
Mahesh Krishnan
Philip Beadle

Learn to:
• Develop seamless cross-platform,

cross-browser Web applications

• Design visually rich user interfaces
with ease

• Use Expression Blend™ and Visual
Studio® with Silverlight

• Deliver application data efficiently
with WCF RIA Services and ADO.NET

Silverlight
™ 4

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/go/

silverlight4fd to find all the code used in this book and

save yourself time and effort

 Open the book and find:

• How Silverlight delivers a rich user
experience

• Clear examples of XAML

• Tips on drawing shapes and doing
animation

• Advice on the best tools to use
with Silverlight

• Effective ways to work with
controls

• How to customize controls and
create your own

• Ten ways to get more from
Silverlight

• How to connect to your data on
demand

Mahesh Krishnan develops Web applications using Microsoft technologies

and speaks regularly at conferences. He is very active within the .NET

and Silverlight communities. Philip Beadle is a Senior Developer at

DotNetNuke and speaks at numerous conferences. He is a coauthor of

DotNetNuke For Dummies and has contributed to other books. Both are

senior consultants at Readify.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-52465-7

Technology/Graphics Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Make your rich Internet
applications shine on multiple
browsers and platforms
Silverlight makes stunning Web effects — animation,
streaming media, audiovisual playback — easier than you
could have imagined. Whether you’re new to Web design
or just to Silverlight, this book is packed with all the info you
need to start creating applications using Visual Studio and
Expression Blend.

• Getting started — find out what you need to get started with
Silverlight and download the necessary tools

• Gain control — style and manipulate Silverlight controls such as
text boxes and buttons, and create your own

• Make it move — enrich your user interface with animations that
upload fast and don’t devour bandwidth

• Stick things together — understand data binding and how it
supports your applications and streamlines programming

• Much ADO about data — work with ADO.NET Data Services and
WCF RIA Services to create versatile business applications

Krishnan
Beadle

spine=.768”

Microsoft®

Silverlight
™ 4

M
icrosoft

®

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

spine=.768”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/silverlight4

www.dummies.com/cheatsheet/silverlight4
www.dummies.com
www.dummies.com
www.dummies.com
www.dummies.com
www.dummies.com

by Mahesh Krishnan and Philip Beadle

Silverlight™ 4
FOR

DUMmIES
‰

01_524657-ffirs.indd i01_524657-ffirs.indd i 3/31/10 11:36 AM3/31/10 11:36 AM

Silverlight™ 4 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010924585

ISBN: 978-0-470-52465-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_524657-ffirs.indd ii01_524657-ffirs.indd ii 3/31/10 11:36 AM3/31/10 11:36 AM

www.wiley.com
www.wiley.com/go/permissions
www.wiley.com/go/permissions
www.wiley.com/techsupport

About the Authors
Mahesh Krishnan has been a geek all his life and proud of it. He works
as a Principal Consultant at Readify and is passionate about Software
Architecture and new technologies. He has been working in the IT industry
since 1992 and has worked on a range of projects, from shrink-wrapped prod-
ucts to large-enterprise applications across the globe. He is currently based
in Melbourne, Australia, and runs the local .NET Developer user group. He
also helped start the Silverlight Designer and Developers Network, a group
that focuses on spreading the Silverlight message to both the developer and
designer communities. He blogs at blogesh.wordpress.com, is very active
in the developer community, and has presented a number of times at user
groups, hands-on days, code camps, and Tech.Ed. He is married to Lakshmi
and they have a wonderful three-year-old daughter, Riya.

Philip Beadle is a founding member of the DotNetNuke Core Team, a
DotNetNuke Trustee, a Microsoft Certifi ed Application Developer, and
a Microsoft Certifi ed Trainer. Philip now works for the DotNetNuke
Corporation, an open source content management system built in ASP.NET,
and was awarded the Microsoft Most Valuable Professional (MVP) award in
ASP/ASP.NET in 2004. Philip also helped start the Silverlight Designer and
Developers Network with Mahesh Krishnan and Jordan Knight. He speaks at
many conferences, including Tech Ed, ReMIX, and DotNetNuke OpenForce,
and speaks at local user group gatherings as well. Philip and Lorraine have a
beautiful one-year-old daughter, Allegra Rose. You can visit Philip’s Web site
at http://www.philipbeadle.net.

01_524657-ffirs.indd iii01_524657-ffirs.indd iii 3/31/10 11:36 AM3/31/10 11:36 AM

01_524657-ffirs.indd iv01_524657-ffirs.indd iv 3/31/10 11:36 AM3/31/10 11:36 AM

Dedication
To my loving parents, without whom I wouldn’t be who I am today, my
daughter Riya, who constantly kept closing my notebook while writing the
book so that I could play with her, and to my wife, Lakshmi, for putting up
with me while I spent all my spare time on the book.

Mahesh Krishnan

To my wife, Lorraine, who supports me in all my endeavors, and to my
darling daughter, Allegra Rose, who always brings a smile to my face and joy
to my day.

Philip Beadle

Acknowledgements
Writing a book is hard. Writing a book for Dummies is even harder — trying
to articulate something in a way for someone with very little or no knowl-
edge of the topic to understand is not easy. Making the book easy to read
and ensuring that it is technically correct is, as I said, hard. Thankfully, I had
some help along the way.

First and foremost, I would like to thank Susan Christophersen, the Project
Editor, for hand holding me through the entire process. Susan, thanks for
the guidance and all the work you’ve put into this book. The book is a huge
improvement from the fi rst cut that I sent you and most of the credit for that
should go to you.

I would also like to thank Jordan Knight and Russ Mullen for diligently read-
ing through the content and looking for technical errors, as well as providing
valuable feedback.

A big thanks also to Katie Feltman and Wiley Publishing for providing me an
opportunity to write this book.

Mahesh Krishnan

01_524657-ffirs.indd v01_524657-ffirs.indd v 3/31/10 11:36 AM3/31/10 11:36 AM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Project Editor and Copy Editor:
Susan Christophersen

Acquisitions Editor: Katie Feltman

Technical Editors: Jordan Knight, Russ Mullen

Editorial Manager: Jodi Jensen

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel,
Douglas Kuhn, Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Crocker

Layout and Graphics: Joyce Haughey,
Christin Swinford, Erin Zeltner

Proofreaders: Laura Albert, Laura Bowman,
John Greenough

Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_524657-ffirs.indd vi01_524657-ffirs.indd vi 3/31/10 11:36 AM3/31/10 11:36 AM

Contents at a Glance
Introduction .. 1

Part I: Illuminating Silverlight 7
Chapter 1: Adding Silverlight to Your Web Development Toolkit 9
Chapter 2: Getting Started in Silverlight ... 23
Chapter 3: Enhancing the User Interface .. 49

Part II: Managing Your Silverlight Controls 81
Chapter 4: Working with Controls for UI Interactions .. 83
Chapter 5: Laying Out Controls ... 107
Chapter 6: Styling and Skinning Controls ... 127
Chapter 7: Creating Your Own Controls ... 149
Chapter 8: Creating Animations in Silverlight .. 171
Chapter 9: Updating Data the Easy Way with Data Binding 191

Part III: Connecting with Data 211
Chapter 10: Accessing Data in Silverlight ... 213
Chapter 11: Using WCF Data Services to Store and Manage Data 249
Chapter 12: Using WCF RIA Services in Silverlight .. 285
Chapter 13: Accessing Data with WCF RIA Services ... 297

Part IV: The Part of Tens .. 319
Chapter 14: Ten Cool Controls for Collecting and Displaying Data 321
Chapter 15: Ten Ways to Get More Out of Silverlight ... 329
Chapter 16: Ten Handy Tips for Writing Silverlight Applications 343

Index .. 351

02_524657-ftoc.indd vii02_524657-ftoc.indd vii 3/31/10 11:36 AM3/31/10 11:36 AM

02_524657-ftoc.indd viii02_524657-ftoc.indd viii 3/31/10 11:36 AM3/31/10 11:36 AM

Table of Contents
Introduction ... 1

What’s in This Book .. 1
Foolish Assumptions ... 2
How This Book Is Organized .. 2

Part I: Illuminating Silverlight ... 2
Part II: Managing Your Silverlight Controls .. 2
Part III: Connecting with Data ... 3
Part IV: The Part of Tens ... 3

Conventions Used in This Book ... 4
Icons Used in This Book ... 4

Part I: Illuminating Silverlight 7

Chapter 1: Adding Silverlight to Your Web Development Toolkit.9

Obtaining and Running Silverlight ... 9
Checking Out Some Silverlight-Enhanced Sites ... 10
Grasping the Potential of Silverlight ... 12
Hosting a Silverlight Application in a Web Page .. 14
All the Stuff You Need to Create Silverlight Applications 15

Visual Studio ... 16
Silverlight Tools for Visual Studio ... 16
Expression Blend ... 16
Silverlight Toolkit... 19
WCF RIA Services ... 19
Deep Zoom Composer ... 19

Creating Rich User Experiences in Silverlight ... 20
Silverlight Plays Well with Others ... 21
Silverlight Has More to Offer Than Just a Pretty Face 21

Chapter 2: Getting Started in Silverlight .23

Getting Started in Silverlight with Expression Blend 23
Exploring the Expression Blend interface .. 26
Menu bar ... 27
Artboard .. 28
Tools panel ... 28
Workspace panels .. 28
Adding a user interface element to the page 33

Introducing the Basics of the Extensible Application
Markup Language ... 35

Digging deeper into XAML .. 37
Understanding elements and properties by category 39

02_524657-ftoc.indd ix02_524657-ftoc.indd ix 3/31/10 11:36 AM3/31/10 11:36 AM

Silverlight 4 For Dummies x
Firing Up Visual Studio to Create a Silverlight Application 41

Exploring Visual Studio ... 42
Creating the Hello, World application ... 44
Exploring the Solution Explorer ... 44
Specifying the startup fi le for the application 46
Understanding other fi les involved in the solution 47
Hosting the Silverlight application .. 47

Using Expression Blend and Visual Studio in Tandem 48

Chapter 3: Enhancing the User Interface .49

Getting to Know the Properties Panel .. 49
Setting a property for an object ... 50
Getting to know the Properties panel better 51

Drawing Shapes on the Artboard .. 53
Drawing with ready-made shapes ... 54
Drawing freehand ... 54
Understanding the XAML for shapes .. 56

Shaping, Sizing, and Positioning Your Object .. 57
Getting your object into shape using your mouse 57
Reshaping and sizing an object using the Properties panel........... 58
Rounding the corners of a Rectangle object 59

Rotating, Projecting in 3-D, and Doing Other Funky
Things with Shapes .. 60

Rotating a rectangle or other shape .. 61
Skewing an object .. 61
Applying 3-D Perspective transformations 63

Painting Colors with Brushes in the Properties Panel 64
Filling an object with color ... 65
Using the Eyedropper tool .. 66
Mixing colors .. 66
Applying gradients for color transitions... 67
Using the Gradient tool instead of setting gradients

through the Properties panel ... 69
Manipulating gradients further with the Brush Transform tool 70
Adding special effects ... 71

Playing Around with Some Special Effects ... 72
Adding Video and Audio to Your Pages ... 74

Playing video and audio fi les .. 74
Creating a video brush .. 76
Displaying video from your Webcam .. 77
Selecting the default webcam and microphone

for your application ... 79

02_524657-ftoc.indd x02_524657-ftoc.indd x 3/31/10 11:36 AM3/31/10 11:36 AM

xi Table of Contents

Part II: Managing Your Silverlight Controls 81

Chapter 4: Working with Controls for UI Interactions.83

Exploring the Text-Related Tools .. 83
Displaying text with TextBlock .. 84
Using the TextBox and PasswordBox to get

input from the user .. 86
Accessing TextBox values in XAML markup 88

Using Buttons in Your Application .. 91
Setting the content of a button .. 92
Adding an image as content for a Button ... 93

Jumping to another Web page using HyperlinkButton 96
Using RadioButtons to Present Options ... 96
Using the ListBox and ComboBox to Present a Large

Number of Options .. 98
Creating a list box .. 98
Creating a combo box ... 101

Entering Rich Text into a RichTextBox Control 101
Understanding the XAML behind RichTextbox 103
Formatting text at runtime ... 103

Chapter 5: Laying Out Controls. .107

Understanding Layout Containers .. 107
The root container ... 109
Manipulating properties that control layout.................................. 109
Aligning controls to one side.. 110
Setting the Height and Width of a UserControl at design time 112
Clearing margins of an element from the Artboard....................... 112

Laying Out Controls in Rows and Columns .. 113
Setting up rows and columns ... 113
Adding controls to the rows and columns 114
Understanding the XAML .. 115
Changing row heights and column widths on the Artboard 117

Stacking Controls Horizontally and Vertically ... 117
Adding controls to a StackPanel .. 117
Converting a Grid to a StackPanel ... 118
Understanding the XAML for a StackPanel 120

Wrapping Controls .. 120
Arranging Controls by Absolute Positioning Using

the Canvas Control .. 121
Using the ScrollViewer to Scroll Through the Contents 122
Using the Viewbox to Fit the Contents Snugly ... 122
Grouping Controls into a Tabbed Page .. 123
Docking Controls ... 125

02_524657-ftoc.indd xi02_524657-ftoc.indd xi 3/31/10 11:36 AM3/31/10 11:36 AM

Silverlight 4 For Dummies xii
Chapter 6: Styling and Skinning Controls .127

Applying Styles to Controls .. 127
Creating default styles for a control .. 128
Creating named styles for controls ... 130
Understanding the Style property ... 130
Understanding the XAML behind Style resources......................... 131
Understanding styles as resources in the Resources panel......... 132
Applying styles to existing elements ... 132
Creating controls with existing styles ... 134
Creating new styles based on existing styles 134

Skinning a Control ... 134
Editing the template visually .. 138
Specifying state .. 140
Binding values in the template ... 143
Applying skins to existing controls ... 144

Using Themes to Change the Look of All Controls 144

Chapter 7: Creating Your Own Controls .149

Grouping Controls to Create a UserControl ... 149
An example of creating an Address UserControl........................... 150
Reusing the User control .. 153
Creating properties for your UserControl 154

Creating a Smiley Custom Control .. 156
Using the custom control ... 166
Adding events to your control ... 167

Controlling the Behavior of Controls without Writing Code 168

Chapter 8: Creating Animations in Silverlight 171

Creating a Simple Bouncing Ball Animation ... 171
Create the ball and set the timeline in motion 172
Switching to the Animation workspace .. 174
Animating the ball .. 175
Understanding the XAML behind the animation 177

Running the Animations You Create ... 180
Controlling animations from code ... 180
Easing the animation ... 182
Understanding the different kinds of Easing functions 185
Easing using KeySplines .. 186

 Animating States of Controls .. 188

Chapter 9: Updating Data the Easy Way with Data Binding.191

Binding Controls to Each Other ... 192
Binding to a Data Object ... 195

Creating a user control for data binding... 195
Data bind the controls in the UserControl

to a property name .. 196
Create a data class that can be databound 198

02_524657-ftoc.indd xii02_524657-ftoc.indd xii 3/31/10 11:36 AM3/31/10 11:36 AM

xiii Table of Contents

Binding the data object to the control .. 198
Automatically updating changes to the data 199
Converting data while binding ... 201

Binding to Sample Data ... 205
Creating sample data ... 205
Binding a DataGrid to the sample data ... 207
Creating a Master-Detail view... 209
Fooling around with the sample data .. 209

Part III: Connecting with Data 211

Chapter 10: Accessing Data in Silverlight .213

Downloading Files to Your Silverlight Application 214
Downloading fi les using the WebClient class 216
Using WebClient to include a progress bar

with large downloads .. 219
Using the HTTPWebRequest class .. 222

Talking to Web Services ... 226
Accessing Web services that allow cross-domain exchanges 227
Programming against a Web service that has a WSDL 232
Creating your own WSDL Web service .. 234

Understanding Cross-Domain Security ... 236
Creating a cross-domain policy fi le ... 237
Accessing a Web service without a cross-domain policy fi le 237
Using the workaround: An example .. 238

Authenticating Users ... 244

Chapter 11: Using WCF Data Services to Store and Manage Data . . .249

Getting Started with WCF Data Services ... 250
What, Exactly, Is WCF Data Services? ... 251
Creating a WCF Data Service .. 254

Creating the database ... 254
Adding the ADO.NET Entity Framework ... 256
Adding the WCF Data Service ... 259

Using the WCF Data Service in a Silverlight Application 261
Generating the proxy classes in the Silverlight application 261
Reading data from the database .. 263
Updating data in the database ... 269
Adding new items to the database .. 274
Deleting entities from the database .. 275

Handling Data Concurrency ... 277
Using Query and Change Interceptors to

Control Data Querying and Updates ... 280
Controlling server-side queries with query interceptor 280
Enforcing rules using change interceptors..................................... 282

Controlling Access to Entity Sets .. 283

02_524657-ftoc.indd xiii02_524657-ftoc.indd xiii 3/31/10 11:36 AM3/31/10 11:36 AM

Silverlight 4 For Dummies xiv
Chapter 12: Using WCF RIA Services in Silverlight285

Getting Started with WCF RIA Services ... 285
Authenticating Your Users ... 286

Authenticating users with the Business Application template 287
Understanding the client side of the

Business Application template ... 289
Investigating the server side of the

Business Application template ... 289
Understanding how the template fi les work together 290

Creating a Custom Authentication System .. 292
Implementing custom user validation logic 293
Returning a custom user object to the Silverlight application 294

Chapter 13: Accessing Data with WCF RIA Services 297

Creating the Domain Data Service ... 298
Understanding the generated fi les... 300
Creating the user interface ... 300
Retrieving the data .. 301
Updating your data .. 303

Writing Your Own Service Methods — LINQ to Entity Framework 304
A common mistake (Psst — This won’t work!) 305
This, on the other hand, DOES work ... 305

Writing Your Own Service Methods — LINQ to SQL 306
Validating Data on the Client and Server Sides 309

Adding validation attributes... 311
Using a DataForm for great validation .. 312

Securing Your WCF RIA Service ... 315

Part IV: The Part of Tens ... 319

Chapter 14: Ten Cool Controls for Collecting and Displaying Data321

ListBox .. 321
DataGrid .. 322
DataForm .. 323
Expander ... 324
Chart .. 325
DatePicker .. 326
ProgressBar .. 326
TreeView ... 327
Rating .. 327
AutoCompleteBox .. 328

02_524657-ftoc.indd xiv02_524657-ftoc.indd xiv 3/31/10 11:36 AM3/31/10 11:36 AM

xv Table of Contents

Chapter 15: Ten Ways to Get More Out of Silverlight 329

Using SketchFlow to Prototype Your Application 330
Using Deep Zoom Composer .. 331
Creating Designs Using Expression Design .. 332
Importing Designs from Other Applications .. 334
Creating Your Own Behaviors ... 335
Running Silverlight Out of the Browser .. 337
Calling Silverlight Code via JavaScript .. 338

Create a scriptable method .. 339
Create and register the object ... 339
Call the ScriptableMember function.. 339

Accessing HTML from Silverlight .. 340
Using the WebBrowser control .. 341
Using the DOM to access HTML... 342

Storing Data Locally in the Client .. 342

Chapter 16: Ten Handy Tips for Writing Silverlight Applications . . .343

Resources about Silverlight Beyond This Book 343
Ten Handy Expression Blend Shortcuts ... 343
Ten Handy Visual Studio Shortcuts .. 344
Debugging Silverlight Applications ... 345
Looking Out for Performance Pitfalls .. 345
Building for Accessibility .. 346
Internationalization and Localization ... 347
Build Composite Applications Using Prism ... 347
Use the Model-View-ViewModel (MVVM) Pattern

to Manage Large Applications .. 348
Handy Tools ... 349

Index ... 351

02_524657-ftoc.indd xv02_524657-ftoc.indd xv 3/31/10 11:36 AM3/31/10 11:36 AM

Silverlight 4 For Dummies xvi

02_524657-ftoc.indd xvi02_524657-ftoc.indd xvi 3/31/10 11:36 AM3/31/10 11:36 AM

Introduction

Welcome to Silverlight 4 For Dummies. This book not only gives you an
introduction to the bright new world of programming in Silverlight

but is also loaded with hands-on steps and examples of using Expression
Blend and Visual Studio with Silverlight to create rich Internet applications.

Silverlight is a cross-browser, cross-platform plug-in that runs rich interactive
applications whose emphasis is on providing a rich user experience that
incorporates audio, video, animation, and graphics.

What’s in This Book
Silverlight 4 For Dummies aims to give you all the information you need to
create full-fledged Silverlight applications that you can host on your Web
site. In this book, rather than overload you with pages and pages of technical
explanations, we get you started right away on creating a Silverlight
application and working with the controls that make Silverlight such an
exciting addition to the world of Web site design. Of course, we do put the
tasks we show you in context so that you can understand how the various
components work — but we’ve tried to keep the explanations interesting, too.

Although the book introduces the basic components of Silverlight, chapter by
chapter, you don’t have to read the chapters sequentially. If you already have a
basic understanding of Silverlight, for example, and want to know more about
creating animations for your Web site, just flip straight to Chapter 8 and dive in.

The examples in this book use XAML markup and C# code. If you’re thinking,
“Huh? What’s XAML?” (which, by the way, is pronounced zamel), don’t
worry: We tell you all about it in due course. All you need to know to get
started is that XAML is the markup language that you use to design a user
interface. To specify the UI’s behavior, you use a language such as C#. We
show you examples of XAML many times throughout this book, and when
you need to understand something about the C# code, we show you that, too.

C# and VB.NET are currently the two most popular languages that people
working with Microsoft technologies use, and rather than confuse you by using
both languages, we stick with just C#. If you are already familiar with VB.NET,
you should be able to convert the sample code in this book line for line quite
easily. Also, you’ll find much of the sample code that appears in this book
on the companion Web site at www.dummies.com/go/silverlight4fd.
Download the code from there and cut and paste freely to make life easier.

03_524657-intro.indd 103_524657-intro.indd 1 3/31/10 11:37 AM3/31/10 11:37 AM

www.dummies.com/go/silverlight4fd

2 Silverlight 4 For Dummies

Foolish Assumptions
Even if you have no background in programming, you can learn a lot
about using Silverlight from this book. However, if you already have some
understanding of a programming language, you’ll have an easier time
grasping the concepts introduced in this book.

We also assume that you know a little bit about HyperText Markup Language
(HTML) and how to install and run applications. The tools required to create
Silverlight applications run on Windows, so we assume that you are running
Windows XP, Vista, or Windows 7.

Finally, we assume that you can obtain the tools you need to create
Silverlight applications. Expression Blend and Visual Studio are not free, but
you should be able to download evaluation versions of these programs to
play around with if you are not prepared to invest in them just yet.

How This Book Is Organized
The book is divided into four parts, described next.

Part I: Illuminating Silverlight
In Part I, we introduce you to Silverlight and guide you to creating your first
Silverlight application. We tell you in more detail what Silverlight is all about
and what programs you need to install on your computer to get cracking in
Silverlight.

Also in this part, you find out how to set properties on user interface
elements, called controls, and you play around with drawing various shapes.

Part II: Managing Your
Silverlight Controls
This part delves far more deeply into the world of controls than Part I does.
In Chapter 4, you find out about some of the most commonly used controls
such as text boxes and buttons, and in Chapter 5, we show you how to
effectively arrange them on-screen.

03_524657-intro.indd 203_524657-intro.indd 2 3/31/10 11:37 AM3/31/10 11:37 AM

3 Introduction

With Silverlight, you can change a control’s appearance without changing
how it works. You find out how to do this in Chapter 6, which describes
styling and skinning. Styling means to create a style by specifying property
values for a certain control and reusing those values throughout your
application for a consistent appearance. With skinning, you completely
change the look of the control.

In Chapter 7, you find out how to create your own controls — whether by
aggregating a set of controls to form a new control or creating a control from
scratch.

Chapter 8 introduces you to the exciting world of animation, and we show
you how to animate controls on-screen.

The final chapter in this part, Chapter 9, familiarizes you with the important
concept of data binding, which connects user interface elements to data.
Traditionally, programmers have been busy constantly setting properties,
such as the Text property, when the data for an element displays changes.
With data binding, however, you tell the control what kind of data it is bound
to and let Silverlight take care of the rest. Not only does Chapter 9 give you
an insight into this wonderful way of programming, it also shows you how
you can create data sources and sample data to test your application.

Part III: Connecting with Data
No application is complete without getting data from somewhere and
displaying it to the users.

Chapter 10 shows you how to connect to data sources through the Web
and extract the data you need to have returned to your application, while
Chapter 11 takes you a step further to show you how you can expose data
from your databases using a technology called WCF Data Services. Chapters
12 and 13 introduce you to a data service called WCF RIA Services, which
helps you create a large line of business applications. In these chapters, you
see how to retrieve data from a database, validate user input, secure your
site by authenticating site users, and much more.

Part IV: The Part of Tens
The Part of Tens, which is a staple of all For Dummies books, offers a fun
way of discovering intriguing or useful items (ten in each chapter) that aren’t
covered in the other parts of the book.

03_524657-intro.indd 303_524657-intro.indd 3 3/31/10 11:37 AM3/31/10 11:37 AM

4 Silverlight 4 For Dummies

In these chapters, we tell you about programs such as SketchFlow, which is a
great tool to use for creating a prototype of your application, and Deep Zoom
Composer, which helps you create an application with arresting images that
visitors to your Web site can zoom into. This part is also packed with tips
and other resources to explore.

Conventions Used in This Book
This book is saturated with how-to steps to follow for every topic we cover.
These steps sometimes contain figures and sometimes source code. The fig-
ures may not match exactly what you see on your own screen. This is okay;
the figures are meant as a guide in most cases and do not have to match your
screen pixel by pixel.

 You also find little figures in the margin like the one shown here. These fig-
ures help you easily identify a button referred to in the text.

Source code or XAML typically appears like this:

<Grid x:Name=”LayoutRoot” Background=”White”
 . . .>
</Grid>

Notice the ellipsis indicated with three dots. The ellipsis indicates that we’ve
left out some of the code for brevity so that you can focus on just the impor-
tant bits in the code that are relevant to what we’re describing.

We use a special typeface to distinguish code terms in text, like so: The Text
property. Also, when we present you with a series of menu commands to
follow in sequence, it looks like this: Choose File➪New Project. This means
that you should choose File from the menu and, in the dialog box that
appears, choose New Project.

Icons Used in This Book
 When we want to draw your attention to an easy way to get something done,

we include this icon in the margin.

 Text with this icon next to it mentions points that you should keep in the back
of your mind.

03_524657-intro.indd 403_524657-intro.indd 4 3/31/10 11:37 AM3/31/10 11:37 AM

5 Introduction

 The Warning icon alerts you to a potential problem. Be on the lookout for
these icons because they point out gotchas and Bad Things.

 This icon serves up technical stuff that you don’t have to pay attention
to unless you’re inclined to do so. If you are technically minded or are an
experienced programmer, you will likely appreciate these technical bits. But if
you are new to programming and want to skip over this technical stuff, feel
free to do so.

03_524657-intro.indd 503_524657-intro.indd 5 3/31/10 11:37 AM3/31/10 11:37 AM

6 Silverlight 4 For Dummies

03_524657-intro.indd 603_524657-intro.indd 6 3/31/10 11:37 AM3/31/10 11:37 AM

Part I

Illuminating
Silverlight

04_524657-pp01.indd 704_524657-pp01.indd 7 3/31/10 11:37 AM3/31/10 11:37 AM

In this part . . .

This part gives you an introduction to Silverlight 4 and
guides you to creating your first Silverlight application.

We tell you what Silverlight is all about and what tools
you need to install on your computer to get cracking in
Silverlight.

The first chapter introduces Silverlight and provides an
overview of what you can do with it. Chapter 2 takes off
from there and helps you create simple applications using
Visual Studio and Expression Blend. These two tools are
the predominant tools covered in this book.

The final chapter of this part shows you how to set prop-
erties on user interface elements, or controls, and how to
draw various shapes.

04_524657-pp01.indd 804_524657-pp01.indd 8 3/31/10 11:37 AM3/31/10 11:37 AM

Chapter 1

Adding Silverlight to Your Web
Development Toolkit

In This Chapter
▶ Understanding Rich Internet Applications (RIA)

▶ Seeing how Silverlight enables RIA development

▶ Understanding what you need to develop Silverlight applications

▶ Seeing what Silverlight can do beyond just creating a stylish user interface

Watch out, Adobe — Silverlight 4 is here to give you a run for your
money. Web site designers and developers alike can find much to

be excited about in Microsoft’s answer to Adobe Flash. As we tell you in
more detail in the Introduction to this book, Silverlight 4 is one of a new
family of Web site applications that provide graphics, animation, audio,
and video — all the features necessary for the kind of rich user experience
people have come to expect on the Web. These applications are called Rich
Internet Applications (RIA). Adobe Flash was one of the first in the RIA arena;
more recently, Microsoft made its entry into this space with the launch of
Silverlight.

In this chapter, we give you an overview of what Silverlight is, what it can do,
and the tools you need to develop Silverlight applications.

Obtaining and Running Silverlight
As does Adobe Flash, Silverlight runs as a plug-in within the browser and
needs to be installed the first time any Silverlight application is run. A plug-in
is a piece of software that is not part of the Web browser but can be added to
it to run additional applications. When a user visits a Web site that needs the
Silverlight plug-in, the Web browser will prompt the user to install it.

05_524657-ch01.indd 905_524657-ch01.indd 9 3/31/10 11:37 AM3/31/10 11:37 AM

10 Part I: Illuminating Silverlight

After the plug-in is installed, visiting any site that hosts a Silverlight application
causes Silverlight to start up in the browser seamlessly. The plug-in itself is
around 4MB, and in addition to the Silverlight runtime (which is responsible
for running the Silverlight application), the application itself needs to be
downloaded from the site that hosts the application. Modern popular browsers
such as Internet Explorer, Firefox, Safari, and Chrome support Silverlight
while running on Microsoft’s Windows operating systems 2003, XP, Vista,
and 7) or on Apple’s Mac OS X. Recently, Silverlight has also been rewritten
to run on browsers in Linux-based operating systems. With Silverlight 4, the
application can also run as a stand-alone application — that is, it can be run
outside the browser.

Obtaining and installing Silverlight on your computer is quite simple. All you
have to do is visit a Silverlight-enabled site and it will prompt you to install
Silverlight. Figure 1-1 shows a site that uses Silverlight. As soon as you visit
the site using a Web browser, the browser prompts you to install Silverlight.

Figure 1-1:
Site

prompting
Silverlight

installation.

All you have to do is click the button to install and you are done. A Silverlight
installation is around 4.7MB and needs to be installed only once. If you
visit the same site again or another site that uses Silverlight, you are not
prompted to reinstall it.

Checking Out Some Silverlight-
Enhanced Sites

So, what do Silverlight applications look like? You can find a good example at
the Hard Rock Café Memorabilia site (http://memorabilia.hardrock.
com/), shown in Figure 1-2. This site contains photographs of some of the
memorabilia that Hard Rock Café owns.

05_524657-ch01.indd 1005_524657-ch01.indd 10 3/31/10 11:37 AM3/31/10 11:37 AM

11 Chapter 1: Adding Silverlight to Your Web Development Toolkit

When the page comes up, the screen displays numerous small images of the
memorabilia, but each time you click an image, you zoom in to it. As you
zoom in to the image, it first appears blurred and progressively becomes
sharper. This is because the whole photograph (which can be several
megabytes in size) does not load in one go; instead, it loads progressively
as you need it. You can also see several animations on the site. Creating an
application like this using plain HTML would be very difficult and would lack
the rich interactivity that is provided by Silverlight.

Figure 1-2:
Silverlight

running
the Hard

Rock Café
Memorabilia

site.

Another site that showcases Silverlight’s user interface is the Woodgrove
Financials sample application, shown in Figure 1-3. This application uses
fly-out menus, dynamic graphs, and slick animation.

See the list of images to the left of the screen? On the site, as you move your
mouse cursor over them, a menu slides out, giving additional information
about what you can do. Clicking the Mortgage option, for example, brings up
an interactive graph that shows you how much money you can save on your
mortgage. Clicking Trade History brings up an interactive display of graphs
and tables, where you can filter your stocks, find information on them, and
review the stock prices over a period of time.

The sample application has several features, which you can explore by
visiting http://cookingwithxaml.com/meals/financials/default.
html. The application is highly interactive. As noted previously, creating a
rich user interface for an application such as this would be extremely difficult
using plain ol’ HTML.

05_524657-ch01.indd 1105_524657-ch01.indd 11 3/31/10 11:37 AM3/31/10 11:37 AM

12 Part I: Illuminating Silverlight

Figure 1-3:
An example

of a
dynamic site

with a rich
user

interface.

Grasping the Potential of Silverlight
One of the main advantages of Silverlight is that if you are a developer and
have already been creating applications using Microsoft technologies, you
do not have to learn something new to create Silverlight applications. You
can program Silverlight applications using .NET languages such as C# and
VB.NET. In fact, the Silverlight runtime is a scaled-down version of .NET,
which is Microsoft’s primary environment under which most applications
run. The .NET framework contains all the libraries needed to run these
applications and provides the Application Programming Interface (API) that
programmers can call to use the various features.

The Silverlight team worked hard to trim down the .NET framework so that it
contains all the good bits of the framework while at the same time ensuring
that it doesn’t get too big to be sent across the Internet when you download
it for the first time. The user interface framework, which is a key part of the
RIA user experience, is based on Windows Presentation Foundation (WPF)
and Extensible Application Markup Language (XAML). We tell you more
about XAML in Chapter 2 and show you many examples of it throughout this
book. Silverlight contains a powerful graphics and animation engine, and the
UI framework provides the following features:

05_524657-ch01.indd 1205_524657-ch01.indd 12 3/31/10 11:37 AM3/31/10 11:37 AM

13 Chapter 1: Adding Silverlight to Your Web Development Toolkit

 ✓ Support for drawing vector graphic images and doing 3-D perspective
transformations

 ✓ Support for creating storyboards and animations

 ✓ A full suite of controls, such as text boxes and buttons, and support for
creating your own controls

 ✓ Layout management support, which allows you to lay out controls in a
variety of ways

 ✓ Styling of controls, which allows the properties of your controls to be
standardized and reused

 ✓ Skinning, which allows you to change the complete appearance of
controls

 ✓ Support for data binding, which seamlessly binds data and control
properties

 ✓ Multi-touch support, which allows you to use hand gestures and touch
interactions on hardware that supports it

 ✓ Support for hooking on to webcams and microphones to share video
and audio with others

 ✓ Support for media streaming, allowing audio and video to be streamed
according to the optimal bit rate based on the network speed

 ✓ The ability to create Silverlight applications to be run on mobile phones
that are part of the Windows Phone 7 series.

This set of features helps developers easily provide a rich interactive user
experience.

 Although the base class library in Silverlight is a cut-down version of the .NET
framework, it still uses the same namespaces as the full version and supports
a wide variety of features such as multithreading, generics, and even Language
Integrated Query (LINQ). In addition, the framework adds support for WCF RIA
Services, which helps build Silverlight applications in a multitier environment
while allowing applications to work in offline scenarios at the same time.
Other feature highlights of Silverlight include support for connecting to Web
services, peer-to-peer communication, and access to local storage.

In spite of all these features, Silverlight itself runs in a sandboxed environment.
This means that for security reasons, the Silverlight application cannot
access system resources or invoke API calls on the machine it is running on.
This feature prevents malicious applications from taking over your computer
without your knowledge.

05_524657-ch01.indd 1305_524657-ch01.indd 13 3/31/10 11:37 AM3/31/10 11:37 AM

14 Part I: Illuminating Silverlight

Hosting a Silverlight Application
in a Web Page

Because Silverlight applications are run from a Web browser, they have to
be hosted n a Web page. Silverlight applications have the extension .xap
(pronounced “zap”), but the Silverlight file is actually nothing more than
a .zip file. If you rename the file to have a .zip extension and open the
file, you can still see all the compiled libraries, markup images, and other
resources that the file contains.

To understand how a Silverlight application is hosted in HTML, you can navi-
gate to a Web site that contains a Silverlight application and view the HTML
source code by right-clicking and choosing View Source from the menu. The
HTML source code will look something like the following:

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%”

height=”100%”>
 <param name=”source” value=”ClientBin/

SilverlightApplication.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0. 50303.0”

/>
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/

fwlink/?LinkID=149156&v=4.0. 50303.0”
style=”text-decoration: none;”>

A brief history of the name “Silverlight”
Silverlight was initially called WPF/e (for “WPF
everywhere”), which would have been a ter-
rible name for it. It needed a catchy and simple
name, and eventually the name Silverlight was
chosen. Version 1 was released in September
2007, and it mainly accomplished the delivery
of rich media and programming that couldn’t be
done using languages like C# and VB.NET.

Around the same time that version 1 was
released, Microsoft also released a preview ver-
sion of Silverlight. This 1.1 version of the program
allowed developers to write Silverlight applica-

tions using .NET languages such as C# and
VB.NET. It also made use of the Framework API.

When version 1.1 was finally released in Oct
2007, it was rebranded as version 2.0. Silverlight
3 was announced in early 2009 and finally
released in September 2009, soon followed by
Silverlight 4 in the spring of 2010. In March 2010,
Microsoft also announced that Silverlight will
also be used to deploy applications for Windows
Phone 7 series. Having four major releases in
such a short time shows Microsoft’s commit-
ment to Silverlight and the RIA scene in general.

05_524657-ch01.indd 1405_524657-ch01.indd 14 3/31/10 11:37 AM3/31/10 11:37 AM

15 Chapter 1: Adding Silverlight to Your Web Development Toolkit

 <img src=”http://go.microsoft.com/
fwlink/?LinkId=161376”

 alt=”Get Microsoft Silverlight” style=”border-style:
none”/>

</object>

The HTML tag is an object tag that specifies the data attribute and the type.
These elements signify that a Silverlight object is being created. The param
name=“source” tag contains the relative location of the .xap file that will
be run when the application starts.

Some of the other parameters contain values that specify where to get the
latest versions of Silverlight.

If all this looks too complicated for you, don’t despair. The object tags are
created automatically when you use Visual Studio and Expression Blend.

All the Stuff You Need to Create
Silverlight Applications

Microsoft provides all the programs needed to create Silverlight applications.
Expression Blend and Visual Studio are the most commonly used applications
to create Silverlight applications, and we cover these two products in depth
in this book.

To start developing applications in Silverlight 4, you need to install the
following programs and associated tools:

 ✓ Visual Studio 2010

 ✓ Silverlight 4 Tools for Visual Studio 2010

 ✓ Expression Blend for .NET 4

 ✓ Silverlight Toolkit

 ✓ WCF RIA Services

 ✓ Deep Zoom composer

Other than Visual Studio and Expression Blend, all the tools listed here are
free for you to download and install. If you do not have Visual Studio 2010
installed on your machine, you can also use the free Visual Web Developer
2010 Express. There is, however, no free edition of Expression Blend.

Links to download the free tools can be obtained from www.silverlight.net.

05_524657-ch01.indd 1505_524657-ch01.indd 15 3/31/10 11:37 AM3/31/10 11:37 AM

16 Part I: Illuminating Silverlight

Visual Studio
To write, compile, and debug programs, you need an Integrated Development
Environment (IDE). Visual Studio is the IDE of choice for building applications
that run in Microsoft’s .NET environment. Visual Studio supports languages such
as VB.NET and C#, and you can use it to create Silverlight applications, too.

Silverlight Tools for Visual Studio
Silverlight Tools for Visual Studio is responsible for adding all the necessary
elements to get Visual Studio to build Silverlight applications. It adds the
following: Silverlight project templates; the Silverlight Toolbox, which
contains all the Silverlight controls such as buttons and text boxes; and the
Silverlight Software Development Kit (the SDK). It also offers other useful
features such as debugger support.

Expression Blend
You use Expression Blend to create user interfaces using visual tools for
both WPF and Silverlight. It provides a much better environment for creating
user interfaces than Visual Studio does. For instance, you can create a user
interface just by dragging and dropping controls onto the design surface,
whereas you would have to manually code most of this using Visual Studio.

Expression Blend is actually part of a suite of applications collectively known
as Expression Studio. Although you can install just the applications you need,
designers generally tend to install the entire suite of the Expression Studio
applications because these tools help in visually designing the user interface.
They complement each other quite well. The other applications in this suite
are as follows:

 ✓ Expression Web: This application allows you to not only author Web
pages in HTML but also design, build, and manage entire Web sites.
It helps in creating Web sites that use Cascading Style Sheets (CSS),
and it integrates with Microsoft’s ASP.NET and PHP programming
environments. Expression Web, shown in Figure 1-4, complies with Web

05_524657-ch01.indd 1605_524657-ch01.indd 16 3/31/10 11:37 AM3/31/10 11:37 AM

17 Chapter 1: Adding Silverlight to Your Web Development Toolkit

standards endorsed by the World Wide Web Consortium (W3C). It also
contains something called Super Preview, which enables you to see how
pages look in different browsers at design time. Traditionally, designers
have struggled to make their applications look the same across multiple
browsers, and Super Preview allows them to look at these pages side by
side or even overlap each other to observe and fix differences.

 ✓ Expression Design: This application allows designers to create graphics
and artwork for use in Web and desktop applications. You can even
export these designs into XAML so that they can be used in Silverlight
applications. Figure 1-5 shows Expression Design in action.

 ✓ Expression Encoder: This application helps in preparing media files
(such as videos and audios) so that they can be used with Silverlight. A
video file being edited in Expression Encoder is shown in Figure 1-6.

Figure 1-4:
Expression

Web in use.

05_524657-ch01.indd 1705_524657-ch01.indd 17 3/31/10 11:37 AM3/31/10 11:37 AM

18 Part I: Illuminating Silverlight

Figure 1-5:
Graphics

created
using

Expression
Design.

Figure 1-6:
A video

file being
edited in

Expression
Encoder.

05_524657-ch01.indd 1805_524657-ch01.indd 18 3/31/10 11:37 AM3/31/10 11:37 AM

19 Chapter 1: Adding Silverlight to Your Web Development Toolkit

Silverlight Toolkit
The Silverlight Toolkit is a collection of controls and utilities for Silverlight
that supplements what is already present in the core Silverlight libraries. The
Silverlight Toolkit includes additional controls (such as charts) that are very
useful but aren’t used daily by applications. If Microsoft had included these
controls in the main Silverlight runtime application, it would have become
unwieldy and too big to download in a reasonable amount of time. By separating
this set of controls from the main application, Microsoft left it up to developers
to decide which parts to include in their application. In addition, it allows
Microsoft to make frequent updates to the toolkit outside the release cycle of
Silverlight.

WCF RIA Services
When you start creating large applications that have multiple screens and
that connect to a database to read and write data, you need to design your
application well. As part of this design, you need to divide your application
into multiple layers, or tiers. An application is typically divided into the
following tiers:

 ✓ Presentation: Focuses on the user interface

 ✓ Application: Focuses on application logic, such as validating user input
or performing calculations

 ✓ Data: Focuses on how to read and write the data used by the application

WCF RIA Services is a framework for creating multitier applications in
Silverlight, incorporating data operations such as authentication, authorization,
data validation, and other essential services across the different tiers. It
integrates with ASP.NET and provides ways to share code among the different
tiers. WCF RIA Services is explained in more detail in Chapters 12 and 13.

Deep Zoom Composer
Deep Zoom Composer helps in creating the zooming and panning effect of
images that you see in the Hard Rock Café Memorabilia site mentioned earlier
in this chapter. Figure 1-7 shows Deep Zoom Composer being used to create
a similar application. We tell you more about using Deep Zoom Composer in
Chapter 15.

05_524657-ch01.indd 1905_524657-ch01.indd 19 3/31/10 11:37 AM3/31/10 11:37 AM

20 Part I: Illuminating Silverlight

Figure 1-7:
Deep Zoom

composer in
action.

Creating Rich User Experiences
in Silverlight

Rich Internet applications such as Silverlight aim to provide a dynamic
experience for Web site users. This dynamism comes in the form of graphics,
animation, audio, and video, and Silverlight supports all these features. In
fact, Silverlight 1.0 was all about playing audio and video files in a browser,
and nothing more.

So what kind of audio and video files work in Silverlight? In addition to MP3
files for audio, Silverlight supports a range of audio and video formats,
including High Definition (HD)-quality video. Even the formats that it does
not currently support can be easily converted into a supported format using
Expression Encoder.

Graphics is another key area for providing rich user interfaces. Silverlight
provides shape objects such as an ellipse, a line, a polyline, a rectangle, and
a polygon that designers can modify to suit their needs. In addition, you can
draw complex shapes using an object in XAML called Path. You can apply
transformations on these vector graphic images to create 3-D effects and
animations.

05_524657-ch01.indd 2005_524657-ch01.indd 20 3/31/10 11:37 AM3/31/10 11:37 AM

21 Chapter 1: Adding Silverlight to Your Web Development Toolkit

In addition to all these features, Silverlight, out of the box, contains around
60 controls. Control is another name for tools such as text boxes, buttons,
and other elements that appear on Web sites. Part II of this book covers all
the fundamentals you need to get started on working with the most commonly
used controls. We even show you how to create your own!

Accessibility for people with special challenges has become a very important
aspect of modern Web sites, and Silverlight supports this user accessibility
by providing features that allow applications to be read using screen readers
and by helping developers create functionality and features, within applications,
that do not depend on the mouse alone but can be accessed using keyboard
shortcuts. So, for example, if you have a menu in an application that usually
pops up when you right-click the mouse, the user can also access it using a
keyboard shortcut.

Silverlight also supports internationalization and localization, which allow
applications to be written to support other languages and cultures. Not all
countries speak or even use English, of course, and even the countries that
do use English have varying date formats and currencies.

Silverlight Plays Well with Others
Silverlight does not actually replace HTML, ASP.NET, or JavaScript. In fact, it
can complement these technologies to provide a pleasing, rich user experience
for existing Web sites. The Document Object Model (DOM), which is a standard
model for accessing all the user interface objects in an HTML page, can be
manipulated from Silverlight, and some Silverlight functionality can be triggered
from JavaScript. All these technologies actually work well together. You can
find out how to integrate these technologies together in Chapter 15.

Silverlight Has More to Offer
Than Just a Pretty Face

The user interface is the primary focus of Silverlight. It is also the most
visible part as far as the users are concerned. But there is more to Silverlight
than just creating pretty user interfaces.

In Part III of this book, we tell you how you can use Silverlight to access
data that is available on the Web. This data can be in the form of Web
services, which are small units of functionality that can be accessed by other
applications. Such a unit of functionality can be anything from providing
weather information for a certain region to complex business functionality
such as managing product inventory or an employee database.

05_524657-ch01.indd 2105_524657-ch01.indd 21 3/31/10 11:37 AM3/31/10 11:37 AM

22 Part I: Illuminating Silverlight

Silverlight does not have any API calls to talk to the database directly. It
can use Web services or use another technology called WCF Data Services.
Using WCF Data Services, Silverlight can perform all the necessary database
operations such as creating, reading, updating, and deleting (known
collectively as CRUD) data using calls to a Web service.

 WCF Data Services is accessed by applications as RESTful services. REST
stands for Representational Transfer State, and RESTful services present data
from the database to applications as resources that can be accessed using
unique Universal Resource Indicators (URIs), which are HTTP addresses. In
addition, commands in the HTTP protocols (such as GET, POST, PUT, and
DELETE) are used to specify the type of action that needs to be performed
on the data. For example, to get information about a book with an ISBN
whose last six digits are 524657, the REST address could look something like
http://servername/Book/524657. Rather than return an HTML page for
this address, the REST service would return an XML document containing all
the information about the book.

05_524657-ch01.indd 2205_524657-ch01.indd 22 3/31/10 11:37 AM3/31/10 11:37 AM

Chapter 2

Getting Started in Silverlight
In This Chapter
▶ Creating your first Silverlight application

▶ Seeing what you can do with Expression Blend

▶ Creating a user interface with Extensible Markup Language (XAML)

▶ Running the application in Visual Studio

▶ Understanding the various files involved in creating a Silverlight application

So, you’re fired up about creating your first Silverlight application. Great,
but first make sure that you have the applications described in Chapter

1 installed. At the very minimum, you need Expression Blend, Visual Studio
2010, and the Silverlight Tools for Visual Studio.

You can create Silverlight applications using either Visual Studio or
Expression Blend. If you are a developer, at this point you would most
likely get things under way using Visual Studio 2010, but in this chapter,
we start with Expression Blend. As we tell you in Chapter 1, Expression Blend
provides a much better environment for creating user interfaces than Visual
Studio does. Also, if you are new to development, you’re more likely to find
Expression Blend easier to use for that purpose.

In this chapter, you find out how to create simple Silverlight applications
using both Expression Blend and Visual Studio. In the course of creating
these applications, you can also become more familiar with using both
applications.

Keeping up with tradition, we start by creating a “Hello, World” application.

Getting Started in Silverlight
with Expression Blend

When you start Expression Blend for the first time, you see a screen (shown
in Figure 2-1) with three tabs, as follows:

06_524657-ch02.indd 2306_524657-ch02.indd 23 3/31/10 11:37 AM3/31/10 11:37 AM

24 Part I: Illuminating Silverlight

 ✓ Projects: This tab lets you open any recently opened projects from a list,
create a new project, or open existing projects.

 ✓ Help: This tab lets you open the User Guide, look at online tutorials,
and visit the Microsoft Expression community Web site, which contains
tutorials, articles, and community forums.

 ✓ Samples: This tab provides you with a set of sample projects that you
can explore. These projects were created by the Expression Blend
development team.

The Startup dialog box provides an option to make this initial window appear
every time Expression Blend starts up.

Figure 2-1:
The Startup

screen in
Expression

Blend.

To create a Hello, World application, start by clicking the Projects tab and
then selecting the New Project option. The New Project dialog box appears;
while you’re there, make sure that the Silverlight 4 Application + Website
option is selected in the list box. Then click OK.

Selecting the Silverlight 4 Application + Website option in the New Project
dialog box ensures that a Web site with a startup page that hosts the
Silverlight application is created along with the Silverlight application.

The New Project dialog box, shown in Figure 2-2, also has a chevron that you
click to reveal a Project Types list. You can click items on the list to display
only the types of projects you are interested in.

06_524657-ch02.indd 2406_524657-ch02.indd 24 3/31/10 11:37 AM3/31/10 11:37 AM

25 Chapter 2: Getting Started in Silverlight

Figure 2-2:
The New

Project
dialog box.

Click to Show/Hide project types

Expression Blend creates a Silverlight solution for you with two projects: one
to hold the Silverlight-related files and another for a Web site project that will
host your Silverlight application.

 In both Expression Blend and Visual Studio, the “problem” of grouping
together the files needed to create a Silverlight application is “solved” by
creating a solution file (.sln). The solution file breaks down these collections
even further into project (.prj) files that are specific to the type of application
in use. For example, the Silverlight part of the application becomes a
Silverlight project, and the Web part of the application becomes a Web project.

To run the project, just press the F5 button on the keyboard or choose
Project➪Run Project.

When you run the project, Internet Explorer (or whatever your default
browser is) opens up after a slight delay caused by Expression Blend
compiling code and starting up the necessary applications. The application
comes up in the Web browser as an empty screen. Despite the fact that it’s
just an empty page at the moment, you have successfully created and run
your first Silverlight application. Congratulations!

How can you tell that it is running Silverlight? You can verify this by right-
clicking the empty page and choosing Silverlight from the menu that appears.
This brings up the Microsoft Silverlight Configuration dialog box, which
shows what version of Silverlight you are using, among other things.

06_524657-ch02.indd 2506_524657-ch02.indd 25 3/31/10 11:37 AM3/31/10 11:37 AM

26 Part I: Illuminating Silverlight

But what about “Hello, World”? Patience, friend. You need to first get
acquainted with some basic aspects of Expression Blend in order to start
placing controls in the application. (A control is what you need to contain the
“Hello, World” text.)

Exploring the Expression Blend interface
Expression Blend has been created primarily with designers in mind. That is
one of the reasons it looks markedly different from other applications that
developers use, such as Visual Studio. If you are already familiar with Visual
Studio, the first thing you notice about Expression Blend, which is shown in
Figure 2-3, is its dark color scheme. However, although everything looks
different from Visual Studio, there are some similarities between the two
applications.

Figure 2-3:
Expression

Blend
workspace.

06_524657-ch02.indd 2606_524657-ch02.indd 26 3/31/10 11:37 AM3/31/10 11:37 AM

27 Chapter 2: Getting Started in Silverlight

The main window in the application, which contains the user interface, is
called the workspace. The workspace contains four main parts:

 ✓ Menu bar: This is the element that sits at the top of the screen and is
similar to the menu bar of other Windows applications.

 ✓ Artboard: The main portion of the screen is taken up by the design
surface. This design surface, called the Artboard, is where you create
the user interface for your Silverlight application.

 ✓ Tools panel: The left corner of the screen holds a toolbar called the
Tools panel; it contains a bunch of tools for designing the user interface.
This is also referred to as Toolbox.

 ✓ Workspace panels: The workspace contains a number of panels that
allow you to do additional things such as create animations, open files,
find tools easily, and so on. They appear as tabs and can be moved
around, closed, and opened again at any time. You close panels by
clicking the cross that appears at the top of the panel; you open them
from the Window menu on the menu bar (which is described next).

Menu bar
The menu bar for Expression Blend contains the following top-level menus:

 ✓ File: Contains options to create new projects and files as well as to open
existing ones.

 ✓ Edit: Contains options to cut, copy, and paste as well as to find items.

 ✓ View: Contains options to zoom, switch among the different views on
the Artboard (explained in the next section), and other view-related
options.

 ✓ Object: Contains options to manage the user interface objects that you
have added to the Artboard. These options include aligning multiple
objects, making the height and width of multiple objects the same, and
others.

 ✓ Project: Contains options to manage the project, such as to add new
projects to the existing project and to build and run the current project.

 ✓ Tools: Contains more advanced options such as the Font manager,
which is used to manage fonts within the application.

 ✓ Window: This menu contains options to open and close workspace
panels as well as switch to different workspace settings (which specify
what panels are open and at what position).

 ✓ Help: Contains options to get help on different aspects of Expression
Blend.

06_524657-ch02.indd 2706_524657-ch02.indd 27 3/31/10 11:37 AM3/31/10 11:37 AM

28 Part I: Illuminating Silverlight

Artboard
The Artboard, shown in Figure 2-4, is the design surface for creating
Silverlight applications; it contains the following components:

 ✓ Documents tab: The top of the Artboard shows the name of the file that
is open. In your case, it should read MainPage.xaml because this file is
automatically created by Expression Blend and opened when you create
the project. You can open multiple files at the same time; these appear
as tabs. You can switch among the different files by clicking these tabs.
You close the files by clicking the X that appears next to the filename.

 ✓ Artboard controls: At the bottom of the Artboard are options that
control the behavior of the Artboard. Some examples of what these
options control include zooming, showing a grid, and setting options to
snap controls to a grid when you add or move these objects around on
the Artboard. Enabling the options to show the grid and snap to a grid
helps in laying out controls on the screen.

 ✓ View buttons: At the top-right corner of the screen are three buttons
for changing the view on the Artboard to Design, XAML, or Split. See the
next bullet for more on these views.

 ✓ Design, XAML and Split views: In the Design view, you can add or
manipulate controls on the Artboard visually. The XAML view shows the
XAML for the markup that gets generated. The Split view is useful when
you want to see both the XAML and the Design view at the same time.

Tools panel
The Tools panel contains a set of tools that you can use to add new controls
to the Artboard as well as to modify existing ones. The Tools panel is shown
in Figure 2-5. We discuss these controls throughout the book.

Workspace panels
There are eight workspace panels in Expression Blend, and each panel has
its own functionality. But the panels all behave the same way when they are
moved, closed, and opened.

If you feel so inclined, you can move a panel around by clicking the title of
the tab and dragging it to another position. You can have the panel float
wherever you want, or you can dock it to a side.

06_524657-ch02.indd 2806_524657-ch02.indd 28 3/31/10 11:37 AM3/31/10 11:37 AM

29 Chapter 2: Getting Started in Silverlight

Figure 2-4:
The

Artboard.

Split view showing XAML

Design View

Split View showing
the Design part

Artboard controls

View buttons: Design view,
XAML view, and Split view

Zoom

Turn on
Effects

Show Grid

Snap to Grid

Snap to Snaplines

Show Annotations

Documents tab

As you drag the workspace panel around, a dark, transparent rectangle
appears on the screen. This rectangle indicates that the panel will be docked
in that location.

 Every panel also has a pin, shown here in the margin, at the top of the
window. Clicking this pin auto-hides the window when it’s not in use. The
title of the panel then appears at the side of the location it was originally
located in, and hovering the mouse cursor over the name makes the panel
appear again. You normally set a panel to auto-hide mode when you need
more space on the screen to work.

 You save any changes you’ve made to the workspace by choosing Window➪
Save as New Workspace. After you’ve created multiple workspaces, you toggle
between them by pressing F6. Expression Blend comes configured with two
workspaces: Design and Animation.

06_524657-ch02.indd 2906_524657-ch02.indd 29 3/31/10 11:37 AM3/31/10 11:37 AM

30 Part I: Illuminating Silverlight

Figure 2-5:
The Tools

panel.

Selection tool
Direct Selection tool

Panning tool
Zooming tool

Eyedropper tool
Paint Bucket

Gradient tool (Expanding this shows Brush Transform)
Pen tool (Expanding this shows Pencil)

Rectangle (Expanding this shows Ellipse and Line)

Grid (Expanding this shows Canvas, StackPanel, ScrollViewer, Border)
TextBlock (TextBox and PasswordBox)

Button (CheckBox, ComboBox, ListBox, RadioButton, ScrollBar, Slider)

Assets panel

To reset the workspace panels to their default position, just press
Ctrl+Shift+R.

Enough about how you move workspace panels around — far more
interesting is what you can accomplish with them. The panels are as follows:

 ✓ Projects panel: This panel, shown in Figure 2-6, is similar to the Solution
Explorer in Visual Studio and contains the projects and files used in the
application. You can open files by double-clicking a filename. The file
that is currently open on the Artboard appears selected in the Projects
panel.

 ✓ Assets panel: This panel (see Figure 2-7) contains all the assets that you
can use in your Silverlight application. Assets include controls, media
files, behaviors, effects, and so on that we describe in later chapters.
The panel also contains a Search box to help you find assets easily. Two
buttons are used to display the items either in a grid mode, in which the
items are arranged in rows and columns, or in a list mode, where they
are displayed in a list.

 ✓ Objects and Timeline panel: This panel, shown in Figure 2-8, contains
all the controls added to the Artboard, as well as the timeline for the
animations that the objects are part of. We look at this panel in more
detail in Chapter 8.

 ✓ States panel: This panel can be used to manage the visual states of
controls. For instance, the Button control can have states such as
Pressed and Disabled. Figure 2-9 shows the visual states for a button. We
cover this topic in more detail in Chapter 7.

06_524657-ch02.indd 3006_524657-ch02.indd 30 3/31/10 11:37 AM3/31/10 11:37 AM

31 Chapter 2: Getting Started in Silverlight

Figure 2-6:
The Projects

panel.

Figure 2-7:
Assets
panel.

Figure 2-8:
Objects and

Timeline
panel.

 ✓ Properties panel: You use the Properties panel (see Figure 2-10) to set
properties, such as color, width, and height, for items that have been
added to the page. You find out more about working with the Properties
panel in Chapter 3.

06_524657-ch02.indd 3106_524657-ch02.indd 31 3/31/10 11:37 AM3/31/10 11:37 AM

32 Part I: Illuminating Silverlight

 ✓ Resources panel: Resources are items such as colors and styles that are
shared between controls within the application. The Resources panel
lists all these resources. Figure 2-11 shows a Resources panel that has a
couple of brush resources. Brushes are used to set colors for controls,
as we describe in Chapter 3.

Figure 2-9:
States panel
for a Button

control.

Figure 2-10:
Properties

panel

Figure 2-11:
Resources

panel.

06_524657-ch02.indd 3206_524657-ch02.indd 32 3/31/10 11:37 AM3/31/10 11:37 AM

33 Chapter 2: Getting Started in Silverlight

 ✓ Data panel: The Data panel is used for creating sample data that you can
use to help you design your application. You find out how to create sample
data in Chapter 9. Figure 2-12 shows the Data panel with some sample data.

 ✓ Results panel: The Results panel displays information that you use to
determine errors in your application. It contains two tabs: an Error tab
that shows errors in your application, and a Build tab that shows the
steps Expression Blend follows to build the application. Figure 2-13
shows the Results panel after you build the Hello, World application.

Figure 2-12:
Data panel.

Figure 2-13:
Results

panel.

Adding a user interface
element to the page
The previous sections give you a detailed look at the Expression Blend
workspace. Here, we get you started on adding some UI elements and creating
a “Hello, World” screen. You use the Tools panel at the side of the screen to
add UI elements to your design.

 Among other items in the Tools panel is the TextBlock tool, shown here in
the margin. Tools that you can add to a Silverlight application are also called
controls (not a particularly intuitive name, but there you have it). So, the
TextBlock tool is also referred to as the TextBlock control.

06_524657-ch02.indd 3306_524657-ch02.indd 33 3/31/10 11:37 AM3/31/10 11:37 AM

34 Part I: Illuminating Silverlight

You use the TextBlock control to display text, and this is the very control
that you’re about to create a Hello, World message with. To add the text
“Hello, World” to the Artboard, follow these steps:

 1. Click the TextBlock control to select it as the default control.

 After you select a control, it remains selected as the default control
until you click another control in the Tools panel. You can then use it as
many times as you want to perform actions within the Artboard.

 2. Click and drag your mouse on the Artboard.

 A TextBlock control is added to the page and contains the text
TextBlock. As the control is added, the dimensions (height and width)
of the control are displayed along with some visual cue as to where the
control is being added in relation to other existing controls. You can
also add a TextBlock to the Artboard by double-clicking the TextBlock
control in the Tools panel.

 3. After you have added the control, you change the contents of the
TextBlock by typing Hello, World.

 4. Press F5 to run the application.

 The text Hello, World appears in the Web browser window.

What is XML?
XML, which stands for Extensible Markup
Language, is used primarily to exchange data
over the Internet. It consists of markup and
content. Markup begins with a left-pointing
angle bracket (<) and ends with a right-pointing
angle bracket (>). Anything that appears
between two markups constitutes content.
Here’s an example of markup:

<Name ID=”1234”>
 <LastName>Krishnan

 </LastName>
 <FirstName>Mahesh

 </FirstName>
<Name>

In this example Name , LastName , and
FirstName constitute markup, while
Krishnan and Mahesh constitute the
content. Markups such as Name and
LastName are also referred to as ele-
ments, and ID, which is part of the Name
element, is called an attribute. Because the
elements LastName and FirstName
appear under another element (Name),
they are called child elements. XML usually
follows standard markup names so that
different applications understand what
elements to expect. You can find out more
about XML by reading XML For Dummies by
Ed Tittel, Norbet Mikula, and Ramesh Chandek
(Wiley Publishing, Inc.).

06_524657-ch02.indd 3406_524657-ch02.indd 34 3/31/10 11:37 AM3/31/10 11:37 AM

35 Chapter 2: Getting Started in Silverlight

Introducing the Basics of the Extensible
Application Markup Language

As mentioned in Chapter 1, Silverlight uses the Extensible Application
Markup Language, or XAML, which is pronounced “zamel.” XAML is built on
XML and looks very similar to HyperText Markup Language (HTML).

XAML allows you to create the look of the application without writing any
code in C# or VB.NET. This new language was first introduced with Windows
Presentation Foundation (WPF) and allows you to express how you want the
user interface to look and behave.

When you add controls to the Artboard, or modify them using the tools
provided, Silverlight stores them as XAML markup.

 You can look at the XAML for the Hello, World application you just created
by clicking the XAML button at the top-right corner of the Artboard. The view
of the Artboard changes to reveal the XAML markup behind the application.

 You can also look at both the Design view and the XAML at the same time by
clicking the Split button (shown here in the margin), which can be found with
the View buttons on the Artboard. This view is very useful when you want to
learn how to write XAML without using a design tool.

Following is the XAML for the Hello, World application that you just created:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/

xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/

winfx/2006/xaml”
 x:Class=”SilverlightApplication1.MainPage”
 Width=”640” Height=”480”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Height=”41” HorizontalAlignment=”Left”

Margin=”33,40,0,0” VerticalAlignment=”Top”
Width=”275” Text=”Hello, World”
TextWrapping=”Wrap”/>

 </Grid>
</UserControl>

06_524657-ch02.indd 3506_524657-ch02.indd 35 3/31/10 11:37 AM3/31/10 11:37 AM

36 Part I: Illuminating Silverlight

Here’s a look at what’s going on in this XAML:

 ✓ UserControl: This is the root element of XAML. Elements in XAML are
hierarchical, meaning that elements are contained in other elements in
a hierarchical fashion, but there is only one top-level element. This is
known as the root element. In this example, UserControl contains
references to namespaces that are used in the file. You don’t need
to know more about namespaces than the fact that namespaces are
used to qualify element and attribute names with predefined resource
names, which in this case are http://schemas.microsoft.com/
winfx/2006/xaml/presentation and http://schemas.microsoft.
com/winfx/2006/xaml. As is true of any other XML, XAML contains a
bunch of elements and attributes associated with each element.

 ✓ x:Class: This is an attribute of UserControl that specifies the .NET
class associated with the user control. This class contains code such as
event handlers that are triggered by controls in the XAML file. An event
handler is code that gets called when an event occurs, such as a button
being pressed or text being changed.

 ✓ Grid: The UserControl in our Hello, World markup holds one Grid
element, and the Grid element holds another element, TextBlock,
which contains the “Hello, World” text. The Grid element is automatically
added by Expression Blend to lay out controls in a grid-like fashion,
which you learn about in more detail in Chapter 5.

 Grid contains attributes that dictate how the controls look and behave:

 x:Name: Specifies a name for the control so that it can be used in
the code-behind file.

 Background: Specifies the background color of the grid, which is
white in this case.

 ✓ TextBlock: As does Grid, this element contains attributes that
tell controls how to look and behave. In the example, TextBlock
contains the Height, Width, Margin, HorizontalAlignment,
VerticalAlignment, TextWrapping, and Text attributes. These
properties define the way the TextBlock element looks, and each of
these attributes can be set directly from the Properties panel in either
Expression Blend or Visual Studio. (Chapter 3 tells you much more
about the Expression Blend Properties panel.)

 Anything you do with XAML can also be done in code using languages such
as C# and VB.NET. A declarative syntax is a lot easier to follow, however,
and helps to separate the visual parts that a designer creates (XAML) from
the actual workings of the application that the developer programs (C# or
VB.NET).

06_524657-ch02.indd 3606_524657-ch02.indd 36 3/31/10 11:37 AM3/31/10 11:37 AM

37 Chapter 2: Getting Started in Silverlight

Digging deeper into XAML
In this section, we change the XAML slightly from the Hello, World example
to give you a feel for how elements and attributes fit together in XAML. Open
the MainPage.xaml file if it is not already open and replace the XAML with
the following markup:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/

xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/

winfx/2006/xaml”
 x:Class=”SilverlightApplication1.MainPage”
 Width=”640” Height=”480”>
 <TextBlock>Hello, World</TextBlock>
</UserControl>

If you press F5 and run the application, you should see that it behaves
exactly as before and displays the Hello, World text. However, something
is different: The Grid element is gone. Although the Grid element is useful
for positioning multiple controls nicely in a grid-like fashion, you don’t need
it here because, at least so far, this page of the application contains only one
control. So, you can completely eliminate the Grid element.

The new XAML here also eliminates all the attributes associated with the
TextBlock control and puts the text Hello, World between beginning
and ending TextBlock tags. Elements in XAML are the same as elements
in XML. They contain a left-pointing angle bracket (<) followed by the name
of the element and a space after it. After the space comes a forward slash(/)
followed by a right-pointing angle bracket (>). Here’s an example of a
TextBlock tag:

<TextBlock />

Having an empty element usually doesn’t make sense. Elements typically
contain a value as well as other elements or attributes, such as in the
following example:

<TextBlock FontSize=”45” Foreground=”Red”>Hello, World</
TextBlock>

When other elements or values are involved, the XAML element has a
beginning tag (such as <TextBlock>) and an ending tag (such as
</TextBlock>). Attributes are defined within the beginning tag. In the
preceding example, the TextBlock tag contains two attributes: FontSize
and Foreground. These attribute names are self-explanatory, specifying

06_524657-ch02.indd 3706_524657-ch02.indd 37 3/31/10 11:37 AM3/31/10 11:37 AM

38 Part I: Illuminating Silverlight

the size of the font used in the text and the foreground color of the text. The
value specified for the control directly maps to the Text property for the
TextBlock. The equivalent markup would look like the following:

<TextBlock FontSize=”45” Foreground=”Red” Text=”Hello,
World”> </TextBlock>

Or better still:

<TextBlock FontSize=”45” Foreground=”Red” Text=”Hello,
World” />

Removing the end tag in the preceding example reduces the clutter and
makes the markup more readable.

Attributes are simply properties for an element, and you can set these
properties using the Properties panel in both Expression Blend and Visual
Studio. Apart from using attributes to set properties, you can also set them
using child elements (the sidebar “What is XML?” explains what a child
element is), as shown in the following example:

<TextBlock>
 <TextBlock.Foreground>Red</TextBlock.Foreground>
 <TextBlock.FontSize>45</TextBlock.FontSize>
 Hello, World
</TextBlock>

You wouldn’t normally worry about whether Expression Blend uses properties
or child elements to set properties, but when you are typing the XAML
yourself, you will find that using child elements is particularly useful when
setting complex properties such as gradient brushes (which make the
color gradually change from one to another) and transformations (such as
rotating a control), or when adding special effects. You can find out more
about brushes, transformations, and special effects in Chapter 3, but the
following example shows the syntax for a TextBlock element with a
drop-shadow effect included:

<TextBlock Text=”Hello, World” FontSize=”40”
Foreground=”Red”>

 <TextBlock.Effect>
 <DropShadowEffect/>
 </TextBlock.Effect>
</TextBlock>

 Although you can get by without actually learning XAML at the early stages of
Silverlight programming, understanding the syntax is a good idea so that you
can directly jump into XAML markup and change it.

