
by Mike Chapple

Microsoft® SQL
Server® 2008

FOR

DUMmIES
‰

01_224656-ffirs.indd iii01_224656-ffirs.indd iii 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

01_224656-ffirs.indd ii01_224656-ffirs.indd ii 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

Microsoft® SQL
Server® 2008

FOR

DUMmIES
‰

01_224656-ffirs.indd i01_224656-ffirs.indd i 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

01_224656-ffirs.indd ii01_224656-ffirs.indd ii 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

by Mike Chapple

Microsoft® SQL
Server® 2008

FOR

DUMmIES
‰

01_224656-ffirs.indd iii01_224656-ffirs.indd iii 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

Microsoft® SQL Server® 2008 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/
or its affiliates in the United States and other countries, and may not be used without written permission.
SQL Server is a registered trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008933745

ISBN: 978-0-470-22465-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_224656-ffirs.indd iv01_224656-ffirs.indd iv 8/21/08 5:25:01 PM8/21/08 5:25:01 PM

About the Author
Mike Chapple, MCDBA, CISA, CISSP is an IT professional with over ten

years’ experience with SQL Server. He currently serves as an IT profes-

sional with the University of Notre Dame, where he also teaches an

undergraduate computer applications course. Mike actively participates

as a subject matter expert in the SQL Server community and writes

extensively on SQL Server at the About.com Guide to Databases. He also

serves on the Center for Internet Security SQL Server security standard

development team.

Mike is a technical editor for Information Security Magazine and is author

of several books, including Information Security Illuminated and the CISSP
Prep Guide. Mike holds a BS in computer science from the University of

Notre Dame, an MS in computer science from the University of Idaho,

and an MBA from Auburn University.

01_224656-ffirs.indd v01_224656-ffirs.indd v 8/21/08 5:25:02 PM8/21/08 5:25:02 PM

01_224656-ffirs.indd vi01_224656-ffirs.indd vi 8/21/08 5:25:02 PM8/21/08 5:25:02 PM

Dedication
To my family: Renee, Richard, Matthew, and Christopher who

lovingly put up with me during the hours I spent buried in my

laptop writing this book.

Author’s Acknowledgments
I would like to thank Kyle Looper and Susan Christophersen,

my editors at Wiley, who provided me with invaluable assis-

tance throughout the book development process. I also owe a

debt of gratitude to my literary agent, Carole Jelen of Waterside

Productions. Doug Couch served as technical editor for this title

and was a great source of advice as we worked through some of

the more difficult portions of the book. I’d also like to thank the

many people who participated in the production of this book but

I never had the chance to meet: the graphics team, production

staff, and all those involved in bringing this book to press.

01_224656-ffirs.indd vii01_224656-ffirs.indd vii 8/21/08 5:25:02 PM8/21/08 5:25:02 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Susan Christophersen

Acquisitions Editor: Kyle Looper

Copy Editor: Susan Christophersen

Technical Editor: Doug Couch

Editorial Manager: Jodi Jensen

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Key

Layout and Graphics: Carl Byers,
Reuben W. Davis

Proofreader: Toni Settle

Indexer: Broccoli Information Management

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_224656-ffirs.indd viii01_224656-ffirs.indd viii 8/21/08 5:25:02 PM8/21/08 5:25:02 PM

Contents at a Glance
Introduction .. 1

Part I: Welcome to SQL Server 2008 7
Chapter 1: Introducing SQL Server 2008 ... 9

Chapter 2: Building Your SQL Server .. 19

Chapter 3: Working with SQL Server Tools .. 35

Part II: Building SQL Server 2008 Databases 49
Chapter 4: Planning Your Database ... 51

Chapter 5: Creating Databases and Tables... 73

Chapter 6: Imposing Constraints and Relationships ... 91

Part III: Retrieving Data from Databases 107
Chapter 7: Constructing Simple Database Queries ... 109

Chapter 8: Joins and Other Advanced Queries .. 127

Chapter 9: Turning Data into Information with SQL Server

Reporting Services .. 143

Part IV: Inserting and Manipulating Your Data 159
Chapter 10: Inserting, Updating, and Deleting Data .. 161

Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers.......... 175

Part V: SQL Server Administration 191
Chapter 12: Keeping Your SQL Server Running Smoothly 193

Chapter 13: Automating SQL Server 2008 Administration.. 213

Chapter 14: Troubleshooting SQL Server 2008 Problems .. 233

Chapter 15: Replicating Data across Multiple Servers .. 249

Part VI: Protecting Your Data 269
Chapter 16: Protecting Your Data from Prying Eyes ... 271

Chapter 17: Preserving the Integrity of Your Transactions 293

Chapter 18: Preparing for Disaster .. 305

Chapter 19: Staying Alive: High Availability in SQL Server 2008 323

Chapter 20: Implementing Policy-Based Management with the Declarative

Management Framework .. 339

02_224656-ftoc.indd ix02_224656-ftoc.indd ix 8/21/08 5:25:26 PM8/21/08 5:25:26 PM

Part VII: The Part of Tens ... 351
Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming 353

Chapter 22: Ten Database Design Tips ... 359

Index .. 363

02_224656-ftoc.indd x02_224656-ftoc.indd x 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Table of Contents
Introduction ... 1

About This Book .. 1

Conventions Used in This Book ... 2

What You Are Not to Read ... 2

Foolish Assumptions ... 3

How This Book Is Organized .. 3

Icons Used in This Book ... 5

Where to Go from Here ... 5

Part I: Welcome to SQL Server 2008 7

Chapter 1: Introducing SQL Server 2008. .9
Starting Off on the Right Foot .. 10

Examining SQL Server editions .. 10

Checking system requirements.. 11

Understanding the Basic Components of SQL Server 13

SQL and Transact-SQL ... 13

SQL Server components .. 13

Implementing Databases with SQL Server 2008 .. 16

Setting up your server ... 16

Stocking it with databases .. 16

Accessing and updating your data .. 16

Managing and protecting what you’ve built 17

What’s New in SQL Server 2008 ... 17

Declarative Management Framework .. 17

Encryption and Auditing ... 18

Resource conservation ... 18

Date/Time Data Types ... 18

Chapter 2: Building Your SQL Server .19
Installing SQL Server 2008 .. 19

Choosing between default and named instances 19

Selecting an authentication mode ... 20

Choosing service accounts ... 21

Selecting the collation ... 21

Performing the installation ... 22

02_224656-ftoc.indd xi02_224656-ftoc.indd xi 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Microsoft SQL Server 2008 For Dummies xii
Upgrading an Existing SQL Server Installation .. 25

Preparing for an upgrade with Upgrade Advisor 26

Upgrading Your Installation ... 27

Configuring Database Mail ... 28

Using SQL Server’s Built-In Databases .. 33

Master database ... 33

The msdb database ... 33

The model database .. 34

The tempdb database ... 34

Chapter 3: Working with SQL Server Tools. .35
Using SQL Server Configuration Manager .. 35

Launching SQL Server Configuration Manager 36

Starting and stopping services ... 36

Changing service accounts ... 38

Changing service start modes .. 39

Modifying networking settings ... 40

Managing Your Server with SQL Server Management Studio 43

Starting SSMS and connecting to an instance 43

Exploring the SSMS Interface ... 44

Issuing Transact-SQL queries ... 45

Working from the Command Line ... 46

Part II: Building SQL Server 2008 Databases 49

Chapter 4: Planning Your Database .51
Introducing Database Design Concepts .. 51

Understanding the Elementsof a Database .. 52

Database servers.. 52

Organizing a Database .. 55

Defining your database objectives .. 55

Grouping data into tables ... 56

Selecting primary keys .. 59

Linking related tables .. 60

Diagramming Your Database ... 61

Staying Fit and Trim with Normalization .. 62

First normal form ... 62

Second and third normal forms ... 63

Choosing Data Types for Your Tables .. 64

Numeric data types ... 65

Date and time data types .. 66

Character string data types .. 68

Binary data types ... 69

Other data types .. 69

Working with NULL Values ... 70

02_224656-ftoc.indd xii02_224656-ftoc.indd xii 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

xiii Table of Contents

Chapter 5: Creating Databases and Tables .73
Creating a Database .. 73

Altering database properties.. 77

Deleting or renaming a database ... 78

Specifying Files and Filegroups .. 80

SQL Server files .. 80

Using filegroups ... 83

Creating a Table ... 85

Getting started ... 85

Adding columns ... 87

Selecting a primary key ... 87

Modifying tables ... 89

Deleting tables .. 90

Chapter 6: Imposing Constraints and Relationships 91
Introducing Constraints .. 91

Controlling Database Contents Using Constraints 92

Filling in empty values with DEFAULT constraints 92

Enforcing Database Integrity .. 102

Enforcing uniqueness .. 102

Enforcing referential integrity with FOREIGN KEY constraints ... 103

Part III: Retrieving Data from Databases 107

Chapter 7: Constructing Simple Database Queries 109
Retrieving Data with SELECT Statements ... 109

The SELECT. . .FROM clause ... 110

The WHERE clause ... 112

Organizing Query Results ... 118

Sorting output .. 118

Summarizing data with aggregate functions 120

Grouping results .. 123

Renaming columns in your output .. 124

Chapter 8: Joins and Other Advanced Queries.127
Joining Data from Multiple Tables .. 127

Matching records with INNER JOINs ... 128

Including nonmatching records with OUTER JOINs 131

Joining a table with itself .. 133

Taking SELECT to the Next Level .. 135

Computing values .. 135

Managing complexity with subqueries ... 137

Dealing with different cases ... 138

02_224656-ftoc.indd xiii02_224656-ftoc.indd xiii 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Microsoft SQL Server 2008 For Dummies xiv
Using Database Views ... 139

Creating a view ... 139

Modifying a view .. 140

Deleting a view ... 141

Chapter 9: Turning Data into Information
with SQL Server Reporting Services .143

Setting up SQL Server Reporting Services .. 143

Creating an SSRS Report with Report Builder ... 146

Installing and starting Report Builder 2.0 147

Choosing a data source and data set .. 147

Laying out the report .. 150

Publishing the report .. 154

Working with Deployed (Published) Reports .. 154

Viewing reports .. 155

Configuring report security .. 156

Part IV: Inserting and Manipulating Your Data 159

Chapter 10: Inserting, Updating, and Deleting Data 161
Inserting Small Quantities of Data ... 161

Understanding simple data entry .. 162

Writing INSERT statements .. 163

Modifying and Deleting Data .. 164

Modifying data with UPDATE ... 164

Removing data from a database .. 165

Importing Large Quantities of Data ... 166

Inserting query results .. 166

Copying bulk data with BULK INSERT ... 167

Performing blk operations from the command line with bcp 168

Working with SQL Server Integration Services .. 169

Chapter 11: Saving Time with Functions,
Stored Procedures, and Triggers .175

Reusing Logic with Functions .. 175

Understanding types of functions ... 176

Leveraging SQL Server’s built-in functions .. 177

Calling built-in functions ... 178

Obtaining a list of built-in functions .. 179

Creating Your Own Functions .. 181

Reusing SQL Code with Stored Procedures ... 183

Saving time with system stored procedures 184

Writing your own stored procedures .. 185

02_224656-ftoc.indd xiv02_224656-ftoc.indd xiv 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

xv Table of Contents

Updating Data Automatically with Triggers ... 187

Creating a trigger ... 188

Disabling a trigger .. 189

Modifying and Deleting Functions, Stored Procedures,

and Triggers .. 189

Modifying objects .. 189

Deleting objects ... 190

Part V: SQL Server Administration 191

Chapter 12: Keeping Your SQL Server Running Smoothly 193
Indexing Data to Improve Query Performance .. 193

Using clustered indexes .. 194

Creating nonclustered indexes .. 194

Optimizing index performance .. 197

Improving Performance with Partitions ... 198

Creating a partition function .. 199

Creating a partition scheme ... 200

Creating a partitioned table.. 201

Updating Database Statistics ... 202

Automatically updating statistics .. 202

Manually updating statistics .. 202

Managing File Sizes .. 203

Automatically shrinking database files ... 203

Manually shrinking a single database file 204

Manually shrinking all files associated with a database 204

Checking Database Integrity .. 205

Running DBCC CHECKDB .. 205

Correcting integrity errors ... 206

Governing Resource Consumption ... 207

Creating resource pools .. 208

Creating workload groups .. 210

Creating classifier functions ... 211

Activating and deactivating Resource Governor 212

Chapter 13: Automating SQL Server 2008 Administration.213
Scheduling Tasks with SQL Server Agent ... 213

Starting SQL Server Agent... 214

Creating a SQL Server Agent job .. 215

Adding job steps to a SQL Server Agent job................................... 217

Scheduling a SQL Server Agent job ... 220

Notifying someone when the job completes 222

Implementing Database Maintenance Plans .. 222

Identifying the tasks to include in a maintenance plan 223

Creating a maintenance plan .. 223

02_224656-ftoc.indd xv02_224656-ftoc.indd xv 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Microsoft SQL Server 2008 For Dummies xvi
Alerting Administrators about Database Events 228

Configuring database operators .. 228

Creating SQL Server alerts .. 229

Chapter 14: Troubleshooting SQL Server 2008 Problems 233
Understanding the Inner Workings of SQL Server Queries 233

Creating a trace with SQL Server Profiler 234

Reviewing trace results ... 237

Reviewing Log Records ... 238

SQL Server error log .. 239

Windows Application Log ... 239

SQL Server Management Studio Log File Viewer 240

Monitoring Your Server with Performance Studio 241

Configuring Performance Studio .. 242

Reviewing performance data .. 244

Tuning Your Database with Database Engine Tuning Advisor 246

Chapter 15: Replicating Data across Multiple Servers.249
Understanding Replication ... 250

Server roles ... 250

Articles and publications .. 252

Replication types ... 254

Publishing Data with Snapshot Replication ... 258

Creating a distributor .. 258

Creating a publication ... 261

Subscribing to a Publication .. 265

Monitoring Replication ... 267

Part VI: Protecting Your Data 269

Chapter 16: Protecting Your Data from Prying Eyes 271
Creating and Managing Logins ... 271

Creating server logins ... 272

Removing database logins .. 273

Adding Database Users ... 273

Managing Rights with Roles ... 275

Understanding fixed server roles .. 275

Understanding fixed database roles .. 277

Creating database roles .. 279

Assigning users to database roles ... 282

Preserving Confidentiality with Encryption ... 282

Encrypting database connections ... 283

Encrypting stored data ... 284

02_224656-ftoc.indd xvi02_224656-ftoc.indd xvi 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

xvii Table of Contents

Auditing SQL Server Activity .. 287

Enabling and configuring auditing ... 287

Reviewing audit records ... 291

Chapter 17: Preserving the Integrity of Your Transactions 293
Preserving Transaction Integrity with the ACID Model 294

Atomicity ... 294

Consistency .. 295

Isolation... 295

Durability .. 296

Creating SQL Server Transactions .. 296

COMMIT or ROLLBACK? ... 297

Testing Transact-SQL statements with transactions 298

Changing the Transaction Isolation Level .. 300

READ UNCOMMITTED ... 300

READ COMMITTED .. 301

REPEATABLE READ ... 301

SERIALIZABLE... 302

SNAPSHOT .. 302

Handling Errors .. 303

Chapter 18: Preparing for Disaster .305
Backing Up Your Data ... 305

Backing up databases .. 306

Saving time with differential backups ... 309

Saving space with backup compression ... 310

Backing up the transaction log .. 312

Specifying Disaster Recovery Requirements with Recovery Models 315

Choosing a recovery model .. 315

Changing recovery models ... 316

Restoring Your Data after a Disaster .. 317

Using Database Snapshots ... 320

Creating a database snapshot .. 320

Accessing a database snapshot ... 321

Reverting to a database snapshot ... 321

Chapter 19: Staying Alive: High Availability in SQL Server 2008 . . .323
Creating Redundancy with Database Mirroring 324

Choosing an operating mode ... 325

Configuring mirroring .. 325

Monitoring Database Mirroring ... 330

Failing over a mirrored database ... 331

Synchronizing Databases with Log Shipping ... 333

Configuring log shipping ... 333

Failing over to a log shipping secondary instance 337

02_224656-ftoc.indd xvii02_224656-ftoc.indd xvii 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Microsoft SQL Server 2008 For Dummies xviii
Chapter 20: Implementing Policy-Based Management
with the Declarative Management Framework339

Coming to Terms with DMF .. 340

Creating DMF Policies ... 340

Creating a condition .. 341

Creating a policy .. 344

Using On Demand Execution Mode ... 346

Verifying policy compliance ... 347

Enforcing a policy manually ... 348

Automated Policy Enforcement ... 349

Viewing Policies Affecting a Target ... 350

Part VII: The Part of Tens ... 351

Chapter 21: Ten Ways to Keep Your SQL
Server 2008 Databases Humming .353

Monitor Query Performance .. 353

Back Up Your Data Routinely ... 354

Verify Database Integrity Often ... 354

Tune the Physical Structure of Your Databases 354

Conserve Transaction Log Disk Space .. 355

Monitor Database Logs ... 355

Automate Administrative Alerts .. 356

Manage Multiple Servers .. 356

Simplify User Rights Administration with Roles 356

Perform Security Reviews .. 357

Chapter 22: Ten Database Design Tips. .359
Plan Ahead .. 359

Draw Before You Click .. 360

Choose Primary Keys Carefully ... 360

Select Data Types with Space Efficiency in Mind 360

Make Sure Your Fields Are Single Purpose .. 361

Remember the Meaning of NULL ... 361

Normalize when Possible ... 361

Manage Your Relationships ... 362

Use Descriptive Names ... 362

Document Your Design ... 362

Index ... 363

02_224656-ftoc.indd xviii02_224656-ftoc.indd xviii 8/21/08 5:25:27 PM8/21/08 5:25:27 PM

Introduction

I’ve been using SQL Server for longer than I care to admit. Let’s just say

that I remember the days when Microsoft first released its own version of

SQL Server after obtaining the rights to it from Sybase Corporation. That was

a long time ago!

Why have I been using SQL Server for such a long time? Quite simply, I

believe in its power as a user- and business-friendly database platform that’s

readily accessible to users in most modern enterprises. It’s much more pow-

erful than desktop databases such as Microsoft Access, and it’s rapidly gain-

ing market share over the industry leader, Oracle.

SQL Server is unique in that it easily accommodates users with a wide range

of experience. If you’re upgrading from Microsoft Access, you’ll find many

of SQL Server’s graphical user interfaces friendly and familiar. On the other

hand, if you’re a database professional moving from another platform, you’ll

find that the ability to directly issue commands to the database accelerates

your learning curve.

About This Book
This book provides you with an introduction to many of the commonly used

features of SQL Server 2008. You’ll find that it’s an excellent starting point for

anyone beginning to use SQL Server and offers a great foundation for your

database career. Some of the important issues I cover in this book include:

 � Choosing the appropriate edition of SQL Server for your needs

 � Orienting yourself to the SQL Server database management tools

 � Installing and configuring your first SQL Server 2008 database server

 � Designing your first database

 � Creating databases and tables in SQL Server 2008

 � Imposing constraints on database tables and creating inter-table

relationships

 � Retrieving data from your database with simple and advanced Transact-

SQL queries

03_224656-intro.indd 103_224656-intro.indd 1 8/21/08 5:25:54 PM8/21/08 5:25:54 PM

2 Microsoft SQL Server 2008 For Dummies

 � Creating basic reports with SQL Server Reporting Services

 � Inserting data into your database via manual or bulk insertion

 � Using stored procedures, functions and triggers to automate database

tasks

 � Keeping your database server running smoothly with indexes and partitions

 � Limiting resource consumption with SQL Server 2008’s new Resource

Governor

 � Automating database administration with SQL Server Agent and

Maintenance Plans

 � Troubleshooting and tuning SQL Server databases

 � Protecting your database with security controls, backups, and transactions

 � Creating high-availability database solutions for critical IT environments

 � Using the Declarative Management Framework to create policies cover-

ing multiple SQL Server installations

SQL Server 2008 is the most powerful database product ever released by

Microsoft. In this book, I scratch the surface of this product’s powerful capa-

bilities by providing you with the information you need to get up and running

quickly.

Conventions Used in This Book
Throughout the book, I apply the following typography conventions to help

guide you through some of the information I present:

 � Text that appears in this special font is certain to be a URL (Web

address), e-mail address, filename, folder name, or code.

 � When I use a term that I think you might not be familiar with, I apply ital-
ics to that term to let you know that I go on to define it next.

 � When I tell you to choose menu commands, I do it like this: Choose

File➪Save, which means choose the File command and then choose the

Save command.

 � When I want you to type a specific item, I put it in bold text.

What You Are Not to Read
There’s quite a bit of material in this book. Some of it will be more important

to you than others, depending on the way you use SQL Server and your role

03_224656-intro.indd 203_224656-intro.indd 2 8/21/08 5:25:54 PM8/21/08 5:25:54 PM

3 Introduction

within your organization. If you’re looking for a broad-based introduction to

SQL Server, feel free to start reading at Chapter 1 and continue through the

end of the book. Otherwise, I wrote each chapter with the intention that it

stands on its own merit. Feel free to flip through the Table of Contents and

skip directly to the chapters of most interest to you.

If you’re not involved in designing or modifying database structures, you can

skip Chapters 4, 5, and 6.

If you’re not responsible for day-to-day administration of SQL Server, bypass

Chapters 12, 13, 14, and 15.

Foolish Assumptions
I’ve made a few assumptions about you when writing this book. Here’s what I

guessed:

 � You’re already comfortable using a computer and with basic use of the

Windows operating system. You should feel comfortable starting pro-

grams and opening files.

 � You’re familiar with the Internet and know how to locate specific infor-

mation using a search engine.

 � You’re familiar with the use of a simple spreadsheet, such as Microsoft

Excel, to organize information. You may not know all the advanced features

of such software, but you’re able to create a simple Excel spreadsheet.

If these assumptions don’t describe you, you might be starting with the

wrong book. I suggest going out and picking up a copy of PCs For Dummies or

Windows Vista For Dummies to help you get started.

How This Book Is Organized
This book is made up of seven parts that introduce you to Microsoft SQL

Server 2008:

 � Part I: Welcome to SQL Server 2008 provides you with an overview

of SQL Server 2008. You find out about the differences between SQL

Server’s Express, Workgroup, Standard, and Enterprise editions so that

you can select the one most appropriate for your needs. You also dis-

cover the decisions you need to make and actions you need to take to

get your first SQL Server installation up and running.

03_224656-intro.indd 303_224656-intro.indd 3 8/21/08 5:25:55 PM8/21/08 5:25:55 PM

4 Microsoft SQL Server 2008 For Dummies

 � Part II: Building Databases walks you through the process of creating

your first database in a SQL Server environment. I explain the planning

process you should follow to build your database according to accepted

design principles and walk you through the process of diagramming

your database on paper before implementing it for real. I then describe

the process to create your database, design tables, and enforce relation-

ships between tables.

 � Part III: Retrieving Data from Databases describes how to retrieve

information from a SQL Server database. I introduce the Structured

Query Language (SQL) and explain how you can use it to pull the

exact information you need out of your database. I also describe some

advanced database queries that allow you to combine information from

multiple tables and take different actions based on the results of data-

base queries.

 � Part IV: Inserting and Manipulating Your Data takes you beyond simple

retrieval of data and describes how you get new data into a database

and modify information that exists within a database table. I describe

the use of SQL statements and bulk import tools to add information to

database tables. You also discover how stored procedures, functions,

and triggers can help you automate tedious database tasks.

 � Part V: SQL Server Administration is for those of you who have respon-

sibility for administering SQL Server databases. You discover tips and

tricks to help you keep your database operating in an optimal fashion

by tuning performance parameters and governing resource utilization. I

also provide you with advice on using SQL Server’s administration tools

to make the server do the routine work for you. I conclude this section

with chapters dedicated to troubleshooting SQL Server problems and

administering multiple servers in the same environment.

 � Part VI: Protecting Your Data covers the basics you need to know to

protect your SQL Server data from unwanted intruders and natural or

technical disasters. You see how to implement access controls to limit

the rights of database users and how to use encryption to protect your

information from unauthorized access. I spend an entire chapter intro-

ducing the concept of transactions and explaining how they can protect

the integrity of data stored within your database. Finally, you find out

about techniques for backing up your database so that you can restore

your data in the event of a disaster.

 � Part VI: The Part of Tens is in every regular For Dummies book that you

will ever pick up. In the first chapter in this part, I describe ten ways you

can keep your database operating efficiently. In the second chapter, I pro-

vide you with ten tips for properly designing new SQL Server databases.

03_224656-intro.indd 403_224656-intro.indd 4 8/21/08 5:25:55 PM8/21/08 5:25:55 PM

5 Introduction

Icons Used in This Book
Icons are little pictures in the margins of the book that emphasize a point to

remember, a warning to be aware of, or a tip that I think you might find help-

ful. Here are the ones I use in this book:

 These are bits of information that I want to draw your attention to.

 This icon means that I’m alerting you to something critical or I want you to

think long and carefully about any action you might be about to take.

 The information that shows up next to this icon might be more than you need

(or want) to know, so you can skip it if you want, or come back to it when you

have more time.

 Here’s a nugget of information that’s worth storing in your memory because

you’ll need it from time to time.

Where to Go from Here
If you’re looking for a broad introduction to SQL Server, just start reading at

Chapter 1 and don’t put the book down until you fall asleep or can’t bear to

read my writing any longer!

On the other hand, if you’re looking for specific information about one aspect

of SQL Server, feel free to pick and choose. Flip through the Table of Contents

and select the chapters that interest you most. As I mentioned earlier, I wrote

each chapter with the intention of making it a stand-alone chunk of informa-

tion. Good luck in your SQL Server 2008 adventures!

03_224656-intro.indd 503_224656-intro.indd 5 8/21/08 5:25:55 PM8/21/08 5:25:55 PM

6 Microsoft SQL Server 2008 For Dummies

03_224656-intro.indd 603_224656-intro.indd 6 8/21/08 5:25:55 PM8/21/08 5:25:55 PM

Part I
Welcome to SQL

Server 2008

04_224656-pp01.indd 704_224656-pp01.indd 7 8/21/08 5:26:13 PM8/21/08 5:26:13 PM

In this part . . .

In this first part, I give you an overview of SQL Server

2008. I point out the differences between SQL Server’s

various editions to help you figure out which one best

suits your purposes. Here is where you also find out how

to get your first SQL Server installation up and running.

04_224656-pp01.indd 804_224656-pp01.indd 8 8/21/08 5:26:14 PM8/21/08 5:26:14 PM

Chapter 1

Introducing SQL Server 2008
In This Chapter
� Understanding database basics

� Choosing a SQL Server 2008 edition

� Using SQL Server components

� Implementing SQL Server databases

� Finding additional information in SQL Server references

SQL Server 2008 is Microsoft’s enterprise-class database server, designed

to compete with products such as Oracle and IBM’s DB2. According to

a Gartner study, SQL Server is rapidly gaining momentum, possessing more

than 17 percent of the worldwide database market in 2006.

SQL Server allows you to store, retrieve, and manipulate data to meet your

organization’s business objectives. The platform provides a number of tools

and technologies to assist you in managing and manipulating your data on

your own terms. For example, using SQL Server 2008, you can

 � Import and export data from a variety of file formats

 � Link to other databases (both SQL Server and those of other

manufacturers)

 � Manipulate data from within Microsoft Excel and Microsoft Access

 � Produce professional-quality dynamic reports based on SQL Server data

 � Create automated tasks that trigger when data satisfies specified conditions

That’s only scratching the surface of the functionality offered by SQL Server

2008! In this chapter, I focus on the basic knowledge you need to get started

with SQL Server.

05_224656-ch01.indd 905_224656-ch01.indd 9 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

10 Part I: Welcome to SQL Server 2008

Starting Off on the Right Foot
There are a couple of decisions you need to make if you’re building a new

SQL Server installation. Before making an investment of time or money, take a

few moments to think about the following questions:

 � What SQL Server edition effectively balances your business needs

against cost?

 � What hardware and software platform are best suited for your SQL

Server installation?

I help you answer these questions in this section.

Examining SQL Server editions
SQL Server is a complex product with a wide variety of services. Most orga-

nizations need only a subset of that functionality. Rather than charge a single

high price for a one-size-fits-all software package, Microsoft offers SQL Server

2008 in a variety of editions, ranging from the low-end (but free!) Express

Edition to the expensive, fully functional Enterprise Edition.

The right edition for your organization will depend upon your data process-

ing needs. In fact, many organizations host a combination of several different

SQL Server editions, used for different purposes.

Table 1-1 summarizes the differences between the various SQL Server 2008

editions.

Table 1-1 Comparing SQL Server Editions
Feature Express Workgroup Standard Enterprise

Maximum
Processors

1 2 4 Unlimited

Maximum RAM 1GB 3GB Unlimited Unlimited

Maximum Database
Size

4GB Unlimited Unlimited Unlimited

Database Mirroring No No Yes Yes

Log Shipping No Yes Yes Yes

Merge Subscriber Yes Yes Yes Yes

Merge Publisher No No Yes Yes

05_224656-ch01.indd 1005_224656-ch01.indd 10 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

11 Chapter 1: Introducing SQL Server 2008

Feature Express Workgroup Standard Enterprise

Oracle Replication No No No Yes

SQL Agent No Yes Yes Yes

SQL Profiler No No Yes Yes

Analysis Services No No Yes Yes

Advanced Analytics No No No Yes

Partitioning No No No Yes

Data Compression No No No Yes

Resource Governor No No No Yes

Cost (per
processor)

Free $3,899 $6,000 $25,000

 The prices listed in Table 1-1 are current as of the initial release date for SQL

Server 2008 and are subject to change.

Table 1-1 presents only a high-level view of some common differences

between the two platforms. For a complete feature comparison, see http://
msdn.microsoft.com/en-us/library/cc645993(SQL.100).aspx.

 One more SQL Server edition is available: Developer Edition. This edition is

designed for application developers and offers functionality exactly the same

as Enterprise Edition at an incredibly low price point of $50 per developer.

What’s the catch? You can use it only for development purposes. You may not

use it in a production environment (even for disaster recovery purposes).

 Microsoft plans to release two more editions of SQL Server 2008: Express

Edition with Tools and Express Edition with Advanced Services. These two

editions will include additional functionality.

Checking system requirements
Before you install SQL Server 2008, you need to verify that the hardware

you intend to use meets Microsoft’s minimum requirements for running SQL

Server. In this section, I outline the requirements for each SQL Server edition.

05_224656-ch01.indd 1105_224656-ch01.indd 11 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

12 Part I: Welcome to SQL Server 2008

Operating system
All editions of SQL Server 2008 will run on the following operating systems

with at least the service pack (SP) level indicated:

 � Windows Server 2003 Standard, Enterprise, or Data Center edition with

SP2

 � Windows Vista Ultimate, Home Premium, Home Basic, Enterprise, or

Business

 � Windows XP with SP2 (or later)

 � Windows Small Business Server 2003 with SP2

Processor
SQL Server requires a minimum of a 1 GHz processor, but Microsoft recom-

mends the use of 200 GHz or faster processors.

 Microsoft charges per physical processor for SQL Server licenses. Current pro-

cessor technology allows manufacturers to build multiple cores on the same

physical processor. Each core is effectively an individual processor. So-called

“dual core” processors include two discrete processors on the same chip, and

“quad core” processors include four computing cores. Microsoft adopted a

very generous licensing policy (unlike that of Oracle and IBM) that allows you

to purchase licensing on a physical processor basis, regardless of the number

of cores on those processors. Therefore, take this into account when choosing

your hardware platform. You’ll be much better off financially if you choose a

single quad-core processor instead of four single-core processors!

Memory
The bare minimum amount of memory needed to run SQL Server 2008 is

512MB. Microsoft recommends a minimum of 2GB, but I suggest adding as

much memory as your budget allows.

Hard drive
You need about 350MB of free hard drive space for SQL Server’s software

components. If you intend to install optional (but useful!) components such

as SQL Server Books Online (described later in this chapter) or sample data-

bases, plan on having about 1GB free. Don’t forget that this is the require-

ment for SQL Server itself; you’ll still need to save space to store your data!

Display
SQL Server 2008 requires at least a VGA (1024 x 768 pixels) video adapter and

monitor.

Software
Before installing SQL Server, be sure you’ve installed the .NET Framework 3.5.

05_224656-ch01.indd 1205_224656-ch01.indd 12 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

13 Chapter 1: Introducing SQL Server 2008

Understanding the Basic Components
of SQL Server

You should begin your SQL Server 2008 adventure with a basic understand-

ing of the components of SQL Server and their purposes. In this section, I

explain how each of the major SQL Server components interact to help you

manage your installation and manipulate data.

SQL and Transact-SQL
The Structured Query Language (SQL) is the language of databases. Any

interaction between a user, program, or server and a database takes place

through the use of SQL, even if the actual SQL code is buried deep within a

graphical environment.

All major relational databases today (SQL Server, Oracle, Microsoft Access,

IBM DB2, and so on) implement the same basic SQL commands. This common

language allows database developers to easily migrate between platforms

and create links between disparate database environments.

That said, every manufacturer of database software adds its own customiza-

tions to support functionality unique to its platform. Microsoft uses the name

Transact-SQL (sometimes abbreviated as T-SQL) to refer to its extended ver-

sion of SQL. Similarly, Oracle calls its enhanced version PL/SQL.

I provide an in-depth exploration of both SQL and Transact-SQL in Parts III

and IV of this book.

SQL Server components
SQL Server provides a number of tools that facilitate your interactions with

SQL Server. Each is designed for a specific set of tasks, although they do have

some degree of overlap.

SQL Server Configuration Manager
SQL Server Configuration Manager (shown in Figure 1-1) allows you to per-

form basic administrative tasks that affect the configuration of your SQL

Server installation. For example, this tool allows you to do the following:

05_224656-ch01.indd 1305_224656-ch01.indd 13 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

14 Part I: Welcome to SQL Server 2008

 � Start, stop, pause, and restart SQL Server services

 � Configure the use of network protocols to access SQL Server

 � Configure SQL Server Native Client connectivity

Figure 1-1:
SQL Server

Configu-
ration

Manager.

I discuss the use of SQL Server Configuration Manager in Chapter 3.

SQL Server Management Studio
SQL Server Management Studio (SSMS), shown in Figure 1-2, is the database

administrator’s primary interface to SQL Server 2008. It offers a fully func-

tional management interface, allowing you to configure and interact with

your databases from a single console.

I describe the use SSMS throughout this book, both to directly issue

Transact-SQL commands to SQL Server databases and to build databases

using SSMS’s graphic user interface.

I provide an overview of SSMS in Chapter 3.

SQL Server Books Online
My intention in this book is to provide you with a practical, hands-on intro-

duction to SQL Server’s functionality in an easy-to-read fashion. I don’t intend

it to be a “deep dive” into the technology and syntax of SQL Server. Rather, it

should provide you with a working knowledge of this powerful database plat-

form’s functionality.

Microsoft includes detailed online documentation with SQL Server 2008 in

the form of SQL Server Books Online. This documentation contains the latest

information on SQL Server functionality for administrators and developers

alike. It’s a great place to turn when you’re seeking specific information about

command syntax or advanced SQL Server features.

05_224656-ch01.indd 1405_224656-ch01.indd 14 8/21/08 5:26:42 PM8/21/08 5:26:42 PM

15 Chapter 1: Introducing SQL Server 2008

Figure 1-2:
SQL Server

Manage-
ment Studio.

Reporting Services
SQL Server Reporting Services underwent a significant overhaul before the

release of SQL Server 2008. This platform allows you to design and publish

dynamic reports based on SQL Server data. I show an example of a report

created with SQL Server Reporting Services in Figure 1-3.

Figure 1-3:
Sample

SQL Server
Reporting
Services

report.

05_224656-ch01.indd 1505_224656-ch01.indd 15 8/21/08 5:26:43 PM8/21/08 5:26:43 PM

16 Part I: Welcome to SQL Server 2008

Analysis Services
SQL Server Analysis Services offers advanced analytical techniques, such as

the use of online analytical processing (OLAP), data warehouses, and data

mining. The use of this tool is beyond the scope of this book.

There are many other features of SQL Server — too many to list in this chap-

ter. I discuss many of them later in this book. For example, I discuss SQL

Profiler and the Database Engine Tuning Advisor in Chapter 14, and SQL

Server Agent in Chapter 13.

Implementing Databases
with SQL Server 2008

So how do you get started? SQL Server 2008 makes it simple to jump in feet

first and begin working with databases.

Setting up your server
The first step is to create a SQL Server instance on an appropriate computing

platform. Earlier in this chapter, I give you some advice for selecting the hard-

ware, software, and SQL Server edition appropriate for your needs. In Chapters

2 and 3, I provide you with the information you need to set up a SQL Server

instance.

Stocking it with databases
After you have SQL Server up and running, you need to create individual

databases to house your data. In Chapter 4, I provide you with advice for

planning and designing efficient databases. Chapters 5 and 6 describe the

process for creating databases and tables and defining the relationships

between different tables within the same database.

Accessing and updating your data
I dedicate a substantial portion of this book (Parts III and IV) to helping you

put data in your database, update it, and retrieve it when necessary. My

focus in this book is on the use of Transact-SQL and SQL Server Management

Studio to manipulate your data.

Database developers use different techniques to manipulate databases. It

still all boils down to Transact-SQL statements, but they use tools such as

05_224656-ch01.indd 1605_224656-ch01.indd 16 8/21/08 5:26:44 PM8/21/08 5:26:44 PM

17 Chapter 1: Introducing SQL Server 2008

Microsoft Visual Studio and the Microsoft Data Access Components (MDAC)

to work with SQL Server 2008. Application development is beyond the scope

of this book, but you can find more information in Beginning Microsoft SQL
Server 2008 Programming.

Managing and protecting
what you’ve built
Database administrators spend a large portion of their time keeping data-

bases up and running daily. In Part V, I describe the tools and techniques

you can use for ongoing administration of your SQL Server 2008 databases,

including automation and troubleshooting tools. Part VI of this book dis-

cusses ways you can protect your data by applying SQL Server 2008’s secu-

rity and disaster recovery features.

What’s New in SQL Server 2008
If you’ve used earlier versions of SQL Server, the first question in your mind

is probably “What’s new in SQL Server 2008?” The answer? Plenty! Microsoft

promotes SQL Server 2008 as a major advance in its data platform vision and,

as such, SQL Server 2008 offers a great deal of new functionality.

 Rest easy, however, if you’re already familiar with SQL Server 2005. Although

SQL Server 2008 has a ton of new features, SSMS still has the same familiar

look and feel. You should be able to get up and running quickly.

Declarative Management Framework
The Declarative Management Framework (DMF) is one of the most revolu-

tionary features in SQL Server 2008. DMF allows database administrators to

set high-level policies describing the allowed configuration status of DMF-

managed SQL Server instances. DMF allows administrators to

 � Create policies governing SQL Server configurations

 � Evaluate an instance’s current configuration against a policy and deter-

mine what deficiencies, if any, exist

 � Apply a policy to a SQL Server instance

 � Log or prevent any changes to a SQL Server instance that would bring it

out of compliance with policy

I discuss the Declarative Management Framework in Chapter 20 of this book.

05_224656-ch01.indd 1705_224656-ch01.indd 17 8/21/08 5:26:44 PM8/21/08 5:26:44 PM

18 Part I: Welcome to SQL Server 2008

Encryption and Auditing
There are quite a few new security features in SQL Server 2008. Most notably:

 � Transparent Data Encryption (TDE) allows the encryption of databases

and backups with no user impact. I discuss TDE in Chapter 16.

 � Enhanced auditing features allow the tracking of data access, in addition

to data modification. I discuss SQL Server 2008’s auditing features in

Chapter 16.

Resource conservation
SQL Server 2008 includes two features designed to provide you with the abil-

ity to optimize server performance:

 � Resource Governor allows you to set limits and priorities for different

SQL Server workloads. This functionality offers you the ability to control

the user experience by providing different users with a guaranteed level

of performance. I discuss Resource Governor in Chapter 12.

 � Backup compression shrinks the size of backup data before it is written

to disk, reducing both the amount of time necessary to create a backup

and the disk space used to store the backup. I discuss backup compres-

sion in Chapter 18.

Date/Time Data Types
I’ve been waiting for years for SQL Server to include date and time data types

that match the way normal people think about dates and times! SQL Server

2008 provides four new data types that answer this formerly unmet demand:

 � The DATE data type is a calendar date only, with no time information.

 � The TIME data type is a time only, with no date information.

 � The DATETIMEOFFSET data type is a date/time that allows for the inclu-

sion of time zone information.

 � The DATETIME2 data type allows the specification of a date anywhere

within the range of the year 1 A.D. to the year 9999 A.D.

05_224656-ch01.indd 1805_224656-ch01.indd 18 8/21/08 5:26:44 PM8/21/08 5:26:44 PM

Chapter 2

Building Your SQL Server
In This Chapter
� Installing and configuring SQL Server 2008

� Selecting an authentication mode

� Upgrading an existing SQL Server instance

� Configuring Database Mail

Unless you’re walking into an environment in which SQL Server 2008

is already in use, your first task will be installing a new SQL Server

instance or upgrading an existing SQL Server 2005 (or earlier) instance to

SQL Server 2008. In this chapter, I explore the process of installing SQL

Server and performing the initial configuration tasks to get your database

server up and running quickly.

Installing SQL Server 2008
Before you begin the installation of SQL Server 2008, you should ensure that

the server you intend to use meets the minimum hardware and software

requirements I discuss in Chapter 1. You also need a copy of the SQL Server

2008 installation package for the edition you want to install.

Before beginning the installation process, you should make several important

configuration decisions. In the remainder of this section, I walk you through

those decisions and then explain how to install SQL Server 2008 on your server.

Choosing between default
and named instances
SQL Server allows you to install multiple instances on the same server. You

can think of each instance as an individual “copy” of SQL Server running

on the same server. Why might you want to run more than one copy of SQL

Server on the same server?

06_224656-ch02.indd 1906_224656-ch02.indd 19 8/21/08 5:27:34 PM8/21/08 5:27:34 PM

20 Part I: Welcome to SQL Server 2008

 � You may install different versions of SQL Server side by side on the same

server using multiple instances. For example, if your organization is plan-

ning to upgrade to SQL Server 2008 but you want to approach the upgrade

in a piecemeal fashion, you can run SQL Server 2005 and SQL Server 2008

instances on the same server and make the migration database by database.

 � You can run separate instances for development and testing purposes.

Doing so allows you to follow the best practice of separating production

systems from development and test code, protecting your real data from

the high likelihood of programming errors in a test environment.

 � You can grant different users full administrative rights on different SQL

Server instances running on the same server. This feature is most useful

in a database hosting environment in which different customers might

need to have databases on the same server.

SQL Server 2008 Setup provides you with two options for the instance name:

 � Default instance: Takes the same name as the Windows name of your

server. You can have only one default instance on each server.

 � Named instance: Has a user-provided name and may coexist on a server

with a default instance and other named instances.

 If you want to run multiple instances of SQL Server on the same server, you

must use named instances for all of the instances (although you may use the

default instance for one of the instances, if you want).

In the remainder of this chapter, I assume that you’re installing a server as

the default instance because this is the most common SQL Server installation

scenario.

Selecting an authentication mode
Authentication is the process that allows users to prove their identity to a

server before gaining access to resources. In most cases, this is established

through the use of a username and password. SQL Server supports two differ-

ent authentication modes:

 � Windows authentication mode: In this mode, SQL Server uses Windows

account credentials to authenticate access to the database server. Users

must have an operating system account in order to gain access to

SQL Server.

 � Mixed authentication mode: In this mode, SQL Server uses a mixture of

Windows accounts and accounts created within SQL Server to manage

user authentication.

06_224656-ch02.indd 2006_224656-ch02.indd 20 8/21/08 5:27:34 PM8/21/08 5:27:34 PM

21 Chapter 2: Building Your SQL Server

 Microsoft strongly recommends the use of Windows authentication mode

as a security best practice. Using this approach, you maintain a single set

of accounts for both server and database access, and errors are much less

likely to occur. You should use mixed authentication mode only if you have

a specific requirement for it in your organization, such as an application that

doesn’t support Windows authentication.

Choosing service accounts
During the installation process, you’ll be asked to choose service accounts

for several SQL Server services. Every program in Windows must run using

the permissions of an account; when you make this decision, you’re choosing

the account(s) that will be used to run SQL Server and its components.

 For security reasons, I strongly recommend that you ask your domain admin-

istrator to create dedicated domain accounts for the SQL Server Agent and

SQL Server service accounts. These accounts should be configured with the

minimum permissions necessary to run their respective services and should

not be used for any other purpose.

Selecting the collation
Collations define how SQL Server stores and sorts data. They differ based

upon the character set used in different parts of the world. Some common

collations include:

 � Latin1_General: collation for English and German

 � Arabic collation for Arabic languages

 � French: collation for French

 � Modern_Spanish collation for Spanish

 SQL Server Setup will choose a default collation for you based upon the set-

tings of the underlying Windows operating system. In general, you should not

change this default unless one of the following situations exists:

 � The database collation must support a different language than that of

the underlying operating system. For example, you might have a server

hosted in one country supporting a database server used by individuals

in another country.

 � The database server participates in a replication relationship with

another server that uses a different collation. A replication relationship is

when two servers are kept synchronized. (I discuss replication in more

in Chapter 15.). In replication relationships, all servers must use the

same collation.

06_224656-ch02.indd 2106_224656-ch02.indd 21 8/21/08 5:27:34 PM8/21/08 5:27:34 PM

22 Part I: Welcome to SQL Server 2008

Performing the installation
After making decisions about the instance, authentication mode, service

accounts, and collation (covered in the preceding sections), you’re ready to

begin the SQL Server installation process. Here’s how to install SQL Server:

 1. Insert the SQL Server DVD into your computer’s DVD drive.

 2. Click OK to install prerequisites, if necessary.

 If your system doesn’t have updated versions of the Microsoft .NET

Framework and Windows Installer, the SQL Server installation program

will pop up a warning message asking you to install them before begin-

ning the SQL Server setup process. You may need to answer some addi-

tional questions regarding those installations before proceeding, and the

system may require a reboot.

 3. When the SQL Server Installation Center appears, click the Installation

link.

 4. Click the New SQL Server Stand-Alone Installation or Add Features to

an Existing Installation link.

 SQL Server Setup performs a system configuration check to determine

whether your system is ready for SQL Server 2008.

 5. Click the OK button to close the Setup Support Rules screen.

 6. Select the appropriate licensing mode on the Product Key screen and

click the Next button to continue.

 If you have a license for SQL Server, you may enter your product key on

this screen. If you don’t have a license, you may select a 180-day trial of

Enterprise Edition or the free installation of Express Edition.

 7. Select the I Accept the License Terms check box in the License Terms

window and then click the Next button to continue.

 SQL Server Setup displays a list of installation prerequisites, if any are

necessary.

 8. If all checks pass, click the Next button to continue.

 If some prerequisites are missing, you must click the Install button to

install them before you can continue.

 9. In the Feature Selection window, select the check boxes next to the

features you want to install.

 At a minimum, you probably want to install the Database Engine

Services, Client Tools, and Books Online, as shown in Figure 2-1.

 10. Click the Next button to continue.

 The Instance Configuration window appears, as shown in Figure 2-2.

06_224656-ch02.indd 2206_224656-ch02.indd 22 8/21/08 5:27:34 PM8/21/08 5:27:34 PM

23 Chapter 2: Building Your SQL Server

Figure 2-1:
Selecting
your SQL

Server
features to

install.

Figure 2-2:
The

 Instance
 Configur-

ation
window.

06_224656-ch02.indd 2306_224656-ch02.indd 23 8/21/08 5:27:34 PM8/21/08 5:27:34 PM

24 Part I: Welcome to SQL Server 2008

 11. If you’re installing a named instance, select the Named Instance radio

button and provide a name for the instance in the adjacent text box.

 If you are installing the server’s default instance, you do not need to

change any settings on this screen.

 12. Click the Next button to continue.

 13. Review the Disk Usage Summary and click Next to continue.

 SQL Server shows you the disk space requirements for the features you

selected.

 14. In the appropriate text boxes, provide the username and password for

the domain accounts that will be used to run each of the SQL Server

services.

When providing account credentials, you must use an account that

already exists on the system. SQL Server won’t create an account for

you. You may need to contact the system administrator for assistance.

 As noted earlier in the chapter, it is a best practice to use separate

domain accounts for these services, as shown in Figure 2-3.

 Also, if you need to change the default collation, you may do so on this

screen by clicking the Collation tab.

 15. Click the Next button to continue.

Figure 2-3:
Setting

SQL Server
service

accounts.

 16. Click the Next button in the Database Engine Configuration window to

accept the default Windows authentication mode.

06_224656-ch02.indd 2406_224656-ch02.indd 24 8/21/08 5:27:35 PM8/21/08 5:27:35 PM

25 Chapter 2: Building Your SQL Server

 You may also specify accounts that will serve as SQL Server administra-

tors on this screen, as shown in Figure 2-4.

 At this point in the process, you may need to provide additional configu-

ration details for any optional components that you chose to install.

Figure 2-4:
Configuring
SQL server

authenti-
cation.

 17. Click the Next button to advance past the Error and Usage Reporting

window.

 18. Click the Next button to advance past the Installation Rules window.

 19. Click the Install button to begin SQL Server installation.

 20. Review the status screen to determine whether installation completed

successfully.

 21. Click the Next button to review the release notes.

 22. Click the Close button.

Upgrading an Existing
SQL Server Installation

If you’re already running SQL Server 2000 or SQL Server 2005 on your system

and want to upgrade to SQL Server 2008, you have several options. In this

section, I explain the preliminary steps you should perform to ensure that

you’re ready for the upgrade. Then I discuss your upgrade options.

06_224656-ch02.indd 2506_224656-ch02.indd 25 8/21/08 5:27:36 PM8/21/08 5:27:36 PM

26 Part I: Welcome to SQL Server 2008

Preparing for an upgrade
with Upgrade Advisor
SQL Server Upgrade Advisor is included on the SQL Server 2008 installation

DVD. It provides you with an automated means to determine whether your SQL

Server 2000 and SQL Server 2005 databases are ready for an upgrade to

SQL Server 2008. Here’s how to install Upgrade Advisor:

 1. Insert the SQL Server 2008 DVD into the computer.

 2. Select Install SQL Server Upgrade Advisor from the SQL Server

Installation Center screen.

 3. Click the Next button when the Installation Wizard appears.

 4. Select the I Accept the Terms in the License Agreement radio button

and then click Next.

 5. Click Next to accept the default name and company; then click Next

again to accept the default features.

 6. Click the Install button to install SQL Server Upgrade Advisor.

 7. Click the Finish button when the installation completes.

When you’ve completed the installation process, run Upgrade Advisor as

follows:

 1. From the Start menu, choose All Programs➪Microsoft SQL Server

2008➪SQL Server 2008 Upgrade Advisor.

 2. When you see the Upgrade Advisor welcome screen, click the Launch

Upgrade Advisor Analysis Wizard link.

 3. Click the Next button to bypass the welcome screen.

 4. Specify the server name in the appropriate text box and click the

Detect button to automatically identify the service(s) for Upgrade

Advisor to analyze (see Figure 2-5).

 You may manually override the automatically detected services by using

the check boxes.

 5. Click the Next button to continue.

 6. On the Connection Parameters screen, select the instance you want

Upgrade Advisor to analyze from the drop-down list.

 If the server you want to analyze does not use Windows authentication,

you also need to select SQL Server authentication from the authentica-

tion drop-down list and provide appropriate SQL Server credentials.

 7. Click the Next button to continue.

06_224656-ch02.indd 2606_224656-ch02.indd 26 8/21/08 5:27:36 PM8/21/08 5:27:36 PM

27 Chapter 2: Building Your SQL Server

Figure 2-5:
Selecting

the services
to analyze.

 8. Click the Next button to accept the default setting of analyzing all

databases on the instance.

 9. Review the Upgrade Advisor Settings and click the Run button to

begin the analysis.

 This analysis may take several minutes or longer, depending upon the

complexity of the database(s) analyzed.

 10. When the analysis completes, click the Launch Report button to view

the results.

 Review the report (a sample appears in Figure 2-6) and correct any

issues before attempting an upgrade to SQL Server 2008.

Upgrading Your Installation
When you upgrade a SQL Server installation, you have two basic choices for

a migration path: a side-by-side migration or a direct upgrade.

Side-by-side migration
In this approach, you build a SQL Server 2008 server and then transfer your

databases to it one at a time. This approach is costly because it requires you

to provision a second server, but it is the safest because it provides a fall-

back plan. If your migration fails for any reason, you can simply revert to the

older database and try again later. I strongly recommend that you use this

approach whenever possible.

06_224656-ch02.indd 2706_224656-ch02.indd 27 8/21/08 5:27:36 PM8/21/08 5:27:36 PM

28 Part I: Welcome to SQL Server 2008

Figure 2-6:
SQL Server

Upgrade
Advisor
report.

Direct upgrade
If you do not have the resources available to perform a side-by-side migra-

tion, you can directly upgrade a SQL Server 2000 or SQL Server 2005 database

instance to SQL Server 2008.

Performing a direct upgrade is dangerous and involves a significant risk of data

loss. Be certain to back up your databases before attempting a direct upgrade.

The process of performing a direct upgrade is very similar to installing a

new SQL Server 2008 instance. For more information on performing a direct

upgrade, consult SQL Server Books Online (the reference material included

with SQL Server.

Configuring Database Mail
SQL Server’s Database Mail technology allows your applications to send

e-mail messages. Most SQL Server instances require the use of Database Mail

06_224656-ch02.indd 2806_224656-ch02.indd 28 8/21/08 5:27:37 PM8/21/08 5:27:37 PM

29 Chapter 2: Building Your SQL Server

functionality. SQL Server does not enable Database Mail by default, so you

must configure it using the Database Mail Configuration Wizard. Do so by fol-

lowing these steps:

 1. From the Start menu, choose All Programs➪Microsoft SQL Server

2008➪SQL Server Management Studio.

 2. If you are connecting to a SQL Server instance other than the default

instance, select it from the Server Name drop-down list.

 3. If you are not using Windows Authentication, select SQL Server

Authentication from the Authentication drop-down list and provide

the login name and password in the appropriate text boxes.

 4. Click the Connect button.

 5. Click the plus sign (+)to the left of the Management folder.

 6. Right-click Database Mail and select Configure Database Mail from the

pop-up menu.

 7. Click the Next button to advance past the welcome screen.

 SQL Server displays the Select Configuration Task window, shown in

Figure 2-7.

Figure 2-7:
Selecting

the
Database
Mail con-
figuration

task.

06_224656-ch02.indd 2906_224656-ch02.indd 29 8/21/08 5:27:37 PM8/21/08 5:27:37 PM

30 Part I: Welcome to SQL Server 2008

 8. Select Set up Database Mail by Performing the Following Tasks and

click the Next button to continue.

 SQL Server warns you that Database Mail is not currently enabled by

displaying the message shown in Figure 2-8.

Figure 2-8:
The

Database
Mail Not
Enabled

Message.

 9. Click the Yes button to confirm that you would like to install Database

Mail.

 The New Profile screen, shown in Figure 2-9, appears.

 10. Provide a name and description for your Database Mail profile by

typing them in the appropriate text boxes.

Figure 2-9:
Creating

a New
Database

Mail profile.

06_224656-ch02.indd 3006_224656-ch02.indd 30 8/21/08 5:27:38 PM8/21/08 5:27:38 PM

31 Chapter 2: Building Your SQL Server

 11. Click the Add button to add an SMTP account to the profile.

 Database Mail uses the Simple Mail Transfer Protocol (SMTP) to commu-

nicate with mail servers. SMTP is the standard means for transmitting

electronic mail. You may associate one or more SMTP accounts with

each Database Mail profile.

 When you click the Add button, SQL Server presents the New Database

Mail Account window, shown in Figure 2-10.

Figure 2-10:
Creating

a New
Database

Mail
account.

 12. Fill in the SMTP account details provided by your mail server

administrator and click OK.

 13. Click the Next button to advance past the New Profile window.

 SQL Server displays the Manage Profile Security window, shown in

Figure 2-11.

 14. Select the Public check box next to the name of the profile you just

created.

 Database Mail allows you to create a combination of public and private

profiles. Any user authorized to use Database Mail may send mes-

sages using a public profile. Private profiles, on the other hand, may be

restricted to specific users.

06_224656-ch02.indd 3106_224656-ch02.indd 31 8/21/08 5:27:38 PM8/21/08 5:27:38 PM

32 Part I: Welcome to SQL Server 2008

 15. Choose Yes from the Default drop-down list next to the name of the

profile.

 If you select a default profile, any Database Mail messages sent without

explicitly specifying a profile will use the default profile. You select the

default profile by choosing Yes in the Default list for that item.

 16. Click the Next button to continue.

 17. Click the Next button to accept the default mail system parameters.

 18. Click the Finish button to complete the configuration of Database

Mail.

 After you configure Database Mail, you must ensure that any users who might

need to send mail are members of the msdb database’s DatabaseMailUserRole

role. (I discuss role membership in Chapter 16.)

Figure 2-11:
Managing

profile
security.

06_224656-ch02.indd 3206_224656-ch02.indd 32 8/21/08 5:27:39 PM8/21/08 5:27:39 PM

33 Chapter 2: Building Your SQL Server

Using SQL Server’s Built-In Databases
SQL Server creates four databases when you install a new instance. These

databases provide SQL Server with locations to store configuration informa-

tion and temporary data and to use as a model for newly created databases.

Master database
SQL Server uses the master database to store configuration information that

applies to the entire instance. For example, it includes:

 � SQL Server configuration data

 � Information on linked servers

 � User logons

 � High-level information about other databases on the instance

The master database is the all-important glue that holds together all the indi-

vidual databases stored on your server and is, therefore, extremely critical to

the proper operation of your server. Therefore, you should back it up regularly.

It’s especially important to create a master database backup when you

 � Create or delete a database

 � Alter data or log files used by a database

 � Add, remove, or change logins

 � Add, remove, or change a linked server

 � Modify the server configuration

I discuss more about backing up databases in Chapter 18.

The msdb database
QL Server and its components store scheduling and history information in a

specialized database named msdb. Specifically, it contains information about

any scheduled SQL Server Agent jobs (which I discuss in Chapter 13) and infor-

mation about the backup and restore history of your SQL Server instance.

06_224656-ch02.indd 3306_224656-ch02.indd 33 8/21/08 5:27:39 PM8/21/08 5:27:39 PM

34 Part I: Welcome to SQL Server 2008

The model database
The model database serves as a template for all newly created databases on

your server. Each time you create a new user database, SQL Server creates

a copy of the model database to provide the initial configuration of the new

database.

 If you have default settings you’d like to apply to all your new databases,

simply make the appropriate changes in the model database. For example, if

you create a stored procedure in the model database, all new databases will

automatically receive a copy of that stored procedure.

The tempdb database
SQL Server uses the tempdb database as a temporary storage location for working

data, such as intermediate query results. Users may also explicitly create temporary

tables, stored procedures, or other objects. SQL Server stores these temporary user

objects in tempdb until they are no longer necessary.

06_224656-ch02.indd 3406_224656-ch02.indd 34 8/21/08 5:27:39 PM8/21/08 5:27:39 PM

Chapter 3

Working with SQL Server Tools
In This Chapter
� Configuring SQL Server with SQL Server Configuration Manager

� Using SQL Server Management Studio to manage your server

� Working at the command line with SQLCMD

SQL Server 2008 provides a number of tools designed to make it easier for

you to configure and manage your databases in a fashion comfortable to

you. These tools include the graphical interfaces of SQL Server Configuration

Manager and SQL Server Management Studio and the command-line utility

SQLCMD.

In addition to these tools, SQL Server provides two important tools to help

you tune and troubleshoot database server performance: Database Engine

Tuning Advisor (DETA) and SQL Profiler. I discuss these latter two tools in

Chapter 14.

In this chapter, you find out how to use SQL Server Configuration Manager,

SQL Server Management Studio, and SQLCMD to take control of your SQL

Server databases.

Using SQL Server Configuration Manager
SQL Server Configuration Manager is a lightweight tool that allows you to per-

form basic configuration of a SQL Server instance. You can use this tool to

 � Start and stop services

 � Change the service account used to start a service

 � Change the start mode of a service

 � Change the network protocols used by SQL Server

 � Change the IP addresses and TCP ports used by SQL Server

07_224656-ch03.indd 3507_224656-ch03.indd 35 8/21/08 5:28:18 PM8/21/08 5:28:18 PM

36 Par t I: Welcome to SQL Server 2008

Launching SQL Server
Configuration Manager
You can start SQL Server Configuration Manager by selecting it from the Start

menu, as follows:

 1. Click the Windows button (or the Start button in Windows XP) in the

lower-left corner of your screen.

 2. Click the All Programs item.

 3. Click the SQL Server 2008 folder.

 4. Click the Configuration Tools folder.

 5. Click the SQL Server Configuration Manager item.

 SQL Server Configuration Manager starts in a separate window and dis-

plays the interface shown in Figure 3-1.

Figure 3-1:
The SQL

Server
Configur-

ation
Manager.

Starting and stopping services
You can use SQL Server Configuration Manager to start, stop, pause, resume,

and restart Windows services running as part of SQL Server 2008. You may

need to perform these actions for several reasons, as follows:

07_224656-ch03.indd 3607_224656-ch03.indd 36 8/21/08 5:28:18 PM8/21/08 5:28:18 PM

37 Chapter 3: Working with SQL Server Tools

 � You might want to start or stop a service that is infrequently used to

enable it only when necessary. Doing so conserves system resources

and improves the overall performance of your SQL Server.

 � You may need to restart a service after making changes to its configura-

tion, such as changing the service account.

 � You may need to restart a service that is in a nonresponsive state to

restore it to working order.

Here’s how you can change the running state of a SQL Server service using

SQL Server Configuration Manager:

 1. Open SQL Server Configuration Manager, as described in the previous

section.

 2. Click the SQL Server Services icon.

 SQL Server Configuration Manager displays the status of all installed ser-

vices in the main window pane, as shown in Figure 3-2. Notice that this

window includes the following information:

 • Service name and type

 • Current state

 • Start mode

 • Service account (“Log On As”)

 • Process ID

Figure 3-2:
SQL Server

Services.

07_224656-ch03.indd 3707_224656-ch03.indd 37 8/21/08 5:28:18 PM8/21/08 5:28:18 PM

38 Par t I: Welcome to SQL Server 2008

 3. Right-click the service you want to alter.

 4. Select the action you want to perform (Start, Stop, Pause, Resume, or

Restart) from the pop-up menu.

 5. Wait while SQL Server Configuration Manager makes the requested

change.

 Figure 3-3 shows an example of the status screen displayed while

starting a service.

Figure 3-3:
Restarting a
SQL Server

Service.

Changing service accounts
During the installation process, you provided SQL Server with a set of

accounts to use when starting each of its component services. If you later

want to change those initial configuration decisions, you may do so using

SQL Server Configuration Manager.

 1. With SQL Server Configuration Manager open, click the SQL Server

Services folder.

 2. Right-click the service you want to alter.

 3. Choose Properties from the pop-up menu.

 SQL Server displays the Properties window, shown in Figure 3-4.

 4. Type the account name in the appropriate textbox using the DOMAIN\

account format.

 Alternatively, you may click the Browse button to search for an appro-

priate account.

07_224656-ch03.indd 3807_224656-ch03.indd 38 8/21/08 5:28:19 PM8/21/08 5:28:19 PM

39 Chapter 3: Working with SQL Server Tools

Figure 3-4:
SQL Server

Service
properties.

 5. Provide the account password in both the Password and Confirm pass-

word textboxes.

 6. Click the OK button.

 SQL Server Configuration Manager warns you that it needs to restart the

service to apply your change.

 7. Click the Yes button to restart the service.

Changing service start modes
Each SQL Server service has a default start mode that you may configure.

This start mode indicates the action that should occur for the service when

the system restarts. Your start mode options include:

 � Automatic mode configures services to start automatically when the

operating system boots.

