PHP & MySQL"

JO)

DUMMIED

2ND EDITION

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL"
FOR

DUMMIED

2ND EDITION

PHP & MySQL"

JO)

DUMMIED

2ND EDITION

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL°® For Dummies®, 2nd Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004101961
ISBN: 0-7645-5589-8

Manufactured in the United States of America
109 87654321

2B/SU/QT/QU/IN

WILEY

About the Author

Janet Valade is the author of PHP 5 For Dummies as well as the first edition

of this book. In addition, Janet has authored and revised chapters for Linux

books, written chapters for a Certified Internet Webmaster (CIW) book, and

written the Apache section for a book on LAMP (Linux, Apache, MySQL, and
PHP).

Janet has 20 years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in a Unix/Linux environment for
four years. Prior to that, Janet worked for 13 years in a university environ-
ment, where she was a systems analyst. During her tenure, she supervised
the installation and operation of computing resources, designed and devel-
oped a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars on
a variety of technology topics.

To keep in touch, see janet.valade.com.

Author’s Acknowledgments

First, I wish to express my appreciation to the entire open source community.
Without those who give their time and talent, there would be no cool PHP
and MySQL for me to write about. Furthermore, [never would have learned
this software without the lists where people generously spend their time
answering foolish questions from beginners.

[want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything. My thanks to my friends
Art, Dick, and Marge for responding to my last-minute call for help. I particu-
larly want to thank Sammy, Dude, Spike, Lucky, Upanishad, Sadie, and E.B. for
their important contributions.

And, of course, [want to thank the professionals who make it all possible.
Without my agent and the people at Wiley Publishing, Inc., this book would
not exist. Because they all do their jobs so well, I can contribute my part to
this joint project.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, Production

and Media Development Project Coordinator: Maridee Ennis

Senior Project Editor: Pat O’Brien Layout and Graphics: Andrea Dahl,

Acquisitions Editor: Terri Varveris Joyce Haughey, Stephanie D. Jumper,
Kristin McMullan, Lynsey Osborn

Proofreaders: Andy Hollandbeck,
Carl William Pierce, Brian H. Walls,
Editorial Manager: Kevin Kirschner TECHBOOKS Publishing Services

Permissions Editor: Laura Moss Indexer: TECHBOOKS Publishing Services
Media Development Specialist: Kit Malone

Senior Copy Editor: Teresa Artman
Technical Editor: Craig Lukasik

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JHEPOAUCTIONaeeeeeeaeeeeeeeaeeeeeennnaaeeeeennasseesannsaeeennnnsaeee]

Part I: Developing a Web Database Application
Using PHP and MySOLccueeeeeeeaaaaacccccccaaannnnnnnnae ©

Chapter 1: Introduction to PHP and MySQLccccoviiriiiniiiiiieeeiecieseeneeeeeeiene 9
Chapter 2: Setting Up Your Work Environmentccccocveevievienennensienienieseesieene 21
Chapter 3: Developing a Web Database Applicationccccecvveevenienenenenenenen. 37
Part II: MySOL Databasecccccueeaveeeiceeeiaeecanenes03
Chapter 4: Building the Databasecccceeeeiiieiiiiicieceeeereeeee e 65
Chapter 5: Protecting YOUT Dataccccceeeeieierieniineceeeeceteieieeve e e enees 93
Part III: PHPcouaeeaeceiaciiccnieieeccncecneesnncesseenene 113
Chapter 6: General PHPcooovoiiiiiiiiceeeeeeeee ettt 115
Chapter 7: PHP Building Blocks for Programsccoceveririeienenenenineeceeene 145
Chapter 8: Data In, Data QULcccooieiiieiiieiiciccee ettt e e e ens 189
Chapter 9: Moving Information from One Web Page to the Nextcccccoeceeeueennnns 257