06_524657-ch02.indd 3806_524657-ch02.indd 38 3/31/10 11:37 AM3/31/10 11:37 AM

39 Chapter 2: Getting Started in Silverlight

Understanding elements and
properties by category
XAML contains a wide range of elements (far too many to detail in this book),
but Table 2-1 gives you a sense of the basic types of elements and what you
use them for.

Table 2-1 Types of Elements in XAML

Type of Element What It Does

Layout containers These controls are containers that contain other controls.
In addition, these containers determine the way in which
these controls are laid out for display.

Shapes As the name suggests, these controls are responsible for
drawing shapes such as Rectangles and Ellipses. We also
include the Path element in this group because it can be
used to draw complex shapes.

Media Contains media elements such as videos, audios, and
images.

Common controls These elements are typically used to display things on the
screen and/or take some input from users. Examples of
common controls are Button, TextBox, TextBlock, ListBox,
and so on.

Additional Controls These are controls that have been created by you or
others that you wish to use in your application. The
Silverlight Toolkit contains a wide range of additional con-
trols like Charts that you can use in your application.

Resources These are elements such as colors and animations that
control the look and feel of other elements.

Although every element contains its own properties, some properties
are used by a wide range of controls. These common property types are
described in Table 2-2.

06_524657-ch02.indd 3906_524657-ch02.indd 39 3/31/10 11:37 AM3/31/10 11:37 AM

40 Part I: Illuminating Silverlight

Table 2-2 Types of Properties Shared by Various Controls

Property Type What It Does

Color
properties

These properties are used to set a certain color
property on the element. Examples are Foreground and
OpacityMask (which controls the transparency of the
element).

Text
properties

These properties set the various attributes associated with the
text that is shown in the element. Examples of these properties
include font size, font family properties, indents, and so on.

Layout
properties

These properties are responsible for configuring how the ele-
ment actually looks with respect to layout. They include prop-
erties such as Height and Width, as well as
properties for horizontal and vertical alignments. If the control
is in a grid, it may also contain properties such as the row and
column in which the control appears.

Transformation
properties

In some cases, a transformation is applied to elements to
scale them up or down, skew them in an angle, rotate them,
and so forth. The properties can be collectively grouped under
Transformation properties.

Others There are some properties that are quite common, such as
ToolTip, Cursor, and DataContext. These types of
properties are available for almost all controls but are too
generic to be classified.

In some cases, additional properties become available on one element that is
based on other elements. As an example, if you use a TextBlock within a Grid
control (which you find out about in Chapter 5), you also need to specify the
row and element of the grid in which the TextBlock should reside. But these
properties show up only if the TextBlock is present within the Grid. The Grid
attaches these properties to the elements that it contains, and these properties
are called attached properties. An example of an attached property is the
Grid.Row property in the following XAML:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>

 <TextBlock Text=”Hello, World” FontSize=”40”
Foreground=”Red” Grid.Row=”1”>

 <TextBlock.Effect>
 <DropShadowEffect/>
 </TextBlock.Effect>
 </TextBlock>
</Grid>

06_524657-ch02.indd 4006_524657-ch02.indd 40 3/31/10 11:37 AM3/31/10 11:37 AM

41 Chapter 2: Getting Started in Silverlight

In this example, the TextBlock element does not contain a property for Row
and Column, but to specify its position within the Grid, it sets the attached
Grid.Row and Grid.Column properties.

Firing Up Visual Studio to Create
a Silverlight Application

If you are a developer, you may already be at least somewhat familiar with
Visual Studio and therefore feel more at home with it than with Expression
Blend. Both programs use XAML to define the user interface, but they go
about it differently. In this section, you find out the basics of creating a
sample Silverlight application using Visual Studio.

First, you need to start Visual Studio 2010. Then follow these steps to create
a Silverlight application:

 1. Choose File➪New Project or click New Project from the Start Page that
is displayed when Visual Studio opens up.

 The New Project dialog box appears, as shown in Figure 2-14.

Figure 2-14:
Creating a
Silverlight

project
using the

New Project
dialog

in Visual
Studio.

 2. Select Silverlight Application from the list of project templates.

 The New Silverlight Application dialog box appears, as shown in
Figure 2-15.

06_524657-ch02.indd 4106_524657-ch02.indd 41 3/31/10 11:37 AM3/31/10 11:37 AM

42 Part I: Illuminating Silverlight

Figure 2-15:
New

Silverlight
Application
dialog box.

 3. In the New Silverlight Application dialog box, click OK without
changing any options.

 Visual Studio automatically creates the Silverlight project, the Web
application project that hosts the Silverlight application, and the files for
each of these projects.

 4. Press F5 to run the application.

 Of course, the screen is empty at this point because you haven’t added
anything to the application yet. A little later in this section, we show you
how to do that.

Exploring Visual Studio
Before you add the “Hello, World” text to the application, take a look at the
Visual Studio Integrated Development Environment (IDE), which is shown in
Figure 2-16. Here are its main features:

 ✓ The IDE contains a Toolbox panel on the left side that contains the
Silverlight controls that you can add to the application. The controls
in the list are split into Common Silverlight Controls and All Silverlight
Controls.

 ✓ The top of the IDE contains menus and a toolbar, which enable you to
do far more tasks than we have room to list here, but some examples
include creating and opening files and projects, compiling and debugging
applications, searching for text, and so on.

 ✓ The predominant area in the IDE is occupied by the Editor panel, where
Silverlight project files can be opened for editing. The top of the panel
contains a tabbed list of files that are open.

06_524657-ch02.indd 4206_524657-ch02.indd 42 3/31/10 11:37 AM3/31/10 11:37 AM

43 Chapter 2: Getting Started in Silverlight

 ✓ As in Expression Blend, the IDE contains a number of panels. Some are
visible only during debugging, and others are used for seeing build or
search results. The two most important ones are as follows:

 The Solution Explorer: This shows all the projects and the files used
for creating the Silverlight application. Double-clicking a file from
the Solution Explorer opens the file in the Editor window.

 The Properties window: This is similar to the Properties panel in
Expression Blend and allows you to modify the properties for
Silverlight control.

 You can drag the various toolbars and panels in both Visual Studio and
Expression Blend around and dock them to different parts of the screen.
Although you may change the positions of these panels, their functionality
remains the same.

Figure 2-16:
Visual

Studio IDE
showing all
the panels.

Menu barTabbed List of Files Toolbar

Solution ExplorerToolbox

Other windows/views

Editor

06_524657-ch02.indd 4306_524657-ch02.indd 43 3/31/10 11:37 AM3/31/10 11:37 AM

44 Part I: Illuminating Silverlight

Creating the Hello, World application
To create a Hello, World application from the project created earlier in this
section, make sure that the MainPage.xaml file is open in Visual Studio.
(Visual Studio automatically creates this file for you.) Then follow these
steps:

 1. Double-click the TextBlock control in the Toolbox to add the control.

 Alternatively, select the control from the Toolbox and then draw it on
the design surface with the exact length and width that you want the
control to have. Either way, the control appears on the design surface
and displays the default text as TextBlock.

 2. Change the default Text property of the control to Hello World from
the Properties window.

 3. Press F5 to run the application in your browser.

Exploring the Solution Explorer
As explained earlier in the chapter but worth mentioning again here, in
both Expression Blend and Visual Studio, the problem of grouping together
the files needed to create a Silverlight application is “solved” by creating a
Solution file (.sln). The solution file breaks down these collections even
further into projects (.prj files) that are specific to the type of application —
for example, the Silverlight part of the application becomes a Silverlight
project and the Web part of the application becomes a Web project.

The Solution Explorer, shown in Figure 2-17, is responsible for displaying and
managing the solution file and displays all the projects and files associated
with it. Notice that the solution you create in this section actually has two
projects: SilverlightApplication1 and SilverlightApplication1.Web.

The SilverlightApplication1 project holds the Silverlight project and contains
two main source code files: App.xaml and MainPage.xaml. The MainPage.
xaml file contains the XAML responsible for displaying the Silverlight page. If
you click the + (plus sign) in front of the MainPage.xaml file in the Solution
Explorer, another file appears, called MainPage.xaml.cs.

XAML declares the way the user interface looks, but you also need code
written in C# or VB.NET that complements the XAML markup and is responsible
for running some code when a user interacts with the user interface, such as
by pressing a button or even moving the mouse. The MainPage.xaml file
contains this code and is referred to as the code-behind file.

06_524657-ch02.indd 4406_524657-ch02.indd 44 3/31/10 11:37 AM3/31/10 11:37 AM

45 Chapter 2: Getting Started in Silverlight

Figure 2-17:
The Solution

Explorer
showing the

files in the
project.

You haven’t added any event handlers (that is, code that gets called when an
event occurs), so the file doesn’t contain much code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightApplication1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

The code for InitializeComponent will get auto-generated. This code
contains the code to load the MainPage.xaml file and do other things that
you don’t need to worry about.

06_524657-ch02.indd 4506_524657-ch02.indd 45 3/31/10 11:37 AM3/31/10 11:37 AM

46 Part I: Illuminating Silverlight

Specifying the startup file
for the application
The other file in the Silverlight project, App.xaml, contains application
resources. Open the file by double-clicking its name from the Solution
Explorer, and you see the following XAML:

<Application xmlns=”http://schemas.microsoft.com/
winfx/2006/xaml/presentation”

 xmlns:x=”http://schemas.microsoft.com/
winfx/2006/xaml”

 x:Class=”SilverlightApplication1.App”
 >
 <Application.Resources>

 </Application.Resources>
</Application>

The Application.Resources element tag contains all the resources that
are shared among different Silverlight pages within the same application.
As explained earlier, these resources can contain elements such as brushes
or animations. In this case, it is empty because you have not yet added any
resources.

The code-behind file for App.xaml - App.xaml.cs is used by Silverlight
to start the application and to control the application behavior. In this file,
you can enter code that is run on application startup, shutdown, or when
your application encounters an error. To see what the code-behind file for
App.xaml looks like, open the App.xaml.cs file by double-clicking it from
Solution Explorer. It will look essentially like this (some lines have been left
out for the sake of clarity here; these are indicated by the ellipses [. . .]):

namespace SilverlightApplication1
{
 public partial class App : Application
 {

 public App()
 {
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_

UnhandledException;

 InitializeComponent();
 }

 private void Application_Startup(object sender,
StartupEventArgs e)

 {

06_524657-ch02.indd 4606_524657-ch02.indd 46 3/31/10 11:37 AM3/31/10 11:37 AM

47 Chapter 2: Getting Started in Silverlight

 this.RootVisual = new MainPage();
 }

 private void Application_Exit(object sender,
EventArgs e)

 {

 }
 private void Application_

UnhandledException(object sender, ApplicationUn
handledExceptionEventArgs e)

 {
 . . .
 }
 . . .

 }
}

Notice that the App.xaml.cs contains, among other things, the event
handlers for handling three events: one for startup, one for exit, and one for
handling exceptions. The event handler for Startup creates the MainPage
object in this case. If multiple Silverlight user controls or pages are contained
in the application, the Startup event can be used to initialize the class that
you want the application to start with.

Understanding other files
involved in the solution
The Solution Explorer also contains two folder icons with the headings
Properties and References, as follows:

 ✓ Properties: This folder contains the files AppManifest.xml and
AssemblyInfo.cs, which are used to set certain properties for the
application. You do not have to worry about these files for now.

 ✓ References: This folder allows you to add assemblies to the project.
Assemblies can contain controls and resources for your application,
among other things, and are available as libraries. These libraries have
the extension .dll and are created either by you or someone else to
contain prebuilt code and functionality.

Hosting the Silverlight application
You will see another project in your Solution Explorer window: Silverlight
Application1.web. Silverlight applications usually require a Web site

06_524657-ch02.indd 4706_524657-ch02.indd 47 3/31/10 11:37 AM3/31/10 11:37 AM

48 Part I: Illuminating Silverlight

to allow them to be hosted on the Internet. By default, Visual Studio and
Expression Blend create a basic Web site to host your application for you. It
is this Web site that runs and delivers your Silverlight application to the user
for you. This project has numerous files that contain placeholders for the
Silverlight application.

You do not really need the Web application for creating a Silverlight
application, but having it helps in running and debugging the application.

Using Expression Blend and
Visual Studio in Tandem

If you’ve followed along in this chapter and created the Hello, World
application in both Expression Blend and Visual Studio, you may be
wondering why we recommend that you know how to use both programs.

Expression Blend is primarily a designer’s tool, but developers can use it,
too. You will find that there are some things, such as creating animations,
you can do with Expression Blend that you just can’t do with Visual Studio.
Similarly, there are things that you just can’t do with Expression Blend.
For instance, you can write code in a language such as C# using Expression
Blend, but you cannot do more complex tasks such as setting breakpoints,
debugging the application, and so on — for those tasks, you need Visual
Studio.

These two programs actually complement each other quite well. In fact,
you can open the same solution file (.sln) in both applications, and when
you right-click a filename in the Solution Explorer in Visual Studio or in the
Projects panel in Expression Blend, a menu to open the file in the other
application shows up.

06_524657-ch02.indd 4806_524657-ch02.indd 48 3/31/10 11:37 AM3/31/10 11:37 AM

Chapter 3

Enhancing the User Interface
In This Chapter
▶ Understanding the Properties panel

▶ Drawing with shapes

▶ Changing dimensions of objects

▶ Painting with colors

▶ Applying transformations to objects

▶ Using audio and video in your pages

Silverlight applications are all about providing good user experiences on
the Web, and building a good user interface plays a big part in creating

that experience. A truly dynamic application, one that users find appealing,
includes rich graphics, animations, audio, and video.

We look at how you use controls such as Buttons in Chapter 4 and animations
in Chapter 8, but first, in this chapter, we show you how to jazz up your
application by setting properties for objects such as shapes. We also show
you how to transform an object by changing its dimension and position,
filling it with various types of color, and doing complex things such as skewing,
flipping, and projecting it into a 3-D axis. Finally, we show you how to add
video and audio to your Silverlight application.

Getting to Know the Properties Panel
You set properties on user interface elements using the Properties panel in
Expression Blend.

In Chapter 2, we show you how to create a simple Silverlight application
called “Hello, World.” If you haven’t created an application yet, you can refer
to that one to help you follow along in this chapter. To start familiarizing
yourself with the Properties panel, make sure that you have an application
open (by choosing File➪Recent Projects and opening an existing project).
Then select any element on the Artboard. If you open the Hello, World

07_524657-ch03.indd 4907_524657-ch03.indd 49 3/31/10 11:38 AM3/31/10 11:38 AM

50 Part I: Illuminating Silverlight

project that we show you in Chapter 2, you should see the TextBlock control
containing the text Hello, World. Click the control to select it. The Properties
panel then displays all the properties for that control.

 If the Properties panel is not visible, press either the Tab key or F4.

Setting a property for an object
To set a property, follow these steps:

 1. Check to see whether the Selection tool, shown in the margin, is
selected. Click the tool if it is not already selected.

 2. Click the control on the Artboard for which you wish to set properties.

 The control gets selected on the Artboard and shows selection handles
to indicate that it is selected. The Objects and Timeline panel also
highlights the control you’ve just selected.

 3. In the Properties panel, scroll up and down to find the property you
want to change.

 4. To find the property quickly, click the Search field in the Properties
panel (shown in Figure 3-1) and start typing in the name of the property,
such as Height or Width.

 As you start typing, the Properties panel displays only those properties
that contain the text you’ve typed. For instance, if you start typing the
word Width, only the properties Width, MinWidth, and MaxWidth
appear.

 5. If you are setting or changing a property that contains a string such, as
Text or Tooltip, just click the field and start typing.

 If the string property affects the way the control looks, the Artboard
immediately updates that control.

 6. If you are setting or changing a property that contains a number, such
as Opacity, Width, or Height, you again click the field and start
typing the values.

 Actually, an easier way to change the values is by using your mouse.
As you move your mouse over the field, the cursor changes shape to a
four-sided arrow, shown here in the margin. Click and drag the mouse
left or down to reduce the value, and drag the mouse right or up to
increase the value.

 If the property affects the way the control looks, the Artboard again
updates it.

07_524657-ch03.indd 5007_524657-ch03.indd 50 3/31/10 11:38 AM3/31/10 11:38 AM

51 Chapter 3: Enhancing the User Interface

Getting to know the Properties
panel better
There are a number of things in the Properties panel that you need to be
aware of. They are indicated in Figure 3-1 and described in the following list.

Figure 3-1:
Properties

panel.

Toggle button for Events/Properties

Selected element type

Property field

Property search field

Property group

Advanced Property options

 ✓ The Search field: The Properties panel also has a Search box that allows
you to filter the property names as you type, as explained in the previous
section.

 To understand what we mean by filtering property names, type Font
in the Search box. As you can see, the Properties panel displays only
the properties that contain the text “Font” in them. You can cancel
the search by clicking the X button at the right of the Search text box.
Because the Properties panel can contain a great many properties, the
search feature can help you find a property by name with ease.

07_524657-ch03.indd 5107_524657-ch03.indd 51 3/31/10 11:38 AM3/31/10 11:38 AM

52 Part I: Illuminating Silverlight

 ✓ Property groups: The properties are also grouped together nicely to
help you find what you are looking for quickly. Figure 3-2 shows some
of the groups for the TextBlock control. You can expand and collapse
these property groups by pressing the tiny triangle that appears in
front of each group’s name. For instance, if you expand the group called
Appearance for the TextBlock control, you see the properties Opacity,
Visibility, and Effect. Common group names are listed in Table 3-1.

Table 3-1 Common Groups of Properties

Group Description

Brushes This group contains properties that control the color of the
control such as Foreground and Background.

Appearance This group contains properties such as Visibility,
Opacity, and BorderThickness.

Layout This group contains properties such as Width and Height
that control the position of the control.

Common Properties such as Tooltip, Text, and Cursor appear
under this group.

Text Properties such as Font and FontSize for the Text
component of the control are in this group.

Transform Properties that apply transformations such as scaling and
rotations are in this group.

Miscellaneous Properties such as Style and Template are in this group.
We look at these in more detail in Chapter 6.

 ✓ Properties and Events buttons: The Properties panel contains not only
properties for the control but also its events. (An event, as we explain in
Chapter 2, occurs when you interact with the element itself by moving a
mouse over it or clicking it.) You can make the Properties panel display
the list of events by clicking the Events button. Switch back to displaying
properties by clicking the Properties button. These buttons appear here
in the margin as well as in Figure 3-1.

 ✓ Advanced Property options: Most of the properties in the Properties
panel contain a little square to the right of them that you can click
to bring up Advanced Property options. The most commonly used
Advanced Property option is Reset, which sets the property value to the
default values of the control, thereby usually removing that property
setting. For example, resetting a Margin property would remove the
Margin attribute from the XAML for that control.

07_524657-ch03.indd 5207_524657-ch03.indd 52 3/31/10 11:38 AM3/31/10 11:38 AM

53 Chapter 3: Enhancing the User Interface

Drawing Shapes on the Artboard
Silverlight enables you to draw on the screen using vector graphics. This
means that you specify the shapes, lines, and points using X-Y coordinates.
Vector graphics display nicely on the screen irrespective of the screen
resolution or whether the display is zoomed in or out, in contrast to the
behavior of bitmapped graphics, whose shapes appear pixilated when
displayed at a high resolution or when the display is zoomed in. Figure 3-2
shows the comparison between a vector graphic and a bitmapped graphic,
when scaled. The figure contains three sets of images. From left to right, the
first set displays an unscaled text and circle. The second set contains the
vector graphic scaled up, and the third set contains the scaled-up bitmapped
version. Notice that the bitmapped circle and text look pixilated when scaled
up, whereas the vector graphic version appears clear.

Figure 3-2:
Comparison

of vector
and bit-
mapped

graphics.

Expression Blend allows you to add the following shapes as vector graphics:

 ✓ Rectangle

 ✓ Ellipse

 ✓ Line

You can also use the Pen and Pencil tools to draw freehand shapes on the
Artboard. You select these tools from the Tools panel and add them to the
Artboard the same way you add the TextBlock in the Hello, World example
(as explained in Chapter 2).

 Not all tools in the Tools panel are visible all the time. To display the
additional shape tools, Ellipse and Line, click and hold the Rectangle tool
(see Figure 3-3). Alternatively, right-click the Rectangle tool.

07_524657-ch03.indd 5307_524657-ch03.indd 53 3/31/10 11:38 AM3/31/10 11:38 AM

54 Part I: Illuminating Silverlight

Figure 3-3:
The Tools

panel
showing the

Rectangle,
Ellipse, and

Line tools.

Drawing with ready-made shapes
To draw a shape, follow these steps:

 1. Create a new Silverlight project by choosing File➪New Project, or
open an existing project by choosing File➪Recent Projects and picking
a project from the menu.

 2. Click the Rectangle, Ellipse, or Line tool to select it.

 3. Click the Artboard and drag the cursor to get the size you need.

 As you drag the cursor, the width and height of the shape appear next to
the shape you are drawing. When you stop dragging, the shape appears
on the Artboard.

Drawing freehand
The two Shape tools that work differently from the drawing tools in the
previous section are the Pen and Pencil tools. You use these tools when
you want to draw freehand sketches. These freehand sketches are drawn as
vector paths, which are a series of points that are joined together.

The Pen tool
To draw a path with the Pen tool, click it in the Tools panel to select it.
Then click the Artboard in different places to plot your shape. Try a star, for
example. As you plot the star, notice that as you click the Artboard, the line
from the previous point extends itself to the new point you just clicked. A
star drawn with the Pen tool is shown in Figure 3-4.

07_524657-ch03.indd 5407_524657-ch03.indd 54 3/31/10 11:38 AM3/31/10 11:38 AM

55 Chapter 3: Enhancing the User Interface

The Pen tool allows you to also draw curves rather than just straight lines
between the points you’ve drawn. To draw a curve, follow these steps:

 1. Click the Pen tool from the Tools panel to select it.

 2. Click the Artboard and drag the mouse in the direction you want the
curve to appear in.

 A line appears on the screen with two selection handles — one square
handle and one round handle. The round handle represents the direction
in which the curve will appear.

 3. Click the Artboard again in the place where you want the curve to end.

 A curve appears connecting the two points.

 4. Click the first point again.

 This closes the curve shape that you just drew. Optionally, you can click
another tool in the Tools panel to stop drawing.

The Pencil tool
The Pencil tool allows you to drag and draw any shape on the screen. Try
drawing a star with the Pencil tool on the Artboard. The different shapes
drawn with the available tools in Expression Blend are shown in Figure 3-4.

Figure 3-4:
Shapes

drawn using
tools in the
Expression

Blend Tools
panel.

Star drawn with Pen tool

Rectangle drawn with Rectangle tool

Line drawn with Line tool

Elipse drawn with Elipse tool

Star drawn with Pencil tool

07_524657-ch03.indd 5507_524657-ch03.indd 55 3/31/10 11:38 AM3/31/10 11:38 AM

56 Part I: Illuminating Silverlight

Understanding the XAML for shapes
 To see the XAML for the shapes you draw on the Artboard, click the XAML

button on the Artboard. Be aware, though, that only two types of shapes
show up by their name in the XAML: Rectangle and Ellipse.

When you create a rectangle using the Rectangle control, the XAML for it
looks like the following:

<Rectangle Fill=”White” Stroke=”Black” Height=”148”
HorizontalAlignment=”Left” Margin=”58,51,0,0”
VerticalAlignment=”Top” Width=”177”/>

The Height and Width properties along with Margin property determine
where the Rectangle is placed and what dimension it takes, and the Stroke
property determines the color with which it is drawn. All other properties in
the preceding XAML are optional, but Expression Blend fills them in anyway,
depending on the values these properties took when previous shapes were
drawn.

Other shapes — those drawn with the Line, Pen, and Pencil tools — translate
as Path elements in XAML.

A Path element is nothing more than a series of connected lines and curves
and can be used to represent any freehand drawing. A simple Path that joins
two points is represented in XAML as follows:

<Path Stretch=”Fill” Stroke=”Black” Height=”60.5”
Margin=”284,72.5,248,0” VerticalAlignment=”Top”
UseLayoutRounding=”False” Data=”M284,72.5
L391,132”/>

A more complex Path that draws a star may look something like this XAML
snippet:

<Path Stretch=”Fill” Stroke=”Black “
Margin=”137.5,207.5,242.5,115.5”
UseLayoutRounding=”False” Data=”M175,251
L203,208 L215,248 L255,247 L222,280 L227,331
L194,300 L160,326 L161,284 L138,253” />

The main information on how to connect the points in a Path is supplied in
the Data parameter. The value for the parameter looks cryptic, but because
Expression Blend automatically fills this out for you, don’t worry too much
about it.

07_524657-ch03.indd 5607_524657-ch03.indd 56 3/31/10 11:38 AM3/31/10 11:38 AM

57 Chapter 3: Enhancing the User Interface

Shaping, Sizing, and Positioning
Your Object

After you’ve drawn a shape on the Artboard, you can play around with its
shape and size to your heart’s content. You do this by selecting the shape
and manipulating it using your mouse or changing its properties in the
Properties panel. Keep reading for the details.

Getting your object into
shape using your mouse
You can reshape any object you’ve placed on your Artboard. To reshape a
Rectangle object, for example, follow these steps:

 1. Click the Selection Tool in the Tools panel.

 2. Click the Rectangle on the Artboard to select it.

 The Artboard draws a bounding box with selection handles around the
Rectangle, as shown in Figure 3-5.

Figure 3-5:
Rectangle

showing
bounding

box and
selection
handles.

The selection handles appear on the four sides and four corners of the
Rectangle. When you move the mouse over these handles and on top of the
Rectangle, the cursor changes to a different shape depending on where it is.
The different cursor shapes indicate the type of operation you can perform
when you click and drag.

For example, you can resize the Rectangle when the cursor turns into a
double-headed arrow. Click the double-headed arrow and drag the Rectangle
to the required dimensions.

07_524657-ch03.indd 5707_524657-ch03.indd 57 3/31/10 11:38 AM3/31/10 11:38 AM

58 Part I: Illuminating Silverlight

When you want to move the Rectangle to a new position, simply click inside
the Rectangle and drag it. The shape of the cursor again indicates the action
that is available to you at that point.

Table 3-2 shows the different cursor shapes and what you can do with them.

Table 3-2 Using the Mouse for Shaping and Sizing an Object

Cursor Shape Function

Increase/decrease height

Increase/decrease width

Increase/decrease dimensions in the northwest or southeast
direction

Increase/decrease dimensions in the southwest or northeast
direction

Move the object to a new location

Reshaping and sizing an object
using the Properties panel
The width, height, and position of a shape can also be set from the Properties
panel. If you look under the Layout group in the Properties panel, you see
the properties for Width and Height. The position attributes appear under
Margin, as shown in Figure 3-6.

Figure 3-6:
The Layout

section
of the

Properties
panel.

07_524657-ch03.indd 5807_524657-ch03.indd 58 3/31/10 11:38 AM3/31/10 11:38 AM

59 Chapter 3: Enhancing the User Interface

To see how the Height, Width, and Margin properties are tied together with
an object on the Artboard, do the following:

 1. Use the Selection tool from the Tools panel and click an object, such
as Rectangle, on the Artboard to select it.

 The Rectangle is selected and shows the selection handles.

 2. Resize the Rectangle on the Artboard by dragging one of the selection
handles.

 The Rectangle’s size changes. The Height and Width properties in the
Properties panel also change.

 3. Move the Rectangle on the Artboard by dragging it.

 The Rectangle moves position and while it is doing so, the Margin
properties in the Properties panel also change.

 You can constrain the movement of the shape to one direction by holding the
Shift key while dragging. For instance, when you move the Rectangle, holding
the Shift key restricts the movement either to the X-axis or Y-axis alone. Just
try it to see for yourself.

Rounding the corners
of a Rectangle object
To round the corners of a Rectangle, follow these steps:

 1. Use the Selection tool from the Tools panel and click a Rectangle
object on the Artboard to select it.

 The rectangle is selected and shows the selection handles. Notice the
dotted lines that appear at the top-left corner of the Rectangle. These
are the corner radius handles.

 2. Place the cursor on one of the corner radius handles at the end of the
dotted line near the top-left corner of the Rectangle until the cursor
turns into a plus sign, as shown in Figure 3-7.

Figure 3-7:
Rectangle

with cursor
on top of

the corner
radius

handle.

07_524657-ch03.indd 5907_524657-ch03.indd 59 3/31/10 11:38 AM3/31/10 11:38 AM

60 Part I: Illuminating Silverlight

 3. Drag the mouse to set the length of the rounded rectangle.

 Note that when you drag the mouse to set the rounded corner, the
radius of both X and Y are always symmetrical. The rectangle with
rounded corners is shown in Figure 3-8. If you want to change them
individually, hold the Shift key while dragging.

 You can also set the radius of the rounded corner by setting the RadiusX and
RadiusY properties that appear under Appearance on the Properties panel.

Figure 3-8:
Rectangle

with
rounded
corners.

Rotating, Projecting in 3-D, and Doing
Other Funky Things with Shapes

Silverlight allows you to write applications that contain a lot of animation.
This animation can be in the form of fly-out menus and games, for example.
Animations are discussed in Chapter 8.

To bounce a ball up and down on the screen, you may need to be able to
rotate the ball, change its position, or even stretch, contract, or skew it a
little bit to produce a bouncing effect. These actions on the object are called
transformations. You can perform a number of transformations to the object
on the Artboard. These include the following:

 ✓ Rotating: You can rotate the object to change its angle.

 ✓ Skewing: This involves distorting the object to a certain angle.

 ✓ Scaling: You can scale an object up or down from its original shape.

 ✓ Projection: This involves giving an object the appearance of being three
dimensional.

The following sections show you how to perform each of these actions, using
a Rectangle object as an example.

07_524657-ch03.indd 6007_524657-ch03.indd 60 3/31/10 11:38 AM3/31/10 11:38 AM

61 Chapter 3: Enhancing the User Interface

 Scaling and resizing are not the same thing. With scaling, everything in the
object scales up or down. For example, the border thickness increases or
decreases when you scale the object, but it doesn’t change when you resize. It
can be quite confusing sometimes if you do not know the difference.

Rotating a rectangle or other shape
To rotate a Rectangle (or other shape), you need to have the shape displayed
on the Artboard. Then follow these steps:

 1. Click the Selection tool in the Tools panel and then click the Rectangle
control.

 The shape is selected and the selection handles appear.

 2. Move the cursor to one of the edges until it changes into a two-sided
arrow at an angle (shown here in the margin).

 When the cursor changes shape, you can drag and rotate the Rectangle
to any desired angle, as shown in Figure 3-9.

 3. Move the cursor to the axis of rotation, which is the small circle at the
center of the object.

 When the cursor changes shape to a four-headed arrow, drag the axis of
rotation to another point.

 4. Repeat the rotation that you performed in Step 2.

 The Rectangle rotates again, but on a new axis of rotation.

Figure 3-9:
Rotating a
Rectangle

object.

Skewing an object
Skewing an object, as we mention at the start of this section, involves
distorting the angles of the object. For example, you can create a parellelogram
by skewing a square, or you can create shadow effects with skewed text
(which we show you later in this chapter).

07_524657-ch03.indd 6107_524657-ch03.indd 61 3/31/10 11:38 AM3/31/10 11:38 AM

62 Part I: Illuminating Silverlight

To skew a shape to a new angle, follow these steps:

 1. Click the Selection tool in the Tools panel and then click the Rectangle
control.

 The shape is selected and the selection handles appear.

 2. Place the cursor near one of the side selection handles.

 The shape of the cursor changes to the shape shown here in the margin,
which indicates that the object can be skewed.

 3. Drag the cursor to skew the Rectangle to whatever angle you like.

 The Rectangle appears skewed, as shown in Figure 3-10.

Figure 3-10:
Skewing

transforma-
tions.

You can skew an object on both the X-axis and the Y-axis. These transformations
can also be directly applied from the Transform group in the Properties
panel. For example, to perform a simple Translate transform, which moves an
object from one position to another, follow these steps:

 1. Click the Selection tool in the Tools panel and then click the Rectangle
control.

 The shape is selected and the selection handles appear.

 2. Open the Properties panel and go to the Transform group, as shown in
Figure 3-11.

 The group contains tabs for Translate, Rotate, Scale, Skew, Center Point,
and Flip.

 3. From the Translate tab, change the values of X and Y.

 The position of the Rectangle on the Artboard changes.

07_524657-ch03.indd 6207_524657-ch03.indd 62 3/31/10 11:38 AM3/31/10 11:38 AM

63 Chapter 3: Enhancing the User Interface

Figure 3-11:
Transform
properties.

Applying 3-D Perspective transformations
Silverlight supports 3-D projection. This means that you can take objects
that are ordinarily limited to being manipulated in 2-D space and “project”
them into 3-D space. These objects don’t become 3-D objects, but they can be
treated as if they live in 3-D space. For example, you can take the image of a
photo that is in 2-D and rotate it in 3-D to provide illusions such as flipping a
photo album.

To give a two-dimensional object the appearance of being a three-dimensional
one, follow these steps:

 1. Create a new Silverlight Project by choosing File➪New Project.

 2. In the New Project dialog box, choose Silverlight 4 Application + Website.

 A new Silverlight project is created and a blank Artboard is shown.

 3. From the Assets panel, type Image in the Search field. Then click the
Image tool from the list to select it and draw it on the Artboard.

 4. From the Properties panel, set the Source property by picking an
image file.

 The image is displayed in the Image control on the Artboard.

 5. Go to the Rotation tab under the Transform group in the Properties
panel; this is the first tab (that is, the leftmost) that appears under
Projection (see Figure 3-12).

 When you move your mouse cursor over the circle in the tab, the circle
changes to a blue color. This circle is called the Projection ball, and you
can drag the mouse around to rotate the Projection ball to rotate the
image on a 3-D plane.

07_524657-ch03.indd 6307_524657-ch03.indd 63 3/31/10 11:38 AM3/31/10 11:38 AM

64 Part I: Illuminating Silverlight

 Notice that the image on the Artboard performs a 3-D transformation as
the mouse is moved. Figure 3-13 shows the transformation.

Figure 3-12:
Rotating the

Projection
ball from the
Rotation tab

under the
Transform

group in the
Properties

panel.

Figure 3-13:
Perspective
transforma-

tion that
has been

applied to
an image.

 When you are doing 3-D perspective transformations, make sure you do them
after setting all other properties on the object. Applying transformations first
makes it hard to manipulate other properties from Expression Blend.

Painting Colors with Brushes
in the Properties panel

Transformations, rotations, and so on look cool, but without any color, your
objects still look pretty bland. You can add color to them by setting the
properties that appear in the Brushes section of the Properties panel. You
can also mix colors. To get a feel for playing with color, this section takes you
through filling a shape with color and mixing different colors to create new
shades from the Properties panel.

07_524657-ch03.indd 6407_524657-ch03.indd 64 3/31/10 11:38 AM3/31/10 11:38 AM

65 Chapter 3: Enhancing the User Interface

Filling an object with color
To fill an object (in this example, a rectangle) with color, follow these steps:

 1. Create a new Silverlight Project by choosing File➪New Project and
selecting Silverlight 4 Application + Website, or open an existing project
by choosing File➪Recent Projects and picking a project from the list.

 A Silverlight project is opened and the Artboard is shown.

 2. From the Tools panel, select the Rectangle tool and draw a rectangle
on the Artboard.

 3. Go to the Brushes group in the Properties panel.

 The Fill property should be highlighted by default, as shown in Figure 3-14.
If it is not, click it. The section shows five brush tabs, which we describe
in Table 3-3. Click the Solid color brush tab.

 4. In the color palette that appears in the Editor tab, select the color of
your choice.

 The fill color of the rectangle shows the color you just picked.

Figure 3-14:
The Brushes
group in the

Properties
panel.

Table 3-3 Color Brush Tabs

Tab Image Description

No brush.

Solid color brush. Displays a single solid color.

(continued)

07_524657-ch03.indd 6507_524657-ch03.indd 65 3/31/10 11:38 AM3/31/10 11:38 AM

66 Part I: Illuminating Silverlight

Table 3-3 (continued)

Tab Image Description

Gradient brush. Displays multiple colors that gradually change
from one to another.

Tile brush. Uses an image as a background and repeats the image
as a tile.

Brush resources. Uses a brush defined as a resource.

Using the Eyedropper tool
If you have a color anywhere in the screen that you would like to use, follow
these steps:

 1. Click the Selection tool in the Tools panel and then click an object.

 The shape is selected and the selection handles appear.

 2. Click the Fill property in the Properties panel.

 3. From the Properties panel, click the Color Eyedropper button that
appears at the bottom of the color palette in the Brushes group.

 The cursor changes its shape to resemble an eyedropper, shown here in
the margin.

 4. Move the cursor to a color on the screen and click it to select it.

 The shape’s color changes to the color you clicked, and the Fill Color
property in the Properties panel displays the newly picked color.

Mixing colors
You can also alter colors, if desired, by changing the values under R, G, B,
and A. R stands for Red, G for Green, B for Blue, and A for Alpha. These
properties collectively make up a brush.

When you paint with colors in the real world, you make up new colors by
mixing different colors together. Similarly, in Expression Blend, you mix up R,
G, and B to make up new colors and new shades. The values for these colors
can range between 0 and 255. For instance, if you set the value of 255 to R
and set the value of 0 to both G and B, you get a pure red color. Similarly,

07_524657-ch03.indd 6607_524657-ch03.indd 66 3/31/10 11:38 AM3/31/10 11:38 AM

67 Chapter 3: Enhancing the User Interface

when you set the value of 255 to G and set the value of 0 to R and B, you get a
pure green color. You can start making the shade of green lighter by adding a
bit more value to R and B, and even reducing the value of G.

When you set the value as 0 for all three color components, R, G and B, you
get a pure black color, and when you set them all to 255, you get white.

The Alpha property specifies a transparency component to the brush you’re
painting with. The Alpha value is expressed as a percentage. Setting an Alpha
value of 100 percent means that the object has no transparency (that is, it’s
opaque). Setting a value of 0 means that it is completely transparent.

The fill color is not the only property that has a brush associated with it.
Depending on the type of control, you may have other properties as well. For
instance, the Stroke property is used to set the color of the brush that draws
the Rectangle object’s border. The Foreground and Background properties
also appear for many controls.

Applying gradients for color transitions
In addition to applying a solid color throughout an object, you can set the
fill color using a gradient brush. A gradient brush gradually transforms one
color into another color, and the smooth transition looks nicer than an
abrupt change of color. Silverlight also allows you to specify multiple gradient
stops or multiple color transitions to add more color effects. You specify a
gradient stop at a location on the object where you want the brush to change
from one color to another.

To set a gradient brush, follow these steps:

 1. In the Properties panel, click the tab with the gradient image, shown
here in the margin.

 A gradient brush is immediately applied to the shape you’re working
with on the Artboard. At the same time, some new items appear on
the Properties panel that are specific to the gradient brush. These new
items include the following:

 • Gradient slider: This is used to show and set the gradient color
changes.

 • Buttons to select the type of gradient: There are two types of gradient
buttons: Linear gradient and Radial gradient. When the Linear
Gradient button is selected, the color changes gradually from one
side of the control to the other side. When the Radial Gradient
button is selected, the gradient appears in a circular fashion,
starting from a midpoint and gradually changing outward.

07_524657-ch03.indd 6707_524657-ch03.indd 67 3/31/10 11:38 AM3/31/10 11:38 AM

68 Part I: Illuminating Silverlight

 • Options to select the next gradient stop: These appear as little
arrows that you can click to set the previous and next gradient
stops.

 • Selected gradient stop offset: You use this field to change the
position of the gradient stops.

 Figure 3-15 shows the extended properties for gradients.

 2. To select the gradient colors, first click one of the two gradient stops
in the gradient slider, shown here in the margin, and then pick a color
from the Editor.

 You can add more gradient stops by clicking anywhere within the slider.

 After you have selected the gradients, you can reverse the colors by clicking
the Reverse Gradient Stops button, shown here in the margin.

Figure 3-15:
Setting

gradient
properties.

 When the Linear gradient is selected, the gradient appears in a linear fashion.
You can change this to the Radial gradient with the gradient appearing in a
circular fashion by clicking the Radial Gradient button. The two gradients are
shown in Figure 3-16.

Figure 3-16:
Linear (left)
and Radial

(right)
gradients.

07_524657-ch03.indd 6807_524657-ch03.indd 68 3/31/10 11:38 AM3/31/10 11:38 AM

69 Chapter 3: Enhancing the User Interface

 The Eyedropper can also be used to pick gradient shades. To do that, first
click the Gradient eyedropper (refer to Figure 3-15) and then click and drag
any portion of the screen that you would like to use for your color gradient. You
can even open an image that has a nice gradient pattern (such as an image of a
cloud or the sky, for instance) on your screen and, using the Eyedropper,
select the gradient from a portion of the image.

Using the Gradient tool instead of setting
gradients through the Properties panel

 The Gradient tool, shown here in the margin, is in the Tools panel and can be
used to specify gradient directions. It also helps you perform actions, such as
adding gradient stops, more easily.

To use the Gradient tool, select the tool from the Tools panel first and then
click the object on the Artboard that you want to apply the gradient to. An
arrow appears on the selected object, as shown in Figure 3-17.

Figure 3-17:
Gradient
tool on a

rectangle.

You have several ways to manipulate gradient properties, as follows:

 ✓ Click and move the arrow around. The position of the gradient changes
accordingly.

 ✓ Click the circle that appears on the middle of the arrow and drag it to
reposition the gradient stop.

 ✓ Hold the Alt key down and click along the length of the arrow to create
more gradient stops.

 ✓ Click the arrow head or arrow bottom and resize the arrow. Resizing the
arrow allows you to specify the length of the gradient color within the
object selected.

 ✓ Move the cursor close to the arrow head or bottom until the shape of
the cursor changes to show two arrow heads. At that point, you can
drag and rotate the arrow to another direction.

07_524657-ch03.indd 6907_524657-ch03.indd 69 3/31/10 11:38 AM3/31/10 11:38 AM

70 Part I: Illuminating Silverlight

 ✓ When the Radial gradient is set for the object, an oval appears with
selection handles. You can also change the radius of the oval by dragging
these handles.

 When you double-click a gradient stop handle in the arrow, a small color
selection editor pops up near the arrow to allow you to pick a new gradient
color quickly and easily.

Manipulating gradients further
with the Brush Transform tool
The Brush Transform tool, which is available from the Tools panel and is
shown in Figure 3-18, lets you perform transformations on the gradient
similarly to the way rotation, skew, and scale transformations can be done
on regular objects.(See the section “Rotating, Projecting in 3-D, and Doing
Other Funky Things with Shapes,” earlier in this chapter, for more about
transformations.)

Figure 3-18:
Brush

Transform
tool in the

Tools panel.

 To select any hidden tool, you have to click and hold the tool under which
the hidden tool is grouped. The Brush Transform tool is grouped with the
Gradient tool. So, to reveal the Brush Transform tool, you have to click and
hold the Gradient tool. Alternatively, right-click the Gradient tool.

To apply brush transformations, first click the tool from the Tools panel
and then select the rectangle object on the Artboard. After the rectangle is
selected, you can perform the following transformations on the gradient:

 ✓ Size: Resize the transformation bounding rectangle using the resize
handles.

 ✓ Rotation: Rotate the transformation bounding rectangle by clicking the
edges when the rotate cursor appears and rotating it with a drag motion
of the mouse.

07_524657-ch03.indd 7007_524657-ch03.indd 70 3/31/10 11:38 AM3/31/10 11:38 AM

71 Chapter 3: Enhancing the User Interface

 ✓ Move: Just click in the middle of the bounding rectangle and drag it to a
new position.

 ✓ Skew: Click the side selection handles when the Skew cursor appears,
and then change the skew angle of the gradient’s bounding rectangle, as
shown in Figure 3-19.

Figure 3-19:
Brush trans-

formations
applied to a
Rectangle.

Adding special effects
You can add effects such as a drop shadow to the objects on the Artboard by
setting the Effect property on the object. Silverlight ships with two effects
out of the box, but you can create your own. (Chapter 15 tells you how to
create your own effects and where you can find other effects for free.) The
effects shipped with Silverlight are as follows:

 ✓ DropShadowEffect: Adds a shadow to the control

 ✓ BlurEffect: Produces a blur effect on the control

Adding an effect is easy. Both the BlurEffect and DropShadowEffect appear in
the Assets panel. Drag the tool from the Assets panel, and on the Artboard,
drop it onto the control to which you want to add the effect. Alternatively,
you can set it on the Properties panel by following these steps:

 1. Click the Selection tool to select the object.

 The object is highlighted.

 2. Click the New button on the Effect property in the Properties panel,
which appears in the Miscellaneous group.

 The Select Object dialog box appears.

 3. Click the desired effect and then click OK.

 The effect is applied to the object. Figure 3-20 shows what happens to a
rectangle when the DropShadowEffect is selected.

07_524657-ch03.indd 7107_524657-ch03.indd 71 3/31/10 11:38 AM3/31/10 11:38 AM

72 Part I: Illuminating Silverlight

Figure 3-20:
Drop

shadow
effect

applied to a
rectangle.

Playing Around with
Some Special Effects

This section takes the tools described in previous sections of this chapter
and puts them to use creating some text and adding shadow effects to it.
Check out what happens when you follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project
and selecting the Silverlight 4 Application + Website option.

 A new Silverlight project is created and a blank Artboard is shown.

 2. Double-click the TextBlock tool from the Tools panel.

 A TextBlock control is added to the Artboard.

 3. Replace the default text, “TextBlock,” by typing Silverlight Rocks in its
place.

 You can also change the Text property to Silverlight Rocks from
the Properties panel.

 4. Click the Selection tool, and if the TextBlock is not automatically
selected, click the TextBlock to select it.

 5. Go to the Text group on the Properties panel and increase the font
size to 24, as shown in Figure 3-21.

Figure 3-21:
Setting the

font size for
the text.

07_524657-ch03.indd 7207_524657-ch03.indd 72 3/31/10 11:38 AM3/31/10 11:38 AM

73 Chapter 3: Enhancing the User Interface

 6. Next, click the bold button, which is the button labeled B.

 7. In the Brushes section of the Properties panel, click Foreground and
then click the Gradient Brush button. Click a Red color on the Editor.

 The “Silverlight Rocks” text shows a gradient that moves from black
to red.

 8. While holding the Alt key, drag the TextBlock down to create a copy
of it.

 A copy of the TextBlock is created and appears below the original
TextBlock.

 9. Holding down the selection handle at the top of the newly created
copy, drag it down to flip it upside down, as shown in Figure 3-22.

 This creates a “mirror” effect with the text.

Figure 3-22:
Flipping the
text to cre-

ate a mirror
effect.

 10. Move the two TextBlocks close to each other by dragging one of them
up (or down).

 11. Press Ctrl+A to select both TextBlocks and drag them to the center of
the Artboard.

 This gives you more room to transform the controls in the following
steps. Click anywhere on the Artboard to remove the multiple selections
you made with Ctrl+A.

 12. Using the Selection tool, select the inverted TextBlock and, after it’s
selected, move your cursor over the bottom middle selection handle.

 The cursor changes shape to a Skew cursor.

 13. Drag the cursor to skew the selected TextBlock to an angle as shown
in Figure 3-23 so that the second control looks like a shadow.

 14. Click the Foreground property under Brushes in the Properties panel
and click the Solid Color brush tab (shown in the margin).

 This sets the color of the second TextBlock to a black color.

 15. From the Assets panel, select the BlurEffect and drag it to the second
TextBlock on the Artboard.

 The second TextBlock appears blurred on the Artboard.

07_524657-ch03.indd 7307_524657-ch03.indd 73 3/31/10 11:38 AM3/31/10 11:38 AM

74 Part I: Illuminating Silverlight

Figure 3-23:
Skewing the
text to make
it look like a

shadow.

 16. Press F5 to run the application.

 The application runs in a browser. The screen should look like Figure 3-24,
showing a “Silverlight Rocks” text with a nice shadow effect. Pretty cool, huh?

Figure 3-24:
Text with

a shadow
effect.

Adding Video and Audio to Your Pages
When Silverlight 1.0 was released, it was used mainly to play media files —
that is, video and audio files. Although lots of features have been added to
Silverlight, video and audio still form a big part of Silverlight. This section
shows you how to add them to your Silverlight applications.

Playing video and audio files
To add media such as video and audio to your page, follow these steps:

 1. In Expression Blend, open the XAML page you would like to add
media to.

 2. Right-click the Silverlight project in the Projects panel and choose Add
Existing Item from the menu.

 The Add Existing Item Dialog box appears.

07_524657-ch03.indd 7407_524657-ch03.indd 74 3/31/10 11:38 AM3/31/10 11:38 AM

75 Chapter 3: Enhancing the User Interface

 3. Select the name of the media file, such as a WMV file, that you want to
add to your page and click OK.

 The media file gets added to the project and appears in the Projects
panel.

 4. Drag and drop the file from the Projects panel into the XAML file on
the Artboard.

 A MediaElement control gets added to the Artboard and the Source
property of the control gets set to the file you just added.

 5. Press F5 or choose Project➪Run Project from the menu.

 The media file opens and automatically plays in the Silverlight page.

The media file plays automatically when the page opens because of a property in
the MediaElement control called AutoPlay, which is set to true by default.
You can set this property to false and control when and how the media file
is played by calling the Play method from the MediaElement control in your
VB.NET or C# code. Similarly to the controls of an actual media player, the
MediaElement control also has methods such as Pause and Stop.

In addition to Source and AutoPlay, there are also other properties in
MediaElement that you may find useful:

 ✓ IsMuted: This property specifies whether the audio is turned off.

 ✓ Stretch: This property specifies how the video is stretched within
the bounds (height and width) of the MediaElement. It takes the values
None, Uniform, UniformToFill, and Fill. A value of Fill makes the
video take up the entire width and height of the control, and this is the
default setting. But if the aspect ratio of the video does not match that
of the MediaElement control, the images may end up looking too tall or
too wide. The value Uniform takes up as much width and height of the
control that it can while ensuring that the video is displayed with the
right aspect ratio. UniformToFill displays the video centered within
the control using the right aspect ratio, but it clips either the height
or width of the video to ensure that it fits within the bounds of the
MediaElement control. None displays the video in its native resolution
and clips the video if it doesn’t fit into the control’s bounds.

 ✓ Position: This property can be used to move the media to a specific
time. Not all media allows you to set the position, and you can determine
whether it is supported by checking the value of the CanSeek property.
If the value of this property is true, you can set the Position of the
media.

 ✓ Volume: This property is used to set the volume of the audio and takes
values between 0 and 1. The default value of Volume is set to 0.5.

07_524657-ch03.indd 7507_524657-ch03.indd 75 3/31/10 11:38 AM3/31/10 11:38 AM

76 Part I: Illuminating Silverlight

Creating a video brush
To add a very special background to your control, such as a video or an
image, you need to create a brush that contains the resource and set it as
the Background brush. In fact, you can add the video or image brush to
any property that accepts a brush, such as Fill, Stroke, Foreground, and
BorderBrush. This section shows you how to add a video as a brush using
Expression Blend.

 1. Add a video as a MediaElement to the XAML page by following the
first four steps from the previous section, “Playing video and audio
files.”

 2. From the menu, choose Tools➪Make Brush Resource➪Make
VideoBrush Resource.

 The Create VideoBrush Resource dialog box appears. You can optionally
set the Name (Key) field to a meaningful name; then click OK.

 3. Set the Visibility property under Appearance in the Properties panel
to Collapsed.

 This hides the MediaElement control that you just added. You hide
this element because you want to use the video as a brush and not as a
MediaElement.

 4. Using the Selection tool from the Tools panel, select the control you
want to set the Brush property for.

 5. In the Properties panel, click the Brush property you want to set.

 For example, if you are using a Rectangle control, click the Fill
property under Brushes.

 6. Click the Brush Resources tab, shown here in the margin.

 The Brush Resources tab appears and displays a list of Resource
brushes, including the video brush you just created.

 7. Click the Resource Brush you wish to use from the list.

 8. Press F5 or choose Project➪Run Project from the menu.

 The application runs in the Web browser and the control shows the
video as its brush.

 Creating an image as a Resource Brush is similar to creating a video as a
Resource Brush. Rather than select the MediaElement control and choose
Tools➪Make Brush Resource➪Make VideoBrush Resource to create the
Brush, you add an Image control, select it, and then choose Tools➪Make
Brush Resource➪Make ImageBrush Resource.

 You can also use an image as a brush in a control by clicking the Tile Brush
tab for the Brush you want to set in the Properties panel and setting the
ImageSource property.

07_524657-ch03.indd 7607_524657-ch03.indd 76 3/31/10 11:38 AM3/31/10 11:38 AM

77 Chapter 3: Enhancing the User Interface

Displaying video from your Webcam
With Silverlight 4, you can also connect your computer’s webcam and
microphone to your application. In this section, we show you how to display
the video from your webcam in a Silverlight application. Just follow these
steps:

 1. Create a new Silverlight application by choosing File➪New Project;
then, in the New Project dialog box, select Silverlight 4 Application +
Website option and then click OK.

 2. From the Tools panel, add a Rectangle to MainPage.xaml on the
Artboard.

 3. In the Properties panel, set the name of the Rectangle by entering
rctWebcam.

 By setting the name of the Rectangle, you can set its properties from
code. Setting the properties from code is essential to linking the cam-
era’s image to the Rectangle’s background.

 4. In the Properties panel, click the Events tab and double-click the
MouseLeftButtonUp field.

 A method called rctWebcam_MouseLeftButtonDown gets added to
the MainPage, class and the MainPage.xaml.cs file opens on the
Artboard. (You can find out more about events and event handlers in
Chapter 4.)

 5. In the MainPage class, add a data member called cameraSource of
type CaptureSource, as follows:

CaptureSource cameraSource;

 You can use the CaptureSource class to start and stop the camera
capture of the image coming from the webcam.

 6. Change the constructor of MainPage to the following code:

public MainPage()
{
 // Required to initialize variables
 InitializeComponent();

 cameraSource = new CaptureSource();
 cameraSource.VideoCaptureDevice =

CaptureDeviceConfiguration.
GetDefaultVideoCaptureDevice();

 var brush = new VideoBrush();
 brush.SetSource(cameraSource);
 rctWebcam.Fill = brush;
}

07_524657-ch03.indd 7707_524657-ch03.indd 77 3/31/10 11:38 AM3/31/10 11:38 AM

78 Part I: Illuminating Silverlight

 The code that you’ve added initializes the cameraSource object from
the default video capture device (which is the webcam) and sets the
Rectangle’s Fill brush to the video brush of the camera source. This
displays the webcam’s image in the rectangle.

 7. Change the rctWebcam_MouseLeftButtonDown method to the
following code:

private void rctWebcam_MouseLeftButtonDown(object
sender, System.Windows.Input.
MouseButtonEventArgs e)

{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess
 || CaptureDeviceConfiguration.

RequestDeviceAccess())
 {
 cameraSource.Start();
 }
}

 This code starts the webcam after checking to see whether the device
can be accessed and getting the user’s permission.

 8. Press F5 or choose Project➪Run Project.

 The application runs in a browser.

 9. Click the Rectangle.

 A message box, shown in Figure 3-25, appears, asking whether you want
to allow camera and microphone access. Click the Yes button and notice
the video from the webcam appearing on the rectangle.

Figure 3-25:
Silverlight

requesting
the use of a

camera or
microphone.

Hooking your microphone to your application works in the same way as that
of a webcam. Instead of using the method CaptureDeviceConfiguration.
GetDefaultVideoCaptureDevice(), you use CaptureDeviceConfiguration.
GetDefaultAudioCaptureDevice() to set the source from which you capture
the audio.

07_524657-ch03.indd 7807_524657-ch03.indd 78 3/31/10 11:38 AM3/31/10 11:38 AM

79 Chapter 3: Enhancing the User Interface

Selecting the default webcam and
microphone for your application
In the previous section, we tell you how to get the default webcam installed
on your machine to use within your Silverlight application. But you also need
to know how to set these defaults in the application. To do so, just follow
these steps:

 1. Right-click the Silverlight application when it is running in the Web
browser and choose Silverlight from the pop-up menu that appears.

 The Silverlight Configuration dialog box appears.

 2. Click the Webcam / Mic tab.

 The Webcam / Mic dialog box appears, showing a list of available video
sources (webcams) and audio sources (microphones), as shown in
Figure 3-26.

Figure 3-26:
Selecting

the default
webcam

and micro-
phone to

use in the
Silverlight

Configuration
dialog box.

 3. Select the default webcam and default microphone from the two lists
in the dialog box and click OK.

07_524657-ch03.indd 7907_524657-ch03.indd 79 3/31/10 11:38 AM3/31/10 11:38 AM

80 Part I: Illuminating Silverlight

07_524657-ch03.indd 8007_524657-ch03.indd 80 3/31/10 11:38 AM3/31/10 11:38 AM

Part II

Managing Your
Silverlight
Controls

08_524657-pp02.indd 8108_524657-pp02.indd 81 3/31/10 11:40 AM3/31/10 11:40 AM

In this part . . .

This part delves deeply into the world of controls.
In Chapter 4, you find out about some of the most

commonly used controls, such as text boxes and buttons,
and Chapter 5 shows you how to arrange them effectively
on-screen.

Silverlight allows you to change the appearance of a con-
trol without changing the way it works, and we give you
the goods on this topic in Chapter 6. You can see how to
create a style by specifying property values for a certain
control and reuse that style throughout in your applica-
tion, thereby providing a consistent look for your controls
throughout.

In Chapter 7, you find out how to create your own con-
trols, whether they are a collection of controls that you
want to reuse in your application or something you create
from scratch. Chapter 8 introduces you to the exciting
world of animation, and you get a taste of animating con-
trols on-screen.

Finally, Chapter 9 introduces you to the concept of data
binding. When you write programs the “traditional” way,
you are constantly setting properties when the data it
displays changes. With data binding, however, you can
tell the control what kind of data it is bound to, and
Silverlight takes care of the rest. This chapter gives you
a solid launch into this wonderful way of programming,
and you see how to create data sources and sample data
to test your application.

08_524657-pp02.indd 8208_524657-pp02.indd 82 3/31/10 11:40 AM3/31/10 11:40 AM

Chapter 4

Working with Controls
for UI Interactions

In This Chapter
▶ Displaying text using TextBlock

▶ Reading text input with TextBox

▶ Triggering actions with Buttons

▶ Making selections using RadioButtons, ListBoxes, and ComboBoxes

▶ Entering rich text with RichTextBox

Most applications need to have some kind of interaction with the user
to be useful. For example, if you are creating a business application,

you need to provide a whole bunch of screens to collect information from
a user. These screens may contain a number of fields that require user
interaction — for example, you can accept textual input from the user, or the
user can pick an item from a list or trigger an action by clicking a button.

In this chapter, you see how you can use TextBox to collect text input from
the user and how you can use a RadioButton and ListBox to get the user to
pick an item from a list, a button to perform an action, and so on.

Exploring the Text-Related Tools
There are four different text-related controls in Expression Blend, as follows:

 ✓ TextBlock

 ✓ TextBox

 ✓ RichTextBox

 ✓ PasswordBox

09_524657-ch04.indd 8309_524657-ch04.indd 83 3/31/10 11:41 AM3/31/10 11:41 AM

84 Part II: Managing Your Silverlight Controls

You use the TextBlock predominantly for displaying a label for an input field
or just to display some information to the user. The TextBox, RichTextBox,
and PasswordBox controls, on the other hand, allow the user to type in
some text that is used as input to perform an operation. An example of an
operation using a TextBox is getting the users to fill in their names. If you
are writing an application that requires users to sign in using a username
and password, you use the TextBox to collect the username, and you use the
PasswordBox to collect the password. When the user types the password
into the PasswordBox field, it is not available for anyone to see; Silverlight
hides it by replacing the characters the user types with unreadable characters.

The RichTextBox control allows you to format the text you type into it by
specifying which parts have to be in bold and which ones have to be in
italics. It also allows you to choose different fonts and specify other text
attributes.

Displaying text with TextBlock
As its name suggests, the TextBlock displays a block of text. In its simplest
form, the TextBlock looks like this in XAML:

<TextBlock>Hello World</TextBlock>

You can change the appearance of the text by changing its font and color,
setting it in bold or italics, underlining, and so on — all by setting the
properties for it. It is, of course, much easier to set these properties using
Expression Blend than to manually type the XAML because you can manipulate
these properties visually using the Properties panel. (Chapter 3 tells you all
about using the Properties panel.) The XAML for a TextBlock with some of
these properties set resembles the following:

<TextBlock FontFamily=”Times New Roman” FontSize=”36”
FontStyle=”Italic” FontWeight=”Bold”> Hello
World</TextBlock>

This is all fine, but when you want to write a paragraph of text that has
individual words in italics or bold, or you want to vary the fonts for multiple
words, stringing together a series of TextBlocks in XAML is a bit complex.
Thankfully, however, you can use Expression Blend to take care of a lot of
this for you by following these steps:

 1. Add a TextBlock to the Artboard (see Chapters 2 and 3 for how to add
a control to the Artboard) and type a few lines of text, as shown in
Figure 4-1.

 2. Double-click a word to select it.

 For this example, we selected Joke.

09_524657-ch04.indd 8409_524657-ch04.indd 84 3/31/10 11:41 AM3/31/10 11:41 AM

85 Chapter 4: Working with Controls for UI Interactions

Figure 4-1:
TextBlock
with mul-

tiple lines.

 3. In the Properties panel, select the properties you want to apply to the
word you selected.

 For example, set the font type as Times New Roman and the font size to
36; also, click the B button to make the text bold, as shown in Figure 4-2.

Figure 4-2:
Setting

properties
for selected

text.

 4. To select multiple words together, click and drag to highlight the
desired words; next, set their properties from the Properties panel.

 In our example, we selected those that don’t . . . and clicked the I button
in the Properties panel to set these words in italics. We also selected the
number 10 and made it bold.

 5. Press F5 or choose Project➪Run Project to run the application.

 The application runs in the browser showing the TextBlock and looks
like Figure 4-3.

Figure 4-3:
TextBlock

showing
inline

formatting.

09_524657-ch04.indd 8509_524657-ch04.indd 85 3/31/10 11:41 AM3/31/10 11:41 AM

86 Part II: Managing Your Silverlight Controls

 You can also use Ctrl+B to set the selected text to Bold, Ctrl+I to italicize it,
and Ctrl+U to underline, and use the same combinations to toggle the text
back to normal.

Using the TextBox and PasswordBox
to get input from the user
The TextBox control in Silverlight is similar to text boxes used in other
applications such as Windows programs and Web pages. The TextBox
control also provides functionality for you to do things like the following:

 ✓ Click and drag to select text.

 ✓ Double-click to select a word.

 ✓ Press Ctrl+C to copy the selected text and Ctrl+V to paste it.

The TextBox, RichTextBox, and PasswordBox tools in Expression Blend are
grouped along with the TextBlock tool in the Tools panel, as shown in Figure 4-4.

Figure 4-4:
The tools

available for
text-related

purposes.

To see how to use these tools, follow these steps:

 1. Create a new Silverlight project, add a TextBlock to the Artboard, and
replace the default text in it with some text of your own.

 In our example for these steps, we use the text Enter Hogwarts
location:.

 2. Click and hold the TextBlock tool to reveal the other text-related tools
in the Toolbox; then select the TextBox tool.

 3. Draw a text box below the TextBlock you’ve already added.

 4. Go to the Properties panel and assign a name, such as txtLocation,
to the TextBox.

 5. Add yet another TextBlock underneath the txtLocation (or whatever
you named it) TextBlock and type new text into it.

 In our example, that text is Enter the password to enter:.

09_524657-ch04.indd 8609_524657-ch04.indd 86 3/31/10 11:41 AM3/31/10 11:41 AM

87 Chapter 4: Working with Controls for UI Interactions

 6. Select the PasswordBox tool from the Toolbox, add it below the
TextBlock that you just added, and set the name, such as txtPassword,
for the new control in the Properties panel.

 Your Artboard should now look like Figure 4-5.

 7. Press the F5 key or choose Project➪Run Project to run the application
in the browser.

 You can type the text for Hogwarts location and also enter the password.
When you enter the password, the actual text you type is hidden.
This is pretty much the main difference between the TextBox and the
PasswordBox.

 To read the value typed into a TextBox from C# or VB.NET, you need
to access the Text property. For a PasswordBox, instead of Text, you
need to access the Password property. You find out how to do this in
the next section.

Figure 4-5:
The

Artboard
showing the

TextBlock,
TextBox,

and
Password

fields.

 Consider naming the controls you place on the Artboard using a prefix that
tells you what kind of control it is. For example, use the prefix txt to denote
that the control is a text box. For a button, use the prefix btn. This convention
of naming controls with a prefix is called Hungarian notation and was once
very popular when people used languages such as C and C++ for the Windows
environment. It is no longer used in C# and VB.NET, but it can help you to
find the controls used in the page easily while using IntelliSense. IntelliSense
is a feature in both Expression Blend and Visual Studio that tries to figure out
what you are typing based on the first few characters. For instance, you may
not remember whether you named a button SearchButton or FindButton, but
if you use Hungarian notation for all your controls, as soon as you type btn in
your C# code, IntelliSense will prompt you with all the controls that start with
btn, including btnSearch.

09_524657-ch04.indd 8709_524657-ch04.indd 87 3/31/10 11:41 AM3/31/10 11:41 AM

88 Part II: Managing Your Silverlight Controls

Accessing TextBox values in XAML markup
The previous sections discuss creating a simple application that accepts text
input using Expression Blend. In this section, we look at how to read the text
values you typed into the TextBox and Password fields and also to set the
Text property of a TextBlock programmatically from C#. To illustrate how
to do so, we use the example from the previous section and add another
TextBlock after the txtPassword control to the Artboard and name it lblOutput.
We use this TextBlock to show how its Text property is set from code. Your
XAML should look something like this:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/

presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Chapter4.MainPage”
 Width=”640” Height=”480”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Height=”24” Margin=”38,8,0,0”

HorizontalAlignment=”Left”
VerticalAlignment=”Top” Width=”274” Text=”Enter
Hogwarts location:” TextWrapping=”Wrap”/>

 <TextBox x:Name=”txtLocation” Height=”24”
Margin=”38,26,312,0” VerticalAlignment=”Top”
Text=”TextBox” TextWrapping=”Wrap”/>

 <TextBlock Height=”24” Margin=”38,60,0,0”
HorizontalAlignment=”Left”
VerticalAlignment=”Top” Width=”274” Text=”Enter
the password to enter:” TextWrapping=”Wrap”/>

 <PasswordBox x:Name=”txtPassword” Height=”24”
Margin=”38,78,312,0” VerticalAlignment=”Top”
Password=””/>

 <TextBlock x:Name=”lblOutput” Height=”24”
Margin=”38,106,312,0” VerticalAlignment=”Top”
Text=”TextBlock” TextWrapping=”Wrap”/>

 </Grid>
</UserControl>

The TextBox and PasswordBox controls both have a set of events attached
to them that get triggered automatically when you perform an action, such as
typing or even just moving your mouse over the control. You can look at all
the events that are available by clicking the Events button in the Properties
panel. The available events for the TextBox are shown in Figure 4-6.

 The name of a given event typically gives you an idea of the event’s purpose. For
example, the MouseEnter event is called when a mouse enters the control; like-
wise, the KeyDown event is called when a user presses a key while in the control.

09_524657-ch04.indd 8809_524657-ch04.indd 88 3/31/10 11:41 AM3/31/10 11:41 AM

89 Chapter 4: Working with Controls for UI Interactions

To validate the location and password whenever it is changed, add an event
handler for TextChanged, which will be triggered every time the value of
the Text in the TextBox field changes. (No points for guessing that the
equivalent trigger for a PasswordBox is PasswordChanged!)

To add an event handler when the text in a control changes, just double-click
the field for TextChanged in the Properties panel. Expression Blend creates
an empty function called txtLocation_TextChanged and adds it to the
MainPage.xaml.cs file. Expression Blend also opens and displays the file.
The code generated looks like this:

private void txtLocation_TextChanged(object sender,
System.Windows.Controls.TextChangedEventArgs e)

{
 // TODO: Add event handler implementation here.
}

Figure 4-6:
Events

available for
a TextBox.

09_524657-ch04.indd 8909_524657-ch04.indd 89 3/31/10 11:41 AM3/31/10 11:41 AM

90 Part II: Managing Your Silverlight Controls

Type ValidateEntry(); to replace the placeholder that says TODO: Add
event handler implementation here. Then add a function called
ValidateEntry, as shown:

private void txtLocation_TextChanged(object sender,
System.Windows.Controls.TextChangedEventArgs e)

{
 ValidateEntry();
}
private void ValidateEntry()
{
 if(txtLocation.Text == “Griffindor Common room” &&
 txtPassword.Password == “Caput Draconis”)
 {
 lblOutput.Text = “Correct password. Please enter”;
 }
 else
 {
 lblOutput.Text = “Tut, Tut! Wrong password”;
 }
}

Similar to the TextChanged event handler for txtLocation, add a
PasswordChanged event handler for txtPassword. Again replace the TODO
comment with a call to ValidateEntry(), as shown in the following code:

private void txtPassword_PasswordChanged(object sender,
System.Windows.RoutedEventArgs e)

{
 ValidateEntry();
}

Press F5 or choose Project➪Run Project to run the application. When the
application shows up in the browser, type Griffindor Common room in the
text box and enter Caput Draconis in the password field; you should see
the text Correct password. Please enter displayed on the screen, as
shown in Figure 4-7.

Figure 4-7:
Screen

showing
output when

the correct
values are

entered.

09_524657-ch04.indd 9009_524657-ch04.indd 90 3/31/10 11:41 AM3/31/10 11:41 AM

91 Chapter 4: Working with Controls for UI Interactions

Using Buttons in Your Application
Another frequently used tool in the Toolbox is the Button. Typically, in any
environment, clicking a button fires an action. The Button control is grouped
along with the CheckBox, ComboBox, ListBox, RadioButton, ScrollBar, and
Slider controls in the Tools panel, as shown in Figure 4-8.