 � Disabled mode prevents the service from starting (automatically or

manually) unless you change the start model to automatic or manual.

 � Manual mode does not start the service automatically, but allows users

and other services with appropriate permissions to start the service

manually.

You may verify the current start mode settings for each service by viewing them

in the SQL Server Services section of SQL Server Configuration Manager, as I

07_224656-ch03.indd 3907_224656-ch03.indd 39 8/21/08 5:28:19 PM8/21/08 5:28:19 PM

40 Par t I: Welcome to SQL Server 2008

describe in the “Starting and stopping services” section, earlier in this chap-

ter. If you want to change the start mode for a service, follow this process:

 1. With SQL Server Configuration Manager open, click the SQL Server

Services folder.

 2. Right-click the service you want to alter.

 3. Choose Properties from the pop-up menu.

 4. Click the Service tab.

 The service properties appear, as shown in Figure 3-5.

 5. Choose the appropriate start mode from the drop-down menu.

 6. Click the OK button.

 After you click OK, the dialog box closes, and you return to SQL Server

Configuration Manager.

Figure 3-5:
The Service

Properties
tab.

Modifying networking settings
SQL Server includes support for three major access protocols. These proto-

cols dictate the way that users and other systems may connect to your SQL

Server databases. Following are the most common protocols.

 � Shared Memory allows connections on the local server to take place

without using a network. You may use shared memory connections for

access to a database instance on the local server only. There are no con-

figuration options for this protocol.

07_224656-ch03.indd 4007_224656-ch03.indd 40 8/21/08 5:28:20 PM8/21/08 5:28:20 PM

41 Chapter 3: Working with SQL Server Tools

 � Named Pipes sets up a network connection using interprocess commu-

nication. It is most appropriate for use on a high-speed LAN, where

it may offer enhanced performance.

 � TCP/IP networking is the most common network protocol used with SQL

Server. TCP/IP connections may easily and efficiently cross wide-area

networks (such as the Internet) and are supported in almost any

computing environment.

Enabling and disabling protocols
SQL Server Configuration Manager allows you to change the protocols used

by SQL Server by either enabling or disabling them, which you can do by

following these steps:

 1. With SQL Server Configuration Manager open, click the plus sign next

to the SQL Server Network Configuration folder to expand the folder.

 2. Click the Protocols folder corresponding to the instance you want to

modify.

 SQL Server Configuration Manager displays the status of that instance’s

networking protocols, as shown in Figure 3-6.

 3. Right-click the service you want to alter.

 4. Choose the appropriate action (Enable or Disable) from the pop-up menu.

 SQL Server Configuration Manager warns you that the changes will not

take effect until you restart the service.

Figure 3-6:
SQL Server

network
configura-

tion.

07_224656-ch03.indd 4107_224656-ch03.indd 41 8/21/08 5:28:20 PM8/21/08 5:28:20 PM

42 Par t I: Welcome to SQL Server 2008

 5. Restart the SQL Server service.

 Refer to the “Starting and stopping services” section, earlier in this chap-

ter, where I describe how to restart a SQL Server service.

Changing protocol settings
You may also use SQL Server Configuration Manager to change networking

settings, such as the IP address(es) and TCP ports used by SQL Server. To

change network protocol settings, follow these steps:

 1. With SQL Server Configuration Manager open, expand the SQL Server

Network Configuration folder.

 2. Click the Protocols folder corresponding to the instance you want to

modify.

 3. Right-click the service you want to alter.

 4. Choose Properties from the pop-up menu.

 SQL Server displays the properties for the network protocol you

selected. An example of the properties sheet for TCP/IP appears in

Figure 3-7.

 5. Make any desired changes to the properties sheet and click OK

to continue.

 SQL Server Configuration Manager warns you that the changes will not

take effect until you restart the service.

 6. Restart the SQL Server service.

 Refer to the “Starting and stopping services” section, earlier in this

chapter, where I describe how to restart a SQL Server service.

Figure 3-7:
TCP/IP

Properties.

07_224656-ch03.indd 4207_224656-ch03.indd 42 8/21/08 5:28:20 PM8/21/08 5:28:20 PM

43 Chapter 3: Working with SQL Server Tools

Note that the TCP/IP properties are considerably more complex than those

for other network protocols. If you need assistance configuring TCP/IP net-

working, you should consult your network administrator. Network configura-

tion errors are one of the most common sources of server problems.

When configuring Named Pipes, the only option available to you is changing

the name of the Named Pipe. The Shared Memory protocol offers no configu-

ration options.

Managing Your Server with SQL
Server Management Studio

You can perform most of the activities I describe in this book using SQL

Server Management Studio (SSMS). Microsoft designed SSMS to be a one-stop

replacement for piecemeal tools (such as Query Analyzer and Enterprise

Manager) included in earlier versions of SQL Server. SSMS allows you to

manage multiple SQL Server instances from a single platform.

Starting SSMS and connecting
to an instance
As noted at the end of the preceding section, SSMS allows you to manage

multiple SQL Server instances on both local and remote servers.

 1. Click the Windows button (or the Start button in Windows XP) in the

lower-left corner of your screen.

 2. Click the All Programs item.

 3. Click the SQL Server 2008 folder.

 4. Click the SQL Server Management Studio item.

 SSMS opens and displays the Connect to Server dialog box, shown in

Figure 3-8. If the authentication and server details are not correct, you

may make any changes needed.

 5. After making any necessary changes to the connection data, click the

Connect button.

 SSMS displays the server options, as shown in Figure 3-9.

07_224656-ch03.indd 4307_224656-ch03.indd 43 8/21/08 5:28:21 PM8/21/08 5:28:21 PM

44 Par t I: Welcome to SQL Server 2008

Figure 3-8:
Update your
connection

data as
needed in
the SSMS

Connection
dialog box.

Figure 3-9:
Server

options in
the SQL
Server

Manage-
ment Studio.

Exploring the SSMS Interface
The SSMS interface uses a folder-based navigation structure called Object

Explorer. Notice that it uses five folders to organize SSMS options by the fol-

lowing categories:

 � Databases

 � Security

 � Server Objects

 � Replication

 � Management

07_224656-ch03.indd 4407_224656-ch03.indd 44 8/21/08 5:28:21 PM8/21/08 5:28:21 PM

45 Chapter 3: Working with SQL Server Tools

You can expand these folders to view the underlying detail by clicking the plus

(+) sign that appears to the left of the folder. The folders each contain subfold-

ers that you can expand the same way. When you click a root node, the main

pane of the SSMS window displays detailed information about that item.

Throughout this book, I describe how you can use SSMS to manage your SQL

Server instance.

Issuing Transact-SQL queries
One of the most important tasks you can perform using SSMS is executing

Transact-SQL queries against your SQL Server databases.

Don’t worry about the syntax of Transact-SQL commands just yet. I provide a

detailed discussion of Transact-SQL in Parts III and IV of this book.

The following two Transact-SQL commands change the current database to

the sales database and retrieve all information from the stock table in that

database.

USE sales;

SELECT *
FROM stock;

Here’s how you can execute that query using SSMS:

 1. With SSMS open, click the New Query button in the upper-left corner

of SSMS.

 The main SSMS pane changes to a blank window, where you may type in

Transact-SQL statements.

 2. Type your Transact-SQL query into the main pane of SSMS.

 3. Click the Execute button to run your Transact-SQL query.

 After a moment, SSMS divides the main pane into two sections. The

top half shows the query you executed, and the bottom half shows the

results of that query. The resulting SSMS window appears in Figure 3-10.

07_224656-ch03.indd 4507_224656-ch03.indd 45 8/21/08 5:28:21 PM8/21/08 5:28:21 PM

46 Par t I: Welcome to SQL Server 2008

Figure 3-10:
Issuing a

Transact-
SQL

Command
with SSMS.

Working from the Command Line
If you prefer working at the command line to using the graphical interface

of SSMS, SQL Server provides the SQLCMD utility that allows you to issue

Transact-SQL statements from a command prompt. Here’s a look at some of

the important syntax options for this statement:

sqlcmd [-S server_name [/instance_name]]
 [-U username [-P password]]
 [-d database_name]
 [-i input_filename]
 [-o output_filename]

In the following bullets, I discuss each one of these command line options.

Next, I give you an example of SQLCMD in use.

 � The –S option allows you to specify the name of the server and instance

to which you wish to connect. For example, you could connect to the

named instance MYDB on the server SQL2008 by specifying the command

line option “–S SQL2008/MYDB”. If you do not use this option, SQL Server

will attempt to connect to a default instance on the local computer.

 � The –U option allows you to specify the SQL Server login you wish

to use, and the –P option allows you to provide the password. If you

don’t specify the login using this option, SQLCMD attempts to connect

using Windows Authentication with the credentials of the user running

SQLCMD.

 � The –d option allows you to specify the database you want to use

initially. If you don’t specify this option, SQL Server defaults to the

default database associated with the SQL Server login.

07_224656-ch03.indd 4607_224656-ch03.indd 46 8/21/08 5:28:21 PM8/21/08 5:28:21 PM

47 Chapter 3: Working with SQL Server Tools

 � The –i option allows you to specify the name of a file containing the

Transact-SQL commands you want to execute.

 � The –o option allows you to specify the name of a file in which SQLCMD

will store your output.

Quite a few other command-line arguments that allow you to customize the

use of SQLCMD are available. You won’t need them to get up and running, but

if you find yourself using SQLCMD for advanced applications, you may want

to familiarize yourself with them.

Now that I’ve covered the basics of SQLCMD, I can give you an example to

work with. Suppose that you want to execute the same Transact-SQL query

used in the previous section against the sales database:

SELECT *
FROM stock;

To execute this query, follow these steps:

 1. Open a command prompt by choosing All

Programs➪Accessories➪Command Prompt from the Start menu.

 2. Type SQLCMD –d sales at the command prompt.

 3. When the “1>” prompt appears, type SELECT * FROM stock; and

press Enter.

 You may type as many Transact-SQL statements as you want at this

prompt and you may use as many lines as necessary to complete each

statement. For example, you could have written SELECT * on the first

line, pressed Enter, and typed FROM stock; on the second line. The key

is to end each distinct Transact-SQL statement with a semicolon.

 4. When the 2> prompt appears, type GO and press Enter.

 The GO command indicates to SQLCMD that you’re finished entering

Transact-SQL statements and want SQL Server to execute the commands.

 5. Review the results on the screen.

 If you did not specify an output file, SQLCMD displays the results of your

Transact-SQL command(s) on the screen. If you used the –o option to

specify an output file, the query results are stored in that file.

 6. Type EXIT and press Enter.

 SQLCMD closes, and you are returned to the Windows command

prompt.

07_224656-ch03.indd 4707_224656-ch03.indd 47 8/21/08 5:28:22 PM8/21/08 5:28:22 PM

48 Par t I: Welcome to SQL Server 2008

Figure 3-11 shows this entire sequence in a Windows command prompt session.

Figure 3-11:
Issuing a

Transact-
SQL

command
with

SQLCMD.

07_224656-ch03.indd 4807_224656-ch03.indd 48 8/21/08 5:28:22 PM8/21/08 5:28:22 PM

Part II
Building SQL
Server 2008
Databases

08_224656-pp02.indd 4908_224656-pp02.indd 49 8/21/08 5:28:44 PM8/21/08 5:28:44 PM

In this part . . .

This part shows you how to create your first database

in a SQL Server environment. You need to know

how to build your database according to accepted design

principles, and a great way to plan your database is to first

diagram it on paper before implementing it for real. After

you’ve done all that, you’re ready to really get rolling with

SQL Server 2008: creating your database, designing tables,

and enforcing relationships between tables.

08_224656-pp02.indd 5008_224656-pp02.indd 50 8/21/08 5:28:45 PM8/21/08 5:28:45 PM

Chapter 4

Planning Your Database
In This Chapter
� Designing a relational database

� Documenting your design with diagrams

� Normalizing your database

� Selecting appropriate data types for your tables

There’s an old saying in the military: “Prior planning prevents poor perfor-

mance.” This cliché proves true in the database world in several ways. If

you take the time to map out your database on paper, the odds are on your

side that you can build a scalable database that meets your business needs

far into the future. You can enjoy a second benefit also: Well-designed data-

bases simply perform better. They store and process data efficiently, helping

you to minimize the demands on your computer systems and reduce the

amount of time clients spend waiting for database transactions to complete.

In this chapter, I walk you through the process of properly designing a data-

base. The techniques I discuss apply to any relational database system and

work equally well in Microsoft SQL Server, Microsoft Access, Oracle, or any

other database you encounter in the future. I also discuss diagramming tech-

niques that can help you easily document your design decisions in a format

understood by database professionals around the world.

Finally, database designers follow some basic principles intended to improve

database efficiency and reduce redundant data. I conclude the chapter with

a look at these techniques, showing you how to normalize your database

design and how to choose appropriate data types for your database.

Introducing Database Design Concepts
Databases store data. You probably already knew that, but you should take

a moment to reflect on that simple statement before you read on about data-

base design. Everything I mention in this chapter is intended to help you

store data efficiently and effectively in your SQL Server databases.

09_224656-ch04.indd 5109_224656-ch04.indd 51 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

52 Par t II: Building SQL Server 2008 Databases

Databases store data efficiently when they minimize the amount of storage space

they require to maintain your data. In addition to minimizing space require-

ments, efficient databases minimize the amount of time it takes the client to

insert and retrieve data. These two requirements may sometimes conflict. For

example, if you normally execute complex database queries that require quite a

bit of computation, you can sometimes speed up those queries dramatically by

storing precomputed results in your database. However, that storage requires

additional space. No single answer exists for all such design decisions. You need

to look at your storage and performance requirements and weigh them against

each other to determine an appropriate balance for your organization.

Databases store data effectively when they provide you with the means to

easily insert, retrieve, and modify data. Effective databases organize data in

a fashion that’s intuitive and allows users to interact with data in a natural

way. For example, a user of a retail store database might find information

about employees in one table, customers in another table, and products in

yet another table.

 You can improve the effectiveness of your database by consulting with end

users and other stakeholders early in the database design process. In my

career, I’ve seen many cases in which database designers could have avoided

expensive mistakes by simply sitting down and discussing the business goals

of the project during the design phase. Don’t fall victim to the temptation

of diving right into the design, confident that you understand the business

requirements. An assumption you make early in the design process may come

back to haunt you down the road.

Understanding the Elements
of a Database

You’ve already discovered that databases are computer systems that store data

and facilitate the insertion, retrieval, and modification of that data. Now you

need to understand a little more terminology before diving in to database design.

Database servers
Database software runs on specialized computer systems known as servers.

These database servers have advanced hardware designed to optimize the

system’s performance for data storage, computation, and network commu-

nication. In contrast to user workstations, they’re not designed for graphics

work, word processing, or other applications. In fact, they usually don’t even

have a keyboard or mouse. Businesses often mount servers in racks and

09_224656-ch04.indd 5209_224656-ch04.indd 52 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

53 Chapter 4: Planning Your Database

place them in data centers. Administrators normally interact with them using

remote access techniques from their regular desktop systems.

Each database server runs a server operating system (such as Microsoft

Windows Server 2003) and a database system (such as Microsoft SQL Server

2008). The database interacts with the operating system to gain access to

server resources, such as hard drive storage, the processor(s), and network

communications.

A database server may contain one or more separate databases. For example,

you might use the same database server to store a database containing cus-

tomer information and a completely separate database containing project

management information. There’s no need to build a separate server for each

database. SQL Server ensures that the databases are isolated from each other.

(In Chapter 16, I discuss how you can use database security controls to protect

against users seeing data that they shouldn’t be allowed to access.)

Relational databases
Most databases in use today are relational databases. What’s that mean?

They store data in a fashion that follows the relational model proposed by

database pioneer Edgar F. Codd in 1969.

The relational model organizes data into a series of related tables. Each

table contains rows and columns, as shown in Figure 4-1. Each column corre-

sponds to an attribute: one type of information that you want to store. Each

row corresponds to a record: one instance of each column. Each table may

be related to one or more other tables.

Figure 4-1:
A basic

database
table.

First Name Last Name Phone City State

09_224656-ch04.indd 5309_224656-ch04.indd 53 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

54 Par t II: Building SQL Server 2008 Databases

You may find it easier to understand these principles in the context of an

example. Suppose you wanted to create a database table containing address

information for your relatives. You might create a table similar to that shown

in Table 4-1. This table contains columns for each piece of information to

store about each of your relatives: their first name, last name, address, city,

state, and ZIP code. The table also contains rows for each relative. The row

for each relative stores the information you know about that person.

Table 4-1 Relatives Table
First Name Last Name Address ZIP

Richard Chapple 28 Cognac Street 46530

Matthew Chapple 327 Scampi Avenue 33131

Christopher Chapple 120 Hunter Terrace 21046

Renee Chapple 116 Jasmine Street 08028

Mike Chapple 223 Samantha Court 11579

The relatives table may also be related to other tables in the database. For

example, your database might also contain a cities table (such as the one

shown in Table 4-2) that contains information about each ZIP code in the

country. The relatives table (which contains the ZIP code for each relative) is

related to the cities table by the common key of the ZIP code. I discuss table

relationships in further detail in Chapter 6.

Table 4-2 Cities Table
City State ZIP

South Bend IN 46530

Miami FL 33131

Columbia MD 21046

Glassboro NJ 08028

Sea Cliff NY 11579

 Don’t be confused by database terminology. When it comes to rows and col-

umns, you find a few different terms that all mean the same thing. The terms

row and record are interchangeable. Similarly, columns are sometimes called

fields, attributes, or variables.

09_224656-ch04.indd 5409_224656-ch04.indd 54 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

55 Chapter 4: Planning Your Database

Databases vs. spreadsheets
At this point, you may be thinking, “A database table sounds a lot like a

spreadsheet.” You’d be correct! Database tables and spreadsheets have quite

a bit in common. In fact, it may help you to think of a database as a collection

of related spreadsheets.

Databases, however, offer a number of significant advantages over the use

of simple spreadsheets. First, they allow you to create multiple tables and

model the way they relate to each other. This grouping of data into tables

reduces redundant storage of information, facilitates quick changes to infor-

mation that affects large portions of the database, and allows you to pull

together related information from multiple sources.

 The similarity between databases and spreadsheets is a powerful one. In fact,

you can use Microsoft Excel as an interface to a SQL Server database, but

that’s beyond the scope of this book.

Databases also provide powerful tools to help you interact with your data.

For example, you can use a reporting facility called SQL Server Reporting

Services (SSRS), which helps you provide business users with powerful, inter-

active reports in an automated fashion. Chapter 9 tells you more about SSRS.

Organizing a Database
Earlier sections in this chapter describe the relational database model and

show you how databases organize related data into tables. In this section,

you get started on designing databases that meet your business needs. You

do that using a four-step process for organizing a database, as follows:

 1. Define the objectives of your database.

 2. Group related data into tables.

 3. Identify primary keys that uniquely identify records.

 4. Link related tables together.

I cover each of these four design steps in further detail in the following sections.

Defining your database objectives
If you were leaving town on a business trip, you wouldn’t simply get in your

car and start driving on the highway without knowing your destination. A trip

without a clearly defined goal would be a terrible waste of time.

09_224656-ch04.indd 5509_224656-ch04.indd 55 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

56 Par t II: Building SQL Server 2008 Databases

Things are no different in a database design project. Because of our technology

and data focus, database designers often sit down and ask themselves the ques-

tion “What data do I have and how can I organize it?” That’s equivalent to our

business traveler asking “How much gas do I have and how far can it take me?”

Instead, begin your journey with the end in mind. Ask yourself these questions:

 � What’s prompting your database design project?

 � Who will benefit from the proper implementation of this database?

 � Who are the end users of the database?

 � Is this database project intended to support a new business process or

improve an existing one?

 � What are the business requirements for the database?

 � What capabilities must the database provide to support those requirements?

 � What data elements are necessary to provide those capabilities?

 � How do users prefer to interact with the database?

Notice that the question “What data do I have?” doesn’t appear anywhere in

that list. Instead, I encourage you to think about database design differently.

Walk through the preceding questions to determine what data your business

processes require, and only then look at methods you can use to obtain that

data and organize it effectively.

This type of thinking will help you overcome the tendency to act like a data

packrat, squirreling away all the data you can find. It forces you to focus on

business requirements and put in your database only data that is likely to

result in business value down the road.

Grouping data into tables
After you’ve collected all the data elements that you wish to store in your

database, you should organize them into tables for your relational database.

 When you design tables, keep in mind that your goal is to group related data

and reduce redundancy. If you create too many tables, queries against your

database will take a long time to complete. If you create too few tables, you’ll

probably wind up storing redundant data in those tables that will consume

unnecessary space on your server’s hard drive.

Here’s an example of how you can organize data into tables. Suppose you are

tasked with creating a database for a newspaper delivery service. After

09_224656-ch04.indd 5609_224656-ch04.indd 56 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

57 Chapter 4: Planning Your Database

completing your business requirement analysis, you determine that you need

to store the following data:

 � Customer name (first and last)

 � Customer street address

 � Customer ZIP code

 � Customer phone number

 � Day(s) of the week the customer receives the paper

 � Carrier name for each customer (first and last)

 � Phone number for each carrier

 � Carrier’s driver’s license number

 � Carrier’s hire date

If you followed the spreadsheet mentality, you might simply create a single

table with all this information. However, having just one table would create

two significant problems for you:

 � Large quantities of redundant data. Assume that each carrier has 1,000

customers. If you used a single table design, you’d wind up storing that

carrier’s name, telephone number, driver’s license number and hire date

in each of those 1,000 rows. That’s a lot of wasted space!

 � Difficulty updating data after a change. What if a carrier quits and you

need to reassign customers to a new hire? You’d need to edit all 1,000

records for that carrier!

Instead, you can improve your design by grouping related data into tables.

First, look at the data and see what discrete entities already exist in your

data. This example already has the notion of a customer and the separate

notion of a carrier. Each of those entities already has some data associated

with it. There are two of your tables! The Customers table and Carriers table

are shown in Tables 4-3 and 4-4.

 If you don’t understand some of the fields in these tables, don’t worry. I

introduce you to routes and subscription types later in this section.

Next, analyze the data and determine whether you can find any abstract

concepts that you can use to extract other groups of related data. You

might notice that I’m storing the days of the week each customer receives

the paper in the database. Perhaps your business process analysis revealed

that your newspaper offers only three subscription types: weekday delivery,

weekend delivery, and full-week delivery. You can create a table containing

information about each of these subscription types and reduce the amount of

information stored in the customer table, as shown in Table 4-5.

09_224656-ch04.indd 5709_224656-ch04.indd 57 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

58 Par t II: Building SQL Server 2008 Databases

Ta
bl

e
4-

3
Cu

st
om

er
s

Ta
bl

e
Cu

st
om

er

ID
Fi

rs
t

N
am

e
La

st

N
am

e
Su

bs
cr

ip
tio

n
Ty

pe
Ad

dr
es

s
ZI

P
Ro

ut
e

ID
Ph

on
e

N
um

be
r

Ho
ld

St

at
us

1
Jo

hn
Ab

ra
m

s
2

12
3

M
ai

n
St

re
et

49
24

2
1

(5
02

)
55

5-
23

52
N

o

2
Bo

b
Al

le
n

1
48

2
M

ai
n

St
re

et
49

24
2

1
(5

02
)

55
5-

12
52

N
o

3
M

ar
y

Sm
ith

1
91

2
Fi

rs
t

St
re

et
49

24
3

2
(5

02
)

55
5-

19
42

N
o

4
Be

th
M

cD
ee

r
3

92
2

Fi
rs

t
St

re
et

49
24

3
2

(5
02

)
55

5-
91

20
Ye

s

Ta
bl

e
4-

4
Ca

rr
ie

rs
 T

ab
le

Ca
rr

ie
r I

D
Fi

rs
t N

am
e

La
st

 N
am

e
Ph

on
e

N
um

be
r

DL
 N

um
be

r
Hi

re
 D

at
e

1
Je

re
m

y
Hi

nt
on

(5
02

) 5
55

-9
22

1
12

95
22

90
2

7/
19

/2
00

7

2
Ka

te
Jo

ne
s

(5
02

) 5
55

-5
12

5
09

24
81

98
2

6/
10

/2
00

0

Ta
bl

e
4-

5
Su

bs
cr

ip
tio

n
Ty

pe
s

Ta
bl

e
Su

bs
cr

ip
tio

n
Ty

pe
Su

nd
ay

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay
Th

ur
sd

ay
Fr

id
ay

Sa
tu

rd
ay

1
Y

N
N

N
N

N
Y

2
N

Y
Y

Y
Y

Y
N

3
Y

Y
Y

Y
Y

Y
Y

09_224656-ch04.indd 5809_224656-ch04.indd 58 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

59 Chapter 4: Planning Your Database

Your business process analysis might also reveal that you organize your

customers into routes and assign carriers to those routes. Some carriers

may have multiple routes, and carriers frequently switch from one route to

another. You should also include this concept by introducing a route table

and assigning each customer to a route rather than a carrier. A customer’s

carrier may change often, but the carrier’s route will change rarely, if at all.

An example routes table appears in Table 4-6.

Table 4-6 Routes Table
Route ID Carrier ID

1 2

2 1

3 1

Notice that the routes table is quite simple. The sole purpose of this table is

to link route and carrier information. I discuss linking of related tables later,

in the “Linking related tables” section of this chapter.

Selecting primary keys
Each table in a well-designed database should have a primary key that

uniquely identifies each row in the table. The primary key is usually a single

attribute that the database guarantees will be unique for each row. You can,

if you wish, use the combination of two or more columns as a table’s primary

key, but you’ll find it easier to use a single column when possible.

When you look for a primary key, first examine the attributes that already

exist in the table. Are any of the attributes guaranteed to be unique for every

row? If so, those attributes may be a good choice for a primary key.

 Make sure that your choice of a primary key is guaranteed to be unique. Some

bad choices are people’s names (very likely to repeat; how many John Smiths

are in the phone book?) and telephone numbers (often reassigned to different

people).

 Social Security Numbers (SSNs) also make poor primary keys for a number of

reasons:

 � People are often understandably reluctant to provide their SSN because

of privacy and identity theft concerns.

09_224656-ch04.indd 5909_224656-ch04.indd 59 8/21/08 5:29:26 PM8/21/08 5:29:26 PM

60 Par t II: Building SQL Server 2008 Databases

 � Businesses don’t like to store SSNs unless absolutely necessary because

of the potential liability if they are lost.

 � Not everyone has an SSN. Generally speaking, only U.S. citizens and

others authorized to work in the United States receive SSNs.

Good examples of primary keys include unique identifiers issued by an orga-

nization. Many businesses issue employee identification numbers to each

employee. If these numbers are never reused, they make excellent primary

key candidates. Similarly, colleges and universities issue student identification

numbers as an alternative to using SSNs. These also make great primary keys.

Any attribute or combination of attributes that uniquely identifies records in a

table is known as a candidate key. The candidate key that you select to uniquely

identify those records in the database is known as the primary key. Therefore, a

table may contain several candidate keys but only one primary key.

If you can’t find an appropriate primary key in your table, you may need to

create one. One common approach is to create an “ID” column in your table

that contains a unique integer. An example of this approach appears earlier in

this chapter in Table 4-3 (which used “Customer ID” as the primary key), and

Table 4-4 (which used “Carrier ID”), and Table 4-6 (which used “Route ID”).

Linking related tables
After you’ve identified the primary key for each table in your database, you

can harness the true power of relational databases by linking related tables.

You accomplish this task by selecting foreign keys. Foreign keys identify

records in other tables that are related to records in the primary table.

Typically, the foreign key in the primary table contains the value of the pri-

mary key from the related table.

For example, consider Table 4-3, the customers table, which appears in the

“Grouping data into tables” section, earlier in this chapter. For that table,

I introduce the notion of a subscription type and create a business rule

requiring a subscription type for each customer. I don’t include details of

each subscription type in the customer records because doing so would

introduce redundant data into the database. Instead, I created a foreign key

in Table 4-3 called “Subscription Type.” This foreign key corresponds to the

“Subscription Type” primary key in the subscription types table (Table 4-5,

also shown earlier). If you want to determine the days of the week a given

customer receives the newspaper, you must first retrieve that customer’s

subscription type from the customers table and then use that code to

retrieve the days of the week from the subscription types table.

I discuss relationships between tables in further detail in Chapter 6.

09_224656-ch04.indd 6009_224656-ch04.indd 60 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

61 Chapter 4: Planning Your Database

Diagramming Your Database
The adage “A picture is worth a thousand words” holds true in the world of

database design. The previous section of this chapter presents you with a

few tables and describes the relationships between them in words. Figure 4-2

shows the same concept using a diagram.

Figure 4-2:
Entity-

Relationship
diagram

for a
newspaper

subscription
database.

Carriers

PK Carrier ID Customer ID

Subscription Type
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

First Name
Last Name

First Name
Last Name
Phone Number
Driver License Number
Hire Date

Subscription Type
Address
ZIP
Route ID
Phone Number
Hold Status

PK Route IDPK

PK

FK1
Carrier IDFK1

FK2

Customers Routes

Subscription Types

Isn’t that easier to understand than the written descriptions in the previous

section? The diagram in Figure 4-2 is an Entity-Relationship (ER) diagram. An

ER diagram is a common tool that database designers use to document their

designs and share them in a commonly understood format.

When you see an ER diagram, there are a few elements you should examine

to identify various features of the relational database:

 � Each box in the diagram represents a table. The name of the table

appears centered in the shaded area of the box.

 � Attributes appear in the unshaded portion of each table’s box. Each

attribute appears in a separate row.

 � Attribute(s) that compose a table’s primary key appear in the top portion

of the unshaded area, above the horizontal line. They also have the

designation “PK” to their left.

 � Foreign key attributes have the designation “FK” to their left. In addition,

an arrow points from the table containing the foreign key to the

referenced table.

09_224656-ch04.indd 6109_224656-ch04.indd 61 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

62 Par t II: Building SQL Server 2008 Databases

 � Required fields appear in boldface font. Attributes that may contain

NULL values (discussed later in this chapter) appear in a regular typeface.

 I used Microsoft Visio to create the ER diagram shown in Figure 4-2. Visio is a

great tool that allows you to quickly and easily build many kinds of technical

diagrams.

 The form of ER diagrams presented in this book is a simplified approach to

the diagramming process. Advanced approaches allow you to include addi-

tional information in your diagram, such as the type of relationship that exists

between tables.

Staying Fit and Trim with Normalization
In addition to creating the concept of relational databases, Eugene F. Codd

(see the “Relational databases” section, earlier in this chapter) also set forth

principles of good database design. He called these principles normalization
techniques and created several sets of requirements known as normal forms.

In this section, I discuss the three most common normal forms: first normal

form (abbreviated 1NF), second normal form (2NF), and third normal form

(3NF). A database that meets the requirements of a normal form is said to be

“in” that form. The normal forms are cumulative. That is, a database that is in

2NF must also be in 1NF, and a database in 3NF must also be in 2NF.

 Normalization techniques provide you with guidelines for sound database

design. Keep in mind that they are only guidelines, not inviolable rules.

Sometimes business necessity or expediency may dictate deviating from these

best practices.

First normal form
There are two requirements for a table to be in first normal form:

 � The table must have no duplicate records. This criteria is automatically

met if you define a primary key for the table.

 � The table must have no multi-valued attributes. This one’s a little more

complicated. Basically, it says that you can’t combine multiple values

that are valid for a column in a single column. I provide an example

to help you understand this concept. Look back at the carriers table

in Table 4-4. If I didn’t care about 1NF, I could have simply created a

“Routes” column in the carriers table, as shown in Table 4-7.

09_224656-ch04.indd 6209_224656-ch04.indd 62 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

63 Chapter 4: Planning Your Database

Table 4-7 Carriers Table Not in 1NF
Carrier
ID

First
Name

Last Name Phone
Number

DL
Number

Hire Date Routes

1 Jeremy Hinton (502)
555-9221

129522902 7/19/2007 2,3

2 Kate Jones (502)
555-5125

092481982 6/10/2000 1

However, this table contains a multi-valued attribute. The “Routes” column

contains two values (“2” and “3”) for Jeremy Hinton.

An alternative approach would be to create the table shown in Table 4-8.

Table 4-8 Carriers Table in 1NF
Carrier
ID

First
Name

Last
Name

Phone
Number

DL Number Hire
Date

Route1 Route2

1 Jeremy Hinton (502)
555-9221

129522902 7/19/
2007

2 3

2 Kate Jones (502)
555-5125

092481982 6/10/
2000

1

This table does meet the requirements of 1NF, but it’s still not great data-

base design. What happens if Jeremy wants to add a third route? With the

approach shown in Table 4-8, you’d need to add another column to the table.

The original approach (Table 4-4) creates a separate table to link routes and

carriers and allows for an unlimited number of routes per carrier.

Second and third normal forms
The second normal form (2NF) introduces one additional requirement: all

attributes that are not part of a candidate key must be functionally depen-

dent upon the entire primary key.

The third normal form (3NF) also requires that all attributes that are not part

of a candidate key must be nontransitively dependent upon each candidate

key in the table. This means that the attributes may not be dependent only

upon the primary key, because they are dependent upon another attribute

that is dependent upon the primary key.

09_224656-ch04.indd 6309_224656-ch04.indd 63 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

64 Par t II: Building SQL Server 2008 Databases

What does all of this boil down to? You shouldn’t include data in a table

that’s not directly related to the table’s primary key. Imagine if you tried to

combine the routes table in Table 4-6 with the carriers table in Table 4-4 to

get the result shown in Table 4-9.

Table 4-9 Routes Table Not in 2NF or 3NF
Route ID First

Name
Last
Name

Phone
Number

DL
Number

Hire Date

1 Kate Jones (502)
555-5125

092481982 6/10/2000

2 Jeremy Hinton (502)
555-9221

129522902 7/19/2007

3 Jeremy Hinton (502)
555-9221

129522902 7/19/2007

The primary key of this table is “Route ID”, but there’s quite a bit of informa-

tion in the table that’s not dependent upon that primary key. For example, the

driver’s license number in the third row is not determined by the route ID. It’s

linked to Jeremy Hinton, so it appears in each row representing a route served

by Jeremy.

Normalization requires that you separate this table into a carriers table and a

routes table, as I do earlier in the chapter.

 The three normal forms described previously are the ones most commonly

implemented in databases. There are other, more advanced, normal forms

that impose more burdensome requirements that are difficult to implement

and often result in significant inefficiencies. They include fourth normal form

(4NF), fifth normal form (5NF), sixth normal form (6NF), Boyce-Codd normal

form (BCNF) and domain/key normal form (DKNF).

Choosing Data Types for Your Tables
After you have a normalized design, you need to transform your ER diagram

into a SQL Server database design. The primary task to perform is the selec-

tion of appropriate data types for each of the attributes in your database. The

data type tells SQL Server how to interpret the data stored in each column.

I discuss the process of creating SQL Server databases and tables in Chapter 5.

Here, you can focus on discovering the various data types and mapping them

to your design.

09_224656-ch04.indd 6409_224656-ch04.indd 64 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

65 Chapter 4: Planning Your Database

Numeric data types
Numeric data types store any type of information that you’d like SQL Server

to use in mathematical computations. They include data types capable of

storing both integers and decimal numbers.

The numeric data types supported by SQL Server 2008 appear in Table 4-10.

Table 4-10 Numeric Data Types
Data Type Description Length

int Stores integer values rang-
ing from –2,147,483,648 to
2,147,483,647

4 bytes

tinyint Stores integer values ranging
from 0 to 255

1 byte

smallint Stores integer values ranging
from –32,768 to 32,767

2 bytes

bigint Stores integer values ranging
from –263 to 263–1

8 bytes

money Stores monetary values ranging
from –922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes

smallmoney Stores monetary values rang-
ing from –214,748.3648 to
214,748.3647

4 bytes

decimal(p,s) Stores decimal values of preci-
sion p and scale s. The maximum
precision is 38 digits.

5-17 bytes

numeric(p,s) Functionally equivalent to deci-
mal

float(n) Stores floating point values with
precision of 7 digits (when n=24)
or 15 digits (when n=53)

4 bytes (when
n=24) or 8 bytes
(when n=53)

real Functionally equivalent to
float(24)

09_224656-ch04.indd 6509_224656-ch04.indd 65 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

66 Par t II: Building SQL Server 2008 Databases

You need to be familiar with a few mathematical terms and concepts to

understand the differences between the numeric data types, so here’s a brief

refresher:

 � Integers are numbers with no decimal point. The following numbers are

all integer values:

 • 2

 • 32,420

 • 1,000,000,000,000,000

 • 0

 • –15

 � The precision of a decimal number is the number of digits that may be

stored on both sides of the decimal points. Here are a few examples:

 • The value 32 has a precision of 2.

 • The value 3.14159 has a precision of 6.

 • The value 19402.4391024 has a precision of 12.

 � The scale of a decimal number is the number of digits that may be

stored on the right side of the decimal point. Here are a few examples:

 • The value 32 has a scale of 0.

 • The value 3.14159 has a scale of 5.

 • The value 19402.4391024 has a scale of 7.

 � Floating-point numbers (both the float and real data types) are less

accurate than other decimal types because of the way they are stored in

binary form.

 Always use the smallest-length variable that will accommodate all anticipated

values stored in a column. Consider the case of an integer value that stores

values between 1 and 50. If you use a standard int data type, each row will

require 4 bytes for that column. On the other hand, if you use a tinyint, that

column will require only 1 byte per row. That might not sound like much, but

the use of a tinyint reduces the column’s space consumption by 75 percent.

That’s a significant difference in a large database!

Date and time data types
SQL Server provides several data types specifically designed for the storage

of date and time data. SQL Server 2008 includes the new date and time data

types, features long requested by SQL Server users.

09_224656-ch04.indd 6609_224656-ch04.indd 66 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

67 Chapter 4: Planning Your Database

Table 4-11 Date and Time Data Types
Data Type Description Length Example

date Stores dates between
January 1, 0001, and
December 31, 9999

3 bytes 2008-01-15

datetime Stores dates and
times between
January 1, 1753, and
December 31, 9999,
with an accuracy of
3.33 milliseconds

8 bytes 2008-01-15
09:42:16.142

datetime2 Stores date and
times between
January 1, 0001, and
December 31, 9999,
with an accuracy of
100 nanoseconds

6–8 bytes 2008-01-15
09:42:16.1420221

datetimeoffset Stores date and
times with the
same precision as
datetime2 and also
includes an offset
from Universal Time
Coordinated (UTC)
(also known as
Greenwich
Mean Time)

8–10
bytes

2008-01-15
09:42:16.1420221
+05:00

smalldatetime Stores dates and
times between
January 1, 1900, and
June 6, 2079, with
an accuracy of 1
minute (the seconds
are always listed as
“:00”)

4 bytes 2008-01-15
09:42:00

time Stores times with
an accuracy of 100
nanoseconds

3–5 bytes 09:42:16.1420221

09_224656-ch04.indd 6709_224656-ch04.indd 67 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

68 Par t II: Building SQL Server 2008 Databases

Character string data types
Character string data types allow you to store text in a Microsoft SQL Server

database. Table 4-12 shows the character string data types.

Table 4-12 Character String Data Types
Data Type Description Length

char(n) Stores n characters n bytes (where n is in the
range of 1–8,000)

nchar(n) Stores n Unicode
characters

2n bytes (where n is in the
range of 1–4,000)

varchar(n) Stores approximately
n characters

actual string length + 2 bytes
(where n is in the range of
1–8,000)

varchar(max) Stores up to 231–1
characters

actual string length + 2 bytes

nvarchar(n) Stores approximately
n characters

2*(actual string length) + 2
bytes (where n is in the range
of 1–4,000)

nvarchar(max) Stores up to
((231–1)/2)–2
characters

2*(actual string length)+2
bytes

Here are a few facts you should know about character string data types:

 � If the number of characters in a string is fairly constant, you should use

the char or nchar data type. Doing so avoids the 2-byte overhead of

the varchar and nvarchar data types.

 � If the number of characters in a string varies significantly, use the var-
char or nvarchar data types. Doing so avoids wasting space storing

short strings in large spaces.

 � If your database supports only English attributes, use the char or var-
char data types. These use half the space that the nchar and nvar-
char data types use.

 � SQL Server supports the text and ntext data types for the storage of

large strings, but these are scheduled for removal in a future version of

SQL Server. You should avoid them to ensure the compatibility of your

database with future versions. Use varchar(max) or nvarchar(max)

instead.

09_224656-ch04.indd 6809_224656-ch04.indd 68 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

69 Chapter 4: Planning Your Database

Binary data types
SQL Server’s binary data types allow you to store basically any type of data

represented in binary form. The binary data types are shown in Table 4-13.

Table 4-13 Binary Data Types
Data Type Description Length

bit Stores a single bit of
data

1 byte per 8 bit columns
in a table

binary(n) Stores n bytes of binary
data

n bytes (where n is in the
range of 1-8,000)

varbinary(n) Stores approximately n
bytes of binary data

actual length+2 bytes
(where n is in the range
of 1–8,000)

varbinary(max) Stores up to 231–1 bytes
of binary data

actual length+2 bytes

Examples of binary data include documents, images, encrypted text, and any

other data that can be represented in binary form.

 SQL Server also supports the image data type but, as is true of text and

ntext, image will not be supported in future releases of SQL Server. You

should use another binary data type in its place to ensure the compatibility of

your database with future versions of SQL Server.

Other data types
SQL Server also provides six additional built-in data types that don’t neatly fit

into any of the classifications described in previous sections of this chapter.

These types appear in Table 4-14.

Table 4-14 Other Built-In Data Types
Data Type Description Length

cursor Stores a reference to a
cursor

N/A (cannot be
used in a table)

(continued)

09_224656-ch04.indd 6909_224656-ch04.indd 69 8/21/08 5:29:27 PM8/21/08 5:29:27 PM

70 Par t II: Building SQL Server 2008 Databases

Table 4-14 (continued)
sql_variant May store any data type

other than sql_variant,
text, ntext, image,
and timestamp

Up to 8,000 bytes

table Stores a temporary table
(such as a query result)

N/A (cannot be
used in a table)

rowversion Stores a value of the data-
base time (a relative number
that increments each time
you insert or update data in
a database. It is not related
to calendar/clock time)

8 bytes

uniqueidentifier Stores a globally unique
identifier

2 bytes

xml Stores formatted XML
documents

Up to 2GB

 The timestamp data type is one of the least understood aspects of SQL Server.

It does not contain an actual date and time but contains a value from the data-

base’s internal counter. You can use it for comparing the relative sequence of

events, but honestly, it’s not a very useful data type.

 In case all these data types aren’t enough for you, SQL Server lets you create

your own data types to meet your specific needs. You can create user-defined

types (UDTs) to develop your own, nonstandard data types. For example, you

might make a UDT for telephone numbers that enforces consistent number

formatting throughout your organization’s databases.

Working with NULL Values
The value NULL holds special meaning for database developers. It means

“nothing,” and you use it to indicate either missing information or a value of

“not applicable.” NULL does not mean “empty” or “zero.”

09_224656-ch04.indd 7009_224656-ch04.indd 70 8/21/08 5:29:28 PM8/21/08 5:29:28 PM

71 Chapter 4: Planning Your Database

For example, suppose you have a customer management database that con-

tains a variable storing the number of times each customer visits your stores.

If you did not know the number of times a customer visited your store, you

would use the NULL value. If a customer has never visited your store, you would

use a value of 0.

When you create a database table, you may specify whether each column

may contain NULL values. If you do not allow a column to contain NULLs,

users may not create a row without entering an appropriate value for that

column. I cover the creation of tables that permit and deny NULL values in

Chapter 5.

When you compare database values, you need to consider the possibility

that a column might contain a NULL value and remember that it may affect

the results of your comparison. Here are a few pointers:

 � If you want to test whether a value is NULL, use the IS NULL condition

in a query’s WHERE clause. I discuss doing so in Chapter 7.

 � If you test two conditions joined with an AND (such as “X AND Y”) and

one of the values is NULL, the result will be NULL. The only exception to

this result is if one of the values is known to be false. In that case, the

clause will be false no matter what.

 � Similarly, if you test two conditions joined with an OR (such as “X OR Y”)

and one of the values is true, that clause will always be true. However, if

there are no true values and there is at least one NULL value, the result

will be NULL.

09_224656-ch04.indd 7109_224656-ch04.indd 71 8/21/08 5:29:28 PM8/21/08 5:29:28 PM

72 Par t II: Building SQL Server 2008 Databases

09_224656-ch04.indd 7209_224656-ch04.indd 72 8/21/08 5:29:28 PM8/21/08 5:29:28 PM

Chapter 5

Creating Databases and Tables
In This Chapter
� Creating a new SQL Server database

� Working with files and filegroups

� Creating, modifying, and deleting database tables

After you install SQL Server 2008, you can get down to the nuts and bolts of

SQL Server databases. And as with any database, you want to apply the

basics of good database design, which I cover in Chapter 4. In this chapter, I take

you through the process of creating a database on a SQL Server. You find out

how easily you can configure a new database, populate it with the tables that

hold your data, and modify existing tables.

Remember that a database is a collection of related tables that store your

data. Each time you install SQL Server on a system, you have the ability to

create one or more databases to store different kinds of data. When you

install SQL Server, you don’t actually create a database. Rather, you create a

server that has the capability to store databases. In this chapter, I show you

how to create a single database on your new SQL Server.

 If you just opened the book and skipped to this chapter, you probably want to

take a few minutes to look over Chapter 4, where I discuss the proper way to

design a database. If you try to create your database and tables without under-

standing that information, you might make design decisions that will make

your life difficult down the road. For example, if you don’t design your tables

efficiently at first, you may need to redesign them later. Redesigning existing

database tables requires modifying all the queries and reports that use those

tables — a time-consuming task.

Creating a Database
SQL Server 2008 makes the creation of a new database simple and pain free.

Although this powerful platform certainly enables you to customize your

database, it also includes a great set of default options that can have you up

10_224656-ch05.indd 7310_224656-ch05.indd 73 8/21/08 5:31:20 PM8/21/08 5:31:20 PM

74 Par t II: Building SQL Server 2008 Databases

and running in a matter of minutes. Follow these steps to create a new SQL

Server database:

 1. Choose Start➪All Programs➪Microsoft SQL Server➪SQL Server

Management Studio to start SQL Server Management Studio (SSMS).

 SSMS opens and prompts you to connect to an installation of Microsoft

SQL Server, as shown in Figure 5-1.

 2. Click the Connect button to connect to your server.

 Simply clicking Connect works if you’re running SSMS on the same

computer you used to install SQL Server and you configured it to use

Windows Authentication mode (see Chapter 2 for more about Windows

Authentication mode).

 If you’re connecting to the server from a remote system, you need to

specify the server name in the Connect to Server dialog box. If your

server uses SQL Server Authentication, you also need to provide your

username and password in the same window.

 3. Right-click the Databases folder, which you find in the Object Explorer

pane of the resulting SSMS window, and select New Database from the

pop-up menu.

 You see the first screen of the New Database wizard, shown in Figure 5-2,

which assists you in configuring your database.

 4. Type a name that describes your database into the Database Name

textbox.

 Every database on a SQL Server system must have a unique name. For

this example in this chapter, I use the name Cookies.

Figure 5-1:
Connecting

to a SQL
Server 2008

server.

10_224656-ch05.indd 7410_224656-ch05.indd 74 8/21/08 5:31:21 PM8/21/08 5:31:21 PM

75 Chapter 5: Creating Databases and Tables

Figure 5-2:
You can

configure
your data-

base using
the New

Database
Wizard.

 5. Click through the various pages by using the Select a Page pane in the

upper-left corner of the New Database Wizard window.

 The New Database Wizard allows you to set a number of different

options when you create a new database, including

 • Using files and filegroups to specify how SQL Server should

store your data. (You can find more details on this in the section

“Specifying Files and Filegroups,” later in this chapter.)

 • Setting the database owner.

 • Configuring a recovery model. (I discuss recovery models in

Chapter 17.)

 • Making your database backwards compatible with earlier versions

of SQL Server.

 Figure 5-3 shows the Options page with default options. In the interest

of keeping your first database simple, I recommend accepting all the

default options for now.

 5. Click OK to create your database.

 The computer will probably take a while to build your database. While

SQL Server is working, the Progress pane in the lower-left corner of the

New Database Wizard says “Executing,” as shown in Figure 5-4.

10_224656-ch05.indd 7510_224656-ch05.indd 75 8/21/08 5:31:21 PM8/21/08 5:31:21 PM

76 Par t II: Building SQL Server 2008 Databases

Figure 5-3:
The Options

page of
the New

Database
Wizard.

 6. View your database in SSMS after the New Database window disappears.

 If you don’t see any entries underneath the Databases folder, expand it

by clicking the + sign to the left of the Databases folder icon. Doing so

expands the list of databases, and you should now see your new data-

base underneath the System Databases and Database Snapshots entries.

Figure 5-5 shows a SQL Server 2008 installation with the new database

that I named Cookies.

Figure 5-4:
The

Progress
pane

displays
while your

database is
being built.

10_224656-ch05.indd 7610_224656-ch05.indd 76 8/21/08 5:31:21 PM8/21/08 5:31:21 PM

77 Chapter 5: Creating Databases and Tables

Figure 5-5:
SQL Server

Manage-
ment

Studio
showing a

new
database.

That’s all there is to it. Congratulations, you’ve now built your own SQL

Server database!

Altering database properties
You might want to change some of your initial design decisions after you’ve

finished creating your database. For example, suppose that you rarely use a

database and decide that you’d like SQL Server to close it automatically when

not in use. Now you want to change options so that the database automatically

closes. No problem! SQL Server Management Studio makes doing so easy.

 1. With SQL Server Management Studio open, use Object Explorer

to navigate to the database you’d like to modify by expanding the

Databases folder (click the plus sign next to the folder icon) and click-

ing the desired database.

 2. Right-click the database and choose Properties from the pop-up menu.

 The database Properties window appears and shows the currently

selected options.

10_224656-ch05.indd 7710_224656-ch05.indd 77 8/21/08 5:31:22 PM8/21/08 5:31:22 PM

78 Par t II: Building SQL Server 2008 Databases

 3. Browse the property pages by clicking their titles in the Select a Page

pane of the Properties window; then, modify any option(s) you want.

 Some common changes to make to database properties include the

following:

 • Configuring a database to automatically close when not in use. To

do so, you set go to the Options page and set the Auto Close

property to True.

 • Adding files to a database on the Files page.

 • Altering database mirroring settings on the Mirroring page.

(I discuss mirroring in Chapter 19.)

 4. Click OK to confirm your changes.

Deleting or renaming a database
Occasionally, you may need to delete an entire database when you no longer

need it. Also, you might want to change the name you initially assigned to a

database based upon changes you make after the initial design. The modifica-

tion process is slightly different if you’d like to delete or rename a database.

To delete a database, follow these steps:

 1. With SQL Server Management Studio open, navigate to the database

you’d like to delete by expanding the Databases folder in Object

Explorer and clicking the desired database.

Doing things the hard way
In Chapter 1, I mention that the only language
that databases understand is the Structured
Query Language (SQL). At this point in Chapter
5, you might be asking yourself “Where’s the
SQL?” Rest assured that it’s there in the back-
ground. SSMS conveniently translates your
mouse clicks and data entry into SQL code
that’s sent to the database. You can actually
write a SQL statement to create a database
rather than use the New Database Wizard. If

you were to choose the SQL way, your state-
ment would read like this:

CREATE DATABASE Cookies;

Similarly, you can rename the database with
this statement:

ALTER DATABASE Cookies
MODIFY NAME = Brownies;

10_224656-ch05.indd 7810_224656-ch05.indd 78 8/21/08 5:31:22 PM8/21/08 5:31:22 PM

79 Chapter 5: Creating Databases and Tables

 2. Right-click the object and choose Delete from the pop-up menu.

 SSMS presents a Confirmation window similar to the one shown in

Figure 5-6. This window gives you one last chance to confirm that you’d

like to delete the database.

 3. Verify the information in the Confirmation window and, if you’re pre-

pared to delete the database, click OK to continue.

 Backing up your database before you delete it is a good idea. After you delete

it, your structure and data are gone, and restoring from backup is the only

way to bring the database back online.

Figure 5-6:
Confirming

the deletion
of a data-

base.

If your use of a database changes over time, you can rename the database

to match the revised use. If you explored the database property sheets, you

probably noticed that the database name appears as a property, but you

can’t change it in the property sheet. To change the name of a database,

follow these steps:

 1. With SQL Server Management Studio open, navigate to the database

you’d like to rename by expanding the Databases folder in Object

Explorer.

10_224656-ch05.indd 7910_224656-ch05.indd 79 8/21/08 5:31:22 PM8/21/08 5:31:22 PM

80 Par t II: Building SQL Server 2008 Databases

 2. Right-click the object and select Rename from the pop-up menu.

 3. Type the new name over the old name and press Enter.

Specifying Files and Filegroups
If you’re familiar with desktop database products (such as Microsoft Access),

you might be wondering where SQL Server actually stores your data. After

all, to open an Access database, you simply browse your computer and dou-

ble-click the database file.

SQL Server also uses files to store your data, but they’re kept behind the

scenes. Database users don’t even need to know that these files exist,

because the users interact with databases and database applications through

other interfaces, such as Web applications, instead. Administrators, however,

should be aware of these files, because their location and configuration can

affect database performance.

In this section, I offer you a look at the files that make up a SQL Server data-

base and then turn your attention to the use of filegroups, which help you

group related files for convenient file management.

SQL Server files
When you create a database using the New Database Wizard, SQL Server

automatically creates the necessary files for you on disk. By default, SQL

Server creates a primary data file named database.mdf and a log file named

database_log.mdf, where database is the name of your database. These files

are stored in SQL Server’s data directory. Unless you’ve changed it, this

directory is C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA.

If you can’t find a particular file, you can look up the location on the data-

base’s Files property sheet. I explain how to view database properties in the

“Altering database properties” section, earlier in this chapter.

SQL Server 2008 uses three file types to store database information and logs:

 � Primary data files serve as the “hub” of the database. Each database

has one and only one primary data file. By default, this file contains all

the data stored in your database. It also contains important configuration

information and the location of other database files. Most administrators

use the .mdf file extension to indicate a primary data file.

10_224656-ch05.indd 8010_224656-ch05.indd 80 8/21/08 5:31:23 PM8/21/08 5:31:23 PM

81 Chapter 5: Creating Databases and Tables

 � Secondary data files are an optional way to spread your database con-

tent over multiple files. It’s common practice to use the .ndf file exten-

sion on secondary data files.

 � Log files store your database’s transaction logs. They’re critical if you

ever need to restore your database from backup. I discuss transaction

logs in Chapter 18. Most administrators use the .ldf file extension

when naming log files.

 Separating your data files and log files onto separate physical disks helps

optimize database performance. For example, if you have four physical disks,

you can have a primary data file, two secondary data files, and a log file all on

separate disks, improving data access times.

Adding a file
If you’d like to spread your data across multiple files to take advantage of

multiple disks, you can add secondary data files to your database. It’s a

simple process, as follows:

 1. With SQL Server Management Studio open, navigate to the database

where you’d like to add a file by expanding the Databases folder in

Object Explorer.

 2. Right-click the database name and select Properties from the pop-up

menu.

 The Properties dialog box appears.

 3. Click the Files page in the Select a Page pane.

 SSMS displays the files associated with the current database.

 4. Click the Add button to add a new data file.

 You see the new data file appear as a new, unnamed row in the Database

files table located in the center of the window.

 5. Click in the Logical Name cell and type the name of your file (Figure 5-7).

 6. Use the scroll bar to view the right side of the Database files table and

click the ellipsis (. . .) icon next to the file path field if you’d like to

change the storage location of your new file.

 7. Click OK to confirm the addition.

10_224656-ch05.indd 8110_224656-ch05.indd 81 8/21/08 5:31:23 PM8/21/08 5:31:23 PM

82 Par t II: Building SQL Server 2008 Databases

Figure 5-7:
Adding a

secondary
data file to a

database.

Adding log files follows the same process. Just choose the Log file type from

the drop-down menu in the Database files table to add a new log file to your

database.

Removing a file
You may want to rearrange the way you stored your database files on disk.

For example, you might plan to remove a drive from a system for mainte-

nance purposes. Before doing so, you need to remove the database files

stored on that disk. Removing a file from a database is a two-step process:

You first need to ensure that the file is empty and then you can remove it

from the database.

Ensure that the file is empty by following these steps:

 1. With SQL Server Management Studio open, navigate to the database

where you’d like to remove a file by expanding the Databases folder

(click the plus sign next to it) in Object Explorer.

 2. Right-click the database name and choose Tasks➪Shrink➪Files.

 SSMS displays the Shrink File window, which allows you to specify the

shrinking options you’d like to use.

10_224656-ch05.indd 8210_224656-ch05.indd 82 8/21/08 5:31:23 PM8/21/08 5:31:23 PM

83 Chapter 5: Creating Databases and Tables

 3. Use the File Type, Filegroup, and File Name drop-down boxes to

identify the file you plan to remove.

 4. Select the Empty File by Migrating the Data to Other Files in the Same

Filegroup radio button.

 5. Click OK to empty the file.

After you’ve emptied the file, you can delete it by following these steps:

 1. With SQL Server Management Studio open, navigate to the database

where you’d like to remove a file by expanding the Databases folder

in Object Explorer.

 2. Right-click the database object and select Properties from the pop-up

menu.

 3. Click the Files page in the Select a Page pane.

 4. On the Files page, single-click the file you’d like to delete.

 The filename is now highlighted.

 5. Click the Remove button.

 The file disappears from the list.

 6. Click OK to confirm the deletion.

Using filegroups
If you have a large, complex SQL Server environment, managing individual

files may be cumbersome. SQL Server provides the ability to group related

files into filegroups to help ease your administrative burden.

Each primary and secondary data file may be a member of one and only one

filegroup. A filegroup may contain one or more data files. Log files may not

belong to a filegroup.

Creating a new filegroup
To add a new filegroup to a SQL Server 2008 database, follow these steps:

 1. With SQL Server Management Studio open, navigate to the database

where you’d like to add a filegroup.

 2. Right-click the database object and select Properties from the pop-up

menu.

 SSMS displays the Database Properties window.

10_224656-ch05.indd 8310_224656-ch05.indd 83 8/21/08 5:31:23 PM8/21/08 5:31:23 PM

84 Par t II: Building SQL Server 2008 Databases

 3. Click the Filegroups page in the Select a Page pane.

 4. Click the Add button to add a new filegroup.

 The new filegroup appears as a new, unnamed entry.

 5. Click in the Name cell and type the name of your filegroup.

 Figure 5-8 illustrates this process.

 6. Click OK to confirm the addition.

Figure 5-8:
Creating a

new file-
group.

You’ve now created a new filegroup. The next time you add a data file to your

database, you’ll notice the new filegroup’s name in the Filegroup drop-down box.

Understanding the PRIMARY filegroup
SQL Server 2008 creates a filegroup called the PRIMARY filegroup in each

new database at the time of creation. The PRIMARY filegroup contains a vari-

ety of system information and, unless you specify otherwise, serves as the

default filegroup for all new data files.

You may change the default filegroup using SSMS by checking the Default box

in the desired entry on the filegroups page of the database properties sheet.

10_224656-ch05.indd 8410_224656-ch05.indd 84 8/21/08 5:31:23 PM8/21/08 5:31:23 PM

85 Chapter 5: Creating Databases and Tables

Creating a Table
Tables serve as the basic structure for storing data in a relational database.

In this section, you find out how to create a new table, assign it a name, add

data columns, and select a primary key.

Imagine that you’re the database administrator for a chain of cookie stores and

you want to create a database to manage store information. You might create

a shops table that holds essential information about each one of the stores in

your cookie empire. Your table might contain the columns shown in Table 5-1:

Table 5-1 Shops Table
Column Name Data Type Allow Nulls

Unit Number tinyint No

Address varchar(50) No

City varchar(20) No

State Char(2) No

ZIP Char(5) No

Phone Char(12) No

Fax Char(12) Yes

Getting started
The first thing you need to do is create the basic structure of your table in

SQL Server. You can build your table using SQL Server Management Studio’s

graphical table interface. Here’s the process you can follow:

 1. With SSMS open, navigate to the database where you’d like to build a

new table by expanding the Databases folder (click the plus sign next

to it) in Object Explorer.

 2. Expand the database’s folder.

 3. Expand the Tables folder.

 If your database already has tables, you see a listing of them here. If

you’re working with a new database, the only object in this folder is the

System Tables folder.

10_224656-ch05.indd 8510_224656-ch05.indd 85 8/21/08 5:31:24 PM8/21/08 5:31:24 PM

86 Par t II: Building SQL Server 2008 Databases

 4. Right-click the Tables folder and select New Table from the pop-up

menu.

 You now see SSMS’ table creation interface (Table Designer), set up and

ready to go with a new table, as shown in Figure 5-9.

Figure 5-9:
Starting
with an

empty table.

Adding columns
After you create the basic table structure, you need to add columns to your

table that correspond to the data elements in your design. I outlined the col-

umns of a Shops table in Table 5-1, shown previously, and now you can use

them to duplicate the table by following these steps:

 1. Click in the empty cell in the Column Name column (in the middle

pane of the Table Designer window) and enter the name of your

column (for example, Unit Number).

 2. Select the appropriate data type using the Data Type drop-down box.

 If you’re working with data types that allow you to specify the length

(such as char, varchar, and binary), you may edit the value in paren-

theses to indicate the appropriate length. For example, if you want a

10_224656-ch05.indd 8610_224656-ch05.indd 86 8/21/08 5:31:24 PM8/21/08 5:31:24 PM

87 Chapter 5: Creating Databases and Tables

column of type char with length 2, you first select char(10) from the

drop-down box and then edit the length, changing it from 10 to 12.

 3. Select the Allow Nulls check box if you’d like to allow users to store

NULL values in the column.

 You may repeat this process as many times as necessary to create all

the columns for your database table.

Selecting a primary key
In Chapter 4, I discuss the importance of selecting an appropriate primary

key for your table. You may select either a single column or a combination of

columns to serve as your table’s primary key.

 The primary key must be unique. SQL Server will not allow you to insert a new

row in a table that contains a primary key value duplicating another table

entry. For similar reasons, SQL Server will not allow you to select the Allow

Nulls attribute on a column used in the primary key.

If you’re not certain that a key value will always remain unique, you can use

an identity column to automatically generate a unique key. You may set the

Identity Column property in the Table Designer category of the Property pane.

Here’s how to set a table’s primary key:

 1. In the Table Designer window, select the column(s) involved in your

primary key.

 If your key uses more than one column, hold down the Ctrl key and click

each one.

 2. Click the primary key icon (shown here in the margin).

 This icon appears in the Table Designer toolbar that is, by default, right

above the Object Explorer pane in the table window.

 3. Verify that the row(s) involved in the key now have the primary key

icon next to their entries in the table window.

 Save your table often! If you close SSMS without saving your work, you’ll lose

it! You can save your table by choosing Save from the File menu, clicking the

disk icon in the Standard toolbar, or pressing Ctrl+S. SQL Server lets you know

when your table design contains unsaved changes by putting an asterisk (*)

next to the table name in the tab above the column definitions.

10_224656-ch05.indd 8710_224656-ch05.indd 87 8/21/08 5:31:24 PM8/21/08 5:31:24 PM

88 Par t II: Building SQL Server 2008 Databases

Figure 5-10 shows the completed Shops table. Notice that this table is in need

of a save!

Figure 5-10:
The

completed
Shops table.

Doing it the Transact-SQL way
As with all other database activities, you
may create a table using nothing other than
Transact-SQL statements. The Transact-SQL
required to create the same Shops table used
in this chapter is as follows:

USE [Cookies];
CREATE TABLE [dbo].[Shops](
 [Unit Number] [tinyint]

NOT NULL,
 [Address] [varchar](50)

NOT NULL,
 [City] [varchar](20) NOT

NULL,

 [State] [char](2) NOT
NULL,

 [ZIP] [char](5) NOT
NULL,

 [Phone] [char](12) NOT
NULL,

 [Fax] [char](12) NULL,
) ON [PRIMARY]

You may view the Transact-SQL statement
for an existing table by right-clicking a table’s
name in the Object Explorer and choosing Edit
from the pop-up menu.