Part [U: Applicationscccoueceveecaceeeicreccineceiecea 279

Chapter 10: Putting It All TOGETREYcc.covvieiieiieiecieeeeeeeee e 281
Chapter 11: Building an Online Catalogcccecevievierenininieeeeeresceeeee e 293
Chapter 12: Building a Members Only Web Sitecccoevieviieiieecieeiecieceeseeieeiens 331
Part U: The Part of Tentsccuueeeeeeeeeeeecececccceeananaaaa 301
Chapter 13: Ten Things You Might Want to Do Using PHP Functions 363
Chapter 14: Ten PHP GOtChasccccceiiiiiieiiieiicieciecteteeeeetee et 371

Part UL: Appendixesccccueecaeaceecauneaenacnneannaacns 377

Appendix A: Installing MYSQLcc.ooiiiiiiieeeee ettt 379
Appendix B: Installing PHPcccocoviiiiiieeeeeeeeee s 395
Appendix C: Installing and Configuring Apacheccccoccovvierviiniiininiinnennenieneee, 409

JRACK «...nnnennnnnneeeeeeeeeeeeeeeeeeeeeeasaaaaaaaaaaaaaaasannnnnnneeesD2]

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaeeeeennasseeesnnnseeeesnnsaeeeens]

About ThisS BOOKc..oiiiiiiiieeieceeetee sttt s 1

Conventions Used in This BOOKccccccoeeiieieiieniiieceeieeeeeeeeeeeie e 2

What You're Not to Readccceeveeieciiiiicieciectececteeee e 3

Foolish ASSUMPIONSccouiviiiiiiiiiicieeieeeetece sttt 3

How This BOOk Is Organizedccocceeviiriiniienienieiieneesieeieeieeieneeseeeieens 4
Part I: Developing a Web Database Application

Using PHP and MySQLoooiiiiiieeeeeeeee et 4

Part II: MySQL Databasecccoceeieierierierieneneeeeee e 4

Part Il PHP ...ooiiiiceceeeeeeeteee ettt et 4

Part IV: APPlICAtioNScccoecveeiirieiieieeiccce ettt 4

Part V: The Part of TENSc.cccveeeeirieiiieeeieeee ettt 5

Part VI: ADPENdIXESc..couveiieieeieiieiteeeieeie ettt eve v eae e 5

Icons Used in This BOOKcccueviiiiieeiieiiciecieeeecie ettt ens 5

Where to GO from HEYec.ooveeieeiieieeicecectece et 5

Part I: Developing a Web Database Application
Using PHP and MySOLuueeeeeeeeeaaaaaeecacacaaannnnnnac §

Chapter 1: Introduction to PHPand MySQL 9
What Is a Web Database Application?cccccceevieivieneeneecieeieeieeeeeeenne 10

The databaseccccoeeiiiiiiiiiieeee e 11

The application: Moving data in and out of the database 12

MySQL, My Databasecccecceviiriiniiiiriinienientesteseesie et 12
Advantages of MySQLoooviiiiiiieeeeee e 13

HOW MYSQL WOTKS ...oeiiieiiiieieieeeeceteteie ettt 14
Communicating with the MySQL servercccccceeveeceeviieviecceenenne 14

PHP, @ DAta MOVETeeeiieeeeeeeeeeeeeeee ettt e et eeseeaeeseeateesesaeeesesaneeseas 15
Advantages Of PHPcccooiviiiiiiniicecetetecee e 16

HOW PHP WOTKS ..ottt 16

MySQL and PHP, the Perfect Paircccccooevieeienieiieiceeeeceeeeeee, 17
Advantages of the relationshipcoccoceveneiinininiieeee 18

How MySQL and PHP work togethercccoccovviieiiiieiiciecieeeene 18

Keeping Up with PHP and MySQL Changescccoceveeveevierrienieeneenieenne. 19
Chapter 2: Setting Up Your Work Environment 21
The Required TOOIScceeciieiiiiiieeeieeeceetest ettt s 21
Finding a Place to WOTKcccoociiviiiiiiiiiiiiiectctcecece e 22