Figure 4-8:
The Button

tool.

To add a button in Expression Blend, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project
and then selecting the Silverlight 4 Application + Website option (or
continue with the existing project that you’ve been working on in the
previous sections).

 2. Select the Button tool from the Tools panel and, using the mouse,
draw it on the Artboard, placing it to the right of any TextBlocks and
TextBoxes you’ve already added.

 3. Click the Selection tool in the Tools panel.

 This selects the button that you just added to the Artboard.

 4. Double-click the button and replace the default text Button by typing
Enter. Press Esc after you’ve made the change.

 The button text on the Artboard shows the word Enter that you typed
into the Content property field.

 You can also change the button’s text from the Properties panel by setting the
Content property.

To write an event handler for the button that performs an action when the
button is pressed, follow these steps:

 1. Click the Selection tool from the Tools panel to select it.

 2. Click the button for which you want to add the event handler.

 3. From the Properties panel, click Events and double-click the Click
Event field to generate the Button_Click event handler.

09_524657-ch04.indd 9109_524657-ch04.indd 91 3/31/10 11:41 AM3/31/10 11:41 AM

92 Part II: Managing Your Silverlight Controls

 The event handler function shows up in the Editor window. You can
modify the event handler to run any code. If you’ve been continuing
from the previous example, replace the event handler with a call to the
ValidateEntry function, as shown in the following code:

private void Button_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 ValidateEntry();
}

 4. Remove the two event handlers for txtLocation and txtPassword
that you added previously (if you followed along with the examples in
earlier sections of this chapter).

 You can do that easily by removing the following text from the
XAML source code for the TextBox txtLocation and the Password
field txtPassword: TextChanged=”txtLocation_TextChanged”
and PasswordChanged=”txtPassword_PasswordChanged”.
Alternatively, go to the Events tab for both controls and remove the text
that appears for txtLocation’s TextChanged event and txtPassword’s
PasswordChanged event from the Properties panel.

 5. Press F5 or choose Project➪Run Project to run the application.

 The application runs in a browser. Now instead of validating the input
at every key press, the application will validate only when the button is
pressed.

Setting the content of a button
In the previous section, we describe how to set the text to appear in the
Button control. When you do that, you set a property called Content, not
Text, in contrast to what you set for text in the TextBox and TextBlock
controls. The reason the property is called Content instead of Text for
this control is that the Button can have more than just text; it can contain an
image, a video, or even a bunch of other controls.

The Button is one of a large set other controls such as CheckBox,
ScrollViewer, and others that allow you to add any type of content to them.
This group of controls is based on another control called ContentControl,
which represents any control that can hold any type of content.

If you switch to the XAML view for the page by clicking the XAML button on
the Artboard, the markup for the button will look something like this:

<Button Height=”76” HorizontalAlignment=”Right”
Margin=”0,26,185,0” VerticalAlignment=”Top”
Width=”97” Content=”Enter”/>

09_524657-ch04.indd 9209_524657-ch04.indd 92 3/31/10 11:41 AM3/31/10 11:41 AM

93 Chapter 4: Working with Controls for UI Interactions

Rather than express the text of a button or any other control based on
ContentControl in the Content property, you can set the value of the
Button element as shown in the following snippet:

<Button Height=”76” HorizontalAlignment=”Right”
Margin=”0,26,185,0” VerticalAlignment=”Top”
Width=”97”>

 Enter
</Button>

The button is displayed the same way on the screen using both code snippets,
but the second snippet is interesting because it lets you specify some text
that appears as the button’s content or even another XAML element such as
a Button, as shown in the following example:

<Button Height=”76” HorizontalAlignment=”Right”
Margin=”0,26,185,0” VerticalAlignment=”Top”
Width=”97”>

 <Button Height=”26” Width=”79” Content=”Inner
button”/>

</Button>

You are not restricted to having just one control within the content of a
ContentControl — you can have complex XAML with multiple controls,
and if some of these controls happen to be based on ContentControl, they
can have complex content, too.

Adding an image as content for a Button
The previous sections provide the concepts important to creating content
and using ContentControl. Here, we show you how to add an image to a
button as content. Just follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project
and then selecting the Silverlight 4 Application + Website option (or
continue with the example project from the previous sections).

 2. If you are creating a new project, add a button to the Artboard by
using the Button tool from the Tools panel.

 3. Click the Asset Library icon in the Tools panel, which is represented
by a chevron image.

 A pop-up menu with all the available tools in Expression Blend appears,
but the Image tool may still not be available. To find it quickly, just start
typing into a text field. A Search field will appear as you type, and you
can type Image in that Search field.

 Figure 4-9 shows the Asset Library window.

09_524657-ch04.indd 9309_524657-ch04.indd 93 3/31/10 11:41 AM3/31/10 11:41 AM

94 Part II: Managing Your Silverlight Controls

Figure 4-9:
Asset

Library.

 You can also click the Assets tab in Expression Blend to go to the Assets
panel and search for the Image control there, as shown in Figure 4-10.

Figure 4-10:
The Assets

panel.

 4. When you’ve located the Image tool from either the Assets Library or
the Assets panel, click and drag it onto the Artboard.

 The image gets added to the button as content.

09_524657-ch04.indd 9409_524657-ch04.indd 94 3/31/10 11:41 AM3/31/10 11:41 AM

95 Chapter 4: Working with Controls for UI Interactions

 5. Go to the Properties panel and locate the Source property that appears
under the Common Properties group. Click the ellipses (. . .) button,
shown here in the margin; this button appears next to the field.

 The Add Existing Item dialog box is displayed.

 6. Select the image you would like to add to the button and click OK.

 The selected image is now displayed in the control.

 7. Click the Selection tool in the Tools panel to select the Image control.
Then drag the Image control over the button.

 A tooltip should appear with the message Press Alt to place
inside [Button], as shown in Figure 4-11.

 8. Press the Alt key while dropping the image on top of the button to
replace the text in the button with the image.

 9. Press F5 or choose Project➪Run Project to run the application.

 The application opens in a browser and displays the image inside the
button.

Figure 4-11:
Dragging
an image

into a
button.

The XAML for the button should look something like this:

<Button Height=”94” HorizontalAlignment=”Right”
Margin=”0,8,142,0” VerticalAlignment=”Top”
Width=”135” Click=”Button_Click”>

 <Image Source=”Lighthouse.jpg” Stretch=”UniformToFill”
Height=”96” Width=”133”/>

</Button>

Notice that the Image XML tag sits between the start and end Button tags. This
effectively makes it the content for the button. With the image selected, you can
go to the Properties panel and reset the Height and Width properties for it by
going to the Advanced Property options (click the little square to the right of the
property’s field) and choosing Reset to make the image fill the whole area of the
Button.

09_524657-ch04.indd 9509_524657-ch04.indd 95 3/31/10 11:41 AM3/31/10 11:41 AM

96 Part II: Managing Your Silverlight Controls

Jumping to Another Web Page
Using HyperlinkButton

Standard Web pages typically contain a lot of hyperlinks. When you click
these links, the browser takes you to a new page. You can get the same result
in Silverlight using a special kind of button called HyperlinkButton.

To see how a HyperlinkButton works, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and press OK.

 2. In the Assets panel, type Hyper in the Search field.

 Only controls that have the string Hyper in their name are displayed in
the panel. HyperlinkButton should be one of those controls.

 3. Drag the HyperlinkButton from the Assets panel and drop it in a
suitable location on MainPage.xaml on the Artboard.

 4. Change the Content property of the HyperlinkButton found under
Common properties in the Properties panel to indicate the link you
want to add.

 For example, you might enter Go to Dummies.com.

 5. Set the NavigateUri property under Common properties in the
Properties panel to http://www.dummies.com.

 6. Press F5 or choose Project➪Run Project to run the application.

 When the application opens, click the Go to Dummies.com link found
on the page. Silverlight takes you straight to the Dummies.com Web site.

Using RadioButtons to Present Options
Sometimes it doesn’t make sense to have the user type information into a
text box if only a few options are available. For example, if you are looking
for a “Yes” or “No” answer to a question, it doesn’t make sense to have the
user type that into a text box. Or say that you want the user to fill in Male
or Female in a Sex field without having to type in that information. In such
cases, you (and your users) would be better off having options available to
select from a set of radio buttons.

Radio buttons provide the user with a list of values to pick from that are
mutually exclusive, meaning that if you select one item from a set, the other
items are automatically deselected.

09_524657-ch04.indd 9609_524657-ch04.indd 96 3/31/10 11:41 AM3/31/10 11:41 AM

97 Chapter 4: Working with Controls for UI Interactions

To see how radio buttons work in a Silverlight application, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and press OK.

 2. Select the TextBlock tool from the Tools panel and drag the mouse on
the Artboard to the position you want to add the text.

 3. Double-click the TextBlock and replace the default text with the
word Sex.

 4. Select the RadioButton tool (shown here in the margin) from the Tools
panel and drag the mouse on the Artboard to where you want to add
the radio button.

 5. Double-click the RadioButton and change the Content value to Male.

 6. Repeat Steps 4 and 5, but set the Content value of the second radio
button to Female.

 7. Using the Selection tool, Ctrl+click the two radio buttons.

 Both the radio buttons get selected, and the selection handles appear
on both.

 8. In the Properties panel, set the GroupName property that appears
under Common Properties to Sex.

 This ensures that when multiple radio button groups such as Sex and
Age Group appear on the same screen, selecting an item in one group
doesn’t deselect an item from the other group.

 9. Press F5 or choose Project➪Run Project to run the application.

 The application shows up with the two radio buttons, as shown in
Figure 4-12. The radio buttons within the same group are mutually
exclusive. So when you click one radio button to select it, the other
radio button gets deselected.

As is the Button item, RadioButton is derived from ContentControl, and
its content is not limited to just text — it can contain images or even a group
of other controls. The property that determines whether the radio button
appears selected or not is called IsChecked, and you can set this property
from the Properties panel under the Common Properties group.

Figure 4-12:
Radio

buttons in
action.

09_524657-ch04.indd 9709_524657-ch04.indd 97 3/31/10 11:41 AM3/31/10 11:41 AM

98 Part II: Managing Your Silverlight Controls

In addition to the RadioButton, Silverlight also contains a CheckBox, which
works similarly to the RadioButton but can be used to make multiple selections.
For example, if you presented users with a choice to enter their favorite
music, they may choose Rock, Classical, and Alternative, among a number
of choices. In contrast to choices allowed by the radio button, choices
presented with the CheckBox aren’t mutually exclusive. To add a CheckBox
to your application, follow exactly the same steps as defined for the radio
button, but instead of using the RadioButton control from the Tools panel,
use the CheckBox control.

Using the ListBox and ComboBox to
present a large number of options

A radio button is ideal when you have a small number of options — say,
between two and five. When you have a large number of options, you should
consider using a list box. The ListBox control in Silverlight provides a list of
values in a scrollable box that you can employ for displaying a large number
of options such as a list of countries or states. The ListBox also allows the
user to make multiple selections by holding the Ctrl key when clicking an
item in the list.

Silverlight also has a ComboBox, which acts like a drop-down list that
displays only one item at a time but lets the user click a down arrow to reveal
more items in the list.

Creating a list box
To create a list box, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and click OK.

 2. Select the TextBlock tool from the Tools panel and drag the mouse on
the Artboard to where you want to add the text.

 3. Double-click the TextBlock and replace the default text with
Favorite Sport:.

 4. Select the ListBox tool from the Tools panel and draw a list box on the
Artboard, as shown in Figure 4-13.

09_524657-ch04.indd 9809_524657-ch04.indd 98 3/31/10 11:41 AM3/31/10 11:41 AM

99 Chapter 4: Working with Controls for UI Interactions

Figure 4-13:
A list box

drawn
on the

Artboard.

 5. From the Properties panel, click the ellipses button next to the Items
property under the Common Properties group.

 An Object Collection Editor: Items dialog box appears, as shown in
Figure 4-14. This dialog box lets you add items that will be displayed
in the list box.

Figure 4-14:
The Object
Collection

Editor: Items
dialog box.

 6. In the dialog box, click the arrow next to the Add Another Item
drop-down list and select ListBoxItem.

 A ListBoxItem gets added to the Items list box, and properties appear in
the Properties box located on the right side of the dialog box.

09_524657-ch04.indd 9909_524657-ch04.indd 99 3/31/10 11:41 AM3/31/10 11:41 AM

100 Part II: Managing Your Silverlight Controls

 7. In the Properties box, set the Content properties to say Football.

 8. Repeat Steps 6 and 7 six times, but set the Content properties to the
following values: Baseball, Basketball, Hockey, Soccer, Cricket,
Tennis.

 9. Press OK to close the dialog box.

 The list box on the Artboard shows the list items you’ve just added.

 10. Press F5 or choose Project➪Run Project to run the application.

 The application opens in a browser window, as shown in Figure 4-15,
and shows the list box with the different items you added. The list box
allows you to make a selection and scroll up and down the list.

Figure 4-15:
Selecting

items from a
ListBox.

To set or determine the index of the selected list box item, you use the
SelectedIndex property. If the value of this property is set to –1, it means
that no items are selected.

To allow the user to set multiple selections, you can use the SelectionMode
property, which is set to Single by default.

The XAML for a list box looks like the following:

<ListBox Height=”112” HorizontalAlignment=”Left”
Margin=”8,31,0,0” VerticalAlignment=”Top”
Width=”121”>

....<ListBoxItem Content=”Football”/>

....<ListBoxItem Content=”Baseball”/>

....<ListBoxItem Content=”Basketball”/>

....<ListBoxItem Content=”Hockey”/>

....<ListBoxItem Content=”Soccer”/>

....<ListBoxItem Content=”Cricket”/>

....<ListBoxItem Content=”Tennis”/>
</ListBox>

Notice that the ListBox contains several ListBoxItem properties as
child elements. The ListBoxItem property also has a property called
IsSelected, which when set to true determines whether the item is
selected. A ListBoxItem is based on ContentElement and can contain any
UI element inside it.

09_524657-ch04.indd 10009_524657-ch04.indd 100 3/31/10 11:41 AM3/31/10 11:41 AM

101 Chapter 4: Working with Controls for UI Interactions

 You can directly select a ListBoxItem control from the Artboard using the
Selection tool and set its properties from the Properties panel.

 You can also right-click the list box you’ve added and choose Add ListBoxItem
from the Properties panel to add an item to the list box. This selects the
ListBoxItem on the Artboard, allowing you to change its content and set
other properties.

Creating a combo box
The steps to create a combo box are exactly the same as those for creating
a ListBox (see the previous section). The only difference is that instead of
selecting a ListBox control from the Tools panel in Step 4 in the previous
section, you select the ComboBox tool.

A combo box that replaces the list box is shown in Figure 4-16.

Figure 4-16:
Selecting

items from a
ComboBox.

Entering Rich Text into a
RichTextBox Control

We explore the Text-related tools in the first section of this chapter,
where we also briefly introduce you to the RichTextBox control. In this sec-
tion, we delve more deeply into using this handy control, which is new as
of Silverlight 4.

The RichTextBox control not only allows you to display “rich” text that may
contain multiple fonts, formatting, images, and other rich text elements, but
also allows your users to change those elements.

09_524657-ch04.indd 10109_524657-ch04.indd 101 3/31/10 11:41 AM3/31/10 11:41 AM

102 Part II: Managing Your Silverlight Controls

To allow your users to format the text at runtime, you need to write code
in addition to the XAML markup, and we tell you more about that in the
upcoming “Formatting text at runtime” section. But first, to display rich text
in the control, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and click OK.

 2. In the Assets panel, type RichTextBox in the Search field, and when
the control appears in the panel, select it and drag the mouse on the
Artboard to where you want it to appear.

 3. Switch the Artboard to the XAML view by clicking the XAML button at
the top-right corner of the Artboard.

 The Artboard switches to the XAML view. Although you can format the
contents of the RichTextBox via a series of steps from the Properties
panel, it’s easier to do this by directly changing the markup.

 4. Change the markup for the RichTextBox so that it looks similar to the
following:

<RichTextBox x:Name=”txtNotes” Height=”161”
Margin=”39,64,0,0” VerticalAlignment=”Top”
HorizontalAlignment=”Left” Width=”246”>

 <Paragraph>
 <Bold>Text In Bold</Bold>
 <LineBreak/>
 <Italic>Text in Italics</Italic>
 <LineBreak />
 <InlineUIContainer>
 <Image Source=”Autumn Leaves.jpg”

Stretch=”UniformToFill” Height=”100” >
 </Image>
 </InlineUIContainer>
 </Paragraph>
</RichTextBox>

 Make sure that the Source attribute in the Image element points to the
location of an actual image resource. The markup is used to display a
line of text in bold, followed by a line of text in italics and an image. (We
explain the markup in the next section.)

 5. Press F5 or choose Project➪Run Project to run the application.

 The application runs, showing a text box that displays rich formatting
including an inline image, as shown in Figure 4-17.

09_524657-ch04.indd 10209_524657-ch04.indd 102 3/31/10 11:41 AM3/31/10 11:41 AM

103 Chapter 4: Working with Controls for UI Interactions

Figure 4-17:
RichText

Area
showing

formatted
text and an

inline image.

Understanding the XAML
behind RichTextBox
The RichTextBox control can contain zero or more Paragraph elements,
and each Paragraph element can contain zero or more of the following
elements:

 ✓ Bold: This is used to make the text enclosed within this tag appear bold.

 ✓ Italic: This is used to make the text enclosed within this tag appear
italicized.

 ✓ Underline: This is used to underline the text enclosed within this tag.

 ✓ LineBreak: This introduces a line break in the running text.

 ✓ InlineUIContainer: This can be used to add UI elements such as
Images and Buttons.

 ✓ Hyperlink: This is used to display a hyperlink in the text.

 ✓ Run: This is used to represent a section of text.

 ✓ Span: This is used to group other elements, such as Bold and Italics,
within the paragraph.

The XAML Paragraph element allows multiple paragraphs to be displayed
within the control.

The RichTextBox also contains a property called Xaml, which returns the XAML
string that represents the contents of the RichTextBox with all the special
formatting information included.

Formatting text at runtime
The previous two sections show you how to format text using a RichTextBox
control. If you want your users to be able to change the formatting of text

09_524657-ch04.indd 10309_524657-ch04.indd 103 3/31/10 11:41 AM3/31/10 11:41 AM

104 Part II: Managing Your Silverlight Controls

at runtime, however, you have a fair amount of coding to do. To serve as an
example, the following steps show you how to set the selected text to Bold,
Italics, and Underline:

 1. Follow the steps that appear at the start of “Entering Rich Text into
a RichTextBox Control” to add a RichTextBox to MainPage.xaml on
the Artboard.

 2. Add three buttons to the Artboard: one to represent bold; one to rep-
resent italics; and one to represent underline, as shown in Figure 4-18.
(Or see Step 4.)

Figure 4-18:
Artboard
showing
buttons

added
for Bold,

Italics, and
Underline.

 3. In the Properties panel, set the Name property for the three buttons to
btnBold, btnUnderline, and btnUnderline, respectively. (Or see Step 4.)

 4. As an alternative to Steps 2 and 3, switch to XAML view on the
Artboard and just add the following markup after the RichTextBox
element:

<Button x:Name=”btnBold” Content=”B”
HorizontalAlignment=”Left” Height=”30”
Margin=”39,20,0,0” VerticalAlignment=”Top”
Width=”29” FontWeight=”Bold” />

<Button x:Name=”btnItalics” Content=”I”
HorizontalAlignment=”Left” Height=”30”
Margin=”72,20,0,0” VerticalAlignment=”Top”
Width=”29” FontStyle=”Italic” />

<Button x:Name=”btnUnderline”
HorizontalAlignment=”Left” Height=”30”
Margin=”105,20,0,0” VerticalAlignment=”Top”
Width=”29” >

 <TextBlock TextDecorations=”Underline”>U</TextBlock>
</Button>

09_524657-ch04.indd 10409_524657-ch04.indd 104 3/31/10 11:41 AM3/31/10 11:41 AM

105 Chapter 4: Working with Controls for UI Interactions

 5. From the Tools panel, click the Selection tool and click the first button
(btnBold) to select it.

 6. In the Properties panel, switch to the Events tab by clicking the Events
button; then double-click the Click field.

 The MainPage.xaml.cs file opens and the btnBold_Click method
is displayed. Change the method so that the button-click event handler
looks like the following code:

private void btnBold_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 txtNotes.Selection.ApplyPropertyValue (TextElement.

FontWeightProperty, FontWeights.Bold);
}

 This code will make the current text selection in the RichTextBox
appear bold when the btnBold button is clicked.

 7. Repeat Steps 5 and 6 but select btnItalics instead of btnBold.

 A method called btnItalics_Click gets created. Replace the method
with the following code:

private void btnItalics_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 txtNotes.Selection.ApplyPropertyValue (TextElement.

FontStyleProperty, FontStyles.Italic);
}

 This code ensures that when the user clicks the btnItalics button, the
selected text shows up italicized.

 8. To underline the selected text in the RichTextBox control, repeat
Steps 5 and 6 again but select btnUnderline instead of btnBold.

 A method called btnUnderline_Click gets created in the MainPage.
xaml.cs file. Replace the method with the following code:

private void btnUnderline_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 txtNotes.Selection.ApplyPropertyValue (Inline.

TextDecorationsProperty, TextDecorations.
Underline);

}

 9. Press F5 or choose Project➪Run Project to run the application.

 The application runs in the browser. When you select a piece of text
in the RichTextBox control and press the B button, the selected text
changes to Bold. Similarly, pressing the I button changes the selected
text to italics, and pressing U underlines the selected text.

09_524657-ch04.indd 10509_524657-ch04.indd 105 3/31/10 11:41 AM3/31/10 11:41 AM

106 Part II: Managing Your Silverlight Controls

You can add more functionality to the application by adding more buttons
and even changing the event handler code. For example, rather than always
changing the currently selected text to bold, you can toggle the selected text
between bold and normal by changing the btnBold_Click function to the
following code:

private void btnBold_Click(object sender, System.Windows.
RoutedEventArgs e)

{
 if((FontWeight)txtNotes.Selection.

GetPropertyValue(TextElement.FontWeightProperty)
== FontWeights.Bold)

 {
 txtNotes.Selection.ApplyPropertyValue (TextElement.

FontWeightProperty, FontWeights.Normal);
 }
 else
 {
 txtNotes.Selection.ApplyPropertyValue (TextElement.

FontWeightProperty, FontWeights.Bold);
 }
}

09_524657-ch04.indd 10609_524657-ch04.indd 106 3/31/10 11:41 AM3/31/10 11:41 AM

Chapter 5

Laying Out Controls
In This Chapter
▶ Working with container controls

▶ Displaying things in a tabular way

▶ Stacking up controls the easy way

▶ Laying out controls with absolute positioning using the Canvas control

▶ Using the ScrollViewer to view more of the control

▶ Using the Viewbox to squeeze controls into a given space

▶ Grouping controls together in tabs

▶ Docking controls

Designing a good user interface includes paying close attention to how
the contents of your screen are organized and laid out. You can lay

out the user interface elements using absolute positioning, which means to
specify the exact position an element should occupy. This approach is not
always practical, however, because your users may have different screen
resolutions and may even run the application on a variety of devices. Uh-oh,
did we say a variety of devices? Yes, it’s true: Remember that Silverlight
actually runs on a browser, and the plug-in can be ported to different devices,
including mobile phones.

Laying out your controls on your screen with a range of devices in mind
therefore presents a challenge. Thankfully, Silverlight contains a range of
layout containers — controls that help you manage the way your on-screen
controls are laid out. In this chapter, we look at a few of the commonly used
containers and how they can be used to control the layout of the screen.

Understanding Layout Containers
A container in Silverlight is simply a control that can contain other user
interface elements (or controls). The controls that the container holds are
referred to as children, whereas the container itself is called the parent. The
parent typically has a layout behavior defined that determines how the
children are sized, positioned, and drawn within the parent.

10_524657-ch05.indd 10710_524657-ch05.indd 107 3/31/10 11:41 AM3/31/10 11:41 AM

108 Part II: Managing Your Silverlight Controls

Silverlight offers a set of layout containers that are available for you to use,
and Table 5-1 lists the ones you’re most likely to need.

Table 5-1 Commonly Used Layout Containers

Container Purpose

Grid Provides columns and rows in which children can be placed

Canvas Provides an area in which children can be explicitly positioned
using relative coordinates and absolute dimensions

ScrollViewer Provides a container that can contain scrollbars and the ability to
scroll up and down to view more of its contents

Viewbox Provides a container that fits the entire control within its bounds
and has the ability to resize its content when it is resized

StackPanel Provides a container for children in which they are stacked either
horizontally or vertically

WrapPanel Places children sequentially, and if there is no space to fill them
all in one line, wraps subsequent children in the next line;
continues until all the controls are laid out

DockPanel Allows the children to be “docked” or attached to one side of the
parent

All these containers are derived from a class called Panel. These layout
panels work out the dimensions and position of the children.

In addition to the seven containers described in Table 5-1, another com-
monly used container is the Border. The Border is a very simple container
that simply draws a border around its content. Some containers, such as the
ScrollViewer, the Viewbox, and the Border, can contain only one child. But
this is not a big restriction. You can use another container as a child to these
containers and use that to hold more child controls.

 The more children in the container, the more difficult it is for the parent to
work out how to organize them. Similarly, a simple layout container such as
the Canvas spends less time laying out the containers than a more complex
one, such as a Grid, does. That is why it is important to pick the container that
is right for the screen you’re building.

 Every control in Silverlight has some basic properties that help in positioning
and sizing the control. For instance, MinHeight and MinWidth specify the
minimum dimensions of the control, whereas MaxHeight and MaxWidth
specify the maximum dimensions it can take. The layout containers take
these properties into consideration while setting the actual height and width
of controls when they are laid out.

10_524657-ch05.indd 10810_524657-ch05.indd 108 3/31/10 11:41 AM3/31/10 11:41 AM

109 Chapter 5: Laying Out Controls

The root container
If you look at the XAML of a blank Silverlight page, you see something like
this:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/
 xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”SilverlightApplication13.MainPage”
 Width=”640” Height=”480”>

 <Grid x:Name=”LayoutRoot” Background=”White”/>

</UserControl>

The UserControl element contains a property called Content, which, as
the name suggests, holds the contents of the control. In this case, it holds the
Grid element. The Grid element is actually a layout container and lets you
have more than one child control. The Grid element also lays out controls in
rows and columns that are easy to work with.

The layout container that is used as the content for the UserControl element
is usually referred to as the root container, and you do not always have to
use the Grid for it. The Grid control is just what Expression Blend adds by
default; it can be a Canvas or a StackPanel instead, or any other layout
container you want to use.

You can also have other layout containers as children. That is, you can have
nested containers and design very complex layouts.

Manipulating properties
that control layout
Controls have a number of properties that determine how an object is laid
out within a layout container. These properties are as follows:

 ✓ Height: Used to specify the height of the control.

 ✓ Width: Used to specify the width of the control.

 ✓ Margin: Used to specify the left, top, right, and bottom margins of the
control. Specifying a top margin of 10 ensures that the control is placed
10 pixels below the top-left corner of the parent.

 ✓ MinHeight: Used to specify that the height of the control cannot be any
lower than the value specified in this property.

10_524657-ch05.indd 10910_524657-ch05.indd 109 3/31/10 11:41 AM3/31/10 11:41 AM

110 Part II: Managing Your Silverlight Controls

 ✓ MinWidth: Used to specify that the width of the control cannot be any
lower than the value specified in this property.

 ✓ MaxHeight: Used to specify that the height of the control cannot be any
larger than the value specified in this property.

 ✓ MaxWidth: Used to specify that the width of the control cannot be any
larger than the value specified in this property.

 ✓ Z-Index: Used to determine whether the control should appear on top
of another control. A higher Z-Index for your control means that it will
be placed on top of another control with a lower value.

 ✓ HorizontalAlignment: Specifies where an element should be placed
horizontally within its layout slot. It takes the values Left, Right, Center,
or Stretch.

 ✓ VerticalAlignment: Specifies where an element should be placed
vertically within its layout slot. It takes the values Top, Bottom, Center,
or Stretch.

The way these properties work depends on the type of layout container you
use, whether a property is set, and certain precedence rules. For example,
if you specify values for Height and Width, they take precedence over
HorizontalAlignment and VerticalAlignment values set to Stretch.

Aligning controls to one side
Setting some properties but not others may have considerable impact on
the layout of your screen. For example, if you just set the right and bottom
margin, but not the left and top one, the control will always be aligned to the
bottom-right margin of the parent, even when the parent is resized. To see
how aligning controls works, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and click OK. Alternatively, open an existing project and then
open the XAML file on the Artboard by double-clicking the file in the
Projects panel.

 2. If your Artboard is empty, add an item such as a Rectangle to it.

 You can do that by selecting the Rectangle tool from the Tools panel
and drawing a rectangle on the Artboard with your mouse.

 3. Click the Selection tool to select an object, such as the Rectangle.

 The object gets selected and the screen (a Rectangle, in this case) looks
like Figure 5-1.

 Notice that the lines at the sides of the Rectangle show a value. This is
the margin for the Rectangle. Each side has a margin value, but if any

10_524657-ch05.indd 11010_524657-ch05.indd 110 3/31/10 11:41 AM3/31/10 11:41 AM

111 Chapter 5: Laying Out Controls

lines appear as dotted and do not show a value, this means that the
margin for that side isn’t specified. When you don’t set a margin for a
certain side, you tell the layout container to use any value it sees fit.

 4. Set the left and top margin of the Rectangle to 0 and the right and
bottom margin to 50.

Figure 5-1:
Rectangle

showing
margin
values.

 5. Press F5 or choose Project➪Run Project to run the application.

 The application opens in a Web browser. Try resizing the browser
window to see whether doing so affects the Rectangle in any way.
(Hint: It doesn’t.) The reason it doesn’t is that the Width and Height
properties of the UserControl are fixed. Although you are resizing the
browser window, the size of the UserControl does not change as a
result. Because the UserControl does not resize, the Rectangle you have
created doesn’t move, either.

 6. Close the application, and from the Objects and Timeline panel, click
the UserControl object to select it.

 7. In the Properties panel, click the Set to Auto button next to both the
Height and Width property fields.

 This sets both the values to Auto, which means that the values are
automatically assigned based on the layout.

 8. Press F5 or choose Project➪Run Project to run the application.

 The application runs in the browser, and as you change the size of the
browser window, the position of the Rectangle changes as well.

 Clicking a control in the Objects and Timeline panel is another way of selecting
controls, particularly ones that are hard to select from the Artboard. They can
be hard to select when they’re not visible or one control completely obscures
another one on the Artboard. Using the Objects and Timeline panel is also
the easiest way to set the default container — that is, the container to which
controls are added from the Tools panel and Assets panel.

10_524657-ch05.indd 11110_524657-ch05.indd 111 3/31/10 11:41 AM3/31/10 11:41 AM

112 Part II: Managing Your Silverlight Controls

Setting the Height and Width of a
UserControl at design time
After you set the Height and Width properties of the UserControl to Auto, the
size of the control reduces, and adding new controls or even working with
existing controls on the Artboard may become difficult. To fix this problem,
follow these steps:

 1. Select the UserControl by clicking it on the Objects and Timeline panel.

 The UserControl is selected and shows design-time resizing handles, one
of which is shown here in the margin as an example.

 2. Move the cursor over these handles.

 The shape of the cursor indicates the direction in which you can resize.

 3. Click the handle and resize to the size required.

 The design time size of the UserControl changes, but this size is not
applied when the application is actually run.

Clearing margins of an element
from the Artboard
Expression Blend allows you to change the margin of controls by setting
the values from the Properties panel. But there is also an easier way of
manipulating them directly on the Artboard. Just follow these steps to
change the margins of a control:

 1. Click the Selection tool on the Artboard and then click the control
whose margins you want to manipulate.

 The control is selected on the Artboard and shows the selection handles.
In addition to the lines that show the margin values, margin adorners
(shown here in the margin next to this paragraph) are also displayed.
Margin adorners are used to display whether a margin is set or not.

 2. Click one of the margin adorners.

 The shape of the margin adorner changes from a closed knot to an open
one. The closed margin adorner indicates that the margin is set. An open
one indicates that the margin is not set. You can toggle between the two
values just by clicking the margin adorner.

10_524657-ch05.indd 11210_524657-ch05.indd 112 3/31/10 11:41 AM3/31/10 11:41 AM

113 Chapter 5: Laying Out Controls

Laying Out Controls in
Rows and Columns

To lay out controls in a tabular fashion using rows and columns, you need
to use the Grid. By default, when you create a project, Silverlight includes
the Grid as the root container in the empty XAML pages it creates. (You can
change the default control to a different one if you want, but not to create
rows and columns, as we’re doing here.) Before you add any controls to the
page, you have to add rows and columns. This is because in an empty Grid,
no rows and columns are specified, and Silverlight assumes that you have
just one row and one column, which means that you just have one big cell.
The following section tells you how to add rows and columns to a Grid.

Setting up rows and columns
To add rows and columns to the Grid control, follow these steps:

 1. Create a new Silverlight project in Expression Blend by choosing
File➪New Project; then, in the New Project dialog box that appears,
select Silverlight 4 Project + Website option and click OK.

 Alternatively, open an existing project and open its XAML file on the
Artboard by double-clicking the file in the Projects panel.

 The Artboard is displayed, showing a light-blue strip at the top as well
as at the right of the white rectangle. These blue strips are called rulers.

 2. Hover the cursor over the top ruler.

 A vertical line appears on the design surface, as shown in Figure 5-2.
(You can’t tell here, but the line should be yellow.) This yellow line is
called a grid divider. The shape of the cursor also changes to an arrow
with a plus sign next to it.

 3. Move the cursor to a suitable position and click.

 The yellow line turns blue and a column is added to the Grid.

Figure 5-2:
Adding a

column to
the Grid.

10_524657-ch05.indd 11310_524657-ch05.indd 113 3/31/10 11:41 AM3/31/10 11:41 AM

114 Part II: Managing Your Silverlight Controls

 4. To add a row, click the blue strip along the side.

 You can add multiple rows by clicking at various positions in the blue
strip so that the Grid looks something like Figure 5-3.

Figure 5-3:
Grid

showing
multiple

rows and
columns.

Adding controls to the rows and columns
After you’ve created a Grid with rows and columns (as described in the
previous section), you should be ready to add controls to the Grid. Just
follow these steps:

 1. Select the control you want from the Tools panel, such as a TextBlock.
Then click the cell in which you want the control to appear and drag
the mouse to draw the control.

 For the example in this section, we’ve selected the TextBlock tool and
drawn a TextBlock in the first column and the first four rows.

 2. Replace the default text in the TextBlocks by clicking each TextBlock
with the Selection tool from the Tools panel and typing the text you
want into each one.

 For the example, we added the following text: First Name, Last Name,
Sex, and Income Group.

 3. Continue adding controls this way until you fill out the Grid the way
you want it.

 For example, we added two TextBox controls to the columns next to
First Name and Last Name. We used the TextBox controls so that when

10_524657-ch05.indd 11410_524657-ch05.indd 114 3/31/10 11:41 AM3/31/10 11:41 AM

115 Chapter 5: Laying Out Controls

we run the application, it looks like a form with labels appearing in the
first column and Text fields that accept input appearing in the second
column.

 You can also add rows and columns after you have added your controls
to the Artboard. Expression Blend is smart enough to figure out which
row and column each control should be placed in based on its location.

 Figure 5-4 shows the Artboard with the controls we added.

Figure 5-4:
Grid with
controls
laid out.

Understanding the XAML
The XAML view for the page we created in the preceding section’s example
shows the following (with the part of the markup that’s not relevant to this
discussion replaced by an ellipsis [. . .]):

<UserControl . . .>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”0.106*”/>
 <RowDefinition Height=”0.108*”/>
 <RowDefinition Height=”0.11*”/>
 <RowDefinition Height=”0.116*”/>
 <RowDefinition Height=”0.559*”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.265*”/>
 <ColumnDefinition Width=”0.735*”/>
 </Grid.ColumnDefinitions>

10_524657-ch05.indd 11510_524657-ch05.indd 115 3/31/10 11:41 AM3/31/10 11:41 AM

116 Part II: Managing Your Silverlight Controls

 <TextBlock Margin=”8” Text=”First Name”
TextWrapping=”Wrap”/>

 <TextBlock Margin=”8” Grid.Row=”1” Text=”Last
Name” TextWrapping=”Wrap”/>

 <TextBlock Margin=”8” Grid.Row=”2” Text=”Sex”
TextWrapping=”Wrap”/>

 <TextBlock Margin=”8” Grid.Row=”3” Text=”Income
Group” TextWrapping=”Wrap”/>

 <TextBox Margin=”8,0,197,8” Grid.Column=”1”
Text=”TextBox” TextWrapping=”Wrap”/>

 <TextBox Margin=”8,8,197,8” Grid.Column=”1” Grid.
Row=”1” Text=”TextBox” TextWrapping=”Wrap”/>

 </Grid>
</UserControl>

When you click the blue strip along the side and top of the white rectangle
to create rows and columns (as described in “Setting up rows and columns,”
earlier in this chapter), Expression Blend creates row and column definitions.
In the XAML, each row gets a RowDefinition element added to Grid.
RowDefinitions, and each column gets a ColumnDefinition element
added to Grid.ColumnDefinitions. The row definitions specify the height
of each row, and the column definitions specify the width.

By default, Expression Blend adds relative widths and heights to the column
and rows — relative, that is, to the width of the parent control. So, for example,
when the value of the width appears as 0.265*, this indicates that the width
of the column is 0.265 times the width of the grid. The use of asterisks (or
stars) to set relative sizes is also known as star size. Using a star size helps in
making the row heights and column widths bigger when the page is viewed
on a bigger screen or smaller when viewed on a smaller screen.

You can also specify absolute width in pixels by specifying a value without
the asterisk.

If you want to set the value of Width (or Height) to “Auto,” Silverlight will
automatically calculate the width (or height) of the column (or row).

The Grid adds two attached properties to all its children: Row and Column.
(See Chapter 2 for more about attached properties.) These properties are
used to determine which cell of the grid a control is placed in.

 The Row and Column values are zero based. This means that if the Row value
is set to 0, the control is placed in the first row, and if set to 1, the control is
placed in the second row.

10_524657-ch05.indd 11610_524657-ch05.indd 116 3/31/10 11:41 AM3/31/10 11:41 AM

117 Chapter 5: Laying Out Controls

Changing row heights and column
widths on the Artboard
After you’ve added rows and columns to your XAML page, you can easily adjust
a cell’s height and width by dragging the column and row lines, but to toggle the
height and width values between star sizes, pixel sizes, and automatic sizes (as
mentioned in the previous section), all you need to do is click the padlock image
that appears to the side and on top of the light-blue strips.

 A closed padlock indicates that it uses pixel widths (pixel sized). An open
padlock indicates relative widths (star sized), and an auto icon, which is
shown here in the margin, indicates automatic widths (auto sized). You can
toggle between values by clicking each image as it appears.

Stacking Controls Horizontally
and Vertically

The StackPanel in Silverlight allows you to stack your controls either vertically
or horizontally. When you stack controls vertically, the controls appear one
below the other, and when you stack controls horizontally, they appear one
after the other.

Using the StackPanel with a vertical layout is like having a Grid control with
just one column and multiple rows, and with each control having a row to
itself. Similarly, a StackPanel with a horizontal layout is like having a Grid
control with one row and multiple columns.

Adding controls to a StackPanel
To stack controls vertically, follow these steps:

 1. Open the XAML page for which you would like to add the StackPanel
from Expression Blend.

 The page opens and is shown on the Artboard.

 2. In the Tools panel, right-click the Grid tool (or the currently selected
Layout tool). The StackPanel is grouped with the Grid, Canvas,
ScrollViewer, and Border controls in the Tools panel, as shown in
Figure 5-5. Click the StackPanel to select it. Then double-click the
Stack Panel tool.

10_524657-ch05.indd 11710_524657-ch05.indd 117 3/31/10 11:41 AM3/31/10 11:41 AM

118 Part II: Managing Your Silverlight Controls

 The StackPanel is added to the Artboard. Rather than double-click the
StackPanel tool, you can click to select the tool and drag the mouse on the
Artboard to draw the StackPanel at the exact position you want to place it.

Figure 5-5:
The Tools

panel show-
ing the

StackPanel
control.

 3. In the Tools panel, double-click a control, such as the TextBlock or
TextBox.

 The control you clicked is added to the StackPanel.

 4. Repeat Step 3 to add more controls.

 Notice that the controls are placed one below the other. If you want to
change this and stack them horizontally instead, select the StackPanel
using the Selection tool, and in the Properties panel, change the
Orientation property under the Layout group to Horizontal.

Converting a Grid to a StackPanel
Expression Blend allows you to change from one layout container to another
easily. This feature is very useful if you’ve already added your controls to a
certain layout container, such as the Grid, and realize that you are better off
using another container, such as the StackPanel. In this example, you convert
a Grid layout to a StackPanel by following these steps:

 1. Open an existing Silverlight project in Expression Blend, and from
the Projects panel, double-click the XAML file for which you want to
change the layout container.

 In this example, we use a page that has a Grid control with various
TextBlocks and TextBoxes. In addition, we have a set of radio buttons for
Sex — Male, Female, and Unknown. The three radio buttons are placed
within a nested Grid, that is, a grid within a grid, as shown in Figure 5-6.

 Notice how Expression Blend supports nested grids by showing the
rulers around the Grid that you are currently working with.

 2. Click the Selection tool from the Tools panel, and then in the Objects
and Timeline panel, click the layout container that you want to change.

10_524657-ch05.indd 11810_524657-ch05.indd 118 3/31/10 11:41 AM3/31/10 11:41 AM

119 Chapter 5: Laying Out Controls

 In the example shown here, the Grid containing the three radio buttons
is selected.

 3. Right-click the Grid on the Objects and Timeline panel and choose
Change Layout Type➪Stack Panel to change the Grid into a
StackPanel, as shown in Figure 5-7.

Figure 5-6:
Artboard

showing a
nested Grid.

Figure 5-7:
Changing

the Grid
into a

StackPanel.

 4. Change the Orientation of the StackPanel to Horizontal or Vertical
depending on whether you want the controls to appear one after the
other on the same line, or one below the other.

 When you are dealing with nested containers such as a Grid nested within a
grid, you can find the currently selected container by looking at the Objects
and Timeline panel, which is the control with a blue border surrounding it.

10_524657-ch05.indd 11910_524657-ch05.indd 119 3/31/10 11:41 AM3/31/10 11:41 AM

120 Part II: Managing Your Silverlight Controls

Understanding the XAML for a StackPanel
If you open the XAML view from the Artboard by clicking the XAML button at
the top, the XAML for a StackPanel should look something like this (based on
the example in the previous section):

<StackPanel Grid.Column=”1” Grid.Row=”3”
Orientation=”Horizontal”>

 <RadioButton Content=”Male”/>
 <RadioButton Content=”Female”/>
 <RadioButton Content=”Unknown”/>
</StackPanel>

Notice the simplicity in the XAML, as compared to the XAML for Grid
(shown in a previous section). Unlike the Grid, which has lots of elements
to configure the rows and columns, the StackPanel contains only the controls
you add to it. The StackPanel is one of the simplest layout containers in
Silverlight, and all you need to do is add the controls one after the other
in it, which are arranged either vertically or horizontally based on the
Orientation property you choose.

Wrapping Controls
There is another layout container in Silverlight that is just as easy to use
as the StackPanel control described in the previous section. This layout
container, WrapPanel, is available as part of the Silverlight Toolkit. The
Toolkit doesn’t come with the original Silverlight installation, but you can
obtain it from http://silverlight.net. (See Chapter 1 for more about
the Silverlight Toolkit.)

As with the other layout container controls, the WrapPanel serves as a parent
control. It displays its children one after the other, and when it cannot fit any
more controls into the same line, it wraps them into the next line. It repeats the
same layout method for each line until all the child controls are laid out.

To add a WrapPanel, follow these steps:

 1. Open the XAML file to which you want to add the WrapPanel.

 2. From the Assets panel, locate the WrapPanel control by typing
WrapPanel in the Search field. When the control appears in the search
results, add it to the Artboard by dragging it onto the location on the
Artboard where you want the WrapPanel to appear.

 The WrapPanel gets added to the Artboard. The WrapPanel tool also
shows up in the Tools panel.

10_524657-ch05.indd 12010_524657-ch05.indd 120 3/31/10 11:41 AM3/31/10 11:41 AM

121 Chapter 5: Laying Out Controls

 3. Add a few controls to the WrapPanel by double-clicking those controls
from the Tools panel or the Assets panel.

 4. Select the WrapPanel by using the Selection tool from the Tools panel
and clicking the WrapPanel.

 The WrapPanel gets selected.

 5. Press the Set to Auto button next to Width and Height properties
under the Layout group in the Properties panel.

 6. Press the Advanced property options button for the Margin property
under the Layout group in the Properties panel.

 The WrapPanel resizes to occupy just enough space to fill in the controls
it contains. If you resize the WrapPanel by dragging the resizing handles,
the controls in the panel wrap to the next line if there isn’t enough space
to fill all the controls in one line.

Arranging Controls by Absolute
Positioning Using the Canvas Control

Another very simple layout container in Silverlight is the Canvas. You can use
the Canvas layout container whenever you need absolute positioning of child
controls. You can also use it when you want your controls to overlap or when
you don’t want the dimensions and positions to change when you resize the
Canvas.

To see how a Canvas control works, follow these steps:

 1. Open the XAML file for which you want to add the Canvas in
Expression Blend.

 2. Choose the Canvas tool from the Tools panel, shown here in the
margin, and add it to the Artboard by clicking and dragging it to the
desired position and size.

 3. Now add controls to the Canvas by selecting them from either the
Tools panel or the Assets panel and clicking and dragging them to the
desired position and size within the Canvas.

 The controls get added to the Canvas and have absolute positioning. The
XAML for a Canvas that contains two buttons will look something like this:

<Canvas HorizontalAlignment=”Left” Margin=”0,8,0,41”
Width=”340” Grid.Column=”1” Grid.Row=”5”>

 <Button Width=”75” Content=”OK” Canvas.Left=”8”
Canvas.Top=”8”/>

 <Button Width=”75” Content=”Cancel” Canvas.Left=”97”
Canvas.Top=”8”/>

</Canvas>

10_524657-ch05.indd 12110_524657-ch05.indd 121 3/31/10 11:41 AM3/31/10 11:41 AM

122 Part II: Managing Your Silverlight Controls

The Canvas adds the attached properties, Left and Top, which you can set
either from the Properties panel or just by moving the controls around on
the Artboard. Of course, you can also edit the XAML manually to update the
values.

Using the ScrollViewer to Scroll
Through the Contents

Sometimes, the screen real estate you have may not be enough to display
what you want to show to your users. In these scenarios, you can use a
ScrollViewer. The ScrollViewer just displays scrollbars that the user can use
to scroll up or down to display more of the contents that the ScrollViewer
holds. To use a ScrollViewer, open the XAML file that you want to add the
ScrollViewer to in Expression Blend and follow these steps:

 1. Choose the ScrollViewer tool (shown here in the margin) from the
Tools panel and add it to the Artboard by clicking and dragging it to
the desired position and size.

 2. From the Properties panel, set the value on both the properties
HorizontalScrollBarVisibility and VerticalScrollBar
Visibility to Auto.

 3. Right-click the project name in the Projects panel and choose Add
Existing Item from the menu.

 The Add Existing dialog box opens. Select a fairly large image file from
your computer and click Open to add it to the project.

 4. Drag the image file you just added from the Project file and drop it
onto the ScrollViewer control on the Artboard.

 5. Press F5 or choose Project➪Run Project to run the application.

 The application runs in the browser and displays the image in a
ScrollViewer with scrollbars. Moving the scrollbars will scroll the image
up or down.

Using the Viewbox to Fit the
Contents Snugly

If you want your control to take up as much or as little space as is avail-
able, you need to use the Viewbox control. The Viewbox control auto-
matically readjusts the size of the content to fit into its bounds. To use
a Viewbox in your page, just follow the steps mentioned in the previous

10_524657-ch05.indd 12210_524657-ch05.indd 122 3/31/10 11:41 AM3/31/10 11:41 AM

123 Chapter 5: Laying Out Controls

section, but use the Viewbox control instead of the ScrollViewer control.
You also do not have to set HorizontalScrollBarVisibility and
VerticalScrollBarVisibility because they are specific to the
ScrollViewer control. When you increase or decrease the size of the Viewbox
control, the image will automatically resize.

Both the ScrollViewer and Viewbox containers can hold only one control, but
you can add a container such as Grid or StackPanel as this control and add
more controls to them.

Grouping Controls into a Tabbed Page
When you have a lot of controls on a page, the screen can get very cluttered
and may even end up confusing the user. This problem is usually solved by
using tabs in a page. For example, if you are getting users to fill out their
details before a checkout, you may be collecting a lot of information such as
personal details, shipping address, payment details, and so on. Each of these
details may consist of a large number of fields. Using a tabbed page, you
show the fields for collecting personal details in only one tab, and you show
the fields to collect shipping details in another tab, and so on.

Each tab is visible only when you are entering details for that tab, and this
makes the screen less cluttered.

To see how to create an application that uses tabbed pages, follow these
steps:

 1. Create a new Silverlight application by choosing File➪New Project.
In the New Project dialog box, select the Silverlight 4 Application +
Website option and click OK.

 2. In the Assets panel, type TabControl in the Search field to find the
TabControl. When it appears, drag and drop it onto the Artboard or
double-click it to add it to the Artboard.

 The TabControl appears on the page. By default, Expression Blend adds
two tabs for you to work with. A tab page in Silverlight is implemented
as a TabItem control, and the default header text for this control is
TabItem. You can add another tab by right-clicking inside one of the
tabs and, in the drop-down list that appears, choosing Add Tab Item.
(You can also delete unwanted tab items by selecting them and pressing
the Del key.)

 You need to change the header text on both tabs and also fill each tab
with controls. But first, you need to make the TabControl occupy the
entire page (as described in the next step).

 3. To make the TabControl fill up the entire page, open the
Properties panel. Click the Advanced property options button

10_524657-ch05.indd 12310_524657-ch05.indd 123 3/31/10 11:41 AM3/31/10 11:41 AM

124 Part II: Managing Your Silverlight Controls

next to Margin and choose Reset from the menu. Then set both the
HorizontalAlignment and VerticalAlignment properties under
Layout to Stretch.

 4. Click the Selection tool from the Tools panel and click the first
TabItem on the screen. In the Properties panel, change the Header
property value to a suitable value, such as Page 1.

 5. Click the second TabItem and change the Header property to Page 2.

 6. From the Objects and Timeline panel, click Grid, which appears under
the first TabItem, as shown in Figure 5-8.

 The Grid becomes the current container and allows you to add controls
to it.

Figure 5-8:
Selecting

the Grid
to be the

current con-
tainer under

TabItem.

 7. From either the Tools panel or the Assets panel, add controls that
need to go into the first tab to the Grid.

 As an example, we’ve added a TextBlock and set the Text property to
This is page 1, as shown in Figure 5-9.

 8. Select the Grid under the second TabItem from the Objects and
Timeline panel, and add controls from the Tools panel or Assets panel
that need to go into the second Tab.

 As an example, we’ve added a TextBlock and set the Text property to
This is page 2.

 9. Press F5 or choose Project➪Run Project to run the application.

 The application runs in the browser and displays the two tabs. Clicking
the first tab header displays the contents of the first tab; clicking the
second tab header displays the contents of the second tab.

 An example of an application having one tab for Person Details and one
for Image Details is shown in Figure 5-10.

10_524657-ch05.indd 12410_524657-ch05.indd 124 3/31/10 11:41 AM3/31/10 11:41 AM

125 Chapter 5: Laying Out Controls

Figure 5-9:
Artboard
showing
controls

being added
to the

first tab.

Figure 5-10:
Application

showing
one tab

for Person
Details

and one
for Image

Details.

Docking Controls
The DockPanel allows you to dock a control to one of the sides of the container:
top, left, bottom, or right. You might want to use the DockPanel to set toolbars
at the top or side of a page, or include something like a status bar at the
bottom of the page.

10_524657-ch05.indd 12510_524657-ch05.indd 125 3/31/10 11:41 AM3/31/10 11:41 AM

126 Part II: Managing Your Silverlight Controls

To add a DockPanel to your page, open the Assets panel and type DockPanel
in the Search field to find the DockPanel control. You can then drag and drop
it into the Artboard to add it as a container.

After you’ve added a DockPanel to your page, you can add other controls to
the page and set the DockPanel.Dock property to values such as Top or
Button, depending on where these controls should go.

 Picking the wrong layout container may sometimes complicate the way the
controls are laid out. You may still be able to place controls where you
want them, but the process may end up being far more complex and time
consuming than you’d like.

10_524657-ch05.indd 12610_524657-ch05.indd 126 3/31/10 11:41 AM3/31/10 11:41 AM

Chapter 6

Styling and Skinning Controls
In This Chapter
▶ Changing the look of controls using styling

▶ Applying styles in Expression Blend

▶ Skinning the controls using templates

▶ Using themes to change the look of your application

An important aspect of providing a good experience for users of a Web
site is presenting an appealing, professional-looking interface. A key to

achieving this kind of presentation is consistency. By consistency, we mean
using the same font and color schemes, setting the same margins, and so on
throughout the application. To achieve consistency, you can painstakingly
set the properties on every individual control, but that’s not the best way to
do it. What happens if you decide to change something like the font style?
You’re faced with the tedious, time-consuming chore of changing that prop-
erty for every control you’ve used in your application.

This is where the styling and skinning features in Expression Blend come to your
rescue. In this chapter, we show you how to create styles and templates (which
is another name for skins) as well as how to apply them to your controls.

Applying Styles to Controls
You can change the way a control looks by setting its various properties.
Some of the typical properties on a TextBlock that you may set include:

 ✓ VerticalAlignment and HorizontalAlignment

 ✓ FontFamily, FontSize, and FontWeight

 ✓ Margin

 ✓ TextAlignment and LineHeight

You can set these items quite easily by selecting multiple TextBlocks simul-
taneously using the Selection tool and then setting all their properties in

11_524657-ch06.indd 12711_524657-ch06.indd 127 3/31/10 11:42 AM3/31/10 11:42 AM

128 Part II: Managing Your Silverlight Controls

the Properties panel. Although this approach would work, it would become
unmanageable when you have multiple screens in your application or you
need to add another TextBlock at a later stage.

A much better way is to create a style that includes all the properties you
want your control to have, and then, again for the sake of consistency, apply
that style to each of the TextBlock controls in the application. You can do
this through the Properties panel or in the XAML itself. The following sec-
tions describe both methods.

Creating default styles for a control
To create a style, you can start off with a new Silverlight project or open an
existing project that contains controls that you want to style. For the exam-
ple in this section, we use an existing application that has three controls in
the MainPage.xaml file: a TextBlock, a TextBox, and a Button, as shown in
the following XAML:

<UserControl
 xmlns= “http://schemas.microsoft.com/winfx/2006/xaml/

presentation”
 xmlns:x= “http://schemas.microsoft.com/winfx/2006/

xaml”
 x:Class=”Chapter6.MainPage”
 Width=”640” Height=”480”>
 <StackPanel x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”Enter Search Term:”

TextWrapping=”Wrap” />
 <TextBox TextWrapping=”Wrap” />
 <Button Content=”Search” />
 </StackPanel>
</UserControl>

To create a style for a control, follow these steps:

 1. Click the Selection tool from the Tools panel and click the control
whose style you want to change.

 In this example, we have selected a TextBlock.

 2. Right-click the control and from the main menu, choose Object➪Edit
Style➪Create Empty.

 A Create Style Resource dialog box pops up, as shown in Figure 6-1.

 3. Change the Name(Key) radio button to Apply to All. Also, select the
Application radio button that appears under the Define In radio
button group and press OK.

11_524657-ch06.indd 12811_524657-ch06.indd 128 3/31/10 11:42 AM3/31/10 11:42 AM

129 Chapter 6: Styling and Skinning Controls

Figure 6-1:
Create Style

Resource
dialog box.

 The App.xaml file opens automatically and displays the as-yet-unstyled
control, which is a TextBlock in this case.

 4. In the Properties panel, change the properties you want set for the
style. To set a TextBlock’s font to 14pt and color to a shade of blue,
set the Foreground color property to a shade of blue and the Font size
property to 14 pt, as shown in Figure 6-2.

 5. On the Artboard, click the tab page that contains the control for which
you are applying the style (MainPage.xaml, in this example).

 The page opens and shows the control with the style applied. Any new
TextBlock you add to the page will also have the style automatically
applied to it.

Figure 6-2:
TextBlock

being styled.

11_524657-ch06.indd 12911_524657-ch06.indd 129 3/31/10 11:42 AM3/31/10 11:42 AM

130 Part II: Managing Your Silverlight Controls

Creating named styles for controls
In the previous section, you saw how to create styles that are implicitly
applied to all controls of a certain type. If you want to create a style that
doesn’t apply to all controls of a type, you need to create a named style.

To create a named style, you need to follow all the steps from the previous
section, with a slight change: In Step 3, rather than change the Name (Key)
field to Apply to All, you need to specify a name. In the case of the TextBlock,
set the name to something meaningful, such as Caption.

 A common mistake people make is to name the style they use based on how it
looks. For instance, if you call your style BlueText and later decide to change
the color from blue to red, the style would require a name change, too. So it is
much more useful if you named a style based on what it does or what it repre-
sents (such as Caption) rather than how it looks (BlueText).

Understanding the Style property
Every control has a Style property that can be used to specify the named
style for the control. To understand this in more detail, press the XAML
button on the Artboard to view the XAML for the MainPage.xaml file after
you’ve created a named style as described in the previous section. The XAML
should look something like this (some markup has been left out for the sake
of clarity here; these are indicated by the ellipses [. . .]):

<UserControl ...>
 <StackPanel x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”Enter Search Term:”

TextWrapping=”Wrap” Style=”{StaticResource
Caption}” />

 <TextBox TextWrapping=”Wrap” />
 <Button Content=”Search” />
 </StackPanel>
</UserControl>

If you look closely at the TextBlock element, you will notice that a property
called Style has been added and has a value set within curly brackets.
The value in the curly brackets specifies that the style is bound to a static
resource called Caption. A static resource is a resource that gets replaced in
the XAML when the application is being built.

11_524657-ch06.indd 13011_524657-ch06.indd 130 3/31/10 11:42 AM3/31/10 11:42 AM

131 Chapter 6: Styling and Skinning Controls

Understanding the XAML
behind Style resources
A style is nothing but a resource that can be specified either in the App.xaml
file or in another file. To understand how styles are created as resources
in Silverlight, open the XAML view for App.xaml to look at the markup that
gets created for a style. The Application markup that specifies a style for a
TextBlock would look like this (some markup has been left out for the sake of
clarity here; these are indicated by the ellipses [. . .]):

<Application . . . >
 <Application.Resources>
 <!-- Resources scoped at the Application level should

be defined here. -->
 <Style TargetType=”TextBlock”>
 <Setter Property=”Foreground” Value=”#FF1053DE”/>
 <Setter Property=”FontSize” Value=”18.667”/>
 </Style>
 </Application.Resources>

</Application>

Basically, to declare a style, you need to declare a Style element and specify
the type of control that it can be applied on using the TargetType attribute.
Setter child elements are declared under Style to specify the various
properties for that control. Any property that you can set directly on a con-
trol can also be set in a Style declaration using the Setter element. The
Setter element contains a name and value pair combination specified in the
attributes Property and Value.

If you created a named style, the Style element will also have another attri-
bute, x:Key, which can be used to specify the name for the Style as follows:

<Style x:Key=”Caption” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”18.667”/>
 <Setter Property=”Foreground” Value=”#FF3D6AE0”/>
</Style>

 The properties for each control differ, which is one of the reasons that you
need to specify the Control type in a Style declaration.

11_524657-ch06.indd 13111_524657-ch06.indd 131 3/31/10 11:42 AM3/31/10 11:42 AM

132 Part II: Managing Your Silverlight Controls

Understanding styles as resources
in the Resources panel
As we show in the previous section, a style in Silverlight is created as a
resource. In addition to a style, you can add brushes, templates, and ani-
mation storyboards (which we describe in Chapter 7) as resources. The
Resources panel lists all the resources that are available for use on the cur-
rent page, as shown in Figure 6-3.

Figure 6-3:
Looking at
resources

in the
Resources

panel.

 The Resources panel contains two buttons (shown here in the margin) at the
top-right corner of the screen. The top button in the margin allows you to see
all the resources; the bottom one shows only the resources used by the
selected control on the Artboard.

 You would normally put all the resources you want to share in your App.xaml
file. If you put any resources in your page (such as MainPage.xaml), then these
resources can only be used in that page. If you want to share resources among
different pages, you can also create separate resource dictionaries. A resource
dictionary is another XAML file whose sole purpose is to store resources. You
can also add resource dictionaries by clicking the New Resources Dictionary
button (shown here in the margin), which is on the top-right corner of the panel.

Each item on the panel is clickable, and you can right-click any style and
choose Edit to edit the style quickly. Each style entry in the list also shows
the tool type as a little image next to its name.

Applying styles to existing elements
You can apply styles that you’ve already created to a control by dragging the
resources from the Resource panel onto the control or by setting the Style

11_524657-ch06.indd 13211_524657-ch06.indd 132 3/31/10 11:42 AM3/31/10 11:42 AM

133 Chapter 6: Styling and Skinning Controls

property of the control from the Properties panel. They are explained in
more detail in the following sections.

Applying a style from the Resources panel
From the Resources panel, drag the style you want to use and drop it onto
the field on the Artboard that you want to apply the style to. A menu pops
up, as shown in Figure 6-4. Choose the Style menu item that appears below
Select Property on “[TextBlock]”. This changes the style of the control to that
found in the Resource panel.

Figure 6-4:
Pop-up

menu that
appears

when a style
is dropped

onto a con-
trol from the

Resources
panel.

Applying a style from the Properties panel
In the Properties panel for the control that you want to add the style to,
click the Advanced Property Options rectangle for the Style property; you
find this under Miscellaneous. A menu is displayed, as shown in Figure 6-5.
Choose Local Resource followed by the name of the style you want to apply.
Figure 6-5 shows how you can apply the previously created Caption style to a
TextBlock.

Figure 6-5:
Binding the

style to an
existing
control.

11_524657-ch06.indd 13311_524657-ch06.indd 133 3/31/10 11:42 AM3/31/10 11:42 AM

134 Part II: Managing Your Silverlight Controls

Creating controls with existing styles
You do not have to add a control such as a TextBlock to the Artboard first
and then apply a style to it afterward. If a previously created style already
exists on the Resource panel, you can just drag and drop the style from the
Resources panel onto the Artboard. Doing so automatically creates the con-
trol you chose with the right style.

Creating new styles based
on existing styles
You can create a new style based on an existing style quite easily. Just follow
these steps:

 1. Open an existing XAML file that contains the control for which you
want to create a new style.

 2. Click the Selection tool from the Tools panel and click the control on
the Artboard for which you want to create a style.

 3. From the menu, choose Object➪Edit Style➪Edit a Copy.

 The Create Style Resource dialog box appears.

 4. Enter a suitable name for the style in the Name field and select the
Application radio button.

 5. Press OK to create the new style.

 A new style is created in App.xaml based on the existing style. Properties
that were set for the control that you selected will automatically be set in
the new style you just created.

 You can edit an existing style by selecting a control using the Selection tool
and choosing Object➪Edit Style➪Edit Current from the main menu.

Skinning a Control
A control in Silverlight is essentially made up of other controls. For example,
a Button control is made up of several controls such as Rectangles, Borders,

11_524657-ch06.indd 13411_524657-ch06.indd 134 3/31/10 11:42 AM3/31/10 11:42 AM

135 Chapter 6: Styling and Skinning Controls

Grids, and so on that are placed in such a way that they look like a button.
This arrangement of the controls is called a template. The process of chang-
ing the template is known as skinning (or even templating).

You can completely change the template to make it look anyway you
want — you can make a button look spherical or the lines in a textbox look
crooked. In fact you can change all the building blocks of the template that
make up the control without changing how it works. So, when you change
the template for a button control, Silverlight still generates button-click
events or mouse-over events when you click the button or move your
mouse over it.

A style, on the other hand, is essentially a collection of Properties settings.
You can easily change particular aspects of an element’s style, such as
its font or color, but you can’t change the actual building blocks of the
element.

The template for a control is present in a XAML definition that defines
the visual appearance and behavior of the control.

You can see how the template for a button looks by following these
steps:

 1. Open a XAML file that contains a button in Expression Blend.

 2. Click the Selection tool from the Tools panel and click the button
control on the Artboard to select it.

 3. Right-click the button, and when a menu appears, choose Edit
Template➪Edit a Copy.

 The Create Style Resource dialog box pops up.

 4. Change the text in the Name field to MyButton, and under Define In,
select the Application radio button. Then click OK.

 The App.xaml file opens, and you should see an empty screen with a
button, as shown in Figure 6-6. Notice that the Objects and Timeline
panel shows the other controls that have been used to make a button.

 Just as you can create an implicit style that can apply to all instances of a
control, so can you create an implicit template as well. When the Create
Style Resource dialog box appears while you’re creating a new template,
just select the Apply to All radio button rather than give the template a
name.

11_524657-ch06.indd 13511_524657-ch06.indd 135 3/31/10 11:42 AM3/31/10 11:42 AM

136 Part II: Managing Your Silverlight Controls

Figure 6-6:
Editing the

template for
a button.

Switch to the XAML view to see what the template looks like in XAML. The XAML
that specifies the style for MyButton should look something like this (some
markup has been left out and is represented by ellipses [. . .] for brevity):

<Style x:Key=”MyButton” TargetType=”Button”>
 <Setter Property=”Background” Value=”#FF1F3B53”/>
 . . .
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name=”CommonStates”>
 <VisualState x:Name=”Normal”/>
 <VisualState x:Name=”MouseOver”>
 ...
 </VisualState>
 <VisualState x:Name=”Disabled”>
 ...
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name=”FocusStates”>
 ...
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Border x:Name=”Background” ...>
 <Grid Margin=”1” . . .>

11_524657-ch06.indd 13611_524657-ch06.indd 136 3/31/10 11:42 AM3/31/10 11:42 AM

137 Chapter 6: Styling and Skinning Controls

 ...
 </Grid>
 </Border>
 <ContentPresenter . . ./>
 ...
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The XAML shown here basically defines a style called MyButton, and the
most important property that it sets is the Template property. The template
defines how the button looks. The root container of the Button template is the
ControlTemplate. (See Chapter 5 for more explanation of a root container.)

The control template for a button defines a Grid under which the other UI
controls are placed. The button actually can exist in many states, which are
described in Table 6-1.

Table 6-1 Button States

Button State Description

Normal Default state of the button

MouseOver State when a mouse hovers over a button

Disabled State of the button when it is disabled

Focused State of the button when it has the keyboard focus

Unfocused State when the button does not have the keyboard focus

These states are defined as Visual State groups in the template, and you can
specify in the XAML how the button should look for each state.

If you look more closely at the XAML, you see that the visual states — Normal,
MouseOver, and Disabled — are placed in a group called CommonStates; also,
the Focused and Unfocused states are defined in a group called FocusStates.

The reason for these two groups is that the states in a certain group are
mutually exclusive — that is, if you have a Normal state, you cannot have a
MouseOver or Disabled state. Similarly, if your button is in the Disabled state,
it cannot have the other two states in the same group. It can, however, have
another state in the other Visual State Group, which in this case can be either
Focused or Unfocused.

11_524657-ch06.indd 13711_524657-ch06.indd 137 3/31/10 11:42 AM3/31/10 11:42 AM

138 Part II: Managing Your Silverlight Controls

Editing the template visually
It is usually easier to start editing the control from an existing template, but
we offer this example of starting from scratch to give you a better under-
standing of the elements involved. In this example, we skin a Button control
to make it look oval.

 If you are continuing from the previous section, then to begin, click the
Palette icon (shown here in the margin) at the top of the Artboard under the
App.xaml tab and choose Edit Template➪Create Empty, as shown in Figure
6-7. Alternatively, select a button using the Selection tool and right-click to
bring up the menu; next, choose Edit Template➪Create Empty.

Figure 6-7:
Creating

an empty
Button skin,
or template.

In both cases, the Create Control Template Resource dialog box appears.
Change the Name(Key) field by entering the new name OvalButton (for this
example). Next, select the Application radio button and click OK.

An empty template gets created. To create the oval button, follow these
steps:

 1. Double-click the Ellipse tool in the Tools panel.

 This adds an oval shape to the template on the Artboard. (The section
about drawing shapes on the Artboard in Chapter 3 tells you how to
work with shapes such as the Ellipse.)

 2. In the Properties panel, set the Fill to Gradient Color and select the
Radial Gradient. Also, click Reverse gradient stops so that the white
color starts from the inside and gradually turns black as it moves out-
ward, as shown in Figure 6-8. Now, click Advanced Property options
for Margin and choose Reset.

 The oval fills up the entire space of the control.

 3. From the Assets panel, find the ContentPresenter tool and double-
click it to add it to the Control template.

11_524657-ch06.indd 13811_524657-ch06.indd 138 3/31/10 11:42 AM3/31/10 11:42 AM

139 Chapter 6: Styling and Skinning Controls

 4. In the Properties panel for the ContentPresenter, reset the Margin and
set both HorizontalAlignment and VerticalAlignment to Center. Your
screen should now look like Figure 6-9.

 5. Set the MinHeight and MinWidth properties of the Grid to 50 each so
that the buttons have a minimum height and width when used.

 6. Click the MainPage.xaml tab on the Artboard to switch back to the
MainPage.xaml file.

 The Search button now has the newly created OvalButton control’s
shape and properties.

 7. Select the Button control using the Selection tool, and in the
Properties panel, set the Height and Width properties to a suitable
value, such as 40 and 100, respectively.

Figure 6-8:
The newly

created
Button
on the

Artboard.

Figure 6-9:
Expression

Blend
showing

the newly
created

OvalButton.