10_224656-ch05.indd 8810_224656-ch05.indd 88 8/21/08 5:31:25 PM8/21/08 5:31:25 PM

89 Chapter 5: Creating Databases and Tables

If you return to the Object Explorer, you’ll now notice that the name of your

table appears in the Tables folder for your database. The “dbo.” string before

your table name indicates that the dbo (database owner) account maintains

ownership of the table.

 If you’d like to discover more about the CREATE TABLE Transact-SQL

statement and its options, consult SQL Server Books Online.

Modifying tables
You’ll often need to modify the design of an existing table to meet the chang-

ing business requirements of your organization. For example, if your cookie

stores go online, you might need to modify the Shops table from the previous

section to add an e-mail address column. SSMS makes this a simple process:

 1. With SSMS open, navigate to the database object that contains the

table you’d like to modify by expanding the Databases folder (click

the plus sign next to it).

 2. Expand the Tables subfolder for the appropriate database.

 3. Right-click the name of the table you plan to modify and select the

Design option from the pop-up menu.

 The table opens in Design view.

 4. Use Table Designer to modify your table.

 The Table Designer interface is exactly the same as the one you used to

create a new table in the Creating a Table section of this chapter. You

may modify table properties or add, edit, or remove table columns.

 5. Save the table when you’re finished by clicking the Save icon.

If you’re a Transact-SQL junkie, the ALTER TABLE statement allows you to

modify table characteristics without using the graphic interface of Table

Designer.

Deleting tables
Occasionally, you may need to delete a table that’s no longer needed in your

database. For example, suppose your database contains a table of Social

Security numbers, and new privacy regulations require that you no longer

store sensitive personal data. Here’s how you can easily delete the table:

10_224656-ch05.indd 8910_224656-ch05.indd 89 8/21/08 5:31:26 PM8/21/08 5:31:26 PM

90 Par t II: Building SQL Server 2008 Databases

 1. With SSMS open, navigate to the database object that contains the

table you’d like to delete.

 2. Expand the Tables folder for the appropriate database by clicking the

plus sign next to it.

 3. Right-click the name of the table you plan to delete and select the

Delete option from the pop-up menu.

 4. Confirm the deletion by clicking OK.

 SQL Server displays the confirmation screen shown in Figure 5-11 and

asks you to confirm the deletion prior to finalizing it.

You may also delete tables using the DROP TABLE Transact-SQL statement.

For example, to delete a table named Test, you use the following code:

DROP TABLE Test;

Figure 5-11:
Confirming a

table
 deletion.

10_224656-ch05.indd 9010_224656-ch05.indd 90 8/21/08 5:31:26 PM8/21/08 5:31:26 PM

Chapter 6

Imposing Constraints
and Relationships

In This Chapter
� Using constraints to limit database contents

� Enforcing integrity with PRIMARY KEY and UNIQUE constraints

� Linking related tables with relationships and foreign keys

As you work with SQL Server, you’ll often want to control the contents of

your database to ensure the quality of the data it contains. For example,

you might want to ensure that your customers database doesn’t contain two

duplicate records for the same customer. Similarly, you wouldn’t want an

orders table in that database to contain an order for an item that doesn’t exist

in your catalog. Both of these situations could cause embarrassing situations

for your business and possibly have a negative impact on your organization’s

profitability.

Database administrators refer to this type of quality assurance as ensuring

the integrity of the database. Microsoft SQL Server provides a number of

mechanisms for enforcing database integrity. Collectively, these mechanisms

are known as constraints, and this chapter shows you how to effectively use

them to control the contents of your databases.

Introducing Constraints
SQL Server 2008 supports five different types of database integrity constraints.

Two of them primarily enforce business rules imposed upon the database,

whereas the other three ensure the integrity of database row uniqueness and

relationships.

11_224656-ch06.indd 9111_224656-ch06.indd 91 8/21/08 5:32:27 PM8/21/08 5:32:27 PM

92 Par t II: Building SQL Server 2008 Databases

The two types of constraints that primarily serve to enforce business logic in

your databases are the following:

 � DEFAULT constraints supply values to fill fields when the user doesn’t

provide a value.

 � CHECK constraints limit the values that users may insert into a particular

database field.

The three rules designed to support database relationships and enforce

uniqueness are as follows:

 � PRIMARY KEY constraints ensure that specified column(s) always contain

a unique value so that the column(s) may serve as a table’s primary key.

 � UNQIUE constraints provide functionality similar to primary key con-

straints, but do not specify that the column(s) subject to the constraint

are a table’s primary key.

 � FOREIGN KEY constraints link two tables in a database by requiring

that the data in the column(s) governed by the constraint contain values

stored in the primary key column(s) of the linked table.

Each of these constraints serves a unique purpose in a SQL Server 2008 data-

base. In the rest of this chapter, you discover how each one can help you

enforce business logic and ensure the integrity of your SQL Server databases.

Controlling Database Contents
Using Constraints

Databases allow you to do much more than simply store and retrieve data.

They also allow you to enforce business rules that ensure that your data

meets the business requirements of your organization. DEFAULT constraints

and CHECK constraints are two powerful mechanisms that SQL Server 2008

provides to help you enforce business logic. Read on to find out how to put

these mechanisms to best use.

Filling in empty values with
DEFAULT constraints
In an ideal world, users providing data for your database will always provide

a set of complete rows, containing a value for every field in the relevant table.

Unfortunately, this isn’t usually the case. You’ll often receive data with

11_224656-ch06.indd 9211_224656-ch06.indd 92 8/21/08 5:32:27 PM8/21/08 5:32:27 PM

93 Chapter 6: Imposing Constraints and Relationships

missing or unknown values, and your database should provide mechanisms

to handle these situations.

Chapter 4 explains the concept of NULL, which is the value used by a data-

base to indicate an unknown or missing value. Sometimes, however, you

may not wish to use a NULL value for every case in which the user does not

supply data.

Deciding how to handle missing data
Consider the case of an inventory table containing information about the

products stocked in a retail store along with a current count of the on-hand

inventory of each product. If the store manager wishes to add a new product

to the catalog, but does not yet have any of the product on hand, he or she

might go ahead and insert a new record into the products table but leave the

inventory field blank.

You have several possible ways to deal with this situation:

 � You could interpret the blank value literally and have the database store a

NULL value to indicate the missing data. However, this approach doesn’t

take advantage of all the information at your disposal. You know that the

store manager is entering the product into the catalog for the first time

and that there is no current inventory in stock. The database, on the

other hand, will contain a NULL value, indicating that you do not know

the current inventory status of the product. This solution is not ideal

because you’re losing information that could be valuable to the organi-

zation for inventory planning purposes.

 � You could mark the column as not allowing NULL values. This approach

would require that the store manager provide a value for the column by

refusing to accept a new record containing a NULL value. This solution

might be the most technically correct, but it’s annoying to the store man-

ager. Your primary goal should be to design usable systems that meet your

business and technical requirements while imposing as little burden upon

the organization as possible. This solution fails to meet that objective.

 � You could set a value of zero by default, acknowledging the fact that when

a product is first ordered, you know there is no inventory on hand. This

solution is the ideal one because it ensures the integrity of your database

and stores all the available information for future use. It also reduces the

burden upon the store manager, providing a workable solution.

You may implement the third scenario by using SQL Server’s DEFAULT con-

straint. DEFAULT constraints provide a value that SQL Server will automatically

insert in a column when the data source does not explicitly provide a value.

11_224656-ch06.indd 9311_224656-ch06.indd 93 8/21/08 5:32:27 PM8/21/08 5:32:27 PM

94 Par t II: Building SQL Server 2008 Databases

Creating a DEFAULT constraint
Here’s how to create a DEFAULT constraint in SQL Server 2008:

 1. With SQL Server Management Studio open, navigate to the database

containing the table where you’d like to implement a DEFAULT con-

straint by expanding the Databases folder in Object Explorer.

 2. Click the plus (+) icon next to the database name to expand the rel-

evant database.

 3. Click the plus (+) icon next to the Tables folder icon to expand the

Tables folder for the relevant database.

 4. Right-click the name of the desired table and select Design from the

pop-up menu.

 The table opens in Design view, and you see a screen similar to the one

shown in Figure 6-1.

 5. Select the name of the column for which you want to provide a default

value.

Figure 6-1:
Design

view of a
database

table.

11_224656-ch06.indd 9411_224656-ch06.indd 94 8/21/08 5:32:27 PM8/21/08 5:32:27 PM

95 Chapter 6: Imposing Constraints and Relationships

 6. In the Column Properties pane, click in the Default Value or Binding

cell and type in the default value.

 If you’re entering a numeric default, simply type in the numeric value. If

you’re providing a character string default value for a text field, enclose

it within single quotation marks. Figure 6-2 shows an example in which

I’ve provided a default value of 0 for the Current_Inventory column

within the Products table of a database.

 7. Click the Save icon to save your modified table.

That’s all there is to creating a DEFAULT constraint in a SQL Server 2008 data-

base. You can remove a DEFAULT constraint from a column by simply delet-

ing the value in that column’s Default Value or Binding property.

 As you may have already noticed, the Design view used to add a DEFAULT

constraint is the same one used to create a new database table. You may, in

fact, add DEFAULT constraints for columns when you create a new table by

providing a value for the Default Value or Binding property of those columns.

Figure 6-2:
DEFAULT
constraint

on the
Current_

Inventory
column.

11_224656-ch06.indd 9511_224656-ch06.indd 95 8/21/08 5:32:27 PM8/21/08 5:32:27 PM

96 Par t II: Building SQL Server 2008 Databases

Coordinating NULL values and DEFAULT constraints
As mentioned earlier, a definite relationship exists between NULL values and

DEFAULT constraints: Both provide different ways to handle the scenario

where a user doesn’t provide data. However, these two concepts aren’t mutu-

ally exclusive. You can have NULL values in a column that also contains a

DEFAULT constraint.

Consider the example I provide earlier in this section about a store’s product

inventory. In that example, I suggest that a DEFAULT constraint on the inven-

tory column is appropriate in that situation for times when the store manager

enters a new product into the database but doesn’t provide an inventory value.

You might also want to store NULL values in that same column. For example,

suppose the same store conducts a quarterly audit of inventory, and that

audit returns inconsistent results for a particular product. At that time,

you’re not sure about the current number of products in your inventory, so a

NULL value is appropriate.

A NULL value for any column that allows that value will always trump any

DEFAULT constraint on that column. So, if a user explicitly provides a NULL

value for a column, and the column allows it, that column will take on a value

of NULL — no matter what DEFAULT constraint the column might contain.

Limiting column values with CHECK constraints
SQL Server 2008 allows you to limit the values that may be entered in a database

table with the use of CHECK constraints. CHECK constraints are simply state-

ments of business rules that apply to the data stored within your database.

For example, suppose you’re managing the database for a retail store and

have a table that contains information about all your products, including the

current selling price of each item in your inventory. Your store might have a

policy of not selling any items valued at greater than $100 and never giving

away items for free. This is a perfect example of a scenario in which you

might want to use a CHECK constraint to limit the sales price of products to

values greater than $0 and less than $100.

Another common use of CHECK constraints is to ensure that values match an

appropriate format. For example, suppose your store database has a table

containing information about each store location, including the store’s nine-

digit ZIP Code (in the form 12345-6789). You can use a CHECK constraint to

ensure that all values entered in the ZIP Code field match the nine-digit ZIP

Code format.

Writing CHECK constraints
You write CHECK constraints as SQL expressions, similar to those used to create

the WHERE clause in a SQL query. To do so, you use the Transact-SQL syntax,

which I discuss in more detail in Chapter 7 but provide a few examples of here.

11_224656-ch06.indd 9611_224656-ch06.indd 96 8/21/08 5:32:28 PM8/21/08 5:32:28 PM

97 Chapter 6: Imposing Constraints and Relationships

If you want to create a CHECK constraint that limits the maximum cost of an

item to $100, you use the following SQL expression:

Cost <= 100

Similarly, if you want to ensure that there is a non-negative, nonzero cost,

you use a CHECK constraint with this expression:

Cost > 0

Things get a little more complicated when you use CHECK constraints to

enforce pattern matching. You need to use wildcards to specify the various

patterns you wish to allow. Here are a few common expressions you might

use to create patterns:

 � The underscore character (_) matches any single character.

 � The percent sign (%) matches any sequence of zero or more characters.

 � Enclosing a list or range of characters in square brackets ([]) matches

any single character in the list or range. For example:

 • [aeiou] matches any vowel

 • [a-z] matches any letter

 • [0-9] matches any digit

 • [a-d] matches the letters a, b, c or d

 � Putting a carat symbol (^) as the first character within square brackets

makes the expression match any character that is not within the list or

range that follows. For example:

 • [^aeiou] matches any character other than a vowel

 • [^a-z] matches any character other than a letter

 • [^0-9] matches any character other than a digit

 • [^a-d] matches any character other than the letters a, b, c, or d

If you wanted to write a CHECK constraint that matched nine-digit ZIP Codes,

you would use the following syntax:

ZIP_Code LIKE ‘[0-9][0-9][0-9][0-9][0-9]-[0-9][0-9][0-9]
[0-9]’

Using this syntax would ensure that you have a sequence of five digits,

followed by a hyphen, followed by four digits.

11_224656-ch06.indd 9711_224656-ch06.indd 97 8/21/08 5:32:28 PM8/21/08 5:32:28 PM

98 Par t II: Building SQL Server 2008 Databases

Similarly, if your company had a bizarre business rule that said it won’t open

stores in cities that start with the letter A, you could enforce that with a

CHECK constraint using the following expression:

City LIKE ‘[^a]%’

You could also accomplish the same goal by using the following expression

in your CHECK constraint:

City NOT LIKE ‘a%’

 Note that in the two preceding examples, I used square brackets in one case

but not the other. The first example requires square brackets because you’re

telling SQL Server to match anything other than the character a. In that case,

the square brackets delimit the portion of the statement that includes the list

of characters that may not be matched. For example, if you wanted to match

all cities that started with letters other than A and B, you would write:

City LIKE ‘[^ab]%’

On the other hand, if you wanted to match cities that had a starting letter

other than A and a second letter that is b, you would write:

City LIKE ‘[^a]b%’

CHECK constraints are quite versatile, and you can use them to enforce a

variety of business rules. If you can express a business rule in SQL, you can

enforce it with a CHECK constraint.

Determining when to enforce CHECK constraints
When you create a CHECK constraint, SQL Server offers you three options for

enforcing the constraint:

 � You may enforce the constraint on data that already exists in the

table when you create (or reenable) the constraint by using the Check

Existing Data on Creation or Enabling option.

 � You may enforce the constraint for new data added to the table by using

the Enforce for INSERTs and UPDATEs option.

 � You may enforce the constraint for data added by replication agents by

using the Enforce for Replication option. I discuss database replication

in Chapter 15.

These options are most relevant when you’re adding a CHECK constraint

to an existing database. If you select Check Existing Data on Creation or

Enabling, you won’t be able to create the CHECK constraint until you go

through the table and correct any entries that don’t meet the requirements of

the constraint.

11_224656-ch06.indd 9811_224656-ch06.indd 98 8/21/08 5:32:28 PM8/21/08 5:32:28 PM

99 Chapter 6: Imposing Constraints and Relationships

Creating a CHECK constraint
You can create a CHECK constraint using SQL Server Management Studio’s

Table Designer. I walk you through the process of creating the constraint that

limits the city field to values that start with a letter.

Before you begin, you need to determine the correct expression for your

CHECK constraint. In this case, I want to ensure that values in the City field

start with a letter. The business rule doesn’t specify what follows the letter,

so you can check for a single letter followed by any sequence of zero or more

characters using this expression:

City LIKE ‘[a-z]%’

Now you can create the CHECK constraint in SQL Server, as follows:

 1. With SQL Server Management Studio open, navigate to the database

containing the table where you’d like to implement a CHECK constraint

and expand the Databases folder in Object Explorer by clicking the plus

(+) icon to its left.

 2. Click the plus (+) icon next to the relevant database name to expand

that database.

 3. Click the plus (+) icon next to the Tables folder icon to expand the

Tables folder for the relevant database.

 4. Right-click the name of the desired table and select Design from the

pop-up menu.

 The table opens in Design view, and you see a screen similar to the one

shown in Figure 6-1.

 5. Click the Table Designer menu at the top of the screen and choose

Check Constraints from the drop-down list.

 If the table contains no CHECK constraints, you see the empty window

shown in Figure 6-3.

 6. Click Add to create a new CHECK constraint.

 7. Type your expression into the Expression field under the “(General)”

heading.

 If you’ve already written the expression elsewhere, you can simply cut

and paste it into this field.

 8. Review the remaining information in the window.

 The other properties of the new constraint appear below the expression.

They include the name of the constraint and the three enforcement options

discussed in the previous section. You may choose to accept the default

values for these properties or modify them to suit your business require-

ments. Figure 6-4 provides an example of the completed CHECK constraint.

11_224656-ch06.indd 9911_224656-ch06.indd 99 8/21/08 5:32:28 PM8/21/08 5:32:28 PM

100 Par t II: Building SQL Server 2008 Databases

Figure 6-3:
Check

Constraints
window.

Figure 6-4:
CHECK

constraint
on the

Shops table.

 9. Click the Close button to close the Check Constraints window.

 10. From the File menu, choose Save to commit your new constraint to the

database.

 It’s important to realize that the database will not enforce the constraint

until after you complete this last step.

Disabling CHECK constraints
After you add a CHECK constraint to your database, it won’t be possible to

add new rows to a table that violate the constraint (provided, of course, that

you chose the Enforce for INSERTs and UPDATEs option). If you try to insert

a row that violates the constraint, you’ll see an error message similar to the

one shown in Figure 6-5.

11_224656-ch06.indd 10011_224656-ch06.indd 100 8/21/08 5:32:28 PM8/21/08 5:32:28 PM

101 Chapter 6: Imposing Constraints and Relationships

Figure 6-5:
Constraint

violation
error

message.

However, in some cases, you may wish to temporarily disable a constraint

to allow the insertion of data that violates the business logic enforced

by the constraint. Here’s how you can disable a constraint in SQL Server

Management Studio:

 1. With the Check Constraints window open, select the constraint you’d

like to disable in the Selected Check Constraint list.

 2. In the Table Designer section of the constraint properties, change the

value for Enforce For INSERTs and UPDATEs from Yes to No.

 3. Click the Close button.

 4. Choose File➪Save to commit your changed constraint to the database.

 If you inserted rows that violate the CHECK constraint while the constraint

is disabled, you won’t be able to enable the constraint again if you have the

Check Existing Data on Creation or Enabling option selected. If you try to do

so, you’ll see an error message similar to the following:

‘Shops’ table
- Unable to add constraint ‘CK_Shops_1’.
The ALTER TABLE statement conflicted with the CHECK
constraint “CK_Shops_1”. The conflict occurred in
database “Cookies”, table “dbo.Shops”, column ‘City’.

CHECK constraints and rules

If you used earlier versions of SQL Server, you might be familiar with the con-

cept of database rules that offer similar functionality to the CHECK constraint

but can be reused across different database tables and columns. Rules also have

a significant limitation: You can apply only one rule to a database column,

whereas you can apply multiple CHECK constraints to the same column.

SQL Server 2008 still supports database rules, but Microsoft no longer encour-

ages their use. Microsoft announced that it will remove rule functionality from

future versions of SQL Server and recommends that you “avoid using this

feature in new development work, and plan to modify applications that cur-

rently use this feature. Use CHECK constraints instead.”

11_224656-ch06.indd 10111_224656-ch06.indd 101 8/21/08 5:32:29 PM8/21/08 5:32:29 PM

102 Par t II: Building SQL Server 2008 Databases

Enforcing Database Integrity
As I mention at the beginning of the chapter, SQL Server offers three types

of constraints that you may use to enforce the integrity of your database:

PRIMARY KEY constraints, UNIQUE constraints, and FOREIGN KEY con-

straints. I cover the selection and creation of primary keys in Chapter 5, so I

discuss the remaining two types in this section.

Enforcing uniqueness
UNIQUE constraints allow you to enforce the uniqueness property of col-

umns other than the primary key in a table. They act in a similar manner to

PRIMARY KEY constraints, but with two important differences:

 � Columns subject to a PRIMARY KEY constraint may not contain NULL

values. Columns subject to a UNIQUE constraint may contain one row with

a NULL value. (If you had two rows with a NULL value in the same option,

that would be a duplicate value, which violates the UNIQUE constraint.)

 � A table may have only one PRIMARY KEY constraint but may have

multiple UNIQUE constraints.

Here’s how to create a UNIQUE constraint on a column in an existing SQL

Server table:

 1. Open the table in Design View using SQL Server Management Studio

by right-clicking the table and selecting Design from the pop-up menu.

 2. From the Table Designer pull-down menu, select Indexes/Keys.

 The Indexes/Keys window, shown in Figure 6-6, opens. Notice that in this

example, the table already has a PRIMARY KEY constraint.

Figure 6-6:
The

Indexes/
Keys

window
showing a

table with a
PRIMARY

KEY
constraint.

11_224656-ch06.indd 10211_224656-ch06.indd 102 8/21/08 5:32:29 PM8/21/08 5:32:29 PM

103 Chapter 6: Imposing Constraints and Relationships

 3. Click the Add button to create a new key.

 4. Click the Type property and change the value from Index to Unique Key.

 5. Click the ellipsis (. . .) next to the Columns property and select the col-

umns you want to include in your UNIQUE constraint.

 You may also change the name of the key, if you want. I like to use the

naming convention UK_name (for Unique Key) to help identify my con-

straints. Figure 6-7 shows the completed window.

 6. Click the Close button.

 7. Choose Save from the File menu to save your new constraint.

Figure 6-7:
Creating a

Unique Key.

Enforcing referential integrity with
FOREIGN KEY constraints
Your database tables will often contain related information. For example, the

retail store database I discuss in this chapter contains a table with informa-

tion about each store owned by the company. I might also wish to have an

Employees table containing information about each of the company’s employ-

ees. It would be logical to include the store that hired each employee in that

employee’s record.

The easiest way to include this information is to create a Unit_Number field

in the Employees table. This field would contain the Unit_Number (the pri-

mary key of the Shops table) of the employee’s store, creating a link between

the two tables.

11_224656-ch06.indd 10311_224656-ch06.indd 103 8/21/08 5:32:30 PM8/21/08 5:32:30 PM

104 Par t II: Building SQL Server 2008 Databases

However, including the field creates a potential issue down the road. What

happens if a store closes? All the employees associated with that store would

then be “orphaned” because they would be associated with a Unit_Number

that didn’t exist. Similarly, if no business logic is used in creating the table, a

data entry clerk might accidentally create an orphaned employee by mistyp-

ing an employee’s Unit_Number and entering a number that’s not assigned to

any store.

These issues are known as referential integrity issues, and SQL Server pro-

vides the FOREIGN KEY constraint to prevent their occurrence. A foreign key

creates a relationship between two tables by linking the foreign key in one

table to the primary key (or any other unique key) in the referenced table. In

the stores example, the Unit_Number field in the Employees table would be

a foreign key to the Unit_Number primary key in the Shops table.

 When you create a foreign key relationship between two columns, the columns

must have the same data type. Additionally, if you create a foreign key relation-

ship that involves multiple-column keys, the two keys must contain the same

number of columns.

Here’s how to create a FOREIGN KEY constraint in SQL Server Management

Studio:

 1. Open the table that will contain the foreign key in Design View using

SQL Server Management Studio by right-clicking the table and select-

ing Design from the pop-up menu.

 In my example, the Shops table contains the foreign key.

 2. From the Table Designer drop-down list, select Indexes/Keys.

 The Foreign Key Relationships window, shown in Figure 6-8, opens.

Figure 6-8:
The

Foreign Key
Relation-

ships
window.

11_224656-ch06.indd 10411_224656-ch06.indd 104 8/21/08 5:32:30 PM8/21/08 5:32:30 PM

105 Chapter 6: Imposing Constraints and Relationships

 3. Click the Add button to create a new FOREIGN KEY constraint.

 4. Click the ellipsis (. . .) next to the Tables and Columns Specification

property.

 The Tables and Columns window opens.

 5. Select the table that your foreign key refers to in the Primary Key

Table drop-down list.

 6. Select the names of the column(s) involved in your primary key from

the drop-down lists in the grids below the primary key table name and

the foreign key table name.

 When you’re finished, the window should look like the example in Figure 6-9.

 7. Click OK to close the Tables and Columns window.

 8. Click Close to close the Foreign Key Relationships window.

 9. Choose Save from the File menu to save your new constraint.

After you’ve created a foreign key relationship between the two tables,

SQL Server will require that all values associated with the constraint in the

foreign key table have corresponding values in the primary key table. The

constraint does not, however, require that all values in the primary key table

have corresponding values in the foreign key table. Additionally, there may

be multiple values in the foreign key table that reference the same record in

the primary key table.

Figure 6-9:
The Tables

and
Columns
window

with a
FOREIGN

KEY
constraint.

11_224656-ch06.indd 10511_224656-ch06.indd 105 8/21/08 5:32:30 PM8/21/08 5:32:30 PM

106 Par t II: Building SQL Server 2008 Databases

11_224656-ch06.indd 10611_224656-ch06.indd 106 8/21/08 5:32:31 PM8/21/08 5:32:31 PM

Part III
Retrieving Data
from Databases

12_224656-pp03.indd 10712_224656-pp03.indd 107 8/21/08 5:32:50 PM8/21/08 5:32:50 PM

In this part . . .

In this part, you find out how to retrieve information

from a SQL Server database. I introduce the Structured

Query Language (SQL) and show you how to use it to pull

the exact information you need out of your database. You

also find out about some advanced database queries that

let you combine information from multiple tables and take

various actions based on the results of your database

queries.

12_224656-pp03.indd 10812_224656-pp03.indd 108 8/21/08 5:32:51 PM8/21/08 5:32:51 PM

Chapter 7

Constructing Simple
Database Queries

In This Chapter
� Using SELECT statements to retrieve data from a SQL Server database

� Summarizing data with aggregate functions

� Grouping results by attributes

� Formatting SQL Server output

In most databases, the vast majority of SQL statements issued are

designed to retrieve information from a database. You can use the SQL

SELECT statement to retrieve information from database tables. The beauty

of this statement is that it’s quite simple to use in its basic form, but it also

contains quite a bit of flexible power, allowing you to precisely specify the

exact information you’d like to retrieve.

In this chapter, I dissect the SELECT statement, clause-by-clause, and show

you how to put together simple database queries. I recommend that you

master this material before you check out the more powerful uses of the

SELECT statement that I present in Chapter 8.

Retrieving Data with SELECT Statements
The SQL command used to retrieve data from a database is the SELECT state-

ment. As do other SQL statements, the SELECT statement reads almost like

an English statement. If you can fill in the blanks in the following sentence,

you can compose a SELECT statement:

Select ____columns____ from ___table___ where ____
conditions____.

13_224656-ch07.indd 10913_224656-ch07.indd 109 8/21/08 5:33:20 PM8/21/08 5:33:20 PM

110 Part III: Retrieving Data from Databases

That’s really all there is to it. You simply need to identify three things to

compose a proper SELECT query:

 � The columns you want to retrieve

 � The table you want to retrieve them from

 � The conditions (if any) that the data must satisfy

You then take this information and plug it into the proper SQL syntax. For

example, suppose you wanted to retrieve a list of students from a school

database to determine which students might qualify for a boys’ hockey team.

It’s a boy’s team, so you’re interested in only male students. Also, you’re

planning to give this list to the team’s coach, so you want to include only

names and telephone numbers, omitting any other personal information

stored in the database. Here’s how that would look in SQL:

SELECT first_name, last_name, phone
FROM students
WHERE gender = ‘male’

That query would produce the following results:

first_name last_name phone
--------------- --------------- ---------------
Richard Jones 574-555-0125
Matthew Jones 574-555-0125
Christopher Murphy 574-555-8224
Mike Abrams 574-555-1925
Edward Sorin 574-555-1902

(5 row(s) affected)

 I discuss using SQL Server Management Studio to execute SQL statements in

Chapter 3.

As you can probably imagine, there are more advanced SELECT statements

as well. This basic format allows you to retrieve data from a single table

using simple conditions. In Chapter 8, I discuss advanced concepts, including

combining data from multiple tables and writing complex SELECT queries.

The SELECT. . .FROM clause
The first two components of the SELECT statement (the columns you want to

retrieve and the table that contains them) appear in the SELECT. . .FROM

clause.

13_224656-ch07.indd 11013_224656-ch07.indd 110 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

111 Chapter 7: Constructing Simple Database Queries

If you’d like to select a single column, simply type the name of the column

between the SELECT and FROM keywords. If you’d like to include multiple col-

umns, include a comma-separated list, as I demonstrate in the previous sec-

tion’s query.

 You may also choose to retrieve all the columns from a database table by sub-

stituting an asterisk (*) for the column listing.

After you’ve listed the names of the column(s) you want to retrieve, simply

type the name of the table containing those columns after the FROM keyword.

The SELECT…FROM clause is the only required component of a SQL SELECT

query. For example, if you wanted to retrieve all columns from the students

table, you could use this simple query:

SELECT *
FROM students

which would produce the following results:

first_name last_name student_id phone gender
------------ ------------ ----------- ------------- ------
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Renee Smith 4 574-555-9201 female
Mike Abrams 5 574-555-1925 male
Edward Sorin 6 574-555-1902 male
Mary Keenan 7 574-555-9889 female
Susan Davis 8 574-555-9124 female

(8 row(s) affected)

What does the number of rows affected mean?
Notice at the end of the query that SQL Server
reports the number of rows “affected” by the
query. In the case of a SELECT statement,
this report includes the number of rows that
your query returned. If you don’t want SQL
Server to produce this summary reporting, issue
the following SQL command:

SET NOCOUNT ON

This command causes SQL Server to suppress
reporting the number of rows affected by future
queries. You can restore the default behavior
with the following command:

SET NOCOUNT OFF

13_224656-ch07.indd 11113_224656-ch07.indd 111 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

112 Part III: Retrieving Data from Databases

The WHERE clause
The WHERE clause allows you to be specific about the types of data you’d like

to retrieve from the tables identified in the SELECT…FROM clause. You may

include condition(s) that each row in the result set must satisfy.

For example, if you wanted to identify all the members of the Jones family

enrolled in your school, you might use the following SQL statement:

SELECT first_name, last_name
FROM students
WHERE last_name = ‘Jones’

which would produce the following results:

first_name last_name
--------------- ---------------
Richard Jones
Matthew Jones

(2 row(s) affected)

Combining several conditions
You’re not limited to including a single condition in your WHERE clause.

For example, suppose you wanted to identify all the students in your school

who are male and are among the first five students to enroll (meaning their

student_id is less than or equal to 5). You could retrieve the names of the

students who meet both of these two conditions by joining those conditions

with the AND keyword, as shown in the following SQL statement:

SELECT *
FROM students
WHERE gender = ‘male’ AND student_id <= 5

which would produce the following results:

first_name last_name student_id phone gender
------------ ----------- ----------- ------------- ------
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Mike Abrams 5 574-555-1925 male

(4 row(s) affected)

Similarly, you can use the OR conjunction to retrieve all rows that meet

either one of the conditions. If you modified the previous query to use the

OR conjunction, as follows:

13_224656-ch07.indd 11213_224656-ch07.indd 112 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

113 Chapter 7: Constructing Simple Database Queries

SELECT *
FROM students
WHERE gender = ‘male’ OR student_id <= 5

you would retrieve the following rows from the database:

first_name last_name student_id phone gender
------------ ----------- ----------- ------------- ------
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Renee Smith 4 574-555-9201 female
Mike Abrams 5 574-555-1925 male
Edward Sorin 6 574-555-1902 male

(6 row(s) affected)

Note that the results include the same four rows as the previous query (those

that met both criteria), but also includes two additional rows. Renee Smith

is included in the results because she meets one condition (she’s student #4)

but not the other (she’s female). Similarly, Edward Sorin wasn’t included in

the first query results because he wasn’t among the first five students, but he

is included in this set because he meets the gender condition.

Using the BETWEEN condition
Sometimes you need to retrieve records that satisfy a range condition. That

is, they contain a value that’s within a specified range of values. For example,

you might want to retrieve a list of all students born between 1997 and 2004.

One way to accomplish this task is by using two conditions joined by an AND

conjunction, as follows:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate >= ‘1-Jan-1997’ AND birthdate <=

‘31-Dec-2004’

As you’d expect, the result of this query is a list of all students born between

the two dates:

first_name last_name birthdate
--------------- --------------- -----------------------
Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Renee Smith 2004-11-06 00:00:00
Susan Davis 2000-06-10 00:00:00

(4 row(s) affected)

You’d probably agree that this looks a little clumsy and makes it difficult to

tell what the query is actually doing. SQL provides an alternative that’s a

13_224656-ch07.indd 11313_224656-ch07.indd 113 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

114 Part III: Retrieving Data from Databases

little more readable: the BETWEEN clause, which allows you to specify a range

of values in “BETWEEN x AND y” format. For example, you could rewrite the

previous query as:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate BETWEEN ‘1-Jan-1997’ AND ‘31-Dec-2004’

This query produces the same results as the previous query.

Negating conditions with NOT
Sometimes it is easier to express your query in terms of the data that you

don’t want to retrieve. SQL provides the NOT keyword for such cases. For

example, if you wanted to pull a list of students who aren’t in the Jones

family, you could use the following SQL statement:

SELECT first_name, last_name
FROM students
WHERE NOT last_name = ‘Jones’

As you’ve probably noticed already, there are often several ways to accom-

plish the same thing in SQL. Some people prefer to write the preceding query

using the <> (greater than or less than) operator. Using that notation, you

would issue the following SQL command:

SELECT first_name, last_name
FROM students
WHERE last_name <> ‘Jones’

Using list conditions
If you have a list of values you’d like to search for, you can use the SQL IN

keyword to provide that list in your SQL statement. For example, you can

retrieve a list of all students from the Jones, Smith, and Keenan families with

the following SQL command:

SELECT first_name, last_name
FROM students
WHERE last_name IN (‘Jones’, ‘Smith’, ‘Keenan’)

When executed, that statement produces the following results:

first_name last_name
--------------- ---------------
Richard Jones
Matthew Jones
Renee Smith
Mary Keenan

(4 row(s) affected)

13_224656-ch07.indd 11413_224656-ch07.indd 114 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

115 Chapter 7: Constructing Simple Database Queries

Similarly, you can combine the IN and NOT keywords to obtain a list of

students who are not in those families with this SQL statement:

SELECT first_name, last_name
FROM students
WHERE last_name NOT IN (‘Jones’, ‘Smith’, ‘Keenan’)

As you’d expect, that command lists the other four students in the school

database:

first_name last_name
--------------- ---------------
Christopher Murphy
Mike Abrams
Edward Sorin
Susan Davis

(4 row(s) affected)

Matching text patterns with LIKE
In some cases, you won’t be able to describe the condition you wish to place

on a text variable in the simple form:

WHERE variable = ‘value’

For example, you might want to retrieve a list of students who have first

names beginning with the letter M. You can do this by using a LIKE clause

with wildcard values that can represent more than one possible character.

Here’s an example:

SELECT first_name, last_name
FROM students
WHERE first_name LIKE ‘M%’

This query produces the following results:

first_name last_name
--------------- ---------------
Matthew Jones
Mike Abrams
Mary Keenan

(3 row(s) affected)

The LIKE clause allows you to match patterns in text variables using several

different wildcard types, as listed in Table 7-1.

13_224656-ch07.indd 11513_224656-ch07.indd 115 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

116 Part III: Retrieving Data from Databases

Table 7-1 Wildcard Types
Wildcard Description

_ Any single character

% Any series of zero or more characters

[a-f] Any single character in the range a–f

[^a-f] Any single character not in the range a–f

[abc] Any single character contained in the list (a, b, or c)

[^abc] Any single character not contained in the list (a, b, or c)

 These are the same wildcard values used in CHECK constraints, as I discuss in

Chapter 6.

You can use combinations of these wildcards to construct complicated pat-

terns. For example, the following query will select any students who have last

names starting with J, K, or S but that do not end with an S:

SELECT first_name, last_name
FROM students
WHERE last_name LIKE ‘[j,k,s]%[^s]’

This statement produces the following results:

first_name last_name
--------------- ---------------
Renee Smith
Edward Sorin
Mary Keenan

(3 row(s) affected)

In addition to pattern matching with LIKE conditions, SQL Server 2008 sup-

ports Full Text Search (FTS) capabilities that allow you to perform advanced

text searches. FTS is beyond the scope of this book.

Selecting rows with NULL values
In Chapter 4, I explain how databases use the special value NULL to represent

unknown or missing values. If you want to use the value NULL in a WHERE

condition, you should use the special keywords IS NULL and IS NOT NULL

to do so. The following example shows you how.

Say that you wanted to retrieve a birthday list for students in your school

and you used the following query to do so:

13_224656-ch07.indd 11613_224656-ch07.indd 116 8/21/08 5:33:21 PM8/21/08 5:33:21 PM

117 Chapter 7: Constructing Simple Database Queries

SELECT first_name, last_name, birthdate
FROM students

which produces the results:

first_name last_name birthdate
--------------- --------------- -----------------------
Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Christopher Murphy NULL
Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00
Edward Sorin NULL
Mary Keenan 1995-02-08 00:00:00
Susan Davis 2000-06-10 00:00:00

(8 row(s) affected)

Note that the database doesn’t contain birthdates for two students:

Christopher Murphy and Edward Sorin. If you want to omit those names

from the query results, you can use the IS NOT NULL clause, as shown in

this query:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate IS NOT NULL

Executing this query produces the following list:

first_name last_name birthdate
--------------- --------------- -----------------------
Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00
Mary Keenan 1995-02-08 00:00:00
Susan Davis 2000-06-10 00:00:00

(6 row(s) affected)

If you want to produce a list of students who have missing birthdates,

perhaps to follow up and obtain that information, you can use the following

SQL query:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate IS NULL

The query would produce the following results:

13_224656-ch07.indd 11713_224656-ch07.indd 117 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

118 Part III: Retrieving Data from Databases

first_name last_name birthdate
--------------- --------------- -----------------------
Christopher Murphy NULL
Edward Sorin NULL

(2 row(s) affected)

Organizing Query Results
Retrieving the correct data from SQL Server is only half the battle. When

you’ve successfully retrieved data using a SELECT statement, you can use

the power of SQL to help you organize your results. In this section, I cover

techniques you can use to sort, summarize, group, and format the data you

retrieve from your database.

Sorting output
One of the simplest ways you can manipulate your data is to sort it, alphabet-

ically or numerically. SQL Server allows you to sort by any attribute or

combination of attributes using the ORDER BY clause in your SELECT state-

ment. For example, to retrieve an alphabetical list of students, you might use

the following SQL statement:

SELECT first_name, last_name
FROM students
ORDER BY last_name

This statement produces a list of students, sorted alphabetically by last

name, as follows:

first_name last_name
--------------- ---------------
Mike Abrams
Susan Davis
Richard Jones
Matthew Jones
Mary Keenan
Christopher Murphy
Renee Smith
Edward Sorin

(8 row(s) affected)

13_224656-ch07.indd 11813_224656-ch07.indd 118 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

119 Chapter 7: Constructing Simple Database Queries

Note that the output is sorted by last name, but there are two students

named Jones. You may wish to specify a secondary sort attribute to further

sort rows for which the primary sort attribute has the same value. The

following SQL statement sorts primarily by last name but then further sorts

by first name for cases in which students have the same last name:

SELECT first_name, last_name
FROM students
ORDER BY last_name, first_name

Matthew and Richard Jones are now sorted by first name within the results

sorted by last name:

first_name last_name
--------------- ---------------
Mike Abrams
Susan Davis
Matthew Jones
Richard Jones
Mary Keenan
Christopher Murphy
Renee Smith
Edward Sorin

(8 row(s) affected)

You can sort by any attribute in your table. SQL Server determines the appro-

priate way to sort based upon the data type. For example, you could sort the

list by birth date using this SQL command:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate IS NOT NULL
ORDER BY birthdate

This produces a list of students sorted by birth date, in ascending order:

first_name last_name birthdate
--------------- --------------- -----------------------
Mary Keenan 1995-02-08 00:00:00
Matthew Jones 1999-03-27 00:00:00
Susan Davis 2000-06-10 00:00:00
Richard Jones 2001-02-23 00:00:00
Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00

(6 row(s) affected)

13_224656-ch07.indd 11913_224656-ch07.indd 119 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

120 Part III: Retrieving Data from Databases

 SQL Server always assumes that you want to sort your results in ascending

order (A–Z for text and smallest to largest for numeric values). You may

override this behavior by specifying the sort order with the keywords ASC

(for ascending order) or DESC (for descending order) after each attribute in

your ORDER BY clause. For example, to re-sort your birthday list so that the

youngest student appears first (descending order), you can use the following

SQL statement:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate IS NOT NULL
ORDER BY birthdate DESC

This statement produces the desired sorting as follows:

first_name last_name birthdate
--------------- --------------- -----------------------
Mike Abrams 2007-01-21 00:00:00
Renee Smith 2004-11-06 00:00:00
Richard Jones 2001-02-23 00:00:00
Susan Davis 2000-06-10 00:00:00
Matthew Jones 1999-03-27 00:00:00
Mary Keenan 1995-02-08 00:00:00

(6 row(s) affected)

 I instructed the database to omit records with NULL birth date values from the

results. If your result set does include NULL values, SQL Server will treat them

as the smallest value in your result set. This means that they will appear at the

top of results in ascending order and at the bottom in descending order.

Summarizing data with
aggregate functions
SQL Server also allows you to answer more complicated questions about

datasets. For example, you might want to know the number of records

that meet a certain condition or the average value in a recordset. For this

purpose, SQL provides a class of functions called aggregate functions. These

functions work on groups (or aggregations) of data.

Table 7-2 lists the common aggregate functions used in Transact-SQL

programming.

13_224656-ch07.indd 12013_224656-ch07.indd 120 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

121 Chapter 7: Constructing Simple Database Queries

Table 7-2 Transact-SQL Aggregate Functions
Function Description

AVG Returns the average of the values in the group

COUNT Returns a count of the number of items in the group

MAX Returns the largest value in the group

MIN Returns the smallest value in the group

SUM Returns the sum of all values in the group

STDEV Returns the statistical standard deviation of all values in the group

VAR Returns the statistical variance of all values in the group

To help illustrate these functions, I’ve added a new column to the students

table that appears earlier in this chapter. It now includes the number of

absences for each student in the current school year. Here are the values

now inserted in the table:

first_name last_name absences
--------------- --------------- --------
Richard Jones 3
Matthew Jones NULL
Christopher Murphy 5
Renee Smith 2
Mike Abrams 8
Edward Sorin 14
Mary Keenan 0
Susan Davis 6

Read on for some examples of using aggregate functions.

Counting records
Suppose you want to count all the students in your school. You can use the

COUNT aggregate function, as follows:

SELECT COUNT(*)
FROM students

This returns the following output:

8

(1 row(s) affected)

13_224656-ch07.indd 12113_224656-ch07.indd 121 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

122 Part III: Retrieving Data from Databases

You should notice a few interesting things about this output:

 � The value 8 is the answer to the question. How many rows are in the

students table?

 � The output value has no variable name; nothing is listed above the

header. I show you how to correct this problem in the Formatting

Output section later in this chapter.

 � The statement 1 row(s) affected refers to the number of rows of

output, not the number of rows counted by the query. I asked a question

that takes only a single line (8) to be answered, so only one row is

“affected” by the query.

Working with unique records
SQL Server also allows you to count unique instances of a variable using

the DISTINCT keyword. For example, suppose you wanted to know how

many different last names exist in your student body. You could use COUNT
DISTINCT as follows:

SELECT COUNT(DISTINCT(last_name))
FROM students

This produces the following output:

7

(1 row(s) affected)

 You can also use the DISTINCT keyword with a regular SELECT statement.

For example, the following statement retrieves a list of all student last names

without duplicates:

SELECT DISTINCT(last_name)
FROM students

Finding minimum, maximum, and average values
Aggregate functions can also help you identify the smallest or largest value

in a dataset using the MIN and MAX functions. Similarly, the AVG function

determines the mathematical average of the specified variable.

The following SQL statement demonstrates these three functions on the

absences attribute:

SELECT min(absences), max(absences), avg(absences)
FROM students

It produces the following results:

13_224656-ch07.indd 12213_224656-ch07.indd 122 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

123 Chapter 7: Constructing Simple Database Queries

---- ---- -----------
0 14 5
Warning: Null value is eliminated by an aggregate or other

SET operation.

(1 row(s) affected)

From these results, the smallest number of absences in your database is 0,

the largest is 14, and the average is 5. The Warning statement in the output

indicates that SQL Server ignores NULL values when calculating aggregate

functions. This means that the two NULL absence values were not used when

calculating the average number of absences.

Totaling values
The SUM function allows you to determine the total of a variable in a record-

set. For example, the following statement allows you to determine the total

number of days missed by all of your students:

SELECT sum(absences)
FROM students

Once again, SQL Server reminds you that the result (38 total days) does not

include NULL values:

38
Warning: Null value is eliminated by an aggregate or other

SET operation.

(1 row(s) affected)

You can also add WHERE clauses to your aggregate functions to limit the

records considered by the SQL statement. For example, if you wanted to

know the total number of absences recorded by male students, you could use

the following SQL statement:

SELECT sum(absences)
FROM students
WHERE gender = ‘male’

Grouping results
In the example in the preceding section, I show you how you can limit the use

of aggregate functions to results that meet condition(s) specified in a WHERE

clause. SQL also allows you to group results into categories and use aggre-

gate functions to summarize data across those categories instead of across

the entire dataset.

13_224656-ch07.indd 12313_224656-ch07.indd 123 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

124 Part III: Retrieving Data from Databases

For example, suppose you want to investigate whether boys or girls are more

likely to skip school. You can determine the average number of absences for

each gender using the following SQL statement:

SELECT gender, avg(absences)
FROM students
GROUP BY gender

SQL Server then groups the results by gender, showing you the average for

each gender:

gender
------ -----------
female 2
male 7

(2 row(s) affected)

Renaming columns in your output
The examples that appear so far in this chapter are missing some headers,

as you may have noticed if you’ve read straight through this chapter. By

default, SQL Server provides header names for regular variable columns but

does not do so for computed columns, such as those generated by aggregate

functions.

For example, the query

SELECT gender, min(absences), max(absences), avg(absences)
FROM students
GROUP BY gender

produces the following results:

gender
------ ---- ---- -----------
female 0 6 2
male 3 14 7

(2 row(s) affected)

You can provide reader-friendly column headings for those results by using

the AS clause in your SQL statement. You simply include the phrase AS
column-name after each expression listed in your SELECT…FROM clause.

For example, you can rewrite the previous query as:

13_224656-ch07.indd 12413_224656-ch07.indd 124 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

125 Chapter 7: Constructing Simple Database Queries

SELECT gender AS ‘Gender’, min(absences) AS ‘Lowest
Absences’, max(absences) AS ‘Highest Absences’,
avg(absences) AS ‘Average Absences’

FROM students
GROUP BY gender

which produces the nicely formatted results that follow:

Gender Lowest Absences Highest Absences Average Absences
------ --------------- ---------------- ----------------
female 0 6 2
male 3 14 7

(2 row(s) affected)

Note that I also renamed the gender column to capitalize the first letter,

making it consistent with the other columns in the results.

13_224656-ch07.indd 12513_224656-ch07.indd 125 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

126 Part III: Retrieving Data from Databases

13_224656-ch07.indd 12613_224656-ch07.indd 126 8/21/08 5:33:22 PM8/21/08 5:33:22 PM

Chapter 8

Joins and Other Advanced Queries
In This Chapter
� Combining related data from different tables with JOIN statements

� Computing values in a SELECT statement

� Using subqueries to simplify complicated queries

� Controlling data access with views

Transact-SQL provides SQL Server users with a variety of advanced func-

tionality that allows you to harness the power of a relational database.

In this chapter, I describe a number of these technologies and explain how

you can use them to issue powerful, compact database commands.

I begin by exploring Transact-SQL’s JOIN functionality that allows you to

easily combine related data from multiple tables. I then describe several

twists on the standard SQL queries: computed values, subqueries, and CASE

statements. I wrap up this chapter by taking a brief look at SQL views.

Joining Data from Multiple Tables
In the previous chapter, I describe simple queries that you can use to extract

data from a single table. However, in many cases, you’ll need to combine data

from multiple tables to meet business requirements. Transact-SQL allows you

to do this through the use of JOIN statements.

In this section, I explain three types of JOIN statements:

 � INNER JOINs allow you to match related records from different tables.

 � OUTER JOINs also include records from one or both tables that do not

have corresponding record(s) in the other table.

 � Self-joins are a special case in which you join a table with itself to

compare records in the same table.

14_224656-ch08.indd 12714_224656-ch08.indd 127 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

128 Part III: Retrieving Data from Databases

Matching records with INNER JOINs
The most common type of JOIN statement is the INNER JOIN. This state-

ment, also known as an equi-join, combines records from two tables that

have one or more specified attributes in common. For example, suppose you

have a school database containing the students table shown in Table 8-1.

Table 8-1 Students Table
first_name last_name student_id Gender teacher

Richard Jones 1 Male 1

Matthew Jones 2 Male 2

Christopher Murphy 3 Male 2

Renee Smith 4 Female 1

Mike Abrams 5 Male NULL

Edward Sorin 6 Male 2

Mary Keenan 7 Female 2

Susan Davis 8 Female 1

If you’ve been following along, you may be noticing that this is a simplified

version of the students table used in Chapter 7. I added the teacher column

to the table as a foreign key to the teachers table shown in Table 8-2.

Table 8-2 Teachers Table
teacher_id first_name last_name

1 Richard Allen

2 Mary Brady

3 Ann Edwards

The school principal might ask you to generate a class list showing each

student’s name and the name of his or her teacher. This is a reasonable,

straightforward request, but you can’t fulfill it with a basic SELECT state-

ment. The best you’d be able to do is retrieve a list of students with the ID

number of their teacher and provide the principal with two separate lists:

students with teacher IDs and teacher IDs and teacher names. That’s cer-

tainly not a business-friendly answer!

This is where the INNER JOIN simplifies your life. You can use this state-

ment to retrieve data from both the student and teacher tables!

14_224656-ch08.indd 12814_224656-ch08.indd 128 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

129 Chapter 8: Joins and Other Advanced Queries

Writing an INNER JOIN statement
You create an INNER JOIN by including the two tables in the FROM clause

with the INNER JOIN keyword and specifying the join condition using the

ON keyword. For example, if you want to fulfill the principal’s request, you

may do so with the following SQL statement:

SELECT students.first_name, students.last_name, teachers.
first_name, teachers.last_name

FROM students INNER JOIN teachers
ON students.teacher = teachers.teacher_id

 Note that I use a different form for attribute names in this query than those I

use in earlier chapters. Instead of simply writing the attribute name, I specified

the table name as well, using the form table_name.attribute_name. This

is necessary when two tables share common attribute names. For example,

both the students and teachers tables contain an attribute named “first_

name.” If I hadn’t specified the table name, SQL Server would have refused to

process the query, returning the following error:

Msg 209, Level 16, State 1, Line 1
Ambiguous column name ‘first_name’.

 NULL is a special value that corresponds to missing or unknown data.

Therefore, records that have NULL values for the join condition do not match

each other and will not appear in the output of an INNER JOIN statement.

 Technically, it’s necessary to use the table_name.attribute_name format

when only working with attributes that appear in both tables. However, most

SQL Server users consider it good practice to use this format any time you

write queries involving multiple tables.

Analyzing the results
Here are the results of the INNER JOIN statement:

first_name last_name first_name last_name
--------------- --------------- ---------------- ----------------
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(7 row(s) affected)

You should notice two important things about the results of this

INNER JOIN:

14_224656-ch08.indd 12914_224656-ch08.indd 129 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

130 Part III: Retrieving Data from Databases

 � There is no record for the student Mike Abrams. Refer back to Table

8-1 and you’ll notice that his teacher is NULL. INNER JOINs don’t print

records where the join attribute has a NULL value in either table.

 � There are no records for the teacher Ann Edwards. Again, refer back

to Table 8-1 and notice that there are no students assigned to Ann

(her teacher ID is 3). INNER JOINs do not print records that don’t have

corresponding matches in the other table.

Cleaning things up with aliases
One thing you probably noticed is that both the SELECT statement and

the results in the previous example are quite ugly! The SELECT statement

repeats the table names (“students” and “teachers”) multiple times, while

the output doesn’t specify table names at all, leaving us with ambiguous

attribute names.

Fortunately, you can clean up these situations by using aliases. I describe one

use of aliases, renaming columns, in Chapter 7 when I discuss using the AS

clause to rename output columns. You can also use the AS clause to rename

table names within a query. For example, you can rename the students table

as “s” and the teachers table as “t” to simplify your SQL.

The following SQL statement uses aliases to both rename tables for brevity

and rename columns to disambiguate the output:

SELECT s.first_name AS ‘Student FN’, s.last_name AS
‘Student LN’, t.first_name AS ‘Teacher FN’,
t.last_name AS ‘Teacher LN’

FROM students AS s INNER JOIN teachers AS t
ON s.teacher = t.teacher_id

Using this SQL statement, you get the following results:

Student FN Student LN Teacher FN Teacher LN
--------------- --------------- ---------------- ----------------
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(7 row(s) affected)

That’s certainly easier to understand than the previous example!

14_224656-ch08.indd 13014_224656-ch08.indd 130 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

131 Chapter 8: Joins and Other Advanced Queries

 In this chapter, I discuss using INNER JOIN statements where the join condi-

tion contains an equality statement (for example, attribute X = attribute Y).

This covers the vast majority of INNER JOINs used in the real world. However,

you can also use other operators to write the join condition. That’s beyond the

scope of this book, but you can find more information in SQL For Dummies.

Including nonmatching records
with OUTER JOINs
In some cases, you’ll need to include records in your results that don’t

have any matching records in the second table. The various OUTER JOIN

statements, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER
JOIN, help you accomplish this.

All three OUTER JOINs begin with the results of the INNER JOIN. They

include all records in the left table along with their matching records in the

right table. However, they go one step further: Each type of OUTER JOIN

includes additional information on nonmatching records.

LEFT OUTER JOINs
The LEFT OUTER JOIN includes rows that appear in the left table (the

Students table in my example) but don’t have a matching record in the right

table (the teachers table). It includes both records that have a nonmatching

value for the join attribute(s) and records that have NULL values for the join

attribute(s).

The SQL code that follows shows the format of a LEFT OUTER JOIN for the

students and teachers table:

SELECT s.first_name AS ‘Student FN’, s.last_name AS
‘Student LN’, t.first_name AS ‘Teacher FN’,
t.last_name AS ‘Teacher LN’

FROM students AS s LEFT OUTER JOIN teachers AS t
ON s.teacher = t.teacher_id

The results of this query appear below:

Student FN Student LN Teacher FN Teacher LN
--------------- --------------- ---------------- ----------------
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Mike Abrams NULL NULL
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(8 row(s) affected)

14_224656-ch08.indd 13114_224656-ch08.indd 131 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

132 Part III: Retrieving Data from Databases

Notice that Mike Abrams appears in the results of this query. This is the only

difference between these results and the results of the INNER JOIN I discuss

earlier in this chapter. Also, notice that the values of all attributes from the

right table are NULL for records that appeared in the left table but did not

have matching values in the right table.

RIGHT OUTER JOINs
The RIGHT OUTER JOIN is very similar to the LEFT OUTER JOIN; it

simply reverses the direction of the query. In this case, the results include

records that appear in the right table but don’t have a matching record in

the left table.

Here’s the familiar student/teacher query written as a RIGHT OUTER JOIN:

SELECT s.first_name AS ‘Student FN’, s.last_name AS
‘Student LN’, t.first_name AS ‘Teacher FN’,
t.last_name AS ‘Teacher LN’

FROM students AS s RIGHT OUTER JOIN teachers AS t
ON s.teacher = t.teacher_id

The results of this query are as follows:

Student FN Student LN Teacher FN Teacher LN
--------------- --------------- ---------------- ----------------
Richard Jones Richard Allen
Renee Smith Richard Allen
Susan Davis Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Edward Sorin Mary Brady
Mary Keenan Mary Brady
NULL NULL Ann Edwards

(8 row(s) affected)

In this case, Mike Abrams no longer appears in the results because he has

no match in the right table. However, there is now a new row corresponding

to the teacher Ann Edwards. She has no students assigned to her in the stu-

dents table, so she didn’t appear in the INNER JOIN or LEFT OUTER JOIN

version of this query.

FULL OUTER JOINs
The FULL OUTER JOIN is essentially a combination of the LEFT OUTER
JOIN and the RIGHT OUTER JOIN. The output includes records that appear

in either the left or right table. The FULL OUTER JOIN version of the query

is as follows:

14_224656-ch08.indd 13214_224656-ch08.indd 132 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

133 Chapter 8: Joins and Other Advanced Queries

SELECT s.first_name AS ‘Student FN’, s.last_name AS
‘Student LN’, t.first_name AS ‘Teacher FN’,
t.last_name AS ‘Teacher LN’

FROM students AS s FULL OUTER JOIN teachers AS t
ON s.teacher = t.teacher_id

Here are the results of that query:

Student FN Student LN Teacher FN Teacher LN
--------------- --------------- ---------------- ----------------
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Mike Abrams NULL NULL
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen
NULL NULL Ann Edwards

(9 row(s) affected)

In this case, the output set has nine rows: the seven rows from the INNER
JOIN results along with the Mike Abrams result from the LEFT OUTER JOIN

and the Ann Edwards result from the RIGHT OUTER JOIN.

Joining a table with itself
In some cases, you’ll want to join a table with itself. This situation is known

as a self-join, and it occurs when you want to compare records in a table

to each other. The classic example of a self-join is a “flattened” employees

table that contains information on an organizational hierarchy, as shown in

Table 8-3.

Table 8-3 Employees Table
employee_id first_name last_name title manager_id

1 Mike Kristov President NULL

2 Betsy Simon Executive Vice
President

1

3 Mark Edmond Senior Vice
President

2

(continued)

14_224656-ch08.indd 13314_224656-ch08.indd 133 8/21/08 5:34:02 PM8/21/08 5:34:02 PM

134 Part III: Retrieving Data from Databases

Table 8-3 (continued)
employee_id first_name last_name title manager_id

4 Ellen Jacobs Senior Vice
President

2

5 Bob Quinn District 1
Manager

3

6 Ben Reilly District 2
Manager

3

7 Kelly Smith District 3
Manager

4

8 Anita Jober District 4
Manager

4

This is known as a self-referential table: Each record contains a reference

to another record in the same table. In this case, the manager ID for each

employee is simply the employee ID of the individual’s manager. The data

in this table can be expressed visually in the organizational chart shown in

Figure 8-1.

If you wanted to retrieve a listing of all employees and their managers, you

could use a self-join SQL statement. There’s nothing special about the

syntax — you simply use the same table name on both sides of the join

clause. You must use table renaming to eliminate ambiguity, because both

tables have the same attribute names. Here’s the Transact-SQL statement

you could use to retrieve the desired list:

Figure 8-1:
An orga-

nizational
chart.

Mike Kristov
President

Betsy Simon
Executive VP

Mark Edmond
Senior VP

Ellen Jacobs
Senior VP

Anita Jober
District 4 Mgr

Kelly Smith
District 3 Mgr

Ben Reilly
District 2 Mgr

Bob Quinn
District 1 Mgr

14_224656-ch08.indd 13414_224656-ch08.indd 134 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

135 Chapter 8: Joins and Other Advanced Queries

SELECT e.first_name AS ‘Employee FN’, e.last_name AS
‘Employee LN’, e.title AS ‘Employee Title’,
m.first_name AS ‘Manager FN’, m.last_name AS
‘Manager LN’

FROM employees AS e LEFT OUTER JOIN employees AS m
ON e.manager_id = m.employee_id

This statement produces the following output:

Employee FN Employee LN Employee Title Manager FN Manager LN
----------- ----------- ------------------------- ---------- ----------
Mike Kristov President NULL NULL
Betsy Simon Executive Vice President Mike Kristov
Mark Edmond Senior Vice President Betsy Simon
Ellen Jacobs Senior Vice President Betsy Simon
Bob Quinn District 1 Manager Mark Edmond
Ben Rilley District 2 Manager Mark Edmond
Kelly Smith District 3 Manager Ellen Jacobs
Anita Jober District 4 Manager Ellen Jacobs

(8 row(s) affected)

 It’s still very important to select the right type of join statement when writ-

ing a self-join. In this case, if I used an INNER JOIN instead of a LEFT OUTER
JOIN, my employee list would have omitted the company’s president, who

has no manager!

Taking SELECT to the Next Level
The SELECT statement offers a number of other bells and whistles designed

to help you squeeze more efficiency out of your SQL queries. In this section,

I describe how you can compute values within your SELECT statement, nest

SQL statements with subqueries, and handle different cases in different

manners within the same SQL statement.

Computing values
In Chapter 7, I describe how you can use aggregate functions to find the

average, minimum, or maximum value for a column, count the number

of rows that match certain criteria, and perform other computations. In

addition to these functions, Transact-SQL allows you to perform a variety

of other computations on query results, ranging from basic arithmetic

operations to complex calculations.

14_224656-ch08.indd 13514_224656-ch08.indd 135 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

136 Part III: Retrieving Data from Databases

Returning to the school database example from earlier in the chapter,

suppose you wanted to provide the principal with a report detailing the

number of absences for each student. You could accomplish this with a

simple SQL query:

SELECT first_name, last_name, absences
FROM students
WHERE absences IS NOT NULL

This query would provide the results:

first_name last_name absences
--------------- --------------- --------
Richard Jones 3
Christopher Murphy 5
Renee Smith 2
Mike Abrams 8
Edward Sorin 14
Mary Keenan 0
Susan Davis 6

(7 row(s) affected)

Many schools allow students a number of “free” absences before trigger-

ing parental notification. If your school has a policy of allowing two “free”

absences, you may want to provide the principal with a report that takes that

into account. You can do this by creating an “Absence Score” column that

subtracts two from the number of absences using this query:

SELECT first_name, last_name, absences-2 as ‘Absence
Score’

FROM students
WHERE absences-2 > 0
ORDER BY absences DESC

That query produces the output:

first_name last_name Absence Score
--------------- --------------- -------------
Edward Sorin 12
Mike Abrams 6
Susan Davis 4
Christopher Murphy 3
Richard Jones 1

(5 row(s) affected)

This output is much more useful for the principal. It now contains the names

of only those students exceeding the absence quota and rank orders them

using the ORDER BY clause (discussed in Chapter 7).

14_224656-ch08.indd 13614_224656-ch08.indd 136 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

137 Chapter 8: Joins and Other Advanced Queries

Transact-SQL supports dozens of additional functions that you can use to

manipulate data. Some of the more common ones appear in Table 8-4.

Table 8-4 Common Transact-SQL Functions
Function Description

ABS() Returns the absolute value of numeric input

DATEADD() Adds an amount of time to a date and time value

DATEDIFF() Determines the difference between two date and time
values

DATEPART() Returns the specified part of a date and time value

LEFT() Returns the specified number of characters from the left
side of a string

LEN() Returns the number of characters in a string

LOWER() Converts a string to lowercase

PI() Returns the value 3.14159265358979

RAND() Returns a pseudo-random number between 0 and 1

RIGHT() Returns the specified number of characters from the right
side of a string

ROUND() Rounds a number to a specified precision

SQRT() Returns the square root of a number

SQUARE() Returns the square of a number

UPPER() Converts a string to uppercase

 For a complete list of Transact-SQL functions, consult SQL Server Books

Online.