A company WeD Sitecccceveriiniinieriiicieneeeee e 22

A Web hosting cOompanycccceeecueeeiiieciesiieeeeeee e 24

Setting up and running your own Web sitecccceceevenienenenennen. 27

Xii PHP & MySQL For Dummies, 2nd Edition

Testing, Testing, 1, 2, 3 ..ottt 32
Testing PHPooooiiee e 32
Testing MYSQL ..ottt 34

Chapter 3: Developing a Web Database Application 37

Planning Your Web Database Applicationc.cccoceeveeveevienciencieneenneenne. 37
Identifying what you want from the applicationc.cccccceeeveenennns 38
Taking the user into considerationcccceeeevvieniinennennencieneenne 40
Making the site €asy t0 US€ccccocveviriieriieniinieniceeeeeeeeeeseene 41
Leaving room for eXpansioncc.ceceevervieniieniienennensennieneeneenne 42
WIHING it AOWIL .o 42

Presenting the Two Running Examples in This Bookccccc...... 42
STUEE fOF SALE ...t 43
MeMDETrS OMNLYoooviiiiiiiiiirieeiertee ettt see et aesaesaae e 43

Designing the Databasecccccoviiviiiiniiniinietcceceeece e 44
Choosing the dataccoccevvierieniiniieeee e 44
Organizing the datacccooeviririneeeee e 46

Designing the Sample Databasesc.ccocecevieveneninienieieeeeeeeeeee 51
Pet Catalog design PrOCESSccceveeviierieeiieeieeieseeseeie e re e e 51
Members Only design PrOCESSccccevvvercierienieniienieeieeieeiesaeseenns 53

TYPES Of DALA .eocvienieiieieceeeeeeee ettt 56
Character datac.coeevevirinieeeeeereeecteeee et 56
Numerical datac.cocoevevriniiiinceneerc e 57
Date and time datacoccooeriririnieieeeeee e 57
Enumeration datac..oceoeevieiieineiieeee e 57
MySQL data type NAMEScceeveeeeeeeeeieieieereeeeeeeeeessesaesseseeseeennas 58
WIHING it dOWIL ..o e 59

Taking a Look at the Sample Database Designsc...ccceevervieniencennenne. 59
Stuff for Sale database tablesc..ccccccvevrininirinenenereeeene 59
Members Only database tablesccccceceeviiriencieneeriecieeieceeeeae 60

Developing the AppPliCationccccociieviiriiiriieniereeseeeee e 61
Building the databasecccocoviiiieniininieciecececeeeeee e 62
Writing the Programsccccocevienienieninienieiesteseese e 62

Part II: MySOL Databaseccccceeeaeecceecaeeeaceeeanea 03

Chapter 4: Building the Database 65
Communicating with MySQLccociveiiieieieeeceeeeee e 65
Building SQL QUETIESccceeviirierieiieieeieeieciesteseeee et 66

Sending SQL QUETIESccceevierieriiriieniieieeieetestestesie e e eaesae e 67

Building a Databasecccoceviiriiniininieeteeee e 72
Creating a new databasecccoeeeieierieiererieeeeee e 73

Deleting a databaseccccceeieiieriienieieciecie e 73

Adding tables to a databaseccccevveeviieiiieciieciicieeeeee e 73

Changing the database structureccccocevvievieninneniinienieneene 76

Table of Contents

Moving Data In and Out of the Databasecccccooviivinvinvinniniinieenne. 77
Adding informationccoccevevieirine e 77
Retrieving informationccceceevienieniececiiececeeeeeeeee e 81
Combining information from tablesc.cccceeervierveeniieninreeieneene 86
Updating informationcecceevievienieninnenienieseereeseeieeresee e 90
Removing informationccccocevieniininiiniiinienccccceceseeeene 91

Chapter 5: Protecting YourDataccovuntn. 93

Controlling Access to Your Datacccoccevvvivvieniinieniinenienienieneeseeeeee, 93
Understanding account names and hostnamesc.cccecevevenenne 94
Finding out about passwordsccccecevereriinenccniereeeseeeeeen 96
Taking a look at account permissionsccoccceeveerciersieeceeennnenn. 97

