649

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xviii

Table of Contents xix

What Can You Let Users Do? ..651
Who gets to use the database? ...651
Choosing from the permissions menu...652

Implementing Security...653
Getting a login list ..653
Getting a user list ...653
Granting access ..654
Setting permissions by securable ..657
Modifying or revoking permissions ...658

Chapter 4: Integration and Your Database .661
Common Integration Challenges..661
How SQL Server Integration Services (SSIS) Ties It All Together662

SSIS and the rest of the SQL Server platform..................................662
SSIS architecture...663

Using SQL Server Integration Services..664
Creating the project ...665
Adding connections for all data sources...665
Creating a data flow task ...668
Associating connections with the data flow669
Building the project..672
Running the project..673

Chapter 5: Replication .677
Exploring the Publishing Metaphor...677
Defining a Replication Publishing Model ..679

Reasons to use Snapshot replication...680
Reasons to use Transactional replication.......................................681
Reasons to use Peer-to-peer replication ...682
Reasons to use Merge replication ..683

Configuring Replication...683
Configuring the publisher and distributor......................................684
Creating a publication..686
Creating a subscriber...687
Exploring the replication agents ..689

Replicating between Hosts ...689
Replicating between servers and clients ..690
Replication between servers and servers.......................................690

Chapter 6: Spreading the Load with Partitioning 693
Understanding SQL Server Partitioning..693
Partitioning Key Terms and Concepts...695
Setting Up Partitioning in Your Environment ...696

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xix

Microsoft SQL Server 2008 All-in-One Desk Reference For Dummiesxx

Book IX: Appendixes..701

Appendix A: Ten Sources of Information on SQL Server 2008703
Microsoft SQL Server Web Site...703
Microsoft SQL Server Developer Center ...703
Wikipedia...704
Newsgroups ..704
Magazines..704
User Groups ..704
Books ...705
Database Design Tools ..705
Administrative Tools ...705
Data Generation Tools ...706

Appendix B: Troubleshooting SQL Server 2008 707
I Can’t Install the Software! ...707
How Can I Administer My Database?...708
My Data Is Messed Up!...709
I Want to Automate Some Operations ...709
How Can I Simplify My Data? ..710
How Can I Load Information into SQL Server? ...710
My Data Is Unprotected!..711
My Database Server Is Too Slow! ...711
Where Is AdventureWorks?...712
Where Are My Reports? ..713

Appendix C: Glossary .715

Index..725

02_179543-ftoc.qxp 8/23/08 12:23 AM Page xx

Introduction

With the release of SQL Server 2008, Microsoft continues its assault on
its more established, higher-priced competition. This instance of SQL

Server builds on its reputation as a powerful, yet easy-to-use relational data-
base management system.

What’s especially compelling about SQL Server is that it’s available in differ-
ent editions that all use the same underlying technology and architectural
philosophy, yet are aimed at constituencies with different needs.
Additionally, SQL Server offers a collection of well-integrated tools and
assistants that streamline analysis, reporting, and integration responsibili-
ties within the same framework.

About This Book
This book is designed to help you get productive with SQL Server 2008 as
quickly as possible. Chances are that you already have enough on your
plate, and wading through reams of database architecture and theory before
figuring out how to use the product just isn’t in the cards.

Here are some of the tasks you can accomplish with this book:

✦ Correctly choose the right version of SQL Server.

✦ Quickly install the product in your environment.

✦ Rapidly design a database and then communicate with it.

✦ Efficiently monitor, maintain, and protect your important data.

✦ Construct a solid, robust application to work with your information.

Foolish Assumptions
You don’t need a PhD from MIT to derive value from this book. On the con-
trary, any exposure to the items on the following list goes a long way toward
helping you make the most of the book’s information. And if you don’t cur-
rently have any experience, you will soon.

✦ Relational database management systems (RDBMS): This group
includes Microsoft SQL Server 2005, Oracle, DB2, MySQL, Microsoft
Access, and so on.

03_179543-intro.qxp 8/23/08 12:23 AM Page 1

Conventions Used in This Book2

✦ Relational database design theory: If you’re light in this area, don’t
worry: We show you how to design a relational database quickly, as well
as some best practices to follow when doing so.

✦ Structured Query Language (SQL): Even if you’re not familiar with SQL,
or Microsoft’s flavor (Transact-SQL), we show you how to construct
queries and data modification statements.

✦ Integration technology: SQL Server now includes some simple but
extremely powerful tools for associating its data with other sources of
information. We show you how to pick the right integration tool and get
productive quickly.

✦ Business intelligence tools: The Business Intelligence Development
Studio (BIDS) is included as part of the SQL Server installation. If you’ve
worked with Visual Studio, you’re ahead of the game because it’s the
same environment. Even if BIDS is completely new to you, you learn
enough to get around.

✦ Reporting tools: Many of the SQL Server Reporting Services are Web-
based tools. If you’ve used a Web browser such as Internet Explorer
(and who hasn’t), you can get around most of these tools without any
problem.

✦ Software development tools: To get the most from software develop-
ment tools, you should understand one or more languages (such as
C# or Visual Basic). However, in this book, you learn more about the
possibilities with other languages rather than the details of how to
implement other languages beyond T-SQL.

Conventions Used in This Book
When you peruse the book, you’ll probably notice several typographical tips
along the way. Designed to help you quickly orient yourself, they include
bold for user entry, monofont for code and other computer output, and
italics for new terms.

What You Don’t Have to Read
It’s not necessary to read this book from cover to cover, although we sure
hope you’ll want to. You can skip around because all the mini-books and
associated chapters are designed to be stand-alone; they don’t require you
to build a foundation of knowledge from other chapters.

However, if you’re an absolute newbie with SQL Server who is building
a new application, you’ll probably want to look at the early chapters on
the product’s architecture and infrastructure before moving on to the
development section.

03_179543-intro.qxp 8/23/08 12:23 AM Page 2

How This Book Is Organized 3

Also, if you’re not one to pop the hood of your car to see how the motor
works, you’re likely to find yourself skipping the information called out by
the Technical Stuff icons. Just as your car runs without you memorizing the
workings of its transmission, you can derive a lot of value from SQL Server
2008 without knowing its internal architecture.

How This Book Is Organized
SQL Server 2008 All-in-One Desk Reference For Dummies is split into nine
mini-books. You don’t have to read it sequentially, and you don’t even
have to read all the sections in any particular chapter. You can use the
Table of Contents and the index to find the information you need and get
your answer quickly. In this section, we briefly describe what you find in
each part.

Book I: Essential Concepts
Before you get up-and-running with SQL Server 2008, you probably want
to know what you’re getting into. This mini-book provides you with a solid
foundation upon which you can construct a productive SQL Server imple-
mentation. To begin, we tell you all about what’s new in this version, along
with guidance on how to select the right edition. A high-level overview of
SQL Server’s architecture and related tools follows. After that, it’s time to
itemize SQL Server’s hardware and software requirements, followed by a
detailed explanation of how to install the product. Finally, we show you
how to use the powerful and flexible SQL Server Management Studio for all
database design and administration tasks.

Book II: Designing and Using Databases
You’re probably itching to get started and to get the most from your SQL
Server database. If that’s the case, you’ll want to spend some time exploring
this mini-book. To begin, we show you how to create your SQL Server
database from scratch. Because mistakes happen to the best of us, the
next chapter focuses on how to modify an already existing database.

Databases are made up of tables, which themselves are made up of data;
therefore, we devote a chapter to illustrating all the different types of
information that you can store in SQL Server. With that important task out
of the way, the next chapter dives into building new tables, followed by a
chapter on how to maintain your tables after you’ve created them. We close
this mini-book with an important discussion on how relationships and
constraints can enhance performance while safeguarding your valuable
information.

03_179543-intro.qxp 8/23/08 12:23 AM Page 3

How This Book Is Organized4

Book III: Interacting with Your Data
The first time a child peers into a candy store, he typically has one thought
on his mind: How can I get in there and get some? Likewise, you might be
peering at a database and wondering how you can get in there and get some.
This mini-book shows you exactly what you need to do to retrieve your
data. The primary tool used to retrieve data is the SELECT statement. It has
many options you can use to fine-tune your queries so that you can retrieve
exactly what you need and nothing more. SQL Server Management Studio
(SSMS) also includes easy-to-use graphical user interface tools that can
make your job much easier. They can even be used to build your SELECT
statements just by pointing and clicking.

Book IV: Database Programming
Functions, triggers, and stored procedures all sound much scarier than they
actually are. By understanding what programming objects are available and
what objects you can create, you can jumpstart your database knowledge.
Whether you know nothing about what’s possible with database program-
ming objects or you’re an old hand with past versions of SQL, this mini-book
gives you valuable insight into what you can achieve with SQL Server 2008.

Book V: Reporting Services
You know there’s data in there. How can you get it out? This is a common
challenge for database users. With SQL Server Reporting Services in SQL
Server 2008, Microsoft has significantly improved the ability to get the data
to the users’ desktops by using familiar tools like Internet Explorer. For you
sophisticated users, you can create report models and let them build their
own reports based on their changing needs.

Book VI: Analysis Services
Your boss yells, “TMI” (Too Much Information). “Can’t you get this database
to tell me only what’s important?” With SQL Server Analysis Services, you
can. Very large databases sometimes contain too much data to be valuable.
Decision makers need to be able to view the data in such a way that they
can make educated decisions. To help, you can change the format of the
data to give the decision makers actionable insight. By using SQL Server
Analysis Services, you can reformulate the data into cubes using measures
and groups. This mini-book provides a good overview of the capabilities of
Analysis Services.

Book VII: Performance Tips and Tricks
No matter what level of performance you’re currently receiving from SQL
Server, there’s always room for improvement, which is what this mini-book is
all about. We get the ball rolling with some insight into how SQL Server’s

03_179543-intro.qxp 8/23/08 12:23 AM Page 4

Icons Used in This Book 5

Query Optimizer works, along with how you can help it to help you. Next up
is a detailed review of the most effective monitoring tools to assist you on
your performance optimization journey. After that, it’s time to look at how to
enhance your indexes, queries, and data modifications, followed by some
SQL Server tuning suggestions.

Book VIII: Database Administration
The work of a database administrator never ends. This mini-book is meant
to make this overloaded constituency’s life easier. First up is some guidance
on how to configure SQL Server for optimal maintainability. After that, it’s
time to see how to effectively perform major database administration tasks,
followed by assistance on how to secure your SQL Server installation. Next
is a deep dive into SQL Server’s Integration Services, which are essential
technologies for tying your database with other information silos. Because
replication and partitioning are two effective techniques for improving
performance and data distribution, we close this mini-book with a chapter
dedicated to each of these concepts.

Book IX: Appendixes
First, we point out a group of handy resources where you can turn to obtain
added information about making the most of SQL Server. The next section is
meant to help you decipher some common problems that many administra-
tors encounter. Finally, you find a practical listing of key terms that you’ll
commonly run into as part of your job.

Icons Used in This Book
What’s a Dummies book without icons pointing you in the direction of really
great information that’s sure to help you along your way? This section briefly
describes each icon we use in this book.

The Tip icon points out helpful information that is likely to make your
job easier.

This icon marks a general interesting and useful fact — something that you
might want to remember for later use.

The Warning icon highlights lurking danger. With this icon, we’re telling you
to pay attention and proceed with caution.

03_179543-intro.qxp 8/23/08 12:23 AM Page 5

Where to Go from Here6

When you see this icon, you know that there’s techie stuff nearby. If you’re
not feeling very techie, you can skip this info.

Where to Go from Here
Table 1-1 lists some common tasks, along with where you can get more
details, to help you navigate more quickly.

Table 1-1 Key Tasks and Where to Find Them
Task Look At

Installation requirements Book I, Chapter 3

What’s new in SQL Server 2008 Book I, Chapter 1

Overcoming common problems Appendix B

Creating new databases Book II, Chapter 1

Understanding SQL Server’s data types Book II, Chapter 3

Adding tables to your database Book II, Chapter 4

Enabling the right network protocols Book I, Chapter 4

Using views Book III, Chapter 8

Web services and your database Book IV, Chapter 5

Securing your database Book VIII, Chapter 3

Referential integrity and your database Book II, Chapter 6

Taking advantage of replication Book VIII, Chapter 5

Using XML with SQL Server Book III, Chapter 9

Integrating your database with other systems Book VIII, Chapter 4

Implementing normalization Book III, Chapter 1

Backing up your database Book VIII, Chapter 2

Designing queries Book III, Chapter 3

Building business intelligence solutions Book VI, Chapter 2

Transact-SQL syntax Book IV, Chapter 1

SQL Server’s performance monitoring tools Book VII, Chapter 2

Developing applications for SQL Server Book IV, Chapter 4

Creating reports with Report Builder Book V, Chapter 2

Optimal query techniques Book VII, Chapter 3

Writing your own stored procedures Book IV, Chapter 2

Integrating reports with SharePoint Book V, Chapter 4

Performance-tuning SQL Server Book VII, Chapter 4

Handy sources of information for SQL Server Appendix A

Key terms and concepts Appendix C

03_179543-intro.qxp 8/23/08 12:23 AM Page 6

Book I

Essential Concepts

04_179543-pp01.qxp 8/23/08 12:24 AM Page 7

Contents at a Glance

Chapter 1: Introducing SQL Server 2008 .9
SQL Server 2008: An Evolution, Not a Revolution..9
Understanding SQL Server’s Editions..13

Chapter 2: SQL Server Architecture and Key Concepts 15
Relational Databases: The Heart of Modern Computing Solutions15
Understanding Key SQL Server 2008 Concepts..16
Administration..17
Application Development ...18
Business Intelligence ...19
Reporting...20
Integration...20

Chapter 3: Getting Started, Getting Around .23
Hardware and Software Requirements..23
Converting to SQL Server 2008 ..25
Tools at Your Disposal...29

Chapter 4: Setting Up SQL Server 2008 .35
Installing SQL Server ...35
Creating and Maintaining Configurations ...43
Streamlining Administration...47

Chapter 5: Using SQL Server Management Studio 59
Menu Structure and Icons...60
Object Explorer ..60
Template Explorer..62
Solution Explorer ...63
Running Queries...64

04_179543-pp01.qxp 8/23/08 12:24 AM Page 8

Chapter 1: Introducing
SQL Server 2008

In This Chapter
� SQL Server 2008: An evolution, not a revolution

� More development productivity

� Improved integration

� Additional security and administrative options

� Understanding SQL Server’s editions

Before you take the plunge into SQL Server 2008, it’s only natural for
you to wonder what you’re about to get yourself into. This chapter is

all about discovering what distinguishes this version from its predecessor,
SQL Server 2005, and helping you to identify the edition that will meet your
needs. We begin by itemizing its new capabilities, grouped into the following
categories:

✦ Development

✦ Integration

✦ Security

✦ Administration

After we cover these important topics, we move on to an exploration and
explanation of the different SQL Server editions offered by Microsoft. Finally,
if you’re interested in a full architectural overview of SQL Server, keep read-
ing: The next chapter offers a more holistic summary of its overall product
design traits and philosophy.

SQL Server 2008: An Evolution, Not a Revolution
Once upon a time, if you wanted to store information on a computer, you
had to write your own low-level, highly specialized program that organized
this data and also made it possible to update and retrieve it. This process
was very cumbersome, time-consuming, and error-prone. Eventually, a host
of specialized companies sprang up to provide standardized, industrial-
strength products known as databases. Even behemoths such as IBM joined
the party with its own heavyweight, expensive database software products.

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 9

SQL Server 2008: An Evolution, Not a Revolution10

A database is a special kind of software application whose main purpose is
to help people and programs store, organize, and retrieve information. This
feature frees up application developers to focus on the business task at
hand, rather than being responsible for supervising the intricacies of data
management.

As more time passed, a new breed of database companies arose. With names
like Oracle, Informix, and Sybase, these vendors (and many others) devel-
oped a particular kind of database, known as a relational database. Relational
databases are particularly well designed for storing information in tabular
format, which further helped software developers as they built a whole new
class of enterprise applications.

Microsoft also entered the relational database fray some years back with
the SQL Server database. Once thought of as a relatively lightweight data-
base vendor, Microsoft has continually refined SQL Server to the point
where it can compete for the largest and most complicated database-driven
applications.

Whether you’re upgrading from an existing SQL Server implementation or
SQL Server 2008 represents your first foray into Microsoft’s take on rela-
tional database management technology, you’ll find that this product pro-
vides a nice balance between ease-of-use and powerful capabilities. For
those who are new to Microsoft, what’s especially compelling is the degree
to which they’ve delivered full-featured, graphical, user interface–driven
administrative tools; these intuitive assistants don’t require you to switch to
a cryptic command-line interface when the going gets tough. Administrators’
lives are busy enough without having to master yet another confusing or
cumbersome set of tools.

Comparatively, if you’ve invested time and effort learning earlier versions of
SQL Server, such as SQL Server 2000 or 2005, you’ll feel comfortable with
this new release. The user interface, especially for SQL Server Management
Studio, will be familiar. The product improvements can best be thought of as
following more of an evolutionary, rather than revolutionary, approach.

Now that we’ve made that distinction, here’s a look at some of what’s new
under the hood on the 2008 model.

Not all of these features are available in every edition of SQL Server 2008.

More development productivity
Microsoft’s software architecture and database tools have always offered
excellent integration and productivity. SQL Server 2008 amplifies the firm’s
“Developers, developers, developers, developers!” mantra. Here’s how SQL
Server 2008 has helped this important audience:

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 10

Book I
Chapter 1

Introducing SQL
Server 2008

SQL Server 2008: An Evolution, Not a Revolution 11

✦ Language integrated query (LINQ): Generally, developers use
Structured Query Language (SQL) to construct and implement queries.
LINQ makes it possible to use .NET programming languages (such as
Visual Basic or C#) to issue these queries instead.

✦ ADO.NET object services: Microsoft offers Common Language Runtime
(CLR) technology to facilitate the interplay between programming
languages (such as C# and Visual Basic) and the SQL Server database
engine. The ADO.NET framework streamlines application development
and management using CLR-based objects.

✦ Additional data types: SQL Server 2008 supplements its already exten-
sive catalog of data types with several new alternatives, including:

• DATE: Stores date-only details.

• TIME: Holds time-only data.

• DATETIMEOFFSET: Keeps track of time zone–based date and time
details.

• DATETIME2: Enhancement of the already present DATETIME data
type, capable of storing a bigger range of fractional seconds and
years.

• GEOMETRY: You can use this new data type when the Earth’s
curvature is important to your application, such as when you need
extreme accuracy or are calculating a long-distance path.

• GEOGRAPHY: A counterpart to the GEOMETRY data type, it allows
you to easily track details about locations on a two-dimensional
plane.

• FILESTREAM: This new data type lets you place large blocks of
binary information directly onto an NTFS file system. This file system
can be placed on less expensive storage devices, yet is still managed
by SQL Server.

Improved integration
Integration of disparate components and technologies, as well as consolidat-
ing information into centralized data warehouses, have both become more
important to customers over the past few years. To address these needs,
SQL Server 2008 delivers additional capabilities, as follows:

✦ Star join query optimizations: Because data warehousing queries have
distinct traits, SQL Server now sports improved query optimizations
dedicated to streamlining these specialized queries.

✦ MERGE SQL statement: This new statement makes it easier for data
warehousing-type operations to first determine whether a row exists and
then perform an INSERT or UPDATE statement.

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 11

SQL Server 2008: An Evolution, Not a Revolution12

✦ Change data capture: By placing data alterations into dedicated change
tables, SQL Server makes it easier than ever to update data warehouses
with the most current information.

✦ Persistent lookups: SQL Server’s excellent Integration Services (SSIS)
can now handle very large tables even more efficiently.

Enhanced security
Of all the major relational database platforms, SQL Server has generally
led the pack with regard to integrated operating system and database
security. SQL Server 2008 builds on this secure foundation with additional
improvements, as follows:

✦ Enhanced encryption: It’s no longer necessary to code your applica-
tions to work around encryption. Instead, SQL Server now offers fully
transparent data encryption. That is, your solutions don’t require any
special modifications to work with encrypted data: SQL Server handles
all this for you.

✦ More sophisticated key management: An encryption solution is only as
good as the keys that support it. SQL Server now includes support for
third-party key management technologies, offering the administrator a
broader range of choices.

✦ Improved auditing: It’s easier than ever to set up and maintain auditing
of your SQL Server instance. You can now use Data Definition Language
(DDL) statements to simplify these tasks.

Streamlined administration
Because most database and system administrators are continually forced to
do more with less, Microsoft has invested heavily in making SQL Server less
of an administrative burden on these overstretched professionals. Here’s a
sampling of these advancements:

✦ Resource Governor: Runaway queries, undisciplined users, and other
unpredictable performance drags have plagued the lives of database
administrators for years. SQL Server now includes technology that lets
you place limits on how your users consume valuable database
resources.

✦ Data compression: SQL Server now features better, more integrated
data compression. This helps save scarce disk space while lowering the
amount of resources consumed when processing large blocks of data.

✦ Better mirroring: This technique, which helps improve performance
as well as safeguard data, has become more sophisticated in SQL
Server 2008. Performance is faster, and the database engine is better
at gracefully recovering from damage to data pages.

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 12

Book I
Chapter 1

Introducing SQL
Server 2008

Understanding SQL Server’s Editions 13

✦ Automatic page recovery from the mirror: When a discrepancy arises
between a primary data page and its mirrored counterpart, SQL Server
is more adept at reconciling these differences without bothering the
administrator.

✦ Log compression: Because transaction logs comprise a vital founda-
tional component of SQL Server’s mirroring architecture, anything
that can reduce the amount of traffic between mirrored pairs can help
improve performance. SQL Server 2008 now uses log compression to
cut down on the amount of network traffic.

✦ Policy-based management: It can be very tedious to set up and maintain
a comprehensive set of administrative guidelines, especially when there
are many servers to look after. Policy-based management is Microsoft’s
strategy for centralizing these tasks in one place, and then deploying
them to as many computers as necessary. The result is a reduced admin-
istrative burden, combined with a better, more consistent application of
these policies.

Understanding SQL Server’s Editions
To the average database administrator or application developer examining
the various editions of SQL Server, it might seem that someone in Microsoft’s
products marketing department stayed up late thinking about ways to befud-
dle them. Fortunately, things aren’t as confusing as they might appear at first
glance. In this section, we give you some quick guidelines you can use to
determine the right edition for your specific needs. Note that because this
book covers such a broad range of functionality, we used the Enterprise
edition to fully highlight SQL Server’s capabilities.

✦ Enterprise: This is the flagship of the entire SQL Server 2008 family. It
includes a host of features that make it a good choice for a mission-
critical database server platform. Just a few of these benefits are

• No limit on CPUs (other than that imposed by the operating system)

• Full data warehousing capabilities

• Enterprise-wide management tools

• Round-the-clock availability

• Superior security features

• High availability capabilities

✦ Standard: With much of the feature set of its big brother, this edition is
fine for the vast majority of database applications, especially those with
a departmental rather than an enterprise scope. The main difference is
that this edition is lighter in its business intelligence, high availability,
data warehousing, and enterprise-wide management feature sets.

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 13

Understanding SQL Server’s Editions14

✦ Workgroup: Aimed at smaller, departmental applications, this powerful
edition of SQL Server introduces some limitations that aren’t likely to be
issues for smaller computing environments. Some of these restrictions
include

• Hardware and database size constraints

• Diminished high availability

• Reduced business intelligence

✦ Compact: The price is right for this edition: free. As you might surmise
from its name, it’s meant to support applications running on Windows
Mobile devices, such as smart phones, Pocket PC devices, and set-top
boxes. Independent Software Vendors (ISVs) are also able to distribute
solutions based on this edition for no database charge.

✦ Express: This database offering is the simplest and easiest to use in the
SQL Server 2008 product family. On top of that accolade, it’s also free to
download and redistribute (with some licensing restrictions).

This is the right edition if any of the following describe you:

• A software developer (seasoned or brand-new) wanting to learn about
relational databases.

• A packaged application provider looking to embed a free, yet sturdy,
database with your solution.

• An end user with a lot of information to store, but not a lot of cash to
buy a database.

✦ Developer: Aimed at getting students and other budget-constricted
individuals on board the SS SQL Server, this version offers all of the
capabilities found in the flagship Enterprise, but with distribution
licensing restrictions.

05_179543-bk01ch01.qxp 8/23/08 12:24 AM Page 14

Chapter 2: SQL Server Architecture
and Key Concepts

In This Chapter
� The basics of relational databases

� Key SQL Server 2008 concepts

� A brief overview of administration, application development, business
intelligence, reporting, and integration

Whether you’re a SQL Server veteran or new to this powerful,
relational database management system, this chapter helps you

understand what makes SQL Server 2008 tick. The chapter starts by
examining the increasingly important role that relational databases play in
modern information-processing solutions. Next up is how SQL Server is just
one component in Microsoft’s overall information access portfolio. The
balance of the chapter takes you on a guided tour of the major architectural
components of SQL Server 2008.

Relational Databases: The Heart
of Modern Computing Solutions

Relational database management systems, which date back to the 1970s,
show no signs of yielding their central role in most of today’s data process-
ing applications. In fact, the quantities and complexity of information
entrusted to these technologies is expanding rapidly. Modern applications
are voracious consumers of storage space. Users view relational databases
as the repository of record for data that by its very nature requires high
throughput combined with reliability and security guarantees. Video, music,
geospatial, and information represented in other data formats all place
enormous demands on any information-processing infrastructure.

As if this exponential growth in stored information wasn’t enough, today’s
computing solutions are pushing boundaries in other dimensions. Users
have come to expect their data be available to them on any device, such as

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 15

Understanding Key SQL Server 2008 Concepts16

handheld computers and Web browsers via a host of new, innovative appli-
cations. These requirements have driven technology providers, such as
Microsoft, to expand the functionality of their offerings to meet incipient
market needs. SQL Server 2008 represents the next step in the evolution of
Microsoft’s flagship database product line. However, it’s not alone — other
Microsoft technologies seamlessly interact with this database engine. These
offerings along with SQL Server’s ever-expanding architecture are the focus
of the next portion of this chapter.

Understanding Key SQL Server 2008 Concepts
The relational database marketplace has been mature for several years.
Established vendors now seek to differentiate themselves on price, function-
ality, and the degree to which their products integrate with other informa-
tion-processing technologies. From a holistic, one-stop shop viewpoint,
Microsoft offers one of the best and most compelling solutions on the
market. SQL Server is part of a larger Microsoft philosophy best described
as, “Your data: Any place, any time.”

Microsoft’s information access strategy includes SQL Server, along with
these other products:

✦ .NET

✦ Visual Studio

✦ BizTalk Server

✦ Office

Technologies designed to work well with each other is what makes this prod-
uct suite so appealing. In addition to this collaborative philosophy, Microsoft
has also baked several key characteristics into SQL Server. Each of these
attributes aims at making the jobs of the database designer, developer, and
administrator easier. Here’s a look at each of these in more detail.

Reliability
When a relational database is the core foundation of a solution, it’s essential
that users and administrators alike can count on the database server to be
running, and any information entrusted to its care to be safely stored and
retrieved. SQL Server offers a collection of features aimed at increasing the
confidence of its users and managers. These range from highly configurable,
efficient mirroring to technology that prevents runaway queries and the

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 16

Book I
Chapter 2

SQL Server
Architecture and

Key Concepts
Administration 17

ability to add additional CPUs when needed without taking the database
server down. Microsoft also offers what might be the most well-integrated
set of performance monitoring and management tools on the market. To get
a better idea of all that these tools can do for you, make sure to explore
Book VII, Chapter 2.

Security
Microsoft hasn’t ignored this often-neglected topic. SQL Server 2008 features
numerous security-oriented capabilities. For example, transparently integrat-
ing encryption directly with all database objects is now possible. Therefore,
writing integration-specific logic into your applications is no longer neces-
sary. Instead, SQL Server handles all encryption-related tasks for both the
developer and the administrator. This helpful behavior increases the likeli-
hood that encryption is used in the first place. SQL Server also supports
third-party key management solutions as well as more granular auditing and
audit reporting.

Flexibility
To make SQL Server the central source of information for an enterprise,
Microsoft has done an outstanding job of packaging a collection of highly
capable supporting software alongside SQL Server. Ranging from integration
to reporting to analysis services, these technologies all interact seamlessly
and greatly simplify and streamline the workload facing an application devel-
oper or administrator. For the balance of this chapter, we point out many of
these related offerings.

Administration
Throughout most of their history, relational database management systems
have demanded that their database administrators be adept at writing
and debugging scripts in order to automate most administrative tasks.
The alternative has been to manually enter administrative commands one-
by-one. Although this might have worked on stand-alone servers, it’s no
longer acceptable in today’s highly distributed database implementations.
To address these automation needs, Microsoft offers the SQL Server
Management Studio. This rich environment, shown in Figure 2-1, lets the
administrator perform all necessary tasks from within one interface. The
result is that one administrator can look after many more servers than
ever before.

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 17

Application Development18

If you’re interested in becoming an expert in the SQL Server Management
Studio, make sure to look at Chapter 5 in this mini-book.

Application Development
SQL Server 2008, as was the case with several earlier incarnations, is tightly
coupled with Microsoft’s flagship Visual Studio development product.
Although programmers are free to use any modern development technology,
they likely find that the combination of Visual Studio and SQL Server is hard
to beat from a productivity and functionality perspective. This interdepend-
ency goes far beyond traditional application programming paradigms, how-
ever, because Visual Studio is at the heart of many other types of SQL
Server-related projects. For example, Figure 2-2 shows the Visual Studio user
interface for creating a collection of different types of solutions.

Figure 2-1:
The SQL
Server
Manage-
ment Studio.

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 18

Book I
Chapter 2

SQL Server
Architecture and

Key Concepts
Business Intelligence 19

Business Intelligence
In the not-too-distant past, only the largest enterprises could take advantage
of the proven benefits from complex business intelligence analysis. The soft-
ware and hardware necessary to run these computations was simply out of
reach of most organizations. The past few years have seen the price of hard-
ware and software fall at a steady pace, bringing these kinds of solutions to a
new audience. Microsoft has done its part as well, delivering highly capable
business intelligence technology in conjunction with its database frame-
work. Known as SQL Server Analysis Services, these technologies, which
seamlessly integrate with the Microsoft Office suite, make it possible to
develop and deliver robust analytic solutions without the need for expensive
software and consulting services. Figure 2-3 highlights how, again, the Visual
Studio development environment is the foundation for developing a SQL
Server–related solution. In this case, designing and creating a multidimen-
sional cube.

Figure 2-2:
Creating a
new project
in Visual
Studio.

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 19

Reporting20

Reporting
SQL Server’s Reporting Services (SSRS) aim to offering the IT organization a
single source for creating, maintaining, and delivering reports on information
stored in the database. Well-integrated with Microsoft Office, as well as
SharePoint Server 2007, SSRS reduces the need to purchase and master
third-party reporting solutions. Instead, application designers and develop-
ers can work within the same set of tools to deliver the information their
users require. For example, Figure 2-4 shows the user interface for the
Microsoft Report Designer.

Integration
Several new industries are addressing the ever-multiplying challenges of
tying information together from multiple silos. Unfortunately, from the
perspective of most IT organizations, this leads to purchasing and adminis-
tering an increasing number of integration-related tools. Microsoft has
gotten into the act as well by offering a set of technologies known as SQL
Server Integration Services (SSIS) — a formidable challenger to the Extract,
Transform, and Load (ETL) industry. What’s especially attractive about
Microsoft’s offering is that there’s no additional software to purchase; it’s all
part of SQL Server. It also uses Microsoft’s field-tested approach to solving
complex computing challenges via graphically based (rather than script-
driven) tools. Figure 2-5, which shows the development platform in which
you construct SSIS solutions, illustrates a rich graphical user interface.

Figure 2-3:
Configuring
business
intelligence.

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 20

Book I
Chapter 2

SQL Server
Architecture and

Key Concepts
Integration 21

Figure 2-5:
Building an
SSIS
project.

Figure 2-4:
The
Microsoft
Report
Designer.

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 21

Book I: Essential Concepts22

06_179543-bk01ch02.qxp 8/23/08 12:25 AM Page 22

Chapter 3: Getting Started,
Getting Around

In This Chapter
� Hardware and software requirements

� Converting to SQL Server 2008

� Tools at your disposal

If you’re ready to get started on the road to a fully functional SQL Server
environment, this chapter is for you. We get the ball rolling by telling you

about the hardware and software foundations that you need to install the
product. The next task is to examine what it takes to either upgrade from an
earlier version of SQL Server or convert from an entirely different database
platform. The chapter closes by taking you on a brief tour of the excellent
tools included with SQL Server, along with some examples of situations
where you’re able to put them to work.

Hardware and Software Requirements
Although you might be tempted to pop in the DVD containing the SQL
Server software, or point your browser at Microsoft’s Web site and then
immediately download and install the product, take a few minutes and
determine whether your computer meets some minimal requirements.
Otherwise, you might find that your installation efforts are for naught or
that your SQL Server instance runs poorly (or not at all!). Fortunately, as
the next chapter illustrates, Microsoft thoughtfully includes a system
configuration check utility as part of the SQL Server installation. However,
you can pass this test and still have a sluggish system, which is why you
want to pay attention to the recommendations listed in this chapter.

Note: If you’re curious about the installation experience, the next chapter
gives that topic the rich treatment it deserves.

Take the time to go through each of these major system readiness categories,
making sure that you meet or exceed each of these prerequisites. Also, if
you’re installing SQL Server on multiple machines, remember that a machine
acting as a central server will generally require faster and better hardware
than one that primarily acts as a client. Finally, you need to have administra-
tive privileges on the computer where you’re installing SQL Server.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 23

Hardware and Software Requirements24

✦ CPU: To keep things moving, you need a CPU with at least a Pentium III-
class processor running at a minimum of 1 GHz. For serious work, plan
on employing a Pentium IV processor that offers at least 2 GHz.

✦ Memory: Because sufficient memory serves as the foundation of any
well-performing relational database, make sure that you provide 1GB or
more. Generally, just as you can’t be too rich or too thin, you can’t pro-
vide a relational database with too much CPU or memory; SQL Server
will always use as much memory as it needs but not more.

✦ Disk: Given that relational databases use disk drives as their primary
storage mechanism, it’s always difficult to recommend a fixed value for
the right amount of available disk capacity — every site and application
is different. However, note that a full installation of SQL Server and
related tools eats more than 2GB before any of your data arrives.

SQL Server ships in several editions for both 32- and 64-bit platforms. This
can affect the exact hardware and software configuration that you need. In
general, “more and faster” is better.

✦ Operating system: Microsoft gives you a fairly wide choice of operating
systems (both 32-bit and 64-bit) that can run SQL Server. They include

• Windows Server 2008 (Standard, Data Center, Enterprise)

• Windows Server 2003 (Standard, Data Center, Enterprise)

• Windows XP Professional Edition

• Windows Vista (Ultimate, Home Premium, Home Basic, Enterprise,
Business)

Be prepared to apply the latest service pack for your operating system;
in many cases, SQL Server depends on these patches.

✦ Supporting software: Because it’s built on top of some of Microsoft’s
newest technologies, SQL Server requires that you install some addi-
tional software components. These can include

• .NET Framework 2.0

• SQL Server Native Client

• SQL Server Setup support files

• Windows Installer 3.1

• Microsoft Data Access Components (MDAC) 2.8 SP1 or newer

• Internet Explorer SP1 or newer

SQL Server’s installation logic is quite sophisticated; it generally obtains
these components automatically for you as part of the installation
process, assuming you’re connected to the Internet.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 24

Book I
Chapter 3

Getting Started,
Getting Around

Converting to SQL Server 2008 25

Converting to SQL Server 2008
Unless you’re building a brand new set of applications, chances are you
have an existing database that will need to be converted to work with SQL
Server 2008. This section shows you how to handle this important task.
We’ve broken this portion into two segments: converting from an earlier
version of SQL Server, and converting from a different relational database
management system.

Before undertaking any major system or software upgrade, it’s always wise
to perform a complete backup of your information. The data you save may
be your own!

Upgrading from earlier versions of SQL Server
Upgrading database software (and the data contained in it) is always a
nerve-wracking experience. Luckily, if you’re running an earlier instance of
SQL Server (such as SQL Server 2000 or 2005), it’s actually quite simple. You
can even elect to have your SQL Server 2008 instance simultaneously run-
ning alongside the earlier edition.

Assuming that you want to upgrade the entire instance, here’s how to get
started:

1. Obtain a copy of the product.

Most database administrators obtain a physical DVD containing the SQL
Server product; there are also circumstances where it’s available elec-
tronically. If you obtain a physical copy, place the media in your com-
puter’s DVD drive.

2. Launch the SQL Server setup application.

The Setup.exe file is under the \Servers folder on your installation
media.

3. Accept the license terms and click Next.

The installation program obtains any necessary supporting software.

4. Select the Upgrade from SQL Server 2000 or 2005 option in the SQL
Server 2008 Installation Center dialog box.

The System Configuration Checker analyzes your computer to see if it’s
capable of running SQL Server 2008. If any problems occur, you’re
alerted here.

5. Choose the instance you want to upgrade and click Next.

You can also instruct SQL Server on whether you want to upgrade the
entire instance or just its shared components. Figure 3-1 shows how this
dialog box appears:

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 25

Converting to SQL Server 200826

6. Review the features that will be upgraded and click Next.

Figure 3-2 shows the list of features that are being upgraded.

7. Configure the accounts you want to run the SQL Server services and
click Next.

8. When prompted, fill in details about how you want errors handled,
and click Next.

Figure 3-2:
Selecting
features.

Figure 3-1:
Selecting an
instance to
upgrade.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 26

Book I
Chapter 3

Getting Started,
Getting Around

Converting to SQL Server 2008 27

9. Run the Upgrade Rules Check wizard.

SQL Server now executes a rules engine to ensure that your existing
instance can be upgraded.

10. Review the Ready to Upgrade page, and click Next.

After you’ve given it the go-ahead, SQL Server upgrades your database
to SQL Server 2008. You can monitor how things are going by watching
the Progress page.

After the conversion is complete, you need to do a few more things to finish
the job, including:

✦ Refreshing usage counters.

✦ Updating statistics. Book VII, Chapter 1 is where you can find out how to
address these first two topics.

✦ Registering your servers. Check out Book IV, Chapter 6 for more about
distributed environments.

✦ Adjusting your configuration. Book VIII, Chapter 1 shows you how to
tweak your SQL Server configuration.

✦ Rebuilding your full-text catalogs. Book III, Chapter 8 includes an
explanation of the care and feeding of SQL Server’s full-text search
capabilities.

On the other hand, if all you want to do is copy a database from an earlier
version of SQL Server into a new instance, you can use the Copy Database
Wizard to accomplish this task. Book VIII, Chapter 2 explains how to copy,
export, and import databases.

Converting from a different database
Normally, the mere thought of converting between relational database
platforms is enough to send shivers up the spine of even the most hardened
database administrator. Fortunately, SQL Server 2008 offers several simple
yet powerful tools to make migrating data less of a burden. I’ll briefly
describe two of these tools, along with criteria you can use to pick one
of them.

SQL Server Import and Export Wizard
This utility (launched by right-clicking on the Management folder within the
SQL Server Management Studio and selecting the Import Data menu option)
allows you to import information easily into your new SQL Server instance.
It’s quite flexible and simple to use, and as shown in Figure 3-3, you can bring
in data from a broad range of information storage formats, including:

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 27

Converting to SQL Server 200828

✦ ODBC

✦ Oracle

✦ SQL Server

✦ Flat files

✦ Microsoft Access

✦ Microsoft Excel

If your existing database is on this list, then it’s likely that this is the right
tool to use to import information into SQL Server. Book VIII, Chapter 2
explores this topic in more detail.

SQL Server Integration Services
These components are much more powerful, but significantly more complex
to employ. They make it possible for SQL Server administrators and integra-
tion specialists to connect to and manipulate just about any data format out
there. Figure 3-4 offers a brief glimpse into the kinds of sophisticated integra-
tion workflow available to you. Generally, if you’re faced with a more com-
plex or ongoing integration scenario, it’s worthwhile to get to know this
extremely capable technology.

Figure 3-3:
Available
data source
formats
from the
SQL Server
Import and
Export
Wizard.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 28

Book I
Chapter 3

Getting Started,
Getting Around

Tools at Your Disposal 29

Tools at Your Disposal
The breadth and quality of SQL Server’s supporting tools are often the
deciding factors in helping an organization decide to standardize on this
database product. In this section, we enumerate and briefly describe some
of the most useful tools in the SQL Server arsenal. To make things clearer,
the tools are separated into the following categories:

✦ Administration

✦ Performance

✦ Software development

Administration
For most professionals tasked with looking after a SQL Server instance, or
developing new applications that rely on it, the SQL Server Management
Studio is a tool that will soon feel comfortable. You can use it to perform just
about any administrative task, as well as a host of additional operations.
Figure 3-5 shows this valuable tool in action, configuring replication in
this case.

Figure 3-4:
Using SQL
Server
Integration
Services.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 29

Tools at Your Disposal30

In terms of tool coverage throughout the book, this technology is the star of
the show: We use it to illustrate key concepts in just about every chapter.

Of course, Microsoft offers other tools of interest to administrators. For
those readers who eschew these new-fangled administrative graphical tools,
Microsoft offers the comfort of two old favorites: the SQLCMD character-
based utility for entering direct SQL statements, and the Database Console
Command (DBCC), which allows you to directly run a host of commands to
find (and sometimes modify) details about the inner workings of SQL Server.

Performance
Using traditional, character-based, performance, metric-gathering tools
while trying to isolate a system response problem has caused no end of
problems for database administrators. Fortunately, SQL Server offers a
broad range of graphical tools that you can use to more rapidly identify and
fix performance problems.

To begin, Figure 3-6 illustrates a small sampling of the massive quantity of
performance-related details that you can track with the Windows
System Monitor.

Figure 3-5:
The SQL
Server
Manage-
ment Studio.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 30

Book I
Chapter 3

Getting Started,
Getting Around

Tools at Your Disposal 31

SQL Server goes far beyond merely capturing performance-related informa-
tion, however. It also offers a collection of tools and assistants that take a
more proactive role in coaxing additional performance from your database
server. Figure 3-7 illustrates output from the Database Engine Tuning
Advisor.

You can use the SQL Server Profiler to get an even more detailed picture of
what’s happening during a critical database interaction. Figure 3-8 shows the
depth of information delivered by this important utility.

Finally, if you need to take a harder line with database resource-gobbling
miscreants, the new SQL Server Resource Governor allows you to block
these troublemakers from bringing your system to its knees.

Note: If any of these performance tools pique your interest, make sure to
spend some time examining Book VII, Chapter 2.

Figure 3-6:
Windows
System
Monitor.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 31

Tools at Your Disposal32

Figure 3-8:
SQL Server
Profiler.

Figure 3-7:
Database
Engine
Tuning
Advisor.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 32

Book I
Chapter 3

Getting Started,
Getting Around

Tools at Your Disposal 33

Software development
Microsoft has done an excellent job in coupling SQL Server to the Visual
Studio .NET platform. More so than with any other database platform, this
combination means that developers have unprecedented productivity when
building a SQL Server–based solution. This tight integration between Visual
Studio and SQL Server extends beyond mere application development. In
fact, it’s the foundation for just about any type of solution that interacts with
a database, including analysis, business intelligence, reporting, and integra-
tion. Figure 3-9 illustrates how Visual Studio .NET is the development envi-
ronment for creating one of these types of projects.

Figure 3-9:
Creating a
new project
in Visual
Studio .NET.

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 33

Book I: Essential Concepts34

07_179543-bk01ch03.qxp 8/23/08 12:26 AM Page 34

Chapter 4: Setting Up
SQL Server 2008

In This Chapter
� Installing SQL Server

� Creating an initial configuration

� Streamlining administration

There was a time when installing and configuring a highly capable rela-
tional database management system meant clearing your calendar for a

week, clearing your desk to hold a batch of weighty manuals, and clearing
your mind in anticipation of a long and challenging job. Fortunately, that’s
no longer the case. However, installing and setting up a product like SQL
Server 2008 does require some planning and preparation, which is what this
chapter aims to tell you about.

We start by walking through the entire SQL Server installation process,
pointing out several important things that you should do before, during, and
after this crucial stage. After the product is installed, the next mission is to
ensure that everything is shipshape. We then show you how to set your
initial configuration parameters and how easy it is to make changes. The
chapter closes with some guidance on establishing solid administration
practices and policies.

Installing SQL Server
Deploying SQL Server 2008 on your computer is much less complicated
than you might think. However, even if you have a screamingly fast server,
completion can take some time; you probably have enough time to hit the
gym, shower, and grab a sandwich after the actual file copying is underway.

SQL Server places some significant hardware and software requirements on
your planned database platform. Take a look at Book I, Chapter 3 to get the
scoop on these necessities before you get started.

When you determine your system is up to snuff and you’re ready to get
started, here’s what to do:

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 35

Installing SQL Server36

1. Run the Setup.exe application from your SQL Server installation CD.

In many cases, inserting the media triggers the installation application
to start automatically.

2. If necessary, install the .NET Framework and accept its license terms.

Assuming you have an Internet connection, SQL Server will automati-
cally retrieve this software from Microsoft’s servers.

3. Review your options in the SQL Server Installation Center.

As you can see in Figure 4-1, the SQL Server Installation Center offers
several helpful paths, including hardware and software requirements,
upgrade options, and SQL Server samples.

4. Click on the Installation option from the SQL Server Installation
Center.

This brings up a new dialog box, shown in Figure 4-2 that offers a
number of different installation trajectories, including new stand-alone
installations, clustering configurations, upgrades, and so on. In this
case, we’re installing a new stand-alone instance of SQL Server.

As part of its standard installation process, SQL Server offers an
extremely useful tool that inspects your computer’s configuration to
ensure that it’s able to support the product. In many cases, you can
still install the database even if your server is somewhat underpowered
or otherwise not up to par. SQL Server simply warns you of this fact.
Figure 4-3 displays output from this important check.

Figure 4-1:
The SQL
Server
Installation
Center.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 36

Book I
Chapter 4

Setting Up SQL
Server 2008

Installing SQL Server 37

5. Fill in your license details and then click Next.

After completing this step, SQL Server will automatically set up any
needed installation support files, as well as report on its Setup Report
Rules, as shown in Figure 4-4.

Figure 4-3:
Results from
the system
configur-
ation check.

Figure 4-2:
Installation
Options for
the SQL
Server
Installation
Center.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 37

Installing SQL Server38

6. Review the results from the Setup Report Rules check and then
click Next.

What you see next is the Feature Selection screen, where SQL Server
allows you to specify where you want the product to reside. You can
also choose which database and related features you want to enable.
Figure 4-5 illustrates these options.

Figure 4-5:
Selecting
features for
this SQL
Server
instance.

Figure 4-4:
Results from
the Setup
Report
Rules
check.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 38

Book I
Chapter 4

Setting Up SQL
Server 2008

Installing SQL Server 39

7. Select an installation directory, your desired features, and then
click Next.

The Instance Configuration screen appears (shown in Figure 4-6), where
you instruct SQL Server on what you want to call your instance and its
root directory. If you don’t specify a name, SQL Server suggests a
default value.

8. Review SQL Server’s disk space requirements and then click Next.

9. Configure your SQL Server instance and then click Next.

SQL Server relies on a collection of Windows services to handle many of
its key tasks. The Server Configuration screen, shown in Figure 4-7, is
where you can associate usernames and passwords with these services,
as well as identify how you want the services to be started. If you want,
you can associate a single login with all the services.

You must decide whether you want to employ a local account or a
domain account (that is, one that’s available across multiple computers)
to run these services. For simplified administration, it’s often wise to
use a centrally administered domain account. On the other hand, if your
environment has relatively few computers, a local account might be
just fine.

Figure 4-6:
Configuring
the SQL
Server
instance.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 39

Installing SQL Server40

10. Set up usernames, passwords, and startup options, and then
click Next.

The accounts you use must have passwords; SQL Server doesn’t accept
NULL values for these fields.

The Database Engine Configuration screen, which shows up next
(see Figure 4-8), has three tabs:

• Account Provisioning: Here’s where you dictate what security
mode you want SQL Server to use, as well as login accounts for any
administrators. Figure 4-8 highlights this tab.

In most cases, the Windows Security Mode option provides the right
blend of operating system and database security.

• Data Directories: Here’s where you guide SQL Server on which
directories to use for user databases, log files, temporary storage,
and so on.

• FILESTREAM: SQL Server 2008 offers a high-performance data
processing option that combines the speed and scalability of file
system–based storage with the transactional integrity offered by a
relational database. The FILESTREAM tab, shown in Figure 4-9, is
where you elect to offer this capability, as well as determine its
name and whether it should be accessible to remote clients.

11. Configure SQL Server Analysis Services and then click Next.

You’re asked to associate a login with SQL Server Analysis Services (if
you’ve elected to include this capability in your installation), as well as
identify data, log, temporary file, and backup directories.

Figure 4-7:
Setting
usernames,
passwords,
and startup
options.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 40

Book I
Chapter 4

Setting Up SQL
Server 2008

Installing SQL Server 41

12. Configure Reporting Services and then click Next.

Figure 4-10 displays your choices for Reporting Services configuration
(assuming that you’ve chosen to install this optional feature). Typically,
it’s simplest to accept the Native mode option, which gets the report
server up-and-running as quickly as possible.

Figure 4-9:
FILE-
STREAM
database
engine
configur-
ation.

Figure 4-8:
Account
Provisioning
database
engine
configur-
ation.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 41

Installing SQL Server42

13. Decide whether you want error and usage information sent to
Microsoft and then click Next.

SQL Server then runs a series of installation validation rules to ensure
that everything will go smoothly when setting up your instance.

14. Review the installation rules output and then click Next.

Now you have a chance to review what you’ve asked SQL Server’s
installation program to do. Figure 4-11 highlights this itemization.

Figure 4-11:
Viewing
selected
features and
options.

Figure 4-10:
Reporting
Services
configur-
ation.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 42

Book I
Chapter 4

Setting Up SQL
Server 2008

Creating and Maintaining Configurations 43

15. Review the proposed installation features and options and then click
Install to launch the job.

16. Monitor the installation process.

SQL Server keeps a running tally of everything that’s happening during
this process. Be patient — this can take quite a long time to finish. SQL
Server also keeps detailed logs that provide insight into the entire instal-
lation process. These logs are grouped in the Setup Bootstrap\Log
directory that’s located beneath your SQL Server installation directory.
Here’s an example of the exciting details you find in these logs:

MSI (c) (D4:44) [14:59:16:008]: Client-side and UI is none or basic:
Running entire install on the server.
MSI (c) (D4:44) [14:59:16:008]: Grabbed execution mutex.
MSI (c) (D4:44) [14:59:16:018]: Cloaking enabled.
MSI (c) (D4:44) [14:59:16:018]: Attempting to enable all
disabled privileges before calling Install on Server
MSI (c) (D4:44) [14:59:16:018]: Incrementing counter to disable
shutdown. Counter after increment: 0
MSI (s) (68:C8) [14:59:16:028]: Grabbed execution mutex.
MSI (s) (68:EC) [14:59:16:028]: Resetting cached policy values
MSI (s) (68:EC) [14:59:16:028]: Machine policy value ‘Debug’ is 0

17. Connect to your server.

Think of this as a sanity check. Your goal is to establish a simple connec-
tion as proof that everything is installed correctly. The fastest way to do
this is to launch the SQL Server Management Studio, available from the
SQL Server 2008 menu.

Creating and Maintaining Configurations
You can put SQL Server to work right away, although you’ll probably want to
make several customizations and tweaks after you’ve completed your instal-
lation. In this section, we show you how easy it is to make changes. To begin,
we show you how to employ the various communication protocols available
to SQL Server. A brief exploration of configuring Reporting Services follows.
After that, we provide some ideas on how to add or remove other features.

SQL Server communication protocols
Your database server is a social animal: It will happily chat with other users
and computers, but only if you let it. For this part of the chapter, we show
you how to enable and configure the various protocols that can make these
conversations possible.

First, it’s a good idea to understand what purpose a communication protocol
serves. These standards make it possible for disparate database servers and
clients to speak and understand each other. Multitudes of protocols are out
there; here are the ones that work with SQL Server 2008:

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 43

Creating and Maintaining Configurations44

✦ TCP/IP: This is, by far, the most popular communication protocol. In
fact, it’s the foundation of the Internet. Whenever you open a browser
and connect to a Web site, TCP/IP is the underlying standard that makes
it possible, and is probably the best choice for your database communi-
cation protocol.

✦ Named pipes: Generally used for both intra-machine and client/server
communication, this protocol is less frequently found on Internet-based
conversations. They are also somewhat less secure than TCP/IP.

✦ Virtual Interface Adapter (VIA): As a protocol that is reliant on special-
ized hardware, the odds are that most readers aren’t likely to encounter
VIA as frequently as they will TCP/IP or named pipes.

✦ Shared memory: You can guess from its name that this protocol relies
on a fast, dedicated section of memory that SQL Server can use for
communication between the database and any clients. However, there’s
one gotcha to shared memory: Client applications and processes must
reside on the same computer as the database server, making this
protocol somewhat irrelevant in a highly distributed environment.

Shared memory is the default protocol for the SQL Server Management
Studio and other important tools when they’re resident on the database
server. Consequently, make sure not to disable this protocol.

Now that you’re a wiz with SQL Server’s myriad protocols, it’s time to see
how to enable or disable any of the ones we just listed.

1. Launch the SQL Server Configuration Manager.

You have two ways to make this happen. You can directly launch the
SQL Server Configuration Manager, which you find in the Configuration
Tools submenu of your root SQL Server menu.

You can also get to this user interface by right-clicking My Computer,
choosing Manage, and then expanding the Services and Applications
folder.

Regardless of how you launch it, the user interface is the same in both
cases. The only difference is that in the former, you’re running the utility
stand-alone, while the latter displays it as part of Computer
Management.

You have three paths to follow from here. They include

• SQL Server Services: Yet another way to start, stop, and disable
your database services. For most installations, you see services dedi-
cated to SQL Server’s Analysis, Integration, and Reporting Services,
as well as the database engine, agent, and browser.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 44

Book I
Chapter 4

Setting Up SQL
Server 2008

Creating and Maintaining Configurations 45

• SQL Server Network Configuration: Where you enable, configure, or
disable any of the four services we just listed, for inbound connec-
tions. This is the focus of the balance of this section.

• SQL Native Client Configuration: Where you specify how you want
outbound (that is, from your database to other databases) protocols
to work.

2. Click the entry for your database server.

On the right, you see entries for each of the protocols.

3. Right-click any protocol that you want to configure and then choose
the Properties option.

In the case of TCP/IP, you have several properties at your disposal,
including:

• Enabled: This property asks a very simple question: Do you or don’t
you want this service to run?

• Keep Alive: This sets how often SQL Server checks to ensure that an
idle connection is still valid.

• Listen All: This setting controls how SQL Server, your network, and
your computer’s network cards all work together. You can also
switch to the IP Addresses tab for further configuration.

4. When you’re finished, click OK to save your changes.

If you change your mind, you can always return and modify your
protocol settings.

Reporting services configuration
SQL Server’s powerful reporting capabilities require little administrator
intervention. However, if you do need to make configuration changes, it’s
very easy to implement these alterations.

1. Launch the SQL Server Reporting Services Configuration Manager.

The best way is to launch it directly from the Configuration Tools sub-
menu of your root SQL Server menu.

2. Connect to the appropriate reporting server instance.

After you establish a session with the Report server, you see something
similar to Figure 4-12.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 45

Creating and Maintaining Configurations46

As shown in Figure 4-12, you have an extensive list of options available
through this utility; here’s a list, along with their purposes:

• Service Account: This dialog allows you to assign either a built-in
account or an account of your choosing to run the report server
service.

• Web Service URL: Where you set up the virtual directory, IP address,
protocol, URL, and security options for Web service connectivity to
your report server.

• Database: This dialog offers you the opportunity to switch the data-
base that supports the report server.

• Report Manager URL: Because you can access the Report Manager
via a browser, here’s where you can set its address.

• E-mail Settings: A report server features e-mail notification capabili-
ties; here’s where you configure details about the account.

• Execution Account: This dialog is where you provide details for an
account that you can use to connect to remote servers that hold
images for your reports, or to servers that don’t require credentials.

To avoid security vulnerabilities, don’t give this account any more
permissions than necessary.

Figure 4-12:
Reporting
Services
Configur-
ation
Manager.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 46

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 47

• Encryption Keys: Because Reporting Services take advantage of
symmetric keys to encrypt sensitive reporting data, here’s where you
can back up, change, or restore these important keys.

• Scale-out Deployment: Reporting Services leverages additional com-
puters to spread the processing load; you add or remove these
servers here.

3. Make your changes and then click Apply to save them.

SQL Server features
In addition to configuring SQL Server’s protocol portfolio, you’re also free to
adjust the exact set of features available to your database server by launch-
ing the SQL Server Installation Center. This utility should be familiar; you
already used it to install the SQL Server product. You find it in the
Configuration Tools submenu of your root SQL Server menu.

After you’ve finished making your feature changes, make sure to save them.
In some cases, SQL Server requires you to restart the database engine.

Streamlining Administration
Even though SQL Server is now installed and configured to your liking, your
work isn’t quite done. In this section, we show you how to take advantage of
SQL Server’s handy wizard-driven tools to create and maintain well-thought-
out administration plans and procedures. This happens to be a great time to
take these steps, too. You’re likely to be up to your ears in database and
application creation tasks before you know it, and administration often takes
a back seat to these more glamorous responsibilities. After reviewing this
wizard, we veer into the more intricate world of SQL Server’s policy-based
management capabilities.

SQL Server Maintenance Plan Wizard
To get maximum value from this exercise, we show you how to automate a
few vital administrative tasks all within one procedure. Here’s what to do:

1. Launch the SQL Server Management Studio.

You find it directly under the SQL Server menu.

2. Connect to your new SQL Server instance.

3. Expand the Management folder.

4. Right-click the Maintenance Plans folder and then choose the New
Maintenance Plan option.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 47

Streamlining Administration48

This launches the Maintenance Plan Wizard, which is an extremely
easy-to-use tool to create and administer maintenance activities. Figure
4-13 shows the initial dialog box for the wizard.

5. Provide a name and description for your new maintenance plan.

6. Decide whether you want to run administrative jobs separately or
together.

In this example, we gather everything into one batch.

7. Set a schedule by clicking the Change button, or simply run the job on
demand.

SQL Server offers a powerful scheduling tool for this purpose. Figure
4-14 shows its broad-reaching capabilities.

8. When you’re finished setting the schedule, click OK to close the
scheduling dialog box and then click Next.

This wizard allows you to automate a collection of important administra-
tive responsibilities, as shown in Figure 4-15. If you’re unsure about the
purpose of a given task, just highlight it, and a brief description appears
at the bottom of the screen.

9. Select the administrative tasks you want performed by marking the
check boxes. When finished, click Next.

10. If you’ve chosen more than one task, tell SQL Server in which order
they should run and then click Next.

Figure 4-13:
Mainte-
nance Plan
Wizard
initial dialog
box.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 48

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 49

11. For each administrative task, decide which databases should partici-
pate and then click OK.

You can include

• All databases

• System databases

• All user databases

• One or more databases from the available instances on your server

Figure 4-15:
Selecting
tasks for
the Mainte-
nance Plan
Wizard.

Figure 4-14:
Mainte-
nance Plan
Wizard
scheduling
dialog.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 49

Streamlining Administration50

12. Depending on the specific administrative task, fill in any additional
required details.

For example, Figure 4-16 shows the dialog box that SQL Server displays
to configure the backup task. If you’re curious about the whole topic of
backup and recovery, make sure to drop by Book VIII, Chapter 2.

13. Tell SQL Server how you want it to report on the outcome of the
administrative tasks and then click Next.

You can have the report written to a file, or even e-mailed to you.

14. Review your selections and then click Finish.

Figure 4-17 shows the result of your hard work.

15. If you’ve set a formal maintenance schedule, await your results.
If not, run the job manually by launching it from the Maintenance
Plans folder.

Figure 4-16:
Configuring
backup
options.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 50

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 51

Policy-based management
Database administrators tasked with looking after multiple servers, each
hosting hundreds of tables and other database objects, often find them-
selves overwhelmed by the number of administrative responsibilities they
face. This is especially true when their organization requires that they
implement a variety of sophisticated database administration policies and
procedures.

Microsoft recognizes the plight of the modern administrator and attempts to
ameliorate the situation by offering a feature-rich, graphically driven set of
tools to automate the amount of tedious, error-prone, and manual adminis-
tration-related tasks. Collectively known as policy-based management, using
these tools is a much saner way of administering complex environments.

The remainder of this chapter gives you a high-level overview of policy-
based management, including its architecture and key terms and concepts.

As is the case with many of SQL Server’s more-advanced capabilities, you
would do well to experiment with a sample database before trying out your
ideas on a production environment.

Figure 4-17:
Proposed
activity for
the Mainte-
nance Plan
Wizard.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 51

Streamlining Administration52

Architecture
SQL Server’s policy-based management is made of three primary
components:

✦ Policy management: Policy administrators (generally the same people
who administer the entire SQL Server instance) are responsible for
creating and maintaining policies. A policy is nothing more than a set of
centrally governed, standardized rules for controlling SQL Server’s
behavior.

✦ Explicit administration: A policy administrator chooses one or more
database objects to see if they comply with the rules stated in a given
policy.

✦ Execution modes: These offer several different mechanisms to run a
policy. They include

• On Demand: Run manually by an administrator

• On Change – Prevent: This automated approach uses SQL Server’s
data definition language (DDL) triggers as the mechanism for pre-
venting policy violation.

• On Change – Log Only: This automated approach takes advantage of
SQL Server’s event notification mechanism to log policy violations.

• On Schedule: This approach uses the automated SQL Server Agent to
check for, and log, policy violations.

Key terms
Now that you’ve gotten a brief overview of some of the architectural under-
pinnings of SQL Server’s policy-based management capabilities, it’s time to
gain some insight into some key terms that you’re likely to encounter.

✦ Managed target: Database objects that you wish to enforce policies on.
Typical targets are databases, tables, indexes, and so on.

✦ Facet: Behaviors or attributes of a managed target. Look at Figure 4-18.
On the left side of the screen is a partial list of facets under the Facets
folder; the right side displays a particular focus on the facets related to
the Database managed target.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 52

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 53

✦ Policy-based management policy: This is the combination of a condi-
tion and its expected behavior.

✦ Policy category: To help organize their policies, administrators are free
to create and maintain their own categories and then assign policies to
these categories.

✦ Effective policy: It’s not enough to simply define a policy; this term
refers to a policy that is actually being actively enforced on valid
managed targets.

Setting up and maintaining your own policies
As you’re about to see, it’s easy to create and sustain your own customized
policies. For this example, imagine that your organization has an enterprise-
wide rule that all database tables must take advantage of clustered indexes
to boost performance and preserve data integrity. Unfortunately, some data-
base analysts and application developers periodically forget this imperative.
To figure out which tables are in violation, you could explore each database
and all included objects. However, with dozens of SQL Server instances,

Figure 4-18:
A list of
facets,
along with
database
properties.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 53

Streamlining Administration54

hundreds of databases, and thousands of tables, this wouldn’t be fun. Why
make things harder than they need to be? Instead of performing this tedious
task yourself, you can elect to put the power of SQL Server’s Policy–based
management system to work. Here’s what to do.

Policy-based management is a rich topic: It could easily fill its own book. As
is the case with many of SQL Server’s more powerful capabilities, it’s always
best to experiment with a sample database before trying things out on
production data.

1. Launch the SQL Server Management Studio.

2. Expand the Management folder.

3. Expand the Policy Management folder.

You’ll notice subfolders for Policies, Conditions, and Facets. For the pur-
poses of this example, we use an existing facet. Of course, you’re always
free to create your own customized facets.

4. Right-click the Conditions folder and then choose the New Condition
option.

Think of the condition as one or more questions that we’re going to ask
SQL Server to evaluate. In this case, we’re going to ask it to tell us
whether a table has a clustered index.

5. Fill in the details about the condition.

You’ll need to provide a name for the condition, as well as which facet to
use. In this example, shown in Figure 4-19, we’re using the Table facet.

6. Define your condition’s expression(s) and then click OK when you’re
finished.

Here’s where you tell SQL Server what you’d like it to check. With
dozens of facets, each containing dozens of fields that can be evaluated,
there are tons of details to explore. In this case, displayed in Figure 4-20,
we’ve asked SQL Server to evaluate the @HasClusteredIndex field to
see if it’s true. You’re also free to define your own edit criteria by click-
ing the ellipses button to the right of the Value column.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 54

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 55

7. Right-click the Policies folder and then choose the New Policy option.

This brings up a dialog box where you define the new policy, and then
associate it with one or more conditions.

8. Setup your policy and then click OK when you’re finished.

Figure 4-20:
Adding an
expression
to a new
condition.

Figure 4-19:
Creating a
new
condition
using an
existing
facet.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 55

Streamlining Administration56

Here’s where you define the policy’s name, as well as associating it with
the conditions you’d like it to check. You can also dictate whether you
want the policy to run automatically or manually. Figure 4-21 shows the
association between this policy and the condition we created in Step 6.
You’re also able to set restrictions on which server(s) should be subject
to this policy.

9. Right-click the new Policy and then choose the Evaluate option.

This launches a full check of the policy. After a few moments, SQL Server
displays a results dialog box like the one shown in Figure 4-22. By exam-
ining the contents of this dialog box, we can see that several tables do
not comply with this rule. Depending on the type of rule we’ve created
and violation encountered, we may then be able to correct the problem
by simply clicking the Configure button.

Figure 4-21:
Defining a
new policy.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 56

Book I
Chapter 4

Setting Up SQL
Server 2008

Streamlining Administration 57

Figure 4-22:
Viewing
results from
a policy
evaluation.

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 57

Book I: Essential Concepts58

08_179543-bk01ch04.qxp 8/23/08 12:27 AM Page 58

Chapter 5: Using SQL Server
Management Studio

In This Chapter
� Introducing SQL Server Management Studio: the DBA’s best friend

� Getting to know the menu structure and icons

� Discovering Object, Template, and Solution Explorer

� Performing queries

The average IT professional must be a master of multi-tasking. Because
the demands of their jobs never end, wise database administrators,

architects, and developers search for enhanced productivity wherever they
can find it. That’s where the SQL Server Management Studio comes in.
Provided alongside every edition of SQL Server (even the free SQL Server
2008 Express), it’s an excellent graphical query and administrative tool,
especially when compared with those offered by other major, relational
database vendors.

No matter your interaction with SQL Server, this chapter helps you see how
this versatile tool can make life easier for you. To help you navigate, we
begin by providing a 35,000-foot overview of its main menu structure and
major icons. We then quickly dive in to what you can learn about your SQL
Server instance by interacting with the Object Explorer. Next, we briefly
touch on the Template Explorer and the Solution Explorer. The chapter
closes with a detailed examination of how to run queries within the SQL
Server Management Studio.

Although many character-based utilities are also at your disposal (most of
them legacies from earlier versions), as time goes by you’ll probably find
yourself performing the majority of your database design and administrative
tasks within SQL Server Management Studio. Note: We periodically refer
to these other tools throughout the book, so if you prefer these types of
utilities, stay tuned for these topics as well.

To launch the SQL Server Management Studio, simply choose it from the
Microsoft SQL Server 2008 menu.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 59

Menu Structure and Icons60

Menu Structure and Icons
SQL Server Management Studio follows the standard style and structure for
Windows menus. Here’s a quick summary of each major menu:

✦ File: Here’s where you connect to database servers, create new projects
or open existing ones, and save your work.

✦ Edit: If you’ve used any Windows-based software, you’ll be comfortable
on this menu. It allows you to select, copy, and paste text as well as
search for terms within your files. You can also set helpful bookmarks.

✦ View: This menu allows you to switch among all the major SQL Server
Management Studio objects, including all the explorers and toolbars.

If you’re looking for a particular window or tool that seems to have
disappeared, carefully explore the View menu, and you should be able
to locate it.

✦ Tools: SQL Server ships with some extremely useful assistants designed
to help you analyze and optimize performance. You’ll find links to these
tools on this menu. You’re also free to link external tools, set prefer-
ences, and customize SQL Server Management Studio’s behavior.

✦ Window: You come to this menu whenever you want to cycle among
your open SQL Server windows or configure how they’re displayed.

✦ Community: No database is an island. Visit this menu to connect to
other SQL Server developers and administrators.

✦ Help: When all else fails, drop by this menu to search for assistance.

A collection of helpful icon-based shortcuts is near the top of the screen;
you’ll probably use the New Query icon most frequently. These icons are
explored in more detail later in this chapter.

Note: You can often view important attributes of a given object (such as a
database, table, connection, stored procedure, and so on) by enabling the
Properties window. To do so, just select it from the View menu.

Object Explorer
The Object Explorer serves as a dashboard that provides a concise, yet
content-rich, set of information about each of the databases under your
control, and is the place where most administrators spend the majority of
their time. Figure 5-1 shows an expanded view of this vital interface.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 60

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Object Explorer 61

The following list looks at each of the major Object Explorer sub-folders:

✦ Databases: Open this folder to get a comprehensive list of all the data-
bases in this instance. You’ll see SQL Server’s system databases, as well
as any databases that you’ve created. You can then expand each data-
base entry to see its internal structures, such as tables, views, stored
procedures, and so on. This folder and its children will occupy the
majority of your time.

✦ Security: You set up server-wide security options here. Note: Database-
specific security is configured within the Databases folder.

✦ Server Objects: This folder contains a collection of resources for diverse
subjects, such as system backup, services, other server linkages, and
triggers.

✦ Replication: This highly useful capability allows you to distribute your
data among multiple systems, as well as subscribe to information from
remote computers. You manage these options in this folder.

✦ Management: Administrators will spend an inordinate amount of time in
this folder. All your SQL Server logs, your data warehouse management,
the performance-optimizing Resource Governor, and other essential
administrative tools are here.

Figure 5-1:
The Object
Explorer in
the SQL
Server
Manage-
ment Studio.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 61

Template Explorer62

✦ SQL Server Agent: People tasked with looking after SQL Server’s day-to-
day operational activities will be very interested in this folder. You can
monitor the status of jobs, manage operator access, maintain proxies,
and view error logs here.

You can obtain additional information about most entries found in the
Object Explorer by choosing the Object Explorer Details option from the
View menu.

Template Explorer
If you’d like to benefit from Microsoft’s philosophy of making database
administration easier, be sure to check out the Template Explorer. It contains
dozens of examples of common database maintenance and interaction
scripts. To display the Template Explorer, choose it from the View menu
within SQL Server Management Studio.

Figure 5-2 shows a small sampling of available templates (located on the
right side of the screen), as well as a specific example of the template for
creating a new table.

Figure 5-2:
The
Template
Explorer and
sample in
the SQL
Server
Manage-
ment Studio.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 62

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Solution Explorer 63

To choose a template, simply double-click it. After the template is displayed,
all you need to do is provide each placeholder a value. A quick way to pro-
vide each placeholder a value is to click the Specify Values for Template
Parameters icon, which you find along the top row of icons. This opens a
handy dialog box, as shown in Figure 5-3.

As if this collection wasn’t helpful enough, you’re also free to modify the
existing templates and create your own. To modify a template, simply right-
click the template and choose the Edit option. Remember to save your work
when you finish changing the template. To create a template, just right-click
anywhere in the Template Explorer and choose the New option. This opens a
blank dialog box where you’re free to enter your own SQL.

When creating a brand new template, consider using an existing template as
a model. Just remember to save the template with a new, distinct name, or
you’ll overwrite the existing template.

Solution Explorer
This component is meant to help you easily organize and visualize the
elements used to create a database-oriented project. To begin creating a
project, choose File➪New Project. You’re then presented with a dialog box

Figure 5-3:
Specifying
values for
template
parameters.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 63

Running Queries64

asking what kind of project you wish to create. For the purposes of this
illustration, we chose a SQL Server Scripts project and added a simply query
to the endeavor.

With the project underway, you can evaluate the Solution Explorer’s view,
shown in Figure 5-4, by choosing View➪Solution Explorer in the SQL Server
Management Studio.

Running Queries
If your job is to design, develop, or administer a SQL Server database, you’ll
be very interested in this section. We show you how to take advantage of the
SQL Server Management Studio’s rich query capabilities. To begin, we take
you on a brief tour of query-specific user interface features. After that, we
illustrate some sample queries.

Although this section is titled “Running Queries,” you can perform any
database interaction (such as updates, deletions, creating tables, and so on)
using these capabilities.

Query-specific user interface features
As shown in Figure 5-5, many icons for designing queries are at your disposal.

Figure 5-4:
The Solution
Explorer in
SQL Server
Manage-
ment Studio.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 64

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Running Queries 65

Here’s a quick list of these icons, along with a simple summary of each one:

✦ Connect: Request a connection to a specific SQL Server instance.

✦ Disconnect: End your connection with this SQL Server instance.

✦ Change Connection: Switch connections to another SQL Server instance.

✦ Available Databases: Presents a list of accessible candidate databases.

✦ Execute: Run your SQL statement.

✦ Parse: Have SQL Server check your syntax and identify any errors.

✦ Cancel Executing Query: Stop a long-running query in its tracks.

✦ Display Estimated Execution Plan: Instruct SQL Server to tell you how it
plans to process your statements.

✦ Trace Query in SQL Server Profiler: Show the progress of your SQL
statements, with a particular focus on performance.

✦ Analyze Query in Database Engine Tuning Advisor: Help identify per-
formance bottlenecks in your query.

✦ Design Query in Editor: Launch the SQL Server Query Designer.

Figure 5-5:
SQL Server
Manage-
ment Studio
icons.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 65

Running Queries66

✦ Specify Values for Template Parameters: Provide runtime values for
your templates.

✦ Include Actual Execution Plan: Display the road map SQL Server
followed to provide your results.

✦ Include Client Statistics: Display performance and other metrics.

✦ SQLCMD Mode: Emulate this character-based utility.

✦ Results to Text: Send the output of your query to plain text.

✦ Results to Grid: Use a grid format for your query’s output.

✦ Results to File: Publish the product of your query to a text file.

✦ Comment Selection: Render selected lines of your query inoperative.

✦ Uncomment Selection: Enable processing of selected lines of your query.

✦ Decrease Line Indent: Move your query text to the left.

✦ Increase Line Indent: Move your query text to the right.

Creating a query
Queries are at the heart of most database interaction. In this section, we
show you how to create and run a simple SQL query. If you’re not comfort-
able with this concept yet, stay tuned. The next part of this chapter shows
you how to take advantage of some very helpful graphical assistants to get
you the results that you desire.

Here’s how to get started on your query:

1. Launch SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Click the New Query icon to bring up the query workspace.

Make sure to select the appropriate database from the drop-down box in
the upper-left of your screen.

4. Enter your SQL statement(s), and click the Execute button.

Here’s where you discover yet another great productivity tool built in
to SQL Server. IntelliSense, built in to many of Microsoft’s development
platforms, provides context-sensitive auto-completion capabilities to
help speed things. For example, in Figure 5-6, IntelliSense has presented
a list of possible candidates for the SELECT statement.

After you’ve executed your query, any results are displayed directly in the
bottom half of the window, as shown in Figure 5-7.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 66

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Running Queries 67

Figure 5-7:
Query
results in
SQL Server
Manage-
ment Studio.

Figure 5-6:
IntelliSense
helping to
complete a
query.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 67

Running Queries68

Using the Query Designer
If you need to interact with your database but aren’t an SQL whiz, never fear.
In addition to the collection of superb examples found in the Template
Explorer, you can always take advantage of the SQL Server Management
Studio Query Designer to construct powerful queries and other database
interactions.

Assuming you have the SQL Server Management Studio already running and
have selected the New Query option, you need to

1. Click the Design Query in Editor icon, found just above the query
window.

This opens the SQL Server Query Designer, along with the Add Table
dialog box, as shown in Figure 5-8.

2. Select one or more tables for your query. Hold down the Ctrl key to
make multiple selections.

3. While you choose tables, click the Add button to place these tables in
the Query Designer.

If any foreign key relationships are configured, SQL Server automatically
displays these important interactions in the Query Designer, as shown
in Figure 5-9. It also creates a basic SQL statement that highlights the
relationship among these tables.

Figure 5-8:
The initial
dialog box
for the SQL
Server
Query
Designer.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 68

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Running Queries 69

In addition to choosing one or more tables for your new query, you’re
also free to select from existing views, functions, and synonyms.

4. After you’ve chosen all of your tables, click the Close button to
remove the Add Table dialog box.

5. Select the columns you want to display from each table by placing a
check mark next to the column name.

If you want to display all the columns, check the asterisk box. While
you’re adding tables and columns, you can watch the SQL statement in
the bottom of the window include your requirements.

6. After you’ve finished identifying tables and columns, your next task is
to decide whether you want any sorting or filtering criteria. Use the
drop-down boxes in the grid of chosen columns.

Figure 5-10 shows a simple join query with a filter and sort request.

7. When all your work is finished, click OK to close the Query Designer.

SQL Server writes the automatically generated SQL statement into the
query window, as shown in Figure 5-11.

You’re now free to run the query and see your results. Of course, you
can also make modifications to the query if conditions change.

Figure 5-9:
Initial tables
and
relation-
ships in SQL
Server
Query
Designer.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 69

Running Queries70

Figure 5-11:
The
generated
SQL query in
SQL Server
Query
Designer.

Figure 5-10:
Initial tables
and
relation-
ships in SQL
Server
Query
Designer.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 70

Book I
Chapter 5

Using SQL Server
M

anagem
ent Studio

Running Queries 71

You can save this query for future reference by simply clicking the floppy
disk icon.

If you’d like a more complete picture of the Query Designer, visit Book III,
Chapter 3. If you’re curious about how to set and use query options,
Book III, Chapter 4 answers your questions.

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 71

Book I: Essential Concepts 72

09_179543-bk01ch05.qxp 8/23/08 12:28 AM Page 72

Creating a new database.

Book II

Designing and Using
Databases

10_179543-pp02.qxp 8/23/08 12:28 AM Page 73

Contents at a Glance

Chapter 1: Setting Up a Database .75
System Databases ..75
Connecting to a Database Server...76
Exploring an Existing Database..78
Understanding the Major Database Objects...79
Creating a New Database ..80
Using SQLCMD to Create a Database...86
Scripting Your Database..87

Chapter 2: Care and Feeding of Your Database 89
Renaming a Database ..89
Changing Database Parameters ...90
Deleting a Database ...97

Chapter 3: Data Types and How to Use Them .99
Traditional Data Types ..99
Enhanced Data Types ..110
Creating Your Own Data Types ..115
Assigning a Data Type ...117

Chapter 4: Constructing New Tables .121
Building a New Table ...121
Additional Column Options ..129
Viewing Table Properties ..135
Creating Views..136
Creating a Table via SQLCMD ...140

Chapter 5: Looking After Your Tables .141
Getting a List of Your Tables...141
Determining Dependencies...143
Viewing the Table’s Contents ...145
Modifying a Table...146
Deleting a Table ..153
Altering a Table via SQLCMD..153

Chapter 6: Understanding Relationships .155
Relationships: Making Data Meaningful ..155
Relationship Types ..156
Creating Relationships ..160
Managing Relationship Errors ..170

10_179543-pp02.qxp 8/23/08 12:28 AM Page 74

Chapter 1: Setting Up a Database

In This Chapter
� System databases: the heart of your SQL Server environment

� Connecting to a database server

� Selecting an existing database

� Understanding the major database objects

� Creating a new database

When you want to store data in SQL Server, your first responsibility is
to define a database that will serve as a container for your informa-

tion. Your next task is to create the tables where the actual data will reside,
along with any restrictions on what you can place in these tables. Finally, by
defining relationships among your information, you help SQL Server ensure
good data integrity and protect your business rules.

In this chapter, you get started on this road. To begin, you discover how the
built-in system databases each have an important job to perform. With that
out of the way, you find how to connect to a database server, and then see
all its existing databases. After that, we tell you about the primary database
objects you’re likely to encounter. Finally, you get the hang of creating new
databases by using the powerful SQL Server Management Studio tool, which
allows you to perform all the database management tasks we describe
throughout the chapter. Because you might have other preferences when
it comes to data management tools, we also show you some different
approaches you can take to achieve the same results.

System Databases
SQL Server ships with four built-in databases. Also known as system data-
bases, these information repositories each play a significant role in keeping
your data organized and tidy. Here’s a brief look at them:

✦ Master: As you might guess from the name, this database means
business: It keeps track of everything about your other databases,
including where to find them, how they’re configured, and even how
to start up the database server. It also knows your security and other
login settings.

11_179543-bk02ch01.qxp 8/23/08 12:28 AM Page 75

Connecting to a Database Server76

✦ Model: SQL Server uses this database as a guideline for any new data-
base that’s created on your system.

✦ Msdb: Here’s where the SQL Server Agent keeps track of its workload,
such as scheduled jobs, alerts, Service Broker tasks, and database mail.

✦ Tempdb: This database fills the important job of serving as a temporary
repository for transient information from both user tasks as well as
internal SQL Server work. As you might imagine, it fills with all sorts of
stuff over time. Luckily, every time you restart the database engine, SQL
Server re-creates a fresh, empty copy of this database.

Figure 1-1 shows how system databases appear in the SQL Server
Management Studio.

Connecting to a Database Server
Before you can interact with the information kept in a database, you first
need to connect to the instance of a database server that holds that data.
Here are the simple steps you need to follow:

1. Launch the SQL Server Management Studio.

Figure 1-1:
System
databases
in the SQL
Server
Manage-
ment Studio.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 76

Book II
Chapter 1

Setting Up a
Database

Connecting to a Database Server 77

2. Fill in the details on the Connect to Server dialog box.

This dialog box appears automatically whenever you launch the SQL
Server Management Studio. If you don’t see it or have closed it by
mistake, just click the Connect button at the top of the screen, and it
will reappear.

3. Choose the Database Engine option.

This opens the Connect to Server dialog box, as shown in Figure 1-2.
Here’s where you choose the specific database instance you want.

4. Choose a server from the Server Name drop down menu.

5. Select an authentication method.

Your choices here are:

• Windows Authentication: In this case, SQL Server inherits your login
information from when you logged in to the Windows operating
system.

• SQL Server Authentication: Choose this method when you have a
separate login for the database itself, in addition to the username
and password that you provide when signing in to the computer.

6. (Optional) Click the Options button and fill in any other connection
properties if you like.

In most cases, the default connection options should suffice. However,
here’s what these settings mean if you want to experiment:

• Connect to Database: This allows you to choose a specific database
on the server in question. You can browse all the available user and
system databases if you like.

Figure 1-2:
Connecting
to a server
from the
SQL Server
Manage-
ment Studio.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 77

Exploring an Existing Database78

• Network Protocol: This refers to the communication method by
which you connect to the database server. You can enable whatever
protocols you like via the SQL Server Configuration Manager.

The default protocol for a local SQL Server connection is shared
memory; it’s also the fastest for this type of connection. If you’re
connecting to a remote server, you can use named pipes as well as
TCP/IP. In most cases, it’s wisest to simply use the default setting.

• Network Packet Size: This setting tells SQL Server how many bytes
you want to include in each message package sent between a data-
base client and SQL Server.

• Connection Time Out: This tells SQL Server how long you want to
wait before giving up on establishing a new connection.

If you know that your network infrastructure is sluggish, consider
raising this parameter from its default value. On the other hand, if
you’re confident in a speedy connection to your database, then a
lower value makes more sense.

• Execution Time Out: After you’re connected, this parameter
instructs SQL Server how long you want to let a long running
database operation continue before bailing out.

If you plan to run an operation that takes a long time (such as a
major update or large insert job), don’t make this setting too small,
or you run the risk of aborting a valid transaction in the middle.

• Encrypt Connection: With an encrypted connection, all traffic
between SQL Server and its client is scrambled to protect it from
outside snooping. However, this defense comes at a price: a small
amount of extra processing workload to handle encryption’s over-
head. Hence, if you’re confident that your conversation is over an
already-secure connection, you can leave this option unchecked. On
the other hand, if you want this added protection, you can enable
encryption at the server, and all traffic is handled accordingly no
matter what settings are in place on the client.

Exploring an Existing Database
Before you start creating new databases, you probably want to check out
some of the system databases that we just described, or perhaps an already-
existing user database. Here’s how to discover more about the databases in
your SQL Server instance:

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 78

Book II
Chapter 1

Setting Up a
Database

Understanding the Major Database Objects 79

1. Launch the SQL Server Management Studio.

2. Connect to a specific database server.

We just described how to do this in the previous section of this chapter.

3. Expand the Databases folder.

Here’s where you get a list of all available databases on this server. You
can find out more about each database by expanding its folder. If you’re
interested in this topic, stay tuned because it’s up next.

4. Click on the database you want to explore.

Understanding the Major Database Objects
When you’re connected to your database server and a specific instance
of a database, you see all sorts of interesting objects. Figure 1-3 shows
these objects from the SQL Server Management Studio. Note: This sample
database doesn’t ship with SQL Server; we created it as an example.

Figure 1-3:
The SQL
Server
Manage-
ment Studio
displaying
major
database
objects.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 79

Creating a New Database80

Here’s what each one contains:

✦ Database Diagrams: Here’s where you get a graphical view of your
information, including the relationships you’ve defined among objects
in your database.

When you first expand this folder, SQL Server might ask you for permis-
sion to create the necessary internal objects to support database
diagramming. These diagrams are very helpful, so it’s a good idea to
answer yes to this question.

✦ Tables: The contents of this folder are divided between system tables,
which are provided for and looked after by SQL Server, and user tables.
Each table further breaks down into columns and indexes.

✦ Views: Views are virtual tables, composed of information from one or
more real tables. If you expand this folder, you see a list of both system
and user-defined views. Opening a particular view yields a list of the
columns that make up that view.

✦ Synonyms: These are substitute names for objects in your database.

✦ Programmability: Here’s where you can get a list of all your system
and user-defined stored procedures, including their input and output
parameters. You can also find out about your functions, assemblies,
triggers, rules, and so on via this tree entry.

✦ Service Broker: This technology offers powerful communication, mes-
saging, and other distributed processing capabilities.

✦ Storage: Take a look in this folder if you like to see details about full-text
catalogs and any database partitioning schemes and functions that
might be in place.

✦ Security: This folder itemizes all the users who have access to your
database.

To get the latest-and-greatest view of everything about your SQL Server
instance, right-click the Object Explorer tree and choose Refresh.

Creating a New Database
It’s time to construct a brand new database of your own. It’s very easy,
thanks to the SQL Server Management Studio. Here’s all that you need to do:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Highlight the Databases folder.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 80

Book II
Chapter 1

Setting Up a
Database

Creating a New Database 81

5. Right-click this folder, and choose New Database.

A dialog box that lets you specify the new database’s name appears, as
well as a collection of properties about the new database.

6. Fill in the General page.

This page contains vital settings, including:

• Database Name: No mystery here — this is what you want to call
your database.

• Owner: This is the login for the user who possesses the database.
Note: You must first create this login in SQL Server; trying to assign
an operating system-based user ID directly won’t suffice. You can
type in a name or browse from the list of potential logins.

• Use Full-text Indexing: SQL Server offers powerful search features
that make it easy to locate information from massive quantities of
text-based data. Check this box if you want to enable these capabili-
ties. In general, unless you’re sure that you’ll never need it, it’s smart
to switch on this feature.

• Data File Details: These important parameters control the name,
size, association, growth rates, and location of the file that holds
your data. Table 1-1 illustrates what these settings mean, and how to
set them optimally.

• Log File Details: Just as Data File Details allows you to configure key
settings for the data file, here’s where you do the same for your log
files. See Table 1-1 for more details.

Table 1-1 File Parameters
Parameter Purpose

Logical name Associate a meaningful, unique name for the file.

File type Decide whether it holds data or transaction log information.

File group Assign the file to a larger group of similar files, generally
for administration.

Initial size How large you want the file to be from inception.

Autogrowth Whether you want the file to grow automatically.

Path Where you want the file placed on disk.

File name SQL Server generates this for you, using the logical name.

Figure 1-4 shows what this important dialog box looks like.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 81

Creating a New Database82

7. (Optional) Fill in the Options page.

Take a deep breath, because you can configure more than 20 settings.
Alternatively, you could simply elect to go with the defaults. In either
case, if you’d like to know more about what these settings do, check out
Table 1-2.

Table 1-2 Database Creation Options
Parameter Purpose

ANSI NULL Default If you don’t explicitly specify NULL behavior
when you create a table, this setting determines
whether the default value for any columns will be
NULL (when the parameter is set to ON), and
NOT NULL (when the parameter is set to OFF).

ANSI NULLS Enabled If you disable this parameter, any time SQL Server
compares two values that are both NULL, it will
return TRUE. Otherwise, it returns UNKNOWN.

ANSI padding Enabled This setting will no longer be present in newer
versions of SQL Server, so don’t plan to use it.

ANSI warnings Enabled If switched on, you receive a warning message if
an aggregation function (such as SUM, AVG, and
so on) encounters a NULL value.

Figure 1-4:
General
settings
when
creating a
new
database.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 82

Book II
Chapter 1

Setting Up a
Database

Creating a New Database 83

Parameter Purpose

Arithmetic Abort Enabled If this option is chosen, any arithmetic error
causes an active transaction to roll back.

Auto Close If selected, this causes SQL Server to take a data-
base offline when the last user exits. Note: You
need to bring the database back online manually
if you select this option.

Auto Create Statistics When enabled (which is the default) this lets the
SQL Server Query Optimizer create the metrics it
needs to keep better track of data distribution
patterns. This helps improve the quality of the
Optimizer’s decisions.

Auto Shrink Enable this option if you want SQL Server to tidy
your database files automatically over time.
However, you need to either back up your trans-
action log or use the Simple recovery model for
this to work.

Auto Update Statistics This option lets SQL Server fill in the blanks on
any missing statistical information.

Auto Update Statistics This setting determines whether SQL Server can
Asynchronously update its internal statistics in the background.

Close Cursor on Commit This setting determines what happens when you
Enabled commit or rollback a transaction. When set to ON,

SQL Server closes any open cursors in such an
event.

Concatenate Null Yields This parameter decides what happens when you
Null try to combine a NULL value with a string. When

the setting is ON, and you include a NULL value
in your concatenation, SQL Server treats the
entire product as NULL.

Cross-database Ownership This handy setting lets you decide whether you
Chaining Enabled want to allow ownership permissions to span

multiple databases.

Database Read-Only As you might expect, enabling this setting pre-
vents the database from being modified.

Date Correlation This parameter lets you order SQL Server to
Optimization Enabled create and manage statistical information for any

columns that have a foreign key relationship and
are composed of the DATETIME data type.
These statistics generally improve joining and
other cross-table performance.

(continued)

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 83

Creating a New Database84

Table 1-2 (continued)
Parameter Purpose

Default Cursor This parameter determines the default scope of
your cursors. Your choices here are LOCAL, or
GLOBAL, but you can override this setting when
you create your cursor.

Numeric Round-Abort You use this setting to receive warnings and to
generate errors whenever SQL Server loses pre-
cision for the results of a numeric operation.

Page Verify This important parameter guides SQL Server in
maintaining details about the health of its data
and index pages. It’s a good idea to leave this set-
ting at the default of CHECKSUM.

Parameterization Your options here are SIMPLE, or FORCED. If
you want all queries in the database to be para-
meterized, use the FORCED option. Otherwise,
the default value of SIMPLE leaves this determi-
nation up to the query developer.

Quoted Identifiers Setting this option to ON allows you to use double
Enabled quotation marks as enclosures for delimited

identifiers.

Recursive Triggers Here is where you tell SQL Server whether you
Enabled want to allow recursive firing of AFTER triggers.

Unless you’re very comfortable with the implica-
tions of recursive triggers, it’s a good idea to
leave this setting at its default value of OFF.

Restrict Access This option lets you determine the scope of
access to your database. Your choices are
MULTI_USER, SINGLE_USER, and
RESTRICTED_USER. For most normal data-
base operations and applications, you likely want
to use the default value of MULTI_USER.

Trustworthy This important setting lets SQL Server know
whether it should consider this database as
secure and uncompromised. If SQL Server knows
that the database is trustworthy, it grants it
access to sensitive resources.

File name SQL Server generates this for you, by using the
logical name.

Figure 1-5 shows these parameters.

8. (Optional) Fill in the Filegroups page.

For now, use the default value shown on this dialog. However, if you’re
building a large or complex database, you definitely want to check
out the next chapter, because we describe this important database
architectural concept in more detail.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 84

Book II
Chapter 1

Setting Up a
Database

Creating a New Database 85

Figure 1-6 displays these settings.

Figure 1-6:
Filegroup
settings
when
creating a
new
database.

Figure 1-5:
Additional
settings
when
creating a
new
database.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 85

Using SQLCMD to Create a Database86

9. When finished, click OK.

SQL Server dutifully creates your database.

With all these parameters to consider, it’s natural for you to worry about
the implications of making a mistake at this stage. Have no fear because
in the next chapter you discover how to change the configuration for an
existing database.

Using SQLCMD to Create a Database
If you prefer the crisp picture of a black-and-white television over color, trust
slide rules more than computers, and haven’t traded in your vinyl LPs for
those newfangled CDs, you’ll probably be first in line to use the SQLCMD
tool — a very helpful utility that allows both batch and interactive access to
SQL Server. Here, we show you how to use it to create a new database, as
well as run an existing SQL script.

1. Open a command prompt.

Choose Run from the Windows Start menu, and enter cmd. You can also
choose Programs➪Accessories➪Command Prompt from the Windows
Start menu. When you see the friendly command prompt, it’s time to
launch SQLCMD.

2. Enter SQLCMD at the command prompt, passing in the proper
parameters.

This can get a bit confusing. SQLCMD is rather picky about the exact
syntax that it deigns appropriate to run. This isn’t surprising when
you realize that it supports more than two dozen parameters. Table 1-3
highlights a small group of key parameters.

Table 1-3 Key SQLCMD Parameters
Parameter Purpose

S Specify the server that you want to connect to

U Provide your username

P Provide your password

D Which database to use (if any)

I The SQL script file (if any)

If you get in hot water, you can always ask SQLCMD for help:

SQLCMD /?

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 86

Book II
Chapter 1

Setting Up a
Database

Scripting Your Database 87

3. Enter your SQL, ending your statement with GO.

After you’re in SQLCMD, you have an interactive command prompt at
your disposal. Figure 1-7 shows a very simple example of how to create a
database via direct SQL entry in SQLCMD.

4. Alternately, run your script from the command line.

One nice feature of SQLCMD is that it lets you run SQL script files
without any user intervention. For example, here’s how we ran a script
file from the command line (Step 2 above) along with the parameters
we provided:

SQLCMD -S dbserver -U Nicole -P Sierra -d WestBay -i
build_abc.sql

Make sure that your script file is in the right directory; SQLCMD won’t be
able to find it otherwise. Alternatively, provide a full path to the file.

Scripting Your Database
When your database is set up and configured just the way you like, SQL
Server offers a handy feature — scripting — that lets you re-create and then
configure the database much more quickly in the future. Here’s how you can
take advantage of scripting:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

Figure 1-7:
Creating a
new
database by
using
SQLCMD.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 87

Scripting Your Database88

5. Right-click the database you want to script and choose Script Database
As➪CREATE To➪New Query Editor Window.

You can also select to save the results to a file or the Clipboard. For this
example, we show you the script in a query window, which you can see
in Figure 1-8. In reality, you probably want to save the script to a file.

You can use the script any time you want to rebuild your database. This
is especially helpful when you’re experimenting with new databases.

What’s especially nice about scripting is that you can use it for all sorts of
administrative tasks, not just creating new databases.

Don’t be afraid to experiment with scripting. In fact, after you start taking
advantage of scripts, you’ll probably find that your overall productivity
increases along with your understanding of how to interact with SQL Server.

Figure 1-8:
Scripting a
CREATE
DATABASE
statement.

11_179543-bk02ch01.qxp 8/23/08 12:29 AM Page 88

Chapter 2: Care and Feeding
of Your Database

In This Chapter
� Renaming your database

� Viewing and modifying database properties

� Deleting a database

When it comes to creating and maintaining databases, with SQL Server
very little is set in stone. That is, you nearly always have a second

chance to make things right, which gives you the flexibility you need to
make changes. In fact, sometimes you might even need to go as far as delet-
ing a database.

No matter what brought you to this chapter, you’ll soon see how easy it is to
make modifications, whether trivial or significant, to your databases. To
start, you get the story on renaming a database. Next up is changing data-
base configuration parameters to tweak your data storage engine’s behavior.
Finally, you walk through the exact steps necessary to delete a database.

Renaming a Database
After you have a database in place, renaming it is easy:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database name that you want to change and choose
Rename.

6. Enter a new name for the database and press Enter.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 89

Changing Database Parameters90

Make sure to update any external objects that might reference this database
by name, such as scripts, programs, stored procedures, and so on.

Changing Database Parameters
SQL Server offers several settings for the database administrator. Many of
these parameters are system-wide; others are narrower in their scope and
relate to a single database. It’s this latter group of variables that we show
you how to view and configure. To make things clearer, we’ve organized this
section to match the property pages that hold all these settings.

Regardless of the individual setting you want to modify, you need to follow
the same series of steps to make this happen:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database that you want to change and choose
Properties.

6. Select the appropriate properties page.

You have a choice of eight properties pages. We describe each one in a
moment.

7. Make your changes and then click OK.

Figure 2-1 shows you the General properties page.

We assume that you want to use the SQL Server Management Studio to make
these changes; it’s much easier that way. Comparatively, if you’re more of a
script or command-line person, you can use the SQLCMD utility instead.

Look at the parameters found on each of the properties pages. As shown in
Figure 2-1, these properties can be grouped either alphabetically or in cate-
gorized order. To make things clearer, we follow the categorized approach.

Because many of these properties fall under the umbrella of database main-
tenance, you find much more detailed descriptions and step-by-step instruc-
tions throughout Book VIII, which is devoted to administration.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 90

Book II
Chapter 2

Care and Feeding
of Your Database

Changing Database Parameters 91

General
If you’re interested in a high-level overview of your database, including its
size, backup status, and other key indicators, take a look at this important
properties page.

We explore each of the major categories found on this page. Note: Every-
thing you see on the General properties page (refer to Figure 2-1) is read-
only. Think of it as a set of important metrics that tell you details about the
health of your database. Based on what you find here, you can then take
action on some of the other properties pages.

✦ Backup: As a database administrator, one of your most important
tasks is to back up your vital information continually. This category of
properties keeps you apprised of when these important jobs were most
recently run. As you can see in Figure 2-1, the database administrator
(yours truly) hasn’t been doing his job!

✦ Database: Turn here to get insight into a collection of administrative
metrics, including the overall size of the database, the number of users
that have been created for it, and the amount of available space.

✦ Maintenance: This category contains only one property: the collation
sequence used for this database. This setting guides SQL Server in

Figure 2-1:
The General
properties
page in the
SQL Server
Manage-
ment Studio.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 91

Changing Database Parameters92

figuring how to properly manage and sort your information. You deter-
mine this property when creating the database. It’s based on your expec-
tations about the regional characteristics (for example, Western
European, Asian, and so on) of your location and data.

Files
This crucial properties page, as shown in Figure 2-2, is where you physically
lay out your information on disk. Additionally, this is where you determine
whether full-text indexing will be available for this database. We describe
full-text indexing in much more detail in Book III, Chapter 9. For now, think
of full-text indexing as a series of internal structures and search optimiza-
tions that SQL Server offers you to make locating text-based information
much easier. Full-text indexing is optional, which is why there is a check box
on this page. Some administrators might not want to offer this capability
because their specific applications aren’t focused on large blocks of text,
and consequently won’t need this type of functionality.

Options available to you on this page include

✦ Database Ownership: In SQL Server, each database can be owned by dif-
ferent logins, which can be a person, an application, or even a Windows
Group. Here’s where you make that determination.

Figure 2-2:
The Files
properties
page in the
SQL Server
Manage-
ment Studio.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 92

Book II
Chapter 2

Care and Feeding
of Your Database

Changing Database Parameters 93

✦ Database File Information: For database administrators reading this
book, we can guarantee that you’ll spend a lot of time focusing on these
settings. In looking at Figure 2-2, you might notice that information is dis-
tributed between two file groups. We discuss the purpose of file groups
in a moment, but other important settings found here include file names,
locations, and the initial size for your data and log files.

✦ Autogrowth Settings: Unless you’re publishing a read-only database, or
one that will never experience expansion, you want to pay particular
attention to the Autogrowth settings on this properties page. As shown
in Figure 2-2, you have fine control over exactly how your files grow, as
well as whether their growth is unrestricted.

Filegroups
One way to squeeze additional performance and data security from your
SQL Server technology is to distribute information onto multiple disk drives.
With today’s fast processors and highly tuned disk controllers, this division
of labor often pays handsomely. You can use filegroups to organize your data
and log files logically. For example, as shown in Figure 2-3, we created a new
filegroup named HIGH_SPEED_DISK_3. As you might guess from the clever
name, we intend to use this file group to store information on a brand-new,
shiny, high-speed disk.

If you look back at Figure 2-2, you see that we took advantage of this new file
group when creating an additional file that stores historical information.

Options
If you like to tinker with your database engine, this is the page for you. You
find more than two dozen parameters, each of which can have a significant
impact on SQL Server’s performance and behavior. Many of these parame-
ters are itemized in the previous chapter. For now, look at each major group
of categories. Take a moment to examine Figure 2-4 to see where each of
these categories fits in the overall scheme of things.

You begin your options odyssey by controlling the collation model for this
database. With choices ranging from Albanian through Vietnamese, you’re
sure to find the right collation setting to meet your needs.

With that important determination out of the way, your next decision relates
to the recovery model that you want SQL Server to follow. For most sites,
the Full model is the right choice. Next, select the compatibility level that
you wish SQL Server to follow. For most sites, chances are you simply want
to be compatible with the most recent version of the product.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 93

Changing Database Parameters94

Figure 2-4:
The Options
properties
page in the
SQL Server
Manage-
ment Studio.

Figure 2-3:
The
Filegroups
properties
page in the
SQL Server
Manage-
ment Studio.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 94

Book II
Chapter 2

Care and Feeding
of Your Database

Changing Database Parameters 95

Here are the major categories in the Other Options portion of this page:

✦ Automatic: This category hosts a collection of settings that helps the
SQL Server Optimizer do a better job, and efficiently manages disk
space.

✦ Cursor: Here’s where you can instruct SQL Server on what type of
cursor you want to be the default, as well as what should happen to
your cursor when a COMMIT operation is executed.

✦ Miscellaneous: Here you find a collection of properties that don’t fit any-
where else. Ranging from required ANSI behavior to arithmetic configu-
ration to trigger management, there’s something for everyone in this
category.

✦ Recovery: SQL Server gives you the option to configure its recovery
mode. However, unless you have a good reason, it’s probably a better
idea to leave this setting alone.

✦ State: A few properties that affect how others might access your
database.

Permissions
Book VIII, Chapter 3 is devoted to the important topic of how to secure your
SQL Server database. At this point, our main goal is to show you the power
and flexibility at your disposal when configuring your security settings. For
example, Figure 2-5 shows a small sample of the number of explicit permis-
sions that you can set, in this case for a guest user.

These settings are meaningful in the context of the database itself. You can
also set additional security properties at the table, view, procedure, or other
object level.

Security and permissions is one area where trial-and-error is your friend, as
long as you plan and do it right. For example, before implementing a full
security scheme, why not create a sample database (including some tables,
realistic data, and users) and then conduct some security experiments? This
hands-on experience will be much more valuable to you than attempting to
translate what you read on a printed page into your organization’s reality.

Extended properties
To help database administrators and developers in their ongoing efforts to
build and maintain high-quality information systems, SQL Server offers the
ability to create your own customized properties. For example, you might
want to keep track of the database schema’s revision history. You could
easily create an extended property that serves as a common repository for
all database administrators to log any schema changes, along with the date
and any relevant comments.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 95

Changing Database Parameters96

Mirroring
It’s never a good idea to put all of your eggs (or data) in one basket. SQL
Server offers mirroring as a way to increase data availability while protecting
your information. Briefly, mirroring entails either the database server or
operating system making more than one copy of your data and placing this
data on different disk drives.

Book VII, Chapter 4 explores mirroring and its effect on data security and
performance.

Transaction log shipping
We close out the database parameters section with a collection of variables
that helps you implement a redundant database strategy. Log shipping is a
superb way of keeping information in sync across a widely distributed net-
work of computers. The result is greater system availability, better flexibility,
higher performance, stronger data protection, and enhanced disaster protec-
tion. Figure 2-6 shows a sampling of the settings at your disposal when
tuning your transaction log backup settings.

Figure 2-5:
The
Permissions
properties
page in the
SQL Server
Manage-
ment Studio.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 96

Book II
Chapter 2

Care and Feeding
of Your Database

Deleting a Database 97

Deleting a Database
When the time comes to say goodbye to a database, all you need to do is

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database that you want to remove and choose Delete.

Renaming and dropping databases can be hazardous to your applications’
health. It’s a good idea to create a backup before making changes of this
magnitude. The sanity you save may be your own.

If your database employs mirroring, log shipping, replication, and so on,
you will need to remove these settings prior to successfully dropping your
database.

Figure 2-6:
Configuring
transaction
log shipping
in the SQL
Server
Manage-
ment Studio.

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 97

Book II: Designing and Using Databases98

12_179543-bk02ch02.qxp 8/23/08 12:29 AM Page 98

Chapter 3: Data Types and
How to Use Them

In This Chapter
� Understanding major data types

� Choosing the right data type for the job

� Getting to know SQL Server’s expanded data storage options

� Creating your own data types

� Setting data types on new or existing columns

SQL Server provides you with many options when it comes to creating
and storing information. In this chapter, you get a good picture of all

these choices. To begin, we explore each of the major data types along with
any related sub-types. As part of reviewing all these data types, you find out
how to determine the right data type for the job.

Even if you’re already familiar with most major data types, you’ll be pleas-
antly surprised to learn how many new classes of information can be stored
and tracked in SQL Server. We spend the subsequent part of the chapter
looking at some of these new data types and taking advantage of them to
build more productive database applications. After that, you discover that
you can even define your own data types if you’re so inclined. Finally, we
show you how to use the SQL Server Management Studio and the SQLCMD
utility to set data types on new or existing columns.

Traditional Data Types
If you have any experience with relational databases, you probably already
know and love this first batch of data types. Many of them have been used
to store information for decades, and more than 2 dozen are now at your
disposal. To help you understand these types better, it’s a good idea to
group them into several major classifications, which is what we show you
in this section.

Before we get started, first look at how you can get a full picture of all the
data types at your disposal. Again, we turn to the trusty SQL Server Manage-
ment Studio to help.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 99

Traditional Data Types100

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Open the folder entry for your database.

6. Expand the Programmability folder.

7. Expand the Types folder.

You see a list of all the data types at your disposal. To begin, you can see all
the system data types. In other words, these are the data types that ship with
SQL Server, organized into the following folders:

✦ Exact Numerics

✦ Approximate Numerics

✦ Date and Time

✦ Character Strings

✦ Unicode Character Strings

✦ Binary Strings

✦ Other Data Types

A collection of other folders is here as well. These folders hold information
about data types that you, the SQL Server administrator, can define, along
with information about XML schema stored in your database.

Figure 3-1 shows how system data types appear in the SQL Server
Management Studio.

Each database is able to have its own set of unique data types. This is
because you can create types that are localized to a given database.

For the balance of this chapter, we discuss each of these data types and
show you how to create data types that serve your needs.

If you’re ever unsure about what you can store in a data type, open the
folder as described previously and place your mouse pointer over the data
type. SQL Server will then tell you, via a ToolTip, how you can use that data
type.

Figure 3-2 shows an example of this helpful advice.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 100

Book II
Chapter 3

Data Types and
How

 to Use Them

Traditional Data Types 101

Numeric data types
If you can represent your information with a number, these are probably the
right data types to store it. However, if math wasn’t your favorite subject
during school, don’t worry, because we show you how to select the appro-
priate numeric data type to solve your information storage challenge.

Figure 3-2:
The SQL
Server
Manage-
ment Studio
guidance on
a data type.

Figure 3-1:
System data
types, as
seen in the
SQL Server
Manage-
ment Studio.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 101

Traditional Data Types102

INTEGER types
As a database designer, the INTEGER family of data types gives you a great
deal of flexibility when setting up a column. Integers hold whole (in other
words, non-fractional) numbers. Table 3-1 highlights the range and storage
requirements of each member of this family.

Table 3-1 Integer Types, Ranges, and Storage Requirements
Type Range Storage Power of 2

equivalent

bigint –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 8 bytes –263 through 263–1

int –2,147,483,648 to 2,147,483,647 4 bytes –231 through 231–1

smallint –32,768 to 32,767 2 bytes –215 through 215–1

tinyint 0 to 255 1 byte 28

Deciding on the appropriate INTEGER type is actually quite simple. All you
need to do is figure what range of data is likely to be stored in that column,
and then simply select the appropriate INTEGER type. Take a look at the fol-
lowing segment of SQL code:

CREATE TABLE INT_EXAMPLE
(

AGE TINYINT,
NUMBER_OF_EMPLOYEES SMALLINT,
CITY_POPULATION INT,
...

)

In this example, we chose TINYINT for AGE because it’s unlikely to find
someone older than 255 years. Comparatively, the NUMBER_OF_EMPLOYEES
could be in the tens of thousands, so we chose SMALLINT, whereas the pop-
ulation of a city could be anywhere up to 2 billion (although we wouldn’t
want to live in that city!).

BIT
This data type is actually a specialized kind of integer. You use it to store 0,
1, or NULL. Another way to think of it is as a great candidate to hold values
that could be either true or false. For example, in the following SQL state-
ment, we use BIT to help keep track of whether a customer is up-to-date on
her payments:

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 102

Book II
Chapter 3

Data Types and
How

 to Use Them

Traditional Data Types 103

CREATE TABLE BIT_EXAMPLE
(

PAYMENTS_CURRENT BIT,
...

)

When we insert or modify a row in this table and request a value of ‘TRUE’,
SQL Server converts it to a 1. On the other hand, a value of ‘FALSE’ is rep-
resented with a 0.

In this first example, we insert a value of 1 (‘TRUE’) into the table:

INSERT INTO BIT_EXAMPLE VALUES (‘TRUE’)

Next, we insert a value of 0 (‘FALSE’):

INSERT INTO BIT_EXAMPLE VALUES (0)

When using TRUE or FALSE in SQL statements, remember to enclose the
value with single quotes.

DECIMAL types
In this section, we provide some of the more esoteric types of numeric data.
Each of the following data types can store decimal-based information.

DECIMAL and NUMERIC
Choose either of these data types when you’re sure about the precision and
scale of the information you want to track. For example, say you want to
store numeric information in your database, and you know that there will be
eight digits, with three to the right of the decimal. Here is how you define
your column:

CREATE TABLE DECIMAL_EXAMPLE
(

EXCHANGE_RATE DECIMAL(8,3),
...

)

Precision and scale are the terms used to describe the overall size of these
numbers along with the number of digits to the right of the decimal. In this
example, the precision is eight, and the scale is three. SQL Server’s default
precision is 18, with a maximum of 38.

If you try to insert a value that exceeds the column’s capacity, SQL Server
dutifully reports an error:

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 103

Traditional Data Types104

Msg 8115, Level 16, State 8, Line 1
Arithmetic overflow error converting numeric to data type numeric.
The statement has been terminated.

FLOAT and REAL
In the previous section, you see how the DECIMAL and NUMERIC data types
can be used when you know the exact size of the numbers stored in your
database. However, you don’t always know this detail, which brings us to
these next two data types.

FLOAT and REAL are useful when you’re not exactly sure how large (or
small) a number is that you want to track, but you do know that you need a
lot of flexibility. A helpful way to think of FLOAT is as a database representa-
tion of scientific notation. SQL Server gives you tremendous latitude when
storing information in a column defined as FLOAT or REAL. Note: REAL is
simply a synonym for FLOAT(24), which means 24 available bits of preci-
sion to store the mantissa in scientific notation.

Table 3-2 summarizes the range of data that you can store by using either of
these two data types.

Table 3-2 FLOAT and REAL Storage Details
Type n Precision Storage Size Minimum Maximum

float[(n)] 1–24 7 digits 4 bytes –1.79E + 308 1.79E + 308
25–53 15 digits 8 bytes –1.79E + 308 1.79E + 308

real 7 digits 4 bytes –3.40E + 38 3.40E + 38

MONEY and SMALLMONEY
Designed to keep track of everyone’s favorite commodity, these two data
types differ only in the scale of information that they contract and the
amount of data storage required.

For the MONEY data type, you can store a range of data between
–922,337,203,685,477.5808 and 922,337,203,685,477.5807. SQL Server
requires 8 bytes to keep track of this gargantuan range of data. For those
of you with a little less cash in your pockets, you can take advantage of the
SMALLMONEY data type. This allows you to track a range of information
between –214,748.3648 214,748.3647, and uses four bytes.

Character data types
If your data contains any of the letters A through Z, or punctuation charac-
ters, these data types are just what the doctor ordered to store your infor-
mation. We look at each of these in more detail. For those of you who are
concerned about using SQL Server in support of multi-byte languages, such
as Chinese or Japanese, we also explain how Unicode fits into this equation.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 104

Book II
Chapter 3

Data Types and
How

 to Use Them

Traditional Data Types 105

CHAR
If there were an award for most popular data type, CHAR would most likely
be the winner. You typically use this data type when you know for sure that
your character-based information is a fixed size, up to 8,000 characters in
length. Of course, you run the risk of wasting storage space if most of the
entries in a CHAR column are smaller than the specified size.

For example, the following snippet of SQL shows creating a CHAR field with a
length of 30 bytes:

CREATE TABLE CHAR_EXAMPLE
(

FIRST_NAME CHAR(30),
...

)

For each row, SQL Server stores 30 bytes of data for FIRST_NAME, regardless
of whether all the bytes are used.

The multi-byte partner for CHAR is NCHAR, which stands for National
Character. You use the NCHAR data type when you expect to store Unicode-
based multi-byte data. NCHAR can store up to 4,000 bytes of information.

VARCHAR
As you might expect, things are rarely so cut and dried in the real world. In
many cases, you simply can’t assume that each record in the table will have
exactly the same length for a character-based column. Fortunately, SQL
Server allows you to hedge your bet through the VARCHAR data type.

You use this data type when you cannot be certain of the size of each of the
entries for a given column, and you want to conserve disk space. Of course,
with disk space becoming ever cheaper, this may not be a concern. However,
VARCHAR still adds value even if disk space is free, so we look at it in more
detail.

Using the previous example, suppose that you aren’t sure exactly how many
bytes each FIRST_NAME requires. In this case, you could specify that the
column be created with a variable length of up to 30 bytes:

CREATE TABLE VARCHAR_EXAMPLE
(

FIRST_NAME VARCHAR(30),
...

)

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 105

Traditional Data Types106

For any entries that are smaller than 30 bytes, SQL Server uses only the
required amount of storage. Of course, if an entry is greater than 30 bytes,
SQL Server truncates it beyond the 30th byte. To get around that possibility,
make the column as big as you think its data could ever be or simply use the
MAX directive when creating the table:

CREATE TABLE VARCHAR_EXAMPLE
(

FIRST_NAME VARCHAR(MAX),
...

)

By specifying MAX, you tell SQL Server that it should allow as much storage
as possible for a given entry for this column. In fact, this amount is enor-
mous, far beyond what you’re ever likely to use.

If you expect a need to store multi-byte, variable-length character informa-
tion, use the NVARCHAR data type.

Use MAX when you expect that one or more entries for a given VARCHAR
column might exceed 8,000 bytes (or 4,000 bytes if the column is defined as
NVARCHAR).

TEXT
Prior to SQL Server 2008, you used this data type to store character-based
information that exceeded the capacity of the CHAR or VARCHAR data types.
However, Microsoft has signaled that this data type isn’t going to be sup-
ported in the future, so don’t plan to use it for any new database applica-
tions. Instead, consider using the VARCHAR, NVARCHAR, or VARBINARY data
types, making sure to specify the MAX size so that SQL Server can digest all
the information you send its way.

Date and time data types
In addition to all their well-known talents, relational databases (such as SQL
Server) do an outstanding job storing, maintaining, and searching on date
and time-based information.

When you want to track a specific point in time (potentially, down to the mil-
lisecond), you use either the DATETIME or the SMALLDATETIME data type,
depending on the accuracy that you need. The range of information you
want to store also helps determine the appropriate data type.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 106

Book II
Chapter 3

Data Types and
How

 to Use Them

Traditional Data Types 107

SMALLDATETIME
This data type allows you to store information from January 1, 1900, through
June 6, 2079, and is accurate to one minute. SQL Server uses two 2-byte inte-
gers to store this information.

DATETIME
This data type has a much larger range of storage and is much more accu-
rate. To begin, it allows you to track dates from January 1, 1753, through
December 31, 9999. It’s accurate to within 31/3 milliseconds. However, this
range and accuracy comes at a price because SQL Server requires twice the
storage than it does for the SMALLDATETIME type.

DATETIME2
This is an instant of a DATETIME, including the year, month, day, hour,
minute, second, and fraction of a second.

DATETIMEOFFSET
This is akin to the DATETIME2 type, except this type includes the time zone,
and stores the information relative to Greenwich Mean Time (UTC).

DATE
If you want to store just the year, date, and month for a date range between
January 1, 1 A.D., and December 31, 9999, this is the type for you.

TIME
This data type is used to store an instant of time, including its hour, minute,
second, and fraction of a second, using a 24-hour clock.

The SMALLDATETIME data type is the right choice for most business-
oriented applications, unless you need a very wide range of dates, extreme
accuracy, or both.

Binary data types
If you like your database to store pictures, music, sounds, or other types of
non-structured information (including some very large chunks of data), one
of SQL Server’s binary data types is the right choice.

BINARY
You use this data type when you’re confident that you know the size of the
binary information that you want to store in a given column in SQL Server.
The maximum amount that you can store in this type of column is 8,000
bytes.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 107

Traditional Data Types108

VARBINARY
Comparatively, you might not know how large the binary information is that
you want to track. In this case, try using this data type, which allows you to
store binary information of up to 8,000 bytes.

After looking at the capacity of both the BINARY and VARBINARY data types,
you’re forgiven for wondering whether you can store realistic binary infor-
mation in your database. After all, music files and pictures are much larger
than 8,000 bytes. Not to worry because you can specify a much larger size
for the VARBINARY data type by providing the MAX instruction when creating
your table.

For example, the following SQL statement creates a table to hold various
types of binary information:

CREATE TABLE BINARY_EXAMPLE
(

FIXED_BINARY BINARY,
VARIABLE_BINARY VARBINARY,
VIDEO VARBINARY(MAX),
MUSIC VARBINARY(MAX)

)

In this example, the first column holds a batch of binary data that can be no
longer than 8,000 bytes. The second column also holds binary information,
but because we aren’t sure of the exact size of this data, we elected to use
VARBINARY. The final two columns are designed to hold much larger sets of
binary information. In fact, you can safely store a little more than 2 gigabytes
of data in a specific column for each row (depending on disk storage avail-
ability, of course).