Managing complexity with subqueries
You can dramatically simplify complex SQL statements by nesting queries

within each other. For example, suppose you wanted to retrieve a list of

teachers who don’t have any assigned students. You can easily accomplish

this by combining two SELECT queries:

SELECT first_name, last_name
FROM teachers
WHERE teacher_id NOT IN (SELECT teacher
 FROM students
 WHERE teacher IS NOT NULL)

14_224656-ch08.indd 13714_224656-ch08.indd 137 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

138 Part III: Retrieving Data from Databases

This query builds upon the list condition queries I discussed in Chapter 7,

but uses the results of another SQL query (the subquery) as the source of the

list. It produces the output you probably expect:

first_name last_name
---------------- ----------------
Ann Edwards

(1 row(s) affected)

Dealing with different cases
The CASE statement allows you to perform different actions based upon the

value of a database column. For example, suppose the principal of the school

wanted to expand the absence scoring system I discussed earlier to include

ratings for each student, based upon the following criteria:

 � Students with two or fewer absences receive a rating of “Good.”

 � Students with three to five absences receive a rating of “Warning.”

 � Students with six or more absences receive a rating of “Violation.”

You could implement these three cases by using the following SELECT

statement:

SELECT first_name, last_name, absences, ‘Absence Rating’ =
 CASE
 WHEN absences IS NULL THEN ‘Unknown’
 WHEN absences > 5 THEN ‘Violation’
 WHEN absences > 2 THEN ‘Warning’
 ELSE ‘Good’
 END
FROM students
ORDER BY absences DESC

This produces the desired report:

first_name last_name absences Absence Rating
--------------- --------------- -------- --------------
Edward Sorin 14 Violation
Mike Abrams 8 Violation
Susan Davis 6 Violation
Christopher Murphy 5 Warning
Richard Jones 3 Warning
Renee Smith 2 Good
Mary Keenan 0 Good
Matthew Jones NULL Unknown

(8 row(s) affected)

14_224656-ch08.indd 13814_224656-ch08.indd 138 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

139 Chapter 8: Joins and Other Advanced Queries

Notice a few things about the CASE statement:

 � Cases are processed from top down and each row only matches one

case. For example, Mike Abrams had more than five absences, so he

received a rating of “Violation.” SQL Server then ignored the remaining

two conditions.

 � Cases begin with the CASE keyword and end with the END keyword.

 � You should handle the NULL case explicitly in a CASE statement, as I did

with the “Unknown” rating.

 � You can use the ELSE keyword as a catch-all for any cases you don’t

explicitly list.

 For more details on constructing CASE statements, see SQL For Dummies, 6th

Edition, by Allen G. Taylor (Wiley Publishing, Inc.).

Using Database Views
Database views allow you to create virtual tables based upon query results.

There are two major reasons you might want to use views instead of provid-

ing users with access to the underlying database table(s) themselves:

 � Views allow you to limit the data users can access. For example, you

can create a view that returns only certain rows from a table and then

grant users permission to access the view. They won’t be able to access

rows in the table that don’t meet the criteria of the view.

 � Views reduce complexity for end users. If end users aren’t comfortable

writing complex SQL queries, you can write the query for them and then

hide the complexity in a view.

Creating a view
In the previous section, I provide you with a complex query that uses a CASE

statement to create an absence report. If you won’t be the only one retrieving

that report, you probably want to hide the complexity of the query from the

end user.

Here’s the SQL command that you can use to create a view called absence_
report that uses the earlier query:

14_224656-ch08.indd 13914_224656-ch08.indd 139 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

140 Part III: Retrieving Data from Databases

CREATE VIEW absence_report AS
SELECT first_name, last_name, absences, ‘Absence Rating’ =
 CASE
 WHEN absences IS NULL THEN ‘Unknown’
 WHEN absences > 5 THEN ‘Violation’
 WHEN absences > 2 THEN ‘Warning’
 ELSE ‘Good’
 END
FROM students

When you execute this statement, you see the simple result:

Command(s) completed successfully.

You can now access the view just as you would any other SQL Server data-

base table. For example, the query

SELECT * FROM absence_report
ORDER BY absences desc

returns the same results as my original query:

first_name last_name absences Absence Rating
--------------- --------------- -------- --------------
Edward Sorin 14 Violation
Mike Abrams 8 Violation
Susan Davis 6 Violation
Christopher Murphy 5 Warning
Richard Jones 3 Warning
Renee Smith 2 Good
Mary Keenan 0 Good
Matthew Jones NULL Unknown

(8 row(s) affected)

That’s certainly a lot simpler than rewriting the original query repetitively,

isn’t it?

Modifying a view
After you’ve created a view, you can change the underlying SQL statement

by using the ALTER VIEW command. Suppose you wanted to provide the

teacher Richard Allen with access to the absence report, but you don’t

want him to see the absence records from students not in his class. You can

rewrite the view as

14_224656-ch08.indd 14014_224656-ch08.indd 140 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

141 Chapter 8: Joins and Other Advanced Queries

ALTER VIEW absence_report AS
SELECT first_name, last_name, absences, ‘Absence Rating’ =
 CASE
 WHEN absences IS NULL THEN ‘Unknown’
 WHEN absences > 5 THEN ‘Violation’
 WHEN absences > 2 THEN ‘Warning’
 ELSE ‘Good’
 END
FROM students
WHERE teacher = (SELECT teacher_id
 FROM teachers
 WHERE first_name = ‘Richard’ AND
 last_name = ‘Allen’)

Now, if you issue the same command I used earlier to retrieve all records

from the view, as follows:

SELECT * FROM absence_report
ORDER BY absences desc

your view of the results is limited to those students in Richard Allen’s class,

as shown in the following output:

first_name last_name absences Absence Rating
--------------- --------------- -------- --------------
Susan Davis 6 Violation
Richard Jones 3 Warning
Renee Smith 2 Good

(3 row(s) affected)

Deleting a view
You may find it necessary to delete an existing view based upon changing

business needs. You can delete a view using the DROP VIEW command. For

example, if you wanted to delete the absence report view, you would issue

the command:

DROP VIEW absence_report

SQL Server confirms the successful deletion of the view with the following

result message:

Command(s) completed successfully.

14_224656-ch08.indd 14114_224656-ch08.indd 141 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

142 Part III: Retrieving Data from Databases

14_224656-ch08.indd 14214_224656-ch08.indd 142 8/21/08 5:34:03 PM8/21/08 5:34:03 PM

Chapter 9

Turning Data into Information with
SQL Server Reporting Services

In This Chapter
� Configuring SQL Server Reporting Services with Reporting Services Configuration

Manager

� Designing reports

� Publishing and viewing reports

SQL Server Reporting Services (SSRS) is one of SQL Server 2008’s

advanced features. SSRS provides database administrators and

developers with a built-in mechanism for designing and publishing data-

driven reports to end users. Microsoft gave SSRS a significant overhaul with

the release of SQL Server 2008. Most notably, SSRS no longer requires

Internet Information Server (IIS) as it did in earlier SQL Server versions. It’s

now a stand-alone service.

SSRS offers a wide variety of reporting functionality and is the subject of many

entire books. In this chapter, I provide you with a basic introduction to SQL

Server Reporting Services. I discuss how to set up and configure SSRS, create

and publish a basic report, and manage SSRS reports.

 If you’re interested in learning more after reading this chapter, I suggest

you read Professional SQL Server 2008 Reporting Services, by Paul Turley,

Thiago Silva, Bryan C. Smith, and Ken Withee (Wiley Publishing, Inc.)

Setting up SQL Server Reporting Services
Before you can create and publish reports with SSRS, you need to configure

it to meet the requirements of your business environment. You may do this

using the Reporting Services Configuration Manager.

 To use SQL Server Reporting Services, you must have it installed on your SQL

Server instance. (I discuss installing SQL Server components in Chapters 1

and 2.) Follow these steps to set up SSRS:

15_224656-ch09.indd 14315_224656-ch09.indd 143 8/21/08 5:35:08 PM8/21/08 5:35:08 PM

144 Part III: Retrieving Data from Databases

 1. From the All Programs menu, choose Microsoft SQL Server 2008➪
Configuration Tools➪Reporting Services Configuration.

 2. Provide the connection details for your Report Server in the

Reporting Services Configuration Connection window and click the

Connect button.

 If you’re running the configuration tool on your SQL Server computer,

the window will most likely pop up preconfigured with the correct

server name and instance. If you’re connecting to a remote SSRS server,

you need to provide the server name. Additionally, you need to select

the report server instance if more than one exists on that system.

 3. Review the details on the Report Server Status screen.

 The status screen, shown in Figure 9-1, provides basic information about

your Report Server. You may use the Start and Stop buttons on this

screen to change the status of the SSRS instance.

 4. Click the Service Account page and confirm that SSRS is running

under the correct account. If you decide to make changes, click the

Apply button when you’re finished.

 The Server Account page, shown in Figure 9-2, allows you to select the

account used to run SSRS. You may choose to use a domain account

(as shown in the example) or a built-in account.

Figure 9-1:
Report
Server
status.

15_224656-ch09.indd 14415_224656-ch09.indd 144 8/21/08 5:35:08 PM8/21/08 5:35:08 PM

145 Chapter 9: Turning Data into Information with SQL Server Reporting Services

 5. Click the Web Service URL page to review the Web server configura-

tion and make any desired changes. When you finish, click the

Apply button.

 SSRS distributes reports through the use of a Web server. On this

screen, shown in Figure 9-3, you may modify the IP address(es) and

TCP port assigned to SSRS. This is especially important if your server

fills multiple roles in your organization, because you may have only one

server listening on the default HTTP port (80) for each IP address.

 This screen also allows you to choose an SSL certificate to use if you

want to provide HTTPS secure encrypted access to your reports. This

protects them against eavesdropping as they travel across the network

from the server to the client. Your server administrator will need to

install an SSL certificate on your server before it will appear in the SSL

Certificate drop-down menu.

 Make note of the URL(s) shown in the Report Server Web Service URLs

section of this window. You should provide these URLs to users who

need to access SSRS.

 6. Review the other pages in the Configuration Manager and customize

any settings you want.

Figure 9-2:
Selecting
a service
account.

15_224656-ch09.indd 14515_224656-ch09.indd 145 8/21/08 5:35:09 PM8/21/08 5:35:09 PM

146 Part III: Retrieving Data from Databases

Figure 9-3:
Configuring

the SSRS
Web

Service.

 I return to the Configuration Manager later in this chapter when I

discuss Report Manager (see the “Working with Deployed [Published]

Reports” section, later in this chapter). In the meantime, you should

take a few minutes to familiarize yourself with the other configuration

settings offered in the tool.

 7. Click the Exit button to close the Reporting Services Configuration

Manager.

After you’ve set your basic configuration settings with Configuration

Manager, you’re ready to begin designing reports for distribution on your

Report Server.

Creating an SSRS Report
with Report Builder

Report Builder allows you to create reports for distribution on an SSRS

server. It provides a graphical interface that allows you to visually design

reports, dropping in data-driven elements as needed. Report Builder allows

you to include tables, images, matrices, lists, and charts in your reports and

to populate those elements with data from your SQL Server database, and a

variety of other data sources.

15_224656-ch09.indd 14615_224656-ch09.indd 146 8/21/08 5:35:09 PM8/21/08 5:35:09 PM

147 Chapter 9: Turning Data into Information with SQL Server Reporting Services

Installing and starting Report Builder 2.0
With the release of SQL Server 2008, Microsoft also planned to introduce a

new stand-alone reporting tool: Report Builder 2.0.

 Unfortunately, immediately before this book went to press, Microsoft removed

Report Builder from the product and announced plans to release it separately

in late August 2008. The material on Report Builder in this chapter is based on

a beta version of that tool. When Microsoft releases the final version of Report

Builder, I will update this chapter and make the new download available on

the Web at:

www.dummies.com/go/sqlserver2008fd

Downloading and installing Report Builder is easy: Just walk through the

wizard and accept all the default options. When you’ve installed Report

Builder, you may start it by choosing SQL Server 2008 Report Builder➪

Report Builder 2.0 from the All Programs menu.

Choosing a data source and data set
After you start Report Builder, it opens with a new blank report, ready for

your design, as shown in Figure 9-4. Before you begin, you need to configure

a data source using the following process:

 1. With Report Builder open, choose New➪Data Source from the drop-

down list in the Data pane.

 Report Builder displays the Data Source Properties window, shown in

Figure 9-5.

 2. Provide a name for your data source by typing it in the Name textbox.

 3. Choose the Embedded connection radio button and select the

appropriate connection type from the drop-down menu.

 If you already have a shared data source you would like to use instead,

you may select the “Use Shared Data Source Reference option instead.

For SQL Server database connections, choose Microsoft SQL Server

from the Type drop-down menu.

 Report Builder allows you to pull in data from non-SQL Server data

sources. Some of those include:

 • Oracle databases

 • SAP NetWeaver

 • OLE DB and ODBC data sources

 • XML data sources

 • Hyperion Essbase

15_224656-ch09.indd 14715_224656-ch09.indd 147 8/21/08 5:35:10 PM8/21/08 5:35:10 PM

148 Part III: Retrieving Data from Databases

Figure 9-4:
Microsoft

Report
Builder.

Figure 9-5:
Data source

properties.

 4. Click the Edit button.

 The Connection Properties screen for your selected connection

type appears. Figure 9-6 shows the screen for Microsoft SQL Server

connections.

15_224656-ch09.indd 14815_224656-ch09.indd 148 8/21/08 5:35:10 PM8/21/08 5:35:10 PM

149 Chapter 9: Turning Data into Information with SQL Server Reporting Services

 5. Provide the connection details for your database and click the OK

button to continue.

 I recommend that before you click OK, you click the Test Connection

button to verify that you have provided correct connection details.

 6. Click the Next button to continue.

 7. Type the SQL Query you want to use for your data source in the Query

Editor window.

 You need to provide a SQL query that produces the data you want

included in your report in the Query Editor window, as shown in Figure

9-7. If you don’t want to enter the query manually, you may open an

existing query (.sql) file or import a query from another report using

Query Editor’s toolbar icons.

 8. Click the green triangle (“play”) button to test your query.

 When you click the green triangle, SQL Server executes your query and

displays the results in the bottom pane of the Query Editor window.

Use this pane to verify that your query produces the desired results.

This pane is also where you can make any necessary modifications.

 9. Click the Finish button to create your data source.

 You return to Report Builder. Note that the dataset you created now

appears as an expandable folder in Report Builder’s Data pane.

Figure 9-6:
The

Connection
Properties

screen.

15_224656-ch09.indd 14915_224656-ch09.indd 149 8/21/08 5:35:11 PM8/21/08 5:35:11 PM

150 Part III: Retrieving Data from Databases

Figure 9-7:
Type your

query in
the Query

Editor.

Laying out the report
After you’ve added a data source for your report, you may use the various

items on the Insert Ribbon of Report Builder to add elements to your report.

Report Builder allows you to simply drag and drop elements where you’d

like them to appear.

Adding a text box
You may add static (unchanging) text to your report using the Text Box con-

trol within Report Builder. Here’s the process:

 1. Ensure that you’re viewing the Insert menu on the Report Builder

Ribbon, as shown in Figure 9-8.

 2. Click the Text Box icon in the Report Items section of the Insert menu.

 3. Drag the text box to the desired spot on your report.

 For example, you may want to place the text box in the header or footer

section of your report.

Figure 9-8:
Click Insert

on the
Ribbon.

15_224656-ch09.indd 15015_224656-ch09.indd 150 8/21/08 5:35:11 PM8/21/08 5:35:11 PM

151 Chapter 9: Turning Data into Information with SQL Server Reporting Services

 4. Use the mouse to click inside the text box and type the text that you

would like to appear in the report.

 As with any other document, be sure to save your report periodically to avoid

losing your work. You can save your report by clicking the disk icon in the

upper-left corner of Report Builder.

Adding a chart
Report Builder makes it easy to add a variety of charts to your SSRS reports.

Available chart types include:

 � Pie charts

 � Line graphs

 � Column graphs

 � Funnel charts

 � Bar graphs

 � Area graphs

 � Range graphs

 � Scatter plots

To add a chart to your report, follow these steps:

 1. Click the Chart icon on the Ribbon’s Insert menu.

 Report Builder displays the Select Chart Type window, shown in

Figure 9-9.

 2. Select the type of chart you want to include in your report and

click OK.

 Report Builder inserts a default chart of the type you selected, as shown

in Figure 9-10.

 3. Choose the data field or fields for your chart and drag them from

the Data pane onto the Drop Data Fields Here area above the

sample chart.

 The data fields contain the values to be plotted on your chart. (In the

example shown later in Figure 9-12, the quantity field is the data field.)

 4. Choose the category field or fields for your chart and drag them from

the Data pane onto the Drop Category Fields Here area above the

sample chart.

 The category fields contain the names corresponding to each of the data

fields in your chart. In the example shown in Figure 9-12, the product

name field is the category field.

15_224656-ch09.indd 15115_224656-ch09.indd 151 8/21/08 5:35:12 PM8/21/08 5:35:12 PM

152 Part III: Retrieving Data from Databases

Figure 9-9:
The Select
Chart Type

window
in Report

Builder.

Figure 9-10:
Report

Builder with
a default pie

chart.

 5. Click the Chart Title text box and enter the title you want to use for

your chart.

15_224656-ch09.indd 15215_224656-ch09.indd 152 8/21/08 5:35:12 PM8/21/08 5:35:12 PM

153 Chapter 9: Turning Data into Information with SQL Server Reporting Services

Adding a table
Adding a table to your report follows a similar process:

 1. Click the Table icon on the Ribbon’s Insert menu.

 2. Add or delete columns from your table by right-clicking the table and

selecting the appropriate entries from the pop-up menu.

 3. Click each cell in the Header row and type the text you want to

appear in the table header.

 4. Drag the data elements you would like to appear in each column

from the Data pane to the appropriate column in the Data portion of

the table.

 You need to fill in only one row of the table. SSRS automatically creates

the necessary number of rows when it generates your report.

Figure 9-11 shows a completed report in the Design view of Report Builder.

Preview your report
When you complete the layout of your report, you may preview it by switch-

ing to the Ribbon’s View menu and selecting the Preview Report view. Doing

so produces a report preview similar to the one shown in Figure 9-12.

Figure 9-11:
A completed

report in
Design

view.

15_224656-ch09.indd 15315_224656-ch09.indd 153 8/21/08 5:35:12 PM8/21/08 5:35:12 PM

154 Part III: Retrieving Data from Databases

Figure 9-12:
Previewing

a report.

Publishing the report
After you’ve completed your report layout and previewed it to ensure that it

meets with your satisfaction, you can publish the report to your Report

Server for other users to view.

Here’s how to publish a report to an SSRS server:

 1. Click the round report icon in the upper-left corner of the screen to

activate the Report Builder pull-down menu and then choose Publish,

as shown in Figure 9-13.

 2. Confirm the deployment settings and click OK.

 Confirm that the Report Server URL, report folder, and report name

chosen by Report Builder are correct (as shown in Figure 9-14). The

default settings should be acceptable, but you may make any necessary

modifications.

 After clicking OK, you see a Report Deployed Successfully notification.

 If you attempt to publish a report and receive an error message about

improper permissions, verify that your account has membership in the

Publisher role. For more information, see “Configuring report security,” later

in this chapter.

After you publish your report, it will be available to users accessing the

reporting server with the appropriate permissions.

Working with Deployed
(Published) Reports

You may access and modify your deployed reports using the URLs you

provided in the Reporting Services Configuration Manager. In this section,

I describe the basic concepts behind the SSRS Web interfaces.

15_224656-ch09.indd 15415_224656-ch09.indd 154 8/21/08 5:35:13 PM8/21/08 5:35:13 PM

155 Chapter 9: Turning Data into Information with SQL Server Reporting Services

Figure 9-13:
Publishing a

report.

Figure 9-14:
Deployment

settings.

Viewing reports
The simplest way to view SSRS reports is to use the Web Services URL you

provided in the Reporting Services Configuration Manager. Simply open a

Web browser and type that URL into the address bar. SSRS will prompt you

for your username and password and then display a report menu similar to

the one shown in Figure 9-15.

Click the name of the report you want to view, and SSRS will generate the

report dynamically and display it in your browser window, as shown in

Figure 9-16.

Figure 9-15:
SSRS Web

Service
menu.

15_224656-ch09.indd 15515_224656-ch09.indd 155 8/21/08 5:35:13 PM8/21/08 5:35:13 PM

156 Part III: Retrieving Data from Databases

Figure 9-16:
The SSRS

Report
Viewer

displays
your report

in your
browser.

Configuring report security
You need to set up permissions for the users you want to administer and

view SSRS reports. To do this, you first need to enable SSRS Report Manager

and then use it to assign SSRS roles to the appropriate users and groups.

Setting up Report Manager
Report Manager is a Web application that allows you to modify SSRS settings

through your Web browser. Before you can access Report Manager, you need

to enable it using the following process:

 1. Open Reporting Services Configuration Manager.

 2. Click the Report Manager URL page.

 3. Click the Advanced button.

 4. Click the Add button under Multiple Identities for Report Manager.

 5. Click OK to accept the default options.

 6. Click OK to close the Advanced Multiple Web Site Configuration.

 7. Click the Apply button to start Report Manager.

 Note the URL displayed in Configuration Manager. This is the URL

required to access Report Manager.

15_224656-ch09.indd 15615_224656-ch09.indd 156 8/21/08 5:35:14 PM8/21/08 5:35:14 PM

157 Chapter 9: Turning Data into Information with SQL Server Reporting Services

Configuring site roles
Site-wide roles allow you to assign users permission to access Report

Manager. By default, all users in the BUILTIN\Administrators local adminis-

trators group are Report Manager System Administrators. Here’s how you

can add additional users:

 1. Using Internet Explorer, open the URL for Report Manager.

 You specified this URL when starting Report Manager in the previous

section.

 2. Click the Site Settings link.

 3. Click the Security page.

 4. Click the New Role Assignment button.

 5. Type the name of the user or group in the Group or User Name

text box.

 6. Select the box or boxes corresponding to any roles you would like

to assign to the user or group.

 The roles you may choose from are as follows:

 • System Administrator role members may perform all Report

Manager administrative activities.

 • System User role members may view system properties and shared

schedules only.

 7. Click the OK button to finish.

Setting up content roles
In addition to creating site roles to access Report Manager, you may also

create content roles that grant users varying levels of permission over SSRS

content. You may create these permissions at the Home level, where they

inherit downward to all newly created reports. Alternatively, you may set

role membership for subfolders or individual items.

To set content roles at the Home folder level, follow this process:

 1. Click the Home link in Report Manager.

 2. Click the Properties tab.

 3. Click the New Role Assignment button.

 You see the New Role Assignment screen, shown in Figure 9-17.

15_224656-ch09.indd 15715_224656-ch09.indd 157 8/21/08 5:35:14 PM8/21/08 5:35:14 PM

158 Part III: Retrieving Data from Databases

 4. Type the name of the user or group in the Group or User Name

text box.

 5. Select the box or boxes corresponding to any role you would like

to assign to the user or group.

 The roles you may choose from are as follows:

 • Publisher role members may publish and update reports on the

Report Server.

 • Content Manager role members may manage folders, reports, and

resources.

Figure 9-17:
Assigning

an SSRS
role.

 • My Reports role members may publish reports and manage folders,

reports, and resources within their own My Reports folder.

 • Browser role members may view and subscribe to reports

and folders.

 • Report Builder role members may view report definitions.

 6. Click the OK button to finish.

15_224656-ch09.indd 15815_224656-ch09.indd 158 8/21/08 5:35:14 PM8/21/08 5:35:14 PM

Part IV
Inserting and
Manipulating

Your Data

16_224656-pp04.indd 15916_224656-pp04.indd 159 8/21/08 5:36:30 PM8/21/08 5:36:30 PM

In this part . . .

In this part, you find out how to go beyond simple

retrieval of data and see how to get new data into a

database. I also show you how to modify information that

exists within a database table. Here, you discover how

you can use SQL statements and bulk import tools to add

information to your database tables. I also tell you about

stored procedures, functions, and triggers — all great

tools for making your life easier by automating those

tedious database tasks.

16_224656-pp04.indd 16016_224656-pp04.indd 160 8/21/08 5:36:31 PM8/21/08 5:36:31 PM

Chapter 10

Inserting, Updating,
and Deleting Data

In This Chapter
� Inserting data into SQL Server databases using the graphical user interface

� Inserting, modifying, and deleting data with Transact-SQL

� Importing large quantities of data with INSERT INTO, BULK INSERT, and bcp

� Working with SQL Server Integration Services

Microsoft SQL Server 2008 provides you with a number of different

ways to insert new data into your databases. Just as a carpenter has

many different tools that can achieve the end goal of joining two pieces of

wood, SQL Server offers different data insertion tools that are best suited for

certain circumstances.

In this chapter, I explain each of those tools and provide advice on how you

can determine the appropriate tool for a given situation. I begin by looking at

the options available to you when you need to insert small numbers of rows

into your database. I then expand the discussion to look at bulk import tools

and techniques you can use to retrieve data from remote databases.

Inserting Small Quantities of Data
In many cases, you simply need to add a few new rows to your database, one

at a time. Microsoft SQL Server provides you with two basic techniques for

achieving this goal: data entry with SQL Server Management Studio’s graphic

interface and the SQL INSERT statement.

17_224656-ch10.indd 16117_224656-ch10.indd 161 8/21/08 5:37:35 PM8/21/08 5:37:35 PM

162 Part IV: Inserting and Manipulating Your Data

Understanding simple data entry
The easiest way to insert new data into your database is to use the graphic

interface of SQL Server Management Studio (SSMS). SSMS provides a

spreadsheet-style data entry format that allows you to simply access the

table you’d like to insert data into and begin typing, just as you would in

Microsoft Excel.

I use this technique in earlier chapters, so it may already be familiar to you if

you’ve been following along. To insert data into a table, follow these steps:

 1. Open SQL Server Management Studio and connect to the SQL Server

instance containing the database that you’d like to modify.

 If you’re not already familiar with this process, flip back to Chapter 3.

 2. Expand the Databases folder (click the plus icon next to the word

Databases).

 3. Expand the folder of the database you’d like to modify.

 4. Expand the Tables folder for the database you’d like to modify.

 5. Right-click the table name and choose Edit Top 200 Rows from the

pop-up menu to open the table.

 You should see the window shown in Figure 10-1.

Figure 10-1:
SSMS

Data Entry
window.

17_224656-ch10.indd 16217_224656-ch10.indd 162 8/21/08 5:37:35 PM8/21/08 5:37:35 PM

163 Chapter 10: Inserting, Updating, and Deleting Data

 6. Enter the data into the last row of the table to insert the new row into

the table.

 The last row of the table will contain NULL values for every column.

Simply use the mouse to highlight those values and type over them with

the data you’d like to insert into the table.

 7. Click the X in the upper-left corner of the window to close the data

entry window.

 You must exit the line that you’re editing by clicking into another line before

exiting. SSMS does not save your data to the database until you’ve done so.

SSMS indicates unsaved changes to a row with a circular red exclamation

point icon, as shown in Figure 10-2.

Figure 10-2:
The excla-

mation point
indicates
unsaved
changes

to a row in
SSMS.

Writing INSERT statements
You can also insert data into a SQL Server database using Transact-SQL. The

INSERT statement allows you to add a row to a table and uses the following

syntax:

INSERT INTO <table_name> (<columns>)
VALUES (<values>)

in which <columns> and <values> are comma-separated lists of the column

names in the table and the values you’d like to insert, respectively.

 The column list is actually an optional part of the INSERT statement. If you

don’t include the list of columns, SQL Server assumes that your list of values

includes all columns in the correct order. However, I strongly recommend

that you play it safe by specifying the column list in your INSERT statement.

I’ve seen database users make far too many mistakes by taking shortcuts with

their syntax.

You can also insert more than one row with the same INSERT statement

by separating multiple rows (each enclosed in its own set of parentheses)

with commas.

17_224656-ch10.indd 16317_224656-ch10.indd 163 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

164 Part IV: Inserting and Manipulating Your Data

Here’s how you would use the INSERT statement to add two new students

into the students table from Chapter 7:

INSERT INTO students (first_name, last_name, student_id,
phone, gender, birthdate, absences, teacher,
city)

VALUES (‘Mead’, ‘Remke’, 11, ‘574-224-2312’, ‘male’,
2/12/1999, 5, 1, ‘South Bend’),

 (‘Calvin’, ‘Reynolds’, 12, ‘574-482-2329’, ‘male’,
3/15/1999, 2, NULL, ‘Granger’)

In response, SQL Server offers a simple result:

(2 row(s) affected)

Modifying and Deleting Data
When it comes time to modify or remove data from your database, you have

two options: use the graphical SSMS interface or write Transact-SQL state-

ments. If you choose to use the SSMS interface, simply open the table as if

you were going to add new rows and modify the table in Open Table view.

In this section, I explain how to modify or remove data from your database

using Transact-SQL.

Modifying data with UPDATE
SQL’s UPDATE command allows you to modify data stored in a SQL Server

table based upon data attributes. The basic syntax of this statement is

as follows:

UPDATE <table_name>
SET <attribute> = <value>
WHERE <conditions>

For example, suppose you hire a new teacher, Ann Edwards, with a teacher

ID of 3 and assign her all the students in your school not currently assigned

to a teacher. You can update your student records to reflect these assign-

ments by using the following UPDATE statement:

UPDATE students
SET teacher = 3
WHERE teacher IS NULL

which produces the following result:

 (2 row(s) affected)

17_224656-ch10.indd 16417_224656-ch10.indd 164 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

165 Chapter 10: Inserting, Updating, and Deleting Data

Notice that executing the query simply results in a statement showing the

number of rows modified. This is normal. SQL Server will not display the

contents of the modified rows.

 The WHERE clause is optional. If you omit it, your change will affect all rows

in the table. For example, if the principal wants to close the school for a

day and assess all the students an absence, she can do so with the following

statement:

UPDATE students
SET absences = absences + 1

This statement affects all rows in the table and produces the following

output:

(12 row(s) affected)

 The previous query computed a new value for the absences column by adding

1 to the existing value. Recall that NULL is a special value, so it is not changed.

Adding 1 to NULL has no effect, and the result is still NULL.

Removing data from a database
You have several ways to remove data from a SQL Server database: delet-

ing individual rows with the DELETE statement; deleting all rows with the

TRUNCATE TABLE statement; and removing the entire table with the DROP
TABLE statement.

Deleting rows with the DELETE statement
The SQL DELETE statement allows you to remove rows from your database

that meet specified criteria. The format of the statement is as follows:

DELETE FROM <table_name>
WHERE <conditions>

Suppose that because of a school boundary realignment, you want to remove

all students from your school who live in Granger. You can delete them from

the students table using the following command:

DELETE FROM students
WHERE city = ‘Granger’

SQL Server responds with the number of rows that were deleted:

(3 row(s) affected)

17_224656-ch10.indd 16517_224656-ch10.indd 165 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

166 Part IV: Inserting and Manipulating Your Data

Deleting all rows from a table
If you want to delete all the rows from a table, you can simply use the

DELETE statement with no WHERE condition. However, this method will take

a long time for larger tables. SQL offers the TRUNCATE TABLE statement to

make this process faster, using the following syntax:

TRUNCATE TABLE <table_name>

SQL Server responds with a simple

Command(s) completed successfully.

The TRUNCATE TABLE command removes all data from the table, but leaves

the basic table structure intact for future use.

Deleting an entire table
To delete an entire table, including all data and the table structure itself, you

can use the DROP TABLE statement, with the following syntax:

DROP TABLE <table_name>

Importing Large Quantities of Data
SQL Server also provides methods that you can use when you need to insert

large quantities of data into a database at the same time. These automated

techniques can help you insert data from the results of a SQL query, a text

file, or another database.

Inserting query results
You can insert data into a table from the results of a SQL subquery by simply

including it in place of the VALUES clause in an INSERT INTO statement.

For example, when graduation time arrives and all students born in 1999

leave the school, you can copy their records into an alumni table using the

following Transact-SQL statement:

INSERT INTO alumni
 SELECT * FROM students
 WHERE birthdate BETWEEN ‘12/31/1998’ AND

‘1/1/2000’

17_224656-ch10.indd 16617_224656-ch10.indd 166 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

167 Chapter 10: Inserting, Updating, and Deleting Data

In response to the alumni query shown previously, SQL Server will display

the number of rows inserted:

 (2 row(s) affected)

 The preceding query assumes that the students and alumni tables share a

common table structure (that is, they have the same columns).

Copying bulk data with BULK INSERT
If you need to insert data from a text file, the BULK INSERT command may

be the best option for you. This Transact-SQL statement allows you to read a

text file from your file system and insert the contents into a SQL Server table.

The basic syntax of the BULK INSERT statement is as follows:

BULK INSERT <table_name> FROM <file_name>
WITH <conditions>

For example, suppose you had a file called C:\classes.txt that contains

information on all the courses taught at your school. The contents of that

tab-delimited file appear below:

1 Mathematics 1 102
2 Science 3 204
3 History 2 213
4 Literature 2 102
5 Mathematics 1 114
6 Literature 2 119
7 Science 3 210
8 Science 3 221
9 Mathematics 1 125
10 Literature 2 102
11 Science 3 104
12 Mathematics 1 102
13 Literature 2 115
14 History 2 114
15 Mathematics 1 210
16 Science 3 221
17 Mathematics 1 205
18 Literature 2 208

You could insert these rows into your classes table with the following

Transact-SQL statement:

BULK INSERT classes FROM ‘C:\classes.txt’

17_224656-ch10.indd 16717_224656-ch10.indd 167 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

168 Part IV: Inserting and Manipulating Your Data

SQL Server responds with the number of rows inserted:

(18 row(s) affected)

 The BULK INSERT statement offers many options that help you insert dif-

ferent data types in a flexible manner. For example, you may specify how to

handle constraints, how many rows to insert in each batch, the format of the

file, and many other characteristics. These are beyond the scope of this book.

For more information, see SQL Server Books Online.

Performing blk operations from
the command line with bcp
SQL Server’s bcp (bulk copy) command provides you with the ability to

insert bulk data from the command line rather than use the BULK INSERT

SQL statement. This approach is particularly useful if you need to insert data

from within other programs or through batch files.

The basic format of the bcp command is as follows:

bcp <table_name> <direction> <file_name> <options>

in which

 � table_name is the fully qualified name of a table, in the format data-
base_name.owner.table_name.

 � direction is either in (for data import) or out (for data export).

 � file_name is the full path to a file.

 � options are the arguments to the command. Common options include:

 • -c to specify a text file containing tab-delimited columns with a

newline character at the end of each row

 • -T to specify a trusted connection using Windows authentication

 There are many more options designed to make the bcp command a flexible,

powerful data import and export utility. For more information, see SQL Server

Books Online.

Importing bulk data with bcp
You can use the following command to import the same text file that I use as

an example in the previous section’s BULK INSERT command:

bcp school.dbo.classes in “C:\classes.txt” -c -T

Here’s what it looks like from the DOS prompt:

17_224656-ch10.indd 16817_224656-ch10.indd 168 8/21/08 5:37:36 PM8/21/08 5:37:36 PM

169 Chapter 10: Inserting, Updating, and Deleting Data

C:\>bcp school.dbo.classes in “C:\classes.txt” -c -T

Starting copy...

18 rows copied.
Network packet size (bytes): 4096
Clock Time (ms.) Total : 16 Average : (1125.00

rows per sec.)C:\>

Exporting bulk data with bcp
You can also use bcp to export bulk data by simply changing the in operator

to an out operator. If you want to create a tab-delimited file containing all the

records in your classes table, you can use the following command:

bcp school.dbo.classes out “C:\classes_output.txt” -c -T

At the DOS prompt, you see

C:\>bcp school.dbo.classes out “C:\classes_output.txt” -c
-T

Starting copy...

18 rows copied.
Network packet size (bytes): 4096
Clock Time (ms.) Total : 1 Average : (18000.00

rows per sec.)

C:\>

And you now have a file stored on your hard drive called classes_output.
txt that contains exactly the same contents as the classes.txt input file

used earlier.

 The major difference between the bcp and BULK INSERT commands is where

you execute them. BULK INSERT is a SQL statement issued from within SSMS,

whereas bcp is a command-line utility used at the DOS prompt.

Working with SQL Server
Integration Services

SQL Server Integration Services (SSIS) offers a clean, graphic interface that

allows you to easily import or export data from your SQL Server databases.

Microsoft first introduced SSIS with the release of SQL Server 2005, as a

replacement to the Data Transformation Services (DTS) found in earlier ver-

sions of the product.

17_224656-ch10.indd 16917_224656-ch10.indd 169 8/21/08 5:37:37 PM8/21/08 5:37:37 PM

170 Part IV: Inserting and Manipulating Your Data

To import data into your database with SSIS, use the following process:

 1. With SSMS open, right-click the name of the database into which you

will import data.

 2. Choose Import Data from the Tasks menu. (See Figure 10-3.)

 3. Click Next to advance past the Welcome screen.

 The Welcome screen, shown in Figure 10-4, appears when SSIS starts.

 4. Click the Data Source drop-down list and choose Flat File Source. (See

Figure 10-5.)

 Notice that you have many other options for data sources. SSIS allows

you to import data from Microsoft Access, Microsoft Excel, other SQL

Server or Oracle databases, and many other data sources.

 5. Enter a valid filename or click the Browse button to locate a file; then,

click the Next button to continue.

 At this step, you can also change file format options, if necessary.

Figure 10-3:
Invoking

SSIS.

17_224656-ch10.indd 17017_224656-ch10.indd 170 8/21/08 5:37:37 PM8/21/08 5:37:37 PM

171 Chapter 10: Inserting, Updating, and Deleting Data

Figure 10-4:
SSIS

Welcome
screen.

Figure 10-5:
Choosing a

data source.

17_224656-ch10.indd 17117_224656-ch10.indd 171 8/21/08 5:37:37 PM8/21/08 5:37:37 PM

172 Part IV: Inserting and Manipulating Your Data

 6. View the preview on the next screen and confirm that the import

appears to be functioning properly. Click the Next button to continue

when you are satisfied.

 7. Click the Destination drop-down list and choose SQL Server Native

Client.

 This choice indicates that you want to import data into a SQL Server

database table.

 8. Choose the destination database for your import operation by select-

ing it from the Database drop-down list and then click Next. (See

Figure 10-6.)

 9. Verify the destination table and variable mappings; then click Next

to continue.

 SQL Server will attempt to guess the correct destination table and vari-

able mappings based upon the filename and attributes. If the destination

table is not correct, use the drop-down list under Destination to choose

the correct table. You can verify the mapping of text file columns to

database variables by clicking the Edit Mappings button.

 10. Click the Finish button.

 You may also elect to save the steps you performed as an SSIS Package.

Saving these steps will allow you to repeat this operation in the future

without repeating the wizard process.

Figure 10-6:
Choosing

the import
destination.

17_224656-ch10.indd 17217_224656-ch10.indd 172 8/21/08 5:37:38 PM8/21/08 5:37:38 PM

173 Chapter 10: Inserting, Updating, and Deleting Data

 11. Click Finish again to begin the import.

 SQL Server presents the screen shown in Figure 10-7, which updates you

on the import progress.

 Reversing the process to export data is straightforward: Simply switch

Steps 4 and 7 to choose a SQL Server database as your source and a Flat File

as your destination.

Figure 10-7:
SSIS import

status.

17_224656-ch10.indd 17317_224656-ch10.indd 173 8/21/08 5:37:38 PM8/21/08 5:37:38 PM

174 Part IV: Inserting and Manipulating Your Data

17_224656-ch10.indd 17417_224656-ch10.indd 174 8/21/08 5:37:38 PM8/21/08 5:37:38 PM

Chapter 11

Saving Time with Functions,
Stored Procedures, and Triggers

In This Chapter
� Use SQL Server functions to simplify your queries

� Write stored procedures to reuse code and improve application security

� Use triggers to update tables automatically

In Chapters 4 through 6, I describe many of the powerful features of SQL

Server and Transact-SQL. That discussion focuses on writing Transact-

SQL statements that explicitly tell SQL Server how you’d like the database to

react. In the real world, SQL statements can become quite complex, taking

dozens of lines (or longer!) to fully express a complex query.

SQL Server provides several features to help you manage this complexity and

simplify your Transact-SQL statements. In this chapter, I describe how you

can use functions, stored procedures, and triggers to streamline your SQL

statements, reuse code, and improve database and application security.

Reusing Logic with Functions
Functions allow you to reuse common functionality, saving you the time and

trouble of cutting and pasting (or rewriting!) SQL code that you use often.

Before diving in to SQL Server’s functions, I give you a brief example of the

way you might use functions in the real world.

 If you’re a programmer, you’re probably already familiar with the concept of

a function. SQL Server functions are no different than those used by any other

programming language.

18_224656-ch11.indd 17518_224656-ch11.indd 175 8/21/08 5:38:13 PM8/21/08 5:38:13 PM

176 Part IV: Inserting and Manipulating Your Data

Imagine that you’re the supervisor at a vehicle depot and have several

employees working for you who assist you in the management of a fleet of

hundreds of vehicles. Before issuing a vehicle to a customer, you send an

employee to verify that the car has enough gas. That employee might take

the following steps:

 1. Obtain the keys for the vehicle from the key rack.

 2. Walk to the vehicle’s location in the garage.

 3. Unlock the vehicle and open the door.

 4. Insert the key into the ignition and start the vehicle.

 5. Check the gas gauge and write the fuel level down on a piece of paper.

 6. Walk back to the supervisor’s desk.

 7. Inform the supervisor of the fuel level.

This is a multistep process that employees repeat frequently to obtain a

simple piece of information. You certainly wouldn’t want to tell the employee

all these steps every time you need to check a vehicle’s fuel level. (“Hey Bill,

go get the keys for vehicle #2, walk over to parking spot #2, unlock the

door . . .”) You’d spend your whole day repeating the same thing over and

over again, and your employees would think that you’re insane.

Instead, you’d use the equivalent of a function. On the first day Bill reports

for work, you’d explain the full seven-step process to him. On future days, the

conversation would go like this:

You: “Bill, go check the fuel level on vehicle 2.”

(Bill goes and follows the seven-step process.)

Bill: “It’s half full.”

 SQL Server functions allow you to do the same thing with database queries. If

you find yourself repeating the same SQL code over and over again, you’ve

probably found a good candidate for a function.

In the following two sections, I describe two different types of SQL Server

functions and how they can improve the efficiency of your database queries:

built-in functions supplied as part of SQL Server, and user-defined functions

that you can create yourself.

Understanding types of functions
You can use two different types of functions in SQL Server 2008: scalar

functions and table-valued functions. They differ based upon the type of

output they provide:

18_224656-ch11.indd 17618_224656-ch11.indd 176 8/21/08 5:38:13 PM8/21/08 5:38:13 PM

177 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

 � Scalar functions return a single value. If you’ve used functions in other

programming languages, these are the type of functions that you’re

probably most familiar with. They may have one, many, or no input

parameters but always return a single value. For example, the

GETDATE() function (built in to SQL Server) takes no arguments and

always returns a datetime value containing the current date and time.

 � Table-valued functions allow you to offer more complex output, in the

form of a table. You might use a table-valued function to retrieve all the

records in a table associated with a particular person. You’ll often use

table-valued functions in the FROM clause of a SELECT statement that

further refines the output.

Leveraging SQL Server’s
built-in functions

To save you time, Microsoft included a large number of commonly used

functions with SQL Server 2008. These function come in the following

categories (among others):

 � Aggregate (discussed in Chapter 7)

 � Date and time

 � Mathematical

 � Security

 � String

 � Text and image

 Providing a full description of each of SQL Server’s built-in functions is beyond

the scope of this book (it would take an entire book to do so!), but I give you

the information you need to get started. In the next two sections, I show you

how to call a built-in function and how to get a list of each function offered by

SQL Server 2008.

I use the stock table from a fictional fruit wholesale company throughout this

example. Here are the table contents:

item warehouse inventory wholesale_price
---------------- ---------------- ----------- ---------------------
Apples New York 511 0.12
Apples Seattle 412 0.13
Limes Seattle 104 0.33
Oranges New York 120 0.55
Oranges Tampa 982 0.52
Pears New York 9 0.39

18_224656-ch11.indd 17718_224656-ch11.indd 177 8/21/08 5:38:13 PM8/21/08 5:38:13 PM

178 Part IV: Inserting and Manipulating Your Data

 You might have noticed that the stock table isn’t very well designed. It

violates several of the database normalization rules I discuss in Chapter 4. I

designed the table this way intentionally, to keep this example simple.

Calling built-in functions
Using SQL Server’s built-in functions is very straightforward. After you under-

stand the function’s inputs (if any), you simply use the function within your

SQL statement, providing the appropriate input. I give you a few examples in

the sections that follow.

Functions without input parameters
One of the simplest SQL Server functions is Pi(). As you might expect, this

function provides you with an easy way to use the mathematical value π in

your SQL statements. Pi() takes no arguments and returns a scalar value

that approximates π. If you want to test it, you can issue the following SQL

command:

SELECT Pi() AS ‘Pi’

SQL Server returns simply

Pi

3.14159265358979

(1 row(s) affected)

You can also use this value within a more complex SQL statement. For exam-

ple, suppose (for some strange reason) that you wanted to increase the price

of products in your Seattle warehouse by a factor of π . You could use the

Pi() function, as follows:

SELECT item, warehouse, inventory, wholesale_price * Pi()
AS ‘Pi Price’

FROM stock
WHERE warehouse = ‘Seattle’

This would produce the results:

item warehouse inventory Pi Price
---------------- ---------------- ----------- ----------------------
Apples Seattle 412 0.408407044966673
Limes Seattle 104 1.03672557568463

(2 row(s) affected)

18_224656-ch11.indd 17818_224656-ch11.indd 178 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

179 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Functions with input parameters
Some functions use input parameters to provide information that the func-

tion will transform or use in its logic. For example, suppose you use the

following query to retrieve a list of the warehouses owned by your company:

SELECT DISTINCT warehouse from stock

Normally, this would produce the following output:

warehouse

New York
Seattle
Tampa

(3 row(s) affected)

Perhaps you intend to provide this information directly to another program

that requires input in all capital letters. You could use SQL Server’s built-in

upper() function to transform the warehouse column to an all-uppercase

format. The upper() function takes a single input parameter of any text data

type and returns an all-uppercase version of that parameter. Your new query

would look like this:

SELECT DISTINCT upper(warehouse) AS ‘WAREHOUSE’ from stock

Your new query would also provide output in a format ready for the program

that requires uppercase data:

WAREHOUSE

NEW YORK
SEATTLE
TAMPA

(3 row(s) affected)

Obtaining a list of built-in functions
You can find out more information about SQL Server’s built-in functions using

SQL Server Management Studio. To do so, follow these steps:

 1. Open SQL Server Management Studio and connect to your SQL Server.

 2. Expand the Databases folder by clicking the plus (+) icon to the left of

the word Databases.

 3. Expand the folder for any database on your server.

18_224656-ch11.indd 17918_224656-ch11.indd 179 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

180 Part IV: Inserting and Manipulating Your Data

 The built-in functions are available in any SQL Server database, so for

exploration purposes, it doesn’t matter which database you choose in

this step.

 4. Expand the Programmability folder under the database folder.

 5. Expand the Functions folder.

 6. Expand the System Functions folder.

 You see a series of category folders used to organize the SQL Server

built-in functions.

 7. Expand the category folder of your choice.

 A list of the built-in functions appears within the category that you

selected.

 8. Expand the function folder of your choice.

 Select a function that interests you and expand its folder.

 9. Using the mouse, hover over the name of the function.

 SQL Server displays a pop-up window that offers a brief description of

the function’s purpose.

 10. Click the Parameters folder.

 When you click the Parameters folder, the SSMS Object Explorer window

provides information about the function’s parameters, including the

parameter names and types.

Figure 11-1 shows SSMS displaying the explanatory pop-up window and

parameters for the Datediff() function.

Figure 11-1:
Exploring

SQL
Server’s

built-in
functions.

18_224656-ch11.indd 18018_224656-ch11.indd 180 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

181 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Creating Your Own Functions
Although SQL Server’s built-in functions are powerful and useful, they’re not

always sufficient to meet your customized needs. Fortunately, SQL Server

allows you to create your own user-defined functions using the CREATE
FUNCTION command.

The structure of the CREATE FUNCTION statement is as follows:

CREATE FUNCTION <owner>.<function_name> (<parameters>)
RETURNS <type>
AS
BEGIN
 <SQL code>
END

The following list describes the user-defined elements in this statement.

 � owner is the SQL Server account that owns the function. In many cases,

this will be the database owner (dbo) account.

 � function_name is the name you select for your function.

 � parameters consist of zero, one, or more input parameters that

must be supplied when the function is executed. You provide them in

the form @parameter_name datatype, and you separate multiple

parameters with commas.

 � type is the datatype of the function’s output value.

 � SQL code is the “meat” of the function, where you perform whatever

actions are necessary to create the output value. Here are some tips:

 • Separate multiple SQL statements by ending each one with a

semicolon.

 • Create working variables (used within the function or returned as

output) using the DECLARE <variable_name> <datatype> SQL

statement.

 • Set variable values using the SET <variable_name> = <value>

SQL statement.

 • When finished, provide the return value using the

RETURN(<value>) SQL command.

Suppose you wanted to create a function for use in your business that takes

a wholesale price as input and computes the sales price based upon two

business rules:

18_224656-ch11.indd 18118_224656-ch11.indd 181 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

182 Part IV: Inserting and Manipulating Your Data

 � All wholesale prices are marked up 20 percent to cover the business’

operating expenses and profit margin.

 � The business is required to collect 6.5 percent sales tax on all

purchases.

You could create a function called GetSalesPrice to perform this

computation for you, as follows:

CREATE FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
 -- Declare a temporary value to hold our sales price
 DECLARE @salesprice smallmoney;

 -- Add on a 20% markup to the wholesale price
 SET @salesprice = @wholesale_price + @wholesale_price * 0.2;

 -- Add on 6.5% sales tax
 SET @salesprice = @salesprice + @salesprice * .065;

 RETURN (@salesprice);
END;

 You should be able to correlate each part of the preceding CREATE
FUNCTION statement with the general syntax I provide earlier in this section.

After you create the GetSalesPrice function, you can call it from within

any other SQL statement. Here’s a simple example in which I ask SQL Server

to tell me the sales price corresponding to a wholesale price of $1:

SELECT dbo.GetSalesPrice(1.00) AS ‘Sales Price’

SQL Server responds with the new value, including the 20 percent markup

and 6.5 percent sales tax:

Sales Price

1.278

(1 row(s) affected)

You can also use the function within the context of a more complicated state-

ment. Suppose you wanted to retrieve the wholesale and selling price for

each item in your database. You could use this statement:

18_224656-ch11.indd 18218_224656-ch11.indd 182 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

183 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

SELECT item, warehouse, wholesale_price, dbo.
GetSalesPrice(wholesale_price) AS ‘sales price’

FROM stock

which provides the output

item warehouse wholesale_price sales price
---------------- ---------------- --------------------- ---------------------
Apples New York 0.12 0.1534
Apples Seattle 0.13 0.1661
Limes Seattle 0.33 0.4217
Oranges New York 0.55 0.7029
Oranges Tampa 0.52 0.6646
Pears New York 0.39 0.4984

(6 row(s) affected)

Reusing SQL Code with
Stored Procedures

SQL Server stored procedures are precompiled bundles of SQL statements

that are stored within a SQL Server database. Stored procedures may have

zero, one, or more input parameters and may return a scalar value, a table,

or nothing at all.

Comments
Note that in the preceding statement, I do intro-
duce one new item, however: the SQL com-
ment. You use a comment when you want to
add some explanatory text so that people can
understand the purpose of each SQL statement
in the function, but you don’t want SQL Server
to think that it’s part of the function itself.

Comments are a critical part of any type of pro-
gramming, whether you’re using SQL or any
other programming language. They allow you to
leave notes within your code explaining how it
works so that when another person comes

across your work, he or she can easily interpret
your syntax. In fact, I’ve found myself grateful
that I left comments in my own SQL statements
when I’ve needed to look back at them
years later!

You can make an entire line a comment by
beginning the line with two dashes (--) or com-
ment out multiple lines of the statement by
inserting a line with the text /* before the first
line and ending it with a last line of */. This
comment syntax works in any SQL statement,
not just function definitions.

18_224656-ch11.indd 18318_224656-ch11.indd 183 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

184 Part IV: Inserting and Manipulating Your Data

Why use stored procedures? There are two great reasons to include them in

your SQL Server repertoire:

 � Stored procedures offer the same code reuse benefits provided by

functions.

 � Stored procedures allow you to enhance the security of your database.

You may grant users permission to execute a stored procedure (which

in turn inserts, updates, retrieves, or removes data from your tables)

without granting them full access to the underlying table.

At this point, you may be asking yourself, “Gee, stored procedures sure

sound a lot like functions. What’s the difference?” There are actually two

significant differences between stored procedures and functions:

 � Functions must always return a value to the caller. Stored procedures

do not have this requirement. They may simply execute and complete

silently.

 � You commonly use functions within another expression, whereas you

often use stored procedures independently.

As I do with functions earlier in this chapter, in this section I first explain the

system stored procedures included with SQL Server 2008 and then cover how

you can create your own stored procedures.

Saving time with system stored procedures
SQL Server offers dozens of built-in system stored procedures. Most of these

allow you to obtain or modify information about SQL Server or your data-

base. One very helpful system stored procedure is sp_helptext, which

retrieves the SQL statement associated with a function, stored procedure,

trigger, CHECK constraint, or database view (among other SQL Server

objects). This ability to retrieve a statement is very useful when you want to

verify or modify the functionality of one of these objects.

You can execute a system stored procedure (or any stored procedure, for

that matter) using the EXEC command. If you wanted to use sp_helptext to

retrieve the text of the GetSalesPrice function I describe earlier in the

chapter, you would use the following SQL statement:

EXEC sp_helptext GetSalesPrice

SQL Server then provides the statement used to create the function. SQL

Server will include comments and formatting, as shown in the following code:

18_224656-ch11.indd 18418_224656-ch11.indd 184 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

185 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Text

CREATE FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
-- Declare a temporary value to hold our sales price
 DECLARE @salesprice smallmoney;

-- Add on a 20% markup to the wholesale price
 SET @salesprice = @wholesale_price + @wholesale_price * 0.2;

-- Add on 6.5% sales tax
 SET @salesprice = @salesprice + @salesprice * .065;

 RETURN (@salesprice);
END;

Notice that SQL Server provides the text of the function in CREATE
FUNCTION format. You could recreate this function by simply cutting and

pasting the text into SSMS and executing it. Similarly, you could change the

words CREATE FUNCTION to ALTER FUNCTION and use this SQL statement

to modify the function’s behavior. (I discuss ALTER FUNCTION more at the

end of this chapter.)

 You can obtain information about system stored procedures using the

same process I describe in the “Obtaining a list of built-in functions” section

of this chapter. However, rather than expand the Functions and System

Functions folders, you expand the Stored Procedures and System Stored

Procedures folders.

Writing your own stored procedures
It’s very likely that at some point in your SQL Server career, you’ll want to

create your own stored procedure. I do this constantly and I encourage you

to embrace the reusability and security benefits of stored procedures in

your own databases.

Creating your stored procedures
You can create stored procedures using a syntax very similar to that used

to create a function. Simply change the CREATE FUNCTION statement to

CREATE PROCEDURE. You don’t need to include the RETURNS clause if your

stored procedure has no output.

Suppose you wanted to write a stored procedure that removes an item from

your inventory. Specifically, you want to

18_224656-ch11.indd 18518_224656-ch11.indd 185 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

186 Part IV: Inserting and Manipulating Your Data

 � Delete the item from the stock table.

 � Send an e-mail to the supervisor alerting him or her of the change.

You can accomplish these tasks with the following stored procedure:

CREATE PROCEDURE dbo.RemoveProduct(@item varchar(16), @warehouse varchar(16))
AS
BEGIN
-- Delete the item from the stock table
 DELETE
 FROM stock
 WHERE item = @item AND warehouse = @warehouse;

-- Send an e-mail to the supervisor
 EXEC msdb.dbo.sp_send_dbmail
 @profile_name = ‘Inventory Mail’,
 @recipients = ‘supervisor@foo.com’,
 @body = ‘Stored procedure RemoveProduct altered the inventory.’,
 @subject = ‘Inventory Deleted’ ;
END

Executing your stored procedures
after you create the stored procedure, you execute it using the same syntax

used for a system stored procedure, except that you must also include the

name of the stored procedure’s owner (dbo, in this case):

EXEC dbo.RemoveProduct ‘Pears’, ‘New York’

My stored procedure doesn’t include any return value, so the output is quite

simple:

(1 row(s) affected)
Mail queued.

The “1 row(s) affected” statement is the result of the DELETE SQL statement,

and the “Mail queued” statement is the result of sending the message to the

supervisor.

Notice that I’m calling a system stored procedure (msdb.dbo.sp_send_
dbmail()) from within my own stored procedure. Calling one stored proce-

dure from within another is known as “nesting” stored procedures, and it’s

perfectly acceptable.

 SQL Server allows you to have up to 32 levels of nesting.

 The send_dbmail() stored procedure uses SQL Server’s Database Mail

functionality, which I discuss in Chapter 2.

18_224656-ch11.indd 18618_224656-ch11.indd 186 8/21/08 5:38:14 PM8/21/08 5:38:14 PM

187 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Updating Data Automatically
with Triggers

Triggers are actions that take place when a series of conditions are met. You

see them in everyday life all the time. Consider the dreaded Internal Revenue

Service (IRS). It depends on a complex series of triggers to help it in collect-

ing taxes and keeping us honest. Here are some examples:

 � When it receives a W-2 from an employer stating your annual wages, it

checks to make sure that you reported that income on your 1040 form. If

you didn’t, the IRS sends you a notice that you must correct your taxes.

 � When you claim a dependent on your tax return, the IRS checks the

Social Security number of that dependent against other forms in its

database to ensure that only one taxpayer claims each dependent. If it

detects duplication, it opens an investigation.

 � When you file a form with itemized deductions, it compares your deduc-

tions to those of similar taxpayers and flags your return for an audit if

your deductions seem excessive.

Performing complex database interactions
with SQLCLR technology

Functions and stored procedures provide a
sophisticated way to hide the complexity of
your SQL statements and improve security.
However, they’re not always the best way
to achieve your goal. If you need to perform
very complex operations, you can improve their
performance by using Microsoft’s SQL Common
Language Runtime (SQLCLR).

SQLCLR allows programmers to use advanced
programming languages to create SQL Server
objects, including:

 � User-defined functions

 � Stored procedures

 � Triggers

 � User-defined types

 � Aggregates

You can use any of the following Microsoft .NET
programming languages with SQLCLR:

 � Microsoft Visual Basic

 � Microsoft Visual C++

 � Microsoft Visual C#

Creating SQLCLR objects requires programming
skills in one of these languages and is beyond
the scope of this book.

18_224656-ch11.indd 18718_224656-ch11.indd 187 8/21/08 5:38:15 PM8/21/08 5:38:15 PM

188 Part IV: Inserting and Manipulating Your Data

Each of these triggers consists of a condition (“if there is duplication of

SSNs”) and an action (“open an investigation”). SQL Server provides similar

functionality for database users, allowing you to automatically take specified

actions when certain conditions are met.

Creating a trigger
SQL Server triggers consist of four major components:

 � Trigger name

 � Trigger scope (the database, server, table, or view affected by the

trigger)

 � Trigger timing (determining whether the trigger should fire after [using

the AFTER function] or instead of [using the INSTEAD OF function] the

triggering action)

 � Trigger condition (the conditions that cause the trigger to fire)

 � Trigger action (the action SQL Server should take when the trigger

condition is met)

The basic syntax used for creating a trigger is as follows:

CREATE TRIGGER <trigger_name>
ON <scope>
<trigger timing> <trigger condition>
AS
BEGIN
<trigger action>
END

Suppose you wanted to create a trigger that automatically notifies the super-

visor whenever anyone changes your stock table. You would want this trig-

ger to fire whenever an INSERT or UPDATE statement occurs on the table.

Here’s the way to make that happen:

CREATE TRIGGER inventory_minimum
ON stock
AFTER INSERT, UPDATE
AS
BEGIN
 EXEC msdb.dbo.sp_send_dbmail
 @profile_name = ‘Inventory Mail’,
 @recipients = ‘supervisor@foo.com’,
 @body = ‘Someone changed the inventory.’,
 @subject = ‘Change Notification’ ;
END

18_224656-ch11.indd 18818_224656-ch11.indd 188 8/21/08 5:38:15 PM8/21/08 5:38:15 PM

189 Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

After you create the trigger, SQL Server automatically monitors the database

every time an INSERT or UPDATE statement modifies the stock table.

Disabling a trigger
You may want to temporarily disable a trigger in certain circumstances using

the DISABLE TRIGGER statement. For example, if you plan to make numer-

ous changes to your inventory and don’t want to clutter your e-mail with

notifications from the inventory_minimum trigger, you can disable it with

the following statement:

DISABLE TRIGGER inventory_minimum
ON stock

Re-enabling the trigger uses a similar statement:

ENABLE TRIGGER inventory_minimumON stock

Modifying and Deleting Functions,
Stored Procedures, and Triggers

Throughout this chapter, I show you how to create programmable SQL

Server objects: functions, stored procedures, and triggers. It’s also some-

times necessary to change or remove those objects after you create them.

The syntax for doing this is very similar for all three types of programmable

objects.

Modifying objects
If you want to modify a function, stored procedure, or trigger, simply write a

CREATE statement that contains the modified SQL and change the keyword

CREATE to ALTER.

For example, to modify the GetSalesPrice stored procedure to charge a

higher markup of 25 percent, use this SQL statement:

ALTER FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
 -- Declare a temporary value to hold our sales price
 DECLARE @salesprice smallmoney;

18_224656-ch11.indd 18918_224656-ch11.indd 189 8/21/08 5:38:15 PM8/21/08 5:38:15 PM

190 Part IV: Inserting and Manipulating Your Data

 -- Add on a 20% markup to the wholesale price
 SET @salesprice = @wholesale_price + @wholesale_price * 0.25;

 -- Add on 6.5% sales tax
 SET @salesprice = @salesprice + @salesprice * .065;

 RETURN (@salesprice);
END;

 The sp_helptext command described earlier in this chapter comes in quite

handy when you need to modify a function, stored procedure, or trigger. You

can use sp_helptext to retrieve the CREATE command used to create the

object and simply change the keyword CREATE to ALTER, modify the logic,

and execute the statement to update your database.

Deleting objects
Deleting programmable objects is simple. Use one of the following DROP

commands:

DROP FUNCTION <function_name>

DROP PROCEDURE <procedure_name>

DROP TRIGGER <trigger_name>

For example, you could delete the GetSalesPrice function using the following

SQL statement:

DROP FUNCTION GetSalesPrice;

18_224656-ch11.indd 19018_224656-ch11.indd 190 8/21/08 5:38:15 PM8/21/08 5:38:15 PM

Part V
SQL Server

Administration

19_224656-pp05.indd 19119_224656-pp05.indd 191 8/21/08 5:38:33 PM8/21/08 5:38:33 PM

In this part . . .

If you’re responsible for administering SQL Server data-

bases, this part is especially for you. Here you discover

a variety of tips and tricks to help you keep your database

operating at its best by tuning performance parameters

and governing the best use of resources. You’ll also find

advice on using SQL Server’s administration tools to make

the server do the routine work for you.

The final chapters in this part are dedicated to helping

you troubleshoot SQL Server problems and administer

multiple servers in the same environment.

19_224656-pp05.indd 19219_224656-pp05.indd 192 8/21/08 5:38:34 PM8/21/08 5:38:34 PM

Chapter 12

Keeping Your SQL Server
Running Smoothly

In This Chapter
� Using indexes to improve SQL Server query performance

� Partitioning tables and indexes

� Keeping control over file sizes

� Verifying database integrity

� Placing limits on resource consumption

Any complex mechanism you deal with requires some type of routine

maintenance. You probably bring your car in for service every 3,000

miles to verify that it’s functioning properly. You may have an air conditioning

specialist perform preventive maintenance on your HVAC system before the

warm summer months arrive. SQL Server databases also require maintenance

to stay in tip-top shape and deliver optimal performance.