Setting Up MySQL ACCOUNLSccceevuieviieiiieiieiectereeseeieeste e seeesee s 98
Identifying what accounts currently existcccccoevvvverriercrennnnne. 100
Adding new accounts and changing permissionscccc....... 100
Adding and changing passwordsc.cccccevevvienieenennennenneeneenne 102
Removing permiSSionsccccoceeievierierenenieeeiesiesese e 102
RemMOVING aCCOUNLScocvieiieiieiiciecieceeeeeee et 103

Backing Up YOUY Dataccceeeevieeiiiiiniecieseertese et eteetestesne e e eeees 104

Restoring YOUr Dataccccceveeviieiiiieniinieecececc ettt 106
Repairing tables ..ot 107
Restoring from a backup COPY ...ccocveviiriiniiniiniiiccienieeieeeeeeee 108

Part II1: PHPeeeeeaaaaaaaaeeeeeeeeacecacceneeeecaceeees 1 14

Chapter6: General PHPt 115
Adding a PHP Section to an HTML Pagecccccoovevevievievenieeeeeeeenee, 115
Writing PHP Statementsccccoocoviiiinniiiniiniencccceeese e 118
Using PHP Variablescccooiiiiiiniiniiieictcececeeeee et 121

Naming a variableccccoooiiioiiiiiieeeeeeeee e 121
Creating and assigning values to variablesccccocovvevininnnnnn. 122
Dealing with NOtICESccceeviiiiiiiiieiieiececeeeeeeee e 123
Using PHP CONSTANScociiviiviiiiiiiiinientese ettt st sieesee s 124
Working with NUMDETSc.cccceriiriieieieieieee et 125
Working with Character Stringsccccoccevevviniiininniirieeeeeeen 127
Single-quoted strings versus double-quoted strings 128
JOINING STFINGS ..coviiiiiiiiii e 130
Working with Dates and Timescccccoceeviercienciiniineeeeeeeeeeee e 130
Formatting a dateccooceeviereeniieiiieiececeeeece e 131
Storing a timestamp in a variableccccocovvieninninninninieeiee 132
Using dates with MySQLcocoiiiriiniiiiiteeeeeeeeeee e 133
ComPparing VAUEScccecoeeviieiieiiciecieeeese et esteeteeaeeaeebeesae s e e seeneas 134
Making simple COMPAriSONScccceecverieeienieeneenreesieesie e eae e eens 135
Matching character strings to patternscccceeceeveeveevienceennenne. 137
Joining Comparisons with and/or/Xorcccceceeviineeneenenieniienieneeee. 141