11_524657-ch06.indd 13911_524657-ch06.indd 139 3/31/10 11:42 AM3/31/10 11:42 AM

140 Part II: Managing Your Silverlight Controls

 8. Switch to the Events view in the Properties panel and add a Click
event by double-clicking the Click field.

 The MainPage.xaml.cs file opens and shows the Button_Click func-
tion. Replace the comment

// TODO: Add event handler implementation here.

 in the Button_Click function with the following code:

private void Button_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 MessageBox.Show(“Search button pressed”);
}

 9. Press F5 or choose Project➪Run Project to run the application.

 The application shows up in the browser. Click the Search button to
determine whether the Click event is being called. The MessageBox
appears, proving that the event is in fact being called, but you don’t get
any visual cue that the button has actually been pressed.

 To get that visual cue, you have to start playing with the states of the
button. Read on to see how to do that.

Specifying state
To work with the state of a control, continue from the previous section and
open the Resources panel. Double-click App.xaml, shown in the panel, to
expand it. When OvalButton shows up in the panel, double-click it to open
it for editing; then open the States panel.

The States panel, shown in Figure 6-10, displays all the available Visual State
groups and the Visual States under them. (See the beginning of the “Skinning
a Control” section for more details about Visual State groups.) You can click
any of the states in this panel and start changing how that state looks.

To change how the button looks when you move your mouse over it, select
the MouseOver state from the panel first. A red border appears in the
Artboard and you get a little message at the top of the Artboard that reads
MouseOver state Recording is on. Next, select the Ellipse using the
Selection tool and go to the Properties panel. Change the Stroke color to a
solid black and Stroke Thickness to 5, and click the red button that appears
to the left of the MouseOver state Recording is on text on the
Artboard, as shown in Figure 6-11.

11_524657-ch06.indd 14011_524657-ch06.indd 140 3/31/10 11:42 AM3/31/10 11:42 AM

141 Chapter 6: Styling and Skinning Controls

Figure 6-10:
The States

panel
showing the

states
available for
the control.

To change the way the button looks when it is clicked, select the Pressed
state in the States panel and change both ends of the Fill Brush gradient to
white. Press the red button again to stop the recording.

To test the changes you’ve made, go to MainPage.xaml.cs to get rid of the
MessageBox code you added earlier (if you followed the example in the previ-
ous section).

Figure 6-11:
Recording

the
MouseOver

state.

11_524657-ch06.indd 14111_524657-ch06.indd 141 3/31/10 11:42 AM3/31/10 11:42 AM

142 Part II: Managing Your Silverlight Controls

Press F5 or choose Project➪Run Project to run the application. You now get
a visual cue when the mouse rolls over the button as well as when the button
is pressed. The transition from Normal state to Pressed state does not, how-
ever, happen smoothly.

To fix that problem, close the application, go back to Expression Blend, and
click the App.xaml tab.

 In the Pressed state in the State panel, press the arrow image (shown in the
margin). This brings up a pop-up menu, as shown in Figure 6-12.

Figure 6-12:
Menu items

to specify
transitions.

This menu allows you to specify the transition time from one state to
another. An asterisk (*) indicates any state. Choose *➪Pressed. Doing so
opens the setting that allows you to specify the transition time in seconds.
Type 0.2 (for this example) to specify that you want the transition from any
state to the Pressed state to happen in 0.2 seconds.

Press F5 or choose Project➪Run Project to run the application. If you press
and hold the button, notice that the transition to the pressed state now hap-
pens slowly rather than abruptly.

You can enhance the Button template design by building the look for other
states in the CommonStates group as well as for states in the FocusStates
group. (You can find more information about the two groups in the “Skinning a
Control” section, earlier in this chapter.) As you can see in the example, chang-
ing the state just alters the look of the control without altering the behavior.

 You can also add a special transition effect when you change from one state to
another. Click the image that says fx, which appears after Default Transition in
the States panel. A small window pops up that allows you to pick a transition
effect. Choose a value such as Ripple and check out what happens when you
run the application and move your mouse over the button.

11_524657-ch06.indd 14211_524657-ch06.indd 142 3/31/10 11:42 AM3/31/10 11:42 AM

143 Chapter 6: Styling and Skinning Controls

Binding values in the template
There may be a couple of things you’ve hard-coded in the template, such as the
gradient transform color in the Button, but that is okay because that is what
you may actually want. In some cases, however, it would be nice to set certain
values based on the Button’s property values. For instance, you may want the
border color of the Ellipse to be the same as the border color of the Button.

To set this property, start from where you left off in the previous section by
opening the States panel. Click the Base state to select it.

Using the Selection tool on the Artboard, select the Ellipse, and in the Stroke
brush, click the Advanced Property Options rectangle next to the field. When
the menu pops up, choose Template Binding➪BorderBrush, as shown in
Figure 6-13. This binds the Stroke property of the Ellipse specified in the
template to the BorderBrush property of the button. (For more about data
binding, see Chapter 9.)

To test the binding you’ve just done, click the MainPage.xaml tab and select
the Button using the Selection tool. Change the Border brush to a solid brush
color, such as Red.

Now, run the application by pressing F5 or choosing Project➪Run Project to
see whether everything still works as before.

Figure 6-13:
Binding

the Stroke
color of the

Ellipse to
that of the

Button’s
Border-

Brush.

11_524657-ch06.indd 14311_524657-ch06.indd 143 3/31/10 11:42 AM3/31/10 11:42 AM

144 Part II: Managing Your Silverlight Controls

Applying skins to existing controls
Applying a template/skin to an existing control is exactly the same as set-
ting its style. From the Resource panel, just drag the resource (such as the
OvalButton created previously in this chapter) onto an existing control, and
it will automatically be added after you’re asked whether you want to add
another control or set the Template property.

The XAML for how the template is being applied should look like this:

<Button Content=”Button” Template=”{StaticResource
OvalButton}”/>

 It is a good idea to create a style and set the newly created template in
the style as a property. To do that click Advanced Property Options for
the Template field, found under Miscellaneous when the menu pops up;
then choose Local Resource, under which all the template names (such as
OvalButton) are listed. Choose the template you want to apply.

 Dave Crawford (blogs.msdn.com/dave/) and Corrina Barber (blogs.
msdn.com/corrinab/), who are Microsoft designers, provide blogs with
some good examples of styles that you can use in your own application. We
highly recommend that you check out those designs to get an idea of how to
create your own styles and templates.

Using Themes to Change
the Look of All Controls

Silverlight Toolkit contains numerous predefined themes that you can apply
to your page. Using a theme alters the look of all your controls to match
that theme. Figures 6-14 and 6-15 show the Bubble Creme Theme and the
Expression Dark theme, respectively, from the Theme Browser sample that
ships with the Silverlight Toolkit.

 You can install the Silverlight Toolkit from www.silverlight.net. It is a
free download and contains a lot of useful controls.

Notice how the same control looks so different between the two themes?
Theming can be done without much work.

11_524657-ch06.indd 14411_524657-ch06.indd 144 3/31/10 11:42 AM3/31/10 11:42 AM

145 Chapter 6: Styling and Skinning Controls

Figure 6-14:
The Bubble

Creme
theme.

Figure 6-15:
The

Expression
Dark theme.

11_524657-ch06.indd 14511_524657-ch06.indd 145 3/31/10 11:42 AM3/31/10 11:42 AM

146 Part II: Managing Your Silverlight Controls

To see how a theme works, follow these steps:

 1. Start a new Silverlight project in Expression Blend.

 2. From the Assets panel, type the word theme to search for all the
installed themes. Click the theme you want and drag it onto the
Artboard.

 For this example, we’ve chosen the Expression Dark theme.

 3. Add a control, such as a Button, by finding it in the Assets panel and
dragging it on top of the theme you added to the Artboard. Then press
F5 or choose Project➪Run Project to run the application.

 The application runs, showing a control that you added using the
Expression Dark theme. All controls in this theme resemble the controls
that are used in Expression Blend.

Go to the XAML view in Expression Blend to examine the XAML. It should
look something like this:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <expressionDark:ExpressionDarkTheme>
 <Button … Content=”Button”/>
 </expressionDark:ExpressionDarkTheme>
</Grid>

Basically, anything appearing in between the expressionDark:Expression
DarkTheme element is styled according to the Expression Blend theme you
chose.

However, you cannot add more than one control to the ExpressionDarkTheme
element. So, you need to add a layout container to it if you want to add more
controls. Examples of layout containers are the Grid and the StackPanel con-
trols. (We tell you much more about layout containers in Chapter 5.)

To see how you add more controls to a theme, follow these steps:

 1. Create a new Silverlight application in Expression Blend.

 2. From the Assets panel, search for a theme, such as
ExpressionDarkTheme, and drag it onto the Artboard.

 3. Increase the size of the Theme control to a suitable height and width
by dragging the resizing handles.

11_524657-ch06.indd 14611_524657-ch06.indd 146 3/31/10 11:42 AM3/31/10 11:42 AM

147 Chapter 6: Styling and Skinning Controls

 4. From the Tools panel, select a suitable layout container such as Grid,
StackPanel, or Canvas. Click and drag in the Theme control to add the
container.

 5. Add a few controls such as Button, TextBox, Slider, and CalenderItem
to the Artboard. Press F5 or choose Project➪Run Project to run the
application.

 The screen with the added controls shows up in the Expression Blend
theme, as shown in Figure 6-16. Notice that all the added controls now
have the theme you’ve used.

Figure 6-16:
Screen
running

the chosen
Expression

Blend
theme.

11_524657-ch06.indd 14711_524657-ch06.indd 147 3/31/10 11:42 AM3/31/10 11:42 AM

148 Part II: Managing Your Silverlight Controls

11_524657-ch06.indd 14811_524657-ch06.indd 148 3/31/10 11:42 AM3/31/10 11:42 AM

Chapter 7

Creating Your Own Controls
In This Chapter
▶ Creating a new control by grouping other controls

▶ Creating custom controls

▶ Creating and managing states for controls

▶ Creating your own events

▶ Adding behavior to controls

Silverlight comes with a wide array of controls. And if that weren’t
enough, you also have more controls available in the Silverlight Toolkit.

But sometimes, you may have to create your own controls to accomplish
something very specific, such as to display weather information that graphi-
cally displays the outlook for the day.

Or you may need to create a control that does something very simple, such
as collect address information, but you may want to use the same data over
and over again — for the delivery address, postal address, and so on.

Silverlight caters to both these needs. Controls that you create from scratch or
by extending existing controls are called custom controls. Controls that group
a bunch of other controls to form a new control are called user controls.

Grouping Controls to
Create a UserControl

When you are writing any application, the application consists of some basic
building blocks that you may want to use again and again. This building block
may be some logic that exists as a piece of code (maybe in the form of a class
or a method) or in the form of a user interface (which is the subject of discus-
sion here).

12_524657-ch07.indd 14912_524657-ch07.indd 149 3/31/10 11:42 AM3/31/10 11:42 AM

150 Part II: Managing Your Silverlight Controls

For example, your application may contain a simple user interface that lets
users of your Web site type in address information. You may be using this
in multiple pages; for instance, you can use it to gather the user’s home
address, work address, shipping address, and so on. The address may itself
consist of multiple fields, such as street address, city, and so on. Silverlight
allows you to create a user interface element that contains other user inter-
face elements to form a composite element called a UserControl. In addition
to the user interface elements, UserControls allows you to add some logic
such as validation in the code.

In this section, we show you how to create such a control, as well as how to
use it.

An example of creating an
Address UserControl
In this example, we show you how to create a type of control that many busi-
ness Web sites use routinely — a control to collect address information.

To create an Address control, you need the following fields:

 ✓ Street Number

 ✓ Street Name

 ✓ City

 ✓ State

 ✓ ZIP or Postal Code

 ✓ Country

For the sake of simplicity, you can set all these fields as Text fields. Read on
to see how.

 1. Create a new Silverlight project by choosing File➪New Project from
the menu, and when the New Project dialog box appears, select
Silverlight 4 Application + Website and give it a suitable name such as
AddressUserControlExample. Then click OK.

 A new project is created and MainPage.xaml file is shown on the
Artboard.

 2. Double-click the StackPanel in the ToolsPanel to add it to the
MainPage. Drag the resizing handles to set the height and width of the
StackPanel to a suitable dimension.

 Using a StackPanel makes it easier to lay out controls. (See Chapter 5 for
more details on the StackPanel.)

12_524657-ch07.indd 15012_524657-ch07.indd 150 3/31/10 11:42 AM3/31/10 11:42 AM

151 Chapter 7: Creating Your Own Controls

 3. Add six pairs of TextBlocks and TextBoxes to the Artboard to display
the six address fields. Replace the default text in the TextBlocks by
double-clicking and typing over them so that they read Street Number,
Street Name, City, State, Postal Code, and Country, as shown in
Figure 7-1.

Figure 7-1:
Example
Address

fields on the
Artboard.

 4. Ctrl+click the TextBlocks one after the other until you have clicked all
the TextBlocks on the Artboard.

 This selects all the TextBlocks and allows you to change all the proper-
ties simultaneously.

 5. Go to the Properties panel and press the Bold button under the Text
group to make the text in all the TextBlocks bold.

 All the TextBlock controls change to bold on the Artboard. When you
use the control in the next section, you will notice that these properties
carry over.

 6. Ctrl+click the TextBox controls one after the other until you have
clicked all the TextBlocks on the Artboard.

 7. Click the Advanced Properties option next to the Text field in the
Properties panel, and in the menu, choose Reset.

 The default text in the TextBox controls gets reset and the XAML for
the operations you just did should now look something like this (some
markup has been replaced with ellipses[…] for brevity):

<UserControl . . .>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel HorizontalAlignment=”Left”

Margin=”8,22,0,167” Width=”291”>
 <TextBlock Text=”Street Number”

TextWrapping=”Wrap” FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>

12_524657-ch07.indd 15112_524657-ch07.indd 151 3/31/10 11:42 AM3/31/10 11:42 AM

152 Part II: Managing Your Silverlight Controls

 <TextBlock Text=”Street Name”
TextWrapping=”Wrap” FontWeight=”Bold”/>

 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”City” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”State” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”Postal code”

TextWrapping=”Wrap” FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”Country” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 </StackPanel>
 </Grid>
</UserControl>

 8. Using the selection tool, select the Street Number TextBox con-
trol from the Artboard and set its name to txtStreetNumber in
the Properties panel. Similarly, set the Street name, City, State,
PostalCode, and Country text boxes to the names txtStreetName, txtC-
ity, txtState, txtPostalCode, and txtCountry, respectively.

 Giving a name to these fields will be helpful when you set values for
them later.

 9. Select the StackPanel either by clicking it from the Objects and
Timeline panel or by using the Selection tool and selecting the
StackPanel from the Artboard.

 10. Right-click and choose Make Into User Control.

 A Make Into UserControl dialog box appears, as shown in Figure 7-2.

Figure 7-2:
Make Into

UserControl
dialog box.

 11. Replace UserControl1 in the Name field by entering AddressUserControl;
then click OK.

 A new file called AddressUserControl.xaml gets added and all the
contents of the StackPanel get moved to this new control.

12_524657-ch07.indd 15212_524657-ch07.indd 152 3/31/10 11:42 AM3/31/10 11:42 AM

153 Chapter 7: Creating Your Own Controls

 12. Click the MainPage.xaml tab on the Artboard.

 The MainPage.xaml file opens and shows an exclamation mark on
top of the Address fields. This is shown because the project needs to
be built. You can build the project by pressing Ctrl+Shift+B, or you can
simply press F5 to run the project.

 13. If you ran the project, close the browser, and in Expression Blend,
click the XAML button on the Artboard to open the XAML view of the
MainPage.xaml file.

 In the XAML file, notice that all the address fields you added have
been replaced with a single line that contains an element called
local:AddressUserControl:

<UserControl ...
 xmlns:local=”clr-namespace:UserControls”
 x:Class=”AddressUserControlExample.

MainPage”
 Width=”640” Height=”480”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <local:AddressUserControl

HorizontalAlignment=”Left” Margin=”8,8,0,181”
Width=”291”/>

 </Grid>
</UserControl>

 Notice that in the UserControl element, a line starting with the text
xmlns:local has been added. This element helps Silverlight find out
where the AddressUserControl you just added is located.

Reusing the User control
In the previous section, you created a new UserControl (AddressControl) for
typing in Address information. By converting a portion of MainPage.xaml
into a UserControl, Expression Blend automatically created the references
and added the element to the page. But what if you wanted to add the same
UserControl again on the same page? This section shows you how.

To add a UserControl, in this case the AddressControl, to MainPage.xaml,
just follow these steps:

 1. Continue from the previous section and ensure that MainPage.xaml
is open on the Artboard.

 2. Open the Assets panel in Expression Blend and go to the Project cat-
egory by clicking it.

 The AddressUserControl appears under this category, as shown in
Figure 7-3.

12_524657-ch07.indd 15312_524657-ch07.indd 153 3/31/10 11:42 AM3/31/10 11:42 AM

154 Part II: Managing Your Silverlight Controls

Figure 7-3:
The Assets

panel
showing

the newly
added

Address-
UserControl.

 Having the AddressUserControl here may not be surprising, but what you
may find surprising is that MainPage also shows up here. It’s in this cat-
egory because MainPage, like AddressUserControl, is also a User control.
You can open the XAML view for AddressUserControl and MainPage to
verify this. As you’ve seen, all the pages you’ve created in XAML serve as
reusable components and allow you to nest them in other user controls.

 3. Drag and drop AddressUserControl onto MainPage.xaml on the Artboard.

 Another AddressUserControl gets added to MainPage.

 4. Press F5 to run the application.

 The application runs in the browser window and shows the two
AddressUserControls in the same page. These two address controls
look and work the same but allow you to store and display two sets of
addresses.

 There are several advantages of putting something like an address into a
UserControl, but one of our favorite reasons is that after it becomes a
UserControl, it can be independently managed and maintained. For instance,
if you change the layout container from the StackPanel to a GridPanel and
rearrange the way the fields are displayed, they will be automatically updated
in every page in which the AddressUserControl is used.

Creating properties for your UserControl
After you’ve created a UserControl, it would be good to set and read some
values that you’ve typed into each field. One way of accomplishing that is to
create properties for each and every field. This section shows you how to do
that. (The other way of accomplishing this is through something called data
binding, which we cover in Chapter 9.)

To add properties for each of the fields (namely StreetNumber, StreetName,
City, State, PostalCode, and Country) from the AddressUserControl created in
the previous sections, open the AddressUserControl.xaml.cs file on the

12_524657-ch07.indd 15412_524657-ch07.indd 154 3/31/10 11:42 AM3/31/10 11:42 AM

155 Chapter 7: Creating Your Own Controls

Artboard and add the following code snippet into the AddressUserControl
class:

public string StreetNumber
{
 get
 {
 return txtStreetNumber.Text;
 }
 set
 {
 txtStreetNumber.Text = value;
 }
}
public string StreetName
{
 get
 {
 return txtStreetName.Text;
 }
 set
 {
 txtStreetName.Text = value;
 }
}
public string City
{
 get
 {
 return txtCity.Text;
 }
 set
 {
 txtCity.Text = value;
 }
}
public string State
{
 get
 {
 return txtState.Text;
 }
 set
 {
 txtState.Text = value;
 }
}
public string PostalCode
{
 get
 {
 return txtPostalCode.Text;
 }

12_524657-ch07.indd 15512_524657-ch07.indd 155 3/31/10 11:42 AM3/31/10 11:42 AM

156 Part II: Managing Your Silverlight Controls

 set
 {
 txtPostalCode.Text = value;
 }
}
public string Country
{
 get
 {
 return txtCountry.Text;
 }
 set
 {
 txtCountry.Text = value;
 }
}

Press Ctrl+Shift+B to build the application; then, open the MainControl.
xaml file in Design view. Select the first AddressUserControl in it and open
the Properties panel. Under the Miscellaneous section, you will now find all
the properties that you just added. Change the values of these properties and
press F5 to run the application and check whether the values show up in the
AddressUserControl.

Creating a Smiley Custom Control
UserControls are, as you saw in the previous section, very good for creating
reusable components such as the Address control. They can be repeatedly
on the same page or even on different pages. However, after you create some-
thing like an AddressUserControl, application authors cannot change what
the control looks like. You can expose some properties so that the applica-
tion authors can customize the look and feel to a certain extent, but you
cannot skin the control, as you did in Chapter 6.

To create a control that can be skinned and has a template, you have to
create a custom control. (They are also referred to as a templatable or tem-
plated control for that reason.)

To show you how to create a custom control from scratch, we use an example
of a Smiley control. The Smiley control displays a smiley face and has two
“emotion” states: Happy and Sad. Setting the state of the control to Happy dis-
plays a happy face; conversely, Sad displays a sad face. Pretty simple, really.

However, creating a custom control from scratch can be somewhat difficult
compared to creating the same control as a UserControl. Therefore, it is easier

12_524657-ch07.indd 15612_524657-ch07.indd 156 3/31/10 11:42 AM3/31/10 11:42 AM

157 Chapter 7: Creating Your Own Controls

to start your control as a UserControl and then convert it to a custom control.
In our upcoming example, we show you in detail how to do the following:

 1. Create a SmileyUserControl that looks like a Smiley face in Expression
Blend.

 2. Create states for the Smiley face to show sad and happy emotions, again
using Expression Blend.

 3. Create a SmileyCustomControl with Visual Studio, using the XAML from
the first two steps to create your default template.

 4. Add states and events to SmileyCustomControl.

Read on to find out the details for each task.

Creating a SmileyUserControl
To create the SmileyUserControl in Expression Blend, follow these steps:

 1. Create a new Silverlight project by choosing File➪New Project from
the menu, and when the New Project dialog box appears, select
Silverlight 4 Application + Website and give it a suitable name, such
as Smiley, and click OK

 A new project is created and the MainPage.xaml file is shown on the
Artboard.

 2. Choose File➪New Item, and in the New Item dialog box that appears,
select UserControl and set its name to SmileyUserControl.

 Expression Blend creates a new file called SmileyUserControl.xaml
and opens it on the Artboard.

 3. Using the Ellipse tool and the Pencil tool from the Tools panel, draw a
smiley face in SmileyUserControl.xaml, as shown in Figure 7-4.

Figure 7-4:
Smiley

face drawn
on the

Artboard.

12_524657-ch07.indd 15712_524657-ch07.indd 157 3/31/10 11:42 AM3/31/10 11:42 AM

158 Part II: Managing Your Silverlight Controls

 4. As an alternative to Step 3, open the XAML view on the Artboard and
replace the XAML with the following markup:

<UserControl
 xmlns= “http://schemas.microsoft.com/winfx/2006/

xaml/presentation”
 xmlns:x= “http://schemas.microsoft.com/winfx/2006/

xaml”
 xmlns:d= “http://schemas.microsoft.com/expression/

blend/2008”
 xmlns:mc= “http://schemas.openxmlformats.org/

markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Smiley.SmileyUserControl”
 d:DesignWidth=”250” d:DesignHeight=”350”>

<Grid x:Name=”LayoutRoot”>
 <Grid HorizontalAlignment=”Left” Margin=”0,0,0,0”

Width=”252”>
 <Ellipse Fill=”#FFF4BF0D” Stroke=”Black”

Margin=”25,50,25,50”/>
 <Ellipse Fill=”#FF1C0303” Stroke=”Black”

Margin=”65,96,154,166” MaxWidth=”60”
MaxHeight=”60” MinWidth=”5” MinHeight=”5”/>

 <Ellipse Fill=”#FF1C0303” Stroke=”Black”
Margin=”154,96,65,166” MaxWidth=”60”
MaxHeight=”60” MinWidth=”5” MinHeight=”5”/>

 <Path x:Name=”path” Stretch=”Fill”
Stroke=”Black” Margin=”80,160,80,80”
UseLayoutRounding=”False” Data=”M82,169
C96.198021,186.03763 102.84956,223.09027
138,202 C152.23703,193.45778
154.76633,184.11137 162,168”
RenderTransformOrigin=”0.5,0.5” MinWidth=”5”
MinHeight=”5” MaxWidth=”300” MaxHeight=”60”>

 <Path.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Path.RenderTransform>
 </Path>
 </Grid>
</Grid>

</UserControl>

 This XAML creates the smiley face using Ellipse and Path elements.
(To see how you can use the Ellipse and Pencil tools to create the smiley
face in Expression Blend, read through Chapter 3. The control shown here
contains three Ellipse controls and a smile drawn with the Pencil tool.)

12_524657-ch07.indd 15812_524657-ch07.indd 158 3/31/10 11:42 AM3/31/10 11:42 AM

159 Chapter 7: Creating Your Own Controls

 Rather than type all the markup or code shown in this book, you can visit
www.dummies.com/go/mssilverlight4fd to look at an online version of
the source code and markup text. You can then copy and paste them into
your application.

Adding states to SmileyUserControl
As stated earlier, the next step is to add two states, Happy and Sad, to the
UserControl to store the emotions. For each state, we change the expression
on the face to reflect the type of emotion.

 In Chapter 6, we demonstrate how to create a template for a Button control
and tell you about the various states it can have, such as Normal, MouseOver,
and others. By creating states, you can let other people customize your own
control using templates, the way you can customize the Button template as
explained in Chapter 6.

To add these two states, follow these steps:

 1. Go to the States panel and click the Add States Group Button.

 A new group with a default name of VisualStateGroup is added to the list
in the States panel and is highlighted, allowing you to change the name.
It is usually a good idea to change the default name to something more
meaningful, such as Emotion.

 2. Type Emotion and press Enter.

 The name of the Visual State Group changes to Emotion.

 3. Click the Add State button to add a state.

 A new state default named VisualState is added under the Emotion
visual state group and is highlighted, allowing you to change the name.
The top of the Artboard also displays the message VisualState
recording is on. When the state recording is on, it allows you
to record the visuals of the control for that state. When the control
switches to that state, Silverlight plays back the recording for that state.

 4. Change the name of VisualState by typing Happy and then press Enter.

 5. Press the red button in front of it to stop the recording.

 Because the Happy state is your default state, you don’t need to change
it. Stop the recording without changing the way the control looks.

 6. Add another state by pressing the Add State button, but this time
change the name of the state to Sad.

 7. Using the Selection tool from the Tools panel, click the path on the
Artboard that represents the mouth.

 The mouth in the SmileyUserControl gets selected.

12_524657-ch07.indd 15912_524657-ch07.indd 159 3/31/10 11:42 AM3/31/10 11:42 AM

www.dummies.com/go/mssilverlight4fd

160 Part II: Managing Your Silverlight Controls

 8. In the Properties panel, go to the Transform group and click the Flip
tab (shown here in the margin).

 9. Click the Flip Y axis button (shown here in the margin) to flip the path
that represents the mouth.

 The mouth flips on the y-axis and the face resembles a sad face, as
shown in Figure 7-5.

 10. Click the red recording button at the top of the Artboard to stop the
recording.

 You have now stopped the recording of the Sad emotion state. When
the SmileyUserControl’s state changes to Sad, the control’s appearance
changes to the visuals you’ve just finished recording.

 11. In the States panel, change the Default transition field to 0.3s.

 By changing the transition time, you are telling Silverlight that when the
emotion changes to the Sad state, the appearance of the control should
change to the recording you’ve made gradually over a period of .3 sec-
onds rather than abruptly. This is usually more pleasing visually. (You
can find out more about transitions in Chapter 8.)

You should now have added two emotion states to the SmileyUserControl.

Figure 7-5:
Flipping the

mouth to
make it a
sad face.

12_524657-ch07.indd 16012_524657-ch07.indd 160 3/31/10 11:42 AM3/31/10 11:42 AM

161 Chapter 7: Creating Your Own Controls

Testing the UserControl and switching the states
After you create the SmileyUserControl, you need to test it. To test the
UserControl, you need to first add methods in code to the SmileyUserControl
to switch the states. You then need to add it to your page to test it.

You can accomplish all this by following these steps:

 1. Continuing from the previous section, open the SmileyControl.
xaml.cs file in Expression Blend and add the two functions BeHappy
and BeSad, as shown in the bold lines in the following code:

public partial class SmileyUserControl : UserControl
{
 public SmileyControl()
 {
 // Required to initialize variables
 InitializeComponent();
 }

 public void BeHappy()
 {
 VisualStateManager.GoToState(this, “Happy”,

true);
 }

 public void BeSad()
 {
 VisualStateManager.GoToState(this, “Sad”,

true);
 }
}

 The VisualStateManager is a class in Silverlight that helps you to
change the visual state of your control.

 2. Press Ctrl+B to build the project to ensure that there are no errors in
code.

 3. After the build has finished, open MainPage.xaml in Design view.

 4. From the Assets panel, find SmileyUserControl and drag it onto
MainPage.xaml on the Artboard.

 5. From the Tools panel, add two Buttons to the Artboard. Set the name
of the SmileyUserControl to SmileyFace.

 6. Double-click the first Button and type Be Happy.

 This changes the Content property of the button to the text Be Happy.

12_524657-ch07.indd 16112_524657-ch07.indd 161 3/31/10 11:42 AM3/31/10 11:42 AM

162 Part II: Managing Your Silverlight Controls

 7. In the Properties panel, enter btnHappy to change the name of the
button to btnHappy. Then switch to the Events tab and double-click
the Click field.

 This takes you to the btnHappy_Click method in the MainPage.
xaml.cs file. Change the method as shown in the following line in bold:

private void btnHappy_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 SmileyFace.BeHappy();
}

 8. Go back to the MainPage.xaml file and use the Selection tool to
select the second button. Then, change the content of the button to Be
Sad, set the name of the button in the Properties panel to btnSad, and
double-click the Click field in the Events tab.

 This takes you to the btnSad_Click method in the MainPage.xaml.
cs file. Change the function as shown in the following bold line:

private void btnSad_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 SmileyFace.BeSad();
}

 9. Press F5 to run the application, and click the buttons to see how the
states change.

Creating the custom control
The smiley face we show you how to make as a UserControl in the previous
sections has a few drawbacks. For instance, you cannot skin it as you can a
Button control — for that you need to derive your SmileyCustomControl
class from either an existing control or a generic Control class in Silverlight.

Creating a custom control using Visual Studio 2010 is a lot easier than creat-
ing it using Expression Blend because Visual Studio automates a few steps for
you. Follow these steps to create a SmileyCustomControl:

 1. Continuing from the previous sections, open the Projects panel, right-
click Solution, and choose Edit in Visual Studio.

 The solution opens in Visual Studio 2010.

 2. Right-click Solution in the Solution Explorer and choose Add➪New
Project from the menu.

 The Add New Project dialog box appears, as shown in Figure 7-6.

12_524657-ch07.indd 16212_524657-ch07.indd 162 3/31/10 11:42 AM3/31/10 11:42 AM

163 Chapter 7: Creating Your Own Controls

Figure 7-6:
The Add

New Project
dialog box

in Visual
Studio.

 3. Select Silverlight Class Library from the list of projects and change
the name to CustomControlLibrary; then click OK. When the Add
Silverlight Class Library dialog box appears, click OK.

 This creates a new project in the solution. Although you can add the
custom control to your existing Silverlight project, it is a good idea
to create it in a separate project so that it can be shared with other
Silverlight applications.

 4. In the Solution Explorer, select the Class1.cs file and press Del to
delete the file. Click OK when the confirmation dialog box pops up.

 This deletes the default file Class1.cs that gets automatically added
when a new project is created.

 5. Right-click the CustomControlLibrary project name in the Solution
Explorer and choose Add➪New Item.

 The Add New Item dialog box appears.

 6. Select Silverlight Templated Control from the list of items and change
the name to SmileyCustomControl.cs, as shown in Figure 7-7.

 This creates a class called SmileyCustomControl that derives from the
Control class. Visual Studio also creates a directory called Themes and
adds the file Generic.xaml. This file contains the default template for
the SmileyCustomControl. You need to copy the XAML you used in Smiley
UserControl to this template so that when you add the SmileyCustom
Control to a page, Silverlight uses this template to draw the control.

12_524657-ch07.indd 16312_524657-ch07.indd 163 3/31/10 11:42 AM3/31/10 11:42 AM

164 Part II: Managing Your Silverlight Controls

Figure 7-7:
The Add

New Item
dialog box

in Visual
Studio 2010.

 7. Click the little arrow that appears in front of the Smiley project in
the Solution Explorer to expand and show all the files contained in
the project. Then, double-click the SmileyUserControl.xaml file
to open it. When the file is open, select all the lines between the
UserControl tag. Press Ctrl+C to copy the markup.

 8. Open the generic.xaml file again and paste the markup you copied
by pressing Ctrl+V between the ControlTemplate XAML begin and
end tags. The copied markup should now look like this, with the
pasted markup shown in bold:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/

presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:local=”clr-namespace:CustomControlLibrary”>

 <Style TargetType=”local:SmileyCustomControl”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”local:SmileyCusto

mControl”>
 <Grid x:Name=”LayoutRoot”>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup

x:Name=”Emotion”>
 <VisualStateGroup.Transitions>
 <VisualTransition

GeneratedDuration=”0:0:0.3”/>
 </VisualStateGroup.Transitions>

12_524657-ch07.indd 16412_524657-ch07.indd 164 3/31/10 11:42 AM3/31/10 11:42 AM

165 Chapter 7: Creating Your Own Controls

 <VisualState x:Name=”Happy”/>
 <VisualState x:Name=”Sad”>
 <Storyboard>

<DoubleAnimationUsingKeyFrames Storyboard.
TargetProperty=”(UIElement.RenderTransform).
(TransformGroup.Children)[0].(ScaleTransform.
ScaleY)” Storyboard.TargetName=”path”>

<EasingDoubleKeyFrame KeyTime=”0” Value=”-1”/>

 </
DoubleAnimationUsingKeyFrames>

 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.

VisualStateGroups>
 <Grid HorizontalAlignment=”Left”

Margin=”0,0,0,0” Width=”252”>
 <Ellipse Fill=”#FFF4BF0D”

Stroke=”Black” Margin=”25,50,25,50”/>
 <Ellipse Fill=”#FF1C0303”

Stroke=”Black” Margin=”65,96,154,166”
MaxWidth=”60” MaxHeight=”60” MinWidth=”5”
MinHeight=”5”/>

 <Ellipse Fill=”#FF1C0303”
Stroke=”Black” Margin=”154,96,65,166”
MaxWidth=”60” MaxHeight=”60” MinWidth=”5”
MinHeight=”5”/>

 <Path x:Name=”path” Stretch=”Fill”
Stroke=”Black” Margin=”80,160,80,80”
UseLayoutRounding=”False” Data=”M82,169
C96.198021,186.03763 102.84956,223.09027
138,202 C152.23703,193.45778
154.76633,184.11137 162,168”
RenderTransformOrigin=”0.5,0.5” MinWidth=”5”
MinHeight=”5” MaxWidth=”300” MaxHeight=”60”>

 <Path.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform/>
 <TranslateTransform/>
 </TransformGroup>
 </Path.RenderTransform>
 </Path>
 </Grid>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

12_524657-ch07.indd 16512_524657-ch07.indd 165 3/31/10 11:42 AM3/31/10 11:42 AM

166 Part II: Managing Your Silverlight Controls

 9. Open the SmileyUserControl.cs file and add the lines of code
shown in bold, as follows:

public class SmileyCustomControl : Control
{
 public SmileyCustomControl()
 {
 DefaultStyleKey = typeof(SmileyCustomControl);
 }

 public void BeHappy()
 {
 VisualStateManager.GoToState(this, “Happy”,

true);
 }

 public void BeSad()
 {
 VisualStateManager.GoToState(this, “Sad”,

true);
 }

}

 10. Press Ctrl+Shift+B to build the solution.

You should have now successfully created a custom control.

Using the custom control
For this section’s example, you need to return to Expression Blend. You may
have to reload the project if you had Expression Blend open while work-
ing in Visual Studio. It will automatically prompt you when you switch to
Expression Blend.

Now, follow these steps to add the custom control to MainPage.xaml and
test it:

 1. Right-click References in the Smiley project in the Projects panel and
choose Add Project References➪CustomControlLibrary.

 This adds the reference to CustomControlLibrary, which contains the
newly added custom control.

 2. Open the MainPage.xaml file.

 3. Delete the SmileyUserControl by selecting it with the Selection tool
and pressing Del.

 You are deleting this control so that you can add the
SmileyCustomControl instead.

12_524657-ch07.indd 16612_524657-ch07.indd 166 3/31/10 11:42 AM3/31/10 11:42 AM

167 Chapter 7: Creating Your Own Controls

 4. From the Assets panel, as shown in Figure 7-8, drag and drop the
SmileyCustomControl onto the MainPage.xaml file on the Artboard.

 5. Using the Selection tool, select the SmileyCustomControl, and from
the Properties panel, set the name to SmileyControl.

 6. Press F5 to run the application.

 The application runs the same as the example with the SmileyUserControl.
But application authors who use your control can now skin the control.

 You can actually create a CustomControl in Expression Blend because it
allows you to code in C# or VB.NET. You can also create a class library from it.
However, you do not have the option to add a templated control to it — you
will have to manually add the Themes directory, create the generic.xaml
file, and so on. Visual Studio automates these tasks for you.

Figure 7-8:
Smiley-

Control in
the Assets

panel.

Adding events to your control
As you can with properties, you can also add your own custom event to the
controls you create. For instance, to add a custom event called ClickFace that
gets generated every time the user clicks the SmileyCustomControl, open the
SmileyCustomControl.cs file in either Visual Studio or Expression Blend.

First add the following line of code to the class:

public event RoutedEventHandler ClickFace;

The RoutedEventHandler adds an event called ClickFace that will be vis-
ible in the Property panel under Events. But this never gets fired because you
haven’t associated anything with it yet. You can do that by adding an event

12_524657-ch07.indd 16712_524657-ch07.indd 167 3/31/10 11:42 AM3/31/10 11:42 AM

168 Part II: Managing Your Silverlight Controls

handler for the MouseLeftButtonUp event, which gets fired when the left
mouse button is released on top of your control. Add the line shown in bold
in the following code to the SmileyCustomControl constructor.

public SmileyCustomControl()
{
 DefaultStyleKey = typeof(SmileyCustomControl);

 this.MouseLeftButtonUp += new
 MouseButtonEventHandler(LeftButtonUp);
}

This calls the function LeftButtonUp whenever the mouse button is released.
Add that function to the class, too, using the following code snippet:

void LeftButtonUp(object sender, MouseButtonEventArgs e)
{
 if (ClickFace != null)
 ClickFace(this, new RoutedEventArgs());
}

Controlling the Behavior of Controls
without Writing Code

Sometimes you may want to process events for your controls, but you may not
be able to write the event handlers for them because doing so requires some C#
coding. Maybe you’re a designer and not comfortable with writing C#, or maybe,
like most of the rest of us, you’re in a hurry and want the easiest way to do
things. (Okay, maybe you’re just lazy, too!) Is there a way to fire events without
writing event handlers for them? The answer is yes! Enter the world of behaviors.

Although this is stating the obvious, behaviors enable you to add certain
types of, well, behaviors to your control. A behavior is nothing more than a
piece of code that you can add to your application to set properties that fur-
ther decide how this piece of code behaves.

For instance, you can have behavior that lets you navigate to a certain URL or
play a sound — or even change the state of a control.

To change the state of a control, you need to use a behavior called
GoToStateAction.

We show you how to put this behavior into action using the example in
the previous section of this chapter. First, get rid of the two buttons on the
Artboard, and add two new buttons with the same contents: Be Happy and

12_524657-ch07.indd 16812_524657-ch07.indd 168 3/31/10 11:42 AM3/31/10 11:42 AM

169 Chapter 7: Creating Your Own Controls

Be Sad. (Alternatively, you can go to Events in the Properties panel for both
buttons and remove the event association for clicking in them.)

Press F5 to run the application. Notice that when you click the two buttons,
nothing happens. Why? There is no event handler associated with the new
buttons. But we’re about to remedy that situation.

First, close the application and go back to Expression Blend. Next, from the
Assets panel, click Behaviors. A few behaviors show up on the Assets panel,
as shown in Figure 7-9.

Figure 7-9:
Assets

panel
showing

behaviors.

Select GoToStateAction and drag and drop it onto the Be Happy button.

 Now go to the Properties panel, shown in Figure 7-10, and click the Artboard
element picker in the TargetName property (shown here in the margin).

Figure 7-10:
Properties

panel for the
GoToState-

Action
behavior.

12_524657-ch07.indd 16912_524657-ch07.indd 169 3/31/10 11:42 AM3/31/10 11:42 AM

170 Part II: Managing Your Silverlight Controls

The cursor shape changes. As you hover your mouse over different elements,
Expression Blend displays the name of the element. Click the SmileyFace con-
trol, as shown in Figure 7-11.

The TargetName on the Properties panel changes to SmileyFace. Click the
StateName drop-down list and select Happy.

Repeat the same steps for the Sad button, but instead of selecting the Happy
state, select Sad from the drop-down list this time.

Run the application by pressing F5. The two buttons should now change the
emotions on the Smiley Face. You have achieved this without writing any code!

Figure 7-11:
The

Artboard
element

picker as
you hover

over the
Smiley-
Control.

12_524657-ch07.indd 17012_524657-ch07.indd 170 3/31/10 11:42 AM3/31/10 11:42 AM

Chapter 8

Creating Animations in Silverlight
In This Chapter
▶ Creating a simple animation

▶ Exploring the different kinds of animations

▶ Animating states for controls

When one of the authors was a child, he was given a flip book that had
a slightly different picture on each page. Flipping the pages rapidly

created the illusion that the character in the picture performed an action.
This is the most primitive form of animation.

Likewise, an animation in a software application is nothing more than a
sequence of images displayed in rapid succession, thereby creating the illu-
sion that an object is moving or changing.

To create an animation in Silverlight, you change the value of certain proper-
ties over a duration of time. Those special properties relate to an object’s
size, position, or color, and in this chapter, we show you how you can create
animations using Expression Blend.

Creating a Simple Bouncing
Ball Animation

Using Expression Blend, animation can be performed very easily in Silverlight
by recording the objects over a period of time and playing them back.

For example, to animate the height of an object, you “record” what the
object’s height is over a period of time; that is, you specify that at the one-
second mark, the object’s height should be 300, and at the five-second mark,
it should be 500, and so on.

13_524657-ch08.indd 17113_524657-ch08.indd 171 3/31/10 11:42 AM3/31/10 11:42 AM

172 Part II: Managing Your Silverlight Controls

When you play back the animation, Silverlight automatically calculates
what the height of the object should be between the two recorded property
values.

In this section, we show you how to create a ball and bounce it across the
screen.

Create the ball and set the
timeline in motion
The first step in creating a bouncing ball animation is to create the ball itself.
To get started, follow these steps:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and click OK.

 A new Silverlight project is created and the MainPage.xaml file opens
on the Artboard.

 2. Select the Ellipse tool from the Tools panel and draw an ellipse on the
Artboard.

 3. Click the Fill property on the Properties panel, select the Gradient
brush, and set the color ranges to start at white and end with a shade
of red. Then click the Radial Gradient button.

 4. Select the Gradient tool from the Tools panel and reposition the
center of the gradient to start from the upper-left corner, as shown
in Figure 8-1.

 This makes the ellipse you’ve added look like a 3-D ball. The XAML for
the ellipse should look something like this:

<Ellipse HorizontalAlignment=”Left” Height=”106”
Margin=”8,8,0,0” Stroke=”Black”
VerticalAlignment=”Top” Width=”108”>

 <Ellipse.Fill>
 <RadialGradientBrush

GradientOrigin=”0.279,0.268”>
 <GradientStop Color=”#FFF9F7F7”/>
 <GradientStop Color=”#FFF10B0B”

Offset=”1”/>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

13_524657-ch08.indd 17213_524657-ch08.indd 172 3/31/10 11:42 AM3/31/10 11:42 AM

173 Chapter 8: Creating Animations in Silverlight

Figure 8-1:
Creating a

ball to
animate.

 5. In the Objects and Timeline panel, click the + (plus) button.

 The Create Storyboard Resource dialog box appears. It displays a
default name for the animation as Storyboard1.

 6. Type BouncingBall in the Name (Key) field in the dialog box and
click OK.

 Expression Blend turns on the Timeline Recording mode and the anima-
tion timeline shows up. At the same time, the message BouncingBall
timeline recording is on appears at the top of the Artboard, as
shown in Figure 8-2, along with a red border around the Artboard.

Figure 8-2:
Expression

Blend in
Animation

mode.

13_524657-ch08.indd 17313_524657-ch08.indd 173 3/31/10 11:42 AM3/31/10 11:42 AM

174 Part II: Managing Your Silverlight Controls

So far, so good. You have your ball on the Artboard and your animation
timeline going. Before you continue, though, this is a good time to switch to
another workspace. We tell you why and how in the next section.

Switching to the Animation workspace
When you are working with animations, you need to specify how an object
looks or where it is positioned during different points in time, and you may
need to display the timeline for a fairly long time. When you display the
Objects and Timeline panel to the left of the Artboard, very little space is left
on the screen to display a large timeline. To solve this problem, Expression
Blend comes with a preconfigured Animation workspace. To switch to this
workspace, choose Window➪Workspaces➪Animation.

The workspace now looks like Figure 8-3, making it more conducive to work-
ing with animations because it places the Objects and Timeline panel under
the Artboard and gives you more space to work with the timeline.

 You can also press F6 to quickly switch among different workspaces and to
switch to the Animation workspace.

Figure 8-3:
Expression

Blend
Animation

workspace.

13_524657-ch08.indd 17413_524657-ch08.indd 174 3/31/10 11:42 AM3/31/10 11:42 AM

175 Chapter 8: Creating Animations in Silverlight

Animating the ball
The Objects and Timeline panel contains a timeline on which you can define
keyframes. In Silverlight, a keyframe is the set of visual properties at a given
point in time.

You specify what these properties should be at specified time intervals, and
Silverlight automatically calculates and transitions the property values to
create an animation.

To create an animation of a bouncing ball, follow these steps:

 1. Click the Selection tool from the Tools panel and click the ellipse you
just created (if you did the steps in the earlier section, “Create the ball
and set the timeline in motion”) to select it.

 2. In the Objects and Timeline panel, click the Record Keyframe button
(shown here in the margin).

 An oval appears in the timeline in the same row as the selected object.
The oval indicates that a keyframe has been created at that point in the
timeline.

 3. To specify what the properties should be after a period of time — say,
four seconds — click 4 on the Objects and Timeline panel, as shown in
Figure 8-4.

 This places a yellow line at the 4-second mark, as shown in Figure 8-4, and
you can now specify what the properties of the selected object should
be at the 4-second mark. You can not only change the properties via the
Properties panel but also manipulate the object directly on the Artboard.

 4. Drag the ball to the right side of the screen boundary on the Artboard,
as shown in Figure 8-5.

 Expression Blend automatically creates a keyframe for you at the
4-second mark and shows a dotted line to indicate the path in which the
ellipse will move.

Figure 8-4:
The

Objects and
Timeline

panel at the
4-second

mark.

13_524657-ch08.indd 17513_524657-ch08.indd 175 3/31/10 11:42 AM3/31/10 11:42 AM

176 Part II: Managing Your Silverlight Controls

Figure 8-5:
The ball

moved to
the right

side of the
screen
during

animation.

 5. Now click the 6-second mark in the Objects and Timeline panel and
move the ball to the left side to mimic a bounce motion.

 Expression Blend creates another keyframe at the 6-second mark and
visually shows the bouncing path of the ball. You can also manipulate
the height and width of the button at these keyframes to simulate the
ball’s getting compressed at the point of impact, or you can do other
funky things such as change the fill brush at different keyframes to ani-
mate the changing of colors.

 6. Click the Play button in the Objects and Timeline panel to see a pre-
view of the animation.

 The animation gets played and the ball appears to fall down, bounce,
and go up again.

One thing to keep in mind as you watch the animation is that you created
just two keyframes — one at the 4-second mark and the other at the 6-second
mark; Silverlight takes care of the rest by automatically calculating the posi-
tion (and possibly other property values) of the control for the time between
these keyframes.

You can experiment further by adding keyframes and changing more proper-
ties to see how these properties are animated.

13_524657-ch08.indd 17613_524657-ch08.indd 176 3/31/10 11:42 AM3/31/10 11:42 AM

177 Chapter 8: Creating Animations in Silverlight

 When you are finished recording keyframes, click the red ball (shown here in
the margin) at the top of the Artboard to stop the recording.

 You can also click the Close Storyboard button in the Objects and Timeline
panel (shown here in the margin) that appears next to the BouncingBall story-
board name to exit the Timeline-recording mode and get back to where you
started.

Understanding the XAML
behind the animation
Click the XAML view for the page to look at the XAML that Expression Blend
has created for the animations. The part that contains the animation should
look something like this:

<UserControl.Resources>
 <Storyboard x:Name=”BouncingBall”>
 <DoubleAnimationUsingKeyFrames

BeginTime=”00:00:00” …>
 <EasingDoubleKeyFrame KeyTime=”00:00:00”

Value=”0”/>
 <EasingDoubleKeyFrame KeyTime=”00:00:04”

Value=”532”/>
 <EasingDoubleKeyFrame KeyTime=”00:00:06”

Value=”-33.333”/>
 </DoubleAnimationUsingKeyFrames>
 …
 </Storyboard>
</UserControl.Resources>

Did you notice the XAML element called Storyboard? The Storyboard ele-
ment is nothing but a container for animations, and Silverlight supports two
types of animations:

 ✓ Simple animation

 ✓ Animation using keyframes

Simple animation
In simple animation, you specify the property that needs to be animated, the
start and end property values, and the duration for which the property needs
to be animated. Three types of properties can be animated in Silverlight:

 ✓ Double: A Double denotes a floating-point number that has a very high
precision. This means that any property that has a number, such as
Height or Width, is stored as Double.

13_524657-ch08.indd 17713_524657-ch08.indd 177 3/31/10 11:42 AM3/31/10 11:42 AM

178 Part II: Managing Your Silverlight Controls

 ✓ Point: Properties that are represented as coordinates are typically
stored as Points.

 ✓ Color: This pertains to any property that contains a brush, such as Fill
or Foreground.

To accommodate these three property types, there are three types of XAML
elements: DoubleAnimation, PointAnimation, and ColorAnimation.

If you want to animate a property such as Height for a Rectangle control,
the XAML for that would look like this:

<Storyboard x:Name=”MyStoryboard”>
 <DoubleAnimation
 Storyboard.TargetName=”rect1”
 Storyboard.TargetProperty=”Width”
 From=”100” To=”200”
 Duration=”0:0:5”>
 </DoubleAnimation>
</Storyboard>

The DoubleAnimation element typically needs five attributes for animation:

 ✓ Storyboard.TargetName: Specifies the name of the control that needs
to take part in the animation.

 ✓ Storyboard.TargetProperty: Specifies the name of the property
that needs to be animated. In this section’s example, it happens to be
Width.

 ✓ From: Specifies the starting value of the property that needs to be
animated.

 ✓ To: Specifies the ending value of the property that needs to be animated.

 ✓ Duration: Specifies the time span in which the value has to change
from the start value specified in the From attribute to the end value
specified in the To attribute.

The classes PointAnimation and ColorAnimation also have similar prop-
erties, but they work on Point and Color properties, respectively.

Keyframe animation
Keyframe animation is what Expression Blend adds by default. It is a bit more
complex but a lot more flexible. It lets you set a series of values as well as
set the time interval for the property to have these values. It is like creating
multiple simple animations, with the From property being the same as the To
property of the previous animation.

In addition, you can specify the kind of interpolation to use. Interpolation
allows you to specify how the values change over a period. There are three
types of interpolations:

13_524657-ch08.indd 17813_524657-ch08.indd 178 3/31/10 11:42 AM3/31/10 11:42 AM

179 Chapter 8: Creating Animations in Silverlight

 ✓ Linear: The animation progresses at a constant rate from the start to
the end.

 ✓ Discrete: The animation jumps from the start to the end at the specified
time.

 ✓ Splined: Lets you control the animation progression in much finer
detail. For instance, you can make the animation start slowly, accelerate,
and then finish slowly again.

There are three types of animation keyframes (DoubleAnimationUsing-
KeyFrames, PointAnimationUsingKeyFrames, and ColorAnimation-
Using KeyFrames), and combining the key animation types with the three
interpolation types, you get the following keyframe types:

 ✓ LinearDoubleKeyFrame

 ✓ DiscreteDoubleKeyFrame

 ✓ SplineDoubleKeyFrame

 ✓ LinearPointKeyFrame

 ✓ DiscretePointKeyFrame

 ✓ SplinePointKeyFrame

 ✓ LinearColorKeyFrame

 ✓ DiscreteColorKeyFrame

 ✓ SplineColorKeyFrame

There is an additional ObjectAnimationUsingKeyFrames, which contains
DiscreteObjectKeyFrame, but this is not supported in Expression Blend
and would have to be coded manually. These keyframes are beyond the
scope of this book.

The XAML for a keyframe animation looks like this:

<Storyboard x:Name=”MyStoryboard”>
 <DoubleAnimationUsingKeyFrames
 Duration=”0:0:4.5”
 Storyboard.TargetName=”rect1”
 Storyboard.TargetProperty=”Width”>
 <LinearDoubleKeyFrame Value=”100”

KeyTime=”0:0:0”/>
 <LinearDoubleKeyFrame Value=”200”

KeyTime=”0:0:2.2”/>
 <LinearDoubleKeyFrame Value=”100”

KeyTime=”0:0:3”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

13_524657-ch08.indd 17913_524657-ch08.indd 179 3/31/10 11:42 AM3/31/10 11:42 AM

180 Part II: Managing Your Silverlight Controls

In this example, the value of the Width goes from 100 to 200 and then back
to 100 at different time intervals, and the animation happens linearly. Notice
that some of the properties on DoubleAnimationUsingKeyFrames, such
as Storyboard.TargetName and Storyboard.TargetProperty, are the
same as the ones for DoubleAnimation. In addition, the element contains a
series of LinearDoubleKeyFrame elements with the value and the time at
which the Width should be changed to that value in this example.

Running the Animations You Create
Building the animation is one thing, but running it is another. You can easily
create animations interactively in Expression Blend, but to run them, you
have to write some C# or VB.NET code. To run the animation that we show
you how to create in the previous sections of this chapter, follow these steps:

 1. Select the Button tool from the Tools panel and add a button to the
MainPage.xaml file (which should be open on the Artboard).

 2. Click the Selection tool from the Tools panel, double-click the button,
and type Start Animation.

 This changes the default content of the button to the new text you typed.

 3. Click the Events tab in the Properties panel and double-click the Click
event for the button.

 The MainPage.xaml.cs file opens and displays the newly added event
handler Button_Click.

 4. Change the Button_Click method so that it looks like the following
code:

private void Button_Click(object sender,
 System.Windows.RoutedEventArgs e)
{
 BouncingBall.Begin();
}

 The Begin method of the Storyboard class starts the animation.

 5. Press F5 to run the application and click the Start Animation button.

 The ball bounces on the screen according to the storyboard you just
created.

Controlling animations from code
The StoryBoard class has a whole bunch of useful methods to control the
animation when the application is running. As we show you in the earlier
example, you can use the Begin method to start an animation. Similarly, you

13_524657-ch08.indd 18013_524657-ch08.indd 180 3/31/10 11:42 AM3/31/10 11:42 AM

181 Chapter 8: Creating Animations in Silverlight

can use the Stop method to end an animation. There are also Pause and
Resume functions to apply to the storyboard programmatically.

Just by looking at the methods of the class, you can see that working with
animations is very similar to working with audio/video files.

This section contains a few other methods and events that you will also find
useful.

AutoReverse property
You can reverse the animation quite easily using the AutoReverse prop-
erty in the StoryBoard class. To see how it works, open the MainPage.
xaml.cs file from the previous example, and in the method Button_Click
method in the MainPage.xaml.cs file, set the AutoReverse property of
the BouncingBall to true, as shown in bold in the following code snippet:

private void Button_Click(object sender, System.Windows.
RoutedEventArgs e)

{
 BouncingBall.AutoReverse = true;
 BouncingBall.Begin();
}

This makes the animation go in reverse and return to its original position
after it has finished traversing in the forward direction.

Completed event
The StoryBoard class contains an event called Completed that gets trig-
gered when the Animation finishes. To run the animation continuously by
restarting the Storyboard as soon as it completes, add the code in bold to the
MainPage.xaml.cs file as follows:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 // Required to initialize variables
 InitializeComponent();
 BouncingBall.Completed +=new
 System.EventHandler(BouncingBall_Completed);
 }

 private void Button_Click(object sender,
 System.Windows.RoutedEventArgs e)
 {
 BouncingBall.AutoReverse = true;
 BouncingBall.Begin();
 }

 private void BouncingBall_Completed(object sender,

13_524657-ch08.indd 18113_524657-ch08.indd 181 3/31/10 11:42 AM3/31/10 11:42 AM

182 Part II: Managing Your Silverlight Controls

 System.EventArgs e)
 {
 BouncingBall.Begin();
 }
}

RepeatBehavior property
You would never use the kind of code shown in the preceding section to loop
your animation continuously, because there is a better way of achieving the
same result.

The Storyboard class has a property called RepeatBehavior that you can
use instead. This property also lets you control a few other things, such as
the number of times the animation has to repeat.

Continuing from the previous example in this chapter, remove the code we
told you to add for the event handling and add the line of code shown in bold
to the Button_Click method:

private void Button_Click(object sender, System.Windows.
RoutedEventArgs e)

{
 BouncingBall.RepeatBehavior =

new RepeatBehavior(2);
 BouncingBall.AutoReverse = true;
 BouncingBall.Begin();
}

By setting the parameter value in the RepeatBehavior constructor to 2,
you are saying that you want the animation to run twice, and by also having
the AutoReverse property set to true, the animation will run twice and end
where it actually started.

Press F5 to run the application and test this behavior.

You can also specify a TimeSpan as a parameter in the RepeatBehavior con-
structor to specify the duration in which the animation has to be repeated.

 You can set properties such as RepeatBehavior and AutoReverse in
XAML. We’ve just used it in code to show you how.

Easing the animation
You have likely realized that animation does not always happen in the linear
fashion shown in our example in the previous sections. That is, a ball never
bounces at the same speed, and things don’t stop abruptly. If you want to
create an animation that looks realistic, you need the easing feature. Easing

13_524657-ch08.indd 18213_524657-ch08.indd 182 3/31/10 11:42 AM3/31/10 11:42 AM

183 Chapter 8: Creating Animations in Silverlight

lets you control the speed of the animation so that it is different at different
points in time.

To see how to apply easing to animations, continue from the previous exam-
ple in this chapter and follow these steps:

 1. Using the Selection tool, select the ellipse that represents the bounc-
ing ball.

 2. Click the + button in the Objects and Timeline panel.

 The Create Storyboard Resource dialog box appears.

 3. Set the name to BouncingBall2 and click OK.

 A new storyboard called BouncingBall2 is created.

 4. In the Objects and Timeline panel, click the Record Keyframe button
(shown here in the margin).

 5. Click 5 in the timeline to record the properties at the 5-second mark.

 6. Drag the ball down to the bottom of the screen, as shown in Figure 8-6.

Figure 8-6:
Dragging

the ball
down to

create
another

animation.

 7. Click the Play button in the Objects and Timeline panel.

 A preview of the animation is displayed on the Artboard, and the motion
is even throughout.

 8. Click the second keyframe oval at the 5-second mark.

 The properties panel shows an Easing group with the Easing function set
to None, as shown in Figure 8-7. The graphic in front of the Easing function
name shows the kind of easing that is performed in a graphical form with
the speed of animation on the y-axis and the time in the x-axis. A straight
line at a 45-degree angle denotes that the motion is linear throughout.

13_524657-ch08.indd 18313_524657-ch08.indd 183 3/31/10 11:42 AM3/31/10 11:42 AM

184 Part II: Managing Your Silverlight Controls

Figure 8-7:
Easing func-

tion for the
animation.

 9. Click the drop-down arrow of the Easing function.

 The drop-down list opens and reveals a list of built-in Easing functions,
as shown in Figure 8-8.

 Each of the Easing functions has the name to the side and has three
motion types — In, Out, and InOut — specified at the top. Choosing one
of these types specifies when the Easing function is applied: on the way
in, on the way out, or both.

Figure 8-8:
Built-in
Easing

functions.

13_524657-ch08.indd 18413_524657-ch08.indd 184 3/31/10 11:42 AM3/31/10 11:42 AM

185 Chapter 8: Creating Animations in Silverlight

 10. Click the Bounce Out function to select it; then click the Play button
again.

 A Bounce animation is displayed and the bounce speed looks more real-
istic. You can select other functions to see how the animation looks for
these as well.

When you select one of the Easing functions, the Properties panel shows
other properties that can be changed for that specific function. For instance,
the Bounce function shows Bounces and Bounciness. By setting the Bounces
to 6, as shown in Figure 8-9, you can see that the number of bounces has
actually increased.

Figure 8-9:
Properties

for the
Bounce

Easing
function.

Understanding the different
kinds of Easing functions
In the previous section, we discuss the different kinds of Easing functions
that are displayed in the EasingFunction drop-down list in Expression Blend.
The following list shows the Easing functions in Silverlight and what they
would do to the bouncing ball we have you create earlier:

 ✓ Back: Moves the ball back and then forward. You can specify how much
the ball has to move back by using the Amplitude property.

 ✓ Bounce: This simulates a bouncing ball. You can control how many
bounces the ball should have using the Bounces property. You can also
set how bouncy it should be using the Bounciness property.

 ✓ Circle: This accelerates or decelerates the motion of the ball using a cir-
cular function.

 ✓ Cubic: This is similar to the Circle ease but uses a cubic function to cal-
culate the easing.

 ✓ Elastic: This simulates a spring oscillation, where the ball oscillates in,
out, or both according to the setting. You can control the number of
oscillations using the Oscillations property; the Springiness prop-
erty is similar to the Bounciness property used in the Bounce easing.

13_524657-ch08.indd 18513_524657-ch08.indd 185 3/31/10 11:42 AM3/31/10 11:42 AM

186 Part II: Managing Your Silverlight Controls

 ✓ Exponential: This uses an exponential function to control the easing of
the ball.

 ✓ Power: Uses a power-of-time equation to accelerate or decelerate the
ball’s animation. You can specify the power you want to use by setting
the Power property.

 ✓ Quadratic: This is similar to Power easing, but with the Power property
set to 2.

 ✓ Quartic: This is similar to Power easing, but with the Power property
set to 4.

 ✓ Quintic: This is similar to Power easing, but with the Power property set
to 5.

 ✓ Sine: Uses a sine equation to control the easing of the ball.

Easing using KeySplines
Rather than use the built-in Easing functions, you can use something known
as KeySplines to get more control over how the easing works.

Click the KeySpline button in the Easing section of the Properties panel. This
brings up the KeySpline editor, shown in Figure 8-10. The KeySpline editor
shows a Bezier curve through which you can specify the first and second
control points.

A Bezier curve is a curve calculated using a complex mathematical equation
that allows you to model smooth curves by specifying two points. The default
values of the two points used to calculate the curve in Expression Blend are
(0,0) and (1,1), and these show up as either a linear curve or a straight line.
(The straight line is shown in Figure 8-11.)

Figure 8-10:
Setting

KeySpline
for easing.

13_524657-ch08.indd 18613_524657-ch08.indd 186 3/31/10 11:42 AM3/31/10 11:42 AM

187 Chapter 8: Creating Animations in Silverlight

The two yellow dots in the graph represent the two points that are used to cal-
culate the curve. You can click and drag the curve to change the way the curve
looks, and your changes, in turn, determine how the easing is performed.

You have endless options concerning how you can perform easing. For
instance, if you want to create a slide show of photos, you may want the
animation to have a fast start and fast exit but display the photo a bit longer
toward the middle so that you can have a good look at it. To create a similar
easing with the ball, you need to click the two yellow dots on the KeySpline
Editor and drag them to the positions shown in Figure 8-11. Click the play
button in the Objects and Timeline panel to see how the ball accelerates ini-
tially, slows down, and then accelerates again.

Figure 8-11:
Fast start

and fast
finish.

Or if you want to create something like a page flip, you may want an animation
that starts and ends slowly but speeds up in the middle. To simulate something
similar for the ball, drag the yellow dots to the position shown in Figure 8-12.
Click the play button again in the Objects and Timeline panel to see how the ball
has a slow start, accelerates, and then decelerates toward the end.

Figure 8-12:
Slow start
and slow

finish.

13_524657-ch08.indd 18713_524657-ch08.indd 187 3/31/10 11:42 AM3/31/10 11:42 AM

188 Part II: Managing Your Silverlight Controls

 Animating States of Controls
In Chapter 6, you create a Button template and specify how a button should
look for various states. You also specify how to animate the change of states so
that when you click a button, the button press happens in a smooth manner.

But you can do more! For starters, you can do more complex animations as
well as apply easing to the animation when a state change occurs. To give
you a feel for how all this works, we provide an example of animating the cap-
tion in a button by rotating it when the button is clicked. Follow these steps
to animate the button:

 1. Create a new Silverlight application by choosing File➪New Project. In
the New Project dialog box, select Silverlight 4 Application + Website
option and click OK.

 This creates a new Silverlight project for the Button animation.

 2. Using the Selection tool from the Tools panel, add a button to the
Artboard.

 3. Select the button using the Selection tool and choose Object➪Edit
Template➪Edit a Copy.

 The Create Style Resource dialog box appears.

 4. In the Create Style Resource dialog box, select the Application radio
button and click OK. If you are in the Animation workspace, press F6
to switch to the Design workspace.

 5. Open the States panel and click the Add Transition arrow for the
Pressed state, as shown in Figure 8-13.

 A drop-down list appears.

Figure 8-13:
Adding a
transition

for the
button.

13_524657-ch08.indd 18813_524657-ch08.indd 188 3/31/10 11:42 AM3/31/10 11:42 AM

189 Chapter 8: Creating Animations in Silverlight

 6. In the drop-down list, choose *➡Pressed.

 A transition gets added in the States panel under Pressed and shows the
asterisk (*) followed by the arrow.

 7. Click the line that shows *➡, as shown in Figure 8-14.

 Expression Blend switches to Timeline Recording mode and the
Artboard shows the text *➡Pressed transition recording is on.

Figure 8-14:
Adding

animation
to the

*➡Pressed
state.

 8. Select the contentPresenter in the Objects and Timeline panel and
click the timeline at the 2-second mark. Rotate the contentPresenter
using your mouse so that it makes one whole circle and returns to
where it started, as shown in Figure 8-15.

Figure 8-15:
Animating

the content-
Presenter by

rotating it.

 9. Click the red bullet at the top of the Artboard to stop the recording.

 10. Press F5 to test the application.

When the application runs, click and hold the button you added. Notice how
the text rotates and makes one full circle.

 All the animation features are also available when you try to animate your con-
trol template to move the control from one state to another. This even includes
features such as easing. You can click the Easing function button that appears
next to the Default Transition field to display the Easing function drop-down list.

13_524657-ch08.indd 18913_524657-ch08.indd 189 3/31/10 11:42 AM3/31/10 11:42 AM

190 Part II: Managing Your Silverlight Controls

13_524657-ch08.indd 19013_524657-ch08.indd 190 3/31/10 11:42 AM3/31/10 11:42 AM

Chapter 9

Updating Data the Easy Way
with Data Binding

In This Chapter
▶ Understanding the purpose of data binding

▶ Binding to controls

▶ Creating domain objects that can be bound to data

▶ Creating sample data for data binding

User interface elements are meant to display some kind of information
to the user of a Web site. This information can be in the form of text

or some other visual cue. For instance, to display a temperature value, you
might display it as text or as a graphical representation of a thermometer or
gauge. You might also include several other properties within the control
that may provide additional information to the user. The color of the text
could be Red to indicate that it is hot or Blue to indicate that it is too cold.

Whenever you write XAML to display these values, you have to set a property
in your code-behind file using C# or VB.NET. For instance, if you want to use
a TextBlock control to display the temperature, you may just set the Text
property on it. This is fine. But what if the value of the temperature changes?
The most common way of fixing this problem is to set the property of Text
again with the updated value. And if you used the foreground color to show
whether it is hot or cold, then you need to set that value as well.

If you have numerous controls, and several properties on these controls need
to be changed every time the data it represents changes, the whole business
can get very tedious.

Wouldn’t it be nice if all you had to do was change the value, and the control
would automatically update the user interface for you? That’s what data
binding is for.

14_524657-ch09.indd 19114_524657-ch09.indd 191 3/31/10 11:42 AM3/31/10 11:42 AM

192 Part II: Managing Your Silverlight Controls

In this chapter, we show you how you can bind user interface controls to
data, even when the data originates from other controls. We also show you
how to create sample data that you can bind to your application to see how
your application will look when you run it.

Binding Controls to Each Other
An easy way for you to grasp how binding works is by jumping right in and
binding one control to another. In this section, you create a simple project
that contains a NumericUpDown control and a Slider control and binds the
value of one control to another.

The NumericUpDown control is a special control for entering numbers
easily. It consists of a TextBox and two buttons for increasing and decreas-
ing the numeric value in the TextBox. The Slider control is another way of
displaying and entering numeric value. It consists of a scroll thumb that
can be dragged on a line to increase or decrease the numeric value. In this
example, you bind the value of the NumericUpDown control to the Slider so
that when you update one control, the value of the other one automatically
gets updated.

To create and bind the two controls together, follow these steps:

 1. Create a new Silverlight project in Expression Blend and call it
Chapter9 (very original, we know).

 2. In the Assets panel, type NumericUpDown into the search field
Control. When the control shows up in the Assets list, drag and
drop it onto the Artboard at a convenient location.

 3. In the Properties panel, set the FontSize property under the Text
group to a high value, such as 24pt, so that it is easy to look at in
this demo.

 4. Again from the Assets panel, find the Slider control and add it to
MainPage.xaml, as shown in Figure 9-1. Set the Maximum property
value to 100.

 The default Maximum value for the NumericUpDown control is 100.
By matching the Slider control’s Maximum to the same value as the
NumericUpDown control, you ensure that when the two controls are
databound together, the value of one cannot get higher than the other.