In this chapter, I describe a number of ways you can improve the performance

of your SQL Server databases. I begin by discussing the use of indexes and

partitioning to speed up database queries. Then I show you how you can

optimize disk utilization by automatically or manually shrinking files. Finally,

I give you some advice on verifying the integrity of your database and placing

limits on the use of resources by individual users.

Indexing Data to Improve
Query Performance

Here’s a challenge for you: Pick up this book and identify every page that

contains information about SQL Server’s use of transactions. You have two

basic options for meeting my challenge:

20_224656-ch12.indd 19320_224656-ch12.indd 193 8/21/08 6:29:25 PM8/21/08 6:29:25 PM

194 Part V: SQL Server Administration

 � Read every page in the book and report each page that contains a reference

to transactions.

 � Turn to the index in the back of the book and look up “transactions.”

Obviously, it’s a whole lot faster to consult the index. If I didn’t include one in

this book, you would have much more trouble quickly finding information on a

particular topic. It’s obviously a good idea for my publisher to hire a specialist to

create an index that allows you easy access to the information you need.

SQL Server databases use indexes for a similar purpose. When you want to

retrieve data from a database, SQL Server could check every single row to

see if it matches your query, but that would be horribly inefficient. Instead,

SQL Server builds and maintains indexes that allow it to quickly locate

commonly used fields.

The catch is that building and maintaining indexes requires both computing

time (to develop the index) and space (to store the index). You need to

decide what indexes are appropriate for your database based upon the types

of queries that you perform.

SQL Server allows you to create indexes on single or multiple columns.

Generally speaking, an index will speed up query performance for queries

based upon the column(s) in the index.

Using clustered indexes
Each database can (and should!) have only one clustered index, which is an

index that defines how SQL Server sorts the data stored in the table. The data

in the table may be sorted in only one way, hence the reason that having two

clustered indexes on the same table isn’t possible.

In almost all cases, the best clustered index for a table is the table’s primary

key. This isn’t always true, but the rule is general enough that you can rely

upon it. The good news is that SQL Server automatically creates an index

when you define a primary key for a table and, by default, makes that index a

clustered index. SQL Server does all the work for you!

Creating nonclustered indexes
You can create your own nonclustered indexes to improve the performance

of queries against your SQL Server databases. Nonclustered indexes are

20_224656-ch12.indd 19420_224656-ch12.indd 194 8/21/08 6:29:26 PM8/21/08 6:29:26 PM

195 Chapter 12: Keeping Your SQL Server Running Smoothly

similar to the index in the back of this book: They allow SQL Server to quickly

locate information, but they don’t change the sort order of data stored in a

table.

The only decision you need to make when creating an index for a table is the

column(s) you want to include in that index. If you’re just getting started with

indexes, it’s generally best to stick to single-column indexes. However, you

can gain some performance benefits by creating indexes that include multiple

columns when those columns are found together in frequently executed

queries.

 Some excellent candidates for indexes are columns that are

 � Commonly used in the WHERE or HAVING clauses of queries

 � Frequently used for GROUP BY query results

 � Used to sort results in an ORDER BY clause

 � Used to reference another table as a foreign key

 � Used to specify JOIN conditions

Follow these steps to create a nonclustered index in SQL Server, using SQL

Server Management Studio:

 1. Start SQL Server Management Studio and connect to your SQL Server

instance.

 2. Click the plus (+) icon to the left of the Databases folder to expand it.

 You see the contents of the folder: a subfolder for each database on the

SQL Server instance.

 3. Click the plus (+) icon to the left of the database where you would like

to create an index.

 The subfolders for that database appear, containing groupings of data-

base information.

 4. Click the plus (+) icon to the left of the Tables folder to expand it.

 A list of database tables appears.

 5. Click the plus (+) icon to expand the folder corresponding to the table

upon which you would like to create an index.

 SQL Server presents a series of subfolders containing information about

the table.

 6. Right-click the Indexes folder and then select New Index from the

pop-up menu that appears.

 You see the New Index dialog box, as shown in Figure 12-1.

20_224656-ch12.indd 19520_224656-ch12.indd 195 8/21/08 6:29:26 PM8/21/08 6:29:26 PM

196 Part V: SQL Server Administration

Figure 12-1:
Creating a
new non-
clustered

index.

 7. Type a name for your index in the Index Name text box and then click

the Add button.

 The Select Columns dialog box appears, as shown in Figure 12-2.

Figure 12-2:
Selecting

columns for
the nonclus-
tered index.

20_224656-ch12.indd 19620_224656-ch12.indd 196 8/21/08 6:29:26 PM8/21/08 6:29:26 PM

197 Chapter 12: Keeping Your SQL Server Running Smoothly

 8. Select the box(es) next to the column(s) you want to include in your

nonclustered index.

 9. Click OK to close the Select Columns window.

 10. Click OK to close the New Index window and create your index.

 SQL Server creates your index, which may take a considerable amount

of time, depending upon the size of your table. When the index creation

completes, you see the new index in SSMS Object Explorer. If it doesn’t

appear automatically, right-click the Indexes folder and choose Refresh

from the pop-up menu.

Optimizing index performance
Over time, changes to indexes may cause them to become fragmented,

which means they’re not using disk space in an optimal fashion. You should

periodically check the fragmentation level of your database indexes and

reorganize or rebuild those indexes when the fragmentation reaches an

unacceptable level.

 Microsoft recommends reorganizing an index when the total fragmentation is

between 5 and 30 percent, and rebuilding it if the total fragmentation is more

than 30 percent. You don’t need to worry about fragmentation levels below 5

percent because they have negligible impact on the performance of your

database.

Here’s how to check the fragmentation level of an index using SQL Server

Management Studio:

 1. Open SSMS and navigate to the Indexes folder of the database and

table in question.

 2. Right-click the index and choose Reorganize or Rebuild, as

appropriate.

 You see a window similar to the one shown in Figure 12-3. Note the Total

Fragmentation column, which indicates the current level of fragmentation

in the index.

 3. Click OK to reorganize (or rebuild) the index.

 This process may take hours if the index is large or complex.

20_224656-ch12.indd 19720_224656-ch12.indd 197 8/21/08 6:29:27 PM8/21/08 6:29:27 PM

198 Part V: SQL Server Administration

Figure 12-3:
Rebuilding/

reorganizing
an index.

Improving Performance with Partitions
In Chapter 5, I tell you how SQL Server allows you to create filegroups that

you can use to separate tables for performance optimization. Partitions let

you to go a step further and distribute the contents of individual tables or

indexes on separate filegroups, which are collections of related files. One

way to efficiently manage large databases is by placing parts that change

frequently (volatile data) on one filegroup and parts that change infrequently

(nonvolatile data) on another filegroup.

To create a partition, you first need to define the partition function, which

describes how SQL Server should separate the data. Next, you must create

a partition scheme that defines how SQL Server will place the partitions on

filegroups. Finally, you create the table or index and specify the appropriate

partition scheme.

20_224656-ch12.indd 19820_224656-ch12.indd 198 8/21/08 6:29:27 PM8/21/08 6:29:27 PM

199 Chapter 12: Keeping Your SQL Server Running Smoothly

Creating a partition function
The first step in partitioning a table is to write a partition function describing

how you want SQL Server to partition your data. You create a partition

function using the following Transact-SQL syntax:

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])

in which:

 � partition_function_name is the name you want to assign to the function.

 � input_parameter_type is the data type you will partition on. It may

be any data type other than text, ntext, image, xml, timestamp,

varchar(max), nvarchar(max) and varbinary(max).

 � The RANGE statement specifies either the LEFT or RIGHT keyword,

indicating the “side” into which each boundary condition should fall.

 � boundary_value is a series of values of type input_parameter_type that

identify the partition boundaries.

Here’s an example to help clarify. Suppose you administer a school database

that holds a table containing records on all graduates. One logical way to

partition that table would be to base it upon year of graduation. Doing so

would place recent graduates on one partition and older graduates on a series

of other partitions. You might want to break the table up as shown in Table 12-1.

Table 12-1 Partitions for an Alumni Table
 Using RANGE RIGHT
Partition Number Years of Graduation

1 earlier than 1960

2 1960–1969

3 1970–1979

4 1980–1989

5 1990–1999

6 2000 and later

You can create a partition function (I call it alumni_partfunct) using the

following Transact-SQL:

CREATE PARTITION FUNCTION alumni_partfunct (int)
AS RANGE RIGHT
FOR VALUES (1960, 1970, 1980, 1990, 2000)

20_224656-ch12.indd 19920_224656-ch12.indd 199 8/21/08 6:29:27 PM8/21/08 6:29:27 PM

200 Part V: SQL Server Administration

Note that the values clause specifies the “boundary” years that correspond

to the partition boundaries specified in Table 12-1. The RANGE RIGHT clause

indicates that SQL Server should include values that fall on the boundary itself

in the partition on the “right” side. Alternatively, if I had used RANGE LEFT, the

partitions would have been slightly different, as shown in Table 12-2.

Table 12-2 Partitions for an Alumni Table
 Using RANGE LEFT
Partition Number Years of Graduation

1 1960 and earlier

2 1961–1970

3 1971–1980

4 1981–1990

5 1991–2000

6 2001 and later

Creating a partition scheme
When you create a partition function, it merely describes a way that you

might separate data into hypothetical partitions. It does not, however, define

the specific filegroups that will store the partitions. That’s where a partition

scheme comes into play.

You create a partition scheme using the CREATE PARTITION SCHEME

command with the following syntax:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_names | [PRIMARY] })

The elements of this command are as follows:

 � partition_scheme_name is the name you want to assign to the partition

scheme.

 � partition_function_name is the name of a partition function (see the

previous section) that defines your partition boundary conditions.

 � file_group_names is a comma-delimited list of filegroup(s) on which you

wish to store the partitions. Alternatively, you may use the ALL keyword

and specify a single filegroup name to place all partitions on the same

group. You may also use the PRIMARY keyword in place of a filegroup

name to specify that you wish to place the partitions on the primary

filegroup.

20_224656-ch12.indd 20020_224656-ch12.indd 200 8/21/08 6:29:27 PM8/21/08 6:29:27 PM

201 Chapter 12: Keeping Your SQL Server Running Smoothly

Before creating a partition scheme, you need to create the filegroups. If you

aren’t familiar with the filegroup creation process, you can read about it in

Chapter 5.

Continuing the alumni example that I use to create a partition function in

the previous section, here I create a partition scheme named alumni_
partscheme that specifies six different file groups (which I creatively named

filegroup1 through filegroup6) for the data. Here’s the Transact-SQL:

CREATE PARTITION SCHEME alumni_partscheme
AS PARTITION alumni_partfunct
TO (filegroup1, filegroup2, filegroup3, filegroup4,

filegroup5, filegroup6)

Creating a partitioned table
In the previous two sections, I show you how to create a partition function

specifying how to divide data into partitions and to create a partition scheme

describing how to store the partitions on different filegroups. However, you

still haven’t actually partitioned any data!

Actually, after you’ve created the partition function and partition scheme,

partitioning a table is easy. You simply add the following clause to your

CREATE TABLE statement:

ON { partition_scheme_name (partition_column_name)

In this clause, the partition_scheme_name is the name of a partition scheme

you created earlier (if you followed along in the previous section of this

chapter). Your partition scheme already links to a specific partition function,

(remember, you specified it in the AS PARTITION clause), so you don’t need

to include it in the CREATE TABLE statement.

You also need to specify the partition_column_name, that is, the column that

contains the values referenced by the partition function. For example, you

could create a simple alumni table using the partition function and scheme I

build in the previous sections with the following CREATE TABLE statement:

CREATE TABLE alumni (FirstName nvarchar(40), LastName
nvarchar(40), GraduationYear int)

ON alumni_partscheme (GraduationYear)

For more information on the CREATE TABLE statement, see Chapter 5.

 I mention earlier in this chapter that you can also partition an index. The

process for creating a partitioned index is exactly the same as that for

creating a partitioned table. Add an ON clause to the CREATE INDEX

statement specifying the partition scheme and partition column.

20_224656-ch12.indd 20120_224656-ch12.indd 201 8/21/08 6:29:27 PM8/21/08 6:29:27 PM

202 Part V: SQL Server Administration

Updating Database Statistics
SQL Server uses a query optimizer to determine the most efficient execution

plan for database queries. This powerful tool works behind the scenes to

improve the performance of your database. You may choose to either let SQL

Server automatically update statistics or you can update them manually.

Automatically updating statistics
In most cases, letting SQL Server automatically create and update database

statistics is fine. This is the default behavior of SQL Server. If you’ve already

disabled it on your database, you may reenable the automatic creation and

updating of statistics by executing the following Transact-SQL statements in

SSMS:

ALTER DATABASE database_name
SET AUTO_CREATE_STATISTICS ON;

ALTER DATABASE database_name
SET AUTO_UPDATE_STATISTICS ON;

Also, you may verify the current status of automatic statistics creation or

updating for a table by executing the following stored procedure in SSMS (see

Chapter 3 for more about SSMS):

sp_autostats ‘table_name’

Manually updating statistics
If you’re not using automatic statistics updating, you may periodically update

statistics for a table manually using the following Transact-SQL statement:

UPDATE STATISTICS table_name

 To view the statistics used by the query optimizer, you can access them

using the DBCC SHOW_STATISTICS command. This command takes two

parameters: the name of the table or view and the name of the statistics

“target” — that is, the index name, statistics name, or column name.

For example, to view information about the PK_stock primary key index on

a hypothetical stock table, you use the following Transact-SQL statement:

DBCC SHOW_STATISTICS (‘stock’, PK_stock)

20_224656-ch12.indd 20220_224656-ch12.indd 202 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

203 Chapter 12: Keeping Your SQL Server Running Smoothly

 There’s much more to the creation and updating of statistics than I can

discuss within the limited scope of this chapter. If you’re really trying to eke

out that last bit of performance from SQL Server, you may want to explore this

subject in further detail.

Managing File Sizes
As with any other data file, SQL Server database files consume space on your

disk that could be used for other purposes. By default, SQL Server will “grow”

database files as you add data to them to ensure that you don’t run out of

space. However, SQL Server does not have a corresponding default shrinking

action to reduce the amount of unused space consumed by database files.

In most cases, this behavior is fine; databases tend to grow over time as you

add more and more data. However, if you remove a large quantity of data

from a database, you may wind up unintentionally “hogging” a large amount

of disk space that you’re not actually using to store data. SQL Server allows

you to reclaim this unused space by automatically or manually shrinking

your database files.

Automatically shrinking database files
You can have SQL Server can automatically shrink the files associated with a

database by using the following Transact-SQL statement:

ALTER DATABASE database_name
SET AUTO_SHRINK ON

After you set this option, SQL Server periodically checks the database files

to determine whether they contain excess free space. If they do, it begins a

background process to shrink the database’s files.

 Automatically shrinking database files may have a significant negative impact

on database performance, especially if the size of your database files tends

to fluctuate on a regular basis. I generally don’t recommend using the AUTO_

SHRINK option unless you have a unique situation that requires it.

If you’re not sure whether a database is set to automatically shrink, you can

check it by issuing the following Transact-SQL statement:

SELECT DATABASEPROPERTYEX(‘database_name’,
‘IsAutoShrink’);

This statement returns a value of 1 if the database is configured to automati-

cally shrink and a value of 0 otherwise.

20_224656-ch12.indd 20320_224656-ch12.indd 203 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

204 Part V: SQL Server Administration

Manually shrinking a single database file
If you want to manually shrink a single database file that contains a large

amount of unused space (perhaps after you’ve deleted a large amount of data

from the database), you may use the following Transact-SQL command:

DBCC SHRINKFILE (file_name, target_size)

in which file_name is the name of the file you want to shrink and target_size is

the desired size (in megabytes) after the shrinking operation.

For example, to shrink the file dbfile to a size of 10MB, you use the

following statement:

DBCC SHRINKFILE (dbfile, 10)

Manually shrinking all files
associated with a database
SQL Server also allows you to shrink all the data and log files associated with

a single database. You can do this using the DBCC SHRINKDATABASE

command, as follows:

DBCC SHRINKDATABASE (‘database_name’, target_percent)

in which database_name is the name of the database and target_percent

is the amount of free space that you’d like to leave in the file for future use.

 Many people confuse the target_percent parameter with the percent of

the database that you want to shrink. If you specify a target_percent of 10,

you’re stating that you want 10 percent free space remaining in the database

file after the shrinking completes. You are not saying that you want to shrink

the database by 10 percent.

For example, if you wanted to shrink all files in the sales database so that

they had 10 percent free space, you would use the following Transact-SQL

command:

DBCC SHRINKDATABASE (‘sales’, 10)

 You should note an important difference between the SHRINKFILE and

SHRINKDATABASE commands. SHRINKDATABASE never shrinks a file below

its original size (when you created it). If you need to shrink a file below its

original size, you must use the SHRINKFILE command.

20_224656-ch12.indd 20420_224656-ch12.indd 204 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

205 Chapter 12: Keeping Your SQL Server Running Smoothly

Checking Database Integrity
Databases are complex structures and, as with any complex information

system, can become corrupt over time. As a database administrator, you

should periodically check the integrity of your database using the DBCC
CHECKDB command.

Running DBCC CHECKDB
If you simply execute the Transact-SQL statement DBCC CHECKDB, SQL

Server checks the integrity of the current database. Otherwise, you can

specify the name of a database using the following format:

DBCC CHECKDB (‘database_name’)

For example, to check the integrity of the sales database, issue the following

command:

DBCC CHECKDB (‘sales’)

Completing the execution of this command can take quite a long time, even

as long as several hours, depending upon the size of your database and its

structural complexity. Therefore, you should always plan to run a

consistency check during periods of low demand.

If your database is so large that you can’t reasonably run DBCC CHECKDB

without negatively impacting performance, you might want to consider other

options. DBCC CHECKDB actually executes a number of other DBCC commands

behind the scenes. Among other activities, it

 � Checks the database disk structure integrity using the DBCC
CHECKALLOC command.

 � Checks the consistency of each table and view individually using the

DBCC CHECKTABLE command.

 � Checks the database catalog consistency using the DBCC
CHECKCATALOG command.

If you need to minimize disruptions, you can create your own integrity veri-

fication schedule by using the commands in the list above. Simply run each

one at different times to consume resources in a more manageable fashion.

Here’s an example of DBCC CHECKDB output from a database table named

sales:

20_224656-ch12.indd 20520_224656-ch12.indd 205 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

206 Part V: SQL Server Administration

DBCC results for ‘sales’.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
Service Broker Msg 9667, State 1: Services analyzed: 3.
Service Broker Msg 9668, State 1: Service Queues analyzed: 3.
Service Broker Msg 9669, State 1: Conversation Endpoints analyzed: 0.
Service Broker Msg 9674, State 1: Conversation Groups analyzed: 0.
Service Broker Msg 9670, State 1: Remote Service Bindings analyzed: 0.
DBCC results for ‘sys.sysrscols’.
There are 567 rows in 6 pages for object “sys.sysrscols”.
DBCC results for ‘sys.sysrowsets’.
There are 81 rows in 1 pages for object “sys.sysrowsets”.
DBCC results for ‘sysallocunits’.
There are 92 rows in 1 pages for object “sysallocunits”.
DBCC results for ‘sys.sysfiles1’.
There are 2 rows in 1 pages for object “sys.sysfiles1”.
DBCC results for ‘sys.sysfgfrag’.
There are 2 rows in 1 pages for object “sys.sysfgfrag”.
DBCC results for ‘sys.sysphfg’.
There are 1 rows in 1 pages for object “sys.sysphfg”.
DBCC results for ‘sys.sysprufiles’.
There are 2 rows in 1 pages for object “sys.sysprufiles”.
DBCC results for ‘stock’.
There are 4 rows in 1 pages for object “stock”.
DBCC results for ‘sys.queue_messages_1977058079’.
There are 0 rows in 0 pages for object “sys.queue_messages_1977058079”.
DBCC results for ‘sys.queue_messages_2009058193’.
There are 0 rows in 0 pages for object “sys.queue_messages_2009058193”.
DBCC results for ‘sys.queue_messages_2041058307’.
There are 0 rows in 0 pages for object “sys.queue_messages_2041058307”.
CHECKDB found 0 allocation errors and 0 consistency errors in database ‘sales’.
DBCC execution completed. If DBCC printed error messages, contact your system

administrator.

I have to omit part of the results. Even for a simple database, the full results

would consume a good part of this chapter!

The key is to look at the second-to-last line of the output, where SQL Server

reports the results of the integrity check. My example contains neither

allocation errors nor consistency errors. This is the sign of a perfectly

healthy database.

Correcting integrity errors
If you do detect errors, you’ll want to repair them. You have three options for

repairing database integrity errors:

20_224656-ch12.indd 20620_224656-ch12.indd 206 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

207 Chapter 12: Keeping Your SQL Server Running Smoothly

 � Use the REPAIR_REBUILD option. This options performs nonrisky

repairs to your database that don’t jeopardize your data. For example,

to use this option on a database named “sales,” you issue the following

sequence of commands:

ALTER DATABASE sales SET SINGLE_USER;
DBCC CHECKDB (‘sales’, REPAIR_REBUILD);
ALTER DATABASE sales SET MULTI_USER;

 Note that before running DBCC CHECKDB with a repair option, I place

the database into single-user mode. Doing so prevents other users from

accessing the database while SQL Server is in the middle of the repair.

When the repair completed, I put the database back into standard

multiuser mode.

 � Restore from backup. If you have serious database integrity errors,

restoring from backup is often best. In fact, this is Microsoft’s recom-

mended practice. I discuss options for creating and restoring database

backups in Chapter 18.

 � Use the REPAIR_ALLOW_DATA_LOSS option. This option sounds

scary, and there’s good reason behind the menacing name. Running

DBCC with this option may correct your integrity errors, but it might

destroy portions of your database in the process! As with REPAIR_
REBUILD, if you decide to use this option, you need to first put the data-

base into single-user mode, as follows:

ALTER DATABASE sales SET SINGLE_USER;
DBCC CHECKDB (‘sales’, REPAIR_ALLOW_DATA_LOSS);
ALTER DATABASE sales SET MULTI_USER;

 Because of the risky nature of this command, I strongly recommend that

you back up your database immediately before executing it.

Governing Resource Consumption
SQL Server 2008 includes a new feature, Resource Governor, that allows you

to limit the server resources consumed by various types of connection. For

example, you can use Resource Governor to place limits on the CPU time and

memory used by particular users, applications, and systems.

You should understand a little terminology before reading more about

Resource Governor:

 � Resource pools contain portions of the total CPU time and memory

available to SQL Server.

20_224656-ch12.indd 20720_224656-ch12.indd 207 8/21/08 6:29:28 PM8/21/08 6:29:28 PM

208 Part V: SQL Server Administration

 � Workload groups are collections of similar SQL Server sessions that

make use of server resources. When you create a workload group, you

assign it a resource pool.

 � Classifier functions help SQL Server assign new sessions to workload

groups based upon connection attributes (such as the user, application,

or host initiating the connection).

Each time a new session starts on a SQL Server instance, Resource Governor

(if activated) uses a classifier function to analyze the connection attributes of

that session and assign it to a workload group based upon those attributes.

SQL Server then allows the session to use the CPU and memory resources

allocated to its resource pool on a shared basis with other sessions in that

workload group (or other workload groups assigned the same resource

pool).

 Resource Governor only classifies a session once: when it is created. If you

change the classifier function, the change will only affect new sessions.

Existing sessions will retain their original classification.

 Microsoft will very likely add new features to Resource Governor in the near

future. Be sure to check the release notes for future SQL Server 2008 service

packs to identify any new capabilities.

In the remainder of this chapter, I walk you through an example of configur-

ing Resource Governor with the goal of limiting SSMS users to a maximum of

50 percent of available CPU time and memory.

Creating resource pools
SQL Server comes with two resource pools preconfigured:

 � The internal resource pool (which uses the internal workload group)

handles the resource needs of SQL Server itself. There are no limitations

on the use of resources within the internal pool, and you can’t modify

this behavior.

 � The default resource pool has minimum values of 0 and maximum values

of 100 for both memory and CPU time by default. You may modify these

characteristics if you wish.

You can create your own user-defined resource pools using the CREATE
RESOURCE POOL Transact-SQL statement, which has the following syntax:

20_224656-ch12.indd 20820_224656-ch12.indd 208 8/21/08 6:29:29 PM8/21/08 6:29:29 PM

209 Chapter 12: Keeping Your SQL Server Running Smoothly

CREATE RESOURCE POOL resource_pool_name
WITH ([MIN_CPU_PERCENT = value]
 [[,] MAX_CPU_PERCENT = value]
 [[,] MIN_MEMORY_PERCENT = value]
 [[,] MAX_MEMORY_PERCENT = value])

In this statement, resource_pool_name must be a unique alphanumeric name

of no more than 128 characters. Each value should be specified as an integer

between 0 and 100. The resource pool parameters are as follows:

 � MIN_CPU_PERCENT indicates the guaranteed average CPU percentage

for the resource pool.

 The sum of the MIN_CPU_PERCENT values for all resource pools in an

instance may not exceed 100 percent.

 � MAX_CPU_PERCENT provides the maximum average CPU percentage

that queries assigned to this resource pool will receive when other

queries compete for CPU time.

 � MIN_MEMORY_PERCENT indicates the guaranteed minimum portion of

memory dedicated to this resource pool.

 The sum of the MIN_MEMORY_PERCENT values for all resource pools in

an instance may not exceed 100 percent.

 � MAX_MEMORY_PERCENT provides the maximum amount of memory that

a resource pool may use.

Recalling our example from the previous section, I wanted to use Resource

Governor to limit SSMS users to 50 percent of available CPU and memory

resources. You can create a resource pool named SSMS pool containing

those resources with the following Transact-SQL statement:

CREATE RESOURCE POOL SSMSpool
WITH (MAX_CPU_PERCENT = 50,
MAX_MEMORY_PERCENT = 50)

If you wish to modify a resource pool, the ALTER RESOURCE POOL

statement uses a similar syntax:

ALTER RESOURCE POOL {resource_pool_name | “default”}
WITH ([MIN_CPU_PERCENT = value]
 [[,] MAX_CPU_PERCENT = value]
 [[,] MIN_MEMORY_PERCENT = value]
 [[,] MAX_MEMORY_PERCENT = value])

20_224656-ch12.indd 20920_224656-ch12.indd 209 8/21/08 6:29:29 PM8/21/08 6:29:29 PM

210 Part V: SQL Server Administration

For example, if you wished to modify the default pool so that it can only

consume a maximum of 75 percent of CPU time and 25 percent of memory,

you would use the following Transact-SQL statement:

ALTER RESOURCE POOL “default”
WITH (MAX_CPU_PERCENT = 75,
 MAX_MEMORY_PERCENT = 25)

 As demonstrated in the preceding example, if you want to alter the resources

assigned to the default pool, you must enclose the word default in quotation

marks.

Creating workload groups
SQL Server 2008 also comes preconfigured with two workload groups,

internal and default. These workload groups use the resource pools of the

same names, as I discussed in the previous section.

You can create new workload groups using the CREATE WORKLOAD GROUP

statement, with the following syntax:

CREATE WORKLOAD GROUP workload_group_name
WITH ([IMPORTANCE = { LOW | MEDIUM | HIGH }]
 [[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
 [[,] REQUEST_MAX_CPU_TIME_SEC = value]
 [[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
 [[,] MAX_DOP = value]
 [[,] GROUP_MAX_REQUESTS = value])
[USING { resource_pool_name | “default” }]

The parameters to the CREATE WORKLOAD GROUP command are:

 � IMPORTANCE reflects the relative importance of the workload group and

may have a value of HIGH, MEDIUM or LOW. Resource Governor uses this

value to allocate resources when different workload groups using the

same resource pool compete for CPU time or memory.

 � REQUEST_MAX_MEMORY_GRANT_PERCENT is a value between 0 and 100

specifying the maximum amount of memory that a query may take from

the resource pool. This number is a percentage of the memory assigned

to the pool, rather than a percentage of the total system memory.

 � REQUEST_MEMORY_GRANT_TIMEOUT_SEC is the maximum amount of

time (in whole seconds) that a query may wait for resources used by

other queries.

 � MAX_DOP is a number between 0 and 64 indicating the maximum degree

of parallelism.

20_224656-ch12.indd 21020_224656-ch12.indd 210 8/21/08 6:29:29 PM8/21/08 6:29:29 PM

211 Chapter 12: Keeping Your SQL Server Running Smoothly

 � GROUP_MAX_REQUESTS is an integer specifying the maximum number of

queries that may execute simultaneously in the group.

 � resource_pool_name is the name of the resource pool available to the

workload group.

You can create a simple workload group for my SSMS example with a medium

relative importance using the following command:

CREATE WORKLOAD GROUP SSMSworkload
WITH (IMPORTANCE = MEDIUM)
USING SSMSpool

You may modify an existing workload group using the ALTER WORKLOAD
GROUP command, which has the same syntax as the CREATE WORKLOAD
GROUP command.

Creating classifier functions
The classifier function is a user-defined function that assigns new sessions to

workload groups based upon connection attributes. I fully describe the

creation of user-defined functions in Chapter 11 but will provide an example

of a classifier function in this section.

Here are a few important characteristics of classifier functions:

 � You should create classifier functions in the master database.

 � The classifier function should return the name of a workload group.

If the classifier function does not return the name of a valid workload

group, Resource Governor will assign the session to the default group.

 � The classifier function must be schema-bound. You create a schema-

bound function by including the WITH SCHEMABINDING clause in your

function definition.

 � You may only have one active classifier function at any time.

Here’s a classifier function that implements the scenario I described earlier:

placing all SSMS sessions in the SSMS workload group:

CREATE FUNCTION dbo.SSMSClassifier()
RETURNS SYSNAME
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @wkldgroup SYSNAME
 IF (APP_NAME() = ‘Microsoft SQL Server Management Studio’)

20_224656-ch12.indd 21120_224656-ch12.indd 211 8/21/08 6:29:29 PM8/21/08 6:29:29 PM

212 Part V: SQL Server Administration

 SET @wkldgroup = ‘SSMSgroup’
 ELSE
 RETURN NULL
 RETURN @wkldgroup
END

Activating and deactivating
Resource Governor
When you’re ready to activate Resource Governor, you must first assign it a

classifier function, as shown in the Transact-SQL command below:

ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = dbo.SSMSClassifier)

Of course, you’ll want to replace dbo.SSMSClassifier with the name of

your classifier function. Finally, you need to apply your changes by instruct-

ing SQL Server to reconfigure Resource Governor with your modifications.

The following Transact-SQL statement accomplishes this:

ALTER RESOURCE GOVERNOR RECONFIGURE

You must issue the RECONFIGURE command any time you make a change to

the Resource Governor configuration or SQL Server won’t apply your change.

If you’d like to deactivate Resource Governor on a SQL Server instance, use

the following command:

ALTER RESOURCE GOVERNOR DISABLE

20_224656-ch12.indd 21220_224656-ch12.indd 212 8/21/08 6:29:29 PM8/21/08 6:29:29 PM

Chapter 13

Automating SQL Server 2008
Administration

In This Chapter
� Schedule recurring tasks with SQL Server Agent

� Use Maintenance Plans to automate administration

� Alerting administrators to database events

SQL Server database administration is full of mundane, repetitive tasks

such as log reviews and preventive maintenance. Fortunately, SQL

Server offers techniques to alleviate much of this boring work through the

use of SQL Server Agent and maintenance plans. As does any other agent,

SQL Server agent acts on your behalf to assist with database maintenance

and monitoring tasks.

In this chapter, you discover how to automate your database administration

tasks using these tools. I show you how you can get rid of the burden of

regularly implementing the techniques discussed in Chapter 12 through the

power of automation.

Scheduling Tasks with
SQL Server Agent

SQL Server Agent is the core of SQL Server’s automation capabilities. It allows

you to instruct SQL Server to perform actions on a scheduled, automated basis,

alleviating you of many of the tedious demands of database administration.

In this section, I provide you with the information you need to start SQL

Server Agent running on your database server, create jobs that you would

like to run in an automated fashion, and schedule those jobs to occur on a

periodic basis.

21_224656-ch13.indd 21321_224656-ch13.indd 213 8/21/08 5:41:15 PM8/21/08 5:41:15 PM

214 Part V: SQL Server Administration

Starting SQL Server Agent
Before you can schedule tasks with SQL Server Agent, you need to make sure

that the SQL Server Agent service is running on your database server. To do

so, follow these steps:

 1. Start SQL Server Configuration Manager.

 I discuss the process for starting SQL Server Configuration Manager in

Chapter 3.

 2. Select SQL Server Services from the menu in the left pane.

 You see the service list shown in Figure 13-1. Locate the service named

SQL Server Agent (MSSQLSERVER) and examine the current service

state. If it reads Running, SQL Server Agent is already running and you

can continue to the next section, “Creating a SQL Server Agent job.”

Otherwise, you need to start SQL Server Agent.

Figure 13-1:
SQL Server

2008 Service
Status.

 3. Right-click SQL Server Agent and select Start from the pop-up menu.

 SQL Server Configuration Manager starts the service, a process that may

take a minute or longer to complete. While you wait, SQL Server displays

the status window shown in Figure 13-2.

 Following this process starts SQL Server Agent only a single time. If you want

to ensure that SQL Server Agent will run every time your system starts, you

need to set it to use the automatic start mode. I discuss service start modes in

Chapter 3.

Figure 13-2:
Starting

a SQL
Server 2008

Service.

21_224656-ch13.indd 21421_224656-ch13.indd 214 8/21/08 5:41:15 PM8/21/08 5:41:15 PM

215 Chapter 13: Automating SQL Server 2008 Administration
 4. Close SQL Server Configuration Manager.

Creating a SQL Server Agent job
SQL Server Agent uses the concept of a job to group related tasks. Each job

consists of a series of job steps that you may schedule to run on a periodic

basis. In this section, I describe the process for creating a SQL Server Agent

job. A job establishes the shell in which you may define job steps for SQL

Server Agent to carry out on your behalf.

 1. Connect to a SQL Server instance using SQL Server Management

Studio.

 2. Expand the SQL Server Agent folder in Object Explorer.

 You see the options shown in Figure 13-3.

Figure 13-3:
The SQL

Server
Agent folder

in SSMS.

 3. Right-click the Jobs folder and select New Job from the start-up menu.

 SSMS then presents the New Job creation window, shown in Figure 13-4.

 4. Give your job a name by typing it into the Name field.

 You may choose any name you like, but I recommend using a descriptive

name. Doing so makes identifying the job in the future much easier.

 5. Specify the job owner in the Owner text box.

 You may either type in the name of the account that you want to

designate as the job owner, or search for and select it by clicking the

ellipses (. . .) to the right of the text box.

 The owner of the job is the only account (other than members of the

sysadmin role) that may modify the job after you create it. When the

job runs, it does so with the same permission settings that apply to the

owning account.

 6. Select a job category from the drop-down list.

 SQL Server provides a number of predefined categories to help you

classify your jobs. Many of the administrative tasks you facilitate with

SQL Server Agent will naturally fall under the “Database Maintenance”

category.

21_224656-ch13.indd 21521_224656-ch13.indd 215 8/21/08 5:41:16 PM8/21/08 5:41:16 PM

216 Part V: SQL Server Administration

Figure 13-4:
The SSMS

New Job
creation
window.

 7. Type a plain-English description of your job in the Description

textbox.

 This textbox gives you the opportunity to record a written description

of your job’s purpose to help other administrators understand your job.

It’s also a great way to remind your future self of what you intended to

do months or years ago!

 8. Ensure that the Enabled box is selected.

 In order to run according to a schedule (I show you how to define one

later in this section), you must enable the job by selecting the Enabled

check box on this screen.

At this point, you’ve created an empty SQL Server Agent job. In the next section,

I describe how you can add steps to this job, defining the actions that you

want SQL Server to carry out each time the job executes. When that’s complete,

I show you how to schedule the job to execute on a periodic basis.

 Note that the series of steps I use to create the job don’t end by clicking OK

to close the New Job window. You should keep this window open to add job

steps in the next section.

21_224656-ch13.indd 21621_224656-ch13.indd 216 8/21/08 5:41:16 PM8/21/08 5:41:16 PM

217 Chapter 13: Automating SQL Server 2008 Administration

Adding job steps to a SQL
Server Agent job
SQL Server Agent allows you to create job steps defining the individual

actions you would like included in the job. SQL Server 2008 supports a

number of different job step types, including:

 � Transact-SQL scripts

 � ActiveX scripts

 � Operating system (CmdExec) scripts

 � Replication-related scripts (see Chapter 15 for more information on

replication)

 � SQL Server Integration Services (SSIS) packages (see Chapter 10 for

more information on SSIS)

 � SQL Server Analysis Services (SSAS) commands and queries

 SSAS is beyond the scope of this book.

In the following steps, I walk you through the process of creating a single-step

job designed to run the DBCC CHECKDB command, discussed in Chapter 12:

 1. Within the New Job window, click the Steps icon under Select a Page.

 You see the blank Job Step list shown in Figure 13-5.

 2. Click the New button.

 SQL Server presents the New Job step window, shown in Figure 13-6.

 3. Name the step by typing a descriptive name in the Step name text box.

 4. Choose the step type from the Type drop-down list.

 Here, I assume that you’re using a Transact-SQL script step type. Other

step types support advanced functionality and are beyond the scope of

this book.

 5. Select a database context using the Database drop-down list.

 Your selection here tells SQL Server which database it should execute

the script against. SQL Server allows you to specify the database at the

step, rather than the job, level. Specifying it at this level permits you to

run scripts against multiple databases within the same job. For example,

you might create a job that executes database consistency checks

against several databases that you administer.

21_224656-ch13.indd 21721_224656-ch13.indd 217 8/21/08 5:41:17 PM8/21/08 5:41:17 PM

218 Part V: SQL Server Administration

Figure 13-5:
The SQL

Server
Agent Job

Step list.

Figure 13-6:
 Creating

a new job
step with

SSMS.

21_224656-ch13.indd 21821_224656-ch13.indd 218 8/21/08 5:41:17 PM8/21/08 5:41:17 PM

219 Chapter 13: Automating SQL Server 2008 Administration

 6. Enter your Transact-SQL script in the Command text box.

 You may include any valid Transact-SQL statements that you want

to execute against the database specified in the previous step. For

example, enter the text DBCC CHECKDB to run a database consistency

check against the database specified in Step 5.

 7. Click the Parse button to validate your input.

 This step gives you the opportunity to have SQL Server validate your

Transact-SQL script before creating the job. It’s a good opportunity to

perform a quick syntax check before scheduling the job to run. If your

syntax is correct, you see the pop-up window shown in Figure 13-7.

Otherwise, correct your syntax and click the Parse button again.

Figure 3-7:
Parse

Command
Text.

 8. Click the OK button to create the step.

 You may repeat this process as many times as necessary to create your job.

You may customize your job steps even further by using the Advanced page

of the Job Step Properties sheet, shown in Figure 13-8. This page allows you to

specify the following:

 � The number of times SQL Server Agent should attempt to retry the step

if it fails and the time interval it should wait between retry attempts.

 � The action SQL Server Agent should take if the step ultimately fails.

These actions include:

 • Go to the next step

 • Quit the job and report success

 • Quit the job and report failure

 � The action SQL Server Agent should take if the step ultimately succeeds.

These are the same options you have for step failure.

 � The output file where SQL Server Agent should record the results of the

Transact-SQL command and whether the results should overwrite the

file’s current contents or be appended to the current contents.

 � The name of a table where SQL Server Agent should store log results.

 � The user account that SQL Server Agent should use to execute the

Transact-SQL statement.

21_224656-ch13.indd 21921_224656-ch13.indd 219 8/21/08 5:41:18 PM8/21/08 5:41:18 PM

220 Part V: SQL Server Administration

Figure 13-8:
Job Step

Advanced
page.

When you’ve finished creating your job steps, you can use the Move Step

arrows at the bottom of the list to rearrange the order of job steps, as

necessary.

Scheduling a SQL Server Agent job
One of the most powerful features offered by SQL Server Agent is the ability

to schedule jobs to occur in the future on a one-time or repetitive basis. SQL

Server Agent offers a number of flexible job-scheduling options, thereby

allowing you to select the mix appropriate for your environment.

To add a schedule to your SQL Server Agent job, follow these steps:

 1. Click the Schedule icon in the Select a Page portion of the New Job

window.

 I’m assuming that you’re still in the New Job window opened earlier in

this section. If you’re not, simply open the Properties sheet associated

with the job from within the SQL Server Agent folder of SSMS.

21_224656-ch13.indd 22021_224656-ch13.indd 220 8/21/08 5:41:18 PM8/21/08 5:41:18 PM

221 Chapter 13: Automating SQL Server 2008 Administration

 2. Click the New button at the bottom of the window.

 You see the New Job Schedule window, which is shown in Figure 13-9.

 3. Provide a descriptive name for your schedule in the Name text box.

 4. Choose a schedule type from the Schedule Type drop-down box.

 You have the following options:

 • One Time

 • Recurring

 • Start Automatically when SQL Server Agent Starts

 • Start Whenever the CPUs Become Idle

 5. Provide the appropriate details for the schedule frequency and

duration.

 SQL Server Agent allows you to specify the frequency of the schedule

with a great degree of detail.

 6. Click the OK button to add the schedule to the job.

Figure 13-9:
Creating

a new job
schedule.

21_224656-ch13.indd 22121_224656-ch13.indd 221 8/21/08 5:41:18 PM8/21/08 5:41:18 PM

222 Part V: SQL Server Administration

Notifying someone when
the job completes
Schedule SQL Server Agent jobs run on an unattended basis. Therefore, it’s

often advisable to notify database administrators when a job completes.

Here’s how you can configure job completion notification:

 1. Click the Notifications icon in the Select a Page portion of the New

Job window.

 I’m assuming that you’re still in the New Job window opened earlier in

this section. If you’re not, simply open the Properties sheet associated

with the job from within the SQL Server Agent folder of SSMS.

 2. Select the box(es) corresponding to the notification actions you want

SQL Server Agent to perform when the job completes.

 Your options include the following:

 • Send an e-mail to a database operator

 • Send a pager message to a database operator

 • Send a “net send” message to a database operator

 • Write a message to the Windows Application Event Log

 • Delete the job

 3. Choose the notification target from the drop-down box next to each

option, if applicable.

 You need to select a database operator to notify for the e-mail, page, or

net send notification options. I discuss creating database operators later

in this chapter.

 4. Select the notification condition(s) from the drop-down box(es) next to

the selected notification type(s).

 You may choose from the following notification options:

 • Execute the option any time the job completes

 • Execute the option when the job completes successfully

 • Execute the option when the job fails to complete

Implementing Database
Maintenance Plans

SQL Server 2008 also offers another way (in addition to SQL Server Agent

jobs) to automate administrative tasks: the use of database maintenance

plans. The primary advantage of these plans over SQL Server Agent jobs is

21_224656-ch13.indd 22221_224656-ch13.indd 222 8/21/08 5:41:19 PM8/21/08 5:41:19 PM

223 Chapter 13: Automating SQL Server 2008 Administration

their ease of creation: You can use a graphical wizard to create them and

you can add many common maintenance tasks without writing Transact-SQL

statements.

Identifying the tasks to include
in a maintenance plan
Before you begin the process of creating a database maintenance plan, you

should think carefully about the actions the plan will perform and the

frequency with which you desire each to occur. The maintenance plan tasks

supported by SQL Server 2008 include:

 � Back up a database

 � Check the integrity of a database

 � Execute a SQL Server Agent job

 � Execute a Transact-SQL statement

 � Clean up historical database information

 � Clean up leftover files from maintenance plan execution

 � Perform an operator notification

 � Rebuild or reorganize an index

 � Shrink a database

 � Update database statistics

After you’ve selected the appropriate mix of maintenance tasks, you can

move on to creating the maintenance plan itself.

Creating a maintenance plan
The easiest way to create a database maintenance plan is by using the

Maintenance Plan Wizard provided with SQL Server 2008. This wizard guides

you through the process step-by-step using a graphical interface. Here’s how

you can use it to create your own plan:

 1. With SSMS open, expand the Management folder.

 2. Right-click the Maintenance Plans folder and select Maintenance Plan

Wizard from the pop-up menu.

 You see the welcome screen shown in Figure 13-10.

21_224656-ch13.indd 22321_224656-ch13.indd 223 8/21/08 5:41:19 PM8/21/08 5:41:19 PM

224 Part V: SQL Server Administration

Figure 13-10:
The

Database
Main-

tenance
Plan Wizard.

 3. Click the Next button to advance to the next wizard screen.

 4. Provide a Name and Description for your maintenance plan by typing

each in its appropriate text box.

 Figure 13-11 shows the Plan Properties page of the wizard. You should pro-

vide an understandable name and clear description of your maintenance

plan’s purpose to help future administrators understand your work.

Figure 13-11:
Setting the

Database
Main-

tenance
Plan

properties.

21_224656-ch13.indd 22421_224656-ch13.indd 224 8/21/08 5:41:19 PM8/21/08 5:41:19 PM

225 Chapter 13: Automating SQL Server 2008 Administration

 5. Choose to use a single schedule for the entire plan or separate

schedules for each task.

 For simplicity’s sake, you probably want to choose a single schedule for

each task in your maintenance plan. However, if you desire more

scheduling flexibility, you may choose the Separate Schedules for Each

Task option and then configure each task individually.

 6. Click the Change button, fill out the schedule options in the screen

that appears, and click OK.

 Note that this is the same New Job Schedule screen that’s used for SQL

Server Agent jobs and is shown previously in Figure 13-9.

 7. Click the Next button to advance to the task selection window.

 8. Select the check box(es) next to the task(s) you want to include in your

maintenance plan. Then click the Next button to continue.

 The Select Maintenance Tasks screen, shown in Figure 13-12, allows you

to select the tasks you’d like to include in your plan. Don’t worry about

the details at this point; you’ll be asked to provide further configuration

options for each task at a later step in the process.

Figure 13-12:
 Selecting

tasks to
include in

the mainte-
nance plan.

 9. Click the Move Up and Move Down buttons to provide the correct

order of task execution. Then click the Next button to continue.

 You may rearrange the order of tasks by using the Move Up and Move

Down buttons, as shown in Figure 13-13.

21_224656-ch13.indd 22521_224656-ch13.indd 225 8/21/08 5:41:20 PM8/21/08 5:41:20 PM

226 Part V: SQL Server Administration

Figure 13-13:
 Configuring
the mainte-
nance task

order.

 10. Configure the details of each maintenance plan task and click the Next

button to continue.

 The wizard then presents a series of screens asking you to provide

details for each task that you selected in Step 8. These screens vary

from task to task. For example, the Differential Backup screen is shown

in Figure 13-14. I provide more information on the configuration details

necessary for each task elsewhere in this book. Information on backup

tasks appears in Chapter 18.

 These task configuration screens also contain a Change button to

configure a per-task schedule. This button is unavailable (greyed out) if

you selected a single schedule for the entire plan in Step 5.

 11. Select the check box(es) corresponding to the reporting option(s) you

want and click the Next button to continue.

 You have two options for reporting the results of maintenance plan

execution, as shown in Figure 13-15: writing the output to a text file and

e-mailing the report to a SQL Server database operator. You can choose

them both, if you want.

 12. Click Finish to create the maintenance plan.

 Only members of the sysadmin server role may view, create, or modify SQL

Server maintenance plans. I discuss managing server roles and user

permissions in Chapter 16.

21_224656-ch13.indd 22621_224656-ch13.indd 226 8/21/08 5:41:20 PM8/21/08 5:41:20 PM

227 Chapter 13: Automating SQL Server 2008 Administration

Figure 13-14:
Configuring

a differential
backup
mainte-

nance plan
task.

Figure 13-15:
Configuring

mainte-
nance plan

reporting
options.

21_224656-ch13.indd 22721_224656-ch13.indd 227 8/21/08 5:41:20 PM8/21/08 5:41:20 PM

228 Part V: SQL Server Administration

Alerting Administrators
about Database Events

Database monitoring is one of the most important tasks facing SQL Server

administrators. Vigilant monitoring of database resource utilization and

performance issues will help you stay in control of your database and pre-

vent significant problems from occurring. Constant monitoring of these

issues without the use of automated tools is quite difficult. Fortunately, SQL

Server provides an alerting facility that monitors the database status on your

behalf and notifies you when issues requiring your attention occur.

Configuring database operators
You can use database operators in SQL Server to define individuals who

should receive alert notifications. Here’s how to create a new database

operator:

 1. Open SSMS and expand the SQL Server Agent folder.

 2. Right-click the Operators icon and choose New Operator from the

pop-up menu.

 3. Provide a useful name for the operator (usually the person’s first and

last name).

 4. Provide an e-mail address, net send address, or pager address for

each operator.

 You can provide all three addresses if you want.

 5. Provide details of the operator’s on-call schedule, if applicable.

 If you want an operator to receive notifications only during specified

time periods or on specified days, configure those options on this

screen as well. This is a useful function when you have rotating on-call

schedules, because you can create different operators with notification

schedules corresponding to your on-call schedule.

 An example of a completed New Operator screen appears in

Figure 13-16.

 6. Click the OK button to create the operator.

21_224656-ch13.indd 22821_224656-ch13.indd 228 8/21/08 5:41:21 PM8/21/08 5:41:21 PM

229 Chapter 13: Automating SQL Server 2008 Administration

Figure 13-16:
Creating

a new
database
operator.

Creating SQL Server alerts
SQL Server allows you to create automated administrator alerts based upon

three types of conditions:

 � SQL Server events defined by a combination of a database name and

SQL Server error code or severity. For example, you can create an alert

that occurs when an error of severity 23 (a fatal error where the

integrity of the entire database is in jeopardy) occurs.

 � SQL Server performance conditions defined by an object, counter,

instance, and threshold value. For example, you can create an alert when

the log file uses 85 percent of its capacity for a particular database.

 � Windows Management Instrumentation (WMI) events. WMI is an interface

that allows Windows components to share performance information. The

topic of WMI is beyond the scope of this book.

21_224656-ch13.indd 22921_224656-ch13.indd 229 8/21/08 5:41:21 PM8/21/08 5:41:21 PM

230 Part V: SQL Server Administration

You can create a new alert using SQL Server Management Studio, as follows:

 1. With SSMS open, expand the SQL Server Agent folder.

 2. Right-click Alerts and select New Alert from the pop-up menu.

 3. Choose a name for your alert and type it in the Name text box.

 4. Choose a type for your alert (SQL Server event, SQL Server

performance condition, or WMI event).

 5. Provide the appropriate details for the alert type you chose.

 The configuration details you need to provide in this step will vary

based upon the type of alert selected. Figure 13-17 shows a SQL Server

event alert configured to alarm when fatal hardware errors occur.

Figure 13-18 shows a SQL Server performance condition alert configured

to alarm when the server login rate rises above three logins per second.

 6. Ensure that a checkmark appears in the Enabled check box.

 7. Choose the Response page from the Select a Page portion of the New

Alert window.

Figure 13-17:
Creating a

SQL Server
alert for

fatal hard-
ware errors.

21_224656-ch13.indd 23021_224656-ch13.indd 230 8/21/08 5:41:21 PM8/21/08 5:41:21 PM

231 Chapter 13: Automating SQL Server 2008 Administration

 8. Select the Notify Operators check box and then select the notification

method(s) you want to use (if any) for each database operator in the

list.

 9. Click OK to create the alert.

Figure 13-18:
Creating a

SQL Server
Alert based

upon the
logins/sec

rate.

21_224656-ch13.indd 23121_224656-ch13.indd 231 8/21/08 5:41:22 PM8/21/08 5:41:22 PM

232 Part V: SQL Server Administration

21_224656-ch13.indd 23221_224656-ch13.indd 232 8/21/08 5:41:22 PM8/21/08 5:41:22 PM

Chapter 14

Troubleshooting SQL
Server 2008 Problems

In This Chapter
� Exploring server performance issues with SQL Server Profiler

� Using System Monitor to keep track of server performance

� Mining error logs for valuable troubleshooting information

� Using Performance Studio to monitor your server

� Tuning database performance with Database Engine Tuning Advisor

From time to time, you may encounter problems with your SQL Server

databases. These issues may come as the result of poorly written data-

base queries, hardware/software performance issues, or the physical failure

of hardware components.

When performance issues arise, troubleshooting often requires a joint effort

between database administrators and server administrators. In this chapter, I

describe some of the tools available to SQL Server 2008 DBAs to assist in the

detection and troubleshooting of database problems.

Understanding the Inner Workings
of SQL Server Queries

SQL Server allows you to capture quite a bit of information about queries in

progress. Some commonly used data elements include:

 � Transact-SQL statements executed

 � Stored procedures invoked

22_224656-ch14.indd 23322_224656-ch14.indd 233 8/21/08 5:42:38 PM8/21/08 5:42:38 PM

234 Part V: SQL Server Administration

 � Query execution time (in CPU time or clock time)

 � Physical disk activity

 � Login name responsible for each query

SQL Server provides this information through the use of the SQL Trace

facility. This complex programming environment is accessible through an

Application Programmer Interface (API). Alternatively, you can access this

advanced functionality using the graphical user interface offered by SQL

Server Profiler.

Creating a trace with SQL Server Profiler
If you’d like to capture detailed information about SQL Server performance

using SQL Server Profiler, you must first create a trace. Each trace defines

the events you would like to gather data about and the specific data elements

you would like to capture.

Here’s how to create a new trace using SQL Server Profiler:

 1. Open SQL Server Management Studio.

 2. Choose Tools➪SQL Server Profiler.

 SQL Server Profiler opens in a new window.

 3. Choose File➪New Trace.

 A connection window (identical to the window used to connect to SSMS)

opens.

 4. Fill in the details required to log in to your SQL Server instance and

click the Connect button to continue.

 If you need assistance determining the appropriate connection details,

see Chapter 3. After you complete the connection, the Trace Properties

window (shown in Figure 14-1) opens. This is where you perform the ini-

tial configuration of your new trace.

 5. Create a descriptive name for your trace and type it into the Trace

Name text box.

 6. Select a template for your trace from the drop-down list.

 SQL Server Profiler includes a number of built-in templates to help you

create new traces quickly. These include:

 • Blank: Exactly what the name implies: An empty template that

allows you to define the exact events and columns you’d like to

capture with your trace.

22_224656-ch14.indd 23422_224656-ch14.indd 234 8/21/08 5:42:38 PM8/21/08 5:42:38 PM

235 Chapter 14: Troubleshooting SQL Server 2008 Problems

Figure 14-1:
The SQL

Server
Profiler

Trace
Properties

window.

 • SP_Counts: Captures the number of times each stored procedure

executes.

 • Standard: The default template for SQL Server Profiler. It captures

a variety of information about every connection, stored procedure,

or Transact-SQL statement executed.

 • TSQL: Collects all Transact-SQL batches and stored procedures

executed against a database for troubleshooting purposes.

 • TSQL_Duration: Records the Transact-SQL statements executed

against a database along with the time (in milliseconds) required

to complete each statement.

 • TSQL_Grouped: Collects the same information as the Transact-SQL

template but also groups the results by the user/application issu-

ing the statement.

 • TSQL_Replay: Gathers very detailed information about each

Transact-SQL statement. This information is sufficient to replay the

activity on the server in the future. It is commonly used for bench-

mark testing.

 • TSQL_SPs: Records information about stored procedures executed

against a database.

 • Tuning: Provides detailed information required to tune a SQL

Server database. The output of a Tuning trace may be used with

the Database Engine Tuning Advisor that I describe in the last sec-

tion of this chapter.

22_224656-ch14.indd 23522_224656-ch14.indd 235 8/21/08 5:42:38 PM8/21/08 5:42:38 PM

236 Part V: SQL Server Administration

 Remember that these templates are only a starting point and that you

may modify them. If you want to develop a custom template, you don’t

have to use the Blank template as your starting point. You can save time

by selecting the predefined template that most closely matches your

needs and then customizing it to meet your specific requirements.

 7. Select the Save to File check box.

 SQL Server Profiler provides two options for capturing trace data: saving

to a file or saving to a database table. I strongly recommend that you

save trace data to files only. Saving this information to a database table

may cause significant database performance degradation.

 8. Click the Save As icon to the right of the filename text box and select

the location/name of the file where you’d like to store the results of

your trace.

 9. If you’d like to stop your trace automatically, select the Enable Trace

Stop Time check box and choose an appropriate date and time from

the drop-down lists.

 10. Select the Events Selection tab in the Trace Properties window.

 This tab, shown in Figure 14-2, allows you to select the exact events

and event columns you will capture with your trace. If you selected a

template other than Blank in Step 6, this table will already contain some

entries.

Figure 14-2:
The SQL

Server
Profiler
Events

Selection
screen.

22_224656-ch14.indd 23622_224656-ch14.indd 236 8/21/08 5:42:39 PM8/21/08 5:42:39 PM

237 Chapter 14: Troubleshooting SQL Server 2008 Problems

 11. Select the Show all Events check box.

 By default, the Events Selection tab will show only events included in

your base template. If you’d like to include additional events, you need

to first select this check box to display events not included in the cur-

rent trace.

 12. Select the Show All Columns check box.

 SQL Server Profiler allows you to capture quite a bit of information

about each event. The Events Selection tab displays these data elements

as table columns. If you want to include elements not already part of

your trace, select the Show All Columns check box.

 13. Select the check boxes corresponding to any other data elements

you’d like the trace to capture.

 Be conservative when selecting the events to trace and the columns

you wish to capture in your trace. Traces collecting too much data can

quickly consume massive quantities of disk space and cause server per-

formance issues. You don’t want your troubleshooting efforts to create

brand new problems!

 14. Click the Run button to start your trace.

Reviewing trace results
When SQL Server Profiler begins executing your trace, it opens a trace

window similar to the one shown in Figure 14-3.

Each line in the trace results window corresponds to a single event that you

selected in the Events Selection tab. When you run your first trace against a

database, you’ll quickly understand the importance of being selective about

the events and data elements you choose to capture; it’s not unusual for a

single trace to collect thousands of events per minute on a production data-

base server.

You may navigate through the trace results using the scrollbar on the right

side of the trace window. Additionally, if you click any individual row, you

will see the Text Data element from that event occurrence in the large pane

at the bottom of the window.

You may stop or pause a running trace using the stop, pause, and restart but-

tons at the top of the trace window. Figure 14-4 illustrates these buttons. The

triangle icon is the restart button, the two parallel lines are the pause button,

and the red square is the stop button.

22_224656-ch14.indd 23722_224656-ch14.indd 237 8/21/08 5:42:39 PM8/21/08 5:42:39 PM

238 Part V: SQL Server Administration

Figure 14-3:
The SQL

Server
Trace

Results
window.

Figure 14-4:
Trace

manipula-
tion buttons.

Reviewing Log Records
Let’s face it: Reviewing server logs is a boring, thankless task. However, this

mundane activity is one of the most important things you can do to keep

your server running efficiently. It also provides valuable information that will

assist you in your troubleshooting efforts.

SQL Server writes log data to two different locations during the course of

normal activity:

22_224656-ch14.indd 23822_224656-ch14.indd 238 8/21/08 5:42:40 PM8/21/08 5:42:40 PM

239 Chapter 14: Troubleshooting SQL Server 2008 Problems

 � SQL Server’s error log stores error information in a text file stored on

the server.

 � SQL Server also logs error information to the Windows Application Log,

accessible through Event Viewer.

SQL Server error log
SQL Server uses a plain-text file to store error information reported by the

SQL Server database engine. By default, the current SQL Server error log is

stored in this location:

Program Files\Microsoft SQL Server\MSSQL.n\MSSQL\LOG\ERRORLOG

When the log becomes full, SQL Server closes the file and creates a new one.

Old log files have a number appended to them indicating the sequence in

which they occurred. SQL Server saves them as

Program Files\Microsoft SQL Server\MSSQL.n\MSSQL\LOG\ERRORLOG.n

In both cases, replace the n in the filenames with an integer number indicat-

ing the file/directory sequence number.

You may view these log files using any standard text file viewer, such as

Windows Notepad.

Windows Application Log
Microsoft Windows operating systems provide their own native logging facil-

ity, accessed through the Windows Event Viewer. The three standard logs

created by Windows are as follows:

 � Application Log

 � Security Log

 � System Log

SQL Server writes error information to the Windows Application Log, as

shown in Figure 14-5.

22_224656-ch14.indd 23922_224656-ch14.indd 239 8/21/08 5:42:40 PM8/21/08 5:42:40 PM

240 Part V: SQL Server Administration

Figure 14-5:
The

Windows
Application

Log.

The exact process for starting Event Viewer varies slightly depending on the

Windows operating system you use to run your SQL Server. Consult the doc-

umentation for that operating system if you’re not familiar with Event Viewer.

SQL Server Management
Studio Log File Viewer
In addition to the SQL Server error log and the Windows Application Log, SQL

Server creates separate log files for SQL Agent activity and Database Mail

events. As a SQL Server administrator, you may find it cumbersome to review

and correlate records from all those locations. Fortunately, SSMS provides a

Log File Viewer (shown in Figure 14-6) that consolidates all of this informa-

tion in a single location.

Here’s how to start Log File Viewer:

 1. Open SSMS and connect to the database server of your choice.

 2. Expand the Management folder.

 3. Right-click the SQL Server Logs folder.

 4. Choose View➪SQL Server and Windows Log from the pop-up menu.

22_224656-ch14.indd 24022_224656-ch14.indd 240 8/21/08 5:42:40 PM8/21/08 5:42:40 PM

241 Chapter 14: Troubleshooting SQL Server 2008 Problems

Figure 14-6:
The SSMS

Log File
Viewer.

 Log File Viewer opens and displays a consolidated view of the SQL

Server error log and the Windows Application Log, sorted by the time of

each event’s occurrence, which helps you identify related entries from

different log files.

 You can add different log files to this view by expanding the entries in the

Select Logs pane and checking the boxes to the left of any files you’d like to

import into Log File Viewer.

Monitoring Your Server with
Performance Studio

SQL Server Performance Studio provides you with a data warehouse-driven

way to monitor SQL Server performance. In this section, I explain how you

can configure and use Performance Studio to monitor your SQL Server

installations.

22_224656-ch14.indd 24122_224656-ch14.indd 241 8/21/08 5:42:41 PM8/21/08 5:42:41 PM

242 Part V: SQL Server Administration

Configuring Performance Studio
Before you use Performance Studio for the first time, you must tell SQL

Server that you want to begin collecting performance data. Here’s how you

configure the Management Data Warehouse to begin collecting this data:

 1. Open SQL Server Management Studio and connect to the SQL Server

instance you want to monitor.

 2. Click the plus (+) icon to the left of the Management folder to expand

that folder.

 3. Right-click Data Collection and select Configure Management Data

Warehouse from the pop-up menu.

 You see the Configure Management Data Warehouse Wizard’s introduc-

tory screen.

 4. Click the Next button to advance past the Welcome screen.

 5. Choose Create or upgrade a management data warehouse and click

the Next button to continue.

 You see the Configure Management Data Warehouse Storage screen,

shown in Figure 14-7.

Figure 14-7:
Config uring

Manage-
ment Data

Ware house
Storage.

22_224656-ch14.indd 24222_224656-ch14.indd 242 8/21/08 5:42:41 PM8/21/08 5:42:41 PM

243 Chapter 14: Troubleshooting SQL Server 2008 Problems

 6. Click the New button to create a new database for the storage of per-

formance data.

 SQL Server opens the New Database window.

 7. Provide a name for the performance statistics database and click the

OK button to create it.

 8. Select the user accounts or groups you want to grant data warehouse

permissions using the check boxes to the left of their names in the

Users Mapped to This Login section of the Map Logins and Users

window.

 I show this process in Figure 14-8.

Figure 14-8:
Mapping

logins and
users.

 9. Select the role(s) you want to grant each user in the Database Role

Membership section of the window.