Adding Comments to Your Programcccccoeveeviininnienneniiensieneeneenenn 143

X

xi(/ PHP & MySQL For Dummies, 2nd Edition

Chapter 7: PHP Building Blocks for Programs 145
Useful Simple Statementsccccoecveevieeienieenieniceeieeeee e 146
Using echo statementscocceceevierciiniieniienieneceeeeeeeeeee e 147
Using assignment statementscoccceceevieniienennennennennenieneene 150
Using increment statementsccccceeeevievieeecieeeceecceeeeeeee e 151
USING ©XIt .oneieiiiiiiiieeteteee ettt s 152
Using function Callsccocieviiiiiieiieeiiciecieeeeeeeee e 153
USING PHP AITAYS ...ocviovieeeeiieieciecieteeteee ettt a et sve e esseaesnens 153
Creating Arrayscccccccevererieereeeeiesiesteseesesseeeessessessessessessssssessessans 154
VIEWING AITAYS ..ovvevieiieeieieieieieniesieeeseeeeeeseessessessessssssessessessessessens 155
Removing values from arrayscccccceeeeeeeieeeciiesceesceeeeeecee e 156
SOTHING AYTAYS ..eoveeveerieiieierierteeteetetete ettt ettt sttt eenaens 156
Getting values from arraysccccccceceecieecieeieeneeneeneeseese e 158
Walking through an arrayc..cccceceveeiieiinvinceeeeeeeeee e 160
Multidimensional arrayscccccecceeveerierrieniienieeneeneeseeseesesaeeee e 162
Useful Conditional Statementscc.cccecevereneninieeneneneneneneeeeeenens 165
Using if statementscccoccieeeiiiciiecieeeeeee e 166
Using switch statementscoccooveeviniinieninniieeneeeeeceeee 169
USING LOOPS ovtiiieiieiiesttesiteteete ettt ettt ettt e saeebeeteetesstessaessaessneseean 170
USING fOF IOOPS ..eeieieiieieieeieeeeeete ettt e 171
Using While IoOPS ...ccueevuiiiiiiiiiieiicecectetee et 174
Using do..While loOPSccociviiiieniiniinietetccceceeee e 176
INiNItE IOOPS .oovviieiieeie et 177
Breaking out of 2 100Dccceoiviriiieieeee s 179
USING FUNCHIONS ...cvviiiiiieiieieeece ettt et st as 181
Using variables in functionsccccecceveverieniieneeneeneeeeieeeeeeenes 183
Passing values between a function and the main program 184
Using built-in functionsccccecevvevviiniinieniiecececeeeeeeeeee 188
Chapter8:Dataln,DataQutcccvinenn... 189
PHP/MySQL FUNCLIONScviiiiiiiiiiiiinieteectetciee ettt 189
Making a CONNECHIONcceevvieiieiieiecieeeeeeeeese e 191
Connecting to the MySQL SErverccccoceeveeveneneneneneeceeeens 191
Selecting the right databasecccccccevvieiincieneicieceeeceee 194
Sending SQL UETIEScoeivieiieeeeieieieeseeeeee ettt enesaens 195
Getting Information from a Databasecccccoeveeveeniniiniiniienienieneee, 197
Sending a SELECT QUETYcoovervierienienienitenteeeieeieeieeee e 197
Getting and using the datacccccceeveviieieniececceeeeee e 198
Using functions to get datacccoccereneiininiieneneeeeeceee 204
Getting Information from the USerccccccoevievienieiieciiecieciecieceeeeeen 208
Using HTML fOIMSccveviieiiiiiiiiieeieeiecie et 209
Making forms dynamicccceeveeveriiiniieniienieneeeeeeeee e 214
Using the information from the formccccooceviininninncnnnnnnnne 227
Checking the informationcccccceevieeiieieecienieeeeeeeeee e 230
Giving users a choice with multiple submit buttons 238
Putting Information into a Databaseccccccoevveviecieecieececciecieceeeee, 240
Preparing the datacccoceeviieviieiiinciieiececeeeceee e 241
Adding new informationc..ccoccoeveereeiiniinienieneeeeee e 243

Updating existing informationc..ccoccevvieriieniiniininnensenienee 248

Table of Contents

Getting Information in Filesccocvoiiiieiinininieeeeeeeeeeeeene 251
Using a form to upload the filecccoooiiviiieiiiiiiiieeeeee, 251
Processing the uploaded filec.ccccoevveeiinienienieieeeece 252
Putting it all togethercoocveeeieieieeeeeeee e 253

Chapter 9: Moving Information from One Web Page
tothe Nextcooiiiii i e aas 257

Moving Your User from One Page to Anotherc..cccoocevininininnnnnns 257

Moving Information from Page to Pageccccccovvvvveciniiiciincieeieeee, 261
Adding information to the URLccccocoiviiiriiiniiiniiniiieeeieee 262
Storing information via COOKIEScccceevviriirieneineiniireeieeieeeee 267
Passing information with HTML formscc.ccccceevininnnnnnnennns 269