IMAGE
This data type, which in spite of its name is not limited to images, is not
going to be present in future versions of SQL Server. Therefore, if you need
to store binary data of this type, use the VARBINARY data type. For most
images, you probably want to provide the MAX directive when defining your
VARBINARY column.

Other data types
Here, we get into more-esoteric types of information. SQL Server is equally
adept at storing this type of data.

UNIQUEIDENTIFIER
In many data storage solutions, situations occur where it’s necessary to
guarantee uniqueness of a specific value. It’s not enough to guarantee that

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 108

Book II
Chapter 3

Data Types and
How

 to Use Them

Traditional Data Types 109

the value is the only one of its kind on a single database; sometimes you
even need to make sure that the value is unique across different systems.
Fortunately, you can take advantage of the UNIQUEIDENTIFIER data type to
guarantee a distinct value for a given row. You can even assign this data type
to a variable in a program.

SQL Server relies on this data type to help guarantee the integrity of impor-
tant internal operations, such as merge and transactional replication. As you
can imagine, these values can be quite large because they must be distinct.
For example, here’s what one of these unique identifiers looks like:

9A1237DB-01AA-B238-FF3C-3AD9B93A11DC

In terms of generating such a value, take advantage of the NEWID function,
and SQL Server will create a unique identifier value for you. For example,
look at the following sequence of SQL. A new table is defined, and then two
rows are inserted into the table by using this helpful function:

CREATE TABLE UNIQUE_ID_DEMO
(

UNIQUE_ID UNIQUEIDENTIFIER
)
INSERT INTO UNIQUE_ID_DEMO VALUES (NEWID())
INSERT INTO UNIQUE_ID_DEMO VALUES (NEWID())

Here’s what SQL Server inserted to the table:

F75AA7FD-6759-4037-B6D8-3096842D3359
0FCDD613-071A-47BD-83C0-7D266F57F910

TIMESTAMP
SQL Server maintains an internal counter that is updated every time a row is
inserted or updated into a table. Known as a TIMESTAMP data type (which is
synonymous with the ROWVERSION data type), this counter comes into play
whenever there is a column defined with that data type for a given table.

This can be very helpful when trying to determine whether any columns in a
given row have been changed. For example, suppose that you create a table
and define one of the columns as TIMESTAMP. From this point, SQL Server
automatically maintains values in that column. Any time a given row is
either inserted or updated, the database engine automatically changes the
TIMESTAMP column’s value for that row. You can then keep track of this
value, and if it changes, you can be sure that one or more columns in that
row have also changed.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 109

Enhanced Data Types110

Enhanced Data Types
SQL Server 2008 offers many new types of data storage options. Although
you might not be familiar with these, they can be very helpful when con-
structing a database-driven application. We look at each of them in more
detail.

XML
You’ve been able to use SQL Server to hold this type of data for some time.
However, it’s only in the recent past that the native database capabilities
have reached the maturity necessary to take full advantage of this powerful
method of storing information. Providing an in-depth explanation of XML is
beyond the scope of this book; however, it’s a good idea to get some under-
standing of what you can accomplish with this exciting technology.

Specified in the late 1990s, XML has mushroomed into a very popular
method for storing and working with information. It provides a structured,
text-based approach to organizing data. Unlike many earlier file formats and
data structures that were often proprietary, closed, and required special
software, you can use any text editor or word processor to create and edit
XML information. Today, many modern applications and tools support XML
as well, including packages like Microsoft Office and, of course, SQL Server.

XML advantages
When compared with alternative means of representing and interchanging
information, XML offers some compelling benefits, including:

✦ Standards-based: The XML standard was created and is maintained under
the auspices of the Worldwide Web Consortium (W3C). Additionally,
numerous standards bodies have in turn created their own XML-derived
standards from this underlying specification.

✦ Multilanguage: Today, it’s no longer acceptable for any commercial
application to be hard-coded for only one language. Global organizations
need to track information regardless of its native language. XML sup-
ports Unicode, meaning it can encode information in any language.

✦ Plain text storage: By storing its information in open, plain text files,
rather than locking it inside proprietary formats, XML makes it easy for
you to apply a broad range of technologies to work with your data.

✦ Robust and easily enforced syntax: Don’t be fooled by XML’s openness
and ease of use; there are very specific syntax and formatting rules to
which any XML-based information must adhere. These rules are what
make it possible for XML data to interoperate so easily.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 110

Book II
Chapter 3

Data Types and
How

 to Use Them

Enhanced Data Types 111

✦ Vendor and platform independence: When choosing a technology stan-
dard, the last thing most customers want is to have that standard tam-
pered with by vendors who might not have their best interests at heart.
Because of this, XML is particularly well suited in protecting you from
the vagaries and machinations of hardware and software vendors.

A few relatively minor drawbacks to XML do exist. Chiefly, they revolve
around the somewhat cumbersome nature of supporting non-text informa-
tion (such as video, music, and other binary data) within an XML document.
In addition, some believe that the parsing and manipulation of XML data is
too expensive and leads to degraded performance. Finally, an XML document
with many levels of nested data can be very hard for a person to read and
understand.

XML structure
What does XML look like? Take a peek at the following small example of a
purchase order:

<?xml version=”1.0” encoding=”UTF-8”?>
<PO Identifier=”RR89291QQZ” date_generated=”2006-30-Dec”

application=”Optimize v4.3”>
<Customer>

<Name>Soze Imports</Name>
<Identifier>21109332</Identifier>
<reg:Instructions xmlns:reg=”http://www.samplenamespace.com/importexport”>

<reg:Restrictions>Not subject to export control</reg:Restrictions>
<reg:Duties>Not subject to duties</reg:Duties>

</reg:Instructions>
</Customer>
<Creator>Michael McManus</Creator>
<Product quantity=”1” price=”9.99”>GG2911</Product>
<Product quantity=”6” price=”54.94”>TK3020</Product>
<ship:Shipment xmlns:ship=”http://www.samplenamespace.com/shipping”>

<ship:ShipDate>6/10/2007</ship:ShipDate>
<ship:Instructions>Contact Mr. Hockney in receiving</ship:Instructions>
<ship:Instructions>Fax bill to Mr. Kobayashi</ship:Instructions>

</ship:Shipment>
</PO>

Confused? Don’t be. The best way to make sense of an XML document is to
look at it line by line, starting here:

<?xml version=”1.0” encoding=”UTF-8”?>

This first line is the XML declaration, which includes details about the XML
version as well as any language encoding. In this case, it supports version 1.0
of the XML standard, and it’s encoded with Unicode.

<PO Identifier=”RR89291QQZ” date_generated=”2006-30-Dec”
application=”Optimize v4.3”>
...
</PO>

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 111

Enhanced Data Types112

We said to look at XML on a line-by-line basis, yet we show you the second
and very last lines. The reason for this is that the entire document is
wrapped by the <PO...> and </PO> tags, known as the start tag and end tag,
respectively. Everything between those two items refers to the purchase
order, identified by PO in this case. Tags like this represent an element. You
can nest elements as well; in fact, most XML data consists of elements
deeply nested within higher-level elements. In this case, the PO element is
the highest-level element. Everything that you see between the start tag and
end tag is content.

The Identifier, date_generated, and application entries on the line
above are attributes, which are additional details about an element. For exam-
ple, the purchase order’s date_generated attribute is set to December 30,
2006. All attributes must be enclosed in either single or double quotes.

Continuing, you see a nested element — Customer — whose start tag is
<Customer> and end tag is </Customer>. This element contains two
nested elements — Name and Identifier.

<Customer>
<Name>Soze Imports</Name>
<Identifier>21109332</Identifier>
<reg:Instructions xmlns:reg=”http://www.samplenamespace.com/importexport”>

<reg:Restrictions>Not subject to export control</reg:Restrictions>
<reg:Duties>Not subject to duties</reg:Duties>

</reg:Instructions>
</Customer>

It also contains an Instructions nested element. This element and those
nested within it appear to be a little confusing, though. What’s going on?
Looking at the XML document listed earlier in the chapter, you might wonder
how your computer can keep things straight when handling XML from differ-
ent sources. For example, what happens if you receive purchase orders from
two different organizations that use different element names and attributes
that actually mean the same thing? Conversely, what happens if they use
identical element names and attributes that mean different things?

This is where namespaces come to the rescue. Typically available for consul-
tation and review via the Internet, they are assemblages of element type and
attribute names that help establish order and clear confusion. By providing
a solid point of reference, namespaces also assist when merging smaller sub-
sets of XML documents.

In this case, the document includes a link to a namespace server:

<reg:Instructions xmlns:reg=”http://www.samplenamespace.com/importexport”>

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 112

Book II
Chapter 3

Data Types and
How

 to Use Them

Enhanced Data Types 113

By specifying this namespace server, we instruct any applications that might
use this XML document that any elements or attributes prefixed with reg
need to consult the namespace server for details about those data types.
You’ll see reference to a second namespace server a little later.

Here’s an example of an element that has no nested elements:

<Creator>Michael McManus</Creator>

However, it’s nested within the purchase order element.

You can see additional Product elements:

<Product quantity=”1” price=”9.99”>GG2911</Product>
<Product quantity=”6” price=”54.94”>TK3020</Product>

These elements have their own attributes: quantity and price.

Finally, the document contains a Shipment element that contains nested
ShipDate and Instructions elements:

<ship:Shipment xmlns:ship=”http://www.samplenamespace.com/shipping”>
<ship:ShipDate>6/10/2007</ship:ShipDate>
<ship:Instructions>Contact Mr. Hockney in receiving</ship:Instructions>
<ship:Instructions>Fax bill to Mr. Kobayashi</ship:Instructions>

</ship:Shipment>

To clear up confusion with the earlier reference to Instructions, there’s a
link to another namespace server:

<ship:Shipment xmlns:ship=”http://www.samplenamespace.com/shipping”>

That’s it. You now know how to parse an XML document.

FILESTREAM
We told you about binary data types a little earlier in this chapter. If you’ve
had much experience with this type of information, you might be a little
uncomfortable storing it in a relational database because of performance,
storage, or other concerns. However, you do probably want to leverage and
benefit from the transactional capabilities of a database. SQL Server 2008
offers a new data type that helps address these concerns, while still giving
you access to all the power of a relational database.

This new data type, known as FILESTREAM, allows you to place large blocks
of binary information onto the file system. This file system can be placed on
less expensive storage devices, yet it’s still managed by SQL Server. You
have all the database’s transactional and other referential integrity capabili-
ties at your disposal.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 113

Enhanced Data Types114

SQL_VARIANT
Sometimes, your data cannot make up its mind. In certain cases, information
might be represented with numbers, and other times with letters. As another
example, sometimes, one of the date-based data types represents date infor-
mation; other times, a string represents it. This problem often arises when
you’re receiving externally generated information but need to place it into
your own SQL Server database. You could perform all sorts of complex
calculations and analysis to determine the appropriate data type, or you
could take an easier way out. In this context, the easier way out is the
SQL_VARIANT data type.

In a nutshell, one particular column defined as SQL_VARIANT can correctly
store values of several data types, including INT, DECIMAL, CHAR, BINARY,
and NCHAR. It’s particularly useful when you’re not 100 percent sure of the
information that will be placed into your database. However, it isn’t fool-
proof and can’t store specific types of data such as XML, variable-length
fields, and user-defined fields.

If possible, try to define your columns with the appropriate native data type
or a specific user-defined data type. The SQL_VARIANT data type, although
highly flexible, introduces complications that you probably don’t want to
manage unless absolutely necessary.

Spatial data
The past few years have witnessed the rise of a tremendous array of excit-
ing, innovative applications that sport geography-based features. These
include online mapping systems, Global Positioning System (GPS) applica-
tions, and other innovative solutions that incorporate details from the physi-
cal world.

To help support this new class of applications, SQL Server 2008 introduces
enhanced data types specially focused on spatial information, thereby let-
ting you manage location-based data. Although a deep dive in to their capa-
bilities is beyond the scope of this book, we take a brief look at these new
data types. Before beginning, it’s important to understand that, at a high
level, there are two ways to think of spatial data. You can think of a particu-
lar point on Earth from the perspective of a globe, using that point’s latitude
and longitude to identify the unique location. This method of spatial identifi-
cation takes the curvature of the Earth into account. Another way to think
of a location is as shown on a map, which doesn’t factor in any curvature
considerations.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 114

Book II
Chapter 3

Data Types and
How

 to Use Them

Creating Your Own Data Types 115

GEOGRAPHY
You use this data type when the Earth’s curvature is important to your appli-
cation, such as when you need extreme accuracy or are calculating a long-
distance path. To store this information effectively, you need to provide
more location identifying details than you do with the GEOMETRY data type.

GEOMETRY
This data type suffices for most spatial applications. For example, suppose
you want to calculate driving directions between two points. The curvature
of the Earth isn’t important in this calculation, so you can probably take
advantage of the GEOMETRY data type. It allows you to track details about
locations easily on a two-dimensional plane and doesn’t require all the
details necessary to populate a column that’s assigned the GEOGRAPHY
data type.

Creating Your Own Data Types
In the previous sections of this chapter, we show you quite a number of dif-
ferent data types. Some are quite simple and some are rather complex.
However, if none of these types is an exact fit to solve your problem, you can
create specialized data types via the SQL Server, user-defined type feature.

You can use the CREATE TYPE statement to define personalized alias data
types. This essentially creates a synonym for the data type, which can be
very useful when building your database.

For example, suppose your project has multiple database designers and
that each of them is responsible for building some tables that will track
addresses. Furthermore, imagine that you want to standardize all your
address fields as variable length and character-based to hold up to 60 bytes
(VARCHAR(60)).

You could rely on each designer to adhere to your request, but you’re likely
to be sorely disappointed. The odds are that each designer will implement
his or her own interpretation of what an address should be. Some will choose
fixed character fields, while others will use the VARCHAR type but at a differ-
ent length than the 60 that you require.

Using the CREATE TYPE statement, here’s how to enforce consistency for
these fields:

CREATE TYPE ADDRESS FROM VARCHAR(60) NOT NULL

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 115

Creating Your Own Data Types116

Now, your designers can use ADDRESS whenever they create a table that
needs to track address information:

CREATE TABLE shipping_info
(

ShippingID INT PRIMARY KEY NOT NULL,
StreetAddress ADDRESS,

...
)

When SQL Server reports on your table, it will helpfully provide the
ADDRESS alias as well as the fact that this translates to a VARCHAR(60).

As is usually the case with SQL Server, if direct entry of SQL isn’t your bag,
you have the freedom and flexibility to use the SQL Server Management
Studio to do the dirty work. For example, here’s how to create a new user-
defined data type using this tool:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Open the folder entry for your database.

6. Expand the Programmability folder.

7. Expand the Types folder.

8. Right-click User-Defined Data Types and choose New User-Defined
Data Type.

This opens a dialog box where you can provide key details about your
new type. These details include:

• The schema that will house the data type

• The data type’s name

• The underlying data type for this new type

• The data type’s numeric precision (if applicable)

• Whether or not you want to allow NULL values

• A default value binding for this data type

• A rule binding for this data type

9. When you’re finished, click OK to complete your work.

Figure 3-3 shows the dialog box in more detail.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 116

Book II
Chapter 3

Data Types and
How

 to Use Them

Assigning a Data Type 117

You can even use SQL Server Management Studio to create your own user-
defined table types. These are useful when creating stored procedures and
other such programmable constructs. If you’re curious about this capability,
we cover it in more detail in Book IV, Chapter 2.

Assigning a Data Type
After you’ve identified the appropriate data type, you probably wonder how
you actually request to use it. Here are two examples of choosing a data type
when creating or modifying a table. If you’re interested in this topic in more
detail, peek at Chapter 4 of this mini-book.

First, the SQL Server Management Studio is a great tool that you can use to
create and maintain your database and associated objects. Here’s how to
use it to create a new table and set a column’s data type:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

Figure 3-3:
Creating
a user-
defined data
type in the
SQL Server
Manage-
ment Studio.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 117

Assigning a Data Type118

4. Expand the Databases folder.

5. Right-click the Tables folder and choose New Table.

That’s all there is to it. You now see a dialog box that allows you to start
entering details about your table. Here’s how to select a data type:

1. For each column in your table, enter a unique name.

2. Choose from one of the data types shown in the drop-down box.

3. When you’ve finished itemizing your new columns, save the table.

Figure 3-4 displays the dialog box. The user-defined data type of SALARY
uses the underlying MONEY data type.

Figure 3-4:
Selecting a
data type in
the SQL
Server
Manage-
ment Studio.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 118

Book II
Chapter 3

Data Types and
How

 to Use Them

Assigning a Data Type 119

Second, if character-based utilities are more your style, you can use the
SQLCMD utility to create and maintain your tables, setting data types in the
process. Here’s how to do that:

1. Open a command prompt.

Choose Start➪Run and enter cmd. Alternatively, you can choose
Programs➪Accessories➪Command Prompt. When you see the friendly
command prompt, it’s time to launch SQLCMD.

2. Enter SQLCMD at the command prompt, passing in the proper
parameters.

If you get in hot water, you can always ask SQLCMD for help:

SQLCMD /?

3. Connect to the appropriate database.

USE EXTREME_SPORTS
GO

In this case, you’re connecting to the EXTREME_SPORTS database.

4. Enter your SQL, ending your statement with GO.

After you’re in SQLCMD, you have an interactive command prompt at your
disposal. Figure 3-5 shows an example of creating a table with many different
data types via direct SQL entry in SQLCMD.

Figure 3-5:
Creating a
new table
by using the
SQLCMD
utility.

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 119

Book II: Designing and Using Databases120

13_179543-bk02ch03.qxp 8/23/08 12:30 AM Page 120

Chapter 4: Constructing
New Tables

In This Chapter
� Building a new table

� Setting table properties

� Creating views

� Generating table maintenance scripts

In a relational database, tables are at the center of the action. Tables store
all your data, and serve as the primary interface to any applications or

user interactions. In this chapter, you get a good idea about how to create
your own set of tables. After you define how you want your tables to be
structured, SQL Server offers many settings that you can use to tweak the
behavior of these tables and their columns.

SQL Server does a great job of protecting your information. However, you
can go the extra mile by taking advantage of a database concept known as
constraints. In the next part of this chapter, we briefly show you how to take
advantage of constraints to increase the integrity of your data. Views are
another useful database capability, so we examine how to create them by
using the SQL Server Management Studio.

Finally, because no one likes to hand enter code or reinvent the wheel, SQL
Server offers helpful scripting capabilities that allow you to automate
common database maintenance tasks, such as creating new tables. You’ll
see how to generate scripts quickly to help save time whenever you need to
create or maintain a table.

Building a New Table
Before we get started, it’s worth pointing out that, for this chapter, we spend
most of the time in the SQL Server Management Studio. If you’re inclined to
use the character-based SQLCMD utility instead, it’s no problem. We also
show you how to use this utility to create new tables.

14_179543-bk02ch04.qxp 8/23/08 12:30 AM Page 121

Building a New Table122

To begin, here is how you start the SQL Server Management Studio and pre-
pare it to create new tables:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the Tables folder and choose New Table.

That’s all there is to it. You see a dialog box containing a grid that allows you
to start entering details about your table. Figure 4-1 shows you how this
empty dialog box appears.

After this dialog box is in front of you, here’s what you do to create your
table:

1. For each column in your table, enter a unique name.

After you’ve done this naming, the bottom half of the dialog box con-
tains many configurable settings for this column, as shown in Figure 4-2.
We spend a fair amount of time examining each of these settings.

Figure 4-1:
Creating a
new table in
the SQL
Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:30 AM Page 122

Book II
Chapter 4

Constructing
N

ew
 Tables

Building a New Table 123

2. Pick from one of the data types shown in the drop-down box.

If you’re curious about these data types, check out the previous chapter,
where we describe them in much more detail. If you want only a brief
explanation of each data type’s purpose, see Table 4-1.

Table 4-1 SQL Server Data Types
Data Type Holds

Bigint Integers between –9.22 billion and 9.22 billion.

Binary Fixed-length binary data, up to 8,000 bytes in size.

Bit 1 or 0 (also known as TRUE or FALSE).

Char Fixed-length non-Unicode character data, up to 8,000 bytes in
size.

Datetime A timestamp between January 1, 1753, and December 31,
9999.

Decimal Numbers with fixed precision and scale, ranging from –10^38
to 10^38.

Float Floating-point data. Can have an enormous range.

Image Variable-length binary data. Can be up to 2GB in size.

continued

Figure 4-2:
Setting
column
properties in
the SQL
Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 123

Building a New Table124

Table 4-1 (continued)
Data Type Holds

Int Integers between –2.1 billion and 2.1 billion.

Money Decimal numbers between –922 trillion and 922 trillion.

Nchar Fixed-length Unicode character data, up to 4,000 bytes long.

Ntext Variable-length Unicode data. Can be up to 2GB in size.

Numeric Numbers with fixed precision and scale, ranging from –10^38
to 10^38.

Nvarchar Variable-length Unicode character data. Can be very large if
space permits.

Real Floating-point data. Can have an enormous range.

Smalldatetime A timestamp between January 1, 1900, and June 6, 2079.

Smallint Integers between –32,768 and 32,768.

Smallmoney Decimal numbers between –214 thousand and 214 thousand.

Text Variable-length non-Unicode data. Can be up to 2GB in size.

Timestamp Generates automatic, unique binary numbers.

Tinyint Integers between 0 and 255.

Uniqueidentifier Creates a system-wide unique identifier (GUID).

Varbinary Variable-length binary data. Can be very large if space
permits.

Varchar Variable-length non-Unicode character data. Can be very
large if space permits.

XML Up to 2GB of XML-based data.

If all these data types aren’t enough for you, you can create specialized
data types via the SQL Server, user-defined type feature. If you want to
examine this in detail, see Chapter 3 of this mini-book.

3. Decide if you want the column to permit NULL values.

If so, mark the Allow Nulls check box.

4. Set properties for this column.

You can sort this list either alphabetically or by category. Here’s an
alphabetical list of all the properties that you can set or view for a given
column, along with what they mean and how to use them:

• Allow Nulls: This determines whether a column can store NULL (that
is, non-existent) values. Certain types of columns, such as primary
keys, aren’t permitted to hold NULL values.

• Collation: Because SQL Server can store information from multiple
languages, this setting (which can be set as defaults for the server,

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 124

Book II
Chapter 4

Constructing
N

ew
 Tables

Building a New Table 125

database, and column, respectively) determines what rules the data-
base server follows when retrieving and sorting this data. For exam-
ple, if you know that your database holds only Western European
language-based data (for example, English, French, and so on), you
might elect to have SQL Server use a specialized set of rules for
those languages. Comparatively, if your database contains Asian lan-
guage characters, you might choose Asian-focused guidelines. In
most cases, you enable this setting at the server or database level.

• Computed Column Specification: SQL Server allows you to specify
computational rules that are executed at runtime. For example, as
shown in Figure 4-3, we’ve created three columns that track financial
details about a class: class_list_price, discount_percentage,
and actual_price. The actual_price field has no data type
listed. That’s because SQL Server takes the class_list_price
field and subtracts the discount_percentage value from it, yield-
ing the actual_price value. We provide this formula when defining
the column. We also enable the Is Persisted setting, which
instructs SQL Server to store these results in the database.

Figure 4-3:
Creating a
computed
column in
the SQL
Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 125

Building a New Table126

• Condensed Data Type: This field uses the same format for choosing
a field’s data type as you find in the SQL CREATE TABLE statement.

• Data Type: This describes the format of the column and the informa-
tion it can store. You can specify this value from the grid or from
within this drop-down box. Previously, in this chapter, I describe all
the data types at your disposal.

• Default Value or Binding: This handy feature can be used to fill a
column with data even if the user never provides any information.
For example, suppose that you’re building a database to track new
customers. As part of your workflow, you want to keep an eye on
their credit limits. By using a default value of $100 for the customer’s
credit limit column, you’re telling SQL Server to give all customers an
initial credit in that amount. Of course, users can modify this value
later, or even when creating the record; the default value setting
simply ensures that something meaningful is placed in the table from
the start.

• Description: As you might expect from the name, this is where you
can provide details about this column, such as its purpose.

If you’re building an application that will be maintained by others,
don’t be shy about describing your thinking when designing the data-
base. It might make someone else’s job much easier in the future.

• Deterministic: As you read previously, SQL Server allows you to
create columns whose data is computed. In other words, rather than
you explicitly entering data in this type of column, SQL Server fills it
for you based on values returned from a function or from calculating
results from other columns. The deterministic property refers to
whether the function that populates this column returns the same
result every time it’s called with a given set of parameters (yes, it’s
deterministic). If the function returns differing results (even when it
receives the same parameters), it isn’t deterministic. For example, if
a column is populated by calling the getdate() system function, it’s
non-deterministic because this function returns a different value
every time it’s called.

• DTS-published: Reports on whether this table has been published as
part of the SQL Server Data Transformation Service functionality. If
you’re interested in this topic, we dedicate Book VIII, Chapter 4 to
helping you understand your numerous SQL Server integration
options.

• Full-text Specification: This specialized type of indexing supports a
rich set of text-based queries. The previous chapter shows how to
set up the underlying structures necessary for full-text indexing for
your entire database. Additionally, Book III, Chapter 9 explains how
to take advantage of this helpful feature. For now, take a look at
Figure 4-4.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 126

Book II
Chapter 4

Constructing
N

ew
 Tables

Building a New Table 127

We have created a full-text index on the comments field. This makes
it much easier for users and applications to conduct rich queries
that fully exploit SQL Server’s full-text search capabilities.

If you want to create a full-text index on a particular column, you
need to permit this capability at the database level and define the
full-text catalog. To enable full-text indexing, right-click the database
name, choose Properties, and then Files. At the top of this page,
select the Use Full-text Indexing check box and click OK.

• Has Non-SQL Server Subscriber: If this table has been published
(see more about replication later in this list), this field specifies
whether a non-SQL Server database is a subscriber to its information.

• Identity Specification: Every table should have a unique primary
key. This helps speed access to the database and protects your infor-
mation’s integrity. Sometimes, however, you’re unable to locate a
unique value within your data. This is where identity columns can
come to your rescue. In a nutshell, SQL Server takes over the job of
generating unique, integer-based values for you. This gives you all
the benefits of a unique primary key without the headache of trying
to come up with your own logic for creating its value. When you
create an identity column (only one per table, please), you tell SQL

Figure 4-4:
Specifying a
full-text
index in the
SQL Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 127

Building a New Table128

Server what you want its seed to be (that is, what the initial value is),
and what its increment is (how many numbers are skipped between
rows). Generally, unless you have some other numbering rules in
mind, it’s a good idea to start out with an identity seed of 1 and an
identity increment of 1.

For example, Figure 4-5 shows that we asked SQL Server to enable
the identity feature for the registration_id field. Furthermore,
we requested that the initial value for this identifier be 1, and that
each new row have this value incremented by 1.

• Indexable: Tells you whether this column is a candidate for indexing.
Remember: Non-deterministic columns aren’t capable of being
indexed.

• Length: This is the number of bytes that you want the column to con-
sume for its storage. This field only displays for columns that have
data types where administrators can specify the number of bytes to
use. For example, it displays for a column defined as type CHAR, but
not for one defined as INT.

Figure 4-5:
Enabling
the identity
specifi-
cation for
a column.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 128

Book II
Chapter 4

Constructing
N

ew
 Tables

Additional Column Options 129

• Merge-published: SQL Server offers three types of replication: trans-
actional, merge, and snapshot. This field indicates whether this table
has been replicated by using the merge-published style, which is
most commonly employed in Server-Client types of replication
configurations.

• Not for Replication: States whether replication for this table is
permitted. If you’re interested in using replication to set up a high-
performance, secure distributed computing environment, read
Book VIII, Chapter 5.

• Replicated: States whether this table is replicated.

• RowGUID: This acronym stands for the row Global Unique Identifier.
You use it when you need to guarantee a unique value across multi-
ple SQL Server databases, even if they’re running on different sys-
tems. To take advantage of this helpful feature, you set the data type
for a column to UNIQUEIDENTIFIER. You then switch the RowGUID
flag to Yes. SQL Server then generates these values and places them
in your column. It also uses the NEWID() function as the default
value for the column. Note: You can only have one RowGUID column
per table.

• Size: This is the number of bytes of storage that the column will con-
sume. This is a read-only field; you cannot edit it.

5. When you’re finished entering columns, click the disk icon to save
your work.

If you haven’t chosen a name for your table, SQL Server prompts you for
one at this point. After that, your table is ready to use!

Additional Column Options
If the options in the previous section aren’t enough to keep you busy, SQL
Server offers even more choices. Simply right-click the column grid; the
menu shown in Figure 4-6 appears.

These are all important options, so we take a brief look at each one.

✦ Set Primary Key: Relational databases like SQL Server rely heavily on
primary keys. They use these internal structures to speed access to
your information and protect its integrity. If you’re interested in primary
keys, take a look at the next chapter, where we delve in to this important
concept in much more detail.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 129

Additional Column Options130

For now, know that you can use this option to select columns as a pri-
mary key. Remember: You can have only one primary key per table, but
primary keys can consist of more than one column. In Figure 4-7, we
marked the registration_id field as the primary key. SQL Server
places a handy key icon in that column’s row in the grid. Additionally,
we requested that this field have the identity property. Its starting value
and incremental value are both set to 1.

✦ Insert Column: As you might surmise from its name, choose this option
to create a new blank column.

✦ Delete Column: No mystery here. Select this option to remove an exist-
ing column.

✦ Relationships: Figure 4-8 shows the dialog box that’s displayed when you
choose the Relationships menu option. We associated the student_id
column from this table to its source in the student table. This is a foreign
key relationship. Relationships are so important that we dedicate an
entire section to them. See Chapter 6 of this mini-book.

Figure 4-6:
The context-
sensitive
menu from
the column
grid in the
SQL Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 130

Book II
Chapter 4

Constructing
N

ew
 Tables

Additional Column Options 131

Figure 4-8:
Setting a
foreign key
relationship.

Figure 4-7:
Setting a
primary key
in the SQL
Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 131

Additional Column Options132

✦ Indexes/Keys: If your database application is running slowly, there’s a
good chance you don’t have these important internal structures config-
ured correctly. Book VII, Chapter 3 is dedicated to high-performance
database access. In that chapter, you find all sorts of indexing tips and
tricks. At this point, Figure 4-9 shows that we elected to create an index
on the registration_date column, which makes both searching and
sorting on that column much faster.

✦ Fulltext Index: Here’s where you can create new full-text indexes, as well
as set and view additional properties.

✦ XML Indexes: As discussed at length in Chapter 3 of this mini-book, XML
is a new and exciting way of storing and interacting with information of
any type. Figure 4-10 shows that we created a new column of type XML.
We associated this purchase order data with an internal schema,
although, we could have just as easily specified our own schema.
Additionally, we instructed SQL Server to treat the information con-
tained in this column as a full XML document, rather than a subset of a
document. In Book III, Chapter 9 you discover much more about how to
invoke queries against XML-based information.

Figure 4-9:
Creating
an index.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 132

Book II
Chapter 4

Constructing
N

ew
 Tables

Additional Column Options 133

✦ Check Constraints: Think of this capability as a guardian for your data-
base. Chapter 6 in this mini-book describes some of the very important
uses of Check Constraints. For a specific example of a constraint in
action, Figure 4-11 shows that we created a check constraint on the
discount_percentage column.

In a nutshell, our organization’s policy is that discounts range from a low
of 0 percent to a high of 10 percent. By placing a check constraint on this
column, we ensure that no deliberate or accidental violations of our
policy occur.

✦ Generate Change Script: Even though everything you’ve seen so far is
graphical in nature, SQL Server also allows you to generate scripts that
you can run later to perform the same work you did via the graphic tool.
Figure 4-12 shows a script that we generated performing all the work dis-
cussed in this section.

Figure 4-10:
Creating a
new XML-
based
column.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 133

Additional Column Options134

Figure 4-12:
Generating
a script of
table
changes.

Figure 4-11:
Placing a
check
constraint
on a table.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 134

Book II
Chapter 4

Constructing
N

ew
 Tables

Viewing Table Properties 135

Viewing Table Properties
It’s only natural to be curious about your tables, whether they’re new or
have been working for five years. Finding these details is a cinch by using
the SQL Server Management Studio. Here’s how to discover more about your
tables:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the Tables folder, and then right-click the table you want to
examine.

6. Choose the Properties option from the menu.

The Table Properties dialog box opens, as shown in Figure 4-13.

Figure 4-13:
The
properties
page for the
students
table.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 135

Creating Views136

Three pages of properties are at your disposal. The first page (shown in
Figure 4-13) is a collection of general properties about the table. This is prob-
ably the page that you will consult most often when trying to understand the
status of a given table.

The next page, Permissions, is where you track and set access rights to this
table. The final page, Extended Properties, is where you define and maintain
your customized properties, which you can enlist to better understand and
manage your tables.

Creating Views
Although they’re not tables per se, views have many of the same behavioral
traits and features of tables. You can find much more about views in Book III,
Chapter 8; however, it’s worth a small detour at this point to see how to
use the SQL Server Management Studio to create and inspect these helpful
structures.

At its core, a view appears to be a virtual table that is made of one or more
underlying tables. In fact, views can even include other views, functions, and
synonyms. Database designers create views to help address many common
challenges, such as

✦ Simplifying complex queries

✦ Working around security requirements

✦ Abstracting underlying database structures

✦ Reducing traffic between application server and database server, or the
user and database server

After you create a view, it’s available to be used by other users and applica-
tions. Sophisticated database-driven applications often utilize views heavily.
Here’s how to create a view and set its properties in the SQL Server Manage-
ment Studio:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the Views folder and choose New View.

You’re presented with a dialog box, as shown in Figure 4-14.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 136

Book II
Chapter 4

Constructing
N

ew
 Tables

Creating Views 137

6. Select the tables that will make up your view.

You can hold down the Ctrl key to select multiple choices. In this case,
we create a view that returns a list of all students and the courses for
which they are registered. This makes use of the students, courses,
and student_courses tables. Note: Previously, we created primary
and foreign keys for each of these tables. In a moment, you see why this
is so important.

7. When you’ve finished making your selection, click the Add button.

At this point, you can switch to the Views, Functions, or Synonyms tab
to include those types of objects in your view.

8. When you’ve finished choosing the objects that will make up your
view, click Close.

Figure 4-15 shows the three tables that make up the view, along with a
column selector and the actual SQL statement.

Figure 4-14:
The
preliminary
dialog box
for creating
a view in the
SQL Server
Manage-
ment Studio.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 137

Creating Views138

The SQL statement shows that SQL Server has used the foreign key rela-
tionships set up earlier to figure how to join all these tables to create the
view. Here’s a great example of why it’s wise to spend some time think-
ing about (and logically organizing) your underlying database structure.
Over time, it pays off repeatedly.

All that remains is to check off the columns that we want to appear in
the views output. Figure 4-16 shows the view just before we’re ready to
create it. We’ve successfully hidden all the internal identifying fields
from the user; all they’ll see is meaningful data. This is a great example
of how a view can simplify complex underlying structures.

9. When you’re satisfied with your work, click the disk icon to save it.

SQL Server prompts you for a name for your new view.

Try to use something meaningful when naming your view. It’s also a
good idea to prefix the view name with something that identifies it as a
view. A capital V is always a good candidate.

SQL Server executes the SQL statement and constructs the view.
After the view is created, you can easily examine it inside SQL Server
Management Studio. All you need to do is expand its entry in the Views
folder. Figure 4-17 shows the newly created view.

Figure 4-15:
The initial
relationship
diagram,
column
selector,
and SQL
statement
for a view.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 138

Book II
Chapter 4

Constructing
N

ew
 Tables

Creating Views 139

Figure 4-17:
Exploring a
view in the
SQL Server
Manage-
ment Studio.

Figure 4-16:
A view with
its relation-
ships,
columns,
and SQL
statement
defined.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 139

Creating a Table via SQLCMD140

Creating a Table via SQLCMD
If you’re old school, and prefer to use character-based utilities rather than
these newfangled graphical management environments like the SQL Server
Management Studio, Microsoft hasn’t forgotten you. The SQLCMD utility
allows you to interactively enter SQL statements or run a predefined SQL
script.

Here’s how to use this utility to create a new table:

1. Open a command prompt.

Choose Start➪Run and entering cmd. Alternatively, you can choose
Programs➪Accessories➪Command Prompt. When you see the friendly
command prompt, it’s time to launch SQLCMD.

2. Enter SQLCMD at the command prompt, passing in the proper
parameters.

This can get a bit confusing: SQLCMD is rather picky about the exact
syntax that it deigns appropriate to run. This isn’t surprising when you
realize that it supports more than two dozen parameters. Table 4-2 high-
lights a small group of key parameters.

Table 4-2 Key SQLCMD Parameters
Parameter Purpose

S Specify the server that you want to connect to

U Provide your username

P Provide your password

D Which database to use (if any)

I The SQL script file (if any)

If you get in hot water, you can always ask SQLCMD for help:

SQLCMD /?

3. Enter your table creation SQL, ending your statement with GO.

After you’re in SQLCMD, you have an interactive command prompt at
your disposal.

If you can’t live without your database scripts, consider using the SQL
Server Management Studio as a friendly and powerful script development
environment. You can use this tool to graphically set table and column
options, and then generate a script that can be edited and modified to your
heart’s content.

14_179543-bk02ch04.qxp 8/23/08 12:31 AM Page 140

Chapter 5: Looking
After Your Tables

In This Chapter
� Getting a list of your tables

� Determining dependencies

� Modifying a table

� Viewing table properties

� Deleting a table

With your database and all related tables created, you might think it’s
time to sit back, relax, and put your feet up on the desk: Everything

is on autopilot from here. Perhaps you’re right; everything might be fine in
your world. However, reality rarely plays out this way. There’s a good
chance that you’ll periodically need to modify some tables. It’s also likely
that you’ll need to delete a table from time to time. If nothing else, you’ll at
least want to get a comprehensive list of all the tables in your database.

This chapter is about taking good care of your tables after you’ve created
them. To begin, we show you how to get a list of all the tables present in a
database, view their data, and make sense of the details about each one.
This is where you see how to determine whether there are any dependen-
cies to consider. After you have a list of all your tables, you find out how to
view and understand the characteristics of a given table. Next, we walk you
through the often-necessary task of deleting a table. Finally, because you
may be more of a command-line administrator, we show you how to achieve
all these tasks by using the SQLCMD utility.

Getting a List of Your Tables
Here’s how to use the SQL Server Management Studio to come up with this
important list:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 141

Getting a List of Your Tables142

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the Tables folder.

That’s all there is to it. You have a full list of all the tables present in a data-
base. Figure 5-1 shows this list, along with details about a specific table.

In reviewing Figure 5-1, you might notice that the entries are divided
between system tables and user tables. As you might expect from the name,
system tables are maintained by SQL Server for your benefit.

There should rarely, if ever, be a reason for you to modify a system table.
Look, but don’t touch!

Let’s take a look at each of the folders underneath a given table. Figure 5-2
shows this list, along with details about a specific table.

Figure 5-1:
A list of
tables as
shown in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 142

Book II
Chapter 5

Looking After
Your Tables

Determining Dependencies 143

Each of these folders contains important details about the table, so we
spend a moment examining what they mean:

✦ Columns: A listing of all the columns that you’ve defined for this table,
along with their data type and size.

✦ Keys: The columns that have been defined either as primary or foreign
keys.

✦ Constraints: Limitations that you place on the table to protect its
integrity.

✦ Triggers: Specialized blocks of code that execute when a certain opera-
tion is undertaken on a table.

✦ Indexes: Database structures that help protect information while speed-
ing access to it.

✦ Statistics: Metrics about the table to help the SQL Server Query
Optimizer do its job better.

Determining Dependencies
Dependencies refer to the interrelationships among objects in your database.
A foreign key relationship is the most commonly encountered dependency.

Figure 5-2:
Details
about a
given table,
as provided
by the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 143

Determining Dependencies144

As your database grows in size, it can be difficult to keep track of exactly
which objects depend on other objects. Compounding this confusion is that
these interdependencies often cascade throughout the database.

Fortunately, SQL Server makes it easy for you to untangle this potentially
complicated picture. Here’s how to do it:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the Tables folder.

6. Right-click the table you want to examine and choose View
Dependencies.

You see a new dialog box that allows you to view both objects that depend
on this table and objects upon which this table depends. Figure 5-3 shows an
example of what this looks like.

Figure 5-3:
Dependen-
cies for a
given table
displayed in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 144

Book II
Chapter 5

Looking After
Your Tables

Viewing the Table’s Contents 145

In this case, you can see that the payments and student_courses
table depend on the students table. But wait, there’s more! Expanding the
payments table shows that the student_payments table also depends on
the students table. Knowing these details helps you understand the poten-
tial ramifications of any database alterations. It’s better to know this up
front, rather than having to repair damage later.

Viewing the Table’s Contents
Sometimes, the best way to understand what’s going on in a table is to look
at what’s stored in it. Navigate to the table in question (as we describe ear-
lier in the chapter), right-click it, and choose the Open Table menu option.
You’re presented with a list of records, as shown in Figure 5-4.

You have a full set of navigation options within this window. You can even
create new rows if you like.

Figure 5-4:
Viewing a
table’s
contents in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 145

Modifying a Table146

Modifying a Table
Now that you’ve seen how to get a full list of all your tables and see their
data, it’s time to check out how easy it is to change them. These types of
alterations can include

✦ Renaming the table

✦ Renaming a column

✦ Adding one or more columns to the table

✦ Changing a data type for a given column

✦ Changing a column’s properties

✦ Removing one or more columns from the table

✦ Modifying properties for the table

We take a look at how to do each of these tasks. Because the SQL Server
Management Studio is such an excellent tool, we use it as the primary mech-
anism to make these alterations. The initial steps that you need to follow for
any modification are

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the specific database folder where your table resides.

6. Locate the table you want to change.

Viewing a script for the table
Although the SQL Server Management Studio allows you to perform most
administrative tasks without the need for programming, it’s nice to know
exactly what’s going on underneath the covers. Here’s how you can get a
better understanding of the Data Definition Language (DDL) that SQL Server
generates to build your table.

If you’ve followed the steps listed previously to locate the table, highlight
the table name, right-click, and then choose Script Table AS➪CREATE TO➪
New Query Window. You’re presented with a script window, as shown in
Figure 5-5.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 146

Book II
Chapter 5

Looking After
Your Tables

Modifying a Table 147

Renaming the table
After you’ve identified the table that you want to rename, click once on the
table name. This places you into rename mode. All you need to do now is
enter the new name of the table, and press Enter. If you get cold feet and
don’t want to make this change after all, simply press Esc, and your alter-
ation will be aborted.

Renaming a column
Changing the name of a column is easy. Continuing from the previous list of
steps, here’s what you need to do:

1. Expand the table’s entry.

2. Expand the Columns folder.

3. Right-click the column you want to change.

4. Choose Rename.

5. Enter the new name for the column.

6. When you’re finished, press Enter to save your change.

Figure 5-5:
Viewing the
DDL for a
table in the
SQL Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 147

Modifying a Table148

Adding one or more columns to the table
Sometimes, you discover that you need to add columns to an existing table.
This is generally no problem, but you should be aware that adding new
columns might affect other users and applications that were unprepared for
this change. In any case, with the table located as described at the start of
this section, follow these simple steps to include additional columns:

1. Expand the table’s entry.

2. Right-click the Columns folder.

3. Choose New Column.

This opens a dialog box where you can add as many new columns as
you like. Check out Figure 5-6 to see what this looks like.

4. When you’re finished making changes, click the floppy disk icon to
save your changes.

As we mention earlier, adding new columns to a production database
requires some thought. Applications that expect a certain set of columns
might find themselves confused (and broken) if additional columns are on a
table.

Figure 5-6:
Adding new
columns for
a table in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 148

Book II
Chapter 5

Looking After
Your Tables

Modifying a Table 149

Changing a data type for a column
During database design and development, it’s common for a database admin-
istrator to feel the need to change the data type for a given column. Perhaps
you initially defined a column to hold numeric data, but after thinking things
over, you realize that it might actually contain character-based information
after all. Fortunately, it’s easy to change an already-existing column’s data
type.

Assuming you’ve already followed the steps listed previously to locate the
table in question, here’s how to make this modification:

1. Expand the table’s entry.

2. Expand the Columns folder.

3. Right-click the column that you want to change.

4. Choose Modify.

This opens up a dialog box where you’re presented with a list of all the
columns for the table.

5. Choose the new data type from the data type drop-down box.

6. When you’re ready to save the modified table, click the floppy disk
icon.

SQL Server carefully guards its data integrity. If you attempt to change a
column’s data type to one that doesn’t make sense, SQL Server reports an
error and blocks your change. For example, look at the following error mes-
sage we received when we tried to change a column from character-based to
numeric when there was non-numeric information in that column:

‘students’ table
- Unable to modify table.
Conversion failed when converting the varchar value
‘Ramm’ to data type int.

Changing a column’s properties
As we describe in Chapter 4 of this mini-book, SQL Server sports numerous
configurable properties for its tables and columns. Here’s how to change
those properties for an existing column. Assuming you’ve already navigated
to the table in question (as described earlier in this chapter), just follow
these steps:

1. Right-click the table.

2. Choose Design.

This opens a panel that shows you all the columns in the table.

15_179543-bk02ch05.qxp 8/23/08 12:31 AM Page 149

Modifying a Table150

3. Highlight the column whose properties you want to change.

The bottom portion of this panel now lists a collection of properties for
this column, as shown in Figure 5-7. If you’re interested in what all these
properties mean, see Chapter 4 in this mini-book.

4. Make your changes to whatever properties you like.

In this case, we’re setting the default credit limit to $250.

5. When you’re ready to save the new properties, click the floppy disk
icon.

Removing a column
With the table located in the SQL Server Management Studio, follow these
simple steps to remove columns:

1. Expand the table’s entry.

2. Open its Columns folder.

Figure 5-7:
Changing a
column’s
properties in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:32 AM Page 150

Book II
Chapter 5

Looking After
Your Tables

Modifying a Table 151

3. Right-click the column you want to delete.

4. Choose Delete.

This removes the column from the table. However, if deleting a column
causes a referential integrity or other internal database constraint violation,
you’ll receive an error from SQL Server stating that your changes aren’t pos-
sible. For example, look at the following message that we received when we
tried to delete a column that was referenced in a
foreign key:

Drop failed for Column ‘student_id’. (Microsoft.SqlServer.Smo)
An exception occurred while executing a Transact-SQL statement or batch.
(Microsoft.SqlServer.ConnectionInfo)
The object ‘PK_students’ is dependent on column ‘student_id’.
The object ‘FK_student_courses_students’ is dependent on column
‘student_id’.
The object ‘FK_payments_students’ is dependent on column ‘student_id’.
ALTER TABLE DROP COLUMN student_id failed because one or more objects
access this column. (Microsoft SQL Server, Error: 5074)

Making significant changes to a production database, such as modifying
table names, adding or removing columns, and switching data types, isn’t
something that you undertake lightly. There are implications with regard
to already-written applications, scripts, and so on. Think carefully before
making any of these types of alterations. Of course, you’ll also want to make
a backup of your database before starting down this path.

Understanding table properties
If you’re interested in even more than a table’s columns, keys, and con-
straints, you might want to look at its properties. Assuming you’ve already
followed the steps listed earlier in this chapter to locate the table in ques-
tion, here’s how to do that:

1. Highlight the specific table’s entry in the list of tables.

2. Right-click the table name.

3. Choose Properties.

This opens an informative dialog box, as shown in Figure 5-8.

Three pages are available to you here:

✦ General: Holds all the system-defined properties for this table.

✦ Permissions: Tracks security and access rights for the table.

✦ Extended Properties: Shows administrator-defined properties for the
table.

15_179543-bk02ch05.qxp 8/23/08 12:32 AM Page 151

Modifying a Table152

Here’s a deeper look at the major classes of properties shown on the General
page. If you’re interested in security topics, we cover that important matter
in Book VIII, Chapter 3.

You can sort the properties alphabetically or by category. For now, look at
them by category. You can make changes to only the Permissions and
Extended Properties pages; the General page is read-only.

✦ Current Connection Parameters: Here’s where you can find the data-
base name, server, and current user.

✦ Description: Covers details about the table’s name, when it was created,
the schema to which it belongs, and whether it’s a user or system table.

✦ Options: States whether the table was created with ANSI NULL and
whether the quoted identifier behavior is enabled.

✦ Replication: Is this table part of a replication scheme?

✦ Storage: Provides information about the number of rows in the table, the
amount of disk space consumed, file groups, partitioning, and so on. As
an administrator, you’ll probably be most interested in this section.

Figure 5-8:
Viewing a
table’s
properties in
the SQL
Server
Manage-
ment Studio.

15_179543-bk02ch05.qxp 8/23/08 12:32 AM Page 152

Book II
Chapter 5

Looking After
Your Tables

Altering a Table via SQLCMD 153

Deleting a Table
When the time comes to bid farewell to a table, follow these simple steps
and it will be gone from your life forever (unless you’ve made a backup, in
which case the table has achieved immortality — and you still have a copy
of the backup).

1. Launch SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the Tables folder.

6. Highlight the table you want to delete.

7. Press Delete.

If the table is part of a relationship, and removing the table violates the
terms of the relationship, SQL Server reports an error and blocks the dele-
tion of this table. For example, take a look at the error message we received
when we erroneously tried to delete a table that others depended upon:

Drop failed for Table ‘dbo.students’. (Microsoft.SqlServer.Smo)
An exception occurred while executing a Transact-SQL statement or batch.
(Microsoft.SqlServer.ConnectionInfo)
Could not drop object ‘dbo.students’ because it is referenced by a FOREIGN KEY
constraint. (Microsoft SQL Server, Error: 3726)

Before deleting a table, try viewing its dependencies to see what impact your
change might have. We describe how to do that a little earlier in this chapter.
Conveniently, SQL Server puts a handy button on the dialog box just before
you actually delete the table.

Altering a Table via SQLCMD
If you’re not a fan of graphical utilities like the SQL Server Management
Studio, never fear. The SQLCMD utility allows you to interact directly
with your database until your heart’s content by using a character-based
interface.

Here’s how to use this utility to make a table modification. For this example,
we’re renaming a table and then adding a new column.

1. Open a command prompt.

15_179543-bk02ch05.qxp 8/23/08 12:32 AM Page 153

Altering a Table via SQLCMD154

Choose Start➪Run and enter cmd. Alternatively, you can choose
Programs➪Accessories➪Command Prompt. When you see the friendly
command prompt, it’s time to launch SQLCMD.

2. Enter SQLCMD at the command prompt, passing in the proper
parameters.

This can get a bit confusing. SQLCMD is rather picky about the exact
syntax that it deigns appropriate to run. This isn’t surprising when you
realize that it supports more than 2 dozen parameters. Table 5-1 high-
lights a small group of key parameters.

Table 5-1 Key SQLCMD Parameters
Parameter Purpose

S Specify the server that you want to connect to

U Provide your username

P Provide your password

d Which database to use (if any)

i The SQL script file (if any)

If you get in hot water, you can always ask SQLCMD for help:

SQLCMD /?

3. Enter your SQL, ending your statement with GO.

After you’re in SQLCMD, you have an interactive command prompt at
your disposal. Figure 5-9 shows a very simple example of altering a table
by using direct SQL entry in SQLCMD.

Figure 5-9:
Altering a
table by
using
SQLCMD.

15_179543-bk02ch05.qxp 8/23/08 12:32 AM Page 154

Chapter 6: Understanding
Relationships

In This Chapter
� Why relationships are important

� Types of relationships

� Creating relationships

� Maintaining relationships

� Managing relationship errors

Chances are, the store where you picked up this book has an entire sec-
tion devoted to understanding and improving relationships. You can

probably find all sorts of helpful information about bettering your relation-
ships with parents, children, friends, neighbors, and co-workers. In this
chapter, we add another relationship that you must consider: the relation-
ship among your SQL Server data.

To begin, we show you why relationships are so important in any modern
database management system. Next, you see the different types of relation-
ships that are commonly found in SQL Server (or any other current rela-
tional database management system for that matter). With that out of the
way, you find out how to use the tools provided by SQL Server to define and
maintain these relationships. Finally, because all relationships have prob-
lems from time to time, the chapter closes by showing you what happens
when a relationship goes bad.

Relationships: Making Data Meaningful
As you might surmise from the category name for these types of products —
relational database management systems — relationships play a big part in
their overall design philosophy. When these products appeared on the
scene in the 1970s, their new architecture caused quite a stir. Until that
point, data management software had structured its information in a variety
of different ways. Certain products used a hierarchical structure, whereas
others followed a more network-like approach. Although it’s beyond the pur-
pose of this book to go into database history, it’s important to note that

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 155

Relationship Types156

these earlier architectures were significantly more cumbersome for develop-
ers and end-users to navigate, locate results, and make sense of what was
stored in these repositories. They also frequently led to significant data
redundancy and made developing applications significantly more labor-
intensive than we’re used to these days.

Unlike these earlier approaches, relational databases separate information
into distinct structures known as tables. Each table holds information of a
similar type. For example, a Customers table would be expected to hold
information about an organization’s clients. Comparatively, a Payments
table would be a likely candidate to store details of a customer’s financial
transactions.

This new architecture is both simpler and more elegant than the technolo-
gies it supplanted. The proof is in the pudding: Relational databases have
enjoyed robust growth for more than 20 years, and are now the de facto
standard for storing information. However, these new technologies also
require that designers carefully consider the relationships among each of
these tables.

Continuing the example of a Customer and Payments table, what would
happen if a record existed in the Payments table, yet there was no corre-
sponding customer? In older database management systems, details about
customers and payments are often stored together in the same physical
structure, making this type of scenario much less likely.

Consequently, designers and architects have given a great deal of thought to
all possible relationships, and how they should be defined in the relational
database world. In the remainder of this chapter, you get a list of all the
major relationship types, and then see how to use SQL Server’s graphical
and character-based tools to define and maintain these relationships.

Relationship Types
In this section, we look at each of the relationship types that you’re likely to
encounter in SQL Server, along with the purpose of each relationship. Before
we get started, it’s useful to have a real-world example to help illustrate each
type of relationship. We use this scenario when we create the relationships
with SQL Server’s tools.

After years working for The Man, you’ve decided that it’s time to take con-
trol of your destiny and go into business for yourself. After a bit of soul-
searching, you decide to follow your heart and open an extreme sports
training school. However, without proper IT infrastructure, you know that
you, your bungee cord, and your street luge gear will be back at The Man’s
doorstep before too long. Because you know that relational databases do an

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 156

Book II
Chapter 6

Understanding
Relationships

Relationship Types 157

outstanding job of keeping track of vital information, you decide to use SQL
Server as the core of your IT environment.

In examining the type of information you’re likely to need to store in support
of your new business, you identify the following major objects:

✦ Student

✦ Student classroom feedback

✦ Class

✦ Payment

✦ Instructor

You decide that each of these objects needs its own table. For the purpose of
this example, don’t worry about adhering to relational database design prin-
ciples to the letter.

Now that you’ve established a new business, look at how each type of rela-
tionship affects this example.

One-to-one
In this type of relationship, two given objects are bound at the hip: They
have one, and only one, relationship — with each other. It’s worth pointing
out that these types of relationships are quite uncommon in the real world,
as well as in most relational database applications. However, to illustrate
this example, assume that a specific class can be taught by one (and only
one) instructor, and that an instructor can teach one (and only one) class.
Again, this isn’t terribly realistic, but we hope it highlights the point.

One-to-many
If a one-to-one relationship is distinguished by its rarity, a one-to-many rela-
tionship is known as a much more common situation. In this context, a given
object can have many associated objects of the same type. For example, one
student can make many payments, but a payment can be made by one (and
only one) student.

Many-to-many
As you might guess from looking at the relational database model, it can be
quite complicated to represent a situation where many objects relate to
many other objects. For example, many students can attend many different
classes at one time. Fortunately, as you’ll soon see, relational databases let
you create many-to-many tables that help store details of these complex
relationships.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 157

Relationship Types158

Constraints
While not relationships per se, constraints are often the mechanisms that
allow you to help enforce and maintain these associations. When you build a
database application, you’re responsible for making sure that no bad data
gets into your database. If you fail, there’s a good chance that you (or your
users) might make a bad decision because what’s stored in your database
won’t accurately reflect reality. Constraints are how you define, at the data-
base level, rules that help protect your database from data anomalies. We
look at some of the major constraints that you have at your disposal.

Primary keys
By defining a primary key constraint, you’re telling SQL Server that the
values contained in one or more columns must be unique across all rows. In
addition to protecting your data’s integrity, a primary key constraint is a
great help to database performance. By using the primary key, SQL Server
can find a row almost instantaneously. In our extreme sports training school
scenario, you’d likely define or generate a primary key for each of the
objects.

For example, you would likely place a primary key on the students table.
This would typically be a machine-generated numeric identifier that you
could use to uniquely identify a given student. Comparatively, if you don’t
expect many attendees to your new school, you could also create a primary
key on the combination of each student’s first name and last name. However,
after your school started growing, two students with the same first and last
names would cause your database and associated applications to have diffi-
culty distinguishing between these two students.

Foreign keys
Most relational database applications spread their knowledge among multi-
ple tables. Each table ordinarily holds a specialized type of data. In the
sports training school example, you can see dedicated tables for students,
their classes, payments, teachers, and so on.

Here’s where things can get tricky. If you’re not careful, your application
could delete a student’s main data without deleting any associated informa-
tion, such as student feedback, future course attendance, and so on. Alter-
natively, you could create a payment record but omit creating a student
record. You’ve damaged your data’s integrity in both of these cases. Foreign
key constraints are specifically designed to prevent these unhappy situa-
tions from ever occurring.

When you place a foreign key constraint on two or more tables, you’re telling
SQL Server to intercept any attempts, deliberate or otherwise, where your
data’s integrity can be compromised. For example, by placing a foreign key

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 158

Book II
Chapter 6

Understanding
Relationships

Relationship Types 159

on the payments table that references the students table, you instruct
SQL Server to ensure that any records that are added to the payments table
have a corresponding student record.

The really nice thing about this constraint is that your application code no
longer serves as the last line of defense for your database’s integrity. Of
course, you want your applications to follow good data integrity rules, but
it’s comforting to know that SQL Server is also on the job.

CHECK
Think of CHECK constraints as bits of application logic that you place on
your tables to guarantee that they reject any attempts to violate a business
or other data rule that you want to enforce. For example, suppose that you
don’t want any payment information entered unless the payment is greater
than $50. In this case, you would place a CHECK constraint on the payments
table to validate that the amount entered exceeded your required threshold.
If the amount was less than the constraint, the user would receive an error
message, and the database’s integrity would be preserved.

What’s especially handy about check constraints is that you can place multi-
ple constraints on the same table. Continuing the sports training school
example, not only do you want payments less than $50 to be rejected, but
you also want to block any single payments greater than $5,000. In this case,
you would simply add a second CHECK constraint to your payments table,
and SQL Server would sort out the details to ensure that neither of these two
rules is violated.

UNIQUE
This is very similar to a primary key constraint, but unlike primary keys,
UNIQUE constraints let you place a NULL value in the column. However, you
generally define a UNIQUE constraint when you already have a primary key
in place, but also want to enforce non-duplication on another column.

A realistic example of UNIQUE versus PRIMARY KEY constraints would
occur when you define the student_id column as the primary key for the
students table, and then require that the e-mail address for the student be
unique.

NOT NULL
This constraint helps ensure that any database applications provide data
for one or more of your columns. If you attempt to enter an empty (that is,
NULL) value on a column that has a NOT NULL constraint, SQL Server will
intercept the call.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 159

Creating Relationships160

You certainly would want to ensure that your students’ first and last name
fields had to have a value associated with them. In this case, you would
demand that both of these columns have the NOT NULL constraint placed on
them when the table is defined. From that moment, any attempts to enter a
new student record with a blank first name or last name will result in an
error. What’s also great about this is that the constraint works all the time,
even for existing records that are then modified.

Creating Relationships
In the previous section, we show you all the different relationships that your
data can have. In this section, it’s time for you to actually create and main-
tain these important constructs.

You have two main options when it comes to defining and then preserving
relationships: the SQL Server Management Studio and direct SQL entry.
Because both these techniques are equally valuable, we show you both.

The SQL Server Management
Studio and relationships
When it comes to quickly and clearly defining new tables and all associated
relationships, it’s pretty hard to beat the SQL Server Management Studio. In
this section, we look at how easy it is to perform these important tasks.

To begin, follow these steps to open the SQL Server Management Studio and
its table designer:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Expand the folder entry for the database where you want to create
the table.

6. Right-click Tables, and choose New Table.

This opens a dialog box where you can interactively create your new table.
We cover this subject in-depth in Chapter 4 of this mini-book. For now, pay
special attention to the relationship aspect of creating a new table. By select-
ing the Table Designer menu option, the SQL Server Management Studio
offers you a collection of options for defining important relationship, index,
and other key settings. Figure 6-1 shows how these menu options initially
appear.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 160

Book II
Chapter 6

Understanding
Relationships

Creating Relationships 161

Next, we begin filling in columns, along with filling in their data types and fill-
ing in whether NULL values are permitted. You can right-click any column to
receive a context-sensitive menu for setting relationships, indexes, and so
on. For example, Figure 6-2 shows that we want to set a primary key on the
student_id column.

Figure 6-3 shows how the table looks when the primary key constraint is in
place.

With the primary key set, it’s time to set some additional restrictions on the
table. One area that concerns you is that extreme sports students don’t have
a lot of money at their disposal. The best way to go out of business quickly is
to extend excessive amounts of credit to your customers, especially when
they might not be able to pay.

Rather than requiring each of your application developers to make a credit
determination on their own, you decide to track each student’s credit limit in
the database by adding a new column (credit_limit) to the students
table. However, you don’t want an overzealous salesperson to grant a new
student higher credit than your company’s policy allows. Consequently, you
want SQL Server to do the enforcement for you. This is where a CHECK con-
straint can be very helpful.

Figure 6-1:
The SQL
Server
Manage-
ment Studio
Table
Designer
menu
options.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 161

Creating Relationships162

Figure 6-3:
A primary
key defined
for the
students
table.

Figure 6-2:
Setting a
primary key
in the SQL
Server
Manage-
ment Studio.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 162

Book II
Chapter 6

Understanding
Relationships

Creating Relationships 163

It’s easy to place a CHECK constraint on a table. All you need to do is choose
the Check Constraints option from the Table Designer menu. This opens a
dialog box, as shown in Figure 6-4.

With this dialog box displayed, here’s how to place a CHECK constraint on a
specific column:

1. Click the Add button.

This opens a dialog box where you can enter in the details of your new
constraint. Figure 6-5 shows this new dialog box.

2. Click the Expression field and then click its ellipsis. Enter the syntax
for your new CHECK constraint.

Figure 6-6 shows the syntax for placing a limit of 1,000 on each student’s
credit.

3. Provide any additional details.

You can set your own name, or simply use the one provided by SQL
Server. You can also specify how you want the constraint to be enforced.

Figure 6-4:
The initial
Check
Constraints
dialog box in
the SQL
Server
Manage-
ment Studio.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 163

Creating Relationships164

Figure 6-6:
Setting a
CHECK
constraint
on a
specific
column.

Figure 6-5:
The
property
sheet for
CHECK
constraints.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 164

Book II
Chapter 6

Understanding
Relationships

Creating Relationships 165

4. When you’re finished, click Close.

You can create as many constraints as you like. However, remember that
you need to save the table itself, or all your hard work defining CHECK
constraints will be lost.

That’s all there is to it. Your table now has a CHECK constraint in place.

Of course, data doesn’t exist in isolation; it’s time to see how to tie the
students table with the other tables that depend on its information. For
this example, you set up a foreign key relationship between the payments
table and the students table.

To begin, Figure 6-7 shows a newly created payments table. Only the pri-
mary key is defined at this point.

It’s now time to create the foreign key that will reference the students table.
Assuming you already have the SQL Server Management Studio running, and
have selected the database and table in question, here’s how to make this
happen:

Figure 6-7:
The
payments
table with a
new primary
key in place.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 165

Creating Relationships166

1. Choose Table Designer➪Relationships.

An empty dialog box opens.

2. Click the Add button.

A partially filled dialog box opens where you specify how you want to
set up your relationship. Figure 6-8 shows this dialog box.

3. In the dialog box, expand the Tables and Columns Specification
field.

4. Click on the newly visible ellipsis.

You define the tables and columns that will make up your foreign key
relationship.

5. Select the appropriate table and column entries from the drop-down
boxes.

In this example, you’re setting a foreign key relationship between the
students table (student_id) and the payments table (student_id).
Figure 6-9 shows this dialog box filled in correctly.

Figure 6-8:
A dialog
box for
setting up a
foreign key
relationship.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 166

Book II
Chapter 6

Understanding
Relationships

Creating Relationships 167

6. Click OK to close this dialog box, and then click Close in the parent
dialog box.

7. Remember to save your work by clicking on the disk icon.

As a sanity check, SQL Server displays a message to alert you of your
impending changes, and the tables that will be affected. Figure 6-10 dis-
plays how this warning appears.

You’ve made several important changes to your database. Fortunately,
it’s easy to check your work. Figure 6-11 shows details about both the
students and payments table.

The expanded tree view shows that the students table has both a primary
key and a CHECK constraint in place, and the payments table has a primary
key and a foreign key.

Figure 6-9:
Selected
tables and
columns
for a
foreign key
relationship.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 167

Creating Relationships168

Figure 6-11:
Details
about
primary
keys,
foreign
keys, and
constraints.

Figure 6-10:
Confir-
mation from
SQL Server
prior to
creating the
relationship.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 168

Book II
Chapter 6

Understanding
Relationships

Creating Relationships 169

SQL and Relationships
If you would rather roll up your sleeves and enter your SQL by hand, here’s
how to do it. For the purposes of this example, we assume that you’re using
the SQLCMD utility. You’re also free to use the direct SQL entry features of
the SQL Server Management Studio.

1. Open a command prompt.

Choose Start➪Run and enter cmd. You can also choose Programs➪
Accessories➪Command Prompt. When you see the friendly command
prompt, it’s time to launch SQLCMD.

2. Enter SQLCMD at the command prompt, passing in the proper
parameters.

This can get a bit confusing. SQLCMD is rather picky about the exact
syntax that it deigns appropriate to run. This isn’t surprising when you
realize that it supports more than 2 dozen parameters. Table 6-1 high-
lights a small group of key parameters.

Table 6-1 Key SQLCMD Parameters
Parameter Purpose

S Specify the server that you want to connect to

U Provide your username

P Provide your password

D Which database to use (if any)

I The SQL script file (if any)

If you get in hot water, you can always ask SQLCMD for help:

SQLCMD /?

3. Enter your SQL, ending your statement with GO.

For example, here’s what the SQL looks like to create the students table
and place a CHECK constraint on the credit_limit column:

CREATE TABLE [dbo].[students](
[student_id] [int] NOT NULL,
[last_name] [varchar](50) NOT NULL,
[first_name] [varchar](50) NOT NULL,
[credit_limit] [money] NOT NULL
CONSTRAINT [CK_students1] CHECK(([credit_limit]<=(1000))),

) ON [PRIMARY]

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 169

Managing Relationship Errors170

Managing Relationship Errors
Relationships are one place where many database applications typically run
into trouble. In this section, we look at a few of the most common error con-
ditions that can arise, along with how SQL Server protects your data.

Despite of all the integrity protections we’re about to show you, deleting an
entire database will override any of the table level safeguards enforced by
SQL Server. Consequently, use extreme caution when deleting databases;
these rules will not step in and save you.

Primary key violation
Primary keys are what SQL Server uses to locate a given record quickly
based on a unique value. Here’s some SQL that creates a table and defines
its primary key:

CREATE TABLE [dbo].[STUDENTS]
(

[STUDENT_ID] [int] PRIMARY KEY NOT NULL,
[LAST_NAME] [varchar](50) NOT NULL,
[FIRST_NAME] [varchar](50) NOT NULL,
[STREET1] [varchar](50) NOT NULL,
[STREET2] [varchar](50) NULL,
[CITY] [varchar](50) NOT NULL,
[STATE] [char](4) NOT NULL,
[COUNTRY] [varchar](50) NOT NULL,
[PHONE] [varchar](20) NULL,
[EMAIL] [varchar](50) NULL,

)

Suppose that you insert a new row as follows:

INSERT INTO STUDENTS VALUES (2291,’JONES’,’BOB’,’2454 LEGION STREET’,
‘APT 21’, ‘PHOENIX’, ‘AZ’, ‘USA’, 555-555-5555, ‘bob@demo.com’)

So far, so good. However, your application logic is a little sloppy, and you
attempt to insert another row with the same student_id. SQL Server doesn’t
like this one bit, and stops your operation dead in its tracks:

Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint ‘PK__students__0EA330E9’. Cannot insert
duplicate key in object ‘dbo.students’.
The statement has been terminated.

As an application developer, it’s vital that you stay aware of primary keys.
It’s very common for developers to duplicate manually generated primary
keys unintentionally, which causes all sorts of excitement at runtime.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 170

Book II
Chapter 6

Understanding
Relationships

Managing Relationship Errors 171

However, a better way to create primary keys is by using identity columns.
See Chapter 4 in this mini-book if you’re curious about this handy way of
maintaining primary keys.

Foreign key violation
Foreign keys are an important tool that SQL Server uses to keep information
stored in multiple tables in sync. Continuing with the students table exam-
ple, imagine that you store financial transaction information in a payments
table as follows:

CREATE TABLE [dbo].[PAYMENTS]
(

[PAYMENT_ID] [int] NOT NULL,
[STUDENT_ID] [int] NOT NULL REFERENCES STUDENTS,
[PAYMENT_DATE] [datetime] NOT NULL,
[PAYMENT_AMOUNT] [money] NOT NULL

)

In this case, the student_id column in the payments table serves as a for-
eign key to the students table. Its job is to ensure that every row in the
payments table has a corresponding student record in the students table.

You can trigger foreign key violations in a number of ways. For example, sup-
pose you try to add a new payment record when there is no corresponding
student record. SQL Server squawks and doesn’t permit you to damage the
database’s integrity:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the FOREIGN KEY constraint
“FK__PAYMENTS__STUDE__1367E606”. The conflict occurred in database
“extreme_sports”, table “dbo.students”, column ‘student_id’.
The statement has been terminated.

Conversely, if you attempt to delete a row in the students table without
first deleting any corresponding payments records, SQL Server will also
block this potentially damaging operation:

Msg 547, Level 16, State 0, Line 1
The DELETE statement conflicted with the REFERENCE constraint
“FK__PAYMENTS__STUDE__164452B1”. The conflict occurred in database
“extreme_sports”, table “dbo.PAYMENTS”, column ‘STUDENT_ID’.
The statement has been terminated.

These protections extend to graphical tools as well. For example, suppose
that you use the SQL Server Management Studio and try to drop the
students table without first removing associated payment records.
Figure 6-12 shows that SQL Server is still on the job.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 171

Managing Relationship Errors172

CHECK constraint violation
CHECK constraints are designed to let the database engine help enforce busi-
ness or other information rules. As described earlier, suppose that you place
a CHECK constraint on the credit_limit column in the students table.
This constraint’s job is to prevent anyone from having a credit limit greater
than 1,000. If you try to create or update a record that exceeds this limit,
here’s what SQL Server will say:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint “CK_students”.
The conflict occurred in database “extreme_sports”, table
“dbo.students”, column ‘credit_limit’.
The statement has been terminated.

Your database’s integrity remains safe; no business rules have been broken.

NOT NULL violation
Some bad things can happen if someone erroneously creates records that
have empty columns. Fortunately, you can easily prevent this nastiness by
mandating that these columns be created with the NOT NULL constraint.

Figure 6-12:
The SQL
Server
Manage-
ment Studio
blocking a
foreign key
violation.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 172

Book II
Chapter 6

Understanding
Relationships

Managing Relationship Errors 173

If someone then attempts to insert or update a row with NULL values where
they’re not allowed, here’s the message that SQL Server will return:

Msg 515, Level 16, State 2, Line 1
Cannot insert the value NULL into column ‘first_name’, table
‘extreme_sports.dbo.students’; column does not allow nulls. INSERT fails.
The statement has been terminated.

Again, SQL Server foils rogue or sloppy applications in their attempts to
damage your data’s integrity.

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 173

Book II: Designing and Using Databases174

16_179543-bk02ch06.qxp 8/23/08 12:32 AM Page 174

Book III

Interacting with
Your Data

17_179543-pp03.qxp 8/23/08 12:33 AM Page 175

Contents at a Glance
Chapter 1: Using Proper Normalization Techniques177

Normalizing Your Database ..177
First Normal Form: No Repeating Groups...179
Second Normal Form: Dependent on the Whole Key182
Third Normal Form ..183
Denormalizing Your Database ..184

Chapter 2: The SQL Server Optimizer .187
Why You Need the Optimizer ...187
How the Optimizer Works ...188
Using Execution Plans to Figure Out What’s Happening.........................193
Client Statistics: Helping the Optimizer Do Its Job..................................196

Chapter 3: Using the Query Designer .201
Creating a New Query..201
Editing Your Query ..207
Exporting Your Query or Results ...209

Chapter 4: Setting Query Options .213
Configuring Query Options with Performance and

Control Parameters ..213
Selecting Results Formatting Options ...223

Chapter 5: Searching for Information .231
Using AdventureWorks2008..231
Retrieving Data from a Single Table...235
Retrieving Data from Multiple Tables..240
Filtering Information..248

Chapter 6: Organizing Query Results .257
Using ORDER BY to Sort Your Results...257
Grouping Results with GROUP BY ...260

Chapter 7: Modifying Your Data .265
Using DML Commands ..265
Adding Data to Your Database ...266
Modifying Data in your Database...268
Removing Data from Your Database..270

Chapter 8: Taking Advantage of Views .273
Tying Information Together with Views..273
Creating a View...275
Using a View..279
Maintaining a View...284
Deleting a View ...288

Chapter 9: Advanced Query Topics .291
Using Transactions to Protect Your Data..291
Finding Information with Full-Text Search..296
Understanding Outer Joins ...301
Querying XML Data..304

17_179543-pp03.qxp 8/23/08 12:33 AM Page 176

Chapter 1: Using Proper
Normalization Techniques

In This Chapter
� Normalizing your database

� Removing repeating groups

� Insuring each column is dependent on the whole primary key

� Removing transitive dependencies

� Improving performance

Databases took a great leap forward when Edgar F. Codd defined the
first three normal forms in his 1970 paper “A Relational Model of Data

for Large Shared Data Banks.” Over the years, many more normal forms
have been defined, but even today, the first three normal forms are the most
commonly used. Today’s popular Relational Database Management Systems
(including SQL Server 2008) are based on the relational model first identi-
fied by Codd.

Normalizing Your Database
Normalizing a database is dividing tables into their simplest forms and
creating relationships between the tables. Instead of a single table of many
columns to hold all your data, you can create multiple tables and spread the
data between them in a logical manner.

Tables are connected to each other by creating relationships. Relationships
between tables are primarily created between the primary key in one table
and a foreign key in another table.

A primary key is a column within a table that is used to uniquely identify
each row within that table. Primary keys are usually numbers, but you might
see them as a combination of characters and numbers in some databases.
Allowing the system to generate primary keys automatically is easiest,
but developers might sometimes choose to do this within their database
application.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 177

Normalizing Your Database178

Foreign keys are used to relate one table to another table and can be a com-
bination of numbers and letters. A foreign key is in the related column and
matches the same format (numeric, character, or a combination) of the pri-
mary key in the related table.

Book II, Chapter 4 covers relationships between tables in-depth, including
the different types of relationships, how to create relationships, and main-
taining relationships.

By normalizing a database, many problems can be prevented. Consider a
company that sells products to customers. Information on each customer is
maintained in a database, including a name, address, phone number, and
e-mail address. In a non-normalized database (one single table), you could
have multiple problems when you try to query or modify this data. These
problems include:

✦ Duplication of data: In a non-normalized database, a customer’s infor-
mation might have to be entered every time he makes a purchase, stor-
ing the customer’s data in an Orders table. The result is duplication of
work. Additionally, odds are very low that this information would be
entered the same way each time. Consider how many different ways
employees might enter the name, Brandie Johansen, or a city, such as
San Francisco (SF, San Fran, SFO, and so on). A normalized database pre-
vents the duplication of work and the associated typos.

✦ Update problems: If a customer’s address needs to be updated but the
customer’s personal data has been entered in multiple places, the update
has to occur in multiple places within the database. If the update isn’t
done in multiple places, then the data will be inconsistent — correct in
some places and incorrect in others.

✦ Query problems: Data in a database that isn’t normalized is difficult to
retrieve. Additionally, the data that is retrieved can’t be relied on as
being the most accurate. Consider the problem where a customer’s data
is stored in the Orders table and must be repeated for every order. If the
customer moved, the only place where the customer’s address is accu-
rate is in the last order. If the address is retrieved from anywhere else, it
would be incorrect.

Although as many as eight normal forms are sometimes listed, the most
commonly used normal forms are the first three.

✦ First normal form: The table has no repeating groups, and each column
is atomic. (Atomic doesn’t mean explosive; instead, it means the columns
are reduced to the smallest possible value. More about that in the
upcoming “Atomicity” section.)

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 178

Book III
Chapter 1

Using Proper
N

orm
alization

Techniques
First Normal Form: No Repeating Groups 179

✦ Second normal form: Each column is dependent on the entire primary
key. The second normal form applies only when a table has a composite
primary key.

✦ Third normal form: Each column is directly dependent on the primary
key. That is, non-primary key columns aren’t directly dependent on
other non-primary key columns.

The normal forms are progressively stricter for each higher normal form.
The third normal form is stricter than the second normal form. The second
normal form is stricter than the first normal form. Additionally, higher
normal forms must comply with lower normal forms. If a table is in the
second normal form, then by definition it’s also in the first normal form.

First Normal Form: No Repeating Groups
The first normal form states that no repeating elements or groups of ele-
ments can exist within the tables. Additionally, it states that each column is
atomic. These rules can be summarized as:

✦ More than one value is not allowed in any cell (a repeating group
within a column). A column for the product purchased, can include only
one product purchased. Two products can’t be in the same column.

✦ More than one column is not used to define the same piece of data (a
repeating group across columns). If more than one product is pur-
chased, it’s not in the same table as Product1, Product2, and so on.

✦ Columns must be atomic. Data within a column is broken down into the
smallest meaningful element. A Name column would be divided into
three columns as First Name, Middle Name, and Last Name.

No repeating groups within a column
A repeating group within a column is a group where more than one value is
included in a single column.

For example, consider a table used to record sales information. For every
sale, the table owner desires to record the customer’s name, the date, and
the item purchased.

Violating the first normal form, a table similar to Figure 1-1 could be created.
Three columns (ItemDescription, ItemQty, and ItemPrice) have repeating
groups. The customer purchased two books, and both book descriptions are
in the ItemDescription column. Additionally, both quantities are in the
ItemQty column, and both prices are in the ItemPrice column.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 179

First Normal Form: No Repeating Groups180

Creating the database this way defeats many of the strengths of a database.
Creating queries to identify how many specific books have been sold, how
many books have been sold in a specific price range, or the average price of
books sold is quite difficult.

To comply with this portion of the first normal form, each column can
have only one piece of data, such as only one item description in the
ItemDescription column, only one item quantity in the ItemQty column,
and only one price in the ItemPrice column.

However, limiting data entry to only one value per column won’t be enough
to fix this problem.

No repeating groups across columns
A repeating group across columns is a group where multiple columns are
added to the table for the same group of data. Say a beginning database
developer wanted to solve the problem from the previous example.

Instead of allowing more than one value in any column, he might choose to
add additional columns to the table.

Figure 1-2 shows how this might be done. Because the table has repeating
groups across columns, it’s still violating the first normal form. A second
column for ItemDescription, ItemQty, and ItemPrice has been added as
ItemDescription1, ItemQty2, and ItemPrice2.

This approach doesn’t work from a practical sense because if a customer
wanted to purchase 3 products (or 30 products), you couldn’t add enough
repeating groups across the columns to meet each possible condition.

Figure 1-2:
A repeating
group
across
columns.

Figure 1-1:
A repeating
group within
a column.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 180

Book III
Chapter 1

Using Proper
N

orm
alization

Techniques
First Normal Form: No Repeating Groups 181

Can you imagine a grocery store that limits customers to only two product
purchases at a time? “Sorry. Please come back tomorrow for your next two
items.”

No. That’s no way to run a business and that’s no way to create a database in
the first normal form.

A solution to this problem is to create two or more related tables. A possible
solution is shown in Figure 1-3 where the repeating groups are taken from
the first table and added to a related column named OrderDetails. The two
tables are related on the OrderDetailsID column.

The OrderDetails table has columns to describe the product, the quantity,
and the price. Because the OrderDetails table is related to the Orders table,
you can have as many rows in the OrderDetails table as needed. Each of the
rows in the OrderDetails table would have the same OrderID value relating
them to a single order in the Orders table.

The icons on the connector between the two tables further define the rela-
tionship. The small key icon indicates one. The infinity icon (°) indicates
many. The Orders and OrderDetails are related in a one-to-many relation-
ship. In other words, any order can have many order detail rows, each refer-
ring to a purchased item, such as a book, a magazine, a pen, and so on.

Atomicity
Atomic values are values that can’t be reduced to a smaller meaningful value.
For example, a name value could include someone’s entire name (first name,
middle initial, and last name), such as Harry J. Potter. However, this value
isn’t atomic because the name isn’t reduced to the smallest meaningful
values.

For a name, the smallest meaningful values would be the first name, the
middle name (or middle initial), and the last name. Table 1-1 shows how you
separate a name into smaller atomic values.

Figure 1-3:
Creating
two tables
to solve the
problem of
repeating
groups.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 181

Second Normal Form: Dependent on the Whole Key182

Table 1-1 Separating a Name into Atomic Values
FirstName MiddleInitial LastName

Harry J. Potter

Why is this atomic? The term atomic comes from a time when it was believed
that atoms were the smallest particle and that they couldn’t be reduced to
anything smaller. Of course, today, we know the atom can be split.

Applying this concept to the first normal form, values within a column can’t
be split into a smaller meaningful value.

You don’t break down the names into the smallest possible values — a
column for every letter in the name. How ridiculous is that? Instead, you
break down the column into the smallest meaningful values — the different
parts of a name.

Atomic value columns make it much easier to create queries based on the
individual attributes of a name. For example, you can easily search based on
the first name or last name, and just as easily create queries that alphabeti-
cally order the output based on the first name or last name.

Second Normal Form: Dependent on the Whole Key
The second normal form states that the table must be in the first normal form
and each column must be dependent on the entire primary key. The second
normal form comes into play only on tables that have more than one column
designated as the primary key. Having more than one column as the primary
key is also known as a composite key.

If a table doesn’t have a composite key (only one column is designated as
the primary key), and the table is in the first normal form, then it’s automati-
cally considered to be in the second normal form.

Comparatively, if a table has a composite primary key, is in the first normal
form, and has columns that aren’t dependent on each of the columns in the
primary key, then it’s not in the second normal form.

For example, consider Figure 1-4. Only the OrderDetails table has a compos-
ite key (composed of the OrderID and ProductID columns). Because the
Orders and Products table both have only one column in the primary key,
they’re automatically considered compliant with the second normal form as
long as they’re in the first normal form.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 182

Book III
Chapter 1

Using Proper
N

orm
alization

Techniques
Third Normal Form 183

For the OrderDetails table to be compliant with the second normal form,
each of the non-primary key columns (ItemQty and Manufacturer) must be
fully dependent on the entire primary key (both OrderID and ProductID
columns). The ItemQty is fully dependent. It’s identifying how many of the
products (ProductID) are being ordered on this order (OrderID).

However, the Manufacturer column isn’t dependent on the entire primary
key. The manufacturer is dependent on the product (ProductID) but not on
this current order (OrderID).

Moving the Manufacturer column from the OrderDetails table to the
Products table makes it compliant with the second normal form.

Third Normal Form
A table in third normal form must be in the second normal form and every
non-primary key column must be non-transitively (or directly) dependent on
only the primary key. In other words, if any non-primary key columns are
directly dependent on other non-primary key columns, then the table isn’t in
the third normal form.

The difference between the second normal form and the third normal form is
sometimes lost on people learning about normal forms for the first time. The
biggest difference is that the second normal form focuses on the primary key
as a composite key and requires non-primary key columns to be dependent
on the whole primary key, not just a part of it. The third normal form states
that non-primary key columns must be dependent on the primary key and
not other non-primary key columns. That is, columns must be dependent on
the whole key (second normal form) and nothing but the key (third normal
form).

Consider Figure 1-5, which isn’t in the third normal form because of the
CustomerPhone column. The CustomerPhone column is directly dependent
on the CustomerName column for meaning. Because this customer placed

Figure 1-4:
OrderDetails
isn’t
compliant
with the
second
normal form.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 183

Denormalizing Your Database184

this order, then the phone number is indirectly associated with the primary
key of OrderID, showing a transitive relationship between the CustomerPhone
and the OrderID.

Think about the salesperson filling in the data for this order. For a customer
that placed 50 orders, the phone number needs to be entered 50 different
times. In a perfect world, the phone number is entered the same way every
50 times, but more than likely, some typos might occur.

To make the Orders table compliant with the third normal form, you need to
create a Customers table and put the associated customer data into the
table.

As shown in Figure 1-6, the CustomerName and CustomerPhone columns
have been replaced with a CustomerID column. Additionally, instead of just
the customer name and phone number, the Customers table holds all associ-
ated customer data.

Denormalizing Your Database
Denormalizing a database is deliberately adding redundant data to a data-
base to improve performance. Although Online Analytical Processing
(OLAP) databases are highly denormalized, it’s not uncommon for an Online

Figure 1-6:
An Orders
table that is
compliant
with the
third normal
form.

Figure 1-5:
An Orders
table that
isn’t
compliant
with the third
normal form.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 184

Book III
Chapter 1

Using Proper
N

orm
alization

Techniques
Denormalizing Your Database 185

Transaction Processing (OLTP) database to have some level of denormaliza-
tion designed to improve the performance of specific queries.

OLTP databases have a high level of transactions (UPDATE, INSERT, and
DELETE statements). OLAP databases are highly queried (SELECT state-
ments), but have very little, if any, transactions. Adding redundant data in an
OLTP database has a performance cost because any updates to the redun-
dant data must be made in multiple places. Because an OLAP database is
rarely updated, the redundant data doesn’t add any additional maintenance
costs.

For a simple example of denormalization in a database, imagine that you
have a Products table that includes the columns shown in Figure 1-7. This
table is normalized.

Imagine that management has recently become very interested in the cost of
on-hand inventory. On a weekly basis, and often on a daily basis, queries are
run that identify the total value of on-hand inventory.

Every row in the Products table must be examined. Multiplying the OnHand
inventory column by the ProductCost column calculates the on-hand cost of
each individual product. To calculate a total value of on-hand inventory,
each multiplied value is then added together.

If you have 200 products, this isn’t a big deal. However, if you have more
than 2 million products, running this query takes a lot of time and process-
ing power, which might interfere with other processes on your server.

You can improve the performance of this query by denormalizing this table.
The table can be denormalized by adding an OnHandCost column. The value
of this column would be calculated by multiplying the OnHand value with
the ProductCost column. An UPDATE trigger can be used to recalculate the
value of the column any time the OnHand or ProductCost columns are
changed.

You can also create the OnHandCost column as a computed column in
the table definition. By default, a computed column is a virtual column.
Whenever I hear “virtual,” I think, “Ah, it doesn’t really exist.” That’s exactly

Figure 1-7:
A normalized
Products
table.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 185

Denormalizing Your Database186

the case with a computed column. Whenever the data is retrieved, it calcu-
lates the value on the fly.

However, it is possible to mark a computed column as “persisted.” A per-
sisted computed column does exist in the table. When either the OnHand or
the ProductCost values change, the persisted column would be recalculated.

UPDATE statements to the OnHand or ProductCost columns take a little
longer because the extra column must be calculated; however, you’ll never
be updating these columns on 2 million rows at the same time.

Because the value of the OnHandCost is in the table for each row, the query
that returns this information on two million rows runs much quicker. The
calculation doesn’t need to be done on each of the 2 million rows each time
the query is run because the calculation is stored within the table.

18_179543-bk03ch01.qxp 8/23/08 12:33 AM Page 186

Chapter 2: The SQL
Server Optimizer

In This Chapter
� Knowing what the Optimizer can do for you

� Understanding the Optimizer

� Using execution plans

� Creating and maintaining statistics

For speed and performance of any database management system, an
optimizer identifies the best method to run queries. The best method

includes identifying the best indexes to use and the most efficient methods
of retrieving, joining, and sorting the data.

SQL Server uses its optimizer to evaluate and choose the best indexes and
methods for individual queries. All queries are submitted to the optimizer,
which in turn checks a variety of variables to create the best possible query
plan. The query plan can be observed as text or in graphical mode by look-
ing at the execution plan.

The most important thing you can do to support the optimizer is to ensure
that statistics are automatically created and automatically maintained on all
your indexes.

Why You Need the Optimizer
The SQL Server Optimizer (also called the Query Optimizer) has undergone
several improvements through the years. In the days of SQL Server 6.5, a
database administrator needed to tweak queries constantly by providing
SQL Server an endless assortment of hints, such as which index to use or
which type of join to use.

Although using hints helped the database management system (DBMS) per-
form better, they were a lot of work. The database administrator needed to
fully understand the data and the database activity. In a dynamic database,

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 187

How the Optimizer Works188

the queries often had to be monitored while the data changed to determine
whether the hints needed to be changed.

Currently, the Optimizer can analyze queries and quickly create a query plan
without hints. Although hints can still be used, their use is generally discour-
aged except in the most advanced applications. The Optimizer automatically
analyzes many aspects of the queries to create the query plan. Additionally,
because the Optimizer optimizes queries when they’re executed, the query
plan can change when the data changes.

For example, you might want to optimize a Sales database query that pulls
data from the Orders, OrderDetails, and Products tables. By analyzing the
execution plan, you could determine the best indexes to use and provide
hints in the query. Over time, the data changes, the indexes change, and the
statistics for the indexes change. Therefore, instead of an optimal query, you
have a very slow-running query because the indexes you picked are no
longer the best indexes for this query.

However, even if hints aren’t provided, the Query Optimizer can analyze
the query and the elements of the database to determine the best possible
query plan. Additionally, the same query can run later with a different query
plan, based on the best possible query plan for that moment.

How the Optimizer Works
Query Optimizer analyzes an executed query and creates several possible
query plans for the query. For each query plan, the Optimizer determines
the estimated cost to run each query. The query plan with the smallest cost
is then used to run the query. The query plans aren’t actually run to deter-
mine the cost but instead are just estimated. Estimated costs derive from
input and output requirements of the query, CPU requirements, memory
requirements, and more.

Figure 2-1 shows how the Optimizer works. A query is submitted to the data-
base management system. After the query is parsed (verified that the syntax
is correct), it’s sent to the Optimizer. The Optimizer analyzes the query and
the database to determine different indexes to use and different join methods.

The Optimizer then creates several query plans. For each of these plans, it
determines an estimated cost. The query is then compiled using the query
plan with the lowest estimated cost — a cost-based optimization.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 188

Book III
Chapter 2

The SQL Server
Optim

izer

How the Optimizer Works 189

The cost of a query
Within SQL Server 2008, query plans are evaluated based on the costs. Costs
aren’t dollars, but instead refer to time used to access resources. The cost is
given in seconds but because cost is an estimated value, it doesn’t equate to
actual seconds. Instead, think of the cost as a measurement for comparison.
When a query is issued, query plans are created. One query plan could be
estimated to complete in one second, and a second query plan could be esti-
mated to complete in three seconds. The Optimizer compares these meas-
urements and chooses the quicker plan (in one second).

For every query run on SQL Server, the Optimizer strives to use the least
amount of resources possible. This goal equates to having the lowest cost,
or taking the shortest amount of time.

The following resources have an associated cost and are evaluated in the
cost of a query:

✦ CPU or processor

✦ Memory usage

✦ Input/output operations

✦ Disk buffer space

✦ Disk storage time

Parsed
Query

Chosen
Query Plan

Cost: 5

Database

Optimizer

Estimated
Query Plan

Cost: 52

Estimated
Query Plan

Cost: 27

Estimated
Query Plan

Cost: 45

Estimated
Query Plan

Cost: 15

Figure 2-1:
The Query
Optimizer
analyzes
queries and
produces a
query plan.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 189

How the Optimizer Works190

Each of these resources is assigned an estimated cost. All the costs are
added to identify an estimated total cost of the query.

For simple queries with a very small cost, it’s possible for only a single
query plan to be created and used. For example, if the first query plan cre-
ated for a simple query is estimated to complete in 8 milliseconds, the
Optimizer could use this query plan instead of creating multiple plans and
picking the best one. Spending another 30 milliseconds to find a query plan
that could run 1 or 2 milliseconds quicker isn’t cost effective.

The Optimizer utilizes a sophisticated costing code to determine the actual
cost based on a number of variables. The costing code considers

✦ How large the tables are

✦ What indexes are available

✦ How useful the indexes are for this query

✦ The best join methods

✦ The usefulness of statistics

Examining a query plan
A query plan can be viewed as text by using the SET SHOWPLAN_TEXT
option. Viewing the query plan provides you a better understanding of how
the queries are being run, and what indexes are being used.

The following steps show how to view a query plan:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to open a new query window.

4. Enter the following query into the query window and press the F5 key
to execute it:

SET SHOWPLAN_TEXT ON

When turned on, the SHOWPLAN_TEXT option remains on for the rest of
the session until it’s turned off. While it’s on, you can’t get results from
queries other than the query plan. To turn off the SHOWPLAN_TEXT
option, enter the following query and execute it by pressing the F5 key:
SET SHOWPLAN_TEXT OFF.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 190

Book III
Chapter 2

The SQL Server
Optim

izer

How the Optimizer Works 191

5. Change the output from a grid format to a text format by right-clicking
within the query pane and choosing Results To➪Results To Text.

The resulting query plan will be easier to view in a text format than in a
grid format.

6. Enter a query against a database on your system.

If you have AdventureWorks2008 installed on your SQL Server, use the
following query:

USE AdventureWorks2008;
GO
SELECT * FROM HumanResources.Employee

The query plan for the SELECT statement is in the text following the
third StmtText line.

|--Compute
Scalar(DEFINE:([AdventureWorks2008].[HumanResources]
.[Employee].[OrganizationLevel]=[AdventureWorks2008]
.[HumanResources].[Employee].[OrganizationLevel]))

|--Compute
Scalar(DEFINE:([AdventureWorks2008].[HumanResources]
.[Employee].[OrganizationLevel]=[AdventureWorks2008]
.[HumanResources].[Employee].[OrganizationNode].GetL
evel()))

|--Clustered Index
Scan(OBJECT:([AdventureWorks2008].[HumanResources].
[Employee].[PK_Employee_BusinessEntityID]))

This simple query plan merely states to use a clustered index scan
when retrieving the data for this query. The clustered index is named
PK_Employee_BusinessEntityID and is in the AdventureWorks2008 database,
in the Human Resources schema, in the Employee table.

Queries that are more complex have more complex query plans. The follow-
ing query accesses the data from a view named vEmployee based on a more
complex query:

SELECT * FROM HumanResources.vEmployee

Although this query of the vEmployee view looks very similar to the previ-
ous query of the Employee table, the resulting query plan shows the com-
plexity of the view. The query plan for the view includes a variety of indexes
(clustered index scan, clustered index seek, and index scan), and different
join methods (nested loops and hash matches).

Listing 2-1 shows the resulting query plan. I’ve bolded each of the methods
chosen by the Query Optimizer (such as nested loops, hash match, and
so on).

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 191

How the Optimizer Works192

Listing 2-1: Query Plan for the Query of the vEmployee View
|--Nested Loops(Left Outer Join, OUTER REFERENCES:([p].[BusinessEntityID],

[Expr1030]) WITH UNORDERED PREFETCH)
|--Hash Match(Right Outer Join,

HASH:([pnt].[PhoneNumberTypeID])=([pp].[PhoneNumberTypeID]),
RESIDUAL:([AdventureWorks2008].[Person].[PersonPhone].[PhoneNumberTypeID] as
[pp].[PhoneNumberTypeID]=[AdventureWorks2008].[Person].[PhoneNumberType].
[Phone

| |--Clustered Index Scan
(OBJECT:([AdventureWorks2008].[Person].[PhoneNumberType].[PK_PhoneNumberType_
PhoneNumberTypeID] AS [pnt]))

| |--Nested Loops(Left Outer Join, OUTER
REFERENCES:([p].[BusinessEntityID], [Expr1029]) WITH UNORDERED PREFETCH)

| |--Nested Loops(Inner Join, OUTER
REFERENCES:([sp].[CountryRegionCode]))

| | |--Hash Match(Inner Join,
HASH:([sp].[StateProvinceID])=([a].[StateProvinceID]))

| | | |--Clustered Index Scan
(OBJECT:([AdventureWorks2008].[Person].[StateProvince].[PK_StateProvince_Sta
teProvinceID] AS [sp]))

| | | |--Nested Loops(Inner Join, OUTER
REFERENCES:([bea].[AddressID], [Expr1028]) WITH UNORDERED PREFETCH)

| | | |--Nested Loops(Inner Join, OUTER
REFERENCES:([p].[BusinessEntityID], [Expr1027]) WITH UNORDERED PREFETCH)

| | | | |--Nested Loops(Inner Join, OUTER
REFERENCES:([e].[BusinessEntityID], [Expr1026]) WITH UNORDERED PREFETCH)

| | | | | |--Clustered Index Scan
(OBJECT:([AdventureWorks2008].[HumanResources].[Employee].[PK_Employee_Busin
essEntityID] AS [e]))

| | | | | |--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[Person].[PK_Person_BusinessEntityID]
AS [p]),
SEEK:([p].[BusinessEntityID]=[AdventureWorks2008].[HumanResources].[Employee].
[BusinessEntityID] as [e].[

| | | | |--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[BusinessEntityAddress].[PK_BusinessE
ntityAddress_BusinessEntityID_AddressID_AddressTypeID] AS [bea]),
SEEK:([bea].[BusinessEntityID]=[AdventureWorks2008].[P

| | | |--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[Address].[PK_Address_AddressID] AS
[a]),
SEEK:([a].[AddressID]=[AdventureWorks2008].[Person].[BusinessEntityAddress].
[AddressID] as [bea].[AddressID]) ORDERED FO

| | |--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[CountryRegion].[PK_CountryRegion_Cou
ntryRegionCode] AS [cr]),
SEEK:([cr].[CountryRegionCode]=[AdventureWorks2008].[Person].[StateProvince].
[CountryRegionCode] as [sp].[Cou

| |--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[PersonPhone].[PK_PersonPhone_Busines
sEntityID_PhoneNumber_PhoneNumberTypeID] AS [pp]),
SEEK:([pp].[BusinessEntityID]=[AdventureWorks2008].[Person].[Person].[Busine
ssEntityID] a

|--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[Person].[EmailAddress].[PK_EmailAddress_Busin
essEntityID_EmailAddressID] AS [ea]),
SEEK:([ea].[BusinessEntityID]=[AdventureWorks2008].[Person].[Person].[Busine
ssEntityID] as [p].[BusinessEntityID]))

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 192

Book III
Chapter 2

The SQL Server
Optim

izer

Using Execution Plans to Figure Out What’s Happening 193

This query plan allows you to peer into the inner workings of the Query
Optimizer. Of course, you may be wondering, “Why would I ever want to
peer in there?” Sometimes you might just want to know whether the Query
Optimizer is using an index you’ve created.

For example, you might have created a composite index that included the
address lines, city, state, and postal code columns in the Person.Address
table specifically to optimize this query. Now you want to ensure that
the index is being used. Based on the query plan, you can verify whether the
index is or isn’t being used. The Person.Address table includes a
composite index named:

IX_Address_AddressLine1_AddressLine2_City_StateProvinceID_PostalCode

Because the index isn’t named in the query plan, you know it isn’t being
used by this query. You could either modify the index to make it more useful
or delete it to eliminate the overhead required to maintain the index.

You can easily become overwhelmed with the quantity of data in a query
plan. However, most of the data can be ignored. You typically use this to
verify only that a specific index you’ve created is being used in this query
plan.

For example, you could use the Database Engine Tuning Advisor to identify
and create the best indexes to create for specific queries. Later, you might
want to verify that the indexes you created are still being used. By viewing
the query plan, you can easily determine whether the indexes are being
used. If not, it’s probably time to run the Database Engine Tuning Advisor
again.

Using Execution Plans to Figure
Out What’s Happening

Execution plans are graphical representations of a query plan. You view
an execution plan to determine how the query optimizer is building the
query. Execution plans are often easier to view and interpret than the all-text
query plans. They also provide a lot more information on the cost of a query.

To display an execution plan, perform the following steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 193

Using Execution Plans to Figure Out What’s Happening194

3. Click the New Query button to open a new query window.

4. Right-click in the query window and choose Include Actual Execution
Plan.

You can also choose Display Estimated Execution Plan from the same
menu as Include Actual Execution Plan. The estimated plan displays
immediately based on the Optimizer’s best guesses. The actual plan
appears after the query runs and shows the actual times for the query
and each sub element.

5. Enter a query into the query window.

If you have AdventureWorks2008 installed, use the following query:

USE AdventureWorks2008;
GO
SELECT * FROM HumanResources.Employee;

6. Press F5 to execute the query.

7. Click the Execution Plan tab to view the execution plan.

As shown in Figure 2-2, the execution plan has four nodes with the
majority of the work done in the Clustered Index Scan node.

Execution plans are read from top to bottom, right to left. In this simple
query, the first part of the plan is the clustered index scan, and the last part
of the query is the SELECT statement.

Additionally, execution plans can easily become quite complex. Figure 2-3
shows the resulting execution plan from a query on the HumanResources.
vEmployee view in the AdventureWorks2008 database. The details can’t be
read on this graphic, but you can see that the execution plan is composed of
18 different nodes. When analyzing this query, you drill down into the icon at
the top right, and read from top to bottom and right to left.

Each of the steps has associated costs, which represent the steps’ portion of
the total cost. When you hover over the icon of an individual step, a ToolTip
graphic appears showing the costs associated with that step.

Figure 2-2:
A basic
execution
plan.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 194

Book III
Chapter 2

The SQL Server
Optim

izer

Using Execution Plans to Figure Out What’s Happening 195

Figure 2-4 shows a ToolTip for one of the Clustered Index Scan nodes within
the execution plan. The information that appears in the ToolTip is depend-
ent upon the operation performed by the node.

The following list describes the information that appears in the ToolTip:

✦ Physical Operation: Indicates the operation that will be used to imple-
ment the specified logical operation. Physical and logical operations
(see the following bullet) are sometimes the same. Common physical
operators are sort, nested loop, hash match, clustered index seek, clus-
tered index scan, and index scans.

Figure 2-4:
The
Clustered
Index Scan
ToolTip
from the
execution
plan.

Figure 2-3:
A complex
execution
plan.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 195

Client Statistics: Helping the Optimizer Do Its Job196

✦ Logical Operation: Conceptually describes what operation needs to be
performed. Common logical operators are sort, inner join, clustered
index seek, clustered index scan, outer join, and index scans.

✦ Actual Number of Rows: No surprise here. This identifies the number of
rows returned from the query.

✦ Estimated I/O Cost: The estimated total input/output cost for this node
(in seconds). Input/output cost is typically referring to disk activity but
can also include memory activity.

✦ Estimated CPU Cost: Estimated cost of all processor activity for this
node (in seconds).

✦ Estimated Operator Cost: The total cost (in seconds) of this node. This
is the sum of the I/O cost and the CPU cost.

✦ Estimated Subtree Cost: The cost of this node and all nodes preceding it
(to the right of this node).

✦ Estimated Number of Rows: The number or rows produced by this node.

✦ Estimated Row Size: Estimated size of the row (in bytes) produced by
this node.

✦ Actual Rebinds: Physical operators that initialize a connection with the
data, collect the data, and then close. A rebind is the number of times
the physical operator resets and repeats the initialize phase.

✦ Actual Rewinds: Rewind indicates that the inner result set for a join
query can be reused (and a rebind isn’t necessary).

✦ Ordered: Either true or false. If true, it indicates the data is ordered,
such as alphabetically or numerically in ascending or descending order.
For example, a clustered index would be ordered when first accessed,
but might not be ordered after being merged with results of other nodes.

✦ Node ID: A number identifying a node. Nodes are numbered from left to
right and from top to bottom (not right to left, as you would read the
nodes) and start with the number 0.

Client Statistics: Helping the Optimizer Do Its Job
The Optimizer uses statistics to help it create estimated query plans.
Statistics within SQL Server work the same way as they do in other
applications.

For example, consider an orange buyer purchasing a truckload of oranges.
The price of oranges varies depending on how sweet or how acidic the

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 196

Book III
Chapter 2

The SQL Server
Optim

izer

Client Statistics: Helping the Optimizer Do Its Job 197

oranges are, so the first thing she needs to do is determine how sweet the
oranges are. She can do this in one of two ways:

✦ Take a sample from every orange on the truck and measure the sweet-
ness and acidity.

✦ Remove a statistical sampling of oranges and measure the sweetness
and acidity of the sample.

Bet that the latter choice is picked. By calculating the average and deviation
of the sample of oranges, accurate predictions of the entire truckload of
oranges can be made.

The Optimizer uses statistics when trying to determine the usefulness of
available indexes. When determining the usefulness of an index, the
Optimizer must determine two things:

✦ What’s the density of this index for this query? A low density is
desired.

✦ What’s the selectivity of this index for this query? A high selectivity is
desired.

Understanding the density of an index
Density refers to the number of duplicate rows in a column.

Consider a business that does business in Virginia Beach, Virginia. More than
90 percent of the customers live in Virginia Beach. The other 10 percent of
the customers live in nearby cities or are tourists from around the country.

The business has a database with a table named Customers. On the
Customers table, an index has been created on the City column. If the follow-
ing query were executed, the Optimizer would not use the index on the City
column because the index is too dense.

SELECT *
FROM Customers
ORDER BY City

On a Customers table with 10,000 entries, about 9,000 entries are identical.
Using the index would not increase the performance of the query.

However, this same index might be useful for another query. The following
query retrieves a list of customers who do not live in Virginia Beach.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 197

Client Statistics: Helping the Optimizer Do Its Job198

SELECT *
FROM Customers
WHERE City <> ‘Virginia Beach’
ORDER BY City

By using the index, the entire table of 10,000 rows can quickly be whittled to
only 1,000 rows. With the index, the Optimizer is able to reduce the amount
of data that needs to be searched to only 10 percent of the total. In this case,
the index isn’t considered dense for the query.

Understanding the selectivity of an index
Selectivity is the number of rows returned by a query. The goal is to be highly
selective (return the least number of rows).

Primary keys are created to enforce uniqueness on a table. With a primary
key, every row is guaranteed to be unique (one of kind without any
duplicates).

A query that retrieves a single row based on the primary key is highly selec-
tive. For example, the following query would return a single row based on
the primary key of CustomerID:

SELECT *
FROM Customers
WHERE CustomerID = 1

Using statistics
How does the Optimizer know whether an index has either high selectivity
or low density and should be included in a query plan? Consider the earlier
example of the Customers table with 10,000 rows.

The same as the earlier example of the orange buyer who had two choices to
determine the sweetness of the oranges, the Optimizer also has two possible
choices to determine the usefulness of the indexes:

✦ Look at each of the 10,000 rows and make a determination on the selec-
tivity and density.

✦ Look at a statistical sample of the 10,000 rows and make a determination
on the selectivity and density.

For speed and performance, the Optimizer chooses the latter. Statistics are
automatically created on indexes by default, and the Optimizer has these
available for use.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 198

Book III
Chapter 2

The SQL Server
Optim

izer

Client Statistics: Helping the Optimizer Do Its Job 199

With a 10,000-row Customers table, the index would also be 10,000 rows, but
the statistics would be considerably less. The distance between rows in the
statistics in the index is referred to as steps.

For example, on an index with 10,000 rows, the database management
system might choose to create 300 statistics samples. When you do the
math, 10,000 / 300 = 33.33, which rounds up to 34. With this example, the sta-
tistics would be created with the following data from the index:

✦ The first row of the statistics is always the first row of the index.

✦ Middle rows for the statistics are every 34th row after the first.

✦ The last row of the statistics is always the last row of the index.

Therefore, if the Optimizer needs to determine whether the index is useful
for a given query, instead of having to search through 10,000 rows to deter-
mine the selectivity and density, it has to search through only 300 rows.

Automatically creating and maintaining statistics
One of the most important concepts to remember with statistics is to let the
system do the work. As long as statistics are created and maintained by the
system, you won’t have to do anything else on the majority of databases.

Statistics are set to be automatically created and updated by default with the
following two settings:

✦ Auto Create Statistics: This setting specifies that the Optimizer automat-
ically create any missing statistics during optimization of a query.
Statistics could be missing if they weren’t created when the index was
created, or they were deleted afterward.

✦ Auto Update Statistics: This setting specifies that SQL Server will auto-
matically update statistics. If the Optimizer evaluates statistics that it
determines are out of date, the Optimizer automatically updates them.
Statistics can become out of date when the underlying data changes
significantly.

If you suspect that statistics aren’t being maintained on a database, check
the properties of the database with these steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 199

Client Statistics: Helping the Optimizer Do Its Job200

3. Browse to your database in the Databases container.

4. Right-click your database and choose Properties.

5. In the Database Properties dialog box, select the Options page.

As shown in Figure 2-5, Auto Create Statistics is set to True, and Auto
Update Statistics is set to True. These are the defaults for both settings.

Figure 2-5:
Database
properties
showing
statistics
settings.

19_179543-bk03ch02.qxp 8/23/08 12:34 AM Page 200

Chapter 3: Using the
Query Designer

In This Chapter
� Launching the Query Designer

� Creating queries with the Query Designer

� Editing queries within the Query Designer

� Exporting results

� Exporting queries

Databases are great sources of information, but retrieving the data
can be a challenge. Thankfully, SQL Server 2008 includes the Query

Designer — a great GUI (Graphical User Interface; pronounced GOO-ee) —
that makes creating and modifying queries easy. With a little pointing and
clicking, you can create queries to access, and even modify, any data in your
database.

This chapter shows you how to use the Query Designer to create and edit
queries. With the queries created, you can execute them to access your
data, export the result set, and then save your queries.

Creating a New Query
A query is a request for data; it’s how you ask questions of the database. For
example, suppose you want to retrieve a listing of everyone in the database
by first name, last name, and e-mail address. You can create and execute a
query to retrieve a listing of this data.

As with most work in SQL Server 2008, you start in the SQL Server
Management Studio (SSMS).

With SSMS open, the first step is to launch the Query Designer. As with most
tools in Microsoft products, you can achieve your objective by using multi-
ple methods. The following steps show one method of accessing and using
the Query Designer:

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 201

Creating a New Query202

1. Using the SSMS Object Explorer, browse to the AdventureWorks
sample database within the Databases container.

2. Right-click the AdventureWorks2008 database and choose New Query
to open a new query window.

A blank query window opens, and the SQL Editor toolbar appears, as
shown in Figure 3-1. Because you create this query window from the
AdventureWorks2008 database, queries in this window default to
AdventureWorks2008 unless you change the context on the SQL Editor
toolbar.

You can also click the New Query button to open a new query window.
However, you’re often prompted to connect to the server, and instead of
setting the context to the AdventureWorks2008 database, the context is
set to the Master database. Unless you change the database from Master
to AdventureWorks2008, your queries are executed against the Master
database, not AdventureWorks2008.

3. Right-click anywhere in the blank query window and choose Design
Query in Editor.

The Query Designer opens, and the Add Table dialog box appears. All
the tables in the AdventureWorks2008 database appear in the Add Table
dialog box.

4. Select the Person(Person) table, click the Add button, and then click
Close in the Add Table dialog box.

Three panes are open in the Query Designer. The top pane holds the
Person (Person) table, the middle pane is blank, and the bottom pane is
beginning to build your query.

5. In the Person(Person) table, select the check boxes next to the
FirstName, LastName, and Title columns.

You have to scroll down to see all the columns.

Figure 3-1:
The SQL
Editor
toolbar with
context set
to the
Adventure
Works
database.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 202

Book III
Chapter 3

Using the
Query Designer

Creating a New Query 203

As you select each of the columns, the bottom two panes are changing.
In the bottom pane, your query is built as:

SELECT FirstName, LastName, Title
FROM Person.Person

6. With your query built, you can now execute it. Click OK to return to
the query window.

The query you built in the Query Designer now appears in the query
window.

7. Click the Execute button on the SQL Editor toolbar.

At the bottom of the screen, you see the results listed in the
AdventureWorks2008 database — more than 19,000 rows of people
and addresses.

Instead of using the Query Designer, you could have typed in the query from
scratch. Alternatively, you could have copied the query from somewhere
and pasted it into the query window. It doesn’t matter how the query gets
into the query window; when the query is there, you can execute it.

Exploring the Query Designer
The Query Designer has three or four panes depending on how the Query
Designer is launched. When launched from the query window, only three
panes appear. When launched from the Views container (we show you how
in a moment), it includes a fourth pane. Figure 3-2 shows the Query Designer
with all four panes.

✦ Diagram pane (shown with the Person(Person) table): This pane pro-
vides a graphical display of the selected tables. If multiple tables are
included, it shows the relationships among the tables. It also allows you
to pick the specific columns that you want to appear in your query.

✦ Criteria pane (shown with FirstName, LastName, and Title columns):
This pane allows you to specify options for your query, such as which
rows to display or the order of the output.

✦ SQL pane (shown with SELECT statement): Your SQL statement appears
here as you make your selections in the Diagram and Criteria panes.

✦ Results pane (the bottom pane with the results of the query): After
your query is created, you can execute it and see the results here, but
only if you access the Query Designer via the Views container.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 203

Creating a New Query204

Any of the four panes can be made visible or invisible. For example, after
selecting the tables and columns in the Diagram pane, you can make the
pane invisible so that you have more room to work with on your screen.
Simply right-click the Query Designer and choose Pane. You can select
Diagram, Criteria, SQL, or Results, to toggle the visibility of each of these
panes. The only exception is when you’re working in the Query Designer
from the query window. In this view, the Results pane is dimmed and not
selectable.

The Query Designer allows you to build more than simple SELECT queries.
Generally, the SELECT query allows you to ask questions of the database.
However, you can also create INSERT, UPDATE, and DELETE queries in the
Query Designer.

An INSERT query allows you to add data to the database, such as when you
hire a new employee. An UPDATE query allows you to modify data, such as a
different phone number or e-mail address for an existing employee. A
DELETE query allows you to delete rows, such as when an employee wins
the lottery and quits the job.

Figure 3-2:
The Query
Designer
with four
panes
showing.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 204

Book III
Chapter 3

Using the
Query Designer

Creating a New Query 205

Launching the Query Designer
via the Views container
Earlier in this chapter, we show you how to create your first query by
launching the Query Designer from the AdventureWorks database and using
the New Query button. The Query Designer has more capabilities than those
we’ve explored so far; however, it has two significant limitations when
launched from the query window:

✦ Queries can’t be executed from within the Query Designer: You must
exit the Query Designer before you execute the query and see your
results.

✦ Queries can’t be easily modified: If your results aren’t what you want,
you must launch the Query Designer again and start over.

To overcome these limitations, launch the Query Designer from the Views
container. When launched from the Views container, the Query Designer is
sometimes referred to as the Views Designer. Your query is built the same
way and, if desired, you can copy the query from the Query Designer and
paste it into the query window.

In the following steps, you launch the Query Designer from the Views con-
tainer, and create a query to retrieve a listing of the employee names and
titles.

1. With SSMS open, use the Object Explorer to browse to the Databases |
AdventureWorks2008 | Views container.

It looks similar to Figure 3-3.

Figure 3-3:
Using
Object
Explorer to
browse to
the Views
container.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 205

Creating a New Query206

2. Right-click Views and choose New View.

The Query Designer opens, and the Add Table dialog box appears. Below
the standard toolbar, you might also notice an additional toolbar — the
View Designer toolbar.

3. Select the Person(Person) table and click Add. Select the Employee
(HumanResources) table and click Add. Click Close.

The Query Designer is open with your two tables (Person and Employee).
Click the title of either table to drag and drop within the Diagram pane.

The connector between the two tables identifies the relationship. The
relationship has been defined on the BusinessEntityID (primary key) in
the Person table and the BusinessEntityID (foreign key) in the Employee
table. The connector has a key symbol on both sides. These icons indi-
cate a one-to-one relationship between the two tables.

4. Scroll through the columns in the Employee table.

The Employee table doesn’t have any names or titles. AdventureWorks2008
is designed so that you see only the names of people in the Person table.
Because you added the Employee table, however, your SQL statement
now includes an INNER JOIN.

5. Select the check boxes next to the FirstName, LastName, and Title
columns in the Person(Person) table.

The SQL pane shows that your query is built similar to how it was built
earlier. A significant difference is that each column name (FirstName,
LastName, Title) is prefaced with the name of the table you selected the
column from (Person.Person). Because you now have more than one
table in your query, the tables are specified with the column name. Your
query looks like the following code:

SELECT Person.Person.FirstName, Person.Person.LastName,
Person.Person.Title

FROM HumanResources.Employee
INNER JOIN Person.Person
ON HumanResources.Employee.BusinessEntityID =

Person.Person.BusinessEntityID

Aren’t you glad you didn’t have to type that in?

The T-SQL code generator in the Query Designer occasionally gets a
little rambunctious and adds additional lines, such as AND Person.
Person.BusinessEntityID = HumanResources.Employee.
BusinessEntityID. If more than one identical comparison is added, it
can be deleted. Only one of the comparions is needed.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 206

Book III
Chapter 3

Using the
Query Designer

Editing Your Query 207

6. With the query created, you can execute it. Choose Execute SQL from
the Query Designer drop-down menu. (You can also press Ctrl+R on
your keyboard or click the red exclamation mark on the View Designer
toolbar.)

After executing the query, the results — a listing of 290 employees —
appear in the Results pane.

7. To narrow your search, add filters. Below the Filter column to the
right of LastName, type Shoop and then press Enter.

Your text changed to =N‘Shoop‘. The N indicates Shoop is displayed in
Unicode characters. Your SQL statement is modified by adding a WHERE
clause.

8. Execute your query by clicking the Execute SQL button (the red excla-
mation mark on the toolbar).

Your query returns a single row for Margie Shoop.

9. Right-click the SQL pane and choose Select All. Right-click again and
choose Copy.

Your query is on the Windows clipboard. If desired, paste it into a query
window and run it from there.