 The available roles are the following:

 • mdw_admin: Grants the user/group full administrative control of

the Management Data Warehouse.

 • mdw_reader: Grants the user/group read-only permission to the

Management Data Warehouse.

 • mdw_writer: Grants the user/group write permission to the

Management Data Warehouse.

22_224656-ch14.indd 24322_224656-ch14.indd 243 8/21/08 5:42:42 PM8/21/08 5:42:42 PM

244 Part V: SQL Server Administration

 10. Click the Next button to continue.

 11. Click the Finish button to create the Management Data Warehouse.

 You see the status window shown in Figure 14-9 while SQL Server cre-

ates and enables the data warehouse.

Figure 14-9:
Creating the

Manage-
ment Data

Ware house.

 12. Click the Close button to exit the wizard.

Reviewing performance data
You can review performance data collected in the Management Data

Warehouse by viewing reports directly within SQL Server Management

Studio. Here’s how:

 1. Open SQL Server Management Studio and connect to the SQL Server

instance you want to monitor.

 2. Click the plus (+) icon to the left of the Management folder to expand

that folder.

 3. Right-click the Data Collection folder and select the Reports sub-

menu from the pop-up menu. From this submenu, choose the Data

Warehouse submenu. From that submenu, select the name of the

report you want to view.

22_224656-ch14.indd 24422_224656-ch14.indd 244 8/21/08 5:42:42 PM8/21/08 5:42:42 PM

245 Chapter 14: Troubleshooting SQL Server 2008 Problems

 SQL Server provides built-in reports covering the following areas:

 • Disk Usage

 • Query Statistics

 • Server Activity

 Figure 14-10 shows an example of the Disk Usage Summary report.

Figure 14-10:
Disk Usage

Summary
report.

 Figure 14-11 shows an example of the Server Activity Summary report.

Figure 14-11:
Server

Activity
Summary

report.

22_224656-ch14.indd 24522_224656-ch14.indd 245 8/21/08 5:42:42 PM8/21/08 5:42:42 PM

246 Part V: SQL Server Administration

Tuning Your Database with Database
Engine Tuning Advisor

Every SQL Server deployment performs different tasks with a different mix

of queries. Some may involve a large number of simple data lookup opera-

tions, whereas others may perform repetitive complex joins. Each of these

instances requires unique configuration to achieve optimal performance. The

configuration that works best for the server performing simple queries won’t

work well on the server performing complex join operations.

SQL Server includes the Database Engine Tuning Advisor (DTA) to help you

optimally configure your database based upon your unique workload require-

ments. DTA makes recommendations to help you improve the physical

structure of your database. It also allows you to immediately implement the

recommendations or view the Transact-SQL statements required to imple-

ment the recommendations manually at a later time.

Here’s how to run DTA:

 1. With SSMS open, choose Database Engine Tuning Advisor from the

Tools menu.

 DTA opens and displays a connection window.

 2. Fill in the connection details and click the Connect button.

 DTA presents the tuning setup window shown in Figure 14-12.

Figure 14-12:
The

Database
Engine
Tuning

Advisor.

3. Select the File radio button in the Workload section and navigate to the file

22_224656-ch14.indd 24622_224656-ch14.indd 246 8/21/08 5:42:43 PM8/21/08 5:42:43 PM

247 Chapter 14: Troubleshooting SQL Server 2008 Problems

you’d like to use as your workload.

 The workload tells DTA what tasks you’d like to optimize your database

performance against. You may specify a SQL Trace file, an XML file, or

an SQL file. You should ensure that you choose a workload file that cor-

responds to common activity on your database server. DTA will use this

workload as the basis for all its recommendations.

 I describe creating a SQL Trace workload in the section “Creating a

Trace with SQL Server Profiler,” earlier in this chapter. Be sure to use

the Tuning template when creating a trace for use with DTA.

 4. Click the check box(es) to the left of the database(s) you’d like to tune.

 5. Click the Start Analysis button.

 DTA begins the analysis process and shows the status screen that

appears in Figure 14-13.

 6. Review the recommendations presented and select the check boxes to

the left of any you want to implement.

 Figure 14-14 shows sample recommendations. If you want to apply any

recommendations immediately, select the check boxes to their left.

 7. Select Apply Recommendations from the Actions menu.

Figure 14-13:
The

Database
Engine
Tuning

Advisor
Status

Screen.

22_224656-ch14.indd 24722_224656-ch14.indd 247 8/21/08 5:42:44 PM8/21/08 5:42:44 PM

248 Part V: SQL Server Administration

Figure 14-14:
Database

Engine
Tuning

Advisor
recommen-

dations.

 8. Click the OK button to apply the recommendations immediately.

 Alternatively, you may use the Schedule for later option to apply the rec-

ommendations at a future time.

 9. Review the status screen and click the Close button to complete the

process.

22_224656-ch14.indd 24822_224656-ch14.indd 248 8/21/08 5:42:45 PM8/21/08 5:42:45 PM

Chapter 15

Replicating Data across
Multiple Servers

In This Chapter
� Using replication to share SQL Server data across multiple servers

� Publishing data from the primary server

� Subscribing to published data

Sometimes a single database server isn’t sufficient to meet all your

business requirements. You may need to distribute your data among

multiple servers to meet growing demand. Fortunately, SQL Server provides

several replication options to help you keep the contents of multiple data-

bases synchronized.

Some scenarios in which you might want to employ replication include:

 � You have multiple, geographically separated sites that need access to

information on your SQL Server database. Connections between the

sites are slow and expensive, so you want to host a local copy of the

database at each site.

 � You want to provide travelling users with an offline copy of a portion of

your database for use on the road.

 � Your organization has complex reporting needs, and you want to pro-

vide the reporting group with an offline copy of your database that the

group can use without affecting the performance of your production SQL

Server environment.

23_224656-ch15.indd 24923_224656-ch15.indd 249 8/21/08 5:43:26 PM8/21/08 5:43:26 PM

250 Part V: SQL Server Administration

Understanding Replication
Replication allows you to transport copies of your databases between different

SQL Server instances and keep those copies up-to-date as the database changes.

SQL Server provides several different replication technologies, each of which

uses different techniques to provide varying levels of currency in the data.

Server roles
In any SQL Server replication environment, there are three server roles that

must be filled: the publisher, the distributor, and the subscriber.

Figure 15-1 illustrates the flow of data in this model from the publisher to the

distributor and on to the subscribers.

Publisher
The publisher is the ultimate source of the data published in any replication

scenario. It contains the “master” copy of the database and provides this

data to the distributor.

Distributor
The distributor is responsible for managing the distribution of published data

to the subscribers. In many cases, the publisher and distributor run on the

same database server, referred to as a local distributor. In high-performance

environments, DBAs often separate the distributor onto a separate database

server, known as the remote distributor.

Subscriber
Subscribers are the end receivers of the published data. They may contact

the distributor periodically to check for updates (known as the pull subscrip-

tion model, shown in Figure 15-2). Alternatively, they may wait until the dis-

tributor contacts them with a notification that an update is available (known

as the push subscription model, shown in Figure 15-3).

You should also be aware of the relationships between publishers, distribu-

tors, and subscribers. Each publication must have one and only one distribu-

tor. However, a single distributor may contain publications from multiple

publishers. Each one of those publications may, in turn, serve multiple sub-

scribers. This is the model illustrated in Figure 15-1, shown previously.

23_224656-ch15.indd 25023_224656-ch15.indd 250 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

251 Chapter 15: Replicating Data across Multiple Servers

Figure 15-1:
The SQL

Server
replication

model.

Publisher Publisher

Distributor

Subscriber SubscriberSubscriber

23_224656-ch15.indd 25123_224656-ch15.indd 251 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

252 Part V: SQL Server Administration

Figure 15-2:
The pull

subscription
model.

Distributor

Subscriber

Request Up
da

te

Articles and publications
In the previous section, you probably noticed that the terminology used for

replication is borrowed from the publishing industry. The publisher/distribu-

tor/subscriber model used for replication is exactly the same as that used to

publish and distribute magazines.

23_224656-ch15.indd 25223_224656-ch15.indd 252 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

253 Chapter 15: Replicating Data across Multiple Servers

Figure 15-3:
The push

subscription
model.

Distributor

Subscriber

Up
da

te

You can continue with this analogy to describe the type of information that

the publisher makes available to subscribers. The publisher selects various

articles that it desires to publish and then bundles them together into a pub-

lication that it makes available to subscribers through the distributor.

23_224656-ch15.indd 25323_224656-ch15.indd 253 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

254 Part V: SQL Server Administration

SQL Server publishers may create articles that correspond to the following

types of database object:

 � Tables

 � Views

 � Stored procedures

 � User-defined functions

Replication types
There’s one more set of technologies I need to discuss before I move on to

the process of creating and subscribing to publications: the types of replica-

tion supported by SQL Server 2008. Three options are available to you: snap-

shot replication, transactional replication, and merge replication.

Snapshot replication
Snapshot replication is the simplest form of SQL Server replication. In this

scenario, the publisher periodically provides the distributor with a complete

copy (or “snapshot”) of the publication. The distributor, in turn, provides

that copy to each one of the subscribers.

Snapshot replication may be simple to understand, but it can also be quite

costly in terms of resources consumed, especially if your publication con-

tains large amounts of data that are infrequently updated. Consider the case

of a large product catalog that receives a massive update once per quarter

but also receives minor price changes on a daily basis. If you use snapshot

replication, you will need to transfer the entire product catalog to each sub-

scriber during each update interval.

Snapshot replication also does not allow the subscriber to perform any

updates to the database. It is strictly a one-way replication model, passing

data from the publisher to the subscriber and not allowing any flow of data in

the reverse direction.

Transactional replication
Transactional replication steps in where snapshot replication falls short. It

begins by performing an initial snapshot replication to create a baseline at

the subscriber. However, from that point forward, rather than transfer the

entire publication, it transfers only update information. Here’s how transac-

tional replication works:

23_224656-ch15.indd 25423_224656-ch15.indd 254 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

255 Chapter 15: Replicating Data across Multiple Servers

 1. The subscriber receives an initial snapshot from the distributor and

uses it to create a baseline database.

 2. The Log Reader Agent running on the distributor monitors the publish-

er’s transaction log.

 3. When the Log Reader Agent detects an INSERT, UPDATE, or DELETE

statement (or any other statement that modifies data), it stores them in

the distributor’s distribution database.

 4. The Distribution Agent retrieves committed transactions from the distri-

bution database and sends them to the subscriber.

 The Distribution Agent runs in different places, depending upon the subscrip-

tion model in use. In the case of a push subscription, the Distribution Agent

runs on the distributor. This allows it to monitor the distribution database for

changes continuously and push those changes out to subscribers when neces-

sary. In the case of a pull subscription, the Distribution Agent runs at the sub-

scriber, allowing it to reach out to the distributor when the subscriber wants

to receive an update.

As does snapshot replication, the basic transactional replication model uses

a one-way data flow; subscribers cannot make updates to the publisher.

However, two variations on basic transactional replication exist that allow

such exchanges: bidirectional transactional replication and peer-to-peer

transactional replication. These approaches are beyond the scope of this

book.

Some common scenarios that are particularly well-suited for transactional

replication include:

 � Business requirements dictate a very short period of time between when

updates are made at the publisher and received at the subscriber (also

known as “low latency”).

 � Applications require access to each intermediate state of a database,

rather than just the final end state.

 � One of the participants in the replication runs a DBMS other than SQL

Server (such as Oracle).

Merge replication
Merge replication is designed to support the incorporation of data modifica-

tions made at either the publisher or a subscriber. In contrast to transac-

tional replication, which relies upon the use of the transaction log, merge

replication uses a series of triggers to detect changes in the database and

propagate those changes to other participating databases.

23_224656-ch15.indd 25523_224656-ch15.indd 255 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

256 Part V: SQL Server Administration

You can use merge replication in any case in which the subscribers need to

update data and want those changes reflected at the publisher. It’s also quite

useful when the subscribers need to take data offline, make changes, and

then later synchronize with the publisher by applying those changes.

Here’s the basic idea behind merge replication:

 1. The Merge Agent applies the initial snapshot to all subscribers.

 2. Triggers notify the Merge Agent each time a modification occurs to a

published table.

 3. The Merge Agent resolves any conflicts that may exist and propagates

the changes to the publisher and other subscribers.

The trick with merge replication is that conflicts may occur that require

resolution. For example, suppose that you’re using merge replication to allow

users to set the prices of items in a retail store. Also suppose that three dif-

ferent managers check out laptops at the beginning of the day and make pric-

ing changes. Matthew changes the price of carrots at 2 p.m. and synchronizes

his changes at 4 p.m. Renee changes the price at 10 a.m. but doesn’t synchro-

nize her changes until 5 p.m. Finally, Christopher changes the price at

3 p.m. and synchronizes immediately. Which price change should SQL

Server retain?

The answer to that question is complex. You could argue that Renee’s change

was the last to synchronize, so it should be permanent. On the other hand,

you could make a similar argument that Christopher was the last to change

the price, so his change should be permanent.

By default, SQL Server uses the following merge replication conflict resolu-

tion protocol:

 � If one of the changes is made on the publisher, that change is made

permanent.

 � If both changes are made on subscribers using client subscriptions (nor-

mally used in pull subscriptions), the change from the first subscriber to

synchronize is made permanent.

 � If both changes are made on subscribers using server subscriptions

(normally used in push subscriptions), the change from the subscriber

with the highest priority value is made permanent.

There isn’t a single “correct” answer to this question. Therefore, SQL Server

allows you to modify this default behavior by selecting a conflict resolver

during the merge replication setup process. You select this conflict resolve

on the Article Properties screen, shown in Figure 15-4.

23_224656-ch15.indd 25623_224656-ch15.indd 256 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

257 Chapter 15: Replicating Data across Multiple Servers

Figure 15-4:
Merge

replication
article

properties.

The Article Properties screen allows you to select from the COM Conflict

Resolvers predefined by Microsoft and listed in Table 15-1. One of those

resolvers, the Stored Procedure Resolver, allows you to create a stored pro-

cedure with user-defined logic specifying how SQL Server should resolve

conflicts. Alternatively, if you’re a developer with COM skills, you can create

your own COM Conflict Resolver.

Table 15-1 Merge Replication COM Conflict Resolvers
Resolver Name Description

Additive Conflict Resolver Adds the conflicting values together to
determine the winning value.

Averaging Conflict Resolver Averages the conflicting values to deter-
mine the winning value.

DATETIME (Earlier Wins) Conflict
Resolver

Works only with DATETIME columns;
the earlier value wins.

DATETIME (Later Wins) Conflict
Resolver

Works only with DATETIME columns;
the later value wins.

Maximum Conflict Resolver The mathematically larger value wins.

Minimum Conflict Resolver The mathematically smaller value wins.
(continued)

23_224656-ch15.indd 25723_224656-ch15.indd 257 8/21/08 5:43:27 PM8/21/08 5:43:27 PM

258 Part V: SQL Server Administration

Table 15-1 (continued)
Resolver Name Description

Merge Text Conflict Resolver Works only with text columns; the two
columns are combined to form the
winner.

Subscriber Always Wins Conflict
Resolver

The value at the subscriber always wins.

Upload Only Conflict Resolver Changes uploaded to the publisher
win; changes on the publisher itself are
ignored.

Download Only Conflict Resolver Changes on the publisher win; changes
uploaded to the publisher are ignored.

Stored Procedure Resolver Allows you to specify a stored procedure
containing custom conflict resolution
logic.

 Replication is a complex topic with many technical nuances. In the remainder

of this chapter, I describe how to set up a simple snapshot replication sce-

nario. My intention is to make sure that you have a basic understanding of

SQL Server’s replication capabilities and can recognize when replication might

play a useful role in your organization. If you intend to implement replication

in a production environment, I strongly recommend reading one of the many

books dedicated to this topic alone.

Publishing Data with
Snapshot Replication

The previous section covers the basics of replication; in this section, I turn to

the actual implementation of replication in a SQL Server environment using

snapshot replication. This is a three-step process. In this section, I explain

the first two steps: creating a distributor and creating a publisher. The next

section covers the third step: creating subscribers.

Creating a distributor
The first thing you must do when enabling snapshot replication is create a

distributor. As mentioned earlier in this chapter, most small environments

23_224656-ch15.indd 25823_224656-ch15.indd 258 8/21/08 5:43:28 PM8/21/08 5:43:28 PM

259 Chapter 15: Replicating Data across Multiple Servers

use the local distributor model, where the publisher and distributor reside

on the same server. I assume that’s the case as I walk you through the dis-

tributor creation process:

 1. Open SQL Server Management Studio and connect to the database

server that you want to serve as the publisher/distributor.

 2. Right-click the Replication folder and choose Configure Distribution

from the pop-up menu.

 The Configure Distribution Wizard begins.

 3. Click Next to advance past the wizard’s welcome screen.

 4. Select the option that this server will act as its own distributor and

click the Next button to continue.

 Figure 15-5 illustrates this step. If you want to use a remote distributor

instead, you must first create the distributor and then return to this

screen to select it from the list.

Figure 15-5:
Selecting

the dis-
tributor.

 5. Accept the default selection — that SQL Server Agent should start

automatically — and click the Next button to continue.

 Replication requires SQL Server Agent, so it’s a good idea to let it start

automatically when the computer starts. If you don’t select this option,

you will need to manually start SQL Server Agent each time the com-

puter restarts, or replication will fail.

23_224656-ch15.indd 25923_224656-ch15.indd 259 8/21/08 5:43:28 PM8/21/08 5:43:28 PM

260 Part V: SQL Server Administration

 6. Type a UNC name or local file path for snapshot file storage into the

Snapshot Folder field and click the Next button to continue.

 If you’re using only push subscriptions, you may provide either a local

path (for example, C:\Program Files\Microsoft SQL Server\
MSSQL.1\MSSQL\ReplData). If you want to support pull subscriptions,

you must provide a UNC path (for example, \\myserver\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\ReplData).

 7. Accept the default name and paths for the distribution database and

click Next to continue.

 8. Select any other servers that may act as publishers to this distributor

and click the Next button to continue.

 Figure 15-6 illustrates this process. By default, the distributor may act

as a publisher to itself. If you want to allow additional publishers, select

them here.

Figure 15-6:
Selecting

authorized
publishers.

 9. Click the Next button to advance to the confirmation screen.

 If you want to defer the distributor configuration to a later date, you

may deselect the Configure Distribution check box and instead use the

Generate a Script File with Steps to Configure Distribution check box.

This option creates a reusable script.

 10. Review the choices presented in the Complete the Wizard screen and

click Finish to configure your distributor.

23_224656-ch15.indd 26023_224656-ch15.indd 260 8/21/08 5:43:28 PM8/21/08 5:43:28 PM

261 Chapter 15: Replicating Data across Multiple Servers

 When you click Finish, SQL Server presents the status screen shown in

Figure 15-7. It may take a few minutes for the configuration to success-

fully complete.

Figure 15-7:
Distributor
configura-
tion status.

Creating a publication
After you’ve successfully created a publisher/distributor, you next need to

create a publication to which other servers may subscribe. The publication

contains those articles (database objects) that you would like to replicate

across servers. Here’s how to create a publication:

 1. With SSMS open, expand the Replication folder of the server that will

serve as the publisher.

 2. Right-click Local Publications and select New Publication from the

pop-up menu.

 The New Publication Wizard starts.

 3. Click the Next button to launch the wizard.

 4. Choose the publication database and click the Next button, as shown

in Figure 15-8.

 5. Choose the publication type and click the Next button.

 In this example, I use the Snapshot publication type, as shown in

Figure 15-9.

23_224656-ch15.indd 26123_224656-ch15.indd 261 8/21/08 5:43:28 PM8/21/08 5:43:28 PM

262 Part V: SQL Server Administration

Figure 15-8:
Choosing a
publication

database.

Figure 15-9:
Choosing a
publication

type.

 6. Choose the article(s) you wish to publish and click the Next button.

 You may select from any tables, stored procedures, or user-defined

functions within the publication database, as shown in Figure 15-10.

Optionally, you may click the Article Properties button to set advanced

properties for each article.

23_224656-ch15.indd 26223_224656-ch15.indd 262 8/21/08 5:43:29 PM8/21/08 5:43:29 PM

263 Chapter 15: Replicating Data across Multiple Servers

Figure 15-10:
Choosing

articles
for the

publication.

 7. Click Next to advance past the Filter Table Rows screen.

 If you want, you may use a table filter to limit the rows that are repli-

cated to subscribers for security or performance reasons. For example,

if you’re replicating a sales catalog to retail stores, you may want to

filter out catalog entries for items not available at a particular store.

 8. Click the Create a Snapshot Immediately check box and click the Next

button to continue.

 You may also schedule the Snapshot Agent to run at future time(s) on

this screen.

 9. Click the Security Settings button and provide the appropriate account

details for the Snapshot Agent.

 You must provide two items on the screen shown in Figure 15-11:

 • A domain or machine account used to run the Snapshot Agent.

For security reasons, Microsoft does not recommend running the

Snapshot Agent using the SQL Server Agent account.

 • A method for connecting to the publisher, either by impersonating

the process account or using a specified SQL Server login.

 10. Click OK to close the Snapshot Agent Security screen and then click

the Next button to continue.

 11. In the next screen of the New Publication Wizard, click the Next

button to accept the default option of creating the publication immedi-

ately upon completion of the wizard.

23_224656-ch15.indd 26323_224656-ch15.indd 263 8/21/08 5:43:29 PM8/21/08 5:43:29 PM

264 Part V: SQL Server Administration

Figure 15-11:
The

Snapshot
Agent

Security
screen.

 As with the creation of a publisher/distributor, you may also choose to

create a script that you can use to generate the publication at a later date.

 12. Provide a publication name in the Publication Name text box and

click the Finish button to create it.

 SQL Server presents the status screen shown in Figure 15-12. The pro-

cess of creating the publication may take a few minutes to complete.

Figure 15-12:
Publication

status.

23_224656-ch15.indd 26423_224656-ch15.indd 264 8/21/08 5:43:30 PM8/21/08 5:43:30 PM

265 Chapter 15: Replicating Data across Multiple Servers

Subscribing to a Publication
The final step in setting up replication is configuring subscribers for the pub-

lication. You can do this at either the subscriber or the publisher, using the

following process:

 1. With SSMS open, expand the Replication folder on the publisher.

 2. Expand the Local Publications folder.

 3. Right-click the publication to which you want to create a subscription

and select New Subscriptions from the pop-up menu.

 SQL Server starts the New Subscription Wizard.

 4. Click Next to advance past the Welcome screen.

 5. Verify that the Publication pages shows the appropriate publisher and

publication. Click the Next button to continue.

 6. Choose either a push or pull subscription and click the Next button to

continue.

 The choice of a push or pull subscription (described earlier in this chap-

ter, in the “Server roles” section) determines where the Distribution

Agent runs. For push subscriptions, the Distribution Agent runs on the

distributor. For pull subscriptions, the Distribution Agent runs on the

subscriber. In this example, I choose a pull subscription, as shown in

Figure 15-13.

Figure 15-13:
Selecting

a pull sub-
scription.

23_224656-ch15.indd 26523_224656-ch15.indd 265 8/21/08 5:43:30 PM8/21/08 5:43:30 PM

266 Part V: SQL Server Administration

 7. Choose one or more subscribers using the check boxes, and choose

subscription databases using the pull-down menus. When finished,

click the Next button to continue.

 Figure 15-14 illustrates this process. If you want to add a subscriber not

already shown, click the Add Subscriber button to configure the server.

 You may use this wizard to configure subscribers running Microsoft SQL

Server, Oracle, or IBM DB2 databases.

Figure 15-14:
Selecting
subscrib-

ers and
subscription

databases.

 8. Click the ellipses (. . .) button to configure Distribution Agent Security.

After configuring the appropriate information, click the Next button to

continue.

 You need to specify account information for the subscription connec-

tions. Doing so is similar to the process shown in Figure 15-11 for the

Snapshot Agent.

 9. Choose a Distribution Agent schedule and click the Next button to

continue.

 By default, the Distribution Agent synchronizes continuously. You may

choose to make it synchronize on demand or define a custom schedule.

 10. Choose when to initialize the subscription and click the Next button to

continue.

23_224656-ch15.indd 26623_224656-ch15.indd 266 8/21/08 5:43:31 PM8/21/08 5:43:31 PM

267 Chapter 15: Replicating Data across Multiple Servers

 Normally, you should accept the default option Immediately. If you set

up a delayed synchronization schedule, you may opt to delay the sub-

scription initialization until the first synchronization occurs.

 11. Click Next to accept the default option to create the subscription

immediately upon exiting the wizard.

 As with other processes described in this chapter, you also have the

option to create a script that will generate the subscription at a later

time.

 12. Click the Finish button to create the subscription.

 SQL Server presents a status window similar to that shown previously in

Figure 15-12 and notifies you when the operation completes.

Monitoring Replication
SQL Server provides a simple mechanism for viewing replication status: the

Replication Monitor, shown in Figure 15-15.

Figure 15-15:
The SQL

Server
Replication

Monitor.

Replication Monitor allows you to track the following:

 � The status of each publication on a server, including

 • Number of subscriptions active

 • Number of subscriptions currently synchronizing

 • Average performance

 • Worst performance

23_224656-ch15.indd 26723_224656-ch15.indd 267 8/21/08 5:43:31 PM8/21/08 5:43:31 PM

268 Part V: SQL Server Administration

 � The status of each subscription, including

 • The subscribing database

 • The publication

 • The date and time of the last synchronization

 � The status of the following agents:

 • Snapshot Agent

 • Log Reader Agent

 • Queue Reader Agent

 • Maintenance Jobs

To invoke Replication Monitor, simply right-click the Replication folder in

SSMS and select Launch Replication Monitor from the pop-up menu.

23_224656-ch15.indd 26823_224656-ch15.indd 268 8/21/08 5:43:32 PM8/21/08 5:43:32 PM

Part VI
Protecting
Your Data

24_224656-pp06.indd 26924_224656-pp06.indd 269 8/21/08 5:43:57 PM8/21/08 5:43:57 PM

In this part . . .

Knowing how to protect your SQL Server data

from unwanted intruders and natural or technical

disasters is a critical requirement, and this part covers

the basics of doing just that. You find out how to imple-

ment access controls to limit the rights of database users

and how to use encryption to protect your information

from unauthorized access. An entire chapter in this part

is dedicated to introducing the concept of transactions

and explaining how they can protect the integrity of

data stored within your database. Finally, you discover

techniques for backing up your database so that you can

restore your data in the event of a disaster.

24_224656-pp06.indd 27024_224656-pp06.indd 270 8/21/08 5:43:57 PM8/21/08 5:43:57 PM

Chapter 16

Protecting Your Data
from Prying Eyes

In This Chapter
� Creating database logins and user accounts

� Using roles to manage user rights efficiently

� Protecting data with encryption in storage and transit

� Auditing SQL Server activity

Databases often contain extremely sensitive information that is valuable

to your organization and your customers. In many cases, laws, regula-

tions, or good business practices dictate that you protect that information

from disclosure to unauthorized individuals.

In this chapter, I discuss the mechanisms offered in SQL Server 2008 that

help you protect your data from unauthorized access. I describe the process

of managing database users and roles, grouping objects with schemas, using

encryption to protect data in storage and transit, and enabling database

auditing to meet compliance requirements.

Creating and Managing Logins
As I discuss in Chapter 2, SQL Server has two different authentication modes:

Windows Authentication mode and SQL Server and Windows Authentication

(mixed) mode. In either case, you may grant Windows users permission to

connect to and manipulate SQL Server databases. If you use mixed mode

authentication, you may also create dedicated SQL Server logins that exist

only on the database server.

25_224656-ch16.indd 27125_224656-ch16.indd 271 8/21/08 5:44:44 PM8/21/08 5:44:44 PM

272 Part VI: Protecting Your Data

Creating server logins
Creating a database user follows the same basic process, whether you’re

granting SQL Server permissions to a Windows user or creating a SQL Server

login account. Here are the basic steps:

 1. Open SQL Server Management Studio and connect to the SQL Server

instance for which you want to create a new login.

 2. Expand the Security folder.

 3. Right-click the Logins folder and select New Login from the pop-up

menu.

 SSMS displays the Login - New window, shown in Figure 16-1.

 4. Click the radio button corresponding to the type of login you want to

create: Windows authentication or SQL Server authentication.

 5. Provide a login name in the appropriate text box.

Figure 16-1:
Creating a
new data-

base login.

 If you chose SQL Server authentication, simply provide a login name

(such as jdoe). If you chose Windows authentication, provide it in the

form DOMAIN\username (such as MYDOMAIN\jdoe). In addition to

selecting Windows domain users, you may also create a login corre-

sponding to a Windows domain group.

25_224656-ch16.indd 27225_224656-ch16.indd 272 8/21/08 5:44:44 PM8/21/08 5:44:44 PM

273 Chapter 16: Protecting Your Data from Prying Eyes

 6. Provide SQL Server authentication details, if applicable.

 If you are creating a SQL Server authentication login, provide a pass-

word by typing it in the Password text box and the Confirmation text

box. You may also choose whether you want to enforce the server’s

password complexity and expiration policies or force the user to change

the password at the next login.

 7. Use the drop-down lists to change the login’s default database and lan-

guage, if you want.

 8. Click the OK button to create the login.

Removing database logins
If you want to remove an existing login (using either SQL Server authentica-

tion or Windows authentication), simply right-click it in the Logins folder of

SSMS and choose Delete from the pop-up menu.

 You cannot delete a login associated with an active server session. You must

first disconnect the user before deleting the login.

Adding Database Users
Once you’ve created server logins, you must explicitly grant those logins

access to databases by creating corresponding database users. Here’s how

you create a new database user:

 1. With SSMS open, connect to the server containing the database where

you would like to add a user.

 2. Expand the Databases folder.

 3. Expand the folder of the databases where you would like to add a

user.

 4. Expand the Security folder of that database.

 5. Right-click the Users folder and select New User from the pop-up

menu.

 SSMS displays the Database User - New window shown in Figure 16-2.

25_224656-ch16.indd 27325_224656-ch16.indd 273 8/21/08 5:44:45 PM8/21/08 5:44:45 PM

274 Part VI: Protecting Your Data

Figure 16-2:
Creating a
new data-
base user.

 Note that Login Name isn’t the only user option on this page. SQL Server also

allows you to create database users associated with digital certificates, asym-

metric encryption keys, and no login. These advanced options are beyond the

scope of this book.

 6. Provide the name of the login you wish to associate with the database

user in the Login Name text box.

 You may click the ellipses (. . .) button if you want to search for the

login.

 7. Provide the name of the database user in the User Name check box.

 You may choose anything you want. However, best practice dictates

that you use the same name for both the username and the login name.

 8. Click the OK button to create the user.

If you want, you may explicitly grant permissions to database users in the

Securables page of the New Database User window. However, database roles

offer a much more efficient way to manage user permissions. I discuss the

creation and management of database roles in the next section.

25_224656-ch16.indd 27425_224656-ch16.indd 274 8/21/08 5:44:45 PM8/21/08 5:44:45 PM

275 Chapter 16: Protecting Your Data from Prying Eyes

Managing Rights with Roles
Managing individual user permissions on a large SQL Server deployment can

be an absolute nightmare for database administrators. It’s very difficult to

track the large number of permissions associated with each user account,

and the sheer complexity of this approach makes errors very likely.

SQL Server helps avoid these problems by providing server and database

roles. You may define roles that are associated with a type of user, rather

than an individual, and then assign that role the permissions required by that

type of user. You may then associate each user with one or more roles neces-

sary to complete the user’s job function.

Understanding fixed server roles
SQL Server provides eight built-in server-level roles that define sets of user

permissions that apply to the entire server. These fixed server roles appear

in Table 16-1. These are the only possible options for server-wide roles; you

can’t create your own server roles.

Table 16-1 SQL Server 2008 Fixed Server Roles
Role Name Description

Bulkadmin Authorized to perform bulk insert operations

Dbcreator Authorized to create, alter, drop or restore
any database on the SQL Server instance

Diskadmin Authorized to manage disk files

Processadmin Authorized to end processes running on the
SQL Server instance

Securityadmin Authorized to grant, revoke and deny server
and database permissions and reset passwords

Serveradmin Authorized to shut down the server and
modify server configuration options

Setupadmin Authorized to add and removed linked server
instances

Sysadmin Authorized to perform any action on the SQL
Server

25_224656-ch16.indd 27525_224656-ch16.indd 275 8/21/08 5:44:46 PM8/21/08 5:44:46 PM

276 Part VI: Protecting Your Data

You may grant fixed server roles only to server logins. Database users may

not be members of a server role. Here’s how to view and modify the member-

ship of a fixed server role:

 1. With SSMS open, connect to the server instance for which you want to

modify role membership.

 2. Expand the Security folder.

 3. Expand the Server Roles folder.

 4. Right-click the role you want to modify and choose Properties from

the pop-up menu.

 SSMS displays the Server Role Properties window, shown in Figure 16-3.

You may review the list of role members that appears within this

window.

 5. Use the Add or Remove buttons to modify role members.

Figure 16-3:
Modifying

server role
member-

ship.

25_224656-ch16.indd 27625_224656-ch16.indd 276 8/21/08 5:44:46 PM8/21/08 5:44:46 PM

277 Chapter 16: Protecting Your Data from Prying Eyes

 By default, any member of the Administrators group on the local Windows

server is also a member of the sysadmin fixed server role. Generally speaking,

you should practice separation of privileges and not grant this permission

to system administrators. Rather, it should be reserved for database admin-

istrators. You may change this default behavior by removing the BUILTIN\

Administrators group from the sysadmin role.

Understanding fixed database roles
Just as SQL Server provides built-in fixed server roles to grant server-wide

permissions, it also provides fixed database roles to grant users predeter-

mined sets of permissions to individual databases. The SQL Server 2008 fixed

database roles appear in Table 16-2.

Table 16-2 Fixed Database Roles
Role Name Description

db_accessadmin Authorized to add or remove database users
corresponding to Windows users/groups and
SQL Server logins

db_backupoperator Authorized to back up the database

db_datareader Authorized to read any data from all user
tables

db_datawriter Authorize to add, delete or modify data in any
user table

db_ddladmin Authorized to run any DDL command, modify-
ing the structure of the database

db_denydatareader Prohibited from reading data stored in any
user table

db_denydatawriter Prohibited from adding, deleting or modifying
data from any user table

db_owner Authorized to perform any database con-
figuration activity, including dropping the
database

db_securityadmin Authorized to modify role membership and
database permissions

You may grant database role membership to any database user by following

these steps:

25_224656-ch16.indd 27725_224656-ch16.indd 277 8/21/08 5:44:46 PM8/21/08 5:44:46 PM

278 Part VI: Protecting Your Data

 1. With SSMS open, connect to the server instance that contains the data-

base for which you want to modify role membership.

 2. Expand the Databases folder.

 3. Expand the folder corresponding to the database for which you want

to modify role membership.

 4. Expand the Security folder.

 5. Expand the Roles folder.

 6. Expand the Database Roles folder.

 7. Right-click the role you want to modify and choose Properties from

the pop-up menu.

 SSMS displays the Database Role Properties window, shown in Figure 16-4.

You may review the list of role members that appears within this

window.

 8. Use the Add or Remove buttons to modify role members.

Figure 16-4:
Modifying
database

role mem-
bership.

25_224656-ch16.indd 27825_224656-ch16.indd 278 8/21/08 5:44:46 PM8/21/08 5:44:46 PM

279 Chapter 16: Protecting Your Data from Prying Eyes

Creating database roles
In contrast to server roles, SQL Server allows you to create your own custom

database roles to simplify database management. For example, if you’re

running a retail store, you might create database roles for cashiers, store

managers, district managers, and executives. You could then grant differ-

ent permissions to each one of these roles. Granting different permissions

gives you tremendous flexibility in management. For example, if a user

changes jobs within the organization, you simply need to change his or her

role membership to correspond to the new job responsibilities. Similarly, if

you replace an employee, you need only to remove the old employee’s user

account and create an account for the new employee with the same role

membership.

The real power of roles becomes clear when you need to change the permis-

sions associated with a role. Suppose, for example, that you create a new

table that store managers must access. Rather than go through every user

account to determine whether the individual is a store manager requiring

access to that role, you simply add permissions for that table to the store

manager role.

Here’s the process for creating a new database role:

 1. With SSMS open, connect to the server instance that contains the data-

base for which you want to modify role membership.

 2. Expand the Databases folder.

 3. Expand the folder corresponding to the database for which you want

to modify role membership.

 4. Expand the Security folder.

 5. Expand the Roles folder.

 6. Right-click the Database Roles folder and select New➪Database Role

from the pop-up menu.

 SSMS displays the Database Role - New window, shown in Figure 16-5.

 7. Provide a descriptive name for the role in the Role Name text box.

 The Owner text box allows you to specify the database user that will

own the role. If you leave this text box blank, the account used to create

the role will own it.

 8. Click the Securables page in the Select a Page portion of the New

Database Role window.

 SSMS displays the Securables page, shown in Figure 16-6.

25_224656-ch16.indd 27925_224656-ch16.indd 279 8/21/08 5:44:47 PM8/21/08 5:44:47 PM

280 Part VI: Protecting Your Data

Figure 16-5:
Creating a
new data-
base role.

Figure 16-6:
Adding role

permissions.

25_224656-ch16.indd 28025_224656-ch16.indd 280 8/21/08 5:44:47 PM8/21/08 5:44:47 PM

281 Chapter 16: Protecting Your Data from Prying Eyes

 9. Click the Search button.

 SSMS displays the Add Objects dialog box, shown in Figure 16-7.

Figure 16-7:
The Add

Objects dia-
log box.

 10. Click the OK button to accept the Specific Objects option.

 (Alternatively, you may decide to assign permissions for all objects of a

certain type or all objects contained within a database schema.)

 SSMS displays the Select Object Types window, shown in Figure 16-8.

Figure 16-8:
Selecting

object
types.

 11. Select the type(s) of objects you want to grant the role permissions on

and click OK to continue.

 12. Click the Browse button.

 SSMS displays the Browse for Objects window, shown in Figure 16-9.

 13. Select the database object(s) you want to change role permissions on.

 14. Click the OK button twice to return to the Database Role - New

window.

25_224656-ch16.indd 28125_224656-ch16.indd 281 8/21/08 5:44:48 PM8/21/08 5:44:48 PM

282 Part VI: Protecting Your Data

Figure 16-9:
Browsing

for database
objects.

 15. Highlight the first object in the Securables portion of the page and

click the appropriate check boxes for the permissions you want to

grant the role on that object.

 16. Repeat Step 15 for each object in the Securables portion of the page.

 17. Click OK to create the new role.

During this process, you assigned permissions on database objects to the

new role. The permissions you may choose from depend on the type of

object you are accessing. For each of those permissions, you may grant the

following types of access:

 � GRANT allows role members to use the permission.

 � WITH GRANT allows role members to grant others use of the permission.

 � DENY explicitly forbids role members to use the permission.

 Keep in mind that DENY permissions override GRANT permissions.

Assigning users to database roles
You may assign a user to one or more roles within a database by selecting

the role in the Database role membership section of the user’s Properties

page. This page is shown in Figure 16-2, which appears earlier in this chapter.

Preserving Confidentiality
with Encryption

Encryption technology allows you to prevent unauthorized access to infor-

mation by people who bypass the normal security controls implemented by

25_224656-ch16.indd 28225_224656-ch16.indd 282 8/21/08 5:44:49 PM8/21/08 5:44:49 PM

283 Chapter 16: Protecting Your Data from Prying Eyes

your database. For example, someone with access to your network might

attempt to eavesdrop on network communications, or a person with physical

access to your server might try to remove the hard drive and access it with

data recovery tools.

Encryption blocks these attacks by making the data undecipherable to

people who don’t have access to the appropriate encryption key. SQL Server

provides encryption mechanisms that allow you to protect your data while

it’s in transit (protection against network eavesdroppers) and while it’s

stored (protection against those accessing the physical disk). In this section,

I explain how you can implement these protections.

Encrypting database connections
Encrypting database connections protects you against network eavesdrop-

pers who might intercept the communications between a user and the data-

base server.

 To encrypt database connections, you must first ensure that your server

administrator has configured an SSL certificate for the server. This process

varies depending upon your server operating system and is beyond the scope

of this book.

Here’s how to encrypt database connections in SQL Server 2008:

 1. Start SQL Server Configuration Manager.

 2. Expand the SQL Server Network Configuration folder.

 3. Right-click the Protocols folder corresponding to the SQL Server

instance you want to configure and select Properties from the pop-up

menu.

 SQL Server Configuration Manager displays the Protocol Properties

window, shown in Figure 16-10.

 4. Use the drop-down box to change the Force Encryption value to Yes.

 Selecting this option will require that all database users connect using

encryption, thereby providing maximum protection for your database.

 5. Select the Certificate tab of the Protocol Properties window.

 6. Use the Certificate drop-down menu to select the certificate installed

by your server administrator.

 7. Click the OK button to close the window.

25_224656-ch16.indd 28325_224656-ch16.indd 283 8/21/08 5:44:49 PM8/21/08 5:44:49 PM

284 Part VI: Protecting Your Data

Figure 16-10:
Configuring
encryption

for SQL
Server

connections.

When you complete this process, the server will reject any requests for unen-

crypted communications. This feature will protect your database contents

from eavesdropping while in transit between the client and server.

Encrypting stored data
SQL Server 2008 introduces Transparent Data Encryption (TDE), a new

technology designed to allow the encryption of stored data. TDE provides

real-time encryption and decryption of the data and log files that SQL Server

stores on disk. TDE also ensures the encryption of database backups.

Creating a master encryption key and certificate
Before you can use TDE for the first time on a SQL Server instance, you need

to perform two preliminary tasks: creating a master encryption key and creat-

ing a certificate based upon that key. SQL Server will use this key to protect

the keys you use to encrypt individual databases.

To create a master encryption key, use the following Transact-SQL

statements:

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘pick_a_strong_

password’;

25_224656-ch16.indd 28425_224656-ch16.indd 284 8/21/08 5:44:49 PM8/21/08 5:44:49 PM

285 Chapter 16: Protecting Your Data from Prying Eyes

 Replace the phrase pick_a_strong_password with the password of your

choice. This password is literally the key to the security of your entire SQL

Server database; be sure to treat it with care!

After you’ve created a master encryption key, you need to create a server

certificate with the following Transact-SQL statement:

CREATE CERTIFICATE MyCert WITH SUBJECT = ‘My Encryption
Certificate’;

You may replace the certificate name (MyCert) and the subject (My
Encryption Certificate) with the name and subject of your choice.

Encrypting a database with Transparent Data Encryption
After you’ve created a server certificate, you can use it to configure Trans-

parent Data Encryption for your database. First, you must create a database

encryption key based upon your server certificate. Here’s the Transact-SQL

to create such a key:

USE sales;

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE MyCert;

Replace sales with the name of the database you plan to encrypt. You may

choose among several encryption algorithms supported by SQL Server 2008:

 � AES_256 uses the Advanced Encryption Standard (AES) with a 256-bit

encryption key. This is the strongest encryption supported by SQL

Server, but it also causes the greatest performance impact on the server.

 � AES_192 uses AES with a shorter, 192-bit encryption key.

 � AES_128 uses AES with the shortest possible (128-bit) encryption key.

This is the default algorithm used by SQL Server 2008 unless you specify

an alternative algorithm.

 � TRIPLE_DES_3KEY uses three iterations of the Data Encryption

Standard (DES) with three different keys. It has an effective key length of

112 bits.

After creating the encryption key, you may turn on encryption using the fol-

lowing Transact-SQL statement:

ALTER DATABASE Sales
SET ENCRYPTION ON;

25_224656-ch16.indd 28525_224656-ch16.indd 285 8/21/08 5:44:50 PM8/21/08 5:44:50 PM

286 Part VI: Protecting Your Data

SQL Server then begins a background process that encrypts the database.

The time required to complete the initial database encryption will vary based

upon the size of the database and the available server resources.

Backing up your master key and certificates
You must create backups of both your master encryption key and any server

certificates used to encrypt data stored in your database. Without those

backups, you will be unable to restore data to SQL Server in the event of a

disaster. Be sure to create the backups and store them in a safe location.

Here’s the Transact-SQL statement to back up your master encryption key:

BACKUP MASTER KEY TO FILE = ‘filename’
 ENCRYPTION BY PASSWORD = ‘choose_a_strong_password’

You can use the following command to back up a server certificate:

BACKUP CERTIFICATE MyCert TO FILE = ‘cert_filename’
 WITH PRIVATE KEY (FILE = ‘key_filename’,
 ENCRYPTION BY PASSWORD = ‘choose_a_strong_password’);

Restoring a master key or certificate
If you later need to restore a master key, you may use the following Transact-

SQL command:

RESTORE MASTER KEY FROM FILE = ‘filename’
 DECRYPTION BY PASSWORD = ‘backup_password’
 ENCRYPTION BY PASSWORD = ‘choose_a_strong_password’

The password specified in the first clause must be the same password speci-

fied in the ENCRYPTION BY PASSWORD clause of the BACKUP MASTER KEY

command used to create the backup. SQL Server will use the password speci-

fied in the second clause to encrypt the new master key.

There is no comparable command to restore a certificate. Rather, you use the

CREATE CERTIFICATE command and specify that the certificate be created

from a file, as follows:

CREATE CERTIFICATE MyCert
FROM FILE = ‘cert_filename’
WITH PRIVATE KEY (FILE = ‘key_filename’,
DECRYPTION BY PASSWORD = ‘backup_password’)

25_224656-ch16.indd 28625_224656-ch16.indd 286 8/21/08 5:44:50 PM8/21/08 5:44:50 PM

287 Chapter 16: Protecting Your Data from Prying Eyes

Auditing SQL Server Activity
SQL Server 2008 introduces a greatly enhanced auditing capability that

allows you to meet regulatory compliance requirements. For example, if

you’re responsible for a database that stores credit card information, the

Payment Card Industry Data Security Standard requires that you use auto-

mated auditing to log all individual user accesses to cardholder data. SQL

Server’s auditing facility allows you to meet these requirements.

Enabling and configuring auditing
Using SQL Server’s auditing functionality involves two discrete steps: creat-

ing an audit object and creating either a server audit specification or a data-

base audit specification. As you might imagine, server audit specifications

allow you to track server-level events, such as logins. Database audit specifi-

cations, on the other hand, monitor database-specific activity, including data

insertions, deletions, modifications, and accesses.

Creating an audit object
Before you begin auditing SQL Server activity, you must create a SQL Server

audit object. This object identifies the location where SQL Server will store

the audit trail, but does not identify the activities that will be audited. Here’s

how to create a new audit object:

 1. Open SQL Server Management Studio and connect to the database

server you want to audit.

 2. Click the plus (+) icon to the left of the Security folder to expand the

folder.

 3. Right-click the Audits folder and select New Audit from the pop-up

menu.

 You see the Create Audit page, shown in Figure 16-11.

 4. Provide a name for your audit object in the Audit name field.

 5. Select an audit destination from the list.

 SQL Server allows you to store your audit records in three different

types of location:

 • To a file

 • To the Windows Application log

 • To the Windows Security log

25_224656-ch16.indd 28725_224656-ch16.indd 287 8/21/08 5:44:50 PM8/21/08 5:44:50 PM

288 Part VI: Protecting Your Data

Figure 16-11:
Creating an

audit object.

 6. Click the OK button to create the audit object.

Creating a server audit specification
Server audit specifications allow you to identify the specific activities you’d

like SQL Server to audit. Here’s how to create one:

 1. Open SQL Server Management Studio and connect to the database

server you want to audit.

 2. Click the plus (+) icon to the left of the Security folder to expand the

folder.

 3. Right-click the Server Audit Specifications folder and select New

Server Audit Specification from the pop-up menu.

 You see the Create Server Audit Specification page, shown in Figure 16-12.

 4. Provide a name for the specification in the Name field.

 5. Select a Server Audit object from the list.

 6. Provide details of the actions you want to audit by creating rows in

the grid in the bottom half of the window.

25_224656-ch16.indd 28825_224656-ch16.indd 288 8/21/08 5:44:50 PM8/21/08 5:44:50 PM

289 Chapter 16: Protecting Your Data from Prying Eyes

Figure 16-12:
Creating a

server audit
specifica-

tion.

 You may add new audit activities by using the Audit Action Type drop-

down menu in a blank row of the grid. For example, you might select the

SCHEMA_OBJECT_PERMISSION_CHANGE_GROUP to audit all object per-

mission changes. Similarly, you may use the FAILED_LOGIN_GROUP to

monitor failed login attempts.

 7. Click the OK button to create the specification and begin auditing.

Creating a database audit specification
If you wish to audit database-specific activity, you may do so by creating a

database audit specification. Here’s the process:

 1. Open SQL Server Management Studio and connect to the database

server you wish to audit.

 2. Click on the plus (+) icon to the left of the Databases folder to expand

the folder.

 3. Expand the folder for the database you want to audit.

 4. Expand the Security folder for that database.

 5. Right-click Database Audit Specifications and select New Database

Audit Specification from the pop-up menu.

 You see the Create Database Audit Specification window, shown in

Figure 16-13.

25_224656-ch16.indd 28925_224656-ch16.indd 289 8/21/08 5:44:51 PM8/21/08 5:44:51 PM

290 Part VI: Protecting Your Data

Figure 16-13:
Creating a
database

audit
specification.

 6. Provide a name for the specification in the Name field.

 7. Select a Server Audit object from the list.

 8. Use the Audit Action Type drop-down menu to select an action you

want to audit in the first empty row of the grid.

 9. Click the ellipses (. . .) icon in the Object Name field of that row to

open the Select Objects window.

 10. Click the Browse button.

 11. Select the check boxes to the left of the object(s) you want to audit.

 12. Click the OK button to close the Browse for Objects window.

 13. Click the OK button to close the Select Objects window.

 You may repeat Steps 8–13 as many times as you want to audit different

actions in the same database audit specification.

 14. Click the ellipses (. . .) icon in the Principal Name field of that row to

open the Select Objects window.

 Follow the same process used in Steps 10–13 to select the principal(s)

you wish to audit.

 15. Click the OK button to create the specification and begin auditing.

25_224656-ch16.indd 29025_224656-ch16.indd 290 8/21/08 5:44:52 PM8/21/08 5:44:52 PM

291 Chapter 16: Protecting Your Data from Prying Eyes

Reviewing audit records
SQL Server provides a built-in log file viewer that allows you to peruse SQL

Server audit records. Here’s how you can open the viewer:

 1. Open SQL Server Management Studio and connect to the database

server containing the audit records you want to view.

 2. Click the plus (+) icon to the left of the Security folder to expand the

folder.

 3. Expand the Audits folder.

 4. Right-click the Server Audit object used to log the audit events you

want to view and choose View Audit Logs from the pop-up menu.

 The records in Log File Viewer open, as shown in Figure 16-14.

Figure 16-14:
Reviewing

Audit
Records

with Log File
Viewer.

25_224656-ch16.indd 29125_224656-ch16.indd 291 8/21/08 5:44:52 PM8/21/08 5:44:52 PM

292 Part VI: Protecting Your Data

25_224656-ch16.indd 29225_224656-ch16.indd 292 8/21/08 5:44:53 PM8/21/08 5:44:53 PM

Chapter 17

Preserving the Integrity
of Your Transactions

In This Chapter
� Using the ACID model to describe transaction benefits

� Creating, committing, and rolling back transactions in SQL Server 2008

� Testing Transact-SQL statements using transactions

� Handling error conditions within transactions using TRY. . .CATCH

Until this point in the book, I’ve presented each Transact-SQL statement

as an isolated event. When I’ve used more than one statement, they’ve

been a series of independent statements. Sometimes, however, this isn’t the

behavior you want. In many cases, you’ll want a series of SQL statements

to occur as an “all or nothing” event. Transactions are the answer to this

dilemma. They allow you to bundle independent Transact-SQL statements

into a linked bundle.

For example, consider the process used to transfer money between two dif-

ferent bank accounts. You might view the transfer of $50 from account X to

account Y as two separate steps:

 1. Deduct $50 from account X.

 2. Add $50 to account Y.

However, the bank certainly doesn’t want these two steps to occur indepen-

dently, for several reasons:

 � If the deduction of funds from account X doesn’t succeed (perhaps

the balance is less than $50), the bank doesn’t want $50 credited to

account Y.

 � If the addition of funds to account Y doesn’t succeed (perhaps account

Y doesn’t exist or is closed), the bank doesn’t want $50 deducted from

account X.

26_224656-ch17.indd 29326_224656-ch17.indd 293 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

294 Part VI: Protecting Your Data

Combining these two statements into a single transaction allows the bank to

ensure that they happen in the desired “all or nothing” fashion.

In this chapter, you find out how to use the ACID model to preserve transac-

tion integrity and to work with transactions in SQL Server 2008.

Preserving Transaction Integrity
with the ACID Model

Database professionals use the ACID model to describe the four essential fea-

tures of a database transaction. That is, a database transaction should be

 � Atomic

 � Consistent

 � Isolated

 � Durable

In the remainder of this section, I describe each one of these transaction characteristics.

Atomicity
The atomicity requirement of the ACID model formalizes the “all or nothing”

principle I describe in the introduction to this chapter. Atomicity requires

that, in order for a transaction to succeed, all the components of that trans-

action must succeed. If a single component of the transaction fails, all the

transaction components must be rolled back (undone).

In addition to scenarios in which Transact-SQL statements may dictate

that the transaction be rolled back, atomicity requires that the database be

resilient in the face of hardware and software failures. If a database server

crashes in the middle of a transaction, the database should not contain any

changes made as intermediate steps in that transaction when it restarts.

To put this idea in the context of the banking example I use in the introduc-

tion to this chapter, suppose that the database server crashes after Step 1

executes but before Step 2 takes place. When the database restarts, account

X should not show the $50 deduction because the second half of the transac-

tion (crediting the funds to account Y) did not take place.

26_224656-ch17.indd 29426_224656-ch17.indd 294 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

295 Chapter 17: Preserving the Integrity of Your Transactions

Consistency
The consistency principle requires that all data written to the database is

consistent with business rules. In Chapter 6, I discuss how you can use con-

straints and relationships to enforce business rules in your database. The

consistency principle ensures that the database always honors those

requirements.

In the world of transactions, consistency requires that the database be com-

pliant with all those rules when the transaction completes. You can view a

transaction as bringing the database from one consistent state (the state

prior to the transaction) to another consistent state (the state after the

transaction).

If the Transact-SQL statements contained within the transaction would bring

the database into an inconsistent state, the entire transaction must be rolled

back so that the database remains in its original, consistent state.

Isolation
The isolation principle states that each database transaction must be exe-

cuted independently of other database transactions. For example, suppose

you had the following two transactions:

Transaction 1

 1. Check to see whether account X has a balance >= $50.

 2. Deduct $50 from account X.

 3. Add $50 to account Y.

Transaction 2

 1. Check to see whether account X has a balance >= $50.

 2. Deduct $50 from account X.

 3. Add $50 to account Z.

As you can see, I’ve added a step to this example that verifies the balance of

account X before deducting funds. If you execute these transactions sequen-

tially (that is, execute transaction 1, wait until it completes, and then execute

transaction 2 or vice versa), it’s obvious that there isn’t any problem.

26_224656-ch17.indd 29526_224656-ch17.indd 295 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

296 Part VI: Protecting Your Data

However, suppose that you execute these two transactions simultaneously?

If they are not isolated from each other, the sequence of events shown in

Figure 17-1 might occur.

Figure 17-1:
Improper

transaction
sequencing.

Transaction 1

1. Check account X balance

2. Deduct $50 from account X

3. Add $50 to account Y

Transaction 2

1. Check account X balance

2. Deduct $50 from account X

3. Add $50 to account Y

In that sequence of events, trouble occurs if the opening balance of account

X is $75. Both transactions first check the balance and see that it’s over $50.

Then they go and carry out their tasks, leaving account X with a negative

balance.

Fortunately, databases prevent this scenario by enforcing isolation —

transactions must execute independently. In this case, all three statements

of Transaction 1 must complete before Transaction 2 may begin.

Durability
Durability ensures that after a transaction commits, it is permanently

recorded in the database. If a hardware or software failure occurs, adminis-

trators may use database backups and transaction logs to restore the data-

base to its state prior to the failure.

Creating SQL Server Transactions
Creating a SQL Server transaction in Transact-SQL is straightforward. Simply

write the series of T-SQL statements that you’d like to bundle in a transaction

and wrap them in BEGIN TRANSACTION and COMMIT TRANSACTION state-

ments, as follows:

26_224656-ch17.indd 29626_224656-ch17.indd 296 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

297 Chapter 17: Preserving the Integrity of Your Transactions

BEGIN TRANSACTION

<Transact-SQL Statements>
COMMIT TRANSACTION

SQL Server is now responsible for executing all the statements between the

BEGIN TRANSACTION and COMMIT TRANSACTION statements in an atomic,

consistent, isolated, and durable fashion.

COMMIT or ROLLBACK?
In addition to adding protection against a database failure, you may program-

matically rollback transactions because of an error condition. For example,

consider the following transaction, designed to record the transfer of 100

oranges from a Tampa warehouse to a New York warehouse:

DECLARE @tampa INT

BEGIN TRANSACTION

UPDATE stock
SET inventory = inventory + 100
WHERE item = ‘Oranges’
AND warehouse = ‘New York’

UPDATE stock
SET inventory = inventory - 100
WHERE item = ‘Oranges’
AND warehouse = ‘Tampa’

SELECT @tampa = inventory
FROM stock
WHERE item = ‘Oranges’
AND warehouse = ‘Tampa’

IF (@tampa < 0)
 BEGIN
 PRINT ‘Insufficient Inventory’
 ROLLBACK TRANSACTION
 END
ELSE
 BEGIN
 PRINT ‘Transfer Successful’
 COMMIT TRANSACTION
 END

26_224656-ch17.indd 29726_224656-ch17.indd 297 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

298 Part VI: Protecting Your Data

Note that this transaction includes several steps:

 1. Increase the inventory of oranges in New York by 100.

 2. Decrease the inventory of oranges in Tampa by 100.

 3. Check the inventory of oranges in Tampa to see whether it is greater

than zero. If the transaction resulted in a negative inventory, print an

insufficient inventory error message and roll back the transaction. If the

inventory in Tampa is zero or greater, print a message that the transfer

was successful and commit the transfer to the database.

 You may have noticed that there’s an easier way to accomplish this task: I

could have simply checked the Tampa inventory level before changing either

warehouse’s inventory. I used this somewhat roundabout approach to pro-

vide a simple scenario of programmatically making the decision of whether to

commit or roll back a transaction.

Testing Transact-SQL statements
with transactions

 Transactions are a great way to test Transact-SQL statements. If you’re trying

to determine whether a transaction will execute properly, wrap it in a set of

BEGIN TRANSACTION. . .ROLLBACK TRANSACTION statements.

Suppose, for example, that you wanted to evaluate the effect of a 20 percent

increase in the wholesale price of products in your store with a current

wholesale price under 50 cents. You might first want to see what the table

would look like after the price increase without actually making changes to

your database. You can test the increase by using this Transact-SQL code:

SELECT item, warehouse, wholesale_price
FROM stock;

BEGIN TRANSACTION

UPDATE stock
SET wholesale_price = wholesale_price * 1.2
WHERE wholesale_price < 0.5;

SELECT item, warehouse, wholesale_price
FROM stock;

ROLLBACK TRANSACTION

SELECT item, warehouse, wholesale_price
FROM stock;

26_224656-ch17.indd 29826_224656-ch17.indd 298 8/21/08 5:45:30 PM8/21/08 5:45:30 PM

299 Chapter 17: Preserving the Integrity of Your Transactions

Before I show you the results, take a moment to walk through this series of

statements. Note that the first thing I do is show the prices in the stock table,

outside the transaction. This provides a “before” look at the table’s contents.

Next, I begin the transaction with the BEGIN TRANSACTION statement. Inside

the transaction, I change the prices and then check the price table again.

Finally, I cancel my work by rolling back the transaction with the ROLLBACK
TRANSACTION statement and then display the final state of the table.

Here are the results:

item warehouse wholesale_price
---------------- ---------------- ---------------------
Apples Seattle 0.13
Limes Seattle 0.33
Oranges New York 0.55
Oranges Tampa 0.52

(4 row(s) affected)

(2 row(s) affected)

item warehouse wholesale_price
---------------- ---------------- ---------------------
Apples Seattle 0.156
Limes Seattle 0.396
Oranges New York 0.55
Oranges Tampa 0.52

(4 row(s) affected)

item warehouse wholesale_price
---------------- ---------------- ---------------------
Apples Seattle 0.13
Limes Seattle 0.33
Oranges New York 0.55
Oranges Tampa 0.52

(4 row(s) affected)

The results demonstrate the usefulness of rolling back transactions as a

testing tool. The first table in the output is the status of the stock table

before I make any modification. It concludes with the statement (4 row(s)
affected).

Next, you see the simple statement (2 row(s) affected). This is your

indication that the UPDATE statement processed successfully and changed

the price of the two items in the table with wholesale prices under 50 cents.

26_224656-ch17.indd 29926_224656-ch17.indd 299 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

300 Part VI: Protecting Your Data

The evidence of this appears in the following table output. Note that the

prices of apples and oranges in Seattle are 20 percent higher in that table.

This output is from the second SELECT statement.

Recall that I followed the second SELECT statement with a ROLLBACK
TRANSACTION command. This command undoes the effect of all SQL state-

ments that occurred after the BEGIN TRANSACTION statement, including the

price update.

Finally, the last set of output is from the SELECT statement that appeared

after the ROLLBACK TRANSACTION statement. This output is outside the

loop of our transaction and shows that the final table state is the same as

the initial table state. My test transaction had no effect on the integrity of the

table.

 SQL Server also supports the use of named savepoints to partially roll back

a transaction to an intermediate step. You might find this feature useful for

performance reasons when dealing with large, complex transactions. The use

of savepoints is beyond the scope of this book. For more information, see SQL
Server Books Online.

Changing the Transaction Isolation Level
Early in this chapter, I describe how the ACID model requires databases to

enforce strict isolation between transactions. Well, as with any rule, there are

exceptions to the strict enforcement of transaction isolation. You may, when

the situation warrants, change the way SQL Server isolates transactions from

one another.

SQL Sever provides five different isolation levels that define different tech-

niques for handling isolation. I describe them in the next five subsections.

READ UNCOMMITTED
READ UNCOMMITTED is the lowest possible isolation level in SQL Server.

When you set this mode, you allow the reading of data that a transaction has

written, but not committed, to the database. Reading at this level may result

in three potentially unpleasant situations:

26_224656-ch17.indd 30026_224656-ch17.indd 300 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

301 Chapter 17: Preserving the Integrity of Your Transactions

 � Dirty reads occur when a transaction reads data written by another

uncommitted transaction that is later rolled back.

 � Phantom reads occur when a transaction inserts or deletes a row from a

range of values accessed by another transaction. The other transaction,

if it reads the values before and after the update, may see “phantom”

rows that appear or disappear.

 � Nonrepeatable reads occur when a transaction reads the same data

twice. If another transaction writes the same data between the two read

statements, the original transaction may retrieve two different values for

the same data element at different points in the transaction.

To set the transaction isolation level to READ UNCOMMITTED, execute the fol-

lowing Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

READ COMMITTED
READ COMMITTED is the default isolation level used by SQL Server 2008. It

implements traditional database isolation and ensures that Transact-SQL

statements cannot read data written to a database by an uncommitted trans-

action. The statement will instead see the state of the database table before

the transaction executed.

The READ COMMITTED level solves the problems associated with dirty reads

but still suffers from nonrepeatable reads and phantom reads.

If you need to restore the transaction isolation level to the READ COMMITTED

state, execute this statement within SSMS:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

REPEATABLE READ
If you need to prevent nonrepeatable reads, SQL Server offers the REPEATABLE
READ isolation level. It enhances READ COMMITTED mode by adding the

requirement that a transaction may not modify data already read by a second

transaction until the second transaction completes or rolls back.