14_524657-ch09.indd 19214_524657-ch09.indd 192 3/31/10 11:42 AM3/31/10 11:42 AM

193 Chapter 9: Updating Data the Easy Way with Data Binding

 5. Click Advanced Property Options for the Value property and choose
Element Property Binding.

 The cursor changes to an element picker (shown in the margin) as you
move it over the Artboard.

Figure 9-1:
Adding a

Slider con-
trol to the
Artboard.

 6. Click the NumericUpDown control.

 The Create Data Binding dialog box (see Figure 9-2) appears.

 7. In the dialog box, select Value from the drop-down list.

 This binds the Value property of the selected control, which is the Slider
to the Value property of the NumericUpDown control.

 8. Click Show Advanced Properties, which shows up as a small arrow,
shown here in the margin.

 Additional advanced property fields are shown on the screen.

 9. Set the Binding direction to TwoWay and click OK.

 Setting the Binding to TwoWay ensures that changes in values to either
control update the other.

Figure 9-2:
Creating a

binding.

 10. Press F5 or choose Project➪Run Project to run the application.

 Notice that when you change the value of the NumericUpDown control,
the value in the Slider changes as well. Similarly, when the Slider is
moved up or down, the value in the NumericUpDown control changes.
This is the TwoWay binding at work.

14_524657-ch09.indd 19314_524657-ch09.indd 193 3/31/10 11:42 AM3/31/10 11:42 AM

194 Part II: Managing Your Silverlight Controls

Data binding is nothing more than establishing a connection between a
user interface property, such as text in a TextBox or items in a ListBox, and
any other object. This object can be a domain object, which is just a fancy
name for an object that contains business-related data, such as customer or
product information. Or the object can be another user interface element,
such as the one created with the NumericUpDown control and Slider in the
previous section.

To see the XAML generated in the previous section that shows data binding
between two user interface elements, go to the XAML view for MainPage.
xaml. The main statement that has the data binding markup looks like this:

<Slider Margin=”72,176,246,234” Maximum=”100”
Value=”{Binding Value,
ElementName=numericUpDown, Mode=TwoWay }”/>

Notice that the Value attribute is enclosed by curly brackets with the word-
ing Binding in the attribute. This part of the XAML specifies the source from
which the data is bound, as well as some additional parameters that should
be used in the binding.

The first parameter specifies the source object’s property name that the
Slider’s Value property should bind to. In this case, it is set to Value. This
means that the Value of the Slider is bound to the Value of the source
object.

The source object is specified in the ElementName property. In this case, it
is the numericUpDown object. If you are not binding to another UI element,
this can be completely omitted. If this is omitted, the source is specified in
the DataContext property of the Slider.

The next parameter is Mode, which can contain one of three values, as follows:

 ✓ OneWay: This value means that whenever the source object’s Value
changes, the Value of the Slider changes as well.

 ✓ TwoWay: With TwoWay, the changes are bidirectional, meaning that the
values on the source and target are dependent on each other, and a
change in one value affects the other.

 ✓ OneTime: This value means that the value of the Slider is updated only
once, and any subsequent changes to the source’s value do not affect
the Slider’s value.

You set the Mode to OneTime if you want to initialize the fields with cer-
tain values and these values do not change over a period of time. You use
OneWay if these values change dynamically. For example, if you are showing

14_524657-ch09.indd 19414_524657-ch09.indd 194 3/31/10 11:42 AM3/31/10 11:42 AM

195 Chapter 9: Updating Data the Easy Way with Data Binding

live scores for an NBA game on your site, you use OneWay, whereas you use
OneTime if you are showing the scores of games already completed. TwoWay
is typically used when you are creating a form that you use to display as well
as edit data. You bind the controls to data such as Address, and the screen
gets updated when the value of Address changes. The Address object also
gets updated if you change the values displayed on the screen.

Binding to a Data Object
In the previous sections, we tell you how to bind properties in a control to
properties on other controls. In this section, we show you how you can bind
properties such as Text in a TextBox to data from data such as Address
fields. The task involves the following general steps:

 1. Create a user control to display the address fields.

 2. Bind the address fields in the control to specific property names.

 3. Create a class that can be databound to the address control.

 4. Data bind the class you created to the address control in code.

We describe these steps in more detail in the following sections.

Creating a user control for data binding
To create a control that binds to an Address, follow these steps:

 1. Create a new Silverlight project by choosing File➪New Project from
the menu, and when the New Project dialog box appears, select
Silverlight 4 Application + Website and click OK.

 A new project is created and the MainPage.xaml file appears on the
Artboard.

 2. Double-click the StackPanel control in the Tools panel to add it to the
MainPage.xaml file; then drag the resizing handles to set the height
and width of the StackPanel to a suitable dimension.

 Using a StackPanel makes it easier to lay out controls. (See Chapter 5 for
more details on using the StackPanel.)

 3. Add six pairs of TextBlocks and Text Boxes to display address details.
Change the text in the TextBlocks to Street Number, Street Name, City,

14_524657-ch09.indd 19514_524657-ch09.indd 195 3/31/10 11:42 AM3/31/10 11:42 AM

196 Part II: Managing Your Silverlight Controls

State, Postal Code, and Country, and set their FontWeight to Bold from
the Properties panel.

 (Chapter 7 uses a similar example to create an Address user control, so
if you’re not sure how to do this step, refer to that chapter.)

 The XAML should look like this (some markup has been left out for brev-
ity and replaced by an ellipsis [. . .]):

<UserControl . . .>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel HorizontalAlignment=”Left”

Margin=”8,22,0,167” Width=”291”>
 <TextBlock Text=”Street Number”

TextWrapping=”Wrap” FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”Street Name”

TextWrapping=”Wrap” FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”City” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”State” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”Postal code”

TextWrapping=”Wrap” FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 <TextBlock Text=”Country” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap”/>
 </StackPanel>
 </Grid>
</UserControl>

 4. Create a UserControl by right-clicking the StackPanel in the Objects
and Timeline panel and choosing Make into UserControl. In the Make
into UserControl dialog box, set the name to AddressControl and
click OK.

 A UserControl named AddressControl is created in the file
AddressControl.xaml and is opened on the Artboard.

This UserControl is now ready to be used.

Data bind the controls in the UserControl
to a property name
Using the Selection tool from the Tools panel, select the Street Number
TextBox control in the AddressControl.xaml file and click the
Advanced Property Options for the Text property in the Properties panel.

14_524657-ch09.indd 19614_524657-ch09.indd 196 3/31/10 11:42 AM3/31/10 11:42 AM

197 Chapter 9: Updating Data the Easy Way with Data Binding

Choose Custom Expression and type {Binding StreetNumber}, as shown in
Figure 9-3; then press Enter.

Figure 9-3:
Custom

expression
for the Text

property.

Repeat this step for every TextBox in the UserControl, setting the custom
expression for the Text property to read {Binding StreetName},
{Binding City}, {Binding State}, {Binding PostalCode}, and
{Binding Country} for the Street name, City, State, Postal Code, and
Country text boxes.

When you’re finished, the XAML for AddressControl should like the following
(some markup has been left out for brevity and replaced by an ellipsis[. . .]):

<UserControl . . . >
 <Grid x:Name=”LayoutRoot”>
 <StackPanel>
 <TextBlock Text=”Street Number” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding

StreetNumber}”/>
 <TextBlock Text=”Street Name” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding

StreetName}”/>
 <TextBlock Text=”City” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding City}”/>
 <TextBlock Text=”State” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding

State}”/>
 <TextBlock Text=”Postal Code” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding

PostalCode}”/>
 <TextBlock Text=”Country” TextWrapping=”Wrap”

FontWeight=”Bold”/>
 <TextBox TextWrapping=”Wrap” Text=”{Binding

Country}”/>
 </StackPanel>
 </Grid>
</UserControl>

14_524657-ch09.indd 19714_524657-ch09.indd 197 3/31/10 11:42 AM3/31/10 11:42 AM

198 Part II: Managing Your Silverlight Controls

The AddressControl UserControl is now ready to be databound to any
class that has the properties StreetName, City, State, PostalCode, and
Country.

Create a data class that can be databound
Now that you’ve bound the text fields to certain property names, you need to
create a class that contains these properties. To do so, follow these steps:

 1. Choose File➪New Item, and in the New Item dialog box that appears,
select Class and then set the Name field to Address.cs and click OK.

 The file Address.cs opens on the Artboard and shows the Address
class.

 2. When the Address.cs file opens, add the following code to the class:

public string StreetNumber { get; set; }
public string StreetName { get; set; }
public string City { get; set; }
public string State { get; set; }
public string PostalCode { get; set; }
public string Country { get; set; }

 The Address class is now ready to be databound to the UserControl
you created in the previous section.

 3. Press Ctrl+Shift+B to build the solution.

Binding the data object to the control
To bind the Address data that is stored in the class you created with the
AddressControl, follow these steps:

 1. Open the MainPage.xaml file, and using the Selection tool, select the
AddressControl.

 2. From the Properties panel, set the Name property to suitable text such
as ctlAddress.

 3. Open the MainPage.xaml.cs file by double-clicking the file from the
Projects panel. Then change the MainPage class as shown in the fol-
lowing code that appears in bold:

public partial class MainPage : UserControl
{
 Address _address = new Address
 {
 StreetNumber = “100”,

14_524657-ch09.indd 19814_524657-ch09.indd 198 3/31/10 11:42 AM3/31/10 11:42 AM

199 Chapter 9: Updating Data the Easy Way with Data Binding

 StreetName = “Silverlight Way”,
 City = “Melbourne”,
 State = “Victoria”,
 PostalCode = “3000”,
 Country = “Australia”
 };

 public MainPage()
 {
 // Required to initialize variables
 InitializeComponent();

 ctlAddress.DataContext = _address;
 }
}

 This creates an instance of the Address class and data binds it to the
UserControl. You use the DataContext property to specify the source
data object. After you set the data context of the parent window, that
property is set automatically for all its child controls.

 4. Press F5 or choose Project➪Run Project to run the application.

 The Address that you have set in code is automatically set in the
Address UserControl.

Automatically updating
changes to the data
In traditional programming, when you want to change the value for a field
such as a TextBox to display on-screen, you set the TextBox’s Text property
to the new value. But as mentioned earlier in this chapter, you don’t have to
do this in Silverlight; instead, you update changes automatically using data
binding.

To show you how this works, the following steps have you change the value
of the StreetName property in the Address class (created in the previ-
ous section) when a button is clicked. You can then observe whether the
AddressControl changes on the screen:

 1. Add a button to MainPage.xaml in the Design view and set its con-
tent property to Change Data. In the Properties panel, open Events
and double-click the Click field.

 The MainPage.xaml.cs file opens and displays the Button_Click
event handler. (As noted elsewhere in this book, an event handler is
code that gets called when an event occurs, such as a button being
pressed or text being changed.)

14_524657-ch09.indd 19914_524657-ch09.indd 199 3/31/10 11:42 AM3/31/10 11:42 AM

200 Part II: Managing Your Silverlight Controls

 2. Change _address.StreetName to the value “Silverlight
Avenue”, being sure to include the quotation marks, as shown in the
following code:

private void Button_Click(object sender, System.
Windows.RoutedEventArgs e)

{
 _address.StreetName = “Silverlight Avenue”;
}

 3. Press F5 or choose Project➪Run Project to run the application.

 The application shows up in a browser window. Click the Change Data
button. Although the Street Name value was changed in the event han-
dler, note that the value on the screen is not updated. (Read on!)

The reason the field on the screen is not updated is that the TextBox control
does not know that the field’s value has changed. To take care of that issue,
you need to implement an interface called INotifyPropertyChanged on
the Address class. This interface has an event called PropertyChanged
that needs to be fired every time you change the value of a databound field.

To add the necessary code, open the Address.cs file on the Artboard from
the Projects panel and follow these steps:

 1. Add the following line to the top of the file:

using System.ComponentModel;

 You need to add this line because the INotifyPropertyChanged is in
the System.ComponentModel namespace.

 2. In the class definition of the Address, add :
INotifyPropertyChanged (be sure to include the spaces and the
colon) as follows:

public class Address : INotifyPropertyChanged

 3. Add the following piece of code in the class:

 public event PropertyChangedEventHandler
PropertyChanged;

 Data binding uses the event defined to get notified whenever a data field
changes.

 4. Write a method in the class to fire the event, as follows:

private void NotifyPropertyChanged(string p)
{
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new

PropertyChangedEventArgs(p));
 }
}

14_524657-ch09.indd 20014_524657-ch09.indd 200 3/31/10 11:42 AM3/31/10 11:42 AM

201 Chapter 9: Updating Data the Easy Way with Data Binding

 This method will fire the PropertyChanged event that you create in
Step 3.

 5. Remove the existing StreetName property in the Address class and
replace it with the following code snippet:

private string _StreetName;

public string StreetName
{
 get
 {
 return _StreetName;
 }
 set
 {
 _StreetName = value;
 NotifyPropertyChanged(“StreetName”);
 }
}

 This ensures that when the StreetName property is set, the
PropertyChanged event is fired.

 6. Press F5 or choose Project➪Run Project to run the application. When
the application starts up, click the Change Data button.

 Notice that the Street Name now changes to Silverlight Avenue because
of the data binding.

You need to replace all the other properties in the Address class so that all
of them can be auto updated the way the StreetName property is.

Converting data while binding
Sometimes, the data that you wish to bind to your user interface element
may not be compatible with the property that you want to bind to. For exam-
ple, you may have a property that stores a date field as a string, but the con-
trol may require a DateTime field to be databound. Or you may have a string
that stores the value Yes or No, but the CheckBox to which the data is bound
may require a Boolean property. In these scenarios, you need to create a con-
verter that converts the property value from its original data type to the data
type that the databound control expects.

In the following example, you add a string property called UseAsMailing
Address to the Address.cs file to store a value as “Yes” or “No”. You then
write a converter in C# that converts the string values “Yes” to true and
“No” to false. Finally, you use the converter in the data-binding XAML.
Follow these steps:

14_524657-ch09.indd 20114_524657-ch09.indd 201 3/31/10 11:42 AM3/31/10 11:42 AM

202 Part II: Managing Your Silverlight Controls

 1. Open the Address.cs file in Expression Blend or Visual Studio and
add the following code snippet to the class:

private string _UseAsMailingAddress;

public string UseAsMailingAddress
{
 get
 {
 return _UseAsMailingAddress;
 }
 set
 {
 _UseAsMailingAddress = value;
 NotifyPropertyChanged(“UseAsMailingAddress”);
 }
}

 This adds a new property called UseAsMailingAddress that can take
the string values of “Yes” and “No”.

 2. Open MainPage.xaml.cs and modify the code where you set the
values for Address by adding the line shown in bold:

Address _address = new Address
{
 StreetNumber = “100”,
 StreetName = “Silverlight Way”,
 City = “Melbourne”,
 State = “Victoria”,
 PostalCode = “3000”,
 Country = “Australia”,
 UseAsMailingAddress = “Yes”

};

 This sets the value for UseAsMailingAddress to “Yes” while creating
the Address object.

 3. Open AddressControl.xaml in the Design view in Expression Blend
and add a CheckBox control to the end by double-clicking the CheckBox
control from the Tools panel. Set the Content property of the check box
by double-clicking the control and typing Use as mailing address.

 The CheckBox has a property called IsChecked that can be set to map
to the UseAsMailingAddress property in the Address object. But the
two types are incompatible because IsChecked takes a Boolean value,
whereas UseAsMailingAddress is a String property type. To fix this
incompatibility, you need to create a Converter class.

 4. From the menu, choose File➪New Item. When the New Item
dialog box shows up, select Class, and in the Name field, type
StringToBooleanConverter.cs. Then click OK.

 A new class called StringToBooleanConverter opens on the Artboard.

14_524657-ch09.indd 20214_524657-ch09.indd 202 3/31/10 11:42 AM3/31/10 11:42 AM

203 Chapter 9: Updating Data the Easy Way with Data Binding

 5. Replace the class definition that was generated with the following code:

public class StringToBooleanConverter :
IValueConverter

{

 #region IValueConverter Members

 public object Convert(object value,
 Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 string data = value as string;

 if (data != null)
 {
 return (data == “Yes” || data == “True”) ?

true : false;
 }
 else
 {
 new ArgumentException(“Conversion

failed”);
 }
 return false;
 }

 public object ConvertBack(object value,
 Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 try
 {
 bool data = (bool)value;
 return (data) ? “Yes” : “No”;
 }
 catch (Exception)
 {
 new ArgumentException(“Conversion

failed”);
 }
 return false;
 }

 #endregion
}

 This code converts the string value “Yes” or “True” to Boolean true
and everything else to false. It also converts back Boolean true to
“Yes” and false to “No”.

 6. To data bind UseAsMailingAddress to the CheckBox control using
the StringToBooleanConverter in XAML, open AddressControl.
xaml in Design view and select the CheckBox control. From the

14_524657-ch09.indd 20314_524657-ch09.indd 203 3/31/10 11:42 AM3/31/10 11:42 AM

204 Part II: Managing Your Silverlight Controls

Properties panel, click Advanced Properties Options for the
IsChecked property. Choose Data Binding from the menu option.

 The Create Data Binding dialog box pops up.

 7. Select the Data Type tab. Then select the Use a Custom Path
Expression check box and type UseAsMailingAddress in the text field
next to it.

 8. Click Show Advanced Properties (shown here in the margin) to reveal
more of the Create Data Binding dialog box, as shown in Figure 9-4.

 9. Click the Add New Value Converter button, which is denoted by an
ellipsis (. . .) next to the Value Converter drop-down list.

 The Add Value Converter dialog box pops up. Select
StringToBooleanConverter from the list and click OK.

 10. Click OK in the Create Data Binding dialog box and press F5 or choose
Project➪Run Project to run the application.

Figure 9-4:
The Create

Data
Binding

dialog box.

14_524657-ch09.indd 20414_524657-ch09.indd 204 3/31/10 11:42 AM3/31/10 11:42 AM

205 Chapter 9: Updating Data the Easy Way with Data Binding

 The application starts up in a browser. Notice that the Use As Mailing
Address check box is now selected with the StringToBooleanConverter
converting the “Yes” property to a Boolean true and setting the
IsChecked property in the control.

Binding to Sample Data
While designing the user interface of your application in Expression Blend,
it is important to see how a screen will look while displaying actual data,
and this is where creating sample data helps. For example, if your applica-
tion displays a user’s profile information such as name, e-mail, address,
phone numbers, and photos, you need to figure out how to format all this in
a page, including what font to use, what length to use for each field, and so
on. Creating sample data gives you a realistic idea of how the screen will look
at design time. You need to do this in a two-step process: First create the
sample data and then bind user interface elements to the sample data.

Creating sample data
To see the process involved in creating some sample data that contains
Name, Address, Email, and Picture, start a new Silverlight project in
Expression Blend. Then follow these steps:

 1. Open the Data panel and click the Add Sample Data Source button, as
shown in Figure 9-5.

Figure 9-5:
Adding a

sample data
source from

the Data
panel.

 2. Choose Define New Sample Data from the menu.

 A Define New Sample Data dialog box appears.

 3. Ensure that the Enable Sample Data When Application Is Running
check box is selected and click OK.

 The SampleDataSource item is added to the Data panel, as shown in
Figure 9-6.

14_524657-ch09.indd 20514_524657-ch09.indd 205 3/31/10 11:42 AM3/31/10 11:42 AM

206 Part II: Managing Your Silverlight Controls

Figure 9-6:
SampleData

Source
added to the

project.

 4. Double-click Property1 and change its name to Name.

 5. Double-click Property2 and change its name to Address.

 6. Click the Add Simple Property button, shown here in the margin, on
the Collection line to add a new property. Change the name of the
property to Email.

 7. Click the Add Simple Property button again to add another property.
This time change its name to Picture.

 Note that all the properties in the collection arrange themselves in
alphabetical order.

 8. Click the Change Property Type drop-down arrow that appears at the
end of the Address property; then, change the Type to String in the
drop-down list.

 A few other fields appear on the screen, as shown in Figure 9-7. These
fields include Format.

Figure 9-7:
Changing

the type
of sample

data.

14_524657-ch09.indd 20614_524657-ch09.indd 206 3/31/10 11:42 AM3/31/10 11:42 AM

207 Chapter 9: Updating Data the Easy Way with Data Binding

 9. Click the Format drop-down list and choose the value Address; then,
click anywhere outside the pop-up window to close it.

 10. Click the Change Property Type button for Email, and in the pop-up
window, click the Format drop down-list. Choose the value Email

Address from the list and close the pop-up window.

 11. Click the Change Property type button for Name, and set the Format
to Name.

 12. Finally, click the Change Property type button for Picture, and change
the Type to Image.

 If you have a directory with images on your computer, you can change
Location to point to that directory. If you do not fill this, Expression
Blend loads its own set of sample images.

You have now created some sample data that you can data bind to controls
to see how they will look when the application is run.

Binding a DataGrid to the sample data
After you create some sample data, as described in the previous section, you
need to bind it to some controls in the page. Silverlight comes with a control
called DataGrid that can be used to display data in rows and columns. In the
example in the following steps, we show you how to bind the sample data
you just created to a DataGrid:

 1. Open MainPage.xaml by clicking the MainPage.xaml tab.

 2. In the Objects and Timeline panel, right-click the LayoutRoot
item and, in the pop-up menu that appears, choose Change
LayoutType➪StackPanel.

 3. From the Assets panel, type DataGrid in the Search box to find the
control, and when it appears in the list, double-click it to add it to the
MainPage.xaml file.

 The DataGrid provides a tabular view of the data, with each column
representing the object’s properties and each row representing a single
item from a collection.

 4. Drag the resizing handles on the DataGrid to set a suitable height and
width to the control.

 5. From the Data panel, select the Collection under SampleDataSource
and drag it onto the DataGrid.

 Expression Blend provides you with a notification that says Bind
[DataGrid].ItemsSource to Collection, as shown in Figure 9-8.

14_524657-ch09.indd 20714_524657-ch09.indd 207 3/31/10 11:42 AM3/31/10 11:42 AM

208 Part II: Managing Your Silverlight Controls

Figure 9-8:
Dragging

the sample
data on to a

DataGrid.

 After you drop the Collection onto the DataGrid, the DataGrid automati-
cally adds the right columns and displays the data, as shown in Figure 9-9.

Figure 9-9:
DataGrid

displaying
the sample

data.

 6. Press F5 or choose Project➪Run Project to run the application.

 If you select the Enable Sample Data When Application Is Running check
box when you’re creating the data source, as we have you do in the pre-
vious section, “Creating sample data,” the sample data will also be avail-
able for you when you run the application.

When you’re ready to roll out your application, change the data binding to
point to real data.

14_524657-ch09.indd 20814_524657-ch09.indd 208 3/31/10 11:42 AM3/31/10 11:42 AM

209 Chapter 9: Updating Data the Easy Way with Data Binding

Creating a Master-Detail view
The DataGrid control displays all the items in rows, and when you have lots
of columns, this is not the best way to edit individual items. You may have
to create a Master-Detail view, in which you use the DataGrid to display the
master record, and you click a row to see the details for that row.

 To create a Master-Detail view, open the Data Panel in Expression Blend. At
the top of the panel are two buttons: one represents the ListMode and the
other represents the Details mode.

Click the Details mode button. Then hold down the Ctrl key while clicking
each of the properties you have added under Collection (as described in the
“Creating sample data” section, earlier in this chapter) to select them all.
Drag and drop them to the empty area under the DataGrid.

A Details view with all the controls is automatically created.

You can further change the layout of the Details view by repositioning the dif-
ferent controls or even removing the ones you don’t want displayed.

Press F5 or choose Project➪Run Project to run the application. Notice that
as you select a different row in the DataGrid, the Details view automatically
displays the data corresponding to the row you selected.

Fooling around with the sample data
The sample data that Expression Blend creates for you is quite useful for visu-
alizing how the screens will look when real data is used, and you can customize
the data further if what Expression Blend generates doesn’t meet your needs.

 To customize the data, open the Data panel and click the Edit Sample Values
button in the Collections line. An Edit Sample Values dialog box appears, as
shown in Figure 9-10.

You can change the sample data three ways within this dialog box:

 ✓ Properties: Click the Change Property Type button that appears at the
top of each column to change the property type, Format, and other
properties of the data.

 ✓ Records: Change the number of sample data items you want to generate
by changing the Number of Records field at the bottom of the dialog box.

 ✓ Data values: Double-click any cell in the DataGrid to change the actual
values of the sample data.

14_524657-ch09.indd 20914_524657-ch09.indd 209 3/31/10 11:42 AM3/31/10 11:42 AM

210 Part II: Managing Your Silverlight Controls

Figure 9-10:
Edit Sample

Values
dialog box.

14_524657-ch09.indd 21014_524657-ch09.indd 210 3/31/10 11:42 AM3/31/10 11:42 AM

Part III

Connecting
with Data

15_524657-pp03.indd 21115_524657-pp03.indd 211 3/31/10 11:43 AM3/31/10 11:43 AM

In this part . . .

No Web application is complete without retrieving
data from somewhere and displaying it to users.

Chapter 10 shows you how to connect to data sources on
the Web and extract data, while Chapter 11 takes you a
step further to show you how you can expose data from
your databases using a technology called WCF Data
Services.

The final two chapters in this part discuss WCF RIA Services,
which is a Web service with a variety of advantages of WCF
Data Services. In these chapters, you find out how to retrieve
data from a database, validate user input, and authenticate
your users.

15_524657-pp03.indd 21215_524657-pp03.indd 212 3/31/10 11:43 AM3/31/10 11:43 AM

Chapter 10

Accessing Data in Silverlight
In This Chapter
▶ Connecting to the Web to get data

▶ Downloading files to your application

▶ Talking to Web services

▶ Understanding cross-domain security

Silverlight is a client-side technology that runs in the Web browser and
is therefore disconnected from the server. This fundamental aspect of

Silverlight plays a major part in how Silverlight applications “talk” to the
server. Your Silverlight application runs inside your user’s browser, so to get
data from the server, you as the application developer need to communicate
with it through some sort of service.

Your application data and certain types of resources are kept on the server
for a number of reasons. For starters, your application probably needs only
some of the data in a database. Downloading all of the data in the database
not only takes a very long time but could also compromise your application
if the wrong data is shown to the wrong user. If your application is media-
intensive, you want to show only the media that the user wants, rather than
downloading your whole media library to them. One site that is an example
of this scenario is YouTube (www.youtube.com). You download only the
videos you want to watch, not all of the millions of videos available. With
media such as videos, you can also set up a streaming service to stream
videos to the user before they have finished downloading.

When you are developing your Silverlight application, you will quite often
build the service as well, so it will be located on your development machine.
However, if you’re part of a team, another team member may be developing
that service, so you may be developing against an already-published service.
This scenario is the same for when you develop applications for a public ser-
vice such as Flickr.

16_524657-ch10.indd 21316_524657-ch10.indd 213 3/31/10 11:43 AM3/31/10 11:43 AM

214 Part III: Connecting with Data

The services you may use in your Silverlight Application could be a simple
ASP.NET Web Service, commonly referred to as an .asmx service, a Windows
Communication Foundation (WCF) service, or a service that is not part
of your application, such as the Flickr photo service. If the service your
Silverlight Application is talking to is not on the same domain as your
Silverlight application, you have to set up a cross-domain policy, which we
cover in “Understanding Cross-Domain Security” at the end of this chapter.

The other type of data you can connect to from your Silverlight application is
file-based data, such as a text (.txt) file, a compressed (.zip) file, or even
an image or movie file. This is the simplest way to get data into your applica-
tion, so we start the chapter with a discussion of that.

In this chapter, we also cover the basics of getting server-side resources into
your Silverlight application. Resources include files, fonts, streams, strings,
and services. We show you how to download files to your application as well
as include Web services in your application. We also give you a workaround
for working with services that do not have a cross-domain policy (which is
outlined in a cross-domain policy file) in place. This chapter also covers how
to use the authentication system built into ASP.NET to make sure that you
serve information only to logged-in users.

Downloading Files to Your
Silverlight Application

Your Silverlight application runs in the user’s browser and isn’t connected
to the Web server that holds the data it needs. So when you need server-side
resources such as fonts, strings, images, and videos, you need to download
them to your Silverlight application before you can use them. Another point
to remember is that your Silverlight application does not begin to run until
it has completely downloaded to the browser. Therefore, you want to try to
keep the base application as small as possible and download the resources
that your users need only when they need them. Deciding what to include
initially and what to hold off on until later can be tricky, and you need to
experiment with how you set up your application. You often have to make
a trade-off of longer wait times to get started versus waiting for resources
later in the application life. Generally, you should include resources in your
application that are required for the first few actions and then later download
anything else in a separate execution thread. That way, the later downloads
don’t block the main user interface thread and the user’s experience is not
affected.

16_524657-ch10.indd 21416_524657-ch10.indd 214 3/31/10 11:43 AM3/31/10 11:43 AM

215 Chapter 10: Accessing Data in Silverlight

You do get some things for free, meaning that you don’t have to do the work.
The most common scenario for the Image control and Media Element control
is to get their source files directly from the server. As such, both controls sup-
port getting their sources directly from the server, so you don’t need to write
any download code for those elements. Instead, you just specify the source
using a URL such as http://www.domain.com.au/MyVideoFile.wmv.

Silverlight comes with two very handy ways to download files to your appli-
cation: the WebClient class and the HttpWebRequest class. They’re built
into the Silverlight runtime and easily accessible. The WebClient is quite
simple to use. The HttpWebRequest has more options, but using it is a
bit more work. The WebClient and the HttpWebRequest can both do a
GET request, but only the HttpWebRequest can do a POST request. The
WebClient class actually uses the HttpWebRequest class to do all of its
work. Typically, you use the WebClient class unless you need to use the
POST method to access your resource on the server.

What is a POST method, you ask? When an application calls a service or a
user clicks on a Web page, two main types of requests are made: GET and
POST requests. A GET request doesn’t send any data to the Web server —
it only uses information in the URL to process the request, such as www.
domain.com/deafult.aspx?Id=3. The GET request would use the address
and the Id=3 part to return the correct data. You can have only 2,000 charac-
ters in the part of the URL that follows the question mark, which limits you in
some cases.

A POST request, on the other hand, allows you to send much more data
in a less visible way. You’ve done plenty of POST requests on the Internet
already: Every time you fill out a form online and press the Submit button,
you’re making a POST request. Think about this scenario: Your Silverlight
application is a system that allows people to apply for a passport online.
Your users can fill out a series of forms and then, at the end your application,
create a document to print and take to the post office to finish the process.
This would be a good time to use HttpWebRequest and a POST operation
to submit the information entered online. Your server-side operation would
then create the file and let your Silverlight application download the file.

 With the WebClient class, you can perform only an HTTP GET request. The
GET request is excellent for downloading files and strings; however, if you
need to post some data to the URL to get to your resources, you have to use
HttpWebRequest. You often have to use POST when calling Web services, as
we discuss in “Talking to Web Services,” later in this chapter.

16_524657-ch10.indd 21516_524657-ch10.indd 215 3/31/10 11:43 AM3/31/10 11:43 AM

216 Part III: Connecting with Data

Downloading files using
the WebClient class
The WebClient class is a class built into the Silverlight framework that
provides a simple way to access remote resources with very little code. You
typically use it to download files such as fonts, text files, images, and other
media that your application needs to run. You need to do only four things to
use the WebClient. To do those things, you need to use Visual Studio in an
open Silverlight application and open the code-behind file. (Remember that a
code-behind file is the file with a .cs or .vb extension that is associated with
a .xaml file. For example, the MainPage.xaml.cs file is the code-behind file
for MainPage.xaml.) Next, follow these steps:

 1. Create a new instance of the class using the following code:

var wc = new WebClient();

 2. Tell the instance of WebClient what to do when it has finished down-
loading the file, as follows:

wc.OpenReadCompleted += OpenReadCompleted;

 3. Write the event handler for the OpenReadCompleted to tell Silverlight
what to do with the file after you have downloaded it, as follows:

void OpenReadCompleted(object sender,
OpenReadCompletedEventArgs e)

{
 //Do something with your downloaded file here
}

 4. Tell Silverlight to open the file asynchronously. This is how you start
the download:

OpenReadAsync(new Uri(“myfile.txt”, UriKind.
Relative));

 The UriKind.Relative part of the OpenReadAsync method tells
Silverlight that the file myfile.txt is located in the ClientBin folder
on the server. You can see this folder in the Web application part of the
solution as soon as you build your application for the first time. This
folder is automatically generated by Visual Studio and is the folder that
the compiled Silverlight application will be built into.

Here’s an example of downloading a file that you have to get from the server
because it’s not a standard font in Silverlight. In the example, we use a
Wingdings font:

16_524657-ch10.indd 21616_524657-ch10.indd 216 3/31/10 11:43 AM3/31/10 11:43 AM

217 Chapter 10: Accessing Data in Silverlight

 1. Create a new Silverlight application in Visual Studio by selecting
File➪New Project and selecting Silverlight Application from the dialog
box shown. Call the new application SilverlightData.

 A dialog box asking where to host the Silverlight Application appears.

 2. Click OK in the dialog box.

 3. Press F6 or Ctrl+Shift+ B to build your solution.

 This generates a ClientBin folder in the Web application project of your
solution.

 4. Go to your Windows folder and locate the Fonts folder.

 5. Copy the webdings.ttf file and paste it into the ClientBin folder in
the Web application project of the solution.

 You need to copy the font file into the ClientBin folder because you will
specify that the address of the file is UriKind.Relative, which makes
Silverlight look in the ClientBin folder.

Now that the file you want your user to be able to download is in the right
folder, you need to create a new instance of the WebClient class. In doing
so, you also have to tell it what to do when it has finished downloading the
file and where to download the file from. To do so, follow these steps:

 1. Open the MainPage.xaml file by double-clicking the MainPage.xaml
file in the Solution Explorer.

 2. Now add a new TextBlock control, name it ContentText, and set its
Text property to Home page content by adding the following code
between the Grid tags in the XAML:

<TextBlock x:Name=”ContentText” Text=”Home page
content” FontFamily=”Wingdings”/>

 3. Open the code-behind file for the MainPage.xaml by double-clicking
the MainPage.xaml.cs file in the Solution Explorer.

 4. Declare a new instance of the WebClient class immediately after the
code line InitializeComponent by using the following code:

var wc = new WebClient();

 5. Create an event handler for the OpenReadCompleted event, which
tells your Silverlight application what to do after the file has been
downloaded. In this example, we apply the downloaded font to the
TextBlock element ContentText by setting its FontSource prop-
erty. Use the following code:

16_524657-ch10.indd 21716_524657-ch10.indd 217 3/31/10 11:43 AM3/31/10 11:43 AM

218 Part III: Connecting with Data

void wc_OpenReadCompleted(object sender,
OpenReadCompletedEventArgs e)

{
 ContentText.FontSource = new FontSource(e.

Result);
}

 6. Tell the instance of the WebClient which event handler to use when
it finishes downloading the font file. Add the following code directly
below the line for creating a new instance of WebClient:

wc.OpenReadCompleted += wc_OpenReadCompleted;

 7. Call the OpenReadAsync method and set the URL to the wingding.
ttf file using the following code placed immediately after the line
from Step 6:

wc.OpenReadAsync(new Uri(“wingding.ttf”, UriKind.
Relative));

After you have followed the previous steps, your code should look like
the following. Here you can see that we added the call to create a new
WebClient, told the instance which event handler to use, and then called
the OpenReadAsync method, all in the constructor for the MainPage of the
application. We also added the event handler for when the file has finished
downloading and applied the font file to the FontSource property of the
ContentText TextBlock control.

public MainPage()
{
 InitializeComponent();
 var wc = new WebClient();
 wc.OpenReadCompleted += wc_OpenReadCompleted;
 wc.OpenReadAsync(new Uri(“wingding.ttf”, UriKind.

Relative));
}
void wc_OpenReadCompleted(object sender,

OpenReadCompletedEventArgs e)
{
 ContentText.FontSource = new FontSource(e.

Result);
}

Now when you run the application, the text Hello Silverlight in the
ContentText TextBlock control has the Wingdings font applied, as shown in
Figure 10-1.

16_524657-ch10.indd 21816_524657-ch10.indd 218 3/31/10 11:43 AM3/31/10 11:43 AM

219 Chapter 10: Accessing Data in Silverlight

Figure 10-1:
The

Wingding
font applied

to text.

Using WebClient to include a progress
bar with large downloads
When you download something small and simple such as a font file, the
download occurs rapidly, so users don’t have time to wonder what’s going
on. Sometimes, though, you have a massive file, such as a video file or a huge
photograph, to download. In such a case, it’s a good idea to provide some
visual feedback on-screen to reassure your users that something is happen-
ing. To let your users know how much of the file has downloaded, you need
to use the WebClient class. The WebClient class has a nice feature that
lets you know each time a portion of the file has been downloaded.

Each time a portion of the file is downloaded, the DownloadProgressChanged
event is fired and you can find out how many bytes have been downloaded and
how many bytes of data the file contains in total. If you divide the number of
bytes already received by the total number of bytes in the file, and then multi-
ply the result by 100, you get the percentage downloaded. The Download
ProgressChanged event makes it easy to display a progress bar that shows
the download’s progress.

16_524657-ch10.indd 21916_524657-ch10.indd 219 3/31/10 11:43 AM3/31/10 11:43 AM

220 Part III: Connecting with Data

When your application is running on the Internet, the download speeds are
much lower than when it is running locally on your development machine, so
for this example, you need a very large file of at least 500MB. Otherwise, the
download goes so quickly that you won’t get to see it properly.

In this example, you add a new ProgressBar control to the example from
the previous section. This allows you to indicate to the user how much of
your large file has been downloaded using a familiar control. Each time the
DownloadProgressChanged event fires, you then calculate how much of
the file has been downloaded and update the ProgressBar control to show
that more of the file has been downloaded.

To add a new ProgressBar control, follow these steps:

 1. Open the SilverlightData solution you created in the previous section.

 2. Find a very large file (at least 500MB) on your computer and copy it
into the ClientBin folder just as you did for the font file in the previ-
ous example.

 3. Open the MainPage.xaml.cs file by double-clicking it.

 4. Find the OpenReadAsynch method that you used to download the font
file and change the name of the file to the name of the file you are
going to download. Your code should now look like this:

wc.OpenReadAsync(new Uri(“mymassivevideofile.wmv”,
UriKind.Relative));

 5. Open the MainPage.xaml file by double-clicking it.

 6. Add a new StackPanel control just inside the Grid control.

 7. Find the existing TextBlock control called ContentText and drag it
inside the new StackPanel control.

 8. Add a new ProgressBar control immediately below the ContentText
TextBlock control.

 9. Set the x:Name property of the ProgressBar control to
DownLoadProgress by typing x:Name=“DownLoadProgress” so that
you can refer to it in the code-behind file easily.

 10. Set the BackGround property to Blue by typing BackGround=”Blue”.

 11. Set the ForeGround property to White by typing
ForeGround=”White”.

 12. Set the Maximum property to 1 and the Minimum to 0.

 13. Set the Height to 50 by typing Height=”50”. At this point, the XAML
should look like this:

16_524657-ch10.indd 22016_524657-ch10.indd 220 3/31/10 11:43 AM3/31/10 11:43 AM

221 Chapter 10: Accessing Data in Silverlight

<Grid x:Name=”LayoutRoot”>
 <StackPanel>
 <TextBlock x:Name=”ContentText” Text=”Home page

content” FontFamily=”Wingdings”/>
 <ProgressBar x:Name=”DownLoadProgress”

Minimum=”0” Maximum=”1” Background=”Blue”
Foreground=”White” Height=”50”/>

</StackPanel>
</Grid>

 14. Add the DownLoadProgressChanged event immediately after the
OpenReadCompleted event you added in the previous example.

 You can get Visual Studio to write the event code for you by typing
wc.DownLoadProgressChanged and then pressing the plus key, the
equal sign key, and the Tab key twice. This is a Visual Studio shortcut
key combination for generating the event handler for you.

 15. Inside the event handler, get the value of BytesReceived by using
the following code:

var received = e.BytesReceived;

 16. Do the same for the TotalBytesToReceive by using the following code:

var toReceive = e.TotalBytesToReceive;

 17. Now divide Received by toReceive to get the value to apply to the
DownLoadProgress ProgressBar by adding the following code:

DownLoadProgress.Value = received / toReceive;

Now every time a portion of your massive file is downloaded by the WebClient,
the user sees a progress bar with updates on the progress of the download.

 After you complete the preceding steps, your code looks like this:

public Home()
{
 InitializeComponent();
 var wc = new WebClient();
 wc.OpenReadCompleted += wc_OpenReadCompleted;
 wc.DownloadProgressChanged += wc_

DownloadProgressChanged;
 wc.OpenReadAsync(new Uri(“mymassivevideo.wmv”,

UriKind.Relative));
}

void wc_DownloadProgressChanged(object sender,
DownloadProgressChangedEventArgs e)

{
 double received = e.BytesReceived;
 double toReceive = e.TotalBytesToReceive;
 DownLoadProgress.Value = received / toReceive;
}

16_524657-ch10.indd 22116_524657-ch10.indd 221 3/31/10 11:43 AM3/31/10 11:43 AM

222 Part III: Connecting with Data

Using the HTTPWebRequest class
In this section, we look at using the HttpWebRequest class to perform a
POST request and send data to the server. To be able to POST some data to
the server, you need to create a new HttpWebRequest object, write your
data to the newly created request object, and then send the request to the
server.

In this example, we create a new ASP.NET Web page called PostForm.aspx,
which processes the data we POST from our Silverlight application. This is
exactly the scenario we discuss earlier in this chapter about submitting a
passport application online. The PostForm.aspx page reads FirstName and
LastName out of the data we post to it. After the Form Variables are read,
the processing formats the FirstName and LastName into a string that the
Silverlight application displays on the screen.

We build the sample in three stages: First, we build the XAML needed to
gather the first name and last name for the server. Second, we build the
server page. The third and final step is to use the HttpWebRequest class to
POST data to the new server page.

Follow these steps to build the XAML for the example:

 1. Open Visual Studio.

 2. Choose File➪New Project and select Silverlight Application
from the dialog box. Name the new application
SilverlightForDummiesHttpWebRequest.

 3. If the MainPage.xaml file is not already open, double-click it in the
Solution Explorer to open it.

 4. Add a StackPanel control between the Grid tags by adding the follow-
ing XAML:

<StackPanel>
</StackPanel>

 5. Add two TextBox controls between the StackPanel tags and call one
FirstName and the other LastName by adding the following code:

<TextBox x:Name=”FirstName”/>
<TextBox x:Name=”LastName” />

 6. Add a Button with a Click event after the two TextBox controls with
the following code:

<Button Click=”Button_Click” Content=”Submit”/>

16_524657-ch10.indd 22216_524657-ch10.indd 222 3/31/10 11:43 AM3/31/10 11:43 AM

223 Chapter 10: Accessing Data in Silverlight

 7. Add a TextBlock to show the formatted string you get back from the
server page:

<TextBlock x:Name=”ContentText” />

After you have the XAML set up, create the server page. This server page
reads the Form variables posted to it and then writes a formatted string
based on those variables. Follow these steps:

 1. In the Solution Explorer, right-click the
SilverlightForDummiesHttpWebRequest.Web project and select Add
New Item from the menu that appears.

 2. Click the WebForm option in the Add New Item dialog box and call it
PostForm.aspx.

 This adds a new .aspx file to the Web application.

 3. If the new PostForm.aspx file is not already open, double-click it in
the Solution Explorer to open it.

 4. Add a Page Load event to the page by adding the following code:

<script runat=”server”>
void Page_Load(object sender, EventArgs e){
}
</script>

 5. Read the Form variables and write the formatted string to the page
with the following code. Write this code inside the Page_Load event:

if(Request.Form[“FirstName”] != null)
{
Response.Write(“FirstName : “ + Request.

Form[“FirstName”] + “ “);
}
if(Request.Form[“LastName”] != null)
{
Response.Write(“LastName : “ + Request.

Form[“LastName”]);
}

You have now created a server page that will read the Form variables
FirstName and LastName and then format them to your requirements. If you
have done any ASP.NET programming or even any classic ASP programming,
you will recognize the code here as standard forms programming. This tech-
nique gives you a good way to integrate Silverlight into existing ASP.NET
applications.

16_524657-ch10.indd 22316_524657-ch10.indd 223 3/31/10 11:43 AM3/31/10 11:43 AM

224 Part III: Connecting with Data

The last step is to write the code that Silverlight uses to post the data to this
form and get the results back. Follow these steps:

 1. Open the MainPage.xaml file.

 2. Find the Button and the Click event code.

 3. Right-click the word Button_Click and select Navigate to Event
Handler from the menu that appears.

 This takes you to the MainPage.xaml.cs file inside the event handler
for the Button_Click event.

 4. Declare a byte array variable at the top of the class by adding the fol-
lowing code immediately under the public partial class MainPage :
UserControl:

private byte[] byteArray;

 5. Go back to the Button_Click event handler and create the form data
to post to the server page by adding the following code:

byteArray = Encoding.UTF8.GetBytes(“FirstName=” +
FirstName.Text + “&LastName=” + LastName.
Text);

 6. Specify the server page address you want to POST your data to by
adding the following code:

Uri address = new Uri(HtmlPage.Document.DocumentUri,
“/PostForm.aspx”);

 7. Create a new request object with the following code:

var request = (HttpWebRequest)HttpWebRequest.
Create(address);

 8. Specify that you want to do a POST with the following code:

request.Method = “POST”;

 9. Specify the content type (a very important step — without this step,
the server doesn’t know that you are posting Form variables to it) by
adding the following code:

request.ContentType = “application/x-www-form-
urlencoded”;

 10. Add the following code to start the process of POSTing the data:

request.BeginGetRequestStream(GetRequestStream,
request);

16_524657-ch10.indd 22416_524657-ch10.indd 224 3/31/10 11:43 AM3/31/10 11:43 AM

225 Chapter 10: Accessing Data in Silverlight

 This step is the first part of a two-step process. Here, you get the
RequestStream so that you can write your data to it before it is
POSTed. Notice that you pass the request object that is making the call
to BeginGetRequestStream as well. You will use the request object
shortly.

 11. Create the new GetRequestStream method by adding the following
code immediately underneath the Button_Click event code:

private void GetRequestStream(IAsyncResult ar)
{
}

 12. Get a reference to the request that is making the call to this method
by adding the following code:

var request = (HttpWebRequest)ar.AsyncState;

 Remember that this is an asynchronous task, so you need to know
which request object you are working on. That’s why you pass it to the
method in Step 10.

 13. Write the data from your TextBoxes into the request object with the
following code:

using (Stream post = request.EndGetRequestStream(ar))
{
post.Write(byteArray, 0, byteArray.Length);
post.Close);
}

 14. Now that the request object has the data, start the process of getting a
response from the server with the following code:

request.BeginGetResponse(GetResponseResult, request);

 Notice that you pass the request through again so that you can keep
your method calls synchronized using the same request.

 15. Process the response from the server by creating a new method called
GetResponseResult with the following code:

private void GetResponseResult(IAsyncResult ar)
{
}

 16. Get a reference to the response from the server by adding the follow-
ing code to the GetResponseResult method:

var request = (HttpWebRequest)ar.AsyncState;
var response = (HttpWebResponse)request.

EndGetResponse(ar);

16_524657-ch10.indd 22516_524657-ch10.indd 225 3/31/10 11:43 AM3/31/10 11:43 AM

226 Part III: Connecting with Data

 17. Retrieve the value of the response from the response object with the
following code:

var responseValue = new StreamReader(response.
GetResponseStream()).ReadToEnd();

 18. Get the returned value and set it as the value of the TextBlock on the
page so that you can see it:

ContentText.Dispatcher.BeginInvoke(() =>{ContentText.
Text = responseValue;});

 Remember that you’re doing asynchronous programming — you need
to make sure that you use the correct processing thread to set the Text
property. You can do that easily by using the TextBlock’s BeginInvoke
method on its Dispatcher property. If you don’t do it this way, you will
get cross-threading errors. Threading is a complicated issue, so for the
purpose of this book, the following explanation is sufficient to explain
why you use the Dispatcher property to update the Text property of
the ContentText TextBlock control.

 The Silverlight application is running in what is known as the UI (user
interface) Thread, or the Main Thread. Each time the application makes
a call to a method such as BeginGetResponse, a new thread is cre-
ated so that the time that request takes to execute does not stop the
user interface from responding to the user. If the second thread then
tries to update a property of a control on the Main Thread, a cross-
threading error will occur. This is why controls have the Dispatcher
property that can be used to update properties from different threads.

 19. Run the application by pressing F5 or clicking the green Play button.

 You should see two text boxes and a button.

 20. Type your name into the text boxes and click the button.

 Under the button, you should see what you typed appearing in the fol-
lowing format:

 First Name: Philip Last Name: Beadle

Using the HttpWebRequest class with POST is a very valuable technique for
integrating Silverlight into existing sites and is an excellent way to interact
with Web services. It is more complicated to use than the WebClient class,
however, so use the WebClient class where you can.

Talking to Web Services
Web services are the connecting glue of the Internet. Many companies
around the world expose their data and services via Web services for you
to use in your applications. Some examples are Flickr, PhotoBucket, and

16_524657-ch10.indd 22616_524657-ch10.indd 226 3/31/10 11:43 AM3/31/10 11:43 AM

227 Chapter 10: Accessing Data in Silverlight

Windows Live, which allow applications such as Silverlight to interact with
their systems via Web services. However, Silverlight does not allow this
access unless the Web service has a cross-domain policy file in place. A cross-
domain policy file is a small XML file that lets Silverlight know that it’s okay to
call the service even though the service is on a different domain than the one
that the Silverlight application is running on. Silverlight requires services to
have this policy because it’s a strong security feature to protect users from
malicious code that can damage files on their computer.

Just because a Web service doesn’t have a cross-domain policy, however,
doesn’t automatically mean that you can’t get your application to access that
service. As with just about everything in the .NET world, an effective work-
around exists. In this section, we first show you how to use Web services that
Silverlight can automatically access. Later, in the section “Accessing a Web
service without a cross domain policy file,” you find out how to get Silverlight
to allow access to the services that have no cross-domain policy in place.

Accessing Web services that allow
cross-domain exchanges
Think of a Web service as a pre-existing piece of your application that runs all
the time on the Internet. You don’t need to create it because it’s already been
created and used by others. That Web service conforms to the standard way
Web services are published, so that you can easily add that functionality into
your application without having to worry about how it was implemented. All
you care about are the results.

There are several different ways to build and access Web services that have
all sorts of acronyms and sound pretty complicated but essentially all do the
same thing. Web services expose data, such as photographs, and methods
to act on that data for you, such as uploading. Think of a popular Web site
such as Flickr (www.flickr.com). Flickr allows people to upload photos
to their servers and then show the photos to their friends. Flickr also pub-
lishes a Web service that allows developers like you to access their systems
to upload and manipulate photos with code. Flickr also has a cross-domain
policy in place that allows a Silverlight application to access it directly. The
Flickr Web service can be accessed through several different protocols. A
protocol is the way in which you access the Web service.

If you have a look at the Services API page on Flickr, www.flickr.com/
services/api/, you can see under the Format section that Flickr has several
different protocols for talking to the Web service. The first one is called REST,
which stands for Representational State Transfer. All that really means is that
you can open a Web browser and type in the Web service URL with some
parameters, such as a search term, and you will see the data as XML on your
screen. REST is one of the easiest protocols to use, so we start off with it.

16_524657-ch10.indd 22716_524657-ch10.indd 227 3/31/10 11:43 AM3/31/10 11:43 AM

228 Part III: Connecting with Data

Before you begin building the following example, you need to get a Flickr
developer’s account so that you can get your own key and password, called
a secret, that you use when you craft the requests to the Web service. To get
your own Flickr developer account, follow these steps:

 1. Open a Web browser.

 2. Navigate to www.flickr.com/services.

 This is the Flickr Services page, with a list of all the methods the Web
service makes available to you as a developer. The list of methods is
often called an API, which stands for Application Programming Interface.

 3. To log in to Flickr, you must have a valid Yahoo! account. If you have
one, click the Sign In link and supply your Yahoo! e-mail address and
password in the pop-up dialog box that appears, and then click the
Sign In button to log in.

 If you don’t yet have a Yahoo! account, go to www.yahoo.com, click the
Sign Up link, and follow the instructions for creating an account. Then go
back to Flickr and enter your new e-mail address and password.

 4. Click the button that says Get API Key and fill out the form that asks
you about your application.

 This generates a new key and secret that we use in the example to
access the Web service.

After you have created a Flickr developer account, try the following:

 1. Open a new Web browser.

 2. Type http://api.flickr.com/services/rest/?method=flickr.
photos.search&api_key=yourkeygoeshere&text=australia in
the address box.

 3. Press Enter.

 You now see the XML data that comes back from the Flickr Web service
when you use the REST format. The return data is XML, which means
you can use the new Language Integrated Query (LINQ) syntax in your
code to make it really easy to turn that raw XML into a useful list of
items.

If you haven’t used LINQ before, don’t worry: The example is very simple,
and we are using LINQ to easily create a list of items that we can add to the
list box. (LINQ is a very valuable tool to use when programming in .NET.)

After you have seen the raw data, you are ready to write some code against
the API and show the photos in your Silverlight application. The example
pulls down a list of photos based on a search tag and displays them in a list
box that uses an Image control to show the photo.

16_524657-ch10.indd 22816_524657-ch10.indd 228 3/31/10 11:43 AM3/31/10 11:43 AM

229 Chapter 10: Accessing Data in Silverlight

To access the Flickr Web service, follow these steps:

 1. Open Visual Studio.

 2. Choose File➪New Project, select Silverlight Application from the
dialog box, and call it SilverlightForDummiesFlickrREST.

 3. Click OK in the next dialog box that appears.

 You should now have a new Visual Studio Solution with two projects in
it: the Silverlight application and a Web site.

 4. Open the MainPage.xaml.cs file by double-clicking it in the Solution
Explorer.

 5. Create a new instance of a WebClient class as we did in the section
“Downloading files using the WebClient class” by adding the follow-
ing code immediately after InitializeComponent:

var service = new WebClient();

 6. Tell the service instance what to do when it is completed by typing
the following code on the next line:

service.DownloadStringCompleted

 7. On the same line, type a plus sign and then an equal sign, and then
press Tab twice.

 This automatically generates the event handler code for the
DownloadStringCompleted event.

 You should see the code for the event handler and event assignment
generated for you by Visual Studio.

 8. Call the Web service by adding the following code immediately
after the line that assigns the DownloadStringCompleted event to
the service:

service.DownloadStringAsync(new Uri(“http://api.
flickr.com/services/rest/?method=flickr.
photos.search&api_key=use your own
key&text=australia”));

 9. In the event handler for the DownloadStringCompleted event,
remove the exception that is automatically added for you and replace
it with the following code so that you can see what is returned:

MessageBox.Show(e.Result);

 10. Run the application by pressing F5 or by clicking the green Play
button.

 A pop-up box with the same XML data you saw in the browser window
previously appears.

16_524657-ch10.indd 22916_524657-ch10.indd 229 3/31/10 11:43 AM3/31/10 11:43 AM

230 Part III: Connecting with Data

That’s how easy it is to access a Web service using the REST protocol. That
wasn’t a very interesting example, however, so we’re going to take it a step
further and process the returned XML and display the photos in a ListBox
control. We do this in two stages. First, we add a simple ListBox control and
process the XML into a list of Photo objects using LINQ. Second, we modify
the ListBox and make it show the photos:

 1. In the Silverlight project, open the MainPage.xaml file by double-
clicking it if it’s not already open.

 This shows you the XAML for the file.

 2. Add a new ListBox control to the XAML between the Grid tags by
adding the following code:

<ListBox x:Name=”PhotoList”
DisplayMemberPath=”title”/>

 3. Add a new reference to System.Xml.Linq by right-clicking
References in the Solution Explorer and selecting Add New Reference.

 System.Xml.Linq is at the bottom of the list.

 4. Add a new class called Photo by right-clicking the Silverlight project
name, choosing Add➪Class, and typing the name Photo into the Name
field of the dialog box.

 5. Add the following properties to the Photo class by adding the follow-
ing code to the class:

public string Id { get; set; }
public string Secret { get; set; }
public string Server { get; set; }
public string Farm { get; set; }
public string Title { get; set; }

 6. Add the ImageUrl property (which concatenates the other properties
you added in Step 5 to properly format the URL to show the photo) by
adding the following code:

public string ImageUrl
{
get
{ return string.Format(“http://farm{0}.static.

flickr.com/{1}/{2}_{3}.jpg”, Farm, Server, Id,
Secret);

}
}

 7. To use LINQ, you need a new XDocument object that you create from
the result of the Web service call. Replace the MessageBox code in
the event handler with the following code:

16_524657-ch10.indd 23016_524657-ch10.indd 230 3/31/10 11:43 AM3/31/10 11:43 AM

231 Chapter 10: Accessing Data in Silverlight

XDocument xmlPhotos = XDocument.Parse(e.Result);

 8. Write a LINQ statement against the new XDocument to turn the XML
into a list of Photo objects by using the following code:

var photos = from photo in xmlPhotos.Element(“rsp”).
Element(“photos”).Descendants().ToList()

select new Photo{
Id = (string)photo.Attribute(“id”),
Secret = (string)photo.Attribute(“secret”),
Server = (string)photo.Attribute(“server”),
Farm = (string)photo.Attribute(“farm”),
Title = (string)photo.Attribute(“title”)
};

 This code examines the XML you downloaded, finds the different ele-
ments in it, and creates a new Photo object for each one it finds.

 9. Assign the newly created list of Photo objects to the ItemsSource
property of the PhotoList ListBox with the following code:

PhotoList.ItemsSource = photos;

 10. Press F5 or click the green Play button to see a list of the first 100
photo titles in the ListBox.

If you’ve followed along throughout all the step lists in this chapter, you have
called the Flickr Web service, processed the XML result, and set the list of
items in the ListBox control. By setting the ItemsSource property of the
ListBox, you have Silverlight create a new ListBoxItem for each Photo object
and add it to the ListBox. The ListBox is able to show the title of each photo
because we set the DisplayMemberPath to Title. However, the ListBox
has no idea how to actually show the photograph of the Photo object; at
this point it can only show Title because the only property we have set is the
DisplayMemberPath to show the Title of the photo.

The really cool thing about this is that each ListBoxItem in the ListBox
knows which Photo object it has. This means that you can add other con-
trols to the ListBox and show different parts of the Photo object. So the next
task is to define what each item in the ListBox should look like by telling the
ListBox what its ItemTemplate is.

For this task, you use a cool feature of Silverlight called binding. You can
think of binding as a way to tell the Silverlight XAML what to put in controls.
In this example, you want to show the photograph associated with each item
you get back from the Flickr Web service. To do this, you add an Image con-
trol to the ListBox control’s ItemTemplate and then bind the source of the
Image control to the ImageUrl property of the Photo object associated with
that item. (See Chapter 9 for more information on binding.)

16_524657-ch10.indd 23116_524657-ch10.indd 231 3/31/10 11:43 AM3/31/10 11:43 AM

232 Part III: Connecting with Data

Follow these steps to show the photos from the Web service:

 1. Open the MainPage.xaml file by double-clicking it.

 2. Remove the DisplayMemberPath property from the PhotoList ListBox
control.

 3. Create a data template for the ListBox control that shows the photo in
an ImageControl by adding the following code to the ListBox:

<ListBox x:Name=”PhotoList”>
<ListBox.ItemTemplate>
<DataTemplate>
<Image Source=”{Binding ImageUrl}”/>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

 4. Run the application by pressing F5 or clicking the green Play button.

 You should now see a list of photos.

REST-based Web services such as the Flickr service are becoming more and
more popular, especially for public-facing services. However, other types of
protocols for accessing Web services are available, and we discuss those in
the following sections.

Programming against a Web
service that has a WSDL
What’s a WSDL? This acronym — pronounced wiz-del — stands for Web
Service Description Language and is an XML file that describes everything
about a Web service, such as the methods it contains and the types of
objects it can interact with. The Flickr REST service discussed in the previous
section did not have a WSDL, so you have to rely on written documentation
to discover how to construct your calls to the Web service. If the Web service
has a WSDL, however, you can use a tool such as Visual Studio to help you
out when programming against it.

The beautiful thing about programming against a Web service with a tool like
Visual Studio is that you simply add a reference to the Web service as you
would add a reference to a local assembly. Visual Studio then adds all of the
“plumbing” code that is needed to write code against the Web service. Part of
this “plumbing” code is called a proxy class, which includes all of the methods
that the Web service exposes. A proxy class means that the class is a local

16_524657-ch10.indd 23216_524657-ch10.indd 232 3/31/10 11:43 AM3/31/10 11:43 AM

233 Chapter 10: Accessing Data in Silverlight

representation of the class and not the real class, hence the term proxy. The
proxy class generation by Visual Studio is what makes programming against
a Web service so easy.

The proxy class generation means that you get full IntelliSense when pro-
gramming against the Web service. (IntelliSense makes programming much
easier and means you have less chance to create bugs.)

The best way to see all this in action is with a demonstration that shows you
how to add a Service Reference and then demonstrates IntelliSense for a Web
service. Follow these steps to use a WSDL to create the proxy class and show
IntelliSense with Visual Studio:

 1. Open Visual Studio.

 2. Create a new Silverlight Application by choosing File➪New Project,
selecting Silverlight Project from the dialog box that appears, and call-
ing the new application SilverlightForDummiesWSDL.

 3. In the Solution Explorer, right-click the Silverlight application’s
References node.

 4. Select Add Service Reference from the menu that appears.

 5. In the dialog box, enter the following:

http://api.search.live.net/search.wsdl

 6. Press Go to see the service show up in the window just below the
address, as shown in Figure 10-2.

Figure 10-2:
The Add
Service

Reference
dialog box.

16_524657-ch10.indd 23316_524657-ch10.indd 233 3/31/10 11:43 AM3/31/10 11:43 AM

234 Part III: Connecting with Data

 7. In the Name Space field, type BingServiceReference and click OK.

 This causes Visual Studio to generate all the required files so that you
can easily program against this service as if it were a local assembly.

 8. Open the MainPage.xaml.cs file.

 9. In the Constructor, where it says public MainPage(), add the fol-
lowing code:

var service = new BingServiceReference();

 10. On the next line, type service and then a period, like so:

service.

 11. Select any of the available methods from the IntelliSense listing that
appears.

Having a WSDL for a Web service makes programming against it much
easier. This is because you don’t need to use classes such as WebClient
or HttpWebRequest to call the methods on the Web service. You use the
ServiceReference object that you created; then, IntelliSense lists all the
available methods, which you then program against as if it were a local
assembly. We discuss how to call these methods on the ServiceReference
object in the next section.

Creating your own WSDL Web service
In this chapter thus far, we’ve looked at a few different ways in which Web
services manifest themselves on the Internet. But what about when you want
to create your own? Visual Studio makes it very easy to create your own Web
services. In this section, we look at creating your own ASP.NET Web service
and using it in a Silverlight application.

When you create a Web service with Visual Studio, Visual Studio automati-
cally creates the WSDL file for you, which makes the service much easier to
program against. When you create a Web service with Visual Studio, the tem-
plate also creates a HelloWorld method for you, so you get a fully function-
ing Web service without writing any code at all!

In this example, you see how to create an ASP.NET Web service and then
call the HelloWorld method to display the results of the method in your
Silverlight application. You do it in two parts: first by creating the Web ser-
vice, and then by showing the results of the HelloWorld method in your
Silverlight application.

16_524657-ch10.indd 23416_524657-ch10.indd 234 3/31/10 11:43 AM3/31/10 11:43 AM

235 Chapter 10: Accessing Data in Silverlight

Follow these steps to create the Web service:

 1. Open Visual Studio.

 2. Create a new project by choosing File➪New Project and selecting
Silverlight Application from the dialog box.

 3. Call the new Application SilverlightForDummiesWebService.

 4. In the Solution Explorer, right-click the
SilverlightForDummiesWebService.Web project and select Add New
Item from the menu that appears.

 The Add New Item dialog box appears.

 5. Select Web Service and call it HelloWorldWebService.

 6. Press Ctrl+Shift+B to build your solution, or press F6.

 7. Add a new Service Reference to the Silverlight Application by
right-clicking References in the Solution Explorer inside the
SilverlightForDummiesWebService project.

 The Add Service Reference dialog box appears.

 8. Click the Discover button in the Add Service Reference dialog box.

 This locates the newly created HelloWorldWebService.

 9. Name the service reference HelloWorldServiceReference.

 10. If the MainPage.xaml file is not already open, double-click it in the
Solution Explorer to open it.

 11. Add a StackPanel control between the Grid tags by adding the follow-
ing XAML:

<StackPanel>
</StackPanel>

 12. Add a button with a Click event inside the StackPanel with the fol-
lowing code:

<Button Click=”Button_Click” Content=”Submit”/>

 13. Add a TextBlock to show the formatted string you get back from the
HelloWorld Web service:

<TextBlock x:Name=”ContentText” />

 14. In the Button tag, right-click the words Button_Click and select
Navigate to Event Handler from the menu that appears.

 This adds the event handler code to the MainPage.xaml.cs file and
takes you directly to the event handler.

16_524657-ch10.indd 23516_524657-ch10.indd 235 3/31/10 11:43 AM3/31/10 11:43 AM

236 Part III: Connecting with Data

 15. Create a new service object with the following code inside the
Button_Click event handler:

var service = new HelloWorldServiceReference.
HelloWorldWebServiceSoapClient();

 16. Create a new event handler for the completed event of the service
object by typing the following code:

service.HelloWorldCompleted

 17. Use the Visual Studio shortcut to automatically generate the event han-
dler code by typing a plus sign and an equal sign and then pressing the
Tab button twice immediately after entering the code in Step 16.

 18. Inside the new event handler, replace the exception code that is auto-
matically generated with the following code:

ContentText.Text = e.Result;

 19. Add the call to the Web service by adding the following line of code
to the end of the Button_Click event handler:

service.HelloWorldAsync();

 20. Press F5 or click the green Play button to run the application.

 A button appears.

 21. Click the button to see the words Hello World display on your
screen.

Understanding Cross-Domain Security
The Silverlight plug-in for your browser runs inside the browser and is
therefore subject to the same security restrictions that a browser is. One
of the restrictions that is imposed on Silverlight is that it can only retrieve
resources from the same domain that the Silverlight application is running
on. For example, if your Silverlight application is running on www.mydomain.
com/MySilverlightApplication.aspx, by default, the application can
only access resources that have the same domain name. If you call a Web ser-
vice on www.mydomain.com/MyWebService.asmx, it will work perfectly,
exactly as it did in the previous example. However, if you hosted that exact
same Web service on a different domain, you would get a cross-domain secu-
rity exception, as shown in Figure 10-3.

16_524657-ch10.indd 23616_524657-ch10.indd 236 3/31/10 11:43 AM3/31/10 11:43 AM

237 Chapter 10: Accessing Data in Silverlight

Figure 10-3:
Cross-

domain
security.

Creating a cross-domain policy file
The Internet would be not be very useful if applications could access
resources only on their own domain names. Instead, a cross-domain policy
file makes it safe to use other resources. A cross-domain policy file is an XML
file that you can add to your site to allow specific access to your resources
from Silverlight applications. The following code shows a cross-domain
policy file. This file must be named crossdomainpolicy.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers=”*”>
 <domain uri=”*”/>
 </allow-from>
 <grant-to>
 <resource path=”/api” include-subpaths=”true”/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Accessing a Web service without
a cross-domain policy file
As mentioned earlier in this chapter, you don’t have to simply give up on
using services that Silverlight thinks you shouldn’t use (in other words,
services that don’t have a cross-domain policy). You can use a workaround
to get that important data into your application. All it takes is a little ingenu-
ity and some knowledge of how the Silverlight .NET Framework is slightly
different than its bigger brother the .NET Framework. The Silverlight .NET
Framework has some built-in security restrictions that make it secure for

16_524657-ch10.indd 23716_524657-ch10.indd 237 3/31/10 11:43 AM3/31/10 11:43 AM

238 Part III: Connecting with Data

running on your user’s machine without having to worry about viruses. This
means that Silverlight allows you to call only a Web service that is running
on the same domain as your Silverlight application. Using this workaround
does not compromise the security of your Silverlight application because the
Silverlight application is still following the rules of accessing only a service
that’s on its own domain.

The full version of the .NET framework does not have this restriction, so
you can use this fact to build a workaround for Web services with no cross-
domain policy.

All you need to do to implement the workaround is to create your own Web
service that runs on the same domain as your Silverlight application. You
then use this Web service to call the Web service you are interested in and
implement the methods you need to call from your Silverlight application.
Your Silverlight application calls your new Web service, which then calls the
external Web service. When your new Web service has the results, it returns
the data to your Silverlight application. Voilà! You have that elusive data in
your application.

Using the workaround: An example
In the following example, we take you through accessing the weather service
from The Weather Channel Web site (www.weather.com) and downloading
the weather forecast for the next four days. The Weather Channel site does
not have a cross-domain policy set up, so you cannot access the service
directly. To access the weather data, we show you how to build your own
weather Web service that you know you can access from your Silverlight
application because it runs on the same domain. This new Web service will
then access The Weather Channel weather service and get the data you
require for your Silverlight application. Remember that the full .NET runtime
does not have the cross-domain restrictions that Silverlight has, so it can
access the weather data even though there is no cross-domain policy in place.

After you have built your own weather service, you then access that service
from our Silverlight application and display the weather forecast.

Before you can get started with this example, you first need to register and
get an access key from https://registration.weather.com/ursa/
xmloap/step1. It’s a simple registration form that asks you for information
such as your e-mail address, ZIP Code, Web site name, and so on.

After you have an access account, you’re ready to get started. You do this
in three steps. First, you create the new Web service and get the data from
www.weather.com. Second, you write the XAML required to show the
weather forecast data. Third, you get the data from your new service and
show it in the Silverlight application.

16_524657-ch10.indd 23816_524657-ch10.indd 238 3/31/10 11:43 AM3/31/10 11:43 AM

239 Chapter 10: Accessing Data in Silverlight

Build the new Web service by following these steps:

 1. Open Visual Studio.

 2. Create a new project by choosing File➪New Project and selecting
Silverlight Application from the dialog box.

 3. Call the new Application SilverlightForDummiesWeatherForecast.

 4. In the Solution Explorer, right-click the
SilverlightForDummiesWeatherForecast.Web project and select Add
New Item from the menu that appears.