10. Right-click AdventureWorks2008 in the Object Explorer and choose
New Query. Right-click the query window and choose Paste.

11. Click the Execute button to run this query in the query window.

Editing Your Query
You can modify any query that you create. If you’re like most people, you
probably won’t get your query perfect the first time you try. Instead, the
process involves a lot of editing — one of the reasons why the View Designer
(the Query Designer accessible from the Views container) is so valuable.

Queries created in the View Designer can be tweaked (and ran) as many
times as you like until it’s exactly how you want. After you’re happy with the
results, copy your query and paste it into the query window.

Modifying queries within the query window is also possible. For example,
say you create the following query by using the Query Designer from the
query window. The query provides a listing of names and titles for all
employees in AdventureWorks2008.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 207

Editing Your Query208

SELECT Person.Person.FirstName, Person.Person.LastName,
Person.Person.Title

FROM HumanResources.Employee INNER JOIN
Person.Person ON

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID

However, now the boss has asked you to include job titles. To do this, you
could return to the Query Designer and re-create the entire query from
scratch. However, being familiar with the database, you know that the
JobTitle column is in the HumanResources table. You can add that column to
the column list. You also have to add a comma after the Person.Person.Title
column.

SELECT Person.Person.FirstName, Person.Person.LastName,
Person.Person.Title, HumanResources.Employee.JobTitle

FROM HumanResources.Employee INNER JOIN
Person.Person ON

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID

Likewise, if the boss asks for the columns to be in a different order, such as
Last Name first, you can cut and paste the column names into the exact
order you want. The query window works similar to any basic text editor.

You can filter the data differently by using the filter in the Query Designer. By
specifying different search conditions, you can retrieve different data. Some
of the possible search conditions are

✦ IN: Allows you to specify a list of possibilities. For example, IN
(Shoop, Smith, Jones) returns a listing for any matches in the list.

✦ LIKE: Allows a search based on only partial matches. The % symbol is
used as a wildcard. LIKE S% returns the matches that begin with S.
LIKE %S returns the matches that end with S.

✦ BETWEEN: Allows a search based on a range. For example, BETWEEN A
and C returns a list with anything that starts with A, B or C.

✦ IS NULL (or IS NOT NULL): Allows you to return a listing based on
whether a specific column is NULL. For example, typing IS NULL in the
EmailAddress filter would cause the query to return only rows where
the EmailAddress had a NULL value.

To see how these filters work within the Query Designer, follow these steps:

1. With SSMS open, use the Object Explorer to browse to the Databases |
AdventureWorks2008 | Views container. Right-click Views and choose
New View.

2. Select the Person(Person) table and click the Add button. Click Close.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 208

Book III
Chapter 3

Using the
Query Designer

Exporting Your Query or Results 209

3. Select the check boxes next to the FirstName, MiddleName, LastName,
and Title columns.

4. In the Filter column that’s next to LastName, type Shoop and press
Enter. Click the Execute SQL button (the red exclamation mark) to
execute your query. Click the close button.

Your query returns two rows — the only two rows that have an exact
match of Shoop in the LastName column.

5. Change the Filter column to IN(Shoop, Smith, Jones) and press Enter.
Execute the query.

Your query returns 189 rows — the rows with a last name of Shoop,
Smith, or Jones.

6. Change the Filter column to Like S% and press Enter. Execute the
query.

Your query returns 2,130 rows — the rows that have a last name that
starts with S.

7. Change the Filter column to BETWEEN A and C and press Enter.
Execute the query.

Your query returns 2,116 rows — the rows that have a last name that
starts with A, B, or C.

8. Remove the filter in the LastName column by highlighting it and
pressing the Delete key. In the Filter column next to MiddleName, type
NULL and press Enter. Execute the query.

Notice that the word NULL in the filter is changed to IS NULL. Your
query returns 8,499 rows — the rows that have NULL for the middle
name.

You can create some sophisticated queries by using the Query Designer. By
making some slight editing changes, you can change your query to give you
exactly what you (and your boss) need from the database.

Exporting Your Query or Results
Both queries and results of queries can be exported or saved for later.

Say the sales department staff regularly asks you to retrieve a listing of all
the sales to a specific customer; however, the customer they’re interested in
is different each time they ask. You can create a query each time, pull it up,
edit it, and retrieve exactly the information you need.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 209

Exporting Your Query or Results210

Queries are saved as SQL scripts with the .sql extension. By double-
clicking an SQL query file, the SQL script opens in a new query window in
SSMS. (Similar to how Microsoft Word opens when you double-click a docu-
ment with a .doc extension.)

So far, you’ve ran the queries, but no one (other than you) has seen the
results. By saving the results to a file, you can give them to others. For exam-
ple, you can share the results in an e-mail attachment. How the results are
saved is dependent on how they’re displayed.

You can save results of queries in three different ways. Each choice is
selected via a button on the SQL Editor toolbar, or by choosing one via the
Query➪Results To menu item. The choices are:

✦ Results to Grid: The grid is the default output. It’s similar to a Microsoft
Excel Worksheet grid, with each data item having its own cell. The
output can be saved to a comma-separated value file (CSV), which can
be easily read by Microsoft Excel or a text editor.

✦ Results to Text: The output is in a text format, using tabs to align the
columns. The output can be saved as a report file (RPT), which can be
read by any text editor.

✦ Results to File: As soon as a query is run, you’re prompted for a name to
save the results to a file. It creates the report file, which can be read by
any text editor.

Saving the query
In this section, you give saving a query a try. First, you build a query with
the Query Designer to retrieve all the sales for a given customer. Then, you
save the query so that you can easily call it again.

1. With SSMS open, use the Object Explorer to browse to the
AdventureWorks database.

2. Right-click the AdventureWorks2008 database and choose New Query.

3. Right-click the query window and choose Design Query in Editor.

The Query Designer appears with the Add Table dialog box visible.

4. Scroll to the SalesOrderHeader(Sales) table. Select it and click the
Add button.

5. Select the check boxes next to the CustomerID, OrderDate, and
TotalDue columns.

6. In the Filter column to the right of CustomerID, type 11001 and
click OK.

The following query is in the query window.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 210

Book III
Chapter 3

Using the
Query Designer

Exporting Your Query or Results 211

SELECT CustomerID, OrderDate, TotalDue
FROM Sales.SalesOrderHeader
WHERE (CustomerID = 11001)

7. Click the Execute button to execute the query.

8. To save the query, press Ctrl+S.

The Save File As dialog box appears.

9. Browse to the root of C:\ and click the New Folder button. In the New
Folder dialog box, type SQLScripts so you have a C:\SQLScripts folder.

10. In the File Name box, type CustomerSales.sql and click the Save
button.

That’s it. You saved your query. You can open it again anytime you want.

11. Click the X in the upper-right to close the query window.

Saving the results
Saving the results is as easy as saving the query. Use the following steps to
open the query you just saved and save the results of the query. When
saving the file, you have two choices:

✦ Comma-separated value file (CSV) format

✦ Report file (RPT) format

In the following steps, you retrieve the script you created in the previous
steps and run it. With the results showing, you save them in a comma-
separated value format and a report format.

1. With SSMS open, choose File➪Open➪File.

2. In the Open File dialog box that appears, browse to the C:\SQLScripts
folder and select the CustomerSales.sql script you created in the pre-
vious section, “Saving the query.” Click Open.

Your script is open. However, by default, the Master database is
selected. If you ran the script against the Master database, it would fail.
You need to change this to point to the AdventureWorks2008 database.

3. Choose the AdventureWorks2008 database from the database drop-
down menu on the toolbar.

As shown in Figure 3-4, the database listing is in alphabetical order. With
the Master database showing, you have to scroll to the AdventureWorks
database.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 211

Exporting Your Query or Results212

4. To query information on a different customer, change the CustomerID
of 11001 to 11050. Click the Execute SQL button to execute your
query.

You can change the CustomerID to whatever customer you’re interested
in. The point is that you don’t have to re-create the entire query.

5. Right-click the Results pane and choose Save Results As.

6. In the Save Grid Results dialog box that appears, browse to the
C:\SQLScripts folder. Type Customer11050 in the File Name box and
click Save.

The results are saved as Customer11050.csv (a comma-separated
value file).

7. Change the Results pane to show the data as text. Choose
Query➪Results To➪Results to Text. Press F5 to rerun the query.

Alternately, you could press Ctrl+T to change it to text. Regardless, the
results should be displayed in text in the Results pane.

8. Right-click the Results pane and choose Save Results As.

9. In the Save Results dialog box that appears, browse to the
C:\SQLScripts folder and type Customer11050 in the File Name box.

The results save as Customer11050.rpt (a report file that can be read
by any text editor).

Figure 3-4:
Selecting the
Adventure
Works2008
database.

20_179543-bk03ch03.qxp 8/23/08 12:34 AM Page 212

Chapter 4: Setting Query Options

In This Chapter
� Configuring query options with performance and control parameters

� Selecting formatting options for result sets

When executing queries in the SQL Server Management Studio (SSMS)
query window, you have the capability to modify how these queries

execute by using the Query Options page. Two categories of query options
can be manipulated:

✦ Execution: You can select General, Advanced, and ANSI standard
options to use when executing your queries.

✦ Results: You can select various formatting options depending on
whether you want your results in a grid format or a text format.

Configuring Query Options with Performance
and Control Parameters

The Execution options allow you to specify many different parameters for
your query. Parameters are specified on three separate pages:

✦ General: Basic query settings, such as how many rows can be returned.

✦ Advanced: Many advanced settings, such as those that can be config-
ured with SET statements, are selectable on this page.

✦ ANSI: Transact-SQL is ANSI compliant — it can be configured to comply
with ANSI specifications. The ANSI settings allow you to modify the
specifications to either comply with ANSI specifications, or work
according to business rules.

To access the Query Options dialog box, follow these steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. Click the New Query button to open a new query window.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 213

Configuring Query Options with Performance and Control Parameters214

3. Right-click the query window and choose Query Options.

You can also select the Query drop-down menu and choose Query
Options. The Query Options dialog box appears, as shown in Figure 4-1.
The Query Options dialog box defaults to Execution | General.

General: Configure basic query options
The General settings allow you to select some basic options for the query.

✦ SET ROWCOUNT: Limits the number of rows for your query. For exam-
ple, if you want only five rows returned, you set this to 5. When set to
the default of 0, all rows from the query are returned.

✦ SET TEXTSIZE: Specifies the number of bytes displayed in text
data types (varchar(), nvarchar(), text, and ntext). A default
of 2GB (2,147,483,647 bytes) supports the large value data types —
varchar(max) and nvarchar(max) but doesn’t affect the XML data
type. For example, if a column has 400 bytes of data but the summary is
contained in the first 50 bytes, the text size can be limited to only 50
bytes.

✦ Execution Time-out: Specifies the number of seconds to wait before can-
celing the query. The default of 0 indicates that the query won’t time-
out. If your database is experiencing many locks, set a time-out to stop
the query.

✦ Batch Separator: In Transact-SQL, GO (the default) is used to separate
batches within a script. You might need to run a script that was created
in something other than T-SQL that uses a different batch separator.
Instead of changing the script, change the batch separator here.

Figure 4-1:
The General
settings of
the Query
Options
dialog box.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 214

Book III
Chapter 4

Setting Query
Options

Configuring Query Options with Performance and Control Parameters 215

Without a batch separator, the database engine runs the script from
beginning to end. However, some lines within a script must run sepa-
rately. For example, a script that creates a database and tables within
the database must be run as separate batches. The partial script might
look like the following code:

USE Master;
GO
CREATE Database MyDatabase;
GO
CREATE table . . .

✦ Reset to Default: Click this button to restore the defaults. You can also
click this button to see what the defaults are.

Advanced: Configure advanced execution settings
By selecting Advanced in the Query Options dialog box, you access the
advanced execution settings. Most of these are useful when troubleshooting
performance issues with a query. Figure 4-2 shows the Advanced settings
that can be configured.

Although manipulating these settings in the Query Options dialog box
affects the query window, many of these same settings are commonly used
in scripts and stored procedures to affect the environment when the script
or stored procedure runs.

Any setting that begins with SET (which we describe in the following list)
can be included within code. By searching SQL Server Books Online, you can

Figure 4-2:
The
Advanced
settings of
the Query
Options
dialog box.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 215

Configuring Query Options with Performance and Control Parameters216

find the exact syntax. For example, entering SET NOCOUNT into SQL Server
Books Online finds the article for this command and shows the syntax is:

SET NOCOUNT { ON | OFF }

You can access Books Online by choosing Start➪All Programs➪Microsoft
SQL Server 2008➪Documentation and Tutorials➪SQL Server Books Online.

✦ SET NOCOUNT: Normally, when a query runs, the Messages tab in the
result set indicates how many rows were retrieved. The count can be
suppressed by checking this box. If your result set is very large, sup-
pressing the count might help performance. The setting is cleared by
default.

✦ SET NOEXEC: Causes the batch to be compiled but not executed. Use
this when you want to validate both the syntax and the objects (such as
table names) within a batch. Unlike PARSEONLY, the NOEXEC setting ver-
ifies that the objects exist in the database (and the spelling is accurate).
The default is cleared.

✦ SET PARSEONLY: This setting verifies the syntax of the script. Pressing
the blue Parse button (✓) on the toolbar performs the same function.
The Parse button is next to the Execute button (! Execute) on the tool-
bar. The default is cleared.

✦ SET CONCAT_NULL_YIELDS_NULL: With this set (the default), any time
a query concatenates one value with another and one of the values is
NULL, the result is NULL. For example, if the first name, middle name,
and last name columns in a table are concatenated (logically joined
together) and the middle name is NULL, then the entire name is inter-
preted as NULL.

✦ SET ARITHABORT: With this set (the default), arithmetic errors (such
as divide by zero errors) cause the query to terminate. Clearing the
check box causes NULL to be returned for values (whenever possible)
instead of an error.

This setting interacts with SET ANSI_WARNINGS in the ANSI settings. If
both settings are selected (the default), arithmetic errors cause the
faulty query to terminate. However, if other queries are included in the
batch the faulty queries still run. If SET ARITHABORT is selected but SET
ANSI WARNINGS isn’t selected, the entire batch is terminated.

✦ SET SHOWPLAN_TEXT: Setting this check box causes a query plan to
be returned instead of the results of the query. (The Query Optimizer
creates the query plan.) You use this setting to determine whether spe-
cific indexes are being used. For example, the following output was

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 216

Book III
Chapter 4

Setting Query
Options

Configuring Query Options with Performance and Control Parameters 217

created after turning on this setting for a query. The clustered index on
primary key BusinessEntityID is being used for the query.

StmtText
--
SELECT *
FROM HumanResources.Employee
WHERE BusinessEntityID = 1

StmtText
--

|--Compute Scalar
(DEFINE:([AdventureWorks2008].[HumanResources].[Employee].[Organizat
ionLevel]=[AdventureWorks2008].[HumanResources].[Employee].[Organiza
tionLevel]))

|--Compute Scalar
(DEFINE:([AdventureWorks2008].[HumanResources].[Employee].[Organizat
ionLevel]=[AdventureWorks2008].[HumanResources].[Employee].[Organiza
tionNode].GetLevel()))

|--Clustered Index Seek
(OBJECT:([AdventureWorks2008].[HumanResources].[Employee].[PK_Employ
ee_BusinessEntityID]),
SEEK:([AdventureWorks2008].[HumanResources].[Employee].[BusinessEnti
tyID]=CONVERT_IMPLICIT(int,[@1],0)) ORDERED FORWARD)

✦ SET STATISTICS TIME: Activating this setting displays the number of
milliseconds required to parse, compile, and execute each statement.
You use this to capture basic time statistics of queries. This is cleared by
default.

✦ SET STATISTICS IO: Activating this setting displays statistics on input/
output activity for the query. It indicates the scan count (number of
scans performed for the query), logical reads (number of pages read
from cache), physical reads (number of pages read from the disk), and
read-ahead reads (number of pages placed into cache for the query).
This setting is cleared by default.

✦ SET TRANSACTION ISOLATION LEVEL: This setting can be used to con-
trol the locking and row versioning behavior of a query. For most data-
bases, multiple users can read the data at the same time. However, if one
user wants to modify that data, it’s locked — other users can’t access it
until the modification is complete. This prevents dirty reads — reading
modified data that hasn’t been committed and might not be committed.

Occasionally, in advanced applications, the default behavior is modified
to improve the performance of the database. By default, the READ
COMMITTED transaction isolation level is set. The transaction isolation
levels that can be selected via this property page are

• READ COMMITTED: Only data that has been committed to the data-
base can be read within this query.

• READ UNCOMMITTED: Data that has been changed by one transac-
tion (but not committed yet) can be read by this transaction.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 217

Configuring Query Options with Performance and Control Parameters218

• REPEATABLE READ: Data being modified by this transaction can’t
be read or modified by any other transaction.

• SERIALIZABLE: This is the most restrictive transaction isolation
level. Data being read or modified by this transaction can’t be read
or modified by any other transaction.

✦ Modifying the transaction level is typically done only in very large data-
bases. Changing the transaction level causes side effects with data, such
as dirty reads, non-repeatable reads, phantom reads, and lost updates.
This is typically done only within a stored procedure using the SET
TRANSACTION ISOLATION LEVEL setting. By using the SET statement,
the SNAPSHOT TRANSACTION ISOLATION LEVEL can be set, but it can’t
be set via the Query Options dialog box.

✦ SET DEADLOCK_PRIORITY: The default of this setting is Normal.
By changing it to Low, your query loses any deadlock conflict and is
terminated.

Deadlocks occur when the database engine recognizes that two different
processes are waiting on a resource (such as rows within a table) that is
locked by the other process. For example, Maria can run a query that
locks the Sales table and then tries to access the Customers table. At the
same time, Jose locks the Customers table and tries to access the Sales
table.

Maria’s Activity Jose’s Activity

Transaction started. Transaction started.

Transaction accesses and Transaction accesses and
locks Sales table. locks Products table.

Transaction tries to access Transaction tries to access
Products table. Sales table.

The processing is deadlocked at this point. Jose can’t access the Sales
table until Maria releases it. Maria won’t release the Sales table until she
can access the Products table that Jose has locked while waiting for the
Sales table. Thankfully, SQL Server 2008 recognizes the deadlock condi-
tion and terminates one of the processes. The default of Normal for the
DEADLOCK_PRIORITY sets the priority the same for all transactions.
The newest transaction is designated the deadlock victim and is
terminated.

✦ SET LOCK TIMEOUT: This setting specifies how long (in milliseconds)
your query waits for locks to be released. When set to –1 (the default),
queries wait as long as necessary. A value of 0 causes queries to termi-
nate with an error message as soon as a lock is encountered.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 218

Book III
Chapter 4

Setting Query
Options

Configuring Query Options with Performance and Control Parameters 219

✦ SET QUERY_GOVERNOR_COST_LIMIT: This setting prevents long-
running queries from running. Before a query runs, the Query Optimizer
parses and optimizes it and determines an estimated cost in seconds. If
the estimated cost is greater than this setting (also in seconds), then the
query doesn’t run. The default of 0 allows all queries to run no matter
how long they’re estimated to take.

✦ Suppress Provider Message Headers: SQL Server 2008 interacts with
many different data sources by using database providers, such as
Microsoft SQL Native Client OLE DB Provider and Microsoft OLE DB
Provider for Oracle. Providers often return messages that can be useful
when troubleshooting queries that are failing at the provider level.
Activate this setting to see these messages; it’s off by default.

✦ Disconnect After the Query Executes: This setting causes the connec-
tion with the server to close after a query executes. Subsequent queries
will fail until the connection is reestablished. Use this setting when
you’re working on a production server that is running close to capacity
and limited resources are available.

✦ Reset to Default: Click this button to restore the defaults. You can also
click this button to see what the defaults are.

ANSI: Configuring ANSI parameters
ANSI (American National Standards Institute) adopted a standard for the
SQL language in 1986 and then updated it in 1992. The standard adopted in
1992 is commonly referred to as the SQL-92 standard.

Additionally, the International Organization for Standardization (ISO)
adopted an SQL standard formally known as ISO 9075 and published as the
ISO/IEC SQL-92 standard. The settings in this section are sometimes referred
to as ANSI SQL-92 standards, and at other times referred to as ISO settings.
Within SQL Server 2008, both standards are the same.

ISO isn’t an acronym for International Organization for Standardization. (If it
was an acronym, it looks like I’m confused and should have listed it as IOS.)
As an international organization, it was recognized that its name would be
represented differently in different languages. The founders adopted the
organization’s short name of ISO from the Greek word isos, meaning equal.

By setting various ANSI parameters, you can cause SQL Server 2008 to mimic
the functionality of the ANSI SQL-92 standard for SQL. The SQL-92 standard
was created so that the SQL language would be standardized between differ-
ent versions of SQL. However, many subtle differences exist among the dif-
ferent versions of SQL. Microsoft uses Transact-SQL, which includes its own
subtle differences.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 219

Configuring Query Options with Performance and Control Parameters220

The ability to modify these parameters is useful if you’re using scripts that
were created from another version of SQL.

For example, a script written for an Oracle database could be copied and
pasted into the query window, but it would function a little differently.
Specifically, because an Oracle database uses explicit transactions, every
INSERT, UPDATE and DELETE statement needs to be committed with a
COMMIT TRANSACTION statement.

Because SQL Server 2008 uses implicit transactions, every INSERT, UPDATE
and DELETE statement automatically commits to the database when it’s exe-
cuted. Extra COMMIT TRANSACTION statements that are required with the
Oracle script are interpreted as errors within SQL Server 2008 unless the SET
IMPLICIT_TRANSACTIONS check box is selected or the SET IMPLICIT
TRANSACTIONS ON statement is executed at the beginning of the script.

Figure 4-3 shows the ANSI standard settings that can be selected for SQL
Server 2008. If SET ANSI_DEFAULTS was selected, all the check boxes would
be selected.

✦ SET ANSI_DEFAULTS: By selecting this check box, all the check boxes
on this page will be selected. By default, this box is dimmed, indicating
that some ANSI defaults are selected, but not all of them. Clicking it once
clears the ANSI defaults; clicking it again sets them all.

✦ SET QUOTED_IDENTIFIER: This setting allows identifiers (names of
objects) to be identified with quotation marks. Within T-SQL, objects are
commonly identified with brackets ([]). However, the identifier marks
can be omitted if the name of the object isn’t a reserved word and has

Figure 4-3:
The ANSI
settings of
the Query
Options
dialog box.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 220

Book III
Chapter 4

Setting Query
Options

Configuring Query Options with Performance and Control Parameters 221

no spaces within it. For example, if you have an Employees table and the
SET QUOTED_IDENTIFIER check box is selected, a SELECT statement
could be written in three ways:

SELECT * FROM Employees
SELECT * FROM [Employees]
SELECT * FROM “Employees”

✦ The marks (quotes or brackets) used to identify objects are delimiters.
Delimiters are required if a name includes spaces, such as [Employee
Address], or is a reserved word, such as a table named [Table] in a furni-
ture business’ database.

✦ SET ANSI_NULL_DFLT_ON: When a table is created or altered, you can
create columns and specify whether NULL data is allowed. If specified as
NOT NULL, data must be entered into the column. If specified as NULL,
data can be omitted, and a NULL value can be stored in the column. With
this setting selected (the default), columns that aren’t defined as NOT
NULL default to a definition of NULL.

✦ SET IMPLICIT_TRANSACTIONS: Within T-SQL, any INSERT, UPDATE, or
DELETE statement commits when it’s executed — autocommit mode.
Other versions of SQL are written so that INSERT, UPDATE, and DELETE
statements aren’t committed until a COMMIT TRANSACTION statement is
executed. For example, the following statement demonstrates autocom-
mit mode. It executes and commits immediately within SQL Server 2008:

DELETE FROM Employees WHERE BusinessEntityID = 1

However, ANSI-92 SQL statements don’t automatically commit until a
COMMIT TRANSACTION statement is executed. The same statement writ-
ten to the ANSI-92 specification is written as follows:

DELETE FROM Employees WHERE BusinessEntityID = 1
COMMIT TRANSACTION

This setting is cleared by default. Select it when using a script that was
written for a database that uses implicit transactions instead of auto-
commit transactions.

✦ SET CURSOR_CLOSE_ON_COMMIT: A cursor is an in-memory represen-
tation of data that can be examined and manipulated on a row-by-row
basis. Within T-SQL scripts, cursors remain open until they’re explicitly
closed (with the CLOSE and DEALLOCATE statements) or until the con-
nection to the database is closed. Selecting this setting causes cursors
to close when a transaction using the cursor is committed. It’s not
selected by default.

✦ SET ANSI_PADDING: With this setting on (the default), trailing blanks in
varchar(n) data types, and trailing zeros in varbinary(n) data types
aren’t trimmed but instead stored exactly as they’re entered. If not
selected, trailing blanks in varchar(n) data types and trailing zeros in
varbinary(n) data types are trimmed.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 221

Configuring Query Options with Performance and Control Parameters222

The storage of char(n) and binary(n) data types is the same whether
this setting is selected or not. If the inserted data is smaller than the
column, trailing blanks are used for char(n) columns, and trailing zeros
are used for binary(n) columns.

This setting is applied only when a column is created. After the column
is created, the stored values are based on the setting when the column
was created. Microsoft recommends this setting always be on. The abil-
ity to turn off this setting will disappear in future versions of Microsoft’s
SQL Server. Use of the SET statement to turn off this setting has been
deprecated.

Deprecated features should not be used. When Microsoft deprecates a
feature, it’s giving notice that this feature will probably not be supported
in the next version of the product. It’s very possible that many users are
using a deprecated feature, which is why the feature isn’t discontinued
completely; instead, it’s being retained for backward compatibility. For
example, the DUMP statement was deprecated in SQL Server 2005. The
DUMP statement is no longer supported in SQL Server 2008.

✦ SET ANSI_WARNINGS: When this setting is on (the default), warnings
and errors are reported according to ANSI standards.

• When on, warnings are generated anytime NULL values are calcu-
lated in aggregate functions (such as SUM, AVG, MAX, MIN, and
COUNT). NULL values are ignored in aggregate functions, and the
warning provides only a reminder.

For example, if you want the average weight of five products that had
weights recorded as 1, 3, 5, NULL, and NULL, you get two possible
answers depending on how the NULL values are interpreted. If NULL
values are ignored, the calculation is (1 + 3 + 5) / 3, which equals a
value of 3. If NULL values are assumed to be 0 (a dangerous assump-
tion), the calculation is (1 + 3 + 5 + 0 + 0) / 5, which equals an incor-
rect value of 1.8.

Warnings display in the Results tab of the query window, as shown in
Figure 4-4.

Figure 4-4:
A warning
displays
when a
calculation
includes
NULL
values.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 222

Book III
Chapter 4

Setting Query
Options

Selecting Results Formatting Options 223

• Divide by zero and arithmetic overflow errors within a T-SQL state-
ment cause the statement to roll back with an error message. If this
setting isn’t selected, the errors are interpreted as NULL values
whenever possible, and the statement continues.

• This setting interacts with SET ARITHABORT in the Advanced set-
tings. If both settings are selected (the default), arithmetic errors,
such as divide by zero errors, cause the faulty query to terminate.
However, if other queries are included in the batch, they still run. If
SET ARITHABORT is selected but SET ANSI WARNINGS isn’t selected,
the entire batch is terminated.

✦ SET ANSI_NULLS: When selected (the default), NULL values can be
tested by using only the IS NULL or IS NOT NULL functions. A com-
parison using the equals (=) or not equals (<>) operators always evalu-
ates to false because the value of NULL is unknown.

Consider a new employee named Addison. Is Addison a male or a
female? You don’t know. Certainly, if you saw Addison, you could tell,
but by seeing just the name, you simply don’t know.

Imagine Addison fills out paperwork as a new employee but doesn’t
check the gender block, and you enter the data into the database. When
it comes to the gender block, instead of entering male or female, you
could leave the gender blank, and it would be entered as NULL. With this
setting selected, you could check for NULL values in the gender block
with the following query:

SELECT * FROM HumanResources.Employee
WHERE Gender IS NULL

In contrast, the following statement wouldn’t work; instead, it would
always evaluate to false. This can be misleading. The query would suc-
ceed, though zero rows would always be returned, even if some of the
rows had a NULL value in the Gender column.

SELECT * FROM HumanResources.Employee
WHERE Gender = NULL

The ability to turn off this setting will disappear in future versions of
Microsoft’s SQL Server. Use of the SET statement to turn off this setting
has been deprecated and shouldn’t be used.

✦ Reset to Default: Click this button to restore the defaults. You can also
click this button to see what the defaults are.

Selecting Results Formatting Options
Outputs of queries can be displayed or saved directly to a file. Right-click the
query window, select Results To, and select one of the following options:

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 223

Selecting Results Formatting Options224

✦ Results to Text: Displays results in a text format. The format of the text
output can be modified by right-clicking the query window, selecting
Query Options | Results | Text.

✦ Results to Grid: Displays in a grid format (the default). The format of
the grid output can be modified by right clicking in the query window,
selecting Query Options | Results | Grid.

✦ Results to File: Saves directly to a file. Files are saved in a report file
(RPT) format that can be opened by a text editor.

Whether the output is sent to a grid or text format, you have several options
available in the Grid and Text settings of the Query Options dialog box.
Unlike the Execution options, which affect how the query runs, the Results
options affect only how the results are displayed.

The following steps demonstrate how to modify the query output:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. Click the New Query button to open a new query window.

3. Enter a query into the query window.

If you have AdventureWorks2008 installed, use the following query:

USE AdventureWorks2008;
GO
SELECT * FROM HumanResources.Employee;

4. Click the Execute button (! Execute) to execute the query.

Pressing F5 also executes the query. The query results are displayed in
the grid format.

5. Right-click the grid and choose Save Results As.

6. In the Save Grid Results dialog box, type EmployeeList in the File
Name box. Click Save.

This saves the results as a comma-separated value file (CSV) that can be
opened by a text editor or Microsoft Excel.

7. Right-click the query window and choose Results To➪Results to Text.

8. Press F5 to execute your query again.

The query is displayed in a text format instead of a grid format.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 224

Book III
Chapter 4

Setting Query
Options

Selecting Results Formatting Options 225

9. Right-click the text and choose Save Results As.

10. In the Save Results dialog box, type EmployeeList in the File Name
box. Click Save.

This saves the results as an RPT file that can be opened in any text
editor.

11. Right-click the query window and choose Results To➪Results to File.

12. Press F5 to execute your query again.

The results aren’t displayed; instead, the Save Results dialog box
appears.

13. In the Save Results dialog box, type EmployeeListFile in the File Name
box. Click Save.

This saves the results as an RPT file that can be opened in any text
editor.

14. Right-click the query window and choose Results To➪Results to Grid.

15. Right-click the query window and choose Query Options.

Alternatively, you can select the Query drop-down menu and choose
Query Options.

16. Select Results | Grid.

As shown in Figure 4-5, this page allows you to modify the output of
the grid results. You can leave this display open while you read the next
section.

Figure 4-5:
The Grid
settings of
the Query
Options
dialog box.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 225

Selecting Results Formatting Options226

Configuring the grid output
When results are configured to display in the grid format, select Query
Options | Results | Grid (shown in Figure 4-5) to modify how the results are
displayed.

✦ Include the Query in the Result Set: Selecting this option causes the
query to be included in the result set. The query is shown in the
Messages tab. It’s cleared by default.

✦ Include Column Headers When Copying or Saving the Results:
Checking this box causes the headers to be included when the results
are copied to the Clipboard or saved in a file. It’s cleared by default.

✦ Quote Strings Containing List Separators When Saving .csv Results:
Selecting this option causes values to be enclosed in quotes when the
value includes a comma.

A comma-separated value file (CSV) has several values separated by
commas. For example, a file with an EmployeeID and a Skills column
might be saved as:

1, SQL Server 2008

That works fine as long as the employee has only one skill. However,
what if the employee has multiple skills, such as SQL Server 2005 and
SQL Server 2008? When a comma separates these two skills, it looks like
three columns.

1, SQL Server 2005, SQL Server 2008

Instead, you can select this option to cause quotes to surround the
skills. The EmployeeID of 1 doesn’t have any quotes around it because
that column has only one value and doesn’t include a comma.

1, “SQL Server 2005, SQL Server 2008”

✦ Discard Results After Execution: Selecting this setting discards the
query results immediately after the query has run, freeing memory. It’s
cleared by default.

✦ Display Results in a Separate Tab: Selecting this setting causes the
results to be displayed in a separate tab. After running a query, the dis-
play (shown in Figure 4-6) has one tab for the query and one tab for the
results. Additionally, the Messages tab appears in the figure because the
Include the Query with the Result Set option has been selected, and the
query is configured to send Results to Grid.

✦ Switch to Results Tab After the Query Executes: If the Display Results
in a Separate Tab option is selected, then this option becomes available.
If selected, it causes the view to switch to the Results tab after the query
is run.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 226

Book III
Chapter 4

Setting Query
Options

Selecting Results Formatting Options 227

✦ Maximum Characters Retrieved, NonXML Data: You can enter a
number from 1 through 65,535 to specify the maximum number of char-
acters that display in each cell in the results set. Be aware that setting
the font to a larger size might prevent all the characters from being dis-
played. The default is 65,535.

✦ Maximum Characters Retrieved, XML Data: Choices are 1MB, 2MB (the
default), 5MB, or unlimited. The XML data type supports data up to 2GB
in size. Use Unlimited to ensure you retrieve all the XML data.

✦ Reset to Default: Click this button to restore the defaults. You can also
click this button to see what the defaults are.

Configuring the text output
When results are configured to display in the text format, select Query
Options | Results | Text to modify how the results are displayed.

Figure 4-7 shows the default options for the Text settings of the Query
Options dialog box.

Figure 4-7:
The Text
settings of
the Query
Options
dialog box.

Figure 4-6:
Results
shown in a
tabbed
format.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 227

Selecting Results Formatting Options228

✦ Output Format: By default, the output is formatted as column aligned
with spaces used to pad the results. Other formatting options are

• Comma Delimited: A comma is used to separate the columns.

• Tab Delimited: A tab is used to separate the columns.

• Space Delimited: A space is used to separate the columns.

• Custom Delimiter: Any desired character can be used to separate the
columns.

✦ Include Column Headers in the Result Set: Checking this box causes
the headers to be included when the results are copied to the Clipboard
or saved in a file. It’s cleared by default.

✦ Include the Query in the Result Set: Selecting this option causes the
query to be included in the result set. The query is shown in the results
tab prior to the actual results.

✦ Scroll as Results Are Received: Checking this box causes the display to
focus on the bottom rows when they are returned. When cleared (the
default), the focus stays on the first rows returned.

✦ RightAlign Numeric Values: Selecting this check box causes numeric
values to be right aligned. Use this when you’re reviewing numbers with
a fixed number of decimal places.

✦ Discard Results After Query Executes: This setting discards the query
results immediately after the query has run, freeing memory. It’s cleared
by default.

✦ Display results in a separate tab: Selecting this setting causes the
results to be displayed in a separate tab. After executing a query, two
tabs for the query are available: one tab for the query, and one tab for
the results.

✦ Switch to Results Tab After the Query Executes: If the Display Results
in a Separate Tab option is selected, then this option becomes available.
If selected, it causes the view to switch to the Results tab after the query
is run.

✦ Maximum Number of Characters Displayed in Each Column: By
default, any column can display only 256 characters. If more characters
are available, they’re truncated in the result set. This column can be set
to a maximum of 8,192 characters.

✦ Reset to Default: Click this button to restore the defaults. You can also
click this button to see what the defaults are.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 228

Book III
Chapter 4

Setting Query
Options

Selecting Results Formatting Options 229

Configuring the multiserver output
You can also configure how results are displayed when they are retrieved
from more than one server. Select Query Options | Results | Multiserver to
modify how the results retrieved from more than server are displayed.

Figure 4-8 shows the default options for the Multiserver settings of the
Query Options dialog box:

✦ Add Login Name to the Results: When set to true, this will add a column
that includes the name of the login used to retrieve the results.
Depending on how the query is executed and how the servers are con-
figured, this could be different logins for different servers within the
same query. This selection is set to False by default so a login column
name will not appear.

✦ Add Server Name to the Results: When set to true, queries will include
a column including the name of the server that provided the result row.
It is set to True by default.

✦ Merge Results: Setting this to true will cause results from different
servers to be merged into a single result set. This setting is set to True
by default.

Figure 4-8:
The
Multiserver
settings of
the Query
Options
dialog box.

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 229

Book III: Interacting with Your Data230

21_179543-bk03ch04.qxp 8/23/08 12:35 AM Page 230

Chapter 5: Searching for
Information

In This Chapter
� Installing AdventureWorks2008

� Retrieving data by using single table queries

� Retrieving data by using multi-table queries

� Filtering information to retrieve only what you need

AdventureWorks2008 is a robust database created by Microsoft to demon-
strate many features and examples within SQL Server. However, Adventure

Works2008 isn’t very useful unless it’s installed; therefore, the first order of
business in this chapter is to install AdventureWorks2008.

With AdventureWorks2008 installed, you can start writing SELECT state-
ments against it to retrieve data. You can use the Query Designer to make
the creation of your SELECT statements easier, and then fine-tune them
within the Query Editor to retrieve exactly what you want.

By using this combination of tools, creating queries against one or more
tables is easy — even when you’re using sophisticated filtering techniques
with the WHERE clause.

Using AdventureWorks2008
Since the release of SQL Server 2005, Microsoft has included a comprehen-
sive database named AdventureWorks that’s designed to demonstrate many
of the capabilities of SQL Server. AdventureWorks is based on a fictitious
company — Adventure Works Cycles. AdventureWorks was modified for the
release of SQL Server 2008 and renamed AdventureWorks2008.

References to AdventureWorks can be found throughout SQL Server 2008’s
documentation, including:

✦ SQL Server Books Online

✦ SQL Server Tutorials

✦ SQL Server Samples

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 231

Using AdventureWorks2008232

We focus on the Online Transaction Processing (OLTP) version of Adventure
Works in this book; however, several versions exist. These include:

✦ AdventureWorks: The Adventure Works Cycles OLTP sample database.

✦ AdventureWorksLT: A light, or simple, version of the Adventure Works
Cycles OLTP database.

✦ AdventureWorksDW: The Adventure Works Cycles Data Warehouse and
the Analysis Services database project.

✦ AdventureWorksDBScripts: The data files and scripts that can be used
to build both the Adventure Works Cycles OLTP database and the
Adventure Works Cycles Data Warehouse.

Some of the samples in this book (especially those in this chapter) use the
AdventureWorks2008 OLTP database. If you don’t have AdventureWorks2008
installed on your system, follow the steps in this section to add it to SQL
Server 2008.

To verify if AdventureWorks2008 is installed, follow these steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

3. Open the Databases container within Object Explorer.

If AdventureWorks is installed, your display looks similar to Figure 5-1. If
AdventureWorks isn’t installed, you won’t see a database named Adventure
Works2008 in the Databases container. You need to obtain and install it.

Figure 5-1:
Verifying the
Adventure
Works2008
database is
installed.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 232

Book III
Chapter 5

Searching for
Inform

ation

Using AdventureWorks2008 233

Obtaining AdventureWorks2008
AdventureWorks2008 can be installed from a downloadable Windows
Installer file (MSI). Type “download adventureworks” into your favorite
search engine to quickly find a link to the downloadable file.

You can also go to Microsoft’s CodePlex site. CodePlex is Microsoft’s open
source project hosting Web site where numerous code samples can be
found. Use the following URL for the SQL Server database samples:

http://www.codeplex.com/MSFTDBProdSamples

Click the Releases tab to find a listing of downloadable links for the different
AdventureWorks databases. Locate and download the OLTP version for SQL
Server 2008.

You’ll notice that a 32-bit (x86) and a 64-bit (x64) version is available.
Download the version that matches your platform. For example, I’m running
SQL Server 2008 on a 32-bit platform, so I would download the 32-bit file:
SQL2008.AdventureWorks_OLTP_DB_v2008.x86.msi.

Different versions of AdventureWorks exist — at this writing, SQL Server
2005 and SQL Server 2008. Although SQL Server 2008 supports all versions,
many people have experienced frustration when they installed Adventure
Works for SQL Server 2008 onto an SQL Server 2005 system. AdventureWorks
for SQL Server 2008 wouldn’t install. You can install SQL Server 2005 onto
SQL Server 2008, but you won’t have all the features. Microsoft has since
renamed AdventureWorks for SQL Server 2008 to AdventureWorks2008 to
help avoid some frustration. Installing the version of AdventureWorks that
matches your SQL Server version is best.

Installing AdventureWorks2008
You install AdventureWorks2008 from the downloadable Windows Installer file.
Download a copy of AdventureWorks2008 (see the earlier “Obtaining Adventure
Works2008” section) and then follow these installation steps. AdventureWorks
2008 requires FILESTREAM to be installed and enabled to successfully install.
If you want to take advantage of the full-text capabilities within AdventureWorks
2008, Full Text Search must also be installed. You can install Adventure
Works2008 without installing and enabling Full Text Search, but not without
installing FILESTREAM.

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management Studio.

2. Right-click the server instance and select Properties. Select Advanced.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 233

Using AdventureWorks2008234

3. If the Filestream Access Level is set to Disabled, change it to Full
Access Enabled. Click OK to close the Property page. If prompted to
restart SQL Server, restart it at this time. Leave SSMS open.

4. Launch Windows Explorer and locate the AdventureWorks2008
installer file.

5. Double-click the AdventureWorks2008 installer file to begin the
installation.

6. On the Welcome page, click Next.

7. On the License Agreement page, ensure you agree with the agreement
and click the I Accept the Terms in the License Agreement check box.
Click Next.

8. On the Custom Setup page, change the Restore AdventureWorks DBs
setting to Will Be Installed on Local Hard Drive. Accept the other
defaults and then click Next.

9. On the Database Setup page, review the information.

Note: This page provides a warning indicating that both FILESTREAM
and Full-Text Search must be installed for AdventureWorks to install suc-
cessfully. Full-Text search is enabled by default and you enabled
FILESTREAM in earlier steps.

10. On the Database Setup page, ensure your SQL Server instance is
selected and click Next.

11. On the Ready to Install page, click Install.

12. When the installation completes, click Finish.

13. Return to SSMS. Right-click the Databases node and click Refresh.

The AdventureWorks2008 database can be seen in the Databases
container.

Microsoft has provided a lot of documentation on the AdventureWorks data-
base in SQL Server Books Online. If you want to find out more about Adventure
Works, check out these articles: “AdventureWorks Sample OLTP Database,”
“AdventureWorks Data Dictionary,” “SQL Server Objects in AdventureWorks,”
and “Schemas in AdventureWorks.”

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 234

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from a Single Table 235

Retrieving Data from a Single Table
The simplest query is one that retrieves data from a single table. It doesn’t
require any join statements; instead, it uses a simple SELECT statement
querying only one table.

A SELECT statement is one of several Data Manipulation Language (DML)
statements. The SELECT statement reads data only, but doesn’t modify it.
Other DML statements are:

✦ INSERT: Adds new rows to a table.

✦ UPDATE: Modifies existing rows in a table.

✦ DELETE: Removes rows from a table.

By understanding the SELECT statement in detail, the other DML statements
become much easier to grasp.

Using IntelliSense
One of the great features of SQL Server 2008 is the introduction of
IntelliSense. When you’re writing a query, IntelliSense identifies what com-
mands are acceptable and provides you appropriate choices.

For example, you could have your query window pointed at
AdventureWorks2008. Your plan is to type in the following query:

SELECT * FROM HumanResources.Employee

However, after you type in the H (as in SELECT * FROM H) an IntelliSense
popup window appears, showing you all the possible choices. Because you
entered an H, it displays the choices starting with H. Pressing the Tab key,
the spacebar, or the Enter key selects the choice you want (in this case,
HumanResources).

HumanResources fills in. Type in a period and all the objects in the
HumanResources schema appear. Select Employee, press Return, and
you’re done.

SQL developers have wanted this feature for a while, and there’s been a col-
lective cheer heard in database dens around the world now that it’s
appeared. You see IntelliSense popups appear while you type your queries.
Feel free to use them whenever you can.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 235

Retrieving Data from a Single Table236

Running a query in the SSMS query window
The SQL Server Management Studio includes a query window that can be
used to build and execute queries. To access the query window, follow these
steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button.

This opens a query window.

4. Enter the following script within the query window:

USE AdventureWorks2008;
GO
SELECT *
FROM Production.Product

5. To execute the script, click the Execute button (! Execute) on the toolbar.

Pressing F5 also executes the script. The result of the script appears in
the Results pane at the bottom of the query window.

The first line in Step 4, USE AdventureWorks2008, causes the query
window to point to the AdventureWorks2008 database. That is, it sets the
context of the query window to the AdventureWorks2008 database. The con-
text can also be set to a database by choosing the database from the data-
base drop-down menu.

Figure 5-2 shows how the selected database can be changed in the drop-
down menu. By clicking the down arrow to the right of the display, the
desired database can be selected. After the database is selected, it doesn’t
need to be reselected. Subsequent queries use the context of the selected
database until it’s changed again.

Figure 5-2:
Selecting
the
Adventure
Works2008
database.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 236

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from a Single Table 237

Building Queries with the SELECT statement
The SELECT statement is the T-SQL statement used to retrieve data from a
database. The basic syntax of a SELECT statement is

SELECT column list
FROM table (or view)

A column list is a list of columns to retrieve. Only columns that are in the
table in the FROM clause can be listed. To retrieve all the columns, the aster-
isk (*) is used as a wildcard.

For example, suppose you want to retrieve all the columns from the
Person.Person table in the AdventureWorks2008 database. The following
SELECT statement could be used:

SELECT *
FROM Person.Person

The name of the table is Person, and the Person table is contained in the
Person schema, also referred to as the Person namespace. If the schema name
is omitted, it defaults to the currently connected user’s default schema. This is
often dbo. In other words, this script:

SELECT * FROM Person

is interpreted as:

SELECT * FROM dbo.Person

Modifying the column list
If not all the columns are desired from a table, a column list can be provided.
Each column name must match the actual column name in the table and be
separated with a comma.

For example, the following query can be used to retrieve a listing of people
in the Person table with just their first, middle, and last names.

SELECT FirstName, MiddleName, LastName
FROM Person.Person

Although the order of this list matches the order of the columns in the table,
that isn’t necessary. Pick the order of your columns based on your needs.
For example, if you need the last name first, build your query to look like the
following:

SELECT LastName, FirstName, MiddleName
FROM Person.Person

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 237

Retrieving Data from a Single Table238

Using aliases in the column list
Aliases are commonly used in the column list to provide an output that’s
easier to read. By adding aliases, the header of the result set changes. A
column alias doesn’t affect the data at all.

For example, the previous query could be rewritten as follows:

SELECT LastName AS [Last Name],
FirstName AS [First Name],
MiddleName AS [Middle Name]

FROM Person.Person

Brackets surround the alias. In this context, the brackets are delimiters —
needed because the alias has a space. If the alias didn’t have a space, the
delimiter could be omitted.

Likewise, the AS preceding the alias can be omitted. Commas separate the
column list, so text that comes after the column name is interpreted as an
alias. The following script performs the same as the previous script. The
comments (preceded by --) show what has changed.

SELECT LastName [Employee Last Name], -- the word AS omitted
FirstName AS [First Name],
MiddleName AS Middle -- Delimiters [] omitted

FROM Person.Person

Figure 5-3 shows the result of this script. The header of each column has been
modified to match the alias as Employees Last Name, First Name, and Middle.

Building queries with the Query Designer
One of the challenges when working with large databases is knowing the
data well enough so that you can easily build your queries. Not only do you
need to know the names of the tables, but you also need to know the names
of the columns. Additionally, you must spell them exactly how the designer
of the database spelled them. Not always an easy task!

Figure 5-3:
Result of
query
showing
use of AS.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 238

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from a Single Table 239

However, by using the Query Designer, you can build basic queries graphi-
cally and then modify them to meet your needs. To build a query with the
Query Designer, follow these steps:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button.

This opens a query window.

4. Right-click the query window and choose Design Query in Editor.

The Query Designer appears with the Add Table dialog box showing.
Tables are listed alphabetically by the table name. In parenthesis, the
schema that the table belongs to is listed. For example, the
Person.Person table is listed as Person(Person).

5. Select the Person(Person) table and click Add. Click Close.

6. In the Person(Person) table, select the LastName, FirstName, and
ModifiedDate columns by clicking the check box next to each column
name. Click OK.

This creates the following query in the query window:

SELECT LastName, FirstName, ModifiedDate
FROM Person.Person

7. Press F5 to execute the query.

8. Modify the query by adding the middle name and aliases so that the
query looks like the following SELECT statement. The changes are
shown in bold.

SELECT LastName AS [Last Name],
FirstName AS [First Name],

MiddleName AS Middle,
ModifiedDate AS [Modified Date]

FROM Person.Person

9. Press F5 to execute the query.

The query created in the previous steps is very similar to the queries cre-
ated earlier in this section. However, it was largely created by pointing and
clicking, making it much simpler. Instead of typing the query, the Query
Designer can be used to get you started, and then you can modify the query
as necessary to meet your needs.

For more details on the Query Designer, take a look at Chapter 6 of this
mini-book.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 239

Retrieving Data from Multiple Tables240

Retrieving Data from Multiple Tables
Multi-table queries are queries that retrieve data from multiple tables in a
single SELECT statement. The results from one table are joined with the
results from another table. The INNER JOIN operator is used to identify the
tables to be joined, and the ON operator identifies the column that the tables
are joined on.

By using the INNER JOIN statement, you can include columns from multiple
tables in the column list. In order for the output to have meaning, the joined
tables must have an existing relationship — the INNER JOIN operator joins
the tables on this relationship.

For example, Figure 5-4 shows the Person.Person and HumanResources.
Employee tables from the AdventureWorks2008 database (shown as
Person(Person) and Employee(HumanResources) in the Query Designer).
These tables are related by the primary key of BusinessEntityID in the Person
table and the foreign key of BusinessEntityID in the Employee table.

The primary key is used within a table to ensure that each row is unique. The
foreign key in one table references the primary key in another table, creating
the relationship between the two tables.

Figure 5-4:
The Person
and
Employee
tables from
the
Adventure
Works2008
database.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 240

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from Multiple Tables 241

The primary key and foreign key relationship between the tables is what
allows you to join the two tables in a SELECT statement. For example, if you
want a listing of employees by name, you can join the two tables and retrieve
the data. In other words, the join allows you to identify all the people in the
Contact table that are also in the Employee table.

We simulate some data, shown in Figure 5-5, for two tables named Contact
and Employee. The Contact table has ContactID’s of 1 through 5, but the
Employee table has ContactID’s of 1, 3, and 5 only.

An INNER JOIN of these two tables on the ContactID table results in rows
that have only matching ContactID columns in both tables.

The ContactID’s of 1, 3, and 5 exist in both tables, so these rows are in the
result set. The Contact ID’s of 2 and 4 exist in the Contact table but not in the
Employee table, so they’re omitted.

ContactID LastName FirstName

1 Achong Gustavo

2 Abel Catherine

3 Abercrombie Kim

4 Acevedo Humberto

5 Ackerman Pilar

. . .

Contact Table

EmployeeID ContactID Login

1 1 adventure-works\gustavo

2 3 adventure-works\kim

3 5 adventure-works\pilar

. . .

Employee Table

Figure 5-5:
Simulated
data from
tables
named
Contact and
Employee.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 241

Retrieving Data from Multiple Tables242

Joining two tables
Tables are joined by using both the INNER JOIN and the ON clauses.
Although this can be typed in, you can also use the Query Designer to build
the query for you. The following steps can be used to retrieve a listing of
names and phone numbers for employees:

1. Launch SQL Server Management Studio (SSMS) by choosing Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button.

This opens a query window.

4. Right-click the query window and choose Design Query in Editor.

The Query Designer appears with the Add Table dialog box showing.

5. Select the Person(Person) table and click Add. Select the
Employee(HumanResources) table and click Add. Click Close.

6. In the Person(Person) table, select the LastName, and FirstName
columns by clicking the check box next to each column name. Click OK.

This creates the following query in the query window, though it might be
formatted a little differently:

SELECT Person.Person.LastName,
Person.Person.FirstName

FROM Person.Person
INNER JOIN

HumanResources.Employee
ON
Person.Person.BusinessEntityID =
HumanResources.Employee.BusinessEntityID

7. Press F5 to execute the query.

This returns a result set of about 290 rows.

The first part of the query is the same as it is when you’re retrieving data
from one table:

SELECT Person.Person.LastName,
Person.Person.FirstNameFROM Person.Person

. . .

If you run only this part of the query though, you retrieve more than 19,000
rows of people in the Person.Person table. That’s not what you want.
Instead, you want a listing of only the employees.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 242

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from Multiple Tables 243

By adding the JOIN statement and the ON clause, the retrieved data is lim-
ited to only the contacts that are also in the employee table.

. . .
INNER JOIN

HumanResources.Employee
ON
Person.Person.BusinessEntityID=
HumanResources.Employee.BusinessEntityID

Immediately after the JOIN clause, the name of the joined table is listed.
Then the ON clause limits the query based on the matches in the primary
key and foreign key relationships.

The column list of the query doesn’t need to include columns from all the
tables mentioned in the joins. In the preceding example, the query included
columns from only the Person table, and not from the Employee table.
However, the Employee table is still needed because the join is on the
BusinessEntityID column from both tables.

Using table aliases
Repeating entire tables in a query can be large and cumbersome. Many
times, you see table aliases used to make the queries a little easier to read.
Aliases are just one or two letters used to shorten the name of the table.

Table Possible Aliases

Person.Person p or pp

HumanResources.Employee e, hre, or emp

Address a

The alias is defined when the table is identified. However, the alias is seen
often in the column list of the SELECT statement, before it’s defined.

For example, your previous query is rewritten here with table aliases.

SELECT p.LastName,p.FirstName
FROM Person.Person AS p
INNER JOIN HumanResources.Employee AS e
ON p.BusinessEntityID = e.BusinessEntityID

The table alias for the HumanResources.Employee table is shortened to just
an e. The Person.Person table is shortened to just a p. With the definition in
place, the one-letter alias is used anywhere the table name is needed.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 243

Retrieving Data from Multiple Tables244

SQL Server recognizes the alias, whether it’s defined with or without AS. You
might see AS omitted in many queries. The following query works exactly
the same:

SELECT p.LastName,p.FirstName
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON p.BusinessEntityID = e.BusinessEntityID

Exploring join variations
Very often, you see INNER JOIN shortened to JOIN. Both work exactly the
same. For example, the previous query is written often as follows:

SELECT p.LastName,p.FirstName
FROM Person.Person p
JOIN HumanResources.Employee e
ON p.BusinessEntityID = e.BusinessEntityID

Although INNER JOIN is the most common join, other joins exist. All the
common joins are listed here:

✦ INNER JOIN (often shortened to JOIN): Rows with matching values on
the specified column from both tables are returned.

✦ LEFT OUTER JOIN (often shortened to LEFT JOIN): All the rows from
the left table (the first table in the query) are returned. Additionally,
rows with matching values on the specified column from both tables are
returned.

✦ RIGHT OUTER JOIN (often shortened to RIGHT JOIN): All the rows from
the right table (the second table in the query) are returned. Additionally,
rows with matching values on the specified column from both tables are
returned.

✦ FULL OUTER JOIN (often shortened to FULL JOIN): All the rows from
both tables are returned.

✦ CROSS JOIN: Creates a Cartesian product equal to the number of rows
in the left table times the number of rows in the right table.

Joining more than two tables
Adding additional tables works similarly to joining two tables. Depending on
how many tables you add, these can become complex rather quickly.
Therefore, Query Designer becomes very valuable in creating the basic
SELECT statement.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 244

Retrieving Data from Multiple Tables 245

For example, say you want to create an employee listing with the employee’s
name and address information. The first thing you need to know is where the
information is contained.

Within the AdventureWorks2008 database, names are in the Person.Person
table, employees are in the HumanResources.Employee table, Employee
addresses are in the Person.Address table, and the state is in the
Person.StateProvince table.

Figure 5-6 shows the six tables needed for a query returning employee
names and addresses. The AdventureWorks2008 database is highly normal-
ized, resulting in the need to join so many tables. The Employee table
ensures that only employees are included in the query. The Address and
StateProvince tables include the address. The BusinessEntityAddress table
is the junction table providing the many-to-many relationship between the
BusinessEntity and Address tables. Lastly, the Business Entity table provides
the link to the Person table. This figure shows the relationships between
each of the tables.

On the surface, the data needed is rather simple — employee names and
addresses. However, looking at the required tables, it’d be easy to become
overwhelmed if you had to create the queries from scratch. The Query
Designer comes to the rescue again.

The following steps show how to create the query:

1. Launch SQL Server Management Studio (SSMS) by selecting Start➪All
Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server screen, click Connect.

Figure 5-6:
Related
tables
needed
for an
employee
name and
address
query.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 245

Retrieving Data from Multiple Tables246

3. Click the New Query button.

This opens a query window.

4. Right-click the query window and choose Design Query in Editor.

The Query Designer appears with the Add Table dialog box showing.

5. Add the five needed tables.

a. Select the Person(Person) table and click Add.

b. Select the Address(Person) table and click Add.

c. Select the StateProvince(Person) table and click Add.

d. Select the Employee(HumanResources) table and click Add.

e. Select the BusinessEntity(Person) table and click Add.

f. Select the BusinessEntityAddress(Person) table and click Add. Click
Close.

6. On the Person(Person) table, select the check boxes next to the
LastName and FirstName columns.

7. On the Address(Person) table, select the check boxes next to the
AddressLine1, AddressLine2, and City columns.

8. On the StateProvince(Person) table, select the check box next to the
StateProvinceCode column.

9. On the Address(Person) table, select the check box next to the
Postalcode column. Click OK.

At this point, you’ve built your multiple table query. It looks like the
following code:

SELECT Person.Person.LastName,
Person.Person.FirstName,
Person.Address.AddressLine1,
Person.Address.AddressLine2,
Person.Address.City,
Person.StateProvince.StateProvinceCode,
Person.Address.PostalCode

FROM HumanResources.Employee INNER JOIN
Person.Person ON

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID AND

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID AND

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID AND

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID AND

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID AND

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 246

Book III
Chapter 5

Searching for
Inform

ation

Retrieving Data from Multiple Tables 247

HumanResources.Employee.BusinessEntityID =
Person.Person.BusinessEntityID INNER JOIN

Person.BusinessEntity ON
Person.Person.BusinessEntityID =

Person.BusinessEntity.BusinessEntityID
INNER JOIN

Person.BusinessEntityAddress ON
Person.BusinessEntity.BusinessEntityID =
Person.BusinessEntityAddress.BusinessEntityID

INNER JOIN
Person.StateProvince INNER JOIN
Person.Address ON
Person.StateProvince.StateProvinceID =

Person.Address.StateProvinceID AND
Person.StateProvince.StateProvinceID =

Person.Address.StateProvinceID ON
Person.BusinessEntityAddress.AddressID =

Person.Address.AddressID

10. Press F5 to execute the query.

On the last INNER JOIN, the Query Designer added several AND clauses.
However, these AND clauses are identical to the ON clause verifying that the
BusinessEntityID is the same in multiple tables and the StateProvinceID is
the same in both the Address and StateProvince tables. These clauses can
either be left in or deleted. The results are the same.

Additionally, with all these schema and table names included, the query is
long and cumbersome. To clean up the query, eliminate the unneeded AND
clauses and use table aliases. The following query is an example of the
cleaned up query:

SELECT p.LastName,
p.FirstName,
Person.Address.AddressLine1,
Person.Address.AddressLine2,
Person.Address.City,
Person.StateProvince.StateProvinceCode,
Person.Address.PostalCode

FROM HumanResources.Employee AS e INNER JOIN
Person.Person AS p ON
e.BusinessEntityID = p.BusinessEntityID
INNER JOIN
Person.BusinessEntity AS be ON
p.BusinessEntityID = be.BusinessEntityID
INNER JOIN
Person.BusinessEntityAddress AS bea ON
be.BusinessEntityID = bea.BusinessEntityID

INNER JOIN
Person.StateProvince AS sp INNER JOIN

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 247

Filtering Information248

Person.Address AS pa ON
sp.StateProvinceID = pa.StateProvinceID ON
bea.AddressID = pa.AddressID

Filtering Information
Very often, you need to narrow your search of rows within a table to specific
information. In other words, instead of retrieving all the rows, you want to
retrieve specific rows based on specific search criteria.

For example, you might be asked for the e-mail address of a person named
Dobney. You know the information is in the Person.Person table and
Person.EmailAddress tables. You could run the following query and
tediously look through the 19,000 entries until you found Dobney.

SELECT p.LastName, p.FirstName, e.EmailAddress
FROM Person.Person as p INNER JOIN

Person.EmailAddress as e
ON p.BusinessEntityID = e.BusinessEntityID

Or, you could add a WHERE clause that filters the query based on the
LastName column. The following query returns a single row.

SELECT p.LastName, p.FirstName, e.EmailAddress
FROM Person.Person as p INNER JOIN

Person.EmailAddress as e
ON p.BusinessEntityID = e.BusinessEntityID

WHERE p.LastName = ‘Dobney’

In this query, the database engine examines the LastName column in every
row in the Person table. If the last name is Dobney, then the row is added to
the result set. If multiple rows include the last name of Dobney, then each
row is included in the result set.

The syntax of the WHERE clause is

WHERE column name <search condition>

Multiple search conditions are possible. These are in different categories:

✦ Comparison operators: Using equal and not equal comparisons, such as
=, <, and so on.

✦ String operators: Using LIKE and NOT LIKE

✦ Logical operators: Using Boolean logic operators, such as AND, OR and
NOT.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 248

Book III
Chapter 5

Searching for
Inform

ation

Filtering Information 249

✦ Range operators: Using BETWEEN and NOT BETWEEN to search for
ranges of data (such as between 1 and 10).

✦ NULL operators: Using IS NULL and IS NOT NULL to search for NULL
or NOT NULL data.

The following sections cover these different operators in more depth by
using the AdventureWorks.Production.Product table. This table holds 504
rows of product information, including name, color, cost, prices, inventory,
selling start dates, and selling end dates.

Comparing values
Comparison operators are probably the most commonly used in the WHERE
clause. They allow you to search for exact matches by using the equal (=)
operator and inequalities with different inequality operators. The supported
operators are

= Equal

< Less than

> Greater than

< = Less than or equal

> = Greater than or equal

! = Not equal. The exclamation mark is expressed as Not.

<> Not equal.

! < Not less than. The exclamation mark is expressed as Not.

! > Not greater than. The exclamation mark is expressed as Not.

When comparing string values, the string must be enclosed in a single quote.
The following example retrieves a listing of all the products with a color of
blue. The column is Color, and the value is Blue, so blue must be enclosed
in single quotes.

SELECT *
FROM Production.Product
WHERE Color = ‘Blue’

Similarly, you can easily find all the products that aren’t the color blue with
the following query. The only thing that has changed is that the equal (=)
operator is replaced with the not equal (! =) operator.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 249

Filtering Information250

SELECT *
FROM Production.Product
WHERE Color ! = ‘Blue’

Numerical data is compared without any quotes. The following query
retrieves a listing of all the products that have a price greater than $100.

SELECT *
FROM Production.Product
WHERE ListPrice > 100

Dates are compared with single quotes. The format of the date value needs
to match the format of the date in the column for this to produce accurate
results. The format of the date value is based on the collation, and the major-
ity of databases in the United States have a format of yyyy/mm/dd.
Additionally, date values should include the slash (/) to separate the year,
month, and day.

The following query retrieves all the products that the company began sell-
ing on or after September 1, 2001.

SELECT *
FROM Production.Product
WHERE SellStartDate > = ‘2001/09/01’

Looking for strings
The LIKE and NOT LIKE operators allow you to search for specific patterns
of string data. Although the comparison operators (such as = and !=) are
effective at identifying exact matches for string or text data, they’re limited.
The LIKE and NOT LIKE operators give you a lot more flexibility.

When searching for string data, wildcards can be used. The LIKE and NOT
LIKE operators support four wildcards:

% The percent sign is used in place of zero or more characters.

As an example, LIKE ‘d%’ causes a match for any data that starts with
d and ends with zero or more characters.

_ The underscore character is used in place of a single character.

As an example, LIKE ‘d_’ causes a match for any data that starts with
d and ends with one more character.

[] Brackets are used to represent a single character within a range.

For example, LIKE ‘[d-f]%’ causes a match for any data that starts
with d, e, or f and ends with zero or more characters.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 250

Book III
Chapter 5

Searching for
Inform

ation

Filtering Information 251

[^] Brackets with the ^ symbol are used to represent a single character not
within a range.

For example, ‘[^d-f]%’ causes a match for any data that doesn’t start
with d, e, or f and ends with one or more characters.

The LIKE and NOT LIKE operators aren’t case sensitive or case insensitive
on their own. Instead, they’re dependent on the collation of the data being
queried. If the collation of the data is set to case sensitive, then a compari-
son of LIKE ‘d%’ returns data that only begins with a lowercase d. Data
with an uppercase D isn’t returned. However, the same query on a database
with the collation set to case insensitive returns data that begins with either
a lowercase d or an uppercase D.

The following queries show how the LIKE and NOT LIKE operators are used
within queries. This first query returns a listing of products that have a color
that starts with a B — either black or blue.

SELECT *
FROM Production.Product
WHERE Color LIKE ‘B%’

The following query returns a listing of products that have a product
number starting with an H, a second letter, then a dash, and anything after
the dash. In other words, the product numbers start with two letters and a
dash, and the first letter is an H. The underscore is used to represent the
second letter.

SELECT *
FROM Production.Product
WHERE ProductNumber LIKE ‘H_-%’

The following is an example of a query that uses the brackets. It returns a
listing of all the products that have product numbers that begin with a, b, c,
or d.

SELECT *
FROM Production.Product
WHERE ProductNumber LIKE ‘[a-d]%’

A similar query using brackets but not using a dash for the range is shown in
the following code. It returns a listing of products that begin with only e or k,
not the range of e to h.

SELECT *
FROM Production.Product
WHERE ProductNumber LIKE ‘[ek]%’

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 251

Filtering Information252

The ^ character can be added to queries with brackets to change the query
to return only rows that don’t match. Although the previous query returned
only four rows, the following query returns 500 rows.

SELECT *
FROM Production.Product
WHERE ProductNumber LIKE ‘[ek]%’

Adding Boolean logic to your query
Logical operators are used within the query to mix and match how the
search criteria are interpreted. The logical operators supported in T-SQL are

✦ AND: An AND expression evaluates to TRUE if all the conditions are true.

✦ OR: An OR expression evaluates to TRUE if any one of the conditions are
true.

✦ NOT: Negates any Boolean expression. Evaluates to TRUE if Boolean
expression is FALSE. Evaluates to FALSE if Boolean expression is TRUE.

Searching for multiple expressions with AND
By using the AND operator, multiple expressions are combined. Data is
returned only if all expressions evaluate to TRUE.

For example, you might be looking for a list of products that are less than
$200 but greater than $100. The expressions are

✦ ListPrice < 200: There are 315 rows where this is TRUE.

✦ ListPrice > 100: There are 214 rows where this is TRUE.

For every row in the table, the query looks at the ListPrice and returns only
those rows that meet both expressions.

The actual query for this AND statement is listed in the following query. It
returns 25 rows.

SELECT *
FROM Production.Product
WHERE ListPrice < 200

AND ListPrice > 100

The order of the expressions doesn’t matter because each expression (list
price < 200 and list price > 100) only evaluates to TRUE or FALSE
for each row.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 252

Book III
Chapter 5

Searching for
Inform

ation

Filtering Information 253

The expressions in logical operators don’t need to compare the results for
the same column. For example, you might be looking for a list of products
that are the color blue and have a price greater than $100. The following
query retrieves the desired results:

SELECT *
FROM Production.Product
WHERE ListPrice > 100

AND Color = ‘Blue’

You can add as many AND statements as desired in your query. You simply
add AND and another expression. The following query looks for prices
between $100 and $200 and the color black:

SELECT *
FROM Production.Product
WHERE ListPrice < 200

AND ListPrice > 100
AND Color = ‘Black’

Searching for one of many possibilities with OR
The OR operator looks for one of two or more possibilities. Only one of the
listed possibilities in the OR operator needs to be true.

For example, you might be looking for products with the word Mountain or
Road in the name. The expressions would be

✦ Name LIKE ‘%Mountain%’: There are 94 rows where this is TRUE.

✦ Name LIKE ‘%Road%’: There are 103 rows where this is TRUE.

The following query shows how these expressions are combined in a query.
It returns 197 rows.

SELECT *
FROM Production.Product
WHERE Name Like ‘%Mountain%’

OR Name Like ‘%Road%’

As with the AND operator, the OR operator compares values in different
columns. The following query adds a search for the color blue to the previ-
ous query:

SELECT *
FROM Production.Product

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 253

Filtering Information254

WHERE Name Like ‘%Mountain%’
OR Name Like ‘%Road%’
OR Color = ‘Blue’

Looking for the negative with NOT
The NOT operator changes the value of TRUE to FALSE, or changes the value
of FALSE to TRUE.

For example, if you’re looking for a product less than $200 and any color but
blue, you could use the following query:

SELECT *
FROM Production.Product
WHERE ListPrice < 200

AND NOT Color = ‘Blue’

You might recognize that this query could be written differently and still
achieve the same results. Instead of using the Boolean NOT, you could use
the not equal (!=) operator.

SELECT *
FROM Production.Product
WHERE ListPrice < 200

AND Color != ‘Blue’

This is true of many queries. More than one method often exists to achieve
the results. When you find one that works, use it.

Combining logical operators
You can also mix and match the logical operators within a query.

When using multiple logical operators, it’s important to understand the
order of precedence. In other words, if you’re using AND, OR, and NOT opera-
tors in the same query, know that one is evaluated first. The order of prece-
dence is

AND evaluates first

OR evaluates after AND

NOT evaluates last

Why is order of precedence important? Consider order of precedence in
math that you probably learned in grade school. The equation 3 + 4 * 5 is
evaluated differently depending on which calculation you do first. In math,
the order of precedence is multiplication first, then addition. Therefore,
3 + (4 * 5), or 3 + 20, is 23. If the addition is done first, the answer is different:
(3 + 4) * 5, or 7 * 5, is 35.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 254

Book III
Chapter 5

Searching for
Inform

ation

Filtering Information 255

The order of precedence is modified by adding parenthesis around Boolean
expressions. For example, the following query causes the OR expressions to
be evaluated first, and then the AND expression:

SELECT *
FROM Production.Product
WHERE (Name Like ‘%Mountain%’

or Name Like ‘%Road%’)
AND ListPrice < 200

The previous query returns 53 rows. Without the parenthesis, it returns 117
rows.

Searching for ranges of data
The BETWEEN and NOT BETWEEN operators are used when searching for
ranges of data. They work identical to combining AND with the > = and < =
comparison operators.

For example if you’re looking for a list of products with a price range of $100
to $200, then you could use the following query:

SELECT *
FROM Production.Product
WHERE ListPrice BETWEEN 100 AND 200

The biggest point to remember about the BETWEEN operator is that it’s inclu-
sive. In other words, it includes both values. The previous query includes
the values of $100 and $200 in the results. The same query written with com-
parison operators would be

SELECT *
FROM Production.Product
WHERE ListPrice < = 200

AND ListPrice > = 100

The NOT operator returns the data that isn’t in the given range.

Searching for nothing and the unknown
Very often, you need to search for NULL data. It’s important to remember
that the value of NULL is unknown, so a comparison operator (such as =)
can’t be used to check for the value of NULL. Instead, you need to use the IS
NULL and IS NOT NULL functions to accurately check for NULL data.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 255

Filtering Information256

For example, if you want to retrieve a listing of products where the color was
left as NULL, you could use the following query:

SELECT *
FROM Production.Product
WHERE Color IS NULL

This query returns 248 rows. The NOT operator can be added to return a list-
ing of all the rows that have a color entered.

SELECT *
FROM Production.Product
WHERE Color IS NOT NULL

A common mistake is trying to use the equal (=) operator (for example,
WHERE Color = NULL) when checking for NULL. Although the query suc-
ceeds without an error, it gives the wrong results. It returns zero rows.

22_179543-bk03ch05.qxp 8/23/08 12:35 AM Page 256

Chapter 6: Organizing
Query Results

In This Chapter
� Using ORDER BY to sort your results

� Grouping results with GROUP BY

To add a little extra to your queries, you can add the ORDER BY and
GROUP BY clauses to your SELECT statements.

ORDER BY can be used to ensure that data is returned in a specific order,
such as alphabetically by name, or numerically by a number. The GROUP BY
clause can be used to provide summary data by using aggregate functions,
such as SUM and AVG.

Using ORDER BY to Sort Your Results
Often, you need your data returned in a certain order, such as alphabetically
or based on a number (say, sales figures). The only way to ensure your data
is returned in a certain order is by using the ORDER BY clause within a
SELECT statement.

The basic syntax of an ORDER BY clause is shown in the following code:

USE AdventureWorks2008;
GO
SELECT * from Person.Person
ORDER BY LastName

The ORDER BY clause follows the column list, the WHERE clause, and any
joins in the SELECT statement. This returns an alphabetical listing of all the
people in the Person.Contact table.

The following steps show you how to create and run a query with the ORDER
BY clause. These steps assume you have AdventureWorks2008 installed on
your system.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 257

Using ORDER BY to Sort Your Results258

If you don’t have the AdventureWorks2008 database installed on your system,
download and install it before continuing. To find the file, go to the Microsoft
CodePlex Web site (www.codeplex.com/MSFTDBProdSamples) and click
the Releases tab. Full details on how to install AdventureWorks2008 is cov-
ered in Chapter 5 of this mini-book.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

4. Enter the following code in the query window:

USE AdventureWorks2008;
GO
SELECT * from Person.Person
ORDER BY LastName

The USE AdventureWorks2008 line with the GO statement sets the
context to the AdventureWorks2008 database. The SELECT statement
retrieves all the rows from the Person.Person table and orders the data
by LastName.

5. Execute the code by pressing the F5 key or by clicking the Execute
button.

6. (Optional) Leave the query window open so that you can enter other
code shown in this chapter.

Results can also be filtered. For example, you might want only a listing of
people whose last names start with A. The following code could be used. The
query lists the results alphabetically for the second and subsequent letters.

SELECT * from Person.Person
WHERE LastName LIKE ‘A%’
ORDER BY LastName

The ORDER BY clause comes after the WHERE clause.

Order your results in ascending or descending order
You can also specify how your results are ordered. Two choices exist:

✦ Ascending: Orders the query alphabetically from A to Z or numerically
from lowest to highest. It’s the default, so it doesn’t need to be specified.
Ascending can be shortened to ASC. The following code shows a query
with ASC added to specify ascending order.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 258

Book III
Chapter 6

Organizing Query
Results

Using ORDER BY to Sort Your Results 259

USE AdventureWorks2008;
GO
SELECT * from Person.Person
WHERE LastName LIKE ‘A%’
ORDER BY LastName ASC

✦ Descending: Orders the query alphabetically from Z to A or numerically
from the highest to the lowest. Descending can be shortened to DESC, as
shown in the following query:

USE AdventureWorks2008;
GO
SELECT * from Person.Person
WHERE LastName LIKE ‘A%’
ORDER BY LastName DESC

Using TOP to limit the number of rows
Sometimes you need to limit the number of rows. For example, you might be
interested in knowing which customers have had the highest purchases and
which salespeople have had the highest sales. The following query gives you
this information:

SELECT CustomerID, SalesPersonID, TotalDue
FROM Sales.SalesOrderHeader

However, this query returns 31,465 rows, which is a little difficult to digest.

Instead, you can limit the number of rows. The TOP expression allows you to
limit the number of rows in two ways:

✦ TOP <number>: With this method, you enter a number, such as 10, to
limit the number of rows returned to the number you specify.

✦ TOP n PERCENT: With this method, you limit the number of rows
returned to a percentage of the number of rows that would be returned
without the TOP clause.

In the following two query examples, the order is changed to descending by
using the DESC keyword. The TotalDue column is numerical; therefore, if it’s
in ascending order it’s listed from lowest to highest. To show the top sales,
the result needs to be listed in descending order so that the results are listed
from highest to lowest.

The syntax for both methods is shown in the following code. The data is
being retrieved from the Sales.SalesOrderHeader table. This is similar to the
information you might find on an invoice, such as who placed the order, who
took the order, and a total. The Sales.SalesOrderDetails (which isn’t included
in the query) includes the actual line items of what’s been ordered.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 259

Grouping Results with GROUP BY260

SELECT TOP 10 CustomerID, SalesPersonID, TotalDue
FROM Sales.SalesOrderHeader
ORDER BY TotalDue DESC

The previous query returns 10 rows.

SELECT TOP 10 PERCENT CustomerID,
SalesPersonID, TotalDue

FROM Sales.SalesOrderHeader
ORDER BY TotalDue DESC

This query returns 3,147 rows (10 percent of 31,465).

Grouping Results with GROUP BY
The GROUP BY clause can be used in a SELECT list to provide summary
data. GROUP BY is most often used with aggregate functions. Aggregate func-
tions are those that work on a group of data and return a single result. Some
of the common aggregate functions you use with GROUP BY clauses are

✦ SUM: SUM adds all the values in a group and returns the result. Only
numbers can be added.

✦ AVG: AVG provides an average of the values in a group by adding all the
non-null values and dividing the sum by the number of values added.
NULL values aren’t included in the computation. Only numbers can be
averaged.

✦ MIN: MIN (minimum) identifies the lowest value item within the column.
NULL values are ignored. MIN works with numbers, text, and dates.

✦ MAX: MAX (maximum) identifies the highest value item within the
column. NULL values are ignored. MAX works with numbers, text, and
dates.

✦ COUNT: COUNT returns the number of rows in a table or result
set. COUNT(*) includes the NULLand duplicate values in the result.COUNT(expres-
sion) returns the number of items in a group that match the expression
(such as a column name) ignoring NULL and duplicate values. Because
COUNT is used to count rows, it works on any data type.

Aggregate functions often work on numbers. Within SQL Server 2008, num-
bers are stored in numeric data types, such as tinyint (tiny integer),
smallint (small integer), int (integer), bigint (big integer), decimal,
money, smallmoney, float, and real.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 260

Book III
Chapter 6

Organizing Query
Results

Grouping Results with GROUP BY 261

The generic syntax of the GROUP BY clause is

SELECT column list
FROM table name
GROUP BY column

Because AdventureWorks2008 is populated with data that can easily be used
with aggregates, the examples in this section use the AdventureWorks2008
database.

If you don’t have the AdventureWorks2008 database, follow the procedures
in Chapter 5 of this mini-book to install it on your system.

Grouping results into summary rows
Imagine that someone asks you for the sales that a particular salesperson
had for the year 2001. One way you could retrieve this information is with
the following statement:

SELECT SalesPersonID, TotalDue
FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’

AND SalesPersonID = 280

This method returns 20 rows. All you have to do is get out your calculator
and add the TotalDue column 20 times. For error-prone fingers, this method
simply won’t work. There must be a better way. That better way is by using
the GROUP BY clause, as shown in the following steps:

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

4. Enter the following code in the query window.

USE AdventureWorks2008;
GO
SELECT SalesPersonID, TotalDue
FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’

AND SalesPersonID = 280

The USE AdventureWorks2008 line with the GO statement sets the
context to the AdventureWorks2008 database. The SELECT statement
retrieves the 20 rows.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 261

Grouping Results with GROUP BY262

5. Execute the code by pressing the F5 key or by clicking the Execute
button.

6. Modify your code by adding the SUM aggregate in the column list and
the GROUP BY clause. Execute the code by pressing the F5 key.

SELECT SalesPersonID, SUM(TotalDue) AS [Total Sales for
2001]

FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’

AND SalesPersonID = 280
GROUP BY SalesPersonID

This query returns a single row.

7. To retrieve the total sales for all salespeople in 2001, modify the
WHERE clause so that the data isn’t filtered based on a particular
salesperson.

SELECT SalesPersonID, SUM(TotalDue) AS [Total Sales for
2001]

FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’
-- AND SalesPersonID = 280
GROUP BY SalesPersonID

The AND SalesPersonID = 280 line is commented out of the query
with two dashes (-- --). Comment lines aren’t evaluated by the query.
Eleven rows are returned with this query — one for each salesperson
who had a sale in 2001. Several sales that weren’t attributed to any par-
ticular salesperson are identified with NULL as the SalesPersonID.

8. Add the ORDER BY clause to your query to order the result set by the
SalesPersonID.

SELECT SalesPersonID, SUM(TotalDue) AS [Total Sales for
2001]

FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’
-- AND SalesPersonID = 280
GROUP BY SalesPersonID
ORDER BY SalesPersonID

The ORDER BY clause is after the GROUP BY clause.

9. Leave the query window open in SSMS.

Using the HAVING clause to filter your results
The HAVING clause allows you to filter the results of the GROUP BY clause.
It’s similar to the WHERE clause in a query.

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 262

Book III
Chapter 6

Organizing Query
Results

Grouping Results with GROUP BY 263

As a reminder, the WHERE clause can be used to filter the results. In the pre-
vious example, the following query filtered the result so that data from only
2001 was used and only for the salesperson with the SalesPersonID of 280:

SELECT SalesPersonID, TotalDue
FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’

AND SalesPersonID = 280

Instead of retrieving all 31,465 rows from the Sales.SalesOrderHeader table,
the results were filtered to only 20.

Similarly, the HAVING clause can filter the results of the GROUP BY clause.
For example, in the previous steps, the following query provided summary
sales data for all salespeople who had sales in 2001.

SELECT SalesPersonID, SUM(TotalDue) AS [Total Sales for 2001]
FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’
GROUP BY SalesPersonID
ORDER BY SalesPersonID

This query returned 11 rows from the AdventureWorks2008 database.
Imagine that the company pays bonuses to salespeople who have sales over
$1 million. Instead of providing a listing showing sales data for all salespeo-
ple, you’re asked to provide a listing of only salespeople who had sales over
$1 million. The following query adds the HAVING clause to provide this
information:

SELECT SalesPersonID, SUM(TotalDue) AS [Total Sales for 2001]
FROM Sales.SalesOrderHeader
WHERE Year(OrderDate) = ‘2001’
GROUP BY SalesPersonID
HAVING SUM(TotalDue) > 1000000
ORDER BY SalesPersonID

This query reduces the result set to only 6 rows.

Any of the numeric comparison operators in the WHERE clause (<, >, =,
BETWEEN, and so on) can also be used in the HAVING clause. For example, if
you want a listing of salespeople who didn’t meet a sales quota of $1 million,
you could modify the HAVING line to:

HAVING SUM(TotalDue) < 1000000

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 263

Book III: Interacting with Your Data 264

23_179543-bk03ch06.qxp 8/23/08 12:36 AM Page 264

Chapter 7: Modifying Your Data

In This Chapter
� Adding data by using the INSERT command

� Modifying data by using the UPDATE command

� Removing data by using the DELETE command

Most databases are dynamic — that is, the data changes. The exception
is an archive database that holds historical information. Rewriting

history is not a good idea!

Three primary commands are used to change data in a database: INSERT to
add data, UPDATE to modify data, and DELETE to remove data. Each of these
commands is called a Data Manipulation Language (DML) command. In this
chapter, we cover the basics of INSERT, UPDATE, and DELETE.

Using DML Commands
Data Manipulation Language (DML) commands are used to add, modify,
and remove rows from tables. The DML commands can also be referred to
as DML statements. The three DML commands supported in SQL Server
2008 are

✦ INSERT: Used to add rows to a table. A single INSERT statement can be
used to add a single row, or multiple rows.

✦ UPDATE: Used to modify data in a table. An UPDATE statement can
be used to modify a single column in one or more rows, or multiple
columns in multiple rows. The WHERE clause is used to specify which
rows to modify. If the WHERE clause is omitted, all the rows in the table
will be modified.

✦ DELETE: Used to remove rows from a table. A single DELETE statement
can be used to remove one or more rows from a table. The WHERE
clause is used to specify which rows to modify. If the WHERE clause is
omitted, all the rows in the table will be removed.

DML commands can be included within T-SQL batch files or stored proce-
dures. Additionally, DML triggers can be created to respond to each of these
DML commands.

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 265

Adding Data to Your Database266

For example, an UPDATE DML trigger can be configured on a table to capture
and log any changes to the data within the table. Therefore, whenever an
UPDATE command is issued against the table, in addition to the UPDATE, the
UPDATE trigger will also fire.

Triggers are covered in more depth in Book IV, Chapter 3.

Adding Data to Your Database
The INSERT command is used to add rows to either tables or views.

Some general rules and guidelines to follow when adding data with the
INSERT statement are

✦ NULL data: If a column is specified as NOT NULL, then the INSERT must
include data for the column.

✦ Data type: The data type of the inserted data must match the data type
of the column. In other words, if you try to add text data into a numeric
column, the INSERT will fail.

✦ Constraints or rules: If the INSERT violates a constraint or rule on the
table, the INSERT will fail. For example, if a constraint specifies that a
credit rating column can have values between 1 and 5 only, then an
INSERT with a value of 9 will fail.

✦ Multiple columns: Multiple columns can be added by using a single
column list and multiple values lines.

The basic syntax of the INSERT command is

INSERT INTO tableName
(column list,,,)

VALUES (value,,,),
(value,,,)

In past versions of SQL Server, you had to add a column list for every value
line. If you were adding 100 rows to a table with each row populating only
some of the columns, you’d have to use 100 column lists. It looked similar
to this:

INSERT INTO tableName
(column list,,,)

VALUES (value,,,),
(column list,,,)

VALUES (value,,,),
(column list,,,)

VALUES (value,,,),

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 266

Book III
Chapter 7

M
odifying Your Data

Adding Data to Your Database 267

In SQL Server 2008, you can use one column list to identify the columns in
each of your value lines. It might not seem like much, but if you’re forced to
repeat the values list 100 times, this change is enough to get many database
professionals to stand up and yell, “Wooo Hoo!”

The column list is optional if data is inserted in the same order as the table
definition. In other words, if your table has two columns (LastName and
FirstName), you can omit the column list.

However, be aware that the first value in your values list will be entered as
LastName and the second value will be entered as FirstName. If you mix up
the order, the database isn’t smart enough to know to switch them back.

Use the following steps to create a database named Sales, a table named
Contacts within the database, and then to add some data to the Contacts
table.

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. Create a database named Sales and a table named Contacts by using
the following T-SQL code:

USE Master;
GO
CREATE DATABASE Sales;
GO
USE Sales;
GO
CREATE TABLE Contacts (
ContactsID int NOT NULL,
LastName varchar(50) NOT NULL,
FirstName varchar(50) NULL,
Phone varchar(30) NULL
)

The ContactsID and the LastName columns are both defined as NOT
NULL. When adding data to the table, these columns must have data
included in the VALUES clause.

4. Add two rows of data into the Contacts table with the following
INSERT statement:

INSERT INTO Contacts
(ContactsID, LastName, FirstName, Phone)

VALUES (101, ‘Stooge’, ‘Larry’, ‘757-555-1234’),
(102, ‘Stooge’,’Moe’, NULL);

SELECT * FROM Contacts;

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 267

Modifying Data in Your Database268

The column list specifies all the columns in the table. Because of this, all
the columns must be specified in the values list even though the phone
number for Moe isn’t included.

In the previous code, the SELECT statement is used to show the result
of the INSERT statement. The * indicates that all columns should be
displayed. Because no WHERE clause is included, all the rows will be
displayed.

5. Add another row of data into the Contacts table with the following
INSERT statement:

INSERT INTO Contacts
VALUES (103, ‘Stooge’, ‘Curly’, ‘757-555-1235’);
SELECT * FROM Contacts;

In this INSERT statement, the column list is omitted. As long as the
values list includes the data in the same order as the columns are
defined in the table, this statement will work.

6. Add another row of data into the Contacts table with the following
INSERT statement:

INSERT INTO Contacts
VALUES (104, ‘Stooge’, NULL, NULL);
SELECT * FROM Contacts;

In the preceding code, you omitted the column list and used NULL for the
last two columns.

Modifying Data in your Database
The UPDATE statement is used to modify existing data in a table or a view.

Some general rules and guidelines to follow when adding data with the
UPDATE statement are

✦ NULL data: If a column is specified as NOT NULL then the UPDATE state-
ment can’t change the data to NULL.

✦ Data type: The data type of the modified data must match the data type
of the column. In other words, if you try to modify numeric data with
text data, the UPDATE will fail.

✦ Constraints or rules: If the UPDATE violates a constraint or rule on the
table, the UPDATE will fail. For example, if a constraint specifies that a
credit rating column can have values between 1 and 5 only, then an
UPDATE with a value of 0 will fail.

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 268

Book III
Chapter 7

M
odifying Your Data

Modifying Data in Your Database 269

The basic syntax of the UPDATE statement is

UPDATE tableName
SET columnNameA = value, columnNameB = value,,,
WHERE columnName = value

The column values are set to their new values in the SET clause. Notice that
multiple columns can be changed in a single UPDATE statement. Additional
column names and their new values are separated with a comma.

A WHERE clause is used to filter the data. In other words, the WHERE clause is
used to identify specifically which rows to update. If the WHERE clause is
omitted, all the rows are updated the same way.

Use the following steps to modify data in a table with the UDPATE statement:

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. If you haven’t created the Sales database, the Contacts table, and
added data to the Contacts table, then enter and execute the following
code; otherwise, skip to Step 4.

USE Master;
GO
CREATE DATABASE Sales;
GO
USE Sales;
GO
CREATE TABLE Contacts (
ContactsID int NOT NULL,
LastName varchar(50) NOT NULL,
FirstName varchar(50) NULL,
Phone varchar(30) NULL
)
INSERT INTO Contacts

(ContactsID, LastName, FirstName, Phone)
VALUES (101, ‘Stooge’, ‘Larry’, ‘757-555-1234’),

(102, ‘Stooge’, ‘Moe’, NULL),
(103, ‘Stooge’, ‘Curly’, ‘757-555-1235’),
(104, ‘Stooge’, NULL, NULL);

SELECT * FROM Contacts;

4. Modify the phone number of ‘Moe’ from NULL to ‘757-555-1212’ with
the following UPDATE statement:

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 269

Removing Data from Your Database270

UPDATE Contacts
SET Phone = ‘757-555-1233’
WHERE FirstName = ‘Moe’;
SELECT * FROM Contacts;

5. Use the following code to change the value of two columns with the
UPDATE statement:

UPDATE Contacts
SET FirstName = ‘Baby’, Phone = ‘757-555-1233’
WHERE ContactsID = 104;
SELECT * FROM Contacts;

6. Imagine all the stooges moved in together, and they now have the
same phone number. Use the following UPDATE statement without a
WHERE clause:

UPDATE Contacts
SET Phone = ‘757-555-1233’;
SELECT * FROM Contacts;

Removing Data from Your Database
The DELETE statement is used to remove rows from a table or view.

Some general rules and guidelines to follow when removing data with the
DELETE statement are

✦ Foreign keys: If a row is referenced in another table with a foreign key
constraint, the DELETE statement will fail. For example, a Sales table
might be related to a Customers table by a foreign key in the Sales table
referencing a primary key in the Customers table.

If a customer is deleted from the Customers table, an orphan is left in
the Sales table — a sale would point to a non-existent customer. This sit-
uation isn’t allowed, and the DELETE fails.

✦ WHERE: The WHERE clause identifies which rows will be deleted. The
WHERE clause works the same in a DELETE statement as it does in a
SELECT statement. Support for all the same operations works the same
in both commands.

Caveat Coder (Coder Beware!). If the WHERE clause is omitted, all the
rows in the table will be deleted. Needless to say, this may ruin your day.

If you wish to delete all the rows in a table, the TRUNCATE TABLE command
is usually used instead of the DELETE command. TRUNCATE TABLE is
quicker and more efficient, although it doesn’t log as much information in
the transaction log and can’t be rolled back.

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 270

Book III
Chapter 7

M
odifying Your Data

Removing Data from Your Database 271

The basic syntax of the DELETE command is

DELETE FROM tableName
WHERE VALUE = value

Use the following steps to create a populated database and then delete some
rows from a table:

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. If you haven’t created the Sales database, the Contacts table, and
added data to the Contacts table, then enter and execute the following
code:

USE Master;
GO
CREATE DATABASE Sales;
GO
USE Sales;
GO
CREATE TABLE Contacts (
ContactsID int NOT NULL,
LastName varchar(50) NOT NULL,
FirstName varchar(50) NULL,
Phone varchar(30) NULL
)
INSERT INTO Contacts

(ContactsID, LastName, FirstName, Phone)
VALUES (101, ‘Stooge’, ‘Larry’, ‘757-555-1234’),

(102, ‘Stooge’, ‘Moe’, NULL),
(103, ‘Stooge’, ‘Curly’, ‘757-555-1235’),
(104, ‘Stooge’, NULL, NULL);

SELECT * FROM Contacts;

4. Use the following code to delete the contact with the ContactsID
of 104:

DELETE FROM Contacts
WHERE ContactsID = 104;
SELECT * FROM Contacts;

This deletes only the one row where the ContactsID is equal to 104.

5. To delete more than a single row, the WHERE clause can be used to
select a range. Enter and execute the following code to delete the con-
tacts with the ContactsID of 102 and 103.

DELETE FROM Contacts
WHERE ContactsID > 101 AND ContactsID < 110;
SELECT * FROM Contacts;

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 271

Removing Data from Your Database272

6. You can also omit the WHERE clause to delete all the rows in the table.

DELETE FROM Contacts;
SELECT * FROM Contacts;

The SELECT statement displays zero rows because they’ve all been
deleted.

7. Add some data to the Contacts table with the following command:

INSERT INTO Contacts
(ContactsID, LastName, FirstName, Phone)

VALUES (105, ‘Stooge’, ‘Larry’, ‘757-555-1234’),
(106, ‘Stooge’, ‘Moe’, NULL),
(107, ‘Stooge’, ‘Curly’, ‘757-555-1235’),
(108, ‘Stooge’, NULL, NULL);

SELECT * FROM Contacts;

8. Use the following DELETE statement with a complex WHERE clause to
show how you can narrow your DELETE statement:

DELETE FROM Contacts
WHERE LastName = ‘Stooge’ AND FirstName IS NULL;
SELECT * FROM Contacts;

Only one row is deleted: the row that has the last name of Stooge and NULL
for the first name.

When checking for NULL values, the IS NULL function is used. If the WHERE
clause is rewritten as WHERE FirstName = NULL, the desired row wouldn’t
be deleted.

24_179543-bk03ch07.qxp 8/23/08 12:36 AM Page 272

Chapter 8: Taking Advantage
of Views

In This Chapter
� Connecting information with views

� Creating views

� Retrieving and modifying views

� Managing views

� Giving a view the boot

Views are powerful objects in SQL Server that allow you to focus on
exactly what you want to see within a database. They can be used to

show just a few specific columns from a table, or multiple columns from two
or more tables.

While views sound a little magical at first, they’re really quite simple. If you
can create a query, you can create a view.

Tying Information Together with Views
A view allows you to access specific columns easily from one or more tables
with a simple query.

Views provide two significant benefits:

✦ Simplify data retrieval: Although the query creating the view can be
quite complex, the query that retrieves the data from the view is very
simple. It looks like this:

SELECT *
FROM ViewName

✦ Maintain security: If permission is granted on the view, permissions to the
underlying table(s) aren’t needed to retrieve data from the view. At the
same time, permission to the underlying table can be expressly denied.

A view doesn’t actually hold any data; instead, it’s a virtual table. Each time
data is requested from a view, it actually retrieves the data from the underlying
tables.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 273

Tying Information Together with Views274

Figure 8-1 shows an Employees table. The table includes personal data, such
as name and phone number. It also shows data that is much more private,
such as Social Security number and salary.

If you want someone to have access to a phone listing of employees, you
could create a query for them and allow them to run the query whenever
they want to access the data.

The query would look like this:

SELECT FirstName, LastName, Phone
FROM Employees

Even for a simple requirement, such as a phone listing, the query can look
quite intimidating to someone unfamiliar with T-SQL. However, if a
vwEmpPhone view is created, the query required to retrieve the data from
the view looks like this:

SELECT *
FROM vwEmpPhone

The view hides the complexity.

Additionally, the view hides the secure data. Figure 8-2 shows a partial result of
the query on the view. Notice the absence of any other columns, such as salary
and social security number. The view can help keep this private data secure.

Figure 8-2:
Partial
listing from
vwEmp
Phone
query.

Figure 8-1:
A Contact
table
including
salary and
SSN data.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 274

Book III
Chapter 8

Taking Advantage
of View

s

Creating a View 275

Creating a View
Views can be created in two ways:

✦ View Designer: The graphical interface available in SQL Server
Management Studio (SSMS) allows you to create views rather easily with
a point-and-click interface.

✦ Transact-SQL: If you created a query and then want to convert it into a
reusable view, you can do so with a couple extra lines of code.

Creating a view with the View Designer
The View Designer is a valuable tool included within the SQL Server
Management Studio (SSMS). With View Designer you can easily create
sophisticated views against one or many tables in your database.

Exploring the View Designer
Follow these steps to open the View Designer:

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container.

4. Right-click the Views container and choose New View.

The View Designer appears with the Add Table dialog box on top.

5. Select any table and click Add. Click Close.

The View Designer, shown in Figure 8-3, is now fully visible. The View
Designer has a toolbar and four panes that you use when building and
testing your query.

The four panes within the View Designer are

✦ Diagram pane: The top pane shows a diagram of the tables that have
been added for the View.

✦ Criteria pane: The second pane from the top shows the columns that
have been selected from the tables and the tables they’ve been selected
from. The Criteria pane also allows other query criteria to be added to
the view.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 275

Creating a View276

✦ SQL pane: While the view is created, the SQL statement for the view is
shown in the SQL pane. You can identify it by the SELECT statement.

✦ Results pane: After the view is executed, the results of the query are
shown in the bottom pane.

The View Designer toolbar also appears when the View Designer is activated.
In Figure 8-3, it’s shown above the View Designer on the far left of your toolbar.

The toolbar items (shown from left to right in Figure 8-3) are

✦ Show Diagram Pane: Toggles the Diagram pane. That is, clicking this
causes the Diagram pane to show or disappear.

✦ Show Criteria Pane: Toggles the Criteria pane.

✦ Show SQL Pane: Toggles the SQL pane.

✦ Show Results Pane: Toggles the Results pane.

✦ Execute SQL (red exclamation mark): Causes the SQL statement to exe-
cute and populate the Results pane with the results of the query.

Diagram paneToolbar

Results paneCriteria paneSQL pane

Figure 8-3:
The View
Designer.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 276

Book III
Chapter 8

Taking Advantage
of View

s

Creating a View 277

✦ Verify SQL Syntax: Parses the SQL statement to verify that it’s syntacti-
cally correct.

✦ Add Group By: Advanced feature. Adds Group By columns in the
Criteria pane and adds a GROUP BY clause to the SQL statement.

✦ Add Table: Opens the Add Table dialog box.

✦ Add New Derived Table: Advanced feature. Adds T-SQL syntax to add a
derived table to the SELECT statement.

Creating a view in the View Designer
The following steps show how to create a view to include name and phone
numbers of employees in the AdventureWorks2008 database.

If you don’t have the AdventureWorks2008 database installed on your system,
download and install it before beginning these steps. Find this file by going to
the Microsoft CodePlex site (www.codeplex.com/MSFTDBProdSamples)
and clicking on the Releases tab. Full details on how to install Adventure
Works is covered in Chapter 5 of this mini-book.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container.

4. Right-click the Views container and choose New View.

The View Designer appears with the Add Table dialog box on top.

5. In the Add Table dialog box, select Person (Person) and click Add.
Select Employee (HumanResources) and click Add. Click Close.

6. In the Person (Person) table, select the check boxes next to the
FirstName, LastName, and Title columns.

Watch the changes in the Criteria and SQL panes as you select these
columns. Feel free to uncheck them and recheck them to observe the
actions.

7. Click the Execute SQL button (red exclamation mark) to observe the
results of this query.

8. To save this view, press Ctrl+S.

9. In the Choose Name dialog box, type vwEmployees and click OK.

The view is created and can be executed.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 277

Creating a View278

10. Click the New Query button to create a new query window. If the
Connect to Server dialog box appears, click Connect.

11. Ensure that the AdventureWorks database is chosen in the Databases
drop-down box.

If the Connect to Server dialog box appeared, this defaulted to Master.

12. In the new query window, enter the following query:

SELECT * FROM vwEmpEmployees

13. Press F5 to execute the query.

This retrieves a listing of 290 employees.

Creating a view with T-SQL
If you already created a query that you want to convert to a view, it’s some-
times easier to do so with Transact-SQL statements.

T-SQL provides three Data Definition Language (DDL) statements that can be
used to create, modify, and delete objects, such as views. The three DDL
statements that are used with objects are

✦ CREATE: Creates objects that can be reused.

✦ ALTER: Modifies existing objects.

✦ DROP: Deletes existing objects.

For example, imagine that you create the following query to retrieve a listing
of employees and their phone numbers:

SELECT p.FirstName, p.LastName, p.title
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON p.BusinessEntityID = e.BusinessEntityID

The query might work fine for you, but a co-worker might have trouble
typing in and executing the query. He asks if you can make it simpler for him.
You respond, “Sure, no problem. I can make it into a view.”

Use the following steps to create the view with a T-SQL statement:

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 278

Book III
Chapter 8

Taking Advantage
of View

s

Using a View 279

3. Click the New Query button to create a new query window.

4. Choose the AdventureWorks2008 database in the Databases drop-
down box.

This normally defaults to the Master database.

5. Enter the following query in the query window:

SELECT p.FirstName, p.LastName, p.Title
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON p.BusinessEntityID = e.BusinessEntityID

6. Execute the query by pressing F5 to ensure it works as you expect.

You receive 290 rows of data.

7. Modify the query so it looks like the following code. The new code is
in bold.

CREATE VIEW vwEmployee
AS
SELECT p.FirstName, p.LastName, p.Title
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON p.BusinessEntityID = e.BusinessEntityID

8. To verify that you have successfully created the query, execute the
following statement.

SELECT * FROM vwEmployee

You receive 290 rows of employee data.

Using a View
If a view has been created, it can be used to retrieve and modify data.
Remember though, the view is only a virtualized table. A view doesn’t hold
any actual data; instead, it retrieves and modifies data in underlying tables.

The AdventureWorks2008 database includes several views that have already
been created. You can create your own views (as shown in the previous
section), or you can use the existing views to retrieve and modify data in the
underlying tables in the AdventureWorks2008 database.

Retrieving data with a view
The AdventureWorks2008 database includes a vEmployee view in the
HumanResources schema. It includes name, phone, address information,
and more by joining nine different tables.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 279

Using a View280

This data can be retrieved with SQL Server Management Studio (SSMS) or
T-SQL statements.

Retrieving view data using SSMS
Imagine you need to use one of the existing views to retrieve the phone
number for Terri Duffy, one of the employees of AdventureWorks2008. The
following steps show how to retrieve the information with SQL Server
Management Studio (SSMS):

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container. Select the
HumanResources.vEmployee view.

4. Right-click the HumanResources.vEmployee view and choose Select
Top 1000 Rows.

The view executes, and the results from the view appear in a tabbed
window in SSMS.

5. Scroll to the record holding Terri Duffy’s name.

It’s record 2 on our system, but it might be different on yours if records
have been modified.

6. With Terri Duffy’s record selected, scroll to the right to locate her
phone number.

Figure 8-4 shows a partial listing of the view results. Terri Duffy’s record
is selected, and the display is scrolled to the right to show her phone
number.

7. Leave the SSMS query window open for the next set of steps.

Figure 8-4:
Viewing
employee
data with the
vEmployee
view.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 280

Book III
Chapter 8

Taking Advantage
of View

s

Using a View 281

Retrieving view data using T-SQL
Imagine you need to use one of the existing views to retrieve the e-mail
address for Barry Johnson, one of the employees of AdventureWorks. The
following steps show you how to retrieve the information with a query
window in SQL Server Management Studio (SSMS):

1. With a query window open in SSMS, enter the following code and exe-
cute it to ensure the AdventureWorks database is selected.

USE AdventureWorks2008

Press F5 to execute the query.

2. Enter the following query to retrieve all the data from the vEmployee
view.

SELECT *
FROM HumanResources.vEmployee

Press F5 to execute the query. Figure 8-5 shows the partial results of this
view. The retrieved data is identical to the data retrieved when opening
the view in the previous steps. However, instead of being displayed in a
full tabbed window, the data is displayed in the Results pane of the
query window. In Figure 8-5, the results are scrolled to record 49 (Barry
Johnson) and scrolled to the right to show his e-mail address.

3. Modify your query with a WHERE clause to show only the record of
employee Barry Johnson.

The following query shows the new query with the changes in bold:

SELECT *
FROM HumanResources.vEmployee
WHERE FirstName = ‘Barry’

AND LastName = ‘Johnson’

4. Leave SSMS open.

Figure 8-5:
Results of
querying the
vEmployee
view with a
SELECT
statement.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 281

Using a View282

Modifying data with a view
In addition to retrieving data with a view, it’s also possible to modify the data
in a view. This is much easier to do with SSMS, but it can also be done with a
T-SQL UPDATE statement.

Modifying view data using SSMS
When data is retrieved with the Open View command from the right-click
menu, the data can also be modified within this same display.

Imagine that an employee named Guy Gilbert has changed his phone com-
pany and now has a new phone number. You’re asked to update the phone
number in the AdventureWorks database. You know the phone number is
held in the vEmployee view, so you plan to use this view to update the
phone number.

1. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container. Select the
HumanResources.vEmployee view.

2. Right-click the HumanResources.vEmployee view and choose Edit Top
200 Rows.

The view executes, and the results from the view appear in a tabbed
window in SSMS.

3. Verify Ken Sanchez’s record is the first record in the view. Scroll to
the right of the screen and click the box holding his phone number.

4. On Guy Gilbert’s record, change the phone number from
697-555-0142 to 697-555-1111. Press Return.

5. Leave SSMS open.

The data is updated as soon as you press Enter. If you open a new query
window and select the data from the view, you will see that the new phone
number is displayed.

Modifying view data using T-SQL
Data can also be modified in a view with the T-SQL UPDATE statement. The
basic syntax of the UPDATE statement is:

UPDATE TableName or ViewName
SET columnName = newValue
WHERE columnName = Value

Because the basic purpose of the primary key is to ensure uniqueness of the
rows, the WHERE clause often uses the primary key to identify the specific row
to be identified.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 282

Book III
Chapter 8

Taking Advantage
of View

s

Using a View 283

For example, imagine that you’re asked to change Mary Baker’s phone number
from 283-555-0185 to 283-555-5810. The following steps would be used:

1. With SSMS open, ensure the AdventureWorks database is chosen in
the database drop-down box.

2. Enter the following query to retrieve all the data from the vEmployee
view.

SELECT *
FROM HumanResources.vEmployee
WHERE LastName = ‘Baker’

Figure 8-6 shows the results of this query. It returned two records — the
only records that exist in the view with the last name of Baker. Mary
Baker’s BusinessEntityID is 104.

3. Modify the SELECT statement to return only Mary Baker’s record.

The following query shows the change in bold:

SELECT *
FROM HumanResources.vEmployee
WHERE BusinessEntityID = 104

4. Press F5 to execute the statement and verify that only Mary Baker’s
record is returned.

5. Change the query from a SELECT statement to an UPDATE statement
with the following query. Press F5 to execute the query.

UPDATE HumanResources.vEmployee
SET PhoneNumber = ‘283-555-5810’
WHERE BusinessEntityID = 104

6. Verify the change has occurred with the following query:

SELECT *
FROM HumanResources.vEmployee
WHERE BusinessEntityID = 104

Figure 8-6:
Results of
querying the
vEmployee
view with a
SELECT
statement.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 283

Maintaining a View284

Maintaining a View
Things change. People’s needs change. And yes, views can change. When
you first create a view, it’s probably perfect. As people’s needs change,
though, that view might no longer meet their needs. Often, it takes only a
minor change to make it perfect again.

Modifying a view is referred to as modifying the view definition. The view
definition is the statement used to create or alter the view, starting with
CREATE VIEW or ALTER VIEW. View definitions can be modified with the
View Designer or the T-SQL ALTER statement.

To modify a view, you need an existing view. Although AdventureWorks has
many views included, you might not want to modify one of them. The follow-
ing step creates two copies of an existing view that you can then modify in
the View Designer and with T-SQL statements.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container. Select the
HumanResources.vEmployee view.

4. Right-click the HumanResources.vEmployee view and choose Script
View As➪CREATE To➪New Query Editor Window.

A new query window appears with the view definition for the
HumanResources.vEmployee view.

5. Delete the last two lines in the query.

Scroll to the bottom of the query window. The last two lines of the query
start with GO and EXEC sp_addextendedproperty. This is an
advanced feature that allows you to set extended properties but isn’t
needed for our example.

6. Change the name of the view from vEmployee to
vEmployeeViewDesigner by changing the CREATE VIEW line.

CREATE VIEW [HumanResources].[vEmployeeViewDesigner]

7. Press F5 to execute the script and create the view.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 284

Book III
Chapter 8

Taking Advantage
of View

s

Maintaining a View 285

8. Change the name of the view from vEmployeeViewDesigner to
vEmployeeTSQL by changing the CREATE VIEW line.

CREATE VIEW [HumanResources].[vEmployeeTSQL]

9. Press F5 to execute the script and create the view.

10. Leave SSMS open.

You now have two new views — vEmployeeViewDesigner and
vEmployeeTSQL. You can modify and delete these views without affecting
the AdventureWorks2008 database.

Modifying a view with the View Designer
Imagine that you need to change the view so that the address information is
no longer included. Part of what you need to know is what tables hold the
address information. In addition to removing the columns from the view, the
tables holding the address information can also be removed from the view.

The tables that hold address information in the view are shown here with
their associated aliases:

Alias Table Name

ea HumanResources.EmployeeAddress

a Person.Address

sp Person.StateProvince

cr Person.CountryRegion

In Chapter 5 of this mini-book, you discover that aliases are used for table
names to make queries easier to read. The full table name is spelled out in
the JOIN clause, and the alias is identified immediately afterward with the
AS keyword.

The full SQL query used to create this view is shown here with the address
information in bold:

SELECTe.BusinessEntityID, p.Title, p.FirstName, p.MiddleName,
p.LastName, p.Suffix, e.JobTitle, pp.PhoneNumber,
pnt.Name AS PhoneNumberType, ea.EmailAddress,
p.EmailPromotion,
a.AddressLine1, a.AddressLine2, a.City,
sp.Name AS StateProvinceName, a.PostalCode,
cr.Name AS CountryRegionName, p.AdditionalContactInfo

FROM HumanResources.Employee AS e INNER JOIN
Person.Person AS p

ON p.BusinessEntityID = e.BusinessEntityID INNER JOIN
Person.BusinessEntityAddress AS bea

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 285

Maintaining a View286

ON bea.BusinessEntityID = e.BusinessEntityID INNER JOIN
Person.Address AS a
ON a.AddressID = bea.AddressID INNER JOIN
Person.StateProvince AS sp
ON sp.StateProvinceID = a.StateProvinceID INNER JOIN
Person.CountryRegion AS cr ON cr.CountryRegionCode =
sp.CountryRegionCode LEFT OUTER JOIN
Person.PersonPhone AS pp
ON pp.BusinessEntityID = p.BusinessEntityID LEFT OUTER
JOIN
Person.PhoneNumberType AS pnt
ON pp.PhoneNumberTypeID = pnt.PhoneNumberTypeID LEFT OUTER
JOIN
Person.EmailAddress AS ea
ON p.BusinessEntityID = ea.BusinessEntityID

The following steps show how to modify the view by removing these tables
and the associated columns for these tables from the view:

1. Select the HumanResources.vEmployeeViewDesigner view.

Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container.

2. Right-click the HumanResources.vEmployeeViewDesigner view and
choose Design.

3. Right-click the a table (which is the Person.Address table) and choose
Remove.

All the columns selected from this table are removed from the column
list. This includes AddressLine1, AddressLine2, City, and Postal Code.

4. Right-click the ea table (which is the HumanResources.
EmployeeAddress table) and choose Remove. Right-click the
pnt table (which is the Person.PhoneNumberType table) and
choose Remove.

5. Right-click the sp table (which is the Person.StateProvince table)
and choose Remove. Right-click the pp table (which is the Person.
PersonPhone table) and choose Remove.

6. Right-click the cr table (which is the Person.CountryRegion table)
and choose Remove. Right-click the bea table (which is the Person.
BusinessEntityAddress table) and choose Remove.

The only two tables remaining are the e table (which is the
HumanResources.Employee table) and the p table (which is the
Person.Person table). The query has been simplified to the following:

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 286

Book III
Chapter 8

Taking Advantage
of View

s

Maintaining a View 287

SELECT e.BusinessEntityID, p.Title, p.FirstName,
p.MiddleName,

p.LastName, p.Suffix, e.JobTitle,
p.EmailPromotion, p.AdditionalContactInfo

FROM HumanResources.Employee AS e
INNER JOIN Person.Person AS p

ON p.BusinessEntityID = e.BusinessEntityID

In addition to removing the tables, you can also uncheck the columns
that you no longer want. For example, if the AdditionalContactInfo was
no longer desired in the view, the check box next to this column in the p
table (Person.Person table) could be deselected, and the column would
be removed from the View.

7. Press Ctrl+S to save the HumanResources.vEmployeeViewDesigner
view.

You have saved the modified view. The last step is to test the view to
ensure that it does what you want.

8. Right-click the HumanResources.vEmployeeViewDesigner view and
choose Select Top 1000 Rows.

A new tabbed window appears in SSMS, and the results of the view appear.
Verify that the address information is no longer contained in the view.

9. Leave SSMS open.

Modifying a view with T-SQL
For simple changes to a view, you might want to modify it by using T-SQL
Data Definition Language (DDL) statements. The view can be created with
the CREATE DDL statement. After the view is created, it can be modified with
the ALTER DDL statement.

For example, suppose that you want to remove the AdditionalContactInfo
column from the HumanResources.vEmployeeTSQL view that you created
earlier in this section. The following steps show you how this is done:

1. Select the HumanResources.vEmployeeTSQL view with the SSMS
Object Explorer.

Browse to the Databases | AdventureWorks2008 | Views container.

2. Right-click the HumanResources.vEmployeeTSQL view and choose
Script View As➪ALTER To➪New Query Editor Window.

A new query window appears with the view definition for the
HumanResources.vEmployeeTSQL view. The definition is shown
with the ALTER VIEW statement.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 287

Deleting a View288

3. Find the line that holds the AdditionalContactInfo column and delete it.

It’s the last line before the FROM clause and looks like this:

,c.[AdditionalContactInfo]

This line begins with a comma, which is often done with scripts so that
the line can be removed or commented out (by using two dashes) with-
out affecting the line before it.

4. Press F5 to run this script and modify the definition of the view.

5. At the bottom of the query window, enter the following code:

SELECT *
FROM HumanResources.vEmployeeTSQL

6. Highlight only the SELECT statement that you just entered and press
F5 to run it.

Your view runs.

If you scroll to the last column, you see that the AdditionalContactInfo
column no longer appears. The last column is the CountryRegionName.

Deleting a View
When a view is no longer needed, you might choose to remove it from the
database. Views can be removed by using two methods:

✦ SQL Server Management Studio (SSMS): Views can be deleted.

✦ T-SQL Script: Views can be dropped.

We know it seems that one word could be used to define this simple concept
of removing a view instead of both deleted and dropped. T-SQL has long used
the terms dropping objects and deleting data. For example, a table or view is
dropped, but rows within a table are deleted. However, in SSMS, the design-
ers chose to use delete to remove objects.

Deleting a view using SSMS Object Explorer
To delete a HumanResources.vEmployeeViewDesigner view with the SSMS
Object Explorer, follow these steps:

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 288

Book III
Chapter 8

Taking Advantage
of View

s

Deleting a View 289

3. Using the SSMS Object Explorer, browse to the Databases |
AdventureWorks2008 | Views container.

4. Select the HumanResources.vEmployeeViewDesigner view.

5. Right-click the view and choose Delete.

6. On the Delete Object dialog box, click OK.

7. Leave SSMS open.

Dropping a view using T-SQL
To drop a view named HumanResources.vEmployeeTSQL with T-SQL state-
ments, use the following steps:

1. In SSMS, click the New Query button to create a new query window.

2. Ensure the AdventureWorks database is chosen in the database drop-
down box.

3. Enter the following query to retrieve all the data from the vEmployee
view.

DROP VIEW HumanResources.vEmployeeTSQL

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 289

Book III: Interacting with Your Data 290

25_179543-bk03ch08.qxp 8/23/08 12:37 AM Page 290

Chapter 9: Advanced Query Topics

In This Chapter
� Protecting your data

� Exploring full-text search

� Discovering outer joins

� Querying XML data

Sometimes you need to go beyond the basics and use some advanced
methods to interact with your data. In this chapter, you discover some

of those advanced methods.

Transactions are often used in stored procedures and can be very valuable
when you want to control the success (or failure) of changes to your data.
Full-text queries allow you to search text-type data with more power than the
simple LIKE clause. The INNER JOIN statement retrieves data based on
matches between two tables, but sometimes you want a listing of everything
in one of the tables regardless of matches in the other table; OUTER JOIN
statements allow you to do just that.

Moreover, XML data is becoming increasingly important in the storage of
data due to its ease of use between platforms. When you start storing XML
data, you’ll want to be able to retrieve and modify it. The XML methods
used to retrieve and modify XML data are demonstrated in the last section
of this chapter.

Using Transactions to Protect Your Data
A transaction is a group of database statements that are combined into a
single unit of work. Transactions are used to ensure multiple statements
either succeed or fail as a whole.

The three primary commands used with transactions are

✦ BEGIN TRANSACTION: The BEGIN TRANSACTION marks the beginning
of a transaction. No data modifications issued from this point are commit-
ted to the database until a COMMIT TRANSACTION command is issued.

✦ COMMIT TRANSACTION: The COMMIT TRANSACTION implies that all
commands after the BEGIN TRANSACTION command have succeeded

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 291

Using Transactions to Protect Your Data292

and the data needs to be written to the database. Up to this point, the
data changes have been logged in to the transaction log but not actually
written to the database.

✦ ROLLBACK TRANSACTION: The ROLLBACK TRANSACTION command
causes all data modifications after the BEGIN TRANSACTION command
to be undone. They’re not written to the database.

Most databases today (including SQL Server 2008) use a transaction log to
track changes to the database. Figure 9-1 shows how the transaction log fits
into the process. Any data modifications (such as INSERT, UPDATE, and
DELETE) are written to the transaction log first, and then written to the data-
base. Normally, data modifications are written to the database almost imme-
diately. When a transaction is used, the modifications aren’t written to the
database until a COMMIT TRANSACTION is received.