To set the transaction isolation level to REPEATABLE READ, use the following

Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

26_224656-ch17.indd 30126_224656-ch17.indd 301 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

302 Part VI: Protecting Your Data

SERIALIZABLE
SERIALIZABLE transaction isolation prevents phantom reads through the

use of range locks. These locks prevent other transactions from inserting or

deleting records within a range accessed by a second transaction until the

second transaction completes.

To set the transaction isolation level to SERIALIZABLE, use the following

Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SNAPSHOT
SNAPSHOT isolation offers an interesting twist: It essentially takes a picture

of the data at the beginning of a transaction and allows the transaction to

access that snapshot until it completes.

To set the transaction isolation level to SNAPSHOT, use the following

Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

 In case you’re having trouble keeping SQL Server transaction isolation levels

straight, Table 17-1 offers a convenient summary of their benefits.

Table 17-1 SQL Server 2008 Isolation Issues
Isolation Level Dirty Reads? Nonrepeatable

Reads?
Phantom
Reads?

READ
UNCOMMITTED

X X X

READ
COMMITTED

X X

REPEATABLE
READ

X

SERIALIZABLE

SNAPSHOT

26_224656-ch17.indd 30226_224656-ch17.indd 302 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

303 Chapter 17: Preserving the Integrity of Your Transactions

Handling Errors
Error handling is another essential component of Transact-SQL develop-

ment. SQL Server contains robust mechanisms to detect error conditions

and, by default, aborts a Transact-SQL statement that would cause an error.

However, you may want to handle errors more gracefully by specifically

instructing SQL Server how it should react to an error. You can use error

handling in conjunction with transactions to accommodate error situations

with an explicitly defined response.

Transact-SQL uses the “try. . .catch” exception handling model familiar to

many software developers. Simply put, you write a T-SQL statement that

you want SQL Server to “try” and then provide instructions on how it should

“catch” an error if one occurs. The syntax for implementing “try. . .catch”

error handling is as follows:

BEGIN TRY
 <T-SQL to “try”>
END TRY

BEGIN CATCH
 <T-SQL to execute in the event of an error>
END CATCH

Here’s a more concrete example. Suppose someone attempted to execute the

following statement:

INSERT INTO stock(item, warehouse, inventory, wholesale_
price)

VALUES(‘Apples’, ‘Seattle’, 100, 0.15)

If the stock table already contained a record with the same item and ware-

house (the table’s primary key), SQL Server would report this error and ter-

minate the statement’s execution with this error:

Msg 2627, Level 14, State 1, Line 1
Violation of PRIMARY KEY constraint ‘PK_stock’. Cannot

insert duplicate key in object ‘dbo.stock’.
The statement has been terminated.

If the SQL statement is part of a larger application, this type of error might

cause a program crash. Additionally, it doesn’t provide you with the ability

to handle the error in a manner of your own choosing. Suppose, for example,

that you wanted the program to print a friendly error message and notify the

supervisor of the error by e-mail. You might use the following “try. . .catch”

statement:

26_224656-ch17.indd 30326_224656-ch17.indd 303 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

304 Part VI: Protecting Your Data

BEGIN TRY
 INSERT INTO stock(item, warehouse, inventory,

wholesale_price)
 VALUES(‘Apples’, ‘Seattle’, 100, 0.15)
END TRY
BEGIN CATCH
 PRINT ‘Error: ‘ + ERROR_MESSAGE();
 EXEC msdb.dbo.sp_send_dbmail
 @profile_name = ‘Inventory Mail’,
 @recipients = ‘supervisor@foo.com’,
 @body = ‘An error occurred creating the Seattle

Apples inventory record.’,
 @subject = ‘Inventory Duplication Error’ ;
END CATCH

Executing this statement produces the following result:

Error: Violation of PRIMARY KEY constraint ‘PK_stock’.
Cannot insert duplicate key in object ‘dbo.
stock’.

Mail queued.

Isn’t that a much friendlier response? More important, the execution of the

calling program may continue normally.

 When writing Transact-SQL statements that may produce error conditions,

you should always enclose them in a “try. . .catch” statement that gracefully

handles the error. This is especially important if you’re accessing SQL Server

programmatically.

26_224656-ch17.indd 30426_224656-ch17.indd 304 8/21/08 5:45:31 PM8/21/08 5:45:31 PM

Chapter 18

Preparing for Disaster
In This Chapter
� Backing up your databases and transaction logs

� Working with SQL Server recovery models

� Restoring data after a disaster

Whether we like it or not, bad things happen. When I was a new system

administrator, an old pro in my office summed this reality up well by

offering me this advice: “Don’t think of disaster recovery as preparing for if a

disaster happens; think of it as preparing for when a disaster happens.” Sure,

your data center might not be swept away by floodwaters or destroyed by a

fire or earthquake. I can, however, guarantee that you will suffer some sort of

disaster at some point in the future.

The most common type of disaster you need to prepare for is a system fail-

ure caused by faulty hardware, software, or user error. Hard drive failure,

for example, is one of the most common problems occurring on produc-

tion systems. Despite the march of technology, hard drives still rely upon

mechanical, fast-moving parts that are prone to failure. Disaster recovery

technologies such as RAID arrays and clustering help minimize the impact

of such a failure on your environment, but no set of countermeasures can

totally eliminate the risk.

Fortunately, SQL Server 2008 includes advanced disaster recovery functional-

ity designed to help you protect your organization’s data from the effects of

such events. In this chapter, I discuss the use of these technologies to back

up and restore your business data.

Backing Up Your Data
The general concept of a backup is simple and probably something you’re

familiar with from other aspects of computing. Backups involve the creation

27_224656-ch18.indd 30527_224656-ch18.indd 305 8/21/08 6:43:52 PM8/21/08 6:43:52 PM

306 Part VI: Protecting Your Data

of a copy of your data that’s stored in a separate location for use the in the

event of a critical failure. If such a failure occurs, administrators restore

that backup, bringing the system back to its state at the time the backup

occurred.

Backing up databases
The full database backup is the most basic type of backup offered by SQL

Server. Full backups create a file that contains a copy of every single scrap

of data used by a database for any type of object (for example, tables, stored

procedures, user-defined functions, triggers). If you create a full backup, you

can use that file at a later date to restore your entire database to any SQL

Server instance.

Here’s how to create a full database backup:

 1. With SSMS open, connect to the server containing the database you

want to back up.

 2. Expand the Databases folder.

 3. Right-click the database you want to back up and choose Tasks➪Back

Up from the pop-up menu.

 SQL Server presents the Back Up Database window, shown in Figure 18-1.

 4. Verify that the database specified in the drop-down menu is the data-

base that you want to back up.

 5. Verify that the Backup type is set to Full.

 6. Provide a name and description for your database backup in the

appropriate text boxes.

 7. Choose whether you want to create the backup on disk or tape by

selecting the appropriate radio button.

 In this example, I assume that you’re backing up your data to disk.

 8. Click the Remove button to clear the default destination file location.

 You may, of course, leave this default location, but most people prefer

to specify the exact location for backup storage.

 9. Click the Add button.

 SQL Server presents the Select Backup Destination window, shown in

Figure 18-2.

27_224656-ch18.indd 30627_224656-ch18.indd 306 8/21/08 6:43:52 PM8/21/08 6:43:52 PM

307 Chapter 18: Preparing for Disaster

Figure 18-1:
Backing

up a SQL
Server

database.

Figure 18-2:
Selecting a

backup
destination.

 10. Provide the appropriate filename/path in the File name textbox and

click OK.

 One of the purposes of a backup is to protect you from hard drive fail-

ure. Be sure to store your backup on a physical hard drive that’s sepa-

rate from where your data files are located. Ideally, you should store

your backups on tape and then store those tapes in a different building.

27_224656-ch18.indd 30727_224656-ch18.indd 307 8/21/08 6:43:52 PM8/21/08 6:43:52 PM

308 Part VI: Protecting Your Data

 One easy way to keep your backups secure is to write them to a location

on disk that’s backed up by your enterprise backup software. Doing so

spares you, as a DBA, from the burden of managing backup tapes and

lets you take advantage of the backup infrastructure used and managed

by the rest of your organization. It’s always nice to transfer your work to

someone else!

 11. Click the Options page in the Select a Page pane of the Back Up

Database window.

 The Options page appears, as shown in Figure 18-3.

Figure 18-3:
The

Back Up
Database

Options
page.

 12. Verify that the Overwrite Media options match your preferences.

 These options are extremely important if you’re backing up your data-

base to a file that already exists. By default, SQL Server will append your

backup to the end of that file. If you want to conserve space by discard-

ing older backups, you need to select the Overwrite All Existing Backup

Sets option.

27_224656-ch18.indd 30827_224656-ch18.indd 308 8/21/08 6:43:53 PM8/21/08 6:43:53 PM

309 Chapter 18: Preparing for Disaster

 Other options on this page allow you more advanced control over your

backup sets. You may choose to use expiration dates to determine over-

write behavior and tell SQL Server how to handle older backup sets.

 13. Select the Verify Backup when Finished check box.

 When you select this box, SQL Server automatically tests the validity of

your backup when it completes. You should almost always enable this

option to ensure the integrity of your backups. The only case in which

you might not want to perform this verification is when time doesn’t

permit the full verification on the primary server. In such a case, you

should test your backup by other means, such as by restoring it on a

test/development SQL Server.

 14. Click the OK button to begin your backup.

 The length of time required to complete the backup will vary depending

upon the size of your database. When it completes, SQL Server displays

the dialog box shown in Figure 18-4.

Figure 18-4:
The Backup

Complete
dialog box.

Saving time with differential backups
For small databases, you may be able to perform full backups on a regular

basis, but larger databases may not provide that luxury. Large production

databases may not be able to frequently suffer the performance hit that

occurs during a backup. That’s where differential backups come into play.

In a large database, chances are that a very small percentage of data actually

changes in any given day. Therefore, when you perform a full backup, you’re

likely spending a lot of time copying the same data, day after day. Differential

backups eliminate this inefficiency by backing up only data that has been

added or changed since the last full backup. When it comes time to restore

your database, you need to first restore the full backup and then restore the

most recent differential backup.

 Many organizations use a simple approach to database backups: Perform a full

backup on the weekend and then perform a differential backup daily on other

days. This common approach works well.

27_224656-ch18.indd 30927_224656-ch18.indd 309 8/21/08 6:43:54 PM8/21/08 6:43:54 PM

310 Part VI: Protecting Your Data

Performing a differential backup follows almost exactly the same process as

creating a full backup, as described in the previous section. The only differ-

ence is that you should select the Differential backup type in the Back Up

Database window, as shown in Figure 18-5.

Figure 18-5:
Creating a
differential

backup.

 If you’ve worked in disaster recovery before, you may be familiar with the

concept of an incremental backup. In this approach, each incremental

backup contains only changes made since the last full or incremental backup.

Restoring backups created with this approach requires the full backup and all

incremental backups. SQL Server 2008 does not support incremental backups.

Saving space with backup compression
A new feature in SQL Server 2008 allows you to compress your backups to

save storage space. Compression uses mathematical algorithms to reduce

the size of database files, in a fashion similar to that used to create com-

pressed ZIP folders in Windows.

27_224656-ch18.indd 31027_224656-ch18.indd 310 8/21/08 6:43:54 PM8/21/08 6:43:54 PM

311 Chapter 18: Preparing for Disaster

Using backup compression requires setting the Compress Backup option

within SQL Server. You may do this by setting the server-wide compression

default using the following process:

 1. With SSMS open, right-click the server you want to configure and

select Properties from the pop-up menu.

 2. In the left pane under Select a Page, select Database Settings.

 3. Click the Compress Backup check box, as shown in Figure 18-6.

Figure 18-6:
Configuring

backup
compres-

sion.

You may override the server default on a per-backup setting by selecting

either the Compress Backup or Do Not Compress Backup option on the

Database Back Up Options page (shown previously in Figure 18-3).

 Before creating a backup, be sure to consider the cost/benefit trade-off of

using this option. Compressed backups take up less space on your disk.

Additionally, they often take less time to complete because the majority

of backup time is spent writing data to disk, and compression reduces the

amount of this data dramatically. The trade-off is that backup compression

27_224656-ch18.indd 31127_224656-ch18.indd 311 8/21/08 6:43:55 PM8/21/08 6:43:55 PM

312 Part VI: Protecting Your Data

consumes more CPU cycles than uncompressed backups, reducing the perfor-

mance of your server during the backup creation process.

 Full support for backup compression exists in SQL Server 2008 Enterprise

Edition only. Other editions may restore compressed backups, but Microsoft

restricted the ability to create backups to Enterprise Edition installations of

SQL Server. SQL Server 2005 and earlier installations cannot create or restore

compressed backups.

 If you’d like to see how much of an effect compression has on the size of your

backups, issue the following Transact-SQL command:

SELECT name, backup_size/compressed_backup_size AS ‘ratio’
FROM msdb..backupset;

SQL Server will respond with the name of each backup on your system

and the file’s compression ratio. For example, the following result shows

two backup sets for the same database. The first is uncompressed, and the

second uses backup compression:

name ratio
-------------------------- ---------------------
scan-Full Database Backup 1.000000000000000000
scan-Full Database Backup 4.876425871709171865

(2 row(s) affected)

The compression ratio of approximately 5 shown here indicates that the

compressed backup is saving approximately 80 percent of the disk space

used by the uncompressed backup.

Backing up the transaction log
SQL Server maintains a log file called the transaction log that includes a

record of any modifications made to the database. The transaction log plays

an important role in disaster recovery efforts because you can use it to

restore data modified after the most recent backup.

 The contents (and usefulness!) of the transaction log vary based upon the

recovery model you select. Specifically, transaction log backups are not avail-

able under the simple recovery model. I discuss this in more detail in the next

section.

If you have a database failure and need to restore from disk, you need to

first restore a full backup. You may then restore the most recent differential

27_224656-ch18.indd 31227_224656-ch18.indd 312 8/21/08 6:43:55 PM8/21/08 6:43:55 PM

313 Chapter 18: Preparing for Disaster

backup, if any exist. Finally, you can restore the database to the most current

state possible by applying all of the transaction log backups created since

the most recent full or differential backup.

A transaction log backup scenario
A common backup scenario for large databases is performing full backups

every Sunday, differential backups every day at midnight, and transaction log

backups on an hourly basis. In this case, if a database failure occurs at 2:30 a.m.

on Tuesday, you would apply backups in the following order:

 � Sunday’s full backup restores the database to its state on Sunday

morning.

 � Applying Wednesday’s differential backup restores any modifications

made between Sunday’s full backup and Wednesday’s differential

backup. This restores the database to its current state as of midnight

Wednesday.

 � Applying Wednesday’s 1 a.m. transaction log backup restores the data-

base to its state as of 1 a.m. Wednesday.

 � Applying Wednesday’s 2 a.m. transaction log backup restores the data-

base to its state as of 2 a.m. Wednesday.

Truncating and shrinking the transaction log
The transaction log can take up a significant
amount of space for an active SQL Server data-
base. There are two actions SQL Server per-
forms to manage the amount of space consumed
by the log: log truncation and log shrinking.

Normally, log truncation happens automatically.
If you’re using the simple recovery model, SQL
Server truncates the log every time you reach
a transaction checkpoint. If you’re using the full
or bulk-logged recovery model, SQL Server trun-
cates the transaction log after each log backup,
assuming that a checkpoint occurred since the
last backup. (For details on the situations that
may prevent this automatic truncation, see the
SQL Server Books Online article “Factors That
Can Delay Log Truncation.”)

Truncation simply removes entries from the
transaction log, making space available for
other log entries. It doesn’t affect the physical
size of the transaction log file on disk. In Chapter
12, I discuss how you may need to manage
database file sizes manually. The same is true
for transaction logs.

If you want to reduce the amount of physical
disk space consumed by the transaction log
file, you must manually shrink the file. You may
do this within SQL Server Management Studio
by right-clicking the database and choosing
Tasks➪Shrink➪Files from the pop-up menu.

27_224656-ch18.indd 31327_224656-ch18.indd 313 8/21/08 6:43:55 PM8/21/08 6:43:55 PM

314 Part VI: Protecting Your Data

In this scenario, any modifications made to the database during the 30-minute

period between 2:00 a.m. and 2:30 a.m. on Wednesday are irretrievably lost.

Creating a transaction log backup
You may create a transaction log backup using the process described ear-

lier for creating a full or differential backup. The only difference is that you

should select the Transaction Log backup type on the Back Up Database

screen. You also have two new options on the Back Up Database Options

page, as shown in Figure 18-7.

The first option (which is selected by default) is Truncate the Transaction

Log. This process, described in the “Truncating and shrinking the transaction

log” sidebar, ensures the efficient use of transaction log disk space. The

tail-log backup is used if you want to capture all entries not yet backed up.

For example, in the scenario I describe in the previous section, if the data-

base failure was not fatal, you may be able to create a tail-log backup to cap-

ture those transactions occurring between 2:00 a.m. and 2:30 a.m.

Figure 18-7:
Transaction
log backup

options.

27_224656-ch18.indd 31427_224656-ch18.indd 314 8/21/08 6:43:55 PM8/21/08 6:43:55 PM

315 Chapter 18: Preparing for Disaster

Specifying Disaster Recovery Requirements
with Recovery Models

SQL Server recovery models allow you to easily define the way you would

like to balance the robustness of your disaster recovery approach with the

amount of server resources consumed in those efforts.

Choosing a recovery model
SQL Server offers three different choices of recovery model. They differ in the

approach used to manage transaction log files. The models supported by SQL

Server 2008 are the full recovery model, the simple recovery model, and the

bulk-logged recovery model. I discuss each of these models in the upcoming

sections.

The full recovery model
The full recovery model maintains the entire transaction log until the transac-

tions in the log are backed up. Using this model, you can restore a database

to any particular point in time by using the transaction log backups. For

example, you can choose to restore a backup to a very specific time (such

as 2:36 p.m. Tuesday) regardless of the time the transaction log backups

occurred. SQL Server accomplishes this by reading timestamps on transac-

tion log entries to determine whether they occurred before or after your

specified point in time.

If you choose the full recovery model, you should always schedule transac-

tion log backups. Failure to do so not only negates the benefit of using the

full recovery model but also can cause the transaction logs to consume large

amounts of disk space.

The simple recovery model
The simple recovery model keeps the transaction log entries for only an

extremely short period of time. This renders the transaction log useless for

disaster recovery purposes.

27_224656-ch18.indd 31527_224656-ch18.indd 315 8/21/08 6:43:56 PM8/21/08 6:43:56 PM

316 Part VI: Protecting Your Data

Choosing the simple recovery model minimizes SQL Server’s use of transac-

tion log space, but also inhibits your ability to recover recent changes in the

event of a database failure.

The bulk-logged recovery model
The bulk-logged recovery model is a variant of the full recovery model that

treats bulk transactions (such as bulk imports) differently. Rather than

record the details of each transaction that occurs within a bulk transaction, it

records the end result of those imports using a technique called minimal log-

ging. This model is highly efficient because it reduces the drastic impact that

the logging of bulk transactions can have on server performance.

If you use the bulk-logged recovery model and a bulk transaction occurs

within the scope of a particular log file, you will be able to restore the

changes made in that log file, but you won’t be able to take advantage of the

point-in-time restore option available under the full recovery model.

 Because you can’t use the point-in-time option with the bulk-logged model,

Microsoft’s best practices dictate that you the bulk-logged recovery model

only for short periods of time. If you plan to perform bulk transactions, change

your database to the bulk-logged recovery model immediately before the bulk

operations and then return to the full recovery model immediately afterward.

Changing recovery models
If you’d like to change the recovery model used by your database, follow

these steps:

 1. With SSMS open and connected to the server containing the database,

expand the Databases folder.

 2. Right-click the database you want to modify and select Properties

from the pop-up menu.

 3. Click the Options page in the Database Properties window.

 4. Select the appropriate recovery model (Full, Simple or Bulk-logged)

from the Recovery model drop-down box, as shown in Figure 18-8.

 5. Click OK to apply the change to your database.

27_224656-ch18.indd 31627_224656-ch18.indd 316 8/21/08 6:43:56 PM8/21/08 6:43:56 PM

317 Chapter 18: Preparing for Disaster

Figure 18-8:
Changing

a database
recovery

model.

Restoring Your Data after a Disaster
Restoring a full backup requires access to the backup file(s) you created ear-

lier. You may restore the backup on the same SQL Server instance or on any

other SQL Server.

It’s important to remember that you have some constraints on which data-

base backup(s) you may restore:

 � You may restore a full backup of any database from any time period.

 � You may restore a differential backup if you also restore the full backup

created most recently before that differential backup.

 � You may restore transaction log backups only if you’re using the full or

bulk-logged recovery model.

 � You may restore your database to an arbitrary date and time only if

you’re restoring transaction log backups.

27_224656-ch18.indd 31727_224656-ch18.indd 317 8/21/08 6:43:56 PM8/21/08 6:43:56 PM

318 Part VI: Protecting Your Data

Here’s the process for restoring a backup that was created using disk file(s):

 1. Open SQL Server Management Studio and connect to the instance for

which you want to restore the database.

 2. Right-click the Databases folder and select Restore Database from the

pop-up menu.

 SSMS presents the Restore Database window, as shown in Figure 18-9.

Figure 18-9:
Restoring a

database.

 3. Select the From Device radio button in the Source for Restore section

of the Restore Database window.

 4. Click the ellipses (. . .) button to open the Specify Backup window,

shown in Figure 18-10.

 5. Click the Add button and select the file(s) you want to restore. When

finished, click the OK button to close the Specify Backup window.

 6. Select the boxes next to the backup sets you want to restore.

 Review the list of backups contained within the files you specified in the

Select Backup Sets to Restore section of the Restore Database window.

27_224656-ch18.indd 31827_224656-ch18.indd 318 8/21/08 6:43:57 PM8/21/08 6:43:57 PM

319 Chapter 18: Preparing for Disaster

Figure 18-10:
Selecting

backup files.

 You may select any valid combination of full, differential, and transac-

tion log backups.

 7. Use the drop-down arrow to select the database that you want to

restore the backup set to in the To Database field.

 You may restore your backup to an existing database or type the name

of a new database in the text box.

 Note that if you already have a database with the same name on the

target server that you want to overwrite, you need to also select the

Overwrite the Existing Database check box on the Options page.

 8. If you want to restore your database to a specific point in time, click

the ellipses (. . .) button to the right of the To a Point in Time text box.

 This action brings up the Point in Time Restore dialog box, shown in

Figure 18-11. Select the A Specific Date and Time option and then use

the drop-down boxes to enter the date and time you want to restore to.

When finished, click OK to close the Point in Time Restore dialog box.

Figure 18-11:
The Point

in Time
Restore

dialog box.

 9. Click OK to restore the backup set.

27_224656-ch18.indd 31927_224656-ch18.indd 319 8/21/08 6:43:57 PM8/21/08 6:43:57 PM

320 Part VI: Protecting Your Data

Using Database Snapshots
Database snapshots allow you to take a moment-in-time picture of a database

for later reference. They provide you with the ability to “freeze” your data-

base by creating a read-only copy. You can then later issue read-only queries

against that data or even use a snapshot to revert your database to an earlier

state.

Snapshots can play an important role in your disaster recovery strategy.

They’re also useful when you have a special need to maintain a frozen copy

of your data (such as in response to legal issues). Snapshots are also useful

for historical reporting purposes.

 Snapshots are a feature of SQL Server Enterprise Edition only and were first

introduced in SQL Server 2005.

SQL Server manages snapshots intelligently using a concept known as sparse
files to conserve both time and space. When you create a database snap-

shot, SQL Server simply creates an empty file that consumes very little disk

space. SQL Server then manages these sparse files by using a copy-on-write

approach. Whenever the first change is made to a data page in the original

source database, SQL Server first copies the pre-change page to the database

snapshot and then writes the change to the source database. When a user

later requests data from the snapshot, SQL Server first checks to see whether

each page exists in the snapshot. If it does not, SQL Server knows that the

page was unchanged from the original source database and retrieves the

unchanged page from the source. This prevents the redundant storage of

unchanged pages in both the source and snapshot databases.

Creating a database snapshot
In contrast to most of the technologies I describe in this book, you can’t

create a database snapshot using the graphic interface of SQL Server Manage-

ment Studio. You’ll need to break out your Transact-SQL skills for this one.

To create a database snapshot, simply write a CREATE DATABASE statement

as you would for the original database, with two differences:

 � Add the clause AS SNAPSHOT OF <source_database> to your

statement.

 � Specify the logical filenames for every file in your snapshot database.

27_224656-ch18.indd 32027_224656-ch18.indd 320 8/21/08 6:43:58 PM8/21/08 6:43:58 PM

321 Chapter 18: Preparing for Disaster

For example, if I wanted to create a snapshot of the sales database, I would

issue the following Transact-SQL command:

CREATE DATABASE sales_snapshot_friday ON
(NAME = ‘sales’, FILENAME =
 ‘C:\DATA\sales_snapshot_friday.ss’)
AS SNAPSHOT OF sales

 You may name your data file anything you want. However, as a matter of best

practice, you should use the .ss file extension to alert others to the fact that

the file contains a SQL Server snapshot. Also, you may have many snapshots

of the same database from different points in time, so I recommend naming

your snapshot something that conveys both the name of the source database

and the time that the snapshot was taken.

Accessing a database snapshot
Accessing a database snapshot is straightforward: You simply reference

the snapshot name just as you would any other database. For example, to

retrieve the contents of the stock table from the snapshot, issue the following

Transact-SQL statements:

USE sales_snapshot_friday;

SELECT * FROM stock;

Accessing a snapshot from within SQL Server Management Studio is slightly

different. Rather than expand the Databases folder, expand the Database

Snapshots folder to locate your snapshot.

Reverting to a database snapshot
In the event of a serious user error, you may want to revert your database to

the state it was in when you took a database snapshot. SQL Server makes this

possible, but I must share a few words of caution first:

 � You may revert a database to a snapshot only when it’s the only existing

snapshot of that database. If other snapshots exist, you must drop them

first, using the following Transact-SQL statement:

DROP DATABASE <snapshot_name>

27_224656-ch18.indd 32127_224656-ch18.indd 321 8/21/08 6:43:58 PM8/21/08 6:43:58 PM

322 Part VI: Protecting Your Data

 For example, if I wished to remove the Friday snapshot from my data-

base, I would issue the following command:

DROP DATABASE sales_snapshot_Friday

 Database snapshots basically stick around forever and can consume

large amounts of disk space. You should always keep tabs on the number

of snapshots that exist for each one of your databases and drop them

when you no longer need them around to meet business requirements.

 � Reverting to a snapshot automatically drops any full-text catalogs you

created on the database.

 � Reverting a database to a snapshot won’t work if the database becomes

corrupted. It won’t work because of the use of sparse files: The cor-

rupted data may not even exist in the snapshot file. Therefore, although

snapshots play a role in a disaster recovery scenario, they are not a

panacea and should be used only in conjunction with normal backups

and restores.

With those words of caution under your belt, if you still want to revert a data-

base to a snapshot, use the following Transact-SQL command:

RESTORE DATABASE <source_database_name>
FROM DATABASE_SNAPSHOT = ‘<snapshot_name>’

For example, suppose that on Friday morning, a user accidentally issued this

query against my sales database:

UPDATE stock set inventory = 0

This wiped out all of the organization’s inventory records. I could revert

my sales database to the snapshot I took on Friday, using the following

command:

RESTORE DATABASE sales
FROM DATABASE_SNAPSHOT ‘sales_snapshot_Friday’

27_224656-ch18.indd 32227_224656-ch18.indd 322 8/21/08 6:43:58 PM8/21/08 6:43:58 PM

Chapter 19

Staying Alive: High Availability
in SQL Server 2008

In This Chapter
� Using database mirroring to create redundant databases

� Using log shipping to synchronize databases

Many organizations depend upon their databases for the very liveli-

hood of their businesses. For example, an e-commerce store would

cease to operate without the database that drives its product catalog and

ordering process. Similarly, a bank would be unable to process any customer

transactions without access to live financial data.

In enterprises like these, time is literally money. You can directly measure

the financial cost of database downtime in terms of lost revenue. There are

also additional intangible factors, such as reputation and customer goodwill,

that play a definite role. Would you want to do your banking with a financial

institution that has unreliable databases?

For these reasons, SQL Server provides a number of high-availability solu-

tions designed to reduce the amount of downtime suffered by your organi-

zation. Database mirroring allows you to maintain a completely redundant

database environment that serves as a hot or warm standby in the event of a

primary server failure. Log shipping lets you transfer the transaction log from

a primary database to secondary database(s) on a regular basis, providing

a way to both keep a backup server ready and waiting and to provide users

with a secondary data source for queries where time is not of the essence.

28_224656-ch19.indd 32328_224656-ch19.indd 323 8/21/08 5:47:22 PM8/21/08 5:47:22 PM

324 Part VI: Protecting Your Data

Creating Redundancy with
Database Mirroring

When you establish a database mirroring relationship, you define a partner-

ship between two servers. The result of this partnership is that one server

will always act as the primary server, processing all transactions and provid-

ing updates to the other (secondary) server. The secondary server stays in

standby mode, applying changes received from the primary server to ensure

that it maintains a current copy of the primary server’s data. In the event that

the primary server fails, the secondary server is ready for an automatic or

manual failover. At that time, it takes on the role of the primary server and

processes all transactions for the mirrored database with minimal impact on

database availability.

 Database mirroring is available only in the Standard and Enterprise editions

of SQL Server. Additionally, you may implement database mirroring only on

databases that use the full recovery model. If you’re not sure which recovery

model is in use on your database, see Chapter 18.

Database mirroring provides three important benefits to your enterprise:

 � Mirroring increases the availability of your enterprise database

architecture.

 By implementing mirroring, you gain the ability to automatically or

manually fail over to a standby server in the event of a database failure.

Depending upon your operating mode (I discuss operating modes later

in this section), you may have little or no downtime with zero data loss

when your primary server fails.

 � Mirroring provides you with an efficient way to patch your servers.

 Mirroring allows you to employ the concept of a rolling upgrade when

you want to apply service packs to your SQL Servers. For more informa-

tion on this topic, see the MSDN article “How to: Install a Service Pack on

a System with Minimal Downtime for Mirrored Databases,” available at

http://msdn.microsoft.com/en-us/library/bb497962.aspx.

 � Mirroring provides an automated way to correct minor errors.

 If a database server experiences a read error and is part of a cluster, it

will attempt to retrieve the offending page from its mirroring partner

and use that page to resolve the local read error. This feature is avail-

able only with SQL Server 2008 Enterprise Edition.

28_224656-ch19.indd 32428_224656-ch19.indd 324 8/21/08 5:47:22 PM8/21/08 5:47:22 PM

325 Chapter 19: Staying Alive: High Availability in SQL Server 2008

Choosing an operating mode
SQL Server offers two database mirroring operating modes: high-safety mode,

which is designed to prevent data loss at the expense of performance, and

high-performance mode, which provides less assurance of data protection

but offers less of a performance hit.

High-safety mode
Mirror partners running in high-safety mode (also known as synchronous

operation) require the confirmed commitment of transactions on both part-

ners before returning an acknowledgement to the client. This confirmation

guarantees that both mirror partners retain consistent copies of the database

at all times, but it increases the transaction latency by requiring the wait for

synchronization.

High-safety mode also supports the use of automatic failover, when imple-

mented with a witness server. The witness server does not contain a copy of

the database but bears responsibility for monitoring the status of the pri-

mary and mirror server to determine whether a failover is required.

High-performance mode
The alternative, high-performance mode, eliminates the synchronization

latency by allowing transactions to commit on the principal server before

the mirror server synchronizes. Doing so introduces the possibility of data

loss in the event of a primary server failure. High-performance mode does not

support automatic failover.

Configuring mirroring
Configuring SQL Server mirroring requires several preparatory steps before

you create the mirror relationship. In this section, I explain the process of

creating a SQL Server database mirror. First, you must ensure that you meet

the prerequisites for mirroring:

 � The mirroring partners must be running the same edition (either

Standard or Enterprise) of SQL Server.

 � The mirroring partners (and witness, if applicable) must be running the

same version of SQL Server.

Creating logins on the mirror server
SQL Server doesn’t allow you to mirror either the master or msdb databases.

Therefore, you must ensure that accounts exist for database users on both

28_224656-ch19.indd 32528_224656-ch19.indd 325 8/21/08 5:47:22 PM8/21/08 5:47:22 PM

326 Part VI: Protecting Your Data

SQL Server instances. If both instances run under the same domain account,

SQL Server handles this automatically. If not, you must manually create the

accounts. I describe how to create accounts in Chapter 16.

Restoring data to the mirror server
Next, you need to load the database onto the mirror server. To do this, restore

a backup from your primary server on the secondary server. You should follow

the process I explain in Chapter 18, with one modification. On the Options page

of the Restore Database window, select the RESTORE WITH NORECOVERY

option, as shown in Figure 19-1. You must restore a full backup and any trans-

action log backups required to make the two databases consistent.

Figure 19-1:
Restoring

a database
using the

WITH NO
RECOVERY

option.

Configuring the mirror partnership
After you’ve restored data to the mirror server, you may configure the mir-

roring partnership by following these steps:

 1. Open SSMS and connect to the SQL Server instance hosting the pri-

mary copy of the database.

28_224656-ch19.indd 32628_224656-ch19.indd 326 8/21/08 5:47:23 PM8/21/08 5:47:23 PM

327 Chapter 19: Staying Alive: High Availability in SQL Server 2008

 2. Expand the Databases folder.

 3. Right-click the database you want to mirror and choose Tasks➪Mirror

from the pop-up menu.

 This brings up the Mirroring page of the Database Properties window, as

shown in Figure 19-2.

Figure 19-2:
Database
mirroring

properties.

 4. Click the Configure Security button to bring up the Configure

Database Mirroring Security Wizard.

 5. Click the Next button to advance to the first page of the wizard.

 6. If you want to include a witness server in the mirroring relationship,

answer Yes to the question on the next screen and click Next to

continue.

 Remember, a witness server is required if you intend to run in synchro-

nous high-safety mode with automatic failover. This screen is shown in

Figure 19-3.

28_224656-ch19.indd 32728_224656-ch19.indd 327 8/21/08 5:47:23 PM8/21/08 5:47:23 PM

328 Part VI: Protecting Your Data

Figure 19-3:
Including
a witness

server.

 7. Click Next to confirm that you want to configure all servers.

 8. Provide details for the principal server on the next screen, as shown

in Figure 19-4, and then click Next to continue.

 You need to provide an endpoint name and listener port if you want to

change the SQL Server default settings.

Figure 19-4:
Configure
the princi-
pal server
instance.

28_224656-ch19.indd 32828_224656-ch19.indd 328 8/21/08 5:47:23 PM8/21/08 5:47:23 PM

329 Chapter 19: Staying Alive: High Availability in SQL Server 2008

 9. Click the Connect button to connect to the mirror server instance.

 SQL Server prompts you for credentials.

 10. Provide details for the mirror server if you want to change the default

settings; then, click the Next button to continue.

 11. Provide details for the witness server, if applicable, and click the Next

button to continue.

 12. If the service accounts for any of the servers involved are different

accounts within the same domain, provide the details in the Service

Accounts window; otherwise, leave the text boxes empty, as shown in

Figure 19-5.

Figure 19-5:
Server

account
specification.

 13. Click the Next button to continue.

 14. Review the mirroring details in the confirmation screen and click

Finish to complete the wizard.

 SQL Server displays a status screen while it configures the mirroring

endpoints, as shown in Figure 19-6.

 15. Click the Close button to close the status screen.

 SQL Server presents the dialog box shown in Figure 19-7, asking you

whether you’d like to start mirroring immediately. (In this example, I’m

running all three SQL Server instances on the same server. That’s why

you see the shared server name “vostro” in the dialog box.)

28_224656-ch19.indd 32928_224656-ch19.indd 329 8/21/08 5:47:24 PM8/21/08 5:47:24 PM

330 Part VI: Protecting Your Data

Figure 19-6:
Mirroring
endpoint
creation.

Figure 19-7:
The Start
Mirroring

dialog box.

 16. Click the Start Mirroring button to initiate database mirroring.

Monitoring Database Mirroring
SQL Server provides a Database Mirroring Monitor to help you monitor the

status of your mirroring relationships. Here’s how to start the monitor:

 1. With SSMS open, expand the Databases folder on either the primary

or mirror server.

 2. Right-click the name of the mirrored database and choose Tasks➪
Launch Database Mirroring Monitor from the pop-up menu.

28_224656-ch19.indd 33028_224656-ch19.indd 330 8/21/08 5:47:25 PM8/21/08 5:47:25 PM

331 Chapter 19: Staying Alive: High Availability in SQL Server 2008

Figure 19-8 shows the Database Mirroring Monitor. The monitor displays the

status of each server instance participating in database mirroring:

 � Unknown: The monitor is not connected to either of the mirroring

partners.

 � Synchronized: The primary server and mirror server are synchronized.

In high-safety mode, this indicates that a failover can occur without any

data loss.

 � Synchronizing: The contents of the two instances are not yet synchro-

nized and failover may not occur.

 � Suspended: The principal database is online, but the mirror server is

not receiving logs.

 � Disconnected: The server cannot connect to its mirroring partner.

Figure 19-8:
The

Database
Mirroring
Monitor.

Failing over a mirrored database
If you’re using high-safety mode with a witness server, SQL Server will auto-

matically fail over when the following conditions are met:

28_224656-ch19.indd 33128_224656-ch19.indd 331 8/21/08 5:47:26 PM8/21/08 5:47:26 PM

332 Part VI: Protecting Your Data

 � The primary and mirror databases are in the synchronized state.

 � The mirror and witness are able to communicate with each other.

 � Neither the mirror nor the witness can communicate with the primary

server for 10 seconds.

You may also manually failover to a mirror database as follows:

 1. With SSMS open, connect to the primary server instance.

 2. Expand the Databases folder.

 3. Right-click the database to be failed over and choose Tasks➪Mirror

from the pop-up menu.

 SQL Server opens the Database Properties window to the Mirroring

page, as shown in Figure 19-9.

Figure 19-9:
Mirroring

properties.

 4. Click the Failover button.

 5. Click the Yes button to commence the failover.

28_224656-ch19.indd 33228_224656-ch19.indd 332 8/21/08 5:47:26 PM8/21/08 5:47:26 PM

333 Chapter 19: Staying Alive: High Availability in SQL Server 2008

Synchronizing Databases
with Log Shipping

SQL Server’s other major mechanism for high availability databases is

log shipping. This technology allows you to keep databases synchronized

through the use of the transaction log. In a log shipping relationship, the pri-

mary server automatically transfers backups of the synchronized database’s

transaction logs to one or more secondary SQL Server instances.

There are three stages in the log shipping process:

 1. The primary server creates a transaction log backup using a SQL Server

Agent job. (I discuss SQL Server Agent in Chapter 13.)

 2. The secondary server(s) retrieve the transaction log backup from the

primary server using a SQL Server Agent job.

 3. The secondary server(s) apply the transaction log backup to their data-

bases using a different SQL Server Agent job.

 All servers participating in log shipping must be running SQL Server Standard

Edition, Workgroup Edition, or Enterprise Edition. The primary server must

also be running either the full recovery model or the bulk-logged recovery

model. For more on recovery models, see Chapter 18.

 You may combine database mirroring and log shipping if dictated by your

business needs. Both technologies have the same goal: creating a redundant

server that receives transaction updates as the primary database changes.

However, there are important differences between the two. A primary server

may only have one mirror partner. The same server may have multiple log

shipping partners. However, a secondary server created with log shipping

can’t participate in an automatic failover relationship, whereas a mirrored

server in high-safety mode can.

Many organizations that require more than one redundant server implement

a combination of database mirroring and log shipping. The mirror server is

the “primary” backup server and takes advantage of automatic failover. The

log shipping recipients are the “secondary” backup servers and may also be

used for read-only queries.

Configuring log shipping
Configuring log shipping is similar to the process used to configure database

mirroring. After you identify the primary server and secondary server(s) that

will participate in log shipping, follow these steps to configure log shipping:

28_224656-ch19.indd 33328_224656-ch19.indd 333 8/21/08 5:47:27 PM8/21/08 5:47:27 PM

334 Part VI: Protecting Your Data

 1. Create a new database on the secondary server(s) by restoring back-

ups, including transaction log backups, using the WITH NORECOVERY

option.

 If you’re not sure how to do this, see the “Restoring data to the mirror

server” section, earlier in this chapter. The process is identical.

 2. Create a network file sharing location where you will store transac-

tion log backups.

 This may be a location on the primary server, or it may be a shared

folder on another server. It must be accessible to all servers that will

participate in the log shipping relationship. The SQL Server service

account for the primary server must have both read and write permis-

sion to this share so that it may write transaction log backups to the

share. The SQL Server Agent service account on the secondary server(s)

must have read permission to retrieve the transaction log backups.

 3. Open SSMS and connect to the SQL Server instance hosting the pri-

mary copy of the database.

 4. Expand the Databases folder.

 5. Right-click the database you want to mirror and choose Tasks➪Ship

Transaction Logs from the pop-up menu.

 This brings up the Transaction Log Shipping properties page, as shown

in Figure 19-10.

 6. Select the Enable This as a Primary Database in a Log Shipping

Configuration check box.

 7. Click the Backup Settings button.

 You see the Transaction Log Backup Settings window, shown in

Figure 19-11.

 8. Enter the network share path you created in Step 2 in the network

path text box.

 9. If the network share is located on the primary server, enter the local

path in the second text box. Otherwise, leave this field blank.

 You should also review the other settings in this window. You

may either accept the default values or modify them to meet your

requirements.

 10. Click OK to close the Transaction Log Backup Settings window.

 11. Click the Add button in the Secondary Databases section of the

Transaction Log Shipping properties page.

 SQL Server displays the Secondary Database Settings window, shown in

Figure 19-12.

28_224656-ch19.indd 33428_224656-ch19.indd 334 8/21/08 5:47:27 PM8/21/08 5:47:27 PM

335 Chapter 19: Staying Alive: High Availability in SQL Server 2008

Figure 19-10:
Transaction

Log
Shipping

properties.

 12. Click the Connect button and provide connection details for the first

secondary server you want to include in the log shipping relationship.

 Note that the Initialize Secondary Database page on this screen allows

you to automatically create and restore the necessary backups to initial-

ize the database. You may explore this option if you want, but I prefer

to create and restore the backups manually to maintain control over the

process. That’s why I have you restore your own backups in Step 1.

 13. Verify that the Secondary Database drop-down box contains the name

of the database you created in Step 1.

 14. Click the Copy Files tab.

 15. Provide a destination folder for the copied files in the text box on this

page.

 You may choose any path you want. For performance reasons, you

should normally choose a local path on the secondary server.

 16. Review the settings on the Restore Transaction Log tab and make any

changes to the default values you deem necessary.

28_224656-ch19.indd 33528_224656-ch19.indd 335 8/21/08 5:47:27 PM8/21/08 5:47:27 PM

336 Part VI: Protecting Your Data

Figure 19-11:
Transaction
Log Backup

settings.

Figure 19-12:
Secondary

Database
settings.

28_224656-ch19.indd 33628_224656-ch19.indd 336 8/21/08 5:47:27 PM8/21/08 5:47:27 PM

337 Chapter 19: Staying Alive: High Availability in SQL Server 2008

 17. Click the OK button to continue.

 18. Repeat Steps 11–17 if you want to configure any additional secondary

servers.

 19. Click the OK button to close the Database Properties window.

 SQL Server displays the status window shown in Figure 19-13 while it

enables log shipping.

Figure 19-13:
The Log

Shipping
Config-
uration
status

window.

 20. Click the Close button to close the status window.

Failing over to a log shipping
secondary instance
If your primary database fails, you may manually failover to a secondary

database synchronized with log shipping. In contrast to database mirroring,

there is no automatic failover option for log shipping secondary servers.

 Before failing over, ensure that the secondary server has applied as many

recent transaction log backups as possible. If the primary server is still acces-

sible, you should perform a manual transaction log backup and apply it to the

secondary server. This ensures that the secondary server includes transac-

tions occurring after the last scheduled transaction log backup.

When you are ready to failover, issue the following command on the second-

ary server:

RESTORE DATABASE <secondary_database_name>
WITH RECOVERY

28_224656-ch19.indd 33728_224656-ch19.indd 337 8/21/08 5:47:28 PM8/21/08 5:47:28 PM

338 Part VI: Protecting Your Data

For example, to restore the sales database, you would execute this Transact-

SQL statement:

RESTORE DATABASE sales
WITH RECOVERY

You then need to manually reconfigure any database clients to use the sec-

ondary server instead of the primary server.

28_224656-ch19.indd 33828_224656-ch19.indd 338 8/21/08 5:47:29 PM8/21/08 5:47:29 PM

Chapter 20

Implementing Policy-Based
Management with the Declarative

Management Framework
In This Chapter
� Creating DMF policies

� Determining SQL Server policy compliance status

� Applying DMF policies to SQL Server

� Automating DMF policy enforcement

The Declarative Management Framework (DMF) is one of the most excit-

ing new features in SQL Server 2008. DMF allows administrators to create

and apply policies that regulate the configuration and operation of SQL

Server(s) in an enterprise.

For example, suppose that your business has a security policy that requires

the use of SQL Server’s password expiration functionality. You may use DMF

to create a policy that requires this feature on all SQL Servers in your organi-

zation. You may then use that policy to perform the following actions (which

I cover in this chapter):

 � Verify whether a server complies with the policy (that is, password expi-

ration is turned on).

 � Apply the policy to a server manually, changing the server’s configura-

tion to make it compliant with the policy.

 � Prevent changes to the server that would violate the policy.

 � Record log entries when the server fails to comply with the policy.

29_224656-ch20.indd 33929_224656-ch20.indd 339 8/21/08 5:48:09 PM8/21/08 5:48:09 PM

340 Part VI: Protecting Your Data

Coming to Terms with DMF
Before you can manage servers with DMF, you should understand a few

DMF-specific terms. These can be somewhat confusing but they’re essential

to understanding how DMF works. Be sure to take a few moments to review

these terms before proceeding:

 � Targets: Entities that you may manage by DMF. They may be broad in

scope, such as an entire SQL Server instance, or narrow, such as an indi-

vidual database, table, or login.

 � Management facets: Collections of related properties of a management

target. Some examples of management facets include logins, filegroups,

servers, and stored procedures.

 � Conditions: Collections of one or more clauses that specify properties of

a management facet. Each management facet has many properties that

may be specified in conditions. For example, the logins management

facet may have conditions related to the login name, creation date, and

password complexity enforcement, among others.

 � Policies: Specify the condition that you expect a target to comply with

and way you’d like to enforce that policy (the evaluation mode). Each

policy contains one (and only one) condition.

Here’s an example to tie this all together. Earlier, I used an example of enforc-

ing password expiration requirements. If you decide to enforce that require-

ment on a SQL Server instance called MyDatabase, you use the following

configuration:

 � The target of your policy is the SQL Server instance: MyDatabase.

 � The relevant management facet is Logins, which contains properties

related to SQL Server logins.

 � You then create a condition based upon the Logins management

facet containing a single clause requiring that the @Password
ExpirationEnabled field has a value of True.

 � Finally, you create a policy that enforces your condition against the

MyDatabase target.

Creating DMF Policies
SQL Server 2008 includes a number of predefined policies created by

Microsoft for your convenience. For example, some of the policies included

with SQL Server are the following:

29_224656-ch20.indd 34029_224656-ch20.indd 340 8/21/08 5:48:09 PM8/21/08 5:48:09 PM

341 Chapter 20: The Declarative Management Framework

 � SQL Server Password Expiration Best Practice: Verifies that the SQL

Server requires password expiration for every login.

 � SQL Server Password Policy Best Practice: Ensures every login requires

a password.

 � Database Auto Shrink Best Practice: Verifies that auto shrink is dis-

abled for all online user databases.

 � Data and Log File Location Best Practice: Checks whether the data and

log files are stored on separate drives for any database that is 5GB or

larger.

 In many cases, you can make use of these built-in DMF policies and avoid cre-

ating your own policies or conditions. However, if you want to experience the

true power of DMF, you’ll want to create your own customized policies and

conditions that implement your organization’s specific business requirements.

If you simply want to execute predefined policies, you can skip ahead to the

“Verifying policy compliance” section of this chapter.

In the remainder of this section, I show you how to create a custom DMF

policy that enforces a specific business requirement: that all nonsystem

stored procedures have names that begin with the prefix “sp_” and end with

a non-numeric character.

Creating a condition
I mentioned earlier that SQL Server includes a number of predefined best

practice DMF policies. In addition, it includes a wide range of conditions

that you may use or modify for your own purposes. SQL Server does not,

however, ship with a predefined condition that requires compliance with the

stored procedure naming convention of the previous section, so I have to

create a new one. Here’s how:

 1. With SSMS open, expand the Management folder.

 2. Expand the Conditions folder.

 Take some time to explore the predefined conditions that appear in this

folder. There are many useful items here, such as:

 • Auto Close Disabled

 • Database is 5GB or Larger

 • File is 1GB or Larger

29_224656-ch20.indd 34129_224656-ch20.indd 341 8/21/08 5:48:09 PM8/21/08 5:48:09 PM

342 Part VI: Protecting Your Data

 • Not Enterprise Edition

 • Recovery Model Full

 • Windows Authentication Mode

 Figure 20-1 shows some of the conditions included in this folder by

default.

Figure 20-1:
Predefined

DMF
conditions.

 3. Right-click the Conditions folder and select New Condition from the

pop-up menu.

 SQL Server displays the blank Create New Condition window, as shown

in Figure 20-2.

 4. Provide a name for the condition in the appropriate text box.

 You have plenty of space here, so try to choose a very descriptive name

that will help you understand the condition later when you incorporate

it into a policy. For example, I’m calling my condition “Stored Procedure

Follows Naming Convention.”

29_224656-ch20.indd 34229_224656-ch20.indd 342 8/21/08 5:48:09 PM8/21/08 5:48:09 PM

343 Chapter 20: The Declarative Management Framework

Figure 20-2:
Creating a
new DMF
condition.

 5. Select the appropriate management facet from the drop-down menu.

 In my example, I’m creating a DMF condition for use with stored proce-

dures, so I choose that management facet.

 6. Provide the field, operator and value for the first clause in your

condition.

 As I mentioned earlier, each condition may consist of one or more

clauses. Each clause is a single, testable statement about a property of

the management facet. For example, I want to ensure that all stored pro-

cedures begin with the three characters “sp_”. I can verify this by test-

ing the @Name field using the LIKE operator against the clause ‘sp_%’.

If you’re not familiar with the use of the LIKE operator, see Chapter 7.

 7. Create additional clauses, as necessary, joining them with the AND or

OR operator.

 Many conditions may require multiple tests. For example, I checked

only whether the stored procedure name begins with the “sp_” prefix. I

still need to check whether it ends with a non-numeric character. I can

do this by verifying that @Name is NOT LIKE ‘%[0-9]’. Finally, I want

this condition to apply only to nonsystem stored procedures, so I must

create a third clause that verifies that the @IsSystemObject field is

False.

 In this example, I wanted to create three clauses, each of which is joined

with the AND condition. If you need to create very complex queries, you

may need to perform more complex comparisons. For example, you

could perform the same check by testing whether the stored proce-

dure name follows the naming convention OR the @IsSystemObject

29_224656-ch20.indd 34329_224656-ch20.indd 343 8/21/08 5:48:10 PM8/21/08 5:48:10 PM

344 Part VI: Protecting Your Data

property is false. To create this type of condition, you must first group

the two @Name clauses by selecting them both. You do so by clicking

each one while holding down the Shift key. You may then right-click

them and select Group Clauses from the pop-up menu. Grouping the

clauses allows you to join them together in an OR statement with the @
IsSystemObject clause.

 The resulting condition window appears, as shown in Figure 20-3.

Figure 20-3:
Stored

procedure
naming

convention
condition.

 8. Click the OK button to create the condition.

 The new condition then appears in the list of available DMF conditions.

Creating a policy
After you’ve created the condition that you would like to enforce, you

may create a DMF policy object that enforces that condition against DMF

target(s). Here’s how to create a new DMF policy:

 1. With SSMS open, expand the Management folder.

 2. Expand the Policies folder.

 Take some time to explore the predefined policies that appear in this

folder.

29_224656-ch20.indd 34429_224656-ch20.indd 344 8/21/08 5:48:10 PM8/21/08 5:48:10 PM

345 Chapter 20: The Declarative Management Framework

 3. Right-click the Policies folder and select New Policy from the pop-up

menu.

 4. Provide a name for your policy by typing it into the Name text box.

 I call my example policy “Stored Procedure Naming Convention.”

 5. From the drop-down menu, choose the condition you want to enforce.

 You’ll find the conditions sorted by the management facet they affect.

I found my “Stored Procedure Follows Naming Convention” condition

under the Stored Procedure facet.

 6. Modify the policy targets, if necessary.

 You may modify any of the target characteristics that appear in blue.

For example, when I chose the “Stored Procedure Follows Naming

Convention” condition, SQL Server allowed me to specify conditions

to limit the types of stored procedures or databases that the policy

includes. You may modify these conditions by clicking the down arrow

icon next to the blue text.

 You may use conditions here to apply policies selectively. For example,

rather than apply a policy to “Every” database, you could create a new

condition that applies the policy to only those databases with a name of

“MyDatabase.”

 7. Choose the evaluation mode from the drop-down menu.

 SQL Server 2008 offers four DMF policy evaluation modes:

 • On Demand: Does not perform any automated policy enforcement.

It allows you to manually run the policy at your discretion.

 • On Schedule: Allows you to specify a schedule for policy execu-

tion. In this mode, SQL Server creates log entries each time the

policy runs and detects noncompliant targets. These policies run

using SQL Server Agent jobs. For more information on SQL Server

Agent, see Chapter 13.

 • On Change – Log Only: Creates a log entry immediately whenever

the database changes in a fashion that causes it to violate the

policy.

 • On Change – Prevent: Checks the policy before allowing any

changes to the database, blocking those that would violate the

policy.

 For now, I use the On Demand evaluation mode. I discuss the other

evaluation modes in the “Automated Policy Enforcement” section, later

in this chapter.

29_224656-ch20.indd 34529_224656-ch20.indd 345 8/21/08 5:48:11 PM8/21/08 5:48:11 PM

346 Part VI: Protecting Your Data

 Note that the Create New Policy window contains an Enabled checkbox.

This checkbox does not apply to policies using the On Demand evalua-

tion mode. For other evaluation modes, you must select this box, or SQL

Server will not enforce the policy.

 8. Click the OK button to create the policy.

 Figure 20-4 shows the completed Create New Policy window. After you

click OK, SQL Server creates the policy, and you may view it in the SSMS

Policies folder.

Figure 20-4:
Creating a
new DMF

policy.

 SQL Server stores DMF policies and conditions in the msdb database. If you

don’t back up this database, you won’t be able to restore DMF policies after a

system failure. For more information on backing up databases, see Chapter 18.

Using On Demand Evaluation Mode
On Demand evaluation mode allows you to manually test targets for policy

compliance and manually apply settings required by a policy to DMF targets.

This mode does not apply to any DMF policies automatically and is a good

way to get started with DMF.

29_224656-ch20.indd 34629_224656-ch20.indd 346 8/21/08 5:48:11 PM8/21/08 5:48:11 PM

347 Chapter 20: The Declarative Management Framework

Verifying policy compliance
The most basic DMF task you can perform is verifying whether DMF target(s)

comply with a specific policy. Here’s how you can perform that check:

 1. With SSMS open, expand the Management folder.

 2. Expand the Policies folder.

 3. Scroll through the list of policies and locate the policy you want to

test. Right-click it and select Test Policy from the pop-up menu.

 4. Review the results.

 Depending upon the type of policy you verify and the number of targets,

policy verification may take an extended period of time. When the check

is complete, you may review the results. As shown in Figure 20-5, the

results window uses a red “X” symbol to denote targets that failed the

policy and a green checkmark to identify targets that passed the policy

check.

Figure 20-5:
Testing

compliance
with a DMF

policy.

 5. Investigate detailed results by clicking the View link in the Details

column.

 SQL Server allows you to view the details of the condition checked by

the policy for a particular target by clicking the View link. An example

appears in Figure 20-6. The Results Detailed View window includes a

line for each clause in the condition specified by the policy and uses the

red “X”/green checkmark notation to indicate which clause(s) the target

failed.

29_224656-ch20.indd 34729_224656-ch20.indd 347 8/21/08 5:48:11 PM8/21/08 5:48:11 PM

348 Part VI: Protecting Your Data

Figure 20-6:
Viewing
detailed

policy
compliance

results.

 6. Click the Close buttons on the Results Detailed View and Run Now

windows to return to SSMS.

Enforcing a policy manually
DMF also allows you to reconfigure a target to comply with a DMF policy.

 Not all conditions may be enforced using this mechanism. For example, SQL

Server would not be able to reconfigure targets to comply with the stored pro-

cedure naming convention policy I created earlier in this chapter. The reason

for this is simple: Although SQL Server would know that a given stored proce-

dure name doesn’t meet my standards, it wouldn’t know how to rename it to

meet those standards without potentially breaking queries and applications

that depend on that stored procedure.

Here’s how to configure a target to comply with a DMF policy:

 1. With SSMS open, expand the Management folder.

 2. Expand the Policies folder.

29_224656-ch20.indd 34829_224656-ch20.indd 348 8/21/08 5:48:12 PM8/21/08 5:48:12 PM

349 Chapter 20: The Declarative Management Framework

 3. Scroll through the list of policies and locate the policy you want to

test. Right-click it and choose Test Policy from the pop-up menu.

 4. When the results window appears, click the row representing the non-

compliant target you want to reconfigure.

 5. Click the Configure button.

 SQL Server attempts to reconfigure the target to comply with the DMF

policy.

 The process described in this section forces compliance with a DMF policy,

but it is only a one-time change. It reconfigures the target to comply with the

policy, but does nothing to prevent future configuration changes from bring-

ing the target out of compliance or alert you to such changes. If you want to

have this type of proactive notification, you must use one of the automated

policy enforcement techniques described in the next section.

Automated Policy Enforcement
You may choose to have SQL Server automatically enforce your policy by

using an evaluation mode other than the On Demand mode I used earlier in

this chapter. Here’s how SQL Server enforces DMF policies using other evalu-

ation modes:

 � SQL Server creates SQL Server Agent jobs for On Schedule evaluation

mode policies. Each time the SQL Server Agent job executes, it verifies

that the targets satisfy the condition and reports noncompliant targets

by creating a log entry.

 � SQL Server monitors event notifications to identify any events that con-

flict with On Change – Log Only policies and records them in the log.

 � SQL Server uses DDL triggers to enforce On Change – Prevent policies,

blocking actions that would bring a target out of compliance.

You may activate automated policy enforcement by changing a policy’s

evaluation mode. Simply double-click the policy in SSMS to bring up the Open

Policy window and choose the appropriate mode from the Evaluation Mode

drop-down menu.

 When you choose an automated policy evaluation mode, you must also ensure

that you enabled the policy by either selecting the Enabled box on the policy’s

General tab or by right-clicking it in the SSMS Policy folder and choosing

Enable from the pop-up menu.

29_224656-ch20.indd 34929_224656-ch20.indd 349 8/21/08 5:48:12 PM8/21/08 5:48:12 PM

350 Part VI: Protecting Your Data

Viewing Policies Affecting a Target
SQL Server allows you to view all the polices that affect a target in a consoli-

dated report using SSMS. To view this report, right-click the target in SSMS

and choose Policies➪View from the pop-up menu. An example of the View

Policies report appears in Figure 20-7.

Figure 20-7:
View

policies
report.

29_224656-ch20.indd 35029_224656-ch20.indd 350 8/21/08 5:48:12 PM8/21/08 5:48:12 PM

Part VII
The Part of Tens

30_224656-pp07.indd 35130_224656-pp07.indd 351 8/21/08 5:48:33 PM8/21/08 5:48:33 PM

In this part . . .

A Part of Tens is a standard component of most

kinds of For Dummies books. In the first list of ten, I

describe ways you can keep your database operating in an

efficient fashion. In the second list of ten, I give you tips

for properly designing new SQL Server databases.

30_224656-pp07.indd 35230_224656-pp07.indd 352 8/21/08 5:48:34 PM8/21/08 5:48:34 PM

Chapter 21

Ten Ways to Keep Your SQL Server
2008 Databases Humming

In This Chapter
� Monitoring your SQL Server database performance and logs

� Protecting your data through backups and database integrity checks

� Using the Database Engine Tuning Advisor

� Saving disk space by controlling the transaction log size

� Automating administrative alerts

� Managing large SQL Server enterprise deployments with multiserver administration

� Simplifying user rights administration with database roles and account reviews

Administering a SQL Server 2008 database can certainly be a full-time

job! Throughout this book, I share some tips that will help you reduce

the amount of time you spend on database administration and improve the

effectiveness of your efforts. In this chapter, I summarize the top ten things

you can do to improve your SQL Server database performance and preserve

your sanity!

Monitor Query Performance
When it comes to SQL Server 2008 performance tuning, one size definitely

does not fit all. You should monitor your database performance to watch for

bottlenecks and tune the database to the specific queries that your users

commonly perform. SQL Server 2008 provides two tools to help you with this

monitoring:

 � SQL Trace: Allows you to monitor the performance of individual queries

running on a SQL Server database.

31_224656-ch21.indd 35331_224656-ch21.indd 353 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

354 Part VII: The Part of Tens

 � SQL Server Profiler: Provides a user-friendly graphical interface to SQL

Trace functionality.

For more detail, see the discussion of SQL Server Profiler and SQL Trace in

Chapter 14.

Back Up Your Data Routinely
Something will go wrong with your SQL Server database at some point. This

isn’t a question of “if”, but “when.” Therefore, you should routinely perform

database backups to ensure that your data is available in the event of a

disaster or technical failure.

For more information on backing up and restoring SQL Server 2008 data-

bases, see Chapter 18.

Verify Database Integrity Often
As with any complex information systems, databases may become corrupt

over time. You can help prevent database corruption by using SQL Server’s

built-in integrity verification and repair functionality. The following DBCC

commands help you perform this routine maintenance:

 � DBCC CHECKDB verifies the integrity of your entire database structure.

 � DBCC CHECKALLOC verifies the integrity of the database’s disk

structure.

 � DBCC CHECKTABLE verifies the integrity of an individual table or view.

 � DBCC CHECKCATALOG validates the consistency of the database catalog.

I offer a detailed discussion of database integrity verification and the DBCC

commands in Chapter 12.

Tune the Physical Structure
of Your Databases

The Database Engine Tuning Advisor allows you to analyze the performance

of your database against various workload scenarios. DETA makes specific

31_224656-ch21.indd 35431_224656-ch21.indd 354 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

355 Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming

recommendations for improving the index structure of your database and

provides you with the Transact-SQL statements you need to execute to

implement the recommendations.

For more information on the Database Engine Tuning Advisor, see

Chapter 14.

Conserve Transaction Log Disk Space
Transaction logs provide an important piece of the disaster recovery puzzle

(see Chapter 18 for more about transaction logs), allowing you to restore a

database to its exact state prior to a failure. However, if left unmanaged, they

can consume quite a bit of valuable disk space. You can perform two tasks to

help you manage your database transaction logs:

 � Log truncation: Frees up space in the transaction log file for potential

reuse.

 � Log shrinking: Frees up space reserved for the transaction log file for

reuse by other files.

I discuss transaction log management, including log truncation and shrinking,

in Chapter 18.

Monitor Database Logs
During troubleshooting and routine maintenance, you may want to know

about events that occurred in your SQL Server database. SQL Server records

important database performance and error information in two locations for

your review:

 � The SQL Server Error Log contains specific database system events

recorded by SQL Server. SQL Server stores this file on disk as a

plain-text file.

 � The Windows Application Log contains information recorded by SQL

Server to the standard Windows logging facility. You may view the

Windows Application Log using Event Viewer.

SQL Server offers a consolidated log viewer, SQL Server Management Studio

Log Viewer, that allows you to monitor both logs in a single view. You can

find more information on database monitoring and other troubleshooting

tasks in Chapter 14.