 5. Select Web Service from the dialog box from Step 4 and call it
WeatherWebService.

 6. Delete the HelloWorld Web method.

 This is added by default when you create a new Web service, and you
don’t need it here.

 7. Add a new Web method called GetWeatherForecastXml by adding
the following code:

[WebMethod]
public string GetWeatherForecastXml()
{
}

 8. Open a Web browser, go to www.weather.com, type your location
into the Search box at the top of the page, and click Search.

 In the address bar of the Web browser, you see a new address that
contains the word local followed by a forward slash and then a code.
This is your locality key. The locality key should look similar to this one,
which is for Melbourne, Australia: ASXX0075.

 9. Declare the address of the www.weather.com Web service you want
to access by adding the following code to the new method:

 You need to use your own PAR, KEY, and locality for this that you were
sent in the e-mail you received when you signed up for the service.

var sUrl =”http://xoap.weather.com/weather/local/
YOURLOCAL?=*&dayf=5&link=xoap&par=YOURPAR&key=YOURKEY&

unit=m”;

 10. Create a new XmlDocument object to store the result of the call to The
Weather Channel Web service with the following code:

var xmlDoc = new XmlDocument();

 11. Load the XML from the address and return it to the method with the
following code:

xmlDoc.Load(sUrl);
return xmlDoc.OuterXml;

 12. Press Ctrl+Shift+B to build your solution, or press F6.

16_524657-ch10.indd 23916_524657-ch10.indd 239 3/31/10 11:43 AM3/31/10 11:43 AM

240 Part III: Connecting with Data

Your new Web service is ready to go. You can try it using the following steps:

 1. Right-click the WeatherService.asmx file in the Solution Explorer.

 2. Select View in Browser from the menu that appears.

 You should see a Web page with the XML returned from the www.
weather.com Web service.

After you’ve got the new Web service working, you need to write the XAML
required to show the results of your Web service in your Silverlight application.

Follow these steps to create the user interface for the weather forecast:

 1. In the SilverlightForDummiesWeatherForecast project, open the
MainPage.xaml file by double-clicking it.

 2. Add an ItemsControl to the XAML and call it WeatherForecastList by
adding the following code:

<ItemsControl x:Name=”WeatherForecastList” >
</ItemsControl>

 3. Add an ItemTemplate to the ItemsControl by adding the following
code between the ItemsControl tags:

<ItemsControl.ItemTemplate>
<DataTemplate>
</DataTemplate>
</ItemsControl.ItemTemplate>

 4. Add a StackPanel control inside the DataTemplate tags with the fol-
lowing code:

<StackPanel></StackPanel>

 5. Inside the StackPanel, add a TextBox control for the Day, Low
Temperature, High Temperature, and Description with the following
code:

<TextBlock Text=”{Binding Day}”/>
<StackPanel Orientation=”Horizontal”>
<TextBlock Text=”Low: “/>
<TextBlock Text=”{Binding TemperatureLow}”/>
<TextBlock Text=” High: “/>
<TextBlock Text=”{Binding TemperatureHigh}”/>
</StackPanel>
<TextBlock Text=”{Binding Description}”/>

 Notice that you are using binding again; refer to Chapter 9 for more
information on binding.

16_524657-ch10.indd 24016_524657-ch10.indd 240 3/31/10 11:43 AM3/31/10 11:43 AM

241 Chapter 10: Accessing Data in Silverlight

 6. Add an ImageControl immediately after the last TextBlock to show the
icon for the weather with the following code:

<Image Source=”{Binding Icon}” />

 7. Press F6 to build the solution.

You have now built a new Web service that will access the weather forecast
data from The Weather Channel Web site and have built the XAML to display
the weather forecast. When you signed up to The Weather Channel Web site,
you were sent an e-mail with some instructions and a .zip file that contains
all of the icons used in the weather forecast. Before you write any code in
the Silverlight application, you need to get those icons into the application.
Follow these steps to do this:

 1. Unzip the file you were sent.

 You now have access to a folder called Weather Icons.

 2. Copy the Weather Icons folder by right-clicking it and selecting Copy
from the menu that appears.

 3. Open the SilverlightForDummiesWeatherForecast project; right-click it
and select Paste from the menu that appears.

 You now see the Weather Icons folder in your project.

You are now ready to tackle the last phase of the workaround for accessing
a Web service that does not have a cross-domain policy in place. In this last
phase, you create a service reference to your new Web service exactly as you
did in the section on creating your own WSDL Web service. This generates the
proxy classes you need to access the Web service. After you add the service ref-
erence, we show you how to write some code to call the Web service and pro-
cess the returned XML data exactly as you did with the Flickr example earlier in
this chapter. Then you set the ItemsSource property of the ItemsControl to
the list of WeatherForecast objects we created. When this is done, you will be
able to see the weather forecast in your Silverlight application.

To access your new Web service and display the results, follow these steps:

 1. Add a new service reference to the Silverlight application by
right-clicking References in the Solution Explorer inside the
SilverlightForDummiesWeatherForecast project.

 The Add Service Reference dialog box appears.

 2. Click the Discover button.

 This finds the WeatherWebService.

 3. Name the service reference WeatherServiceReference.

16_524657-ch10.indd 24116_524657-ch10.indd 241 3/31/10 11:43 AM3/31/10 11:43 AM

242 Part III: Connecting with Data

 4. Open the MainPage.xaml.cs file.

 5. Find the constructor of the page that says

public MainPage()

 6. In the constructor, create a new WeatherServiceSoapClient by adding
the following code:

var proxy = new WeatherServiceReference.
WeatherServiceSoapClient();

 7. Create a new event handler for the
GetWeatherForecastXmlCompleted event by typing

proxy.GetWeatherForecastXmlCompleted

 followed by a plus sign and an equal sign and then pressing the Tab
button twice.

 8. Add a new class called WeatherForecast to the project by right-
clicking the SilverlightForDummiesWeatherForecast project and
choosing Add➪Class.

 9. Add the properties to the class by adding the following code inside
the class:

public string Day { get; set; }
public string TemperatureHigh { get; set; }
public string TemperatureLow { get; set; }
public string Icon { get; set; }
public string Description { get; set; }

 10. Add a reference to System.Xml.Linq.dll by right-clicking the
References node in Solution Explorer and selecting Add Reference.

 11. Click the Browse tab and select the assembly in the folder C:\Program
Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client; then click OK.

 12. Inside the newly generated GetWeatherForecastXmlCompleted
event handler, write the following LINQ statement:

var weatherXml = XDocument.Parse(e.Result);
var forecast = (from f in weatherXml.

Descendants(“day”)
select new WeatherForecast{Day = f.Attribute(“t”).

Value,Description = f.Element(“part”).
Element(“t”).Value, Icon = string.Format(“/
SilverlightData;Component/Assets/WeatherIcons/
{0}.png”, f.Element(“part”).Element(“icon”).
Value),TemperatureHigh = f.Element(“hi”).
Value,TemperatureLow = f.Element(“low”).
Value}).ToList();

 This code creates a list of WeatherForecast objects from the XML you
got back from the Web service.

16_524657-ch10.indd 24216_524657-ch10.indd 242 3/31/10 11:43 AM3/31/10 11:43 AM

243 Chapter 10: Accessing Data in Silverlight

 13. Set the ItemsSource property of the WeatherForecastList control to
forecast by adding the following code immediately after the code
from Step 12.

WeatherForecastList.ItemsSource = forecast;

 14. Call the Web service by adding the following code to the end of the
constructor:

proxy.GetWeatherForecastXmlAsync();

 15. Run the application by pressing F5 or by clicking the green Play
button.

 You should see a screen similar to the one in Figure 10-4.

You probably noticed that it takes a few seconds for the weather forecast
to display. That’s because it takes time to get the data from The Weather
Channel Web site’s service. This is a great feature of asynchronous program-
ming: The users see your application before the data is ready, so they per-
ceive a greater speed and thus a better user experience.

Figure 10-4:
The weather

forecast
Web

service.

16_524657-ch10.indd 24316_524657-ch10.indd 243 3/31/10 11:43 AM3/31/10 11:43 AM

244 Part III: Connecting with Data

Authenticating Users
When you build a Web service, you generally need some sort of method to
identify the person calling the Web service. Unless your service is a free-for-
all and you don’t care who uses it, you should put logic in place to require
your user to log in to your service. When users log in to your service, they
are authenticated because you now know who they are.

ASP.NET has a built-in authentication system, which means you don’t need to
write your own. This makes it relatively simple to add authentication to your
Web service with only a small amount of code. To use the ASP.NET authenti-
cation system, you need to add an attribute to your WeatherService class
from the previous section’s example to tell .NET that your class is ASP.NET-
compatible. You also need to write a new method, which we call Login here,
to use the ASP.NET authentication system to log in and authenticate the user.

Follow these steps to implement authentication on your WCF service:

 1. Open the SilverlightForDummiesWeatherForecast solution from the
previous section.

 2. In the Web site part of the SilverlightForDummiesWeatherForecast.
Web solution, find your Web Service called WeatherService and
double-click it to open it.

 3. Near the top of the file where it says public class
WeatherService, add the ASP.NET Compatibility attribute by using
the following code:

 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]

public class WeatherService : : System.Web.Services.
WebService

 A Web service by default does not maintain its state between requests.
This means that if you set a variable in one call, it will not be set
the next time you want to use it. To overcome this problem, set
AspNetCompatibilityRequirements to Allowed, which then main-
tains the state for you by allowing the use of cookies and session states.
The code in bold in the code block for this step does this for you.

 4. Open the WeatherService.asmx.cs file and implement the new
Login method by adding the following code:

public void Login(string userName, string password)
{if(userName==”Dummies” && password==”Dummies”)
 {
 FormsAuthentication.SetAuthCookie(userName,true);
}
}

16_524657-ch10.indd 24416_524657-ch10.indd 244 3/31/10 11:43 AM3/31/10 11:43 AM

245 Chapter 10: Accessing Data in Silverlight

 5. Find the GetWeatherForecastXML method and add some logic to
check whether the user is logged in. Do this by adding the code in
bold to the method:

public string GetWeatherForecastXml()
{ if(HttpContext.Current.User.Identity.

IsAuthenticated)
{ const string sUrl = “http://xoap.weather.com/

weather/local/ASXX0075?cc=*&dayf=5&link=xoap∏=
xoap&par=your par&key=your key&unit=m”;

var xmlDoc = new XmlDocument();
xmlDoc.Load(sUrl);
return xmlDoc.OuterXml;
}
else
{
 return “”;
}
}

 6. Build your solution by pressing Ctrl+Shift+B.

Your weather service now implements some authentication. Now, anyone
who logs in to your Web service with the username and password of
Dummies is granted access to the service. All you need to do is modify your
Silverlight application to require login. It’s simple: You just need to call the
Login method from your Silverlight application and pass it the username
and password combination. The service runs the Login method and sets the
Authentication cookie so that you can then access the service.

Follow these steps to implement the login procedure:

 1. Open the SilverlightData project in Visual Studio.

 2. Update the Service Reference by right-clicking the
WeatherServiceReference under the ServiceReferences folder and
selecting Update Service Reference from the menu that appears.

 3. Find the Weather.xaml.cs file and open it by double-clicking the
file.

 4. Declare a new variable to hold the instance of your
WeatherServiceClient by adding the following code just above the
OnNavigatedTo event:

private WeatherServiceReference.WeatherServiceClient
proxy;

 5. Remove the var keyword from the line of code that says

var proxy = new WeatherServiceReference.
WeatherServiceClient();

16_524657-ch10.indd 24516_524657-ch10.indd 245 3/31/10 11:43 AM3/31/10 11:43 AM

246 Part III: Connecting with Data

 6. Start creating a new event handler for the new login method imme-
diately after the line you changed in Step 5 by typing proxy followed
by a period (.), and then selecting LoginCompleted from the list of
options shown to you in Visual Studio, like this:

proxy.LoginCompleted

 7. Type a plus and then an equal sign and then press Tab twice.

 This automatically generates the rest of the code you need for the
LoginCompleted event handler. Two pieces of code are generated. One
looks like this:

proxy.LoginCompleted += new EventHandler<System.
ComponentModel.AsyncCompletedEventArgs>(proxy_
LoginCompleted);

 The other part looks like this:

void proxy_LoginCompleted(object sender, System.
ComponentModel.AsyncCompletedEventArgs e)

{
throw new NotImplementedException();
}

 8. Move the line that says

proxy.GetWeatherForecastXmlAsync();

 from the OnNavigatedTo event code to the new method proxy_
LoginCompleted event.

 9. Delete the line that says

throw new NotImplementedException();

 10. Call the Login method on your service by adding the following
code to the OnNavigatedTo event immediately after you create the
LoginCompleted event by adding the following code:

proxy.LoginAsync(“Dummies”, “Dummies”);

Your final code should look like the following:

private WeatherWCFServiceReference.
WeatherWCFServiceClient proxy;

protected override void OnNavigatedTo(NavigationEvent
Args e)

{

 proxy = new WeatherServiceReference.
WeatherServiceClient();

16_524657-ch10.indd 24616_524657-ch10.indd 246 3/31/10 11:43 AM3/31/10 11:43 AM

247 Chapter 10: Accessing Data in Silverlight

 proxy.GetWeatherForecastXmlCompleted += proxy_
GetWeatherForecastXmlCompleted;

 proxy.LoginCompleted += new EventHandler<System.
ComponentModel.AsyncCompletedEventArgs>(proxy_
LoginCompleted);

 proxy.LoginAsync(“Dummies”, “Dummies”);

}

void proxy_LoginCompleted(object sender, System.
ComponentModel.AsyncCompletedEventArgs e)

{

 proxy.GetWeatherForecastXmlAsync();

}

You may have noticed that you moved the call to the GetWeatherForecast
method in the completed event for the Login. You do this to allow the ser-
vice time to actually log in before you try to call the service. If you don’t do
this, the asynchronous nature of Silverlight may let the GetWeatherForecast
service be called before the login service. If that happens, you receive no
weather forecast information.

16_524657-ch10.indd 24716_524657-ch10.indd 247 3/31/10 11:43 AM3/31/10 11:43 AM

248 Part III: Connecting with Data

16_524657-ch10.indd 24816_524657-ch10.indd 248 3/31/10 11:43 AM3/31/10 11:43 AM

Chapter 11

Using WCF Data Services
to Store and Manage Data

In This Chapter
▶ Getting started with WCF Data Services

▶ Using WCF Data Services in a Silverlight application

▶ Tracking and saving changes

▶ Handling data concurrency

▶ How to use query and change interceptors

▶ Controlling access to entity sets

This part of the book is, of course, all about connecting your Web site with
the data you need to access for it, and this chapter shows you how to

access data over the Internet from your Silverlight application using one of
two types of Web services discussed in this part. In this chapter, that service
uses The Software Formerly Known as Astoria — which now goes by the
name of WCF Data Services — for data access. (The next two chapters delve
into using WCF RIA Services, thereby introducing you to the next generation
of data access from a Rich Internet Application [RIA]). You can use both ser-
vices together, too, so you’ll find it helpful to get comfortable with this chap-
ter’s material before you go on to the rest of this part.

WCF Data Services and WCF RIA Services are both free downloads from
Microsoft that you need to install on the machine you use for application
development. The version of WCF Data Services that this chapter is based
on is the 1.5 Community Technical Preview (CTP). Microsoft releases tools
such as this into the community before final release so that the company can
gather community feedback from early adopters before the final product is
released. The main reason for using the 1.5 CTP release is that it introduces a
vital feature missing in the 1.0 release, two-way data binding. (Chapter 9 tells
you about data binding.)

17_524657-ch11.indd 24917_524657-ch11.indd 249 3/31/10 11:43 AM3/31/10 11:43 AM

250 Part III: Connecting with Data

In this chapter, we demonstrate the use of WCF Data Services by developing
a very simple blogging engine. (We use the same example in the WCF RIA
Services chapters as well to highlight the differences between the two tech-
nologies.) In this chapter, you find out how to create an Entity Framework
model of your data, add a WCF Data Service to your solution to access the
data through the Entity Framework, and manage the data in your Silverlight
application.

Getting Started with WCF Data Services
Obviously, you can’t get much service out of data access technology without
having a data source from which to access the data. Data sources come in
various programs, such as SQL Server, SQL Server Express, Access, Oracle,
MySQL, and a variety of lesser-known databases. In this chapter, the source
we use for examples is Microsoft SQL Server Express (SQL Express), which
you can download for free and easily install using the Web Platform Installer
(WPI). The WPI is a common installation tool for a lot of great platforms,
tools, and applications. It makes installing these applications, including SQL
Express, very simple.

After you’ve established a place to store your data, you need to design the
database tables for your blogging engine. Two tables in the blogging engine
are created for the example in this chapter, as follows:

 ✓ Post: For storing blog posts

 ✓ Comment: For storing comment posts

 Note that the table names are singular, not plural, even though it might seem
more logical to make them plural. We make them singular for two reasons.
One is that it is a best practice in database design to use singular names for
database tables. Also, to access your data from a Silverlight application using
WCF Data Services, you need one more piece of the puzzle: the ADO.NET
Entity Framework.

The ADO.NET Entity Framework allows you to develop your application against
a representation of a data source rather than the actual data source. This
means that you end up writing less code because the Entity Framework classes
that are generated for you by Visual Studio do a lot of the heavy lifting for you,
leaving you to concentrate on the interesting parts of your application.

When you use WCF Data Services with ADO.NET Entity Framework in Visual
Studio, the tools automatically generate a set of proxy classes based on
the design of the database. So, for example, the Post and Comment tables

17_524657-ch11.indd 25017_524657-ch11.indd 250 3/31/10 11:43 AM3/31/10 11:43 AM

251 Chapter 11: Using WCF Data Services to Store and Manage Data

will generate code that has Posts and Comments collections of Post and
Comment objects. The letter s appended to the name of the table in the data-
base is part of the process of generating the Entity Framework class code.
Therefore, if you had called a table Posts, as is a common way to name a
table, the code generator would create a collection of Posts objects. Plus it
would name the collection of these Posts objects Postss because it adds an
s to the name of the Posts table to generate the collection name. This is the
second reason for naming your database tables correctly when using ADO.
NET Entity Framework.

 A proxy class is a class that is generated on the client side of the application
but that represents a server-side class.

To recap, SQL Server Express contains a database. You then create a set of
classes with Visual Studio that represents those database tables by adding an
Entity Framework to the project. After you have created those classes, you
use WCF Data Services to generate the client-side proxy classes that you use
in your application to access the data.

What, Exactly, Is WCF Data Services?
When you build a Silverlight application, 99.9 percent of the time you will be
interacting with a database to store and update data. Even simple applica-
tions such as a blogging engine require numerous operations to be useful. At
a minimum, the blogging engine needs the ability to create a new Post entry,
update a Post entry, read a Post, and delete a Post. These operations —
CREATE, READ, UPDATE, and DELETE — are commonly referred to as CRUD
operations and are generally needed for every table in your database no
matter what the application is for. So you can see that the number of opera-
tions can get quite large very quickly.

After you have your database established, you have to give it a way to inter-
act with your database from your Silverlight application. It’s nowhere near
the database; instead, it sits on a user’s machine, running in the browser.
Therefore, you need some sort of Web service to connect your data with
your application across the Internet. Several technologies are available that
are designed to help you do this, as follows:

 ✓ Simple Web services: In Microsoft land, these are called ASMX Web ser-
vices, and files used with these services have an .asmx extension. We
talk about these extensively in Chapter 10.

 ✓ Windows Communication Foundation (WCF) Services: This is a more
advanced set of Web services that allows you to provide security and
reliability more easily than you can using ASMX Web services.

17_524657-ch11.indd 25117_524657-ch11.indd 251 3/31/10 11:43 AM3/31/10 11:43 AM

252 Part III: Connecting with Data

 ✓ Java Script Object Notation (JSON): This provides serialization ser-
vices. JSON is a text-based way to describe an object and its property
values so that the object can be sent over a Web service and translated
at the other end.

Each of these types of technology allows you to make a call to the backend
server to perform the CRUD operations. The downside to each of these
services, however, is that for every single different operation, such as
CreatePost, UpdatePost, ReadPost, and DeletePost, you need to create
a method in your service and then call it explicitly from your application. You
also have to write a separate method to return a list of Posts ordered by
date and a separate method to return the Posts ordered by title. So you can
imagine that for an application of any complexity, the number of methods
you need to write and maintain gets to be quite a heavy workload.

Of course, we wouldn’t be telling you all of this unless we had a way to
make your life easier. Enter WCF Data Services, which makes handling CRUD
operations — and others that we get into later — much easier and simpler to
maintain than do the services described previously. WCF Data Services uses
what’s called a RESTful interface. REST, which stands for Representational
State Transfer, works by defining an address for your service and passing
that service a query. This way, the service itself can figure out what you want
returned. The great advantage of this method is that you don’t need to write
all those CRUD operations on the server side anymore; you can simply pass a
query to the service and be returned a result.

For example, the URL http://host/service.svc/Posts?$orderby=Date
would return all the Posts ordered by the Date property. But you don’t have
to write a special method on the service to make this happen; instead, the
service itself creates the method and interrogates the data source itself. You
can also use a URL such as http://host/service.svc/Posts(5), which
would return the Post with a unique identifier of 5. When you design a data-
base table, there will be a primary key that uniquely identifies the row in the
database; this is the key that is being referred to here.

Don’t worry too much about these URLs, because you won’t see them unless
you are accessing the service directly through a browser. Silverlight hides
this complexity and makes it very easy to use WCF Data Services.

Both of these URLs will return an XML document with all the data you need,
as shown in Figure 11-1. Again, don’t worry too much about the complexity of
this document; Silverlight uses this data to make it very easy for you to pro-
gram against the WCF Data Service.

17_524657-ch11.indd 25217_524657-ch11.indd 252 3/31/10 11:43 AM3/31/10 11:43 AM

253 Chapter 11: Using WCF Data Services to Store and Manage Data

Figure 11-1:
WCF Data

Service
in a Web
browser.

The example we take you through in this chapter shows you how to query
your data source using WCF Data Services, which is the equivalent of the READ
operation we discussed previously. But what about the others? Well, another
really elegant part of the story is that the four operations for CRUD just happen
to correspond beautifully with the well-known verbs of standard HTTP. These
are GET, PUT, POST, and DELETE, and the following table shows how the CRUD
operations of CREATE, READ, UPDATE, and DELETE correspond to the HTTP
verbs of PUT, GET, POST, and DELETE.

Database Operation HTTP Verb

CREATE PUT

READ GET

UPDATE POST

DELETE DELETE

And the story just gets better. Because you use HTTP for all your request
operations, you can employ all the standard HTTP header tags in the
response message from the server to do things such as return error mes-
sages from your database. You can also manage data concurrency issues
(which we look at in detail a little later in this chapter).

17_524657-ch11.indd 25317_524657-ch11.indd 253 3/31/10 11:43 AM3/31/10 11:43 AM

254 Part III: Connecting with Data

Creating a WCF Data Service
The preceding sections of this chapter briefly discuss the different parts of
the application’s structure and how they work. Now you can start building a
sample application.

In this section, we show you how to do the following:

 1. Create a database to store the data.

 2. Add the ADO.NET Entity Framework and WCF Data Service to the Web
application part of the Silverlight application. (Remember that Visual
Studio automatically adds a Web application when you create a new
Silverlight Application.)

 3. Create the proxy classes for a Silverlight application.

 After you have those proxy classes in place, you can then start to write
some code to manipulate the data in the database.

Creating the database
In this part, we show you how to create a new database, add two tables to
it, and add a set of columns to each table. After you have the tables in place,
you see how to tell SQL Server how the tables relate to each other to form a
relational database.

Creating the database
To create the database, follow these steps:

 1. Open SQL Server Express Management Studio.

 2. In the left pane, called the Object Explorer, right-click Databases and
choose New Database.

 3. Set the name to Silverlight For Dummies.

 4. Click OK.

Adding the tables
You add tables as follows:

 1. Click the plus sign next to the newly created database.

 2. Right-click Tables and select New Table.

 3. In the Column Name field, type Id.

17_524657-ch11.indd 25417_524657-ch11.indd 254 3/31/10 11:43 AM3/31/10 11:43 AM

255 Chapter 11: Using WCF Data Services to Store and Manage Data

 4. In the Data Type column, select int.

 5. Deselect the check box for the Allow Nulls column.

 6. To the left of where you added Id, right-click and choose Set Primary
Key from the menu that appears.

 7. In the Column Properties pane at the bottom of the screen, click the
plus sign next to Identity Specification.

 8. Change the Is Identity property to Yes.

 9. Add another column to the table by clicking in the next row down,
underneath where you added Id, and call this column Title.

 10. Set the Title column’s Data Type to nvarchar(50).

 11. Set the Allow Nulls property to Off.

 12. Add another column, call it Content, set its Data Type to ntext, and
set Allow Nulls to Off.

 13. Add a column called Date, set its Data Type to datetime, and set
Allow Nulls to Off.

 14. Click the Save button and name the table Post.

 15. Create another table by right-clicking Tables and selecting New Table.

 16. Follow Steps 7 to 12 to add an Id column to the new table.

 17. Add another column, call it Comment, set its Data Type to ntext, and
set Allow Nulls to Off.

 18. Add a column called Date, set its Data Type to datetime, and set
Allow Nulls to Off.

 19. Add a final column, call it PostId, set its Data Type to int, and set
Allow Nulls to Off.

 20. Click the Save button and call the table Comment.

Create the relationship between the tables
Follow these steps to create table relationships:

 1. In the Object Explorer, right-click Database Diagrams and select New
Database Diagram to create the relationship.

 The Add Table dialog box appears, with an option to create support
objects.

 2. Click Yes to create support objects.

 3. In the Add Table dialog box, double-click the Post and Comment tables.

 These tables are added to the design surface behind the dialog box.

 4. Click OK.

17_524657-ch11.indd 25517_524657-ch11.indd 255 3/31/10 11:43 AM3/31/10 11:43 AM

256 Part III: Connecting with Data

 5. Click your mouse and hold it down on top of the PostId column in the
Comment table; then drag it on top of the Id column on the Post table
and release.

 The relationship is created for you.

 6. Click the Save button and leave the default name as is for the diagram.

 7. Click OK.

 8. Press F6 to build your solution.

 You now have the two tables related to each other by the PostId in the
Comment table and the Id field in the Post table (see Figure 11-2).

Figure 11-2:
SQL Server

Express
database

diagram for
the Post and

Comment
tables.

Adding the ADO.NET Entity Framework
To perform this part of the process, you need a new Silverlight application
that you build with Visual Studio 2010. We are using Visual Studio because
it’s the tool of choice for building Web services and other code-related tasks.
Expression Blend is more suitable for design- and interaction-oriented tasks.

 1. Open Visual Studio.

 2. Choose File➪New Project➪Silverlight Application.

 3. Name the project SilverlightForDummiesWCFDataServices.

 4. In the next dialog box, leave the default values as they are and click OK.

Now that you have a standard Silverlight application started, it’s a good time
to add the ADO.NET Entity Framework classes to the application. To do so,
follow these steps:

 1. Locate the Web Application part of the Visual Studio solution in the
Solution Explorer window.

 If you left the defaults in the previous task, the Web Application part of
the solution will be at the bottom of the window.

17_524657-ch11.indd 25617_524657-ch11.indd 256 3/31/10 11:43 AM3/31/10 11:43 AM

257 Chapter 11: Using WCF Data Services to Store and Manage Data

 2. Right-click the project called SilverlightForDummiesWCFData
Services.Web and select Add New Item.

 3. Select ADO.NET Entity Data Model.

 4. In the Name text box at the bottom of the dialog box, enter BlogModel.
edmx, as shown in Figure 11-3, and click the Add button.

 Clicking the Add button starts the Entity Data Model Wizard.

Figure 11-3:
The dialog

box for
adding

new entity
framework

classes.

 5. In the Entity Data Model Wizard, select Generate from Database.

 6. Click the Next button.

 The Data Connection screen appears, showing your database selected
by default.

 7. In the data connection drop-down list, select Silverlight For Dummies.

 This should be selected by default.

 8. At the bottom of the dialog box, enter BlogEntities as the name of
the Entity Data Model, as shown in Figure 11-4.

 9. Click the plus sign next to the word Tables.

 This expands the list of tables in your database, allowing you to select
the tables for which you want to generate an Entity Framework.

 10. Select the Post and Comment tables.

 11. Click Finish.

 Visual Studio generates a model from the tables you selected.

 12. Locate the file BlogModel.edmx and double-click it to see the model
of the database tables.

 You see the Entity Data Model design surface in Visual Studio, which
looks like Figure 11-5.

17_524657-ch11.indd 25717_524657-ch11.indd 257 3/31/10 11:43 AM3/31/10 11:43 AM

258 Part III: Connecting with Data

Figure 11-4:
Entity Data

Model
Wizard

showing the
Entity Name

step of the
wizard.

Figure 11-5:
Entity Data

Model
design

surface.

17_524657-ch11.indd 25817_524657-ch11.indd 258 3/31/10 11:43 AM3/31/10 11:43 AM

259 Chapter 11: Using WCF Data Services to Store and Manage Data

Looking at the figure, you’re probably thinking that it looks just like the tables
in the database. Well, it does — except for a couple of things. Have a close look
at the bottom of the Post object and you’ll see the word Comment; also, at the
bottom of the Comment object is the word Post. These are the navigation prop-
erties that tell the entity model what the relationship is between the two objects.

Just below the two objects is the Mapping Details section. In this section,
you can modify the default settings of the wizard. You can change which field
maps to which other field; also, you can edit the names of the fields. Click the
button in the red circle (see Figure 11-6, although you can’t see the red here, of
course) to set up the model to use stored procedures in the database, thereby
taking care of all the data access. But hang on a minute: Where’s the function
to just read the data? To set that up, you need to import your stored procedure
and associate it to a function. We don’t go into that here, however, because
we use the Entity Model to generate any database access code we need (and
because using stored procedures is outside the scope of this book).

Figure 11-6:
Entity Data

Model
mapping

details.

Adding the WCF Data Service
At the beginning of the chapter, we discuss using services to interact with the
database and how this ability to interact is necessary because the Silverlight
application runs inside the browser, not on the server as a typical Web page

17_524657-ch11.indd 25917_524657-ch11.indd 259 3/31/10 11:43 AM3/31/10 11:43 AM

260 Part III: Connecting with Data

does. The Silverlight application has to be able to “talk” to the server, which
means that it needs to communicate across the Internet from the user’s com-
puter to the backend server. This is where the WCF Data Service comes in.
Adding that service is easy; just follow these steps:

 1. Right-click the Web project and select Add New Item.

 The Add New Item dialog box appears.

 2. Select WCF Data Service and name it BlogService.svc, as shown in
Figure 11-7.

Figure 11-7:
Adding the
WCF Data

Service.

 As you’ve probably noticed, the service name that you’re adding here
has an .svc extension. This is because WCF Data Services are actually
a type of WCF Service. That’s a good thing, too, because they have the
good security, reliability, and configurability of WCF Services.

 3. Open the BlogService.svc.cs file by double-clicking it in the
Solution Explorer.

 4. Locate the following line of code in that file:

/* TODO: put your data source class name here */

 5. You use the preceding line to define the entities that the service will
interact with, so to fill out this line, open the BlogModel.designer.
cs file and look at the line containing the class definition:

public partial class BlogEntities : global::System.Data.Objects.
ObjectContext

17_524657-ch11.indd 26017_524657-ch11.indd 260 3/31/10 11:43 AM3/31/10 11:43 AM

261 Chapter 11: Using WCF Data Services to Store and Manage Data

 6. All the entities you need to interact with are contained in this class,
so go back to the BlogService.svc.cs file and type BlogEntities in
place of the TODO section.

 If you remove the /* TODO: put your data source class name
here */ text and start typing Blog, Visual Studio IntelliSense will show
you a list of options for completing the class name BlogEntities. You
can then select BlogEntities from the list and press Tab.

 7. In the BlogService.svc.cs file, you can see that there are two
commented-out lines below the word Examples. Uncomment them by
removing the // from the beginning of each line.

 You can do this easily by selecting both lines and pressing Ctrl+K+U.

 8. At this point, you are not going to restrict the use of the Entity Sets or
Service Operations, so change MyEntitySet to an asterisk (*) and
change EntitySetRights to All. Then change MyServiceOperation
to an asterisk (*).

 We return to this topic a bit later, in “Controlling Access to Entity Sets,”
to refine your application access strategy.

Using the WCF Data Service
in a Silverlight Application

The previous section shows you how to set up everything needed to access
the database via WCF Data Services on the server. In this section, we show
you how to interact with the database from your Silverlight application.

Generating the proxy classes
in the Silverlight application
In this section, you find out how to create the proxy classes inside the Silverlight
application. Creating proxy classes makes it very easy for you to program
against the functionality of the WCF Data Service described in the previous sec-
tion. Even though the WCF Data Service is on the server, the generated proxy
classes are part of the Silverlight application. Visual Studio generates the proxy
classes for you when you add a Service Reference to the Silverlight application. A
Service Reference is similar to a normal reference except that instead of referenc-
ing a local assembly such as System.Net, you add a reference, such as http://
localhost:80/ BlogService.svc, to a service.

17_524657-ch11.indd 26117_524657-ch11.indd 261 3/31/10 11:43 AM3/31/10 11:43 AM

262 Part III: Connecting with Data

To add a Service Reference, follow these steps:

 1. With your SilverlightForDummiesWCFDataServices Silverlight
project open, locate the node in the Visual Studio Solution Explorer
called References.

 You find that node just under the project name SilverlightForDummies
WCFDataServices.

 2. Right-click that node and select Add Service Reference.

 3. Click Discover.

 The services in your solution appear in a drop-down list. If all goes
well and you created the BlogService.svc we describe in the previ-
ous section, that file appears in the Address drop-down list. (It’s in the
Services section. If you don’t see this file, Visual Studio can’t find it. Try
again by pressing Ctrl+Shift+B or choosing Build➪Rebuild Solution.)

 4. Click the + (plus sign) next to BlogService.svc to expand it (see
Figure 11-8).

Figure 11-8:
Adding the

Service
Reference.

Here’s what just happened when you created the Service Reference. Several
times, we have referred to proxy classes, and those are what we want you to
look at now. To do so, click the Silverlight Application project and then select
the Show All Files option so that you can see the hidden files. Now expand the
Service References folder and then the BlogServiceReference; under that, you
see more files. Open all the folders so that you see what’s shown in Figure 11-9.
If you don’t see all the files shown, choose Project➪Show All Files.

17_524657-ch11.indd 26217_524657-ch11.indd 262 3/31/10 11:43 AM3/31/10 11:43 AM

263 Chapter 11: Using WCF Data Services to Store and Manage Data

The Reference.datasvcmap file contains information about where the service
is located. It also has some meta data about the Entity Framework model.

Figure 11-9:
Investigating

the proxy
classes.

The Reference.cs file defines three classes:

 ✓ BlogEntities

 ✓ Post

 ✓ Comment

Post and Comment represent the objects you will be working with, and
BlogEntities is the parent class that allows you to work with these
objects. Note that one of the properties of the Post class is a collection of
Comment objects. This makes sense because there is a one-to-many relation-
ship between Post and Comment. A one-to-many relationship means that for
any one Post record in the database, there can be many Comment records.
As you would expect, the Comment class has a Post property, as well.

Reading data from the database
To read data from your database, you need to have at least a few records
to read! So if you have a database already established, you can use that, or
manually add a few records to both the Post and Comment tables from the
blog example in this chapter.

You use the BlogEntities class to query the service for the data you need
for your application. To use this class, you first have to create a new instance
of it, which is called the context. Then you tell Silverlight both what to do when
it has finished reading the data and to actually read the data. (If this sounds
confusing, remember that all actions on services from Silverlight are asynchro-
nous, so you have to tell it what to do when finished before you tell it to start;
otherwise, your application won’t know what to do when it has the data.)

17_524657-ch11.indd 26317_524657-ch11.indd 263 3/31/10 11:43 AM3/31/10 11:43 AM

264 Part III: Connecting with Data

The next steps will seem familiar to you if you have read Chapter 10. To read
some data from the database with WCF Data Services, follow these steps:

 1. In the SilverlightForDummiesWCFDataServices project, open the
MainPage.xaml.cs file by double-clicking it in the Solution Explorer.

 2. Find the following piece of code:

public partial class MainPage : UserControl
{

 This is the class declaration.

 3. Immediately after the beginning brace ({), create a new Context
object by adding the following code:

private BlogEntities _ctx = new BlogEntities(new
Uri(“BlogDataService.svc”, UriKind.Relative));

 4. Open the MainPage.xaml file by double-clicking it in the Solution
Explorer.

 5. At the top of the file is the UserControl header. Immediately after
<UserControl, type a space and then start typing the word Loaded.

 A feature of Visual Studio called IntelliSense springs into action when
you begin typing. IntelliSense is a tool to help you write better code
faster by giving you the options available at that point in the code. Use
this feature often to be more productive in Visual Studio.

 6. Select the word Loaded from the IntelliSense list.

 7. Type an equal sign.

 8. Select <Add New Event Handler> from the IntelliSense list that appears.

 9. Right-click UserControl_Loaded and select Navigate to Event
Handler from the IntelliSense options that appear.

 The MainPage.xaml.cs opens and goes to the newly created event
handler for UserControl_Loaded (see Figure 11-10).

 10. Inside the UserControl_Loaded event handler, create a LINQ query
by adding the following code to the event handler:

private void UserControl_Loaded(object sender,
RoutedEventArgs e)

{
 var query = (from p in _ctx.Post select p);
 var dq = (query) as DataServiceQuery<Post>;
 dq.BeginExecute(PostsLoaded, dq);
}

17_524657-ch11.indd 26417_524657-ch11.indd 264 3/31/10 11:43 AM3/31/10 11:43 AM

265 Chapter 11: Using WCF Data Services to Store and Manage Data

Figure 11-10:
The

Loaded
event and

context
declaration.

 The first line creates a query that asks for all the Post objects in the
database. The second line creates a DataServiceQuery object that
will return a list of Post objects. The third line indicates that all the
Post objects in the database should be returned to the PostsLoaded
method when the query is finished.

 11. Create a new method called PostsLoaded by adding the following
code directly after the UserControl_Loaded event handler:

private void PostsLoaded(IAsyncResult ar)
{
}

 The IAsynchResult is the parameter passed back from the WCF Data
Service when you call the following code in the UserControl_Loaded
event:

dq.BeginExecute(PostsLoaded, dq);

 12. Retrieve the query from the IAsynchResult returned to the
PostsLoaded method WCF Data Service by adding the following code:

private void PostsLoaded(IAsyncResult ar)
{
 var query = (DataServiceQuery<Post>)ar.AsyncState;
}

 13. Extract the list of Post objects from the IAsynchResult object by
adding the following code:

private void PostsLoaded(IAsyncResult ar)
{
 var query = (DataServiceQuery<Post>)ar.AsyncState;
 var entities = query.EndExecute(ar).ToList();
}

17_524657-ch11.indd 26517_524657-ch11.indd 265 3/31/10 11:43 AM3/31/10 11:43 AM

266 Part III: Connecting with Data

 14. Open the MainPage.xaml file by double-clicking it in the Solution
Explorer.

 15. Add a DataGrid control to the XAML between the Grid tags by adding
the following code:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <data:DataGrid x:Name=”PostsDataGrid”>

</data:DataGrid>
</Grid>

 16. Set the ItemsSource property of the DataGrid control to the entities
you retrieved from the database in Step 13 by adding the following
code to the end of the PostsLoaded event (added in Step 11):

private void PostsLoaded(IAsyncResult ar)
{
 var query = (DataServiceQuery<Post>)ar.AsyncState;
 var entities = query.EndExecute(ar).ToList();
 PostsDataGrid.ItemsSource = entities;
}

 17. Run the application by pressing F5 or clicking the green Play button.

 There you have it; your Silverlight application should now retrieve the
Posts and show them in the DataGrid control. You should get a result
similar to the one shown in Figure 11-11.

Figure 11-11:
Posts show-

ing in the
DataGrid.

In a nutshell, here’s what you accomplish with the preceding steps: In the
UserControl_Loaded event, you create a query object that is cast into a
DataServiceQuery of type Post. This step turns a normal LINQ query into
a DataServiceQuery, which is the type of object you need to be able to
call the WCF Data Service. If you put a break point on the next line and check
the value of dq, you see that it is the URL {http://localhost:40526/
BlogDataService.svc/Post()}.Entering that URL into a browser would
display the resulting list of Posts from the database.

After the DataServiceQuery is set up, you start the execution by calling
BeginExecute and passing it the Data Service Query and the method to call

17_524657-ch11.indd 26617_524657-ch11.indd 266 3/31/10 11:43 AM3/31/10 11:43 AM

267 Chapter 11: Using WCF Data Services to Store and Manage Data

when it has finished querying the database The last line of code in Step 10
calls the BeginExecute method on the DataServiceQuery object.

The PostsLoaded method fires when the query has finished and the
data service is ready to show you the results. In the preceding steps,
DataServiceQuery of type Post comes from the Asynchronous result and
runs EndExecute on it.

To get the LINQ query to execute and return a result, you call the ToList()
method (see Step 13). You then set the PostsDataGrid ItemsSource
property to the entities list that appears as a result Step 13.

Excellent — you can now query your Post table via WCF Data Services! But
we can hear you saying, “How do I get the comments to show?” You can load
all the comments for each post in one query and then use another DataGrid
control to show those comments. To do so, you use the Expand command.
Follow these steps to load the comments for each post in the database:

 1. Open the MainPage.xaml.cs file by double-clicking it in the Solution
Explorer.

 2. Find the UserControl_Loaded event.

 3. Locate the following line of code:

var query = (from p in _ctx.Post select p);

 4. Change that line of code to the following:

var query = (from p in _ctx.Post.Expand(“Comments”)
select p);

 5. Open the MainPage.xaml file by double-clicking it in the Solution
Explorer.

 6. Add a StackPanel control inside the Grid tags by adding the following
bolded code:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel></StackPanel>
</Grid>

 7. Highlight the XAML for the existing PostsDataGrid control and drag it
inside the StackPanel control tags.

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <my:DataGrid x:Name=”PostsDataGrid” >

</my:DataGrid>
 </StackPanel>
</Grid>

17_524657-ch11.indd 26717_524657-ch11.indd 267 3/31/10 11:43 AM3/31/10 11:43 AM

268 Part III: Connecting with Data

 You need to use a StackPanel control when you add more than one
control to the page so that the controls do not draw over the top of
each other.

 8. Add a new DataGrid control directly below the PostsDataGrid control
by adding the following bolded code:

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <my:DataGrid x:Name=”PostsDataGrid” >

</my:DataGrid>
 <my:DataGrid x:Name=”CommentsDataGrid”>

</my:DataGrid>
 </StackPanel>
</Grid>

 9. Add a SelectionChanged event to the PostsDataGrid control by
adding the code in bold to it:

<data:DataGrid x:Name=”PostsDataGrid”
SelectionChanged=”PostsDataGrid_
SelectionChanged”></data:DataGrid>

 10. Right-click the words PostsDataGrid_SelectionChanged and select
Navigate to Event Handler in the IntelliSense context menu that
shows up.

 The MainPage.xaml.cs file opens, showing the code that Visual
Studio automatically added for the new event handler. The code looks
like this:

private void PostsDataGrid_SelectionChanged(object
sender, SelectionChangedEventArgs e)

{
}

 11. Add the following code to set the ItemsSource property of the new
CommentsDataGrid control to the Comment property of the selected
Post item in the PostsDataGrid control when a user clicks the grid:

private void PostsDataGrid_SelectionChanged(object
sender, SelectionChangedEventArgs e)

{
 CommentsDataGrid.ItemsSource = ((Post)

PostsDataGrid.SelectedItem).Comments;
}

 12. Run the application by pressing F5 or clicking the green Play button.

 13. Click a Post item in the PostsDataGrid control and watch how the
CommentsDataGrid changes to the list of comments associated to that
post in the database.

17_524657-ch11.indd 26817_524657-ch11.indd 268 3/31/10 11:43 AM3/31/10 11:43 AM

269 Chapter 11: Using WCF Data Services to Store and Manage Data

Updating data in the database
After the data grids for the posts and comments show the information in
the database, you need to be able to keep any changes a user makes to this
data in your application. The data grids make it very easy for a user to make
changes. If a user types something into one of the grids, the data is changed
in your Silverlight application but is not saved to the database. If the user
navigates away from your Silverlight application, the changes he or she made
are not stored.

To make sure that the application saves any changes a user makes to the
data in the PostsDataGrid, add a Button control to the StackPanel. Then add
a Click event to the Button, use the BeginSaveChanges method on the
data context, and provide a callback method for when the SaveChanges
method has finished. Follow these steps to implement data saving:

 1. Open the Visual Studio solution called SilverlightForDummies
WCFDataServices.

 2. Open the MainPage.xaml file by double-clicking it in the Solution
Explorer.

 3. Inside the bottom of the StackPanel control, add a new Button control
by adding the following code that appears in bold:

<StackPanel>
 <data:DataGrid x:Name=”PostsDataGrid”

SelectionChanged=”PostsDataGrid_
SelectionChanged”></data:DataGrid>

 <data:DataGrid x:Name=”CommentsDataGrid”></
data:DataGrid>

 <Button Click=”Button_Click” Content=”Save”/>
</StackPanel>

 4. Right-click Button_Click and select Navigate to Event Handler in the
drop-down list that appears.

 The automatically added code looks like this:

private void Button_Click(object sender,
RoutedEventArgs e)

{
}

 5. Inside the event handler, call the BeginSaveChanges method of the
data context you created previously (Step 4) with the following code:

private void Button_Click(object sender,
RoutedEventArgs e)

{
 _ctx.BeginSaveChanges(SaveChangesOptions.Batch,

Save_Complete, null);
}

17_524657-ch11.indd 26917_524657-ch11.indd 269 3/31/10 11:43 AM3/31/10 11:43 AM

270 Part III: Connecting with Data

 6. Create a new method called Save_Complete as the callback method
for the BeginSaveChanges method by adding the following code:

private void Save_Complete(IAsyncResult result)
{
}

 7. Add a Boolean variable called succeeded and set it to true inside the
Save_Complete method by adding the following code:

private void Save_Complete(IAsyncResult result)
{
 var succeeded = true;
}

 The succeeded variable is going to be used to test whether the Save
operation was successful and used to display the appropriate message
to the user.

 8. Add the following code to add a try-catch block that sets the success
Boolean variable to false if an error occurs when you try to save:

private void Save_Complete(IAsyncResult result)
{
 var succeeded = true;
 try
 {
 }
 catch (Exception ex)
 {
 Debug.WriteLine(string.Concat(“Save

 Operation Threw an Exception: “, ex));
 succeeded = false;
 }
}

 This code also writes the exception to the Output window. You can see
the Output window in Visual Studio by choosing View➪Output.

 9. Add the following code that appears in bold to extract the response
from the IAsynchResult parameter that is passed back to the Save_
Complete method inside the try part of the try-catch block by the
BeginSaveChanges method:

try
 {
 var response = _ctx.EndSaveChanges(result);
 }
 catch (Exception ex)
 {
 succeeded = false;
 }

17_524657-ch11.indd 27017_524657-ch11.indd 270 3/31/10 11:43 AM3/31/10 11:43 AM

271 Chapter 11: Using WCF Data Services to Store and Manage Data

 10. Process the response and check it for errors by adding the following
code to the try section of the try-catch block directly under the line
you added in Step 9:

foreach (var opResponse in response)
{
 if (opResponse.Error != null)
 {
 Debug.WriteLine(string.Concat(“Failed to save:

“, opResponse.StatusCode));
 succeeded = false;
 }
}

 11. Check the succeeded Boolean variable and display a MessageBox
dialog box showing the success or failure of the Save operation by
adding the following code after the try-catch block.

if (succeeded)
 MessageBox.Show(“Saved!”);
else
 MessageBox.Show(“Failed to save!”);

 12. Build the solution by pressing F6.

 13. Run the application by pressing F5 or clicking the green Play button.

 14. Click in the PostsDataGrid control and change the title of a post.

 15. Click the Save button.

 16. Click the refresh button for your browser (or press F5, which works as
a refresh command for most browsers).

 A message box pops up with Saved! in it.

When you run the application with this function included, after you edit the
content of a post in the data grid and click the Save button, you should see a
message box appear. However, when you check the database or refresh the
page to see whether the change was saved, you find that it’s not there. That’s
because the Context object that you’re using to read and save changes does
not know that you edited the data in the data grid. By default, the Context
object does not track its own changes. To remedy this problem, you need to
make sure that the Context object knows that a change has been made each
time you edit a property of one of the Post objects.

The Post class generated by Visual Studio when you add the Service
Reference is called a partial class. With a partial class, you can create another
partial class called Post and add extra functionality to the Post class with-
out touching the generated class. You need to do it this way because if you
update the Service Reference without creating a partial class, the Post class
will be generated again and any changes you made to it will be lost.

17_524657-ch11.indd 27117_524657-ch11.indd 271 3/31/10 11:43 AM3/31/10 11:43 AM

272 Part III: Connecting with Data

Follow these steps to make sure that the Context object knows that changes
have been made to it and that it should track those changes for saving to the
database:

 1. In Visual Studio, show all the files in the solution by choosing
Project➪Show All Files.

 2. Right-click the SilverlightForDummiesWCFDataServices project
and select Add Class from the context menu that appears.

 3. Name the class Post and click OK.

 4. Wrap the new Post class in a namespace by adding the following code:

namespace SilverlightForDummiesWCFDataServices.
BlogServiceReference

{
 public partial class Post
 {

 }
}

 This namespace has to be the same as the one in the generated code so
that the extra functionality you add here is available to the application.

 5. Add the following code to inherit the new Post class from INotify
PropertyChanged so that any time a change is made to the class by
the user, the class is notified:

public partial class Post : INotifyPropertyChanged
{
}

 6. Click INotifyPropertyChanged and then press Ctrl+. (period).

 The context menu for implementing the interface appears.

 7. Select Implement Interface INotifyPropertyChanged from the context
menu.

 The code you need to implement the INotifyPropertyChanged inter-
face is automatically added. This interface has one public event called
PropertyChanged that must be implemented, which is how you notify the
Context object that one of the Post objects has been changed by the user.

 8. Add the following code to add a method that will handle the notifica-
tion of the change made to the Post object:

private void FirePropertyChanged(string propertyName)
{
 var handler = PropertyChanged;
 if (handler != null)
 handler(this, new PropertyChangedEventArgs

(propertyName));
}

17_524657-ch11.indd 27217_524657-ch11.indd 272 3/31/10 11:43 AM3/31/10 11:43 AM

273 Chapter 11: Using WCF Data Services to Store and Manage Data

 A Public event is added to the Post class that you can access in your
Silverlight application to tell the Context object whenever a change
happens to the Post object.

 9. Track whenever a change is made to the title of a post by adding the
following code:

partial void OnTitleChanged()
{
 FirePropertyChanged(“Title”);
}

 The method OnTitleChanged is one of the methods generated by
Visual Studio when the Service Reference is added. It has no code, so it
does nothing in the generated Post class. You can add some logic to tell
the Context that the Title has been changed and it should keep track
of that change. This method fires the PropertyChanged event on the
Post object whenever the title of a post is changed.

 10. Open the MainPage.xaml.cs file by double-clicking it in the Solution
Explorer.

 11. Tell the Context object to keep track of changes whenever the
PropertyChanged event is fired by adding the following code that
appears in bold to the PostsLoaded method:

private void PostsLoaded(IAsyncResult ar)
{
 var query = (DataServiceQuery<Post>)ar.AsyncState;
 var entities = query.EndExecute(ar).ToList();
 foreach (var post in entities)
 {
 post.PropertyChanged += ((sender, e) =>
 {
 var entity = (Post)sender;
 _ctx.UpdateObject(entity);
 });
 }
 PostsDataGrid.ItemsSource = entities;
}

 12. Run the application again by pressing F5 or clicking the green Play
button.

 13. Make a change to a title of a Post object and click the Save button.

When you check the database or refresh the page, you see that the change
has been saved to the database. This is because the Context object was
informed that a change had been made to a Post object and it tracked that
change and saved it.

17_524657-ch11.indd 27317_524657-ch11.indd 273 3/31/10 11:43 AM3/31/10 11:43 AM

274 Part III: Connecting with Data

Adding new items to the database
So far, we have shown you how to Read and Update data with WCF Data
Services so far — the R and the U in CRUD. Next in the list in our CRUD
adventure is the C, which stands for Creating (a new entity). To enable your
Silverlight application to create a new post, follow these steps:

 1. Open the MainPage.xaml file by double-clicking it in the Solution
Explorer.

 2. Add a new Button control immediately after the Save button by
adding the following code that appears in bold:

<StackPanel>
 <data:DataGrid x:Name=”PostsDataGrid”

SelectionChanged=”PostsDataGrid_
SelectionChanged”></data:DataGrid>

 <data:DataGrid x:Name=”CommentsDataGrid”>
</data:DataGrid>

 <Button Click=”Button_Click” Content=”Save”/>
 <Button Click=”Button_Click_1” Content=”Add”/>
</StackPanel>

 3. Right-click Button_Click_1 and select Navigate to Event Handler
from the IntelliSense list that appears.

 4. Create a new Post object and set the properties on it by adding the
following code:

var post = new Post { Title = “Just added”, Content =
“New content”, Date = DateTime.Now };

 5. Tell the Context object to add that new Post object to itself with the
following code:

_ctx.AddToPost(post);

 6. Run the application by pressing F5 or clicking the green Play button.

 7. Press the Add Button.

 8. Press the Save Button.

 A new Post record appears in the database. You can check this by
refreshing the page (press F5 while in your browser).

Now you’re probably wondering how you add a comment to your new
post as well. The process is the same for the Comment object that you just
implemented for the Post object: You create a new Comment object and
then add it to the context. However, you need to take an extra step to asso-
ciate the Comment object with the correct Post object. That step involves
the SetLink method, which sets the link between the Comment and Post

17_524657-ch11.indd 27417_524657-ch11.indd 274 3/31/10 11:43 AM3/31/10 11:43 AM

275 Chapter 11: Using WCF Data Services to Store and Manage Data

objects in the Context object. The relationship between the Post and
Comment objects is then translated into the database for you.

Follow these steps to add a Comment and Post object and link them together:

 1. Open MainPage.xaml.cs by double-clicking it in the Solution Explorer.

 2. Find the Button_Click_1 event handler.

 3. Create a new Comment object by adding the following code that
appears in bold:

private void Button_Click_1(object sender,
RoutedEventArgs e)

{
 var post = new Post { Title = “Just added”,

Content = “New content”, Date = DateTime.Now
};

 var comment = new Comment { Comment1 = “New
comment for the new post”, Date = DateTime.Now
};

 _ctx.AddToPost(post);
}

 4. Add the new Comment to the Context object by adding the following
code directly after the line of code that adds the new Post object to
the Context:

_ctx.AddToComment(comment);

 5. Set the link between the new Comment object and the new Post object
by adding the following code directly after the line of code that adds
the new Comment object to the Context:

_ctx.SetLink(comment, “Post”, post);

 6. Run the application by pressing F5 or clicking the green Play button.

 7. Click the Add button.

 8. Click the Save Button.

 9. Refresh the page by pressing F5 while in the browser.

 10. Click the new Post record in the PostsDataGrid.

 The new comment appears in the CommentsDataGrid.

Deleting entities from the database
The final CRUD operation to cover is the D, for deleting an item. To delete
an item, you call DeleteObject on the Context. One caveat, though: You

17_524657-ch11.indd 27517_524657-ch11.indd 275 3/31/10 11:43 AM3/31/10 11:43 AM

276 Part III: Connecting with Data

cannot delete a post that has comments without first deleting the comments.
To delete a post, follow these steps:

 1. Open MainPage.xaml.cs by double-clicking it in the Solution Explorer.

 2. Add a Button control called Delete directly after the Add Button by
adding the following code that appears in bold:

<StackPanel>
 <data:DataGrid x:Name=”PostsDataGrid”

SelectionChanged=”PostsDataGrid_
SelectionChanged”></data:DataGrid>

 <data:DataGrid x:Name=”CommentsDataGrid”>
</data:DataGrid>

 <Button Click=”Button_Click” Content=”Save”/>
 <Button Click=”Button_Click_1” Content=”Add”/>
 <Button Click=”Button_Click_2” Content=”Delete”/>
</StackPanel>

 3. Right-click Button_Click_2 and select Navigate to Event Handler
from the IntelliSense list that appears.

 4. Delete the Post item that is selected in the PostsDataGrid by adding
the following code to the Button_Click_2 event handler:

_ctx.DeleteObject(PostsDataGrid.SelectedItem);

 5. Run the application by pressing F5 or clicking the green Play button.

 6. Click in the PostsDataGrid on a post that has no comments.

 7. Click the Delete button.

 8. Click the Save button.

 The Saved! message box appears, showing that the post was successfully
deleted.

 9. Refresh the page by pressing F5 while in the browser.

 10. In the PostsDataGrid, click a post that you know has at least one
comment.

 11. Click the Delete button.

 12. Click the Save button.

 The Failed to Save! message box appears, showing that the post was not
deleted.

You can’t delete a post with associated comments because when you created
the database tables, you created a link between the Post and Comment tables,
and the Comment records must have a Post object associated to them. If you
deleted a post without deleting the comments first, the database would have to
leave some orphaned Comment records, which is not allowed.

17_524657-ch11.indd 27617_524657-ch11.indd 276 3/31/10 11:43 AM3/31/10 11:43 AM

277 Chapter 11: Using WCF Data Services to Store and Manage Data

Handling Data Concurrency
In the example Silverlight application in this chapter, you perform a simple
retrieve to show the blog posts in the data grid. The simple retrieve lets you
edit a post and save it to the database. However, in its current form, the save
action writes into the database no matter what has happened to the data in
the meantime, even if someone has edited the post. You shouldn’t just write
straight over the top of some else’s hard work if you can help it. Instead, you
need to establish a way to deal with concurrent use of data. You need a way
to determine whether the data you are about to update has been changed. If
it has, you need to handle it elegantly. To do so, you need to see exactly what
requests and data your application is sending over the Internet. One of the
best ways to find out exactly what is happening is to use a very cool and nec-
essary tool called Fiddler. You use Fiddler to trace http requests from your
machine and easily see the results of the trace.

To investigate what is happening on your development machine with Fiddler,
follow these steps:

 1. Start Fiddler from the Windows Start menu.

 If you don’t already have Fiddler installed, go to http://www.fiddler2.
com/Fiddler2/ to download it and install it. (It’s a free download.)

 2. Open the SilverlightForDummiesWCFDataServices project in
Visual Studio.

 3. Right-click the BlogDataService.svc file and select View in Browser.

 The XML that is returned by the WCF Data Service appears in the
browser window.

 4. Switch to Fiddler and look at the Web Sessions window on the left.

 Fiddler shows you every http request that is happening in real time.
You may even see some that you didn’t realize were happening, such as
for your e-mail programs and chat windows.

Nothing happens in Fiddler because you haven’t sent your localhost http
requests through Fiddler yet. To do so, change the address to http://
localhost.:40526/BlogDataService.svc/Post(2). (Don’t overlook
the extra period after localhost and before the colon.) Fiddler can now
trace your http requests, as shown in Figure 11-12, which reveals the request
and response headers.

 Take some time to have a look around Fiddler; it’s a great tool for really get-
ting to know how the Internet works.

17_524657-ch11.indd 27717_524657-ch11.indd 277 3/31/10 11:43 AM3/31/10 11:43 AM

278 Part III: Connecting with Data

Figure 11-12:
Fiddler

showing the
http trace

for Blog
Data

Service.
svc.

Now that you have seen a little of how Fiddler works, you can use this new
knowledge to investigate the requests from your Silverlight application and
see how to use the built-in http standard tags to manage data concurrency.
Follow these steps:

 1. Open Visual Studio 2010.

 2. Open the SilverlightForDummiesWCFDataServices solution.

 3. In the SilverlightForDummiesWCFDataServices.Web project,
double-click the BlogModel.edmx file.

 4. Click the Title field in the Post object on the design surface for the
BlogModel.edmx file.

 5. In the Concurrency Mode field of the Properties window, change the
Concurrency Mode property to Fixed.

 The Properties window is at the bottom right of the Visual Studio window.

 6. Click the Save button in Visual Studio to save the solution.

 7. Right-click the BlogDataService.svc file and select View in Browser.

 8. Insert the period after localhost in the Web browser’s address bar.

 The URL in the address bar of your browser should look like this:

http://localhost.:1245/BlogDataService.svc/

 Fiddler requires that you insert the period each time you start the browser.

17_524657-ch11.indd 27817_524657-ch11.indd 278 3/31/10 11:43 AM3/31/10 11:43 AM

279 Chapter 11: Using WCF Data Services to Store and Manage Data

 9. Open Fiddler.

 10. Refresh the Web page that shows the BlogDataService.svc so that
the session data is captured by Fiddler.

 11. Click the session in Fiddler that shows the URL for the BlogData
Service.svc service.

 12. Click the Inspectors tab on the right side of the screen in Fiddler.

 13. Click the Headers tab in the window that appears at the bottom of
Fiddler.

 In the response headers under Entity, a new line for ETag appears, as
shown in Figure 11-13. ETag stands for entity tag and is part of the http
protocol standard. The value is the value of the title for that post in the
database. Now, if you save this post to the database and someone else
has changed that value, you get an error.

Figure 11-13:
Fiddler

showing
the ETag

(entity tag).

You use ETags to maintain data concurrency. When your application
requests some data from the database, each entity will have an ETag with it
for fields that you want to maintain data integrity on. If some other process
updates the field and you try to save your data, an error occurs because the
ETag no longer matches the data in the database. This is a beautifully simple
way to manage concurrency.

Follow these steps to see how to use ETags to maintain data concurrency:

 1. With the SilverlightForDummiesWCFDataServices solution open
in Visual Studio, press F5 or the green play button.

 2. Edit the title of the first post in the PostsDataGrid.

 Do not press Save yet.

 3. Open the database by clicking the Server Explorer tab in Visual Studio.

 4. Click the small triangle next to SilverlightForDummies.mdf.

 Visual Studio connects to your database so that you can manipulate the
data in it.

17_524657-ch11.indd 27917_524657-ch11.indd 279 3/31/10 11:43 AM3/31/10 11:43 AM

280 Part III: Connecting with Data

 5. Click the small triangle next to Tables.

 The list of tables in the database expands.

 6. Right-click the Post table and select Show Table Data from the context
menu that appears.

 7. Find the Post record you edited in your Silverlight application and
change the title to “Edited Title” by typing Edited Title into the Title field.

 8. Use the Windows taskbar to switch back to the Silverlight application
and click the Save button.

 The Failed To Save! message box appears.

Changing the Concurrency mode to Fixed for the Title property in the
BlogModel.edmx file instantly gives you data concurrency checking. Also,
you can see the error reported back to the Silverlight application in Fiddler. A
message appears stating that the ETag value in the request header does not
match with the current ETag value of the object. You can now use this infor-
mation to manage how you will handle data concurrency issues.

Using Query and Change Interceptors to
Control Data Querying and Updates

Many applications need to be able to control which users can access
data and other functionality that you cannot build into the client applica-
tion because anyone using Fiddler can get detailed information about the
requests and responses your application uses. This makes it a great tool for
hackers to figure out how to attack your application. One of the ways to con-
trol data access is to intercept the queries as they come through and apply
additional processing to them.

Controlling server-side queries
with query interceptor
A query interceptor allows you to change the way a query works on the
server side. For example, earlier in the chapter, you wrote the following
query that retrieved all the posts in the database:

var query = from p in _ctx.Post select p;

17_524657-ch11.indd 28017_524657-ch11.indd 280 3/31/10 11:43 AM3/31/10 11:43 AM

281 Chapter 11: Using WCF Data Services to Store and Manage Data

In another scenario, you might want to have the application return only posts
that have comments related to them. To perform this task on the server side,
you create a query interceptor for the Posts entity collection by adding the
code in the following steps to the BlogDataService.svc.cs file. To create
the query interceptor, follow these steps:

 1. In the SilverlightForDummiesWCFDataServices.Web project,
double-click the BlogDataService.svc.cs file.

 2. Create the QueryInterceptor method by adding the following code
immediately after the InitializeService method:

public class BlogDataService :
DataService<BlogEntities>

{
 // This method is called only once to initialize

service-wide policies.
 public static void InitializeService(DataService

Configuration config)
 {
 // TODO: set rules to indicate which entity

sets and service operations are visible,
updatable, etc.

 // Examples:
 config.SetEntitySetAccessRule(“*”,

EntitySetRights.All);
 config.SetServiceOperationAccessRule(“*”,

ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion

= DataServiceProtocolVersion.V2;
 }

 [QueryInterceptor(“Posts”)]
 public Expression<Func<Post, bool>> QueryPosts()
 {

 return p => p.Comment.Count > 0;
 }
}

 This code tells any query that has Post objects in the return data to
return a Post object only if it has at least one comment attached to it.

 3. Run the application by pressing F5 or clicking the green Play button
in Visual Studio.

 Only Posts with related comments are returned now. The great advan-
tage to this approach is that any query you write on the client side will
have this extra restriction added to it each time it’s executed. As you
can imagine, this is an excellent way to restrict data access based on
who is logged in. It’s also a way to remove unwanted data from the client
application without changing the client application.

17_524657-ch11.indd 28117_524657-ch11.indd 281 3/31/10 11:43 AM3/31/10 11:43 AM

282 Part III: Connecting with Data

Enforcing rules using change interceptors
You use change interceptors to intercept any query that will change an
entity in the database. This type of interceptor is excellent for ensuring that
changes to the database follow the business rules for the application. For
example, the business rule may be that a post can’t be saved if it has no title.
Adding a change interceptor on the server side ensures that any changes to
the database are checked before being saved to the database. You can also
add some auditing features to log which user made the changes or the time
the data was changed.

The following steps show you how to ensure that no posts that have no title
are saved. (By the way, this approach is also a very good way to ensure that
any client-side validation you add is not bypassed on the way to the server.)

Follow these steps to add the change interceptor to the blog example used in
this chapter:

 1. In the SilverlightForDummiesWCFDataServices.Web project,
double-click the BlogDataService.svc.cs file.

 2. Create the ChangeInterceptor method by adding the following code
immediately after the QueryPosts method added in Step 2 in the pre-
vious section about change interceptors.

 [ChangeInterceptor(“Posts”)]
public void PostInterceptor(Post post,

UpdateOperations ops)
{
 if (ops == UpdateOperations.Change || ops ==

UpdateOperations.Add)
 {
 if(post.Title==string.Empty)
 {
 throw new ArgumentNullException(“The title

 must be filled out”);
 }
 }
}

 This code checks what type of operation is occurring to the Post object.
If a change to a post or a new post is being added, the code checks to
see whether the Title property of the Post object has at least one
character in it. If it has an empty value, an exception is created, which
gets transferred back to the Silverlight Application and results in the
Save Failed! message box being displayed.

17_524657-ch11.indd 28217_524657-ch11.indd 282 3/31/10 11:43 AM3/31/10 11:43 AM

283 Chapter 11: Using WCF Data Services to Store and Manage Data

 3. Run the application by pressing F5 or clicking the green Play button
in Visual Studio.

 4. In the Silverlight application, click in the PostsDataGrid and delete
the title of the first post.

 5. Click the Save button.

 The Save Failed! message box appears, indicating that your change
interceptor is enforcing the rule concerning saving posts without
titles.

Controlling Access to Entity Sets
Early in this chapter, in the “Adding the WCF Data Service” section, we have
you set EntitySetRights to All, which allows you to do whatever you
want to any entity in your data model. The primary reason for the example
application used throughout this chapter is to be able to manipulate the
Post and Comment entities. In many cases, though, you need to be able to
control the changes made to an entity.

For example, you might have a system that uses a Country entity, and coun-
tries are used as reference data in an application that millions of people use
worldwide. You don’t want your users to be able to change the spelling of
a country; instead, that ability should be a back-office function that’s kept
under strict control. You want your users only to be able to read a list of
countries. In that case, you need to set EntitySetRights to something
other than All, and you do so by setting the rules when the WCF Data
Service is first initialized in the InitializeService method. To see the
InitializeService method, follow these steps:

 1. In the SilverlightForDummiesWCFDataServices.Web project,
double-click the BlogDataService.svc.cs file to open it.

 2. Press Ctrl+F to open the Find dialog box.

 3. Enter InitializeService into the Find What field of the Find dialog box
and click Find.

 Inside the InitializeService method, the Entity Access rules are
set to All for all Entity sets. You can add as many different rule sets as
required in this section of code; the options for doing so are listed in
Table 11-1.

17_524657-ch11.indd 28317_524657-ch11.indd 283 3/31/10 11:43 AM3/31/10 11:43 AM

284 Part III: Connecting with Data

Table 11-1 Rules for Accessing an Entity Set

EntitySetRights Setting What It Authorizes

None Denies all rights to access data.

ReadSingle Read single data items.

ReadMultiple Read sets of data.

WriteAppend Create new data items in data sets.

WriteReplace Replace data.

WriteDelete Delete data items from data sets.

WriteMerge Merge data.

AllRead Read data.

AllWrite Write data.

All Create, read, update, and delete data.

17_524657-ch11.indd 28417_524657-ch11.indd 284 3/31/10 11:43 AM3/31/10 11:43 AM

Chapter 12

Using WCF RIA Services
in Silverlight

In This Chapter
▶ Getting Started with WCF RIA Services

▶ Authenticating your users

▶ Creating a custom authentication system

WCF RIA Services is a new framework from Microsoft that you can use
to easily build Silverlight applications that require users to log in to

access data. In fact, although we cover WCF Data Services in Chapter 11, WCF
RIA Services makes the same tasks much easier to accomplish.