Consider this scenario. You’re at the ATM to withdraw money. You put your
card in, enter your PIN, and then enter how much money you want. The ATM
checks your account and gives you the money. However, just before it debits
your account, the power shuts off. You have your money, but the account
hasn’t been debited.

Is this acceptable? Maybe for you it is, but not for the bank. More than likely,
though, the algorithm used for the ATM debits your account first and then
gives your money. Therefore, the possibility exists that the ATM debits your
account, the power fails before giving your money, and you don’t get your
money. This might not be acceptable to you!

Both examples are prevented by using a transaction. The two major events
(giving your money and debiting your account) are enclosed within a trans-
action, and if one event fails, the transaction causes both events to fail.

Transaction
log

Data modification
(INSERT, UPDATE,

DELETE)

Database
file

Figure 9-1:
Modifica-
tions are
recorded
in the
transaction
log first.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 292

Book III
Chapter 9

Advanced Query
Topics

Using Transactions to Protect Your Data 293

Pseudocode for this example looks like this:

--Code to verify account and specify money desired.
BEGIN TRANSACTION
-- Code to debit account
-- Code to give money
COMMIT TRANSACTION

Understanding implicit and explicit transactions
Transactions are referred to as either implicit or explicit.

✦ Implicit: An implicit transaction is a command (such as INSERT,
UPDATE, or DELETE) that doesn’t use a BEGIN TRANSACTION, but it’s
implied. Further, a COMMIT TRANSACTION command isn’t needed. If the
command completes without an error, it’s written to the transaction log
and then, shortly afterwards, written to the database. Most modification
commands in SQL Server are implicit transactions.

✦ Explicit: An explicit transaction is one where both BEGIN
TRANSACTION and COMMIT TRANSACTION commands are used.
Explicit transactions are primarily used when you want to ensure
that multiple commands either succeed or fail as a whole.

Our focus in this section is on explicit transactions.

Creating a transaction
In the following steps, you create a table within a database that you use for
testing. You then use transactions to modify the table and use another query
window to see the results.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

4. Enter and execute the following statement to create a database. The
command can be executed by pressing the F5 key or clicking the
Execute button.

CREATE DATABASE TranPractice

5. Enter and execute the following statement to create a table named
Customers within the TranPractice database:

USE TranPractice;
GO
CREATE TABLE Customers(

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 293

Using Transactions to Protect Your Data294

CustomerID int NOT NULL,
LName varchar(50) NOT NULL,
FName varchar(50) NULL,
Street varchar(50) NULL,
City varchar(50) NULL,
State char(2) NULL,
Zip varchar(10) NULL,
Phone char(13) NULL

)

6. Enter and execute the following command to add two rows of data in
the Customers table:

INSERT INTO Customers (CustomerID, LName, FName)
VALUES (101,’Bunny’, ‘Bugs’),

(102, ‘Runner’, ‘Road’)

The VALUES line allows multiple rows to be added without having
to redefine the columns in the INSERT line. This is one of the little
improvements in SQL Server 2008 that makes geeks like us want to stand
up and shout, “Wooo Hooo!” The feature wasn’t available in SQL Server
2005; instead, each VALUES line had to have an INSERT line.

7. View the data you entered by executing the following query:

SELECT * FROM Customers

Only the first three columns (CustomerID, LName, and FName) have
data. The rest of the columns are NULL.

8. Create a transaction without committing by executing the following
query:

BEGIN TRANSACTION
UPDATE Customers
SET STATE = ‘VA’
WHERE CustomerID = 101

Although this indicates that the query completed successfully, it hasn’t
been committed to the database.

9. Enter and execute the following command to view the changes you
entered:

SELECT * FROM Customers

Again, although this looks like the changes have been completed, the
changes haven’t been committed. Instead, the changes are being read
from the transaction log.

10. Roll back the transaction by entering the following command:

ROLLBACK TRAN

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 294

Book III
Chapter 9

Advanced Query
Topics

Using Transactions to Protect Your Data 295

TRANSACTION can be reduced to just TRAN. Therefore, ROLLBACK
TRANSACTION can be shortened to ROLLBACK TRAN. Likewise, you
can reduce BEGIN TRANSACTION to BEGIN TRAN and COMMIT
TRANSACTION to COMMIT TRAN.

11. View the contents of the Customers table by entering and executing
the following command:

SELECT * FROM Customers

The data in the State column has reverted to NULL.

12. In contrast, the results of the command are visible if a COMMIT
TRANSACTION statement is added to our original transaction. Execute
the following command:

BEGIN TRAN
UPDATE Customers
SET STATE = ‘VA’
WHERE CustomerID = 101

COMMIT TRAN

13. View the contents of the Customers table by entering and executing
the following command:

SELECT * FROM Customers

The State column’s data now appears in the table.

Performing error checking
Transactions commonly have error checking within them to determine
whether the transaction should be committed or rolled back. Two ways to
do this are with the TRY ... CATCH block and by using logic.

Using the TRY ... CATCH block
The TRY ... CATCH block allows your code to try certain statements. If
they fail, then the code within the CATCH block runs.

The following pseudocode shows how the TRY ... CATCH block is written.

BEGIN TRY
BEGIN TRAN

-- Code for your transaction
COMMIT TRAN

END TRY
BEGIN CATCH

-- output an error message
ROLLBACK TRAN

END CATCH

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 295

Finding Information with Full-Text Search296

The transaction is enclosed in the TRY block. If no errors are encountered,
the transaction is committed. If errors are encountered, the execution of the
TRY block is terminated, and the CATCH block runs.

Using logic to check for errors
Transactions can also be used with programming logic. In other words, you
can use decision statements, such as IF or CASE, to make a decision to
either commit or roll back the transaction.

Although you can use IF and CASE statements within a transaction, the TRY ...
CATCH blocks are the preferred method of error handling with T-SQL and the
.NET languages. Still, you might see some IF and CASE statements within
existing code.

The following code shows one way this could be done:

BEGIN TRANSACTION
UPDATE Customers

SET STATE = ‘VA’
WHERE CustomerID = 101

IF @@ERROR <> 0
ROLLBACK TRAN

Update Customers
SET STATE = ‘CA’
WHERE CustomerID = 102

IF @@ERROR <> 0
ROLLBACK TRAN

COMMIT TRANSACTION

The @@ERROR function returns a 0 if the code succeeds without any errors. If
an error occurs, it returns the number of the error.

Finding Information with Full-Text Search
The full-text search capability allows you to add significant functionality
when searching text-type data. Without enabling full-text search, you can use
the LIKE clause in SELECT statements. However, LIKE limits searches to
only exact pattern matches. Full-text searches allow you to do much more.
For example, you can search for

✦ One or more words (simple term): Both single words and entire phrases
can be searched. For example, both duck and ducks in a pond can be
searched. Even Duck, the roller coaster is going through the tunnel can
be searched.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 296

Book III
Chapter 9

Advanced Query
Topics

Finding Information with Full-Text Search 297

✦ Inflectional forms of words (generation term): Inflectional forms of
words include different tenses of a verb and singular and plural forms of
a noun. For example, a search on ride would also search riding and rode;
a search on mouse would also search mice.

✦ Synonyms (thesaurus): The same as a thesaurus, this search returns
similar words. For example, a search on fun would return matches for
amusing, enjoyable, entertaining, pleasurable, and cool. SQL Server 2008
includes a thesaurus file in XML format.

✦ Words or phrases that are close to each other (proximity term): For
example, you might want to search for beauty products that include skin
near firming in the description. You wouldn’t necessarily want a descrip-
tion that states at the beginning, “Don’t let this product touch your
skin,” and at the end of the description states, “the firming agent takes
about 3 hours to fully set.”

✦ Words or phrases that begin with certain text (prefix term): For exam-
ple, you might want to search for any words that begin with macro. This
would return words and phrases, such as macro photography, macro eco-
nomics, or even macro paycheck. The asterisk (*) is used as a wild card;
to search for words that begin with macro, you would use macro*.

The term you want to search on is specified in the CONTAINS clause, which
is used in full-text searches. This is demonstrated in the upcoming “Using
full-text queries” section.

Full-text searches are limited to text-type data in the following data types:

✦ Char, varchar, and nvarchar: These data types store simple text-based
data.

✦ Varbinary(max): Entire documents (such as a Word document or a PDF
file) can be stored in a varbinary(max) column. Filters are used to
query the varbinary(max) column based on the type of file that’s
stored in the column.

The varbinary(max) data type was introduced in SQL Server 2005. It was
designed to replace the image data type that was deprecated in SQL Server
2005. Although the image data type is still supported for backward compati-
bility in SQL Server 2008, its use is not recommended.

Enabling full-text search capabilities
The three steps needed to enable Full-text search on a database are

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 297

Finding Information with Full-Text Search298

1. Enable full-text search on the database: This is enabled by default.
Often, you simply need to verify that it’s enabled by using the
DATABASEPROPERTYEX command, as shown in the following
SELECT statement:

SELECT
DATABASEPROPERTYEX(‘databaseName’,’IsFullTextEnabled
’)

If not enabled, use the sp_fulltext_database system stored proce-
dure to enable it, as shown in the following T-SQL statement.

EXEC ‘databaseName’.dbo.sp_fulltext_database @action =
‘enable’

2. Create a full-text catalog on the database: The full-text catalog holds
full-text indexes. Full-text indexes cannot be created without a full-text
catalog. Often, a single full-text catalog holds all full-text indexes, but it’s
possible to create multiple catalogs to separate large indexes. The
generic code that you can use to create a full-text catalog is

CREATE FULLTEXT CATALOG catalogName AS DEFAULT

AS DEFAULT causes any full-text indexes to be created in this full-text
catalog by default.

3. Create one or more full-text indexes: Full-text indexes are created on
specific text-based columns within a table. The generic code that you
can use to create a full-text catalog is

CREATE FULLTEXT INDEX ON tableName(columnName)
KEY INDEX tablePrimaryKey

The following steps demonstrate how to create a database, verify that full-
text capabilities are enabled, create a full-text catalog, and create a full-text
index:

If Full-Text Search isn’t installed, you’ll receive an error message on Step 8.
You can go through the setup process from the installation DVD and add
Full-Text Search as an added feature. Click the link for New SQL Server Stand-
alone Installation or Add Features for an Existing Installation. Follow the
installation wizard and select Full-Text Search as an added feature.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 298

Book III
Chapter 9

Advanced Query
Topics

Finding Information with Full-Text Search 299

4. In the query window, enter and execute the following text to create a
database named FTExample.

CREATE DATABASE FTExample

5. Enter and execute the following code to create a table in your new
database:

USE FTExample;
GO
CREATE TABLE Employees(

EmployeeID int NOT NULL,
LName varchar(50) NOT NULL,
FName varchar(50) NULL,
Skills varchar(300) NULL,

CONSTRAINT [PK_Employees] PRIMARY KEY CLUSTERED
(
EmployeeID ASC
)

)

A primary key (named PK_Employees) is created on the EmployeeID
column. The full-text index requires a primary key.

6. Verify full-text search is enabled on your database by entering and
executing the following statement:

SELECT DATABASEPROPERTYEX(‘FTExample’,
’IsFullTextEnabled’)

Your display should return a single row with a single column. 1 indicates
that full-text is enabled. 0 indicates that it isn’t enabled. Because full-text
is enabled by default on new databases, it will be a 1.

7. Create a full-text catalog on your database by executing the following
code:

CREATE FULLTEXT CATALOG FTCatalog AS DEFAULT

8. Create a full-text index on the Skills column of the Employees table.

CREATE FULLTEXT INDEX ON Employees(Skills)
KEY INDEX PK_Employees

The index is being created on the Skills column and is using the
PK_Employees primary key.

9. Leave the query window in SSMS open for the next set of steps.

In the next set of steps, you populate the table and perform a full-text query.

Using full-text queries
Full-text queries are performed by using one of four predicates. A predicate is
an expression that evaluates to true, false, or unknown. An evaluation of
unknown occurs when trying to evaluate a null condition.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 299

Finding Information with Full-Text Search300

✦ CONTAINS: CONTAINS allows searches on specific words or phrases,
words or phrases near each other, inflectional terms, prefixes, and
synonyms.

✦ CONTAINSTABLE: CONTAINS TABLE works similar to CONTAINS but
returns two extra columns (RANK and KEY). RANK returns the relevance
of the row compared to other rows returned. KEY is typically the pri-
mary key value of the row returned. For example, if a search returned a
skill for an employee with an EmployeeID of 101, the KEY would be 101.

✦ FREETEXT: FREETEXT is designed to search for values that match
the meaning of the given text but not necessarily the exact words.
FREETEXT is less precise than CONTAINS. It allows you to enter a string
of words, such as a full sentence or even a paragraph, and it returns sim-
ilar matches.

✦ FREETEXTTABLE: FREETEXTTABLE is similar to FREETEXT, but it
returns the data as a table with two extra columns (RANK and KEY). The
RANK and KEY columns work the same in the FREETEXTTABLE as they
do in the CONTAINSTABLE.

The following steps populate the Employee table created in the previous
steps, “Enabling full-text search capabilities,” and use the CONTAINS clause
to return matches:

1. Return to the SSMS query window left open in the previous steps.

2. Enter and execute the following INSERT statement to add data to your
Employee table:

USE FTExample;
GO
INSERT INTO Employees (EmployeeID, LName, FNAME,

Skills)
VALUES
(101, ‘Holmes’, ‘Sherlock’,’Sleuth, detective, boxer,

swordsman, impersonator’),
(102, ‘Doyle’, ‘Conan’, ‘physician, writer, story-teller,

sold books, author’),
(103, ‘Watson’, ‘John’, ‘physician, biographer,

confidante, rugby player’)

3. Enter and execute the following query to identify any employees that
have “physician” listed as one of their skills. This is a simple full-text
search.

SELECT FName, LName, Skills
FROM Employees
WHERE CONTAINS(Skills, ‘Physician’)

This returns two rows: John Watson and Conan Doyle.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 300

Book III
Chapter 9

Advanced Query
Topics

Understanding Outer Joins 301

It does take some time to populate the full-text index. If you’re quick on
the keyboard, the previous query might take a little while before it com-
pletes. If you run the query a second time, it runs without the pause.

4. Enter and execute the following query to identify any employees that
have skills starting with the letter A. This search is using a prefix.

SELECT FName, LName, Skills
FROM Employees
WHERE CONTAINS(Skills, ‘“A*”‘)

This returns one row. Conan Doyle has author as a listed skill.

5. Enter and execute the following query to identify any employees that
have selling skills.

This search looks for the inflectional values of sell (sell, sold, and
selling).

SELECT FName, LName, Skills
FROM Employees
WHERE CONTAINS(Skills, ‘ FORMSOF (INFLECTIONAL, sell) ‘)

This returns one row. Conan Doyle has sold books as a listed skill.

Understanding Outer Joins
The primary method used to join two tables is an INNER JOIN, often short-
ened to JOIN. However, OUTER JOINS also exist, such as RIGHT OUTER
JOIN, LEFT OUTER JOIN, and FULL OUTER JOIN.

✦ RIGHT OUTER JOIN (RIGHT JOIN): The RIGHT OUTER JOIN displays
all the rows from the table on the right (the second table mentioned in
the query) and only those rows that have matches in the table on the left.

✦ LEFT OUTER JOIN (LEFT JOIN): The LEFT OUTER JOIN displays all
the rows from the table on the left (the first table mentioned in the
query) and only those rows that have matches in the table on the right.

✦ FULL OUTER JOIN (OUTER JOIN): The FULL OUTER JOIN displays all
the rows from both tables.

All the JOIN operations join two or more tables. When more than two tables
are joined, the Query Optimizer joins two tables at a time and then uses the
result from that join to join to another table. This process continues until all
the tables are joined.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 301

Understanding Outer Joins302

The example queries in this section run against the AdventureWorks data-
base. Use the steps in Chapter 5 of this mini-book to check whether
AdventureWorks is installed. If not, install it.

Using an INNER JOIN
Although the INNER JOIN is discussed in the “Creating a New Query” sec-
tion of Chapter 3 in this mini-book, it’s listed here for easy comparison with
the outer joins. The INNER JOIN displays only rows that have a matching
column in both of the tables listed in the JOIN operation.

The basic syntax of an INNER JOIN is shown in the following code:

SELECT columnList
FROM table1 INNER JOIN table2

ON columnFromTable1 = columnFromTable2

The relationships between tables are primarily created by using foreign key
to primary key references. Foreign key to primary key references can be
used in JOIN statements.

For example, you might want to retrieve a listing of all the
AdventureWorks2008 employees with their first name, last name, and title.

The name and title data is in the Person.Person table. Employees are listed
in the HumanResources.Employee table. The relationship between the two
tables is created on the BusinessEntityID column. With this knowledge, you
can create a query that joins the two tables on the BusinessEntityID column.

SELECT FirstName, LastName, Title
FROM Person.Person AS p
INNER JOIN HumanResources.Employee AS e
ON p.BusinessEntityID = e.BusinessEntityID

Aliases are commonly used in JOIN statements to shorten the amount of
typing necessary. In the preceding query, the Person.Person table is identi-
fied with the alias of “p” by using the AS clause. The HumanResources.
Employee table is identified with the alias of “e”.

The previous query returns only those rows that have matching
BusinessEntityID columns in both tables.

Using RIGHT OUTER JOIN
The RIGHT OUTER JOIN returns a listing of all the rows in the right table,
and only those rows that have matches in the specified column in the left
table.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 302

Book III
Chapter 9

Advanced Query
Topics

Understanding Outer Joins 303

The basic syntax of a RIGHT OUTER JOIN is shown in the following code:

SELECT columnList
FROM table1 RIGHT OUTER JOIN table2

ON columnFromTable1 = columnFromTable2

Notice that table2 is to the right of the JOIN clause. It’s referred to as the
right table.

Say, you want a listing of all salespeople along with their assigned territory. If
you perform an INNER JOIN, salespeople who are unassigned to territories
aren’t listed. However, a RIGHT OUTER JOIN can be used to list all the
salespeople, and if they aren’t assigned to a territory, the territory is NULL.

SELECT t.Name, p.BusinessEntityID
FROM Sales.SalesTerritory t
RIGHT OUTER JOIN Sales.SalesPerson p
ON t.TerritoryID = p.TerritoryID
ORDER BY t.Name

The previous listing orders the result by the territory name, which causes
NULL territories to be listed first.

Using LEFT OUTER JOIN
The LEFT OUTER JOIN returns a listing of all the rows in the left table, and
only those rows that have matches in the specified column in the right table.

The basic syntax of a LEFT OUTER JOIN is shown in the following code:

SELECT columnList
FROM table1 LEFT OUTER JOIN table2

ON columnFromTable1 = columnFromTable2

Notice that table1 is to the left of the JOIN clause. It’s referred to as the left
table.

For example, you might want a listing of all job candidates and include
those that have also become employees. All the job candidates are in the
HumanResources.JobCandidate table. Employees are in the HumanResources.
Employee table. The following script will work:

SELECT j.JobCandidateID, j.BusinessEntityID, j.Resume
FROM HumanResources.JobCandidate j
LEFT OUTER JOIN
HumanResources.Employee e
ON j. BusinessEntityID = e. BusinessEntityID
ORDER BY j. BusinessEntityID DESC

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 303

Querying XML Data304

The JobCandidate table is listed to the left of the JOIN clause (the first table
listed), so all the rows from this table are listed. Next, only those rows in the
Employees table that have a matching BusinessEntityID in both tables are
listed.

Further, the result is ordered by the BusinessEntityID in descending order so
that actual employees are listed first. Lastly, job candidates that have NULL
for the BusinessEntityID (non-employees) are listed.

Using FULL OUTER Join
A FULL OUTER JOIN returns rows from both tables. It doesn’t care whether
there are matches or not.

The basic syntax of a FULL OUTER JOIN is shown in the following code:

SELECT columnList
FROM table1 FULL OUTER JOIN table2

ON columnFromTable1 = columnFromTable2

If no matching rows on the JOIN exist, the column would be NULL. This
allows you to use a WHERE clause to filter your results to columns that don’t
exist in either table.

For example, if you’re trying to identify products that weren’t sold, you
could use the following query. It adds a WHERE clause to look for any rows
that are NULL in the right table (SalesOrderDetail).

SELECT p.ProductID, p.Name, s.ProductID, s.SalesOrderID
FROM Production.Product p
FULL OUTER JOIN Sales.SalesOrderDetail s
ON p.ProductID = s.ProductID
WHERE s.ProductID IS NULL

Querying XML Data
Microsoft has added significant support for XML data in recent versions
of SQL Server. XML data can be stored in the XML data type or in the
nvarchar(max) data type. Both data types can support data as large as 2GB.

XML data is simple text data that uses XML tags. For example, you
could have product data defined with XML tags such as the <Product>
</Product> tag. Within the opening and closing product, you can next add
additional tags, such as <ProductID> <ProductID>, <ProductName>
</ProductName>, and so on. You can use an XML schema to define the
XML tags, or use XML tags without a schema.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 304

Book III
Chapter 9

Advanced Query
Topics

Querying XML Data 305

If stored using the XML data type, XML methods can be used to query and
modify the XML data taking advantage of the native XML format. In SQL
Server 2008, the following XML methods exist:

✦ Query: The query XML method can query a single node from an XML
document.

✦ Value: The value XML method can retrieve a single value from an XML
document.

✦ Exist: The exist XML method is used to determine if a certain value
exists within an XML document.

✦ Nodes: The nodes XML method is used to retrieve multiple values from
an XML document. It is commonly used to display XML data in a table
format as rows and columns. This is also referred to as shredding an XML
document.

✦ Modify: The modify XML method is used to make changes to an XML
document.

Both the nvarchar(max) and XML data types can store XML documents as
large as 2GB. The difference is that the nvarchar(max) data type can store
and retrieve the XML documents as a single document only. XML methods
can’t be used if the data is stored as nvarchar(max).

Using the query XML method
The query XML method uses the XQuery language to retrieve values from
within an XML document. The basic syntax is

Query(‘XQuery’)

The XQuery language can be quite complex. We keep the next example
simple to show you how to retrieve a single value.

In the following query, an XML instance is created named @myXML that holds
contact information. Then, the query method is used against the XML
instance to retrieve specific information.

--Declare the variable for the XML instance
DECLARE @myXML xml
--Create the XML instance
SET @myXML = ‘
<Root>

<Contact ContactID=”101” ContactName=”Homer Simpson”>
<ContactInformation>

<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 305

Querying XML Data306

</Contact>
<Contact ContactID=”102” ContactName=”Marge Simpson”>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>
</Contact>

</Root>’
--Use the query method to query the XML instance
SELECT @myXML.query(‘/Root/Contact/ContactInformation’)

The result of this query is returned as an XML snippet. As shown in Figure 9-2,
the XML snippet is returned as a hyperlink. By clicking on it, another window
opens showing the XML data in the result.

The following XML snippet shows what is returned by the XML query. The
following text shows the XML snippet. All of the information in the
ContactInformation node (e-mail address and cell phone number) is
returned.

<ContactInformation>
<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>

If the query is modified to include the email node, only the e-mail data is
returned, as shown in the following code:

SELECT @myXML.query
(‘/Root/Contact/ContactInformation/email’)

The result from the modified query is

<email>Homer@springfield.com</email>
<email>Marge@springfield.com</email>

Figure 9-2:
Result
returned
from the
query XML
method.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 306

Book III
Chapter 9

Advanced Query
Topics

Querying XML Data 307

Using the value XML method
The value XML method also uses the XQuery language to retrieve values
from within an XML document. However, instead of returning the data as an
XML data type, the value method allows you to specify the data type of the
result.

Basic syntax for the value XML method is

value (XQuery, SQLType)

The following query uses similar code as the query method. It creates
variables, creates an XML instance, and then retrieves a single value from
the XML instance. The result is returned in a column value, not an XML
document.

--Declare the variable for the XML instance
DECLARE @myXML xml
--Declare the variable to hold the contact ID value
DECLARE @ContactID int
--Create the XML instance
SET @myXML = ‘
<Root>

<Contact ContactID=”101” ContactName=”Homer Simpson”>
<ContactInformation>

<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>
</Contact>
<Contact ContactID=”102” ContactName=”Marge Simpson”>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>
</Contact>

</Root>’
--Retrieve value of ContactID for the 2nd row [2]
SET @ContactID = @myXML.value

(‘(/Root/Contact/@ContactID)[2]’, ‘int’)
--Display the value
SELECT @ContactID

The result of this query is shown in Figure 9-3. The data is in a column
format as if a regular row was queried.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 307

Querying XML Data308

Using the exist XML method
The exist XML method returns a value indicating whether the queried data
exists in the XML instance. Possible results from an exist query are

✦ 1: Indicates True. The data exists in at least one node.

✦ 0: Indicates False. The data doesn’t exist in the XML instance.

✦ NULL: Indicates that the XML instance is NULL.

Basic syntax for the value XML method is

exist (XQuery)

Using the previous example with the XML instance that included Homer
Simpson and Marge Simpson’s contact information, you can use the exist
method to determine if Homer Simpson exists in the XML instance.

--Declare the variables for the XML instance and the exists
bit

DECLARE @myXML xml
DECLARE @dataExists bit
--Create the XML instance
SET @myXML = ‘
<Root>

<Contact ContactID=”101” ContactName=”Homer Simpson”>
<ContactInformation>

<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>
</Contact>
<Contact ContactID=”102” ContactName=”Marge Simpson”>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>
</Contact>

</Root>’
--See if Homer Simpson exists in the XML instance
SET @dataExists =

@myXML.exist(‘/Root = (“Homer Simpson”) ‘)

Figure 9-3:
Result
returned
from the
value XML
method.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 308

Book III
Chapter 9

Advanced Query
Topics

Querying XML Data 309

--Display the value
SELECT @dataExists

The result is a 1 because Homer Simpson exists within the XML instance.

This code searches the entire XML instance because it searches from the
root. If you know that the name occurs in only one specific node (such as
ContactName), you can optimize the query to search only that node. The fol-
lowing code shows how the optimized query would look:

SET @dataExists =
@myXML.exist(‘/ContactName = (“Homer Simpson”) ‘)

Using the nodes XML method
The nodes XML method is commonly used to shred XML. In other words, it
retrieves XML values from an XML instance and displays the values in a
table format with rows and columns.

Basic syntax for the nodes method is

nodes (XQuery) as Table(Column)

For example, you might want to create a listing of names, e-mail addresses,
and cell phone numbers from an XML instance. The following code uses the
value and query methods to retrieve the relevant data from the XML
instance and display it in a table format using the nodes method

--Declare the variables for the XML instance
DECLARE @myXML xml
--Create the XML instance
SET @myXML = ‘
<Root>

<Contact ContactID=”101” ContactName=”Homer Simpson”>
<ContactInformation>

<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>
</Contact>
<Contact ContactID=”102” ContactName=”Marge Simpson”>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>
</Contact>

</Root>’
--Retrieve the nodes
SELECT

MyTable.cols.value(‘@ContactName’, ‘varchar(35)’) AS Name,

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 309

Querying XML Data310

MyTable.cols.query(‘ContactInformation/email’) AS [E-
Mail],
MyTable.cols.query(‘ContactInformation/Cell’) AS [Cell
Phone]

FROM @myXML.nodes(‘/Root/Contact’) MyTable (cols)

Figure 9-4 shows the result of this query. The value method used to retrieve
the name shows the data as a simple text string, while the query method
used in the email and Cell columns displays the data with the XML tags
(though still in their own columns).

Using the modify XML method
If you need to modify XML data within an XML instance (such as in an XML
data type), use the modify method.

The basic syntax is

modify (XML_DML)

In T-SQL, Data Manipulation Language (DML) statements are used to insert,
delete, and update data. XML_DML is a variation of DML used specifically for
XML. Instead of INSERT, DELETE, and UPDATE, XML_DML uses INSERT,
DELETE, and REPLACE.

In the following example, you change the e-mail address for Homer Simpson
from Homer@springfield.com to Homer.Simpson@springfield.com
by using the REPLACE statement.

Because two records exist (one for Homer Simpson and one for Marge
Simpson), you need to specify which record you want to change. You do this
with the following partial code. The [1] indicates you’re modifying the first
contact record.

(/Root/Contact[1]/

Figure 9-4:
Shredded
XML using
the nodes
method.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 310

Book III
Chapter 9

Advanced Query
Topics

Querying XML Data 311

To modify the second record, you would change this to

(/Root/Contact[2]/

You also must specify the node you want to modify, the data type of the
node, and the instance of the node. The following partial code identifies the
first instance of the email node and states that it’s a text data type. Even
though there’s only one email node in the contact record, it must be speci-
fied as [1].

(/Root/Contact[1]/ContactInformation/email/text())[1]

The following code creates the XML instance and then modifies it:

--Declare the variables for the XML instance
DECLARE @myXML xml
--Create the XML instance
SET @myXML = ‘
<Root>

<Contact ContactID=”101” ContactName=”Homer Simpson”>
<ContactInformation>

<email>Homer@springfield.com</email>
<Cell>1-123-555-1234</Cell>

</ContactInformation>
</Contact>
<Contact ContactID=”102” ContactName=”Marge Simpson”>
<ContactInformation>

<email>Marge@springfield.com</email>
<Cell>1-123-555-5678</Cell>

</ContactInformation>
</Contact>

</Root>’
--Modify the email node
SET @myXML.modify(‘

replace value of
(/Root/Contact[1]/ContactInformation/email/text())[1]

with “Homer.Simpson@springfield.com”
‘)
--Display the change
select @myXML

The result shows that the email value has been replaced.

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 311

Book III: Interacting with Your Data312

26_179543-bk03ch09.qxp 8/23/08 12:37 AM Page 312

Using Books Online.

Book IV

Database
Programming

27_179543-pp04.qxp 8/23/08 12:38 AM Page 313

Contents at a Glance

Chapter 1: Understanding Transact-SQL .315
Key Language Concepts ..315
Situations Where It Makes Sense to Use Transact-SQL...........................319
Scenarios When It’s Time to Use Another Programming Language320
Creating a Script...324
Modifying a Script ..328

Chapter 2: Stored Procedures and Functions .331
Why You Need Stored Procedures and Functions331
Creating Stored Procedures and Functions ..338

Chapter 3: Triggers .349
DML Triggers: Letting Your Database Look After Itself349
DDL Triggers: Letting Your Server or Your Database

Look After Itself ..352
Logon Triggers: Monitoring and Controlling Login Events.....................353
Creating Triggers..354
Maintaining Triggers..359

Chapter 4: Working with Visual Studio .361
Introducing Visual Studio..361
Navigating an SQL Server Database with Visual Studio..........................365

Chapter 5: Web Services .375
Using Web Services to Distribute Data..375
Using Web Services in Conjunction with SQL Server379

Chapter 6: Developing Remote Applications .385
Data Everywhere: Remote Applications to the Rescue!..........................385
Determining When It Makes Sense to Access Data Remotely390
Using Linked Servers ...391

Chapter 7: Advanced Development Topics .401
Better Messaging through SQL Server Service Broker............................401
Automating Administration with SQL Server Management Objects408
Integrated Application Development with the .NET Framework...........413

27_179543-pp04.qxp 8/23/08 12:38 AM Page 314

Chapter 1: Understanding
Transact-SQL

In This Chapter
� Key language concepts

� Situations where it makes sense to use Transact-SQL

� Scenarios when it’s time to use another programming language

� Creating a script

� Modifying a script

Transact-SQL is the primary language you use when communicating with
your Microsoft SQL Server 2008 databases. T-SQL is derived from the

ANSI/92 standard, which is 686 pages in length (not including the 76-page
index).

Clearly, this chapter can’t cover all the details of T-SQL, but it does cover
some of the basics, such as Data Definition Language (DDL) statements and
Data Manipulation Language (DML) statements. You also learn when it’s
best to use T-SQL and when it’s best to use another language.

Key Language Concepts
Microsoft’s flavor of Structured Query Language (SQL) is Transact-SQL
(T-SQL). T-SQL is the primary language used to interact with Microsoft’s SQL
Server databases.

T-SQL is based on the ANSI/92 standard for SQL with extensions added from
Microsoft. These extensions improve the language’s functionality with SQL
Server databases, but also make it different from other versions of SQL.
Generally, scripts written to run with one version of SQL won’t run on
another version without modifications.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 315

Key Language Concepts316

For such a popular database language, you’d think its name would be well
known. Not necessarily true. It’s pronounced in two ways:

✦ Es-que-el (as the letters S, Q, and L): The ANSI specification states that
it should be pronounced this way.

✦ Sequel (as a word): The overwhelming majority of database profession-
als we work with pronounce it this way.

Transact-SQL (T-SQL) is Microsoft’s flavor of SQL, though other flavors
exist. Oracle uses Procedural Language / SQL (PL/SQL), and IBM uses SQL
Procedural Language (SQL PL). All the different versions have their own
extensions designed to meet the needs of the individual databases and their
users.

SQL statements fall into two primary categories:

✦ Data Definition Language (DDL) statements: Used to add, delete, and
modify objects within the database. Objects are entities within the data-
base used to hold or manipulate data. They include tables, views, stored
procedures, functions, and triggers.

✦ Data Manipulation Language (DML) statements: Used to add, delete,
and modify data within the database. Data is held within tables.

Using Data Definition Language (DDL) statements
Data Definition Language (DDL) statements are used to manipulate objects.
The three DDL statements are

✦ CREATE: Used to make new objects in SQL Server 2008.

✦ ALTER: Used to modify existing objects in SQL Server 2008.

✦ DROP: Used to remove existing objects from SQL Server 2008.

To create a database and a table within the database, follow these steps:

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

4. Enter and execute the following DDL statement to create a database:

CREATE DATABASE Practice

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 316

Book IV
Chapter 1

Understanding
Transact-SQL

Key Language Concepts 317

When additional details are not provided with the CREATE DATABASE
statement, the database is created by making an exact copy of the Model
database. The CREATE DATABASE statement can be as simple (as
shown) or much more complex.

5. Enter and execute the following code to create a table in your Practice
database:

USE Practice;
GO
CREATE TABLE Employee
(

EmployeeID int IDENTITY(1,1) NOT NULL,
FirstName varchar(50) NULL,
LastName varchar(50) NULL,
Phone varchar(20) NULL
CONSTRAINT PK_Employee_EmployeeID

PRIMARY KEY CLUSTERED (EmployeeID)
)

Many more details can be added when creating a table. If you want to
review more of the possibilities, review Book II, Chapter 4.

6. Use the following code to modify the table by adding a column for the
e-mail address:

ALTER TABLE Employee
ADD Email varchar(50) NULL

7. Leave the query window open.

Using Data Manipulation Language
(DML) statements
Data Manipulation Language (DML) statements are designed to interact with
the data. The four available statements are:

✦ INSERT: Adds new rows of data in tables.

✦ SELECT: Retrieves data from tables and views.

✦ UPDATE: Modifies existing data.

✦ DELETE: Deletes rows from tables.

Inserting data with the INSERT statement
Data is added to a table with the DML INSERT statement. The basic syntax
of the INSERT statement is:

INSERT INTO table name
(column list)
VALUES
(values to be inserted into column list)

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 317

Key Language Concepts318

Use the following steps to add data to the Employee table:

1. Using the open query window, enter and execute the following code:

INSERT INTO Employee
(FirstName, LastName, Phone, Email)
VALUES
(‘Darril’, ‘Gibson’, ‘755-555-1234’,

‘darril@home.com’),
(‘Robert’, ‘Schneider’, ‘215-555-4321’,

‘robert@home.com’)

2. Add a row to the table with your name and information. Use the fol-
lowing code as a guide:

INSERT INTO Employee
(FirstName, LastName, Phone, Email)
VALUES
(‘yourFirstName’, ‘yourLastName’, ‘yourPhoneNumber’,

‘yourEmailAddress’),

3. Leave the query window open.

Retrieving data with the SELECT statement
The basic syntax of the SELECT statement is:

SELECT column list
FROM table or view name
WHERE search condition

For example, to locate the record of an employee with a first name of Darril
in your database, you could use the following query:

SELECT FirstName, LastName, Phone, Email
FROM Employee
WHERE FirstName = ‘Darril’

The columns that you want to display are listed in the column list. The table
you’re retrieving the data from is in the FROM clause. The WHERE clause is
optional and can be used to filter the search.

Many more search conditions are possible with the query. For more details
on the WHERE clause, refer to Book III, Chapter 5.

Modifying data with the UPDATE statement
Individual columns within any row are modified by using the UPDATE state-
ment. The basic syntax of the UPDATE statement is

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 318

Book IV
Chapter 1

Understanding
Transact-SQL

Situations Where It Makes Sense to Use Transact-SQL 319

UPDATE table name
SET column name = new value
WHERE search condition

For example, if you need to change the phone number for one of the employ-
ees, you could use the following query:

UPDATE Employee
SET Phone = ‘757-555-6789’
WHERE FirstName = ‘Darril’ and LastName = ‘Gibson’

Deleting data with the DELETE statement
One of our favorite stories is when an employee wins the lottery and leaves
the company. What a wonderful event! In this case, you might choose to
delete their employee record from the database. The basic syntax for the
DELETE statement is

DELETE FROM table name
WHERE search condition

BE careful with the DELETE statement. If you don’t include a WHERE clause,
the command deletes all the records in the table. This becomes either an
opportunity to test your backup strategy, or an opportunity to update your
resume.

Use the following query to delete the employee that has won the lottery. Feel
free to pick yourself!

DELETE FROM EMPLOYEE
WHERE FirstName = ‘Darril’ and LastName = ‘Gibson’

Situations Where It Makes Sense to Use Transact-SQL
The primary purpose of the T-SQL language is to interact with Microsoft SQL
databases. Some of the more common reasons to use T-SQL include

✦ Retrieving data from a Microsoft SQL database: The SELECT statement
is used within SQL Server Management Studio (SSMS) or embedded in
many different types of applications.

✦ Manipulating data in a Microsoft SQL database: The INSERT, UPDATE,
and DELETE statements are used within SSMS or embedded in many dif-
ferent types of applications.

✦ Creating databases and database objects with archive scripts: SSMS
provides the capability to easily script any object by right-clicking the
object and choosing SCRIPT Object As➪CREATE To➪File.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 319

Scenarios When It’s Time to Use Another Programming Language320

Although many programmers would argue that T-SQL isn’t a full program-
ming language, it does include many of the common programming con-
structs. This includes the following:

✦ Use of variables

✦ IF ... ELSE blocks

✦ WHILE loops

✦ BEGIN ... END blocks

✦ CASE statements

✦ Built-in functions

✦ User-defined functions

✦ System stored procedures

✦ User-defined stored procedures

All the different T-SQL programming constructs can be included in batch or
script files.

Scenarios When It’s Time to Use Another
Programming Language

While T-SQL is well suited to interact with Microsoft SQL databases, T-SQL is
not a full-fledged programming language like Microsoft’s Visual Basic .NET or
C# .NET.

.NET programming languages, such as Visual Basic .NET and C# .NET, are
diverse and are used to create a wide variety of applications, from account-
ing applications to games to Widgets. Trying to use T-SQL for any of these
applications just isn’t possible. However, it’s very likely that any of these
applications will have T-SQL code embedded within them to interact with
Microsoft SQL databases.

Times to consider using a different language than T-SQL are

✦ When an interface needs to be created: T-SQL doesn’t have the tools
needed to create an interface, such as a Windows form or a Web form.

✦ When complex calculations need to be performed: While T-SQL can
perform these calculations, you can usually get better performance by
using a .NET language.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 320

Book IV
Chapter 1

Understanding
Transact-SQL

Scenarios When It’s Time to Use Another Programming Language 321

When deciding whether to use T-SQL or .NET CLR, consider the data
that will be accessed and what will be done with the data. If you’re per-
forming calculations based on data from multiple rows, T-SQL usually
performs better. However, if you’re performing complex calculations or
comparisons of data within the same row, .NET CLR performs better.

✦ When sophisticated string comparisons need to be done: While T-SQL
can perform these comparisons, you can usually get better performance
by using a .NET language.

One of the strengths of T-SQL, in SQL Server 2008, is the ability to integrate
assemblies created in a .NET language with T-SQL. .NET applications use
Microsoft’s .NET Framework and are executed in the Common Language
Runtime (CLR).

CLR assemblies can be integrated into T-SQL objects (such as stored proce-
dures, functions, and more) and when the object is executed, the external
CLR assembly is executed.

The steps required to integrate a .NET assembly into a T-SQL object are

1. Create and compile an assembly by using a .NET language.

2. Register the assembly in SQL Server.

3. Create an object (such as a stored procedure or a function) in SQL
Server that uses the assembly.

The steps in the following section show how to create a simple CLR inte-
grated stored procedure.

Creating an assembly using a .NET language
Use the following steps to create a simple assembly in Visual Basic .NET:

1. Launch Notepad.

2. Within Notepad, enter the following text:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Public Class CLRClass
<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub GetDay()

Dim strWeekDay As String
strWeekDay = WeekdayName(Weekday(Today()))

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 321

Scenarios When It’s Time to Use Another Programming Language322

SqlContext.Pipe.Send(“Today is “ & _
strWeekDay & “.”)

End Sub
End Class

This code creates a subroutine that will determine the weekday and
return that information in a string.

3. Press Ctrl+S to save the file.

4. Create a new folder named CLR in the root of C: (C:\CLR).

In the Save As dialog box, browse to the root of C:\ and click the Create
New Folder button. Rename the new folder CLR.

5. Save the file as ReturnDay.vb.

In the Save As dialog box, click in the File Name box. Enter ReturnDay.vb
and then click Save.

Ensure you enter the period between ReturnDay and vb. This ensures
that it is saved as a Visual Basic file and not as a text file.

6. Launch a command prompt.

7. Enter the following command at the command prompt to compile
your assembly:

cd c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727
vbc /target:library c:\clr\ReturnDay.vb

At this point, you have a .NET assembly named ReturnDay.dll in the
C:\CLR directory. Next, you register this assembly with SQL Server and
enable SQL Server to use assemblies.

Registering the assembly in SQL Server
Use the following steps to register an assembly in SQL Server and configure
SQL Server to use assemblies. This assumes you’ve created the ReturnDay.
dll assembly in the previous steps.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to open a new query window.

4. If you don’t have a database named Practice in your server, create
one now with this command:

CREATE DATABASE Practice

Press F5 to execute the code.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 322

Book IV
Chapter 1

Understanding
Transact-SQL

Scenarios When It’s Time to Use Another Programming Language 323

5. In the query window, enter the following code and execute it:

USE Practice;
GO
CREATE ASSEMBLY assyReturnDay
FROM ‘c:\clr\ReturnDay.dll’
WITH PERMISSION_SET = SAFE

Press F5 to execute the code.

6. Browse to the Practice | Programmability | Assemblies container.

A display similar to Figure 1-1 appears. You’ll see the assembly you
just created from the ReturnDay.dll. Your assembly is named
assyReturnDay and is in the Assemblies container.

7. Enter the following code to enable the usage of CLR assemblies:

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘clr enabled’, 1;
GO
RECONFIGURE;

Press F5 to execute the code.

8. Leave the query window open for the next set of steps.

With an assembly created and added to SQL Server, you can now integrate it
with a SQL Server object, such as a stored procedure.

Creating a CLR integrated stored procedure
Use the following steps to create and execute a CLR integrated stored
procedure.

1. In the query window, enter the following code and execute it:

CREATE PROCEDURE uspReturnDay
AS
EXTERNAL NAME assyReturnDay.CLRClass.GetDay;

Figure 1-1:
The
assyReturn
Day
assembly.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 323

Creating a Script324

Press F5 to execute the code.

2. To verify that the stored procedure works as you expect it to, enter
the following command and execute it:

EXEC uspReturnDay

Press F5 to execute the stored procedure. A display similar to Figure 1-2
appears.

Creating a Script
A T-SQL script is nothing more than several T-SQL statements strung
together in a single file or window. Generally, when people refer to scripts,
they’re talking about files that can be saved and retrieved, but technically
what you’ve been entering throughout this chapter are also referred to as
scripts.

Scripts are saved as files for archive purposes. You might have a database
and a need to document all its details. By creating a script of the database
creation, you can view the options from the script and, if necessary, rebuild
the database.

Within a script are batches. Batches are snippets of code that are run
together. Often, a script will have many batches. Only one batch can run at a
time, and the next batch can’t start until the previous batch has finished.
T-SQL uses the GO keyword to signify the end of a batch.

For example, the following code shows a partial script separated into two
batches:

CREATE DATABASE Practice
GO
USE Practice
CREATE Table Employee
. . .

The CREATE DATABASE statement is the only statement in the first batch.
The USE statement starts the second batch after the GO statement.

Figure 1-2:
Executing
the CLR
integrated
stored
procedure.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 324

Book IV
Chapter 1

Understanding
Transact-SQL

Creating a Script 325

Separating the batches this way allows one batch to complete before
another batch begins.

Without the GO statement, the system would try to create a table in the
Practice database before the Practice database was created. It wouldn’t
work; instead, it would result in an error.

Creating a script to create a database
Imagine that you have a database on one server and you need to create a
copy of the database on another server (without any data). The simplest
way to do so would be by creating a script on the first server and running
the script on the second server.

The following steps lead you through the process of creating a script to
create a database from an existing database.

These steps assume that you have the Adventureworks2008 database. If you
don’t have it installed, you can use the steps on any other database you’ve
installed. If you want to install AdventureWorks2008, full details are included
in Book III, Chapter 5.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Right-click the AdventureWorks2008 database and choose Script
Database As➪Create To➪New Query Editor Window.

A new query window opens with the script to create a database with the
same properties and settings as the AdventureWorks2008 database. This
won’t create the objects in the database (such as the tables and views)
but only the database structure itself.

4. Press Ctrl+H to access the Quick Replace dialog box.

5. Replace all instances of AdventureWorks2008 with
Adventureworks2008Copy.

In the Find What text box, enter Adventureworks2008. In the Replace
With text box, enter Adventureworks2008Copy. Ensure the Look In is
set to Current Document. Click Replace All.

6. On the Microsoft SQL Server Management Studio dialog box, click OK.
Close the Find and Replace dialog box.

7. Press Ctrl+S to access the Save File As dialog box.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 325

Creating a Script326

8. Create a new folder named MySQLScripts.

Browse to the root of C:\ and click the Create New Folder icon. In the
New Folder dialog box, enter MySQLScripts and click OK.

9. In the FileName box, enter CreateAdventureworks2008CopyDB and
click Save.

10. Leave SSMS open.

Creating a script to create database objects
Use the following steps to create a script that creates the
Adventureworks2008 objects:

1. With SSMS open, right-click the Adventureworks2008 database and
choose Tasks➪Generate Scripts.

The Generate SQL Server Scripts Wizard appears.

2. On the Script Wizard welcome page, click Next.

3. On the Select Database page, select Adventureworks2008. Select the
check box next to Script All Objects in the selected database. Click
Next.

4. On the Choose Script Options page, click Next.

5. On the Output Option page, leave the default of Script to New Query
Window selected and click Next.

6. On the Script Wizard Summary page, click Finish.

This takes a moment to complete. When done, it will indicate success.
Additionally, a new query window opens, and the script to create the
objects appears in the query window.

7. When the task is completed and success is indicated, click Close on
the Generate Script Progress page.

8. Press Ctrl+H to access the Quick Replace dialog box.

9. Replace all instances of Adventureworks2008 with
Adventureworks2008Copy.

In the Find What text box, enter Adventureworks2008. In the Replace
With text box, enter Adventureworks2008Copy. Ensure the Look In is
set to Current Document. Click Replace All.

This replaces all instances of Adventureworks2008 with
Adventureworks2008Copy.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 326

Book IV
Chapter 1

Understanding
Transact-SQL

Creating a Script 327

10. Replace all instances of Documents with DocumentsCopy.

In the Find What text box, enter Documents. In the Replace With text
box, enter DocumentsCopy. Ensure the Look In is set to Current
Document. Click Replace All.

This replaces FileStreamDocuments with FileStreamDocumentsCopy, and
replaces the Documents filename with DocumentsCopy. You can then run
the script on the same system without problems.

11. On the Microsoft SQL Server Management Studio dialog box, click OK.
Close the Find and Replace dialog box.

12. Press Ctrl+S to access the Save As dialog box.

13. In the Save File As dialog box, browse to the c:\MySQLScripts direc-
tory. In the File Name text box enter Adventureworks2008CopyObjects
and click Save.

14. Close all the tabbed windows holding scripts but leave SSMS open.

Running a script
When a script is created and saved, it’s rather easy for you to retrieve and
run it. The biggest thing to remember is where you saved it.

Use the following steps to retrieve and run the scripts created in the previ-
ous steps:

1. With SSMS open, click the New Query button to open a blank query
window.

2. Press Ctrl+O to open a new file.

3. In the Open File dialog box, browse to C:\MySQLScripts.

4. Click the CreateAdventureworks2008CopyDB script file and click
Open.

5. Press F5 to run the script.

You’ve created a database named Adventureworks2008Copy.

6. Right-click the Databases container and click Refresh.

You’ll see your new database named Adventureworks2008Copy.
However, if you open the database, you’ll see that there are no objects
(such as tables and views) within the database.

7. Press Ctrl+O to open a new file.

8. In the Open File dialog box, browse to C:\MySQLScripts.

9. Click the Adventureworks2008CopyObjects script file and click Open.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 327

Modifying a Script328

10. Press F5 to run the script.

You’ve created all the objects within the Adventureworks2008Copy
database.

If you run the objects script on the same server where the
Adventureworks2008 database exists, you’ll receive a couple of errors
when the script runs. However, the script is still successful. The errors
are related to the names used for extended properties on the database.

11. Right-click the Adventureworks2008Copy database and click Refresh.
Open the different containers to see that the objects have been added.

Although you probably ran the script on the same system that you created
the script on, you could just as easily run the script on a different system.
You’d just need to get a copy of the script (perhaps copied to a USB drive)
and bring it to the new server and open it from there.

Modifying a Script
Any script that you create can be opened, modified, and saved again just as
easy as you can rewrite your resume or a letter to your Mom.

The query window within SQL Server Management Studio (SSMS) is the best
choice for modifying scripts because you have IntelliSense and color coding
to help you quickly and easily see anything that might be wrong. However,
any text editor can be used.

IntelliSense provides you with a choice of several valid options to help you
easily complete queries. It can complete parameters, find the information
you need, insert language elements, and more. The best thing is that it’s free
and always available in the SSMS editor.

Color coding helps you identify different elements in your scripts just by the
color of the text. Keywords (such as SELECT) are in blue, comments are
green, SQL strings are red, and identifiers are black. To make writing a script
more meaningful, imagine that you want to check the structural integrity of
databases in your system. The following command can be used:

DBCC CHECKDB(databasename)

When executed against the Adventureworks2008 database, the command
provides a lot of details on the internal storage of the database and then
ends with a very important message showing zero errors.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 328

Book IV
Chapter 1

Understanding
Transact-SQL

Modifying a Script 329

CHECKDB found 0 allocation errors and 0 consistency
errors in database ‘Adventureworks2008’.

DBCC execution completed. If DBCC printed error
messages, contact your system administrator.

Creating a script to check databases manually
If you have three databases named Sales, Accounting, and Personnel, you
could use the following steps to create a script that checks these three
databases.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query window to open a query window.

4. In the query window, enter the following code:

DBCC CHECKDB(Sales)
DBCC CHECKDB(Accounting)
DBCC CHECKDB(Personnel)

5. Press Ctrl+S to save the script file.

6. In the Save File As dialog box, click My Projects. Enter CheckDB in the
File Name box and click Save.

7. Leave the query window open.

Modifying your script to automatically
identify databases and check them
The previous script works fine for only three databases, but if you have
many databases on your server (and especially if they sometimes change),
the script simply isn’t automated enough.

Use the following steps to modify your query to automatically identify each
database on your server instance and run the CheckDB command against
each of them:

1. With the query window open, press Ctrl+O to open a script file.

2. If not already selected, click the My Projects icon and select the
CheckDB script file. Click Open.

3. Delete all the lines displayed from the script file.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 329

Modifying a Script330

4. Enter the following script into the query window:

--Declare variables
DECLARE @dbid integer
DECLARE @DBName nvarchar(50)
DECLARE @mySQL nvarchar(200)
--Start with first database
SET @dbid = 1
--Loop through all databases
WHILE @dbid < (SELECT MAX(dbid)

FROM master.dbo.sysdatabases)
BEGIN

SELECT @DBName = name
FROM master.dbo.sysdatabases
WHERE dbid = @dbid
--Dynamically build DBCC CHECKDB for database
SET @mySQL = ‘DBCC CHECKDB(‘ + @DBName + ‘)’
EXEC sp_executesql @statement = @mySQL
--Increment to do the same for
--the next database
SET @dbid = @dbid + 1

END

5. Press F5 to execute the query. The script may take a while to com-
plete. On my system with five user databases it took 23 seconds.

6. Press Ctrl+S to save the script.

You now have a script that can be used to check the integrity of all the
databases on this server. You can run this same script on any other
server to check the integrity of all its databases.

28_179543-bk04ch01.qxp 8/23/08 12:39 AM Page 330

Chapter 2: Stored Procedures
and Functions

In This Chapter
� Why you need stored procedures and functions

� Creating stored procedures and functions

� Using stored procedures and functions

Stored procedures and functions are invaluable tools that are available
within database management systems. The stored procedures and func-

tions that are installed when you install SQL Server 2008 allow you to do
complex tasks without the need to program the complex details.

As a database developer, you can also create your own stored procedures
and functions. These allow your users to do complex tasks without the need
to program the complex details. However, in this case, you’re the expert
because you’re the one who does the behind-the-scenes programming.

Why You Need Stored Procedures and Functions
Both stored procedures and functions can significantly add to the perform-
ance and usability of SQL Server 2008. By mastering these objects, you go a
long way toward mastering programming within SQL Server.

Out of the box, SQL Server 2008 includes many system stored procedures
and built-in functions. These are already optimized, and they provide two
significant benefits:

✦ They’re ready to use without any programming by you. All you have
to do is identify the object that you want to use and plug it into your
code. You don’t have to understand the underlying code, and you espe-
cially don’t have to program the underlying code. All you need to know
is what’s available and how to use it.

✦ They’re optimized. Microsoft has already optimized the code for the
built-in objects, which means that they run quicker and use the least
possible amount of resources.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 331

Why You Need Stored Procedures and Functions332

There will be times when the existing stored procedures and functions don’t
meet your needs. In these instances, you can create your own objects. These
are referred to as user-defined (such as user-defined stored procedures and
user-defined functions).

Understanding stored procedures
Stored procedures are groups of T-SQL statements put together into a single
object. They can be composed of a single T-SQL statement, such as a SELECT
statement, or hundreds of lines of T-SQL.

For example, you might need to write a T-SQL batch file that makes the
appropriate entries in a database when a sales order is placed. In addition to
updating the appropriate tables, the batch file could also check inventories
and send an e-mail to personnel in purchasing when any inventories of the
products are low. Because this is a repeatable task, you could easily convert
this batch file into a stored procedure.

Stored procedures have a lot of versatility. They can

✦ Accept parameters: Parameters can be any valid T-SQL data type, such
as char() or varchar() for text type data and integer or decimal for
numeric data types.

✦ Output data in many different formats: Data can be in the form of a
derived table (as would be displayed from a SELECT statement), a single
value (as the result of a calculation), or a message indicating success or
failure.

✦ Output custom error messages: Error messages can be created to
output any desired text.

✦ Include transactions: Transactions can be used within stored proce-
dures to ensure groups of T-SQL statements either succeed or fail as a
whole.

✦ Include TRY ... CATCH blocks for sophisticated error checking:
TRY ... CATCH blocks within T-SQL allow you to try some action
(such as an UPDATE or DELETE) and, if an error occurs, catch the error
and handle it gracefully.

✦ Raise errors internally: The RaiseError function can be used within a
stored procedure to cause a specific error to occur. This is often used to
provide feedback to the user or used when the SQL Server Agent is pro-
grammed to respond to a specific error.

Almost any T-SQL statement that you can write and execute in the new
query windows in SQL Server Management Studio (SSMS) can be included

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 332

Book IV
Chapter 2

Stored Procedures
and Functions

Why You Need Stored Procedures and Functions 333

within a stored procedure. One of the primary benefits of a stored procedure
is that once you create it, you no longer have to enter all the code into the
query window to run the procedure. Instead, you simply execute the stored
procedure and all the code runs.

Other benefits of stored procedures include that they

✦ Improve performance of SQL Server: Stored procedures are parsed,
optimized, compiled, and placed in cache when they’re run. If executed
again (and the compiled stored procedure is still in cache), the stored
procedure doesn’t have to be parsed, optimized, and compiled again.
Instead, the compiled plan is executed directly from cache.

✦ Shield database complexity: A stored procedure can be very complex
with hundreds of lines of code. A user doesn’t need to understand all the
internal code; instead, he needs to know only how to execute the stored
procedure.

✦ Allow business logic to be shared: No one likes to reinvent the wheel. If
someone has written the code and put it into a stored procedure, other
users can use the stored procedure to perform the same task.

✦ Enhance security: Frequently, database administrators and database
developers want to prevent users from manipulating tables directly. For
example, a usp_RecordSale stored procedure could be used to modify
a Sales table in a database. A user who is granted Execute permission on
the stored procedure but zero permissions on the Sales table could use
the stored procedure to update the Sales table but couldn’t access the
Sales table directly.

✦ Reduce vulnerability to SQL Injection attacks: SQL Injection attacks
take advantage of Web sites that dynamically build SQL statements.
Instead of dynamically building a SQL statement, parameters could be
collected from the Web page and passed into the stored procedure. This
is a primary prevention strategy for preventing SQL Injection attacks.

✦ Reduce network traffic: A stored procedure can include hundreds of
lines of code. However, to execute the stored procedure, only one line of
code needs to be sent over the network to execute it. Sending one line of
code over the network instead of hundreds of lines of code can reduce
network traffic.

Stored procedures can receive an input (in the form of parameters) and can
return an output. They can be created to perform a specific task (such as
rebuilding specific databases) without having any input or output, though
it’s generally good practice to have at least some type of output to indicate
success or failure.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 333

Why You Need Stored Procedures and Functions334

Stored procedures cannot be embedded within a SELECT statement. This is
a significant difference between functions and stored procedures. Functions
can be embedded within a SELECT statement.

Understanding system stored procedures
System stored procedures are included when you install SQL Server.
Primarily, system stored procedures are used to interact with the SQL Server
engine as opposed to data within user databases. All system stored proce-
dures start with the sp_ prefix.

Some of the more commonly used categories are

✦ Database Engine stored procedures: These are used for general mainte-
nance of SQL Server, and they include queries to retrieve general infor-
mation on SQL Server and the databases.

For example, the sp_helpdb reports general information on all data-
bases on the server or a single database if the database name is
included.

✦ Database Mail stored procedures: These are used for e-mail operations
from within SQL Server.

For example, the sp_send_dbmail system stored procedure can be
used to send an e-mail when Database Mail has been enabled and
configured.

✦ Log Shipping stored procedures: Log shipping is used to create and
maintain a standby server with the same data as a primary server. These
stored procedures are used to configure, modify, and monitor log
shipping.

For example, the sp_add_log_shipping_primary_database
stored procedure is used to set up a primary database for a log
shipping configuration.

✦ Replication stored procedures: Replication is used to create full or par-
tial copies of databases on multiple servers by identifying data that is to
be replicated, which server(s) will replicate the data, and which server(s)
will receive the data.

The sp_addpublication system stored procedure is used to identify
data that will be replicated.

✦ Security stored procedures: These are used for various security pur-
poses, such as adding or removing users, logins, and roles.

The sp_addlogin stored procedure can be used to add a login to the
server so that a user can access the server.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 334

Book IV
Chapter 2

Stored Procedures
and Functions

Why You Need Stored Procedures and Functions 335

✦ XML stored procedures: These are used to manage XML documents.

For example, the sp_xml_preparedocument stored procedure is used
to read and parse an XML documents and ensure it’s in a state that
allows it to be consumed (or used) within SQL Server.

Microsoft has included literally hundreds of system stored procedures
within SQL Server. They are all well documented in SQL Server’s help
feature — Books Online. You can launch SQL Server Books Online by choos-
ing Start➪All Programs➪Microsoft SQL Server 2008➪Documentation and
Tutorials➪SQL Server Books Online.

Figure 2-1 shows Books Online with the Index tab selected (at the bottom
left). Typing in system stored procedures brings you to all the entries for
system stored procedures. You can then select the categories section under
system stored procedures [SQL Server] to show all the categories.

Understanding functions
Functions are similar to stored procedures in that they are used to encapsu-
late frequently performed logic and can accept parameters. However, func-
tions are different from stored procedures in these ways:

✦ Functions always return a value. This is a core purpose of a function: to
perform some type of calculation or data retrieval and return data. Data
can be in the format of a derived table or a single value.

Figure 2-1:
Using Books
Online.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 335

Why You Need Stored Procedures and Functions336

✦ Functions always include parentheses. As an example, the MONTH(date)
function includes the date value in parentheses and returns the month
of the given date. The date can be any valid date. The GETDATE() func-
tion returns the current date. Even though parentheses are included
(and must be included), the GETDATE() function doesn’t accept
parameters.

✦ Functions can be used within SELECT statements. Stored procedures
cannot be used within a SELECT statement. Scalar functions (those that
operate on a single value and return a single value) can also be executed
with the EXEC statement just like a stored procedure.

✦ Functions can also be used anywhere a single value is expected.
Functions can be used anywhere in a query where a single value is
expected. This includes the SET clause in an UPDATE statement, and the
VALUES clause of an INSERT statement. They can be used in other func-
tions, in stored procedures, in CHECK constraints, and DEFAULT defini-
tions. In short, a function that returns a single value can be used just
about anywhere a single value is expected in a T-SQL statement.

✦ Many functions are built-in to SQL Server. SQL Server includes system
stored procedures, which are available when you install SQL Server.
Functions that are available when you install SQL Server are built-in func-
tions. If a function doesn’t exist to meet your needs, you can create your
own — referred to as user-defined functions.

Understanding built-in functions
Almost any programming language you use today includes built-in functions.
These are designed to perform some of the common tasks that you can
expect to need when using the language for application development.

As a common example, you might need to get an average of a group of num-
bers. Thinking back to grade school (a long time for me!), you probably
remember that the average is calculated by adding a group of numbers
together and then dividing the sum by how many numbers you added. The
average of two numbers (8 and 10) is 18 (8 + 10) divided by 2, which is 9.

Knowing how to calculate the average and programming code to calculate
the average are two different things. Yes, you could probably do it, but it’d
be a whole lot better if you didn’t have to perform such a tedious task. In
T-SQL, the AVG() function is available for this.

Built-in functions exist in four primary categories:

✦ Rowset functions: A rowset function returns data in a table format.
When a rowset function is used within a SELECT statement, the result is
referred to as a derived table. The table doesn’t actually exist in the
database; it’s derived from the function.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 336

Book IV
Chapter 2

Stored Procedures
and Functions

Why You Need Stored Procedures and Functions 337

As an example, the OPENQUERY() function can be used to create a
derived table from an external server that has been created as a linked
server. An OPENQUERY() function is shown in the following code:

SELECT *
FROM OPENQUERY(SQLServer2, ‘SELECT Lname, Phone FROM

dbo.Customers’)

Normally, a table name would immediately follow the FROM keyword.
Instead, the OPENQUERY() function is being used to query the
Customers table from a linked server named SQLServer2. This does
require that SQLServer2 be created as a linked server.

✦ Aggregate functions: Aggregate functions work on a group of data and
return a single value.

For example, you might be interested in knowing the maximum list price
of products listed in your Products table. The following query could be
used:

SELECT MAX(ListPrice) FROM Production.Product

✦ Ranking functions: Ranking functions add a column with a ranking value
for each row. This can be useful in identifying where a row falls in com-
parison with the other rows. Four different ranking functions are avail-
able: RANK, DENSE_RANK, NTILE, and ROW_NUMBER. Each of the functions
has subtle differences, such as how they handle a tie between two rows.

✦ Scalar functions: Scalar functions work on a single value and return a
single value. These are the most popular built-in functions and include
ten separate categories.

For example, consider the possibility that data names were entered into
the database with leading spaces. The LTRIM() function could be used
to retrieve the names but omit the leading spaces. A query with the
LTRIM() function may look like this:

SELECT LTRIM(LastName), Phone From Person.Contact

Books Online documents all the built-in functions available within SQL
Server 2008. The Functions (Transact-SQL) article includes links to all the cat-
egories and individual functions within the categories. In addition to finding
the available built-in functions, you’ll also find excellent examples of how to
use the functions.

Understanding user-defined functions
There’s sure to be a time when you need a specific functionality within your
code, but your searches for a suitable built-in function turn up empty. No
problem, you can create your own.

User-defined functions are created with the CREATE statement, modified
with the ALTER statement, and removed with the DROP statement.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 337

Creating Stored Procedures and Functions338

The RETURNS clause within the function identifies the data type of the func-
tion. The data type can be a single value, such as varchar(20), or it can be
a table.

You can create three different types of user-defined functions. The different
types are categorized based on the data that is returned.

✦ Scalar functions: Scalar functions accept a single parameter and return
a single value.

✦ Inline table-valued functions: These return a derived table created from
a single statement.

✦ Multi-statement table-valued functions: These return a derived table
created from multiple statements within the function. These are easily
identified by the use of the BEGIN...END statements within the function.

Creating Stored Procedures and Functions
Both stored procedures and functions can be created within SQL Server.
Because system stored procedures affect the server and the databases (and
not the data), you will very likely be creating your own user-defined stored
procedures. However, because so many built-in functions exist that can be
used to work on your data, the need to create user-defined functions isn’t
as great.

However, the successful database developer knows how to create both — or
at least knows where to look when the need arises to create a user-defined
stored procedure or function.

Creating user-defined stored procedures
Creating user-defined stored procedures is a skill that most database admin-
istrators need in day-to-day operations. If you say you can work with SQL
Server, you’re expected to know how to create basic stored procedures.

Darril recently went to a job interview for an application developer where
this was given as one of the few questions the company asked: “Our applica-
tions frequently access databases, and we commonly create stored proce-
dures to access the databases. Tell us about your knowledge related to
creating stored procedures.”

Knowing how to create and use stored procedures is often considered a core
skill requirement. Your knowledge and skill set in this area may be the differ-
ence between getting a job offer or not. (By the way, Darril did get the job
offer based on that interview.)

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 338

Book IV
Chapter 2

Stored Procedures
and Functions

Creating Stored Procedures and Functions 339

When you first start creating stored procedures, use the following steps:

1. Start with the code that you’d write to perform the job function with-
out worrying about the stored procedure.

This might be something as simple as a SELECT or INSERT statement.

2. After the code is tested, add the CREATE PROC statement.

The general syntax is

CREATE PROC procedureName
AS
tested code

3. Execute the procedure to verify it works as you expect.

The syntax to execute a stored procedure is

EXEC procedure name

4. Add parameters to your stored procedure.

Parameters can be used as variables within your stored procedure and
are identified with a leading @ symbol. Zero or more parameters can be
used. They should be separated with a comma. The data type of the
parameter also needs to be specified. Generally, this matches the same
data type used in the table. The general syntax is

CREATE PROC procedureName
@variablename datatype

AS
. . .

5. Use the parameter variables in your script.

For example, if your script used a SELECT statement, you could use a
WHERE clause to check for the existence of the variable. The general
syntax is

SELECT *
FROM table
WHERE columnName = @variableName

6. Modify the stored procedure with the ALTER command.

With the addition of the parameter and usage of the variable in the
script, change the CREATE keyword to ALTER and press F5 to execute
the script.

ALTER PROC procedureName
@variablename datatype

AS
. . .

7. Execute the stored procedure with the following command:

EXEC procedureName parameter

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 339

Creating Stored Procedures and Functions340

What Darril has found when teaching stored procedures to students in the
classroom who haven’t written them before is they often want to jump right
to Step 6, creating a stored procedure with parameters. They often struggle
with typos that come with any type of scripting or programming. However,
because they started with a complex step, they have a lot of difficulty
troubleshooting the script and experience more than their fair share of
frustration.

When starting out, go slow. Perform only one step at a time. Count each step
that you finish as a mini-victory. Move to the next step only after succeeding
with the current step.

Use the following steps to create an actual user-defined stored procedure
that retrieves employee data from the AdventureWorks2008 database.

These steps assume you have the AdventureWorks database installed
on your system. If you haven’t installed it, download and install the
AdventureWorks 2008 database. This file can be found by going to the
Microsoft CodePlex site (www.codeplex.com/MSFTDBProdSamples) and
clicking the Releases tab. Book III, Chapter 5 provides the complete steps on
how to install AdventureWorks2008.

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. Enter the following code to test a simple query.

Press F5 to execute the query. This returns 290 rows.

USE AdventureWorks2008;
GO
SELECT *
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON e.BusinessEntityID = p.BusinessEntityID

4. Modify the query to create a stored procedure.

Press F5 to execute the query. The lines that are added are in bold.

CREATE PROC usp_GetEmp
AS
SELECT *
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON e.BusinessEntityID = p.BusinessEntityID

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 340

Book IV
Chapter 2

Stored Procedures
and Functions

Creating Stored Procedures and Functions 341

5. Execute the stored procedure with the following line:

EXEC usp_GetEmp

Highlight the line and press F5 to execute it. This returns 290 rows.

6. Modify the stored procedure to add a parameter.

The parameter is used within a WHERE clause to retrieve information on
employees with a specific last name. The modifications are shown in
bold.

ALTER PROC usp_GetEmp
@LastName varchar(50)

AS
SELECT *
FROM Person.Person p
INNER JOIN HumanResources.Employee e
ON e.BusinessEntityID = p.BusinessEntityID
WHERE LastName = @LastName

Press F5 to execute the ALTER statement.

7. Execute the stored procedure with the following statement:

EXEC usp_GetEmp ‘Gilbert’

This returns one row.

Creating user-defined functions
If a built-in function doesn’t exist to meet your needs, you can simply create
your own. The following three sections show the steps necessary to create
each of the different types of functions.

The basic syntax to create a user-defined function is

CREATE FUNCTION functionName
(input parameter and data type)

RETURNS
(identifies the data type returned by the function)

AS
Function definition

Creating a scalar function
Scalar functions work on a single value and return in a single value.

For example, you might want to modify the output of a query on the
Production.Product table so that NULL is not used for colors. Any time the
value of NULL is encountered, instead of outputting NULL in the query, you
can use a function to substitute the value of Not Available for the color.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 341

Creating Stored Procedures and Functions342

The following steps can be used to create a function that changes NULL
values to Not Available.

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. Enter the following query and execute it by pressing F5 to view how
the Color column is displayed.

USE AdventureWorks2008;
GO
SELECT Name, ProductNumber, Color FROM

Production.Product

4. Enter the following code and execute it to create a user-defined scalar
function:

CREATE FUNCTION fn_NULL_to_NA
(@inputString nvarchar(30))
RETURNS nvarchar(15)
AS
BEGIN

If @inputString IS NULL
SET @inputString = ‘Not Available’

-- At this point, the value of the @inputString
-- variable is either the
-- original color or it has been changed to Not
-- Available if it was NULL
Return @inputString

END

5. Enter the following query and execute it to view the way the Color
column is displayed when the function is used.

SELECT Name, ProductNumber, dbo.fn_NULL_to_NA(Color)
FROM Production.Product

When executing functions, the two-part name is used as in schema.
functionname. Schemas can be used to organize and specify ownership
of objects. If not specified when the object is created, it defaults to dbo,
which indicates the database owner owns the object.

6. Leave the query window open in SSMS for the next steps.

One great thing about this function is that it’s generic. In other words,
although it was created specifically to change the value of NULL to Not
Available for the Color column, nothing stops it from being used on other
columns with a NULL value.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 342

Book IV
Chapter 2

Stored Procedures
and Functions

Creating Stored Procedures and Functions 343

Once created and in the database, you can use the same function to change
the value of NULL in the Phone column, the Fax column, the EmailAddress
column, or any other column where you see a use.

Creating a table-valued function
Both inline table-valued functions and multi-statement table-valued func-
tions return a derived table. The derived table can be used within a SELECT
clause in place of an actual table.

The only real difference between an inline table-valued function and a multi-
statement table-valued function is how the returned table is created. In a
multi-statement table-valued function, the table is defined with multiple
statements. In an inline table-valued function, the table is defined with a
single statement.

You can compare a table-valued function with a view. A view can be created
to show specific columns from one or more tables. However, a weakness
with a view is that it can’t accept parameters. By creating an inline table-
valued function, you can mimic the functionality of a view with the added
capability of using parameters.

As an example, imagine that you need to create the capability to retrieve
e-mail addresses and phone numbers. The user has the person’s last name.
Use the following steps to create an inline table-valued function that returns
this information with the last name as a parameter:

1. With the query window open in SSMS, use the following query to
return information on a person with the last name of Alameda:

USE AdventureWorks2008;
GO
SELECT p.FirstName, p.LastName, em.EmailAddress,

ph.PhoneNumber FROM Person.Person p INNER JOIN
Person.PersonPhone ph
ON p.BusinessEntityID = ph.BusinessEntityID
INNER JOIN Person.EmailAddress em
ON p.BusinessEntityID = em.BusinessEntityID

WHERE LastName = ‘Alameda’

You use the same query in your function, but instead of identifying the
name in the WHERE clause, you use a parameter to allow the name to be
changed.

2. Enter and execute the following code to create the function named
fn_PhoneEmail:

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 343

Creating Stored Procedures and Functions344

CREATE FUNCTION fn_PhoneEmail
(@LastName nvarchar(50))

RETURNS table
AS
RETURN (

SELECT p.FirstName, p.LastName, em.EmailAddress,
ph.PhoneNumber

FROM Person.Person p INNER JOIN
Person.PersonPhone ph
ON p.BusinessEntityID = ph.BusinessEntityID
INNER JOIN Person.EmailAddress em
ON p.BusinessEntityID = em.BusinessEntityID

WHERE LastName = @LastName)

3. Use the following query to use the function:

SELECT * FROM dbo.fn_PhoneEmail (‘Alameda’)

The function is used right after the FROM clause. The FROM clause
expects a table, and the function provides a derived table.

4. Leave the query window open in SSMS for the next steps.

Creating CLR integrated functions
A CLR integrated function is one that includes a program created in a .NET
language. This can be quite powerful. Now you can use a fully featured lan-
guage, such as Visual Basic .NET or C# .NET to write a complex subroutine.
After the subroutine is compiled, you can then integrate it within a SQL
Server object, such as a stored procedure or a function.

The steps to create CLR integrated stored procedures and CLR integrated
functions are very similar. If you’d like to see the steps to create a CLR inte-
grated stored procedure, check out Book IV, Chapter 1.

The high-level steps required to create CLR integrated objects are

1. Use a .NET language to create a Dynamic Link Library (DLL) assembly.

2. Register the assembly in SQL Server.

3. Create a SQL object (such as a stored procedure or function) that uses
the assembly.

Imagine that you have a need to determine the day of the year. Each year has
365 or 366 days, and you want to determine the day of the year for the cur-
rent date. You can use the following steps to create a CLR integrated object
that returns the day of the year:

1. Click Start➪Run and enter Notepad. Press Return.

This opens an instance of the Notepad text editor.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 344

Book IV
Chapter 2

Stored Procedures
and Functions

Creating Stored Procedures and Functions 345

2. Enter the following code into Notepad:

Imports Microsoft.SqlServer.Server
Imports System.Data.SqlClient
Public Class DateFunctionsClass

<SqlFunction(DataAccess:=DataAccessKind.Read)> _
Public Shared Function fn_DayOfYear(ByVal dt _

As System.Data.SqlTypes.SqlDateTime) As Integer
Dim dtPassed As Date = dt.Value
fn_DayOfYear = _

DatePart(DateInterval.DayOfYear, dtPassed)
End Function

End Class

This Visual Basic code creates a Visual Basic class (named
DateFunctionsClass) that can be compiled into a DLL file. It includes
only one function (named fn_DayOfYear) but could easily include
many functions. The code returns the day of the year (from 1 to 366).

3. Save the file as myCLR.vb in the C:\CLRAssembly folder.

Press Ctrl+S to access the Save As dialog box. Browse to the root of C:\
and create a folder named CLRAssembly. Enter myCLR.vb as the name
of the file.

4. Click Start➪Run and enter cmd to launch the command line.

5. At the command line, change the directory to the directory holding
the .NET Framework compiler by using the following command.

CD c:\Windows\Microsoft.NET\Framework\v2.0.50727

Several versions of the .NET Framework are available. Most current sys-
tems include at least version 2, build 50727 (v2.0.50727). If the change
directory (CD) command doesn’t work with the path of v2.0.50727,
double-check to ensure that you don’t have any spaces in the path. If it
still doesn’t work, use Windows Explorer to browse to the Windows\
Microsoft.NET\Framework folder to determine the version of the .NET
Framework that you have on your system. Use the CD command to
change the path to that directory.

6. Compile your assembly by using the Visual Basic Compiler (vbc). Use
the following command from the command line:

vbc /target:library c:\CLRAssembly\myCLR.vb

If you use Windows Explorer to browse to the c:\CLRAssembly folder,
you’ll see that the myCLR.dll file has been created. You need to register
this assembly in SQL Server.

7. With the query window open in SSMS, enter and execute the follow-
ing code to create a database named CLRTest:

CREATE DATABASE CLRTest

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 345

Creating Stored Procedures and Functions346

8. Using the SSMS Object Explorer, browse to the Databases | CLRTest |
Programmability | Assemblies container.

Figure 2-2 shows the empty Assemblies container within the Object
Explorer in SSMS. Assemblies can be created via T-SQL code or by right-
clicking the Assemblies container.

9. Right-click the Assemblies container and choose New Assembly.

10. Click the Browse button and browse to the C:\CLRAssembly direc-
tory. Select the myCLR.dll file and click Open. Enter DBO as the
Assembly Owner. Click OK.

Before you click OK, your display looks similar to Figure 2-3. The
Assembly name is filled in with the name of the assembly (myCLR). The
Permission Set option defaults to Safe, which prevents the assembly
from accessing anything other than what’s in the database, and Path to
Assembly is filled in with the name and path of the DLL file.

11. Click OK in the New Assembly dialog box.

When you click OK, the assembly is registered within SQL Server. You
need to create a stored procedure that will use it.

12. In the query window, enter the following code to create a stored pro-
cedure that uses the myCLR assembly:

USE CLRTest;
GO
CREATE FUNCTION udf_DayOfYear(@dt as datetime)
RETURNS integer
AS EXTERNAL NAME myCLR.DateFunctionsClass.fn_DayOfYear;

Figure 2-2:
The
Assemblies
container
within the
CLRTest
database.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 346

Book IV
Chapter 2

Stored Procedures
and Functions

Creating Stored Procedures and Functions 347

The EXTERNAL NAME is created as the three-part name in the following
format: assembly name (that you registered in SQL Server), class name
(identified in the Visual Basic file that you created in Notepad), and the
function name (within the class). Although our assembly includes only
one class and only one function in the class, assemblies can be created
with multiple classes within them, and multiple subroutines or functions
within the classes.

13. Enter the following code in the query window to enable the usage of
CLR assemblies:

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘clr enabled’, 1;
GO
RECONFIGURE;

Press F5 to execute the code.

14. Use the following code to execute your CLR integrated function:

SELECT dbo.udf_DayOfYear(‘02/27/2008’) AS [Day of Year]
SELECT dbo.udf_DayOfYear(GetDate()) AS [Day of Year]

The first SELECT statement shows how to use a given date in the func-
tion. The second statement shows how to use the current date in the
function.

Figure 2-3:
The New
Assembly
dialog box.

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 347

Book IV: Database Programming348

29_179543-bk04ch02.qxp 8/23/08 12:39 AM Page 348

Chapter 3: Triggers

In This Chapter
� DML triggers: Letting your database look after itself

� DDL triggers: Letting your server look after itself

� Creating triggers

� Maintaining triggers

Triggers are powerful tools that you can use to automate control of your
server and databases. Three categories of triggers are available in SQL

Server 2008: Data Manipulation Language (DML) triggers, Data Definition
Language (DDL) triggers, and logon triggers.

To control data modifications within your database, you use a DML trigger.
To control modifications of objects (such as databases or tables), you use a
DDL trigger. To audit or control logins, you create a logon trigger.

The great thing about a trigger is that you create it once, and it manages
your server or database forever more. You could be vacationing in Hawaii or
the Swiss Alps, and the trigger will still do your bidding.

DML Triggers: Letting Your Database Look After Itself
Triggers are often referred to as a special type of stored procedure. Just as
stored procedures can be programmed to perform just about anything
within a database, so can triggers. Data Manipulation Language (DML) trig-
gers are often used to

✦ Make changes to other columns (in the same table or other tables
within the database) in response to a data modification.

✦ Perform auditing by recording who made a data modification and when.

✦ Roll back or undo data modifications.

✦ Provide specialized error messages.

Although a stored procedure can be executed with the EXEC command,
Data Manipulation Language (DML) triggers can’t be called directly. Instead,
they are configured on individual tables or views and respond to the follow-
ing DML commands:

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 349

DML Triggers: Letting Your Database Look After Itself350

✦ INSERT: When an INSERT command is executed on a table, an INSERT
trigger on the table fires.

For example, when an order is placed (inserting data into the Orders
table), you might like to update the on-hand inventory column in the
Products table. You could create an INSERT trigger on the Orders table
to do this. When someone orders five glossy widgets, the INSERT trigger
would fire and would reduce the on-hand inventory value by five.

✦ UPDATE: When an UPDATE command is executed on a table, an UPDATE
trigger on the table fires.

For example, management might want to know if anyone ever modifies
data (such as the Salary column) in the Employees table. You could
create an UPDATE trigger on the Employees table to record into an
Auditing table who made the change and when he made the change.
Now, if someone enters the database and updates his salary (perhaps by
doubling it), the UPDATE trigger on the Employees table would fire and
record in the Auditing table who did it and when.

✦ DELETE: When a DELETE command is executed on a table, a DELETE
trigger on the table fires.

For example, the company you work at might not want to ever delete a
customer from the Customers table. Instead, customers should be
marked as inactive. You could create a DELETE trigger on the Customers
table to roll back the deletion, and change the value of the Status
column to Inactive. If someone ever tried to delete a customer, the
DELETE trigger would fire and undo the deletion (by rolling back the
DELETE statement) and changing the value of the Status column.

DML triggers can be programmed to perform either after the data modifica-
tion or instead of the data modification. When a trigger is created, one of
these choices is specified:

✦ AFTER: An AFTER trigger fires after the data modification. In other
words, the data modification occurs, and then the trigger fires in
response to the data modification. Therefore, an after trigger that rolls
back a data modification becomes an expensive operation because the
data is changed twice when it shouldn’t be changed at all.

AFTER is the default for triggers. AFTER triggers can only be specified on
tables; they can’t be specified on views.

✦ INSTEAD OF: An INSTEAD OF trigger fires before the data modification.
In other words, the data modification is prevented from occurring, and
instead, the trigger is executed.

INSTEAD OF triggers are commonly created on updateable views. For
example, if a view is created by using the UNION clause, an UPDATE on

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 350

Book IV
Chapter 3

Triggers

DML Triggers: Letting Your Database Look After Itself 351

the view would fail because the UPDATE statement won’t be able to
determine which table to update.

The INSTEAD OF trigger can include logic to determine which table to
update, and instead of updating the view, it would update the underlying
table.

Triggers use two special tables that are only accessible to triggers. The data
in these tables is available immediately after an INSERT, UPDATE or DELETE
statement.

✦ Inserted table: The inserted table holds data from the last INSERT or
UPDATE statement.

✦ Deleted table: The deleted table holds data from the last DELETE or
UPDATE statement.

The use of INSERT and DELETE statements in these tables is straightfor-
ward. If one or more rows are added with an INSERT statement, the row(s)
are held in the inserted table. If one or more rows are deleted with a DELETE
statement, the row(s) are held in the deleted table.

However, an UPDATE statement isn’t so clear. Notice an updated table doesn’t
exist.

When an UPDATE statement is executed, the database engine actually
deletes the existing row (and holds it in the deleted table) and then adds a
new row (and holds it in the inserted table). The new row has all the same
column data as the deleted row, except for the column (or columns) that
were modified. Although it appears as though the existing row was modified,
it was actually deleted and inserted with the modified data.

An INSERT trigger has access to only the inserted table; a DELETE trigger
has access to only the deleted table; however, an UPDATE statement has
access to both the inserted table and the deleted table.

Understanding DML trigger benefits
A significant benefit of DML triggers is that they capture the data modifica-
tion no matter how the data modification is accomplished. Although you
could create a stored procedure to perform the same actions as the trigger,
the actions of the stored procedure would occur only if the stored procedure
is executed. If a user chose to bypass the stored procedure and modify the
data directly, the actions wouldn’t occur.

In contrast, a trigger can’t be bypassed. That is, an UPDATE trigger on a table
fires when data is modified from an UPDATE statement issued from an appli-
cation, from a stored procedure, or even from a direct modification within
SQL Server Management Studio.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 351

DDL Triggers: Letting Your Server or Your Database Look After Itself352

Triggers can also provide sophisticated error messages. If you want to pro-
vide detailed feedback to the user, or log specific information in log files, you
can use a trigger. Compared to constraints that provide system-defined feed-
back, triggers provide whatever information that you, the programmer, want
to provide.

Understanding DML trigger drawbacks
The biggest drawback to triggers is that they execute after the data modifica-
tion. Any time data is rolled back within a trigger, additional processing
power is used. Instead of rolling back data within a trigger, you should con-
sider other alternatives.

One alternative to triggers is the use of CHECK or DEFAULT constraints.

For example, you might want to ensure that a phone number is entered in
the format of (xxx)xxx-xxxx where x is a number between 0 and 9. A CHECK
constraint would check the data before it’s entered in the database and pre-
vent the data entry if it didn’t comply with the CHECK. In contrast, a trigger
would allow the data entry, and then roll it back if the phone number wasn’t
in the proper format. The CHECK constraint would be much more efficient.

Another alternative is to use an INSTEAD OF trigger rather than an AFTER
trigger.

DDL Triggers: Letting Your Server or
Your Database Look After Itself

Data Definition Language (DDL) triggers have been in SQL Server since SQL
Server 2005. Like Data Manipulation Language (DML) triggers, DDL triggers
can’t be called directly. Instead, they respond to DDL events. DDL events are
created when DDL statements are executed. DDL statements that can fire
triggers include

✦ CREATE: The CREATE statement is used to create objects, such as
tables, databases, and logins.

✦ ALTER: The ALTER statement is used to make modifications to objects.

✦ DROP: The DROP statement is used to remove objects.

✦ GRANT: The GRANT statement is used to grant permissions.

When you’re removing data, you use the DELETE statement. When you’re
removing objects, you use the DROP statement. UPDATE is used to modify
data, whereas ALTER is used to modify objects. It’s a subtle difference, but
the statement being used (DML or DDL) helps you identify whether you’re
working on data or working on objects.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 352

Book IV
Chapter 3

Triggers

Logon Triggers: Monitoring and Controlling Login Events 353

DDL triggers have two possible scopes: database and server. The scope iden-
tifies the type of objects that the trigger will monitor.

✦ Database scope: A trigger with a database scope monitors objects
within a specific database. These include tables, views, stored proce-
dures, functions, or any other object within a database that can be
manipulated.

✦ Server scope: A trigger with a server scope monitors any objects within
the server (except objects within a database). These include databases,
logins, messages, or any other object that can be created within a server
instance.

DDL triggers are commonly used to

✦ Audit database operations: Any changes to database objects (such as
tables, views, or stored procedures) can be captured by a DDL trigger
and recorded in a separate auditing table. For example, by modifying a
table that is used by a view, it’s possible to break the view. Imagine that
this has happened one time too many where you work. By creating an
ALTER trigger on the database, you can record exactly when any object
was changed, what it was changed from, what it was changed to, and
who changed it.

✦ Regulating database operations: With DDL triggers, you can prevent
database changes by capturing the change and rolling back what you
don’t want to occur. For example, you might want to prevent any
changes to the database schema, such as altering the structure of a
table.

✦ Audit server operations: Any changes to server objects (such as the
creation, deletion, or modification of databases) can be captured. The
statement that caused the change can then be logged in to an auditing
table including what was done, by whom, and when.

Logon Triggers: Monitoring and
Controlling Login Events

Logon triggers are used to audit and control server sessions. When config-
ured, a user-defined stored procedure fires in response to a login event.
Some examples of how a logon trigger is used include:

✦ Track or audit all login activity: You can use a logon trigger to capture
logon information (such as who logged in and when they logged in) into
an audit table.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 353

Creating Triggers354

✦ Restrict logins: Logon triggers can be used to restrict logins to the SQL
Server during certain times. For example, you might want to restrict
logins during maintenance periods.

✦ Restrict logins for specific users: You can use logon triggers to restrict a
user from having more than a specific number of active sessions, or
restrict a user’s total monthly logon time.

The timing of when logon triggers fires gives you insight into how they can
be used.

1. User authenticates: A user initiates a session with SQL Server.
Credentials are passed and the user is authenticated.

2. Logon trigger fires: After the user authenticates (but before the session
begins), the logon trigger fires. The logon trigger can capture informa-
tion about the user. This information can be logged, or used to rollback
the login and prevent the session.

3. Session begins (or is prevented by logon trigger): If the login doesn’t
rollback, the user’s session begins.

Creating Triggers
Triggers are created using T-SQL code. Although they’re viewable within the
SQL Server Management Studio (SSMS) after they’ve been created, you can’t
create them in the graphical user interface.

Creating a DML trigger
The following basic syntax creates a DML trigger:

CREATE TRIGGER triggername
ON table or view
AFTER or INSTEAD OF
INSERT or UPDATE or DELETE
AS
trigger code

The trigger will be created in the current database. Because the default data-
base is Master when you open SSMS, you would usually change the context
of the database with a USE command immediately preceding the trigger
code.

In the following steps, you create a Sales database, a Customers table, an
UPDATE trigger, and a DELETE trigger. By manipulating the data within the
Customers table, you’ll see the triggers being fired.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 354

Book IV
Chapter 3

Triggers

Creating Triggers 355

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Open a new query window by clicking the New Query button.

3. Enter and execute the following code to create a database named
Sales with a table named Customers:

USE Master;
GO
CREATE DATABASE Sales;
GO
USE Sales;
GO
CREATE TABLE Customers (
CustomerID int NOT NULL,
LName varchar(50) NOT NULL,
FName varchar(50) NULL,
Status varchar (10) NULL,
ModifiedBy varchar(30) NULL
)

4. Add a customer with the following code:

INSERT INTO Customers (CustomerID, LName, FName,
Status)

VALUES (101, ‘Dangerously’, ‘Johnny’, ‘Active’)

Notice that the ModifiedBy column is left NULL.

5. View your customer data with the following query:

SELECT * FROM Customers

You should see the row you added and a blank ModifiedBy column.

6. Add an UPDATE trigger on the Customers table with the following
code:

CREATE TRIGGER trgRecordModifyDate
ON Customers
AFTER UPDATE
AS
DECLARE @CustomerID int
SET @CustomerID = (SELECT CustomerID FROM inserted)
UPDATE Customers

SET ModifiedBy = suser_sname()
WHERE CustomerID = @CustomerID

The @CustomerID variable used to capture CustomerID was modified
from the last UPDATE statement. Then the suser_sname() function
captures the identity of the user that executed the UPDATE statement
and stores it in the ModifiedBy column.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 355

Creating Triggers356

7. Modify the customer data with the following query:

UPDATE Customers
SET FName = ‘Johnathan’
WHERE CustomerID = 101

This causes the UPDATE trigger to fire and add data to the ModifiedBy
column.

8. View your new customer data with the following query:

SELECT * FROM Customers

You should see that the ModifiedBy column is no longer NULL.

9. Add an INSTEAD OF DELETE trigger to prevent the deletion of cus-
tomers with the following code:

CREATE TRIGGER trgNoDelete
ON Customers
INSTEAD OF DELETE
AS
RAISERROR (‘Customers can’’t be deleted. Customer

changed to inactive instead.’, 16, 10) WITH LOG
UPDATE Customers

SET Status = ‘Inactive’
FROM Customers as c INNER JOIN deleted as d
ON c.CustomerID = d.CustomerID

The trigger is an INSTEAD OF trigger, so the actual DELETE statement
doesn’t fire.

10. Try to delete a customer with the following code:

DELETE FROM Customers
Where CustomerID = 101

Instead of deleting the customer, the message Customers can’t be deleted.
Customer changed to inactive is displayed.

11. View your new customer data with the following query:

SELECT * FROM Customers

The status has been changed to Inactive.

12. Leave the query window open in SSMS for the next set of steps.

Creating a DDL trigger
The following basic syntax creates a DDL trigger:

CREATE TRIGGER triggername
ON DATABASE or SERVER
FOR event
AS
trigger code

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 356

Book IV
Chapter 3

Triggers

Creating Triggers 357

A powerful tool that can be used when creating DDL triggers is the
EVENTDATA() function. Any time a DDL trigger fires, the information
about the trigger is captured in the EVENTDATA() function as XML data.

By copying the EVENTDATA into an XML variable, you can then query the
data and store the pieces that you want or need.

Different event types hold different data. The two pieces of data used in the
following steps are

✦ EventType: The EventType value holds the value of the event type that
caused the trigger to fire. For example, a DDL trigger can be created to
capture all DDL database events (DDL_DATABASE_LEVEL_EVENTS). The
EventType value would be CREATE_TABLE for a CREATE TABLE state-
ment or ALTER_VIEW for an ALTER VIEW statement.

✦ TSQLCommand: The TSQLCommand value holds the actual command
that was executed. For example, if an ALTER TABLE command was
issued, it would hold the full syntax of the command so that you could
easily identify exactly what was altered.

It’s important to realize that the EVENTDATA() function holds only the data
for the trigger and is accessible only by the trigger. After the trigger has fired,
you no longer have access to the data from the EVENTDATA() function.

In the following steps, you create and test several DDL triggers. Two have
database level scope, and one has server level scope. The first provides
feedback to the user that tables can’t be modified. The last two triggers log
the activity into a table within a database.

The following steps assume the Sales database has been created in the previ-
ous steps. If you haven’t done so, create the Sales database and the
Customers table.

1. Add a trigger to prevent the modification of any tables within the
Sales database with the following code:

USE Sales;
GO
CREATE TRIGGER trgNoChange
ON DATABASE
FOR ALTER_TABLE
AS

PRINT ‘Tables may not be modified’
ROLLBACK;

The ON clause identifies the scope. In this case, the scope is for the data-
base. The USE statement set the context to the Sales database; there-
fore, the trigger is set on the Sales database.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 357

Creating Triggers358

2. Try to modify the Customers table with the following ALTER statement:

ALTER TABLE Customers
ADD ZipCode varchar(10) NULL

3. Use the following command to verify that the table hasn’t been
modified.

SELECT * FROM Customers

4. Add a table called Audit with the following command:

USE Sales;
GO
CREATE TABLE Audit (
DBUser varchar(50) NOT NULL,
ExecutionTime datetime NOT NULL,
EventType varchar (50) NULL,
TSQLCmd varchar(500) NULL
)

This table logs who executed the DDL command, what command was
executed, and when it was executed.

5. Create the DDL trigger with the following command:

CREATE TRIGGER trgAuditDB
ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
DECLARE @Event XML
SET @Event = EVENTDATA()
INSERT Audit

(DBUser, ExecutionTime, EventType, TSQLCmd)
VALUES
(suser_sname(),GETDATE(),
@Event.value(‘(/EVENT_INSTANCE/EventType)[1]’,
‘nvarchar(50)’),
@Event.value(‘(/EVENT_INSTANCE/TSQLCommand)[1]’,
‘nvarchar(500)’)) ;

This trigger captures all database-level DDL events. The @Event vari-
able captures the data from the Event function, such as the type that
was captured and the actual T-SQL command that was executed, and
inserts this information into the Audit table.

6. Use the following command to create a table within the database:

USE Sales;
GO
CREATE TABLE NoCreate (
DBUser varchar(50) NOT NULL
)

The DDL trigger doesn’t stop the command from being executed, but it
does log the information into an Audit table.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 358

Book IV
Chapter 3

Triggers

Maintaining Triggers 359

7. You can observe the details of who created the table, when they cre-
ated it, and what command they issued to create it by querying the
Audit table with the following command:

SELECT * FROM Audit

8. You can create a DDL trigger with a server scope with the following
command:

CREATE TRIGGER trg_CreateDatabase
ON ALL SERVER
FOR CREATE_DATABASE
AS
DECLARE @Event XML
SET @Event = EVENTDATA()
INSERT Sales.dbo.Audit

(DBUser, ExecutionTime, EventType, TSQLCmd)
VALUES
(suser_sname(), GETDATE(),
@Event.value(‘(/EVENT_INSTANCE/EventType)[1]’,
‘nvarchar(50)’),
@Event.value(‘(/EVENT_INSTANCE/TSQLCommand)[1]’,
‘nvarchar(500)’)) ;

This trigger is similar to the trigger designed to capture database-level
events. The exception is that you must identify the Audit table in the
Sales database with a three-part name (Sales.dbo.Audit) because the
trigger has a server scope (defined with ON ALL SERVER).

9. Create a database named LogMe with the following command:

CREATE DATABASE LogMe

10. The creation of the database is captured and logged by executing the
following command:

USE Sales;
GO
SELECT * FROM Audit

Maintaining Triggers
During the life of a trigger, you’ll likely need to make some changes.

For example, you might have originally created a trigger that provided feed-
back to a user stating that tables shouldn’t be modified in a database.
Instead of just informing users that it shouldn’t be done, you decide that you
want to audit whenever it’s done by logging the change into the database.

With this situation, you don’t have to re-create the trigger from scratch.
Instead, you can use the ALTER statement to make the change.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 359

Maintaining Triggers360

The following basic syntax modifies a DML trigger:

ALTER TRIGGER triggername
ON table or view
AFTER or INSTEAD OF
INSERT or UPDATE or DELETE
AS
trigger code

This basic syntax modifies a DDL trigger:

ALTER TRIGGER triggername
ON DATABASE or SERVER
FOR event
AS
trigger code

The syntax is exactly the same except that the CREATE keyword is replaced
with the ALTER keyword.

30_179543-bk04ch03.qxp 8/23/08 12:40 AM Page 360

Chapter 4: Working
with Visual Studio

In This Chapter
� Visual Studio: the development companion to SQL Server

� Navigating SQL Server databases with Visual Studio

� Common Visual Studio and SQL Server tasks

We admit it. We think databases are cool. Call us nerdy if you like, but
we love working with databases and helping to make them sing.

However, we’re aware that not everyone is like that and not everyone has
SQL Server installed on his desktop.

You might be a developer using Visual Studio (or even one of the Visual
Express editions of your favorite programming language) but without an
SQL Server installed on your system. You might still need to access the data-
bases. Thankfully, you can do so with Visual Studio.

In this chapter, you get a mini-introduction to Visual Studio and you find out
how to connect to a SQL Server database. You also discover how to browse
the database objects, view the data, and debug stored procedures.

Introducing Visual Studio
Microsoft Visual Studio is a full-featured development environment that can
be used to create Windows applications, console applications, Web sites,
Web applications, Web services, and more. It supports developing applica-
tions in a wide variety of programming languages including:

✦ Visual Basic

✦ Visual C#

✦ Visual C++

Within the context of SQL Server, Visual Studio can be used to browse data-
bases, debug stored procedures, develop Web services, and create SQL
Server Management Object (SMO) applications. In Chapter 7 of this mini-
book, steps are included that show you how to create a basic SMO applica-
tion by using Visual Basic.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 361

Introducing Visual Studio362

Developers who are creating applications that access SQL Server databases
can use Visual Studio to connect to databases (either as stand-alone files, or
hosted on remote servers), and browse through the databases. Often, a
developer needs to know details of a database, such as specifics of a table
including column names, constraints, and data types.

The Server Explorer within Visual Studio can be used to browse through
databases hosted on SQL Server. Figure 4-1 shows Visual Studio launched
with the Server Explorer displayed. It has one connection to a database file,
and also has a connection to a SQL Server named SRV08.

If you’re using one of the Visual Studio Express editions, you won’t have
Server Explorer. Instead, you have the Data Explorer, which can do most of
what Server Explorer can.

On the right, the Solution Explorer is blank. When developing applications,
you use Visual Studio to create a solution that would include one or more
projects. However, to browse databases, you don’t have to create a project.
You can simply launch Visual Studio, access the Server Explorer, and con-
nect to the database you want to explore.

Below the Solution Explorer is the Properties pane. The Properties pane dis-
plays the properties of the object that is currently selected. If it disappears,
it can be brought back by pressing F4.

You don’t need the full version of Visual Studio to use Visual Studio with SQL
Server. When you install SQL Server, you also get the Business Intelligence
Development Studio (BIDS). BIDS is used for many of the development proj-
ects within SQL Server.

Figure 4-1:
Creating a
Data
Connection.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 362

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Introducing Visual Studio 363

BIDS can be used with the following:

✦ SQL Server: BIDS can be used to connect to databases, browse through
databases objects, and even debug stored procedures.

✦ SQL Server Analysis Services (SSAS): SSAS is used to reorganize data in
a different format, allowing decision makers access to the data they
need to make better-informed decisions.

✦ SQL Server Integration Services (SSIS): SSIS projects are used to
extract, transform, and load (ETL) data from a wide variety of sources.
By using SSIS, you can create complex packages designed to cleanse and
sanitize data for better consistency and data quality.

✦ SQL Server Reporting Services (SSRS): SSRS projects are used to create
and deploy reports, allowing users easy access to data via a familiar
Web browser.

One of the differences between BIDS and Visual Studio is that Visual Studio
allows you to connect to other SQL Servers, but BIDS doesn’t give you that
option. You can connect to database files only.

Get a free trial edition of Visual Studio
No doubt about it, Visual Studio is an expensive product. If you’re a rich
developer, it’s just a cost of doing business, but most of us aren’t rich. Yet.

If you want to try Visual Studio, you can download a free Trial Edition.
Microsoft has a 90-day evaluation version of Visual Studio 2008 Professional
Edition available for download. It’s a fully functioning product, but it stops
working after 90 days. You can download it from here:

http://msdn2.microsoft.com/en-us/vs2008/products/
cc268305.aspx

We’ve seen developers download the past editions of Visual Studio, play
around with it, and then show management some of the magic they can per-
form with the product. It becomes a great “proof of concept” tool that justi-
fies the cost. Of course, trial editions are great for those of us who just like
to play, too.

When you download this, beware. It’s a single ISO image that’s almost 4GB in
size. Even with a broadband connection, it’ll take a while to download. We
wouldn’t want to try this with a dial-up connection. After you download the
ISO image, burn it to a DVD, and then you’re ready to start.

Remember though, BIDS is installed when SQL Server is installed. BIDS might
be enough for you without having to install the full version of Visual Studio.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 363

Introducing Visual Studio364

Launching Visual Studio
Whether you’re using a full version of Visual Studio, or BIDS that installs by
default with SQL Server, you’ll want to launch it. Use the following steps to
launch Visual Studio and connect to the AdventureWorks2008 database.

These steps assume that you have a copy of the AdventureWorks2008
database available on a SQL Server. If you don’t have a copy, you’ll need to
download a copy. Start with an Internet search on download AdventureWorks.
Full details on how to install AdventureWorks2008 are covered in Book III,
Chapter 5.

1. Launch Microsoft Visual Studio 2008.

Choose Start➪All Programs➪Microsoft Visual Studio 2008➪Microsoft
Visual Studio 2008.

2. Choose View➪Server Explorer to make the Server Explorer visible.
Alternately, you could press Ctrl+Alt+S.

3. Right-click Data Connections and choose Add Connection.

4. On the Choose Data Source page, select Microsoft SQL Server and
click Continue.

5. On the Add Connection dialog box, enter the name of the server that
is hosting the AdventureWorks2008 database.

You can use localhost if SQL Server 2008 is installed on the same system.

6. In the Connect to a Database section, enter AdventureWorks2008 (or
choose it from the drop down list).

Your display looks similar to Figure 4-2. The server used for the screen-
shot is named MCITP1, but your server might have a different name.

7. Click Test Connection. A Microsoft Visual Studio dialog box appears
indicating success. Click OK.

The TCP/IP protocol must be enabled on the SQL Server 2008 server you
are connecting to for this to succeed. You can access this by launching
the SQL Server Configuration Manager; click StartÍMicrosoft SQL Server
2008ÍConfiguration ToolsÍSQL Server Configuration Manager. In the SQL
Server Network Configuration, you’ll see protocols for MSSQL Server. If
TCP/IP is set to Disabled, right-click it and select Enabled. You’ll then
need to restart the SQL Server service for the change to take effect.

8. Click OK to close the Add Connection dialog box.

Your display looks similar to Figure 4-3. It shows the connection to the
remote server with AdventureWorks opened up. You can browse the
database objects from here, similar to how you can browse it with SQL
Server Management Studio (SSMS).

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 364

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Navigating an SQL Server Database with Visual Studio 365

Navigating an SQL Server Database
with Visual Studio

One of the primary reasons you connect to an SQL Server database is to
explore it. While exploring a database in Visual Studio you can

✦ View the objects: This includes database objects, such as tables, views,
stored procedures, functions, and more.

✦ Modify data: By opening tables and views you can add, modify, and
delete data in the database.

Figure 4-3:
Connecting
to a remote
server from
Visual
Studio.

Figure 4-2:
Connecting
to a
database
hosted on a
SQL Server.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 365

Navigating an SQL Server Database with Visual Studio366

✦ Execute, test, and debug stored procedures: If a stored procedure
accepts input variables, you’re prompted to provide the input. You can
test the stored procedures capability of handling different inputs and
enter the debugger if your stored procedure isn’t functioning as desired.

By using the Server Explorer in Visual Studio, you can easily explore a data-
base and see all the elements. It avoids the need to install SQL Server on a
development system just to explore the database.

Exploring tables and views from Visual Studio
The Visual Studio Solution Explorer works very similar to the Object
Explorer in SQL Server Management Studio (SSMS). The best way to see
this is by doing it.

While the following steps show you how to access a table, modify data in the
table, and build a query, feel free to look around at any objects to see what
you can do. As long as you’re working with the AdventureWorks2008 data-
base, the worst that can happen is the database could become corrupt, and
you’d need to download another copy.

If you have any trouble connecting to the AdventureWorks2008 database,
review the steps in the previous section. Those steps are a little more
detailed than here.

1. Launch Microsoft Visual Studio 2008.

Choose Start➪All Programs➪Microsoft Visual Studio 2008➪Microsoft
Visual Studio 2008.

2. Choose View➪Server Explorer to make the Server Explorer visible.

Alternately, you could press Ctrl+Alt+S.

3. Select the data connection to AdventureWorks on a SQL Server that
you created in the previous exercise.

4. Browse to AdventureWorks | Tables | Person (Person) table by click-
ing the + next to each category.

The table name is Person, and Person also identifies the schema that
owns the table.

5. Right-click the Person (Person) table and choose Show Table Data.

This opens the table and allows you to modify the data. To give you
more room to see the table, you can click the X at the top right of the
Solution Explorer and at the top right of the Properties windows. To
bring back the Solution Explorer, select View➪Solution Explorer, as
shown in Figure 4-4. The Solution Explorer and the Properties pages
aren’t displayed, giving much more room for the Person table. Leave the
Solution Explorer closed.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 366

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Navigating an SQL Server Database with Visual Studio 367

6. Scroll to the last row in the Person table.

7. In the row with all the NULL values, enter Elmer for the FirstName and
press Enter.

This fails because some columns don’t allow NULL data.

8. Click OK to dismiss the information box indicating the row wasn’t
updated. Press Esc to abort the data entry.

9. Right-click the Person table and choose Open Table Definition.

The table definition allows you to see at a glance what columns can be
NULL and what columns can’t.

10. Scroll to the rowguid column and select it. The pane below the table
definition is the Column Properties pane. Scroll to the Default Value
or Binding property.

Your display looks similar to Figure 4-5. This shows that the rowguid
column can’t be NULL, but it has a default value that is generated by
the newid() function. By looking at all the columns, you can identify
those that can’t be NULL (BusinessEntityID, PersonType, NameStyle,
FirstName, LastName, EmailPromotion, PasswordHash, PasswordSalt,
rowguid, and ModifiedDate).

By looking at the Column Properties, you can see the columns that don’t
have a default value or binding that must have a value are
BusinessEntityID, PersonType, FirstName, and LastName.

Figure 4-4:
Restoring
the Solution
Explorer.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 367

Navigating an SQL Server Database with Visual Studio368

11. Select the Person(Person):Query tab that displays the data. If you’re
not at the first row, scroll to the first row.

12. You can modify the data in this window. Change the FirstName from
Ken to Kenneth. Press Enter and your modifications are complete.

13. Delete the row by right-clicking in the left margin to the left of the
row and choosing DELETE. A warning dialog box appears indicating
that you’re about to permanently delete the row. Click No to cancel
the deletion.

14. Right-click the Views container in the Server Explorer and select New
Query.

The query window opens, allowing you to build a query.

15. In the Add Table dialog box, select the Person(Person) table. Click
Add. Select the EmailAddress(Person) table and click Add. Click
Close.

16. In the top pane, select the check boxes next to the FirstName and
LastName columns in the Person(Person) table. Select the check box
for the EmailAddress column in the EmailAddress(Person) table.

Figure 4-5:
Viewing the
definition of
a table.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 368

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Navigating an SQL Server Database with Visual Studio 369

17. In the middle pane, scroll to the Filter column and enter Kenneth on
the FirstName row.

The query adds the single quotes around Kenneth, with the letter N at
the beginning. The N indicates that the data is displayed in Unicode
format.

18. Right-click anywhere in the query window and choose Execute SQL.

Your display looks similar to Figure 4-6 — the same format as the Query
Designer (explored in Book III, Chapter 3). The top pane is the Diagram
pane (where your selected tables are shown), the next pane is the
Criteria pane (where you entered the filter information), the next pane is
the SQL pane (where your T-SQL statement is built), and the bottom
pane is the Results pane.

Exploring stored procedures from Visual Studio
You can also explore, execute, test, and debug stored procedures from
within Visual Studio.

If you have SQL Server 2008 installed, you can execute and test stored proce-
dures within a query window by using SQL Server Management Studio (SSMS).

Figure 4-6:
Building a
query in
Visual
Studio.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 369

Navigating an SQL Server Database with Visual Studio370

But, if you don’t have SQL Server installed, you can perform similar testing
with Visual Studio.

If your stored procedure is complex and you’re having trouble identifying
the problem in the logic, you can use the debugger available in Visual Studio
to slow the stored procedure. By using the debugger, you can step through
the stored procedure one statement at a time.

If you’ve used SQL Server 2000, you might remember that the Query
Analyzer had a built-in debugger. However, SQL Server 2005 SQL didn’t
include Query Analyzer; it included a query window within SSMS but that
window didn’t include a debugger. A welcome addition in SQL Server 2008
SSMS is the debugger. You can use SSMS as the debugger by simply clicking
the green button or by pressing CTRL+F5.

When you step into a stored procedure, you begin the debugging process.
The Debug toolbar includes several icons that can be used when debugging.

✦ Continue: Instructs the debugger to complete the remainder of the
code. The icon is a green arrow.

✦ Stop Debugging: Instructs the debugger to exit without running any
more code. The icon is a blue square.

✦ Step Over: Instructs the debugger to execute the next line of code. The
icon is a line arrow simulating stepping over lines of code.

Figure 4-7 shows the debugging window. At the top, you can see the debug-
ging toolbar. The middle pane displays the text of the stored procedure.
While you step through the stored procedure, a yellow arrow points to the
current statement. A breakpoint has been created on the WITH line so that
the procedure always stops there. The bottom two panes are additional win-
dows that can be displayed to give you information as you step through the
stored procedure.

Some of the additional windows that can be used are

✦ Autos: Displays the value of variables used in the current line of code,
and the preceding line of code. The Autos window can be displayed by
selecting the Autos tab in Windows group 1 in Figure 4-7.

✦ Locals: Displays the visible variables from the current procedure. For
example, when executing a stored procedure that requires input that will
be used as a variable, the variables can be viewed here. In Figure 4-7, the
two variables provided as input for the uspGetBillOfMaterials
stored procedure are shown in Windows group 1.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 370

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Navigating an SQL Server Database with Visual Studio 371

✦ Watch: Allows you to set breakpoints (points where the code will stop so
that you can view the values of different variables) based on the value of
a specific variable. In other words, you can task the debugger to watch a
variable, and when it reaches a threshold, the code will stop. You can
then view the value of other variables. The Watch 1 window is displayed
as a tab in Windows group 1 in Figure 4-7. Multiple Watch windows can
be configured.

✦ Call Stack: Displays procedures and functions that are executing. The
Call Stack window is displayed as a tab in Windows group 2 in Figure 4-7.

✦ Breakpoints: Allows you to create breakpoints based on certain condi-
tions. The Breakpoints window is displayed as a tab in Windows group 2
in Figure 4-7.

✦ Command: Used to execute commands while your code is running or
paused. The Command window is displayed as a tab in Windows group 2
in Figure 4-7.

✦ Output: Displays debugging-specific output as the stored procedure is
executed.

Stored procedure text Debugging buttons

Windows group 1 Windows group 2

Figure 4-7:
The Debug
toolbar.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 371

Navigating an SQL Server Database with Visual Studio372

The following steps show the basics of launching the debugger in Visual
Studio to step through a stored procedure:

1. Launch Microsoft Visual Studio 2008.

Choose Start➪All Programs➪Microsoft Visual Studio 2008➪Microsoft
Visual Studio 2008.

2. If the Server Explorer is not visible, choose View➪Server Explorer to
make it visible.

3. Connect to the AdventureWorks2008 database file stored on a SQL
Server 2008 server.

4. Browse to Adventureworks2008 | Stored Procedures |
uspGetBillOfMaterials. Right-click the uspGetBillOfMaterials
stored procedure.

Your display looks similar to Figure 4-8.

Note: You can add new stored procedures, open a stored procedure (to
view the text and alter it), execute a stored procedure, or step into a
stored procedure (for debugging).

5. Right-click the uspGetBillOfMaterials stored procedure and
choose Open.

The text used to create the stored procedure appears. This view helps
you find out more about what the stored procedure is doing.

Figure 4-8:
Accessing
the Stored
Procedure
menu in
Visual
Studio.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 372

Book IV
Chapter 4

W
orking w

ith
Visual Studio

Navigating an SQL Server Database with Visual Studio 373

6. Right click the uspGetBillOfMaterils stored procedure and choose
Execute.

Execute allows you to enter different parameters and ensure that the
stored procedure works as expected.

7. In the Run Stored Procedure window, enter 742 as the value of the
@StartProductID, and 2000-04-04 as the @CheckDate.

Your display looks similar to Figure 4-9. You would need to know valid
values for the stored procedure, but if you’re testing the stored proce-
dure, it’s expected that you would know what the valid values are. You
can also use this for edge testing. In other words, if you want to see how
your stored procedure responds when data is entered at the edge of
valid values, you can easily enter the values here.

8. In the Run Stored Procedure window, click OK.

The stored procedure runs, and the output displays in the Output pane
at the bottom of Visual Studio.

The SQL Server Business Intelligence Studio will allow you to explore
objects in a SQL Server database, but it won’t allow you to debug stored
procedures. If you don’t have the Step Into Stored Procedure, verify you
are running an instance of Visual Studio.

9. You can also debug the stored procedure by stepping through it line
by line. Right-click the stored procedure and choose Step Into Stored
Procedure. In the Run Stored Procedure window, enter 742 as the
value of the @StartProductID, and 2000-04-04 as the @CheckDate.
Click OK.

10. Click the Step Over button.

The stored procedure starts the common table expression (CTE)
statement.

Figure 4-9:
Entering
variable
values
when
executing
a stored
procedure.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 373

Navigating an SQL Server Database with Visual Studio374

11. Click the Step Over button again.

The stored procedure finishes the execution.

Admittedly, this stored procedure is rather simplistic because it has only
one common table expression (CTE). (It’s probably a stretch to call any CTE
simplistic though.) If the stored procedure had more complexity, executed
functions, or called other stored procedures, the debugging process would
be much more involved.

Using Visual Studio for other SQL Server tasks
Visual Studio is used when working on other SQL Server projects but not as
a full-featured version of Visual Studio.

When we first installed SQL Server 2008 and saw that it included Visual
Studio, our hearts jumped a beat. (Could it be true? Visual Studio for free
with SQL?).

It wasn’t true. You only get a subset of Visual Studio — the Business
Intelligence Development Studio (BIDS).

However, one good thing about BIDS is that if you’re familiar with the Visual
Studio interface, it doesn’t take much more time to use BIDS for SQL Server
projects. As we mention earlier in this chapter, BIDS is used to create and
manipulate the following:

✦ SQL Server Reporting Services (SSRS): SSRS is covered in more depth
in Book V.

✦ SQL Server Integration Services (SSIS): SSIS is covered in more depth in
Book VIII, Chapter 4.

✦ SQL Server Analysis Services (SSAS): SSAS is covered in more depth in
Book VI.

31_179543-bk04ch04.qxp 8/23/08 12:40 AM Page 374

Chapter 5: Web Services

In This Chapter
� The new way of distributed programming: Web services

� Using Web services in conjunction with SQL Server

Web services are commonly used on networks to transfer data
between computers. An application sends a request, and the Web

service answers with the required data. The biggest usage is on the biggest
network — the Internet. However, Web services can also be used to pass
data on networks internal to a company.

SQL Server 2008 can easily be configured to directly serve data as a Web
service. A benefit of providing data this way is that the code can be embed-
ded in an application (such as a Windows application or a Web application)
and ran on one computer, while the data is retrieved from the SQL Server on
a completely separate system.

In SQL Server 2008, Microsoft deprecated the usage of Native XML Web
Services. Deprecated does not mean that the services are not supported,
but it does mean that support may become an issue in future SQL Server
releases. Steering clear of the feature in new development projects (and
modifying applications that currently use it) is a good idea. Native XML Web
Services may be in use in existing projects however, so you may want to
make modifications to the code in the short term as you plan for switching
the code to ASP.NET over the longer haul.

Using Web Services to Distribute Data
A Web service is a software system used to transfer data across a network.
That network could be the Internet, an intranet, or even an extranet. A Web
service is designed to accept requests for information and return informa-
tion based on the request.

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 375

Using Web Services to Distribute Data376

The requests can be very simple or complex. Some common data returned
by Web services include

✦ Weather data: A ZIP code is passed into the service, and weather infor-
mation (such as current temperature and future predictions) is passed
back.

✦ Order status: An order ID is passed into the service, and the current
status of the order (such as shipped or being processed) is passed back.

✦ Shipping status: A tracking number is passed into the service, and the
current location or other shipping information is passed back.

Web services have several key elements:

✦ Provider: The Web services provider gives the data that’s requested
from the Web services requestor. This could be a compiled application,
or it could simply be SQL Server.

✦ Requestor: The requestor queries the provider for specific information.
The requestor is often a Web application that’s used to embed informa-
tion into a Web page.