Using PHP SESSIONScoeviiiiieieriieiecee ettt 270
How PHP s€SSi0ns WOTKcccoiriiiiiiiiiieiieiceeetee e 270
OPENING SESSIONS ...eooviiiiiiieiieieeieeie e ete e st e seeesreesbeesaeesaesseeseeenes 271
Using PHP session variablesccccoccvvirviiniiinieninninieeieeieeeee 271
Sessions without COOKIEeSccoverieviinenininiiieiccreercceeene 274
Making sessions Privatec..cccceceevervienienieenenneneneeieeee e 276
Closing PHP SESSIONScccecevuivirieieieiecieeieeeete e 277

Part IU: Applicationsccccceeeeeceeecaceecciaeeeeaaesc 209

Chapter 10: Putting It All Together 281
Organizing the Applicationcccocevviivieniiniiiee e 281
Organizing at the application levelccccooviiiiiiniinnininee 282
Organizing at the program levelccccooivviiiinenininiceeeene 283
Keeping It Privatecccooveoiieiiieiiceceeeeeeee ettt 288
Ensure the security of the computercccccoevvevieiinienciecciennnne, 289
Don’t let the Web server display filenamesc.cccocueevvervennnnnne. 289

Hide thingS ..cccovviiiiiieeceeceeeeee e 290
Don’t trust information from UuSerscc.coeceeververviinvensienceeneenne 290

Use a secure Web SEIverc.cccoceeevevinininnienienicneneneeeenenens 291
Completing Your Documentationccccceceverininieenienieneneneneeceeene 291
Chapter 11: Building an Online Catalog 293
Designing the ApPlicationcccceevieevienieiiereceeece e 293
Showing pets to the customersccccccoevvevvievieiieninnecieeeeee 294
Adding pets to the catalogcccceevveeieviinireeieeeeeee e, 295
Building the Databaseccccevieieiririeieecesceeeeeee e 295
Building the Pet table ..o 296
Building the PetType tablecccccoovviiviiinieeeeee e 299
Building the Color tablecocoiiiiiiniiieeeee e, 300
Adding data to the databaseccccoeeeevieviieciincienieeeeeee 301
Designing the Look and Feelcccooueviiniiniiniiicieccceceeeeeeeeen 303
Showing pets to the customersccoccovviiviiniiniininninierienee, 303

Adding pets to the catalogccccovieveriiiriiniiieeee 307

xv

X(/i PHP & MySQL For Dummies, 2nd Edition

Writing the Programsccoccooiiiiiiniiniinetteeeee et 310
Showing pets to the customersc.cccoeevevievieciecieceececeee 310
Adding pets to the catalogcccceeeeveeciieciieeeeeeeeee e 316

Chapter 12: Building a Members Only Web Site 331

Designing the Applicationccccocevvierieniinienicececece e 332

Building the Databasecccccocvvviiiiiniieniiecetccccce e 333
Building the Member tablec.cccocevviniiniiniiiniiieeeeeeeee 333
Building the Login tableccocooiiiiiniiieeeee e 336
Adding data to the databaseccccoceeciieciieciieiecieeeee 337

Designing the Look and Feelccooeeieniiniiniinicecieceeeeeeeeeen 337
StOrefront PAgEcoceeeeevieeiiieieceeieete et 338
LOZIN PAZE ..ottt sttt s 338
New Member Welcome Pagecccceeveevierienienennieeienieeieeeeeee e 341
Members Only SECtiONc.cceeciiecieeiiciecieseeeee e 342

Writing the Programscccooveeieiieiieiieeiecteceeseeee e 342
Writing PetShopFrontccccoociviiiienieiiciceeeeeeeeee e 343
WIHING LOZIN ..ottt 344
Writing NEeW_MEMDETcccoeiiieiieieieieiereceeeee e 356
Writing the Members Only sectionccccocevvienienennennenieeneenne. 358

Planning for Growthccocoviiiirieieeeee e 358

Part U: The Part of Tensccccecceeeeeeeceeaaacneeeeeceeeaaa 301
Chapter 13: Ten Things You Might Want to Do Using