31_224656-ch21.indd 35531_224656-ch21.indd 355 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

356 Part VII: The Part of Tens

Automate Administrative Alerts
SQL Server is a complex system and has many individual components

that you’ll want to track. You certainly don’t want to check each of those

manually on a daily basis, only to find nothing of interest.

To help alleviate this monotony, SQL Server provides an automated

administrative alert facility. You may configure SQL Server to automatically

notify you via pager, e-mail, or network message when specific events or

performance conditions occur.

I provide a full discussion of automating SQL Server 2008 administrative tasks

in Chapter 13.

Manage Multiple Servers
If you work in a large enterprise, you may have many SQL Server databases

and servers running within a single environment. When you grow beyond

one or two servers, administrative chores can become a nightmare.

Fortunately, SQL Server offers a multiserver administration facility that

allows you to manage multiple servers and schedule information flows

within a data warehouse.

Administration of enterprise database deployments is beyond the scope of

this book. For more information, see Microsoft SQL Server 2008 Bible (Wiley).

Simplify User Rights Administration
with Roles

SQL Server roles allow you to create job-based permissions for groups of

database users and then apply those permissions uniformly to all users

performing similar functions. Doing so reduces the administrative burden of

managing individual user permissions and helps ensure that you won’t lose

track of the permissions assigned to an individual over time.

A full discussion of database user rights administration with roles appears in

Chapter 16.

31_224656-ch21.indd 35631_224656-ch21.indd 356 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

357 Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming

Perform Security Reviews
In addition to using role-based user administration to simplify SQL Server

user management, you should perform periodic account reviews to ensure

that users retain only the level of access necessary to perform their job

functions. The frequency of these reviews will depend upon your organiza-

tion’s security requirements, but they should always consist of several

core tasks:

 � Verify that each user account was authorized through your organiza-

tion’s access-approval process.

 � Verify with each user’s account sponsor (typically a manager or

supervisor) that each user has a continued need for such access.

 � Verify that each user is assigned only to role(s) required for the

performance of his or her assigned job duties.

You can find more information on database users, roles, and objects in

Chapter 16.

31_224656-ch21.indd 35731_224656-ch21.indd 357 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

358 Part VII: The Part of Tens

31_224656-ch21.indd 35831_224656-ch21.indd 358 8/21/08 5:48:48 PM8/21/08 5:48:48 PM

Chapter 22

Ten Database Design Tips
In This Chapter
� Using advance planning to prevent poor performance

� Selecting keys with care

� Saving space by selecting appropriate data types

� Preserving atomicity of database fields

� Normalizing your database

� Managing database relationships

� Choosing good names for database fields

Putting a little time and energy into properly designing your databases

can pay big dividends down the road when your database is in produc-

tion. Well-designed databases perform better, providing users with more

efficient and more reliable service.

In this section, I provide ten short database design tips that will help you

design your databases well.

Plan Ahead
Planning your database before you implement it is one of the most important

steps in ensuring a good database design. You’ll benefit greatly by sitting

down with the eventual end users of the database and designing it to meet

their business requirements. Take the time to determine the appropriate

fields for your database and group them into logical tables. You’ll find

that designing your database correctly from the start is much easier than

correcting those issues after you’ve deployed your database.

I provide a detailed discussion of effectively planning a database design in

Chapter 4.

32_224656-ch22.indd 35932_224656-ch22.indd 359 8/21/08 5:49:04 PM8/21/08 5:49:04 PM

360 Part VII: The Part of Tens

Draw Before You Click
Database professionals have long relied upon the power of visualization to

convey important design characteristics to others. Entity relationship (ER)

diagrams provide a convenient, standardized mechanism to record database

design decisions in an easy-to-read format. ER diagrams capture both the

contents and structure of database tables as well as the relationships

between those tables.

I discuss Entity relationship diagrams in depth in Chapter 4.

Choose Primary Keys Carefully
Primary keys play a critical role in the design of database tables; they

uniquely identify individual rows, allowing you to differentiate records. If you

choose a poor primary key, you may wind up running into problems when

the need arises to have duplicate records with the same key. In some cases,

you may not be able to find a natural primary key that suits your needs and

you may wish to use an artificially generated identifier that’s used only for

the purpose of guaranteeing uniqueness.

I cover this topic in more detail in Chapter 4.

Select Data Types with Space
Efficiency in Mind

When designing tables, you may be tempted to choose large data types

“just in case” you have entries that require the extra space down the road.

This type of decision making can become extremely costly as your database

grows in size.

For example, consider the decision to use an int data type to store a four-

digit product ID. Each record will consume four bytes for the product ID field.

On the other hand, if you use the smallint data type instead, you cut that

requirement in half, using only two bytes for this field in each record. Now,

two bytes might not sound like much, but if the table contains 10 million

records, that’s a total of around 20MB of storage saved by that minor change

to a single field.

I discuss the various SQL Server data types and their space requirements in

Chapter 4.

32_224656-ch22.indd 36032_224656-ch22.indd 360 8/21/08 5:49:05 PM8/21/08 5:49:05 PM

361 Chapter 22: Ten Database Design Tips

Make Sure Your Fields
Are Single Purpose

When designing tables, make sure you develop columns that have a clearly

defined single purpose. You want to store only one type of data in each

column.

Why is this important? Allow me to share an example from practical experi-

ence. I recently came across a database that stored data from credit card

transactions. One table contained a field that combined several different

pieces of credit card data, including the card number, expiration date, and

three-digit security code. New regulations set forth by the credit card indus-

try required that they no longer store the three-digit security code in the

database. The design that combined three different pieces of data into a

single column made this removal very difficult. Rather than be able to simply

deleting the security code column, we had to deconstruct the column and

rewrite all the software that interacted with the database to work with the

new design.

Remember the Meaning of NULL
NULL means “unknown.” It does not mean “none” or “zero,” and it requires

special checks to determine whether it exists (such as the IS NULL query

clause). When adding data to a database, keep this in mind and ensure that

you’re using the NULL value properly.

I provide a more detailed discussion of NULL values in Chapter 4.

Normalize when Possible
Database normalization principles consolidate the collective wisdom of years

of database design into some straightforward rules that help you design data-

bases well. Making your database designs consistent with the first, second,

and third normal forms ensures that you take advantage of this community

knowledge. However, you won’t always be able to fully comply with this

advice because business requirements or operational efficiencies may

require you to deviate from best practice. When you must deviate from

the normal forms, do so with your eyes wide open, understanding the

compromise you make and the rationale behind that decision.

I discuss the three most common normal forms in Chapter 4.

32_224656-ch22.indd 36132_224656-ch22.indd 361 8/21/08 5:49:05 PM8/21/08 5:49:05 PM

362 Part VII: The Part of Tens

Manage Your Relationships
Databases naturally contain a good deal of related information (that’s why we

call them “relational” databases!). SQL Server allows you to keep track of

those relationships automatically, using foreign keys to define relationships

between tables at a high level. After you define those relationships, SQL

Server can ensure that the database enforces referential integrity, requiring

that any changes to the database preserve those high-level relationships

between tables.

I discuss this topic in greater detail in Chapter 6.

Use Descriptive Names
Life is much easier if you use descriptive names for your database fields.

Use a few extra letters, if necessary, to provide intuitive names. Anyone

navigating your database will have a much easier time understanding the

purpose of a column called “Item Unit Cost” than one called “D_IUC.”

Although you should always try to use descriptive column names, it’s also

important to avoid including data in the name. For example, you wouldn’t

want to have a column in a vehicle dealership inventory table called “Car

Color.” In that case, the word “car” is actually data. What if, in the future,

the dealership adds trucks to its inventory? Would you then need to create

a new “Truck Color” column or rename the existing “Car Color” column?

You’d be much better off calling this column “Color” and using a separate

“Vehicle Type” column to track whether each record relates to a car or

truck, if necessary.

Document Your Design
Many novice database designers are tempted to perform design work “in

their heads,” insisting that they’ll remember the design down the road or

that the design is simple enough to be intuitive. Those thought patterns are

fallacies and have haunted many a database administrator.

Whether you’re inheriting a database designed by someone else or trying to

interpret a design that you implemented years ago, you’ll find it incredibly

difficult to untangle the mysterious web of an undocumented database.

For this reason, be considerate to both yourself and your successors by

taking the time to document your design with descriptions of database

tables, views, stored procedures, and other critical elements. Keep that

documentation in a location where those needing it will be sure to locate it.

32_224656-ch22.indd 36232_224656-ch22.indd 362 8/21/08 5:49:05 PM8/21/08 5:49:05 PM

Index
! (exclamation point), 163

% (percentage) character, 116

* (asterisk), 111

^ (carat) symbol, 97

_ (underscore) character, 97, 115–116

1NF (fi rst normal form), 62–63

2NF (second normal form), 63–64

3NF (third normal form), 63–64

4NF (fourth normal form), 64

5NF (fi fth normal form), 64

6NF (sixth normal form), 64

• A •
ABS () function, 137

Access, importing data from, 170

ACID model, 294–296

atomicity, 295

consistency, 295

durability, 296

isolation, 295–296

ActiveX scripts, 217

Add button, 81

Add Objects dialog box, 281

adding

charts, 151–153

columns, 87

fi les, 81–82

job steps, 217–220

tables, 153

text box, 150–151

users, 273–274

Additive Confl ict Resolver, 257

Advanced Multiple Web Site

Confi guration, 156

Advanced Encryption Standard (AES), 285

AES (Advanced Encryption Standard), 285
function, 188
aggregate functions, 120–123

counting records with, 121–122

fi nding minimum, maximum and

average values, 122–123

totaling values with, 123

working with unique records, 122

by type

AVG, 121, 122–123

COUNT, 121

MAX, 121, 122–123

MIN, 121, 122–123

STDEV, 121

SUM, 121, 123

VAR, 121

alerts, 229–231, 356

aliases, 130–131

Allow Nulls check box, 87

ALTER keyword, 189–190

ALTER RESOURCE POOL statement,

209–210

ALTER TABLE statement, 89

ALTER VIEW command, 140–141

ALTER WORKLOAD command, 211

Analysis Services, 16

AND operator, 112, 343

Arabic collation, 21–22

area graphs, 151

Article Properties button, 262

AS column-name, 124–125

ASC keyword, 120

asterisk (*), 111

atomicity, of database transactions, 295

attributes, 54

Audit Action Type drop-down menu, 290

Audit name fi eld, 287

Audits folder, 287

Authentication drop-down list, 29

authentication modes, 272, 20–21

AUTO_CREATE_STATISTICS

command, 202

AUTO_SHRINK option, 203

automatic mode, 39

average values, 122–123

Averaging Confl ict Resolver, 257

AVG aggregate function, 121, 122–123

33_224656 bindex.indd 36333_224656 bindex.indd 363 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

364 Microsoft SQL Server 2008 For Dummies

• B •
Back Up Database window, 307, 308, 310

Backup Complete dialog box, 309

backups, 306–319

compression, 310–312

differential, 309–310

full, 306–309

in performance tuning, 354

restoring, 317–319

restoring from, 207

transaction logs, 312–314

BCNF (Boyce-Codd normal form), 64

bcp (bulk copy) command, 168–169

exporting bulk data with, 169

importing bulk data with, 168–169

BEGIN TRANSACTION statement, 297–300

BETWEEN clause, 113–114

bigint data type, 65

binary data types, 69

bit data type, 69

boundary_value, 199

Boyce-Codd normal form (BCNF), 64

Browse for Objects window, 290

Browser role, 158

built-in functions, 177–180

calling, 178–179

with input parameters, 179

obtaining list of, 179–180

without input parameters, 178

bulk data, 167–169

copying, 167–168

exporting, 169

importing, 168–169

bulk copy (bcp) command, 168–169

exporting bulk data with, 169

importing bulk data with, 168–169

BULK INSERT command, 167–168

Bulkadmin role, 275

bulk-logged recovery model, 316

buttons

Add, 81

Article Properties, 262

Confi gure Security, 327

Connect button, 74

Edit Mappings, 172

Named Instance, 22

New Query, 45

Parse, 219

Start Analysis, 247

• C •
Cache Directory box, 243

carat (^) symbol, 97

CASE statement, 138–139

cases, 138–139

Certifi cate tab, 283

certifi cates

server, 284–286

backing up, 286

creating, 284–285

restoring, 286

SSL, 145

char data type, 68

character string date types, 68

characters

% (percentage), 116

_ (underscore), 97, 115–116

Chart icon, 151

Chart Title text box, 152

charts, 151–153

Check Constraints window, 100

CHECK constraints, 92

creating, 99–100

and database rules, 101

disabling, 100–101

enforcing, 98

limiting column values with, 96–101

writing, 96–98

classifi er functions, 208, 211–212

clauses, 343

clustered indexes, 194–197

CmdExec scripts, 217

Codd, Edgar F., 53–54

collations, 21–22

column graphs, 151

Column Name column, 87

columns, 53–54

adding, 87

renaming, 124–125

uniqueness of, 102–103

33_224656 bindex.indd 36433_224656 bindex.indd 364 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

365365 Index

Columns property, 103

command line, 46–48

Command text box, 219

commands

ALTER RESOURCE POOL, 209–210

ALTER TABLE, 89

ALTER VIEW, 140–141

ALTER WORKLOAD, 211

AUTO_CREATE_STATISTICS, 202

bcp, 168–169

exporting bulk data with, 169

importing bulk data with, 168–169

BEGIN TRANSACTION, 297–300

BULK INSERT, 167–168

CASE, 138–139

COMMIT TRANSACTION, 297

CREATE DATABASE, 320–321

CREATE PARTITION, 200–201

CREATE PROCEDURE, 185–186

CREATE RESOURCE POOL, 209–210

CREATE TABLE, 201

CREATE TRIGGER, 188

CREATE WORKLOAD GROUP, 210–211

DBCC CHECKALLOC, 205, 354

DBCC CHECKCATALOG, 205, 354

DBCC CHECKDB, 205, 219, 354

DBCC CHECKTABLE, 205, 354

DELETE, 165–166, 255

DISABLE TRIGGER, 189

DROP FUNCTION, 190

DROP PROCEDURE, 190

DROP TABLE Transact-SQL, 90

DROP TRIGGER, 190

DROP VIEW, 141

FULL OUTER JOIN, 132

INNER JOIN, 128–131

aliases, 130–131

analyzing results of, 129–130

writing, 129

INSERT, 163–164, 255

INSERT INTO, 166–167

JOIN, 127–135, 195

LEFT OUTER JOIN, 131–132

RECONFIGURE, 212

RIGHT OUTER JOIN, 132

ROLLBACK TRANSACTION, 297–300

SELECT, 109–110

computing values, 135–137

SET NOCOUNT OFF, 111

SET NOCOUNT ON, 111

SHOW_STATISTICS, 202

SHRINKDATABASE, 204

SHRINKFILE, 204

TRUNCATE TABLE, 166

UPDATE, 164–165, 255

COMMIT TRANSACTION statement, 297

Compress Backup check box, 311

compression, 310–312

conditions

clauses, 343

combining, 112–113

creating, 341–344

list, 114–115

negating, 114

Conditions folder, 341–344

Confi guration Manager, 35–43

changing service accounts, 38–39

changing start modes, 39–40

launching, 36

modifying network settings, 40–43

overview, 13–14

starting and stopping services, 36

Confi gure Database Mail, 29

Confi gure Database Mirroring Security

Wizard, 327, 330

Confi gure Distribution Wizard, 259–261

Confi gure Management Data Warehouse

Wizard, 242–243

Confi gure Security button, 327

Confi rmation text box, 273

Confi rmation window, 79

Connect button, 74

Connect to Server dialog box, 74

Connection Parameters screen, 28

Connection Properties screen, 149

consistency principle, 295

constraints, 91–101

CHECK, 92

creating, 99–100

and database rules, 101

disabling, 100–101

enforcing, 98

33_224656 bindex.indd 36533_224656 bindex.indd 365 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

366 Microsoft SQL Server 2008 For Dummies

constraints, CHECK, (continued)

limiting column values with, 96–101

writing, 96–98

DEFAULT, 92

creating, 94–95

fi lling in empty values with, 92–93

and NULL values, 96

FOREIGN KEY, 92, 103–105

PRIMARY KEY, 92

UNIQUE, 92, 102–103

Content Manager role, 158

content roles, 157–158

COUNT aggregate function, 121

CPU time, 207–210

Create a Snapshot Immediately

check box, 263

Create Audit page, 288

Create Database Audit Specifi cation

window, 290

Create New Condition window, 342

Create New Policy window, 345–346

CREATE DATABASE statement, 320–321

CREATE PARTITION command, 200–201

CREATE PROCEDURE statement, 185–186

CREATE RESOURCE POOL statement,

209–210

CREATE TABLE statement, 201

CREATE TRIGGER statement, 188

CREATE WORKLOAD GROUP command,

210–211

creating

alerts, 229–231

CHECK constraints, 99–100

classifi er functions, 211–212

database operators, 228–229

database roles, 279–282

database snapshots, 320–321

databases, 74–77

DEFAULT constraints, 94–95

distributor, 258–261

fi legroups, 83–84

fi les, 181–183

maintenance plans, 223–227

nonclustered indexes, 194–197

partition function, 199–200

partition tables, 201

policies, 344–346

resource pools, 208–210

server logins, 272–273

stored procedures, 185–186

transactions, 296–300

UNIQUE constraints, 102–103

views, 139–140

workload groups, 210–211

cursor data type, 69

• D •
-d option, 46

data, 161–169

aggregate functions, 120–123

counting records with, 121–122

fi nding minimum, maximum and average

values, 122–123

totaling values with, 123

working with unique records, 122

copying, 167–168

entering, 162–163

exporting, 168–169

grouping into tables, 56–59

importing, 167–169

indexing, 193–198

inserting, 161–164

modifying, 164–165

retrieving from different tables, 128–131

updating with trigger, 188–189

Data and Log File Location Best

Practice, 341

Data Collection folder, 245

Data Encryption Standard (DES), 285

Data Entry window, 162

data set, 147–150

data source, 147–150

Data Source drop-down list, 170

Data Transformation Services (DTS), 169

Data Type drop-down box, 87

data types, 64–70

character string, 68

selecting, 87, 360

bigint, 65

binary, 69

bit, 69

33_224656 bindex.indd 36633_224656 bindex.indd 366 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

367367 Index

char, 68

cursor, 69

date, 18

DATE, 18

date, 66–67

DATE, 66–67

Datetime, 67

DATETIME2, 18, 67

DATETIME/OFFSET, 18, 67

decimal, 65

float, 65

int, 65

money, 65

nchar, 68

numeric, 65–66

nvarchar, 68

nvarchar(max), 68

real, 65

rowversion, 70

smalldatetime, 67

smallint, 65

smallmoney, 65

sql-variant, 70

table, 70

TIME, 18, 66–67

time, 18, 66–67

tinyint, 65

uniqueidentifier, 70

varbinary, 69

varbinary(max), 69

varchar, 68

varchar(max), 68

xml, 70

Database Auto Shrink Best Practice, 341

Database Backup Options page, 308, 311

database connections, encrypting, 283–284

database design, 51–52

data types, 64–70

diagramming database, 61–62

normalization techniques, 62–64

fi rst normal form, 62–63

second normal form, 63–64

third normal form, 63–64

organizing databases, 55–60

grouping data into tables, 56–59

linking related tables, 60

objectives, 55–56

selecting primary keys, 59–60

servers, 52–55

tips, 359–362

choosing primary keys, 360

normalization techniques, 361

planning ahead, 359

selecting data types, 360

single purpose for fi elds, 361

using entity relationship diagrams, 360

using NULL value property, 361

working with NULL values, 70–71

Database drop-down list, 217

Database Engine Confi guration window,

24–25

Database Engine Tuning Advisor (DTA),

246–248, 354–355

database logs, 355

Database Mail, 28–32

confi guring, 28–32

creating profi le, 30

Database Mail Confi guration Wizard, 29–30

Database Maintenance Plan Wizard, 224

database mirroring, 324–332

benefi ts of, 324

confi guring, 325–330

logins, 325–326

partnership, 326–327

restoring data, 326

fail over, 331–332

monitoring, 330–331

operating modes, 325

Database Mirroring Monitor, 330–331

database objects, 261

database operators, 228–229

database owner (dbo), 87

Database Properties window, 84, 327

Database Role Properties window, 278

database roles

assigning users to, 282
creating, 279–282

Database Roles folder, 278

database servers, 52–53

33_224656 bindex.indd 36733_224656 bindex.indd 367 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

368 Microsoft SQL Server 2008 For Dummies

database snapshots, 320–322

accessing, 321

creating, 320–321

reverting to, 321–322

database statistics, updating, 202

Database Role Membership section, 244

database_log.mdf, 80

database_name, 204

DatabaseMailUserRole role, 32

database.mdf, 80

databases. See also database design;

database mirroring

altering properties of, 77–78

auditing, 287–291

creating audit objects, 287–288

enabling and confi guring, 287

reviewing audit records, 291

server specifi cations, 288–289

in SQL Server 2008, 18

backing up, 306–319

compression, 310–312

differential, 309–310

full, 306–309

in performance tuning, 354

restoring, 317–319

restoring from, 207

transaction logs, 312–314

creating, 74–77

data types, 64–70

deleting, 78–79, 165–166

diagramming, 61–62

importing into

bulk data, 168–169

data, 167–169

indexes, 193–198

clustered, 194

fragmentation level of, 197

nonclustered, 194–197

optimizing, 197–198

integrity of

checking, 205–206

correcting errors, 206–207

referential, 103–105

verifying, 354

maintenance plans, 222–227

confi guring tasks in, 226

creating, 223–227

tasks, 223

naming, 74–75

normalization techniques, 62–64

organizing, 55–60

defi ning objectives, 55–56

grouping data into tables, 56–59

linking related tables, 60

primary keys, 59–60

overview, 33–34

relational, 53–54

renaming, 79–80

shrinking fi les, 203–204

snapshots, 320–322

spreadsheets versus, 55

statistics, 202

synchronizing with log shipping, 333–338

tuning, 246–248

types of

master, 33–34

model, 34

msdb, 33

tempdb, 34

uniqueness of columns, 102–103

users, 273–274

working with NULL values, 70–71

Databases folder, 74, 162, 195, 278–279, 318

DATE data type, 18, 66–67

DATEADD () function, 137

Datediff () function, 180

DATEPART () function, 137

DATETIME Confl ict Resolver, 257

Datetime data type, 67

DATETIME2 data type, 18, 67

DATETIME/OFFSET data type, 18, 67

db_accessadmin role, 277

db_backupoperator role, 277

db_datareader role, 277

db_datawriter role, 277

db_ddladmin role, 277

db_denydatareader role, 277

db_owner role, 277

33_224656 bindex.indd 36833_224656 bindex.indd 368 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

369369 Index

db_securityadmin role, 277

DBCC CHECKALLOC command, 205, 354

DBCC CHECKCATALOG command, 205, 354

DBCC CHECKDB command, 205, 219, 354

DBCC CHECKTABLE command, 205, 354

Dbcreator role, 275

dbfi le, 204

dbo (database owner), 87

decimal data type, 65

decimal number, 66

Declarative Management Framework

(DMF), 337–338

automated policy enforcement, 348–349

conditions, 341–342

enforcing policy manually, 348–349

overview, 17

policies, 340–341, 344–346

verifying policy compliance, 347–348

default instance, 19–20

default resource pool, 208

DEFAULT constraints, 92

creating, 94–95

fi lling in empty values with, 92–93

and NULL values, 96

DELETE statement, 165–166, 255

deleting, 78–80

data, 165–166

databases, 78–79, 165–166

fi les, 82–83

functions, 190

logins, 273

objects, 190

rows, 166

stored procedures, 190

tables, 90

triggers, 190

views, 141

DES (Data Encryption Standard), 285

DESC keyword, 120

Description text box, 216

design, database, 51–52

data types, 64–70

diagramming database, 61–62

normalization techniques, 62–64

fi rst normal form, 62–63

second normal form, 63–64

third normal form, 63–64

organizing databases, 55–60

grouping data into tables, 56–59

linking related tables, 60

objectives, 55–56

selecting primary keys, 59–60

servers, 52–55

tips, 359–362

choosing primary keys, 360

normalization techniques, 361

planning ahead, 359

selecting data types, 360

single purpose for fi elds, 361

using entity relationship diagrams, 360

Design View, 102

design, database

tips

using NULL value property, 361

working with NULL values, 70–71

Destination drop-down list, 172

diagramming databases, 61–62

Differential Backup screen, 227

differential backups, 309–310

direct upgrade, 28

dirty reads, 301

DISABLE TRIGGER statement, 189

disabled mode, 39

disaster recovery, 305–322

backup compression, 310–312

database snapshots, 320–322

differential backups, 309–310

full database backup, 306–309

models, 315–317

restoring data, 317–318

transaction log backups, 312–314

Disk Usage Summary report, 245

Diskadmin role, 275

display, 12

DISTINCT keyword, 122

Distribution Agent, 255, 265–266

distributor, 250, 258–261

DKNF (domain/key normal form), 64

DMF (Declarative Management

Framework), 337–338

automated policy enforcement, 348–349

conditions, 341–342

enforcing policy manually, 348–349

33_224656 bindex.indd 36933_224656 bindex.indd 369 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

370 Microsoft SQL Server 2008 For Dummies

DMF (Declarative Management

Framework) (continued)

overview, 17

policies, 340–341, 344–346

verifying policy compliance, 347–348

domain account, 144

domain/key normal form (DKNF), 64

Download Only Confl ict Resolver, 258

Drop Category Fields Here area, 151

Drop Data Fields Here area, 151

DROP FUNCTION command, 190

DROP PROCEDURE command, 190

DROP TABLE Transact-SQL statement, 90

DROP TRIGGER command, 190

DROP VIEW command, 141

DTA (Database Engine Tuning Advisor),

246–248, 354–355

DTS (Data Transformation Services), 169

dual core processors, 12

duplicate records, 62

durability, of database transactions, 296

• E •
Edit Mappings button, 172

Edit Top 200 Rows, 162

elements, user-defi ned, 181

ELSE keyword, 139

Enable Trace Stop Time check box, 236

encryption, 282–286

of database connections, 283–284

in SQL Server 2008, 18

of stored data, 284–286

backing up master key and certifi cates,

286

encrypting database, 285–286

master encryption key, 284–285

restoring master key and certifi cates,

286

server certifi cate, 285

END keyword, 139

Enterprise Edition, 10–11

entity relationship (ER) diagrams,

61–62, 360

equi-join, 128–131

ER (entity relationship) diagrams, 61–62,

360

Error and Usage Reporting window, 25

error handling, 303–304

error log, 239, 355

Event Viewer, 239–240

Events Selection tab, 236–237

Excel, importing data from, 170

exclamation point (!), 163

execution mode, 340

Express Edition, 10–11

extensions, fi le

.ldf, 81

.mdf, 80

.ndf, 81

• F •
fail over, 337–338, 331–332

fi elds, 54, 361

fi fth normal form (5NF), 64

File Name drop-down box, 83

File name text box, 307

File Type drop-down box, 83

fi le extensions

.ldf, 81

.mdf, 80

.ndf, 81

fi le_name, 204

Filegroup drop-down box, 83

fi legroups, 83–85

creating, 83–84

naming, 84

PRIMARY, 84

fi les, 80–83

adding, 81–82

log, 81

naming, 81

primary data fi les, 80

removing, 82–83

secondary data fi les, 81

size management

automatically shrinking, 203

manually shrinking, 204

Filter Table Rows screen, 263

fi rst normal form (1NF), 62–63

fi xed database roles, 277–282

fi xed server roles, 275–277

33_224656 bindex.indd 37033_224656 bindex.indd 370 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

371371 Index

Flat File Source, 170

float data type, 65

fl oating-point number, 66

Foreign Key Relationships window,

104–105

foreign keys, 60

FOREIGN KEY constraints, 92, 103–105

fourth normal form (4NF), 64

FROM keyword, 111

FTS (Full Text Search), 116

full recovery model, 315

Full Text Search (FTS), 116

FULL OUTER JOIN statement, 132

function_name element, 181

functions, 175–183

aggregate, 120–123

counting records with, 121–122

fi nding minimum, maximum and average

values, 122–123

totaling values with, 123

working with unique records, 122

built-in, 177–180

calling, 178–179

with input parameters, 179

obtaining list of, 179–180

without input parameters, 178

classifi er, 208, 211–212

creating, 181–183

deleting, 190

with input parameters, 179

modifying, 189–190

scalar, 177

stored procedures versus, 184

table-valued, 177

without input parameters, 178

Functions folder, 180

funnel charts, 151

• G •
GETDATE() function, 177

GROUP_MAX_REQUESTS parameter, 211

• H •
hard drives, 12

HAVING clause, 195

high-performance mode, 325

high-safety mode, 325

Home folder, 157

HTTP port, 145

Hyperion Essbase, 147

• I •
-i option, 47

IMPORTANCE parameter, 210

importing

bulk data, 168–169

data, 167–169

databases, 166–169

IN keyword, 115

incremental backup, 310

Index Name text box, 196

indexes, 194–198

clustered, 194

fragmentation level of, 197

nonclustered, 194–197

optimizing, 197–198

Indexes folder, 195

Indexes/Keys window, 102, 104–105

INNER JOIN statement, 128–131

aliases, 130–131

analyzing results of, 129–130

writing, 129

input parameters, 178–179

input_parameter_type, 199

INSERT INTO statement, 166–167

INSERT statement, 163–164, 255

installing SQL Server 2008, 19–25

authentication mode, 20–21

collations, 21–22

default versus named instances, 19–20

service accounts, 21

steps in, 22–25

upgrading with Upgrade Advisor, 26–28

Instance Confi guration window, 22–23

33_224656 bindex.indd 37133_224656 bindex.indd 371 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

372 Microsoft SQL Server 2008 For Dummies

instances, 19–20

connecting to, 43–44

INSTEAD OF function, 188

int data type, 65

integers, 66

Integration Services, 169–173

choosing data source in, 171

import destination, 172

import status, 173

welcome screen, 171

integrity, of database

checking, 205–206

correcting errors, 206–207

verifying, 354

IP addresses, 42, 145

IS NOT NULL clause, 117

IS NULL condition, 71, 116

isolation levels, 300–302

isolation principle, 295–296

isolation levels

READ COMMITTED, 301

READ UNCOMMITTED, 300–301

REPEATABLE READ, 301

SERIALIZABLE, 302

SNAPSHOT, 302

• J •
Job Step list, 218

Job Step Properties sheet, 220

jobs, 215–222

adding steps to, 217–220

category, 215

creating, 215–216

notifi cation of completion, 222

owner, 215

scheduling, 219–221

Jobs folder, 215

JOIN statements, 127–135, 195

• K •
keywords

ALTER, 189–190

ASC, 120

DESC, 120

DISTINCT, 122

ELSE, 139

END, 139

FROM, 111

IN, 115

LEFT, 199

NOT, 114, 115

RIGHT, 199

• L •
Latin 1_General collation, 21–22

.ldf fi le extension, 81

LEFT () function, 137

LEFT keyword, 199

LEFT OUTER JOIN statement, 131–132

LEN () function, 137

LIKE operator, 115–116, 343

line graphs, 151

list conditions, 114–115

local distributor, 250

Log File Viewer, 240–241, 291

log fi les, 81, 238–241

error, 239

viewing, 240–241

Windows application, 239–240

Log Reader Agent, 255

log shipping

confi guring, 333–337

failing over to, 337–338

Log Shipping Confi guration checkbox, 334

Log Shipping Confi guration status window,

337

log shrinking, 313, 355

log truncation, 313–314, 355

Logical Name cell, 81

login name, 274

Login Name text box, 274

logins, 271–273

creating, 272–273

on mirror server, 325–326

removing, 273

logs

database, 355

error, 239, 355

transaction, 312–314

33_224656 bindex.indd 37233_224656 bindex.indd 372 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

373373 Index

backup scenario, 313–314

creating backups, 314

disk space, 355

shrinking, 313

truncating, 313–314

Windows Application, 239–240, 287, 355

Windows Security, 287

LOWER () function, 137

• M •
Maintenance Plan Wizard, 223–228

maintenance plans, 222–227

confi guring tasks in, 226

creating, 223–227

tasks, 223

Maintenance Plans folder, 223

Maintenance Tasks screen, 225

Manage Profi le Security window, 32

Management Data Warehouse, 242–244

management facet, 340

Management folder, 29, 223, 242, 245

Management Studio, 43–48

adding and deleting fi les in, 81–83

command line, 46–48

connecting to instance, 43–44

creating alerts in, 230–231

creating constraints in, 94, 99–105

creating fi legroups in, 83–84

creating nonclustered indexes, 195–197

databases, 74–80

altering properties of, 77–78

creating, 74–77

deleting or renaming, 78–80

interface, 44–45

issuing Transact-SQL queries, 45–46

list of built-in functions, 179–180

log fi le viewer, 240–241

overview, 14–15

Server options, 44

starting, 43

tables, 85–90

creating, 85–88

deleting, 90

modifying, 89

manual mode, 39

Map Logs and Users window, 243

master database, 33

master encryption key

backing up, 286

creating, 284–285

restoring, 286

MAX aggregate function, 121, 122–123

MAX_CPU_PERCENT parameter, 209

MAX_DOP parameter, 210

MAX_MEMORY_PERCENT parameter, 209

Maximum Confl ict Resolver, 257

maximum values, 122–123

.mdf fi le extension, 80

mdw_admin role, 244

mdw_reader role, 244

mdw_writer role, 244

memory, 12, 207–210

Merge Agent, 256

merge replication, 255–258

Merge Text Confl ict Resolver, 258

Microsoft Access, importing data from, 170

Microsoft Excel, importing data from, 170

Microsoft Windows 2000 Professional, 12

Microsoft Windows Application log,

239–240, 287, 355

Microsoft Windows authentication mode,

20–21, 272

Microsoft Windows Event Viewer, 239–240

Microsoft Windows Management

Instrumentation (WMI), 229

Microsoft Windows Security log, 287

Microsoft Windows Server 2003, 53

Microsoft Windows XP, 12

migration, side-by-side, 27

MIN aggregate function, 121, 122–123

MIN_CPU_PERCENT parameter, 209

MIN_MEMORY_PERCENT parameter, 209

Minimum Confl ict Resolver, 257

minimum system requirements, 11–12

minimum values, 122–123

mirroring, 324–332

benefi ts of, 324

confi guring, 325–330

logins, 325–326

partnership, 326–327

restoring data, 326

33_224656 bindex.indd 37333_224656 bindex.indd 373 8/21/08 5:49:23 PM8/21/08 5:49:23 PM

374 Microsoft SQL Server 2008 For Dummies

mirroring (continued)

fail over, 331–332

monitoring, 330–331

operating modes, 325

missing data, 93

mixed authentication mode, 21

model database, 34

Modern_Spanish collation, 21–22

modes

authentication, 20–21, 272

automatic, 39

On Change - Log Only, 345, 349

On Change - Prevent, 345, 349

On Demand, 345

disabled, 39

execution, 340

high-performance, 325

high-safety, 325

manual, 39

operating, 325

On Schedule, 345, 349

money data type, 65

msdb database, 33

Multiple Identities for Report Manager, 156

multiple servers, 356

multi-valued attributes, 62–63

My Reports role, 158

• N •
Name cell, 84

Name text box, 221

named instance, 19–20

Named Instance radio button, 24

named pipes, 41

naming. See also renaming

databases, 74–75

fi legroups, 84

fi les, 81

tables, 86

traces, 234

nchar data type, 68

.ndf fi le extension, 81

.NET Framework 2.0, 12

network fi le sharing, 334

network protocols, 40–43

network settings, 40–43

changing protocol settings, 42

enabling and disabling protocols, 41–42

modifying, 40–43

New Database Audit Specifi cation, 289

New Database Mail Account window, 31

New Database Role window, 279

New Database User window, 274

New Database window, 243

New Database Wizard, 74–76

New Index dialog box, 196

New Job creation window, 215–216

New Job Schedule window, 221

New Job step window, 218

New Operator screen, 228–229

New Profi le screen, 30

New Publication Wizard, 261–264

New Query button, 45

New Role Assignment screen, 158

nonclustered indexes, 194–197

nonmatching records, 131–133

nonrepeatable reads, 301

nonvolatile data, 198

normal forms

1NF (fi rst normal form), 62–63

2NF (second normal form), 63–64

3NF (third normal form), 63–64

4NF (fourth normal form), 64

5NF (fi fth normal form), 64

6NF (sixth normal form), 64

BCNF (Boyce-Codd normal form), 64

DKNF (domain/key normal form), 64

normalization techniques, 62–64

NOT keyword, 114, 115

notifi cations, 222

Notify Operators check box, 231

NULL values, 70–71

in database design, 361

and DEFAULT constraints, 96

and missing data, 93

in rows, 116–118, 163

storing, 87

numeric data types, 65–66

nvarchar data type, 68

nvarchar(max) data type, 68

33_224656 bindex.indd 37433_224656 bindex.indd 374 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

375375 Index

• O •
-o option, 46

Object Explorer, 44, 88

objects

deleting, 190

modifying, 189–190

ODBC data, 147

OLE DB data, 147

On Change - Log Only execution

mode, 345, 349

On Change - Prevent execution mode,

345, 349

On Demand execution mode, 345

On Schedule execution mode, 345, 349

online documentation, 14

operating modes, 325

operating system, 11–12, 53

operators

AND, 112, 343

database operators, 228–229

LIKE, 115–116, 343

OR, 343

OR conjunction, 112

OR operator, 343

Oracle databases, 147

ORDER BY clause, 118–120, 195

organizing databases, 55–60

defi ning objectives, 55–56

grouping data into tables, 56–59

linking related tables, 60

primary keys, 59–60

Overwrite Media options, 308

owner element, 181

Owner text box, 215

• P •
π (pi), 179

Parameters folder, 180

parameters element, 181

Parse button, 219

partition_column_name, 201

partition_function_name, 199

partition_scheme_name, 201

partitions, 199–201

function, 199–200

scheme, 200–201

tables, 201

password, 39, 155, 285

Password text box, 273

percentage (%) character, 116

performance data, reviewing,

 244–246

Performance Studio, 242–244

performance tuning, 353–357

automating administrative alerts, 356

backing up, 354

conserving transaction logs disk

space, 355

database tuning, 354–355

managing multiple servers, 356

monitoring database logs, 355

monitoring query performance,

353–354

performing security reviews, 357

simplifying user rights administration,

356

verifying database integrity, 354

permissions, 274, 281

phantom reads, 301

physical processor, 12

PI () function, 137

Pi () function, 178

pi (π), 179

pie charts, 151

Point in Time restore dialog box, 319

policies, 340–348

automated enforcement, 349

conditions, 341–344

manual enforcement, 348–349

verifying compliance to, 347–348

viewing, 350

Preview Report view, 153–154

primary data fi les, 80

PRIMARY fi legroup, 84

Primary Key drop-down list, 105

primary keys, selecting,

59–60, 87–88, 360

PRIMARY KEY constraints, 92

Principal Name fi eld, 290

33_224656 bindex.indd 37533_224656 bindex.indd 375 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

376 Microsoft SQL Server 2008 For Dummies

process ID, 37

Processadmin role, 275

processors, 12

Programmability folder, 180

Properties dialog box, 81

Properties window, 77–78

Protocol Properties window, 283–284

protocols, 40–43

enabling and disabling, 41–42

Protocols folder, 283

publication, 261–267

creating, 261–264

status of, 264

subscribing to, 265–267

Publication Name text box, 264

publisher, 250

Publisher role, 158

pull subscription, 250, 252, 265

push subscription, 250, 253, 265

• Q •
quad core processors, 12

queries, 109–125

computing values, 135–137

grouping results, 123–124

inserting results of, 166–167

renaming columns in output, 124–125

retrieving data, 109–110

SELECT. . .FROM clause, 110–111

sorting output, 118–120

subqueries, 137–138

summarizing data, 120–123

views, 139–141

WHERE clause, 112–118

Query Editor window, 149–150

• R •
RAND () function, 137

range graphs, 151

READ COMMITTED isolation, 301

READ UNCOMMITTED isolation, 300–301

reads, 301

real data type, 65

RECONFIGURE command, 212

records, 53–54

recovery models, 315–317

bulk-logged, 316

changing, 316

full, 315

simple, 315–316

redundant data, 57

referential integrity, 103–105

relational databases, 53–54

Remember icon, 5

remote distributor, 250

renaming. See also naming

columns, 124–125

databases, 79–80

REPAIR_ALLOW_DATA_LOSS option, 207

REPAIR_REBUILD option, 207

REPEATABLE READ isolation, 301

replication, 249–268

articles and publications, 252–254

model, 251

monitoring, 267–268

publishing data, 258–264

server roles, 250–252

subscribing to publication, 265–267

types, 254–258

merge, 255–258

snapshot, 254

transactional, 254–255

using, 249

Replication folder, 259

Replication Monitor, 267–268

replication relationship, 21

Report Builder 2.0, 147–154

adding charts to, 151–153

adding text box, 150–151

choosing data source and data set in,

147–150

installing and starting, 147

laying out report, 150–153

Report Builder Ribbon, 150

Report Manager, 156–157

Report Server Status screen, 144

Report Server Web Service URLs, 145

Report Builder role, 158

33_224656 bindex.indd 37633_224656 bindex.indd 376 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

377377 Index

Reporting Services, 143–158

creating report, 145–154

overview, 15

setting up, 143–146

working with published reports, 154–158

Reporting Services Confi guration Manager,

15, 143–146

reports

adding tables to, 153

adding text box to, 150–151

confi guring security, 156–158

laying, 150–153

previewing, 153–154

publishing, 154

viewing, 155–156

REQUEST_MAX_MEMORY_GRANT_PERCENT

parameter, 210

REQUEST_MEMORY_GRANT_TIMEOUT_SEC

parameter, 210

Resource Governor, 207–212

activating and deactivating, 212

creating classifi er functions, 211–212

creating resource pools, 208–210

creating workload groups, 210–211

resource pools, 207

creating, 208–210

default, 208

internal, 208

resource_pool_name, 209, 211

Restore Database window, 318, 326

Restore Transaction Log tab, 336

RESTORE WITH NORECOVERY option, 326

restoring backups, 326, 317–319

Results Detailed View window, 347–348

RIGHT () function, 137

RIGHT keyword, 199

RIGHT OUTER JOIN statement, 132

Role Name text box, 279

roles, 275–282

assigning users to, 282

content, 157–158

Browser, 158

Content Manager, 158

My Reports, 158

Publisher, 158

Report Builder, 158

creating, 279–282

DatabaseMailUserRole, 32

fi xed database, 277–282

fi xed server, 275–277

fi xed database

db_accessadmin, 277

db_backupoperator, 277

db_datareader, 277

db_datawriter, 277

db_ddladmin, 277

db_denydatareader, 277

db_denydatawriter, 277

db_owner, 277

db_securityadmin, 277

fi xed server

Bulkadmin, 275

Dbcreator, 275

Diskadmin, 275

Processadmin, 275

Securityadmin, 275

Serveradmin, 275

Setupadmin, 275

Sysadmin, 275

Management Data Warehouse, 244

permissions, 281

site, 157

user rights administration, 356

Roles folder, 278

ROLLBACK TRANSACTION statement,

297–300

rows, 53–54

deleting, 166

retrieving, 113–114

selecting, 116–118

rowversion data type, 70

• S •
-S option, 46

SAP Netweaver, 147

scalar functions, 177

scatter plots, 151

Schedule Type drop-down box, 221

schema-bound function, 211

scripts, 217

second normal form (2NF), 63–64

33_224656 bindex.indd 37733_224656 bindex.indd 377 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

378 Microsoft SQL Server 2008 For Dummies

secondary data fi les, 81

Secondary Database drop-down box, 336

Securables page, 279

security

confi guring, 156–158

reviewing, 357

Security folder, 273, 278, 279

Securityadmin role, 275

Select Backup Destination window, 307

Select Backup Sets to Restore section, 318

Select Chart Type window, 152

Select Columns dialog box, 196

Select Confi guration Task window, 29

Select Objects Types window, 281

Select Objects window, 290

SELECT. . .FROM clause, 110–111,

124–125

SELECT statement, 109–110, 135–137

self-referential table, 133–135

SERIALIZABLE isolation, 302

Serve Activity Summary report, 246

Server Account page, 145

server certifi cate, 284–286

backing up, 286

creating, 284–285

restoring, 286

server roles, 250–252

Server Name drop-down list, 29

Server Role Properties window, 276

Serveradmin role, 275

servers, 52–53

auditing facility, 287–291

connecting to, 74

mirror, 325–326

multiple, 356

witness, 325

Service Account page, 144–145

service accounts, 21, 37–39, 329

Service Accounts window, 329

service name, 37

service type, 37

SET NOCOUNT OFF command, 111

SET NOCOUNT ON command, 111

Setupadmin role, 275

shared memory, 39

Ship Transaction Logs, 334

Show All Columns check box, 237

Show All Events check box, 237

SHOW_STATISTICS command, 202

Shrink File window, 82

SHRINKDATABASE command, 204

SHRINKFILE command, 204

side-by-side migration, 26

Simple Mail Transfer Protocol (SMTP), 31

simple recovery model, 315–316

single-core processors, 12

site roles, confi guring, 157

sixth normal form (6NF), 64

smalldatetime data type, 67

smallint data type, 65

smallmoney data type, 65

SMTP (Simple Mail Transfer Protocol), 31

Snapshot Agent, 263

Snapshot Agent Security screen, 263–264

Snapshot Folder fi eld, 260

SNAPSHOT isolation, 302

snapshots, 320–322

accessing, 321

creating, 320–321

replication

distributor, 258–261

overview, 254

publication, 261–264

reverting to, 321–322

Social Security Numbers (SSNs), 59–60

software, 12

sorting, 118–120

Source for Restore section, 318

SP_Counts template, 235

sp_helptext stored procedure, 184, 190

Specifi c Objects option, 281

Specify Backup window, 318–319

spreadsheets, 55

SQL (Structured Query Language), 13

SQL code element, 181

SQL Common Language Runtime

(SQLCLR), 187

SQL Server 2000, upgrading, 28

SQL Server 2005, upgrading, 28

SQL Server 2008

alerts, 229–231

built-in functions, 177–180

33_224656 bindex.indd 37833_224656 bindex.indd 378 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

379379 Index

changing service accounts, 38–39

components, 13–16

analysis services, 15

confi guration manager, 13–14

management studio, 14–15

online documentation, 14

reporting services, 14

databases, 16–17

master, 31

model, 34

msdb, 33

tempdb, 34

editions, 10–11

error log, 239–240

implementing databases with, 16–17

installing, 19–25

new features, 17–18

declarative management, 17

encryption and auditing, 18

system requirements, 11–12

SQL Server Agent, 215–221

adding jobs steps, 217–220

creating jobs, 215–216

notifi cation of job completion, 222

in replication, 259

scheduling jobs, 219–221

starting, 21

SQL Server Analysis Services (SSAS), 217

SQL Server authentication, 272–273

SQL Server Books Online, 14

SQL Server Confi guration Manager, 35–43

changing service accounts, 38–39

changing start modes, 39–40

launching, 36

modifying network settings, 40–43

overview, 13–14

starting and stopping services, 36

SQL Server Error Log, 355

SQL Server Installation Center, 22

SQL Server Integration Services (SSIS),

169–173

choosing data source in, 171

import destination, 172

import status, 173

welcome screen, 171

SQL Server Management Studio

(SSMS), 43–48

adding and deleting fi les in, 81–83

connecting to instance, 43–44

creating alerts in, 230–231

creating constraints in, 94, 99–105

creating fi legroups in, 83–84

creating nonclustered indexes, 195–197

databases, 74–80

altering properties of, 77–78

creating, 74–77

deleting or renaming, 78–80

interface, 44–45

issuing Transact-SQL queries, 45–46

line, 46–48

list of built-in functions, 179–180

log fi le viewer, 240–241

overview, 14–15

Server options, 44

starting, 43

tables, 85–90

creating, 85–88

deleting, 90

modifying, 89

SQL Server Native Client, 172

SQL Server Network Confi guration

folder, 42, 283

SQL Server Password Expiration Best

Practice, 341

SQL Server Password Policy Best

Practice, 341

SQL Server Profi ler, 234–238, 354

SQL Server Reporting Services, 143–158

creating report, 145–154

overview, 15

setting up, 143–146

working with published reports,

154–158

SQL Server Services, 37–39

SQL Server Upgrade Advisor, 26–28

SQL Trace, 353

SQL Server 2008

new features

data/time data types, 18

33_224656 bindex.indd 37933_224656 bindex.indd 379 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

380 Microsoft SQL Server 2008 For Dummies

SQLCLR (SQL Common Language

Runtime), 187

SQLCMD utility, 46–48

sql-variant data type, 70

SQRT () function, 137

SQUARE () function, 137

SSAS (SQL Server Analysis Services), 217

SSIS (SQL Server Integration Services),

169–173

choosing data source in, 171

import destination, 172

import status, 173

welcome screen, 171

SSL certifi cate, 145

SSL Certifi cate drop-down menu, 145

SSMS (SQL Server Management Studio),

43–48

adding and deleting fi les in, 81–83

connecting to instance, 43–44

creating alerts in, 230–231

creating constraints in, 94, 99–105

creating fi legroups in, 83–84

creating nonclustered indexes, 195–197

databases, 74–80

altering properties of, 77–78

creating, 74–77

deleting or renaming, 78–80

interface, 44–45

issuing Transact-SQL queries, 45–46

line, 46–48

list of built-in functions, 179–180

log fi le viewer, 240–241

overview, 14–15

Server options, 44

starting, 43

tables, 85–90

creating, 85–88

deleting, 90

modifying, 89

SSMS Connection dialog box, 44

SSMS Policies folder, 346, 349

SSNs (Social Security Numbers), 59–60

Standard Edition, 10–11

Standard toolbar, 88

Standard trace template, 235

Start Analysis button, 247

Start Mirroring dialog box, 330

start modes, 37, 39–40

statements

ALTER RESOURCE POOL, 209–210

ALTER TABLE, 89

ALTER VIEW, 140–141

ALTER WORKLOAD, 211

AUTO_CREATE_STATISTICS, 202

BEGIN TRANSACTION, 297–300

BULK INSERT, 167–168

CASE, 138–139

COMMIT TRANSACTION, 297

CREATE DATABASE, 320–321

CREATE PARTITION, 200–201

CREATE PROCEDURE, 185–186

CREATE RESOURCE POOL, 209–210

CREATE TABLE, 201

CREATE TRIGGER, 188

CREATE WORKLOAD GROUP, 210–211

DBCC CHECKALLOC, 205, 354

DBCC CHECKCATALOG, 205, 354

DBCC CHECKDB, 205, 219, 354

DBCC CHECKTABLE, 205, 354

DELETE, 165–166, 255

DISABLE TRIGGER, 189

DROP FUNCTION, 190

DROP PROCEDURE, 190

DROP TABLE Transact-SQL, 90

DROP TRIGGER, 190

DROP VIEW, 141

FULL OUTER JOIN, 132

INNER JOIN, 128–131

aliases, 130–131

analyzing results of, 129–130

writing, 129

INSERT, 163–164, 255

INSERT INTO, 166–167

JOIN, 127–135, 195

LEFT OUTER JOIN, 131–132

RECONFIGURE, 212

RIGHT OUTER JOIN, 132

ROLLBACK TRANSACTION, 297–300
SELECT, 109–110

computing values, 135–137

SET NOCOUNT OFF, 111

33_224656 bindex.indd 38033_224656 bindex.indd 380 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

381381 Index

SET NOCOUNT ON, 111

SHOW_STATISTICS, 202

SHRINKDATABASE, 204

SHRINKFILE, 204

TRUNCATE TABLE, 166

UPDATE, 164–165, 255

statements, retrieving, 184

statistics, updating, 202

STDEV aggregate function, 121

Step name text box, 217

stored data encryption, 284–286

backing up master key and certifi cates,

286

encrypting database, 285–286

master encryption key, 284–285

restoring master key and certifi cates, 286

server certifi cate, 285

Stored Procedure Resolver, 258

stored procedures, 183–186

advantages of, 184

creating, 185–186

deleting, 190

executing, 186

functions versus, 184

modifying, 189–190

saving time with, 184–185

system, 184–185

Structured Query Language (SQL), 13

subqueries, 137–138

Subscriber Always Wins Confl ict Resolver,

258

subscribers, 250

SUM aggregate function, 121, 123

synchronized servers, 331

synchronizing servers, 331

synchronous operation, 325

Sysadmin role, 275

System Data Collection Sets folder, 245

System Functions folder, 180

system requirements, 11–12

system stored procedures, 184–185

System Tables folder, 85

System Administrator role, 157

System User role, 157

• T •
table data type, 70

Table Designer window, 86–89, 99

tables, 85–90

adding columns to, 87

creating basic structure of, 85–86

data types for, 64–70

deleting, 90

deleting rows from, 166

grouping data into, 56–59

joining with itself, 133–135

linking, 60

modifying, 89

naming, 86

partitioned, 201

selecting primary key for, 87–88

Tables and Columns Specifi cation

property, 105

Tables and Columns window, 105

Tables folder, 85–86, 162

table-valued functions, 177

target_percent parameter, 204

target_size, 204

targets, 340, 350

TCP ports, 42, 145

TCP/IP Properties, 42

TDE (Transparent Data Encryption),

18, 284, 285–286

Technical Stuff icon, 5

tempdb database, 34

Test Policy, 347

text box, 150–151

text patterns, matching, 115–116

third normal form (3NF), 63–64

TIME data type, 18, 66–67

tinyint data type, 65

Tip icon, 5

Total Fragmentation column, 197–198

trace, 234–238

creating, 234–237

monitoring queries with, 353

naming, 234

reviewing results of, 237–238

saving, 236

Trace Name text box, 234

33_224656 bindex.indd 38133_224656 bindex.indd 381 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

382 Microsoft SQL Server 2008 For Dummies

Trace Properties window, 234–236

Transaction Log Backup Settings

window, 335

Transaction Log Shipping properties, 335

transaction logs, 312–314

backup scenario, 313–314

creating backups, 314

disk space, 355

shrinking, 313

truncating, 313–314

transactional replication, 254–255

transactions, 293–304

ACID model, 294–296

creating, 296–300

error handling, 303–304

isolation levels, 300–302

testing Transact-SQLs, 298–300

Transact-SQL (T-SQL)

accessing database snapshots, 321

activating and deactivating Resource

Governor, 212

copying bulk data, 167

creating database snapshots, 320–321

creating resource pools, 208–209

creating tables with, 89

creating partition function, 199

deleting tables with, 90

encrypting stored data, 284–286

inserting query results, 167

line, 46–48

overview, 13

queries, 45–46

reverting to database snapshots, 321–322

testing with transactions, 298–300

updating statistics, 202

Transparent Data Encryption (TDE), 18,

284, 285–286

triggers, 187–189

components of, 188

creating, 188–189

deleting, 190

disabling, 189

modifying, 189–190

updating data with, 188–189

troubleshooting, 232–248

log records, 238–241

server monitoring, 241–246

trace, 234–238

tuning database, 246

TRUNCATE TABLE statement, 166

Truncate the Transaction Log option, 314

truncation, 313–314

T-SQL (Transact-SQL)

accessing database snapshots, 321

activating and deactivating Resource

Governor, 212

copying bulk data, 167

creating database snapshots, 320–321

creating partition function, 199

creating resource pools, 208–209

creating tables with, 89

deleting tables with, 90

encrypting stored data, 284–286

inserting query results, 167

line, 46–48

overview, 13

queries, 45–46

reverting to database snapshots, 321–322

testing with transactions, 298–300

updating statistics, 202

TSQL template, 235

TSQL_Duration template, 235

TSQL_Grouped template, 235

TSQL_Replay template, 235

TSQL_SPs template, 235

Tuning template, 235

Type drop-down list, 217

type element, 181

Type property, 103

• U •
-U option, 46

UDTs (user-defi ned types), 70

UNC name, 260

underscore (_) character, 97, 116

unique key, 103

UNIQUE constraints, 92, 102–103

uniqueidentifier data type, 70

UPDATE command, 164–165

UPDATE statement, 255

Upgrade Advisor, 26–27

33_224656 bindex.indd 38233_224656 bindex.indd 382 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

383383 Index

upgrading SQL Server, 25–28

direct upgrade, 28

side-by-side migration, 26

with Upgrade Advisor, 26–27

Upload Only Confl ict Resolver, 258

UPPER () function, 137

URK for Report Manager, 157

User Name check box, 274

user-defi ned elements, 181

user-defi ned types (UDTs), 70

username, 155, 274

users

adding, 273–274

assigning to database roles, 282

Users folder, 273

Users Mapped to This Login section, 243

• V •
values, computing, 135–137

VAR aggregate function, 121

varbinary data type, 69

varbinary(max) data type, 69

varchar data type, 68

varchar(max) data type, 68

variables, 54

Verify Backup when Finished check box,

309

video adapter, 12

View Audit Logs, 291

View Policies report, 349, 350

views, 139–141

creating, 139–140

deleting, 141

modifying, 140–141

Vista Home Basic, 12

volatile data, 198

• W •
Warning! icon, 5

Web browser, 155

WHERE clause, 112–118

combining several conditions in, 112–113

indexes, 195

list conditions, 114–115

matching text patterns with LIKE, 115–116

modifying data, 165

negating conditions with NOT, 114

selecting rows with NULL values, 116–118

working with NULL values, 71

wildcards, 116

Windows 2000 Professional, 12

Windows Application log, 239–240, 287, 355

Windows authentication mode, 20–21, 272

Windows Event Viewer, 239–240

Windows Management Instrumentation

(WMI), 229

Windows Security log, 287

Windows Server 2003, 53

Windows XP, 12

WITH NORECOVERY option, 334

WITH SCHEMABINDING clause, 211

witness server, 327–328

WMI (Windows Management

Instrumentation), 229

Workgroup Edition, 10–11

workload groups, 208, 210–211

• X •
XML data sources, 147

XML fi le, 247

xml data type, 70

33_224656 bindex.indd 38333_224656 bindex.indd 383 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

Notes

33_224656 bindex.indd 38433_224656 bindex.indd 384 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

Notes

33_224656 bindex.indd 38533_224656 bindex.indd 385 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

Notes

33_224656 bindex.indd 38633_224656 bindex.indd 386 8/21/08 5:49:24 PM8/21/08 5:49:24 PM

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

34_224656 badvert.indd 38734_224656 badvert.indd 387 8/21/08 5:49:47 PM8/21/08 5:49:47 PM

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

34_224656 badvert.indd 38834_224656 badvert.indd 388 8/21/08 5:49:49 PM8/21/08 5:49:49 PM

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

34_224656 badvert.indd 38934_224656 badvert.indd 389 8/21/08 5:49:50 PM8/21/08 5:49:50 PM

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

34_224656 badvert.indd 39034_224656 badvert.indd 390 8/21/08 5:49:51 PM8/21/08 5:49:51 PM

	Microsoft SQL Server 2008
	Table of Contents
	Introduction
	Part I Welcome to SQL Server 2008
	Chapter 1 Introducing SQL Server 2008
	Starting Off on the Right Foot
	Understanding the Basic Components of SQL Server
	Implementing Databases with SQL Server 2008
	What’s New in SQL Server 2008

	Chapter 2 Building Your SQL Server
	Installing SQL Server 2008
	Upgrading an Existing SQL Server Installation
	Configuring Database Mail
	Using SQL Server’s Built-In Databases

	Chapter 3 Working with SQL Server Tools
	Using SQL Server Configuration Manager
	Managing Your Server with SQL Server Management Studio
	Working from the Command Line

	Part II Building SQL Server 2008 Databases
	Chapter 4 Planning Your Database
	Introducing Database Design Concepts
	Understanding the Elements of a Database
	Organizing a Database
	Diagramming Your Database
	Staying Fit and Trim with Normalization
	Choosing Data Types for Your Tables
	Working with NULL Values

	Chapter 5 Creating Databases and Tables
	Creating a Database
	Specifying Files and Filegroups
	Creating a Table

	Chapter 6 Imposing Constraints and Relationships
	Introducing Constraints
	Controlling Database Contents Using Constraints
	Enforcing Database Integrity

	Part III Retrieving Data from Databases
	Chapter 7 Constructing Simple Database Queries
	Retrieving Data with SELECT Statements
	Organizing Query Results

	Chapter 8 Joins and Other Advanced Queries
	Joining Data from Multiple Tables
	Taking SELECT to the Next Level
	Using Database Views

	Chapter 9 Turning Data into Information with SQL Server Reporting Services
	Setting up SQL Server Reporting Services
	Creating an SSRS Report with Report Builder
	Working with Deployed (Published) Reports

	Part IV Inserting and Manipulating Your Data
	Chapter 10 Inserting, Updating, and Deleting Data
	Inserting Small Quantities of Data
	Modifying and Deleting Data
	Importing Large Quantities of Data
	Working with SQL Server Integration Services

	Chapter 11 Saving Time with Functions, Stored Procedures, and Triggers
	Reusing Logic with Functions
	Leveraging SQL Server’s built-in functions
	Creating Your Own Functions
	Reusing SQL Code with Stored Procedures
	Updating Data Automatically with Triggers
	Modifying and Deleting Functions, Stored Procedures, and Triggers

	Part V SQL Server Administration
	Chapter 12 Keeping Your SQL Server Running Smoothly
	Indexing Data to Improve Query Performance
	Improving Performance with Partitions
	Updating Database Statistics
	Managing File Sizes
	Checking Database Integrity
	Governing Resource Consumption

	Chapter 13 Automating SQL Server 2008 Administration
	Scheduling Tasks with SQL Server Agent
	Implementing Database Maintenance Plans
	Alerting Administrators about Database Events

	Chapter 14 Troubleshooting SQL Server 2008 Problems
	Understanding the Inner Workings of SQL Server Queries
	Reviewing Log Records
	Monitoring Your Server with Performance Studio
	Tuning Your Database with Database Engine Tuning Advisor

	Chapter 15 Replicating Data across Multiple Servers
	Understanding Replication
	Publishing Data with Snapshot Replication
	Subscribing to a Publication
	Monitoring Replication

	Part VI Protecting Your Data
	Chapter16 Protecting Your Data from Prying Eyes
	Creating and Managing Logins
	Adding Database Users
	Managing Rights with Roles
	Preserving Confidentiality with Encryption
	Auditing SQL Server Activity

	Chapter 17 Preserving the Integrity of Your Transactions
	Preserving Transaction Integrity with the ACID Model
	Creating SQL Server Transactions
	Changing the Transaction Isolation Level
	Handling Errors

	Chapter 18 Preparing for Disaster
	Backing Up Your Data
	Specifying Disaster Recovery Requirements with Recovery Models
	Restoring Your Data after a Disaster
	Using Database Snapshots

	Chapter 19 Staying Alive: High Availability in SQL Server 2008
	Creating Redundancy with Database Mirroring
	Synchronizing Databases with Log Shipping

	Chapter 20 Implementing Policy-Based Management with the Declarative Management Framework
	Coming to Terms with DMF
	Creating DMF Policies
	Using On Demand Evaluation Mode
	Automated Policy Enforcement
	Viewing Policies Affecting a Target

	Part VII The Part of Tens
	Chapter 21 Ten Ways to Keep Your SQL Server 2008 Databases Humming
	Monitor Query Performance
	Back Up Your Data Routinely
	Verify Database Integrity Often
	Tune the Physical Structure of Your Databases
	Conserve Transaction Log Disk Space
	Monitor Database Logs
	Automate Administrative Alerts
	Manage Multiple Servers
	Simplify User Rights Administration with Roles
	Perform Security Reviews

	Chapter 22 Ten Database Design Tips
	Plan Ahead
	Draw Before You Click
	Choose Primary Keys Carefully
	Select Data Types with Space Efficiency in Mind
	Make Sure Your Fields Are Single Purpose
	Remember the Meaning of NULL
	Normalize when Possible
	Manage Your Relationships
	Use Descriptive Names
	Document Your Design

	Index