✦ Web Services Description Language (WSDL): WSDL (pronounced Wizz-
dull) can be thought of as a contract. It identifies specifically what can
be requested and what will be returned. For example, a WSDL for a Web
service designed to provide order statuses would specify how a valid
order ID could be provided and then identify what would be included in
the answer (and what that answer means).

✦ Simple Object Access Protocol (SOAP): SOAP is used to transfer both
requests and data in an XML format. Because XML is simple text, it’s
easily transported over networks and it commonly uses HTTP and
HTTPS.

✦ Universal Description Discovery and Integration (UDDI): The UDDI is a
registry that businesses can use to publish WSDLs. When the WSDL is
published to the UDDI, it can then be retrieved by requestors.

Figure 5-1 shows how these elements are used together. A Web services
provider is created that can send information to applications that request it.
The specifics on how to request the information is contained in the WSDL.
The WSDL is published to the UDDI. A requestor can then query the UDDI for
Web services as long as they follow the requirements specified in the WSDL.
The requestor then sends its request to the provider by using SOAP. The
provider replies with the data by using SOAP.

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 376

Book IV
Chapter 5

W
eb Services

Using Web Services to Distribute Data 377

Although the public UDDI was originally intended to be a registry for all
businesses and to include services information for these businesses, it was
actually more often used for testing. The result was that a lot of the data
published to the public UDDI was bogus data. In January 2006, IBM, Micro-
soft, and SAP discontinued hosting the public UDDI registries. Currently,
large enterprises can host their own UDDI registry, but the demise of the
public UDDI registries is on the horizon.

You don’t have to use UDDI. For example, if you’re creating a Web service in-
house to be used by in-house developers only, you don’t need to publish the
WSDL to a UDDI. Instead, you can just tell the developers how to use your
Web service.

Requesting data and getting a response
The Web service works by accepting a Web service request and sending
back a Web service response.

SOAP
reply

Service provider

SOAP
request

WSDL
retrieved

Service requestor

WSDL
published

UDDI

Figure 5-1:
Web
services
elements.

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 377

Using Web Services to Distribute Data378

Both the request and the response are sent in an XML envelope using Simple
Object Access Protocol (SOAP). The requirements for the SOAP message are
quite stringent. It needs to be well-formed XML and must include specifically
what the Web service expects.

A well-formed XML document conforms to several XML formatting require-
ments. For example, each opening tag (<tagName>) must have a correspon-
ding closing tag (</tagName>).

As long as the request is formatted properly for the Web service, it will
respond with the appropriate response. The application that called the Web
service can then format the data as desired.

For example, a Web service that returns information on cloud conditions
might return clear, partially cloudy, cloudy, sprinkles, rain, or even raining cats
and dogs. A Web site can then display a different graphic depending on
what’s returned. For a clear condition, a bright sun could be shown. For rain-
ing cats and dogs, the graphic could show . . . well, you get the idea.

Seeing a Web service in action
Consider a Web service that you might use regularly when you access a
news site, such as MSN.com, CNN.com, or your local newspaper. You can
personalize most news sites by adding your ZIP code into a weather section.

If you’ve never done this, try it now. Go to http://msn.com and look for
the weather link. On the weather page, enter your ZIP code (or if you like,
enter Darril’s: 23462).

After adding your ZIP code, local weather information appears. While it
seems simple on the surface, there’s a lot of activity that makes this happen.

Figure 5-2 shows accessing a news site via the Internet. When the Web server
receives a request for weather information, it sends a SOAP request to the
weather server that’s hosting one or more Web services. Weather data is
returned to the Web server and included in the page that is returned.

Of course, the weather service probably doesn’t provide this information for
free. Instead, the service is provided based on some type of subscription
basis.

More than likely, the SOAP request includes a subscriber code that verifies
the requestor as a valid subscriber in good standing (with his account paid).

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 378

Book IV
Chapter 5

W
eb Services

Using Web Services in Conjunction with SQL Server 379

Using Web Services in Conjunction with SQL Server
SQL Server can be used to provide Web services directly. To support Web
services in SQL Server, you need to create the following elements:

✦ Stored procedure: A stored procedure used in a Web service is the
same as any stored procedure created within SQL Server. The only dif-
ference is that it will be called from a Web Method.

✦ HTTP endpoint: An HTTP endpoint is a designated port that SQL Server
listens on for specific traffic. The HTTP endpoint includes a Web
method.

✦ Web method: A Web method identifies a stored procedure within SQL
Server that will be executed when the HTTP endpoint is queried. A Web
method would commonly accept parameters, execute a store procedure
with the parameters, and then return the results.

Web services
served from here

News site

Web server

Internet Weather data

Figure 5-2:
Using a
Web service
to access
weather
data.

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 379

Using Web Services in Conjunction with SQL Server380

Creating HTTP endpoints to support Web services
Within SQL Server, a Web service can be created by creating an HTTP end-
point. The HTTP endpoint identifies the port that SQL Server will use to
listen for Web service requests and the Web method that will be executed in
response to a valid request.

To better understand how HTTP endpoints work, it helps to understand how
IP addresses and ports are used by computers.

When data travels from one computer to another, it finds the destination
computer using an IP address. If your long lost uncle wanted to send you an
inheritance check from your other long lost uncle, he’d put the check in an
envelope, stamp it, and hand it to the post office. An IP address works like
the address on the envelope and gets the packet to the computer.

When you receive the envelope, you’d open it and realize you need to cash
the check, so you place it somewhere safe until you can make it to the bank.
The same day you receive the check, you might receive several pieces of
junk mail. The junk mail will probably be placed somewhere different than
the check (perhaps the trash). However, by opening each piece of mail, you
know what to do with it.

Similarly, computer traffic includes a port that tells the computer what to do
with it when it receives it. Port 25 sends this to the Simple Mail Transport
Protocol (SMTP) service. Port 80 sends this to the HTTP service.

When you create an HTTP endpoint, you designate the port that the Web
service will listen on. The default port is HTTP, but if another service is using
port 80, you can designate another port as long as it doesn’t conflict with yet
another port in use on the computer.

When traffic is received by the computer, the packet is opened, and the port
is identified. If the port is in use, the packet is passed to the service listening
on that port.

You don’t need a Web server (such as Internet Information Services) to listen
on the HTTP endpoint. SQL Server listens on this port and services the
HTTP endpoint without a Web server.

In addition to identifying the port that the HTTP endpoint will listen on, the
HTTP endpoint also identifies the Web method that will be called.

The following basic syntax is used to create an HTTP endpoint:

CREATE ENDPOINT endPointName
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 380

Book IV
Chapter 5

W
eb Services

Using Web Services in Conjunction with SQL Server 381

PATH = ‘url’
, AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED

| NTLM | KERBEROS } [
...n]),

PORTS = ({ CLEAR | SSL} [,... n])
[SITE = {‘*’ | ‘+’ | ‘webSite’ },]
[, CLEAR_PORT = clearPort]
[, SSL_PORT = SSLPort])

FOR SOAP(
[{ WEBMETHOD [‘namespace’ .] ‘method_alias’

(NAME = ‘database.schema.name’
[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]

)
}

[, WSDL = { NONE | DEFAULT | ‘sp_name’ }]
[, DATABASE = { ‘database_name’ | DEFAULT }
[, NAMESPACE = { ‘namespace’ | DEFAULT }])

The following steps create an HTTP endpoint that includes a Web
method. You first create a database named Weather, and a table named
CurrentConditions with some data. Then, you create a stored procedure that
will be called from the Web method. With the database set up, you then
create the HTTP endpoint.

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. Create a database named Weather and a table named
CurrentConditions by using the following T-SQL code:

USE Master;
GO
CREATE DATABASE Weather;
GO
USE Weather;
GO
CREATE TABLE CurrentConditions (
CurrentConditionsID int NOT NULL,
ZipCode varchar(10) NOT NULL,
Temperature int NOT NULL,
CloudCondition varchar(20) NOT NULL
)

4. Insert some data into the CurrentConditions table with the following
INSERT statement:

INSERT INTO CurrentConditions
VALUES (101, 23462, 78, ‘Clear’)

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 381

Using Web Services in Conjunction with SQL Server382

5. Create a stored procedure that will retrieve current weather condi-
tions for a specific ZIP code with the following code:

CREATE PROC usp_GetWeather
@Zip varchar(10)

AS
SELECT Temperature, CloudCondition
FROM CurrentConditions
WHERE ZipCode = @Zip

At this point, you have everything within your database that you need.
You can now create the HTTP endpoint with the Web method to retrieve
the data.

6. Test your stored procedure with the following code:

EXEC usp_GetWeather ‘23462’

This stored procedure accepts the ZIP code and returns the current
temperature (78) and the current cloud conditions (clear). It’s a beauti-
ful day.

7. Create the HTTP endpoint with the Web method by using the follow-
ing code:

CREATE ENDPOINT Weather_CurConditions
STATE = Started

AS HTTP
(

PATH = ‘/CurrentConditions’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR), CLEAR_PORT = 8080,
SITE = ‘*’

)
FOR SOAP

(
WEBMETHOD ‘GetWeather’

(NAME = ‘Weather.dbo.usp_GetWeather’),
WSDL = DEFAULT,
DATABASE = ‘Weather’,
NAMESPACE = DEFAULT

)

The endpoint is enabled with the STATE = Started clause. The
default port is port 80, and to use port 80 you would omit the CLEAR_
PORT = 8080 clause. The PATH clause is the URL for the endpoint. The
WEBMETHOD includes the three-part name of the stored procedure that
will be called.

8. To view the Web Services Description Language (WSDL) of the end-
point, launch a Web browser and enter the following URL:

http://localhost:8080/CurrentConditions?WSDL

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 382

Book IV
Chapter 5

W
eb Services

Using Web Services in Conjunction with SQL Server 383

The WSDL is quite lengthy with a lot of default XML nodes included.
Thankfully, you don’t have to create this from scratch. Although beyond the
scope of this book, it can be modified.

With the HTTP Endpoint created and including a Web method, the database
is now configured as a Web service. Web service calls to port 8080 and
including the ZIP code as a parameter will return the current temperature
and the current cloud conditions. This is referred to as consuming the Web
service.

Although this example accepted only one parameter and passed back two
values, your Web services can be as complex as you need them to be. Stored
procedures can accept multiple input values and can pass back multiple out-
puts. As long as the developers of the Web service know what is expected,
they can easily create the Web service to your specifications.

Note: You haven’t actually created the SOAP request that calls the Web
method. The SOAP request would be created in an application created exter-
nally from SQL Server.

Exploring the SOAP request and the SOAP response
The application that calls the Web service would typically use a Simple
Object Access Protocol (SOAP) request. The Web service would respond
with a SOAP response. Both the SOAP request and the SOAP response are
sent as XML text files.

Although we just use the name Localhost when creating and exploring the
HTTP endpoint, to access it we’d need an actual name. Imagine that the Web
service is hosted on a Web site named SQLisEasy.com. The two SOAP mes-
sages would look similar to the XML code shown in Listings 5-1 and 5-2.

Listing 5-1: SOAP Request

<SOAP-ENV:Envelope
xmlns:SOAP-
ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/
encoding/”>

<SOAP-ENV:Body>
<m:GetWeather xmlns:m=”http://SQLisEasy.com:8080”>

<ZipCode>23462</ZipCode>
</m:GetWeather>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 383

Using Web Services in Conjunction with SQL Server384

Note: The ZIP code is embedded in the SOAP request. This is the parameter
that will ultimately be passed to the stored procedure.

Listing 5-2: SOAP Response

<SOAP-ENV:Envelope
xmlns:SOAP-
ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/
encoding/”>

<SOAP-ENV:Body>
<m:GetWeatherResponse
xmlns:m=”http://SQLisEasy.com:8080”>

<Temperature>78</Temperature>
<CloudCondition>Clear</CloudCondition>

</m:GetWeatherResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The two values (temperature and cloud condition) are being passed back
from the stored procedure called from the Web method.

32_179543-bk04ch05.qxp 8/23/08 12:41 AM Page 384

Chapter 6: Developing Remote
Applications

In This Chapter
� Data everywhere: remote applications to the rescue

� Scenarios where it makes sense to access data remotely

� Using linked servers

Remote applications are commonly used when interacting with SQL
Server. In other words, SQL Server is rarely hosted on the same system

as the applications that use them. Instead, the applications access the data
remotely.

Additionally, tools are available that allow you to access data from the SQL
Server to just any other data source. This allows applications to access a
remote SQL Server which in turn accesses another remote data source. The
three primary tools you’ll use are OPENDATASOURCE, OPENROWSET, and
linked servers.

Data Everywhere: Remote Applications to the Rescue!
When running SQL Server, it’s highly unlikely that you’ll be running it on
your desktop system. Instead, you’ll run SQL Server 2008 on a server prod-
uct (such as Windows Server 2003 or Windows Server 2008) and access
your SQL Server 2008 database over the network.

Moreover, you’re not limited to only the data held on a single SQL Server. A
distributed query is used to access data from different data sources through
SQL Server. In other words, the distributed query is executed against SQL
Server, but pulls data from somewhere else.

By using distributed queries, you allow your applications to be remote
applications. The applications can run from anywhere and can access data
from any other data source as long as they can establish connectivity with a
single SQL Server. Of course, the SQL Server must have access to the other
data source; that is, there must be connectivity and permissions must be
granted.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 385

Data Everywhere: Remote Applications to the Rescue!386

Figure 6-1 shows how a distributed query works. The client application
queries SQL Server. SQL Server then uses an Object Linking and Embedding
Database (OLE DB) provider to query data from another data source, such
as another SQL Server, Oracle, or Microsoft Access database — any data
source with an Open Database Connectivity (ODBC) driver. This is by no
means a complete list. Just about any data source that enjoys some level of
popularity has either an OLE DB or ODBC provider that can be used.

SQL Server 2008 includes several providers that are used to connect to
external sources. Each of these providers is used to connect to specific data
sources. The following are some of the more common providers:

✦ ADsDSOObject: Connects to Microsoft Directory Services (Active
Directory).

✦ Microsoft.JET.OLEDB.4.0: The Joint Engine Technology (JET) provider
allows SQL Server databases to connect to both Microsoft Access data-
bases and Microsoft Excel spreadsheets.

✦ MSDAORA: The MSDAORA provider is used to connect to Oracle data-
bases. In order to connect to an Oracle data source, you need to install
the Oracle client. The Oracle Net component isn’t included in SQL
Server.

SQL

Oracle

Access

ODBC

OLE DB
providers

SQL Server

Client
application

SQL

Oracle

Microsoft
Access

ODBC

Figure 6-1:
Querying
data
remotely.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 386

Book IV
Chapter 6

Developing Rem
ote

Applications

Data Everywhere: Remote Applications to the Rescue! 387

✦ MSDASQL: MSDASQL is used to connect to any data source that
requires the legacy Open Database Connectivity (ODBC) provider.

✦ MSIDXS: Use the MSIDXS OLE DB provider to connect to a Microsoft
indexing service data file.

✦ MSOLAP: The MSOLAP provider is used to connect to a Microsoft
Analysis Services data source. OLAP represents Online Analytical
Processing.

✦ SQLNCLI10: The SQLNCLI10 provider is the SQL Server (SQL) Native (N)
client (CLI) included with SQL Server 2008. This is often shortened to
SQLNCLI in provider strings. SQLNCLI automatically identifies the most
current version of the Native client. For example, if SQLNCLI was used in
SQL Server 2005 and then the server was upgraded to SQL Server 2008,
everywhere that SQLNCLI was used would automatically use the newer
SQLNCLI10 provider.

The 10 in SQLNCLI10 refers to the version of SQL. Although you know
SQL Server 2008 as SQL Server 2008, internally, the version is identified
as version 10. SQL Server 7.0 was version 70, sometimes annotated as
7.0. SQL Server 2000 was version 80, or sometimes 8.0. SQL Server 2005
was version 90, or 9.0, and SQL Server 2008 is identified as version 10
(but never 1.0).

✦ SQLOLEDB: SQLOLEDB is Microsoft’s OLE DB provider for SQL Server. It
has been used since SQL Server version 6.5.

✦ SQLXMLOLEDB: The SQLXMLOLEDB provider is used to expose
Microsoft’s SQLXML functionality through ActiveX Data Objects (ADO).

Three primary methods of connecting to remote data sources are

✦ OPENDATASOURCE: The OPENDATASOURCE function is used to specify
connection information for a remote data source by specifying the OLE
DB provider and an initialization string. OPENDATASOURCE can be used
directly within a SELECT, INSERT, UPDATE, or DELETE statement.

✦ OPENROWSET: The OPENROWSET function is used to specify connection
information for a remote data source and the name of an object that will
return a result set (such as a stored procedure) or a query that will
return a result set. Like OPENDATASOURCE, OPENROWSET can be used
directly within a SELECT, INSERT, UPDATE, or DELETE statement.

✦ Linked servers: A linked server is an object within SQL Server that
defines the connection properties of another SQL Server. When defined,
queries can connect to the remote server using a four-part name, such as

SQLSrv1.AdventureWorks.person.Contact

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 387

Data Everywhere: Remote Applications to the Rescue!388

The four-part name identifies the server (SQLSrv1), the database
(AdventureWorks), the schema (Person), and the object (Contact table).
Linked servers are explored in more depth in the final section of this
chapter.

Enabling ad hoc queries
An ad hoc query is one that is issued no more than a few times. Both the
OPENDATASOURCE and OPENROWSET functions are used for ad hoc queries. If
the query will be issued more frequently, linked servers are usually created.

However, ad hoc queries are not enabled by default. They must be enabled
by using the sp_configure system stored procedure.

Enabling the use of ad hoc queries allows any authenticated login to execute
both OPENROWSET and OPENDATASOURCE functions. You should enable this
feature only if it’s considered safe to be accessed by any SQL Server login.

To enable ad hoc queries, follow these steps:

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio Center.

2. Create a new query window by clicking the New Query button.

3. In the query window, enter the following command:

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘Ad hoc Distributed Queries’, 1;
GO
RECONFIGURE;

Before the Ad hoc Distributed Queries option can be changed, it must
first be visible by changing the value of Show Advanced Options from a
0 to a 1 (or from false to true). The value of the Ad hoc Distributed
Queries option is then set to a 1 (or true) so that they are allowed.

4. Press F5 to execute the command.

With the Ad hoc Distributed Queries option set to 1, both OPENDATASOURCE
and OPENROWSET functions can be used.

Using OPENDATASOURCE
OPENDATASOURCE can be used instead of creating a linked server to access
an external data source.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 388

Book IV
Chapter 6

Developing Rem
ote

Applications

Data Everywhere: Remote Applications to the Rescue! 389

The basic syntax of OPENDATASOURCE is

OPENDATASOURCE (provider_name, init_string)

Both the provider name and the initialization string have very specific
syntax requirements. The easiest data source to connect to is another SQL
Server. The provider name of SQLNCLI automatically uses the latest version
of the SQL Server Native Client OLE DB provider.

For example, if you wanted to retrieve information from the Customers table
using the default schema (dbo) in the Sales database from the SQL08 server,
you could use the following query. Notice that the four-part name is SQL08.
Sales.dbo.Customers.

SELECT *
FROM OPENDATASOURCE(‘SQLNCLI’,

‘Data Source=SQL08;Integrated Security=SSPI’)
.Sales.dbo.Customers

In this example, the provider name is SQLNCLI. SSPI is the Security Support
Provider Interface, which allows an application to use different security
models. Integrated Security simply means that the connection will use the
credentials of the user executing the statement.

Using OPENROWSET
OPENROWSET is similar to OPENDATASOURCE. The primary difference is that
OPENROWSET always returns a result set, whereas OPENDATASOURCE typi-
cally returns a result set, but can also be used to simply execute a stored
procedure.

The basic syntax of OPENROWSET is:

OPENROWSET (provider_name, provider_string)

Just as OPENDATASOURCE has very specific syntax, OPENROWSET does also.
However, a similarity between the two is that SQLNCLI automatically uses
the latest version of the SQL Server Native Client OLE DB provider in both.

If you wanted to retrieve information from the same Customers table using
the default schema (dbo) in the Sales database from the SQL08 server, you
could use the following query.

SELECT rs.*
FROM OPENROWSET(‘SQLNCLI’,

‘Server=SQL08;Trusted_Connection=yes;’,
‘SELECT *

FROM Sales.dbo.Customers’) AS rs;

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 389

Determining When It Makes Sense to Access Data Remotely390

Notice the subtle differences between OPENDATASOURCE and OPENROWSET.
In the OPENROWSET function, a SELECT statement is embedded in the func-
tion. A trusted connection works similar to integrated security. It’s also pos-
sible to include the username and password of a trusted login.

Determining When It Makes Sense
to Access Data Remotely

One of the visions of SQL Server 2008 during its development was “Your
Data, Any Place, Any Time.” The idea was to meet the needs of companies of
all sizes and provide support for many different types of data.

In Chapter 5 of this mini-book, Web services are covered. Web services
aren’t new, but they are popular examples of how data can be stored in one
place and be accessible just about anywhere in the world via an Internet
connection.

When SQL Server is configured with a Web service, applications anywhere
can be used to retrieve information. Web services are enjoying widespread
use and will continue to grow because of the convenience they provide.

By using distributed queries, you can access data from other data sources
held on remote servers. Remote servers won’t necessarily be available any-
where in the world, but they can be accessible anywhere on your network.

Darril currently works in a large enterprise environment spread across 10
states with 17 physical locations. All the locations are accessible to each
other via redundant wide area network (WAN) connections. One group of
database administrators manages the majority of the SQL Servers in this
environment, and they can access the servers from a central location.

Admittedly, distributed queries aren’t used for all the servers. Many servers
are managed remotely using traditional system administration tools, such as
Remote Desktop Connection (RDC), to remotely connect to the servers.
However, they also use their fair share of distributed queries to access data.

Chapter 7 of this mini-book covers Service Broker. Service Broker can be
used to create asynchronous communication “conversations” between
servers. One server sends a message to a second server. The second server
processes the message and sends an answer.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 390

Book IV
Chapter 6

Developing Rem
ote

Applications

Using Linked Servers 391

Even without reliable communications links, Service Broker can be used to
provide reliable data transfer between servers.

Any time you need access to data that is located somewhere else, it makes
sense to use a remote application rather than recreating the data on a local
server. The hardest part is determining which method you’ll use to access
the data remotely.

Using Linked Servers
If you plan on querying an external data source more than a couple times, it
makes sense to create a linked server. Creating the linked server does take
some time and effort, but once created, you can refer to the data source on
the remote server with a four-part name in Data Manipulation Language
statements (such as SELECT, INSERT, UPDATE, and DELETE).

Creating and configuring a linked server is a two-step process:

1. Create the linked server.

The linked server identifies the details of the remote server, such as the
name of the server and the provider to use when connecting.

2. Create linked server logins.

A login is a mapping between a login on the local server and a security
account on the linked server.

It’s easy to confuse the context of linked servers. You actually create a linked
server object on a local server to connect to a remote server.

Let us say something obvious to avoid any confusion: When you create the
linked server, you are not magically creating another physical server. Of
course, that’s ridiculous. Instead, the remote server already exists. By creat-
ing a linked server object in the local SQL Server, you are teaching SQL
Server about the remote server.

Figure 6-2 shows the relationship between the local SQL Server, the remote
server, and the linked server. It shows that you’re creating the linked server
object on the local SQL Server. The linked server object points to the remote
server.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 391

Using Linked Servers392

Creating a linked server
Linked servers can be created with the graphical user interface (GUI) in SQL
Server Management Studio (SSMS) by using the sp_addlinkedserver
system stored procedures.

The basic syntax of the sp_addlinkedserver system stored procedure is:

sp_addlinkedserver [@server=] ‘server’ [, [
@srvproduct=] ‘product_name’]
[, [@provider=] ‘provider_name’]
[, [@datasrc=] ‘data_source’]
[, [@location=] ‘location’]
[, [@provstr=] ‘provider_string’]
[, [@catalog=] ‘catalog’]

The arguments for the stored procedure can be identified with a variable =
value string (such as @server = ‘SQLSrv3’). Or, if all arguments are being
used, you can just enter the value and omit the variable name. However, if
the variable name is omitted, you must enter values in the same order as the
preceding syntax.

The only required argument is the server name. Other arguments have
default values. While the arguments have the same name for any linked
server, they have different values depending on the provider being used.

For example, when creating a linked server to SQL Server, the @srvproduct
is SQL Server, and the @provider is SQLNCLI. When creating a linked server
to an Oracle server, the @srvproduct can be anything, and the @provider
is MSDAORA.

SQL Server

Linked server
created here

Remote server

Figure 6-2:
The local
SQL Server,
the linked
server, and
the remote
server.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 392

Book IV
Chapter 6

Developing Rem
ote

Applications

Using Linked Servers 393

✦ @server: The @server argument holds the name of the linked server.
@server is the only argument that can’t be omitted.

✦ @srvproduct: @srvproduct holds the name of the product (such as
SQL for a SQL Server, or Oracle for an Oracle server). The default is
NULL. When SQL Server is specified, the rest of the arguments do not
have to be provided.

✦ @provider: A unique programmatic identifier is entered into the
@provider argument. The @provider argument corresponds to the
@datasource argument. When SQLNCLI is used, SQL Server redirects to
the most current version of SQL Server Native Client OLE DB provider.

✦ @datasource: The @datasource argument has different meanings
depending on the provider. For example, for SQL Server, it can identify
the server name or the server name and the instance. For Oracle, it can
identify the actual database.

✦ @location: Some data providers require a location string (such as the
location on a physical drive).

✦ @provstr: The provider string is entered into the @provstr argument.
Different providers require different strings in this argument.

✦ @catalog: The @catalog argument means different things to different
providers. For SQL Server, the @catalog argument identifies the default
database that’s used when the provider connects to the server.

For example, the following code could be used to create a linked server to a
server named SQLSrv3:

USE master;
GO
EXEC sp_addlinkedserver

@server = ‘SQLSRV3’,
@srvProduct = N’SQL Server’

The name of the server (SQLSrv3) is included in the first argument, and the
provider (SQL Server) is included in the second argument. The rest of the
arguments are omitted. The N preceding the provider name identifies the
string value as being stored as Unicode data and can be omitted if the char-
acters are standard English characters.

Because the first two arguments are being used in the same order as the
system stored procedure expects them, you can omit the name of the argu-
ments. The following script will do just as well as the preceding script:

USE master;
GO
EXEC sp_addlinkedserver

‘SQLSRV3’, ‘SQL Server’

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 393

Using Linked Servers394

As another example, the following code could be used to create a linked
server to an Oracle server named OraSrv1 with a database named Sales.

USE master;
GO
EXEC sp_addlinkedserver

@server = ‘ORASRV1 ‘,
@srvproduct = ‘Oracle’,
@provider = ‘MSDAORA’,
@catalog = ‘Sales’

In this script, the name of the server is included as OraSrv1, the server prod-
uct is included as Oracle, and the provider is MSDAORA. The MSDAORA
provider expects the next argument to be the @catalog string.

If desired, this script can be rewritten without the argument names as
follows:

USE master;
GO
EXEC sp_addlinkedserver

‘ORASRV1 ‘,’Oracle’,’ MSDAORA’, ‘Sales’

Imagine that you have a SQL Server named SQLSrv3, an Oracle server named
ORASRV1, and a need to configure both as linked servers. You can use the
following steps to create the linked servers by using the GUI in SSMS and the
sp_addlinkedserver system stored procedure.

1. Launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio Center.

2. Browse to the Linked Servers container within the Server Objects con-
tainer in the SSMS Object Explorer.

Your display looks similar to Figure 6-3. This shows where the Linked
Servers container is and also shows that the Linked Servers container is
currently empty except for the providers included with SQL Server.

Figure 6-3:
Viewing the
Linked
Servers
container in
SSMS’s
Object
Explorer.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 394

Book IV
Chapter 6

Developing Rem
ote

Applications

Using Linked Servers 395

3. Right-click the Linked Servers container and choose New Linked
Server.

4. On the New Linked Server page, enter SQLRV2 in the Linked Server
text box.

This is the actual host name of the server hosting the SQL Server data-
base.

5. Select SQL Server as the Server Type.

Because you’ve selected SQL Server as the server type, the default SQL
Server provider (SQLNCLI10) will be used. Your display looks similar to
Figure 6-4. The only two options that have been configured are the name
of the linked server (SQLSRV2) and the server type (SQL Server).

6. Click OK to create the linked server.

As part of the creation process, SQL Server tries to connect to the linked
server. Because the server doesn’t exist, the connection test fails, and
you receive an error stating:

The linked server has been created but failed a
connection test. Do you want to keep the linked server?

7. On the Microsoft SQL Server Management Studio warning dialog box,
click Yes to create the linked server despite the warning.

You’ve created the first linked server.

It’s also possible to create a linked server using the
sp_addlinkedserver system stored procedure. Use the
following steps to create a linked server named ORASRV1 by
using a system stored procedure.

8. Create a new query window by clicking the New Query button.

9. Enter the following query to create a linked server by using the
sp_addlinkedserver system stored procedure:

USE master;
GO
EXEC sp_addlinkedserver

‘ORASRV1 ‘,’Oracle’,’ MSDAORA’, ‘Sales’

Figure 6-4:
Creating a
linked
server using
the GUI.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 395

Using Linked Servers396

10. Press F5 to execute the system stored procedure.

At this point, you’ve created both linked servers.

11. Browse to the Linked Servers container in the SSMS Object Explorer.

Your display looks similar to Figure 6-5. It shows two linked servers.
SQLSRV2 was created with the GUI, and ORASRV1 was created with the
system stored procedure.

Creating logins for a linked server
With a linked server created, you can now create logins for the remote
server. A linked server login maps a login on the local SQL Server with a secu-
rity account on the remote server.

Logins can be created by using the GUI in SSMS or by using the
sp_addlinkedsrvlogin system stored procedure.

The basic syntax of the sp_addlinkedsrvlogin is

sp_addlinkedsrvlogin [@rmtsrvname =] ‘rmtsrvname’
[, [@useself =] ‘TRUE’ | ‘FALSE’ | ‘NULL’]
[, [@locallogin =] ‘locallogin’]
[, [@rmtuser =] ‘rmtuser’]
[, [@rmtpassword =] ‘rmtpassword’]

✦ @rmtsrvname: The remote server name identifies the name of the linked
server where this login is applied. This argument must be supplied.

✦ @useself: By specifying true for the @useself argument, you don’t need
to add a local login name. Instead, the credentials for the user that is
executing a command with the linked server is used. TRUE is the default.
When FALSE is specified, the @locallogin must be specified. If
@useself, @rmtuser, and @rmtpassword are all set to NULL (or not
specified), then a login and password are not used to connect to the
linked server.

Figure 6-5:
Viewing the
linked
servers in
the SSMS
Object
Explorer.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 396

Book IV
Chapter 6

Developing Rem
ote

Applications

Using Linked Servers 397

✦ @locallogin: The @locallogin is used to specify a login account on the
local SQL Server that’s used to connect to the remote server. The login
can be a SQL Server login, a Windows account, or a Windows group.

✦ @rmtuser: The @rmtuser identifies an account on the remote server
that’s used to connect to the remote server.

✦ @rmtpassword: The @rmtpassword identifies the password to be used
with the @rmtuser.

Figure 6-6 shows how the login and user accounts interact. The user con-
nects to the SQL Server that is the same place where you create the linked
server object. When connecting to the remote server, the local login is used.
The local login is mapped to the remote user account on the remote server.

In the following steps, you create a SQL Server login. You then modify the
linked server object that you created in the previous steps and map it to a
fictitious remote account in the remote server.

1. If not already open, launch SQL Server Management Studio.

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio Center.

2. Browse to the Security | Logins container in the SSMS Object
Explorer.

3. Right-click Logins and choose New Login.

4. On the Login New page, enter LnkSrvLogin as the Login Name.

5. Select SQL Server Authentication.

Although this step creates a SQL Server login, you could also use a
Windows account or a Windows group.

6. Enter P@ssw0rd in the Password and Confirm Password text boxes.

7. Clear the check box next to Enforce Password Policy.

SQL Server

Remote user
exists here

Local login
exists here

Client

Remote server

Figure 6-6:
Mapping
the local
login to the
remote user
account.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 397

Using Linked Servers398

Your display looks similar to Figure 6-7. When the Enforce Password
Policy box is cleared, the other password policy selections are dimmed.
For security purposes, you should still use strong passwords and regu-
larly change them.

8. Click OK to create the SQL Server login.

9. Browse to the Server Objects | Linked Servers container in the SSMS
Object Explorer.

10. Right-click the SQLSRV2 linked server and choose Properties.

11. At the top left of the Linked Server Properties page, select the
Security page.

12. Click the Add button to add a local server login.

13. Click the empty box under Local Login. Enter LnkSrvLogin as the name
of the local server login you just created.

14. Click the empty box under Remote User and enter RmtUser. Click the
empty box under Remote Password and enter P@ssw0rd.

These entries assume that the remote server has an account named
RmtUser with a password of P@ssw0rd. In practice, you’d use an actual
account that was created on the remote server for this purpose.

Your display looks similar to Figure 6-8. This mapping causes the
LnkSrvLogin from the local system to be used for the linked server.
When connecting to the remote server, the RmtUser account (and its
related permissions) on the remote server is used.

Figure 6-8:
Mapping
the local
login to the
remote
account.

Figure 6-7:
Creating a
SQL Server
login.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 398

Book IV
Chapter 6

Developing Rem
ote

Applications

Using Linked Servers 399

15. Click OK.

You get a warning reading the linked server has been updated but failed
the connection test and asking if you want to edit the linked server prop-
erties. Click No.

Remember, you’re mapping a login to a fictitious account on a fictitious
server. If you have unlimited money, you can create another SQL Server to
actually connect to in your test environment. The previous connection step
would then succeed.

Querying data from a linked server
With the linked server created and mappings added, you can now create
queries by using the linked server.

Using a linked server is significantly easier than using the OPENDATASOURCE
or OPENROWSET functions. While creating the linked server does take some
time, you create a linked server only once.

After the linked server is created, you can use a four-part name to access the
linked server. With OPENDATASOURCE and OPENROWSET functions, you have
to enter the syntax each time you use the function.

Imagine that you’ve created a linked server and login mappings for a server
named SQLSRV2. Now you want to query a view named vwEmployees in the
default schema (dbo) of the Sales database. The following query can be
used:

SELECT * from SQLSRV2.Sales.dbo.vwEmployees

As long as the remote user account has permissions, you can use any
SELECT, INSERT, UPDATE, or DELETE statement against any object in the
remote server.

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 399

Book IV: Database Programming400

33_179543-bk04ch06.qxp 8/23/08 12:41 AM Page 400

Chapter 7: Advanced
Development Topics

In This Chapter
� Better messaging through SQL Server Service Broker

� Automating administration with SQL Server Management Objects

� Integrated application development with the .NET Framework (CLR)

After you master the basics of programming in SQL Server 2008,
you might want to spread your wings and take on some of the more

advanced development topics. In this chapter, we take a look at the possibil-
ities you can achieve with the following advanced tools:

✦ Service Broker provides you with some sophisticated messaging with-
out all the messy development work to manage messaging.

✦ SQL Server Management Objects (SMO) can be used to automate many
of the administration tasks.

✦ CLR integrated objects (such as triggers and stored procedures) allow
you to take advantage of the strengths of managed code by using any
.NET programming language within SQL Server.

Better Messaging through SQL Server Service Broker
In days of yore (well, maybe only a few years ago), many database adminis-
trators and database developers yearned for databases that could talk to
each other. Developers wanted one database to query another and, based
on the response, take some specific action.

Because that capability didn’t exist, developers wrote their own programs
but still wished for databases that could talk to each other without requiring
so much work on the developer’s part.

With the release of SQL Server 2005, Microsoft released SQL Server Service
Broker that filled this need. SQL Server 2008 includes some minor improve-
ments of Service Broker.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 401

Better Messaging through SQL Server Service Broker402

Service Broker is a messaging service that is integrated into SQL Server. It
allows database applications to easily exchange messages in a simple one-
way conversation or a complex two-way dialog composed of as many mes-
sages as needed.

The two most important benefits of Service Broker are

✦ Asynchronous messages: As soon as a message is sent to Service
Broker, the database can consider the task done and move on to other
things. For example, you might want a stored procedure to send a mes-
sage in the middle of a couple other processes. The message can be sent
to Service Broker, and then the stored procedure can move directly onto
the rest of the processes. With synchronous messaging, the stored pro-
cedure wouldn’t be able to continue until the message was actually sent.
With Service Broker’s asynchronous messaging capability, the stored
procedure doesn’t need to wait until the message is actually sent before
completing its work.

✦ Guaranteed delivery: Service Broker guarantees that messages will be
delivered. More, it ensures the messages will be delivered only once and
in the proper order. Even if a destination database has been taken offline
temporarily or the network infrastructure has problems, you’re still
assured that the message (or messages) will be delivered when every-
thing is working again.

Understanding the Service Broker elements
Service Broker includes several components that interact with each other.
Take a look at Figure 7-1 as you review the following component definitions.
By creating the different components, you define how the Service Broker
service communicates with other Service Broker services.

✦ Contract: Just like a contract in the real world is an agreement between
two entities, a Service Broker contract is an agreement between two
Service Broker services. It defines the message sent between the data-
bases, who sends the message (the initiator), and who receives the mes-
sage (the target). Any contract can be used by more than one service.

✦ Service: A Service Broker service is composed of one or more steps in a
defined process. Each service can have one or more contracts with each
contract representing a specific task. Any service can have one or more
contracts.

✦ Queue: Queues are used to accept messages for Service Broker services.
Any service will have a single queue. Messages placed in a queue can be
retrieved using the RECEIVE command. For example, a stored procedure
could read the message and then perform some activity based on the
content.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 402

Book IV
Chapter 7

Advanced
Developm

ent Topics

Better Messaging through SQL Server Service Broker 403

✦ Message type: Messages hold the information used in the conversation
and can be composed of different data types. You can think of the mes-
sage type as defining the language used in the conversation. Two
common types of messages are well-formed XML, and typed or valid
XML (conforming to a schema). Messages can also be binary (allowing
just about any desired file type) or empty.

✦ Service program or service application: The service application pro-
vides the logic for the Service Broker service. It can be an external
stored procedure (such as a .NET application) or an internal stored
procedure.

Service Broker applications communicate through conversations. In the real
world, a conversation is when two people communicate. One person sends a
message. Another person receives the message and replies.

Within Service Broker, a conversation is a reliable asynchronous exchange of
messages using a contract, queue, and service. In short, Service Broker con-
versations are created from sending and receiving messages.

You can see this in Figure 7-2. Two separate databases each have a defined
Service Broker service. The services are able to send and receive messages
between each other, effectively creating a two-way conversation.

The messages sent between two Service Broker applications can be one-way
or two-way.

SQL Server

Contract

Message
type

Queue

Service program

Service

Broker

service

Figure 7-1:
Service
Broker
elements.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 403

Better Messaging through SQL Server Service Broker404

In a one-way conversation, an application sends messages to another appli-
cation. Think of this as someone leaving a message on your answering
machine to remind you of an appointment. No reply is required.

A two-way conversation can be simple (a query and a response) or complex
(several messages passed back and forth). For example, an Orders database
could send a message to a Shipping database saying an order has been
received and confirmed. The Shipping database could respond with a confir-
mation indicating the order is being processed and another message later
when the order actually ships.

Service Broker can be configured to automatically launch the service pro-
gram when a message is in queue, or the program can be configured to peri-
odically check the queue for messages. Service Broker is flexible enough to
work with different business needs.

Contract

Message
type

Queue

Service program

Service

Broker

service

Shipping DB

Orders DB

Contract

Message
type

Queue

Service program

Service

Broker

service

Figure 7-2:
A Service
Broker
conver-
sation.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 404

Book IV
Chapter 7

Advanced
Developm

ent Topics

Better Messaging through SQL Server Service Broker 405

Enabling Service Broker
Microsoft has gotten into the admirable habit of developing secure applica-
tions. It hasn’t always been this way, but a few years ago, they adopted the
mantra of SD3+C, commonly known as

✦ Secure by Design

✦ Secure by Default

✦ Secure in Deployment and Communications

What this means within SQL Server is that anything that might be a security
vulnerability is disabled by default. The SQL Server administrator must then
enable certain functions before they can work — including Service Broker.

The Trustworthy database property affects much more than just Service
Broker. It indicates that the SQL Server instance trusts the database to
access resources beyond the scope of the database. For example, this prop-
erty would be changed to allow the use of CLR integrated objects (programs
integrated with a .NET assembly).

You can view the current state of the Trustworthy property by right-clicking
the database, selecting Properties, and then selecting Options in the left
pane. On the Options page, scroll to the Trustworthy property. As shown in
Figure 7-3, the Trustworthy property is True, indicating it’s been enabled.
However, the property is dimmed — it can be viewed from the Options page
but not changed from there.

Figure 7-3:
Viewing the
Trustworthy
property.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 405

Better Messaging through SQL Server Service Broker406

To modify the Trustworthy database property, you set it to ON. Yes, the
Trustworthy database property shows True when you turn it on. You might
be asking yourself, “Which is it, true or on?” Although the property is dis-
played as True in the Database Properties page, you can’t change it here.
You can only view it. If you try to set it to True (instead of ON), the T-SQL
statement fails, and a syntax error occurs. The syntax to set the Trustworthy
property to ON is

ALTER DATABASE database name
SET TRUSTWORTHY ON;

Using Service Broker
To create a Service Broker application, you must take the following high-
level steps:

1. Enable Service Broker in the databases that use Service Broker. This is
done by setting the Trustworthy property to ON.

2. Create Service Broker message types. The message type will have a
name and a data type (such as well-formed XML).

3. Create Service Broker contracts. The contract includes the message
types that will be used (identified by the name), the initiator (who sends
the message), and the target (who receives the message).

4. Create Service Broker queues. The queue name and the status (OFF or
ON) are specified. The queue holds the messages until they are retrieved.

5. Create the Service Broker service. The Service Broker service identifies
the queue to be used and the contract.

After Service Broker is enabled and created, you can then use it to create a
conversation between two databases. As an example, consider an Orders
database and an Inventory database. The Orders database is used to accept
and process orders, and the Inventory database is used to manage the inven-
tory and the shipping details.

It’s certainly reasonable that you would want the Orders and Inventory data-
bases to talk to each other. For example, you might want the Orders data-
base to query the Inventory database to determine whether a product is
available. The Inventory database could respond with a specific location, as
shown in Figure 7-4.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 406

Book IV
Chapter 7

Advanced
Developm

ent Topics

Better Messaging through SQL Server Service Broker 407

Other uses and benefits of Service Broker include the following:

✦ Asynchronous programming: Consider the following scenario. You want
to create a trigger that will send a message to another database when
the on-hand inventory level of any product reaches a certain threshold.
If you program the trigger to send the message without Service Broker
and the message is held up, the trigger won’t complete until the message
is sent. Until the trigger completes, locks on the data associated with the
trigger will prevent the data from being accessed by any other processes
in your database. This might result in significant delays.

Comparatively, if you use Service Broker to send the message, as soon
as the message is sent to Service Broker, the trigger considers it com-
plete. The transaction associated with the trigger is complete, any locks
are released, and Service Broker guarantees delivery.

✦ Detailed conversations with messages in a specific order: Some appli-
cations require messages to be sent back and forth and depending on
the answer to one query, another query might be sent. For example, an
application might query the existence of a product that meets specific
characteristics (such as tricycle and red). The answer might include a list
of products with product IDs. The next query might request quantities
or locations of the product. Instead of an external application managing
these queries, Service Broker can be programmed to ensure that each
part of the conversation is executed in the proper order.

With Service Broker, the conversation can be as long and detailed as the
application requires. Service Broker guarantees the developer delivery
of each message in the proper order.

✦ Sophisticated messaging without lengthy development time: In the
past, developers were often forced to create their own messaging appli-
cations, which could take a significant amount of time. Service Broker
provides complex messaging within a database without the complex
programming.

Orders DB

Inventory query
message

Inventory answer
message

Inventory
DB

Figure 7-4:
A conver-
sation
between the
Orders and
Inventory
databases.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 407

Automating Administration with SQL Server Management Objects408

Automating Administration with SQL
Server Management Objects

SQL Server Management Objects (SMO) can be used to provide management
of SQL Server with applications outside of SQL Server. In other words,
they’re designed to manage and access SQL Server beyond the capabilities
of SQL Server Management Studio (SSMS).

SMO objects are built in to the Microsoft .NET Framework. Different name-
spaces provide different capabilities.

In past versions of SQL Server, SQL Distributed Management Objects (SQL-
DMO) were used to provide some of the functionality of SMO. SQL-DMO used
a COM object model and was deprecated in SQL Server 2005. SMO is a .NET
assembly and supersedes SQL-DMO in SQL Server 2008.

Some of the common database administration tasks that SMO objects can be
used to do include

✦ Backups and restores: Many third-party tools use SQL Server
Management Objects to simplify common backup and restore tasks.

✦ Index maintenance: In addition to traditional index maintenance, you
can also manage index table partitioning. With partitioning you can opti-
mize the performance of the database by dividing data from a large
index or table so that the data is stored on more than one physical disk.

✦ Integrity checks: The Database Base Console Command (DBCC)
includes many commands, such as CHECKDB, that can be periodically
executed against a database to ensure the logical and physical integrity
of the database including all database objects.

SMO can also be used to manage replication (by using Replication Manage-
ment Objects, or RMO), SQL Server Agent, Database Mail, Service Broker,
and more.

An important point to realize with SMO is that you can do the same tasks
within SSMS as you can do with applications developed using SMO.
Depending on your budget and application development expertise, you can
choose any of the following methods to perform the same tasks.

✦ Using SSMS: Often, tasks (such as backup and restore) can be accom-
plished by using either T-SQL statements or pointing and clicking within
the SSMS graphical user interface. Obviously, using SSMS is cost-effective.
However, it might require you providing more training to some adminis-
trators who aren’t familiar with SSMS.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 408

Book IV
Chapter 7

Advanced
Developm

ent Topics

Automating Administration with SQL Server Management Objects 409

✦ Creating your own SMO application: If you’re a developer, you can
create applications that automate specific administration tasks that are
needed in your environment. The tasks can be as complex as you desire;
your application can make launching the task as simple as clicking a
button.

✦ Purchasing a third-party application that uses SMO: A wealth of third-
party applications have popped up to support all the recent SQL Server
versions. The most common applications help administrators automate
backup and restore operations, but some are much more sophisticated.

Installing SMO
SMO is installed automatically when SQL Server is installed on a system. If
you want to develop an SMO application on a system that doesn’t have SQL
Server installed, you can install the SQL Server client tools. All the SMO
assemblies are automatically installed in the following directory:

C:\Program Files\Microsoft SQL Server\100\SDK\Assemblies\

Tools used to create an SMO application
Several development tools can be used to create your own SMO application.
However, it’s important to realize that the SMO program is a compiled appli-
cation. Within Microsoft’s family, the logical choice is to use Visual Studio.

Visual Studio is a full-featured development tool that you can use to create
applications with any of the .NET applications, such as Visual Basic or C#.
Microsoft also includes slimmed down products, such as products for some
languages.

For example, you can download free Express Editions of Visual Basic 2008,
Visual C# 2008, and Visual C++. Although Express Editions don’t have the full
functionality of Visual Studio, they often have enough capabilities to satisfy
many people.

To download the Visual Studio Express Editions, search on the Internet for
Download Visual Studio 2008 Express. You can install the edition of your
choice from the Web, or download the entire ISO image and burn it to DVD.
No product keys are required. And, Express Editions are free!

Creating a simple SMO application
Remember, just about anything you can do with T-SQL statements, you can
also program into an SMO application. However, the syntax isn’t the same.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 409

Automating Administration with SQL Server Management Objects410

When creating an SMO application that issues commands against a data-
base, you create a database object that references the actual database. This
SMO database object then has several methods that can be executed against
the database.

For example, if you want to execute the DBCC CheckDB command against a
database using SMO, you connect to the server, identify the database, and
then use the following syntax:

myOutput = db.CheckTablesDataOnly()

In this example, CheckTablesDataOnly() is a method in the SMO data-
base object that mimics the functionality of the DBCC CheckDB command. If
you’re using a query window in the SQL Server Management Studio, you
enter the following command:

DDBCC CheckDB(Master)

To create a simple SMO application, we downloaded and installed the
Microsoft Visual Basic 2008 Express edition. If you download and install it on
your system, you can follow these steps to create a simple SMO application
that checks the integrity of the Master database and outputs the results:

1. Launch Microsoft Visual Basic 2008 Express Edition.

Choose Start➪All Programs➪Microsoft Visual Basic 2008 Express
Edition.

2. Create a new project.

Choose File➪New Project.

3. In the New Project window, ensure Windows Forms Application is
selected. Enter SMO as the Name and click OK.

4. Select the form. Change the value of Text from Form1 to Easy SQL
Admin.

5. Drag a button onto the form from the Toolbox. Rename the button
btnCheck and change the text of the button to Check.

6. Drag a text box onto the form from the Toolbox. Rename the text box
txtOutput. Change the value of Multiline to True. Change the value of
Scrollbars to Vertical. Resize the text box so that if fills the form.

7. On the right side of the window is the Solution Explorer. Change the
name of Form1.vb to AdminTasks.vb.

8. Right-click SMO and select Add Reference. Scroll down and select
Microsoft.SqlServer.SMO (Version 10.0.0.0 for SQL Server 2008).

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 410

Book IV
Chapter 7

Advanced
Developm

ent Topics

Automating Administration with SQL Server Management Objects 411

This adds the SQL Server Management Objects for SQL Server 2008.
Your display looks similar to Figure 7-5. If you want to manage SQL
Server 2005, you select the version that starts with 9 (shown as 9.0.242.0
in the figure).

9. Repeat the previous step to add the following references.

You can use the Ctrl key to add multiple references at the same time.

Microsoft.SqlServer.ConnectionInfo.dll
Microsoft.SqlServer.Smo.dll
Microsoft.SqlServer.SmoEnum.dll
Microsoft.SqlServer.SqlEnum.dll
Microsoft.SqlServer.WmiEnum.dll

10. Double-click the Check button on the form to access the underlying
code. Add the following Imports lines as the very first and second
lines above the Public Class statement:

Imports Microsoft.SqlServer.Management.Smo
Imports Microsoft.SqlServer.Management.Common

11. Enter the following code in the btnCheck event.

‘Connect to server
Dim Srv As Server
Srv = New Server

‘Identify database that will be checked
Dim db As Database

Figure 7-5:
Adding
references
to the SMO
project.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 411

Automating Administration with SQL Server Management Objects412

db = Srv.Databases(“Master”)

‘Run DBCC CheckDB equivalent SMO command on
Master Database

‘ and collect the results in a string
collection

Dim sc As Specialized.StringCollection
sc = db.CheckTablesDataOnly()

‘Output results from string collection to text
box

For i As Integer = 0 To (sc.Count - 1)
If sc(i).Length > 0 Then

txtOutput.Text = txtOutput.Text &
CStr(sc(i)) & vbCrLf

End If
Next

12. Press F5 to run your program.

13. Click the Check button.

After a moment, the DBCC CheckDB command completes, and the
results are output to the text box. Your display looks similar to Figure
7-6. Notice that the DBCC CheckDB command has a lot of output. I’ve
scrolled to the bottom of the check box.

Obviously, a lot can be done to improve the usability and appearance of this
program, but it does show the basics of connecting to a database and run-
ning a basic check. You could add the ability to select different databases to
check from a drop-down box, and allow the user to select specifically what
checks to run. You could even add the ability to create schedules so that
when the database administrator identifies what he wants to do, the pro-
gram automatically runs on a regular basis.

Figure 7-6:
Running
your SMO
program.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 412

Book IV
Chapter 7

Advanced
Developm

ent Topics

Integrated Application Development with the .NET Framework 413

Integrated Application Development
with the .NET Framework

Although you can do a lot using Transact-SQL, T-SQL isn’t a full-featured
development language. You might want your database application to do
more complex operations than what T-SQL can do alone.

Therefore, you can create an assembly with a .NET language, such as Visual
Basic or C#, and then integrate the assembly into a database object. This is
referred to as using managed code.

A CLR integrated object is one that is using an external assembly. An assem-
bly is a compiled Dynamic Link Library (DLL). The following database
objects can be CLR integrated:

✦ Stored procedures

✦ Triggers

✦ User-defined functions

✦ User-defined types

✦ User-defined aggregates

CLR objects excel in the following situations:

✦ String comparisons and manipulation: For example, if you need to
check to see whether a valid e-mail address is entered, you wouldn’t be
able to easily by using only T-SQL. An e-mail address may look like
name@place.com. You need to check for one or more text characters,
the @ symbol, one or more characters ending with a period, and a valid
top-level domain, such as com or net. However, by using a high-level lan-
guage, such as Visual Basic or C#, this could be reduced to a relatively
simple string comparison.

✦ Complex calculations: Although T-SQL includes access to many built-in
functions, managed code provides access to the full .NET Framework
Library. The capabilities within the .Net Framework Library combined
with the ease of use provided by a full-featured language streamline your
ability to perform complex calculations with any CLR integrated objects.

Enabling CLR integration
Since the programming possibilities are endless when creating any assembly,
it’s also possible for malicious assemblies to be integrated into a database.
By default, CLR integrated assemblies are not allowed, and it takes an admin-
istrator to enable CLR integration in a database.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 413

Integrated Application Development with the .NET Framework414

To enable CLR integration, you change the value of ‘clr enabled’ from a
0 to a 1. However, before this can be done, you have to enable the ability to
view and modify advanced options.

The following code shows how to enable CLR integration on a database:

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘clr enabled’, 1;
GO
RECONFIGURE;

Creating a CLR integrated stored procedure
The high-level steps required to create CLR integrated objects are

1. Enable CLR integration in your database.

2. Use a .NET language to create a Dynamic Link Library (.DLL) assembly.

3. Register the assembly in SQL Server.

4. Create a SQL object (such as a stored procedure or function) that uses
the assembly.

You might remember that CLR integrated objects were covered in Book IV,
Chapter 2. If you want to see the detailed steps needed to create a CLR inte-
grated function, review that chapter.

The following steps show how to create a CLR integrated stored procedure.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. Create a new query window by clicking the New Query button.

3. Enter and execute (by pressing F5) the following code to create a data-
base named CLRTest and enable CLR integration in the database:

USE Master;
GO
CREATE DATABASE CLRTest;
GO
sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 414

Book IV
Chapter 7

Advanced
Developm

ent Topics

Integrated Application Development with the .NET Framework 415

sp_configure ‘clr enabled’, 1;
GO
RECONFIGURE;

4. Launch Windows Explorer by pressing the Windows key and the E
key at the same time.

5. Browse to the root of C:\ and create a folder named CLR. Browse to
the C:\CLR folder.

6. Right-click the C:\CLR folder and choose New➪Text Document.
Double-click the text document to open it in Notepad.

Instead of using Notepad, you can create the assembly in Visual Studio
or one of the free Visual Studio Express Editions. For example, if you
downloaded and installed Visual Basic Express Edition to create a
simple SMO application in the previous section, you can use it instead of
Notepad. Downloading and installing Visual Basic Express takes some
time, but it makes entering code a lot easier.

7. Enter the following code in Notepad (or Visual Studio if you have it):

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Public Class myCLR

<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub HappyHappy()

Dim strWeekDay As String =
WeekdayName(Weekday(Today()))

SqlContext.Pipe.Send _
(“Ren and Stimpy say: Happy “ & strWeekDay

& “!”)
End Sub

End Class

This code includes one class named myCLR and one subroutine named
HappyHappy. When the subroutine is called, it determines the name of
today’s date (such as Monday or Tuesday) and returns a string that
includes the name.

8. Choose File➪Save As. In the File Name box, enter “HappyHappy.vb”
(including the quotes) and click Save.

By using the quotes around the name, you ensure the file is saved as a
.vb file and not as a .txt file. If it’s saved as a .txt file, it won’t com-
pile in the following steps.

9. Press the Windows key and the R key at the same time to access the
Run line. Enter cmd to launch the command line.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 415

Integrated Application Development with the .NET Framework416

10. At the command line, enter the following two commands to change to
the directory holding the Visual Basic compiler that compiles your
assembly:

CD c:\Windows\Microsoft.NET\Framework\v2.0.50727
vbc /target:library c:\CLR\HappyHappy.vb

Visual Basic compiles the program and creates a file named
HappyHappy.dll

11. Return to the query window in SSMS. Enter and execute (by pressing
F5) the following code to create an assembly in the CLRTest database
that you created earlier:

USE CLRTest;
GO
CREATE ASSEMBLY CLR_Happy
FROM ‘c:\CLR\HappyHappy.dll’

At this point, you’ve added the assembly to your database, but nothing
is using it. In the next few steps, you create a stored procedure to access
the assembly.

12. Using the SSMS Object Explorer, browse to the CLR_Happy assembly
located in the Databases | CLRTest | Programmability | Assemblies
container.

Your display looks similar to Figure 7-7. The assembly is named CLR_
Happy, but you can’t determine from here what’s actually inside the DLL
file. In other words, just because someone knows the name of the assem-
bly doesn’t mean he can use it. The names of the class and the subrou-
tines are also needed.

Figure 7-7:
Viewing
your
assembly in
SQL Server
Manage-
ment Studio.

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 416

Book IV
Chapter 7

Advanced
Developm

ent Topics

Integrated Application Development with the .NET Framework 417

13. Enter and execute (br pressing F5) the following code to create a
stored procedure that uses your assembly:

CREATE PROCEDURE uspMyCLR
AS
EXTERNAL NAME

CLR_Happy.myCLR.HappyHappy;

The external name is expressed as assembly (that was added to SQL
Server), the class is within the DLL file, and the subroutine is within the
class. It’s possible your assembly has multiple subroutines within the
class and even multiple classes.

14. Execute your stored procedure with the following code and
pressing F5:

EXEC uspMyCLR

Darril executed this on a Saturday, and the output was

Ren and Stimpy say: Happy Saturday!

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 417

Book IV: Database Programming418

34_179543-bk04ch07.qxp 8/23/08 12:42 AM Page 418

Book V

Reporting Services

35_179543-pp05.qxp 8/23/08 12:42 AM Page 419

Contents at a Glance

Chapter 1: Introduction to SQL Server Reporting Services 421
What Reporting Services Provides to You and Your Users421
Understanding Reporting Services Components.....................................423
Installing Reporting Services..428

Chapter 2: Creating Reports with Report Builder 435
Developing Reports Faster with Report Builder435
Designing a New Report ..437
Publishing Reports...446
Maintaining Reports ..448

Chapter 3: Creating Reports with Report Designer 449
Generating Sophisticated Output with Report Designer449
Understanding Report Definition Language (RDL)459
Designing, Publishing, and Maintaining Reports459

Chapter 4: Integrating Reports .469
Tying Reports Together with SharePoint..469
Using Familiar Microsoft Office Tools to View Reports471
Exposing Report Information with Web Services474

35_179543-pp05.qxp 8/23/08 12:42 AM Page 420

Chapter 1: Introduction to SQL
Server Reporting Services

In This Chapter
� What Reporting Services provides to you and your users

� Understanding Reporting Services components

� Installing Reporting Services

Reporting Services has come a long way since it was first introduced in
2004 as an add-on to SQL Server 2000. Back in those days, many people

(your authors included) were using tools like Microsoft Access or Crystal
Reports to pull data out of SQL Server and present it in a meaningful way.

Today, with Reporting Services, you can create reports and have them
served from a report server as Web pages accessible to anyone with a Web
browser (which is just about everyone these days).

For your sophisticated users, you can create report models and let them turn
their creative juices loose and create their own reports. Of course, this leaves
database developers like you free to do more important things, like . . . well,
you fill in the blank there. We’ll be playing more games.

What Reporting Services Provides
to You and Your Users

SQL Server Reporting Services (SSRS) is a server-based tool used to provide
end users with data reports that are derived from SQL Server databases.
SSRS has been around for several years. It first appeared in 2004 and worked
with SQL Server 2000. It was improved in SQL Server 2005 and improved
even more in SQL Server 2008.

Figure 1-1 shows a typical configuration using SSRS. A server is configured
as a report server, and reports are created and published to the SSRS server.
When a user wants to view a report, he can use Internet Explorer (or some
other Web browser) to send an HTTP request. The data for the report is
retrieved from the SQL Server; the report is formatted and returned to the
user as an HTML page.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 421

What Reporting Services Provides to You and Your Users422

It’s also possible to configure the SQL Server as an SSRS server. In other
words, instead of having two servers, you could have only one. It depends
on the load and the capabilities of the servers.

One of the great benefits of SSRS is that the reports become dynamic. A data-
base developer can create the reports and publish them to the server once.
When a user retrieves the data from the SSRS server, it retrieves data that is
up-to-date. Users have the capability of running the reports when they need,
and the data is accurate up to the moment it’s updated.

Reports can also be configured to accept parameters. For example, man-
agers might want to retrieve sales information from different stores, different
sales people, and even different dates. By adding parameters, you can
develop reports that change what’s displayed based on what a user
requests.

Figure 1-2 shows a sample report that accepts parameters. The report will
show a year’s worth of data ending in the month and year selected.
December 2003 is selected, and a drop-down box is used to select an
employee, David Campbell.

User

SQL Server

SSRS server

HTTP
request

Figure 1-1:
A user
retrieving a
report from
SSRS and
SQL Server.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 422

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Understanding Reporting Services Components 423

With the employee selected, the report is generated. Figure 1-3 shows part of
the report. As you can see, reports don’t have to be boring. You can add
graphics, charts, and more to spice them up to meet the needs of the
audience.

Understanding Reporting Services Components
SQL Server Reporting Services (SSRS) has several components that are inter-
twined like a big jigsaw puzzle. Before getting too far, it’s best to have an
understanding of all the pieces of the SSRS puzzle.

Reports can be created by a developer or by an end user.

✦ Reports created by developers: These reports are created in the
Business Intelligence Development Studio (BIDS) as a report server proj-
ect. Figure 1-4 shows the process of building a report using the Report
Designer in BIDS. All the details of the report are specified in the Report
Designer. The Report Designer specifies the data source, query, filters,
and specifically how the report is displayed. After the report is pub-
lished to the SSRS server, end users only need to query these reports to
retrieve the data. The Report Designer is explored in greater depth in
Chapter 3 of this mini-book.

Figure 1-3:
A sample
employee
sales report.

Figure 1-2:
Selecting
parameters
for a report.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 423

Understanding Reporting Services Components424

✦ Reports created by end users: A report model project is first created in
BIDS by a database developer. Figure 1-5 shows the process of building a
report from a report model. The developer creates a report model that
works like a blueprint; the data source is specified, which identifies what
data can be displayed. However, just as you can’t live in a blueprint of a
house, you can’t view a report with a report model. Instead, users use
the report model to create their own reports using the Report Builder.
After a report is built from the report model, it can be published to the
SSRS and server. Report models and the Report Builder are explored in
greater depth in Chapter 2 of this mini-book.

The different elements that can be used to create reports are:

✦ Business Intelligence Development Studio (BIDS): BIDS is used to
create projects used for Reporting Services. It uses the same interface as
Visual Studio but is only used for Business Intelligence projects, such as
SQL Server Reporting Services or SQL Server Analysis Services projects.
Both complete reports (by using the Report Designer) and report
models can be created in BIDS.

Report Designer (BIDS) Completed report
published to SSRS server

User retrieves report
using Web browser

Database

Data view

Tables

Layout

Figure 1-4:
Creating a
report using
Report
Designer.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 424

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Understanding Reporting Services Components 425

✦ Report model: The report model identifies the data source and the
data view used to create a report. A report model won’t actually
display any data in a report, but instead identifies the data that can be
added to a report. As an example, the report model may include the
AdventureWorks database as the data source and the Person.Contact
and HumanResources.Employee tables as the data view. A user can then
choose any columns within the two tables to include in his report by
using the Report Builder tool.

✦ Report Builder: The Report Builder is used to create reports from a
report model or from published data sources. The Report Builder is
launched from the SSRS Web site that has a report model. When reports
are created, they’re available to users via the Report Manager.

✦ Report Builder 2.0: The Report Builder 2.0 is a free download that func-
tions as a stand-alone report creation tool. Users that can access data
sources can create their own reports with this tool.

Report model
built in BIDS

Report model
published to
SSRS server

User creates
report using

Report Builder

Report published
to report server

User retrieves report
using Web browser

Database

Data view

Tables

Layout

Figure 1-5:
Creating a
report from
a report
model.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 425

Understanding Reporting Services Components426

✦ Report Manager: The Report Manager is a Web interface served by the
Reporting Services Web server and is the primary interface for reports.
Any data source, report model, or reports that are published to the SSRS
server are available via the Report Manager. Users can launch the
Report Builder from the Report Manager.

✦ Report server: The report server is the Web server that serves reports
as Web pages. The server hosts any published reports, report models,
and data sources.

✦ Model Designer: The Model Designer is the tool used to create report
models within a report model project. The Model Designer doesn’t
create actual reports; instead, it specifies the data source and data view
that can be used to create a report within the Report Builder.

✦ Report Designer: The Report Designer is available in a BIDS report proj-
ect. The Report Designer is used to create fully functional reports that
can be viewed by end users when the report is published to a report
server.

✦ Reporting Services Configuration: The Reporting Services
Configuration tool is used to configure a Reporting Services installation.
It can be used to configure both a local or remote report server instance.
Figure 1-6 shows the Reporting Services Configuration Manager. After
Reporting Services is installed, this tool can be accessed to manipulate
many of the Reporting Services properties.

Figure 1-6:
The
Reporting
Services
Configu-
ration
Manager.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 426

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Understanding Reporting Services Components 427

Planning a deployment mode for SSRS
SQL Server 2008 supports two modes of deployment for a report server:

✦ Native mode: In Native mode, the report server runs as an application
server and provides all processing and management capability only
through Reporting Services components.

✦ SharePoint Integrated mode: In SharePoint Integrated mode, the report
server is deployed as part of SharePoint. SharePoint provides much of
the processing and management of the report server.

The report server can be in Native mode, or SharePoint Integrated mode, but
not both at the same time. You can change modes on a deployed server after
installation by using the Reporting Services Configuration Manager.

Using Native mode
When deployed in Native mode, a report server is a stand-alone application
that performs all the work for reporting. This includes viewing reports, man-
aging reports, processing reports, and delivering reports.

Native mode is the default mode when deploying a report server instance.

When the report server is deployed via Native mode, the URL for the
Reporting Services Web server is http://servername/ReportServer.

✦ Default Instance URL:

http://servername/ReportServer

For example, if the servername is SSRS, the URL will be:

http://ssrs/ReportServer

✦ Named Instance URL:

http://servername/ReportServer_instancename

For example, if the servername is SSRS and the named instance is SQL08,
the URL will be:

http://ssrs/ReportServer_SQL08

The well-known port for HTTP is 80. Normally, when you use HTTP, you
don’t include port 80 because port 80 is assumed. On most installations of
SQL Server 2008, port 80 is used (unless IIS is installed). If you install it on
Windows XP SP2, it will default to port 8080, and you’ll need to include it in
the address. For example, if your Windows XP system was named SQLXP, the
address would be:

http://SQLXP:8080/ReportServer

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 427

Installing Reporting Services428

Using SharePoint Integrated mode
When deployed in SharePoint Integrated mode, the report server is part of
the SharePoint application. SharePoint manages all the content and opera-
tions of the report server.

To use SharePoint Integrated mode, you must be using Windows SharePoint
Services version 3.0 or greater, or Office SharePoint Server 2007 or greater.

The URL used to access the report server is dependent on the configuration
of either the Windows SharePoint services or the SharePoint server.

Installing Reporting Services
Use the following steps to install the default instance of SQL Server 2008
with Reporting Services in Native mode. This will result in a server with both
SQL Server 2008 and Reporting Services installed.

1. Launch the SQL Server installation program.

Insert the DVD you used to originally install SQL Server 2008. If autoplay
doesn’t launch the program automatically, browse to the root directory
and double-click the setup program.

2. If the SQL Server setup program detects that you don’t have the
required Microsoft .NET Framework version or an updated Windows
Installer version, it will prompt you to install them. Click OK to begin
the installation.

After the installation of the required components completes, the installa-
tion of SQL Server continues.

3. On the SQL Server Installation Center page, click the Installation link.

4. Select New SQL Server Stand-Alone Installation or Add Features to
and Existing Installation.

5. The Setup Support Rules page appears and runs some basic checks to
see whether your system is ready to install SQL Server. If actions are
needed (such as a reboot), follow the onscreen instructions. Click OK
after the checks are complete.

6. The Setup Support Files page appears. Click Install.

This will take some time as several support files are installed before the
actual installation of SQL Server.

7. The Setup Support Rules page appears again and runs some more
advanced checks. After the checks complete, review the information
and click Next.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 428

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Installing Reporting Services 429

8. On the Product Key page, either enter the product key or specify
Enterprise Evaluation as the free edition. Click Next.

9. On the License Terms page, review the license, select the check box
next to I Accept the License Terms, and then click Next.

10. On the Feature Selection page, select Database Engine Services and
Reporting Services in the Instance Features section. In the Shared
Features section, select Business Intelligence Development Studio,
Client Tools Connectivity, SQL Server Books Online, Management
Tools - Basic, and Management Tools - Complete.

Your display looks similar to Figure 1-7.

11. On the Feature Selection page, click Next.

12. On the Instance Configuration page, ensure Default Instance is
selected, and click OK.

13. On the Disk Space requirements page, review the information and
then click Next.

14. On the Server Configuration page, click the button to Use the Same
Account for All SQL Server Services. Enter a username in the Account
Name text box, and the user’s password in the Password text box.
Click OK and then click Next.

Figure 1-7:
Instance
features
selected to
install SQL
Server with
Reporting
Services.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 429

Installing Reporting Services430

The account can be an account from your local system (created in
Computer Management), or an account from your domain (created in
Active Directory). If this is a test bed, you can use the administrator
account for your system. For a production server, ask your system
administrator for an account with the appropriate permissions.

15. On the Database Engine Configuration page, ensure Windows
Authentication mode is selected, and click the Add Current User
button. Click Next.

16. On the Reporting Services Configuration page, ensure that Install the
Native Mode Default Configuration is selected.

Your display looks similar to Figure 1-8.

17. On the Reporting Services Configuration page, review the information
and then click Next.

18. On the Error and Usage Reporting page, click Next.

19. On the Installation Rules page, review the information and then click
Next.

20. On the Ready to Install page, review the summary and then click
Install.

The remaining installation takes several minutes to complete.

21. When the install completes, the Installation Progress indicates status
for each of the installed services and features. Click Next.

Figure 1-8:
Selecting
Native
mode for the
Reporting
Services
Configu-
ration.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 430

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Installing Reporting Services 431

22. On the Complete page, click Close.

23. If the Computer Reboot Required dialog box appears, indicating that
you must reboot the system, click OK.

24. After your system reboots, log in.

25. Download and install the AdventureWorks2008 database.

If you don’t recall how to download and install AdventureWorks2008,
review Book III, Chapter 5 for the steps to do so. AdventureWorks2008 is
useful as a populated database for creating practice or sample reports.

The previous steps install and configure SQL Server 2008 and Reporting
Services. However, you might want to verify the installation using the
Reporting Services Configuration Manager. The following steps lead you
through the process of verifying the installation of Reporting Services by
using Reporting Services Configuration Manager.

1. Launch the Reporting Services Configuration Manager.

Click Start➪All Programs➪Microsoft SQL Server 2008➪Configuration
Tools➪Reporting Services Configuration Manager.

2. On the Connect to a Report Server Instance page, ensure your server
name and instance are accurately listed.

A display similar to Figure 1-9 appears. The server name for this exercise
is MCITP1, and the default instance is MSSQLSERVER.

3. After verifying the server name and instance, click Connect.

After a moment, the Reporting Services Configuration Manger connects
and reports the status of the report server.

4. Verify the Report Services Status reads Started. If not, click the Start
button.

Figure 1-9:
Connecting
to a report
server
instance.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 431

Installing Reporting Services432

5. Click Service Account in the Connect pane (on the left) of the
Configuration Manager.

This shows the service account used to start SQL Server Reporting
Services. For our controlled lab environment, we used the administrator
account. If you want to change the account used to start the report
server service, you can do so on this page.

On a production server, you would want to give this service account the
minimum permissions needed to perform the job. It’s very unlikely you
would need to grant full administrative permissions for a regular deploy-
ment of SQL Server Reporting Services.

6. On the Reporting Services Configuration Manager page, click the Web
Service URL.

You can view the URL for your report server here. TCP port 80 is the
well-known port for HTTP. If this port is shown, you won’t need to
include the port number in the URL. If a different port number is
selected (such as 8080), you will need to include it in the URL (for
example, http://servername:8080/ReportServer).

7. Click the URL for your report server.

A display similar to Figure 1-10 appears. Notice the URL is http://
MCITP1/ReportServer because the server name is MCITP1. As
reports are published to your Web server, they become available here.

8. On the Reporting Services Configuration Manager page, click the
Database link in the Connect page.

You can change the database and credentials from this page, but the
report server database was created as part of the installation.

9. Click the Report Manager URL. Click the URL shown to launch the
Report Manager.

Figure 1-10:
An empty
Reporting
Services
Web site.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 432

Book V
Chapter 1

Introduction to SQL
Server Reporting

Services
Installing Reporting Services 433

A display similar to Figure 1-11 appears. On our system, the URL is
http://MCITP1/Reports, which changes to http://MCITP1/
Reports/Pages/Folder.aspx as soon as the connection is estab-
lished. At this point, the report server doesn’t have any content, so the
site is empty. After reports and report models are published to the
report server, they appear in the appropriate folder, and their properties
can be manipulated.

10. Click the E-mail settings link in the Reporting Services Configuration
Manager.

If you want your report server to use e-mail, you can configure the prop-
erties on this page.

11. Click the Execution Account link.

If your reports require access to external data sources or images, you
can specify the account name and credentials here.

12. Click the Encryption Keys link.

Reporting Services uses encryption to protect credentials, connection
strings, and other sensitive data. You can use this screen to back up and
restore the key used for encryption.

13. Click the Scale-out Deployment link.

This page allows you to view information on servers that are participat-
ing in a scale-out deployment.

14. Close the Reporting Services Configuration Manager tool.

In Chapters 2 and 3 of this mini-book, you have an opportunity to create and
publish reports to the report server. After the reports are published, you can
return to the Report Manager and the Reporting Services Web site to see
how these pages appear with reports to manage and view.

Figure 1-11:
Report
Manager
managing
the
Reporting
Services
Web site.

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 433

Book V: Reporting Services434

36_179543-bk05ch01.qxp 8/23/08 12:43 AM Page 434

Chapter 2: Creating Reports
with Report Builder

In This Chapter
� Developing reports faster with Report Builder

� Designing a new report

� Publishing reports

� Maintaining reports

The Report Builder is a relatively simple graphical user interface (GUI)
that you can make available to end users to build their own reports. The

difficult part is identifying what types of reports the users might want to
create and including the available data in a report model.

After a report model has been created and deployed to the Report Manager
within a Reporting Services Web site, users can create their own reports.
Although creating a report with the Report Builder is fairly easy, predicting
what reports your users might want and creating the report models might
take a little more time and energy.

Developing Reports Faster with Report Builder
Report Builder is an easy-to-use tool that enables end users to create their
own reports on an as-needed (or ad hoc) basis. Reports can be quite com-
plex, so the goal of the Report Builder tool is to hide some of that complexity.

The overall steps required to build reports using Report Builder are

✦ Install and configure Reporting Services: If SQL Server Reporting
Services (SSRS) wasn’t installed with SQL Server 2008, it needs to be
installed. The Reporting Services Configuration Manager is used to con-
figure SQL Server Reporting Services. This tool is covered in Chapter 1
of this mini-book.

✦ Create a report model from within Business Intelligence Development
Studio (BIDS): Report model projects include one or more data sources,
data views, and report models.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 435

Developing Reports Faster with Report Builder436

✦ Install and launch Report Builder from Report Manager: Figure 2-1
shows the Report Manager, a Web-based tool that allows you (and your
users) to access the Report Builder, deployed report models, and
deployed reports.

✦ Create the report using the Report Builder: Clicking the Report Builder
button installs and launches the Report Builder. Figure 2-2 shows a report
being built in the Report Builder. Reports are created mostly by dragging
and dropping the desired components onto the report. The data avail-
able for a report is derived from the report model. In Figure 2-2, several
entities related to the Person.Person table in the AdventureWorks data-
base are shown. Each of these entities is derived from other tables and is
defined in the report model.

Figure 2-2:
A report
being built
in Report
Builder.

Figure 2-1:
The Report
Manager
showing a
deployed
report
model and
two
deployed
reports.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 436

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Designing a New Report 437

By using Report Builder to create reports, you’re extending the ability to
create reports to the decision makers. Instead of relying on database devel-
opers to create all the desired reports, end users can easily create and
modify their reports as the business requirements change.

Designing a New Report
To create a report with Report Builder from a report model, you must do
some preliminary steps:

1. Create a report model project in Business Intelligence Development
Studio (BIDS).

2. Add a data source and a data source view to your report model project.

3. Create a report model within your report model project.

4. Deploy the report model to your SQL Server Reporting Services Web
site.

5. Access the Report Manager Web site to launch the Report Builder.

6. Create the report by using the report model from within the Report
Builder.

Figure 2-3 shows the flow of creating a report with the Report Builder. First, a
data source and data view are identified and linked with a report model
within BIDS. Any reports created from this report model can then use data
from the tables and views from the identified database. Next, the report
model is published or deployed to the reporting server. The Report Builder
can be launched from the Report Manager and used to create a report. After
a report is created in the Report Builder, it can be deployed to the reporting
server.

Report
model

Data source
(Database)

Data view
(Database

tables, views)

Report

Report
Builder

Report
Manager
Web site

Figure 2-3:
Creating
reports
using a
report
model and
Report
Builder.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 437

Designing a New Report438

The following groups of steps lead you through each stage of the process.

The following steps assume that you have an instance of SQL Server 2008
installed with Reporting Services installed and configured in Native mode. If
necessary, you can use the steps in Chapter 1 of this mini-book to install
and configure Reporting Services. Additionally, it assumes you have a copy
of the AdventureWorks2008 database hosted on this server. If you don’t have
AdventureWorks2008 installed, see Book III, Chapter 5 for details on how to
download and install it.

In this first set of steps, you create a report model project within BIDS:

1. Launch SQL Server Business Intelligence Development Studio (BIDS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Business Intelligence Studio.

2. Click File➪New➪Project to create a new project within Visual Studio.

3. On the New Project page, ensure Business Intelligence Projects is
selected, and select Report Model Project.

As shown in Figure 2-4, you can change the name, location, and solution
name of your project if necessary, or you can accept the defaults.

4. Click OK to create your solution. Press CTRL+ALT+L to ensure the
Solution Explorer is showing.

The Solution Explorer holds three containers for your project: Data
Sources, Data Source Views, and Report Models.

With a report model project created, you can now add the components
needed in the report model. In the following steps, you create a data source
and a data source view to use within your project.

Figure 2-4:
Creating a
new report
model
project.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 438

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Designing a New Report 439

1. Create a new data source by right-clicking Data Sources and choosing
Add New Data Source.

2. On the Welcome to the Data Source Wizard page, click Next.

3. On the Select How to Define the Connection page, ensure the Create
a Data Source Based on an Existing or New Connection is selected.
Click New.

4. On the Connection Manager page (shown in Figure 2-5), enter the
server name where you’ve installed SQL Server 2008.

For this chapter, we installed it on the default instance of a server
named MCITP1, so it is entered as MCITP1 in this box. If you used a
named instance, enter ServerName\NamedInstance.

5. In the Connect to a Database section, choose AdventureWorks2008
from the drop-down box. Click Test Connection to ensure you can
access the server and database.

6. After clicking Test Connection, a dialog box appears indicating the
test connection succeeded. Click OK. Click OK again on the
Connection Manager page.

7. On the Select How to Define the Connection page, click Next.

8. On the Completing the Wizard page, click Finish.

Figure 2-5:
Creating a
data source
connection
with the
Connection
Manager.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 439

Designing a New Report440

9. In the Solution Explorer, right-click Data Source Views and choose
Add New Data Source View.

10. On the Welcome to the Data Source View Wizard page, click Next.

11. On the Select a Data Source page, select the Adventure Works2008
data source created in the previous steps. Click Next.

12. On the Select Tables and Views page, select the Employee
(HumanResources) and Person(Person) tables. Click the Add
Related Tables button to add all the related tables for these two
tables.

The default order that the tables and views are displayed in seems to be
as logical as “alphabetical by height,” but if you click over the Name
column, the order changes to alphabetical. It’s much easier to locate the
tables this way.

Figure 2-6 shows that Person(Person), Employee (HumanResources),
and related tables have been added to the data source view.

13. Click Next on the Select Tables and Views page.

14. On the Completing the Wizard page, change the name to Employees
and click Finish.

At this point, you’ve created the report model project, added a data
source (the AdventureWorks database), and added a data source view
(the vEmployees view).

Figure 2-6:
Selecting
tables for
the data
source
view.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 440

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Designing a New Report 441

In this next set of steps, you create your report model within your project by
using the data source and data source view. After the report model is cre-
ated, you deploy it so that users can use the report model to create their
own reports.

1. Create a report model by right-clicking Report Models and choosing
Add New Report Model.

2. On the Welcome to the Report Model Wizard page, click Next.

3. On the Select Data Source View page, select the data source view
(Employees.dsv) that you created in the previous steps. Click Next.

4. On the Select Report Model Generation Rules page, accept the default
rules and click Next.

5. In the Collect Model Statistics page, review the information, select Use
Current Model Statistics Stored in the Data Source View, and then
click Next.

6. On the Completing the Wizard page, accept the default name
(Employees) and then click Run.

7. On the Completing the Wizard page, click Finish.

Similar to Figure 2-7, the Solution Explorer (at the far right) shows all
the elements you’ve created. With the Employees.smdl report model
selected, the tables added to the report model are shown as report
model entities.

The Report Model is similar to the blueprints of a house. The blueprints
will help you build a house, but you can’t live in the blueprints. Similarly,
the Report Model will help you build a report once you deploy the
Report Model, but you can’t view a report with the Report Model itself.

Figure 2-7:
A report
model
created
within a
report
model
project.

37_179543-bk05ch02.qxp 8/23/08 12:43 AM Page 441

Designing a New Report442

8. Right-click the Employees.smdl report model and choose Deploy.

After a moment, the Deploy succeeded message appears in the
bottom left of the page.

At this point, you’ve finished the heavy lifting for your report. Remember:
One of the primary goals of the report model is to hide the complexity of the
underlying data from the end user — the actual creator of the report.

Because the report hasn’t been created, end users have the capability of cre-
ating reports based on the specific data they need. If it turns out they need
additional data, they can easily modify their report, or create another report.
It doesn’t require waiting several days (or more) until a developer can create
the new report.

For example, imagine your boss has asked you to create a report that lists all
employees who have more than 40 hours of accrued vacation time.

The following steps show how this report can be created by using the
Report Builder from the report model created in the previous steps:

1. Launch Internet Explorer and use the address that is configured for
your Report Manager home page.

On our system, the address is http://MCITP1/Reports/, which redi-
rects to http://MCITP1/Reports/Pages/Folder.aspx. Similar to
Figure 2-8, the Report Manager page now shows that Data Sources and
Models (report models) exist within the site as new items.

2. Click Models.

You see the Employees report model created earlier.

3. Click the Report Builder link in the toolbar above the Employees link.

4. If a security warning appears, click Run to run the Report Builder.

This downloads and runs the Report Builder.

Figure 2-8:
Report
Manager
showing
data
sources and
models.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 442

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Designing a New Report 443

In the Microsoft Report Builder application, you see a Getting Started
pane at the far right.

5. Under Select a Source of Data for Your Report, click Employees. For
Report Layout, accept the default of Table (columnar). Click OK.

Similar to Figure 2-9, the Entities and Fields boxes are on the far left. The
entities of the report model (the tables) appear in the Entities box.
The Fields box shows the fields that are available for the selected table.
The report is in the center of the window. The report is built when you
drag and drop fields onto the page.

6. Select the Person entity. Drag and drop the Last Name field into the
box in the report window.

7. Drag and drop the First Name field to the right of the Last Name field.

While you drag the First Name field, the cursor icon changes. When the
cursor changes to an I-shaped cursor, the field can be dropped. Position
your cursor within the same box as the Last Name field, but at the far
right. When the cursor changes, release it.

8. Select the Employee entity. In the Fields section, click the plus (+) next
to Total Vacation Hours.

Under Vacation Hours are several functions that you can apply to the
report. The # Vacation Hours shows the current vacation hours available
to an employee.

Figure 2-9:
Report
Builder with
the report
model
added.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 443

Designing a New Report444

9. Drag and drop the # Vacation Hours field to the right of the First Name
field in the report.

10. Click the Filter button on the toolbar.

This opens the Filter Data window.

11. Select the Employee entity and within the Fields section, double-click
the # Vacation Hours.

This creates a filter in the main part of the window showing Vacation
Hours Equals (unspecified). You need to change this so that it
reads Vacation Hours Greater Than 40.

12. Click Equals and select Greater Than. In the text box reading
(unspecified), enter 40. Click OK.

Similar to Figure 2-10, this filter restricts the report to list only employ-
ees who have more than 40 hours of accrued vacation time.

13. (Optional) Clean up the report.

You might want to rename the column headers or resize the columns.
For example, instead of Last Name, you may want to change the column
header to Employee Last Name. Any of the columns can be resized by
hovering over an edge until the cursor changes into a cross with two
arrows. You can also add text within the Click To Add Title text box.

14. Click Run Report from the Report Builder toolbar.

The report builds and displays. If you click to the last page (page 5),
you’ll see that 178 rows were returned.

15. Click the Save button.

16. In the Save As Report dialog box, change the name of the report to
EmpVacHoursGT40. Click Save.

17. Close the Report Builder by choosing File➪Exit.

If you look at the Report Manager, you’ll see that your report has been
added as a report within the Models folder.

Figure 2-10:
Creating
a filter.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 444

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Designing a New Report 445

18. Click the report from within the Report Manager.

Any user with access to this report via Report Manager will see the
report as it’s displayed for you. Note: This is the same way it was dis-
played within the Report Builder Design View.

Although this report shows you exactly what you originally needed, imagine
your boss now asks you to add in sick hours, too. Specifically, she asks that
the report list employees with more than 40 vacation hours or more than 40
sick hours. Because you saved the report, you can easily open it and make
the required modifications.

In the next set of steps, you open the report to modify it and save it with a
different name. This allows both reports to be accessible to users within the
Report Manager.

1. If Report Manager isn’t showing, launch Internet Explorer and run the
Report Manager. Click the Report Builder button.

2. After Report Builder launches, choose File➪Open.

3. In the Open Report dialog box, open the Models container and select
the EmpVacHoursGT40 report created in the previous steps. Click
Open.

4. Select the Employee table from the Entities section. In the Fields sec-
tion, click the plus (+) next to the Total Sick Leave Hours field.

5. Double-click the # Sick Leave Hours selection.

By double-clicking the selection, the field is added to the report. If nec-
essary, you can resize the field in the report.

6. Click the Filter button on the toolbar. In the Filter Data dialog box,
select the Employee entity and then double-click the # Sick Leave
Hours field to add it to the Filter. Change equals to greater than and
enter 40 in the text box.

This modifies the filter so that only employees who have more than 40
vacation hours and more than 40 sick hours are listed. However, our
boss asked for the report to list employees who have more than 40 vaca-
tion hours or more than 40 sick hours.

7. Click the word and on the line between Vacation hours and Sick
Leave Hours and select or.

8. Click OK in the Filter Data dialog box. Right click under the title and
select Insert — Filter Description. Resize the text box so the text fits
on one line.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 445

Publishing Reports446

Similar to Figure 2-11, the filter is displayed in the report design in two
places — under the title and at the bottom of the page. If you run the
report, you’ll see that the filter text added under the title is displayed on
every page. The filter text at the bottom of the page is displayed only at
the end of the report.

9. Click the Run Report button on the Report Builder toolbar.

The report now lists 179 employees in 5 pages. If you’re satisfied with
the report, you can save it with a different name, such as
EmpVacOrSickHoursGT40.

Publishing Reports
Reports are accessible to users only when they’re published or deployed to
the SQL Server Reporting Services (SSRS) Web site. A report is considered
published when it’s accessible to users. Often, this is done from within any
of the tools used to create reports, report models, and data sources.

For example, Figure 2-12 shows how a report model is published from within
the Business Intelligence Development Studio (BIDS). You right-click the
report model and choose Deploy.

SSRS can be installed in one of two modes; both affect how reports are
published:

✦ Native mode: In Native mode (the default), the SSRS Reporting Server
runs as an application providing all processing and management func-
tions through SSRS components.

Reports can be published via standard SSRS tools, such as Report
Designer, Report Builder, and Model Designer.

Figure 2-11:
A report
with both
vacation
and sick
hour filters
applied.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 446

Book V
Chapter 2

Creating Reports
w

ith Report Builder

Publishing Reports 447

✦ SharePoint Integrated mode: In SharePoint Integrated mode, the
Reporting Services server still provides all the report processing, but
the SharePoint site acts as a front end for report access.

In addition to the standard SSRS tools used for publishing reports, con-
tent can also be uploaded to the SharePoint site by using SharePoint
tools.

When using SSRS in Native mode, you need to know the addresses to access
both the default Web server and the Report Manager. If you’re using the
SharePoint Integrated mode, the addresses will be defined through the
SharePoint hierarchy.

For Native mode, the URL addresses are

✦ SSRS Reporting Server default instance:

http://servername/ReportServer

For example, if the server name is SQL08, the URL will be

http://SQL08/ReportServer

✦ SSRS Report Manager default instance:

http://servername/Reports

For example, if the server name is SQL08, the URL will be

http://SQL08/Reports

✦ SSRS Reporting Server named Instance:

http://servername/ReportServer_instancename

Figure 2-12:
Deploying
a report
model from
within BIDS.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 447

Maintaining Reports448

For example, if the server name is SQL08 and the named instance is
SSRSInstance, the URL will be

http://SQL08/ReportServer_SSRSInstance

✦ SSRS Report Manager named instance:

http://servername/Reports_instancename

For example, if the server name is SQL8 and the named instance is
SSRSInstance, the URL for the Report Manager will be

http://SQL08/Reports_SSRSInstance

As soon as a report is published or deployed to SQL Server Reporting
Services, it is available on both the Reporting Server Web site and the
Report Manager Web site.

Maintaining Reports
Maintenance of reports consists mainly of updating the reports or report
models to match the changing needs of users.

When a report is run, data is retrieved from the data source. In other words,
as data is updated in the database, the reports show the updated data. No
additional maintenance on the data is required.

Advanced implementations of SSRS allow you to create snapshots of reports
and maintain a history of reports. It’s also possible to cache reports so that
they remain in memory for a specified time without the need to query the
database again for the data. When using snapshots, history, and cached
reports, the data isn’t queried each time the report is retrieved. Instead, the
report shows what the data was at a moment in time.

Reports can be updated by using the same tools used to create them. For
example, if a report was created from a report model by using Report
Builder, you can launch the Report Builder again, open the report, and then
make any modifications desired. If you want to save the original report,
simply save the report with a different name.

37_179543-bk05ch02.qxp 8/23/08 12:44 AM Page 448

Chapter 3: Creating Reports
with Report Designer

In This Chapter
� Generating sophisticated output with Report Designer

� Understanding Report Definition Language (RDL)

� Designing, publishing, and maintaining reports

Databases are great at storing data, but what we really want is to be able
to see the data. Admittedly, SQL Server hasn’t always been great at

this, but things have been significantly changing over the years.

Today, you can easily create reports and deploy them to a report server.
Users can use any Web browser (including Internet Explorer) to view reports
with up-to-the-minute data. You can use two primary tools to create reports.
The Report Designer is part of the Business Intelligence Development Studio
and includes wizards to make your job easier. The Report Builder 2.0 is an
easy-to-use stand-alone tool that you can download and install separately
from SQL Server 2008.

In this chapter, you learn some basics about these tools, follow steps to
create reports, and deploy reports to a reporting server.

Generating Sophisticated Output with Report Designer
The Report Designer is part of the SQL Server Business Intelligence
Development Studio (BIDS) and is used to create reports. A report is a for-
matted output from your database.

If you remember running queries by using T-SQL statements in the SQL
Server Management Studio, you know those outputs are rather plain and
simple. With Report Designer, not only can you spice up your reports with
graphics and different layouts, but you can also create interactive reports
by using sophisticated tools, such as a matrix (described in the following
paragraphs).

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 449

Generating Sophisticated Output with Report Designer450

For example, Figure 3-1 shows a sample report retrieving company sales data
from the AdventureWorks2008 database. It shows total sales for the years
2002 and 2003. Additionally, it breaks down the sales based on product
categories.

However, an executive, manager, or other decision maker, might have the fol-
lowing questions based on this report:

✦ Which quarter had the most sales?

✦ Which quarter had the least sales?

✦ Which bikes bring in the most revenue?

✦ Are there any noticeable trends in any of the categories?

A matrix report presents the data in an intersecting format. The matrix report
starts with summary data, but allows you to interact with the report and
drill down into the more detailed data. A matrix report is also known as a
cross-tab report.

When you run a matrix report, you notice a plus next to data that can be
expanded. By clicking the plus, the columns or rows expand.

Figure 3-2 shows a report with the matrix manipulated through user interac-
tion. The plus next to 2003 was clicked to expand the year data and show the
quarters. The Clothing and Bikes categories are expanded to show the sales
values of individual items within the categories.

Figure 3-1:
Adventure
Works sales
report.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 450

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Generating Sophisticated Output with Report Designer 451

By adding a matrix, you allow decision makers to click on the report and gain
deeper insight into the data. With this insight, decision makers can explore
both problem areas and potential opportunities that might not otherwise be
apparent. Some things that jump out while looking at this report are

✦ The two quarters with the highest sales are the third and fourth quar-
ters. If this is a repeatable trend, it makes sense to ensure additional
resources are available for those periods.

✦ Sales of bib-shorts and tights have significantly fallen off. Perhaps
another product could be added to replace the products that are no
longer popular.

✦ Socks sold in 2002 but had zero sales in Q1 and Q2 of 2003. Is there a
reason for this that can be prevented in the next year?

✦ Touring bikes were added, which significantly increased sales without
influencing sales on other bikes. Are there other product lines that could
be added to expand the market?

Figure 3-3 shows a sales report organized by territory that can also be used
to drill down into the detailed data. By clicking Canada, the two employees
with sales appear. The plus next to each salesperson tells you that you can
get detailed information on the salesperson.

In addition to matrices, you can add graphics to your reports to highlight
what’s important. Adding a company logo or other pictures makes a report
more appealing and easier to read, but you can also add charts and graphs
to your report.

Figure 3-2:
Adventure
Works sales
report using
a matrix.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 451

Generating Sophisticated Output with Report Designer452

Figure 3-4 shows a partial report with charts and graphs. To borrow from an
old saying, a graph is worth a thousand numbers. By glancing at the graph,
you can easily identify that Michael Blythe had the most sales. Looking at
the numbers in the Employee Name and Sales table, this doesn’t jump out as
easily. Similarly, the pie chart shows that the top stores have relatively the
same sales.

Figure 3-4:
Adventure
Works sales
report using
charts and
graphs.

Figure 3-3:
Adventure
Works
territory
report using
a matrix.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 452

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Generating Sophisticated Output with Report Designer 453

The two primary tools that you can use to create reports are

✦ Report Designer: The Report Designer is a part of the Business
Intelligence Development Studio (BIDS). The Report Designer is used to
create report server projects that can include multiple reports.

✦ Report Builder 2.0: The Report Builder 2.0 is a stand-alone graphical
user tool that creates one report at a time. It is a free download as part
of the Microsoft SQL Server 2008 Feature Pack and can be installed com-
pletely separate from SQL Server 2008.

The Report Builder 2.0 was previously called Report Designer Preview. There
was some confusion because BIDS also included a Report Designer but both
were completely separate applications. In Book V, Chapter 2, we cover the
Report Builder that is used to create reports from report models in the
Report Manager. Although similarly named, these are two completely sepa-
rate applications. Aren’t you glad they renamed it to clear up the confusion?

Exploring the Report Designer
Using the Report Designer in BIDS, you can create and manipulate reports
that can then be deployed to a report server and served to users who have
the appropriate access. Visual Studio includes three templates for report
projects that use the Report Designer:

✦ Report server project: Report server projects are used to create
reports. Once created, your reports can be deployed to your report
server. You can add shared data sources, and multiple reports to a
report server project.

✦ Report Server Project Wizard: This is similar to the report server proj-
ect, but it immediately launches a wizard to simplify the creation of the
first report.

✦ Report model project: Report model projects are used to create report
models. Once deployed to a report server, a report model is used to
create an actual report using the Report Builder.

Report model projects are covered in Chapter 2 of this mini-book. Steps
included in that chapter show how to create a report model, build a report
model, and deploy it to a report server. Once deployed, the Report Manager
Web site launches the Report Builder and builds a report.

To launch the Report Designer, follow these steps:

1. Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Business Intelligence Development Studio (BIDS).

This launches BIDS, but to create reports, you need to create a report
project.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 453

Generating Sophisticated Output with Report Designer454

2. In BIDS, choose File➪New➪Project.

In this section, you create a blank project to explore the Report
Designer. In the “Designing a New Report” section later in this chapter,
you have an opportunity to create an actual report.

3. On the New Project page, select Report Server Project and then
click OK.

You can give your project a new name and new location or accept the
defaults, as shown in Figure 3-5. Figure 3-5 also shows that you can
select Report Model Project or Report Server Project Wizard. Report
model projects are explored in Chapter 2 of this mini-book.

4. Solution Explorer is in the far right pane. Right-click your project and
choose Add➪New Item.

This allows you to add new reports (with or without using the report
wizard) or data source items from templates either installed as part of
SQL Server Reporting Services or available online.

5. Under Visual Studio Installed Templates, select Report and click Add.
This accepts the default name of Report1.rdl.

A display similar to Figure 3-6 appears. Although the report is blank, you
have an opportunity to see the Report Designer. The left pane is used to
manipulate report data items, such as data sources, datasets, parame-
ters, and images. The center pane has two tabs (Design and Preview).
The Design tab is used to lay out your report, and the Preview tab allows
you to view the report the end-user would see. Your overall project,
which can include multiple reports, is shown in the Solution Explorer in

Figure 3-5:
Creating a
new report
server
project.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 454

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Generating Sophisticated Output with Report Designer 455

the far right pane. The Output pane at the bottom displays results when
you build and deploy reports to a reporting server. The Properties pane
shows the properties of any item that is selected.

Figure 3-6 shows the view with the Toolbox added. To make the Toolbox visi-
ble, select View➪Toolbox or simultaneously press Ctrl+Alt+X.

The elements available to you within your report project have the following
purposes and uses:

✦ Toolbox: The Toolbox appears in the same place as the Report Data
pane. When both the Toolbox and the Report Data panes are added (as
shown in Figure 3-6), they can be chosen by a tab under the pane. When
selected, the Toolbox allows you to drag and drop several different ele-
ments to your report, such as a text box, line, table, matrix, rectangle,
list, subreport, chart, or an image.

✦ Report Data: The Report Data section is used to identify the data source
and dataset for your report. You can also add additional fields, parame-
ters, and images to your report from here. By selecting New Dataset, a
dialog box appears that allows you to pick a data source (or create a
new one if one doesn’t exist), and then enter a query or execute a stored
procedure to retrieve data for your report.

✦ Datasets: A dataset identifies the data source (the type of database and
its location) and the data to be retrieved from the data source (from a
specific query). Datasets are created in the Report Data section in the
far left pane.

Figure 3-6:
Exploring
the Report
Designer.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 455

Generating Sophisticated Output with Report Designer456

✦ Design tab: You can manipulate how your report looks from within the
Design view. Objects are placed onto the page by dragging them from
the Toolbox. Objects on the page in this view can be moved around (by
dragging and dropping with the mouse) or resized (by clicking the han-
dles and resizing just as you’d resize a Window), if desired. Additionally,
object properties can be easily manipulated from this page.

✦ Preview tab: After you click the Preview tab, your report is generated,
and you see how it will look when deployed to a report server. If you’re
like most people, your reports are never perfect the first time. However,
the Preview tab allows you to see quickly what you want to fix. You can
click back and forth between the Design and Preview tabs until your
report looks exactly how you want it.

✦ Solution Explorer: The Solution Explorer shows all the data sources and
reports that have been added to your project. You can also add addi-
tional data sources and reports from here.

✦ Output: The Output pane shows the results of building or deploying a
report. Each time you preview your report, the report is built with
output messages displayed in the Output pane. What you want to see
here is Build complete -- 0 errors, 0 warnings. When things
go wrong, you see error messages that might give you some insight into
the problem.

✦ Properties: All objects (including reports and objects you place onto
your reports) have properties. You can use the Properties pane to view
and manipulate some of the properties of your reports and objects.
Pressing F4 brings the Properties page into view if it isn’t currently
showing.

Exploring the Report Builder 2.0
This section is based upon a pre-release version of Report Builder and is
subject to change. The Report Builder was a part of SQL Server 2008 during
the beta stage, moved to the feature pack during the release candidate stage,
but was not included when SQL Server 2008 was released. When a final
version is released, this section will be updated and available for download
at www.dummies.com/go/sqlserver2008aio.

The Report Builder 2.0 is a stand-alone client used to create, preview, and
publish reports. A primary significant difference between the Report
Designer and the Report Builder 2.0 is that the Report Builder 2.0 can only
work on a single report at a time, while a Report Designer Project allows you
to manage several reports in a single project.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 456

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Generating Sophisticated Output with Report Designer 457

To launch the Report Builder 2.0, choose Start➪All Programs➪Microsoft SQL
Server 2008 Report Builder➪Reporting Builder 2.0.

If you’ve used Microsoft Office 2007, you notice something familiar — the
Ribbon. The Ribbon (integrated into Microsoft Office 2007 products)
replaces the drop-down menus within the Report Builder 2.0.

Figure 3-7 shows the Report Builder 2.0 with the Home tab of the Ribbon dis-
played. Report Designer Preview includes three primary panes: the Ribbon,
the Data section, and the report you’re working on:

✦ Ribbon: The Ribbon is at the top of your page. Based on what is
selected, it allows you to add or manipulate different objects in your
page.

✦ Data: The Data pane includes several different fields that you can add to
your report. For example, by dragging the PageNumber and TotalPages
fields onto your report, you can easily have your report display Page 4
of 56 on page 4 of a 56-page report. Additionally, after you add a data
source and dataset, additional capabilities appear. You can add parame-
ters and images to your report from this section also.

✦ Report: Here’s where you see your report being built. In the Design view,
you can drag and drop and manipulate objects. By clicking the Preview
button from the Home or View tabs of the Ribbon, you can see what
your final report will look like. When in the Preview view, you can click
the Design button on the Ribbon to return to the Design view.

Figure 3-7:
Report
Builder 2.0
with the
Home tab of
the Ribbon
shown.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 457

Generating Sophisticated Output with Report Designer458

If you haven’t worked with the Ribbon before, it’s useful to know how to use
it. In short, Microsoft received a lot of feedback saying that users were
having trouble finding what they needed in the menus. So, to help those
users, Microsoft created the Ribbon, which organizes the tasks into different
groups. Unfortunately, for those of us that were able to find what we needed
through the menus, we’re now confused with the Ribbon. In time, maybe this
will be easier.

The three Ribbon tabs available within the Report Builder 2.0 are

✦ Home: The Home tab of the Ribbon is primarily used to manipulate how
objects appear on your page. The Font group allows you to select differ-
ent text characteristics, such as Times New Roman, Arial, bold, italics,
or underline. The Alignment group allows you to justify the text. In the
Border group, you can add a border and manipulate the size and color of
the border. The Arrange group’s buttons allow you to place items in
front of or behind other items, which can provide some cool image
effects, and be used to arrange text.

✦ Insert: Figure 3-8 shows the Insert tab of the Ribbon, which gives you
access to different objects you can add to your report. In the Data
Regions group, you can add a table, matrix, chart, gauge, or list. The
Report Items group offers objects that can be added to give your report
some creative pizzazz. The Subreports group has the Subreport button.
A subreport is a report that’s embedded within a report page. Most items
can be added by double-clicking the button on the Ribbon and then
dragging and dropping the item within your report. You can also toggle
the appearance of the header and footer by using the Header and Footer
buttons in the Header & Footer group.

✦ View: The View tab of the Ribbon is shown in Figure 3-9. You can toggle
between the Design view and Preview view by clicking the appropriate
button in the Report Views group. When in Design view, the Show/Hide
group allows you to select additional items to display within the window.
For example, when you’re finished adding data, you can choose to dese-
lect the Data pane to give you more room to view your report.

Figure 3-8:
Report
Builder 2.0
with the
Insert tab of
the Ribbon
shown.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 458

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Designing, Publishing, and Maintaining Reports 459

In the upcoming “Using Report Builder 2.0” section, you can follow the steps
to create and manipulate a report within the Report Designer Preview.

Understanding Report Definition Language (RDL)
Reports are defined with the Report Definition Language (RDL). RDL is the
XML representation of a SQL Services Reporting Services (SSRS) report defi-
nition. It includes information on what data to retrieve and what way to dis-
play it.

The report definition can also include custom functions that spice up your
reports. This includes adding simple items, such as pictures, page numbers,
and dates — formatting them by modifying fonts and margins.

The report is created by using one of the tools, such as Report Designer,
Report Builder 2.0, or Report Builder (creating a report from a report model).
When the report is built, the RDL file is created. An RDL file is a text file that
follows a specific XML schema required by the report server. When ren-
dered, the report server interprets the RDL to display the report accurately.

Although it’s possible to modify the RDL file directly, it’s unlikely you’ll do
so. The graphical tools available make this much easier to do. However, if
you’re a developer, you might create third-party tools that programmatically
create or modify RDL files. In that case, you need to learn the specifics of the
RDL file.

Designing, Publishing, and Maintaining Reports
Chapter 2 of this mini-book shows you how to create report models and pub-
lish them to the report server. You then use the Report Builder to create and
publish a report to the report server.

Figure 3-9:
Report
Builder 2.0
with the
View tab of
the Ribbon
shown.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 459

Designing, Publishing, and Maintaining Reports460

In this section, you find out how to design, publish, and maintain reports by
using the Report Designer within the Business Intelligence Development
Studio (BIDS) and the stand-alone Report Builder 2.0.

The following two sections show you exactly how to create reports. You
create a report by using the Report Designer in BIDS. You then create a simi-
lar report by using the Report Builder 2.0.

The steps in the following two sections assume you have AdventureWorks2008
installed on your SQL Server 2008 server. If you don’t have it installed,
review Book III, Chapter 5 for the steps.

Using the BIDS Report Designer
In the following steps, you create a matrix report used to analyze sales
within the Adventure Works Company.

1. Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Business Intelligence Development Studio (BIDS).

This launches BIDS.

2. In BIDS, choose File➪New➪Project.

With Business Intelligence Projects selected, several Visual Studio
installed templates are available including the Report Server Project.

3. On the New Project page, select Report Server Project. Change the
name to Employees and change the location to C:\MyReports. Ensure
Create New Solution is selected for the Solution and ensure the check
box for Create Directory for Solution is checked. Click OK.

4. In the Solution Explorer pane (at the far right of Visual Studio), right-
click Reports and select Add New Report.

This launches the Report Wizard.

5. On the Welecome to the Report Wizard page, click Next.

6. The Select the Data Source page will appear. Click Edit.

7. On the Connection Properties page, enter Localhost as the
Server Name. In the Connect to a Database section, choose
AdventureWorks2008 from the drop-down list.

Your display looks similar to Figure 3-10. If you’re connecting to a remote
server, you can enter the name of that server in the Server Name box.
Localhost can be used for the server where you are creating your report.
Additionally, you can connect to any database you desire by selecting it
here.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 460

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Designing, Publishing, and Maintaining Reports 461

8. Click the Test Connection button.

A Microsoft Visual Studio dialog box appears stating whether the test
connection succeeded. If this doesn’t succeed, double-check your
spelling of localhost.

9. Click OK on the Microsoft Visual Studio dialog box. Click OK on the
Connection Properties dialog box.

10. A connection string is now present in the Select the Data Source page.
Click Next.

The Query Designer window opens, allowing you to enter a query for
your dataset.

11. Click the Query Builder button.

12. In the Query Designer, right click within the top pane and select Add
Table.

13. Click the Views tab. Select the vEmployee(HumanResources) view.
Click Add. Click Close to close the Add Table dialog box.

14. On the vEmployee view, select the checkbox next to the following
columns: LastName, FirstName, PhoneNumber, EmailAddress.

This query retrieves a listing of employees with their e-mail address and
phone number.

Figure 3-10:
Configuring
the
Connection
Properties
for your
data source.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 461

Designing, Publishing, and Maintaining Reports462

15. Press the exclamation mark to run your query. When you’re satisfied
with the query, click OK. On the Design the Query page, click Next.

16. On the Select the Report Type page, ensure Tabular is selected and
click Next.

17. On the Design the Table page, click Next.

18. On the Choose the Table Style page, choose a table style that appeals
to you and click next.

19. On the Completing the Wizard page, enter EmployeeContact in the
Report Name box. Select the checkbox to Preview Report. Click
Finish.

Your display looks similar to Figure 3-11. The Report Data pane on the
left includes the data source created by the wizard from the vEmployee
view. The report is previewed in the middle pane, and the Solution
Explorer shows you’ve added the Employee Contact report.

20. Click the Design Tab. Change the title name to AdventureWorks
Employee Contact Information.

21. Click in the EmailAddress column. Hover over the right side of the
gray bar until the two arrows appear. Drag the right of the
EmailAddress column to the right to make it larger.

You can resize any of the columns this way. Some of the employees have
long last names causing them to take two lines. You can make the Last
Name column larger to accommodate for this.

Figure 3-11:
Viewing
your
Employee
Contact
report.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 462

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Designing, Publishing, and Maintaining Reports 463

Although the previous steps show you how to create a report, we must
stress that you can do quite a bit to spice it up. You can add graphics, add
data to the header and footers, resize and manipulate any of the cells with
color or formatting, and more.

The hardest part is getting the report to work and the wizard makes most of
that work easy. When you’re satisfied with a report you created, you can
deploy it to a report server. If you created the report in the previous steps,
follow these steps to publish it:

1. Open the project’s Properties page by selecting the Project drop-down
menu and choosing Employees Properties.

2. Enter the URL of your reporting server in the TargetServerURL text
box of your report server.

Depending on how you installed and configured SQL Server Reporting
Services on your system, this is likely http://localhost/report
server or http://localhost:8080/reportserver.

3. Click OK to set the URL.

4. Select the Build drop-down menu and choose Deploy Employees.

In the Output pane, you see the report being deployed to your report
server.

5. Launch Internet Explorer and go to http://localhost/report
server to access your reports.

6. Select the Employees directory and then select the Employee Contact
report.

Your report is generated and displayed, as shown in Figure 3-12.

Figure 3-12:
Viewing
your
deployed
report on
your
reporting
server.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 463

Designing, Publishing, and Maintaining Reports464

7. You can also view your report via the Report Manager by using the
following URL: http://localhost/reports.

Again, depending on how you installed and how you configured SQL
Server Reporting Services on your system, the URL could also be
http://localhost:8080/reports.

8. In the Report Manager, select the Employees folder and then select
the EmployeeContact report.

Figure 3-13 shows your report within the Report Manager.

Using Report Builder 2.0
In the following steps, you create a report with the Report Builder 2.0. These
steps assume you’ve downloaded and installed the Report Builder 2.0 and
the AdventureWorks 2008 database.

1. Launch the Report Builder 2.0 by choosing Start➪All Programs➪
Microsoft SQL Server 2008 Report Builder➪Report Builder 2.0.

2. Select the Insert tab of the Ribbon and click the Table button from the
Data Regions group.

3. On the Data Source Properties page that appears, enter
AdventureWorksEmployees as the Name.

4. Click the New button. On the Data Source Properties page, enter
AdventureWorks2008 as the Name. With Embedded Connection
selected, click Edit.

5. On the Connection Properties page, enter Localhost as the Server
Name. Choose the AdventureWorks2008 database from the drop-down
list. Click the Test Connection button.

Figure 3-13:
Viewing
your
deployed
report via
the Report
Manager.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 464

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Designing, Publishing, and Maintaining Reports 465

A Test Results dialog box appears indicating whether the test
succeeded.

6. Click OK on the Test Results dialog box. Click OK on the Connection
Properties page.

7. On the Data Source Properties page, click Next.

8. In the Query Designer window, enter the following query:

SELECT * FROM HumanResources.vEmployee;

9. Click the exclamation mark to run and test the query. Click Finish
when the query is entered successfully.

You’ve created the datasource for your report. Now you need to pick
which columns from the data source you want to add to your report.

10. Drag and drop the FirstName, LastName, PhoneNumber, and
EmailAddressfields to the second row of the table.

Make sure you put the fields on the second row, not the top row. The top
row of the table is the header and the second row is for the data. If you
drag any of the fields (FirstName, LastName, and so on) to the top row,
each page of the report will hold only one row. In other words, an
Employee report of 290 employees would take 290 pages.

11. Click the View tab of the Ribbon and then click the Preview button.

Notice that both the Phone Number and Email Address columns are
wrapping within the cell. You can resize these columns so that they only
take one line, allowing more rows per page.

12. Click within the Phone Number column, and a gray bar appears above
the columns. Hover over the line in the gray bar between Phone
Number and Email Address. Click and drag the double arrow to the
right to resize the Phone Number column. Do the same with the Email
Address column.

This might take some experimentation. You resize the column and then
preview the results. If the column still isn’t a single row, repeat the
process.

13. Change the header name of the Phone Number column to Telephone
by clicking in the header and typing Telephone.

You can modify the text and display of any of the headers or leave them
how they are.

14. Click the Insert tab. Double-click Text Box to add a text box to your
report. Drag the text box to the header and enter Employee Contact
Information. Resize it to ensure it doesn’t wrap.

You can also manipulate the font settings from the Home tab.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 465

Designing, Publishing, and Maintaining Reports466

15. Select the PageNumber field from the Built-in Fields section of the
Data pane. Drag and drop it to the footer of the report.

You use this to add 1 of 290 or 4 of 290, depending on which page is dis-
played. This field will show the page number of the displayed page.

16. With the Insert tab of the Ribbon displayed, double-click the Text Box
button. This creates a blank text box in the report area. Drag the text
box to the footer and enter the word of.

The text box appears directly over the First Name header. If you have
trouble finding the text box, you can move the table away and then add
the text box. After you position the text box, move the table to where
it was.

17. Select the TotalPages field from the Built-in Fields section of the Data
pane. Drag and drop it to the footer of the report to the right of the
text box.

Your display looks similar to Figure 3-14. The header is empty (though
you can add pictures or text here), the report data and header are in the
middle, and the page information is added to the footer.

18. Select the View tab of the Ribbon and click the Design button to view
your report.

Figure 3-14:
The
Employees
phone and
e-mail
report in
Design
view.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 466

Book V
Chapter 3

Creating Reports
w

ith Report
Designer

Designing, Publishing, and Maintaining Reports 467

You might notice that the footer doesn’t look quite right. You might want
to adjust the justification of the three boxes in the footer to make them
look more natural.

19. (Optional) To adjust the justification of any of the boxes in the footer,
select the Home tab of the Ribbon.

a. Select the PageNumber box in the footer and then click the right justifi-
cation button in the Alignment group.

b. Select the text box in the report area and then select the center justifica-
tion button.

c. Select the TotalPages box and then select the left justification button.

With the report created, you can deploy it from the Report Builder 2.0 to
your report server by using the following steps.

1. Select the Windows Jewel icon (at the top left of the Report Bulder 2.0
window) and then select Publish.

2. On the Deployment Settings dialog box that appears, enter http://local
host/reportserver as the Report Server URL.

3. Change the Report Name to Employee Phone Email Listing.

Your display looks similar to Figure 3-15. The Report Folder field has a
slash (/) in it. This indicates the report will be deployed to the root of
the report server. If desired, you can add a report folder name, and it
automatically will be created on the report server.

4. Click OK. A Deploy dialog box appears indicating whether the report
was deployed successfully. Click OK.

5. Launch Internet Explorer and go to http://localhost/report
server to access your reports.

Depending on how your report server is set up, you might need to use
port 8080 to access the report server. You can use this URL address:
http://localhost:8080/reportserver.

Figure 3-15:
The
Deployment
Settings
dialog box.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 467

Designing, Publishing, and Maintaining Reports468

6. Select the Employee Phone Email Listing to view the report.

7. You can also view your report via the Report Manager by using the
following URL: http://localhost/reports.

The Employee Phone Email Listing report is available as shown in Figure
3-16. Notice how the system changes the URL to http://localhost/
Reports/Pages/Folder.aspx.

8. In the Report Manager, select the Employee Phone Email Listing
report.

Figure 3-16:
Accessing
your
deployed
report via
the Report
Manager.

38_179543-bk05ch03.qxp 8/23/08 12:44 AM Page 468

Chapter 4: Integrating Reports

In This Chapter
� Sharing reports through SharePoint

� Viewing reports with familiar Microsoft Office tools

� Allowing access to report information through Web Services

Using SQL Server Reporting Services enables users to retrieve
reports when — and from where — they want. Additionally, by using

SharePoint or by discovering how to export reports, your users can grab
data how they want.

If you integrate Reporting Services into SharePoint, developers can add
reports into a Web page with Web Parts. By using a Web Part, SQL Server
Reporting Services reports can be embedded into a Web page just as easily
as developers could add graphics to a page.

Several different tools, such as BIDS and Report Manager, render reports.
Although you can look at the report through these tools, you might need to
send the report to others, perhaps as an e-mail attachment.

Any rendered report can be exported into one of several formats, such as a
PDF file or an archive Web page, with just a couple clicks.

In this chapter, you learn a little about integrating Reporting Services with
SharePoint and the different formats for exporting reports.

Tying Reports Together with SharePoint
SharePoint is a group of technologies tied together that is gaining quite a bit
of popularity in enterprises today. Users can easily share information with
SharePoint.

A common question is, “What is SharePoint?” Depending on whom you
ask, expect different answers. It isn’t that people are confused; it’s that
SharePoint is so versatile that it fills many different needs, on many different
levels.

Two SharePoint families exist, and people might be referring to either one
when they say, “SharePoint.”

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 469

Tying Reports Together with SharePoint470

✦ Windows SharePoint Services (WSS): This is a free product available as
a download. It can be installed on a server product, such as Windows
Server 2008 or Windows Server 2003.

✦ Microsoft Office SharePoint Server (MOSS): This is a full server prod-
uct just like SQL Server 2008. It builds on WSS and adds significant func-
tionality and capabilities.

SQL Server 2008 Reporting Services can be integrated into either WSS or
MOSS.