RIA stands for Rich Internet Application, which, of course, is what a Silverlight
application is. WCF RIA Services uses some “magic” in Visual Studio to gener-
ate files in both the server side of your application and the client side. This bit
of magic makes it much faster to build your application and perform valida-
tion because you need to implement validation only once to have it executed
on both the client and the server. WCF RIA Services uses the ideas of context
and entities similarly to how WCF Data Services uses them.

In this chapter, we show you how to use WCF RIA Services to authenticate
your users easily, and you create a custom authentication system as an
example of how you might implement some custom logic when a user logs in
to your site.

Getting Started with WCF RIA Services
Microsoft WCF RIA Services is installed as part of the Silverlight 4 Tools
for Visual Studio 2010. When you create a new Silverlight application with
these tools installed, some new templates show up, including the Silverlight
Business Application template and the WCF RIA Services Class Library (see
Figure 12-1).

18_524657-ch12.indd 28518_524657-ch12.indd 285 3/31/10 11:43 AM3/31/10 11:43 AM

286 Part III: Connecting with Data

Figure 12-1:
New

WCF RIA
Services

tem-
plates for
Silverlight

in Visual
Studio 2010.

Also, whenever you create a new Silverlight application with WCF RIA
Services installed, the Enable WCF RIA Services check box appears in the
Add New ASP.NET Web Application dialog box. Selecting this check box tells
Visual Studio to perform its code generation magic for you. (If you use the
new Business Application template, you don’t see this check box because the
template takes care of this setting for you.)

In this section, we show you how to build an application using the Business
Application template. You work with the tools that you get “out of the box,”
and in the final section of this chapter, you customize the application to suit
your specific needs.

Authenticating Your Users
We discuss the reasons for authenticating users in Chapter 10.

This example starts with one of the more difficult tasks involved with build-
ing online applications: authentication. In years gone by, to complete this
task you would have to build a database, write a bunch of stored procedures,
and then build a login control and a way for your users to register themselves
and be provided with feedback. ASP.NET introduced the membership system
with some login controls, which made life easier. (See Chapter 10 for details
about the ASP.NET membership system.)

Now, WCF RIA Services makes the situation even better. WCF RIA Services
has a built-in authentication system that takes advantage of the existing
ASP.NET authentication system and adds to it. You can build a login system
more easily now, but even better, your users can log in to your Web site

18_524657-ch12.indd 28618_524657-ch12.indd 286 3/31/10 11:43 AM3/31/10 11:43 AM

287 Chapter 12: Using WCF RIA Services in Silverlight

using the ASP.NET system, and your RIA application can detect that login and
use it. This means that your users need to log in to your Web site only once;
if they then navigate to a page that contains your Silverlight RIA application,
they don’t need to log in again!

Authenticating users with the Business
Application template
In this section, we show you how to use an application template in Silverlight
to authenticate your users. This template, called the Business Application
template, contains all the required parts of a Silverlight application that
use WCF RIA Services to authenticate a user, so you don’t have to write any
code for that purpose at all. To create an application using the Business
Application template, follow these steps:

 1. Open Visual Studio 2010 and choose File➪New Project.

 The New Project dialog box opens.

 2. Select the Business Application template under the Silverlight group
in the dialog box.

 3. Name the project SilverlightForDummiesRIA.

 This will add two projects to the solution, one called SilverlightFor
DummiesRIA and another called SilverlightForDummiesRIA.Web.

 4. Click OK.

As mentioned previously, WCF RIA Services uses the same authentication
system as ASP.NET, so you can use the ASP.NET Configuration tool built in to
Visual Studio to manage the users. Using the ASP.NET Configuration tool, you
add a user to the ASP.NET membership database that you later use to log in
with. So make sure you remember the username and password that you enter
in the following steps. To add a new user to the ASP.NET membership system
with the built-in Visual Studio tools, follow these steps:

 1. Right-click the SilverlightForDummiesRIA.Web project in the
Solution Explorer and select Add New Item from the dialog box that
appears.

 2. Select Data from the installed templates.

 3. Select SQL Server database from the options in the dialog box.

 4. Name the new database SilverlightForDummies.

 5. Click Yes in the dialog box when it asks whether you want to place
the database in the App_Data folder.

18_524657-ch12.indd 28718_524657-ch12.indd 287 3/31/10 11:43 AM3/31/10 11:43 AM

288 Part III: Connecting with Data

 6. Choose Project➪ASP.NET Configuration.

 The ASP.NET Web Site Administration tool opens.

 7. In the ASP.NET Web Site Administration tool, click Select
Authentication Type link.

 If this link is not showing by default, click the Security tab on the
Web site.

 8. Select the From the Internet option and click Done.

 9. Click the Create User link.

 10. Fill out the new user form and click Create User.

 You should see a form like the one shown in Figure 12-2.

 You will need to enter a password that has at least seven characters,
with at least one character that is not a number or a letter.

 11. Run the application by pressing F5 or clicking the green Play button.

 12. Click the Login button on the right side of the application.

 13. Log in with the credentials you created in Step 10.

 The application should log in and your name should appear on the appli-
cation next to the Logout button.

Figure 12-2:
ASP.NET
Web Site

Administra-
tion tool —

Create User.

When you create the Business Application from the template, the Business
Application adds a complete application to Visual Studio. That applica-
tion has two pages: One provides the ability to log in and the other lets you

18_524657-ch12.indd 28818_524657-ch12.indd 288 3/31/10 11:43 AM3/31/10 11:43 AM

289 Chapter 12: Using WCF RIA Services in Silverlight

create new users from the Silverlight application. The ability to log in and
manage users is provided by an object called the WebContext. This is a
similar concept to the Data Context object that we describe in Chapter 11 for
WCF Data Services. The Context object keeps track of what’s going on with
the data; it also uses a set of methods it executes to log in and create users.
WebContext also contains the currently logged-in user so that you can easily
access the user, as we explain next.

Understanding the client side of the
Business Application template
The Business Application template adds files to both the Silverlight applica-
tion and the Web application when you create a new solution, which means
that it adds files to both parts of the solution: client and server.

When you create a new Silverlight application from the Business Application
template, you get a set of files added to the solution. Open the XAML file for
the MainPage.xaml and you see that it is a Navigation application with two
pages, Home and About. Next, open the Views folder and you see the Home
and About pages and three files that look as though they may have some-
thing to do with logging in! The Password control is just a password box that
gets used twice on the registration form. The LoginControl is located on the
MainPage.xaml and shows the logged-in user’s name or the word Login with
a link to the LoginWindow. The LoginWindow pops up when the user clicks
the LoginControl.

Open the XAML file for LoginControl.xaml and you see the data context of
the user control set to RiaContext. The WebContext is the object that allows
you to log in to the system; it is declared in the app.xaml file. Open app.xaml
and you see a section called ApplicationLifetimeObjects, which is where the
WebContext object is instantiated for the lifetime of the application.

Investigating the server side of the
Business Application template
The Business Application template adds files that manage the login of your
users and creation of new users. These files also provide places for you
to extend the standard login and creation of users. To investigate the files
added, follow these steps:

18_524657-ch12.indd 28918_524657-ch12.indd 289 3/31/10 11:43 AM3/31/10 11:43 AM

290 Part III: Connecting with Data

 1. In the SilverlightForDummiesRIA.Web project, locate the Services
folder.

 This folder has two files. The first one, AuthenticationService.
cs, contains theAuthenticationService class, which inherits from
AuthenticationBase. You use the AuthenticationService class
to write your own authentication logic (which we cover later in this
chapter).

 The second file, UserRegistrationServices.cs, contains a class
and methods for managing the user list for your Web site.

 2. Open the Models folder.

 This folder also contains two files. The User.cs file contains the User
class, which inherits from UserBase. The UserBase class allows you to
create your own User object to pass back to the client when you write
your own authentication methods. (We show you how to write authen-
tication methods in “Creating a Custom Authentication System,” later in
this chapter.)

 The other file in the Models folder, RegistrationData.cs, contains the
class definition for the object that gets passed to the UserRegistration
Service when a user is created.

This completes your tour of the Business Application template files on both
the client and server sides of the application. The next section delves into
how they all work together to create a complete application.

Understanding how the template
files work together
The WebContext object, which we discuss earlier, is used to perform the
user’s login. You simply call the Login method and tell it what to do when
it’s finished. Follow these steps to look closely at what the code is doing:

 1. Open the LoginForm.xaml.cs file by double-clicking it in the
SilverlightForDummiesRIA project in the Solution Explorer.

 2. Locate the LoginButton_Click event handler in the code.

 The code looks like this:

private void LoginButton_Click(object sender,
EventArgs e)

{
 // If there was a validation error in a previous

login attempt, clear it
this.loginForm.ValidationSummary.Errors.Clear();

18_524657-ch12.indd 29018_524657-ch12.indd 290 3/31/10 11:43 AM3/31/10 11:43 AM

291 Chapter 12: Using WCF RIA Services in Silverlight

if (this.loginForm.ValidateItem())
 {
LoginOperationloginOperation = WebContext.Current.

Authentication.Login(this.loginInfo.
ToLoginParameters(), this.LoginOperation_
Completed, null);

this.BindUIToOperation(loginOperation);
this.parentWindow.AddPendingOperation(loginOperation);
this.lastLoginOperation = loginOperation;
 }
}

 When the application is running and you click the Login button, the
Login method is called on the WebContext object, in this case with the
username and password. Remember that all calls to the server are asyn-
chronous in Silverlight, so you need to provide a callback for when the
operation is finished. You provide this callback by specifying a completed
event on the Login Operation called LoginOperation_Completed.
As the preceding code shows, when the Login method is called, the
LoginOperation_Completed event is passed in as one of the parame-
ters. The code for the LoginOperation_Completed event looks like this:

private void LoginOperation_Completed(LoginOperation
loginOperation)

{
if (loginOperation.LoginSuccess)
 {
this.parentWindow.Close();
 }
else
 {
if (loginOperation.HasError)
 {
ErrorWindow.CreateNew(loginOperation.Error);
loginOperation.MarkErrorAsHandled();
 }
else if (!loginOperation.IsCanceled)
 {
this.loginForm.ValidationSummary.Errors.Add(new

ValidationSummaryItem(ErrorResources.
ErrorBadUserNameOrPassword));

 }

this.loginForm.BeginEdit();
 }
}

 In this code, if the login is successful, the login window is closed. If an
error occurred, the error is reported to the ErrorWindow, and if the
user entered details that did not validate correctly, a message appears
saying that either the username or the password was not valid.

18_524657-ch12.indd 29118_524657-ch12.indd 291 3/31/10 11:43 AM3/31/10 11:43 AM

292 Part III: Connecting with Data

When you call Login, a call is made back to the server to the Authentication
Service object, and the default implementation of logging in to a standard
ASP.NET Membership system is done for you. When the call to the server is fin-
ished, the WebContext.Current.User object is populated with the identity
of the user you logged in as. You can then use this identity in your application
anywhere you like.

To see the results of using the Business Application template for authenti-
cating users, run the application by pressing F5 or clicking the green Play
button. Then click the Login link on the right side of the Web page. After you
have logged in, you should see your name in the top right (see Figure 12-3).

Figure 12-3:
Logging in

to the appli-
cation.

The next section tells you how to modify the login process to use your own
business logic and return a custom User object.

Creating a Custom Authentication
System

In many scenarios, the standard ASP.NET Membership system is not used
because other systems and legacy authentication systems are already in
place. Therefore, it’s a good idea to know how to implement authentication

18_524657-ch12.indd 29218_524657-ch12.indd 292 3/31/10 11:43 AM3/31/10 11:43 AM

293 Chapter 12: Using WCF RIA Services in Silverlight

for one of these systems. The process is actually very simple because all the
WCF RIA Services server-side classes are designed to be easily extended.

Implementing custom user validation logic
Essentially, a custom authentication system needs to validate the user and
then return the custom User object to the client application based on some
custom logic. In the following example, you see how to override the standard
logic with your own very simple logic. To implement your own login logic,
follow these steps:

 1. Open the AuthenticationService.cs file in the SilverlightFor
DummiesRIA.Web project by double-clicking it in Solution Explorer.

 The C# code for this file is displayed.

 2. Override the ValidateUser method by typing override immediately
inside the AuthenticationService class.

 3. Press the spacebar and select ValidateUser from the IntelliSense list
that appears.

 The following code is added:

protected override boolValidateUser(string userName,
string password)

{
returnbase.ValidateUser(userName, password);
}

 As you can see, Visual Studio automatically calls the base.
ValidateUser method, which is what happens anyway if you don’t
override the method. This method is declared in the base class
AuthenticationBase<User>. Because you are overriding the method,
you need to implement your own logic, which may or may not include a
call to the base class method. For this example, you simply return true
so that anyone who logs in will be validated.

 4. Implement your custom logic by changing the line that returns base.
ValidateUser to return true.

 Your ValidateUser method should look like the following code now:

protected override boolValidateUser(string userName,
string password)

{
return true;
}

 At this point, you call whatever authentication system you are using and
actually validate the user.

18_524657-ch12.indd 29318_524657-ch12.indd 293 3/31/10 11:43 AM3/31/10 11:43 AM

294 Part III: Connecting with Data

Returning a custom user object
to the Silverlight application
After you validate the user on the server side, you need to return the authen-
ticated user to the client (the Silverlight application, in this case). The stan-
dard User object is very basic, containing only a few properties, so in this
example, we show you how to extend it by adding some of your own proper-
ties, as follows:

 1. Locate the Models folder in the SilverlightForDummiesRIA.Web
project.

 2. Open the User.cs file by double-clicking it in Solution Explorer.

 The User class code looks like this:

public partial class User : UserBase
{
 //// NOTE: Profile properties can be added for use

in Silverlight application.
 //// To enable profiles, edit the appropriate

section of web.config file.
 ////
 //// [DataMember]
 //// public string MyProfileProperty{ get; set; }

 [DataMember]
public string FriendlyName { get; set; }
}

 3. Add a property called Email of type string by adding the following
code inside the User class immediately after the FriendlyName prop-
erty, as shown:

public partial class User : UserBase
{
 //// NOTE: Profile properties can be added for use

in Silverlight application.
 //// To enable profiles, edit the appropriate

section of web.config file.
 ////
 //// [DataMember]
 //// public string MyProfileProperty{ get; set; }

 [DataMember]
public string FriendlyName { get; set; }

 [DataMember]
public string Email { get; set; }
}

18_524657-ch12.indd 29418_524657-ch12.indd 294 3/31/10 11:43 AM3/31/10 11:43 AM

295 Chapter 12: Using WCF RIA Services in Silverlight

 4. Add a property called FirstName of type string by adding the fol-
lowing code inside the User class:

public string FirstName { get; set; }

 5. Add the following code to override the GetAuthenticatedUser
method in the AuthenticationService class by typing the word
override immediately after the ValidateUser method that you over-
ride in Step 2 of the “Implementing custom user validation logic”
section.

protected override User GetAuthenticatedUser(System.
Security.Principal.IPrincipal principal)

{
returnbase.GetAuthenticatedUser(principal);
}

 6. Return a new instance of your custom User object by deleting the fol-
lowing line of code:

returnbase.GetAuthenticatedUser(principal);

 and changing it to

var user = new User
 {
DisplayName = “My Custom Display Name”,
 Email = “philip.beadle@live.com.au”,
FirstName = “Philip”,
 Name = “Philip”,
 Roles = new List<string>{ “Administrator”,

“Registered User” }
 };
return user;

 This code creates a new User object, populates its properties, and
returns it whenever a user logs in. At this point in the code for a genuine
user, you would interrogate a database or some other data store, such
as Active Directory or a Web service, for real user data and return the
correct details for the logged-in user.

 7. Run the application by pressing F5 or clicking the green Play button.

 8. Log in to the application with any old nonsense.

 For this example, it doesn’t matter what credentials you enter because
the code always returns the same result.

 The application logs in fine and returns the values you set in the
GetAuthenticatedUser method (see Figure 1 2-4).

18_524657-ch12.indd 29518_524657-ch12.indd 295 3/31/10 11:43 AM3/31/10 11:43 AM

296 Part III: Connecting with Data

Figure 12-4:
Logging in

to the appli-
cation with

a custom
authentica-

tion.

18_524657-ch12.indd 29618_524657-ch12.indd 296 3/31/10 11:43 AM3/31/10 11:43 AM

Chapter 13

Accessing Data with
WCF RIA Services

In This Chapter
▶ Creating the domain data service

▶ Writing your own Service Methods using LINQ to Entity Framework

▶ Writing your own Service Methods using LINQ to SQL

▶ Using WCF RIA Services with WCF Data Services

▶ Securing your service

▶ Validating data on the client and server sides

Even though WCF RIA Services is a Community Technical Preview (CTP),
it is very well developed and makes building applications that require

authentication and database storage much simpler. WCF RIA Services has
some excellent support for authenticating users and intercepting processing
on the server side as well as for making client-side development easier.

WCF RIA Services is an excellent way to handle all your CRUD operations on
a database. WCF RIA Services is more complete than WCF Data Services for
use in Silverlight and requires much less work to get working. You no longer
have to write code to track the data context, as we cover in Chapter 11;
also, authentication is handled very nicely for you, as described in Chapter
12. You can use WCF RIA Services with both LINQ to Entity Framework and
LINQ to SQL, in contrast to WCF Data Services, which works only with Entity
Framework. You can even use WCF RIA Services against WCF Data Services,
which is fantastic if you have to keep your database in a secure network area
that’s not accessible by the public Internet and you have only Port 80 open.

WCF RIA Services connects Silverlight applications to server-side data stores
very effectively. Most business applications have a database, some Web ser-
vices that manage the data in the database, and a user interface. The same is
true for a Silverlight application that uses WCF RIA Services.

19_524657-ch13.indd 29719_524657-ch13.indd 297 3/31/10 11:47 AM3/31/10 11:47 AM

298 Part III: Connecting with Data

In this chapter, we use the blogging application that we discuss in Chapter 11
again to demonstrate the enhanced abilities of WCF RIA Services. The solu-
tion is essentially the same as in Chapter 11. Here, you find out how to access
the database in SQL Express, use a data model created with the ADO.NET
Entity Framework, employ a set of services called Domain Data Service, and
connect all these to the Silverlight user interface.

Creating the Domain Data Service
You use a domain data service to access server-side functionality through
the HyperText Transfer Protocol (HTTP). In the case of the blogging example,
the domain data service is used to access the data stored in the database and
to provide some server-side validation of any data entered by the user.

The domain data service you create in this section functions the same as the
one we describe in Chapter 11 — this time using WCF RIA Services rather
than WCF Data Services. The one difference is that here you use LINQ to
Entity Framework, not LINQ to SQL classes. You employ the same database
structure as well.

First, create a new Silverlight Application by following these steps:

 1. Open Visual Studio.

 2. Choose File➪New Project.

 The New Project dialog box appears.

 3. Select Silverlight Business Application and name it SilverlightFor
DummiesBusinessApplication.

 4. Click OK.

Now, to set up the database for this example application, see Chapter 11 and
follow the steps in the section about creating a database. Then follow the steps
in the section that describes how to add the ADO.NET Entity Framework.

As a shortcut, follow these steps if you have previously created the database
and want to reuse it for this chapter:

 1. Locate the SilverlightForDummies.mdf file from Chapter 11.

 You can find this file in the App_Data folder from the Chapter 11
example.

 2. Copy the SilverlightForDummies.mdf file.

 3. In the new SilverlightForDummiesBusinessApplication.Web
project, right-click the App_Data folder and select Paste.

 4. Press Ctrl+Shift+B to build the project.

19_524657-ch13.indd 29819_524657-ch13.indd 298 3/31/10 11:47 AM3/31/10 11:47 AM

299 Chapter 13: Accessing Data with WCF RIA Services

Following the steps from Chapter 11 provides you with a database and an
ADO.NET Entity Framework data model created from that database. Up to
this point, the solution is exactly the same as for the WCF Data Services
example from Chapter 11. Using this database and a data model, you can
create the Domain Data Service. To do so, follow these steps:

 1. In the Solution Explorer, right-click the Services folder in the
SilverlightForDummiesBusinessApplication.Web project and
select Add New Item from the menu that appears.

 The Add New Item dialog box appears.

 2. Select Domain Service Class, which is located in the Web category in
the installed templates.

 3. Enter BlogDomainService.cs in the Name field.

 4. Select all the check boxes on the form so that it looks like Figure 13-1.

 5. Click OK.

 Your Web application should now have two new files: BlogDomain
Service.cs, which has all the methods you can call to perform your
CRUD operations; and BlogDomainService.metadata.cs, in which
you can specify elements such as validation and navigation properties.
(See Chapter 11 for more information about CRUD operations.)

Figure 13-1:
Adding a

new domain
service

class.

19_524657-ch13.indd 29919_524657-ch13.indd 299 3/31/10 11:47 AM3/31/10 11:47 AM

300 Part III: Connecting with Data

 If you didn’t see the list of the tables that should have been added in the Entity
Framework step from Chapter 11 (which shows you how to add the Entity
Framework), you haven’t rebuilt your project. Cancel this form, rebuild your
project, and have another go.

Understanding the generated files
The BlogDomainService.cs file contains the CRUD operation methods for
the Post and Comment entities. The BlogDomainService.metadata.cs
file contains the corresponding classes, which are called PostMetaData and
CommentMetaData. (Meta data is simply additional information; in this case,
it’s a description of how you want the class to function.)

The PostMetaData and CommentMetaData class names have MetaData
as a suffix so that WCF RIA Services knows that any meta data you want to
include is contained here. For example, to specify a description in the user
interface (UI) for the Post entity, you specify the Display attribute on the
Title property by adding the following code to the PostMetaData class
immediately on top of the Title property, as follows:

 [Display(Description = “The title of the blog post.”)]
public string Title;

You can also specify validation rules in the MetaData class, which we cover
in the “Validating Data on the Client and Server Sides” section, later in this
chapter.

Creating the user interface
In this section, you use the Business Application template and add blog func-
tions to the home page. The Business Application template is added to the
list of installed templates for new projects when you install the Silverlight
Tools for Visual Studio. The template gives you a complete application,
including the user interface, screens to log in and create users, and the
domain data services required to handle authentication and adding new
users. You can then customize the files for your purposes, which is what you
do in the following example.

To create the user interface, follow these steps:

 1. Open the Views folder in the SilverlightForDummiesBusiness
Application project by clicking the triangle next to the Views node
in the Solution Explorer.

 2. Open the Home.xaml file in the SilverlightForDummiesBusiness
Application project by double-clicking it in the Solution Explorer.

19_524657-ch13.indd 30019_524657-ch13.indd 300 3/31/10 11:47 AM3/31/10 11:47 AM

301 Chapter 13: Accessing Data with WCF RIA Services

 3. Delete the two TextBox controls called HeaderText and ContentText.

 You don’t need these controls for this particular application.

 4. From the Toolbox in Visual Studio 2010, select the DataGrid control
and drag it onto the Stack Panel control.

 The DataGrid control is chosen because it automatically shows data
that is added to it. This makes showing data on the screen easy without
having to format the control.

 5. Enter PostsDataGrid in the Name field of the Properties window to
change the name of the DataGrid control to PostsDataGrid.

 You need to name your controls so that it is easier to reference them in
the code later. Leaving the default name of DataGrid1 won’t make much
sense to you later, especially if you have lots of DataGrid controls in
your application.

Retrieving the data
Retrieving the data from the database is a very similar process to that of WCF
Data Services, covered in Chapter 11. To retrieve the data, you create a new
DomainContext object.

You then create a callback method that accepts the list of Posts returned and
updates the PostsDataGrid ItemsSource property to show the data. The
final task is to write a piece of code that runs when the page is shown to the
user, with that code using the Domain Context to actually retrieve the data. This
last piece of code uses the callback method you will create as one of the param-
eters it has to pass to the DomainContext when calling the Load method.

If you have a database from having followed the example in Chapter 11, you
already have some data available that you can use now. If you created a new
database in the section “Creating the Domain Data Service” and didn’t copy an
existing database, you need to add some data to it by following these steps:

 1. Hover your mouse on the tab called Server Explorer on the left side of
the screen in Visual Studio.

 The Server Explorer tool opens.

 2. Click the triangle next to SilverlightForDummies.mdf, which
appears directly under Data Connections.

 This step connects Visual Studio to SQL Server Express so that you can
add data directly to the database.

 3. Click the triangle next to Tables.

 You see the list of tables in the database, which should include the Post
and Comment tables.

19_524657-ch13.indd 30119_524657-ch13.indd 301 3/31/10 11:47 AM3/31/10 11:47 AM

302 Part III: Connecting with Data

 4. Right-click the Post table.

 The context menu appears.

 5. In the context menu, select Show Table Data.

 6. In the table that appears, fill in the Title, Content, and Date fields for
as many records as you want to add.

To retrieve data using WCF RIA Services, follow these steps:

 1. In Visual Studio, open the Home.xaml.cs file by double-clicking it in
the Solution Explorer.

 2. Create a new DomainContext object by adding the following code
immediately after the class declaration:

public partial class Home : Page
{
private BlogDomainContext _context = new

BlogDomainContext();

 Your code-behind file doesn’t know where the BlogDomainContext
class is, so click the word BlogDomainContext to make a small blue
square appear at the end of the word. Click that blue square and then
select the top option from the list that appears to add a using state-
ment to your class. Alternatively, press Ctrl+. (period). A using state-
ment imports the namespace of a referenced assembly so that you can
use shorter and more concise notation in your code.

 3. Create a new callback method to be used when the data is returned
by adding the following code immediately after the OnNavigatedTo
event handler:

private void LoadPostsDataGrid(IEnumerable<Post>
posts)

{
 PostsDataGrid.ItemsSource = posts;
}

 The IEnumerable<Post> argument gets passed back from the
LoadOperation’s Entities property.

 To import the correct using statement for the Post object, press Ctrl+.
(period) and select the using SilverlightForDummiesBusiness
Application.Web option from the list that appears. Do the same for
the IEnumerable namespace to import its using statement, selecting
the using System.Collections.Generic option after you press
Ctrl+. (period).

 4. Call the Load method on the Domain Context by adding the following
code that appears in bold to the OnNaviagetedTo event handler:

var query = _context.GetPostsQuery();
_context.Load(query, op => LoadPostsDataGrid (op.

Entities), null);

19_524657-ch13.indd 30219_524657-ch13.indd 302 3/31/10 11:47 AM3/31/10 11:47 AM

303 Chapter 13: Accessing Data with WCF RIA Services

 This code creates a new EntityQuery object from the Domain Service
classes that are added when you build the solution. The code then calls
the Load method, which requires an EntityQuery object and a call-
back method to execute when the data is returned.

 5. Run the application by pressing F5 or clicking the green Play button.

 You should see a result similar to Figure 13-2 with your sample data.

Figure 13-2:
Blog Grid
with Data
from RIA

Service call.

Updating your data
To update the database when data is changed, follow these steps:

 1. Open the Home.xaml file by double-clicking it in the Solution
Explorer.

 2. Drag a new Button control onto the design surface just below the Data
Grid control.

 3. In the Text property of the new Button control, enter Save.

 The word Save will now appear on the button when the application is
running.

 4. Double-click the Button control.

 Visual Studio automatically creates the Button control’s Click event
handler in the code-behind file.

 5. Tell the Domain Context to update by adding the following code to the
Button control’s Click event handler:

_context.SubmitChanges();

19_524657-ch13.indd 30319_524657-ch13.indd 303 3/31/10 11:47 AM3/31/10 11:47 AM

304 Part III: Connecting with Data

 6. Run the application by pressing F5 or clicking the green Play button.

 7. Click the title of one of your records.

 8. Change the title to a meaningful name that identifies the record.

 9. Click the new Save button.

 10. Open the database table with the Server Explorer.

 The change you made should be saved in the database.

The change was saved for you; in contrast to doing this same task through
WCF Data Services, you did no work at all. WCF RIA Services tracks all the
changes for you; all you have to do is tell it when to submit those changes.

Writing Your Own Service Methods —
LINQ to Entity Framework

When you create a new Domain Service and associate it with a table in the
database, Visual Studio generates a series of methods that can be used
for CRUD operations. If the database has related tables such as Post and
Comment, the CRUD operations do not cover the operations required to
manage the related tables but instead generate only the CRUD operations
for each table, independently. This means that to show related entities in
the data returned by WCF RIA Services, you need to write a custom method
called a service method. A service method is simply a public method that is
exposed over the network or the Internet as part of a service. In this case, the
service method is added to the automatically generated service methods cre-
ated when you added the domain data service.

Writing a service method involves writing a method that returns an
IQueryable list of the objects you are interested in. The query is written
in LINQ and uses the Include operator to include the related entities. The
object must also have the [Include] attribute on the related property.

In the database for this application, the Comment table is related to the Post
table so that you can add comments to the posts. To return the associated
comments with the post, you need to use the [Include] attribute on the
Comment property of the Post object in the meta data file. You also need to
write a new service method that uses the Include operator on the Posts
property of the Context.

In this section, you associate a DataGrid of the comments with the selected
post in the PostsDataGrid. First, the following steps show you how people
make a very common mistake by expecting the associated Comment records
to be returned by default. The second part of this section shows you how to
avoid this and make sure your associated records are returned.

19_524657-ch13.indd 30419_524657-ch13.indd 304 3/31/10 11:47 AM3/31/10 11:47 AM

305 Chapter 13: Accessing Data with WCF RIA Services

A common mistake (Psst —
This won’t work!)
To see how comments associated with a post are not retrieved by default,
follow these steps:

 1. Open the Home.xaml file by double-clicking it in the Solution
Explorer.

 2. Add a new DataGrid directly below the PostsDataGrid by adding the
following code:

<data:DataGrid x:Name=”CommentsDataGrid”></
data:DataGrid>

 3. Add a SelectionChanged event to the PostsDataGrid by adding the
code that appears in bold to it:

<data:DataGrid x:Name=”PostsDataGrid”
SelectionChanged=”PostsDataGrid_
SelectionChanged”></data:DataGrid>

 4. Right-click PostsDataGrid_SelectionChanged and select Navigate
to Event Handler.

 This takes you to the MainPage.xaml.cs file at the automatically
added code for the event handler.

 5. Add the following code to set the ItemsSource property of the new
CommentsDataGrid control to the Comment property of the selected
Post item in the PostsDataGrid when a user clicks the grid:

CommentsDataGrid.ItemsSource = ((Post)PostsDataGrid.
SelectedItem).Comment;

 6. Run the application by pressing F5 or clicking the green Play button.

 7. Click a Post item in the PostsDataGrid.

 Note how the CommentsDataGrid gets no records.

This, on the other hand, DOES work
To associate the Comments to a Post and really, truly retrieve them from the
database, follow these steps:

 1. Open the BlogDomainService.metadata.cs file by double-clicking
it in the Solution Explorer.

 This file is in the SilverlightForDummiesBusinessApplication.
Web project.

19_524657-ch13.indd 30519_524657-ch13.indd 305 3/31/10 11:47 AM3/31/10 11:47 AM

306 Part III: Connecting with Data

 2. Locate the Post class by selecting it from the Class Browser drop-
down list at the top left of the Code Editing window.

 3. Add the [Include] attribute to the Comments property by adding
the following code that appears in bold immediately on top of the
Comments property:

[Include]
public EntityCollection<Comment> Comment;

 4. Open the BlogDomainService.cs file by double-clicking it in the
Solution Explorer.

 5. Add a new service method to retrieve the comments associated with a
post by adding the following code:

public IQueryable<Post> GetPostWithComments()
{
 var a = this.Context.Post.Include(“Comment”);
 return a;
}

 6. Open the Blog.xaml.cs file by double-clicking it in the Solution
Explorer.

 7. Change the OnNavigatedTo event to use the new service method by
changing the following code that appears in bold:

private void LoadPosts(Action<IEnumerable<Post>>
action)

{
 var query = _context.GetPostWithCommentsQuery();
 _context.Load(query, op => action(op.Entities),

null);
}

 8. Run the application by pressing F5 or clicking the green Play button.

 9. Click a post in the PostsDataGrid to see how the associated comments
appear in the CommentsDataGrid.

Writing Your Own Service Methods —
LINQ to SQL

LINQ to SQL is very similar to LINQ to Entity Framework. To use it, you build
a data model using LINQ to SQL Data Classes and then a Domain Service
based on the new LINQ to SQL Data Classes. The Domain Service contains
the same methods as the LINQ to Entity Framework, but the implementation
is different and uses LINQ to SQL code. In this section, you change the solu-
tion to use LINQ to SQL from its current use of LINQ to Entity Framework. To
change the solution to use LINQ to SQL, follow these steps:

19_524657-ch13.indd 30619_524657-ch13.indd 306 3/31/10 11:47 AM3/31/10 11:47 AM

307 Chapter 13: Accessing Data with WCF RIA Services

 1. Open the SilverlightForDummiesBusinessApplication solution
in Visual Studio.

 2. Right-click the BlogModel.edmx file and select Exclude from Project.
Do the same for the BlogDomainService.cs and BlogDomain.
metadata.cs files.

 3. Right-click the Web Application project file and select Add New Item.

 The Add New Item dialog box appears.

 4. Select LINQ to SQL Data Classes and call the new LINQ to SQL Data
Class BlogDataClasses.dbml.

 5. Open the Server Explorer.

 6. Click the Post table and drag it onto the LINQ to SQL design surface.

 7. Click the Comment table and drag it onto the LINQ to SQL design
surface.

 8. Right-click the SilverlightForDummiesBusinessApplication.Web
project and select Build.

 Don’t build the whole solution by pressing Ctrl+Shift+B or right-clicking the
solution and selecting Build; you need to make a few more changes first.

 9. Right-click the Web Application project file and select Add New Item.

 The Add New Item dialog box appears.

 10. Select Domain Service Class and call the new Domain Service Class
BlogL2SDomainService.cs.

 Figure 13-3 shows the Add New Item dialog box with the Domain Service
Class selected.

 11. Select all the check boxes on the form, refer to Figure 13-1.

 12. Right-click the SilverlightForDummiesBusinessApplication.
Web project and select Build.

 13. Open the Blog.xaml.cs file by double-clicking it in the Solution
Explorer.

 14. Change the code BlogDomainContext to BlogL2SDomainContext.

 15. Change the OnNavigatedTo event handler to make it use the
GetPostsQuery method by changing the following code that appears
in bold:

protected override void OnNavigatedTo(NavigationEventA
rgs e)

{
 var query = _context.GetPostsQuery();
 _context.Load(query, op => LoadPostsDataGrid(op.

Entities), null);
}

19_524657-ch13.indd 30719_524657-ch13.indd 307 3/31/10 11:47 AM3/31/10 11:47 AM

308 Part III: Connecting with Data

 16. Rebuild the whole solution by right-clicking the solution name in the
Solution Explorer, selecting Build from the menu, and running it.

 You should now see exactly what Figure 13-2 shows: A list of the Post
records in the database.

Figure 13-3:
Adding LINQ
to SQL Data

Classes.

The application uses LINQ to SQL rather than Entity Framework as a result
of the preceding steps. Next, you need to retrieve comments associated with
each post. Do so by following these steps:

 1. Open the BlogL2SDomainService.metadata.cs file by double-
clicking it in the Solution Explorer.

 2. Add the [Include] attribute to the Comment property of the Post
class in the BlogL2SDomainService.metadata.cs file by adding
the following code immediately above the Comments property:

[Include]
public EntitySet<Comment> Comments;

 3. Create a new service method by adding the following code to the
BlogL2SDomainService.cs file immediately after the GetPosts
method:

public IQueryable<Post> GetPostsWithComments()
{
 var loadOptions = new DataLoadOptions();
 loadOptions.LoadWith<Post>(p => p.Comments);
 Context.LoadOptions = loadOptions;
 return Context.Posts;
}

19_524657-ch13.indd 30819_524657-ch13.indd 308 3/31/10 11:47 AM3/31/10 11:47 AM

309 Chapter 13: Accessing Data with WCF RIA Services

 This code tells WCF RIA Services to load the associated comments when
it loads each post entity.

 4. Run the application by pressing F5 or clicking the green Play button.

 5. Click a post in the PostsDataGrid to see how the associated comments
are shown in the CommentsDataGrid.

You can edit a post in the data grid and then click Save to save it.

Validating Data on the Client
and Server Sides

The R in WCF RIA Services stands for rich, so you’d expect some richness out
of the box without too much work to do. That’s exactly what you get.

With regular Web programming, validation of user input is quite a compli-
cated task that takes a lot of time to implement. You usually have to use
some JavaScript on the client side to ensure that the text box you want to
validate has the correct value in it; as a result, you have to make sure that
your JavaScript works in all browsers because they all work slightly differ-
ently. The client-side validation code needs to provide some feedback to the
user as well, so you have to not only validate the input but also design a way
to tell users when they get it wrong.

You also have to write validation code on the server side because you can
never rely entirely on client-side validation; intercepting messages from the
client with a tool such as Fiddler is just far too easy. Therefore, you have to
write code in two different languages, which means you can’t share the code.
Consequently, you have to write the same logic twice — and test it all.

Using WCF RIA Services, however, implementing validation is very simple.
You just apply the correct attribute to the field in the meta data class that’s
associated with your domain service and you’re done!

When you build your solution, WCF RIA Services does a bit of magic in Visual
Studio and creates a copy of the server-side classes in your Silverlight appli-
cation. Follow these steps to open the solution and see what it contains:

 1. Click the Silverlight application and then click the Show All Files
button (shown in Figure 13-4) to show all the files in the Silverlight
application folder.

 2. Open the Generated Code folder and double-click the Silverlight
ForDummiesBusinessApplication.Web.g.cs file.

19_524657-ch13.indd 30919_524657-ch13.indd 309 3/31/10 11:47 AM3/31/10 11:47 AM

310 Part III: Connecting with Data

Figure 13-4:
The code

generated
for the

business
application.

 3. Use the drop-down list at the top left of the Code Editing window, as
shown in Figure 13-5, to find the Post class.

 4. Inside the Post class, find the Content property and look at the code
in the Set method.

Figure 13-5:
Navigating

to the Post
class.

 The first line, ValidateProperty, is the method that evaluates all
the System.ComponentModel.DataAnnotations.Validation
Attributes on any property that has validation attributes marked
against it. If any of the attributes don’t validate correctly, a Validation
Exception is thrown.

19_524657-ch13.indd 31019_524657-ch13.indd 310 3/31/10 11:47 AM3/31/10 11:47 AM

311 Chapter 13: Accessing Data with WCF RIA Services

Adding validation attributes
You can specify validation rules on any property using validation attributes.
A very common validation rule is that the property must be filled out. If the
property is empty, a Validation Exception is thrown and you receive an error
message similar to that shown in Figure 13-6.

Figure 13-6:
Validation

error in
Visual

Studio.

You can try this by adding a validation attribute to the Content property
and then making the validation fail, as follows:

 1. Open the BlogL2SDomainService.metadata.cs file by double-
clicking it in the Solution Explorer.

 2. Find the PostMetaData class.

 3. Add the [Required] attribute to the Content property like so:

[Required]
public string Content;

 4. Now run the application by pressing F5 or clicking the green Play button.

 5. Delete the value in the Content field and press Tab to move your
cursor out of the field.

 Doing so causes a validation error; Visual Studio should show an error
message similar to that shown in Figure 13-6. The error drops you into
Visual Studio from your application.

19_524657-ch13.indd 31119_524657-ch13.indd 311 3/31/10 11:47 AM3/31/10 11:47 AM

312 Part III: Connecting with Data

 Being interrupted by validation errors all the time gets annoying during devel-
opment. To suppress this particular error in Visual Studio, choose Debug➪
Exceptions and select Add. Select Common Language Runtime and enter
System.ComponentModel.DataAnnotations.ValidationException. Then
deselect the box next to that item.

Using a DataForm for great validation
It’s good practice to provide users with a helpful way to correct data they
enter incorrectly, and the easiest way to provide that is through a DataForm
control. This control is part of the Silverlight Toolkit. The DataForm control
provides a great data entry form, with all the fields you need to enter data
(which in this example is a blog post), and validation feedback. You can get
the latest copy of this control from http://silverlight.codeplex.
com/. (Be sure to check for additions to this toolkit from time to time; you
can find lots of useful items there.)

To add the DataForm control to the application and use its built-in feature
that will automatically show the data entry fields, follow these steps:

 1. Add a reference to the Silverlight Toolkit by right-clicking the
SilverlightForDummiesBusinessApplication project
References node.

 Adding the reference to the Silverlight Toolkit allows you to use it in
your application. Without the reference, your solution won’t work.

 The Add Reference menu appears.

 2. Select Add Reference.

 3. Click the Browse tab and use the File Explorer to locate the System.
Windows.Controls.Data.Toolkit.dll and System.Windows.
Controls.Data.DataForm.Toolkit.dll files.

 These files are in the C:\Program Files\Microsoft SDKs\Silverlight\
v4.0\Toolkit\Nov09\Bin folder of your computer, as shown in
Figure 13-7.

 The two references are added to your application. You should be
able to see these two references underneath the project’s References
node now.

 4. Open the Blog.xaml file by double-clicking it in the Solution
Explorer.

 5. Add a new DataForm control immediately after the Comments Grid
by dragging it onto the design surface from the toolbox.

 6. Name the control PostsDataForm.

 7. Set the CommandButtonsVisibility property to All.

19_524657-ch13.indd 31219_524657-ch13.indd 312 3/31/10 11:47 AM3/31/10 11:47 AM

313 Chapter 13: Accessing Data with WCF RIA Services

Figure 13-7:
Adding the
Silverlight

Toolkit
References.

 8. Open the Blog.xaml.cs file and set the Items Source of the PostsData
Form to posts by adding the bold code to the LoadPostsDataGrid
method.

private void LoadPostsDataGrid(IEnumerable<Post>
posts)

{
 PostsDataGrid.ItemsSource = posts;
 PostsDataForm.ItemsSource = posts;
}

 9. Run the application and delete the content from the Content field.

 Note that when you run the application, the Content field is bold in the
data form, which indicates that it’s a required field.

 Add some meta data such as a Display attribute. (See “Creating the
Domain Data Service,” earlier in this chapter, for more information about
meta data.)

 10. Press Tab to leave the content field.

 When you delete the text from the Content field and leave the data entry
box, the validation is executed and the validation feedback appears as a
red box for the data entry field. The field name is also red and the error is
shown at the bottom of the form, as shown in Figure 13-8.

19_524657-ch13.indd 31319_524657-ch13.indd 313 3/31/10 11:47 AM3/31/10 11:47 AM

314 Part III: Connecting with Data

Building a solid validation experience is very simple using WCF RIA
Services. Of course, if you don’t like the standard look of the validation in
the DataForm control, you can easily modify the template using Expression
Blend (see Figure 13-9).

Figure 13-8:
Dataform

validation.

Figure 13-9:
Modifying

the
DataForm

using
Expression

Blend.

19_524657-ch13.indd 31419_524657-ch13.indd 314 3/31/10 11:47 AM3/31/10 11:47 AM

315 Chapter 13: Accessing Data with WCF RIA Services

Securing Your WCF RIA Service
When you build an application such as a blog engine, you need to make sure
that only users who are logged in to the system can make changes and read
sensitive data. WCF RIA Services handles this requirement for you when you
include the [RequiresAuthentication] attribute in the Service Method
you use. (See the “Writing Your Own Service Methods — LINQ to Entity
Framework” section, earlier in this chapter, for an explanation of a service
method.) With a blog application, for example, you use this attribute with
the GetPostsWithComments service method to ensure that only logged-in,
authenticated users have access to the data in the database. For this example,
all data access will be locked down and available only to the logged-in user.

To secure the GetPostsWithComments method on the WCF RIA Service,
follow these steps:

 1. Open the BlogDomainService.cs file by double-clicking it in the
Solution Explorer.

 2. Locate the GetPostsWithComments method.

 3. Add the [RequiresAuthentication] attribute immediately above the
GetPostsWithComments method.

 Your code should look like this now, with the added attribute in bold.

[RequiresAuthentication]
public IQueryable<Post> GetPostsWithComments()
{
 var loadOptions = new DataLoadOptions();
 loadOptions.LoadWith<Post>(p => p.Comments);
 DataContext.LoadOptions = loadOptions;
 return DataContext.Posts;
}

 4. Run the application by pressing F5 or clicking the green Play button.

 No results appear in the PostsDataGrid at this point because you are not
logged in.

 5. Close the browser.

 6. Choose Project➪ASP.NET Configuration.

 The ASP.NET Web Site Administration tool appears so that you can con-
figure some users for the site. (You can use the database from the appli-
cation example in Chapter 12, if you’ve already created it; if you have,
ignore Steps 6–10.)

19_524657-ch13.indd 31519_524657-ch13.indd 315 3/31/10 11:47 AM3/31/10 11:47 AM

316 Part III: Connecting with Data

 7. In the ASP.NET Web Site Administration tool, click the Select
Authentication Type link.

 If you don’t see this link by default, click the Security tab on the Web site
to make the link appear.

 8. Select the From the Internet option and click Done.

 9. Click the Create User link.

 The Create User Webform appears.

 10. Fill out the new user form and click Create User.

 11. Close the browser.

 12. Run the application again by pressing F5 or clicking the green Play
button.

 13. Click the login link and enter the details of the user you created in
Step 10.

 You can now see the posts in the data grid.

Many applications use the idea of user roles to manage the tasks each user can
perform when he or she accesses the application. You are probably familiar
with the idea of a computer administrator who has complete access to a com-
puter, allowing that person to do tasks that require some extra skills. Everyday
users may not have the skills required to be an administrator, so they do not
get access to those features, which stops them from accidentally breaking the
computer. Therefore, user roles are assigned to users so that when they log in,
the tasks they are allowed to perform are managed by their assigned role.

In the following example, you want only people who are readers of your blog to
be able to access the contents of the database because you want to keep the
contents private. First, you need to establish the user role, which is entered into
the database via the ASP.NET Configuration Manager. You can use the built-in
standard ASP.NET membership system and tools in Visual Studio to establish
user roles on an application such as a blog, and use the [RequiredRole] secu-
rity attribute to enforce those roles. To add this attribute to your application,
follow these steps (using the blog application as an example):

 1. Open the web.config file in the SilverlightForDummiesBusiness
Application.Web project by double-clicking it in the Solution
Explorer.

 2. Enable the ASP.NET Role Manager feature by adding the following
code immediately after the <authentication> node in the web.
config file: You can see where it goes by looking at the whole code
snippet below and adding the code that is in bold.

19_524657-ch13.indd 31619_524657-ch13.indd 316 3/31/10 11:47 AM3/31/10 11:47 AM

317 Chapter 13: Accessing Data with WCF RIA Services

<system.web>
 <httpModules>
 <add name=”DomainServiceModule” type=”System.Web.

Ria.Services.DomainServiceHttpModule, System.
Web.Ria, Version=4.0.0.0, Culture=neutral, Pub
licKeyToken=31BF3856AD364E35” />

 </httpModules>
 <compilation debug=”true” targetFramework=”4.0”>
 <assemblies>
 <add assembly=”System.Data.Entity,

Version=4.0.0.0, Culture=neutral, PublicKeyTok
en=b77a5c561934e089” />

 </assemblies>
 </compilation>
 <roleManager enabled=”true” />
 <authentication mode=”Forms”>

 3. Open the Site Administration tool in Visual Studio by choosing Project➪
ASP.NET Configuration.

 The Web page shown in Figure 13-10 appears.

Figure 13-10:
ASP.NET

Configura-
tion tool.

 4. Click the Security tab.

 5. Click the Create or Manage Roles link in the Roles box.

19_524657-ch13.indd 31719_524657-ch13.indd 317 3/31/10 11:47 AM3/31/10 11:47 AM

318 Part III: Connecting with Data

 6. Enter Blog Reader in the New Role Name text box and click the Add
Role button.

 A new role is added to the database and appears in a list under the New
Role Name text box.

 7. Under Add/Remove Users, click the Manage link next to the new role
you created.

 8. Click the All link at the far right of the Search for Users box.

 9. Select the User Is In Role check box to add your user to the new role.

 10. Open the BlogDomainService.cs file.

 11. Add the [RequiresRole(“Blog Reader”)] attribute to the
GetPostsWithComments method.

 Your code should now look like this, with the new attribute in bold:

[RequiresAuthentication]
[RequiresRole(“Blog Reader”)]
public IQueryable<Post> GetPostsWithComments()
{
 var loadOptions = new DataLoadOptions();
 loadOptions.LoadWith<Post>(p => p.Comments);
 DataContext.LoadOptions = loadOptions;
 return DataContext.Posts;
}

 12. Run the application and log in.

 You should see your posts.

Now you need to test the whether the code for assigning roles is working.
You do so by removing the user from the Blog Reader role and trying to
access the data. Follow these steps:

 1. Open the Site Administration tool in Visual Studio by choosing
Project➪ASP.NET Configuration.

 2. Click the Security tab.

 3. Click the Manage Users link.

 The Search for Users box appears.

 4. Next to the username, click the Manage Roles link.

 A new column called Roles appears in the list of users.

 5. Deselect the check box next to the Blog Reader role.

 6. Run the application again and log in.

 You should be denied access to the data because you are not in the
correct role. This is a very powerful way to restrict access to your
important domain services.

19_524657-ch13.indd 31819_524657-ch13.indd 318 3/31/10 11:47 AM3/31/10 11:47 AM

Part IV

The Part of Tens

20_524657-pp04.indd 31920_524657-pp04.indd 319 3/31/10 11:44 AM3/31/10 11:44 AM

In this part . . .

The Part of Tens offers you a look at some of the things
that aren’t covered in the other parts of this book, in

the form of lists that contain ten items each.

Chapter 14 gives you a taste of ten cool controls that you will
use often in your Silverlight applications. In Chapter 15, we
tell you how to get more out of Silverlight; check this chapter
out for lots of tools, techniques, and tips.

Chapter 16 provides even more tips, including keyboard
shortcuts, how to find additional Silverlight resources,
and much more.

20_524657-pp04.indd 32020_524657-pp04.indd 320 3/31/10 11:44 AM3/31/10 11:44 AM

Chapter 14

Ten Cool Controls for Collecting
and Displaying Data

In This Chapter
▶ Displaying multiple controls within a ListBox

▶ Managing tabular data in a DataGrid

▶ Editing data in a DataForm

▶ Expanding a view with the Expander

▶ Showing graphs and charts with the Chart control

▶ Picking dates with the DatePicker

▶ Showing progress using a ProgressBar

▶ Displaying hierarchical data using a TreeView

▶ Managing ratings with the Rating control

▶ Auto-completing a TextBox using AutoCompleteBox

Silverlight and the Silverlight Toolkit come with a bunch of controls out of
the box, many of which are described elsewhere in this book. This chap-

ter highlights some additional controls that you will find really useful for not
only displaying data but also collecting them from the user.

ListBox
The ListBox is underrated as a control, mainly because of how it is tradition-
ally used: to display a list of string values and have the user select one of
them. Chapter 4 shows you how to use the ListBox, as well as the ComboBox,
which is nothing more than a drop-down ListBox.

A single ListBox item in Silverlight can actually take a complex form and con-
tain multiple controls that are nicely formatted, as opposed to containing just
one line of string in traditional list boxes. As an example, if you had an object

21_524657-ch14.indd 32121_524657-ch14.indd 321 3/31/10 11:44 AM3/31/10 11:44 AM

322 Part IV: The Part of Tens

that contained the name, address, and e-mail of a person, you could display
all those items in a single ListBox item, with name, address, and e-mail nicely
formatted, as shown in Figure 14-1. The markup to represent this in a single
item would look something like this:

<ListBox ItemsSource=”{Binding Collection}” >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text=”{Binding Name}” FontSize=”16”/>
 <TextBlock Text=”{Binding Address}”/>
 <TextBlock Text=”{Binding Email}” FontSize=”9” FontStyle=”Italic”

/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

You use the ItemTemplate element of the ListBox to specify how the
ListBox actually looks. In spite of the way it looks, it still acts and works like a
standard ListBox.

Figure 14-1:
ListBox with
items nicely

formatted.

DataGrid
You can use the DataGrid control to display data in a nice spreadsheet-like
Grid and support tasks such as editing the data inline, resizing and moving
columns, sorting, and more. The markup for a simple grid that supports all
these features looks something like this:

<data:DataGrid AutoGenerateColumns=”True” ItemsSource=”{Binding Collection}”>
</data:DataGrid>

21_524657-ch14.indd 32221_524657-ch14.indd 322 3/31/10 11:44 AM3/31/10 11:44 AM

323 Chapter 14: Ten Cool Controls for Collecting and Displaying Data

When you specify the AutoGenerateColumns property as true, Silverlight
will automatically pick up the column names from the data specified in the
ItemsSource property and, depending on the type of data, display the
columns appropriately. You can edit the data by double-clicking a cell. You
can also sort by clicking the column headings, and you can even reorder the
columns by dragging the column headers around. All this functionality is
available without writing a single line of code or adding markup. A data grid
sorted by the name column is shown in Figure 14-2.

Figure 14-2:
DataGrid

show-
ing name

column
sorted and

a column
selected.

The DataGrid control is also discussed in Chapter 9.

DataForm
As the name suggests, you can use the DataForm when you want to edit data
in a form. As is the DataGrid control, which is described in the previous sec-
tion, this control is extremely simple to use. All you need to do is bind it to
the data and let the control do all the work. In its simplest form, the markup
for the DataForm looks something like this:

<dataFormToolkit:DataForm ItemsSource=”{Binding Collection}”/>

This brings up a DataForm that contains buttons enabling the user to navi-
gate the list of records in the collection. It also contains buttons to add and
remove items. The labels for the data will automatically be displayed, as
shown in Figure 14-3.

WCF RIA Services, which we describe in Chapters 12 and 13, use DataForms
to edit data.

21_524657-ch14.indd 32321_524657-ch14.indd 323 3/31/10 11:44 AM3/31/10 11:44 AM

324 Part IV: The Part of Tens

Figure 14-3:
A DataForm

in which you
can edit the

data in a
collection.

Expander
You use the Expander control to collapse and expand the contents in a page.
Strictly speaking, the Expander isn’t used for displaying or collecting data.
But it can be very useful when you do not want to show all the data on the
screen all the time. With the Expander control, you can hide the content and
make it appear when you click a button. This removes screen clutter and
makes the page look cleaner. The markup for displaying a DataGrid in an
Expander will look something like this:

<controlsToolkit:Expander HorizontalAlignment=”Left” VerticalAlignment=”Top” >
 <controlsToolkit:HeaderedContentControl.Header>
 <TextBlock Text=”Expander that hides/displays the DataGrid” FontSize=”18”

TextDecorations=”Underline” />
 </controlsToolkit:HeaderedContentControl.Header>
 <controlsToolkit:HeaderedContentControl.Content>
 <data:DataGrid AutoGenerateColumns=”True” Height=”300”

ItemsSource=”{Binding Collection}” />
 </controlsToolkit:HeaderedContentControl.Content>
</controlsToolkit:Expander>

When the application is run and the Expander is collapsed, it resembles
Figure 14-4.

Figure 14-4:
Expander

with
collapsed

content.

21_524657-ch14.indd 32421_524657-ch14.indd 324 3/31/10 11:44 AM3/31/10 11:44 AM

325 Chapter 14: Ten Cool Controls for Collecting and Displaying Data

When the user clicks the down arrow, the content is displayed as shown in
Figure 14-5.

Figure 14-5:
Expander

with
expanded

content.

Chart
You can use the Chart control to display various kinds of charts in Silverlight.
Following is an example of markup that creates a simple bar chart using this
control:

<StackPanel x:Name=”LayoutRoot” Background=”White” Margin=”10” >
 <chartingToolkit:Chart
 Title=”Population(Top 5 countries)”
 Height=”440”
 DataContext=”{Binding Collection, Source={StaticResource

SampleDataSource1}}”>
 <chartingToolkit:ColumnSeries
 Title=”Population in Millions”
 AnimationSequence=”FirstToLast”
 DependentValuePath=”Population”
 IndependentValuePath=”Country”
 ItemsSource=”{Binding}”/>
 </chartingToolkit:Chart>
</StackPanel>

This displays a bar chart that looks like Figure 14-6.

21_524657-ch14.indd 32521_524657-ch14.indd 325 3/31/10 11:44 AM3/31/10 11:44 AM

326 Part IV: The Part of Tens

Figure 14-6:
Bar chart
showing

population.

DatePicker
The DatePicker control provides a simple user interface for selecting dates
from a calendar. It shows a TextBox followed by a small calendar icon. The
user can either type the date directly in the TextBox or click the calendar
icon, as shown in Figure 14-7. Clicking the icon makes a calendar drop down,
from which the user can pick a date.

Figure 14-7:
DatePicker

control.

ProgressBar
You can use the ProgressBar control to display the progress of long-running
activities in Silverlight. The ProgressBar is typically used to display the per-
centage of work that has been completed, such as download percentage. You
can use data binding, explained in Chapter 9, to show the progress automati-
cally, when the Value property is updated. The ProgressBar is shown in
Figure 14-8.

21_524657-ch14.indd 32621_524657-ch14.indd 326 3/31/10 11:44 AM3/31/10 11:44 AM

327 Chapter 14: Ten Cool Controls for Collecting and Displaying Data

Figure 14-8:
A Progress

Bar in
action.

TreeView
You use the TreeView control to display hierarchical data such as an
Organization chart or a directory structure that contains other directories
and files. The tree is displayed in the form of nodes. The user can click a
node either to select it or expand it to reveal other child nodes.

A TreeView created using sample data in Expression Blend is shown in
Figure 14-9.

Figure 14-9:
TreeView

created
from sample

data.

Rating
As its name suggests, you use the Rating control to select a rating for any
type of field. For example, you can use it to rate a movie, vote for something,
or even grade a student’s assignment. The default view displays the ratings
as stars, as shown in Figure 14-10.

You can pick a rating by clicking the star. The Value property of the control
contains the value that you’ve picked.

21_524657-ch14.indd 32721_524657-ch14.indd 327 3/31/10 11:44 AM3/31/10 11:44 AM

328 Part IV: The Part of Tens

Figure 14-10:
Rating

control.

AutoCompleteBox
The AutoCompleteBox is a TextBox that provides the user with a drop-down
list of values based on the text that is being typed into the TextBox.

Figure 14-11 shows an AutoCompleteBox in which the values Australia and
Austria show up when the user types Au in the TextBox. The values that
need to be shown in the drop-down list are databound to the ItemsSource
property of the AutoCompleteBox control, as shown in the XAML snippet
below:

<input:AutoCompleteBox ItemsSource=”{Binding Countries}” />

Figure 14-11:
Auto

Complete
Box for a

Country
field.

21_524657-ch14.indd 32821_524657-ch14.indd 328 3/31/10 11:44 AM3/31/10 11:44 AM

Chapter 15

Ten Ways to Get More
Out of Silverlight

In This Chapter
▶ Using SketchFlow to prototype your application

▶ Using Deep Zoom Composer

▶ Creating designs using Expression Design

▶ Importing designs into Expression Blend

▶ Creating your own behaviors

▶ Printing in Silverlight

▶ Calling Silverlight code via JavaScript

▶ Accessing HTML from Silverlight

▶ Storing data locally in the client

▶ Running Silverlight out of the browser

In this chapter, you will look at a bunch of different ways to get more out
of Silverlight. The chapter includes a wide range of topics, including using

SketchFlow to create a prototype that you can showcase to a business client
before you create the actual application; using tools such as Deep Zoom
Composer and Expression Design; interacting between the browser and the
Silverlight SketchFlow application; and much more.

22_524657-ch15.indd 32922_524657-ch15.indd 329 3/31/10 11:44 AM3/31/10 11:44 AM

330 Part IV: The Part of Tens

Using SketchFlow to Prototype
Your Application

SketchFlow is an application that comes with Expression Blend and helps you
to quickly prototype applications. To use it, you choose File➪New Project and
select Silverlight SketchFlow Application to create a prototyping project.

You can add new pages in SketchFlow Map and specify the flow among the
various pages visually, as shown in Figure 15-1.

Figure 15-1:
Adding new

pages in
SketchFlow

Map.

You can then add controls to each page from the Tools panel, and a wire-
frame of the user interface gets created, as shown in Figure 15-2.

Figure 15-2:
A

Prototyped
screen.

If you are working in a corporate environment or need to get approval of
your design from others, you can get the project owners and business ana-
lysts to look at the prototype you’ve created using the SketchFlow Player
and provide feedback. The SketchFlow Player is shown in Figure 15-3. You
can also export the prototypes you create in SketchFlow into a Word docu-
ment to share it with others.

22_524657-ch15.indd 33022_524657-ch15.indd 330 3/31/10 11:44 AM3/31/10 11:44 AM

331 Chapter 15: Ten Ways to Get More Out of Silverlight

Figure 15-3:
Use

SketchFlow
Player to

let clients
review the
prototype.

Using Deep Zoom Composer
Using Deep Zoom composer (downloadable free from Microsoft), you can
create a composition of high-resolution images to use in your Silverlight
application. These images can be individual images from a collection (such
as works of art or photographs) or high-resolution pictures of a single image
that are stitched together to form a large, high-resolution canvas.

When the user views these images in a Silverlight application, they are down-
loaded progressively, initially displaying a blurry image that gets crisper as
the complete image is loaded. This provides the user with a much better
experience than waiting through a blank screen until the images are down-
loaded completely.

The Deep Zoom Composer application is extremely simple to use. You can
create a Deep Zoom application with a three-step process: Import, Compose,
and Export.

For the Import step, you choose the images you want to use. For the Compose
step, you put the images together. Finally, for the Export step, you specify
the type of output you want to create. Deep Zoom Composer allows you to
create outputs in more than one form — the one that you need to choose is
Silverlight Deep Zoom. Deep Zoom Composer is shown in Figure 15-4.

22_524657-ch15.indd 33122_524657-ch15.indd 331 3/31/10 11:44 AM3/31/10 11:44 AM

332 Part IV: The Part of Tens

Figure 15-4:
Deep Zoom
Composer.

Creating Designs Using
Expression Design

User interface design forms an important component of any Silverlight appli-
cation. You can use Expression Blend to create your screen designs visu-
ally, but designers need something a lot more sophisticated, which is where
Expression Design comes in.

Expression Design helps you create complex graphics using vector paths
and bitmap graphics. Vector paths make use of points and lines to draw your
image, whereas bitmap images use an array of pixels to represent it. Raster
paths scale well when resized, whereas bitmaps don’t.

22_524657-ch15.indd 33222_524657-ch15.indd 332 3/31/10 11:44 AM3/31/10 11:44 AM

333 Chapter 15: Ten Ways to Get More Out of Silverlight

In Expression Design, you can compose designs in a layered fashion, separat-
ing each part of the overall image into layers that overlap one another. You
can then choose to hide or show individual layers, thereby affecting how the
image looks.

You can also use the application to convert bitmap images into vector paths.
For example, you might start with a bitmapped image, as shown in Figure 15-5,
and choose Object➪Image➪Auto Trace Image.

Figure 15-5:
A bitmapped

image of
a map in

Expression
Design.

This action automatically traces the image using vector paths, as shown in
Figure 15-6. In Chapter 3, you find out how to use the Pencil and Pen tools
in Expression Blend to draw freehand sketches. Auto-tracing an image will
automatically create a freehand sketch for you without the need to use
these tools; it does this by copying the XAML equivalent when you choose
Edit➪Copy XAML and pasting that equivalent into markup in your XAML file.

This is just a sampling of what you can do using Expression Design. It is a
very sophisticated tool and needs a separate book to do it any justice.

22_524657-ch15.indd 33322_524657-ch15.indd 333 3/31/10 11:44 AM3/31/10 11:44 AM

334 Part IV: The Part of Tens

Figure 15-6:
Auto-traced

path of
the bitmap

image.

Importing Designs from
Other Applications

Expression Design and Expression Blend are slowly growing in popular-
ity, but a lot of designers are still creating Web page designs using Adobe
Photoshop and Illustrator.

You can import from these two formats in both Expression Design and Blend.
In Expression Blend, you can import from these two formats by choosing
File➪Import Adobe Photoshop File and File➪Import Adobe Illustrator File.

After you select the file that you want to import, Expression Blend opens
the Import tool, as shown in Figure 15-7, which allows you to pick the design
layers you want and bring them into the application as XAML.

22_524657-ch15.indd 33422_524657-ch15.indd 334 3/31/10 11:44 AM3/31/10 11:44 AM

335 Chapter 15: Ten Ways to Get More Out of Silverlight

Figure 15-7:
Import
Adobe

Photoshop
file.

Creating Your Own Behaviors
Behaviors let you add a certain functionality or behavior to your control
without the need to write code. These behaviors are available in the Assets
panel and can be added to a control from within Expression Blend. Chapter 7
tells you how to apply Silverlight’s built-in behaviors to your controls.

You’re not limited to those built-in behaviors, however; you can add your
own to the mix. To create a behavior from Expression Blend, click the name
of the project in the Projects panel to select it. Then right-click and choose
New Item. When the New Item dialog box opens, select Behavior from the list
and click OK.

You can then override the methods OnAttached and OnDetaching to
attach to events and manipulate the way the controls behave.

Here’s an example of creating a simple behavior to set the opacity of any con-
trol to 25 percent when a mouse moves on top of a control, and to set it to
100 percent when the mouse moves out of it:

22_524657-ch15.indd 33522_524657-ch15.indd 335 3/31/10 11:44 AM3/31/10 11:44 AM

336 Part IV: The Part of Tens

public class TransparentBehavior : Behavior<UIElement>
{
 protected override void OnAttached()
 {
 base.OnAttached();

 this.AssociatedObject.MouseEnter +=
 new MouseEventHandler(AssociatedObject_

MouseEnter);
 this.AssociatedObject.MouseLeave +=
 new MouseEventHandler(AssociatedObject_

MouseLeave);
 }

 void AssociatedObject_MouseLeave(object sender,
MouseEventArgs e)

 {
 this.AssociatedObject.Opacity = 1;
 }

 void AssociatedObject_MouseEnter(object sender,
MouseEventArgs e)

 {
 this.AssociatedObject.Opacity = 0.25;
 }

 protected override void OnDetaching()
 {
 base.OnDetaching();

 this.AssociatedObject.MouseEnter
 -= new MouseEventHandler(AssociatedObject_

MouseEnter);
 this.AssociatedObject.MouseLeave
 -= new MouseEventHandler(AssociatedObject_

MouseLeave);
 }

}

22_524657-ch15.indd 33622_524657-ch15.indd 336 3/31/10 11:44 AM3/31/10 11:44 AM

337 Chapter 15: Ten Ways to Get More Out of Silverlight

Running Silverlight Out of the Browser
With Silverlight 4, you can run your Silverlight application out of the browser,
which means that you can run it from your desktop without having to start
your Internet browser application. To enable this option from Expression
Blend, choose Project➪Silverlight Project Options➪Enable Application Outside
Browser. Doing so automatically adds the necessary settings to your project.

When this feature is enabled, you can install the application you’ve created
onto your machine by right-clicking the application on the browser and
choosing the “Install Application Name onto this Computer” option from the
menu, as shown in Figure 15-8.

Figure 15-8:
Installing a
Silverlight

application
to run from

the browser.

To enable this option in Visual Studio, you right-click the project name in
the Solution Explorer and choose Properties. In the Silverlight tab, select the
Enable Running Application Out of the Browser option and then click the
Out-of-Browser Settings button. This brings up the Out-of-Browser Settings
dialog box, shown in Figure 15-9, which you can use to set more properties
for this setting.

22_524657-ch15.indd 33722_524657-ch15.indd 337 3/31/10 11:44 AM3/31/10 11:44 AM

338 Part IV: The Part of Tens

Figure 15-9:
Out-of-

Browser
settings
in Visual

Studio.

Calling Silverlight code via JavaScript
You can call Silverlight code written in C# or VB.NET directly from your
HTML page using JavaScript and a feature called the HTML Bridge. This
allows for a better integration between a Silverlight application and the page
in which the application is hosted. Using the HTML Bridge, here’s an over-
view of the steps to call Silverlight code:

 1. Create methods in Silverlight that can be called using JavaScript.

 2. Register the object so that it can be called from the HTML page.

 3. Call it from JavaScript.

Read on for an example.

22_524657-ch15.indd 33822_524657-ch15.indd 338 3/31/10 11:44 AM3/31/10 11:44 AM

339 Chapter 15: Ten Ways to Get More Out of Silverlight

Create a scriptable method
To create a simple method that returns a simple “Hello World” string, create
a new class called SilverlightHelper and add the method GetHello
Message, as follows:

public class SilverlightHelper
{
 [ScriptableMember]
 public string GetHelloMessage()
 {
 return “Hello World”;
 }
}

The ScriptableMember attribute in front of the function makes it callable
from JavaScript. This attribute is present in the System.Windows.Browser
namespace.

Create and register the object
Open the App.xaml.cs file, and in the Application_Startup method,
add the following two lines shown in bold:

private void Application_Startup(object sender,
StartupEventArgs e)

{
 this.RootVisual = new MainPage();

 SilverlightHelper helper = new SilverlightHelper();
 HtmlPage.RegisterScriptableObject(“SilverlightHelper”,

helper);
}

These two lines create an instance of the SilverlightHelper class and
register them in the HTML page so that they can be accessed via JavaScript.
Remember to add the following line at the top of the file:

using System.Windows.Browser;

Call the ScriptableMember function
In the HTML page that contains the Silverlight application, you need to make
two changes. First, you need to add a parameter to the object that holds the
Silverlight plug-in so that it calls a function as soon as the plug-in object ele-
ment is loaded, as shown in the following line in bold:

22_524657-ch15.indd 33922_524657-ch15.indd 339 3/31/10 11:44 AM3/31/10 11:44 AM

340 Part IV: The Part of Tens

...
 <object data=”data:application/x-silverlight,”

type=”application/x-silverlight-2” width=”100%”
height=”100%”>

 <param name=”source” value=”ClientBin/Chapter 15
Import.xap”/>

 <param name=”onLoad” value=”onPluginLoaded” />
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”3.0.40624.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/?LinkID=14

9156&v=3.0.40624.0” style=”text-decoration:
none;”>

 <img src=”http://go.microsoft.com/
fwlink/?LinkId=108181” alt=”Get Microsoft
Silverlight” style=”border-style: none”/>

</object>
...