Understanding Web Parts
SharePoint displays Web pages, but it puts the Web pages together as sepa-
rate Web Parts. Web Parts can be a task list, news item, discussion pane, or
even a SQL Server Reporting Services report.

Developers are able to lay out Web pages by adding Web Parts to the page
and even making them user selectable.

You’ve probably seen the same Web Part concept on the Internet. Some Web
sites allow you to customize what you see. If you’re interested in news head-
lines, you can add the news Web Part. If you’re interested in horoscopes, you
can add the horoscope Web Part.

Of course, they don’t label them as Web Parts on the Web sites. That type of
wording is reserved for techies who seem to want to confuse us with convo-
luted language.

Similarly, SharePoint developers can add a report viewer Web Part to view
reports from a report server. The report server does need to be configured
for SharePoint integration. Both report definition files (RDL) and Report
Builder reports can be displayed in a report viewer Web Part.

Reports displayed in a Web Part allow users to navigate pages, search, zoom,
export, and print the report. The report viewer Web Part can only be used
with RDL files processed by a Microsoft SQL Server Reporting Services
report server.

Integrating SQL Server and SharePoint
From a SQL Server Reporting Services point of view, the biggest requirement
when you integrate reports with SharePoint is to choose the SharePoint
Integrated mode. This can be done during installation or later by using the
Reporting Services Configuration Manager.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 470

Book V
Chapter 4

Integrating Reports

Using Familiar Microsoft Office Tools to View Reports 471

As a reminder, SQL Server Reporting Services supports two deployment
modes:

✦ SharePoint Integrated mode: In SharePoint Integrated mode, SharePoint
does most of the processing and management of the Report Server.
SharePoint Integrated mode requires at least Windows SharePoint
Services version 3.0 or Office SharePoint Server 2007 or greater. You
must use this if you want to run your reports on the SharePoint site.

✦ Native mode: In Native mode, SQL Server Reporting Services (SSRS)
runs as an application server and does all the processing and manage-
ment for reporting. If running in Native mode, reports cannot be
displayed on a SharePoint Web site.

If you install SQL Server Reporting Services in Native mode, you can switch
to SharePoint Integrated mode later. However, it’s much easier to do the
complete installation in SharePoint Integrated mode from the start. If you
want to install Reporting Services in Integrated mode, you need to install
SharePoint before installing Reporting Services.

After SQL Server is configured in SharePoint Integrated mode, the report
viewer Web Part can be used within SharePoint Web pages by the SharePoint
developers. The report viewer Web Part uses the report definition (RDL)
files.

Using Familiar Microsoft Office Tools to View Reports
Reports created with SQL Server Reporting Services can be exported and
saved in several different formats after the report is rendered. As a reminder,
SQL Server reports can be rendered from multiple tools:

✦ Report Builder 2.0: The Report Builder 2.0 is a stand-alone tool that is
used to create and preview reports without installing SQL Server
Reporting Services. While in the Preview view, you can click the disk
icon to export the report.

✦ Business Intelligence Development Studio (BIDS): BIDS can be used to
create reports. Reports are rendered by selecting the Preview tab. After
the report is rendered, you can right-click within the report to access
the Export options shown in Figure 4-1. You have seven options to
choose from when exporting your report.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 471

Using Familiar Microsoft Office Tools to View Reports472

✦ Reporting Services report server: Reports can be selected from the
report server by using the default URL of http://servername/
Reportserver and browsing to the desired report. After a report is
rendered, you can use the Select a Report drop-down box to choose the
format, and then click the Export link.

✦ Reporting Services Report Manager: Reports can be selected from the
Report Manager by using the default URL of http://servername/
Reports and browsing to the desired report. After a report is rendered,
you can use the Select a Report drop-down box to choose the format,
and then click the Export link. The order shown in Figure 4-2 is a little
different from what you see in BIDS, but the choices are the same.

Figure 4-2:
Exporting a
report from
Report
Manager.

Figure 4-1:
Exporting a
report from
BIDS.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 472

Book V
Chapter 4

Integrating Reports

Using Familiar Microsoft Office Tools to View Reports 473

Exporting reports
When a report has been rendered with one of the Reporting Services tools,
you can choose to export the report. An exported report can be in one of
several formats.

Of course, the format you choose depends on your needs. The following for-
mats are supported:

✦ XML file with report data: Saves the report as an XML file. XML files are
very useful for importing data into other databases, applications, or
XML messages. For example, you might need to import the data into
another database application, such as Microsoft Access. You can export
the data to an XML file and then import it into Microsoft Access.

✦ CSV (comma delimited): Comma Separated Value files (CSV) are plain-
text data files. Each line in the file relates to a record and commas sepa-
rate cells within the records, such as FirstName, LastName, Phone. A
CSV file is often used when the contents of the report need to be
imported into an external application that can’t read the actual report
file. Additionally, CSV files are often used in spreadsheet programs, such
as Microsoft Excel.

✦ Acrobat (PDF) file: This is the file type that Adobe created and made
available as an open standard. PDF stands for Portable Document Format
and the title fits. PDF files are great if you want to share files with others
and ensure the formatting stays the same.

✦ MHTML (Web archive): The MIME Encapsulation of Aggregate HTML
Documents (MHTML) standard captures an entire HTML page (including
pictures and other resources) as a single file. The MHTML file can easily
be copied or added as an attachment to an e-mail.

✦ Microsoft Excel: Reports saved in Excel format try to retain the report’s
layout and design. Each page of the report is saved in a separate work-
sheet. If the layout isn’t important or you want all the data in a single
worksheet, you can consider exporting the report as a CSV file and then
opening it in Microsoft Excel.

✦ TIFF file: A TIFF is an image formatted file. Image files default to TIFF
(.tiff) files; they can also be exported as BMP (.bmp), EMF (.emf),
GIF (.gif), and JPEG (.jpeg) files. To save an image in a different
format, you just need to add the extension to the filename, and the
export takes care of the rest.

✦ Word file: Saves the file in a Word 97-2003 format with a .doc extension.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 473

Exposing Report Information with Web Services474

Viewing exported reports
After you have exported your reports, how can you view them? It depends
on the format.

✦ TIFF file: Double-clicking any image file opens the file in an image
viewer. The Microsoft Office Document Imaging program opens by
default unless your system has another graphics program installed. A
cool feature is that each page of the report is viewable, which allows you
to scroll through the entire report.

✦ MHTML (Web archive): Double-clicking the MHTML archive file opens
the Web page in the Web browser installed on your system. For example,
if you have Internet Explorer, the MHTML file automatically opens in
Internet Explorer.

✦ Acrobat (PDF) file: You need Adobe Acrobat Reader or another third-
party PDF viewer installed on your system to view the PDF file. If a PDF
viewer is installed, the file opens when you double-click it.

✦ Microsoft Excel: No surprise here. You need Microsoft Excel to open a
report exported to Excel. What may be surprising is that each page in
the report is a separate worksheet in Excel. For a two-page report, sepa-
rate worksheets are no big deal, but for a 100-page report, the report can
be difficult to work with. Additionally, Microsoft Excel has a limitation on
the number of colors it displays, so the report might not look exactly the
same.

✦ CSV (comma delimited): A CSV file opens in Microsoft Excel if Microsoft
Excel is installed on your system. You can also import CSV files into
databases, such as Microsoft Access or Microsoft SQL Server. Additionally,
because CSV files are simple text files with values separated by commas,
you can open them in any text editor, such as Notepad or Microsoft
Word.

✦ XML file with report data: Data in XML format isn’t often used by end
users. Instead, the XML file is imported into another application and
then presented in a more meaningful way. However, if you double-click
an XML file, it displays in your Web browser, XML tags and all.

✦ Word: Data in Word format can be viewed in any version of Microsoft
Word from 97 to Word 2007.

Exposing Report Information with Web Services
SQL Server Reporting Services includes the Report Server Web service.
Using the Report Server Web service, any client or application can communi-
cate with the report server by using Simple Object Access Protocol (SOAP)
messages.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 474

Book V
Chapter 4

Integrating Reports

Exposing Report Information with Web Services 475

Book IV, Chapter 5 covers Web services in more depth including Web
Services being deprecated in SQL Server 2008. The chapter gives an
overview of how Web services are used and includes steps on how a stored
procedure is made available via Web services.

The Report Server Web service is an XML Web service. The service passes
XML Web messages (containing report data) by using a standard SOAP over
HTTP interface.

Figure 4-3 shows one possibility for a Report Server Web service. A user is
accessing a Web server over the Internet. The Web server requests the data
from the Report Server Web service, which is returned in XML format. The
Web server then populates pages with the relevant retrieved data.

One of the great benefits of passing XML messages using SOAP over HTTP is
that the messages can easily pass through firewalls. The HTTP interface uses
the well-known port 80. Because almost every network has port 80 open to
allow users to access the Internet, additional firewall ports don’t need to be
open. If you’ve ever tried to get a firewall administrator to open another
port, you know that can be about as difficult as herding cats.

Report Server
Web service

Web
server

Internet

XML messages passed
via SOAP over HTTP

Figure 4-3:
The Report
Server Web
service
providing
XML
messages
via SOAP.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 475

Exposing Report Information with Web Services476

The Report Server Web service has several methods that can be used from
external applications. However, that’s an important point. It’s an external
application that needs to be developed to take advantage of the Report
Server Web service.

Three paths are available to create applications that can use the Report
Server Web service:

✦ Use Microsoft Visual Studio: The Microsoft .NET Framework includes all
the high-level programming constructs to allow you to create a Web
service application. You would create a Web service proxy, authenticate
with the report server, and then call the appropriate Web method.

✦ Use the Reporting Services script environment: The rs utility allows
you to write scripts in Visual Basic .NET. Reporting Services scripts can
be used to run any of the Report Server Web service operations.

✦ Develop applications using any SOAP-enabled tool: Because the
Reporting Services Web service is SOAP-based, any third-party tool can
be used. The Reporting Services Web service receives the SOAP request
and responds with the XML data.

39_179543-bk05ch04.qxp 8/23/08 12:45 AM Page 476

Business Intelligence Development Studio (BIDS).

Book VI

Analysis Services

40_179543-pp06.qxp 8/23/08 12:45 AM Page 477

Contents at a Glance

Chapter 1: Introduction to SQL Server Analysis Services 479
Introducing SQL Server Analysis Services (SSAS)479
Leveraging the Power of Multidimensional Data483
Choosing an Environment for Analysis Services490

Chapter 2: Creating Business Intelligence Solutions with BIDS . . .493
Understanding Business Intelligence ..493
Understanding Analysis Services Scripting Language (ASSL)................495
Creating a SQL Server Analysis Project...497
Exploring a SQL Server Analysis Services Project...................................503

Chapter 3: Data Mining and Maintaining Analysis
Services Objects .517

An Introduction to Data Mining..517
Easy Integration with Business Intelligence Development Studio.........519
Creating New Scripts ...524
Managing Existing Analysis Services Objects ..526

40_179543-pp06.qxp 8/23/08 12:45 AM Page 478

Chapter 1: Introduction to SQL
Server Analysis Services

In This Chapter
� Introducing SQL Server Analysis Services

� Leveraging the power of multidimensional data

� Choosing an environment for Analysis Services

SQL Server Analysis Services is one of the key components of a business
intelligence (BI) solution. Historically, BI has been a tool only for larger

enterprises; however, the usability of many of the BI tools emerging today is
helping many smaller enterprises implement business intelligence into their
company’s database structure.

In this chapter, you discover some of the basics of SQL Server Analysis
Services (SSAS). A great benefit of SSAS is its ability to convert huge
amounts of raw data into actionable intelligence. In short, SSAS provides the
answers to key business questions almost as quick as the decision makers
can ask the questions.

Introducing SQL Server Analysis Services (SSAS)
The core purpose of SQL Server Analysis Services (SSAS) is to present data
in a more meaningful way for decision makers. When implemented, SSAS
enables users to ask complex questions and quickly receive actionable
insight.

Actionable insight is information that can be used to make sound business
decisions. Instead of just collecting huge amounts of data, business intelli-
gence (BI) methods and technologies allow you to convert this raw data into
actionable intelligence.

BI within SQL Server 2008 is composed of several components:

✦ SQL Server Analysis Services (SSAS): SSAS provides an Online
Analytical Processing (OLAP) solution that includes data mining solu-
tions. Specialized algorithms are used to help decision makers identify
patterns, trends, and associations in business data.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 479

Introducing SQL Server Analysis Services (SSAS)480

✦ SQL Server Reporting Services: SSRS provides a sophisticated solution
to bring the data to the users. With SSRS, users can create, publish, and
distribute detailed business reports.

✦ SQL Server Integration Services: SSIS is used for extract, transform, and
load (ETL) operations. In other words, data can be retrieved from other
data sources (extract), modified or manipulated to conform to require-
ments in the receiving database (transform), and imported into the
receiving database (load).

SSAS is only one component of business intelligence, but it’s certainly an
important component.

SQL Server Analysis Services uses Online Analytical Processing (OLAP) as
opposed to Online Transaction Processing (OLTP). OLAP and OLTP differ in
how the database is used, and in how the database is constructed:

✦ Online Analytical Processing (OLAP): The database is highly queried
with SELECT-type statements. An OLAP database is denormalized to
optimize for the queries and is often reconfigured by using cubes and
dimensions.

✦ Online Transaction Processing (OLTP): An OLTP database is highly
modified (using INSERT, UPDATE, and DELETE statements). For opti-
mization of the transactions, an OLTP database is typically normalized
as a relational database.

Understanding key OLAP terms
Key terms to grasp when talking about an OLAP database are cubes, dimen-
sions, measures, and Key Performance Indicators (KPIs). In the following
sections, we discuss each of these terms in turn.

Cubes
A cube is a denormalized version of the database, which is an extension of
the two-dimensional tables found in typical OLTP databases.

Consider Figure 1-1. Imagine you have such a cube on your desk and that
within the cube is a detailed three-dimensional representation of the city you
live in. You can pick up the cube and view the city from the east. You might
be interested in what the eastern view looks like from above, therefore, you
can immediately turn the cube and view it from that perspective. For any
view, you can rotate the cube and see the data from a different angle. The
model doesn’t have to be rebuilt each time a different view is desired.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 480

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Introducing SQL Server Analysis Services (SSAS) 481

Similarly, database cubes allow you to look at the data from different per-
spectives. Database cubes are derived from two-dimensional OLTP data-
bases, but a cube adds dimensions so that the data can be viewed from
different perspectives. Moreover, because the cube is built in advance, the
entire database doesn’t need to be queried each time a different view is
desired.

Multiple cubes can be created within a single SSAS database.

Dimensions
A dimension in a cube is a method used to compare or analyze the data. As
an example, a product dimension within a cube could be created using the
following product attributes: product name, product cost, product list price,
product category, and product color.

By adding additional dimensions (such as sales over a time period, or sales
by individual stores), the product data can easily be presented in a different
way. Consider a sales analyst that is interested in a specific product. After
viewing the product attributes, she might want to know sales information.
Because additional dimensions have been created within the cube, this sales
data can be presented quickly and easily in a different format.

When a dimension is created within a cube, it’s a cube dimension.

Figure 1-1:
A cube.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 481

Introducing SQL Server Analysis Services (SSAS)482

Measures
A measure in a cube is a column that measures quantifiable data (usually
numeric). Measures can be mapped to a specific column in a dimension and
can be used to provide aggregations (such as SUM or AVG) on the dimension.
For example, a measure can be used to identify how many products sold
during a given time period.

Typically, the summary data derived from the dimension is presented in
such a way that the user is able to easily drill down into the details of the
data, often just by clicking on the summary data.

For example, total sales of a given product might be derived from a time
period dimension. The measure shows the total sales for the time period,
but the data could be presented as total sales for given years, quarters, or
months.

Key Performance Indicator (KPI)
Business decision makers define a Key Performance Indicator (KPI). By iden-
tifying certain thresholds that management might be interested in, they can
easily measure performance of the company, or certain elements of the com-
pany, against these thresholds. For example, if a retailer has several stores
and expects each store to exceed $1 million in retail sales each quarter, you
could create a KPI with this definition.

SSAS includes a full KPI framework to support KPIs with a great deal of flexi-
bility in defining key metrics and scorecards. With this framework, the KPIs
can be built in to external performance management applications.

Improvements in Analysis Services
SQL Server Analysis Services (SSAS) 2008 provides many new improvements
over SSAS 2005. However, many of these improvements are under the hood.
They include:

✦ Improved scalability: Larger databases can be accessed by more users
concurrently.

✦ Improved performance: Data refresh rates within OLAP databases, and
query times are improved. The goal is to give end users access to up-to-
date data as quickly as possible.

✦ Improved data mining: Improved algorithms used to create data mining
models provide better insight and control to the underlying data.

One of Microsoft’s goals with SSAS 2008 was to ensure that no significant sur-
prises occur between SQL Server 2005 and SQL Server 2008. Although SQL
Server 2008 does improve some of the performance under the hood, the
implementation of SSAS is largely unchanged.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 482

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Leveraging the Power of Multidimensional Data 483

Additionally, SQL Server 2008 had a design goal of “no breaking changes.” In
other words, an upgrade from SQL Server 2005 to SQL Server 2008 shouldn’t
cause anything to break.

Interacting with Microsoft Office products
Part of the goal of business intelligence (BI) solutions using SQL Server
Analysis Services is the ability to bring the data to the users easily. The fol-
lowing Microsoft Applications can be used as interfaces for back-end SQL
Server 2008 BI databases:

✦ Microsoft Office Excel 2007: Microsoft Office Excel is a powerful spread-
sheet on its own, but can also be used as an interface for OLAP analysis
and data mining. Both SQL Server 2008 and Microsoft Excel 2007 are
designed to work together. Excel includes an enhanced Reporting
Services Excel renderer that enables Excel to receive reports directly in
Excel.

✦ Microsoft Office Word 2007: Word includes a report renderer that can
be used to render Reporting Services reports obtained from analytical
data.

✦ Microsoft Office Visio 2007: Visio can be used to present the data
mining views in an enhanced graphical format. Visio drawings provide
significantly more graphical capabilities than SQL Server 2008.

✦ Microsoft Office SharePoint Server: SQL Server 2008 is tightly inte-
grated with Office SharePoint Server 2007 allowing the capability of
easily rendering reports.

Leveraging the Power of Multidimensional Data
To leverage the power of SQL Server Analysis Services (SSAS), very often a
separate database is created. However, it’s also possible to combine the data
from multiple data sources. This is unifying the data.

After you create an SQL Server Analysis Services database (by using cubes,
dimensions, and measures), you can begin to query that data. Although a
typical relational database is queried with Transact-SQL statements, an
SSAS database is queried with its own query language: Multidimensional
Expressions.

Unifying your business data
A strength of SQL Server Analysis Services is that it can access data from dif-
ferent sources and present it as a single data source.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 483

Leveraging the Power of Multidimensional Data484

In a perfect world, large enterprises would have a single database that met
the needs of everyone in the enterprise. However, the perfect world scenario
is rarely achieved. Instead, many different databases are used by different
departments.

One of the benefits of an SSAS solution is that it has the capability of unifying
data access by creating a separate data warehouse or a data source view.

✦ Data warehouse: A data warehouse is a separate database that receives
its information from several different data sources. The data sources can
be from SQL Server 2005, or from different vendors, such as Oracle or
IBM. Figure 1-2 shows an example of a data warehouse. The key differ-
ence between a data warehouse and a data source view is that a data
warehouse is a completely separate database.

Data
warehouse

IBM

Oracle

SQL

Figure 1-2:
A data
warehouse.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 484

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Leveraging the Power of Multidimensional Data 485

A data warehouse can also be derived from a single database. For exam-
ple, the AdventureWorksDW database contains the same information as
the AdventureWorks database. However, it’s been highly denormalized.
OLTP databases work best with a normalized database, but cubes work
best with a highly denormalized database.

✦ Data source view: A data source view is similar to a data warehouse
from an end-users perspective, but it creates views based on the source
databases instead of using a completely separate database. Figure 1-3
shows how the data source view would look. The key point is that even
though the source data is derived differently, it appears the same to the
end user.

Data
source views

Oracle

IBM

SQL

Figure 1-3:
Data source
views.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 485

Leveraging the Power of Multidimensional Data486

A key advantage to using a data warehouse is that it provides the best per-
formance for querying the analytical data with minimal impact on the source
databases. The only time the source databases are impacted is when data
needs to be retrieved.

Additionally, extract, transform and load (ETL) methods can be used to
ensure that data is presented consistently in the data warehouse, even when
the data isn’t presented consistently in the source databases.

The key advantage to using a data source view is that it provides you with
access to real-time data.

Data mining
Actionable insight is derived by using data mining techniques. Data mining is
the process of extracting valid, authentic, and actionable information from a
database.

Data mining uses a data model to create an analysis cube. The data model is
used to derive patterns and trends that can be collected together. An effec-
tive data model allows managers to make intelligent decisions based on the
existing data. Often, the data model answers common questions that a deci-
sion maker might have.

Some examples of data mining include

✦ Predicting future sales: By looking at past sales, future sales patterns
can be predicted. For example, Black Friday (the day after Thanksgiving)
is widely known as the day that many retailers come out of the red and
start to make a profit. Retailers know this by analyzing sales. Data
mining can also help them answer other business questions, such as
what other days are high volume days, what the best selling product is,
and which products have the highest profit margins.

✦ Conducting mass mailings (or mass e-mail mailings): Customer buying
habits can be identified to target customers with specific buying habits
for sales. For example, Nightingale Conant sells audio recordings on a
wide variety of topics. If you purchase recordings from them, they fre-
quently send you advertisements, but almost exclusively on topics
related to your purchases. How do they know what advertisements to
send? They clearly are using a business intelligence solution.

✦ Identifying products that can be bundled together: As customers, we
see Amazon do this very effectively. When we purchase a product, it
often has a similar product that can be purchased with the first at a dis-
counted price. We’re often intrigued enough to look. Without this recom-
mendation, we find the product we want, we purchase it, and we’re
done. Without the implementation of a business intelligence solution,
the result is a lost add-on sale.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 486

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Leveraging the Power of Multidimensional Data 487

✦ Identifying products that customers add to the shopping cart first:
Admittedly, this is for online sales only, but it allows a company to iden-
tify what a customer decided to buy first. For us, we know that it takes a
lot to add the first item to the shopping cart; we’re committing to
making a purchase. After that first commitment is made, it’s easier to
add additional items. By identifying the products that are being added
first, companies know what enticements are helping users make the
decision to purchase.

✦ Identifying buying patterns online: Do customers typically purchase
one product or more than one? Again, using Amazon as an example, we
imagine that it looked at how many products a majority of customers
purchased, it was often just a single book, and the single book cost was
rarely more than $25. Therefore, it added free shipping for any pur-
chases over $25, and now many customers (us included) think of adding
a second book to get free shipping.

Querying multiple dimensional data
Multiple dimensional data has its own query language for working with SQL
Server Analysis Services (SSAS): Multidimensional Expressions (MDX).

MDX is based on the XML for Analysis Services specification. It can be
used to

✦ Return data from an SSAS cube to a client application.

✦ Format the results of the query as needed by the client application.

✦ Perform cube design tasks, such as defining calculated members and
key performance indicators.

✦ Perform administrative tasks.

MDX has some similarities to T-SQL; however, it’s not the same and has its
own set of rules.

Learning the key MDX elements
Before you can build MDX expressions, you need a basic understanding of
the MDX syntax elements listed in the following bullets:

✦ Axis: Within a query, you have one axis or multiple axes. An axis directly
relates to a dimension. Two types of axes exist: a query axis and a slicer
axis. A query axis is an embedded SELECT statement; multiple query
axes returns multiple data sets within the query. A slicer axis is used as a
filter to restrict the returned data.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 487

Leveraging the Power of Multidimensional Data488

✦ Comments: Comments are notes inserted into the code. Comments
aren’t executed. Commenting characters can be double forward slashes
(//), double hyphens (--), or block character comments starting with /*
and ending with */.

✦ Functions: Similar to T-SQL, functions can accept one or more input
values and return either a scalar value or an object. Many categories of
built-in functions are available to use within SSAS.

✦ Identifiers: Identifiers are the names of objects within an Analysis
Services database, such as cubes, dimensions, members, and measures.
For example, a cube could be called Sales. Sales would be the identifier.

✦ MDX expressions: Expressions are used within a query to identify single
values or objects. They can include functions that return a single
value or calculations that return a single value. For example, a query
could be used to show a discount and include the MDX expression of
Measures.Discount Amount * .1 to represent a 10-percent
discount.

✦ Operators: Operators allow you to assign values to data, or search for
data based on certain expressions. As an example, values can be assigned
with the = operator. The same = operator could also be used to compare
the value of two expressions.

✦ Query axis: This identifies the data that will be returned by the query.
An MDX query can have multiple axes. Each axis has a number: 0 for the
x-axis, 1 for the y-axis, 2 for the z-axis, and so on. The x-axis is the first
dimension; the y-axis is the second dimension, and so on. The query
axis is mandatory in an MDX query and can include as many as 128 axes,
although it’s uncommon to have more than five.

✦ Slicer axis: The slicer axis is used to filter the data returned by the MDX
SELECT statement. A slicer axis works similar to how the WHERE clause
in a T-SQL query works and is included in the WHERE clause of an MDX
query.

There’s a great deal of depth to the MDX language, and this section only
scratches the surface. If you want to find out more about it, check out the
MDX Language Reference on Microsoft’s TechNet Web site. At this writing,
it’s located here: http://technet.microsoft.com/en-us/library/
ms145595.aspx. As you know though, things change on the Internet. If the
link has changed, use your favorite search engine and search on MDX
Language Reference.

Building a basic MDX query
The syntax for a basic MDX query is shown in the following code. The code
surrounded in brackets is optional.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 488

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Leveraging the Power of Multidimensional Data 489

SELECT [* | (<SELECT query axis clause>
[, <SELECT query axis clause> ...])]

FROM <SELECT subcube clause>
[<SELECT slicer axis clause>]
[<SELECT cell property list clause>]

You can compare this to the basic syntax for a SELECT statement by using
T-SQL:

SELECT select_list [INTO new_table]
[FROM table_source]
[WHERE search_condition]

✦ Both have a SELECT clause but identify the output differently. MDX iden-
tifies the output as one or more axes.

✦ Both have a FROM clause but identify the source differently.

✦ The MDX uses a slicer axis clause (that includes a WHERE statement) to
filter the results, and the T-SQL statement uses a WHERE clause to filter
the results.

A query will have one or more axes. Take a look at the following query. It
includes three axes, two query axes, and one slicer axis.

SELECT
{ Route.Path.Members } ON COLUMNS,
{ Time.[1st half].Members } ON ROWS

FROM TestCube
WHERE ([Measures].[Packages])

The first query axis is Route.Path.Members, which will be displayed as
columns. The second query axis is the Time.[1st half].Members, which
will be displayed as rows. The cube being queried is Test.Cube. The
Measures.Packages is the slicer axis used to filter the query.

The result is shown in Table 1-1. Notice the first half of the year is broken
into the first two quarters.

Table 1-1 Result of MDX Query
Air Sea

1st Quarter 650 540

2nd Quarter 330 320

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 489

Choosing an Environment for Analysis Services490

Choosing an Environment for Analysis Services
SQL Server 2008 provides two environments for working with SQL Server
Analysis Services (SSAS):

✦ Business Intelligence Development Studio

✦ SQL Server Management Studio

Using Business Intelligence Development Studio
The Business Intelligence Development Studio (BIDS) is the primary tool you
use for most of the development of an SQL Server Analysis project.

Figure 1-4 shows BIDS open with a SQL Server Analysis Services (SSAS) proj-
ect. The project is derived from the AdventureWorksDW database, which
was developed by Microsoft for business intelligence examples. If you’re
familiar with Visual Studio, many of these elements will look familiar to you.

Project tabs

Solution ExplorerDimensions view

Figure 1-4:
Business
Intelligence
Development
Studio
(BIDS).

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 490

Book VI
Chapter 1

Introduction to SQL
Server Analysis

Services
Choosing an Environment for Analysis Services 491

Figure 1-4 shows three key elements of a SSAW project.

On the far right are all the objects that have been developed within the proj-
ect. These include data sources, data source views, cubes, dimensions, and
others. The AdventureWorks BI project includes the AdventureWorksDW
database, the AdventureWorks cube, and several dimensions.

Beneath the toolbar are several tabs that appear when a cube is opened.
Each of the elements is associated with the cube. They include

✦ Cube: Used to build or edit the measures or measure groups of the cube.

✦ Dimensions: Used to define how dimensions are used within the cube.

✦ Calculations: Used to build or edit calculations for the cube.

✦ KPIs: Used to build or edit Key Performance Indicators for the cube.

✦ Actions: Used to build or edit actions for the cube.

✦ Partitions: Used to build or edit partitions of the cube.

✦ Aggregations: Used to build aggregations for the cube.

✦ Perspectives: Used to build or edit perspectives of the cube.

✦ Translations: Used to build or edit translations of the cube.

✦ Browser: Used to browse the deployed cube.

Figure 1-4 also shows that the primary pane of the BIDS window is viewing
the Dimensions tab. Both dimensions and measure groups can be viewed
and manipulated from this view.

Using SQL Server Management Studio (SSMS)
The second tool that can be used to manage SQL Server Analysis Services
(SSAS) databases is SQL Server Management Studio (SSMS). The primary
purpose of SSMS for SSAS projects is to administer instances of Analysis
Services objects (such as performing back-ups, monitoring processing, and
so on).

SSMS can also be used to recreate objects and cubes, although you generally
find that these tasks are easier to accomplish with the Business Intelligence
Development Studio.

Querying data from an Analysis project is done with scripting. SSMS pro-
vides an Analysis Services Scripts project that can be used to develop, test,
and save scripts. Multidimensional Expressions (MDX) scripts, Data Mining
Extensions (DMX) scripts, and XML for Analysis (XMLA) scripts can be
developed and tested within SSMS.

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 491

Book VI: Analysis Services492

41_179543-bk06ch01.qxp 8/23/08 12:45 AM Page 492

Chapter 2: Creating Business
Intelligence Solutions with BIDS

In This Chapter
� Understanding business intelligence

� Understanding Analysis Services Scripting Language (ASSL)

� Creating a SQL Server Analysis Project

� Exploring Your Project

Business intelligence translates raw data into usable information —
exactly what business managers need to make intelligent decisions.

Whether a manager is overseeing 100 different projects, or 100 different
retail stores, she must be able to view the key information. By creating
cubes from databases, you can convert raw data into usable information.

The Business Intelligence Development Studio (BIDS) is the central tool
used to create SQL Server Analysis Services (SSAS) projects. You can use it
to create, modify, and manage cubes. In this chapter, you create a cube and
gain a better understanding of the details that can be added to a cube from
within BIDS.

Understanding Business Intelligence
Business intelligence (BI) is a group of applications used together to
improve the decision making process. With the availability of databases and
the huge amount of data they contain, the problem facing executives isn’t
that they don’t have enough data, but instead that they have too much data.

BI tools are used to compile and present the data in a more meaningful way
so that executives and decision makers can focus on what’s important. BI
provides actionable insight — information useful enough to take action on.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 493

Understanding Business Intelligence494

SQL Server 2008 includes three BI applications. All three are available within
the Business Intelligence Development Studio (BIDS). They are

✦ SQL Server Reporting Services (SSRS): SSRS provides a means to
retrieve relevant data from databases and present it to users in a mean-
ingful way without requiring users to know things like SELECT, FROM,
and WHERE. Instead, a user can launch his Web browser, and simply
point and click to retrieve the needed data.

✦ SQL Server Integration Services (SSIS): When data needs to be com-
bined, SSIS can extract, transform, and load (ETL) data. Sophisticated
SSIS packages can be created within BIDS to integrate databases.

✦ SQL Server Analysis Services (SSAS): SSAS allows you to design, create,
and manage multidimensional structures that allow decision makers the
ability to view data easily from different perspectives. Cubes are denor-
malized versions of the database (the multidimensional structures) used
to provide different views and help decision makers focus on what’s
important.

While each of the applications can be used separately, in sophisticated BI
applications, they’re tied together to improve the decision making process.

Microsoft Project Server 2007 provides an excellent example of how different
elements can be tied together to provide better business intelligence. The
BI tools are used by an external application (Project Server) to provide
decision makers with the in-depth knowledge they need to make intelligent
decisions.

First, consider a single project. A Project Manager (PM) may use a tool, such
as Office Project Professional 2007, to create and manage a project. He would
create a timeline, milestones, tasks, and other details on the project. This
project could then be published to Project Server 2007. All this information
is held in a database on the Project Server. Then others who are interested
or involved in the project can view and provide entries into the project via
their Web browser.

For example, project team workers are assigned tasks and as they complete
the tasks, they access the project on Project Server to mark the tasks com-
plete. The PM can easily track the progress of the project and make adjust-
ments as needed.

Now consider a company that has 100 different projects occurring simulta-
neously. The CEO needs to know what’s going on with the projects. Are any
projects behind? Are any projects over budget? Should resources be reallo-
cated? Although the CEO does need to know about problem areas, she can’t
afford to be engulfed with the details of every project.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 494

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Understanding Analysis Services Scripting Language (ASSL) 495

Because PMs publish their projects to the Project Server and the data is held
within databases, cubes can be created by using SQL Server Analysis
Services to compile this information. Measures and dimensions can be used
within the cubes to give the CEO the focused information she needs. Key
performance indicators (KPIs) can be used to define thresholds, such as
10 percent over budget or 10 percent behind schedule. Now, with just a few
clicks, the CEO can call up reports that quickly identify problem areas.

Microsoft Project Server is just one of many different applications that can
pull together the different information.

The AdventureWorks2008 database focuses on the Adventure Works Cycles
business. Instead of projects, timelines, and budgets, the focus is on prod-
ucts and sales. Cubes created on the AdventureWorks2008 database would
have different measures, dimensions, and KPIs.

Understanding Analysis Services
Scripting Language (ASSL)

Using the Business Intelligence Development Studio (BIDS) is an excellent
way to build, manage, and modify cubes; however, advanced developers and
programmers can use the Analysis Services Scripting Language (ASSL).

ASSL is an XML-based scripting language, and ASSL scripts are executed
from different applications. They’re actually executed from within BIDS after
you complete a wizard, although you won’t see the ASSL script. If desired,
ASSL scripts can be executed from within fully developed applications (such
as Project Server) to modify or manipulate cubes.

ASSL commands are divided into two parts:

✦ Data Definition Language (DDL): These commands define and describe
an instance of SQL Server Analysis Services (SSAS) including the data-
bases and data contained in the instance.

✦ Command language: The command language is used to send action
commands (such as Create, Alter, and Process) to SSAS.

How you interact with SSAS and how you use ASSL depends largely on which
role you have within your organization. Generally, three database roles exist
related to business intelligence (BI) specialists. The three roles are

✦ Database administrator: The database administrator (DBA) generally
ensures the SSAS server remains operational. The DBA might occasion-
ally tweak SSAS objects, but generally uses SQL Server Management
Studio to interact with SQL Server Analysis Services objects.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 495

Understanding Analysis Services Scripting Language (ASSL)496

✦ Database developer: The database developer designs the cubes (includ-
ing dimensions and measures) from the ground up based on business
needs. The Business Intelligence Development Studio (BIDS) includes
many tools to help the developer. The developer can edit the ASSL XML
files directly, but usually uses the graphical tools to accomplish the nec-
essary tasks.

✦ Business intelligence developer: The business intelligence (BI) devel-
oper is more specialized in developing BI solutions for companies. A BI
developer might do the majority of the building of the SSAS solution in
BIDS, but can also create applications in high-level languages, such as C#
or Visual Basic, to interact with SSAS.

To be a BI developer, you need a solid understanding of the syntax and rules
of ASSL. However, most of us can use BIDS to accomplish required tasks.

As a simple example (really, this is a simple example for ASSL), the following
code creates a data source by using the Create command. Notice that it fol-
lows the rules of XML with XML tags and nested tags.

Steps are included in the next section (“Creating a SQL Server Analysis
Project”) to create a data source view after you’ve created a BIDS project.
The bold items in the following script show what you enter or configure with
the wizard.

The following script uses the xmlns tag extensively to identify XML name-
spaces that are used to define schemas. An XML schema (also known as an
XML schema definition or xsd) is used to define what tags are acceptable and
unacceptable. They can be very valuable in helping a developer avoid typos.

<Create
xmlns=”http://schemas.microsoft.com/analysisservices
/2003/engine”>

-- This is the end of the Create tag.
<ParentObject>

<DatabaseID>AdventureWorks</DatabaseID>
</ParentObject>
<ObjectDefinition>

<DataSource
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
xmlns:ddl2=”http://schemas.microsoft.com/analysisser
vices/2003/engine/2”
xmlns:ddl2_2=”http://schemas.microsoft.com/analysiss
ervices/2003/engine/2/2”
xmlns:ddl100_100=”http://schemas.microsoft.com/analy
sisservices/2008/engine/100/100”
xsi:type=”RelationalDataSource”>

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 496

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Creating a SQL Server Analysis Project 497

<ID>Adventure Works DW 2008</ID>
<Name>Adventure Works DW 2008</Name>
<ConnectionString>Provider=SQLNCLI10.1;Data

Source=localhost;Integrated Security=SSPI;Initial
Catalog=AdventureWorksDW</ConnectionString>

<ImpersonationInfo>
<ImpersonationMode>ImpersonateServiceAccount</Impers
onationMode>

</ImpersonationInfo>
<Timeout>PT0S</Timeout>

</DataSource>
</ObjectDefinition>

</Create>

The previous code was created by right-clicking the data source of a
deployed project in SQL Server Management Studio (SSMS) and choosing
Script Data Source As➪Create To➪New Query Editor Window. However, it
could just as easily be executed from a third-party application used to create
a connection to a data source. Chapter 3 in this mini-book shows you how to
use SSMS to explore a deployed SSAS project.

Creating a SQL Server Analysis Project
The Business Intelligence Development Studio (BIDS) is used to create SQL
Server Analysis Services (SSAS) projects. SQL Server 2008 uses the Visual
Studio 2008 shell, so if you’re familiar with Visual Studio, you’ll notice many
similarities.

The overall steps that you need to follow to create and use a cube are

1. Create a project

2. Define a data source

3. Define a data source view

4. Create a cube using measures and dimensions

The following sets of steps lead you through each process.

These exercises use the AdventureWorksDW2008 database available as a
free download from Microsoft’s CodePlex site. CodePlex is Microsoft’s open
source project hosting Web site. The SQL Server database samples are found
here:

www.codeplex.com/MSFTDBProdSamples

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 497

Creating a SQL Server Analysis Project498

At the site, click the Releases tab and download the AdventureWorksDW2008
database. Run the executable on your SQL Server system and follow the
installation wizard to install the AdventureWorksDW2008 database. Be sure
to select Restore AdventureWorksDW2008 to be installed on your local hard
drive.

Use the following steps to create an SSAS project within BIDS. You use this
project to create a SQL Server Analysis cube. These steps assume you’ve
installed SQL Server Analysis Services on your server.

1. Launch the Business Intelligence Development Studio by choosing
Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server Business
Intelligence Development Studio.

BIDS launches but is blank. A project needs to be either opened or created.

2. Choose File➪New➪Project.

3. On the New Project page, select Analysis Service Project. Enter
AdventureWorks as the name and set the location to C:\AdventureWorks.

You might have to create a folder named AdventureWorks on your C:\
drive for this project, but you can do so with the Browse button. At this
point, your display looks like Figure 2-1. The Name, Location, and
Solution Name should be the same on your screen.

4. Click OK. Your project is created and displayed in Visual Studio.

On the far right of Visual Studio, is the Solution Explorer. Your project
(AdventureWorks) is shown here. It includes containers for all your SSAS
objects used within the project. (Although at this point, all the contain-
ers are empty.)

5. Leave BIDS open for the next steps.

Figure 2-1:
Creating
an SSAS
project
in BIDS.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 498

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Creating a SQL Server Analysis Project 499

Creating a data source
After you create your project, you need to connect to a database and pick
the tables or views you want to use within your SSAS cube.

For this project, you use the AdventureWorksDW2008 database. If you
haven’t downloaded and installed the AdventureWorksDW2008 database yet,
now’s the time.

The following steps add the AdventureWorksDW2008 database to the project
as your data source. You then add tables and views that are used as data
source views within your project.

1. If not already open, launch BIDS by clicking Start➪All Programs➪
Microsoft SQL Server 2008➪SQL Server Business Intelligence
Development Studio. Open the AdventureWorks project created in
the previous steps.

2. In Solution Explorer, right-click Data Sources and choose New Data
Source.

The New Data Source Wizard launches.

3. On the Welcome to the Data Source Wizard page, click Next.

4. On the Select How to Define the Connection page, ensure the Create a
Data Source Based on an Existing or New Connection option is
selected. Click the New button.

5. On the Connection Manager page, ensure the Provider is set to
Native OLE DB/SQL Server Native Client 10.0. In the Server Name
text box, enter Localhost. In Select or Enter a Database Name, select
AdventureWorksDW2008 from the drop-down box.

Your display looks like Figure 2-2. The Provider, Server Name, and
Database Name should be the same on your screen.

6. On the Connection Manager page, click OK.

7. On the Select How to Define the Connection page, click Next.

8. On the Impersonation Information page, select Use the Service
Account and then click Next.

9. On the Completing the Wizard page, accept the Data Source of
Adventure Works DW2008 and then click Finish.

10. Leave BIDS open for the next steps.

At this point, you have a project with a data source (the AdventureWorks
DW2008 database), but need to create a data source view and a cube.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 499

Creating a SQL Server Analysis Project500

Creating a data source view
The data source view defines the tables and views you use within your cube.
In order to pick the best tables and views, you really need to know your
data.

Fortunately, in this section, we use the AdventureWorksDW2008 database
and name the tables within the steps. However, in a real-life environment,
you spend a lot of time trying to determine what data the end users want so
that you can accurately pick the correct tables. You add these tables to the
data source view to use within your cubes.

The good news is that these aren’t final decisions. If you need to change
your data source view later, you can. You must ensure, however, that you
don’t remove tables that are being used within any cubes in your project.

The following steps show you how to create a data source view. These steps
assume you created the data source in the previous steps; however, you can
also create the data source and the data source view at the same time by
launching the Data Source View Wizard.

1. If not already open, launch BIDS by choosing Start➪All Programs➪
Microsoft SQL Server 2008➪SQL Server Business Intelligence
Development Studio. Open the AdventureWorks project created in
the previous steps.

2. Right-click Data Source View and select New Data Source View.

Figure 2-2:
Configuring
the
Connection
Manager for
your data
source.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 500

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Creating a SQL Server Analysis Project 501

3. On the Welcome to the Data Source View Wizard page, click Next.

4. On the Select a Data Source page, ensure the AdventureWorks
DW2008 data source is selected and then click Next.

5. On the Select Tables and Views page, hold down the Ctrl key and
select the following tables: DimCustomer, DimGeography,
DimProduct, DimDate, and FactInternetSales. Click the > button
to add the tables to the list of included objects.

Your display looks like Figure 2-3. You should have the same five items in
the Included Objects area.

6. On the Select Tables and Views page, click Next.

7. On the Completing the Wizard page, accept the name of Adventure
Works DW2008 and then click Finish.

Your display looks similar to Figure 2-4. This is a graphical representa-
tion of the data source showing the selected tables and the relationships
among the tables. The primary key for each table is identified with they
key icon.

The FactInternetSales fact table is central to all the tables through
the primary key and foreign key relationships. A fact table (also known
as a measure group table) contains the measures that are important to
your user (such as the number of units sold).

8. Leave BIDS open for the next steps.

With the data source and data source view created, you can create the cube.

Figure 2-3:
Selecting
tables and
views for
your data
source
view.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 501

Creating a SQL Server Analysis Project502

Creating a cube
A cube includes the dimensions and measures used within the cube.
Depending on the tables you add, the Cube Wizard suggests which tables to
use for measures and dimensions.

After it’s configured, you can think of a cube as a complex view. You can
observe and manipulate the cube properties just as you can observe and
manipulate a view. Additionally, you can observe the data retrieved from the
cube just as you can observe the data retrieved from the view. Unlike the
view, the cube can allow multiple perspectives of the data depending on the
dimensions and measures you add.

In the following steps, you use the data source view created from the previ-
ous steps. That data source view includes the FactInternetSales table.
The wizard will analyze the tables you’ve selected and accurately suggest
that you use the FactInternetSales table as a measure group table.

1. If not already open, launch BIDS by clicking Start➪All Programs➪
Microsoft SQL Server 2008➪SQL Server Business Intelligence
Development Studio. Open the AdventureWorks project created in the
previous steps.

2. Right-click Cubes and choose New Cube.

3. On the Welcome to the Cube Wizard page, click Next.

4. On the Select Creation Method page, ensure Use Existing Tables is
selected and then click Next.

Figure 2-4:
Viewing
tables and
views in
your data
source
view.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 502

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 503

5. On the Select Measure Group Tables page, click the Suggest button.

The FactInternetSales table is selected as a measure group table.

6. Click Next on the Select Measure Group Tables page.

The Select Measures Page appears. Notice that all the measures from
within the fact table (FactInternetSales) are checked. However, not
all of these measures are valid; therefore, you don’t need to add all the
measures to your cube.

7. On the Select Measures page, clear the check box for the following
columns within the FactInternetSales table: Promotion Key,
Currency Key, Sales Territory Key, and Revision Number.
Click Next.

8. On the Select New Dimensions page, deselect the check box next to
Fact Internet Sales and leave the rest of the check boxes checked.
Click Next.

This adds dimensions for Product, Date, and Customer.

9. On the Completing the Wizard page, click Finish.

Before you can browse the cube, you need to build and deploy it.

10. From the Build drop-down menu, choose Build AdventureWorks.

11. From the Build drop-down menu, choose Deploy AdventureWorks.

In the bottom-right pane (under the Properties pane), the Status pane
indicates that the deployment succeeded. This may take a minute or so.
You can launch SQL Server Management Studio (SSMS), connect to the
Analysis Services instance, and browse the database you deployed.

That’s it. You’ve created, built, and deployed a cube. Don’t be misled though.
Although the wizard has done a lot of the work and made it look rather easy,
a lot has gone on. If you created this by using the Analysis Services Scripting
Language (ASSL), you’d have pages and pages of scripts.

At this point, you might want to explore the project. BIDS gives you several
tools that can be used to view, test, and modify your project. In the next sec-
tion, each of the tabs associated with a cube are explained and explored.

Exploring a SQL Server Analysis Services Project
You can use the Business Intelligence Development Studio (BIDS) to explore,
test, and maintain a SQL Server Analysis Services (SSAS) project. By explor-
ing a project, you can identify what cubes are available, how each cube is
created, and what data is available. The actual data presented by any cube
can be explored and tested with the Browser feature within BIDS.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 503

Exploring a SQL Server Analysis Services Project504

BIDS is the tool you, as the developer, use to view and test your project, but
it isn’t what the end-user uses. Instead, the end-user views the project’s cube
data from an external application.

For example, your company might develop an application that reads cube
data and displays it via SharePoint. End users could access the application
via their Web browser. However, before you deploy the cubes, you’d need to
view and test them to ensure that the appropriate data is available. Viewing
and testing your project within BIDS saves a lot of development time.

Figure 2-5 shows Solution Explorer open with a solution named Adventure
Works. A data source and data source view has been created from the
AdventureWorksDW database. The AdventureWorksDW cube is selected,
and right below it, you can see all the dimensions that are included within
the cube.

You can view and test any element of this solution within BIDS by double-
clicking the element in the BIDS Solution Explorer. For example, to view the
AdventureWorksDW cube, you double-click the cube. This opens a window
with several panes showing the details of the cube. The measures and
dimensions used within the cube identify the key information the cube will
exploit. However, a cube has several more elements that can enhance the
capabilities of the cube. All these are shown when the cube is open. By click-
ing the Browser tab of an open cube, you have the capability of testing the
cube to verify you’re getting the data you expect.

Figure 2-5:
An
Adventure
Works
solution.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 504

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 505

One of the great things about BIDS is that additional features become avail-
able based on the type of project you’re working with. For example, with a
SQL Server Analysis Project (SSAS), the primary pane in BIDS includes multi-
ple tabbed documents.

Of course, this can be an intimidating aspect of BIDS. Suddenly, all these
extra windows are available. For example, Figure 2-6 shows a cube open and
being browsed. To allow all the tabs to be shown, we unpinned the Toolbar,
Solution Explorer, and Properties panes. The Browser tab is selected, and
dimensions from the cube have been dragged into the primary pane to view
the data.

Any pane can be pinned or unpinned in BIDS. A pushpin icon at the top-right
of the pane allows you to “pin” the pane to the window, just as you pin a
note to a note board. If you “unpin” the pane, it slides to the edge of the
window but can be retrieved by hovering over the tab. Figure 2-6 shows the
panes unpinned, but each tab is still showing. Each tab shows a different
element of the cube. The tabs that are available when you work with cubes
are described in the following sections.

Figure 2-6:
Viewing
a cube.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 505

Exploring a SQL Server Analysis Services Project506

The Cube Structure tab
You use the Cube Structure tab to build and edit the measures and dimen-
sions of a cube.

Figure 2-7 shows the cube structure of a sample cube. It lists all the meas-
ures and dimensions of the cube. Note: Each measure and each dimension
are preceded with a plus (+). You click the + to drill into the details of any
measure or dimension to give you better insight into the underlying data.

Measures are usually numbers like quantities or dollar amounts, and in a
business, sales are frequently measures. A dimension holds a collection of
related objects (also called attributes) such as different properties of a
product.

The Dimension Usage tab
The Dimension Usage view shows the relationships between measures and
dimensions. Measures are grouped together in measure groups.

Figure 2-7:
Viewing
the Cube
Structure
tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 506

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 507

A dimension is related to one or more measures; however, a dimension
doesn’t need to be related to all the measures in a cube. Similarly, any meas-
ure can be related to one or more dimensions but doesn’t need to be related
to all dimensions.

Figure 2-8 shows a view of the Dimension Usage tab. The Product dimension
is related to both the Internet Sales and Reseller Sales measure groups.
Other dimensions are also available (though not shown in the figure) that
relate to other measures.

Often dimensions are tied together with hierarchies to allow users of the
cube to drill down into more-detailed data. For example, a product can be
within a category and subcategory. To show these relationships, the dimen-
sion hierarchy would be created as Category, Subcategory, Product.

The Calculations tab
You build and edit calculations for the cube in this view. Calculations are
used to combine different members of a dimension or measure. For example,
you can create a calculated member that multiplies two dimension values
within the cube. The calculated definition is stored in the cube, but the
values are actually calculated at query time.

Figure 2-8:
Viewing the
Dimension
Usage tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 507

Exploring a SQL Server Analysis Services Project508

Figure 2-9 shows the Calculations tab for a cube. The Script Organizer pane
shows the calculations that have been created, with the Total Sales Amount
calculation selected. The primary pane shows the expression used to create
the calculation.

The Sales Amount for the Internet Sales is added to the Sales Amount for the
Reseller Sales to give the Total Sales Amount. You can add as many calcula-
tions as needed for your cube.

The Key Performance Indicators (KPIs) tab
The KPIs tab is used to build or edit key performance indicators for the
cube. KPIs are created to identify key company specific measures such as
gross sales, net profit (or loss), or sales growth.

A company’s progress toward meeting overall strategic objectives can be
measured with KPIs. Figure 2-10 shows the KPIs tab. The Reseller Revenue
KPI is selected with the value, goal, and status showing. The trend would be
available by scrolling down.

Figure 2-9:
Viewing the
Calculations
tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 508

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 509

To understand KPIs better, you need to understand how they are created.
A KPI includes at least a value, but can also include a goal, status, and trend.
Each of these elements is explained in the following list:

✦ Value: The current value of the KPI is represented in the Value Expression
box. In Figure 2-10, the expression points to the Sales Amount for Reseller
Sales. In other words, the actual sales amount for resellers is used.

✦ Goal: The goal is matched to the strategic goals of the company. For
example, resellers might have a specific sales quota for a given time
period. In Figure 2-10, the Goal Expression box shows that the goal is
expressed as the value from the Sales Amount Quota measure. It’s also
possible to use a calculated value within the goal. For example, a goal
for a quarterly sales KPI could be expressed as 1.2 * the value of the
same quarter last year. This indicates a goal of a 20-percent increase in
sales.

✦ Status: The KPI status is used to compare the value to the goal. Status
can be displayed as three or five values. With three values, 1 is good or
high performance, 0 indicates acceptable or medium performance, and
–1 is poor or low performance.

Figure 2-10:
Viewing the
KPIs tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 509

Exploring a SQL Server Analysis Services Project510

When using five values, a risk value is added between bad and accept-
able. Additionally a raising value is added between acceptable and high.

The status expression is used to identify ranges for each of these values
and is created in the Status box. For example, a value that meets or
exceeds the goal could be assigned a value of 1. A value that is between
85 percent and less than 100 percent of the goal could be assigned a
value of 0. A value less than 85 percent could be assigned a value of –1.

Going with the old saying that an icon is worth a thousand words, icons
are used to represent the status. In Figure 2-10, the icon is shown as a
gauge. The gauge could use the low zone to indicate the value –1, the
middle zone for the value 0, and the high zone for the value 1.

✦ Trend: The KPI trend is used to show how well the KPI value is doing
over a specific period. For example, you might want to compare last
year’s quarterly sales with this year’s quarterly sales.

The trend indicates whether the performance is degrading, staying the
same, or increasing.

The Actions tab
You build or edit actions in this view. Actions are used to associate methods
of displaying data when the cube is browsed. Three types of actions can be
specified to occur when different areas of the cube are selected:

✦ Standard actions: Standard actions are used to return data, such as data
from a URL, an HTML page, a dataset, or a rowset.

✦ Drillthrough actions: A drillthrough action returns a set of rows repre-
senting the underlying data of a selected cell. In other words, the source
of the data is shown instead of the derived data result. For example,
imagine that total annual sales are derived by adding sales for each
month. Instead of showing an annual sales figure, the individual monthly
sales figures can be shown.

✦ Reporting actions: A reporting action specifies that a report will be dis-
played in this section of the cube. The report is retrieved from SQL
Server Reporting Services (SSRS).

Figure 2-11 shows the Actions tab with a single action (Internet Sales Details
Drillthrough Action) defined. When selected, it displays the five columns
from the Internet Sales Order Detail dimension in the Drillthrough Columns
box of the primary pane.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 510

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 511

Actions are often used to show data outside of the cube. For example, indi-
vidual invoices might not be available in a cube that aggregates sales data.
However, if your cube allows the user to drill that low into the data, an SSRS
report could be retrieved and shown instead.

The Partitions tab
Partitions can be built or edited within this view. Except for very large
cubes, a single partition is usually all that you see here.

Every cube has at least one partition, but you can create multiple partitions
if desired. A partition holds the data and aggregations for a measure group. If
desired, you can add additional fact tables and store them in different parti-
tions within the cube.

When using large cubes, creating additional partitions can make your job of
managing the cubes much easier. For example, instead of a single partition
to hold sales data for the past 15 years, you can create a separate partition
for each year.

Figure 2-11:
Viewing the
Actions tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 511

Exploring a SQL Server Analysis Services Project512

Figure 2-12 shows the Partitions tab. Five partitions are shown (Internet Sales,
Reseller Sales, Internet Sales Reason, Sales Quotas, and Sales Quotas 1). The
Internet Sales partition is open.

Additional partitions can be created by clicking the New Partition link and
following the New Partition Wizard.

The Aggregations tab
Use this view to build or edit aggregations for the cube. Aggregating data is
the process of gathering data and presenting it in summary form.
Aggregations within the cube are pre-calculated summaries.

Most data that you view within a cube is summarized, or aggregated.
However, not all possible aggregations are created when the cube is built. If
an aggregation isn’t available when data is queried, SSAS is able to compute
the value on the fly.

By creating aggregations in advance, frequently queried values can be ready
when queried, which speeds up the process.

SQL Server 2008 includes an Aggregation Manager that can view existing
aggregations and create additional aggregations.

The Perspectives tab
This view is used to build or edit perspectives for the cube.

A cube perspective is a subset of the cube. Think of a cardboard box; it has
several different sides. By moving the box in different ways, you change the
perspective and change what is viewable.

Figure 2-12:
Viewing the
Partitions
tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 512

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 513

A cube might be much larger and more complex than a user needs. Creating
perspectives reduces the complexity of the cube. For example, a cube that
holds all the sales data can be presented as an Internet Sales perspective or
a Reseller Sales perspective. Now the VP of Internet Sales can look at exactly
what’s important to her.

Figure 2-13 shows the Perspectives tab. Three perspectives are shown
(Internet Sales, Reseller Sales, and Sales Summary). You can see how differ-
ent perspectives include different measures. For example, the Internet Sales
perspective includes the Total Product Cost, Sales Amount, Tax Amount,
Freight, and Count measures.

If you want to modify the measures available within a perspective, it’s as
easy as simply checking or unchecking the box for the measure. If you want
to omit the tax amount from the Internet Sales perspective, you uncheck the
box for the Internet Sales-Tax Amount measure.

The Translations tab
Translations are built or edited in the Translations view.

“Translations” sounds like something fancy, such as translating a 4-dimensional
dimension into a 12-sided cube, but it’s not that complex. With the Translations
tab, you can have captions displayed in different languages.

Figure 2-13:
Viewing the
Perspectives
tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 513

Exploring a SQL Server Analysis Services Project514

Captions of cubes, dimensions, measures, measure groups, KPIs, and actions
are referred to as cube metadata. All metadata can be displayed in different
languages by creating translations. If it was a perfect world, you could name
a cube Sales to have it display in French, Greek, or Latin automatically when
you are in a country that uses French, Greek, or Latin.

Perhaps someday, but we aren’t there yet. Instead, you need to enter each
caption manually. Figure 2-14 shows the Translations tab. Translations in
both Spanish and French are entered for Internet Sales and Internet Sales -
Sales Amount.

You can add as many translations as you need, but translations aren’t
needed if everyone using your cube speaks the same language.

Viewing cube data
To view the cube, you click the Browser tab. This allows you to test the cube
to ensure it’s accessing the data you expect. In other words, you can browse
the data within the cube.

Figure 2-14:
Viewing the
Translations
tab.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 514

Book VI
Chapter 2

Creating Business
Intelligence

Solutions w
ith BIDS

Exploring a SQL Server Analysis Services Project 515

When you first click the Browser tab, you don’t see any data. Instead, a blank
slate allows you to choose what data you want to view. You can drag dimen-
sions for the rows and columns and a measure for the center pane to give
you either totals or summary details.

Figure 2-15 shows a cube being browsed using a measure of the Sales
Amount for Internet Sales. The rows are populated with customer data, and
the columns are populated with product data. Notice all the + signs. A user
can interact with this data by pressing the plus and drilling into more-
detailed data.

For example, if an executive was interested in more than the total sales of
bikes, but, more specifically, what bikes generated the most revenue, she
could click the plus next to Bikes and expand the data.

Additionally, more detail can be gained on the customer data. Instead of just
viewing the total data on a per country basis, a manager might want to know
which locations in Australia were generating the most revenue.

Figure 2-16 shows the same report as Figure 2-15 but with more user interac-
tion to show more detail on Bikes and more detail on Australia. This shows
that New South Wales has the most Internet sales of bikes with almost $4
million in sales. It also shows that, globally, road bikes sell the most at more
than $14 million with mountain bikes at almost 10 million.

Figure 2-16:
Drilling into
Internet
sales data
for bikes
sold in
Australia.

Figure 2-15:
Browsing
Internet
Sales data.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 515

Exploring a SQL Server Analysis Services Project516

With this cube data, decision makers can easily view summary data and also
drill into as much detail as they need to answer key business decisions.
Clearly, this data shows that road bikes sell the most. “Which road bike is
the best seller?” Click the plus next to Road Bikes, and the data is expanded.
“How many locations are in New South Wales?” Click the plus, and it shows
17 locations.

Depending on how the database and cube is configured, you can drill into
the stores and even the employees to determine which employees are selling
which bikes.

42_179543-bk06ch02.qxp 8/23/08 12:46 AM Page 516

Chapter 3: Data Mining and
Maintaining Analysis
Services Objects

In This Chapter
� Discovering data mining

� Integrating with Business Intelligence Development Studio

� Creating new scripts

� Managing existing Analysis Services objects

The majority of your work with SQL Server Analysis Server (SSAS) proj-
ects is within the Business Intelligence Development Studio (BIDS).

However, you can also use the SQL Server Management Studio (SSMS) to
work with your SSAS objects.

SSMS provides access to the tools you use to create ASSL scripts easily for
your objects. You can use these scripts for archives, or as templates to
create additional objects using ASSL. You can also write DMX, MDX, or
XMLA scripts against the SSAS project to retrieve project data. Of course,
you can also use the SSMS graphical user interface to view and modify
object properties.

If you don’t know what all these acronyms mean — ASSL, DMX, MDX, and
XMLA — don’t worry. You find out about them in this chapter.

An Introduction to Data Mining
Data mining is another element of Business Intelligence (BI) available within
SQL Server 2008. BI is a group of tools and technologies used to extract
actionable information from a large database. Data mining is one of the BI
tools.

In addition to traditional Business Intelligence analysis, data mining looks at
the data and performs predictive analysis. Predictive analytics are designed
to identify patterns and trends that exist in the data, and as the name
implies, predict what will happen next.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 517

An Introduction to Data Mining518

Some of the benefits of predictive analysis are

✦ Forecasting sales (of specific products, in specific locations, from spe-
cific customers, and so on)

✦ Targeting mailings to specific customers

✦ Identifying products to bundle

✦ Tracking customer activity in a Web site

Some of the terms associated with data mining are

✦ Data mining: Data mining is the process of retrieving the relevant data
from a database and then using that data to perform predictive analysis.
Within SSAS, data mining is achieved by retrieving the data from a data
mining structure.

✦ Data mining structure: A data mining structure identifies the database
schema shared by all mining models. It includes the data source, the
data source view, and the number and types of columns that can be
used from within the data source view. It can include one or more mining
models.

✦ Data mining model: A data mining model is used to describe the busi-
ness problem you’re trying to solve through data mining. You can
choose the tables desired from the data source view, and then identify
the specific attributes (columns) that you want the data mining model to
analyze. After the data mining model is created, it is trained, and then
can be explored.

✦ Data Mining Wizard: The Data Mining Wizard is available within the
Business Intelligence Development Studio (BIDS). The wizard can be
used to create a data mining structure and data mining models using
that structure.

✦ Training the model: Before you can use a data mining model for predic-
tions, you must train the model. This is a fancy way of saying that
you load it with data. Training the model is also referred to as model
processing. After the model is trained, it is able to analyze the data and
determine trends and patterns.

✦ Prediction queries: Data mining attempts to go beyond just reporting
what happened. By using prediction queries on data mining structures
or data mining models, you’re able to identify trends of what will likely
occur in the future.

After a data mining model is created from a data mining structure, it is
deployed. You then use SQL Server Management Studio (SSMS) to explore
and view the data mining models. SSMS includes a query editor that exe-
cutes Data Mining Extensions (DMX) queries.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 518

Book VI
Chapter 3

Easy Integration with Business Intelligence Development Studio 519

Easy Integration with Business Intelligence
Development Studio

To get a good feel for what a SQL Server Analysis Services (SSAS) project
looks like within SSMS, you need to build and deploy a project from within
BIDS. We cover BIDS in depth in the previous chapter; however, the following
steps guide you through the basics of how to get an application into SSAS
that you can explore.

For this procedure, you need the following installed:

✦ SQL Server Database Services: A typical SQL Server installation allows
you to add the AdventureWorks DW2008 file.

✦ SQL Server Analysis Services: After the cubes and data mining struc-
tures are built, you deploy them to SQL Server Analysis Services.

✦ AdventureWorks DW BI 2008 file: This file includes the
AdventureWorksDW2008 database and can be obtained from this page:

www.codeplex.com/MSFTDBProdSamples

On the Microsoft CodePlex site, click the Releases tab to access the
AdventureWorksDWBI2008 file. After downloading the file,
double-click it to launch the installation wizard and install the
AdventureWorksDW2008 database on your SQL Server system. You
should be able to see this database when connected to SQL Server in
SQL Server Management Studio.

If you have the prerequisite files, follow these steps to build and deploy a
SQL Server Analysis project that already has most of what you need. You
browse to the project and launch BIDS by double-clicking the solution file.
From within BIDS, you build and deploy the project.

1. Launch the Business Intelligence Development Studio (BIDS) by
choosing Start➪All Programs➪Microsoft SQL Server 2008➪
SQL Server Business Intelligence Development Studio (BIDS).

2. Within BIDS, choose File➪New➪Project.

3. On the New Project page, ensure that Analysis Services Project is
selected. Enter Customer in the Name text box and enter
C:\Adventureworks in the Location box. Click OK.

4. Right-click Data Sources in the Solution Explorer and choose New
Data Source.

5. On the Welcome to the Data Source Wizard page, click Next.

Data M
ining and

M
aintaining Analysis
Services Objects

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 519

Easy Integration with Business Intelligence Development Studio520

6. On the Select How To Define the Connection page, select the
Adventureworks DW2008 connection. If a connection doesn’t exist,
follow these steps to create one.

a. Select New

b. Enter localhost for the Server Name.

c. Choose AdventureWorksDW2008 from the Select or Enter a
Database Name drop-down box.

d. Click OK.

7. Click Next after you’ve selected the data source.

8. On the Impersonation Information page, select Use the Service
Account and click Next.

9. On the Completing the Wizard page, click Finish.

10. Right-click Data Source Views and choose New Data Source View.

11. Click Next on the Welcome to the Data Source View Wizard page.

12. Ensure that the AdventureWorks DW2008 data source is seleced and
then click Next on the Select a Data Source page.

13. Select the DimCustomer(dbo) table and click the right arrow to move
the table to the Included Objects column. Click the Add Related tables
button to add tables related to the DimCustomer table.

Your display will look similar to Figure 3-1. The Included Objects column
will have the DimCustomer table you added, and the other three tables
that were added when you clicked the Add Related Tables button.

Figure 3-1:
Creating the
data source
view.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 520

Book VI
Chapter 3

Easy Integration with Business Intelligence Development Studio 521

14. Click Next to move to the Completing the Wizard page. Click Finish.

The data source and the data source view is created. In the next steps,
you create a mining structure and then deploy the entire project to
SSAS.

15. Right-click Mining Structures and choose New Mining Structure.

The Data Mining Wizard launches.

16. On the Data Mining Wizard Welcome page, click Next.

17. On the Select the Definition Method page, ensure that From Existing
Relational Database or Data Warehouse is selected and then click
Next.

18. On the Create the Data Mining Structure page, ensure that Create
Mining Structure with a Mining Model is selected with Microsoft
Decision Trees as the data mining technique.

Your display looks similar to Figure 3-2. If you want to use a different
data mining technique, the drop-down box provides many additional
choices.

19. Click Next to access the Select Data Source View page. Accept the
Adventure Works DW2008 data source view included with the project
and then click Next.

20. On the Specify Table Types page, select the Case check box for the
Customer table. Click Next.

21. On the Specify the Training Data page, ensure the Key check box is
selected for the CustomerKey column.

Figure 3-2:
Selecting
the data
mining
structure
and data
mining
technique.

Data M
ining and

M
aintaining Analysis
Services Objects

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 521

Easy Integration with Business Intelligence Development Studio522

22. Scroll to YearlyIncome and select the Prediction column. Click the
Suggest button.

The suggest button suggests recommended inputs for the YearlyIncome
Prediction column.

23. On the Suggest Related Columns page, click OK. On the Specify the
Training Data page, click Next.

24. On the Specify Columns’ Content and Data Type page, click the Detect
button to detect the content types accurately. Click Next.

25. On the Create Testing Set page, accept the defaults and then click
Next.

26. On the Completing the Wizard page, click Allow Drill Through and
then click Finish.

At this point, the project is completed and can be built and deployed to
your server running SQL Server Analysis Server.

27. Right-click the name of the project (Analysis Services Tutorial) in the
Solution Explorer.

A contextual menu similar to the one shown in Figure 3-3 appears. Note
that you have several choices from this menu including Build and
Deploy.

28. Choose Deploy from the contextual menu.

If you watch the bottom left, you’ll see that the build starts and com-
pletes and then the deployment starts and completes. The build is quick,
but the deployment takes a little time. Additionally, you’ll see a Status
window appear in the bottom right. When the deployment is complete, a
green message indicates that the deployment completed successfully.

Figure 3-3:
The
contextual
menu of the
Analysis
Services
Tutorial
project.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 522

Book VI
Chapter 3

Easy Integration with Business Intelligence Development Studio 523

29. Close BIDS.

You’ve deployed the full project to SQL Server Analysis Services. At this
point, we bet you’re anxious to find out what that means.

Use the following steps to launch SQL Server Analysis Services (SSAS) in SQL
Server Management Studio (SSMS):

1. Launch the SQL Server Management Studio by choosing Start➪
All Programs➪Microsoft SQL Server 2008➪SQL Server Management
Studio.

2. On the Connect to Server dialog box, set the Server Type to Analysis
Services. Enter your server name in the Server Name text box. Click
Connect.

This launches SQL Server Management Studio.

3. To open the view, click the plus (+) next to Databases and then click
the plus (+) next to Analysis Services Tutorial.

Your display looks similar to Figure 3-4. This shows the deployed SQL
Server Analysis Services Tutorial project from within SSMS. You can
browse through the deployed project to view and analyze the data.

Understanding the DMX Language
When working with SSAS databases within SSMS, you can use the Data
Mining Extensions (DMX) language.

DMX is similar to T-SQL statements, but DMX has enough differences that it
requires you to spend some time to master it. If you understand T-SQL, you
probably can pick up a book and learn enough of the DMX language in one
sitting to get around. However, that book will be much thicker than this
short chapter. All we can give you here is a short introduction.

Figure 3-4:
Viewing the
deployed
Analysis
Services
Tutorial
project in
SSMS.

Data M
ining and

M
aintaining Analysis
Services Objects

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 523

Creating New Scripts524

DMX statements are used to work with mining structures and mining
models. With DMX statements you can

✦ Create mining structures and mining models

✦ Process mining structures and mining models

✦ Delete or drop mining structures or mining models

✦ Copy mining models

✦ Browse mining models

✦ Predict against mining models

Two types of DMX statements exist:

✦ DMX DDL: Data Definition Language statements used to create and
define new mining structures and models, import and export mining
models and structures, and drop existing models. DMX DDL statements
include CREATE, ALTER, EXPORT, IMPORT, SELECT INTO, and DROP.

✦ DMX DML: Data Manipulation Language statements used to work with
mining models, browse the models, and create predications against
them. DMX DML statements include INSERT INTO and SELECT. Just as
in regular T-SQL statements, SELECT statements in DMX DML have a lot
of depth in the available options.

DMX statements can be issued by using the SSMS query window while
connected to a SQL Server Analysis Services instance.

Creating New Scripts
When working with SQL Server Analysis Services (SSAS) projects in SQL
Server Management Studio (SSMS), you have the ability to create different
types of scripts.

Using the tools within SSMS, you can generate Analysis Services Scripting
Language (ASSL) scripts, or you can create your own DMX, MDX, or XMLA
queries.

The Analysis Services Scripting Language is described briefly in Book 6,
Chapter 2. In short, it is an XML-based scripting language used to create and
modify SQL Server Analysis objects.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 524

Book VI
Chapter 3

Creating New Scripts 525

Generating ASSL scripts
One of the benefits of using SQL Server Management Studio is the ability to
create new scripts easily from existing SQL Server Analysis Services proj-
ects. It’s as easy as right-clicking the SSAS object you want to script and
selecting the output target.

For example, Figure 3-5 shows how you can create an Analysis Services
Scripting Language (ASSL) script for a mining structure. By right-clicking any
object, you can generate a script to a New Query Editor Window, an external
file, or the Clipboard so that you can paste the script into another document.

Any of the objects within an SSAS project can be scripted by using this
process. This includes the entire database, data sources, data source views,
cubes, dimensions, measure groups, and data mining structures.

Creating queries
Within SSMS, you can create and execute three types of queries. Figure 3-6
shows how to create any of the query windows. To execute queries against
the database, you right-click the database. Choosing New Query creates an
MDX query window, shown behind the New Query➪DMX selection.

Figure 3-5:
Generating
an ASSL
script.

Data M
ining and

M
aintaining Analysis
Services Objects

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 525

Managing Existing Analysis Services Objects526

As shown in Figure 3-6, the three types of queries you can create within
SSMS are

✦ DMX: Data Mining Extensions (DMX) are used to query and work with
data mining models. For example, prediction queries are created in DMX
to retrieve data. DMX statements are also used in SQL Server Reporting
Services reports.

✦ MDX: Multidimensional Expressions (MDX) are used to query multidimen-
sional data or create MDX expressions within a cube. The MDX language
references tuples and sets. A tuple identifies a single cell within the cube
by using a multidimensional coordinate. A set is a collection of tuples.

✦ XMLA: XML for Analysis (XMLA) queries are used to query data sources
that exist on the World Wide Web or that are accessible using traditional
World Wide Web protocols, such as HTTP within a network. XMLA is an
open standard, but Microsoft has extended the specification with addi-
tional commands used for data definition, data manipulation, and data
control support.

Managing Existing Analysis Services Objects
All the SQL Server Analysis Services (SSAS) objects have properties and set-
tings that can be viewed and manipulated by using SQL Server Management
Studio. Some of the properties pages allow you to view only the properties.
The only way to change these properties is to go back into the Business
Intelligence Development Studio (BIDS), make the modification, and re-
deploy the database.

Figure 3-6:
Creating an
SSAS query
window in
SSMS.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 526

Book VI
Chapter 3

Managing Existing Analysis Services Objects 527

However, most objects can be manipulated within SSMS. For example,
Figure 3-7 shows the Proactive Caching property page of the Customer
dimension within a deployed SSAS database. These settings determine how
the data is stored, and how much latency is acceptable.

The Proactive Caching settings can be manipulated on cubes, measures, and
dimensions to affect both the storage type and latency. Remember, the SSAS
database and objects are built from a regular SQL Server database. As the
SQL Server database changes, the SSAS database becomes out of date.

How often the core data changes and how up-to-date the data needs to
be for the end-users determine the caching settings that you need. The
choices are

✦ Real-time ROLAP (Relational Online Analytical Processing): Updates
to the data happen in real time and both the data and aggregations are
stored in a relational format (instead of a multidimensional format).

✦ Real-time HOLAP (Hybrid OLAP): Updates to the data happen in real
time. The data is stored in a relational format, and the aggregations are
stored in a multidimensional format.

✦ Low-latency MOLAP (Multidimensional OLAP): Updates to the data are
targeted to occur within 30 minutes of the change. Both the data and the
aggregations are stored in a multidimensional format.

✦ Medium latency MOLAP: Updates to the data are targeted to occur
within four hours of the change. Both the data and the aggregations are
stored in a multidimensional format.

✦ Automatic MOLAP: Updates to the data are targeted to occur within two
hours of the change. Additionally, automatic MOLAP retains data in the
current MOLAP cache when new cache data is being rebuilt. This causes
automatic MOLAP to perform better than other MOLAP choices and
would be chosen when query performance is most important. Both the
data and the aggregations are stored in a multidimensional format.

Figure 3-7:
Business
Intelligence
Develop-
ment
Studio
(BIDS). Data M

ining and
M

aintaining Analysis
Services Objects

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 527

Managing Existing Analysis Services Objects528

✦ Scheduled MOLAP: Updates to the data are targeted to occur automati-
cally every 24 hours. Scheduled MOLAP is most useful in situations
where only daily updates are required. Both the data and the aggrega-
tions are stored in a multidimensional format.

✦ MOLAP: Updates to the data source are not tracked, and updates to the
OLAP data must be done manually or scheduled. MOLAP provides the
best possible performance, and it can be used when updating data isn’t
critical. Both the data and the aggregations are stored in a multidimen-
sional format.

43_179543-bk06ch03.qxp 8/23/08 12:47 AM Page 528

Book VII

Performance Tips
and Tricks

44_179543-pp07.qxp 8/23/08 12:47 AM Page 529

Contents at a Glance

Chapter 1: Working with the SQL Server Optimizer 531
Understanding How an Optimizer Works..531
Communicating with the Optimizer...533
Helping Your Optimizer Help You ..538

Chapter 2: Using Performance Monitoring Tools 541
Laying the Right Foundation for Performance Monitoring.....................541
Getting a Complete Picture with Windows Task Manager543
The Windows System Monitor ...544
Taking Advice from the Database Engine Tuning Advisor......................547
Viewing Graphical Performance Information with

SQL Server Profiler...552
Enforcing Control with the Resource Governor.......................................559

Chapter 3: Data Access Strategies .569
Setting a Good Foundation..569
Using Indexes to Enhance Performance..574
Designing High-Velocity Queries ..578
Changing Data Quickly ..582

Chapter 4: Tuning SQL Server .587
Tuning: The Last Resort for Improving Performance..............................588
Memory and Processor Settings ..589
Disk Settings ...593
Communication Settings ...598

44_179543-pp07.qxp 8/23/08 12:47 AM Page 530

Chapter 1: Working with
the SQL Server Optimizer

In This Chapter
� Understanding how a query optimizer works

� Communicating with the Optimizer

� Helping your Optimizer to help you

Modern, sophisticated relational database management systems like
SQL Server rely on core technology known as query optimizers. This

key component is tasked with planning the most efficient course to achieve
your data goals. To do so, it must weigh many factors, such as table size,
indexes, query columns, data distribution metrics, and so on, before it can
generate an accurate plan.

In this chapter, you gain a good understanding of SQL Server’s Query
Optimizer, and you help it do the best possible job for you. We begin by
showing you what an optimizer does, using a real-world analogy as a guide.
Next, you see how to interpret reports and other guidance offered by the
Optimizer. Finally, you discover how to provide the Optimizer with the most
up-to-date information so that it can make the best decisions.

Understanding How an Optimizer Works
Whenever you present a request to SQL Server, it must choose one of many
possible approaches to give you your requested results. These strategies
often employ very different processing steps; however, each strategy must
achieve the same results.

A good real-world analogy is beginning a trip by car. If you need to drive
from your house to the one across the street, you don’t need much trip
planning: You really have only one way to get there. However, what if you
want to visit three other friends, each of whom lives in a different city, all of
which are spread hundreds of kilometers apart? When planning your route,
it doesn’t matter which friend you visit first, but you must somehow see
them all. Dozens of streets and roads interlace these cities. Some are high-
speed freeways; others are meandering country lanes. Unfortunately, you

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 531

Understanding How an Optimizer Works532

have very limited time to visit all these friends, and you’ve heard rumors
that traffic and construction are very bad on some of these roads.

If you were to sit down and map all the potential routes from the thousands
of possible combinations, it’s likely that it would take you longer to complete
your mapping than if you simply picked one friend to visit at random, fol-
lowed by another, and so on. Alas, you do need some sort of plan. It makes
sense to get the most recent maps and construction reports and then do
your best to chart an optimal course that visits all three friends as quickly as
possible. If you didn’t have any details about traffic and construction, you’d
likely choose the high-speed freeways over the alternate routes.

Switching modes to the database world, it’s the job of the optimizer to do
just that: pick the right route to get you to your information as quickly as
possible. When the optimizer does its job, it needs to look at all sorts of
details to help it make a decision. Before arriving at the optimal outcome,
the optimizer weighs such factors as the index availability, the columns
you’re querying, the size of the tables, and the distribution of the data.

Continuing with the database-driven example, imagine that you issue a simple
query that joins data from a table containing customer records with data
from a table containing payment entries. You ask the engine to find all the
customers who live in Canada (the country field in the customer_records
table) who have made a payment within the last six months (the date_paid
field in the payments table). Furthermore, assume that an index is in place
on the customer table’s country field but none on the payment table’s
date_paid field.

How should the query proceed? Should it first scan all the rows in the
payments table to find records with date_paid in the last six months and
then use the index to search the customer table on the country field? Or
should it do the opposite by first finding Canadians, and then finding appro-
priately time-stamped records from that group? How does the fact that only
a few Canadian records are in the database affect the decision?

This is the work of an optimizer. By using all the available information about
the table(s), it picks an action plan that correctly and efficiently satisfies the
user’s request. The designated course is a query plan. However, optimizers
aren’t flawless; they often require assistance and maintenance from database
administrators, and can take suggestions from developers on how to deter-
mine the best query plan.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 532

Book VII
Chapter 1

W
orking w

ith the
SQL Server
Optim

izer
Communicating with the Optimizer 533

Communicating with the Optimizer
If your goal is to design and maintain a high-performance database-driven
application, you’re wise to invest a little time to learn how to interpret some
of the many details offered by the SQL Server Query Optimizer.

Chief among these aspects are query plans, which offer a comprehensive
description of how SQL Server plans to satisfy your requests. In this section,
we show you the kinds of information that you find in a query plan, as well
as how you can use this intelligence as guidance toward improving perform-
ance. To keep things simple, we start with some basic illustrations of query
plans and then explore examples that are more intricate.

First, using the SQL Server Management Studio we created a simple header
table to hold details about orders. Initially, no indexes or other performance
aids are in place on this table.

CREATE TABLE order_header
(

order_id INTEGER NOT NULL,
order_date DATETIME NOT NULL,
order_total DECIMAL(5,2) NOT NULL,
order_instructions VARCHAR(50)

)

Next, we filled it with 50,000 rows of data. With the table loaded, we can start
evaluating some query plans.

There are several ways to view query plans, including in XML and plain-text
format. However, in keeping with this book’s philosophy of leveraging power-
ful graphical tools, such as the SQL Server Management Studio, we focus on
showing you query plans via that avenue.

To view query plans in the SQL Server Management Studio, click the Display
Estimated Execution Plan icon, located along the top menu bar. In addition,
consider clicking the neighboring Include Actual Execution Plan icon to see
the actual resource consumption from your query.

The first query is about as simple as you can get:

SELECT * FROM order_header

Figure 1-1 shows a query execution plan generated by SQL Server.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 533

Communicating with the Optimizer534

In reviewing its output, a few relevant details jump out:

✦ Physical Operation: Table Scan — To satisfy the query, SQL Server had
to read (that is, scan) all the rows to return its results.

Table scans can be extremely costly, especially when encountered on
tables containing copious data.

✦ Estimated Costs (I/O, CPU, Operator, Subtree) — These indicators pro-
vide guidance on SQL Server’s internal estimates of its expected work-
load to return your results. Note: These numbers don’t mean much in
isolation; they’re interesting only when compared against other query
plans.

✦ Estimated Number of Rows: 50,000 — Because we asked to see all the
rows, SQL Server accurately reports that it estimates a return result set
size of 50,000 rows.

The next query uses filtering to return a specific subset of rows in this table:

SELECT * FROM order_header WHERE order_total = 50

Figure 1-2 displays the new execution plan.

Figure 1-1:
A query
execution
plan for a
very simple
query.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 534

Book VII
Chapter 1

W
orking w

ith the
SQL Server
Optim

izer
Communicating with the Optimizer 535

SQL Server has reduced the number of estimated rows, as well as filled in
the Predicate field with details about the query syntax. It’s still using a table
scan, so we added an index on the order_total column:

CREATE INDEX order_header_ix1 ON order_header(order_total)

Figure 1-3 shows what happens when the query is re-run from Figure 1-2.

This is much better: SQL Server can now use an index to return results more
quickly and efficiently. Next, to make things more interesting, we created a
table containing line item details about orders:

CREATE TABLE order_detail
(

order_detail_id INTEGER NOT NULL PRIMARY KEY,
order_id INTEGER NOT NULL REFERENCES order_header,
part_number INTEGER NOT NULL,
part_quantity SMALLINT NOT NULL

)

Figure 1-2:
A query
execution
plan for a
filtered
query.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 535

Communicating with the Optimizer536

Note: To enable the foreign key relationship between these two tables, we
had to create a primary key on the order_header table’s order_id
column. We then inserted 250,000 rows of sample data into this new table.

With these two related tables in place, the next query is a simple join, as
shown below:

SELECT order_header.*, order_detail.*
FROM order_detail INNER JOIN
order_header ON order_detail.order_id = order_header.order_id

Figure 1-4 displays the query plan.

You can see from the execution plan that SQL Server is building an internal,
temporary table to process the results of this join. The plan also shows clus-
tered index access to both tables, indicating an efficient strategy.

Whenever you create a primary key constraint on a table, SQL Server auto-
matically generates an index and physically stores your table in this index
order. This is known as clustering, which we cover in Book VII, Chapter 3.

Figure 1-3:
A query
execution
plan for a
filtered
query using
an index.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 536

Book VII
Chapter 1

W
orking w

ith the
SQL Server
Optim

izer
Communicating with the Optimizer 537

Finally, we created a more complex query that includes sorting, indexed fil-
tering, joins, and non-indexed filtering:

SELECT order_header.*, order_detail.*
FROM order_detail INNER JOIN
order_header ON order_detail.order_id = order_header.order_id
WHERE order_header.order_date = ‘12/30/2009’
AND order_detail.part_number = 1793
OR order_detail.part_quantity BETWEEN 1 AND 10
ORDER BY order_header.order_date

Figure 1-5 displays the SQL Server’s plan to deliver the results.

If metrics and statistics are your thing, you’ll have a great time interpreting
execution plans for these kinds of queries.

Experience is the best teacher — feel free to create sample databases, popu-
late them with data, and then create and evaluate the query execution plans.

Execution plans aren’t just for queries. SQL Server generates these plans for
any operations that interact with your database.

Figure 1-4:
A query
execution
plan for
a join
between
two related
tables.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 537

Helping Your Optimizer Help You538

Helping Your Optimizer Help You
The SQL Server Query Optimizer is quite adept at using all available
resources to execute your database tasks as quickly and efficiently as possi-
ble. However, you can take specific steps to make the Optimizer more pro-
ductive, which translates into better performance for you and your users.

Create effective indexes
In the absence of a well-thought-out indexing strategy, the Query Optimizer
can do only so much: Table scans and other sub-optimal accommodations
will always be time-consuming and sluggish. Remember this fact when you
design and configure your SQL Server database.

Write well-designed queries
Even if you’ve created effective indexes, unfortunately, you’re still free to
create poorly conceived queries that might prove too challenging for an effi-
cient query execution plan. To combat this undesirable outcome, Chapter 3
of this mini-book furnishes you with some tips to make your queries run
more quickly.

Figure 1-5:
A more
complex
query
execution
plan.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 538

Book VII
Chapter 1

W
orking w

ith the
SQL Server
Optim

izer
Helping Your Optimizer Help You 539

Enable and maintain statistical information
To pick the optimal query execution plan, SQL Server employs statistical
details about all the tables that are participating in the query. When you
define an index, SQL Server automatically creates statistics for any columns
present in that index.

To get an idea of what SQL Server tracks about your data, Figure 1-6 shows
the output of the DBCC SHOW_STATISTICS command.

These metrics were generated when we placed an index on the order_
amount column from the order_header table. Even though much of this
statistical information is automatically generated and maintained, there
might be times when you explicitly want to create a set of statistics, such as
on a non-indexed column. Follow these steps to do so:

1. Launch SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

Figure 1-6:
Results from
the DBCC
SHOW_
STATISTICS
command.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 539

Helping Your Optimizer Help You540

4. Expand the Databases folder.

5. Expand the folder for the database containing the table where you
want to create new statistics.

6. Expand the folder for the appropriate table.

7. Right-click the Statistics folder, and choose New Statistics.

A dialog box where you configure the new statistics appears.

8. Provide a name for the statistics.

This can be anything you like, as long as it doesn’t conflict with an
already existing name.

9. Click the Add button, and select all the columns that should be part of
this statistics group.

Figure 1-7 shows the Select Columns dialog box.

In this case, we’ve asked SQL Server to track statistical details about the
order_instructions column.

10. Click OK to complete the task.

SQL Server creates new statistics that use the chosen column(s).

If you want SQL Server to stay on top of maintaining its statistical oversight
of your database, don’t disable automatic statistic updating for the server.

Figure 1-7:
Creating
new
statistics.

45_179543-bk07ch01.qxp 8/23/08 12:47 AM Page 540

Chapter 2: Using Performance
Monitoring Tools

In This Chapter
� Getting a complete picture with Windows Task Manager

� Administering performance monitoring with Microsoft Management
Console System Monitor

� Taking advice from the Database Engine Tuning Advisor

� Viewing graphical performance information with SQL Server Profiler

� Enforcing control with the Resource Governor

In the old days (circa 1990) of deciphering the root causes of performance
problems, database administrators were often in the dark about what

exactly was happening on their systems. There were collections of relatively
primitive tools, but understanding how to use these aids was often more
trouble than it was worth. Fast forward to today, and things have improved
tremendously. This chapter shows you the excellent collection of perform-
ance monitoring technologies that are at your disposal and how to use the
technologies most effectively.

We begin the chapter by describing some best practices for your perform-
ance monitoring. We then examine the Windows Task Manager — a great
tool for understanding the high-level performance landscape of your SQL
Server system. Next, you find out about the Microsoft Management Console
System Monitor, the highly effective Database Engine Tuning Advisor, and
the SQL Server Profiler. Finally, as part of a good performance-optimization
strategy, you use the Resource Governor to bring order to key resources.

Laying the Right Foundation
for Performance Monitoring

Before getting started with a detailed performance monitoring tool review,
here are a few tips that you can use to make this important effort as produc-
tive as possible.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 541

Laying the Right Foundation for Performance Monitoring542

Change one variable at a time
For overworked administrators facing performance nightmares, it’s
often tempting to rush ahead and make many optimizations at one time.
Unfortunately, this makes it nearly impossible to figure out which of the
alterations worked. Consequently, you’re always better off changing one set-
ting at a time, and then monitoring the results of your modification.

Focus on graphical tools
While SQL Server has matured over the years, Microsoft has done an excel-
lent job of providing increasingly sophisticated graphically based manage-
ment and monitoring tools. Still, many character-based techniques are
available that you can use to stay on top of performance, but currently,
you’ll get the most mileage by focusing on these graphical tools (which the
balance of the chapter describes). Of course, if you’re curious, you’re free
to look at the output of performance-related stored procedures and other
character-based utilities.

Set performance policies
SQL Server ships with a collection of highly capable system management
best practices. Known as policies (accessible through the SQL Server
Management Studio’s Management folder), implementing these recommen-
dations can give you a leg up on performance. For example, Figure 2-1 shows
one of these performance-related policies (focused on setting the maximum
degree of parallelism).

As with many of SQL Server’s administrative capabilities, feel free to experi-
ment with these performance monitoring and management tools by using a
sample database and projected workload. This can go a long way toward
giving you the necessary experience and confidence to support your produc-
tion users.

Collect performance statistics
Book I, Chapter 4 shows you how to gather and store performance-related
metrics. If you haven’t considered this approach, it bears investigation: It’s
the foundation for conducting performance research even if a given problem
might have been spurious and occurred in the past.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 542

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Getting a Complete Picture with Windows Task Manager 543

Getting a Complete Picture with
Windows Task Manager

Chances are, if you spend any time administering a Windows-based com-
puter, you’ve probably gotten to know the Windows Task Manager and its
ability to give you an overview of everything that’s happening on your com-
puter. What you might not realize, however, is that this tool is also helpful in
determining high-level causes of SQL Server performance degradation. Take
a brief look at this beneficial utility.

Launch the Windows task manager by simply right-clicking the taskbar and
choosing the Task Manager option. As shown in Figure 2-2, it features several
tabs of statistics and details of interest to SQL Server administrators:

✦ Applications: This tab informs you which programs (usually launched
by a user) are running on the server.

✦ Processes: Unlike the relatively few user-launched programs that are
typically active at one time, this tab shows you a full list of specific
processes that are currently running. Pay special attention to this tab.
Often, many more processes are running than you might have realized.

Figure 2-1:
A perfor-
mance-
related
policy.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 543

The Windows System Monitor544

Windows servers are notorious for having extraneous, memory-draining
processes hanging around.

If you don’t see the SQL Server processes within the Windows Task
Manager, you might need to check the box (or button, depending on the
version of Windows you’re running) that tells the utility to display all
running processes.

✦ Performance: Here, you find a collection of helpful statistics about the
overall load on your server. Be especially cognizant of the Page File
Usage History graph — paging is one of the most expensive operations
your computer can perform.

✦ Networking: On this tab, you find specialized graphs that inform you
about current communication activities for each network connection.

✦ Users: This tab itemizes details about all the users currently connected
to your server. You can even disconnect or logout a specific user
session.

If you’re a statistics maven, don’t forget to look at the View menu for each
tab. Often, many additional performance-related indicators are available.

The Windows System Monitor
The Windows Task Manager is a great place to start when trying to under-
stand the current performance profile of your system. However, when it’s
time to get more serious about gaining a deeper understanding of your
performance metrics, it’s hard to beat the Windows System Monitor — a

Figure 2-2:
The
Windows
Task
Manager.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 544

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

The Windows System Monitor 545

sophisticated tool that tracks massive data amounts, including SQL Server-
specific information. What’s also especially useful is that it works for your
local machine as well as remote machines. This means that you can monitor
multiple servers at one time from within one user interface.

Depending how your server is configured, there are several ways to launch
this utility. One fail-safe approach is to open the Control Panel, and drill into
the Administrative Tools folder. When you’re in this folder, double-click the
Performance shortcut. Figure 2-3 shows a rudimentary example of this utility.

One of the most compelling capabilities for this monitor is its ability to
incorporate reams of information from various classes of system metrics
into a holistic, easy to understand user experience. A list of all available
objects and their related statistics would fill many pages; therefore, here’s a
look at several of the most relevant objects from the perspective of a SQL
Server system administrator:

✦ Processor: As part of this performance object, you find numerous indi-
cators related to the health of your computer’s central processing unit.

✦ System: This performance object rolls up a number of system-wide per-
formance metrics.

Figure 2-3:
The
Microsoft
Manage-
ment
Console
System
Monitor.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 545

The Windows System Monitor546

✦ Physical disk: Because optimal disk performance is vital to the overall
health of your SQL Server installation, examine all of the statistics avail-
able as part of this performance object.

✦ Logical disk: This group of statistics takes physical performance indica-
tors and maps them to any logical disks that have been enabled for your
system.

✦ SQL Server: More than three dozen performance objects are dedicated
solely to SQL Server. Within each performance object are collections of
related statistics.

Don’t be intimidated by all these performance objects and counters. If you’re
unsure of what value a specific statistic provides, highlight the counter, and
then click the Explain button to learn about it.

After you have the system monitor running, it’s quite simple to add statistics
of interest to your graph. Clicking the + symbol above the graph shows you a
list of all performance objects. Highlight the performance object of interest
to see a group of counters for that object. Figure 2-4 gives you an idea of just
how many performance objects are available.

Figure 2-4:
Selecting a
perfor-
mance
object.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 546

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Taking Advice from the Database Engine Tuning Advisor 547

After you’ve chosen your performance object, you can identify one or
more counters to include on your graph. Remember: Hold down the Ctrl
key to select multiple counters. For example, in Figure 2-5, we chose the
SQLServer:Databases performance object and are now selecting from the
counters list.

When you’ve finished picking your counters, click Add to place them on
your graph. If you no longer want to see a given counter, highlight it and
click the X icon.

Taking Advice from the Database
Engine Tuning Advisor

The chapter begins with an explanation of the Windows Task Manager and
the Windows System Monitor — performance utilities that allow you to
check SQL Server’s responsiveness. In this section, we turn your attention to
a group of SQL Server-specific utilities, beginning with the Database Engine
Tuning Advisor.

Figure 2-5:
Selecting
perfor-
mance
counters.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 547

Taking Advice from the Database Engine Tuning Advisor548

Given their busy schedules, database administrators often don’t have the
time to explore fully all the performance ramifications for the databases
under their control. This results in well-administered (yet unnecessarily
sluggish) database and application performance. This is where the Database
Engine Tuning Advisor comes into the picture — it harnesses the power of a
sophisticated rules engine that delivers customized performance recommen-
dations based on your database structures and predicted workloads. In fact,
you can even include an exact, real-world series of Transact-SQL statements
for this utility to evaluate. This realism takes out much of the guesswork of
administering and tuning your SQL Server instance, especially with regard to
important decisions involving indexes, indexed views, and partitioning. This
results in more predictable, optimal responsiveness. Here’s how to launch
and use this extremely capable technology.

For the purposes of this example (and the others yet to come in this chap-
ter), we’re continuing with the database introduced in Book II, Chapter 6. To
refresh your memory, this sample database was created to support a new
business that focuses on teaching extreme sports. As to workload, we’ve cre-
ated a rather complex SQL statement that aims to identify all the courses
that generated at least $1,200 in tuition during 2007. Here’s how that query
appears:

SELECT SUM(payment_amount) as ‘Total Payments’, c.course_name
FROM payments p JOIN student_courses sc ON (p.student_id = sc.student_id),
courses c JOIN student_courses sc1 ON (c.course_id = sc1.course_id)
WHERE p.payment_date BETWEEN ‘2007-01-01’ AND ‘2007-12-31’
GROUP BY c.course_name
HAVING SUM(payment_amount) > 1200

We’re using this query to show you the value of managing real-world style
workloads with the powerful analytical capabilities of the Database Engine
Tuning Advisor. Here’s how to get started:

1. Launch the SQL Server Management Studio.

2. Choose Tools➪Database Engine Tuning Advisor.

A New Connection dialog box appears.

3. Choose the server you want to analyze, your authentication method,
and then click Connect.

An empty session monitor appears, as shown in Figure 2-6.

4. Right-click the server name and choose the New Session option.

This opens a specialized dialog box where you enter all the information
necessary for SQL Server to perform the analysis. (The next series of
steps explores these necessary details.)

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 548

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Taking Advice from the Database Engine Tuning Advisor 549

5. (Optional) Provide a name for the session.

If you don’t give it a name, SQL Server uses a combination of your user-
name with the date and time.

6. Identify either a file or a table where the workload can be found.

There’s no need to type the exact path to the workload. Regardless of
whether you choose a file or a table, SQL Server allows you to browse
for the workload contents. For the purposes of this example, a stand-
alone SQL query file contains the Transact-SQL statement from earlier in
this chapter.

7. Choose a database to hold the results of the workload analysis.

8. Pick a database and the tables that you want SQL Server to tune.

Figure 2-7 shows that SQL Server will analyze the extreme_sports
database and all its tables.

9. Configure your tuning options.

Figure 2-8 illustrates all the tuning options at your disposal and the
advanced options as well.

Figure 2-6:
The initial
Database
Engine
Tuning
Advisor
screen.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 549

Taking Advice from the Database Engine Tuning Advisor550

Figure 2-8:
Setting
tuning
options.

Figure 2-7:
Choosing a
database
and tables
for tuning.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 550

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Taking Advice from the Database Engine Tuning Advisor 551

For this example, we’re placing a limit on the amount of time SQL Server
can tune the database, and we’re requesting guidance on indexes and
indexed views. For this session, we don’t want any advice on partition-
ing, and we’re electing to keep all physical design structures in the
database.

10. When you’ve finished setting tuning targets and options, click the
Start Analysis button at the top of the screen.

SQL Server gets to work running your analysis. This might take some
time depending on the complexity of your workload and database
structure.

After the Database Engine Tuning Advisor finishes its work, output simi-
lar to Figure 2-9 appears. In this case, SQL Server has recommended that
we create two indexes on both the payments and student_courses
tables.

It’s also worthwhile to look at one of the many reports that SQL Server
generates as part of this operation. Figure 2-10 shows one of these
reports. Note: You can get to these reports by clicking the Reports tab at
the top of the screen.

Figure 2-9:
Recommen-
dations
from the
Database
Engine
Tuning
Advisor.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 551

Viewing Graphical Performance Information with SQL Server Profiler552

11. Implement the suggestions made by the Database Engine Tuning
Advisor.

It’s quite easy to put these recommendations into play — choose the
Apply Recommendations option from the actions menu. You have the
flexibility of applying the recommendations right now or setting a date
and time in the future. Figure 2-11 shows the output of applying these
recommendations to the database.

Viewing Graphical Performance Information
with SQL Server Profiler

If you could predict the exact date, time, and type of performance problems
in advance, chances are you could solve them before anyone is the wiser.
Unfortunately, these issues rarely give much notice when they arise. This is
where the SQL Server Profiler comes in — it enables you to collect all sorts of
performance-related (and other) administrative information that you can
then view to identify trouble spots. This makes it much easier to enhance
your SQL Server throughput.

Figure 2-10:
Reports
from the
Database
Engine
Tuning
Advisor.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 552

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Viewing Graphical Performance Information with SQL Server Profiler 553

Gathering trace information
In this section, we show you how to launch this important tool, as well as
gather and analyze performance metrics. Here’s how to get the ball rolling:

1. Launch the SQL Server Management Studio.

2. Choose Tools➪SQL Server Profiler.

You can also launch this utility from the Windows SQL Server perform-
ance tools submenu. Regardless of how you launch this tool, a New
Connection dialog box appears.

3. Choose the server you want to profile, your authentication method,
and then click Connect.

The Trace Properties dialog box appears, where you set all the param-
eters necessary to conduct your trace. Figure 2-12 shows the initial
Trace Properties dialog box.

This dialog box contains two tabs: General and Events Selection. On the
General tab, you provide the name of your trace, whether to use a tem-
plate, where you want output to go, and whether you want to set an end
time for your trace. The Events tab is where you select the database
activity you want to trace.

Figure 2-11:
Results from
applying
Database
Engine
Tuning
Advisor
recommen-
dations.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 553

Viewing Graphical Performance Information with SQL Server Profiler554

The amount of information generated by this utility can be quite large. If
you’re concerned about consuming massive amounts of disk space, give
some thought to placing a stop time on your trace.

4. Switch to the Events tab and then select one or more event classes to
trace.

SQL Server offers a truly massive number of event classes. To see a full
list of these event classes, remember to select the Show All Events check
box. You can get a better idea of what’s tracked within each event class
by rolling your cursor over the event name. Finally, within each event
class are numerous individual types of events to track, as you’ll see
shortly.

Here’s a list of all the available event classes that you can trace with a
brief summary of their purpose:

• Broker: Events related to SQL Server’s service broker, which is used
for messaging, integration, and distributed computing purposes.

• CLR: Details about the SQL Server common language runtime.

• Cursors: Events that track usage of these data management
structures.

Figure 2-12:
The initial
window for
tracing SQL
Server
activity.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 554

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Viewing Graphical Performance Information with SQL Server Profiler 555

• Database: Information regarding database and log file activity.

• Deprecation: A gathering of metrics regarding soon-to-be-obsolete
capabilities.

• Errors and Warnings: Alerts you when faults of varying severity are
generated.

• Full text: Details regarding searches and other manipulation of full-
text based data.

• Locks: Messages about lock-related activities.

• OLEDB: Reports of calls to this API.

• Objects: Events related to creation, alteration, and deletion of data-
base objects.

• Performance: Metrics and indicators related to throughput-based
events.

• Progress Report: Updates regarding online index operations.

• Query Notifications: Details about query-driven publications and
subscriptions.

• Remote Activation: Traces of activities that are initiated from other
computers.

• Scans: Indicators about when table/index scans are started and
stopped.

• Security Audit: Details about activities from a security perspective.

• Server: Events that affect server-wide resources.

• Sessions: Messages regarding new sessions.

• Stored Procedures: Indicators related to the preparation and execu-
tion of these server-based components.

• TSQL: Activities regarding Transact-SQL statement compilation and
execution.

• Transactions: Events of interest about the creation, successful com-
pletion, and rollback of transactional activities.

• User Configurable: A set of events that you, the administrator, can
define and trace.

5. For each event class, choose one or more event types.

To get a full list of event types for each event class, click on the + symbol
for the event class. The complete inventory of events that can be traced
appears, as shown in Figure 2-13.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 555

Viewing Graphical Performance Information with SQL Server Profiler556

In this example, we’ve expanded the Performance event class, and have
begun choosing individual events for inclusion in the trace. Again, if
you’re interested in what each event type means, roll your mouse over
the event name to see a description.

6. For each event, select one or more columns to trace.

We aren’t kidding when we say that the SQL Server Profiler can track
massive amounts of runtime activity. As an administrator, however, you
can select which details to track for each event. This is important
because if you just take all the available columns, you run the risk of
being overwhelmed with details. Figure 2-14 provides an example of the
rich variety of columns at your disposal.

Figure 2-14:
Available
columns for
the SQL
Server
Profiler.

Figure 2-13:
An
expanded
view of the
Perfor-
mance
event class.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 556

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Viewing Graphical Performance Information with SQL Server Profiler 557

If you’re a glutton for information, and want to see all the potential
columns that can be tracked, select the Show All Columns check box.

7. Decide whether you want to filter any column values. If so, click
the Column Filters button. Click OK when you’ve finished your filter
settings.

If left to its own devices, the SQL Server Profiler will generate tons of
data. With that amount of metrics, finding the source of your perform-
ance problem is akin to finding a needle in a haystack. Fortunately, you
have the option of instructing the SQL Server Profiler to filter your
results based on meaningful criteria. This greatly reduces the amount of
generated data and makes it much easier for you to identify any through-
put bottlenecks. Figure 2-15 shows the Edit Filter dialog box.

8. Click the Run button to launch the trace.

This opens a window where you can monitor your results. Figure 2-16
shows an example of real-time, query plan monitoring. Figure 2-17 shows
the same results in an XML format. With a little imagination, there’s no
limit to what you can track using the SQL Server Profiler.

9. When you’re ready to stop the trace, click the Stop icon at the top of
the window.

If you want to halt the trace temporarily, click the Pause icon located at
the top of the window. Clicking the Run icon restarts the trace.

10. If you want to preserve your trace for future analysis or replay,
choose File➪Save.

The next section shows you how to open an existing trace and even
replay the action.

Figure 2-15:
Editing
column
filters.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 557

Viewing Graphical Performance Information with SQL Server Profiler558

Figure 2-17:
Viewing
XML-based
SHOWPLAN
output from
the SQL
Server
Profiler.

Figure 2-16:
Viewing
text-based
SHOWPLAN
output from
the SQL
Server
Profiler.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 558

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Enforcing Control with the Resource Governor 559

Opening and replaying existing traces
If all this information gathering wasn’t enough, the SQL Server Profiler gives
you the option of saving and then replaying your trace at a future date.
Here’s all you need to do:

1. Launch the SQL Server Management Studio.

2. Choose Tools➪SQL Server Profiler.

3. Choose File➪Open.

Select a trace file, table, or a script.

4. Set your replay options.

If you’re familiar with development tools, such as Visual Studio, you’re
probably comfortable replaying traces. Under the Replay menu are sev-
eral valuable debugging options, including:

• Step

• Start

• Run to Cursor

• Pause

• Stop

• Set a Breakpoint

Certain types of commands can’t be replayed. If the SQL Server Profiler
encounters one of these commands, it will display an error message and halt
the replay action.

Enforcing Control with the Resource Governor
The previous sections of this chapter show you how to monitor your SQL
Server performance passively. In this section, you get proactive and imple-
ment a set of throughput-related guidelines that SQL Server can enforce for
you via the Resource Governor, a new feature available in SQL Server 2008.

The SQL Server Resource Governor delivers several key benefits to database
administrators like you. These include

✦ Increased predictability and reliability of your SQL Server installation

✦ CPU and memory-based resource rationing

✦ Prevention of excessive resource consumption

✦ Activity prioritization

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 559

Enforcing Control with the Resource Governor560

Using the Resource Governor to derive these advantages could easily con-
sume its own dedicated chapter. Because space is limited, we focus on show-
ing you how to set up the Resource Governor, along with how to best
integrate it into your environment. As with many other topics in this book,
we suggest that you explore this capability in more detail by using sample
database and workload profiles. When you gain the understanding of how to
use the Resource Governor, you’ll be in great shape to deploy it in your envi-
ronment. Finally, as with most of SQL Server’s other administrative capabili-
ties, you’re free to use either the SQL Server Management Studio or direct
entry via Transact-SQL. In keeping with the philosophy of this book, we
emphasize using the graphically based SQL Server Management Studio
because that provides a consistent and easier to understand approach.

Key Resource Governor concepts and architecture
For this capability, there are three interrelated system structures — resource
pools, workload groups, and classifications — each of which affects the
other. After illustrating these structures, we show you how to enable, use,
and monitor the Resource Governor.

Resource pools
Think of these components as several distinct, virtual groupings of SQL
Server’s physical resources (such as CPU and memory). The product ships
with two resource pools already defined:

✦ Internal: This resource pool is dedicated to resources consumed
by internal database processing, and cannot be modified by the
administrator.

✦ Default: This resource pool is for you, the administrator, to use as a con-
tainer for your workload groups. You might also create additional
resource pools.

Resource pools let you configure two settings:

✦ CPU: Within this setting, you are able to adjust two values:

• The minimum amount of CPU resources (expressed in percentages)
that workloads assigned to this resource pool may consume. Note:
The sum of these values across your SQL Server instance may not
exceed 100.

• The maximum amount of CPU resources consumed by workloads in
this resource pool.

✦ Memory: As you probably expect, this setting is aimed at controlling
memory utilization within the resource pool. It also has the minimum
and maximum parameters as described above.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 560

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Enforcing Control with the Resource Governor 561

Workload groups
From the perspective of database processing, consider workload groups as
birds of a feather. In other words, you use workload groups to help gather
and monitor similar types of jobs and activities. These are grouped together
for control and prioritization. As with the resource pools, SQL Server ships
with two workload groups already defined:

✦ Internal: This workload group is associated with the internal resource
pool.

✦ Default: This workload group is for you, the administrator, as a generic
container for any requests that can’t be identified with a classification
formula. You’re free to create additional workload groups.

Classifications
SQL Server uses these formulas (either defined by the system based on con-
nection attributes or by a function written by the administrator) to help
associate any new incoming requests with a given workload (and related
resource pool). Connection attributes include

✦ Host name

✦ Application name

✦ Username

✦ Group membership

Before leaving this topic, it’s worth noting that the Resource Governor may
be used only for managing and monitoring the database engine. It can’t be
used for any of the following types of activity:

✦ Analysis Services

✦ Integration Services

✦ Reporting

Enabling Resource Governor
Despite the rich capabilities and limitless number of performance manage-
ment permutations offered by the Resource Governor, setting it up and main-
taining it is actually quite easy. Here’s all you need to do:

1. Launch the SQL Server Management Studio.

2. Connect to your SQL Server instance.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 561

Enforcing Control with the Resource Governor562

3. Expand the Management folder in the Object Explorer.

You then see the Resource Governor. Before going any further, note that
by right-clicking this entry, you can enable or disable the Resource
Governor. If it’s not already enabled, please do so.

4. Expand the Resource Pools folder.

You’re shown a folder containing existing system resource pools, as well
as a list of user-defined resource pools (if any exist).

5. Right-click the main Resource Governor entry, and choose the
Properties option.

The Resource Governor Properties dialog box appears, as shown in
Figure 2-18. It’s worth pointing out that you can expand the Resource
Governor folder to see its resource pools and their related workload
groups. However, unlike many other SQL Server user interface conven-
tions, the Resource Governor allows you to manage everything from a
single properties page.

Figure 2-18:
The
Resource
Governor
Properties
page.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 562

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Enforcing Control with the Resource Governor 563

6. By using the grid control, create any new resource pools and their
associated workload groups.

If you’re familiar with Microsoft Access-style grid controls, you’ll be
comfortable using the Resource Governor’s data entry template. If not,
you might want to spend a little time getting acquainted with this style
of interaction with SQL Server. Alternatively, it might make sense in this
situation to use direct SQL entry via your favorite query tool. We show
you how to script this later in this chapter.

7. When creating a new resource pool, provide values for the minimum
and maximum settings for CPU and memory utilization.

8. For workload groups, provide values to help guide the Resource
Governor in controlling resource consumption.

These settings include

• Importance

• Maximum requests

• CPU time (in seconds)

• Memory grant %

• Grant timeout (in seconds)

• Degree of parallelism

9. Select a classifier function to help SQL Server identify and associate
an incoming request to a workload group.

Recall from earlier in this chapter that SQL Server uses classifier func-
tions to link any inbound requests with relevant resource pools. If you
don’t have a classifier function in place, you need to write it and then
associate it with this workload group. An example of a classifier function
is covered in the next part of this chapter.

10. When you’re finished making your changes, click OK.

Resource Governor in action
After all this time examining how the Resource Governor works, how about
seeing a real-world example? In this case, suppose that you’re running a
mission-critical SQL Server database yet must grant access to a specific user
that has the potential to overload your server. Ideally, you’d simply replicate
your production database to another server and let this user run queries to
their heart’s content. However, budget cuts have prevented you from fully
realizing your vision, so it’s the Resource Governor to the rescue.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 563

Enforcing Control with the Resource Governor564

For the purposes of this example, assume that this user has an already-
existing login, FredCDobbs. Here’s how to write and execute SQL statements
to set up the necessary SQL Server structures that let the Resource
Governor prevent runaway queries.

1. Launch the SQL Server Management Studio or any other direct-entry
SQL tool.

2. Connect to your SQL Server instance and use the master database.

Obviously, you need to have administrative privileges to perform the
upcoming tasks.

3. Run an SQL statement to create the resource pool.

Here’s an example that creates a resource pool with a maximum CPU
utilization of 50 percent:

create resource pool RP_50_CPU
with

MAX_CPU_PERCENT = 50);

4. Run an SQL statement to create the workload group.

Here’s how this appears:

create workload group WG_50_CPU
using RP_50_CPU;

Notice that we reference the just-created resource pool when setting up
the workload group.

5. Run an SQL statement to create the classifier function.

This function compares the login name with the resource-hungry user
we identified at the start of the example. If there’s a match, then it asso-
ciates this session with the workload group. Otherwise, this session is
part of the ‘Default’ workload group.

Also, observe the link between this function and the workload group we
created in Step 4.

create function F_50_CPU() returns SYSNAME
with schemabinding
as
begin

declare @workload_group_to_assign as SYSNAME
if (SUSER_NAME() = ‘FredCDobbs’)

set @workload_group_to_assign = ‘WG_50_CPU’
return @workload_group_to_assign

end;

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 564

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Enforcing Control with the Resource Governor 565

6. Tell the Resource Governor about the new classifier function.

All this takes is a simple SQL statement:

alter resource governor with
(CLASSIFIER_FUNCTION = dbo.F_50_CPU);

7. Start the Resource Governor.

This also needs a basic SQL statement:

alter resource governor reconfigure;

That’s all it takes to put the Resource Governor to work on your behalf. If
you want to disable this classifier function, just re-run Steps 6 and 7, replac-
ing Step 6’s dbo.F_50_CPU with NULL.

Tracking Resource Governor activity
Earlier in this chapter, we show you the many statistics and other metrics
that you can gather from the Microsoft Management Console System
Monitor. As you might expect, the Resource Governor is very well integrated
with this vital administrative tool. Figure 2-19 shows an example of configur-
ing the tool to gather these metrics.

Figure 2-19:
The
Resource
Governor,
as viewed
in the
Windows
System
Monitor.

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 565

Enforcing Control with the Resource Governor566

Here’s a brief itemization of the types of statistics that you can follow for
each resource pool and workload group. To begin, you can examine the fol-
lowing for the SQLServer:Resource Pool Stats performance object:

✦ CPU usage %

✦ CPU usage target %

✦ CPU control effect %

✦ Compile memory target (KB)

✦ Cache memory target (KB)

✦ Query exec memory target (KB)

✦ Memory grants/sec

✦ Active memory grants count

✦ Memory grant timeouts/sec

✦ Active memory grant amount (KB)

✦ Pending memory grant count

✦ Max memory (KB)

✦ Used memory (KB)

✦ Target memory (KB)

If you’re not sure about what purpose a given metric serves, simply click on
the Explain button beneath the list of counters, and SQL Server will give you
more insight.

Next, you can monitor the following for the SQLServer:Workload Group Stats
performance object:

✦ Queued requests

✦ Active requests

✦ Requests completed/sec

✦ CPU usage %

✦ Max request CPU time (ms)

✦ Blocked requests

✦ Reduced memory grants/sec

✦ Max request memory grant (KB)

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 566

Book VII
Chapter 2

Using Perform
ance

M
onitoring Tools

Enforcing Control with the Resource Governor 567

✦ Query optimizations/sec

✦ Suboptimal plans/sec

✦ Active parallel threads

Finally, the Resource Governor introduces several events that can be
watched in the SQL Server and system event log. They include

✦ CPU Threshold Exceeded Event Class

✦ PreConnect:Starting Event Class

✦ PreConnect:Completed Event Class

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 567

Book VII: Performance Tips and Tricks568

46_179543-bk07ch02.qxp 8/23/08 12:48 AM Page 568

Chapter 3: Data Access Strategies

In This Chapter
� Setting a good foundation for speedy data access

� Using indexes to enhance performance

� Designing high-velocity queries

� Changing data quickly

Believe it or not, users are often more accepting of the occasional appli-
cation bug than they are of a consistently sluggish system. If you think

about it, this makes sense: A periodic, spectacular crash can liven up an
otherwise boring day, whereas an always-lethargic application gets annoy-
ing very quickly. This chapter shows you some common tips and tricks for
getting the most speed from your SQL Server database. However, this chap-
ter focuses exclusively on database and query-level suggestions, so if you’re
interested in engine tuning and disk layout concepts, check out the next
chapter. Moreover, if you’re curious about good database design practices,
make sure to peruse Book II, which focuses on these important foundations.

We start the chapter by pointing out that it’s imperative to lay the ground-
work for a well-running system, as well as take advantage of all the tools and
technologies at your disposal for monitoring and tuning your SQL Server
installation. After that, we show you how to employ indexes as an important
aid in coaxing the most speed from your database. With that out of the way,
it’s time to see how to design queries for maximal throughput. Finally, we
close the chapter with a discussion of some techniques that you can follow
to make data alterations as peppy as possible.

Setting a Good Foundation
Designing and developing a high-performance database is challenge enough;
there’s no need to be a hero and try to figure out everything yourself. In this
section, we give you a few easily implemented ideas that you can use as the
underpinning for all the performance-enhancing work that you’ll be under-
taking. Microsoft, as well as the other vendors cited in this section, has

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 569

Setting a Good Foundation570

done great work in bringing to market a collection of powerful (yet easy-to-
understand) tools and technologies that can help the database administra-
tor or application developer deliver the fastest possible solution.

Design your database with performance in mind
Conceptually, delivering a high-performance database isn’t that different
from many other technology design and delivery situations: It’s always
better to take performance considerations into account during the design
phase rather than waiting until after the solution has been created and the
related application code has been developed. Unfortunately, many database
architects and application developers are under time constraints and forced
to cut corners during the design and delivery phases of their projects. The
resulting solution often has major structural inefficiencies that are difficult,
(if not impossible) to correct after the project has been delivered to the
users.

With this in mind, as a database designer or application developer, any
performance-related effort you expend up front pays you back with interest
when you get to production. If you’re interested in more details about how to
design your database for performance, see Book II; its chapters are tailored to
help you design the most efficient database possible. Also, examine Book III,
Chapter 1, which is dedicated to explaining solid normalization techniques.

Use graphical tools to assist
in monitoring throughput
There’s no need to operate in the dark when it comes to trying to decipher
what’s going on in your active SQL Server environment. As described at
length in the previous chapter, Microsoft offers an excellent spectrum of
tools and technologies that give the database administrator unprecedented
visibility into the inner workings of the SQL Server environment. It’s well
worth your time to get to know each of the technologies described in that
chapter. Even if you don’t think you’ll ever use a specific performance-
related tool, you might be surprised to find that this utility provides the
exact metrics that you need to understand what’s slowing down your
system.

For example, check out Figures 3-1 and 3-2, where you can sample the valu-
able results served up by the Database Engine Tuning Advisor and SQL
Server Profiler, respectively.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 570

Book VII
Chapter 3

Data Access
Strategies

Setting a Good Foundation 571

Figure 3-2:
Trace
information
from the
SQL Server
Profiler.

Figure 3-1:
Results
from the
Database
Engine
Tuning
Advisor.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 571

Setting a Good Foundation572

Take advantage of virtual machines
Microsoft does many things well. Unfortunately, as anyone who has adminis-
tered a Windows system for any length of time can attest, its registry has a
tendency to get cluttered and clogged with extraneous information, leading
to a noticeable slowdown of your computer. This registry architectural prob-
lem is exacerbated when it comes to installing and then removing software.
In fact, in many cases, barring a full scrub of your disk, it’s just not possible
to return your system to the pristine state it was in prior to the installation
or modification. This is where virtual machines can be a lifesaver. You can
easily use them to set up test environments where you can conduct experi-
ments, confident in the knowledge that it’s trivial to restore your computer
to its original condition.

On the Windows platform, you have two commercial choices for virtual
machine technology:

✦ Microsoft Virtual PC: Available for free download from Microsoft’s Web
site, this technology allows you to create and then run multiple separate
instances of your Windows operating system on one computer. You can
run as many concurrent virtual machines as you like; your only limita-
tions are the amount of available memory, disk, and CPU capacity. This
product is designed from a desktop perspective; if you’re more inter-
ested in a server-side viewpoint, check out the next product.

✦ Microsoft Virtual Server: This product also protects your bank account:
It’s free! Virtual Server 2005 R2 SP1 lets you run multiple virtual instances
on your computer, and sports more server-friendly capabilities than the
desktop-centric Virtual PC.

✦ VMWare Server: Also available for free download, this is a competitive
alternative to Microsoft’s offerings. VMWare is compelling in that it’s
more adept at running different operating systems than Windows.
Comparatively, you’ll likely run into Microsoft license restrictions for
this platform that are absent from the Virtual PC technology.

If you’re running the 64-bit version of Windows Server 2008, you might want
to look into Microsoft’s Hyper-V technology, which is included with the oper-
ating system and offers better performance than any of the software pack-
ages I just described.

A number of open source, virtual machine alternatives are out there.
However, given Microsoft and VMWare’s dominance and low (or free) price
points, it’s wise to stick with either of these vendors.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 572

Book VII
Chapter 3

Data Access
Strategies

Setting a Good Foundation 573

Use data loading tools to simulate
realistic information volume
Given their crushing workloads, many database architects and designers fall
into the trap of populating their new creations with only small samples of
data and then conducting rudimentary performance tests. Unfortunately,
this small, unrealistic subset of data is an insufficient foundation upon which
to build a set of meaningful performance tests. As described in Chapter 1 of
this mini-book, the SQL Server Query Optimizer makes performance-related
decisions based on the amount and distribution of data. Consequently,
having a tiny, unworkable volume of data means that you won’t be able to
predict the decisions the Query Optimizer will make in production.

Other administrators or developers, facing the same need for sample data,
devote scarce resources to creating their test data generation tools.
Unfortunately, this isn’t the best use of anyone’s time. A better approach is
to purchase one of the many inexpensive data generation applications avail-
able on the market. We use the DTM Data Generator (available from www.
sqledit.com) to fill our newly created database with large, realistic data
samples. We then evaluate the Query Optimizer’s plans for the most common
queries, knowing that the runtime execution plans will likely match our test
cases. The combination of a data generation tool and virtual machines is
unbeatable. You can create carbon copies of your runtime environment and
test them to your heart’s content without ever affecting a production user.
As you’ll see in a moment, adding a testing tool to the mix makes your exper-
iments even more rational.

Use testing tools to simulate realistic usage
Some database designers and architects yield to the temptation to use small
subsets of data in an attempt to explore their database’s performance. This
tiny data set results in meaningless throughput metrics. Things get worse
when it comes to running application performance test cases. In many cases,
no formalized testing is ever done! This omission leads to unpleasant sur-
prises at runtime, when errors, sluggish response, data corruption, and
other nasty bombshells make themselves known.

With the rise of open source, low-cost testing software, there’s no reason to
skimp on this important step. Instead, prescient database and application
designers make the investment to implement and use these new tools to
help increase the quality of their overall solution. PushToTest is an excellent
example of one of these innovative technologies. You can use it to set up
functional, performance, and quality of service tests without having to write
any code.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 573

Using Indexes to Enhance Performance574

Use replication to spread the workload
Database and system administrators occasionally ask too much of their com-
puters. CPU, disk, and memory resources are finite, yet users’ requirements
and performance demands are limitless. The resulting response quagmire
can be difficult to overcome. However, distributing the processing load can
make a huge difference. As shown in Book VIII, Chapter 5, SQL Server offers a
set of powerful data distribution capabilities known as replication.

By replicating your data, you share the workload among multiple computers.
For example, suppose you’re running a SQL Server database that supports a
retail point-of-sale (POS) solution. Given the real-time performance demands
of such an application, it’s imperative that this database experience no
throughput bottlenecks. At the same time, however, management also needs
to run decision support reports to help run the business optimally. These
reports must also be delivered quickly. At first glance, this would appear to
be a no-win situation. However, this is an ideal example of where replication
makes sense. You can use this feature to synchronize data between your pro-
duction server (which supports the POS application) and a server dedicated
for reporting. Users of the secondary server can run all the reports they like;
users on the production server will never be impacted by this workload. In
fact, you can set up ever-more sophisticated replication architectures, and
spread the workload to more and more computers. This is a proven recipe
for increasing throughput, and it’s also economical given the constant drop
in computer pricing.

Using Indexes to Enhance Performance
A comprehensive indexing strategy, which is often overlooked by harried
database designers and application developers, is often all that’s needed to
supercharge a sluggish database solution. It’s common to see performance
improve by orders of magnitude simply by creating a new index or correct-
ing an erroneous one. In this section, we give you some concrete, easy-to-
implement index-related suggestions that can have a dramatic impact on
performance.

Book II, Chapters 4 and 6 are focused on all things related to creating tables,
including considerations regarding indexes.

Always define a primary key
It’s easiest to think of a primary key as a unique identifier that guarantees a
row’s individuality. In some cases, your data already contains one or more
candidate columns for primary keys. In other situations, SQL Server can gen-
erate a primary key for you. For example, take a look at Figures 3-3 and 3-4.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 574

Book VII
Chapter 3

Data Access
Strategies

Using Indexes to Enhance Performance 575

In Figure 3-3, we created a table and defined a primary key on an existing
column. In Figure 3-4, we used the combination of the uniqueidentifier
data type and the NEWID() function (used when inserting new rows) to have
SQL Server create a dedicated column that will hold a unique, binary key
value. As an alternative approach, we could have chosen the identity
property for the primary key column, and SQL Server would have added new
values to that field as well.

The reason we chose to use our own primary key in Figure 3-3 was that we
were confident that there would not be two vehicles with the same license
plate. In Figure 3-4, we elected to have SQL Server create the primary key
because we couldn’t guarantee that there would never be a duplicate value.
What’s especially nice is that this value is guaranteed to be unique not only
on our computer, but on any other computer in the world.

In addition to helping protect the integrity of your information, primary keys
make it possible for SQL Server to perform only one read operation to find a
match for a given search criteria. For example, imagine that you’ve defined a
table that holds street address and phone number information for your cus-
tomers. Further, assume that each customer has a unique phone number. By
placing a primary key on the column containing the phone number, and then

Figure 3-3:
A DBA-
defined
primary key.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 575

Using Indexes to Enhance Performance576

looking for rows based on a given phone number, SQL Server returns your
result extremely quickly. In the absence of an index, SQL Server is forced to
examine each row to find a match for you. And in the absence of a defined
primary key, SQL Server needs to continue to look for other phone numbers
that match, even though there will be at most one row with that phone
number value.

Use foreign key indexes when appropriate
SQL Server uses foreign keys to help safeguard related information that hap-
pens to be stored in two or more tables. In addition to the safety-related ben-
efits provided by foreign keys, you can also boost performance by creating
your indexes on these foreign key fields.

Index filter columns
You use filter columns to help SQL Server narrow the range of results for
your queries. For example, you might want to return a list of customers who
reside in a certain state or country. Without a filter, a query will return all the
rows from the table, no matter where the customer lives. If you employ fil-
ters as part of your queries (or as part of UPDATE and DELETE operations as

Figure 3-4:
A SQL
Server-
defined
primary key.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 576

Book VII
Chapter 3

Data Access
Strategies

Using Indexes to Enhance Performance 577

well), you should plan to index your most frequently used filter columns,
especially if the underlying table has many rows.

Place indexes on join columns
Join columns are the mechanism that SQL Server uses to establish equiva-
lency among two or more tables, which makes it possible to retrieve a uni-
fied view of your data. In most cases, it’s a good idea to ensure that both
sides of the join are indexed.

Understand clustered indexes
As with many modern relational database management systems, SQL Server
gives database administrators the opportunity to store their information in
the order specified by a given index. This capability, known as a clustered
index, makes sequential access to the table very fast as long as you’re using
the column(s) that make up the clustered index. It’s important to note that
you can have only one clustered index for a table, and that SQL Server auto-
matically uses your primary key to create the clustered index. You have the
ability to change the clustering to use a different index, however.

Clustered indexes can deliver a powerful performance punch in any of the
following situations:

✦ Queries that return large amounts of information

✦ Queries that return ranges of data

✦ Queries that join information to other tables

✦ Sorted (ORDER BY, GROUP BY) result sets

Don’t forget to index temporary tables
If you explicitly create a temporary table and then fill it with a significant
number of rows, remember that even temporary tables merit indexing,
assuming that you’ll be conducting operations that might benefit from sup-
porting indexes.

Avoid highly duplicate indexes
Sometimes, in an effort to be as performance-minded as possible, adminis-
trators travel in the opposite direction and create far too many indexes on
columns that never should be indexed in the first place. For example, sup-
pose that you have a table that tracks survey results. One of the columns
contains either a Yes or No value — never anything else. In this situation, it’s
generally unwise to create an index. Indexes consume disk space, and they

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 577

Designing High-Velocity Queries578

also require SQL Server to perform routine maintenance whenever a row is
created, modified, or deleted. This overhead can add up, and in the case of a
highly duplicate index there’s very little benefit to having such an index in
place.

SQL Server makes optimal use of indexes when there is some variability of
values contained in the index. If this column contained several other values
(say, Maybe, Perhaps, and No Way), it might make more sense for you to uti-
lize an index. You could also create a multi-column index that includes more
selective, distinct data from other columns.

Take advantage of index-only access
If you frequently query groups of columns, you might benefit from a compos-
ite index to reduce the amount of disk interaction. For example, suppose
that you repeatedly query a table to retrieve a customer’s city, last name,
and first name. If you place a composite index on these three fields and then
run a search to get this information from these three columns for a particu-
lar city, SQL Server can scan the index itself to bring back your results with-
out having to consult the underlying table.

This technique only works when the index contains all columns of interest
for the query, and the search criteria include the left-most index columns.

Support your local Optimizer
As shown in the previous chapter, the SQL Server Query Optimizer works
hard on your behalf, examining queries and available data metrics to deter-
mine the optimal execution plan for your database interactions. To help the
Optimizer help you, remember to configure the right set of statistics to sup-
port your processing profile. After the statistics are configured, don’t forget
to let SQL Server update them for you periodically. For example, Figure 3-5
shows a list of statistics we created for the payments table, along with
extensive details about one of them.

Designing High-Velocity Queries
The previous sections of this chapter give you some recommendations on
how to create a positive environment for high-performance databases, as
well as some guidelines for implementing a responsive indexing infrastruc-
ture. This section looks at how you can speed up your interactions with your
data and how to construct the most efficient queries possible. We also give
you some tips on how to streamline your data-modifying interactions.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 578

Book VII
Chapter 3

Data Access
Strategies

Designing High-Velocity Queries 579

Understand query execution plans
The previous chapter is devoted to helping you come to grips with the SQL
Server Query Optimizer and how to take advantage of its power. One sugges-
tion we make is for you to learn how to interpret execution plans because
SQL Server uses these reports to tell you exactly how it plans to process
your query. Armed with this information, you can take steps to remedy any
queries that don’t quite measure up. For example, Figure 3-6 shows an execu-
tion plan for a moderately complex query.

In addition to providing all these helpful details about the upcoming execu-
tion plan, SQL Server also notifies you of any potential trouble spots.

Avoid leading wildcards
As a database designer or application developer, you always strive to take
advantage of indexes for queries against large tables. Otherwise, SQL Server
is forced to scan the entire table for the rows that will make up your result
set. These table scans are extremely costly and time-consuming. Unfortu-
nately, you can construct a query that forces SQL Server to bypass your
well-designed indexes and perform a brute force table scan. One way to trig-
ger a costly table scan is to use a leading wildcard in your query.

Figure 3-5:
A collection
of statistics,
along with
details.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 579

Designing High-Velocity Queries580

For example, suppose that you have a table that contains 100 million rows of
customer information. To speed access to this table, you’ve placed an index
on the last_name column. In most situations that use this column as the
query criteria, SQL Server dutifully uses this index to quickly retrieve
records that match a given last name. So far, so good. What happens, how-
ever, when you ask SQL Server to look for records based on a subset of the
values contained in this column, as shown here?

SELECT * FROM Customers WHERE last_name LIKE ‘%ilson’

Because indexes (for Western-based character sets) store information from
left to right, SQL Server will be unable to take advantage of the index and will
then require a row-by-row perusal of the table. For a table with only a few
thousand rows, this isn’t a problem. For a table with millions or billions of
rows, it’s a big deal.

This is most easily illustrated with a real-world scenario. Imagine that we
handed you the white pages for a large city and asked you to find all the
entries with a last name of Jones. Faced with this request, you’d quickly turn
to the section beginning with Jo, and in a matter of seconds have the entire
list of Jones entries identified. However, what would happen if we asked you

Figure 3-6:
A query
execution
plan.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 580

Book VII
Chapter 3

Data Access
Strategies

Designing High-Velocity Queries 581

to find all the entries with a last name ending in nes? Assuming that you
didn’t throw the phone book in disgust, you’d be forced to go through every
entry in the book, trying to identify candidates. This would take much longer
than a few seconds would to complete, and you wouldn’t be able to stop
working until you went through the entire phone book.

Keep this real-world example in mind when you’re tempted to create a query
that searches for a subset of data from an indexed column.

Take advantage of views
Views, which are discussed in several sections of this book (especially Book
III, Chapter 7), improve database administrators’ lives in many ways. From a
purely performance perspective, a view can help reduce the number of rows
and columns returned by a query. By reducing the size of an overall result
set, a view lightens the load on the database server while easing the net-
working burden.

Put stored procedures and functions to work
In addition to all their security and logic centralization benefits, stored pro-
cedures and functions have the potential to boost performance as well. This
benefit is largely delivered by offloading processing work from the database
client to the database server. Network traffic is also reduced because there’s
generally less data to ship from the server to the client. However, be aware
that heavily employing centralized server objects, such as stored proce-
dures and functions, does run the risk of placing an excessive load on your
server, thus degrading performance. As with many performance-related tech-
niques, this approach requires administrators and developers to weigh
many variables when determining their tactics.

Use the TOP clause to preview large result sets
SQL Server offers a handy feature — the TOP clause — that allows you to
preview information from large result sets. You can limit the number of rows
that you want to see, either as an absolute number or as a percentage. For
example, look at the following two queries:

SELECT TOP 150 * FROM payments
SELECT TOP 20 PERCENT payment_amount FROM payments

In the first example, we asked SQL Server to retrieve all the columns from the
top 150 rows in the payments table. In the second example, we requested
only the payment_amount column from the top 20 percent of the rows in the
payments table.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 581

Changing Data Quickly582

The SQL Server Management Studio also offers the TOP clause to limit the
number of rows that are returned from a table. Figure 3-7 shows the top
1,000 rows being returned from a large table.

Changing Data Quickly
Typically, users perceive a slow-running database application when they’re
attempting to retrieve information. However, many circumstances exist
where database performance might bog down on operations that actually
create, change, or remove data. This final section furnishes you with some
tips that you can use to coax additional performance from any data-altering
operations. We begin by discussing techniques for speeding up data insert
activities. Next on the agenda are some guidelines for boosting performance
for operations that change data. Finally, we show you how to say goodbye to
your data as quickly as possible.

Insert optimization
Normally, inserts performed by user-driven applications happen quite
quickly: The user provides the program with some data, and the program

Figure 3-7:
Viewing the
top 1,000
rows for a
table.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 582

Book VII
Chapter 3

Data Access
Strategies

Changing Data Quickly 583

writes this data into SQL Server in the blink of an eye. However, other occa-
sions occur where inserting data can be much more of a performance burden,
chiefly when loading large amounts of information in a batch. These events
can degrade responsiveness for all users and lead to a general perception of
system sluggishness even though it’s been caused by a special situation. In
this section, we offer some suggestions that you can use to make these hefty
inserts less taxing on your SQL Server system.

Take advantage of SQL Server’s specialized bulk loading capabilities
SQL Server offers two helpful tools that simplify and speed this previously
challenging task. You can use the BULK INSERT statement from SQL or the
bcp utility from the command line.

The BULK INSERT statement
This statement is very useful when you have a file that you want to insert all
at once, and you want to use direct SQL entry to launch the insert operation.

For example, imagine that you’ve built a point-of-sale system. Each day, your
cash registers generate a large file (Register.txt), and you want to load
this into your Sales table. Suppose that the raw file looks like this:

3422,3,6/10/2009,9.00
3423,8,6/10/2009,3.50
3424,1,6/10/2009,2.75
3425,15,6/10/2009,12.25
3426,22,6/10/2009,10.00
3427,30,6/10/2009,18.00

Loading this file requires a simple SQL statement:

BULK INSERT Sales FROM ‘C:\Register.txt’
WITH (DATAFILETYPE = ‘char’, FIELDTERMINATOR = ‘,’)

This command loads the information found in the file and reports on the
number of rows it processed:

(114 rows processed)

Pay attention to the layout of your raw data files. It’s very easy to get con-
fused about the exact character that separates each field. The fields them-
selves might be in the wrong order, which causes no end of aggravation as
you try to decipher what’s happening when you insert information.

The bcp utility
Just as the BULK INSERT statement makes it possible to take a text file and
load it into SQL Server via the SQL interface, the bcp utility does the same

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 583

Changing Data Quickly584

from the command line. Here’s how you’d invoke bcp to load the sales infor-
mation from your database:

C:\>bcp Westbay.dbo.Sales in Register.txt -S
DBSERVER\sqlexpress

A lot can go wrong with a bulk insert process. Problems can range from
syntax errors, data issues, and so on. It’s a good idea to test this type of
operation with a small data file before attempting a massive upload. The
alternative is to potentially damage your database, which is not much fun.

Format file
Ideally, your raw data files will match the layout of your tables exactly.
Unfortunately, things are rarely this simple in the real world. It’s more likely
that there will be significant differences between what you’re given and what
you need. Fortunately, you can create a format file that tells SQL Server
exactly what to expect from these data files.

To generate a format file easily, just run the bcp utility as shown in the fol-
lowing code. SQL Server walks you through the specified table and file, and
gives you the option to create a format file at the end.

C:\>bcp Westbay.dbo.Sales in Register.txt -S
DBSERVER\sqlexpress
Password:

Enter the file storage type of field SaleID [int]:
Enter prefix-length of field SaleID [0]:
Enter field terminator [none]:

Enter the file storage type of field FlavorID [smallint]:
Enter prefix-length of field FlavorID [0]:
Enter field terminator [none]:

Enter the file storage type of field DateofSales [datetime]:
Enter prefix-length of field DateofSales [0]:
Enter field terminator [none]:

Enter the file storage type of field Amount [decimal]:
Enter prefix-length of field Amount [1]:
Enter field terminator [none]:

Do you want to save this format information in a file? [Y/n]
Host filename [bcp.fmt]:

When you’ve finished defining this file, you can use it for all future bcp runs.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 584

Book VII
Chapter 3

Data Access
Strategies

Changing Data Quickly 585

XML Bulk Load
Given the often-enormous size and complex structure of XML documents, it
can be a significant challenge to efficiently load a large one into a SQL Server
table. In many cases, you can simply get by with the INSERT statement and
the OPENXML function. Fortunately, in situations where there’s too much
data to load via the standard mechanism, you can employ the XML Bulk
Load COM object, found in the SQLXML 4.0 utility, to streamline these costly
activities. Note: This approach requires you to create an XML schema and
write code or script.

Consider dropping indexes before loading
large volumes of information
In certain cases, typically, when you have a heavily indexed table and the
proportion of rows to be loaded is large when compared with the number of
rows already present in that table, it makes sense to first drop any indexes,
load the data, and then re-create the indexes after the load has finished. The
reason is because each time you load a row, SQL Server must update its
indexes for that table. When there are many rows to insert, it can be more
efficient to load the rows into a non-indexed table, and then construct the
indexes after the insert operation has completed.

If you drop indexes on an active table, other users who are working with that
table might experience significant performance degradation until you’ve
rebuilt the indexes.

Update optimization
When faced with sluggish update responsiveness, one of the first things you
should do is review the statement’s execution plan to ascertain that indexes
are indeed being used to quickly locate those rows that are candidates for
the update operation. When you’ve put that doubt to rest, another possible
cause for this degraded performance also relates to indexes. However, in this
case, it could be that you’ve set up too many indexes. It’s quite common for
SQL Server to bog down when updating unnecessary indexes during a large
update operation. As a database administrator, you must always walk a fine
line between providing enough indexes to keep query performance coming
and not employing so many indexes that INSERT, UPDATE, or DELETE
throughput is damaged.

Consider employing replication when faced with a seemingly unsolvable
conflict between the needs of real-time, transactional users and those of
reporting-focused users. You could easily configure SQL Server to maintain
a fresh, continually updated copy of your database on another server. With
the alternate computer available, you can then steer users interested in
resource-intensive reporting tasks to that server.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 585

Changing Data Quickly586

Delete optimization
As any database administrator who’s ever tried to delete millions of rows
from a table can attest, removing data from your database can take much
longer than you ever thought possible. In this section, we describe two tech-
niques you can follow to avoid this possible bottleneck.

Dropping a table versus using the DELETE statement
When you’re faced with a situation that requires you to delete a significant
percentage of the rows in a given table, you might be better off exporting
any rows that need to remain, and then simply dropping the table. After the
table is dropped (which takes only milliseconds to complete), you can then
re-create the table and re-import the rows that you exported prior to drop-
ping the table. This bypasses the potentially time consuming and resource
intensive logging operations that SQL Server normally performs on any data
modification.

Dropping any table should be done carefully. Make sure you have
truly exported all the rows necessary to reconstitute the table to your
requirements.

Taking advantage of the TRUNCATE TABLE statement
When faced with the need to perform a massive delete operation, another
alternative is to employ the TRUNCATE TABLE statement. The DELETE state-
ment creates a record of all removed rows in the transaction log, whereas
the TRUNCATE TABLE statement records only page deallocation events,
which takes a fraction of the time.

The TOP clause, described earlier in this chapter, can also be very helpful
when deleting rows.

47_179543-bk07ch03.qxp 8/23/08 12:49 AM Page 586

Chapter 4: Tuning SQL Server

In This Chapter
� Improving performance with tuning

� Adjusting memory and processor settings

� Adjusting disk and communication settings

If you’ve been a database administrator for a while, chances are that
you’re accustomed to tinkering with the settings of your relational data-

base platform in an attempt to squeeze out some additional performance.
Some administrators even enjoy this often tedious, but frequently necessary
chore. If this kind of experimentation appeals to you, we have good news
and bad news. The bad news is that SQL Server 2008 automatically adjusts
many of its internal settings so that you don’t have to. The good news is
that you can still have an impact on SQL Server’s performance, which is
what this chapter is all about.

To begin, we remind you that tweaking database server settings is no substi-
tute for a solid performance foundation, including database design, index-
ing, optimal queries, and so on. With that admonition out of the way, the
next task is to explore memory and other processor-related properties that
you can set to augment system speed. We then explore how disk-related set-
tings can shape your server’s overall responsiveness. Finally, because com-
munication protocols and other topics are important, too, the chapter
closes with an examination of what these settings mean to you from a per-
formance vantage.

This chapter doesn’t focus on optimal ways to interact with your data:
That essential theme is covered in the previous chapter. Also, although you
can make many of these changes using a script, stored procedure, or other
character-based technique, we continue the graphically driven focus of the
book and use the SQL Server Management Studio as the primary mechanism
for implementing these performance-setting alterations. Finally, when under-
taking any performance analysis or optimization exercise, remember that
you’re never without SQL Server’s excellent set of performance monitoring
tools and wizards. To learn more about these helpful assistants, drop by
Book VII, Chapter 2.

48_179543-bk07ch04.qxp 8/23/08 12:49 AM Page 587

Tuning: The Last Resort for Improving Performance588

Tuning: The Last Resort for Improving Performance
It might sound a bit melodramatic, but if your performance-enhancing strat-
egy relies on tuning SQL Server’s internal settings, chances are it’s too late to
make much of a difference. The reason for this overarching assumption is
that unless something is drastically wrong with your database server’s set-
tings, other attributes have a much bigger impact on performance.

If you do your best to deliver on all the requirements listed here, and things
are still stumbling along, then it may indeed be time to take more-advanced
measures to squeeze some additional throughput from your SQL Server envi-
ronment. The balance of this chapter is dedicated to that subject.

In keeping with the book’s philosophy of using graphical tools wherever pos-
sible, SQL Server Management Studio is the mechanism to implement these
tuning-related changes. You find this tool under the main SQL Server menu.

Solid database design
When creating a highly responsive SQL Server-based application, there’s no
substitute for an intelligent, realistic database design that accurately models
your real-world requirements and proven normalization guidelines. If this
topic is of interest, Book III, Chapter 1 delves into the intricacies of normal-
ization, including those situations where it’s okay to bend (or break) the
rules.

Good indexing strategy
After you design an efficient database, your next goal is to create a collection
of useful, well-planned indexes. Seeing sluggish query times reduced by 99
percent after you create the right kind(s) of index is common. SQL Server
can help you fill any gaps in your indexing strategy; take a look at Book VII,
Chapter 2 to get to know the Database Engine Tuning Advisor. For guidance
on the theories behind SQL Server indexes, stop by Book VII, Chapter 3.

Well-planned data interaction
After constructing a solid database platform, and all of its supporting
indexes, your next major responsibility is to ensure that every interaction
(SELECT, INSERT, UPDATE, DELETE, and so on) is written as efficiently as
possible. You can find more about effective SQL statements as part of Book
VII, Chapter 3.

48_179543-bk07ch04.qxp 8/23/08 12:49 AM Page 588

Book VII
Chapter 4

Tuning SQL Server

Memory and Processor Settings 589

Memory and Processor Settings
Database-driven applications have the potential to be extremely memory
intensive. Sophisticated relational database management systems, such as
SQL Server, offer caching algorithms that are highly efficient at leveraging
available memory to reduce the need for disk interaction. Because disk inter-
action is roughly ten times slower than memory, anything you can do to
reduce the amount of communication with the disk will have a dramatic per-
formance benefit.

One of the easiest things you can do to address a memory problem is . . . buy
more memory! With memory prices at an all-time low, it might be less of a
hassle to stuff the server with more RAM than to wrack your brain trying to
coax a bit more performance from your applications or database engine.
However, by default 32-bit operating systems can only address roughly 3.2GB
of memory, so anything above that is wasted. An exception to this rule is
that Windows Server 2003 and 2008 will address more than 3GB of RAM if
you employ the /3GB switch in the boot configuration. Windows Server
2003 R2 can address up to 32GB of RAM, all of which can be leveraged by
SQL Server provided the boot switches have been properly configured.
Comparatively, a 64-bit operating system can address much more memory
without any special settings.

Determining if there’s a problem
Before you try to fix a memory problem, wouldn’t it be useful to first figure
whether there’s an issue? Fortunately, you can employ a host of operating
system– and SQL Server–provided tools to determine whether you need to
take action on any performance-related anomaly.

From a memory-problem diagnosis perspective, two tools stand out:

✦ Windows Task Manager: To launch this tool, simply right-click the
taskbar and select the Task Manager option. As shown in Figure 4-1, the
Task Manager features several tabs of statistics and details of interest to
SQL Server administrators. For the purposes of diagnosing a memory
problem, the following two are especially relevant:

• Processes: This tab itemizes all active processes. Review the names
and memory footprints of each process — there might be some that
aren’t necessary that can be halted and prevented from starting
again.

If you’re running Windows Server 2003 or 2008, you might need to
select the “Show All Processes” option to see every running process.

48_179543-bk07ch04.qxp 8/23/08 12:49 AM Page 589

Memory and Processor Settings590

• Performance: This tab tells you about the overall load on your
server. The most important statistic here is the Page File Usage
History graph. Like borrowing money at 20-percent interest per week
from a loan shark, paging (which uses the disk drive as a surrogate
for RAM) is one of the most expensive operations your computer can
perform. If you see an active page file, chances are that your system
can’t handle the memory demands placed on it.

✦ Windows System Monitor MMC snap-in: This utility offers a much
more detailed view into your systems’ overall performance profile.
The easiest way to launch it is to open the Control Panel, and drill into
the Administrative Tools folder. After you enter this folder, simply
double-click the Performance shortcut. Inside are dozens of groups of
statistical indicators, many of which offer visibility into memory-related
problems. Figure 4-2 shows an example of this utility in action.

These are two of the excellent tools at your disposal; Book VII, Chapter 2
describes many others.

If either of these diagnostic utilities indicates a memory issue, you still need
to determine whether anything can help resolve the problem. For instance,
maybe you’re trying to do more on your database server computer than its
capable of handling; you might be better served by distributing information
and related processing tasks onto multiple computers. If you’re interested in
this topic, be sure to explore Book VIII, Chapter 6 to get the lowdown on
replication.

Figure 4-1:
The
Windows
Task
Manager.

48_179543-bk07ch04.qxp 8/23/08 12:49 AM Page 590

Book VII
Chapter 4

Tuning SQL Server

Memory and Processor Settings 591

Adjusting memory parameters
If you want to experiment with SQL Server’s memory settings, remember
that SQL Server 2008 requires much less memory tuning on the part of its
administrators — significant amounts of this work are now handled automat-
ically by the database engine. If you’re interested in this topic, however, here
are some of the most common memory- and CPU-related settings.

✦ Use AWE to allocate memory: For 32-bit x86 servers running with more
than 3.2GB of memory, you can direct SQL Server to take advantage of
Address Windowing Extensions (AWE) to employ up to 64GB of memory.
This isn’t necessary on a 64-bit server.

✦ Minimum server memory (in MB): This setting controls the minimum
amount of buffer pool memory available to SQL Server. The default set-
ting of zero should suffice.

✦ Maximum server memory (in MB): This setting determines the maxi-
mum amount of memory available to SQL Server for its buffer pool.
Generally, it’s wise to leave this setting at its default value.

✦ Index creation memory (in KB): This setting determines how much
memory SQL Server can take advantage of when creating an index. By

Figure 4-2:
Memory
indicators in
Windows
System
Monitor.

48_179543-bk07ch04.qxp 8/23/08 12:49 AM Page 591

Memory and Processor Settings592

using the default of zero, SQL Server will automatically determine the
right value — see what I mean about letting the database engine do the
hard work?

✦ Minimum memory per query (in KB): This setting provides a baseline
for the memory that SQL Server consumes for each running query. It can
be set from 512KB to 2GB. To get more throughput for applications that
feature numerous small queries, try lowering this amount.

As with any experiment, change only one variable at a time and then meas-
ure the results.

Figure 4-3 shows how this page appears.

Adjusting processor parameters
Modern server technology supports multiple central processing unit
(CPU) configurations; SQL Server is designed to take advantage of these
high-performance environments. Figure 4-4 shows the Processors properties
page, which is where you find a collection of settings aimed at optimizing
how SQL Server interacts with your computer’s CPU.

If your database server has only one CPU, many of these settings don’t
apply; they’re relevant only in a multi-processor environment. If the options
are grayed in your environment, you don’t need to consider them.

Figure 4-3:
The
Memory
properties
page in SQL
Server
Manage-
ment Studio.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 592

Book VII
Chapter 4

Tuning SQL Server

Disk Settings 593

Here’s more about each section on this page:

✦ Enable processors: This grouping of settings specifically aims at getting
the most from multi-processor environments. By default, SQL Server
binds to all the processors on your server. If you want to limit the
number of these bindings (to let other applications have their fair share
of these valuable resources), enable these check boxes. On the other
hand, if the multi-processor computer running SQL Server is earmarked
as a dedicated database server, there’s no need to restrict SQL Server’s
access to your processors.

✦ Threads: For the majority of SQL Server environments, the default
values in this section will suffice. If you decide to experiment, do so
carefully — a mistake here can have major ramifications.

Disk Settings
Before getting started with SQL Server-specific disk optimization sugges-
tions, it’s worth noting that when it comes to disk storage, you get what you
pay for. Disk drive manufacturers continue to deliver ever-faster drives in
larger capacities. However, you should be aware of major performance differ-
ences among various products. Generally, a faster RPM rating translates
into faster database performance, assuming that your applications are disk-
intensive. Additionally, storage technologies, such as RAID (Redundant

Figure 4-4:
The
Processors
properties
page in SQL
Server
Manage-
ment Studio.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 593

Disk Settings594

Array of Inexpensive Disks), can improve throughput and increase the safety
of your valuable information. Specialized storage appliances offer their own
sets of disk-related features.

RAID takes advantage of multiple hard disks to improve performance, scala-
bility, and reliability. It offers administrators a number of configurations
(also known as levels). While a detailed analysis of this technology is beyond
this book’s scope, here’s a brief look at some of the levels of primary interest
to the SQL Server administrator.

✦ RAID 0: This approach enhances performance by striping (distributing)
information across multiple disk drives. The operating system is then
able to take advantage of parallel processing to return results more
quickly. However, if any of the disk drives fail, the entire array is
destroyed. This vulnerability makes this level unacceptable for a rela-
tional database application.

✦ RAID 1: This technique uses two or more disks to enable a mirroring
configuration. If one disk should fail, its data is preserved on the partner
mirror. Although this approach isn’t specifically targeted to performance
optimization, it’s a valid choice for storing database logs safely.

✦ RAID 5: This option leverages disk striping to distribute information
across multiple disks. It improves performance, but is vulnerable to fail-
ure if more than one disk drive fails. For this reason, consider it only for
relatively static data warehouse applications.

✦ RAID 1+0: This combines the responsiveness of level 0 with the data
assurance features of level 1, and is an excellent choice for performance
and protection for SQL Server.

Disk defragmentation
Disk drives are not immune from the universal law of entropy. Over time,
even the fastest disk will contain a patchwork of scattered file segments.
These fragments place a heavy load on your database server, because even
the simplest operation can require multiple physical reads of the disk. With
disk reads being roughly 10 times slower than memory reads, this imposes a
severe performance tax on your applications.

Fortunately, Microsoft makes it easy to reorganize your disk drives, thereby
removing a major throughput impediment. Here’s how to proceed:

1. Open the Control Panel.

2. Open the Administrative Tools folder.

3. Double-click the Computer Management icon.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 594

Book VII
Chapter 4

Tuning SQL Server

Disk Settings 595

4. Expand the Storage folder.

5. Highlight the disk volume you want to defragment and then click the
Analyze button.

The utility gets to work reviewing all the files on your disk to see
whether it’s a good candidate for defragmentation. When the work fin-
ishes, you see a report similar to the one shown in Figure 4-5.

6. If the utility recommended it, click the Defragment button.

This launches the actual defragmentation software. Depending on the
amount of information present on the drive, this may take quite some
time. When it finishes, you receive a summary report.

Data compression
If disk space is at a premium in your environment, you might find it neces-
sary to compress your data. This is a very easy task for SQL Server, and it
can be performed on a table-by-table basis, offering fine-grained control over
your compression implementation. Here’s what to do:

Figure 4-5:
Disk
defragmen-
tation
analysis
report.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 595

Disk Settings596

1. Launch SQL Server Management Studio.

2. Connect to the appropriate database server.

3. Expand the Databases folder in the Object Explorer.

4. Open the folder for the database that contains the table you want to
compress.

5. Open the Tables folder.

6. Right-click the table and then choose the Manage Compression option
from the Storage submenu.

This launches the aptly named Data Compression Wizard that walks you
through the process of squeezing any excess space from the table.

7. Choose a compression type for the table.

You can compress at either the row or the page level. Additionally, you
may assign different compression techniques to each partition, or may
use one technique for all partitions.

8. Click on Calculate button to see your projected savings and then click
Next when you’re ready to proceed.

Figure 4-6 illustrates the compression savings for one table.

Figure 4-6:
Projected
space
savings
from com-
pression.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 596

Book VII
Chapter 4

Tuning SQL Server

Disk Settings 597

9. Decide how you want the wizard to deliver its output and then click
Next.

Options range from running the compression immediately to creating a
script that you can run later.

10. Review the upcoming compression details and then click Finish when
you’re ready to proceed.

11. If you’ve elected to generate a script, review its content.

Here’s an example of how one of these compression scripts appears:

USE [point_of_sale]
ALTER TABLE [dbo].[sales_transactions]
REBUILD PARTITION = 2 WITH(DATA_COMPRESSION = PAGE)

Because SQL Server must first decompress any information that has been
stored in a compressed format, data compression negatively affects perform-
ance. You might find it advantageous to acquire more disk storage and avoid
these costs.

Encryption
Transparent encryption is one of the most compelling “what’s new” features
in SQL Server 2008. Application developers no longer have to write two ver-
sions of the solutions (one for encrypted data, and one for non-encrypted
data). Instead, they can focus on delivering their best code, and SQL Server
can manage encryption internally and transparently.

In this context, encryption refers to physically encrypting data files on disk,
not the data that SQL returns in response to a query. If you want to encrypt a
column’s information, you need to do this via the SQL Server Management
Studio specifically. You can also combine disk-based encryption with
column-based encryption.

To enable encryption, follow these simple steps:

1. Launch SQL Server Management Studio.

2. Connect to the appropriate database server.

3. Expand the Databases folder in the Object Explorer.

4. Right-click the database that you wish to encrypt.

5. Choose the Manage Database Encryption option from the Tasks menu.

This opens a dialog box where you can select an encryption algorithm,
select either a server certificate or asymmetric key, and enable
encryption.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 597

Communication Settings598

6. After setting your encryption preferences, click OK.

That’s all there is to it! Your database is now encrypted.

Just as data compression imposes a performance tax, encryption also places
some additional burdens on your processor.

Partitioning
Some tables contain so much information, and are so dynamic in their pro-
cessing profile, that they impose an extraordinary burden on your disk stor-
age mechanisms. In an effort to address these significant bottlenecks, SQL
Server offers a sophisticated information distribution capability. Partitioning
allows you to spread the workload onto multiple disk devices, and can yield
dramatic performance enhancement in circumstances where one or more of
the following conditions are true for a given table:

✦ Large amount of data

✦ Predictable data loads

✦ Dynamic data

✦ Archival-capable information

✦ Multiple disk drives available

If you’re interested in applying this to your environment, make sure to read
Book VIII, Chapter 6.

Communication Settings
To achieve optimal communication-related performance, administrators
need to consider two primary factors: achieving the best possible network
speed and selecting the right communication protocol.

Network speed
Normally, other than pleading for better networks with less latency, data-
base administrators don’t have much interaction with, or impact on, net-
work speeds. However, a SQL Server administrator can still have a positive
impact on network-related performance.

Reducing network traffic via stored procedures and functions
One way to guarantee poor performance (and overload your network to
boot) is to transmit massive amounts of data between SQL Server and its

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 598

Book VII
Chapter 4

Tuning SQL Server

Communication Settings 599

clients. Fortunately, SQL Server offers capabilities that you can use to
process more information on the server, thereby dramatically reducing the
amount of data sent between client and server.

Stored procedures and functions are server-side logic that clients of your
database server can use to automate operations. Aside from their proven
traffic-reduction benefits, they also help simplify client-side application
code, increase security, and centralize business logic.

Using high-performance subnets
Wherever possible, place database servers, Web servers, and application
servers on a high-speed subnet. These lightning-fast connections can do
wonders for response time.

Communication protocol
When connecting with SQL Server, you have several choices of communica-
tion protocol at your disposal. Here’s a look at each of these protocols, along
with situations where you use them.

✦ TCP/IP: This is the underlying communication protocol that much of the
Internet uses. When communicating between database servers and their
clients, this is the most logical protocol.

✦ Named pipes: This protocol is generally used for communication
between clients and servers, as well as server-only traffic. It’s not nearly
as common for Internet traffic as TCP/IP, and is somewhat less secure.

✦ Virtual Interface Adapter (VIA): As a protocol that is reliant on special-
ized hardware, the odds are that most readers aren’t likely to encounter
VIA as much as they’ll experience TCP/IP or named pipes.

✦ Shared memory: For processes that reside on the same server as the
database, this protocol can leverage a fast, dedicated section of memory
that SQL Server uses for communication. However, there’s the rub;
unless both the database application and the database server are on the
same computer, this protocol isn’t applicable.

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 599

Book VII: Performance Tips and Tricks600

48_179543-bk07ch04.qxp 8/23/08 12:50 AM Page 600

The Maintenance Plan Editor.

Book VIII

Database
Administration

49_179543-pp08.qxp 8/23/08 12:50 AM Page 601

Contents at a Glance

Chapter 1: Configuring SQL Server .603
SQL Server Configuration Tools ...603
Adjusting Server Properties ...605
Generating Configuration Scripts...615

Chapter 2: Performing Major Administrative Tasks 619
Controlling Database State ...621
Managing Disk Space ...624
Moving Databases ..627
Backing Up and Restoring Information ...637
Automating Things with Maintenance Plans ..643

Chapter 3: Security: Keeping SQL Server Safe647
The Value of Security ...647
What Can You Secure? ...648
Who Can You Let Use Your Database? ..649
What Can You Let Users Do? ..651
Implementing Security...653

Chapter 4: Integration and Your Database .661
Common Integration Challenges..661
How SQL Server Integration Services (SSIS) Ties It All Together662
Using SQL Server Integration Services..664

Chapter 5: Replication .677
Exploring the Publishing Metaphor...677
Defining a Replication Publishing Model ..679
Configuring Replication...683
Replicating between Hosts ...689

Chapter 6: Spreading the Load with Partitioning 693
Understanding SQL Server Partitioning..693
Partitioning Key Terms and Concepts...695
Setting Up Partitioning in Your Environment ...696

49_179543-pp08.qxp 8/23/08 12:50 AM Page 602

Chapter 1: Configuring SQL Server

In This Chapter
� SQL Server configuration tools

� Adjusting server parameters

� Generating configuration scripts

With each new release of SQL Server, Microsoft continues to improve
and simplify the daily tasks of the database administrator. However,

it’s still not possible to run the database on autopilot, or replace the DBA
with a robot. Given that reality, this chapter aims to help administrators
make sense of all the server-wide settings and properties that they
encounter each day.

We begin by giving you a brief overview of a collection of SQL Server’s con-
figuration tools and technologies. However, from the day-to-day perspective
of a database administrator, most configuration tuning is controlled via the
SQL Server Management Studio. Consequently, the lion’s share of this chap-
ter is dedicated to understanding how that tool allows you to fine-tune the
dozens of parameters that influence SQL Server’s behavior. Finally, we show
you how to generate scripts so that you can further automate the mainte-
nance and administration of your SQL Server environment.

SQL Server Configuration Tools
If you’re new to SQL Server, the sheer number of available tactics that
achieve the same goal might confuse you. Part of this is because SQL Server
has been around for many years, and still ships with several legacy tech-
nologies. However, Microsoft has been steadily moving in the direction of
becoming 100-percent graphical, so it’s worthwhile to become familiar with
these tools. Consequently, throughout this book, we devote the majority of
our attention to making the most of the SQL Server Management Studio. We
also point out, however, that character-based approaches to getting the job
done still exist. These same rules apply to many administrative tasks. We
look at each of the major technologies available for performing administra-
tive work.

If you want to get a holistic view of how these tools work together, see
Book I, Chapter 2.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 603

SQL Server Configuration Tools604

SQL Server Configuration Manager
This graphical tool (launched from within the SQL Server Configuration
Tools menu) is primarily meant to let administrators enable or disable SQL
Server’s system services as well as client/server communication protocols.
Figure 1-1 shows this tool in the context of managing services.

SQL Server Surface Area Configuration Tool
This graphical tool (also launched from within the SQL Server Configuration
Tools menu) allows the administrator to determine which features and capa-
bilities will be available to users. Given the very real security risks and dan-
gers faced by administrators, this tool is meant to help minimize the areas
(or services) for a potential attack.

sp_configure
Before there were graphical tools, there was the sp_configure stored pro-
cedure. Administrators have used this powerful procedure for many years to
control SQL Server’s behavior, and many DBAs still perform all their configu-
ration tasks this way.

Figure 1-1:
The SQL
Server
Configu-
ration
Manager.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 604

Book VIII
Chapter 1

Configuring
SQL Server

Adjusting Server Properties 605

This procedure can be launched at least two ways. The first uses the
character-based SQLCMD utility, and the second allows you to use a query
window within the SQL Server Management Studio.

SQL Server Management Studio
This graphical tool, which ships with every edition of SQL Server, gives the
database administrator unprecedented control over the behavior of his SQL
Server environment. We spend the rest of the chapter showing you how to
use this tool to manage your server configuration settings.

One of the most exciting features (especially from the perspective of the
DBA) found in SQL Server 2008 is Policy-Based Management. This new capa-
bility, tasked with simplifying and making SQL Server management more con-
sistent, is explored in Book I, Chapter 2. We then show you how to use it
later in that mini-book as part of Chapter 4. Book VII, Chapter 2 shows how
Policy-Based Management can play a big role in performance optimization
and management.

Adjusting Server Properties
In this section, we show you how to configure a wide variety of SQL Server
properties. These settings affect all databases, so think carefully when going
down this road.

Be as scientific as you can in your efforts. Whenever possible, change only
one setting at a time. This makes it much easier to weigh the impact of any
alterations.

We begin by illustrating how to use the SQL Server Management Studio to
make these configuration parameter changes. Here’s how to get started:

1. Launch SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Right-click the connection’s entry in the Object Explorer view, and
choose Properties.

This opens the Server Properties dialog box, as shown in Figure 1-2.

4. Choose the appropriate properties page that contains the setting you
want to change.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 605

Adjusting Server Properties606

You can select among eight different pages, including:

General Connections

Memory Database settings

Processors Advanced

Security Permissions

We walk you through each of these pages and their associated settings
in a moment.

5. Make your change, and click OK.

Note: Certain alterations require you to restart SQL Server for them to
take effect.

When it comes to tuning and optimizing your SQL Server instance’s perform-
ance, server settings are among the least effective mechanisms to use.
Modern database environments (such as SQL Server) do a great job of real-
time engine performance and throughput management. You’ll get much
better mileage by focusing on your database design, indexing strategy, and
how queries and other operations will interact with SQL Server. If perform-
ance is something that interests you, Book VI is dedicated to this important
topic.

Figure 1-2:
The General
Server
Properties
page in SQL
Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 606

Book VIII
Chapter 1

Configuring
SQL Server

Adjusting Server Properties 607

General properties
This page (refer to Figure 1-2) contains a collection of read-only settings and
summaries. Although you can’t change them, it’s a good idea to familiarize
yourself with these parameters:

✦ Memory: This is the total memory on the database server, not just the
amount allocated to SQL Server.

✦ Processors: The number of physical central processing units (CPU) on
the database server.

✦ Server Collation: Regionally driven settings that determine how data is
compared and sorted.

✦ Is Clustered: Specifies whether this instance of SQL Server has been
included in a failover cluster.

Memory properties
As you might surmise from its name, this is the page where you control SQL
Server’s usage of memory. Its parameters include

✦ Use AWE to Allocate Memory: If your database server is running on a
32-bit version of Windows and sports more than 4GB of memory, you
can instruct SQL Server to take advantage of Address Windowing
Extensions (AWE) to employ up to 64GB of memory.

✦ Minimum Server Memory (in MB): This setting controls the minimum
amount of buffer pool memory that’s available to SQL Server.

✦ Maximum Server Memory (in MB): This setting determines the maxi-
mum amount of memory that’s available to SQL Server for its buffer
pool. Generally, it’s wise to leave both these memory settings at their
default values.

✦ Index Creation Memory (in KB): This parameter gives SQL Server a
guideline on how much memory it can take advantage of when creating
an index. The default of 0 (zero) means that SQL Server automatically
determines the right value.

✦ Minimum Memory per Query (in KB): This setting provides a baseline
for the memory that SQL Server consumes for each running query. It can
be set from 512KB to 2GB.

Figure 1-3 shows how this page appears.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 607

Adjusting Server Properties608

Processor properties
Figure 1-4 shows the Processors Server Properties page where you find a col-
lection of settings aimed at optimizing how SQL Server interacts with your
computer’s central processing unit (CPU). Additionally, deploying multi-
processor servers is an increasingly popular way to derive added perform-
ance from your SQL Server database environment. This page includes
settings specifically tailored for those types of environments.

Several of these settings are meaningful only if you’re running a multiple
processor database server. If the options are grayed-out in your environ-
ment, then you don’t need to consider them.

Here’s a look at each of these sections:

✦ Enable Processors: This grouping of settings is aimed specifically at get-
ting the most from multiprocessor environments. You can request that
SQL Server bind itself to, and take advantage of, one or more of these
processors by checking the processor affinity and I/O affinity boxes.

✦ Threads: This grouping of settings should be approached with caution.
They let the SQL Server administrator dictate specialized, operating
system–level performance requirements.

Figure 1-3:
The
Memory
Server
Properties
page in
SQL Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 608

Book VIII
Chapter 1

Configuring
SQL Server

Adjusting Server Properties 609

Security properties
Chapter 3 in this mini-book is dedicated to a complete overview of all SQL
Server considerations, including logins and permissions. At this point, we
examine how to set some server-wide security settings, as shown in Figure 1-5.

Figure 1-5:
The Security
Server
Properties
page in
SQL Server
Manage-
ment Studio.

Figure 1-4:
The
Processors
Server
Properties
page in
SQL Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 609

Adjusting Server Properties610

The Security Server Properties settings include

✦ Server Authentication: You can choose between Windows Authenti-
cation mode, which relies on the operating system for its account infor-
mation, and SQL Server and Windows Authentication mode, which
requires coordination between the database and operating system. In
many cases, the former option is simpler for administrators to maintain.
In fact, the default setting is Windows Authentication Mode.

✦ Login Auditing: SQL Server allows you to audit (that is, create log
entries) for failed logins, successful logins, or both. You can also elect
not to audit logins at all.

✦ Server Proxy Account: If you want to designate a specific login for
major SQL Server administration tasks (that is, a “proxy”), you can fill in
those details here.

✦ Enable Common Criteria Compliance: By checking this box, you
instruct SQL Server to enforce behavior and collect information that is
used in support of the security standards (the Common Criteria) speci-
fied by a multinational IT security organization.

✦ Enable C2 Audit Tracing: If you need to comply with C2 auditing, and
its associated logging, check this box to begin collecting these detailed
statistics.

✦ Cross Database Ownership Chaining: SQL Server allows you to manage
multiple database objects by setting permissions on only one of them.
This concept is ownership chaining, and enabling this check box makes it
possible for this behavior to span multiple databases.

Connection properties
This page, as shown in Figure 1-6, is where you customize SQL Server’s
behavior with regard to its handling of connections. Major settings include

✦ Maximum Number of Concurrent Connections: With a default value of
0, SQL Server allows as many connections as it can support with avail-
able system resources. If you want to limit the number of concurrent
connections, manually provide your own setting for this parameter.

✦ Use Query Governor to Prevent Long-running Queries: If you’re con-
cerned about users or programs that might generate a seemingly never-
ending query, check this box and provide a value (in seconds) that
serves as a limit on how long a query can take to return results.

✦ Default Connection Options: Here, you find a group of options (each
with its own check box) that determines how a connection to your
server behaves. See Book II, Chapter 1 if you’re interested in understand-
ing these options in more detail.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 610

Book VIII
Chapter 1

Configuring
SQL Server

Adjusting Server Properties 611

✦ Remote Server Connections: This check box gives you the choice to let
remote users and computers connect to this database server. If you
elect to make this possible, you also have the ability to set a timeout
value for how long it takes a remote query to complete execution. If
you’re concerned about remote operations running for extended
amounts of time, provide a maximum value.

✦ Require Distributed Transactions for Server-to-Server Communication:
The Microsoft Distributed Transaction Coordinator (DTC) helps ensure
that transactions that span multiple computers complete successfully.
Transactions are a big part of Book III, Chapter 8. For now, if you expect
to run many distributed transactions, consider enabling this check box,
especially if you have concerns either about the complexity of the trans-
action or the quality of the underlying network infrastructure.

Database Setting properties
This page allows an administrator to define behavior for SQL Server’s
backup, restore, and recovery capabilities. As shown in Figure 1-7, you can
set the following parameters for your environment:

✦ Default Index Fill Factor: Book VII, Chapter 3 focuses heavily on proper
index techniques for SQL Server. For now, this setting instructs SQL
Server how full each index page should be when it creates a new index
from existing data. A value of 0 (which behaves the same as a value of
100) tells SQL Server to fill these pages as much as possible. In most
cases, the default value is fine.

Figure 1-6:
The
Connections
Server
Properties
page in
SQL Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 611

Adjusting Server Properties612

✦ SQL Server New Tape Behavior: If your backup operations rely on tape,
here’s where you tell SQL Server how long it should wait for you to pro-
vide a new tape.

✦ Default Backup Media Retention: As part of its backup safeguards and
capabilities, SQL Server doesn’t overwrite an existing backup tape until
that tape has expired. Here’s where you provide details on how long you
want a tape to be retained.

✦ Compress Backup: If you’re concerned about available space on your
backup media, you can use this check box to tell SQL Server to com-
press the archive.

✦ Recovery Interval: In most cases, SQL Server is perfectly capable of
managing the time it takes to recover a database. The default value of 0
allows SQL Server to make its own determinations on how to proceed.
However, if you’re concerned that a recovery might take too long, pro-
vide your own value for this parameter. This places an upper limit on the
time a recovery may take.

✦ Database Default Locations: To manage your information, SQL Server
uses two types of files: data and log. Here’s where you can set default
values about where these files are located. Note: You always have the
freedom to specify individual file locations when creating or updating a
database; this value merely sets a default location.

Figure 1-7:
The
Database
Settings
Server
Properties
page in
SQL Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 612

Book VIII
Chapter 1

Configuring
SQL Server

Adjusting Server Properties 613

Advanced properties
This page is the kitchen sink of SQL Server properties — you find a little bit
of everything on it. Figure 1-8 highlights how this page appears. Before we
look at each of these settings, note that (in most cases) the default values
provided by Microsoft are sufficient:

✦ Filestream Configurable Level: Recall that SQL Server allows you to use
filestreams as a way of leveraging operating system disk storage in con-
junction with the database. This setting determines the granularity (that
is, scope) of filestream operations. SQL Server takes your configuration
value and reports on it in the read-only Effective Level field.

✦ Filestream Share Name: If you’ve elected to enable filestreams, you can
provide a reference name for the share here.

✦ Allow Triggers to Fire Others: Enabling this option allows one trigger to
launch another trigger.

✦ Cursor Threshold: To enhance throughput, SQL Server can take advan-
tage of asynchronous operations. This value guides SQL Server on when
to enable this performance-enhancing capability. The default value of –1
is a good choice.

✦ Default Full-Text Language: This numeric code identifies the language
to be used for full-text searches.

✦ Default Language: SQL Server uses this default language for any new
login.

✦ Max Text Replication Size: You can place a cap on the amount of text
that SQL Server replicates. Consider changes to this field carefully. You
must balance performance considerations with the information preser-
vation offered by replication.

✦ Scan for Startup Procs: As an administrator, you can instruct SQL
Server to run one or more stored procedures when the database engine
starts. This field controls whether SQL Server undertakes this operation.

✦ Two Digit Year Cutoff: Remember the Y2K crisis? This value allows you
to specify the final year that will work with a two-digit year value.

✦ Network Packet Size: This parameter allows you to tweak the size of
network packet messages. Only experienced database and network
administrators should change this from its default value.

✦ Remote Login Timeout: This value, specified in seconds, sets the time
that SQL Server waits before responding to a failed remote login attempt.
If you’re concerned about denial of service or other remote attacks on
your database, keep this setting high. If this is not a concern, you can
safely lower it.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 613

Adjusting Server Properties614

✦ Cost Threshold for Parallelism: This option tweaks the SQL Server
behavior for parallel operations (that is, taking advantage of multi-
processors), based on query plans generated from the Optimizer. With a
range from 0 to 32767, you have leeway to experiment, but make these
changes carefully.

✦ Locks: For operations that employ parallel processing, this parameter
determines the maximum number of locks employed as part of the pro-
cedure. Leaving it at 0 is a good idea. This allows SQL Server to manage
this important behavior.

✦ Max Degree of Parallelism: You can cap the number of processors that
participate in a parallel operation by using this setting.

✦ Query Wait: You can tell SQL Server how many seconds you want the
query to wait for resources before giving up and timing out. Unless you
have special needs or complications, using the default of –1 is a good
idea.

Permission properties
This page gives the administrator the ability to set explicit permissions for
individual users (both logins and roles). If you’re looking for a detailed
exploration of the entire security topic, see Chapter 3 in this mini-book.

Figure 1-8:
The
Advanced
Server
Properties
page in
SQL Server
Manage-
ment Studio.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 614

Book VIII
Chapter 1

Configuring
SQL Server

Generating Configuration Scripts 615

Generating Configuration Scripts
Microsoft subscribes to the database administration philosophy that wiz-
ards and graphical tools are good, and repetitive, tedious hand coding is
bad. Despite this natural preference toward wizard-driven automation, cir-
cumstances still exist where database administrators might need to create
or modify scripts that manage their databases. Some DBAs even prefer to
work this way, rather than always using graphical tools. For this important
constituency, SQL Server makes it easy to generate, and then edit, all kinds
of administrative scripts. We close this chapter by seeing how this is done.

To get started, launch the SQL Server Management Studio. You’ll soon be in
an excellent position to generate all the scripts you need. Here’s how:

1. Launch SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database that you want to administer.

6. Choose Tasks.

7. Choose Generate Scripts.

This launches the Generate SQL Server Scripts Wizard. For the purpose
of this example, we show you how to generate a simple script that cre-
ates a table. When you start to use this wizard, however, you can do
much more.

8. Highlight the database where the object(s) that you want to script can
be found, and click Next.

9. Customize the script options that you want an SQL Server to employ,
and click Next.

More than two dozen ways to tweak your script exist, ranging from error
handling to the types of objects you want scripted. As is the case with
many of SQL Server’s wizards, feel free to experiment with sample data-
bases before trying this on production information.

10. Identify the types of objects that you want to script, and click Next.

These objects can include defaults, rules, tables, user-defined data
types, and views.

11. Identify the specific objects that you want to script, and click Next.

Your available choices are dependent on what types of objects you
select in Step 10.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 615

Generating Configuration Scripts616

12. Decide where you want the output to be placed, and click Next.

SQL Server dutifully creates the output in a file, on the Clipboard, or in a
new query window.

13. Review your script generation choices, and click Finish.

SQL Server gives you one more chance to look over the options it will
use when creating your script. For this simple example, Figure 1-9 shows
how this script will be generated.

SQL Server takes a few moments to generate your script. You can moni-
tor the progress and view or edit your script when things are done.
Figure 1-10 shows the results of this simple example.

Figure 1-9:
A summary
of Script
Wizard
settings.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 616

Book VIII
Chapter 1

Configuring
SQL Server

Generating Configuration Scripts 617

Figure 1-10:
A script
generated
by the Script
Wizard.

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 617

Book VIII: Database Administration618

50_179543-bk08ch01.qxp 8/23/08 12:52 AM Page 618

Chapter 2: Performing Major
Administrative Tasks

In This Chapter
� Controlling database state

� Managing disk space

� Moving databases

� Backing up and restoring information

� Automating tasks with Maintenance Plans

A database administrator’s work is never done: Just when you think
you’re caught up, a completely new series of demands arises.

Fortunately, if you’ve chosen SQL Server 2008 as your database platform,
many shortcuts, wizards, and tools are at your disposal. In this chapter, we
look at each major administrative task, along with ways to simplify, auto-
mate, and otherwise make your life easier.

We start by seeing how to take databases off-line and bring them back
online, as well as view the database logs generated by SQL Server 2008.
After that, you discover how to conserve valuable disk space by shrinking
databases. Next, we discuss moving databases between servers — an
important topic, which includes import and export considerations. Because
safeguarding your information is vital, we then provide a detailed discussion
of backing up, and then restoring, databases. Finally, SQL Server offers an
extremely potent and flexible set of capabilities known as maintenance
plans. We close the chapter with a brief example of how you can make the
most of this labor-saving technology.

The SQL Server Management Studio is a powerful tool provided by Microsoft
to help you manage your SQL Server 2008 instances. Additionally, you can
perform some of these tasks by using the character-based SQLCMD utility.
However, that’s a much more cumbersome way to administer your data-
base, so we focus on the friendlier, graphically based SQL Server
Management Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 619

Performing Major Administrative Tasks620

Here’s how to fire up the SQL Server Management Studio and get ready for
the important work we describe throughout the chapter:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database you want to administer.

6. Choose the Tasks menu option.

Figure 2-1 shows how this menu looks in SQL Server Management Studio. Get
to know it because as an administrator you’ll be spending a lot of time on
this menu.

The tasks that you read about in this chapter generally affect only a single
database. Other databases that reside on your server are unaffected by
these types of operations unless you explicitly include them.

Figure 2-1:
The Tasks
menu in the
SQL Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 620

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Controlling Database State 621

Controlling Database State
Before we get started on how to take a database offline and then bring it
back online, a short detour is in order to get a good understanding of the
many different states that your SQL Server 2008 database can be in. These
states include:

✦ Online: You hope to see this state most frequently for your database. It
means that the database is ready for action.

✦ Off-line: This generally refers to a database that has been deliberately
taken off-line, usually for actions, such as moving it to a new disk or new
server.

✦ Recovering: SQL Server is attempting to recover the database, usually
after a restore or system restart.

✦ Recovery pending: This state generally happens when SQL Server is
missing a resource or other key component during the database recov-
ery process. When you see this state, it’s likely that an administrator will
have to take some further action to help things work right.

✦ Suspect: You don’t want to see this state. It means that something has
gone wrong with your database (either during startup or recovery), and
SQL Server considers your database (or one of its underlying data files)
to be damaged.

✦ Emergency: As you might expect, this database state means that some
serious administrative work needs to be done before the database is
ready for general consumption. Typically set when an administrator is
trying to figure out why a database was placed into the suspect state,
the database is only in single-user mode until the problem is resolved.

To get a list of all your databases and their current states, run the following
statement within your favorite SQL editor:

SELECT name, state_desc from sys.databases;

Now that you’ve seen the different states you might encounter for your data-
base, we look at how you would take a database off-line.

Taking a database off-line
Generally, most administrators rarely need to take a database off-line. The
most common situations that require such action typically are related to
restoring portions of a database because of complications during a backup,
or other operational problems.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 621

Controlling Database State622

As with most of the tasks in this chapter, you must first locate the Tasks
menu from within the database you wish to alter. The beginning of this chap-
ter explains how to get to this menu. Assuming that you’re on the Tasks
menu, choose the Take Offline option.

After you’ve chosen this command, SQL Server displays a dialog box that
shows the progress of your request. Figure 2-2 shows this dialog box, along
with the new icon and message indicating that your database is off-line.

If you’re inclined to use an SQL command to achieve this result (rather than
the graphical SQL Server management studio), look at the ALTER DATABASE
command; it’s very useful for these types of administrative tasks.

Bringing a database online
Assuming there’s nothing wrong with your database that would prevent a
successful operation, bringing it back online is quite easy. Again, you need to
find your way to the Tasks menu for the database in question. After you
arrive, choose the Bring Online option. As when you take the database off-
line, SQL Server displays a dialog box that shows the progress of returning
your database to its desired state.

Viewing database logs
The most successful database administrators bring a broad range of inter-
personal and technical skills to the job. In fact, database administrators and
detectives often share similar traits. Both jobs require the ability to analyze
mounds of information to gain a true picture of reality. Luckily, SQL Server
2008 provides a powerful logging utility that helps database administrators
find the underlying cause of difficult problems.

Figure 2-2:
Taking a
database
off-line in
SQL Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 622

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Controlling Database State 623

To view your logs, follow these simple steps:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Management folder.

5. Expand the SQL Server Logs folder.

6. Double-click the log file you want to view.

This opens the SQL Server Log File Viewer.

7. Check the available boxes to see any additional logs.

These log files provide tremendous amounts of information. Here’s a quick
summary of the data available to you as an administrator. Note: Some of
these columns are context-sensitive; you might not see them in all cases.

✦ Date: The date and time that the logged event occurred.

✦ Source: The origination service for the logged event.

✦ Message: A detailed description of what is being logged.

✦ Log Source: The actual file that contains the message.

✦ Log Type: The class of logged information. Values can include SQL
Server, SQL Server agent, database mail, and the operating system.

✦ Category: Additional details to help you identify the source of the log
entry.

✦ Event: The operating system’s numeric identifier for this log entry.

✦ User: The login ID that created or caused this log event.

✦ Computer: The host identifier for the computer that generated this log
event.

Figure 2-3 shows the SQL Server Log File Viewer. Notice that we’re looking at
the SQL Agent, SQL Server, and Windows NT logs.

The Log File Viewer’s filtering feature is a powerful capability. It’s extremely
helpful in teasing out the exact information you seek. Figure 2-4 displays this
useful dialog box in action.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 623

Managing Disk Space624

Managing Disk Space
SQL Server administrators typically face two major disk space management
challenges: providing sufficient disk space so that the database can do its
job, and conversely reclaiming space used by the database when some of
that storage is no longer necessary. In this section, you perform both of
these important tasks.

Figure 2-4:
Filtering log
file records.

Figure 2-3:
The SQL
Server Log
File Viewer.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 624

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Managing Disk Space 625

Adding new disk storage
To store its information, SQL Server employs a collection of database files
that are stored on your Windows file system. These files can contain primary
information storage (data and indexes) or log details (used by SQL Server to
maintain the database’s integrity). It’s very easy to set up these important
database components. Here’s what you do:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Databases folder.

5. Right-click the database you want to administer.

6. Choose the Properties option.

7. Select the Files page.

This opens the dialog box shown in Figure 2-5.

8. Click the Add button and fill in the details about your new data
storage.

Figure 2-5:
Adding new
data storage
files in the
SQL Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 625

Managing Disk Space626

These details include:

• A logical name for the file. Try to make this meaningful for your
environment.

• The kind of information to be stored in the file (rows or log).

• The filegroup in which you want to store the new file.

Filegroups are a handy way of organizing your disk storage in a logi-
cal manner. If you’re interested in this topic, Book II, Chapter 1
covers this in much more detail.

• The initial size of the file in megabytes.

Try to resist the temptation to allocate an enormous initial amount of
disk space to the file. As you see in a moment, you can instruct the
SQL Server to grow the file automatically when needed.

• The growth plan for the file. The Autogrowth option instructs SQL
Server to expand the file as necessary.

• The path for the file. There is no need to provide a filename; SQL
Server takes care of this for you.

9. When you’ve finished making your entries, click OK to save your
work.

Removing disk storage
Sometimes, it’s necessary to place your database on a diet. It’s quite
common for a database administrator to over-allocate storage space, which
ends up wasting valuable disk resources. Although disk drives are getting
cheaper by the minute, they’re still not free. Fortunately, it’s quite easy
to remove unneeded disk storage space, thereby liberating it for other
purposes.

Two main mechanisms are at your disposal to free disk space. You can
remove unneeded data files from SQL Server’s control, which is the opposite
of the steps just described (adding new files to SQL Server). All you need to
do is follow Steps 1 through 7 in the previous section. Then, instead of click-
ing the Add button in Step 8, click the Remove button.

SQL Server enables the Remove button only for those files that are candi-
dates for elimination. A file is a candidate for elimination when it no longer
contains any information; SQL Server won’t even enable the Remove button
if doing so would damage your data.

Another way to free disk space is to shrink the size of already-existing data
files without actually removing them. To do that, follow the steps at the

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 626

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Moving Databases 627

beginning of the chapter to reach the SQL Server Management Studio data-
base’s Tasks menu. When you arrive at this menu, choose the Shrink option.
You’re presented with a submenu that allows you to shrink either the data-
base or its constituent data files. After you’re finished, click OK. SQL Server
does the rest.

If you’re unsure about the distribution of information in a database’s under-
lying files, you’re probably better off choosing the Shrink Database menu
option. Comparatively, if you know that a given file is under-utilized, select
the Shrink Files option. Figure 2-6 shows how it looks to shrink a database.
Figure 2-7 illustrates the same work for a file.

Regardless of which approach you follow, taking these important steps
allows you to utilize this newly freed disk space for purposes that are more
productive.

Moving Databases
This next section takes you on a tour of the different options at your dis-
posal for moving databases and their associated information. To begin, you
see how to detach and then reattach a database. The next step helps you
understand how to copy a database between SQL Server instances. Finally,
you get the hang of importing and exporting data while also understanding
when to ship transaction logs to different servers.

Figure 2-6:
Shrinking a
database in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 627

Moving Databases628

As with many of SQL Server’s administrative options, it’s a good idea to
familiarize yourself with these tasks by using a test or sample database.
After you’ve mastered these techniques, you’ll be in great shape to try them
on live data.

All the operations described in this section can be launched from the SQL
Server Management Studio database’s Tasks menu. See the beginning of this
chapter if you don’t remember how to access this menu.

Detaching databases
SQL Server offers a number of helpful mechanisms to move information
between different locations. These locations can be on the same computer,
on different computers in the same building, or even halfway around the
world. One of the easiest ways to pick up and copy an entire database with a
minimal amount of fuss is to detach it from its original instance and then
reattach it to another instance. Here’s how to make that happen:

1. Choose the Detach option from the database’s Tasks menu.

You’re presented with a simple dialog box, as shown in Figure 2-8. While
on this page, you can also choose to drop existing connections, update
the database’s statistical profile, and preserve any full-text catalogs.

If you elect to encrypt your database, make sure to export your encryp-
tion keys before detaching your database.

Figure 2-7:
Shrinking
files in the
SQL Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 628

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Moving Databases 629

2. When you’re ready, click OK.

The database detaches from its current server. To move it to another
server, copy its data and log files and then reattach the database on the
new instance.

After you detach a database, you’ll no longer see it in the list of active data-
bases on your SQL Server instance. Don’t worry, it hasn’t been deleted; it’s
available to be reattached on this instance or on a different instance.

A few caveats to detaching databases do exist. If any of the following condi-
tions apply, you won’t be able to detach your database:

✦ An active database snapshot is in the database.

✦ The database is being mirrored.

✦ Problems with the database exist, and it’s been placed in a suspect
state.

✦ The database is identified as a system database.

✦ The database is replicated and has been published.

Attaching databases
Attaching an existing database to a SQL Server instance is very simple.
Here’s what you need to do:

Figure 2-8:
Detaching a
database in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 629

Moving Databases630

1. Copy all relevant files to the new server.

This includes all the data and log files that were used by the database.

Try to have a list of these files ready before you begin the detach-and-
attach process. This is much easier than trying to figure out later all the
files that supported the database.

If you’re attempting to attach an encrypted database, you’ll first need to
import its encryption keys.

2. Choose the Attach option from the SQL Server Management Studio
Database menu.

To get to this menu, right-click the Databases folder in the SQL Server
Management Studio Object Explorer.

3. Click the Add button to open a dialog box that allows you to select the
appropriate data and log files.

Figure 2-9 shows this file-selection dialog box.

4. Click OK after you’ve found the file.

Figure 2-9:
Choosing a
database
file for
attaching in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 630

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Moving Databases 631

After choosing the data file, SQL Server populates the Attach Databases
dialog box with a list of all the constituent files that are needed to sup-
port the database. Figure 2-10 gives you an idea of what this dialog box
looks like.

5. Click OK when you’re satisfied with the list of files.

SQL Server reattaches your database.

Copying databases
As described in the preceding sections, you can use the Detach and Attach
database maintenance options to copy a SQL Server database between
instances. As is the case with many of SQL Server’s administrative responsi-
bilities, there is an alternate way to make this happen: the Copy Database
Wizard, which is the subject of the next portion of this chapter.

You can’t copy or move any of SQL Server’s system databases.

To launch this helpful wizard, choose the Copy Database option from the
database’s Tasks menu. You’re presented with the launch screen for this
wizard. When you’re past the launch screen, here’s what to do next:

1. Identify the source server (that is, the server that holds the database
you wish to copy).

Figure 2-10:
A list of
associated
files for
attaching a
database in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 631

Moving Databases632

You’re prompted for a login to this database server, and you must
decide between Windows or SQL Server-style authentication.

2. Select the destination server (that is, the server where the database
will be copied).

You’re prompted for a login to this server. Again, you must decide
between Windows or SQL Server-style authentication.

3. Choose whether you want SQL Server to use the detach-and-attach
method (similar to the steps described in the preceding sections) or
the SQL Management Object method.

The advantage of the latter approach is that SQL Server can remain
online while the change is underway. This approach is slower than the
detach-and-attach method, however.

4. Select one or more databases to copy.

Figure 2-11 illustrates a dialog box that provides details on the affected
files for the upcoming database copy operation.

5. Configure the Integration Services package with details, such as the
package’s name, its logging options, and so on.

See Chapter 4 of this mini-book if you’d like to gain more insight into the
powerful capabilities of SQL Server’s Integration Services.

6. Determine when you want this job to run, along with which
Integration Services proxy account you want to use.

Figure 2-11:
A list of
associated
files for
copying a
database in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 632

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Moving Databases 633

7. Launch the operation.

The time SQL Server takes to complete the work depends on the size of
your database. While the job is running, you see a progress report that
allows you to track exactly where things stand. Should anything go awry,
you’re notified via this dialog box.

Importing and exporting data
Despite the rapid advances made in real-time integration, the fact remains
that a major part of a database administrator’s role revolves around loading
and unloading data from information repositories (such as SQL Server). To
address this need, SQL Server offers a highly sophisticated set of integration
services. The lion’s share of Chapter 4 in this mini-book provides a detailed
analysis of how you can make these services work for you. For now, it’s time
to take a brief look at how easy it is to use SQL Server Management Studio to
import and export information.

To illustrate these examples in as clear a manner as possible, we focus on
importing data from a simple text file, and then exporting data to an Excel
spreadsheet. Obviously, you can construct much more sophisticated data
movement patterns than the ones described here, but understanding these
examples will help build a solid foundation for you. For both of these illustra-
tions, you use the SQL Server Import and Export Wizard to streamline these
tasks.

Importing from a text file
In this example, we create a simple text file that contains three columns of
information. Each column is separated from its neighbor by a comma. We
also have a destination table in the database that awaits its new information.

1. To initiate the import process, begin by choosing the Import option
from the database’s Tasks menu.

This launches the Import and Export Wizard. Use the Next button to
advance through this utility; the Back button takes you back one panel.

2. Choose the source of your imported information, along with the
server name.

For the data source, a drop-down box allows you to select from one of
many data access methods. For this example, use the Flat File Source.
You also need to provide details on a number of other context-sensitive
settings. In the case of a flat file, you must instruct SQL Server on the
file’s location and format, whether there’s a header row, what delimiter
to use, and so on. You can also preview the soon-to-be-imported data at
this point.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 633

Moving Databases634

3. Select the destination for your information.

If there’s not a table already in place, don’t worry; SQL Server will create
a new one for you.

Before launching a massive import job, you’d be wise to preview the
information.

4. Review the data type mappings for your upcoming import.

At this point, SQL Server gives you the ability to determine what should
happen in the case of an error.

5. Schedule the job.

You can elect to have the export task run immediately, or schedule it
using the SQL Server Integration Services package. For the purposes of
this example, run the job right away.

6. Review your choices from the wizard.

SQL Server gives you one more chance to check the details of the
upcoming import job.

7. Run the job.

As with many administrative tasks, SQL Server displays a dialog box that
summarizes the job’s progress. Pay close attention to the details con-
tained in this dialog box because errors are prominently displayed here.
Figure 2-12 shows that the import process finished successfully.

Figure 2-12:
A successful
import
process in
the SQL
Server
Import and
Export
Wizard.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 634

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Moving Databases 635

Exporting to a spreadsheet
To extract information from your SQL Server database:

1. Initiate the export process by choosing the Export option from the
database’s Tasks menu.

This launches the Import and Export Wizard. Use the Next button to
advance through this utility; the Back button takes you back one panel.

2. Choose the source of your exported information, along with the
server name.

For the data source, a drop-down box allows you to select from one
of many data access methods. For this example, use the SQL Server
Native Client 10.0. You also need to decide the style of authentication
to follow, along with the database name from which you wish to export
information.

3. Select the destination for your information.

Figure 2-13 shows the wide variety of possible destinations. Microsoft
Excel is the destination for the data. You also see that context-sensitive
connection settings are dependent on the type of export that you’re
performing.

Figure 2-13:
A list of
associated
files for
copying a
database in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 635

Moving Databases636

4. Decide whether you want to copy information, or construct a query to
retrieve a subset of all available data.

In many cases, you’ll simply want to copy information from your SQL
Server database. However, you have the flexibility to create a specialized
query if need be.

5. Select one or more tables and views from which to export data.

You can also edit your column mappings, as well as preview the upcom-
ing export from this dialog box. Figure 2-14 shows how the table selec-
tion and data preview dialog boxes appear.

Before executing a massive export job, take a few moments to preview
the information. It’s a good opportunity to double-check what is about
to happen and a great time to correct any mistakes.

6. Review the data type mappings for your upcoming export.

At this point, SQL Server gives you the ability to determine what should
happen in the case of an error.

7. Schedule the job.

Figure 2-14:
Previewing
export
information
in the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 636

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Backing Up and Restoring Information 637

You can elect to have the export task run immediately, or schedule it
using the SQL Server Integration Services package. For the purposes of
this example, run the job right away.

8. Review your choices from the wizard.

SQL Server gives you one more chance to check the details of the
upcoming export job.

9. Run the job.

As with many administrative tasks, SQL Server displays a dialog box that
summarizes the job’s progress. Pay close attention to the details con-
tained in this dialog box because errors are prominently displayed here.

Backing Up and Restoring Information
Although we save this topic for last, in many ways the most important job
of a database administrator is to provide a solid information backup and
restore strategy. In this section, you see how to make the most of SQL
Server’s powerful built-in utilities to protect your information and restore
your system in the event of a disaster or other data-damaging event. Also,
stay tuned for the next section, where we show you how to use the SQL
Server Maintenance Plan Wizard to automate many of the tasks shown in
this segment.

We begin by exploring the backup utility. When you know that your data is
safely archived, you can turn your attention to restoring a backed-up data-
base. As you might imagine, the topic of data archiving and restoration could
(and does) fill an entire book. In fact, there’s an entire industry focused
solely on information backup and restoration. Consequently, given the
amount of available space in this book for this important topic, we focus
only on relatively simple data backup and restoration scenarios.

Before designing and implementing a backup and restoration architecture
for your production data, spend some time experimenting with sample data-
bases. It’s always better to make mistakes with test data than with live data.

Backing up data
As with many of the tools and utilities described throughout this chapter,
you launch SQL Server’s backup capabilities from the SQL Server Management
Studio database’s Tasks menu. See the beginning of this chapter if you’re
unsure about where this menu is located. When you arrive at this menu,
follow these steps:

1. Select the Back Up menu option.

You’re presented with a dialog box similar to the one shown in Figure 2-15.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 637

Backing Up and Restoring Information638

2. Fill in values for all the relevant fields.

Here’s a brief explanation of these fields:

• Database: Choose the database you want to back up from the drop-
down list.

• Recovery model: This setting (configured when creating the data-
base and unchangeable here) describes your options when faced
with a server outage as well as what steps you can take during
backup and restore.

• Backup Type: Your choices here are full, differential, and transaction
log. As you might expect, the full database backup archives all the
information found in the database. The differential backup archives
only data that has changed since the last full backup. Finally, the
transaction log backup archives only information that has been writ-
ten into the transaction log by SQL Server.

• Backup Component: You can elect to back up the entire database, or
only a subset of the database’s supporting files.

Unless disk space is at a premium or there are other unique require-
ments (such as certain database files being offline), it’s a good idea
to back up the entire database rather than only a subset of your files.

• Name: This is a name that helps identify the backup set. SQL Server
will provide one for you if you don’t generate your own.

Figure 2-15:
The initial
database
backup
dialog box in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:53 AM Page 638

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Backing Up and Restoring Information 639

• Description: This is an optional administrator-generated summary of
the backup set.

• Backup Set Will Expire: This optional field allows you to determine
when the information that you archive will expire. You can choose a
set date or a number of days after this backup.

• Destination: If you have a tape drive installed, SQL Server offers you
the option of backing up your information to that drive. Compara-
tively, many administrators simply back up their data to a disk.

3. If necessary, fill in additional information on the options page.

Navigate to this page by clicking Options on the left of this dialog box.
On the Options page, shown in Figure 2-16, you can set additional crite-
ria about the upcoming backup.

Here’s an explanation of these fields:

• Overwrite Media: You can instruct SQL Server whether it should
append, overwrite, or create a new set of media in support of your
backup.

• Reliability: These two settings help provide additional assurance
that your backup has been done correctly.

Although it takes more time, it’s a good idea to verify the backup and
perform a checksum prior to writing to media. One day, you might be
happy that you took the time to perform both of these safeguards.

Figure 2-16:
The Options
backup
dialog box in
the SQL
Server
Manage-
ment Studio.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 639

Backing Up and Restoring Information640

• Transaction Log: If you’re backing up the transaction log, you can
choose whether to truncate (that is, delete) backed up transactions
from the log, or simply back up the very end of the transaction log.

• Tape Drive: If you’ve elected to back up your information to a tape
drive, these two settings help control the physical device.

• Compression: Because backups can be quite large, SQL Server allows
you to specify whether you want these archives to be compressed.

4. When you’ve finished setting your backup options, click OK.

SQL Server launches the backup. Depending on how much information
is being archived, this can take some time to complete. When the
backup finishes, SQL Server displays a message stating that the work is
done. SQL Server also writes a record of this backup into the system log.
If you’re interested in reading system logs, the earlier “Viewing database
logs” section discusses this in more detail.

When a backup finishes, you’re free to look at the contents of the media that
you just created. To do so, click the Contents button from the General page
within the Back Up utility (you access it from the SQL Server Management
Studio Tasks menu). Figure 2-17 shows how this looks for a recently com-
pleted backup.

Figure 2-17:
Media
contents for
a completed
backup.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 640

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Backing Up and Restoring Information 641

Restoring a backup
Backing up information is only half the fun; the real excitement begins when
you find yourself needing to restore a database. Perhaps you’ve experienced
a virus, hardware failure, or simple user error that has damaged your organi-
zation’s vital information. These kinds of situations are where your hard
work can pay off.

To begin the restore process, follow these steps:

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

Assuming that you need to restore an entire database that is no longer
present, right-click the Databases folder and choose either the Restore
Database or Restore Files and Filegroups option. For the purposes of this
example, imagine that you’ve lost the entire database and need to restore
the full set of information. Comparatively, if you haven’t lost the entire
database, you can also access restore functionality by right-clicking the
database and choosing the same two options from the Tasks menu.

4. Fill in values for all relevant fields.

Two pages’ worth of options are at your disposal. This section describes
the General page; thereafter, the Options page is covered. The following
fields require your attention:

• Destination for Restore: You can instruct SQL Server about which
database should receive the restored information. If an original data-
base has been damaged, a good strategy is to restore the archive
into a brand-new database, rather than trying to overlay the already-
damaged database.

You can also specify whether you want your restore to be as recent
as possible, or to a specific date and time. The SQL Server transac-
tion log makes this possible. This capability is handy when you know
that a particular database-damaging event occurred at a precise date
and time. You can restore your archive just prior to the problematic
incident.

• Source for Restore: You can point SQL Server at the archived infor-
mation. Your choices are to select an archive by database name, or
from a backup device. In most cases, you should be able to use the
From Database drop-down list to identify the database for recovery.
Figure 2-18 shows this page in more detail.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 641

Backing Up and Restoring Information642

5. If necessary, fill in additional information on the Options page.

Note: SQL Server doesn’t permit you to view the Options page until
you’ve successfully filled in the appropriate fields on the General page.
Figure 2-19 shows the Options page.

Figure 2-19:
The Options
properties
page for
restoring a
database.

Figure 2-18:
The General
properties
page for
restoring a
database.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 642

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Automating Things with Maintenance Plans 643

When you arrive at the Options page, the following fields are at your
disposal:

• Overwrite the Existing Database: As you might surmise from the
name of this option, you can instruct SQL Server on whether you
want an existing database overlaid with restore data. Until you’re
very sure of what you’re doing, it’s not a bad idea to leave this option
unchecked.

• Preserve the Replication Settings: We cover replication in detail as
part of Chapter 5 in this mini-book. For now, this setting simply
determines whether SQL Server enables full replication settings upon
restoration.

• Prompt before Restoring Each Backup: This option requests
that SQL Server pass the administrator before proceeding on the
restoration.

• Restrict Access to the Restore Database: You can instruct SQL
Server on whether the database should be immediately available
upon restoration. Given that you’re probably restoring because of a
serious issue, you might want to restrict access until you’re sure that
the restore has gone according to plan.

• Restore the Database Files As: SQL Server automatically creates file-
names for you. If you want to alter these system-generated names,
you can do so. However, in most cases, this won’t be necessary.

• Recovery State: You have three choices for the recovery state of
your database. In most cases, you’ll want to leave the database in a
ready to use state. This rolls back any uncommitted transactions.
The additional states provide additional control over uncommitted
transactions.

6. When you’ve finished setting your restore options, click OK.

SQL Server launches the restore operation. Depending on how much
information is being archived, this can take some time to complete.
When the restore finishes, SQL Server displays a message stating that
the work is done. SQL Server also writes a record of this into the system
log. If you’re interested in reading system logs, see the earlier “Viewing
database logs” section.

Automating Things with Maintenance Plans
Setting up and managing all the maintenance jobs that we’ve shown you in
this chapter demands a significant amount of work on the administrator’s
part. If you’ve stuck with us this far, you’re about to see how managing these
sometimes-mundane responsibilities can be made easier with maintenance
plans.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 643

Automating Things with Maintenance Plans644

It’s probably simplest to think of maintenance plans as a collection of events
that helps guide SQL Server in automatically executing the administrator’s
maintenance requirements. Microsoft has made it easy to create and main-
tain maintenance plans via a collection of graphical tools and wizards. We
spend some time to help you understand these helpful assistants.

For the purposes of this simple example, assume that you want to automate
a series of steps that culminates in a full backup of a particular database. We
show you how to use the SQL Server Maintenance Plan Wizard to make this
happen, and then show you how to fine-tune the automatically generated
maintenance plan.

1. Launch the SQL Server Management Studio.

2. Connect to the appropriate SQL Server instance.

3. Expand the connection’s entry in the Object Explorer view.

4. Expand the Management folder.

5. Right-click the Maintenance Plans folder.

6. Choose the Maintenance Plan Wizard menu option.

This launches the SQL Server Maintenance Plan Wizard where you spec-
ify your requirements.

7. Give your maintenance plan a name, along with an optional descrip-
tion, and click Next.

You can also create separate schedules for each task, or a single sched-
ule to execute all tasks. For the purposes of this basic example, we use a
single schedule. As you become more familiar with this wizard, you can
certainly set up automated runs for your new job.

8. Select one or more maintenance tasks, and click Next.

SQL Server presents you with a collection of important maintenance
operations, as shown in Figure 2-20. Highlighting each option brings up a
helpful description at the bottom of this dialog box. For this example,
we’ve selected the Check Database Integrity, Update Statistics, and Full
Backup options.

9. Order your maintenance tasks, and click Next.

You can tell SQL Server in which order you want your tasks to run.

10. For each of the tasks, select the target database, and click Next.

You have the option of choosing a specific database, or requesting that
this task be performed for all databases. Note: The specific options that
you’re shown will depend on the kind of task you’re performing.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 644

Book VIII
Chapter 2

Perform
ing M

ajor
Adm

inistrative
Tasks

Automating Things with Maintenance Plans 645

11. Tell SQL Server where you want reports about this job to go, and click
Next.

You can have the output written to a text file, or even e-mailed to an
operator.

12. Review your choices, and click Finish.

Figure 2-21 shows the proposed series of steps in this simple mainte-
nance plan. After you click Finish, SQL Server launches your mainte-
nance plan and reports on its results. Remember: You can also schedule
this maintenance plan to run whenever you like.

After you’ve run your maintenance plan, SQL Server adds it to its list of
available maintenance plans. You’re then free to edit the maintenance plan
and customize it to your heart’s content by right-clicking the maintenance
plan, and choosing the Modify option. Figure 2-22 shows how the mainte-
nance plan editor looks for the plan.

Space constraints in this book don’t permit a detailed exploration of this
extremely powerful tool; however, you can use this editor to set up more
sophisticated workflow, handle conditional logic, and further customize your
job scheduling.

Figure 2-20:
Selecting
database
mainte-
nance tasks.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 645

Automating Things with Maintenance Plans646

Figure 2-22:
The mainte-
nance plan
editor.

Figure 2-21:
Reviewing
the steps in
the mainte-
nance plan.

51_179543-bk08ch02.qxp 8/23/08 12:54 AM Page 646

Chapter 3: Security: Keeping
SQL Server Safe

In This Chapter
� SQL Server’s security model

� Setting up a well-thought-out security plan

� Granting and revoking access to SQL Server

� Integrating database and operating system security

For harried administrators faced with keeping users happy on an ever-
tightening schedule (while simultaneously grappling with shrinking

budgets), setting up and managing database security are often the last
things that come to mind. Unfortunately, the damages that result from
lapses in security can wreak havoc on an organization (and those stressed
administrators, too), usually at the most inopportune time. Fortunately, SQL
Server ships with a collection of powerful yet easy-to-configure security
capabilities, which is what this chapter is all about.

To begin, because securing your database does add to your workload, we
point out why you should care about this important topic. We then cite the
broad range of database objects that you can lock down. When the overview
is complete, we show you how to perform some of the most commonplace
security tasks.

Before getting started, keep in mind that this isn’t a comprehensive guide to
all the possible SQL Server security permutations. That would fill a book!
Instead, the focus is on getting productive quickly and handling the most
common types of security-related tasks.

The Value of Security
To a database administrator already overwhelmed with daily tasks, setting
up a well-designed security plan can sometimes seem more trouble than it’s
worth. Therefore, it’s quite fair to ask whether there’s value in making the
effort. If you can answer, “Yes” to any of the following questions, then you’ll
eventually be glad you took the time and implemented a decent security
plan:

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 647

What Can You Secure?648

✦ Will your database hold sensitive information?

✦ Will multiple people work with your data?

✦ Might any of the people who interact with your data ever part ways with
your organization in a less-than-amicable manner?

✦ Will other computers connect to your database?

✦ Might any of these external computers be compromised?

✦ Will your database server be available over a local network or the
Internet?

Chances are that at least one of these will apply to most readers. With that in
mind, it’s time to see how to get started setting up the right security plan for
your database.

What Can You Secure?
If you can store it or represent it in SQL Server, chances are that you can
secure it. Microsoft has done a great job in creating fully integrated security
architecture. All security-capable objects are securables. One securable
might in turn enclose additional securables, thereby producing an encapsu-
lated group of objects. These are scopes, and by setting security at the scope
level, all securables contained within the scope receive the same security
settings. Many securables can make up each scope; however, for the pur-
poses of this chapter we focus on a few of the object securables within the
schema scope.

To give you an idea of how many security options you have, the following list
is categorized by SQL Server’s three securable scopes:

1. Server.

This scope in turn contains three securables:

Endpoint

Login

Database

2. Database.

User Remote service binding

Role Full-text catalog

Application role Certificate

Assembly Asymmetric key

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 648

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

Who Can You Let Use Your Database? 649

Message type Symmetric key

Route Contract

Service Schema

3. Schema.

Type

XML Schema Collection

Object

The Object securable is of most interest for this chapter, and will likely be
the focus of most readers of this book. It contains the following components:

Aggregate Statistic

Constraint Synonym

Function Table

Procedure View

Queue

If some of the items in the preceding lists look a little unfamiliar to you, don’t
worry. The balance of the chapter focuses on securing the more recogniza-
ble objects, such as tables and views.

Who Can You Let Use Your Database?
The preceding section shows all the items that you can secure. The next
question to answer is what kind of users can work with your database. In
fact, some of these users aren’t people; they’re application programs and
processes. Regardless of whether the entity accessing your database ingests
food or electricity, SQL Server uses the term principal to describe them.

The three major classifications of principal, which in turn contain resources,
are as follows:

1. Operating system-based principals

Windows domain login

Windows local

2. SQL Server-based principals

SQL Server login

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 649

Who Can You Let Use Your Database?650

3. Database-based principals

Database user

Database role

Application role

SQL Server also supports the pre-packaged permissions concept. These are
known as roles, but you can think of them as a one-stop shop that allows you
to grant permissions en masse. Table 3-1 lists all the fixed server-level roles
along with their purposes. Table 3-2 lists the same for fixed database-level
roles.

Table 3-1 SQL Server Fixed Server Roles
Name Permission Available

bulkadmin Run the BULK INSERT command

dbcreator Create, change, restore, or drop a database

diskadmin Administer disk files

processadmin End SQL Server processes

securityadmin Set server and database-level permissions; set password

serveradmin Shut down the server; modify server configuration values

setupadmin Manage linked servers; run system stored procedures

sysadmin Perform any administrative task on the server

Table 3-2 SQL Server Fixed Database Roles
Name Permission Available

public Default role for all database users

db_accessadmin Maintain access permissions to the database

db_backupoperator Archive the database

db_datareader Read all data from any user table

db_datawriter Make any modifications to any user’s data

db_ddladmin Execute any DDL command in any database

db_denydatareader Blocked from reading data in a database

db_denydatawriter Prevented from making any data modifications

db_owner Perform all setup and database maintenance

db_securityadmin Administer permissions and roles

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 650

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

What Can You Let Users Do? 651

It’s important to understand that all new database users are associated with
the public database role. If you don’t explicitly set permissions for a given
securable, these users automatically inherit the permissions that have been
granted to the public database role for the securable in question. Later in
this chapter, we show you how to define permissions, including permissions
for the public database role.

What Can You Let Users Do?
Until this point, you’ve seen the type of objects that you can secure, and the
types of users and roles that you can support. The next step in realizing your
security vision is to decide who you want to work with your database, and
then grant them the appropriate permissions.

Who gets to use the database?
Having seen all the configurable security options at your fingertips, you
might be tempted to rush out, start setting up profiles and granting access
to your database server. However, because no two enterprises will have the
same security profile, it’s worth taking a little more time and getting a better
handle on exactly what you need to do for your own organization.

A great start is to figure out the types of users who you’ll need to support.
The next section lists some of the typical SQL Server user profiles that
you’re likely to encounter, in increasing order of responsibility. Your site
might not have all of these functions; you might also have the same person
handling multiple jobs, or you might be faced with additional roles and
responsibilities. Nevertheless, use this handy list as a starting point:

✦ Reporting user: This kind of user typically connects to your database
via a third-party reporting tool and runs reports or other data analysis.
Generally, you can safely restrict the ability to make changes to the data-
base because reporting users are primarily interested in reading data,
not altering it.

✦ Application user: This type of SQL Server user often doesn’t even know
that a database server is part of the picture. Instead, he generally logs in
to an application and performs work that just happens to get registered
in your database. Mostly, you don’t need to give tremendous power to
this class of user; in fact, you can usually look to your application devel-
oper or vendor for guidance on the right security profile. Certain types
of applications handle their own security, which usually translates into a
smaller set of SQL Server-based logins.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 651

What Can You Let Users Do?652

✦ Database user: Akin to reporting users, database users are generally
interested in the raw contents of your database, rather than information
filtered by any third-party applications.

✦ Application power user: These sophisticated users often need to have
higher levels of database privileges for tasks, such as creating views,
new tables, or even granting access to additional users. Nevertheless,
you would be wise to concede only as few additional privileges as possi-
ble. They can always request more control if it’s necessary.

✦ Operator: Normally, operators are concerned only with routine (but
essential) database administration tasks, such as backup and restore
operations. Unless it’s necessary for them to have higher authority, you
can generally limit their access to your database to these purely admin-
istrative tasks.

✦ Application developer: It’s common for these folks to want broad secu-
rity power, which can trigger an adversarial relationship with the data-
base administrator. Developers themselves are often subject to the
changing whims of their application users, whose requests often require
changes to the database or underlying server.

However, by setting up development and test servers, you can have your
cake and eat it, too. The developers can have wide-open security permis-
sions on these non-production servers, and you can sleep better know-
ing that your production environment is safe.

✦ System administrator: It’s quite understandable if a system administra-
tor views database administration as a bit of a nuisance. After all, his pri-
mary job is ensuring the health of the server computer. However, it’s
important that these overseers be given sufficient permission to fill in or
otherwise assist the person with the ultimate responsibility for the data-
base’s health: the database administrator.

✦ Database administrator: This profile represents the alpha and omega of
SQL Server security. Typically, the database administrator can perform
any task on a SQL Server computer. However, all this power comes
neatly packaged with a great deal of responsibility, so be careful about
handing out this role.

Choosing from the permissions menu
You use permissions to grant or remove privileges to a principal on one or
more securables. For example, you might want to give a certain user full
privileges for table 1, read-only privileges for table 2, and no privileges for
table 3. We show you how to set permissions as part of the next section.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 652

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

Implementing Security 653

Implementing Security
Because you’re up to speed on all the clever SQL Server security possibili-
ties, it’s time to put them to the test. To begin, you figure out who can
already access your server and databases. After you know that, you can
grant access to your database server and databases and then set specific
permissions on particular objects.

While you’re free to use the character-based SQLCMD utility in concert with
SQL Server’s numerous administrative stored procedures, the graphical SQL
Server Management Studio is a much more productive venue for this type of
work. Consequently, that’s where we illustrate our examples for the balance
of the chapter.

Getting a login list
Just as a login allows you to access a computer, a SQL Server login allows
people (or processes) to connect to your database system. Here’s how to get
a full list of authorized logins:

1. Start the SQL Server Management Studio.

2. Connect to your database server.

3. Expand the Security folder.

4. Open the Logins folder.

That’s all there is to it. All these people or processes can log in to your
system.

Getting a user list
It’s not enough to just log in to a SQL Server system. You also need permis-
sion to connect to, and work with, one or more databases. The following
steps show how you can tell who is allowed to do this:

1. Start the SQL Server Management Studio.

2. Connect to your database server.

3. Expand the Databases folder.

4. Open the specific folder for the database that you want to check.

5. Open the Security folder for the database.

6. Expand the Users folder.

You can see everyone who is authorized to connect to this particular
database.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 653

Implementing Security654

Granting access
Authorizing people and applications to work with your SQL Server system is
the most common, security-related administrative task that you’re likely to
face. In this next section, we show you the sequence of events you need to
follow to make that happen.

Creating logins
To begin, anyone who wants to talk with your SQL Server database server
needs a login. Here’s how to create one:

1. Start the SQL Server Management Studio.

2. Connect to your database server.

3. Expand the Security folder.

You find a group of interesting folders beneath the security folder. These
folders include:

• Logins: Individuals or processes that can connect to your SQL Server
instance.

• Server roles: A collection of pre-defined groups of permissions.

• Credentials: Authentication details that let a SQL Server-validated
user gain access to resources and services outside the SQL Server
environment.

• Cryptographic Providers: If you’ve elected to include any third-party
cryptographic capabilities, here’s where you’ll find a list.

4. Right-click the Logins folder, and choose New Login.

This opens a dialog box where you can enter details about your new
login, as shown in Figure 3-1.

5. Decide whether you want to use Windows or SQL Server authentication.

When you choose Windows authentication, you’re instructing SQL Server
to obtain its login information directly from the operating system. This
integrated security approach, which is the default, makes sense especially
if you’re using the same login architecture for other applications. You can
search your computer or others on your network for login details.

Comparatively, choosing SQL Server authentication means that you’re
creating a login that is meaningful only within the confines of your data-
base server; it has no relationship with the operating system. You set
your server authentication behavior via the Server Properties page
within the SQL Server Management Studio. You can elect to allow
Windows Authentication Mode only, as well as authorize SQL Server
Authentication.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 654

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

Implementing Security 655

6. Fill in additional general properties.

Here’s where you can set the security policy for this login as well as its
default database and language. You might also take the opportunity to
associate one more credentials with this login. A credential contains
information necessary to work with non–SQL Server-based resources.

7. Switch to the Server Roles page, and authorize any server roles that
you want this login to have.

Available server roles are listed in the earlier “Who Can You Let Use
Your Database?” section. Be careful about giving new logins broad
capabilities.

8. Switch to the User Mapping page, and enable connectivity to all rele-
vant databases.

By enabling database connectivity here, SQL Server automatically cre-
ates a user with this name in each database, which saves you time later.
You can also set his default schema and database role membership on
this property page.

9. (Optional) Switch to the Securables page and associate the login.

You can have a group of logins inherit the security settings of the
public role, which is much faster than setting them on an object-by-
object basis.

Figure 3-1:
Creating a
new login.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 655

Implementing Security656

10. Switch to the Status page, and grant the login permission to connect to
the database.

You can also disable active logins on this page.

11. After you’ve finished setting the properties for this login, click OK to
save it.

This login is ready to connect to your database server. Additionally,
if you associated the login with one or more databases and those
databases have public permissions set, this login works with those
databases.

Creating users
A database user is someone who not only has permission to connect to your
SQL Server instance, but also has the ability to work with one or more data-
bases. As just described, you can make this happen by simply associating a
login with one or more databases. Comparatively, here’s how to get the job
done if you want to do this manually:

1. Start the SQL Server Management Studio.

2. Connect to your database server.

3. Expand the Databases folder.

4. Expand the folder for the specific database where you want to create
the user.

5. Expand the Security folder.

Although our focus is on the Users folder, beneath the Security folder
you can find details about all roles, schemas, encryption keys, and cer-
tificates for this database. You can also create new instances of roles
and schemas by right-clicking the appropriate folder.

6. Right-click the Users folder, and choose New User.

This opens a dialog box with a series of different pages, as highlighted in
Figure 3-2.

7. Associate the new user with any owned schemas.

8. Assign the new user to any database roles.

9. Switch to the Securables page, and set up authorization for the new
user.

You can set security permissions by user, or you can set them for the
public database role (which is faster and more convenient). If you want
to set them by user, use the Securables page. You can search for the spe-
cific types of securables from within this page.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 656

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

Implementing Security 657

10. After setting the security profile for the new user, click OK to save the
record.

Your user can now work with all authorized objects in this database.

Setting permissions by securable
So far, we’ve described security from the perspective of the user. However, a
different (and often better) way to implement your security architecture is
available. In this case, you set your security at the securable level, granting
or revoking permissions for users, database roles, or application roles.

For example, suppose that you want to set permissions on a given table.
Here’s how to make this possible:

1. Start the SQL Server Management Studio.

2. Connect to your database server.

3. Expand the Databases folder.

4. Expand the folder for the specific database where you want to set the
permissions.

5. Expand the Tables folder.

6. Right-click the table in question, and choose Properties.

Figure 3-2:
Creating a
new user.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 657

Implementing Security658

7. Switch to the Permissions page.

8. Click the Search button.

This opens a dialog box that allows you to locate users, application
roles, and database roles.

9. Click Browse to see a list of candidates.

10. Choose at least one candidate for permission granting, and click OK.

11. Set permissions for the candidate, and click OK.

With your candidates identified, you can now set their permissions
(even to the column level) according to your security policies. Figure 3-3
gives you an idea of what this dialog box looks like.

Modifying or revoking permissions
Altering or denying permissions is a relatively straightforward affair. In
the case of SQL Server Management Studio, you generally use the same
sequence of steps to make these changes; the main difference is that instead
of adding permissions, you remove them.

Figure 3-3:
Granting
permissions
on a table.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 658

Book VIII
Chapter 3

Security: Keeping
SQL Server Safe

Implementing Security 659

With SQL Server 2008, Microsoft introduced a collection of administrator-
centric technologies known as Policy-Based Management. While many DBAs
primarily use these capabilities to configure and tune their database envi-
ronment, this strategy can also play an important role in helping to secure
SQL Server. If this interests you, visit Book I, Chapters 2 and 4 because
enforcing good security standards is a significant part of that discussion.

To whet your appetite, Figure 3-4 shows a simple example of running one of
SQL Server’s built-in security-focused policies (in this case, checking for
Guest permission violations). This is a very small example of the kind of
security operations that you can automate by using Policy-Based
Management.

Figure 3-4:
Running a
security
policy check
in the SQL
Server
Manage-
ment Studio.

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 659

Book VIII: Database Administration660

52_179543-bk08ch03.qxp 8/23/08 12:54 AM Page 660

Chapter 4: Integration
and Your Database

In This Chapter
� Addressing common integration challenges

� Tying Integration Services all together

� Using SQL Server Integration Services

Although proud SQL Server administrators like to think that their data-
bases occupy a cherished location in the enterprise, most organiza-

tions store information in a wide variety of venues and formats. This
disparity, along with the ever-present need to tie all this data together,
has traditionally caused database administrators no end of aggravation.
Fortunately, SQL Server 2008 includes some very powerful integration tools
that help remove much of the pain from these never-ending exercises, which
is what this chapter is all about.

We get the ball rolling by citing a handful of the most common integration
challenges that liven up the existences of SQL Server administrators. After
these examples, I take you on a brief tour of the SQL Server Integration
Services technology, which is the mechanism at your disposal to address
these needs. Finally, I show you how to use these features to build and
deploy a simple integration project.

Integration is a very rich topic, with a virtually limitless quantity of com-
plexities and permutations. Given space restrictions, the goal of this chapter
is to give you a solid foundation upon which you can construct your cus-
tomized integration solution. Comparatively, if you’re simply looking for
how to import and export data, check out Chapter 2 of this mini-book.

Common Integration Challenges
Overcoming integration-based problems has always tested the skills and
patience of database administrators. While technology continues to prolifer-
ate, however, the number of integration touch-points expands exponentially.
Here are a few examples of some common integration scenarios. Fortunately,
SQL Server Integration Services can help you address each one of them.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 661

How SQL Server Integration Services (SSIS) Ties It All Together662

✦ Periodic exporting of information to flat files (text, comma-separated,
and so on)

✦ Periodic importing of information from flat files

✦ Setting up a Web services/XML interface

✦ Consolidating multiple data sources into one

✦ Distributing a single data source to multiple locations

✦ Feeding information into a packaged enterprise application (such as
SAP, Oracle, and so on)

✦ Interacting with multiple relational database platforms (such as Oracle,
MySQL, and so on)

✦ Creating a data warehouse

✦ Using FTP to send and receive data

✦ Integrating data with desktop productivity tools (such as Microsoft
Excel, Word, and so on)

These are just a few examples; chances are that most readers are faced with
several additional, specialized integration requirements of their own.

How SQL Server Integration Services
(SSIS) Ties It All Together

If you run a Web search for Extract, Transform, and Load Tools (also known as
ETL), be prepared to spend a while evaluating your results. Dozens of prod-
ucts (of varying quality and depth) that specialize in moving information
among disparate systems are available. If that prospect doesn’t excite
you, you’ll probably be pleasantly surprised to know that the SQL Server
Integration Services (SSIS) technology that comes with your database pro-
vides a robust set of capabilities to help you get the job done.

In this section, I briefly summarize how SSIS works and what it’s used for. In
the next section, I show you how to put it to work solving your own data
integration challenges.

SSIS and the rest of the SQL Server platform
With SQL Server 2008, Microsoft has done an excellent job of delivering a
seamless data platform. For example, SSIS integrates with the data mining
capabilities of the SQL Server Analysis Services (described in Book VI). It
also uses the Visual Studio development platform, as does both Analysis and
Reporting Services (described in Book V). Therefore, investing in learning

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 662

Book VIII
Chapter 4

Integration and
Your Database

How SQL Server Integration Services (SSIS) Ties It All Together 663

one part of the SQL Server platform pays you dividends when you research
the other parts of the technology.

SSIS architecture
Given the potentially enormous data volumes found in modern integration
projects, SSIS was designed for high performance. It uses the following tech-
niques to drive throughput:

✦ Threading

✦ Buffer-oriented architecture

✦ Caching/persistent lookups

✦ Change Data Capture (CDC)

The last capability is very useful in identifying only data that has been
changed; performance increases by updating only altered information. Also,
an interim staging database is unnecessary; everything is handled in memory.

SSIS uses adapters to connect to the wide variety of formats shown in the
following list:

✦ ADO.NET

✦ OLE DB

✦ ODBC

✦ Flat file

✦ Excel

✦ XML

✦ 3rd party formats

As shown in the next section, SSIS is able to handle complex data flows,
including splitting, merging, and combining data streams. It’s also adept at
handling XML data, “shredding” it into tabular form.

By integrating with the Visual Studio development environment, SSIS doesn’t
force the developer to learn a new platform. In terms of programming lan-
guages, SSIS easily leverages code written in

✦ C#

✦ C++

✦ Visual Basic .NET

✦ Scripts

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 663

Using SQL Server Integration Services664

SSIS also includes a debugger, which is extremely helpful in deciphering the
inevitable data and logic issues encountered during integration.

Using SQL Server Integration Services
Now that you’re up to speed on some of the capabilities offered by SQL
Server Integration Services, the balance of the chapter walks you through a
practical integration example. In this scenario, you load a Microsoft Excel
spreadsheet containing new customer and payment transaction records into
a database. What makes this exercise a little more challenging than a basic
import operation is that the records found in the spreadsheet need to be
split and then placed into two different tables. The tables’ structures are
defined here:

CREATE TABLE [dbo].[students]
(

[student_id] [int] NOT NULL,
[last_name] [varchar](50) NOT NULL,
[first_name] [varchar](50) NOT NULL,
[credit_limit] [money] NOT NULL

)

CREATE TABLE [dbo].[payments]
(

[payment_id] [int] NOT NULL,
[student_id] [int] NOT NULL,
[payment_date] [datetime] NOT NULL,
[payment_amount] [money] NOT NULL

)

After the integration project is created, the next step is to deploy it to the
server where it was created.

This example is extremely simple; in reality, you face complex requirements
for data formatting, transformation, exception handling, publishing to multi-
ple servers, and so on. As described in the previous section, SQL Server
Integration Services is designed to support these types of real-world con-
straints gracefully.

To make this section more readable, the instructions are broken into several
step groups. In keeping with the philosophy followed throughout the book,
you use SQL Server’s excellent graphical tools to accomplish these tasks.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 664

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 665

Creating the project
First things first, right? To start, you create the project and give it a name, as
shown in the following steps:

1. Launch SQL Server Business Intelligence Development Studio.

You find this under the SQL Server 2008 menu. Depending on your con-
figuration, you might see a summary page, or a blank screen.

2. Choose File➪New Project.

You see a dialog box where you can pick the type of project you want to
create, as shown Figure 4-1.

3. Click the Integration Services Project option.

4. Fill in the name of the project, its working directory, and the name
you want for the finished solution; then click OK.

Adding connections for all data sources
With the project created and named, you next set up and configure connec-
tions to all the participants in the upcoming integration.

Adding a connection to Microsoft Excel
To begin with the connection to the Microsoft Excel spreadsheet that con-
tains the transaction data, follow these steps:

1. Make sure that the Control Flow tab is selected.

2. Right-click the Connection Managers tab.

Figure 4-1:
Creating a
new project.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 665

Using SQL Server Integration Services666

3. Choose the New Connection option.

4. Choose Excel from the drop-down list and then click Add.

We weren’t kidding when we described how flexible SQL Server
Integration Services is; Figure 4-2 shows some of the varied connection
types at your disposal.

5. Enter details about your spreadsheet and then click OK.

You’re prompted to provide a filename, an Excel version, and whether
the spreadsheet has column names in the first row. If you’re connecting
to a different type of information source, you fill in different options.

After you click OK, the new connection is listed in the Connection
Managers area of the Control Flow tab.

When working with flat files (including spreadsheets), you find things more
pleasant when you include column names at the top of the file.

Adding a connection to the database
It takes two to tango. The connection to the Excel spreadsheet is ready to
go; the following steps set up a connection to the database:

1. Make sure that the Control Flow tab is selected.

2. Right-click the Connection Managers tab.

3. Choose the New Connection option.

Figure 4-2:
Available
types of
connection.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 666

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 667

4. Choose ADO.NET from the drop-down list and then click Add.

Other connector technologies can be used to interact with a SQL Server
database, but ADO.NET is the latest-and-greatest technique, so that’s
what we’ve chosen.

5. Fill in the ADO.NET Configuration Manager dialog box.

If there was an already existing connection to SQL Server, I could simply
select it from the list of available connections shown on the left side of
this dialog box under Data Connections. Because there isn’t, I’ve clicked
the New button, which brings up the Configuration Manager dialog box.

6. Provide details to identify the new connection and then click OK.

You’re asked to choose a provider (just use the default value), enter a
server name, enter login details, and pick a database where your data
will go. You can even test the connection to ensure everything works,
which is what we’ve done, as shown in Figure 4-3.

7. Review the details for your new connection and then click OK.

You see both of your connections (Excel and SQL Server) on the
Connection Managers tab.

Figure 4-3:
Testing a
connection.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 667

Using SQL Server Integration Services668

Creating a data flow task
With both sides of the integration job represented with connections, you
next set up a conversation between the two parties.

1. Click the Data Flow tab.

2. Click the link in the middle of the screen to create a new Data Flow
Task.

Note: If there aren’t any defined data flow tasks, the link reads, ‘No Data
Flow Tasks have been added to this package. Click here to add a new
Data Flow task.’

3. Click on the Toolbox icon in the upper left of the screen.

This collection of tools supports Data Flow tasks.

4. Drag the Excel source icon from the Data Flow Sources section of the
Toolbox onto the palette.

5. Drag the ADO.NET destination icon from the Data Flow Destinations
section of the Toolbox onto the palette. Do this twice.

Your palette (found on the Data Flow tab) now has an Excel source and
two ADO.NET destinations (one per destination table: students and
payments). At this point, you’re free to rename these graphics to some-
thing more meaningful for your environment. Just click the icons and
enter your selection.

Leave some room among the icons; in a moment, we’ll add a connection
graphic.

6. Drag the Multicast icon from the Data Flow Transformations section of
the Toolbox onto the palette.

Position the Multicast icon between the Excel object and the two
ADO.NET objects; in a moment, we’ll draw lines between them. We’ve
selected Multicast because this example shows portions of a spread-
sheet being copied into two different tables.

7. Drag the green line from the Excel object to the Multicast object.

This represents a flow of information from Excel to the Multicast object;
the red line is used for error handling (which isn’t part of this example).

8. Drag a green line from the Multicast object to each of the two
ADO.NET objects.

This indicates that information will be distributed to each of the two
database connections. Figure 4-4 shows the completed connection
diagram.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 668

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 669

This simple example just scratches the surface of the potential for sophisti-
cated information flow. You have many more transformation options in the
Toolbox.

Associating connections with the data flow
At this point, you have two connections (one for Excel, one for the data-
base), as well as a data source (for Excel) and two data destinations (one per
table). The next task is to associate the connection with the members of the
data flow.

1. Double-click the Excel icon on the palette.

This opens a dialog box where you can

• Choose a connection manager. In this case, you select the Excel con-
nection manager we created earlier in this chapter.

• Decide upon the data access mode. For this example, we’ve chosen
Table or View, which means that the spreadsheet is treated like a
table.

• Select the worksheet.

Figure 4-4:
Connections
between
source,
multicast,
and
destinations.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 669

Using SQL Server Integration Services670

• View all columns in the spreadsheet. This is why it’s a good idea to
have formalized names at the top of your text files.

• Configure exception handling.

You’re even able to get an advance look at your data by clicking the
Preview button, as shown in Figure 4-5.

2. After you’ve finished associating the Excel connection with the Excel
data source, click OK.

The next order of business is to perform the same type of configuration
for each database destination.

3. Double-click either of the two ADO.NET icons on the palette.

This opens a dialog box where you can select the destination table, the
mappings between the source and destination columns, and how you
want errors to be handled. Figures 4-6 and 4-7 show how this dialog box
appears, for the students and payments table, respectively.

If you’d like an idea of how things might turn out, you can click on the
preview button to see more. After you’ve finished configuring the con-
nection, click OK to save your work.

Figure 4-5:
Previewing
the spread-
sheet’s data.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 670

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 671

Figure 4-7:
Configuring
the
database
connection
for the
payments
table.

Figure 4-6:
Configuring
the
database
connection
for the
students
table.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 671

Using SQL Server Integration Services672

4. Repeat Step 3 for the other ADO.NET icon.

You need to configure every destination.

5. Test the project to ensure everything works correctly.

Click the Run icon and monitor your results.

Save your work — you don’t want all that effort to be wasted!

Congratulations! You’ve set up your integration project. Figure 4-8 shows
how the completed diagram appears during a test run.

Your work isn’t complete, however. You still need to build and deploy the
project.

Building the project
The next step in implementing a SQL Server Integration Services project is to
set properties and then build the project. Here’s how to make that happen:

Figure 4-8:
Performing
a test run
of your
integration
project.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 672

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 673

1. Right-click the project’s name in the Solution Explorer window and
then choose Properties.

This opens a dialog box where you can set several important attributes
for the project, including:

• The output directories for the build process

• Whether you want the build process to create deployment files

• Debugging options

Choose True for the CreateDeploymentUtility property so that
SQL Server generates the files necessary to run the project outside of
the development environment.

2. When you’ve finished making your configuration changes, click OK to
save your work.

3. Construct the project by choosing the Build option from the SQL
Server Business Intelligence Development Studio menu.

SQL Server uses the options you set in Step 1 to generate the files neces-
sary to support your integration project. You can double-check the
output directory to ensure that everything was done correctly.