Next, you need to add the onPluginLoaded function in the HTML page so
that it executes the scriptable method, as follows:

<script type=”text/javascript”>
 function onPluginLoaded(sender, args) {
 var silverLightControl = sender.getHost();
 alert(silverLightControl.Content.

SilverlightHelper.GetHelloMessage());
 }
...

This displays a JavaScript alert message with the text that is generated by
the GetHelloMessage in Silverlight.

Accessing HTML from Silverlight
The previous section shows an example of how to access Silverlight from
HTML. What if you want to do it the other way around — that is access HTML
from Silverlight? Silverlight supports that, too. Silverlight 4 provides two
ways to access HTML:

 ✓ Using the WebBrowser control

 ✓ Via the Document Object Model (DOM) that holds the elements of the
HTML hosting the Silverlight application

22_524657-ch15.indd 34022_524657-ch15.indd 340 3/31/10 11:44 AM3/31/10 11:44 AM

341 Chapter 15: Ten Ways to Get More Out of Silverlight

Using the WebBrowser control
Silverlight 4 introduces a new WebBrowser control for displaying Web pages
within a Silverlight application. To use it within an application, follow these
steps:

 1. In Expression Blend, open the Silverlight project and the XAML file to
which you want to add a Web page.

 2. Open the Assets panel and type WebBrowser in the Search field. When
the control appears in the list, double-click the item to add it to the
XAML page.

 The WebBrowser control gets added to the XAML page with the default
width and height and is displayed on the Artboard. Adjust the height
and width of the control to the desired dimensions by dragging the
resizing handles of the control.

 3. In the Properties panel, change the Source property, which you find
under the Miscellaneous group, to the Web page address (such as
http://dummies.com) you want displayed.

 This sets the Web page that should be displayed in the Silverlight applica-
tion. But it’s important to note that the WebBrowser control will display
pages only when run in Out-of-Browser mode; also, it needs to run in an
elevated trust mode. An elevated trust mode allows Silverlight to directly
access things such as the Clipboard, the user’s folder in the computer, and
much, much more. When you try to install an application that requires ele-
vated permissions, Silverlight prompts you with a Security Warning dialog
box mentioning that the application can access your personal data.

 4. Choose Project➪Silverlight Project Options➪Enable Application
Outside Browser.

 This lets you run your application outside the browser.

 5. Choose Project➪Silverlight Project Options➪Application Requires
Elevated Permission.

 This makes the application run under elevated permissions.

 6. Press F5 to run the application.

 The application runs in a browser and the Web page that was specified
in the Source property is displayed in the Silverlight application.

Apart from using the Source property, you can set the HTML displayed in
the WebBrowser control in the following ways:

 ✓ Use the Navigate method of the WebBrowser control to navigate to
another URL.

 ✓ Use the NavigateToString method to display HTML that you pass to it.

22_524657-ch15.indd 34122_524657-ch15.indd 341 3/31/10 11:44 AM3/31/10 11:44 AM

342 Part IV: The Part of Tens

Using the DOM to access HTML
You can obtain the HTML DOM using the HtmlPage.Document object using
C# or VB.NET within Silverlight. When you have the object, you can manipu-
late individual HTML elements in C# as shown in the following example:

HtmlDocument document = HtmlPage.Document;
HtmlElement element = document.

GetElementById(“elementID”);
element.SetStyleAttribute(“color”, “Red”);

You are not restricted to calling just the HTML elements in the page, you also
have access to things like cookies. You can access the cookies in the page by
calling HtmlPage.Document.Cookies.

“How can I call a JavaScript function from Silverlight?” you ask. Easy: Instead
of using the HtmlPage.Document object, you use HtmlPage.Window. For
example, to call a function called javaScriptFunction that takes two
parameters, parameter1 and parameter2, your call from C# code will look
something like following:

HtmlPage.Window.Invoke(“javaScriptFunction”, new object[]
{ parameter1, parameter2 });

Storing Data Locally in the Client
Silverlight allows you to use the local storage on the client machine to store
application-specific data or even to cache some data from the server. The
sample markup that follows shows how you can access the local storage:

using (IsolatedStorageFile storage = IsolatedStorageFile.
GetUserStoreForApplication())

{
 using (IsolatedStorageFileStream fileStream = new Isol

atedStorageFileStream(LogFileName,
 FileMode.OpenOrCreate, storage))
 {
 //Do stuff with the fileStream object
 ...
 }
}

Each user of the application gets his or her own isolated storage in the client
machine, which is initially set to 1MB capacity. When the application needs
additional storage, the user receives a prompt asking whether he or she
wants to grant the application additional storage. When you run the applica-
tion out of the browser, this starting storage limit is set to 25MB.

22_524657-ch15.indd 34222_524657-ch15.indd 342 3/31/10 11:44 AM3/31/10 11:44 AM

Chapter 16

Ten Handy Tips for Writing
Silverlight Applications

In This Chapter
▶ Finding resources and utilities to increase your productivity

▶ Writing applications with accessibility and worldwide users in mind

▶ Putting handy shortcuts to good use

▶ Debugging Silverlight applications

▶ Designing large Silverlight applications

Resources about Silverlight
Beyond This Book

You can find out a lot more about Silverlight than we have space to cover in
this book — and it’s free on the Internet. The best place to start is at www.
silverlight.net. This site contains blogs, video tutorials, community
samples, forums, and much, much more.

The site also contains links to download all the software you need to get
started with Silverlight. Other sites worth investigating are www.silver
lightshow.net and www.silverlightcream.com.

Ten Handy Expression Blend Shortcuts
In addition to using a series of mouse clicks to perform an action in
Expression Blend, you can also use keyboard shortcuts to speed up your
work. Table 16-1 shows the top ten keyboard shortcuts that you will find
useful.

23_524657-ch16.indd 34323_524657-ch16.indd 343 3/31/10 11:44 AM3/31/10 11:44 AM

344 Part IV: The Part of Tens

Table 16-1 Expression Blend Keyboard Shortcuts

Shortcut Purpose

F4 Hide all other panels and show only the Artboard

F5 Run the application

F6 Switch from one workspace to another

F11 Toggle the Artboard between Design, XAML, and Split views

Alt+Drag Create a copy of the selected object

Ctrl++, Ctrl+- Zoom the Artboard in and out

Space+Drag Pan the Artboard

Ctrl+0 Fit the Artboard onto the screen

Ctrl+1 Zoom to actual size (100%)

Ctrl+. Open asset library

Ten Handy Visual Studio Shortcuts
As does Expression Blend, Visual Studio provides keyboard shortcuts to
speed up your work. Table 16-2 lists ten keyboard shortcuts that you will find
useful when you are working in Visual Studio.

Table 16-2 Visual Studio Keyboard Shortcuts

Shortcut Purpose

Ctrl+Shift+B Build your application

F5 Debug the application

Ctrl+. Display the Smart tag menu, from which you can add
references, implement interfaces, and so on

Ctrl+Shift+F Find files

Ctrl+I Interactive search; allows you to start typing the
search text interactively after you press Ctrl+I

Ctrl+Spacebar Activate IntelliSense

F10/F11 Step over and into code while debugging

F7/Shift+F7 Switch between XAML and code-behind file

Ctrl+Tab Switch among open documents

Ctrl+K+C and Ctrl+K+U;
Ctrl+E+C and Ctrl+E+U

Comment and uncomment code

23_524657-ch16.indd 34423_524657-ch16.indd 344 3/31/10 11:44 AM3/31/10 11:44 AM

345 Chapter 16: Ten Handy Tips for Writing Silverlight Applications

Debugging Silverlight Applications
If you would like to debug your application from Visual Studio, make sure
that the Silverlight check box under Debuggers on the Web tab of Project
properties for the Web application is selected. You may need to deselect this
check box when you want to debug JavaScript in Visual Studio.

To get to this option, select the Silverlight project from the Solution Explorer
and then right-click to bring up the menu. Choose Properties from the menu
and click the Debug tab, which is shown in Figure 16-1.

Figure 16-1:
Enabling the

Debugger
for

Silverlight
in Visual

Studio.

Looking Out for Performance Pitfalls
One of the good things about Silverlight is that it can use the processing power
and memory of the machine on which it is running quite well. However, you
still have to be careful not to write code that takes up too much valuable CPU
cycles and other resources. While writing applications in Silverlight, always
keep in mind that operations such as animations, Pixel Shader effects, trans-
parencies, and other high-performance features can hog the CPU.

23_524657-ch16.indd 34523_524657-ch16.indd 345 3/31/10 11:44 AM3/31/10 11:44 AM

346 Part IV: The Part of Tens

You can fix some graphic issues by turning Graphics Processing Unit (GPU)
acceleration on, but this does not always improve performance — in fact, if
not used properly, it will have the exact opposite effect.

You can also try setting the EnableRedrawRegions property of the
Silverlight plug-in control to true during development to see which regions
are being repainted on your screen often. Silverlight shows the repainted
regions in a different color to give the developer a visual cue.

Another issue is that your application could be chewing up bandwidth by
having large XAP files, which contain the complete Silverlight application
and thereby require downloading large volumes of data from the Internet. It
is better to load the data you need on demand, and to perform optimizations
such as using binary XML with WCF or encoding media elements such as
streaming video at a lower resolution.

Microsoft provides abundant advice on how to avoid performance pit-
falls for Silverlight in the MSDN article “Performance Tips,” which, at the
time of writing, is found at msdn.microsoft.com/en-us/library/
cc189071(VS.95).aspx.

Building for Accessibility
The goal of accessibility is to make an application available for use by as many
people as possible, including people with a disability that has an impact on
how they can use some or all of the application’s features. For instance, a visu-
ally impaired person may use a screen reader to use the application, so you
need to design your application to accomodate that possibility.

Silverlight 4 by itself provides accessibility support out of the box, but it’s
still up to you to ensure that your application is highly accessible. Here are a
few handy tips for doing so:

 ✓ Use colors that have high contrast settings. In fact, don’t use colors
alone to differentiate between object states; use additional visual indica-
tors as well, such as a different font attribute, so that people who can’t
distinguish colors can still see the difference.

 ✓ Provide keyboard shortcuts or alternative ways of doing things rather
than relying solely on mouse movements.

 ✓ To help screen readers interpret elements such as Image controls
and Buttons that do not have text, add the attached properties
AutomationProperties.Name and AutomationProperties.
HelpText to the control, as shown in the following XAML:

23_524657-ch16.indd 34623_524657-ch16.indd 346 3/31/10 11:44 AM3/31/10 11:44 AM

347 Chapter 16: Ten Handy Tips for Writing Silverlight Applications

 <Image Source=”Logo.png” AutomationProperties.
Name=”Company Logo”/>

 <Button Content=”<”
 Width=”20”
 AutomationProperties.Name=”Previous”
 AutomationProperties.HelpText=”Move to

Previous Record”
 x:Name=”prevButton” />

 ✓ Use the attached property AutomationProperties.LabeledBy with
an input field such as a TextBox to link it to the TextBlock it is associ-
ated with, as shown in the following code snippet:

<TextBlock x:Name=”lblLastName” Text=”Last Name” />
<TextBox AutomationProperties.LabeledBy=”{Binding

ElementName=lblLastName, Mode=OneWay}” />

 For more about attached properties, see Chapter 2.

Internationalization and Localization
Internationalization and Localization are means by which you can adapt your
software for a different language or local culture. The way it works is that you
put all the text or string you use in your application into a specific resource
file, which then gets compiled into a DLL. You can modify the resource file
for each country or region, thereby providing support for other languages
and cultures.

There is more to localization than just translating strings into another
language. You need to take into consideration aspects of a culture such as
currencies, date formats, number formats, calendars, and so on.

You can find out more about Internationalization and Localization
from the MSDN reference msdn.microsoft.com/en-us/library/
cc838238(VS.95).aspx.

Build Composite Applications
Using Prism

Consider the scenario in which you are building a very large Silverlight
application for your company, and the application has many pages. Some of
these pages can be combined to form some kind of module — for example,
an Administrator or a Financial module. These modules can be built indepen-
dently of the each other and are even being built at different periods in time.

23_524657-ch16.indd 34723_524657-ch16.indd 347 3/31/10 11:44 AM3/31/10 11:44 AM

348 Part IV: The Part of Tens

Although they are independent, you would still like to bring them together to
work like one single application.

This is not an uncommon scenario. Many people have a very similar require-
ment and end up building all the necessary classes and libraries to make this
happen. This is a lot of work and people end up putting extensive effort into
building the framework — effort that could be better spent on developing
business functionality.

Rather than build your own solution to this problem, you can use Prism,
which is a framework released by the Microsoft patterns and practices group
that specifically targets this scenario. Prism helps you to create what it calls
Composite Applications, which are loosely coupled applications that don’t
know much about other applications or modules but can be brought together
to work as a single application.

Prism is free, and you can find more details about this library at
www.codeplex.com/CompositeWPF.

Use the Model-View-ViewModel
(MVVM) Pattern to Manage
Large Applications

When the size of your application gets bigger and bigger, spilling over with
screens and features, it may become increasingly complex. Over time, the
complexity may become unmanageable unless you have a good architecture
in place.

Sometimes, good architecture is all about reusing concepts and ideas from
previously successful implementations of your current project. These are
known as patterns, and among the several good patterns that you can use is
the Model-View-ViewModel (MVVM).

The MVVM pattern helps in separating the various components of your user
interface. It’s a variation of other patterns such as Model View Controller
(MVC) and Model View Presenter (MVP), but it is particularly well suited for
data binding, which Silverlight supports.

The MVVM separates a user interface into three parts:

23_524657-ch16.indd 34823_524657-ch16.indd 348 3/31/10 11:44 AM3/31/10 11:44 AM

349 Chapter 16: Ten Handy Tips for Writing Silverlight Applications

 ✓ Model: This part represents the data Model and holds the data used in
the application, such as Customer, Product, and Address.

 ✓ View: This part refers to the visual representation of the data. This com-
ponent is expressed declaratively in Silverlight using XAML and can be
created by a designer using Expression Blend. The Model can consist of
data bound directly to the View, but in many cases, the Model may con-
tain elements that are not directly bindable. For example, in the Model,
you may store a person’s Date of Birth, but on the View, you may only
want to display Age.

 ✓ ViewModel: The ViewModel is a specialization of the Model whose
specific purpose is to make all elements of the Model bindable. In the
example previously provided, the ViewModel will have a field for Age that
is calculated based on the Date of Birth and can be directly databound to
a field on the view. In addition, this component may contain code to load
the data Model from a service, as well as event handlers to handle events.

 You can create MVVM applications from Expression Blend by selecting the
Silverlight Data-driven Application (MVVM) option in the New Project
dialog box.

Handy Tools
There are quite a few applications that you can use to make your Silverlight
development more productive while trying to see how something has been
implemented or just trying to fix problems while developing the application.
Here are several of those tools that you will be glad to know about:

 ✓ Red Gate’s Reflector: Whether you want to look at how Microsoft has
implemented Silverlight code or see the code from XAP files, you can
use Red Gate’s Reflector tool. It is a free download and can be obtained
from www.red-gate.com/products/reflector/index.htm. Figure
16-2 shows the source code for the Slider, one of Silverlight’s controls.

 ✓ Windows Performance Analysis Tools: These tools include XPerf.
exe and XPerfView.exe, which you can use to analyze performance
bottlenecks in your Silverlight application, You can download them from
msdn.microsoft.com/en-us/performance/cc825801.aspx.

 ✓ Fiddler: If you want to monitor your HTTP requests and responses, Fiddler
is what you need. You can download Fiddler from www.fiddler2.com/
fiddler2/.

23_524657-ch16.indd 34923_524657-ch16.indd 349 3/31/10 11:44 AM3/31/10 11:44 AM

350 Part IV: The Part of Tens

Figure 16-2:
Using

Reflector
to look up

the source
for the

OnApply
Template

function for
Slider.

23_524657-ch16.indd 35023_524657-ch16.indd 350 3/31/10 11:44 AM3/31/10 11:44 AM

Index

Special Characters and
Numerics
... (ellipsis), 4
{} (curly brackets)
Style property, 130
Value property, 194

< > (angle brackets)
XAML, 37
XML, 34

3-D perspective transformations, 60, 63–64

• A •
A (Alpha) property, Expression Blend,

66–67
absolute positioning

Canvas control, 121–122
defi ned, 107

accessibility, 21, 346–347
accessing data

authenticating users, 244–247
cross-domain security, 236–243
downloading fi les, 214–226
overview, 213–214
WCF RIA Services, 297–318
Web services, 226–236

Add New Project dialog box, Visual Studio,
162–163

Add Service Reference dialog box, Visual
Studio, 233, 235, 262

Add Sample Data Source button,
Expression Blend, 205

Add Simple Property button, Expression
Blend, 206

Add State button, Expression Blend, 159
Add States Group button, Expression

Blend, 159
Address class

creating, 198
data binding, 198–199
StreetName property, changing value of,

199–201
UseAsMailingAddress property, adding,

201–204
Address fi elds, binding TextBox control to,

195–198
AddressUserControl

creating, 195–196
data binding, 196–197
overview, 150–153
properties for, 154–156
reusing, 153–154

Adobe Illustrator, importing designs from,
334

Adobe Photoshop, importing designs from,
334–335

ADO.NET Entity Framework, 250–251,
256–259

Advanced Property options, Properties
panel, Expression Blend, 51–52, 133

aligning controls, 110–111
All setting, EntitySetRights, 284
AllRead setting, EntitySetRights, 284
AllWrite setting, EntitySetRights, 284
Alpha (A) property, Expression Blend,

66–67
angle brackets (< >)

XAML, 37
XML, 34

animation
bouncing ball, 171–185, 187
running, 180–185
of states of controls, 188–189

Animation workspace, Expression Blend,
174

Appearance properties group, Properties
panel, Expression Blend, 52

application tier, purpose of, 19
App.xaml fi le, 46
App.xaml.cs fi le, 46–47
Artboard, Expression Blend

adding controls to, 35
clearing margins from, 112
columns, changing width of, 117
overview, 28
purpose of, 26–27
rows, changing height of, 117
shapes, drawing, 53–56

Artboard controls, Expression Blend, 28–29
Artboard element picker, Expression

Blend, 169
ASMX (simple) Web services, 251
ASP.NET Confi guration tool, Visual Studio,

287
ASP.NET Web Site Administration tool,

Visual Studio, 288, 315–316

24_524657-bindex.indd 35124_524657-bindex.indd 351 3/31/10 11:44 AM3/31/10 11:44 AM

352 Silverlight 4 For Dummies

AspNetCompatibilityRequirements,
244

assemblies, defi ned, 47
Asset Library window, Expression

Blend, 93
Assets panel, Expression Blend

behaviors, 169
controls, 153–154, 166–167
images, adding to Button controls, 93–94
purpose of, 30–31
SketchFlow, 330

Assets panel tool, Expression Blend, 30
attached properties

accessibility, 346–347
defi ned, 40

attributes (properties)
defi ned, 34, 38
setting, 38, 50
that control layout, 109–110
XAML, 37–41

audio
microphones, 78–79
playing, 74–75
Silverlight support for, 20

authenticating users
blogging engine, 315–318
custom authentication system, 292–296
overview, 244–247
WCF RIA Services, 286–292
Weather Channel Web service, 244

AuthenticationService class, 290,
293, 295

auto sizes, 116–117
AutoCompleteBox control, 327–328
AutoGenerateColumns property,

DataGrid control, 323
AutomationProperties.HelpText

property, 346–347
AutomationProperties.LabeledBy

property, 346–347
AutomationProperties.Name property,

346–347
AutoPlay property, MediaElement

control, 75
AutoReverse property, 181
auto-tracing feature, Expression Design,

333–334
axis of rotation, Expression Blend, 61

• B •
B (Blue) property, Expression Blend, 66–67
Back easing function, 185
Background attribute, Grid element, 36
bar charts, 325–326
Barber, Corrina, 144
Begin method, 180
BeginExecute method, 266
BeginInvoke method, TextBlock

control, 226
BeginSaveChanges method, 269–270
Behavior<T> class, 335
behaviors

controlling, 168–170
creating, 335–336
defi ned, 168

Bezier curves, defi ned, 186
binding

controls to each other, 192–195
to data objects, 195–205
defi ned, 13
Flickr Web service photos, displaying, 231
overview, 191–192
to sample data, 205–210
values in templates, 143

bitmap graphics
Expression Design, 332–334
vector graphics versus, 53

BlogEntities class, 263
blogging engine

authentication, 315–318
change interceptors, 282–283
concurrency, 277–280
databases, 254–256, 263–276
Domain Data Service, 298–304
Entity Framework, 255–259
entity sets, 283–284
LINQ to Entity Framework, 304–306
LINQ to SQL, 306–309
query interceptors, 280–281
validating data, 309–314
WCF Data Service, 259–263

Blue (B) property, Expression Blend, 66–67
BlurEffect, 71, 73, 336–337
Bold element, RichTextArea control, 102
Border container, 108
Border tool, Expression Blend, 30
BorderBrush property, 143
Bounce easing function, 185

24_524657-bindex.indd 35224_524657-bindex.indd 352 3/31/10 11:44 AM3/31/10 11:44 AM

353353 Index

bouncing ball animation
ball, 172–173
easing, 182–185
KeySplines, 187
looping, 182
overview, 171–172
reversing, 181
running, 180
switching to Animation workspace, 174
timeline, 172–174
XAML for, 177–180

bounding box, Expression Blend, 57
Brush Resources tab, Expression Blend

function of, 66
video brushes, 76

Brush Transform tool, Expression Blend
displaying, 30, 70
gradients, 70–71

Brushes properties group, Properties
panel, Expression Blend

fi lling objects with color, 65–66
overview, 52

Bubble Creme theme, Silverlight Toolkit,
144–145

Business Application template
applications, creating, 287
client side of, 289
overview, 287–289
server side of, 289–290
user interfaces, creating, 300

Button control
adding, 91
animating captions in, 188–189
event handler, writing, 91–92
images, adding to, 93–95
overview, 90–92
setting content of, 92–93
skinning, 138–139

Button tool, Expression Blend, 30
Button_Click event

adding, 140
automatic creation of, 303
event handlers, generating, 91, 104–105
SmileyUserControl, 162

BytesReceived value, 221

• C •
C#, 1
calendars, 326
cameraSource data member, 77–78
Canvas control

absolute positioning, 121–122
purpose of, 108

Canvas tool, Expression Blend
displaying, 30
fi gure of, 121

CaptureSource class, 77
change interceptors, 280, 282–283
ChangeInterceptor method, 282
Chart control, 325–326
CheckBox control, 97
CheckBox tool, Expression Blend, 30
child controls, 107
child elements

defi ned, 34
setting properties with, 38

Circle easing function, 185
ClickFace event, 167
client-side validation, 309
Close Storyboard button, Expression

Blend, 177
code-behind fi les, 44
CodePlex, 337
color

Eyedropper tool, 66
fi lling objects with, 65–66
gradients, 67–71, 138, 141
high contrast, 346
mixing, 66–67
overview, 64
special effects, 71–72
text, changing, 73

Color Eyedropper button, Expression
Blend, 66

Color properties
function of, 40
simple animation, 178

ColorAnimation class, 178
ColorAnimationUsing KeyFrames

class, 179
Column property, Grid control, 116
ColumnDefinition element, 116
columns

adding controls to, 114–115
overview, 112–113
setting up, 113–114
width of, 116–117
XAML for, 115–116

ComboBox control
creating, 100–101
overview, 98

ComboBox tool, Expression Blend
displaying, 30
fi gure of, 100

Comment table, blogging engine, 250
CommentMetaData class, 300
common controls, 39

24_524657-bindex.indd 35324_524657-bindex.indd 353 3/31/10 11:44 AM3/31/10 11:44 AM

354 Silverlight 4 For Dummies

Common properties group, Properties
panel, Expression Blend, 52

CommonStates group, 136–137
Community Technical Preview (CTP)

releases, 249
Completed event

controlling animation, 181–182
LoginOperation, 291

Composite Applications, 348
concurrency, 277–280
consistency, defi ned, 127
containers, defi ned, 107. See also names of

specifi c containers
Content property

Button control, setting, 91–92
HyperlinkButton control, setting, 96
ListBox control, setting, 99
UserControl element, function of, 109

ContentControl control, 92–93
contentPresenter, animating, 189
context, defi ned, 263
controls. See also data binding; names of

specifi c controls
adding themes to, 146–147
behavior of, controlling, 168–170
defi ned, 21
grouping to create UserControl, 149–156
layout, 107–126
skinning, 134–144
Smiley UserControl, 156–168
styles, 127–134
themes, 144–147

conventions used in book, 4
copying objects, 73
corner radius handles, Expression

Blend, 59
Crawford, David, 144
CREATE, READ, UPDATE, DELETE (CRUD

operations)
creating data, 274–275
deleting data, 275–276
LINQ to Entity Framework, 304
overview, 251–253
reading data, 263–268, 301–303
updating data, 269–273, 303–304

Create Data Binding dialog box, Expression
Blend, 192–193, 204

Create Style Resource dialog box,
Expression Blend, 128–129

cross-domain exchanges, 227–232
cross-domain policy fi le

accessing Web services without, 237–238
creating, 237
defi ned, 227

cross-domain security
cross-domain policy fi le, 237–238
overview, 236–237
workaround, 238–243

CRUD operations (CREATE, READ, UPDATE,
DELETE)

creating data, 274–275
deleting data, 275–276
LINQ to Entity Framework, 304
overview, 251–253
reading data, 263–268, 301–303
updating data, 269–273, 303–304

CTP (Community Technical Preview)
releases, 249

Cubic easing function, 185
curly brackets ({})
Style property, 130
Value property, 194

cursors, Expression Blend, 50, 57–59, 61
custom controls (templatable controls;

templated controls)
defi ned, 149, 156
Smiley UserControl, 162–168

• D •
data binding

controls to each other, 192–195
to data objects, 195–205
defi ned, 13
Flickr Web service photos, displaying, 231
overview, 191–192
to sample data, 205–210
values in templates, 143

data objects, binding to
automatically updating changes to data,

199–201
binding data object to control, 198–199
binding to property name, 196–198
converting data while binding, 201–205
creating data class, 198
creating UserControl for, 195–196

Data panel, Expression Blend, 32–33
Data parameter, 56
data tier, purpose of, 19
databases

creating, 254
creating data, 274–275
deleting data, 275–276
reading data, 263–268, 301–303
tables, 254–256
updating data, 269–273

DataContext property, Slider control, 194

24_524657-bindex.indd 35424_524657-bindex.indd 354 3/31/10 11:44 AM3/31/10 11:44 AM

355355 Index

DataForm control
overview, 323–324
validating data, 312–314

DataGrid control
binding to sample data, 207–208
displaying in Expander control, 324–325
ItemsSource property, 266
LINQ to Entity Framework, 304–306
overview, 322–323
user interfaces, creating, 301–302

DataServiceQuery object, 265–266
DatePicker control, 326
debugging applications, 345
Deep Zoom Composer, 19–20
Deep Zoom Composer, 331–332
DeleteObject method, 275–276
Design view, Expression Blend, 28–29
design-time resizing handles, 112
Details mode button, Expression Blend, 209
Direct Selection tool, Expression Blend, 30
Disabled button state, 137
discrete interpolation, 179
DisplayMemberPath property, 231–232
.dll (libraries), 47
docking controls, 124–126
DockPanel control

overview, 124–126
purpose of, 108

Documents tab, Expression Blend, 28–29
DOM (Document Object Model)

accessing HTML, 342
Silverlight support for, 21

domain data service
generated fi les, 300
overview, 298–300
retrieving data, 301–303
updating data, 303–304
user interface, 300–301

DomainContext object, 301–302
Double properties, 177
DoubleAnimation class, 178
DoubleAnimationUsingKeyFrames

class, 179–180
double-headed arrow cursor, Expression

Blend, 57
downloading fi les
HTTPWebRequest class, 222–226
overview, 214–215
WebClient class, 216–221

DownloadProgressChanged event,
219–221

DownloadStringCompleted event, 229
DropShadowEffect, 71–72, 336–337
Duration attribute, DoubleAnimation

element, 178

• E •
easing animation

Easing functions, 185–186
KeySplines, 186–187
overview, 182–185

Easing functions, Expression Blend
kinds of, 185–186
list of, 185
overview, 183–185

Edit menu, Expression Blend, 27
Edit Sample Values button, Expression

Blend, 209
Edit Sample Values dialog box, Expression

Blend, 209–210
Editor panel, Visual Studio, 42–43
Effect property, 71
effects (.fx extension), 337
Elastic easing function, 185
ElementName property, Slider control, 194
elements

defi ned, 34
XAML, 37–41

Ellipse tool, Expression Blend
creating SmileyUserControl, 157–158
displaying, 30, 53–54

ellipsis (...), 4
ellipses button, Expression Blend, 94
Enable Sample Data When Application Is

Running check box, Expression Blend,
205, 208

Enable WCF RIA Services check box, Visual
Studio, 286

EnableRedrawRegions property, 346
Entity Data Model design surface, Visual

Studio, 257–258
Entity Data Model Wizard, Visual Studio,

257–258
entity sets, 283–284
entity tags (ETags), 279–280
EntityQuery object, 303
EntitySetRights, 283–284
ETags (entity tags), 279–280
event handlers, defi ned, 45, 199
events. See names of specifi c events
Events button, Properties panel,

Expression Blend, 51–52
Expander control, 324–325
Exponential easing function, 186
Expression Blend

importing designs from Adobe applications,
334–335

keyboard shortcuts, 343–344
overview, 16–18, 23–26

24_524657-bindex.indd 35524_524657-bindex.indd 355 3/31/10 11:44 AM3/31/10 11:44 AM

356 Silverlight 4 For Dummies

Expression Blend (continued)
running Silverlight out of Web browser, 337
SketchFlow, 329–331
user interface, 26–34
using in tandem with Visual Studio, 48

Expression Dark theme, Silverlight Toolkit,
144–147

Expression Design, 17–18, 332–334
Expression Encoder, 17–18
Expression Studio, 16–17
Expression Web, 16–17
Extensible Application Markup Language

(XAML)
AddressUserControl, 151–153
appearance of code in book, 4
blank Silverlight page, 108
bouncing ball animation, 173, 177–180
Button control content, 92, 95
columns, 115–116
data binding, 194, 196–197
defi ned, 1
DockPanel control, 126
elements and attributes, 37–41
Expression Dark theme, 146
ListBox control, 100
overview, 35–41
POST requests, 222–223
RichTextArea control, 102–103
rows, 115–116
SmileyCustomControl, 164–166
SmileyUserControl, 158
StackPanel container, 120
Style property, 131
styles, 128, 130–131
templates, 136–137
TextBlock control, 84, 87–90, 131
UI framework, 12

Extensible Markup Language (XML)
defi ned, 34
Flickr Web service, 228

Eyedropper tool, Expression Blend
color, 66
fi gure of, 30
gradients, 69

• F •
Fiddler tool, 277–280, 349
File menu, Expression Blend, 27
Flickr Web service

accessing, 229
developer account, 228
displaying photos, 232
modifying ListBox control, 230–231

overview, 227
XML data, 228

Flip tab, Properties panel, Expression
Blend, 160

Flip Y axis button, Expression Blend, 160
Focused button state, 137
font

changing using Properties panel, 85
increasing size of, 72

FontSize attribute, TextBlock tags,
37–38

Foreground attribute, TextBlock tags,
37–38

four-sided arrow cursor, Expression
Blend, 50

From attribute, DoubleAnimation
element, 178

.fx extension (effects), 337

• G •
G (Green) property, Expression Blend,

66–67
GET request, 215
GetAuthenticatedUser method, 295
GetDefaultAudioCaptureDevice()

method, 78
GetDefaultVideoCaptureDevice()

method, 77
GetPostsWithComments method, 315
GetRequestStream method, 225–226
GetResponseResult method, 225
GetWeatherForecastXml method,

239, 245
GoToStateAction behavior, 168–169
GPU (Graphics Processing Unit)

acceleration, 346
Gradient brush tab, Expression Blend

function of, 66
setting, 67

gradient brushes, Expression Blend, 67
Gradient eyedropper, Expression Blend,

68–69
Gradient slider, Expression Blend, 67–68
gradient stops, Expression Blend, 68
Gradient tool, Expression Blend

displaying Brush Transform tool, 70
fi gure of, 30
overview, 69–70

gradients
Brush Transform tool, 70–71
Button controls, 138, 141
Gradient tool, 69–70
Properties panel, 67–69

24_524657-bindex.indd 35624_524657-bindex.indd 356 3/31/10 11:44 AM3/31/10 11:44 AM

357357 Index

graphics, Silverlight support for, 20
Graphics Processing Unit (GPU)

acceleration, 346
Green (G) property, Expression Blend,

66–67
Grid control

converting to StackPanel, 118–119
laying out controls in tabular fashion,

112–116
purpose of, 108

grid divider, Expression Blend, 113
Grid element

eliminating, 37
function of, 36
using TextBlock element within, 40

Grid tool, Expression Blend, 30
grouping controls

to create UserControl, 149–156
into tabbed pages, 122–124

GroupName property, RadioButton
control, 97

• H •
Hard Rock Café Memorabilia site, 10–11
Height property

function of, 56, 109–110
UserControl, setting at design time, 111–112

”Hello, World” application, 34
attached properties, 40
creating, 24–25, 44
eliminating Grid element, 37
XAML for, 35–36

HelloWorld method, 234–236
Help menu, Expression Blend, 27
Help tab, Expression Blend, 24
High Level Shader Language (HLSL), 337
HorizontalAlignment property

function of, 110
setting, 122

hosting applications
with Visual Studio, 47–48
in Web pages, 14–15

HTML (HyperText Markup Language)
accessing, 341–342
hosting Silverlight applications in, 14–15
overview, 340

HTML Bridge, 338–340
HtmlPage.Document object, 342
HTTP (HyperText Transfer Protocol)

verbs, 253
HttpWebRequest class

downloading fi les, 222–226
overview, 215

Hungarian notation, 87
Hyperlink element, RichTextArea

control, 103
HyperlinkButton control, 95–96
HyperText Markup Language (HTML)

accessing, 341–342
hosting Silverlight applications in, 14–15
overview, 340

HyperText Transfer Protocol (HTTP)
verbs, 253

• I •
IAsynchResult parameter, 265, 270
icons used in book, 4–5
IDE (Integrated Development

Environment), 16, 42–43
IEnumerable namespace, 302
Illustrator, importing designs from, 334
image brushes, 76
Image control, 215
images, as content for Button control,

93–95
ImageUrl property, 230
importing designs, 334–335
Include operator, 304
[Include] attribute, 304, 306, 308
InitializeComponent method, 45
InitializeService method, 283
InlineUIContainer element,

RichTextArea control, 103
INotifyPropertyChanged interface,

200, 272
Integrated Development Environment

(IDE), 16, 42–43
IntelliSense feature

defi ned, 87, 264
proxy classes, 233–234

internationalization
overview, 347
Silverlight support for, 21

interpolation, defi ned, 178–179
IQueryable list, 304
IsChecked property

CheckBox control, 202, 204–205
RadioButton control, 97

IsMuted property, MediaElement
control, 75

IsSelected property, ListBox
control, 100

Italic element, RichTextArea
control, 102

24_524657-bindex.indd 35724_524657-bindex.indd 357 3/31/10 11:44 AM3/31/10 11:44 AM

358 Silverlight 4 For Dummies

ItemsSource property, DataGrid
control, 266–268, 323

ItemTemplate element, ListBox
control, 322

• J •
Java Script Object Notation (JSON), 252
JavaScript

creating and registering objects, 339
overview, 338–340
scriptable method, creating, 339
ScriptableMember function, 339–340
Silverlight support for, 21

JSON (Java Script Object Notation), 252

• K •
keyboard shortcuts

accessibility, 346
Expression Blend, 343–344
Visual Studio, 344

KeyDown event, 88
keyframe animation, XAML for, 178–180
keyframes, defi ned, 175
KeySpline editor, Expression Blend,

186–187
KeySplines, 186–187
Kothari, Nikhil, 349

• L •
Language Integrated Query (LINQ)

Flickr Web service, 228, 230–231
LINQ to Entity Framework, 304–306
LINQ to SQL, 306–309

layers (tiers), defi ned, 19
layout

absolute positioning, 121–122
docking controls, 124–126
grouping controls into tabbed pages,

122–124
layout containers, 107–112
rows and columns, 112–117
stacking controls, 117–120
wrapping controls, 120–121

layout containers
aligning controls, 110–111
clearing margins from Artboard, 112
function of, 39
Height and Width properties, setting at

design time, 111–112
overview, 107–108

properties that control layout, 109–110
root container, 108–109
selecting incorrect, 126

Layout group, Properties panel, Expression
Blend, 58

layout management, defi ned, 13
layout properties, 40
Layout properties group, Properties panel,

Expression Blend, 52
LeftButtonUp function, 168
libraries (.dll), 47
Line tool, Expression Blend, 30, 53–54
Linear Gradient button, Expression Blend,

67–68
linear interpolation, defi ned, 179
LinExpression element, RichTextBox

control, 103
LINQ (Language Integrated Query)

Flickr Web service, 228, 230–231
LINQ to Entity Framework, 304–306
LINQ to SQL, 306–309

LINQ to Entity Framework, 304–306
LINQ to SQL, 306–309
ListBox control

creating, 98–100
displaying photos in, 230–232
overview, 321–322

ListBox tool, Expression Blend
displaying, 30
fi gure of, 98

ListBoxItem property, ListBox control,
100

ListMode button, Expression Blend, 209
Load method, 302
Loaded event, 264–266
Local Resource menu item, Expression

Blend, 133
localization

overview, 347
Silverlight support for, 21

Login method, 245–247, 290–292
looping animation, 182

• M •
MainPage.xaml fi le, 44
MainPage.xaml.cs fi le, 44
Make Into UserControl dialog box,

Expression Blend, 152
Mapping Details section, Visual Studio,

258–259
margin adorners, Expression Blend, 112
Margin property, 56, 109

24_524657-bindex.indd 35824_524657-bindex.indd 358 3/31/10 11:44 AM3/31/10 11:44 AM

359359 Index

margins
clearing from Artboard, 112
values, 110–111

Master-Detail view, Expression Blend, 209
MaxHeight property, 108, 109
MaxWidth property, 108, 110
media elements, function of, 39
MediaElement control

adding, 75
source fi les, 215

Menu bar, Expression Blend
overview, 27
purpose of, 26–27

microphones
connecting to applications, 78
selecting default, 79

Microsoft Expression Blend
importing designs from Adobe applications,

334–335
keyboard shortcuts, 343–344
overview, 16–18, 23–26
running Silverlight out of Web browser, 337
SketchFlow, 329–331
user interface, 26–34
using in tandem with Visual Studio, 48

Microsoft Expression Design, 17–18,
332–334

Microsoft Expression Encoder, 17–18
Microsoft Expression Studio, 16–17
Microsoft Expression Web, 16–17
Microsoft Silverlight. See Silverlight
Microsoft Silverlight Confi guration dialog

box, 25
Microsoft SQL Server Express (SQL

Express)
database diagram, 256
overview, 250–251

Microsoft Visual Studio
creating applications, 44
debugging applications, 345
fi les, 46–47
hosting applications, 47–48
keyboard shortcuts, 344
overview, 16
running Silverlight out of Web

browser, 338
Solution Explorer, 44–45
starting, 41–48
user interface, 42–43
using in tandem with Expression

Blend, 48
MinHeight property, 108, 109
MinWidth property, 108, 109
mirror effect, 73

Miscellaneous properties group, Properties
panel, Expression Blend, 52

mixing colors, 66–67
Mode parameter, Slider control, 194–195
Model-View-ViewModel (MVVM) pattern,

348–349
mouse, shaping objects using, 57–58
MouseEnter event, 88
MouseLeftButtonUp event, 167
MouseOver button state

defi ned, 137
setting, 140–141

moving gradients, 71
multi-touch, defi ned, 13
MVVM (Model-View-ViewModel) pattern,

348–349

• N •
Name property, Button control, 103–104
naming

database tables, 250–251
styles, 130

Navigate method, WebBrowser
control, 341

NavigateToString method, WebBrowser
control, 341

NavigateUri property, HyperlinkButton
control, 96

nested containers, 109, 118–119
.NET Framework

Silverlight .NET Framework versus, 237–238
using to write applications, 12

New Project dialog box
Expression Blend, 24
Visual Studio, 41

New Resources Dictionary button,
Expression Blend, 132

New Silverlight Application dialog box,
Visual Studio, 41–42

No brush tab, Expression Blend, 65
None setting, EntitySetRights, 284
Normal button state, 137
NumericUpDown control, 192–194

• O •
Object Collection Editor: Items dialog box,

Expression Blend, 99
Object menu, Expression Blend, 27
object tags, 15
ObjectAnimationUsingKeyFrames

class, 179

24_524657-bindex.indd 35924_524657-bindex.indd 359 3/31/10 11:44 AM3/31/10 11:44 AM

360 Silverlight 4 For Dummies

Objects and Timeline panel, Expression
Blend

bouncing ball animation, 175–176
displaying, 174
purpose of, 30–31
selecting controls, 111

obtaining Silverlight, 9–10
OnAttached method, 335
OnDetaching method, 335
OneTime value, Slider control, 194–195
one-to-many relationship, defi ned, 263
OneWay value, Slider control, 194–195
onPluginLoaded function, 340
OnTitleChanged method, 273
opacity of controls, setting, 335–336
OpenReadAsync method

downloading fi les using WebClient class,
216, 218

progress bars, 220
OpenReadCompleted method, 216–218
operating systems, 10
Orientation property, StackPanel

control, 118–120
Oscillations property, Elastic easing

function, 185
Out-of-Browser Settings dialog box, Visual

Studio, 338

• P •
padlock icon, Expression Blend, 117
Paint Bucket, Expression Blend, 30
Palette icon, 138
panning. See Deep Zoom Composer
Panning tool, Expression Blend, 30
Paragraph element, RichTextArea

control, 102–103
param name “source” tag, 15
parent controls, defi ned, 107
partial classes, 271
Password property, PasswordBox control,

87–88
PasswordBox control

function of, 84
overview, 83–90
user input, 86–87

PasswordBox tool, Expression Blend, 30
PasswordChanged event handler, 90
Path object

function of, 20
XAML for, 56

Pause method, 181

Pen tool, Expression Blend
drawing shapes, 53–55
fi gure of, 30

Pencil tool, Expression Blend
creating SmileyUserControl, 157–158
displaying, 30
drawing shapes, 53–55

performance issues, 345–346
Photoshop, importing designs from,

334–335
pin button, Expression Blend, 29
Pixel Shader (.ps) fi les, 337
pixel sizes, 116–117
playing

audio, 74–75
video, 74–75

plug-ins, defi ned, 9
plus sign cursor, Expression Blend, 59
Point properties, 178
PointAnimation class, 178
PointAnimationUsingKeyFrames

class, 179
Position property, MediaElement

control, 75
POST method, 215
POST request
HttpWebRequest class, 222–226
overview, 215

Post table, blogging engine, 250
PostMetaData class, 300
PostsDataGrid ItemsSource

property, 301
PostsLoaded method, 265, 267, 273
Power easing function, 186
Power property, easing functions, 186
presentation tier, purpose of, 19
Pressed button state, 141–142
Prism, 347–348
.prj (project fi les), 25, 44
progress bars, 219–221
ProgressBar control, 220–221, 326–327
project fi les (.prj), 25, 44
Project menu, Expression Blend, 27
projection

3-D perspective transformations, 63–64
defi ned, 60

Projection ball, Expression Blend, 63–64
Projects panel, Expression Blend, 30–31
Projects tab, Expression Blend, 24
properties (attributes)

defi ned, 34, 38
setting, 38, 50
that control layout, 109–110
XAML, 37–41

24_524657-bindex.indd 36024_524657-bindex.indd 360 3/31/10 11:44 AM3/31/10 11:44 AM

361361 Index

Properties button, Properties panel,
Expression Blend, 51–52

Properties folder, Visual Studio, 47
Properties panel, Expression Blend

color, 64–72
GoToStateAction behavior, 169
gradients, 67–69
overview, 49–52
purpose of, 31–32
setting properties, 50
shaping objects, 58–59
sizing objects, 58–59
styles, applying to existing elements, 133

Properties window, Visual Studio, 43
Property groups, Properties panel,

Expression Blend, 51–52
PropertyChanged event, 200–201, 273
protocols, defi ned, 227
proxy classes

defi ned, 232–233, 251
displaying, 262–263
overview, 261–263

.ps (Pixel Shader) fi les, 337

• Q •
Quadratic easing function, 186
Quartic easing function, 186
query interceptors, 280–281
QueryInterceptor method, 281
Quintic easing function, 186

• R •
R (Red) property, Expression Blend, 66–67
Radial Gradient button, Expression Blend,

67–68, 70
RadioButton control, 96–97
RadioButton tool, Expression Blend

displaying, 30
fi gure of, 96

RadiusX property, Properties panel,
Expression Blend, 60

RadiusY property, Properties panel,
Expression Blend, 60

raster paths, 332
Rating control, 327–328
rctWebcam_MouseLeftButtonDown

method, 77–78
reading data

WCF Data Services, 263–268
WCF RIA Services, 301–303

ReadMultiple setting,
EntitySetRights, 284

ReadSingle setting, EntitySetRights,
284

Record Keyframe button, Expression
Blend, 175, 183

Rectangle control, Expression Blend, 55–56
Rectangle object, rounding corners of,

59–60
Rectangle tool, Expression Blend

displaying Ellipse and Line tools, 53–54
fi gure of, 30

Red (R) property, Expression Blend, 66–67
Red Gate Refl ector tool, 349, 350
References folder, Visual Studio, 47
Refl ector tool, 349–350
RegistrationData class, 290
RepeatBehavior property, 182
Representational State Transfer (REST)

accessing Web services, 228–232
defi ned, 227
overview, 22
RESTful interfaces, 252

[RequiredRole] attribute, 316
[RequiresAuthentication]

attribute, 315
resizing

gradients, 70
scaling versus, 60
using Properties panel, 58–59

Resource brushes, Expression Blend
images, 76
video, 76

resource dictionaries, 132
resource elements, 39
Resources panel, Expression Blend

purpose of, 31–32
styles, 132–133

REST (Representational State Transfer)
accessing Web services, 228–232
defi ned, 227
overview, 22

RESTful interfaces, 252
RESTful services, 22
Results panel, Expression Blend, 33
Resume method, 181
reusing UserControls, 153–154
Reverse Gradient Stops button, Expression

Blend, 68
reversing animation, 181
Rich Internet Applications (RIA), 9, 285.

See also WCF RIA Services

24_524657-bindex.indd 36124_524657-bindex.indd 361 3/31/10 11:44 AM3/31/10 11:44 AM

362 Silverlight 4 For Dummies

RichTextArea control
formatting text at runtime, 103–105
function of, 84
overview, 83–90, 101–102
XAML for, 102–103

root container, 108–109
rotating

gradients, 70
objects, 60–61

round selection handle,
Expression Blend, 55

rounding corners, 59–60
RoutedEventHandler, 167
Row property, Grid control, 116
RowDefinition element, 116
rows

adding controls to, 114–115
height of, 116–117
overview, 112–113
setting up, 113–114
XAML for, 115–116

rulers, Expression Blend, 113
Run element, RichTextArea control, 103
running Silverlight

out of Web browser, 337–338
overview, 9–10

• S •
sample data

binding to, 205–210
TreeView control using, 327

SampleDataSource item, 205–206
Samples tab, Expression Blend, 24
sandboxed environment, 13
scaling objects

defi ned, 60
resizing versus, 60

screen readers, 346
ScriptableMember function, 339–340
ScrollBar tool, Expression Blend, 30
ScrollViewer tool, Expression Blend, 30
Search fi eld, Properties panel, Expression

Blend
overview, 51
setting properties, 50–51

security
cross-domain, 236–243
WCF RIA Services, 315–318

SelectedIndex property, ListBox
control, 100

selection handles, Expression Blend, 57

Selection tool, Expression Blend
fi gure of, 30
setting properties, 50

SelectionChanged event, 268
server-side validation, 309
service methods

LINQ to Entity Framework, 304–306
LINQ to SQL, 306–309

Service References
adding, 233, 235, 262
defi ned, 261
updating, 245

Services API page, Flickr, 227
Set to Auto button, Expression Blend, 111
SetLink method, 274–275
Setter child elements, 131
shadow effect, 73–74
shape elements, 39
shapes

drawing, 53–55
XAML for, 55–56

shaping objects
overview, 56
rounding corners of Rectangle object, 59–60
using mouse, 57–58
using Properties panel, 58–59

Show Advanced Properties button,
Expression Blend, 204

Show Annotations control, Expression
Blend, 29

Show Grid control, Expression Blend, 29
Silverlight

browser support for, 10
compatibility with other technologies, 21
examples of sites enhanced with, 10–12
Expression Blend, 16–18, 23–34, 48
features of, 12–14, 21–22
help resources, 343
hosting applications in Web pages, 14–15
name of, 14
obtaining, 9–10
operating system support for, 10
running, 9–10, 337–338
tools needed to create applications, 15–20
user experience, 20–21
versions of, 14
Visual Studio, 16, 41–48
Web sites, 343, 346–347
XAML, 35–41

Silverlight 4 Application + Website option,
Expression Blend, 24

Silverlight Confi guration dialog box, 79

24_524657-bindex.indd 36224_524657-bindex.indd 362 3/31/10 11:44 AM3/31/10 11:44 AM

363363 Index

Silverlight Toolkit
adding references to, 312–313
overview, 19
themes, 144

Silverlight Tools for Visual Studio, 16
SilverlightApplication1 project, 44
SilverlightApplication1.Web

project, 47–48
simple (ASMX) Web services, 251
simple animation, 177–178
Sine easing function, 186
sizing. See resizing
SketchFlow, 329–331
SketchFlow Map, 330
SketchFlow Player, 330–331
skewing

gradients, 71
objects, 60–63
text, 73–74

skinning (templating)
controls, 134–144
defi ned, 3, 135
styles versus, 135

Slider control, 192–194
Slider tool, Expression Blend, 30
.sln (solution fi les), 25, 44
SmileyCustomControl

adding, 166–167
behaviors, 168–170
creating in Visual Studio, 162–166
events, 167

SmileyUserControl
creating, 157–159
overview, 156–157
states, 159–162
testing, 161–162

Snap to Grid control, Expression Blend, 29
Snap to Snaplines control, 29
Solid Color brush tab, Expression Blend

function of, 65
setting text color, 73

Solution Explorer, Visual Studio, 43–45
solution fi les (.sln), 25, 44
Source property

MediaElement control, 75
WebBrowser control, 341

Span element, RichTextArea control, 103
special effects

color, 71–72
overview, 72–74

splined interpolation, defi ned, 179
Split view button, Expression Blend

function of, 35
location of, 29

Split view, Expression Blend
function of, 28–29
skinning Button controls, 139

Springiness property, Elastic easing
function, 185

SQL Express (Microsoft SQL Server
Express)

database diagram, 256
overview, 250–251

stacking controls
adding controls to StackPanel, 117–118
converting Grid to StackPanel, 118–119
XAML for StackPanel, 120

StackPanel control
adding controls to, 117–118
converting Grid to, 118–119
creating AddressUserControl, 150
purpose of, 108
XAML for, 120

StackPanel tool, Expression Blend
adding controls to StackPanel, 117–118
displaying, 30

star sizes, 116–117
starting Visual Studio, 41–48
Startup event, 47
startup fi le, specifying, 46–47
Startup screen, Expression Blend, 23–24
states

animation of, 188–189
Smiley UserControl, 159–162
specifying, 140–142

States panel, Expression Blend
purpose of, 30, 32
specifying state, 140–141

static resource, defi ned, 130
Stop method, 181
storing data locally, 342
StoryBoard class
AutoReverse property, 181
Completed event, 181–182
controlling animations, 180
RepeatBehavior property, 182

Storyboard element, 177
Storyboard.TargetName attribute,

DoubleAnimation element, 178
Storyboard.TargetProperty attribute,

DoubleAnimation element, 178
Stretch property, MediaElement

control, 75
StringToBooleanConverter class,

202–204
Stroke property

binding to BorderBrush property, 143
function of, 56

24_524657-bindex.indd 36324_524657-bindex.indd 363 3/31/10 11:44 AM3/31/10 11:44 AM

364 Silverlight 4 For Dummies

Style menu item, Expression Blend, 133
Style property

overview, 130
XAML for, 131

styles
applying to existing elements, 132–133
creating, 128–130, 134
defi ned, 128
editing existing, 134
overview, 127–128
Resources panel, 132
skinning versus, 135
Style property, 130–131

styling, defi ned, 3
succeeded variable, 270–271
Super Preview feature, Expression Web, 16

• T •
tabbed pages, grouping controls into,

122–124
TabControl control, 122–123
TabItem control, 122–124
TargetType attribute, 131
templatable controls (templated controls;

custom controls)
defi ned, 149, 156
Smiley UserControl, 162–168

templates. See also templating (skinning)
Business Application, 287–290
defi ned, 135
editing visually, 138–140
how work together, 290–292
WCF RIA Services, 285–286

templating (skinning)
controls, 134–143
defi ned, 3, 135
styles versus, 135

text
color, changing, 73
displaying, 84–85
font, 72, 85
formatting at runtime, 103–105
skewing, 73–74

Text group, Properties panel, Expression
Blend, 72

text properties, 40
Text properties group, Properties panel,

Expression Blend, 52
Text property, TextBox control, 87–88
TextBlock control

adding to rows and columns, 114–115
creating AddressUserControl, 151
displaying text, 84–85

downloading fi les using WebClient class,
217–218

function of, 84
overview, 83–90
special effects, 72–73
styles, 128–129

TextBlock element
drop-shadow effect, 38
function of, 36
using within Grid element, 40

TextBlock tags, 37–38
TextBlock tool, Expression Blend

fi gure of, 30
function of, 33–34

TextBox control
accessing values in XAML markup, 87–90
binding to Address fi elds, 195–198
creating AddressUserControl, 151–152
function of, 84
user input, 86–87

TextBox tool, Expression Blend, 30
TextChanged event handler, 88–89
themes

adding controls to, 146–147
overview, 144–147

3-D perspective transformations, 60, 63–64
tiers (layers), defi ned, 19
Tile Brush tab, Expression Blend

function of, 66
image brushes, 76

timeline, animation, 172–174
Timeline Recording mode, Expression

Blend
starting, 173
stopping, 177

TimeSpan parameter, RepeatBehavior
property, 182

To attribute, DoubleAnimation element,
178

ToList() method, 267
Toolbox panel, Visual Studio, 42–43
Tools menu, Expression Blend, 27
Tools panel, Expression Blend

drawing shapes, 53–54
overview, 28
purpose of, 26–27

TotalBytesToReceive value, 221
Transform group, Properties panel,

Expression Blend, 62–63
Transform properties group, Properties

panel, Expression Blend, 52
transformation properties, 40
transformations, defi ned, 60

24_524657-bindex.indd 36424_524657-bindex.indd 364 3/31/10 11:44 AM3/31/10 11:44 AM

365365 Index

Translate transforms, Expression Blend,
62–63

transparency, 67
TreeView control, 327
Turn on Effects control, Expression

Blend, 29
two-sided arrow at angle cursor,

Expression Blend, 61
TwoWay value, Slider control, 194–195

• U •
UI (user interface)

audio, 74–75, 79
Button control, 90–95
colors, 64–72
ComboBox control, 98, 100–101
domain data service, 300–301
Expression Blend, 26–34, 49–52
features of, 12–13
HyperlinkButton control, 95–96
ListBox control, 98–100
PasswordBox control, 83–84, 86–90
properties, setting, 50
RadioButton control, 96–97
RichTextArea control, 83–90, 101–105
rotating objects, 60–61
shapes, drawing, 53–56
shaping objects, 56–60
sizing objects, 58–59
skewing objects, 60–63
special effects, 72–74
TextBlock control, 83–90
TextBox control, 86–90
3-D perspective transformations, 60, 63–64
video, 74–79
Visual Studio, 42–43

Underline element, RichTextArea
control, 103

Unfocused button state, 137
Universal Resource Indicators (URIs), 22
updating data. See also data binding

WCF Data Services, 269–273
WCF RIA Services, 303–304

URIs (Universal Resource Indicators), 22
UseAsMailingAddress property,

Address class, 201–204
User class, 293–295
user interface (UI)

audio, 74–75, 79
Button control, 90–95
colors, 64–72
ComboBox control, 98, 100–101

domain data service, 300–301
Expression Blend, 26–34, 49–52
features of, 12–13
HyperlinkButton control, 95–96
ListBox control, 98–100
PasswordBox control, 83–90
properties, setting, 50
RadioButton control, 96–97
RichTextArea control, 83–90, 101–105
rotating objects, 60–61
shapes, drawing, 53–56
shaping objects, 56–60
sizing objects, 58–59
skewing objects, 60–63
special effects, 72–74
TextBlock control, 83–90
TextBox control, 86–90
3-D perspective transformations, 60, 63–64
video, 74–79
Visual Studio, 42–43

UserBase class, 290
UserControl element, 36
UserControls

data binding, 195–198
defi ned, 149
grouping controls to create, 149–156

UserRegistrationServices class, 290

• V •
ValidateEntry() method, 89
ValidateProperty method, 310
ValidateUser method, 293, 295
validating data

DataForm control, 312–314
overview, 309–310
validation attributes, 311

Validation Exception, 310–311
Value property

NumericUpDown control, 192
Rating control, 327
Slider control, 192, 194

VB.NET, 1
vector graphics

bitmapped graphics versus, 53
defi ned, 53

vector paths, 332–333
VerticalAlignment property

function of, 110
setting, 122

video
playing, 74–75
Silverlight support for, 20

24_524657-bindex.indd 36524_524657-bindex.indd 365 3/31/10 11:44 AM3/31/10 11:44 AM

366 Silverlight 4 For Dummies

video (continued)
video brush, creating, 76
webcams, 77–79

View buttons, Expression Blend, 28–29
View menu, Expression Blend, 27
Visual Studio

creating applications, 44
debugging applications, 345
fi les, 46–47
hosting applications, 47–48
keyboard shortcuts, 344
overview, 16
running Silverlight out of Web browser, 338
Solution Explorer, 44–45
starting, 41–48
user interface, 42–43
using in tandem with Expression Blend, 48

VisualState group, 136–137
VisualStateManager class, 161
Volume property, MediaElement

control, 75

• W •
WCF (Windows Communication

Foundation) Data Services
change interceptors, 280, 282–283
concurrency, 277–280
creating, 254–261
database operations, 22
defi ned, 251–253
entity sets, 283–284
overview, 249–251
query interceptors, 280–281
using in Silverlight applications, 261–276

WCF RIA (Windows Communication
Foundation Rich Internet Application)
Services

accessing data with, 297–318
authenticating users, 286–292
custom authentication system, 292–296
overview, 19, 285–286

Weather Channel Web service
accessing, 241–243
authentication, 244
building, 239–240
displaying results of, 240–241
installing icons, 241
login procedure, 244–247
overview, 238
using, 240

Web browsers
running Silverlight out of, 337–338
support for Silverlight, 10

Web pages
adding UI elements to, 33–34
hosting Silverlight applications in, 14–15

Web Platform Installer (WPI), 250
Web Service Description Language (WSDL)

Web service
creating, 234–236
programming against, 232–234

Web services
creating WSDL Web service, 234–236
defi ned, 22
overview, 226–227
programming against WSDL Web service,

232–234
that allow cross-domain exchanges,

accessing, 227–232
without cross-domain policy fi le, accessing,

237–238
Web sites

Barber, Corrina, 144
CodePlex, 337
Crawford, David, 144
DataGrid control, 312
examples of Silverlight-enhanced, 10–12
Fiddler tool, 277, 349
Flickr, 227–228
free application development tools, 15
Hard Rock Café Memorabilia, 10–11
MVVM pattern, 349
Prism, 348
Red Gate Refl ector tool, 349
Silverlight, 343, 346–347
Weather Channel, 238
Windows Performance Analysis Tools, 349
Woodgrove Financials sample application,

11–12
Yahoo!, 228
YouTube, 213

WebBrowser control, 341
Webcam / Mic dialog box, 79
webcams

displaying video from, 77–78
selecting default, 79

WebClient class
downloading fi les, 216–221
overview, 215

WebContext object, 289–291
Width property

function of, 56, 109–110
UserControl, setting at design time, 111–112

Window menu, Expression Blend, 27

24_524657-bindex.indd 36624_524657-bindex.indd 366 3/31/10 11:44 AM3/31/10 11:44 AM

367367 Index

Windows Communication Foundation
Rich Internet Application (WCF RIA)
Services

accessing data with, 297–318
authenticating users, 286–292
custom authentication system, 292–296
overview, 19, 285–286

Windows Communication Foundation
(WCF) Data Services

change interceptors, 280, 282–283
concurrency, 277–280
creating, 254–261
database operations, 22
defi ned, 251–253
entity sets, 283–284
overview, 249–251
query interceptors, 280–281
using in Silverlight applications, 261–276

Windows Performance Analysis Tools, 349
Windows Presentation Foundation

(WPF), 12
Woodgrove Financials sample application,

11–12
workspace panels, Expression Blend

moving, 29
overview, 26–27, 28–33
purpose of, 26–27
resetting to default position, 30
saving, 29
toggling between, 29

WPF (Windows Presentation Foundation), 12
WPF/e (WPF everywhere), 14
WPI (Web Platform Installer), 250
WrapPanel control

overview, 120–121
purpose of, 108

WrapPanel tool, Expression Blend, 120
wrapping controls, 120–121
WriteAppend setting, EntitySetRights,

284
WriteDelete setting, EntitySetRights, 284
WriteMerge setting, EntitySetRights, 284
WriteReplace setting,

EntitySetRights, 284
WSDL (Web Service Description Language)

Web service
creating, 234–236
programming against, 232–234

• X •
XAML (Extensible Application Markup

Language)
AddressUserControl, 151–153
appearance of code in book, 4

blank Silverlight page, 108
bouncing ball animation, 173, 177–180
Button control content, 92, 95
columns, 115–116
data binding, 194, 196–197
defi ned, 1
DockPanel control, 126
elements and attributes, 37–41
Expression Dark theme, 146
ListBox control, 100
overview, 35–41
POST requests, 222–223
RichTextArea control, 102–103
rows, 115–116
SmileyCustomControl, 164–166
SmileyUserControl, 158
StackPanel container, 120
Style property, 131
styles, 128, 130–131
templates, 136–137
TextBlock control, 84, 87–90, 131
UI framework, 12

XAML view, Expression Blend, 28–29
XAML view button, Expression Blend

function of, 35
location of, 29
overview, 55

XAP fi les, 14, 346
x:Class attribute, UserControl

element, 36
x:Key attribute, 131
XML (Extensible Markup Language)

defi ned, 34
Flickr Web service, 228

XmlDocument object, 239
x:Name property
Grid element, 36
ProgressBar control, 220

XPerf.exe tool, 349
XPerfView.exe tool, 349

• Y •
Yahoo!, 228
YouTube, 213

• Z •
Z-Index property, 110
.zip extension, 14
zooming. See also Deep Zoom Composer
Zooming tool, Expression Blend, 29, 30

24_524657-bindex.indd 36724_524657-bindex.indd 367 3/31/10 11:44 AM3/31/10 11:44 AM

Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

spine=.768”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/silverlight4

www.dummies.com/go/mobile
www.dummies.com/go/iphone/apps

Mahesh Krishnan
Philip Beadle

Learn to:
• Develop seamless cross-platform,

cross-browser Web applications

• Design visually rich user interfaces
with ease

• Use Expression Blend™ and Visual
Studio® with Silverlight

• Deliver application data efficiently
with WCF RIA Services and ADO.NET

Silverlight
™ 4

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/go/

silverlight4fd to find all the code used in this book and

save yourself time and effort

 Open the book and find:

• How Silverlight delivers a rich user
experience

• Clear examples of XAML

• Tips on drawing shapes and doing
animation

• Advice on the best tools to use
with Silverlight

• Effective ways to work with
controls

• How to customize controls and
create your own

• Ten ways to get more from
Silverlight

• How to connect to your data on
demand

Mahesh Krishnan develops Web applications using Microsoft technologies

and speaks regularly at conferences. He is very active within the .NET

and Silverlight communities. Philip Beadle is a Senior Developer at

DotNetNuke and speaks at numerous conferences. He is a coauthor of

DotNetNuke For Dummies and has contributed to other books. Both are

senior consultants at Readify.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-52465-7

Technology/Graphics Programming

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Make your rich Internet
applications shine on multiple
browsers and platforms
Silverlight makes stunning Web effects — animation,
streaming media, audiovisual playback — easier than you
could have imagined. Whether you’re new to Web design
or just to Silverlight, this book is packed with all the info you
need to start creating applications using Visual Studio and
Expression Blend.

• Getting started — find out what you need to get started with
Silverlight and download the necessary tools

• Gain control — style and manipulate Silverlight controls such as
text boxes and buttons, and create your own

• Make it move — enrich your user interface with animations that
upload fast and don’t devour bandwidth

• Stick things together — understand data binding and how it
supports your applications and streamlines programming

• Much ADO about data — work with ADO.NET Data Services and
WCF RIA Services to create versatile business applications

Krishnan
Beadle

spine=.768”

Microsoft®

Silverlight
™ 4

M
icrosoft

®

www.dummies.com
www.dummies.com/go/silverlight4fd
www.dummies.com/go/silverlight4fd

	Microsoft® Silverlight™ 4 For Dummies®
	About the Authors
	Dedication
	Acknowledgements
	Contents at a Glance
	Table of Contents
	Introduction
	Part I: Illuminating Silverlight
	Chapter 1: Adding Silverlight to Your Web Development Toolkit
	Obtaining and Running Silverlight
	Checking Out Some Silverlight-Enhanced Sites
	Grasping the Potential of Silverlight
	Hosting a Silverlight Application in a Web Page
	All the Stuff You Need to Create Silverlight Applications
	Creating Rich User Experiences in Silverlight
	Silverlight Plays Well with Others
	Silverlight Has More to Offer Than Just a Pretty Face

	Chapter 2: Getting Started in Silverlight
	Getting Started in Silverlight with Expression Blend
	Introducing the Basics of the Extensible Application Markup Language
	Firing Up Visual Studio to Create a Silverlight Application
	Using Expression Blend and Visual Studio in Tandem

	Chapter 3: Enhancing the User Interface
	Getting to Know the Properties Panel
	Drawing Shapes on the Artboard
	Shaping, Sizing, and Positioning Your Object
	Rotating, Projecting in 3-D, and Doing Other Funky Things with Shapes
	Painting Colors with Brushes in the Properties panel
	Playing Around with Some Special Effects
	Adding Video and Audio to Your Pages

	Part II: Managing Your Silverlight Controls
	Chapter 4: Working with Controls for UI Interactions
	Exploring the Text-Related Tools
	Using Buttons in Your Application
	Jumping to Another Web Page Using HyperlinkButton
	Using RadioButtons to Present Options
	Using the ListBox and ComboBox to present a large number of options
	Entering Rich Text into a RichTextBox Control

	Chapter 5: Laying Out Controls
	Understanding Layout Containers
	Laying Out Controls in Rows and Columns
	Stacking Controls Horizontally and Vertically
	Wrapping Controls
	Arranging Controls by Absolute Positioning Using the Canvas Control
	Using the ScrollViewer to Scroll Through the Contents
	Using the Viewbox to Fit the Contents Snugly
	Grouping Controls into a Tabbed Page
	Docking Controls

	Chapter 6: Styling and Skinning Controls
	Applying Styles to Controls
	Skinning a Control
	Using Themes to Change the Look of All Controls

	Chapter 7: Creating Your Own Controls
	Grouping Controls to Create a UserControl
	Creating a Smiley Custom Control
	Controlling the Behavior of Controls without Writing Code

	Chapter 8: Creating Animations in Silverlight
	Creating a Simple Bouncing Ball Animation
	Running the Animations You Create
	Animating States of Controls

	Chapter 9: Updating Data the Easy Way with Data Binding
	Binding Controls to Each Other
	Binding to a Data Object
	Binding to Sample Data

	Part III: Connecting with Data
	Chapter 10: Accessing Data in Silverlight
	Downloading Files to Your Silverlight Application
	Talking to Web Services
	Understanding Cross-Domain Security
	Authenticating Users

	Chapter 11: Using WCF Data Services to Store and Manage Data
	Getting Started with WCF Data Services
	What, Exactly, Is WCF Data Services?
	Creating a WCF Data Service
	Using the WCF Data Service in a Silverlight Application
	Handling Data Concurrency
	Using Query and Change Interceptors to Control Data Querying and Updates
	Controlling Access to Entity Sets

	Chapter 12: Using WCF RIA Services in Silverlight
	Getting Started with WCF RIA Services
	Authenticating Your Users
	Creating a Custom Authentication System

	Chapter 13: Accessing Data with WCF RIA Services
	Creating the Domain Data Service
	Writing Your Own Service Methods — LINQ to Entity Framework
	Writing Your Own Service Methods — LINQ to SQL
	Validating Data on the Client and Server Sides
	Securing Your WCF RIA Service

	Part IV: The Part of Tens
	Chapter 14: Ten Cool Controls for Collecting and Displaying Data
	ListBox
	DataGrid
	DataForm
	Expander
	Chart
	DatePicker
	ProgressBar
	TreeView
	Rating
	AutoCompleteBox

	Chapter 15: Ten Ways to Get More Out of Silverlight
	Using SketchFlow to Prototype Your Application
	Using Deep Zoom Composer
	Creating Designs Using Expression Design
	Importing Designs from Other Applications
	Creating Your Own Behaviors
	Running Silverlight Out of the Browser
	Calling Silverlight code via JavaScript
	Accessing HTML from Silverlight
	Storing Data Locally in the Client

	Chapter 16: Ten Handy Tips for Writing Silverlight Applications
	Resources about Silverlight Beyond This Book
	Ten Handy Expression Blend Shortcuts
	Ten Handy Visual Studio Shortcuts
	Debugging Silverlight Applications
	Looking Out for Performance Pitfalls
	Building for Accessibility
	Internationalization and Localization
	Build Composite Applications Using Prism
	Use the Model-View-ViewModel (MVVM) Pattern to Manage Large Applications
	Handy Tools

	Index