Running the project
Now the fun begins — you run the project in the real world. To keep this
example simple, assume that you’re running the project manually. Of course,
you can also set it to run via the Windows Scheduler utility, as well as other
more sophisticated deployment options, such as distributing the project to
multiple servers, setting configuration options, and reporting results.

1. Open Windows Explorer in the directory where you deployed the
project.

2. Double-click the SQL Server Integration Services package file.

This file has a .dstx suffix; you set its name during the development
process.

3. Fill in any desired settings in the Execute Package Utility and then
click Execute to run the integration.

This utility (shown in Figure 4-9) offers several pages of properties,
including:

• General: Here’s where you tell SQL Server the name of the package
(it’s already filled in by default), whether the package will be run
from a file or the database, and any necessary login details.

• Configurations: This page allows you to import any customized con-
figuration details.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 673

Using SQL Server Integration Services674

• Command files: If you want to use a command line-based execution
statement, you enter it here.

• Connection Managers: This displays the connection managers that
you defined as part of the project.

• Execution Options: Here’s where you set runtime behavior for
the package, including whether you want validation, checkpoints,
and so on.

• Reporting: This page’s purpose is to allow you to determine which
console events and console-logging attributes will be reported on.

• Logging: If you wish to add logging to your package, here’s where
you can do so.

• Set Values: This page establishes runtime values for any properties
of your package.

• Verification: You have significant control over whether SQL Server
will verify the package build, package ID, and version ID for this
project.

• Command Line: This displays an editable command line for launch-
ing the package.

Figure 4-9:
The Execute
Package
utility.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 674

Book VIII
Chapter 4

Integration and
Your Database

Using SQL Server Integration Services 675

4. Review your results.

SQL Server reports on your project’s outcome. Figure 4-10 shows how
this appears.

Figure 4-10:
Results from
executing
an
integration
package.

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 675

Book VIII: Database Administration676

53_179543-bk08ch04.qxp 8/23/08 12:55 AM Page 676

Chapter 5: Replication

In This Chapter
� Exploring the publisher metaphor

� Defining a replication publishing model

� Configuring replication

� Replicating between different hosts

Very often, you need to have all or some of your data in more than one
place at the same time. If the data is never modified, you could just

make a copy of it as you would make a copy of a piece of paper on a Xerox
copier. However, databases are rarely static. They change. Although it’s
impossible to update the copied piece of paper when the original changes
(at least it’s impossible today), replicating the changes from one database to
another database is possible.

The goal of replication is to make copies of the data and ensure those copies
are kept up to date. How often the data is updated depends on how often
the data changes and how up to date the data needs to be. Some of the rea-
sons to replicate data are to offload the reporting workload to another SQL
Server, replicate the data to dedicated backup server so backups can occur
without interfering with the online server, and keeping data centralized from
several branch office databases.

Exploring the Publishing Metaphor
Replication is based on a publishing metaphor. In the publishing world,
there are publishers, distributors, and subscribers. Replication defines dif-
ferent roles based on the real-world example of publishing.

✦ Publishers: Publishers maintain the source database that will be
replicated.

✦ Distributors: Distributors send the desired portions of the database to
subscribers. Often, the publisher also fulfills the role as a distributor,
but this isn’t required. When a large number of subscribers exist, dis-
tributors take some of the load off the publisher.

✦ Subscribers: Subscribers receive the replicated data in the form of a
publication.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 677

Exploring the Publishing Metaphor678

Figure 5-1 shows the relationship between publishers, distributors, and sub-
scribers. Remember though, it’s very common for the publisher to also fulfill
the distributor role.

The data that is published and distributed isn’t necessarily the entire data-
base. Instead, portions of the database (such as tables and indexes) are
identified to be published. The published data are referred to as articles and
publications:

✦ Articles: Articles are the individual database objects that are published.
These objects are typically tables, indexes, and stored procedures, but
can be any object within the database.

✦ Publication: A publication includes one or more articles. Subscribers
can subscribe to publications (but not individual articles).

Publisher Distributor

Subscribers

Figure 5-1:
Replication
among the
publisher,
distributor,
and
subscribers.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 678

Book VIII
Chapter 5

Replication

Defining a Replication Publishing Model 679

This works similarly in the real world. Newsweek magazine, which is pub-
lished internationally, has one central publisher that creates all the content.
After a magazine is published, it’s handed over to distributors who send the
copies to subscribers.

Each magazine has articles within it based on the publication. The Asian
publication has different articles than the U.S. publication. The publication
you subscribe to determines which articles you receive.

It’s not possible to subscribe to only certain articles (at least not in the print
version). Instead, you subscribe to the publication and receive all the arti-
cles in the publication.

Subscriptions can either be push subscriptions or pull subscriptions:

✦ Push Subscription: A push subscription is initiated by the distributor.
Push subscriptions are sent either continuously as changes occur or on
a preset schedule.

✦ Pull Subscription: A pull subscription is initiated by the subscriber.
Sticking with the publishing metaphor, this would be when you go to the
magazine newsstand and pick up a copy of Newsweek.

Defining a Replication Publishing Model
With replication, three different models exist. These models define whether
the entire database is replicated (or only the changes), how often the repli-
cation occurs, and who can make changes to the source database.

✦ Snapshot replication: Snapshot replication involves making a copy of
the publication at a moment in time. The entire publication is then repli-
cated to the receiving database. Snapshot replication is the easiest to
implement, but takes the most bandwidth.

✦ Transactional replication: Transactional replication is used to con-
stantly update and publish the articles. This is used when the sub-
scribers need access to changes as they occur. All changes to the
database are recorded in the transaction log. The log reader agent then
reads the transaction log to replicate the changes to the receiving data-
base. These changes are then applied to the receiving database.

✦ Peer-to-peer transactional replication: Peer-to-peer replication is used
for applications that might read or modify data at any of multiple data-
bases participating in replication. It’s built on the foundation of transac-
tional replication, but peers in transactional replication can both read
and modify changes; subscribers in transactional replication can only
receive the changes.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 679

Defining a Replication Publishing Model680

✦ Merge replication: Merge replication is used when multiple locations
need to be able to update the data. For example, a retail chain might
have multiple stores that all need to submit sales and inventory data to
the headquarters location. If they don’t have a product in stock, they
check other locations for customers, so they need access to inventory
data at other locations. Merge replication allows each of the retail stores
to be publishers.

In other words, instead of changes made at only one central location,
changes can be made in databases at multiple locations and then
merged.

Figure 5-2 shows how different servers could communicate in Merge replica-
tion. Each server holds all three roles of publisher, distributor, and sub-
scriber. For changes to their database, each retail store server would be
a publisher and a distributor, sending their changes to the HQ database.
The HQ server would be a subscriber to each of the retail store servers.
Additionally, the HQ server would be a publisher and subscriber to each
of the retail store servers.

Reasons to use Snapshot replication
Snapshot replication is most useful when subscribers don’t need the data to
be completely up to date.

Publisher/
distributor/
subscriber

Publisher/
distributor/
subscriber

Publisher/
distributor/
subscriber

HQ

Publisher/
distributor/
subscriber

Retail store

Retail store

Retail store

Figure 5-2:
Merge
replication.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 680

Book VIII
Chapter 5

Replication

Defining a Replication Publishing Model 681

All replication types start with a snapshot. Transactional and Merge replica-
tion use different methods to keep the replicated data up to date. In con-
trast, the Snapshot replication simply creates another snapshot to update
the second database.

The primary reasons to use Snapshot replication include

✦ Data rarely changes: If the data is relatively static, the added overhead
of other types of replication isn’t needed. For example, consider a data-
base that includes product information used to produce a catalog. If the
catalog is produced quarterly, then snapshot replication could be used
to create a snapshot of the database on only a quarterly basis.

✦ Subscribers can be out of date with the publisher: In situations where
the subscriber doesn’t have to be up to date with the publisher, snap-
shot replication can be used. For example, the marketing department of
a company might need access to past sales to do marketing analysis.
Giving the marketing department a new snapshot of data on a monthly
basis might provide data as much as 30 days out of date, which is com-
pletely acceptable.

✦ Small amounts of data are replicated: A database could be over 20GB in
size. However, publications can be very small. In a situation where the
publication is only 5MB, creating a snapshot replication would cause
little overhead. Different factors, such as bandwidth (replicating over
100MB LAN, or replicating over 56K demand-dial connection) and
resource usage (CPU, Memory, and Disk) on the source database deter-
mine what’s considered small amounts of data.

✦ Bulk changes occur on a schedule: Consider a product database that
holds products that your company sells. The product changes once a
month. On a monthly basis, products are added, deleted, and modified
via a bulk import and modification process. Immediately after the
changes are implemented, you can use snapshot replication.

The primary benefit of using Snapshot replication is that you don’t have the
additional overhead required by Transactional and Merge replication.

Reasons to use Transactional replication
Transactional replication keeps the replicated database up to date by
copying the transaction log and applying the transactions that apply to
the publication.

The primary reasons to use Transactional replication include

✦ Subscribers need the changes as they occur: In other words, sub-
scribers need their data to be as up to date as possible. Consider a

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 681

Defining a Replication Publishing Model682

company that sells products that are housed in three different ware-
houses via an online Web application. Prior to a sale, customers want to
know if the product is in stock. The databases at the warehouses could
be replicated to a central database accessible by the Web application
and kept up to date with Transactional replication.

✦ Latency must be minimized: Similarly, the data must be up to date. With
Transactional replication, the data can be replicated much more often
than snapshot replication.

✦ The publisher has a high volume of data changes: If the database is
highly active (with many INSERT, UPDATE, and DELETE statements),
using snapshot replication would cause only the data to be out of date
quickly. Transactional replication would allow the data to stay up to
date.

The primary benefit of Transactional replication is ensuring that the sub-
scriber’s data is kept up to date.

Reasons to use Peer-to-peer replication
Peer-to-peer replication maintains multiple copies of the same data across
multiple servers. Applications that need access to the data can query any
one of the copies, or query multiple copies simultaneously.

In peer-to-peer replication, servers are referred to as nodes. Each of the
nodes can accept changes (inserts, updates, and deletions) and replication
ensures the changes are made at the other nodes.

The primary reasons to use peer-to-peer replication include

✦ Load Balancing: With the database stored on multiple nodes, applica-
tions can be programmed to query the data from different locations.

A single application can perform queries across multiple nodes simulta-
neously providing significant improvements in read performance. Or,
multiple servers can query different nodes. For example, a Web applica-
tion running on a Web farm can have multiple Web servers. Servers in
the Web farm can be programmed to query different nodes.

✦ High Availability: A single node can fail and the other nodes can take
over the load. This can also be used to take nodes offline for mainte-
nance purposes.

The primary benefit of peer-to-peer replication is the ability to spread multi-
ple copies of the database across multiple nodes. Additionally, both reads
and writes can occur on any of the nodes.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 682

Book VIII
Chapter 5

Replication

Configuring Replication 683

Reasons to use Merge replication
Merge replication allows each subscriber to be a publisher/distributor
also. In other words, each server involved in Merge replication can receive
changes from other replication partners, and send changes to other replica-
tion partners.

The primary reasons to use Merge replication include

✦ Subscribers need to be able to update their own data: In other words,
the subscribers need to be able to make changes to the database.
Instead of only being subscribers, they also need to be publishers.

✦ Subscribers need their own partition of data: Databases can be hori-
zontally partitioned so that each location owns some of the data. For
example, consider a database that records sales from four different
stores. The database could have four million rows (one million rows for
each store). By horizontally partitioning the data, each store would own
their rows and could host them on their server. However, other servers
could access all the data. If subscribers need their own partition of data,
Merge replication is useful.

✦ Conflict resolution and detection is needed: When multiple publishers
are allowed to update the same database, conflicts can occur. For exam-
ple, if five cases of a certain red wine are in stock and two stores both
sold one case at the same time, the possibility exists for the inventory to
be decremented by one case, instead of two. Merge replication has
methods in place to detect and resolve this conflict.

The primary benefit of Merge replication is allowing the subscribers to
update data (or also act as publishers).

Configuring Replication
Replication primarily occurs between two different systems (such as a
server to a server or a server to a client), but it’s also possible to replicate
data between one database and another.

From a big picture perspective, replication is configured in three steps:

1. Configure the publisher and distributor.

2. Choose articles and create publications.

3. Configure the subscriber.

We discuss each of these in turn throughout the rest of this section.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 683

Configuring Replication684

Configuring the publisher and distributor
In the following steps, you create a database and then configure the replica-
tion distributor and publisher.

1. Launch SQL Server Management Studio (SSMS).

Choose Start➪All Programs➪Microsoft SQL Server 2008➪SQL Server
Management Studio.

2. On the Connect to Server screen, click Connect.

3. Click the New Query button to create a new query window.

4. Enter and execute the following code to create a new database named
ReplicateMe:

USE Master;
GO
CREATE DATABASE ReplicateMe;

5. Enter and execute the following code to create a table in your
database:

USE ReplicateMe;
GO
CREATE TABLE Employee
(

EmployeeID int IDENTITY(100,1) NOT NULL,
LastName varchar(35) NULL,
FirstName varchar(35) NULL,
CONSTRAINT [PK_Employee_EmployeeID]

PRIMARY KEY CLUSTERED
(

EmployeeID
)

)

6. Enter and execute the following code to add a couple of rows of data
to your database:

INSERT INTO Employee (LastName, FirstName)
VALUES

(‘Herman’, ‘Munster’),
(‘Sally’, ‘Fields’)

7. Enter and execute the following code to create a stored procedure in
your database:

USE ReplicateMe;
GO
CREATE Proc dbo.usp_ShowHelp
AS
EXEC sp_help Employee

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 684

Book VIII
Chapter 5

Replication

Configuring Replication 685

This creates a stored procedure that provides information on the
Employee table. When you configure replication, you can configure
whether this stored procedure will be replicated.

8. Find the Replication container in the SSMS Object Explorer, as shown
in Figure 5-3.

This is below Server Objects and contains Local Publications and Local
Subscriptions.

9. Right-click the Replication container and choose Configure
Distribution.

10. On the Configure Distribution page, click Next.

Note: It is possible to click Finish at this point. The following steps (up
to Step 15) simply show you the screens that you can modify if you
choose.

11. On the Distributor page, accept the default showing the same com-
puter will act as its own distributor. Click Next.

12. On the SQL Server Agent Start page, accept the default saying Yes,
configure the SQL Server Agent service to start automatically. Click
Next.

13. On the Snapshot Folder page, accept the default snapshot folder. Click
Next.

14. On the Distribution Database page, accept the defaults. Click Next.

15. On the Publishers page, accept the default showing your computer
will be a publisher. Click Next.

16. On the Wizard Actions page, ensure Configure Distribution is
checked. Click Next.

17. On the Complete the Wizard page, click Finish.

After a moment, the Configuring page indicates that the publisher has
been enabled, the distributor has been configured, and SQL Server
Agent has been set to start automatically.

Figure 5-3:
The
Replication
container in
SSMS.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 685

Configuring Replication686

18. On the Configuring Success page, click Close.

At this point, you’ve configured a publisher and a distributor. However,
you haven’t identified articles to include in a publication, or any sub-
scribers, so replication won’t actually start yet.

19. Leave SSMS open for the next part of the exercise.

Creating a publication
In the following steps, you create a publication using Snapshot replication.
You add the table created earlier as an article to your publication but omit
the stored procedure.

1. With SSMS Open, right-click Local Publications and choose New
Publication.

2. On the New Publication Wizard page, click Next.

3. On the Publication Database page, select the ReplicateMe database
and click Next.

4. On the Publication Type page, select Snapshot Publication and click
Next.

5. On the Articles page, click the check box next to Tables. Click the plus
(+) next to Tables.

Similar to Figure 5-4, your display shows only the objects that are
available within the database, allowing you to choose which objects
to replicate.

Figure 5-4:
Selecting
articles
for the
publication.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 686

Book VIII
Chapter 5

Replication

Configuring Replication 687

6. On the Articles page, click Next.

7. On the Filter Table Rows page, click Next.

If desired, you can choose to filter the table so that only some of the
rows appear.

8. On the Snapshot Agent page, select both check boxes.

One is to create a snapshot immediately and keep the snapshot avail-
able to initialize subscriptions. The second is to schedule when the
Snapshot Agent runs.

9. Click the Change button to change the schedule.

The schedule page allows you to change the schedule from Daily to
Weekly to Monthly. Currently, it’s scheduled to run once per hour
every day.

10. On the Schedule page, click Cancel to accept the default schedule.

11. On the Snapshot Agent page, click Next.

12. On the Agent Security page, click Security Settings.

13. On the Snapshot Agent Security page, select Run Under the SQL
Server Agent Account.

Note: As a security best practice, it’s recommended to create an account
specifically for the replication agent.

The SQL Server Agent needs to be running for this to succeed. You can
check the status of the SQL Server Agent in SSMS. If it has a red down
arrow, it’s not running. Right-click it and select Start.

14. On the Snapshot Agent Security page, click OK. On the Agent Security
page, click Next.

15. On the Wizard Actions page, accept the default of Create the
Publication. Click Next.

16. On the Complete the Wizard page, enter ReplicateMe Employees as the
name of the publication. Click Finish.

17. Leave SSMS open.

At this point, you’ve created a publication that includes the Employees table
as an article. However, it won’t replicate until a subscriber is added.

Creating a subscriber
The last step required to configure replication is to create a subscriber. In a
real-world situation, this would be done on a separate server. However, for
our example, we just create it on the same server, in the same instance of
SQL Server.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 687

Configuring Replication688

1. With SSMS open, right-click Local Subscriptions and choose New
Subscriptions.

2. On the New Subscription Wizard page, click Next.

3. On the Publication page, ensure that your server is selected as the
publisher and the ReplicateMe Employees publication is selected from
the ReplicateMe database. Click Next.

4. On the Distribution Agent Location page, accept the default of run-
ning all agents at the distributor. Click Next.

This causes push subscriptions to be pushed from the distributor to the
subscriber.

5. On the Subscribers page, select your computer name as the
subscriber.

6. On Subscription Database, select the drop-down box and scroll to the
top. Choose <New database>.

7. On the New Database page, enter IAmReplicated as the database name.
Click OK.

8. On the Subscribers page, click Next.

9. On the Distribution Agent Security page, click the ellipsis (. . .) to the
far right of your server name.

10. On the Distribution Agent Security page, select Run Under the SQL
Server Agent Service Agent. Accept the other defaults and click OK.

11. On the Distribution Agent Security page, click Next.

12. On the Synchronization Schedule page, accept Run Continuously (the
default) and click Next.

13. On the Initialize Subscriptions page, accept the defaults and click
Next.

14. On the Wizard Actions page, accept the default to create the subscrip-
tion and click Next.

15. On the Complete the Wizard page, click Finish.

16. When the wizard completes, click Close.

17. To verify the Employee table in the database has been replicated, exe-
cute the following script:

USE IAmReplicated;
GO
SELECT * FROM Employee

You should see the same employees you entered into the ReplicateMe
database retrieved from the IAmReplicated database.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 688

Book VIII
Chapter 5

Replication

Replicating between Hosts 689

18. To verify that only the data specified in the publication was repli-
cated, execute the following script:

USE IAmReplicated;
GO
EXEC usp_ShowHelp

This fails because the stored procedure wasn’t specified in the publication.
This verifies that only the items that you specified in the publication were
replicated.

Exploring the replication agents
When the wizards are run to publishers, publications, and subscribers, sev-
eral SQL Server Agent jobs are created. Figure 5-5 shows the jobs created as
part of the previous steps. These jobs were all created by the wizards used
to enable replication. Some of the jobs are for publications, some for distri-
butions, and some for subscriptions.

You can right-click any of these jobs and choose properties to show the
details of the job. The Steps tab shows what is actually being done by the
job, and the Schedules tab shows how often the job is being executed.

Replicating between Hosts
Replication between hosts is grouped into two categories:

✦ Between server and clients: Replication between server and clients
can be from the server to the clients or from the clients to the server.
It’s often done to exchange data with mobile users or point-of-sale
applications.

✦ Between servers and servers: Data is replicated in one or more servers
either for data integration or for offloading processing.

Figure 5-5:
SQL Server
Agent jobs
created for
replication.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 689

Replicating between Hosts690

Replicating between servers and clients
When replicating data between servers and clients, the clients can fill any of
several roles. For example, clients can be desktop computers, laptops,
tablets, or other portable devices.

Some of the scenarios where data can be replicated between servers and
clients are

✦ Exchanging data with mobile users: As an example, Darril’s father used
to sell and deliver bread and similar products to grocery stores (he
called it “peddling bread”). He had a handheld client device he’d take
into the stores to create the store’s order based on what they needed
(and what the device showed he had in the truck). He’d plug it into a
printer in his truck to print invoices. On a nightly basis, he would con-
nect his client device to the company computer via a dial-up line. It
would upload current sales data and download the next days order. Of
course, hundreds or more other “bread peddlers” were also doing the
same thing.

✦ Point-of-sale applications: The day of the simple cash register is long
gone. Instead, point-of-sale (POS) devices are used that tie into POS
applications. Often, multiple cashiers run POS applications that all tie
into a main database in another area of the store.

✦ Integrating data from multiple sites: This allows multiple stores to
interact with the main office. In this scenario, the retail stores are acting
as clients. Not too long ago, Darril bought an item at a warehouse store
where a rebate was offered. He waited a day and then went to its online
site and entered information from the receipt that identified the store
(and even the cash register where he made the purchase) and showed
the items that had a rebate. In this situation, each warehouse store is
replicating its data daily to the main office, and then the main office is
making some of that data available online.

You might be thinking that the explanation for integrating data from multiple
sites sounds like it’d be from a server to another server. And you’d be right.
However, in this context, the retail stores are acting as clients to the primary
database at a central location. Admittedly, it’s a fuzzy distinction.

Replication between servers and servers
Replication between servers and servers is generally done for some type of
offloading of the workload. The following scenarios show some common sit-
uations where data is replicated between servers:

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 690

Book VIII
Chapter 5

Replication

Replicating between Hosts 691

✦ Improved scalability: Scalability is serving more and more clients with-
out any degradation of service. SQL Server can be scaled up (adding
additional processors and memory) or scaled out (adding additional
servers). Network Load Balancing can be used to add multiple servers
with the identical data. Replication can be used to ensure each of the
servers holds the same data.

✦ Improved availability: Availability is whether the server is available to
serve the data when the server is queried. By replicating data to a
standby server, you can plan for the possible failure of an online server.
In the case of a failure, you can easily bring the standby server online
with up-to-date data.

✦ Offloading processing: Some processing is too time and resource inten-
sive to run on the online server. Instead, you can replicate the data to a
secondary server, run your processing there, and if necessary, replicate
any results from the processing to the online server. For example, in one
environment where Darril worked, backups were taking too long on the
production server. Replication was used to replicate the data to a sec-
ondary server, and backups were then run on the secondary server.

✦ Reporting and data analysis: Often, data needs to be accessible to
clients in other formats than the raw database. For example, SQL Server
Reporting Services (SSRS) can be enabled to serve reports based on the
data, and SQL Server Analysis Services (SSAS) can be used to make the
data more accessible for decision support systems. If SSRS and SSAS are
run on the same server as the online server, it might overwhelm the
resources. Instead, replication can be used to send the data to a server
dedicated to reporting or analysis.

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 691

Book VIII: Database Administration692

54_179543-bk08ch05.qxp 8/23/08 12:55 AM Page 692

Chapter 6: Spreading the
Load with Partitioning

In This Chapter
� Understanding how SQL Server uses partitioning

� Partitioning key terms and concepts

� Setting up partitioning in your environment

SQL Server is designed to support very large databases and heavy trans-
action loads. When combined with modern server hardware, which

often features multiple CPUs, fast disk drives, and so on, SQL Server pro-
vides a potent information-processing infrastructure that is able to solve
most computing challenges. However, data volumes can be so large at times,
that SQL Server administrators are forced to explore different options to
increase performance. Partitioning is one of the most popular techniques
available, delivering significant performance optimizations for disk-intensive
operations.

In this chapter, I help you understand how to make the most of partitioning
in your environment. I get started by illustrating how partitioning actually
works. When you’ve gotten the hang of that, the next order of business is to
get you familiar with key partitioning-related terms and concepts, forming a
solid foundation for the last part of the chapter where I show you how to
implement partitioning in your SQL Server installation.

Understanding SQL Server Partitioning
In most cases, database application performance barriers can be linked to a
CPU-, memory-, or disk-based resource challenge. When faced with a disk-
based resource obstacle, partitioning is one technique that you can use to
distribute the workload and thereby boost throughput. When partitioning is
in place, SQL Server is also more likely to take advantage of hardware that
features multiple CPUs.

Generally speaking, to partition data (or an index) is to spread the informa-
tion across multiple physical disk objects. Typically, these objects are found
on separate disk drives, although this isn’t mandatory. Disk drives and

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 693

Understanding SQL Server Partitioning694

related information storage technology performance continue to advance;
combining these with the sophisticated partitioning algorithms present in
SQL Server can yield some dramatic improvements in responsiveness.

When setting up a partitioning plan, the database administrator is called
upon to identify criteria that will help SQL Server determine how to distrib-
ute data onto multiple disk objects. It’s important that the database adminis-
trator work closely with business and other technology domains to better
understand the expected information workflows, making it possible to design
an accurate and efficient partitioning strategy.

Before heading down the partitioning path, make sure that your perform-
ance bottlenecks (either current or expected) are due to disk-related volume
issues; partitioning can’t add any value to a resource-bound CPU or memory
server.

Determining the correct candidate tables for partitioning is more of an art
than a science. Generally, a given table can benefit from partitioning when
more than one of the following conditions is true:

✦ Large amount of data: Does the table contain millions or even billions of
records? Partitioning really shines when the table holds hefty amounts
of information. However, if you’re running on sluggish hardware with
relatively small data sets, you might still realize some benefits from
partitioning.

✦ Predictable distribution of data: Partitioning requires that you identify
criteria upon which to spread information. Ideally, this means that the
table is loaded and modified in a predictable way. One of the most
common scenarios for partitioning involves a table that contains sales
transactions that are more-or-less evenly distributed throughout the
year.

✦ Dynamic data: Typically, a highly dynamic table (such as one that holds
sales transactions) benefits from partitioning more than a relatively
static table (such as one that contains unchanging product codes).

✦ Archival information: Partitioning may also add value in situations
where significant amounts of data can be safely archived. For example, a
given table may contain an enormous amount of information. However,
upon further examination, you learn that much of this data is accessed
relatively infrequently. Partitioning allows you to keep the smaller set of
active data on the fastest disk drives, while shunting lesser-accessed
information onto inexpensive, more leisurely disk drives.

✦ Supporting hardware: Partitioning, generally, makes sense only when
appropriate hardware is available to support the distributed workload.
If all your data resides on one disk, the benefits of partitioning this

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 694

Book VIII
Chapter 6

Spreading the Load
w

ith Partitioning

Partitioning Key Terms and Concepts 695

information diminish significantly. In general, partitioning and modern,
high-speed distributed disk arrays go hand-in-hand.

✦ Low downtime tolerance: Does your data processing environment
require you to maintain very high levels of SQL Server uptime? If so,
using partitioning to spread data among multiple disk objects might help
reduce the amount of administrative downtime.

Partitioning Key Terms and Concepts
Before getting started on a simple partitioning example, it’s worth under-
standing some underlying architectural concepts and terminology.

✦ Partition type: An administrator might partition tables based on data or
index values. Partitions based on data are range partitions. Database
designers typically use an easy-to-understand factor when creating a
range partition. For example, dates, regions, and other easily explained
values are ideal for distributing information to multiple destinations.
You might also associate indexes with your partition, which streamlines
access to your data and related indexes. In fact, if you create an index on
an already partitioned table, SQL Server automatically places the index
into the appropriate partition.

✦ Partition key: This is a column that SQL Server uses as input to a parti-
tion function (described in a moment). The database administrator iden-
tifies this column and cites it when creating the partitioning scheme and
associated table definition. When new rows are created, or existing rows
are modified, the partition function examines the value contained in this
column to decide where its associated row is placed.

✦ Partition functions: These specialized functions, defined by a SQL
Server database administrator, serve as logical filters that help identify
the appropriate destination for a given row.

Writing an effective partition function requires that the database admin-
istrator have significant insight into the expected operational patterns
encountered by the application. This would be an excellent time to
involve business or other users in the discussion.

✦ Filegroups: These are logical names used to associate one or more disk-
based files with administrator-defined categories. This helps organize a
potentially unwieldy set of disk files into easily-understood groups for
the purposes of administration or other management-related activities.

✦ Partition schemes: This internal SQL Server structure relates a partition
function with associated filegroups. A database can contain multiple par-
tition schemes; each one applies different partitioning criteria for distinct
purposes. For example, there might be one partition scheme for transac-
tion history records, another for order management details, and so on.

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 695

Setting Up Partitioning in Your Environment696

Setting Up Partitioning in Your Environment
Previously in this chapter, I briefly describe SQL Server’s partitioning archi-
tecture along with details about some of the most relevant terms and con-
cepts you’re likely to encounter. Here, I show you how easy it is to set up
partitioning for your database.

First, a little background: Assume that you’ve been tasked with designing
and developing an application to store point-of-sale information. Because
creativity isn’t your organization’s strong suit, the database is named
point_of_sale. Furthermore, imagine that you’re designing a specific
table (sales_transactions) that you expect will receive hundreds of mil-
lions of records each year. Your organization has grown, and now supports
customers in Europe and Asia. Sales transactions will arrive from both of
these regions, and you’re concerned that they will overwhelm your primary
disk drive. Consequently, you purchase and install a high-speed disk array.
For the purposes of this simple example, assume that the disk array offers a
C: drive and a D: drive, and that you want to place European sales data on
drive C, and Asian sales transactions on drive D.

Although you can use SQL Server Management Studio to enable partitioning
(see the wizard shown in Figure 6-1), it’s actually easier to understand by
using a combination of graphical- and character-based techniques.

Figure 6-1:
The SQL
Server
Partition
Wizard.

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 696

Book VIII
Chapter 6

Spreading the Load
w

ith Partitioning

Setting Up Partitioning in Your Environment 697

Because partitioning is somewhat complex to comprehend fully, before get-
ting started on a production-ready partitioning plan, try implementing a
simple example from this chapter. Here’s what to do:

1. Launch the SQL Server Management Studio.

You find this utility under the main SQL Server menu.

2. Connect to the database that holds the table that you wish to partition.

3. Click the New Query icon to open a dialog box where you type your
partitioning instructions.

Make sure that you’re connected to the database where you want to
apply partitioning rather than the default Master database.

4. Create a function that SQL Server will use to determine where a given
row should be placed.

Here’s the SQL that you execute to make this happen:

CREATE PARTITION FUNCTION PF_Region(char(10))
AS RANGE RIGHT FOR VALUES (‘Asia’);

This brief statement instructs SQL Server to use the value of Asia as the
determining criteria for where a given row is placed. Additionally, this
function expects to receive a data type of char(10).

5. Create two filegroups (one dedicated to Europe, one dedicated to
Asia).

Here’s the SQL to accomplish this:

ALTER DATABASE point_of_sale ADD FILEGROUP FG_EUROPE;
ALTER DATABASE point_of_sale ADD FILEGROUP FG_ASIA;

You’re free to use any names you like for your filegroups; if possible,
however, try to use a consistent naming convention and meaningful file-
group names.

6. Associate a disk file with the new filegroups.

Here’s the SQL that makes this association:

ALTER DATABASE point_of_sale ADD FILE
(name = ‘Europe’, filename = ‘c:\europe.ndf’)
TO FILEGROUP FG_EUROPE;

ALTER DATABASE point_of_sale ADD FILE
(name = ‘Asia’, filename = ‘d:\asia.ndf’)
TO FILEGROUP FG_ASIA;

Notice that the two files are on separate disk drives. Additionally,
remember that you may name these files anything you like. Generally,
it’s a good idea to use meaningful names for both filegroups and associ-
ated files.

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 697

Setting Up Partitioning in Your Environment698

7. Create a partition scheme to associate the partition function with the
filegroups.

This requires a single SQL statement:

CREATE PARTITION SCHEME PS_REGION
AS PARTITION PF_REGION TO (FG_EUROPE, FG_ASIA);

Observe how this statement ties the partition function, scheme, and file-
groups together. All that remains is to associate the table with this
scheme.

8. Write the SQL to create the table that will benefit from this partition-
ing scheme.

Here’s the SQL to set up partitioning for this table:

CREATE TABLE sales_transactions(
sales_transaction_id int NOT NULL,
sales_transaction_date datetime NOT NULL,
sales_transaction_amount money NOT NULL,
sales_transaction_product smallint NOT NULL,
sales_transaction_region char(10) NOT NULL

CONSTRAINT C_sales_transaction_region
CHECK (sales_transaction_region = ‘Europe’ OR

sales_transaction_region = ‘Asia’),
) ON PS_REGION(sales_transaction_region)

If you want to partition based on a column’s values, you must create a
constraint that restricts its potential entries to match the entries you’ve
defined for the partition. In this case, this means that the sales_
transaction_region column can only contain values of Europe or
Asia.

9. Adjust your indexes accordingly.

In most cases, SQL Server is quite clear about external requirements for
its features. Unfortunately, this isn’t so with regard to partitioning,
which can be a little confusing, especially with regard to indexes. For
example, to complete this sample partitioning scenario successfully, we
had to run the following SQL statement:

CREATE UNIQUE INDEX ix_01 ON
sales_transactions(sales_transaction_id,
sales_transaction_region)

That’s all there is to it. Any data insertions or modifications to your table will
now use this partitioning scheme to distribute the data between drive C and
drive D, based on the contents of the sales_transaction_region
column.

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 698

Book VIII
Chapter 6

Spreading the Load
w

ith Partitioning

Setting Up Partitioning in Your Environment 699

The small screenshot shown in Figure 6-2 has a lot of information. Notice
the constraint present under the sales_transactions table. Look at the
Partition Schemes and Partition Functions folders on the left side of the
screen. Finally, observe the Storage page of the table properties, which tells
that the table has two partitions, which partition scheme is in use, and the
column upon which the partition is defined.

This has been a simple example; you could easily set up much more sophis-
ticated partitioning scenarios to meet the exact needs of your data process-
ing environment.

Figure 6-2:
The results
of setting up
partitioning
for a given
table.

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 699

Book VIII: Database Administration700

55_179543-bk08ch06.qxp 8/23/08 12:56 AM Page 700

Book IX

Appendixes

56_179543-pp09.qxp 8/23/08 12:56 AM Page 701

Contents at a Glance

Appendix A: Ten Sources of Information on SQL Server 2008703
Microsoft SQL Server Web Site...703
Microsoft SQL Server Developer Center ...703
Wikipedia...704
Newsgroups ..704
Magazines..704
User Groups ..704
Books ...705
Database Design Tools ..705
Administrative Tools ...705
Data Generation Tools ...706

Appendix B: Troubleshooting SQL Server 2008 707
I Can’t Install the Software! ...707
How Can I Administer My Database?...708
My Data Is Messed Up!...709
I Want to Automate Some Operations ...709
How Can I Simplify My Data? ..710
How Can I Load Information into SQL Server? ...710
My Data Is Unprotected!..711
My Database Server Is Too Slow! ...711
Where Is AdventureWorks?...712
Where Are My Reports? ..713

Appendix C: Glossary .715

56_179543-pp09.qxp 8/23/08 12:56 AM Page 702

Appendix A: Ten Sources of
Information on SQL Server 2008

In This Chapter
� Microsoft SQL Server Web site

� Microsoft Developer Network

� Wikipedia, newsgroups, and user groups

� Magazines and books

� Design, administrative, and data generation tools

G iven the popularity of Microsoft SQL Server, it should come as no sur-
prise that tons of helpful resources are available for SQL Server data-

base designers, developers, and administrators. In this section, we humbly
suggest a few of our favorites.

Microsoft SQL Server Web Site
Here’s a great place to get started learning more about SQL Server. Aside
from the usual marketing-flavored imagery, you find a variety of valuable
product and technical details that you can use to further your understand-
ing of all things SQL Server. You can find it at

www.microsoft.com/sql/2008

Note: You might have to tweak the URL to get to SQL Server 2008; at the
time of this writing, the URL pointed at SQL Server 2005.

Microsoft SQL Server Developer Center
In an effort to support software developers, Microsoft offers a comprehen-
sive set of services known as the Microsoft Developer Network (MSDN). In
addition to the broad suite of software available for purchase, an extremely
content-rich Web site is available to anyone, not just subscribers. It contains
white papers, technical briefs, and a deep knowledge base that you can
search to get answers to your questions. You can find it at

http://msdn.microsoft.com/sql

57_179543-bapp01.qxp 8/23/08 12:57 AM Page 703

Wikipedia704

Wikipedia
This Internet-based, open source encyclopedia (www.wikipedia.org) is a
great source of information about all technology topics, including relational
database theory and practical application. For example, here’s a link to a very
comprehensive article on database normalization in theory and practice:

http://en.wikipedia.org/wiki/Database_normalization

Newsgroups
These collaborative spaces are an immense help when you’re struggling with
a technical problem. Chances are that someone here can address your ques-
tion. In the past few years, Google has done a great job helping to organize
and rescue Usenet. It’s easier than ever to access these groups via your
browser. Here’s a shortcut to 32 (at last count) newsgroups focused solely
on SQL Server:

http://groups.google.com/groups/dir?lnk=gh&hl=en&sel=33606733

Alternatively, you can search Google Groups (www.groups.google.com)
for groups with SQL Server in their names.

Magazines
Several well-written magazines are available that provide significant cover-
age of database topics. Some are database-agnostic, while others focus
specifically on SQL Server. These periodicals include

✦ SQL Server Magazine — www.sqlmag.com

✦ SQL Server Solutions — www.pinpub.com/spec_sql.htm

✦ Databased Advisor — www.databasedadvisor.com

As an added bonus, many magazines maintain online community message
boards that let you interact with other readers.

User Groups
These gatherings of like-minded individuals are a great place to enhance
your understanding of SQL Server 2008. Some groups meet virtually, while
others have physical events; some groups span both realms. The following
list highlights two of the better and most relevant, Internet-focused user
groups:

57_179543-bapp01.qxp 8/23/08 12:57 AM Page 704

Book IX
Appendix A

Ten Sources
of Inform

ation on
SQL Server 2008

Administrative Tools 705

✦ SQL Server Worldwide User Group — www.sswug.org

✦ Professional Association for SQL Server — www.sqlpass.org

On the other hand, if you want to meet and greet your counterparts face-to-
face, chances are that an Internet search can locate a good user group not
too far from you.

Books
This book helps you get started with SQL Server 2008, but many other titles
can give you a broader understanding of how to build high-quality database
applications. Look for well-regarded books that cover any of these topics
(which are all pertinent in the context of SQL Server 2008):

✦ Relational database design theory and practice

✦ Best practices for user interface design

✦ Distributed computing

Database Design Tools
If you’re building a simple application, chances are that you won’t need to
perform any extensive database design and modeling to realize your goals.
However, if you face a more daunting task, you’re wise to look into special-
ized tools that focus on this portion of the application development lifecy-
cle. Embarcadero Technologies makes a collection of products that add
value throughout the entire process. You can find them at

www.embarcadero.com/products/products.html

Administrative Tools
As we’ve shown throughout the book, Microsoft’s SQL Server Management
Studio is a great tool for administering your SQL Server 2008 database.
However, you might also be interested in one of the available third-party
tools. We’ve used Toad for SQL Server by Quest Software; versions of this
product are available for all the major database platforms. You can find Toad
for SQL Server at

www.toadsoft.com/toadsqlserver/toad_sqlserver.htm

57_179543-bapp01.qxp 8/23/08 12:57 AM Page 705

Date Generation Tools706

Data Generation Tools
Generating sample data by hand is one of the more tedious tasks you face
when building and testing an application for your SQL Server 2008 installa-
tion. Fortunately, tools are available that can automate this for you, freeing
you to spend time developing and then tuning your application. We’ve had
great success with the DTM Data Generator, which is located at

www.sqledit.com/dg/index.html

57_179543-bapp01.qxp 8/23/08 12:57 AM Page 706

Appendix B: Troubleshooting
SQL Server 2008

In This Chapter
� Solving installation problems

� Handling administration headaches

� Resolving data inconsistencies

� Setting up automated operations

� Simplifying complicated data structures

� Interchanging information

� Securing your database

� Speeding up a sluggish server

� Locating and installing the sample databases

� Finding reports on your report server

G iven all the things you can do with SQL Server 2008, it’s natural that
you might get confused from time to time. Never fear: This entire

appendix is dedicated to helping you rise above some of the most common
predicaments that you’re likely to encounter.

I Can’t Install the Software!
Having some cool new software and not being able to get it installed isn’t
much fun. Luckily, SQL Server 2008 usually gets up and running without a
hitch. If you do encounter an obstacle, use the following checklist to help
you avoid hot water:

1. Make sure you have sufficient permissions to add or remove software.

Generally, a good idea is to install or remove software as an administra-
tor. Otherwise, the operating system might block you from making these
changes.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 707

How Can I Administer My Database?708

2. Ascertain that your computer is powerful enough to support the
product.

SQL Server gobbles memory, CPU, and disk resources. Trying to install it
on a lightweight machine guarantees frustration. If you want to learn
more about its exact requirements, head to Book I, Chapter 3.

3. Remove any previous versions (such as beta installations) of SQL
Server 2008 via the Add/Remove Programs application within the
Control Panel.

If you skip this step, a good chance exists that the installer will complain
loudly and then keel over. Even though it’s tedious, take the time to
clean things up before trying to install.

4. Make sure you have all necessary supporting software.

Generally, the SQL Server installer is quite intelligent and diligently
acquires whatever is missing (for example, Windows Installer, .NET
Framework 2.0, SQL Server Native Client, and so on). However, you
might need to obtain these components yourself. Book I, Chapter 3 has
the full list of supporting characters.

If you want to get some more ideas about the overall installation experience,
check out Book I, Chapter 4.

How Can I Administer My Database?
A database administrator’s work is never done. Fortunately, Microsoft didn’t
skimp on the supporting tools. Here are two good choices to get the job
done quickly and easily:

✦ SQLCMD utility: This character-based tool ships with every copy of SQL
Server. You can run just about any administrative task using direct
Transact-SQL or one of the hundreds of built-in system stored proce-
dures. However, you’re better served by the SQL Server Management
Studio, which I describe next.

✦ SQL Server Management Studio: If you have more of a hankering for
graphical tools when it comes to administration, you want to look at this
utility. You can perform just about any administrative chore you might
ever face. And, whatever isn’t possible can be handled with direct
Transact-SQL or system stored procedures.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 708

Book IX
Appendix B

Troubleshooting
SQL Server 2008

I Want to Automate Some Operations 709

My Data Is Messed Up!
Unless you believe in gremlins or other supernatural entities that descend
from the ether and wreak havoc on your data, chances are that any informa-
tion problem is because of an error or omission. Here’s what to watch
out for:

✦ Referential integrity issues: To help keep all your data synchronized,
SQL Server offers referential integrity features. These prevent you or
your applications from inadvertently altering rows from one table with-
out making corresponding changes in another table. To get a better idea
of how to use referential integrity to your advantage, take a look at
Book II, Chapter 6.

✦ Failure to use transactions: Transactions help certify that your data-
base interactions happen in logically consistent groups. Without proper
transactions, an operation may update one table but fail to do the same
for other tables. The result is damaged data integrity. Book III, Chapter 9
is designed to help you make the most of transactions.

✦ Incorrectly defined columns: Believe it or not, sometimes database
designers choose the wrong data type when setting up their tables. For
example, a particular field might need to contain currency amounts,
which include decimals. Yet when designers write the SQL to create the
table, they choose the INTEGER data type — SQL Server discards any
fractional amounts from the column.

✦ Not enough space for character-based fields: Another common prob-
lem is database designers not providing enough space for character-
based fields. Again, SQL Server cheerfully tosses away any extra data,
which leads to damaged information and unhappy users.

I Want to Automate Some Operations
SQL Server offers two very helpful features that you can use to help stream-
line common database tasks:

✦ Stored procedures and functions: Stored procedures and functions are
bits of logically grouped application software that you can write in a
variety of programming languages, including Transact-SQL, Visual Basic,
Visual C#, and so on. After you create them, you then place these proce-
dures inside the SQL Server engine, where anyone with the right permis-
sion can run them. This centralizes your application logic, and generally
helps performance. If you’re curious about stored procedures and func-
tions, check out Book IV, Chapter 2.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 709

How Can I Simplify My Data?710

✦ Triggers: Think of a trigger as a very specialized stored procedure, one
that is run when a certain event happens. For example, you might want to
send an e-mail alert when inventory drops below a certain level. That’s a
great use of a trigger; you can probably think of many more that apply in
your organization. You can also use triggers to help you administer your
database server and run administrative operations. If you want to get a
better handle on triggers, have a look at Book IV, Chapter 3.

How Can I Simplify My Data?
For database administrators, making sense of information can be confusing,
especially if the environment sports a substantial number of tables with
complex interrelationships. If you find it difficult, imagine how laborious it is
for your users and application developers. Luckily, none of you have to
suffer in silence. One way to create a more transparent picture of your data
is to take advantage of views.

Think of a view as a window into your information, one that can span the
entire database to retrieve results. By pre-building all the joins and stripping
any extraneous details, you can make this window much simpler than the
underlying data. The end result is that your users and developers can work
with the view, rather than the base database tables. To see how views can
make things better for your enterprise, take a look at Book III, Chapter 8.

How Can I Load Information into SQL Server?
Things would be so much simpler if your SQL Server database held all the
information that your organization cares about. Because you need to inte-
grate SQL Server with data from external systems, this isn’t likely. In some
cases, you’re tasked with loading data from these other information silos,
while at other times you’re called to take data from SQL Server and send it to
other repositories.

No matter what the integration task, Microsoft has you covered. If your
import or export task is relatively simple, a wizard is waiting to help you.
(You read about the Import and Export Wizard in Book VIII, Chapter 2.)
Comparatively, if you’re faced with a more complex integration project, per-
haps one that involves repetitive or sophisticated workflow, SQL Server
Integration Services is just what the doctor ordered; see Book VIII, Chapter 4.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 710

Book IX
Appendix B

Troubleshooting
SQL Server 2008

My Database Server Is Too Slow! 711

My Data Is Unprotected!
Don’t worry about bad folks crashing your database party. SQL Server has
excellent, easy-to-use security features that can help you lock down and pro-
tect your data. You can configure your security settings through the simple
but powerful SQL Server Management Studio. Here are just a few of the data-
base objects that can have their own security settings:

✦ Table

✦ View

✦ Function

✦ Procedure

✦ Constraint

✦ Queue

✦ Statistic

✦ Synonym

Book VIII, Chapter 3 is where you find the fascinating security details.

My Database Server Is Too Slow!
Before you toss your slow-running database server out the window, you can
run a few effortless checks to identify and remedy the source of the
headache.

✦ Are your tables indexed correctly? Without a doubt, improper or miss-
ing indexes cause most of the performance problems that plague the
average database application. Take the time to ensure that you’ve
placed indexes in the right places. Book VII, Chapter 3 is a great place to
start on the path to good indexing.

✦ Is there enough memory? Don’t shortchange your database server by
denying it the memory it needs to get the job done quickly. You can tell
if you’re running out of memory by launching the Windows Task
Manager and viewing the amount of available physical memory. If this
number is approaching zero, you’re asking your server to do too much
work with too little memory.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 711

Where Is AdventureWorks?712

✦ Are there too many users and applications? Sometimes, no matter how
much memory you install, or how well your tables are indexed, you
approach the limit of what a database server can handle. There’s no
hard-and-fast way to tell whether you’re on the brink, but if you’ve
exhausted all your options and you can’t coax any more speed from
your server, then distribute your workload among multiple servers.

✦ Are you taking advantage of SQL Server’s performance tools? There’s
no need to guess about what’s causing a responsiveness problem
because SQL Server offers a collection of excellent performance moni-
toring and management tools. Take a look at Book VII, Chapter 2, which
itemizes all these technologies and shows you how to use them.

Where Is AdventureWorks?
AdventureWorks2008 is the primary sample database used with SQL Server
2008; you’ll see quite a bit of documentation within Books Online on
AdventureWorks. AdventureWorks was included with SQL Server 2005 but
the version for SQL Server 2008 must be downloaded.

The different variations of AdventureWorks2008 are

✦ SQL2008.AdventureWorks_OLTP_DB_v2008: The primary OLTP sample
database for the company Adventure Works Cycles.

✦ SQL2008.AdventureWorks_LT_DB_v2008: A scaled-down version of the
Adventure Works Cycles database.

✦ SQL2008.AdventureWorks_DW_BI_v2008: The Adventure Works Cycles
Data Warehouse and the Analysis Services database project.

Each of the variations of the AdventureWorks2008 database has three hard-
ware platform versions. The x86 platform is for x86-based 32-bit systems, the
x64 platform is for x86-based 64-bit platforms, and the ia64 platform is for
Intel Itanium 64-bit systems. Download the version that matches your
hardware.

You can download the AdventureWorks2008 databases from Microsoft’s
open source project hosting Web site, CodePlex. In addition to the sample
databases, you can find a lot of different code samples and tutorials. Point
your browser to the following URL to get current versions of the databases
and samples:

http://www.codeplex.com/MSFTDBProdSamples

For detailed steps on how to install the AdventureWorks2008 OLTP database,
check out Book III, Chapter 5.

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 712

Book IX
Appendix B

Troubleshooting
SQL Server 2008

Where Are My Reports? 713

Where Are My Reports?
After setting up an SQL Server Reporting Services (SSRS) server, it’s
common to “lose” the URL you need to access the reports. The actual URL
you use depends on whether SSRS is installed in the default instance of SQL
Server or a named instance.

You can access both the report server (which lists all your reports) and the
Report Manager (which allows you to manage many of your reports) via Web
browsers.

✦ Finding SSRS on a default instance: To access the SSRS report server
(which lists all your reports) on a server named SRV1, use the following
URL:

http://SRV1/ReportServer

To access the Report Manager (which allows you to manage your
reports) on a server named SRV1, use this URL:

http://SRV1/Reports

✦ Finding SSRS on a named instance: When accessing an SSRS that’s
installed on a named instance, you need to add the instance name to the
end of the URL preceded by an underscore.

For example, if your named instance were MyReports on a server named
SRV1, the URL for the report server would be:

http://SRV1/ReportServer_MyReports

To access the Report Manager on a server named SRV1 with a named
instance of MyReports, use this URL:

http://SRV1/Reports_MyReports

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 713

Book IX: Appendixes714

58_179543-bapp02.qxp 8/23/08 12:59 AM Page 714

Appendix C: Glossary

ad hoc query: A query issued infrequently, or on an as-needed basis.
Typically ad hoc queries are issued against remote data sources from a SQL
Server, but can also be issued against SQL Server from a wide variety of
sources. If you have a need to issue queries against a remote data source
more often, linked servers are created to simplify the syntax of the ad hoc
query. See also linked server.

article: A database object (such as a table, stored procedure, or view) that
is contained within a publication. See also replication.

assembly: Application logic that is stored in, and managed by, the SQL
Server database server, including objects like triggers, CLR software, and
stored procedures. Assemblies are written in a .NET language, such a C# or
Visual Basic. See also CLR.

attribute: Information, contained in the form of name-value pairs, located
after the start tag of an XML element. See also element; content.

backup: The process of copying your database’s information to another
form of media, such as tape or disk. A good backup strategy is vital for any
production SQL Server environment. See also full backup; full differential
backup.

backup device: A hardware unit that hosts the media for your database
backups. You configure your backup to work with this object. These devices
are typically disk or tape drives. See also backup.

checkpoint: Like any modern relational database management system, SQL
Server performs much of its work within high-performance memory.
However, to make any data alterations permanent, eventually, memory must
preserve data onto disk drives. The checkpoint process is how the database
server accomplishes this synchronization.

column: Stored within tables, a column contains a particular piece of infor-
mation. For example, if you’re tracking details about a customer, you would
likely place this data in a table. Within the table, you would have specialized
columns to store things like name, address, and so on. See also table.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 715

Common Language Runtime (CLR)716

Common Language Runtime (CLR): When building a database application,
many developers choose to use SQL Server’s internal language, Transact-
SQL. However, other programming languages, (such as Visual Basic, Visual
C#, and so on) might offer better performance and functionality than
Transact-SQL for certain situations. CLR is a Microsoft software development
and integration technology that makes it possible to build software and
store it within SQL Server using one of these other languages.

Composite index: An index that is made of two or more columns. See also
column.

Constraint: A constraint is used to enforce the integrity of data in the
column of a table, beyond the data type. Several specific types of constraints
can be used within SQL Server 2008. See also primary key; foreign key.

content: All information contained between the start tag and end tag of an
XML element. See also element; attribute.

cube: A multidimensional structure that contains dimensions and measures.
Cubes are a denormalized version of either the entire database or part of the
database and are used within SQL Server Analysis Services (SSAS). See also
SQL Server Analysis Services; measure; dimension.

data mining: The process of retrieving relevant data to make intelligent deci-
sions. SQL Server Analysis Services is used to create data mining models.

database server: A sophisticated software product that hosts a broad range
of data, making it available for many concurrent clients. SQL Server is one
example of a database server. Other vendors, such as Oracle and IBM, offer
their versions of this type of product.

DELETE statement: DELETE is used to remove rows from tables or views.

DDL trigger: A Data Definition Language (DDL) trigger can be used to
respond to DDL event statements, such as CREATE, ALTER, and DROP. DDL
triggers can be configured with a server scope or a database scope. For
example, a CREATE DATABASE trigger could be created with a server scope.
The trigger would fire any time the CREATE DATABASE statement is exe-
cuted on the server. See also trigger.

deprecated: Features that were supported in previous versions of SQL
Server, but aren’t recommended for use in the current version. Deprecated
features will most likely not be supported in the next version of SQL Server.

dimension: A group of related objects within a cube that’s used to provide
information about related data. For example, a product dimension could
include a product name, a product category, a product size, product cost,
and product price. See also cube; measure.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 716

Book IX
Appendix C

Glossary

full differential backup 717

distributor: A central database server that acts as an administrator and
coordinator for replication. See also replication.

DML trigger: A Data Manipulation Language (DML) trigger can be used to
respond to DML event statements, such as INSERT, UPDATE, and DELETE.
DML triggers are configured on tables or views. For example, an INSERT trig-
ger on the Sales table would execute any time a row was inserted into the
Sales table. See also trigger.

Document Type Definition (DTD): A specification that describes the struc-
ture and format of an XML document. Generally included at the top of the
XML document, it helps people and applications better understand and work
with the XML-based information. See also XML.

element: Surrounded by a start tag and end tag, this is XML-based informa-
tion that might also include attributes and content. Elements may contain
other nested, child elements. See also attribute; content.

file backup: A type of backup relevant only when there are multiple file-
groups. See also filegroup.

filegroup: Collections of SQL Server data files. For performance and adminis-
trative reasons, you can place user objects into dedicated filegroups. See
also master data file; file backup.

first normal form: One of the three normal forms that make up relational
database guidelines, this rule states that a table should not have any repeat-
ing fields. See also normalization; second normal form; third normal form.

foreign key: Information that establishes a relationship between two tables.
By preventing erroneous data modifications, this association helps preserve
data integrity. See also primary key.

full backup: As its name implies, this type of backup archives all information
within a database. Should the database be lost or damaged, you can restore
it to its state as of the time you created the full backup. See also full differen-
tial backup; partial backup; restore.

full differential backup: Identical to a full backup, with one major difference:
A full differential backup archives only information that has changed since
the last full backup. This can be very handy if only small portions of your
database change on a regular basis; by running differential backups you don’t
need to incur the time and media costs of full backups. See also backup;
full backup.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 717

function718

function: A centralized, server-based routine that can be included as part of
your Transact-SQL statements. Typically used to streamline logic and reduce
the amount of required programming effort, you can build your own func-
tions. You can also take advantage of the many built-in functions offered by
SQL Server. One difference between functions and stored procedures is that
a function must return a value; it’s optional with a stored procedure. See also
stored procedure.

index: An internal database structure, sometimes defined by the database
administrator, and sometimes automatically created by SQL Server. Indexes
make it possible to speed access to information as well as perform integrity
and other validations to safeguard data. See also unique index; composite
index.

INSERT statement: INSERT is used to add rows to a table or view within a
database.

isolation level: A configurable setting that affects how a transaction inter-
acts with other SQL Server users and processes. Increasingly stringent isola-
tion levels include

Read uncommitted

Read committed

Repeatable read

Snapshot

Serializable

These isolation levels interact with your application, allowing or denying
visibility to modified data depending on the setting. See also transactions.

linked server: Database objects that provide the connection information for
remote data sources housed on another server. The other server could be a
SQL Server, an Oracle server, a Microsoft Access database, or one of many
other data sources. Linked servers are created when the remote data source
will be accessed more than once or twice. See also ad hoc query.

log file: A file-system–based, internal database construct that records data
and table modifications, making it possible to restore information to its
previous state should the application roll back a transaction.

logical design: The abstract design and structure of your relational data-
base. Focusing on the high-level objects and their interrelationships, this is
usually generated during the analysis phase of most projects. It then serves
as a guideline for creating the actual implementation of your SQL Server
database. See also physical design.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 718

Book IX
Appendix C

Glossary

partial differential backup 719

master data file (MDF): SQL Server databases contain two types of operating
system files: MDF and log files. This class of file stores data and is dedicated
to one-and-only-one database. See also log file, filegroup.

measure: A column of quantifiable data mapped to a dimension within a
cube. Measures are often used to provide access to aggregations of data
(such as annual sales of a product or a store), while also giving the ability to
drill down into the details (such as quarterly or monthly sales). See also
cube; dimension.

Model Designer: The Model Designer is used to create report models.
Report models include the data source definition (the database where the
data is coming from), and the data view (what tables and views to include in
the report). Report models do not create actual reports that can be viewed.
Instead, users can use the Report Builder to create reports from a report
model. The Model Designer is available within BIDS.

named pipes: A communication method between two processes. In the con-
text of SQL Server, this is a means for a database client to communicate with
the database server. See also protocol.

namespace: A collection of element and attribute names designed to reduce
confusion and ambiguity when dealing with XML documents. Generally
available for consultation from a commonly available Internet address.
See also XML.

normalization: A series of database design recommendations that dictate
how information should be dispersed among tables as well as how these
tables should relate. See also first normal form; second normal form; third
normal form.

Optimizer: The Optimizer is an internal technology that is responsible for
selecting the most efficient means to accessing or altering information. It
uses detailed statistics about the database to make the right decision.

partial backup: An operation that archives a subset of your database,
including

Data from the primary filegroup

Any requested read-only files

All read-write filegroups

See also partial differential backup; full backup; full differential backup.

partial differential backup: Archives only those portions of the last partial
backup that have changed since the partial backup was completed. See also
partial backup; full backup; full differential backup.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 719

permission720

permission: A privilege that you grant to a principle. When authorized, the
principle may then interact with one or more securables. See also principal;
securable.

physical design: The actual tables, columns, indexes, and other data struc-
tures used to store information in a SQL Server database. Development proj-
ects typically progress from a logical database design to a physical database
design. See also logical design.

primary key: This column, or group of columns, provides a unique definition
for a given row. By definition, no two rows in the same table can have the
same primary key value. See also foreign key.

principal: Any user or process that you can authorize to interact with your
SQL Server database. See also securable.

procedural language: A general-purpose programming language containing
full logic and flow control capabilities. Typically compiled to binary code,
these languages can usually handle more complex algorithms at a higher
performance than interpreted database-centric languages, such as Transact-
SQL. See also CLR.

protocol: To communicate effectively, client applications and database
servers need a commonly agreed-upon approach. A protocol is a communi-
cation standard adhered to by both parties that makes these conversations
possible. See also TCP/IP; named pipes.

publication: A single unit containing one-to-many articles, available for repli-
cation to other database servers. See also replication.

publish-and-subscribe: An architecture that allows easy interchange of infor-
mation among distributed computers and processes. Data may be pushed by
a publisher or pulled by a subscriber. See also replication.

publisher: A specific database server that offers information to other data-
bases using replication technology. See also replication.

record: A grouping of information typically returned from a query or other
database operation. It can consist of data from only one table or be an
aggregation of information dispersed among many tables. See also row.

recovery model: A preset plan used by SQL Server when archiving and
restoring information. See also backup; restore.

referential integrity: A set of rules, enforced by the database server, the
user’s application, or both, that protects the quality and consistency of
information stored in the database.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 720

Book IX
Appendix C

Glossary

SELECT statement 721

replication: A process whereby information is published from a database
server and sent to one or more subscribers. Data may be transferred proac-
tively by the publisher or requested by the subscribers. See also publish-
and-subscribe.

Report Builder: A tool launched from the report server that allows users to
create reports from a report model.

Report Designer: The Report Designer is used to create reports from
scratch. The reports will include the data source definition (the database
where the data is coming from), the data view (what tables and views to
include in the report), and the individual columns to show. Filters can be
used to show only certain rows from the tables, and tools are available
within the Report Designer. The Report Designer is available within BIDS.

Report Manager: A Web interface served by the report server. The Report
Manager provides access and property pages for any data source, report
model, and reports that are published to the report server. Users are able to
launch the Report Builder from the Report Manager.

report model: A “blueprint” of a report. A report model includes the data
source (such as a SQL Server database) and a data view (the tables and/or
views that can be used in the report). Users can then use the report model
to create their own reports, picking and choosing what data they want to
include from the data view.

restore: The process of reinstating archived information onto your database
server. See also backup; recovery model.

row: An individual entry from a given table. For example, a table may con-
tain details about thousands of customers; a specific customer’s data will be
found in one row. See also record.

schema: A group of database objects that make up a given namespace.
Objects include tables, views, and statements that grant or revoke access to
other securable objects. No two objects in any namespace can have the
same name.

second normal form: Data is said to be in the second normal form if it com-
plies with the first normal form and has one or more columns in a table that
uniquely identify each row. See also first normal form; third normal form.

securable: This represents any type of object that can be given its own secu-
rity setting. Some examples of securables include tables, views, and users.
See also principal.

SELECT statement: SELECT is used to read data from tables and views.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 721

Service Broker722

Service Broker: A messaging service integrated into SQL Server. It allows
database applications to send messages in either one-way or two-way
conversations.

Service Broker conversation: A reliable asynchronous exchange of mes-
sages using a Service Broker contract, queue, and service. Service Broker
conversations are created from sending and receiving messages.

SQL Server Analysis Services (SSAS): A database engine within SQL Server
that allows databases to be reconfigured in cubes. When properly config-
ured, SSAS databases allow decision makers to easily drill into the informa-
tion they need. Cubes are created within an SSAS database.

SQL Server Integration Services (SSIS): A collection of technologies
designed for sophisticated information interchange and workflow between
SQL Server and other information repositories, such as different relational
database management systems, flat files, XML, and so on.

SQL Server Management Objects (SMO): A set of objects within the
Microsoft.SqlServer.Management.Smo namespace used to manage
and administer SQL Server. SMO is used in applications external to SQL
Server Management Studio.

SQL Server Reporting Services (SSRS): A server-based tool used to provide
easy reporting capability of data from a SQL Server. Reports are published to
the server and users can retrieve the reports by using a Web browser, such
as Internet Explorer. It’s also possible to publish report models that can be
used by end-users to create reports based on their specific needs.

SQL Server Management Studio: Provided by Microsoft, this tool allows you
to perform common database administration tasks as well as run direct
Transact-SQL statements.

stored procedure: Centralized, server-based application code. Typically
used to standardize business logic and reduce the amount of required pro-
gramming effort, you can build your own stored procedures or leverage the
many built-in stored procedures offered by SQL Server. One difference
between stored procedures and functions is that the latter must return a
value; it’s optional with the former. See also CLR; function.

Structured Query Language (SQL): Originally developed by IBM, this is a
standards-based language that allows access to information stored in a rela-
tional database. See also Transact-SQL.

subquery: A nested query that returns information to an outer query,
thereby helping the outer query correctly identify results.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 722

Book IX
Appendix C

Glossary

unique index 723

subscriber: A database server that collects replicated, published informa-
tion sent by one or more publishers. See also replication.

subscription: An appeal sent to a publisher requesting a publication to be
sent via replication. See also replication.

table: These contain logical groupings of information about a given topic.
For example, if you’re interested in students and their grades, your applica-
tion could have at least two tables: One to track details about students and
one to monitor their test scores. See also column.

TCP/IP: An abbreviation for Transmission Control Protocol/Internet
Protocol, this standard makes up the foundation of most computer-to-
computer communication across the Internet and on local networks.

third normal form: Table data that complies with both the first and second
normal forms and directly relates to each rows primary key. See also first
normal form; second normal form.

transactions: To prevent data corruption or other inconsistent results,
developers use transactions to logically group sets of related database
access statements into one work unit. If something goes wrong during the
processing of these statements, it’s easy to cancel, or roll back, the transac-
tion so that none of the changes takes place. Comparatively, if everything
completes normally, the transaction ensures that all the alterations are made
at the same time.

Transact-SQL: Microsoft’s implementation of SQL. It includes a number of
enhancements that make it easier to develop powerful database applica-
tions. These additions include conditional logic, variables, and error han-
dling logic. See also SQL.

Transmission Control Protocol/Internet Protocol: See TCP/IP.

trigger: Stored in, and managed by, your database server, this software is
executed when a certain event occurs. These events can range from informa-
tion creation or modification to structural changes to your database. When
the event occurs, the trigger is executed, causing a pre-determined set of
actions to take place. These actions can encompass data validation, alerts,
warnings, and other administrative operations. Triggers can invoke other
triggers and stored procedures. See also stored procedures.

unique index: Sometimes created explicitly by the user, and sometimes cre-
ated automatically by the database server. By guaranteeing one-and-only-one
value for a given table, this structure speeds access to information and pre-
serves data integrity. See also index.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 723

UDPATE statement724

UDPATE statement: UPDATE is used to modify existing rows in tables or
views.

view: A virtual grouping of one or more tables, often done to reduce com-
plexity while increasing security and reliability. An administrator defines the
view, which is then available for developers and users to access instead of
working with the underlying tables.

Visual Studio: Microsoft’s flagship development environment, supporting a
wide variety of programming languages with a full set of professional fea-
tures and capabilities for the modern software developer. See also Visual
Studio Express.

Visual Studio Express: An easy-to-learn, free, integrated collection of soft-
ware development and data management tools provided by Microsoft. These
tools are aimed at entry-level developers, students, and hobbyists.

Web services: A software system used to transfer data. A common use of a
Web service is to transfer data across the Internet. A Web service provider
receives requests for data and responds. For example, a weather Web serv-
ice could accept a zip code as input and respond with weather data for the
zip code.

XML: A standards-based, structured way of representing and working with
information in easily readable text files. Consisting of nested elements that
contain content and attributes, XML has become the de-facto standard for
transmitting data among disparate systems. SQL Server supports storing
and working with XML data. See also element; attribute; content.

XQuery: Designed to interrogate XML-based data, this standards-based
query language also has some programming capabilities. See also XML.

59_179543-bapp03.qxp 8/23/08 1:00 AM Page 724

A
access, granting, 654–657
account provisioning, Database Engine

Configuration screen, 40
Account Provisioning database engine

configuration, 41
ad hoc queries

about, 715
remote applications, 388

adding
Boolean logic to query, 252–255
columns to tables, 148
connections for data sources,

665–667
connections to Excel, 665–666
data to database, 266–268
disk storage, 625–626

adjusting
parameters, memory settings,

591–592
server properties, 605–614

administration
about, 619–620
activity schedule, 51
adding disk storage, 625–626
attaching databases, 629–631
backing up data, 637–642
backup options, 50
copying databases, 631–633
database, state of, 621–624
database logs, 622–624
detaching databases, 628–629
exporting data, 633–637
importing data, 633–637
Maintenance Plan Wizard, 47–51
maintenance plans, 643–646
Management Studio, 47
managing disk space, 624–627

moving databases, 627–637
off-line database, 621–622
online database, 622
policy-based management, 51–57
relational databases, 17–18
removing disk storage, 626–627
restoring data, 641–643
SQL Server, 12–13, 18
supporting tools, 29–30
Web sites, 705
wizards, 47–57

ADO.NET object services, 11
advanced queries

about, 291
BEGIN TRANSACTION, 291
COMMIT TRANSACTION, 291–292
creating transactions, 293–295
error checking, 295–296
explicit transactions, 293
FULL OUTER JOIN, 304
full-text search, 296–301
implicit transactions, 293
INNER JOIN, 302
LEFT OUTER JOIN, 303–304
outer joins, 301–304
protecting data, 291–296
querying XML data, 304–311
RIGHT OUTER JOIN, 302–303
ROLLBACK TRANSACTION, 292
TRY...CATCH block, 295

Advanced Server properties, 613–614
Advanced settings, query options,

215–219
AdventureWorks2008

about, 231
adding Boolean logic to query,

252–255
building queries with Query

Designer, 238–239

IndexIndex

60_179543-bindex.qxp 8/23/08 1:00 AM Page 725

SQL Server 2008 All-in-One Desk Reference For Dummies726

AdventureWorks2008 (continued)

building queries with SELECT
statement, 237–238

CodePlex, 233
comparing values, 249–250
filtering information, 248–256
installing, 233–234
join variations, 244
joining two tables, 242–244
looking for strings, 250–252
obtaining, 233
retrieving data from multiple tables,

240–248
retrieving data from single table,

235–239
running query in SSMS, 236
searching for NULL values, 255–256
searching ranges of data, 255–256
troubleshooting, 712
using, 231–234
using aliases in column list, 238
using IntelliSense, 235
using table aliases, 243

agents, replication, 689
ALTER view, 278
altering tables via SQLCMD, 153–154
Analysis Services objects

data mining, 526–528
maintaining, 517–528

Analysis Services Scripting Language
(ASSL), 495–497

ANSI parameters, query options,
219–223

application development
relational databases, 19
SQL Server, 19
user profile, 652

application user profile
about, 651
power, 652

Applications tab, Windows Task
Manager, 543

architecture

policy-based management, 52
Resource Governor, 560–561
SQL Server Integration Services

(SSIS), 663–664
archival information partitioning, 694
articles

about, 715
replication, 678

ascending order query results, 258–259
assembly

about, 715
T-SQL, 322–323

associating connections with data flow,
SSIS, 669–672

atomic values, normalization, 181–182
attaching databases, 629–631
attributes, 715
auditing, 12
Autogrowth Settings, Files

properties, 93
automate operations, troubleshooting,

709–710
Automatic Options, database

parameters, 95
automating administration, SQL Server

Management Objects, 408–412
availability, replication, 691
AVG query results, 260

B
backup

about, 715
data, 637–642
devices, 715
General properties, 91

BEGIN TRANSACTION advanced
query, 291

BINARY data type, 107
BizTalk Server, 16
books (resources), 705
Boolean logic, 252

60_179543-bindex.qxp 8/23/08 1:00 AM Page 726

Index 727

building
new tables, 121–129
project, SSIS, 672–673
queries with Query Designer,

238–239
queries with SELECT statement,

237–238
BULK INSERT statement, 583
business intelligence

about, 493–495
relational databases, 19–20
SQL Server, 19–20
tools, 2

Business Intelligence Development
Studio (BIDS)

about, 2, 519–523
data mining, 519–523
integrating reports, 471
SQL Server Analysis Services

(SSAS), 490–491

C
changing

columns properties, 149–150
data, 582–586
data type for column, tables, 149
database parameters, 90–97
one variable, 542

CHAR data type, 105
CHECK constraint violation, 172
checkpoint, 715
classifications, Resource Governor, 561
client statistics, SQL Server Optimizer,

196–200
clustered indexes, 577
clustering, 536
Codd, Edgar F, 177
columns

about, 716
options, tables, 129–135

COMMIT TRANSACTION query, 291–292

Common Language Runtime (CLR)
about, 716
integrated stored functions, 344–347
integrated stored procedures,

323–324
SQL Server 2008, 11

communication protocols
about, 43
named pipes, 44
shared memory, 44
TCP/IP, 44
Virtual Interface Adapter (VIA), 44

communication settings
network speed, 598–599
network traffic, 598–599
protocol, 599

SQL Server Query Optimizer,
533–538

SQL Server tuning, 598–599
subnets, 599

community menus, Management
Studio, 60

compact edition, SQL Server 2008, 14
comparing values,

AdventureWorks2008, 249–250
composite index, 716
conditions, policy-based management,

54–56
Configuration Manager

about, 44–45
configuring SQL Server, 604
SQL Server Native Client

Configuration, 45
SQL Server Network Configuration, 45
SQL Server Services, 44

configuration scripts, generating,
615–617

configurations
creating, 43–47
maintaining, 43–47

configuring
about, 603
adjusting server properties, 605–614

60_179543-bindex.qxp 8/23/08 1:00 AM Page 727

SQL Server 2008 All-in-One Desk Reference For Dummies728

configuring (continued)

Configuration Manager, 604
grid output, 226–227
Management Studio, 605
multiserver output, 229
publisher and distributor

replication, 684–686
replication, 683–689
SP_CONFIGURE, 604–605
Surface Area Configuration Tool, 604
text output, 227–228
tools, 603–605

Connect to Server dialog box, 77
connecting to server, databases, 76–78
Connection Server properties, 610–611
Connection Time Out, 78
constraints

about, 716
relationships, 158–160
tables, 121

constructing new tables, 121–140
content, 716
control parameters, query options,

213–223
converting

from different database, 27–29
to SQL Server 2008, 25–29
upgrading from earlier versions,

25–27
copying databases, 631–633
COUNT query results, 260
CPU

requirements, 24
Resource Governor, 560

CREATE TYPE statement, 115
CREATE view, 278
credentials, Security folder, 654
cryptographic providers, Security

folder, 654
CSV files, 473–474
cube, 480, 716
Cursor Options, database

parameters, 95

D
data

about, 265, 582
adding to database, 266–268
backup, 637–642
BULK INSERT statement, 583
capture, 12
changing, 582–586
Data Manipulation Language (DML)

commands, 265–266
database, 268–270
delete optimization, 586
DELETE statement, 586
distribution, Web services, 375–379
dropping tables, 586
errors, troubleshooting, 709
file details, 81
format file, 584
formats, 27–28
generation tools, 706
insert optimization, 582–583
interaction, Server tuning, 588
loading tools for volume, 573
modifying, 265–272
partitioning large amount, 694
relationships, 155–156
removing data from database,

270–272
simplification troubleshooting, 710
TRUNCATE TABLE statement, 586
types, 11, 123–124
update optimization, 586
XML Bulk Load COM object, 585

data access strategies
about, 569
changing data, 582–586
data loading tools for volume, 573
database design for performance,

570
efficient queries, 578–582
foundation, 569–574

60_179543-bindex.qxp 8/23/08 1:00 AM Page 728

Index 729

graphical tools for monitoring,
570–571

indexes for performance, 574–578
Microsoft Virtual PC, 572
Microsoft Virtual Server, 572
query execution plans, 579–580
replication to spread workload, 574
stored procedures and functions, 581
testing tools for image, 573
TOP clause, 581–582
views, 581
virtual machines, 572
VMWare Server, 572
wildcards, 579

data compression
about, 12
disk settings, 595–597

Data Definition Language (DDL)
T-SQL, 316–317
trigger, 716–717
views, 278

data directories, 40
Data Manipulation Language (DML)
DELETE, 265
INSERT, 265
T-SQL, 317–319
trigger, 717
UPDATE, 265–266

data mining
about, 517–518, 716
Analysis Services objects, 526–528
Business Intelligence Development

Studio (BIDS), 519–523
creating scripts, 524–526
DMX language, 523–524
and maintaining analysis services

objects, 517–528
SQL Server Analysis Services

(SSAS), 486–487
data types

about, 99
additional, SQL Server 2008, 11

assigning, 117–119
binary, 107–108
BIT, 102–103
character, 104–108
creating, 115–117
date, 106–107
DECIMAL, 103–104
enhanced, 110–115
FLOAT, 104
INTEGER, 102
MONEY, 104
numeric, 101
REAL, 104
SMALLMONEY, 104
spatial, 114–115
time, 106-107
traditional, 99–100
database-based principals, 650

Database Console Command
(DBCC), 30

Database Engine Configuration
screen, 40

Database Engine option, 77
Database Engine Tuning Advisor

about, 31–32
performance monitoring tools,

547–552
Database File Information, 93
Database Ownership Files

properties, 92
database parameters

about, 90
changing, 90–97
extended properties, 95–96
Filegroups, 93–94
Files properties, 92–93
General properties, 91–92
mirroring, 96
Options, 93–95
permissions, 95
transaction log shipping, 96–97

60_179543-bindex.qxp 8/23/08 1:00 AM Page 729

SQL Server 2008 All-in-One Desk Reference For Dummies730

database server, 716
database server connection

Connect to Server dialog box, 77
Connection Time Out, 78
Database Engine option, 77
Encrypt Connection, 78
Execution Time Out, 78
Network Packet Size, 78
Network Protocol, 78
SQL Server Authentication, 77
Windows Authentication, 77

Database Setting Server properties,
611–612

Databased Advisor, 704
databases

about, 10
companies, 10
connecting to server, 76–78
converting from different, 27–29
creating new, 80–86
data file details, 81
deleting, 97
design for performance, 570
design tools, 705
existing, 78–79
file parameters, 81
Filegroups page, 84–85
full-text indexing, 81
General properties, 91
General settings, 81
log file details, 81
logs, 622–624
major objects, 79–80
names, 81
Object Explorer, Management

Studio, 61
objects, 80
owner, 81
renaming, 89–90
Reporting Services Configuration

Manager, 46
scripting, 87–88
securables, 648–649

setup, 75–88
SQL Server tuning, 588
SQLCMD to create, 86–87
state, 621–624
system databases, 75–76
troubleshooting, 708
user profile, 652

default resource pools, Resource
Governor, 560

defragmentation, disk, 594–595
DELETE statement, 265, 270, 586, 716
deleting

databases, 97
optimization, 586
tables, 153
views, 288–289

demoralizing database, 184–186
dependencies, tables, 143–145
dependent on whole key,

normalization, 182–183
deployment mode, SQL Server

Reporting Services, 427–428
deprecated, 717
descending order query results,

258–259
detaching databases, 628–629
developer edition, SQL Server 2008, 14
dimension, 481, 717
disk settings

about, 593–594
data compression, 595–597
defragmentation, 594–595
encryption, 597–598
partitioning, 598
RAID, 593–594
SQL Server tuning, 593–598

disk space
managing, 624–627
requirements, 24

distributors
about, 717
replication, 677–678

DML triggers, 349–353

60_179543-bindex.qxp 8/23/08 1:00 AM Page 730

Index 731

DMX extensions, 526
DMX language, 523–524
Document Type Definition (DTD), 717
domain accounts, installing, 39
downtime tolerance partitioning, 695
DROP view, 278
dropping

tables, 586
views with T-SQL, 289

DTM Data Generator, 573, 706
duplicate indexes, 577–578
duplication of data normalization,

178
dynamic data partitioning, 694
dynamic databases, 265

E
E-mail Settings, Reporting Services

Configuration Manager, 46
edit menus, Management Studio, 60
editing query, 207–209
effectiveness, SQL Server Query

Optimizer, 538–540
efficient queries, data access

strategies, 578–582
element, 717
Embarcadero Technologies, 705
enabling

processors parameters, 593
Resource Governor, 561–563

Encrypt Connection, 78
encryption

about, 12
disk settings, 597–598

Encryption Keys, Reporting Services
Configuration Manager, 47

enterprise edition, SQL Server 2008, 13
environment, setup in partitioning,

696–699

error checking advanced queries,
295–296

evaluation, policy-based management,
56–57

Excel, 473–474
exchanging data with mobile users, 690
Execution Account, Reporting Services

Configuration Manager, 46
execution modes, policy-based

management, 52
execution plans

queries, 534–535
SQL Server Optimizer, 193–196

Execution Time Out, 78
explicit administration, policy-based

management, 52
explicit transactions, advanced

queries, 293
exported reports, viewing, 474
exporting

data, 633–637
query or results, 209–212
reports, 473

exposing report information with
Report Server Web services,
474–476

express edition, SQL Server 2008, 14
extended properties, database

parameters, 95–96

F
facets, policy-based management,

52–53
Feature Selection screen, installing,

38–39
filegroup, 717
Filegroups database parameters, 93–94
Filegroups page databases, 84–85
filegroups partitioning, 695

60_179543-bindex.qxp 8/23/08 1:00 AM Page 731

SQL Server 2008 All-in-One Desk Reference For Dummies732

files
backup, 717
menus, Management Studio, 60
parameters, 81

Files properties
Autogrowth Settings, 93
Database File Information, 93
Database Ownership, 92

FILESTREAM, 40, 41, 113
filtered queries, 535–537
filtering information,

AdventureWorks2008, 248–256
first normal form

about, 717
normalization, 179–181

fixed database roles, 650
fixed server roles, 650
flat files, 28
flexibility

relational databases, 17
SQL Server, 17

foreign keys
about, 718
constraints, 158–159
indexes for performance, 576
violation, 171–172

format files, 584
foundation, data access strategies,

569–574
full backup, 718
full differential backup, 718
FULL OUTER JOIN advanced queries,

304
full-text indexing, databases, 81
full-text search queries, 296–301
functions

about, 335–338, 718
built-in, 336–337
CLR integrated stored, 344–347
scalar, 341–343
table-valued, 343–344
user-defined, 337–338

G
General properties

about, 607
backup, 91
database, 91
maintenance, 91–92

General settings
databases, 81
query options, 214–215

generating configuration scripts,
615–617

GEOGRAPHY data type, 115
GEOMETRY data type, 115
Google Groups, 704
Google newsgroups, 704
granting access, 654–657
graphical performance information,

552–559
graphical tools

data access strategies, 570–571
performance monitoring tools, 542

grouping query results, 260–263

H
hardware requirements, 23–24
help menus, Management Studio, 60
hosts, replication, 689–691
HTTP endpoints, Web service, 380–383

I
icons, 66–67
IMAGE data type, 108
implementing security, 653–659
implicit transactions, 293
importing data, 633–637

60_179543-bindex.qxp 8/23/08 1:00 AM Page 732

Index 733

indexes
about, 574, 718
access, 578
clustered, 577
data access strategies, 574–578
density, 197–198
duplicate, 577–578
filter columns, 576–577
foreign key, 576
index filter columns, 576–577
index-only access, 578
join columns, 577
Optimizer, 578
primary key, 574–576
queries, 536
selectivity, 198
Server tuning, 588
SQL Server Query Optimizer, 538
temporary tables, 577

Informix, 10
INNER JOIN advanced query, 302
INSERT command, 265–268
insert optimization, 582–583
insolation level, 718–719
installation CD, 36
installing

about, 35
AdventureWorks2008, 233–234
Database Engine Configuration

screen, 40–41
directory, 39
domain accounts, 39
Feature Selection screen, 38–39
installation CD, 36
installation directory, 39
Instance Configuration screen,

38–39
license, 36–37
local accounts, 39
multiple machine installations, 23
.NET Framework, 36
options, 37
passwords, 40

Server Configuration screen, 39
Setup Report Rules check, 38
SQL Server Installation Center,

36–37
SQL Server Reporting Services,

428–433
startup options, 40
system configuration check, 37
usernames, 40

Instance Configuration screen, 38–39
integrated application development,

.NET language, 413–417
Integrated mode, SharePoint, 471
integrating data from multiple

sites, 690
integrating reports

about, 469
Business Intelligence Development

Studio (BIDS), 471
exporting reports, 473
Report Builder 2.0, 471
report file formats, 473
SharePoint, 469–471

integration
about, 661
adding connections for data

sources, 665–667
adding connections to database,

666–667
adding connections to Excel,

665–666
architecture, 663–664
associating connections with data

flow, 669–672
building project, 672–673
challenges, 661–662
creating data flow task, 668–669
creating project, 665
running project, 673–675
Server platform and, 662–663
SQL Server 2008, 11–12
technology, 2
using, 664–667

60_179543-bindex.qxp 8/23/08 1:00 AM Page 733

SQL Server 2008 All-in-One Desk Reference For Dummies734

IntelliSense queries, 67–68
internal resource pools, Resource

Governor, 560
Internet Explorer SP1, 24
Is Clustered, Server property, 607

J
joining

columns, 577
tables, AdventureWorks2008,

242–244
variations, AdventureWorks2008,

244
joins, 302–304

K
key management, 12
Key Performance Indicator (KPI), 482

L
language integrated query (LINQ), 11
launching Visual Studio, 364–365
LEFT OUTER JOIN advanced query,

303–304
license, installing, 36–37
linked servers

about, 719
logins, 396–399
querying data, 399

list, table, 141–143
loading information trouble-

shooting, 710
local accounts, installing, 39
log compression, 13
log files

about, 719
details, 81

logical design, 719

logical disk, Windows System
Monitor, 546

logical operators, 254
logins

creating, 654–656
linked servers, 396–399
security, 653
Security folder, 654

logon triggers, 353–354
looking for strings,

AdventureWorks2008, 250–252

M
magazines, Web sites, 704
maintenance

analysis services objects, 517–528
configurations, 43–47
General properties, 91–92
plans, 643–646
policy-based management, 53–57
triggers, 359–360
views, 284288

Maintenance Plan Wizard, 47–51
managed target, policy-based

management, 52
management

Object Explorer, Management
Studio, 62

policy, 53
relationships, 170–173

Management Studio, 47
about, 59
configuring SQL Server, 605
icons, 60
menu structure, 60
Object Explorer, 61–62
running queries, 65–72
Solution Explorer, 64–65
system databases, 76
Template Explorer, 62–64

many-to-many relationships, 157

60_179543-bindex.qxp 8/23/08 1:00 AM Page 734

Index 735

master data file (MDF), 719
master system databases, 75
MAX query result, 260
MDX extensions, 526
measure, 482, 719
memory

about, 589
adjusting parameters, 591–592
paging, 590
performance, 590
problems, 589–591
processes, 589
requirements, 24
Resource Governor, 560
SQL Server properties, 607–608
SQL Server tuning, 589–592
Windows System Monitor MMC

snap-in, 590–591
Windows Task Manager, 589

menus, Management Studio
community, 60
edit, 60
file, 60
help, 60
tools, 60
view, 60
window, 60

merge replication, publishing, 680, 683
messaging through service broker,

401–407
MHTML, 473–474
Microsoft

database market, 10
relational databases, 16–17

Microsoft Access, 28
Microsoft Data Access Components

(MDAC) 2.8 SP1, 24
Microsoft Developer Network

(MSDN), 703
Microsoft Excel, 28, 473–474
Microsoft Office, 16
Microsoft Office SharePoint Server

(MOSS), 470

Microsoft SQL Server Developer
Center, 703

Microsoft SQL Server Web sites, 703
Microsoft Virtual PC, 572
Microsoft Virtual Server, 572
Microsoft Visual Studio.

See Visual Studio
MIN query result, 260
mirroring

about, 12
database parameters, 96

Miscellaneous Options, database
parameters, 95

Model Designer, 719
model system databases, 76
modifying

data, 265–272
data in database, 268–270
data SSMS views, 282
data T-SQL views, 282–283
data views, 282–283
permissions, 658–659
scripts, T-SQL, 328–330
tables, 146–147
View Designer, 285–287
views with T-SQL, 287–288

MOLAP (Multidimensional OLAP),
527–528. See also OLAP

monitoring installation process, 43
moving databases, 627–637
Msdb, system database, 76
multiple machine installations, 23

N
named pipes

about, 599, 719
communication protocols, 44

names, databases, 81
namespace, 719–720
Native Client Configuration, 45
Native mode, SharePoint, 471

60_179543-bindex.qxp 8/23/08 1:00 AM Page 735

SQL Server 2008 All-in-One Desk Reference For Dummies736

navigating Visual Studio, 365–374
.NET Framework

about, 16
installing, 36

.NET Framework 2.0, 24

.NET language, 413–417
Network Packet Size, 78
Network Protocol, 78
Networking tab, Windows Task

Manager, 544
networks

speed, 598–599
traffic, 598–599

newsgroups, 704
no repeating groups, normalization,

179–181
normalization

about, 177, 720
atomic values, 181–182
demoralizing database, 184–186
dependent on whole key, 182–183
duplication of data, 178
first normal form, 179–181
no repeating groups, 179–181
query problems, 178
second normal form, 182–183
third normal form, 183–184
update problems, 178

NOT NULL
constraints, 159–160
violation, 172–173

NULL, 255–256

O
Object Explorer, Management Studio

about, 61
databases, 61
management, 62

replication, 62
security, 62
server objects, 62
SQL Server Agent, 62

ODBC, 28
off-line database, 621–622
offloading processing, 691
OLAP (Online Analytical Processing),

480–482
OLTP (Online Transaction Processing),

480–482
one-to-many relationships, 157
one-to-one relationships, 157
online database, 622
OPENDATASOURCE remote

applications, 388–389
opening traces, SQL Server

Profiler, 559
OPENROWSET, remote application,

389–390
operating system

based principals, 649
requirements, 24

operation, Resource Governor, 563–565
operator user profile, 652
Optimizer, 531–540, 578, 720. See also

SQL Server Query Optimizer
Options, database parameters

about, 93–95
Automatic, 95
Cursor, 95
Miscellaneous, 95
Recovery, 95
State, 95

Oracle, 10, 28
organizing query results, 257–263
outer joins advanced query, 301–304
output queries, 534
owner, databases, 81

60_179543-bindex.qxp 8/23/08 1:00 AM Page 736

Index 737

P
paging, memory settings, 590
partial backup, 720
partial differential backup, 720
partition function, 695
partition key, 695
partition schemes, 695
partition type, 695
partitioning

about, 693
archival information, 694
disk settings, 598
downtime tolerance, 695
dynamic data, 694
environment, setup in, 696–699
filegroups, 695
large amount of data, 694
partition function, 695
partition key, 695
partition schemes, 695
partition type, 695
predictable distribution of data, 694
supporting hardware, 694

passwords, installing, 40
pdfs, 473–474
peer-to-peer transactional replication,

publishing, 679, 682
performance

about, 541
changing one variable, 542
Database Engine Tuning Advisor,

547–552
graphical performance information,

552–559
graphical tools, 542
memory settings, 590
objects, Windows System Monitor,

546–547
parameters query options, 213–223
policies, 542–543
Resource Governor, 559–567

SQL Server Profiler, 552–559
statistics, 542
supporting tools, 30–32
tips, 541–543
Windows System Monitor, 544–547,

546–547
Windows Task Manager, 543–544

Performance tab, Windows Task
Manager, 544

Permission, Server properties, 614
permissions

about, 720
database parameters, 95
menu, 652
modifying or revoking, 658–659
setting by securable, 657–658

physical design, 720
physical disk, Windows System

Monitor, 546
point-of-sale applications replication,

690
policies

category, 53
management, 52

policy-based management
about, 13, 51
architecture, 52
conditions, 54–56
evaluation, 56–57
execution modes, 52
explicit administration, 52
facets, 52–53
key terms, 52
maintenance, 53–57
managed target, 52
management policy, 53
policy category, 53
policy management, 52
setup, 53–57

pre-packaged permissions
concept, 650

predictable distribution of data
partitioning, 694

60_179543-bindex.qxp 8/23/08 1:00 AM Page 737

SQL Server 2008 All-in-One Desk Reference For Dummies738

primary keys
about, 720
constraints, 158
indexes, 574–576
violations, 170–171

principals
about, 720
security, 649–651

problems, memory settings, 589–591
procedural language, 720–721
processes, memory settings, 589
Processes tab, Windows Task Manager,

543–544
processors

enabling, 593
parameters, 592–593
settings, 592–593
SQL Server properties, 607
threads, 593
Windows System Monitor, 545

Processors, Server properties, 608–609
Professional Association for

SQL Server, 705
Programmability, 80
projects, creating, SSIS, 665
properties

tables, 151–152
viewing, 135–136

protecting data advanced queries,
291–296

protocol
about, 721
communication settings, 599

public database role, 651
publications

about, 721
creating, 686–687
replication, 678

publish-and-subscribe, 721
publisher, 721
publishing

replication, 677–679
reports, 459–464

publishing model
defining, 679–683
merge replication, 680, 683
peer-to-peer transactional

replication, 679, 682
snapshot replication, 679, 680–681
transactional replication, 679,

681–682
pull subscription replication, 679
push subscription replication, 679

Q
queries

about, 65
creating, 67–69
design, 538
execution plans, 534–535, 579–580
filtered, 535–537
icons, 66–67
indexes, 536
IntelliSense, 67–68
new, 201–207
normalization, 178
output, 534
plans, 533
Query Designer, 69–71
query results, 69
query-specific user interface

features, 65–67
Query Designer

about, 69–71, 201
creating new query, 201–207
editing query, 207–209
exporting query or results, 209–212
saving queries, 210–211
saving results, 211–212

query optimizers, 513. See also SQL
Server Query Optimizer

query options
about, 213
Advanced settings, 215–219

60_179543-bindex.qxp 8/23/08 1:00 AM Page 738

Index 739

ANSI parameters, 219–223
configuring grid output, 226–227
configuring multiserver output, 229
configuring text output, 227–228
control parameters, 213–223
General settings, 214–215
performance parameters, 213–223
selecting results formatting options,

223–229
query results

ascending order, 258–259
AVG, 260
COUNT, 260
descending order, 258–259
grouping results into summary

rows, 261–262
grouping results with GROUP BY,

260–263
MAX, 260
MIN, 260
organizing, 257–263
SUM, 260
using HAVING clause to filter

results, 262–263
using ORDER BY for sorting,

257–260
using TOP to limit number of rows,

259–260
querying data

advanced queries, 304–311
linked servers, 399
remote applications, 386–388

Quest Software, 705

R
RAID (Redundant Array of Inexpensive

Disks), 594
Ready to Upgrade page, 27
record, 721
recovery model, 721
Recovery Options, database

parameters, 95

Redundant Array of Inexpensive Disks
(RAID), 594

referential integrity, 721
relational database design theory, 2
relational database management

systems (RDBMS), 1
relational databases

about, 10, 15–16
administration, 18
application development, 19
business intelligence, 19–20
flexibility, 17
integration, 20–22
Microsoft, 16–17
reliability, 17
reporting, 20
security, 17

relationships
about, 155
CHECK constraint violation, 172
constraints, 158–160
data and, 155–156
foreign key violation, 171–172
managing, 170–173
many-to-many, 157
NOT NULL violation, 172–173
one-to-many, 157
one-to-one, 157
primary key violations, 170–171
SQL and, 169
types, 156–160

reliability
relational databases, 17
SQL Server, 17

remote applications
about, 385
ad hoc queries, 388
decision to remote access,

390–391
linked servers, 391–399
OPENDATASOURCE, 388–389
OPENROWSET, 389–390
querying data, 386–388

60_179543-bindex.qxp 8/23/08 1:00 AM Page 739

SQL Server 2008 All-in-One Desk Reference For Dummies740

removing
columns, 150–151
data from database, 270–272
disk storage, 626–627

renaming
columns, 147
databases, 89–90
tables, 147

replaying traces, 559
replication

about, 677, 721
agents, 689
articles, 678
availability, 691
configuring, 683–689
configuring publisher and

distributor, 684–686
creating publication, 686–687
creating subscriber, 687–689
defining publishing model, 679–683
distributors, 677–678
exchanging data with mobile

users, 690
between hosts, 689–691
integrating data from multiple

sites, 690
Object Explorer, Management

Studio, 62
offloading processing, 691
point-of-sale applications, 690
publication, 678
publishers, 677–678
publishing and, 677–679
pull subscription, 679
push subscription, 679
reporting and data analysis, 691
scalability, 691
between servers and clients, 690
between servers and servers, 690–691
to spread workload, 574
subscribers, 677–678

Report Builder, 721

Report Builder 2.0
about, 456–459, 464–468
integrating reports, 471

Report Definition Language
(RDL), 459

report definition (RDL) files, 471
Report Designer

about, 721
creating reports, 449–468

report file formats, 473
Report Manager, 722
Report Manager URL, 46
report models, 722
reporting

relational databases, 20
replication, 691
SQL Server, 20

Reporting Services configuration,
41–42, 45–47

Reporting Services Configuration
Manager

Database, 46
E-mail Settings, 46
Encryption Keys, 47
Execution Account, 46
options, 46–47
Report Manager URL, 46
Scale-out Deployment, 47
Service Account, 46
Web Service URL, 46

Reporting Services Report Manager,
472

Reporting Services report server, 472
reporting tools, 2
reporting user profile, 651
reports

creation with Report Builder,
435–448

publishing, 459–464
Report Builder 2.0, 464–468
troubleshooting, 713

60_179543-bindex.qxp 8/23/08 1:00 AM Page 740

Index 741

requirements
memory requirements, 24
operating system, 24
supporting software, 24

Resource Governor
about, 12, 559–560
architecture, 560–561
classifications, 561
CPU, 560
default resource pools, 560
enabling, 561–563
internal resource pools, 560
memory, 560
operation, 563–565
performance monitoring tools,

559–567
resource pools, 560
tracking activity, 565–567
workload groups, 561

resource pools, Resource Governor, 560
restore, 722
restoring data, 641–643
retrieving

data, 279–281
data from multiple tables, 240–248
data from single table, 235–239

RIGHT OUTER JOIN advanced
queries, 302–303

ROLLBACK TRANSACTION advanced
queries, 292

row, 722
running

projects, 673–675
queries, 65–72
query in SSMS, 236

S
saving

queries, 210–211
results, 211–212

scalability replication, 691

scalar functions, 341–343
Scale-out Deployment, Reporting

Services Configuration Manager, 47
schema

about, 722
securables, 649

Script Wizard, 616–617
scripts

creating, data mining, 524–526
databases, 87–88
T-SQL, 324–328

searching
NULL data, 255–256
ranges of data, 255–256
second normal form
about, 722
normalization, 182–183

securables
about, 648–649, 722
database, 648–649
schema, 649
server, 648

security
about, 80, 647
granting access, 654–657
implementing, 653–659
login list, 653
logins, 654–656
modifying or revoking permissions,

658–659
need for, 647–648
Object Explorer, Management

Studio, 62
permissions menu, 652
principals, 649–651
relational databases, 17
securables, 648–649
setting permissions by securable,

657–658
SQL Server, 12, 17
user list, 653
user permissions, 651–652
users, 656–657

60_179543-bindex.qxp 8/23/08 1:00 AM Page 741

SQL Server 2008 All-in-One Desk Reference For Dummies742

Security folder
credentials, 654
cryptographic providers, 654
logins, 654
server roles, 654

Security Server properties, 609–610
SELECT statement, 722
selecting results formatting options,

223–229
Service Account, Reporting Services

Configuration Manager, 46
Service Broker

about, 80, 401, 722
better messaging through, 401–407
conversation, 722

setting permissions by securable,
657–658

setup, policy-based management,
53–57

Setup Report Rules check, 38
shared memory

about, 599
communication protocols, 44

SharePoint
about, 469–471
Integrated mode, 471
integrating SQL Server and, 470–471
Native mode, 471
Reporting Services Report

Manager, 472
Reporting Services report server, 472
Web Parts, 470

slow server troubleshooting, 711–712
snapshot replication, publishing, 679,

680–681
SOAP (Simple Object Access Protocol),

383–384, 474–476
software

development tools, 2, 33
installation troubleshooting,

707–708
requirements, 23–24
supporting software requirements, 24

Solution Explorer, Management
Studio, 64–65

SP_CONFIGURE, 604–605
SQL Server

about, 9
administration, 12–13, 18
ADO.NET object services, 11
application development, 19
business intelligence, 19–20
collation, 607
Common Language Runtime

(CLR), 11
compact edition, 14
data format, 28
data types, 11
developer edition, 14
developers, 10–11
development, 9–10
editions, 13–14
enterprise edition, 13
express edition, 14
features, 47
flexibility, 17
integration, 11–12, 20–22
language integrated query

(LINQ), 11
Microsoft, 16–17
objects, 62
platforms, 24
principals, 649
relationships, 169
reliability, 17
replication, 690–691
reporting, 20
roles, 654
securables, 648
security, 12, 17
standard edition, 13
Web services, 379–384
Windows System Monitor, 546
workgroup edition, 14

SQL Server 2000, 25–27
SQL Server 2005, 25–27

60_179543-bindex.qxp 8/23/08 1:00 AM Page 742

Index 743

SQL Server Agent, 62
SQL Server Analysis Services (SSAS),

479–491
about, 479–480, 722–723
Business Intelligence Development

Studio (BIDS), 490–491
cube, 480–482, 502–503
data mining, 486–487
data source view, 500–502
Excel and, 483
Key Performance Indicator

(KPI), 482
projects, 497–503
SharePoint and, 483
unifying data, 483–489
Visio and, 483
Word and, 483

SQL Server Authentication, 77
SQL Server Configuration screen, 39
SQL Server Import and Export

Wizard, 27–28
SQL Server Installation Center,

36–37, 47
SQL Server Integration Services (SSIS)

about, 28–29, 662, 723
adding connections for data

sources, 665–667
adding connections to database,

666–667
adding connections to Excel,

665–666
architecture, 663–664
associating connections with data

flow, 669–672
building project, 672–673
challenges, 661–662
creating data flow task, 668–669
creating project, 665
running project, 673–675
SQL Server platform and, 662–663
using, 664–667

SQL Server Magazine, 704
SQL Server Management Objects

(SMO), 408–412, 723
SQL Server Management Studio, 10, 18,

29–30, 47, 723
SQL Server Native Client, 24
SQL Server Network Configuration, 45
SQL Server platform, 662–663
SQL Server Profiler

about, 31–32
opening traces, 559
performance monitoring tools,

552–559
replaying traces, 559
trace information gathering, 553–558

SQL Server properties
Advanced, 613–614
Connection, 610–611
Database Setting, 611–612
General, 607
Is Clustered, 607
Memory, 607–608
Permission, 614
Processors, 608–609
of processors, 607
Security, 609–610
server collation, 607

SQL Server Query Optimizer
about, 187, 531
client statistics, 196–200
communicating with, 533–538
execution plans, 193–196
how it works, 188–193, 531–532
index density, 197–198
index selectivity, 198
indexes, 538
making more effective, 538–540
need for, 187–188
query design, 538
statistical information, 539–540
statistics, 198–200

60_179543-bindex.qxp 8/23/08 1:00 AM Page 743

SQL Server 2008 All-in-One Desk Reference For Dummies744

SQL Server Reporting Services (SSRS)
about, 421, 723
components, 423–426
deployment mode, 427–428
installing, 428–433
troubleshooting, 713

SQL Server Resource Governor, 31
SQL Server Roles page, 655
SQL Server Services, Configuration

Manager, 44
SQL Server Setup support files, 24
SQL Server Solutions, 704
SQL Server tuning

about, 587
communication settings, 598–599
data interaction, 588
database design, 588
disk settings, 593–598
indexing strategy, 588
memory settings, 589–592
processor settings, 592–593

SQL Server Worldwide User Group, 705
SQL_VARIANT, 114
SQLCMD

about, 30
to create databases, 86
parameters, 140
tables, 140

SSMS retrieval views, 280
standard edition, SQL Server 2008, 13
startup options, installing, 40
State Options, database parameters, 95
statistical information, 539–540
statistics, 198–200
Storage, 80
stored procedures

about, 331–335, 723
creating, 338–341
data access strategies, 581

Structured Query Language (SQL),
2, 723

subnets, 599
subquery, 723

subscribers
about, 723
creating, 687–689
replication, 677–678

subscription, 723
SUM query results, 260
supporting hardware, 694
supporting tools

about, 29
administration, 29–30
Database Engine Tuning Advisor,

31–32
performance, 30–32
software development, 33
SQL Server Management Studio,

29–30
SQL Server Profiler, 31–32
SQL Server Resource Governor, 31
Visual Studio .NET, 33
Windows System Monitor, 30–31

Surface Area Configuration Tool, 604
Sybase, 10
Synonyms, 80
system, Windows System Monitor, 545
system administrator user profile, 652
system configuration check, 37
system databases

Management Studio, 76
master, 75
model, 76
Msdb, 76
Tempdb, 76

T
T-SQL (Transact-SQL), 278–279, 724

about, 315
assembly, 322–323
CLR integrated stored procedure,

323–324
Data Definition Language (DDL),

316–317

60_179543-bindex.qxp 8/23/08 1:00 AM Page 744

Index 745

Data Manipulation Language
statements, 317–319

modifying scripts, 328–330
retrieval, 281
scripts, 324–328

table-valued functions, 343–344
tables

about, 121, 723–724
abpit, 80
adding columns, 148
altering via SQLCMD, 153–154
building new, 121–129
care of, 141
changing columns properties,

149–150
changing data type for column, 149
column options, 129–135
constraints, 121
constructing, 121–140
creating via SQLCMD, 140
creating views, 136–139
data types, 123–124
deleting, 153
dependencies, 143–145
list, 141–143
modifying, 146–147
properties, 151–152
removing columns, 150–151
renaming, 147
renaming columns, 147
SQLCMD parameters, 140
viewing contents, 145
viewing properties, 135–136
viewing scripts, 146–147
Visual Studio, 366–369

TCP/IP, 44, 599, 724
Tempdb, 76
Template Explorer, Management

Studio, 62–64
temporary tables, indexes, 577
testing tools for image, 573
TEXT data type, 106

third normal form, 183–184, 724
threads, processors parameters, 593
TIFF files, 473–474
TIMESTAMP data type, 109
Toad for SQL Server, 705
tools

configuring SQL Server, 603–605
menus, Management Studio, 60

TOP clause, 581–582
trace information gathering, 553–558
tracking activity, 565–567
transaction log shipping, 96–97
transactional replication, 679, 681–682
transactions

about, 724
creating, 293–295

trial edition, Visual Studio, 363
triggers

about, 349, 724
creating, 354–359
DML triggers, 349–353
logon triggers, 353–354
maintaining, 359–360

troubleshooting
about, 707
AdventureWorks2008, 712
automate operations, 709–710
data errors, 709
data simplification, 710
database administration, 708
loading information, 710
reports, 713
slow server, 711–712
software installation, 707–708
SQL Server Reporting Services

(SSRS), 713
unprotected data, 711

TRUNCATE TABLE statement, 586
TRY...CATCH block, 295
tuning options, Database Engine

Tuning Advisor, 547–552
tuning SQL Server, 587–599

60_179543-bindex.qxp 8/23/08 1:00 AM Page 745

SQL Server 2008 All-in-One Desk Reference For Dummies746

U
UNIQUE constraints, 159
unique index, 724
UNIQUEIDENTIFIER data type, 108
unprotected data troubleshooting, 711
update optimization, 586
update problems, 178
UPDATE statement, 265–266, 724
Upgrade Rules Check Wizard, 27
user-defined functions, 341–344
user groups, 704–705
User Mapping page, 655
user profiles

application developer, 652
application power user, 652
application user, 651
database user, 652
operator, 652
reporting user, 651
system administrator, 652

usernames, 40
users

creating, 656–657
lists, 653
permissions, 651–652

Users tab, Windows Task Manager, 544

V
VARBINARY data type, 108
VARCHAR data type, 105
View Designer, 275–278
viewing

contents, tables, 145
exported reports, 474
properties, tables, 135–136
query plans, 533
scripts, tables, 146–147

views
about, 80, 273, 724
ALTER, 278
CREATE, 278
creating, 275–279
creating, in tables, 136–139
data access strategies, 581
Data Definition Language (DDL), 278
deleting, 288–289
DROP, 278
dropping with T-SQL, 289
maintaining, 284288
menus, Management Studio, 60
modifying, T-SQL, 287–288
modifying data, 282–283
modifying data, SSMS, 282
modifying data, T-SQL, 282–283
modifying with View Designer,

285–287
retrieving data, 279–281
SSMS retrieval, 280
T-SQL, 278–279
T-SQL retrieval, 281
tying info together, 273–274
using, 279–283
View Designer, 275–278
Visual Studio, 366–369

Virtual Interface Adapter (VIA), 44, 599
virtual machines, data access

strategies, 572
Visual Studio

about, 16, 361–363, 476
launching, 364–365
navigating, 365–374
tables, 366–369
trial edition, 363
views, 366–369

Visual Studio .NET, 33
VMWare Server data access

strategies, 572

60_179543-bindex.qxp 8/23/08 1:00 AM Page 746

Index 747

W
Web Parts, SharePoint, 470
Web Service URL, 46
Web services

about, 375
data distribution, 375–379
HTTP endpoints, 380–383
SOAP, 383–384
with SQL Server, 379–384

Web sites
administrative tools, 705
AdventureWorks2008, 712
CodePlex, 233
data generation tools, 706
database design tools, 705
DTM Data Generator, 573
Google Groups, 704
magazines, 704
Microsoft SQL Server, 703
Microsoft SQL Server Developer

Center, 703
newsgroups, 704
Reporting Services Report

Manager, 472
Reporting Services report

server, 472
SQL Server Reporting Services

(SSRS), 713
user groups, 704–705
Wikipedia, 704

WHERE clause, 265
Wikipedia, 704
wildcards, data access strategies, 579
window menus, Management Studio, 60
Windows Authentication, 77
Windows Installer 3.1, 24
Windows Server 2008, 2003, 24
Windows SharePoint Services

(WSS), 470
Windows System Monitor

about, 30–31, 544–545
logical disk, 546

MMC snap-in, 590–591
performance counters, 546–547
performance monitoring tools,

544–547
performance objects, 546–547
physical disk, 546
processor, 545
SQL Server, 546
system, 545

Windows Task Manager
Applications tab, 543
memory settings, 589
Networking tab, 544
performance monitoring tools,

543–544
Performance tab, 544
Processes tab, 543–544
Users tab, 544

Windows Vista, 24
Windows XP Professional Edition, 24
wizards

about, 47
activity schedule, 51
backup options, 50
Maintenance Plan Wizard, 47–51
policy-based management, 51–57
Script Wizard, 616–617
SQL Server Import and Export

Wizard, 27–28
SQL Server Management Studio, 47

Upgrade Rules Check wizard, 27
Word files, 473–474
workload groups, Resource

Governor, 561

X
XML, 473–474
XML Bulk Load COM object, 585
XMLA extensions, 526

60_179543-bindex.qxp 8/23/08 1:00 AM Page 747

Notes

60_179543-bindex.qxp 8/23/08 1:00 AM Page 748

	Microsoft® SQL Server® 2008 ALL - IN - ONE DESK REFERENCE
	Table of Contents
	Introduction
	Book I Essential Concepts
	Chapter 1: Introducing SQL Server 2008
	SQL Server 2008: An Evolution, Not a Revolution
	Understanding SQL Server’s Editions

	Chapter 2: SQL Server Architecture and Key Concepts
	Relational Databases: The Heart of Modern Computing Solutions
	Understanding Key SQL Server 2008 Concepts
	Administration
	Application Development
	Business Intelligence
	Reporting
	Integration

	Chapter 3: Getting Started, Getting Around
	Hardware and Software Requirements
	Converting to SQL Server 2008
	Tools at Your Disposal

	Chapter 4: Setting Up SQL Server 2008
	Installing SQL Server
	Creating and Maintaining Configurations
	Streamlining Administration

	Chapter 5: Using SQL Server Management Studio
	Menu Structure and Icons
	Object Explorer
	Template Explorer
	Solution Explorer
	Running Queries

	Book II Designing and Using Databases
	Chapter 1: Setting Up a Database
	System Databases
	Connecting to a Database Server
	Exploring an Existing Database
	Understanding the Major Database Objects
	Creating a New Database
	Using SQLCMD to Create a Database
	Scripting Your Database

	Chapter 2: Care and Feeding of Your Database
	Renaming a Database
	Changing Database Parameters
	Deleting a Database

	Chapter 3: Data Types and How to Use Them
	Traditional Data Types
	Enhanced Data Types
	Creating Your Own Data Types
	Assigning a Data Type

	Chapter 4: Constructing New Tables
	Building a New Table
	Additional Column Options
	Viewing Table Properties
	Creating Views
	Creating a Table via SQLCMD

	Chapter 5: Looking After Your Tables
	Getting a List of Your Tables
	Determining Dependencies
	Viewing the Table’s Contents
	Modifying a Table
	Deleting a Table
	Altering a Table via SQLCMD

	Chapter 6: Understanding Relationships
	Relationships: Making Data Meaningful
	Relationship Types
	Creating Relationships
	Managing Relationship Errors

	Book III Interacting with Your Data
	Chapter 1: Using Proper Normalization Techniques
	Normalizing Your Database
	First Normal Form: No Repeating Groups
	Second Normal Form: Dependent on the Whole Key
	Third Normal Form
	Denormalizing Your Database

	Chapter 2: The SQL Server Optimizer
	Why You Need the Optimizer
	How the Optimizer Works
	Using Execution Plans to Figure Out What’s Happening
	Client Statistics: Helping the Optimizer Do Its Job

	Chapter 3: Using the Query Designer
	Creating a New Query
	Editing Your Query
	Exporting Your Query or Results

	Chapter 4: Setting Query Options
	Configuring Query Options with Performance and Control Parameters
	Selecting Results Formatting Options

	Chapter 5: Searching for Information
	Using AdventureWorks2008
	Retrieving Data from a Single Table
	Retrieving Data from Multiple Tables
	Filtering Information

	Chapter 6: Organizing Query Results
	Using ORDER BY to Sort Your Results
	Grouping Results with GROUP BY

	Chapter 7: Modifying Your Data
	Using DML Commands
	Adding Data to Your Database
	Modifying Data in your Database
	Removing Data from Your Database

	Chapter 8: Taking Advantage of Views
	Tying Information Together with Views
	Creating a View
	Using a View
	Maintaining a View
	Deleting a View

	Chapter 9: Advanced Query Topics
	Using Transactions to Protect Your Data
	Finding Information with Full-Text Search
	Understanding Outer Joins
	Querying XML Data

	Book IV Database Programming
	Chapter 1: Understanding Transact-SQL
	Key Language Concepts
	Situations Where It Makes Sense to Use Transact-SQL
	Scenarios When It’s Time to Use Another Programming Language
	Creating a Script
	Modifying a Script

	Chapter 2: Stored Procedures and Functions
	Why You Need Stored Procedures and Functions
	Creating Stored Procedures and Functions

	Chapter 3: Triggers
	DML Triggers: Letting Your Database Look After Itself
	DDL Triggers: Letting Your Server or Your Database Look After Itself
	Logon Triggers: Monitoring and Controlling Login Events
	Creating Triggers
	Maintaining Triggers

	Chapter 4: Working with Visual Studio
	Introducing Visual Studio
	Navigating an SQL Server Database with Visual Studio

	Chapter 5: Web Services
	Using Web Services to Distribute Data
	Using Web Services in Conjunction with SQL Server

	Chapter 6: Developing Remote Applications
	Data Everywhere: Remote Applications to the Rescue!
	Determining When It Makes Sense to Access Data Remotely
	Using Linked Servers

	Chapter 7: Advanced Development Topics
	Better Messaging through SQL Server Service Broker
	Automating Administration with SQL Server Management Objects
	Integrated Application Development with the .NET Framework

	Book V Reporting Services
	Chapter 1: Introduction to SQL Server Reporting Services
	What Reporting Services Provides to You and Your Users
	Understanding Reporting Services Components
	Installing Reporting Services

	Chapter 2: Creating Reports with Report Builder
	Developing Reports Faster with Report Builder
	Designing a New Report
	Publishing Reports
	Maintaining Reports

	Chapter 3: Creating Reports with Report Designer
	Generating Sophisticated Output with Report Designer
	Understanding Report Definition Language (RDL)
	Designing, Publishing, and Maintaining Reports

	Chapter 4: Integrating Reports
	Tying Reports Together with SharePoint
	Using Familiar Microsoft Office Tools to View Reports
	Exposing Report Information with Web Services

	Book VI Analysis Services
	Chapter 1: Introduction to SQL Server Analysis Services
	Introducing SQL Server Analysis Services (SSAS)
	Leveraging the Power of Multidimensional Data
	Choosing an Environment for Analysis Services

	Chapter 2: Creating Business Intelligence Solutions with BIDS
	Understanding Business Intelligence
	Understanding Analysis Services Scripting Language (ASSL)
	Creating a SQL Server Analysis Project
	Exploring a SQL Server Analysis Services Project

	Chapter 3: Data Mining and Maintaining Analysis Services Objects
	An Introduction to Data Mining
	Easy Integration with Business Intelligence Development Studio
	Creating New Scripts
	Managing Existing Analysis Services Objects

	Book VII Performance Tips and Tricks
	Chapter 1: Working with the SQL Server Optimizer
	Understanding How an Optimizer Works
	Communicating with the Optimizer
	Helping Your Optimizer Help You

	Chapter 2: Using Performance Monitoring Tools
	Laying the Right Foundation for Performance Monitoring
	Getting a Complete Picture with Windows Task Manager
	The Windows System Monitor
	Taking Advice from the Database Engine Tuning Advisor
	Viewing Graphical Performance Information with SQL Server Profiler
	Enforcing Control with the Resource Governor

	Chapter 3: Data Access Strategies
	Setting a Good Foundation
	Using Indexes to Enhance Performance
	Designing High-Velocity Queries
	Changing Data Quickly

	Chapter 4: Tuning SQL Server
	Tuning: The Last Resort for Improving Performance
	Memory and Processor Settings
	Disk Settings
	Communication Settings

	Book VIII Database Administration
	Chapter 1: Configuring SQL Server
	SQL Server Configuration Tools
	Adjusting Server Properties
	Generating Configuration Scripts

	Chapter 2: Performing Major Administrative Tasks
	Controlling Database State
	Managing Disk Space
	Moving Databases
	Backing Up and Restoring Information
	Automating Things with Maintenance Plans

	Chapter 3: Security: Keeping SQL Server Safe
	The Value of Security
	What Can You Secure?
	Who Can You Let Use Your Database?
	What Can You Let Users Do?
	Implementing Security

	Chapter 4: Integration and Your Database
	Common Integration Challenges
	How SQL Server Integration Services (SSIS) Ties It All Together
	Using SQL Server Integration Services

	Chapter 5: Replication
	Exploring the Publishing Metaphor
	Defining a Replication Publishing Model
	Configuring Replication
	Replicating between Hosts

	Chapter 6: Spreading the Load with Partitioning
	Understanding SQL Server Partitioning
	Partitioning Key Terms and Concepts
	Setting Up Partitioning in Your Environment

	Book IX Appendixes
	Appendix A: Ten Sources of Information on SQL Server 2008
	Microsoft SQL Server Web Site
	Microsoft SQL Server Developer Center
	Wikipedia
	Newsgroups
	Magazines
	User Groups
	Books
	Database Design Tools
	Administrative Tools
	Data Generation Tools

	Appendix B: Troubleshooting SQL Server 2008
	I Can’t Install the Software!
	How Can I Administer My Database?
	My Data Is Messed Up!
	I Want to Automate Some Operations
	How Can I Simplify My Data?
	How Can I Load Information into SQL Server?
	My Data Is Unprotected!
	My Database Server Is Too Slow!
	Where Is AdventureWorks?
	Where Are My Reports?

	Appendix C: Glossary

	Index