PHPFunctionsottt iiii e nnnneens 363
Communicate with MySQLcccoooiiriiiiieieeeeeeese e 363
Send E-Mailco.ooiiiiiiieieee ettt 364
Use PHP SESSIONS ...ccuovuiiiiiiiiieieiiniceceteteteseseneecetetesee et 366
StOP YOUY PYOZIaImcocviiiiiiiiiiiiiiieeictcicctcit ettt st 366
HAaNALE ATTAYS ..eoveriieiiiniieiteieeieeie ettt ettt ettt sttt sae s 366
Check for Variablescccoceveiiiiinieieeeeec et 367
Format ValUescc.coovuiiiiiiieieieeeee ettt 367
Compare Strings to Patternscccceceeeeneenieneeneeeeeeeeve e 369
Find Out about STriNgSsccoceeviiviiiiiiiniieiecteteeee et 369
Change the Case of Stringsccccoccevveviieniieniieniieceeeee e 370
Chapter 14: Ten PHP Gotchasc.o..t. n
MisSing SEMICOIONSccueivviiiieiiiiirierteetee ettt s es 371
Not Enough EqQual Signsccccoeviriiniiiniiniiieieccceceeeeesteseese e 372
Misspelled Variable NamMeScccocererieiienienenieeeceeiee e 372
Missing DOIIAr SINSceecieeiieiiieieeieeieetese ettt e reeaesae s e e sseeseeas 372
Troubling QUOTEScc.eovuieiiieiieieeie ettt et et ete s ae s aeeeees 373
INVISIDIE OULPUL ...ovviiieiieiieieeececee ettt st s 373

NUMDBEred AITaYSccceeviiriiiiieierierieeieetest ettt sttt saesae e e s 374

Table of Contents X(/ii

Including PHP Statementsccecvveirierienenenieeeeeteeeese e 375
MISSING MALES ...cuveiiiieiieiieieieie ettt sttt ettt se s ese et eeeeens 375
Confusing Parentheses and Bracketscccoovvniiiiiienenencneniciens 376

Part UL: Appendixescccceeaeeacencaunecnecaneaacnneacs 377

Appendix A: Installing MySQLl 379
ON WINAOWS ..ottt sttt see e sre s snens 379
Downloading and installing MySQLcccecoeviriieienenineceeceeeens 380
Starting the MySQL SEIrVercceceiiereniniieieieieese e 381
Setting up the server to start when the computer starts 383

ON LINUX/UDIX covvvieiiiieecceeecceee ettt cetae e esaaae s eeaareeesnveeeeennneas 384
Using RPM (LINUX ONLY) cvovviiiiiiiiinienienieteeceeeeeeee e 384
From binary filescocoviiiiiiiieeeteeeeeee e 386
From source filescocooerieiniiieeeece e 389

ON MAC .ttt ettt b ettt e st s be bt se et e aeaens 391
Configuring MySQLoovoiiiieicieeeeeeeee ettt es 393
Appendix B: InstallingPHP, 395
Installing PHP on Unix/Linux/Mac with Apacheccccccoevvvrvenceeneenen. 395
(0] 5T 8} o35:¢4 51 o 115 SRR 395

ON MAC OS X ottt ettt 398
Installation OPHIONSccceeciiieiieieeeeeeee e 401
Configuring Apache for PHPccccooiiiiiiiieeeeeeeeeeene 403
ON WINAOWS ..ottt ettt et ettt sbe bt eaenaens 403
Configuring Your Web Server for PHPccccoeiiiiiiiiniieiecieceeeee, 405
Configuring APACKHEc.coeviieiireeieeeeceeee et 405
Configuring IIScccooriiiiieee e 407
Configuring PHP ..ottt 407
Appendix C: Installing and Configuring Apache 409
Selecting a Version of Apachecccccoevieviiiiiniininiiineeeeeeen 409
Installing APACREcooeiiiiieeee e 410
ON LINUX/UNIX ©ovviiiieieeeeieeieeeeceeie ettt e e seeesveesaeesaeesaesaesseeens 410

ON WINAOWS ..ottt ettt st 414

ON MAC ettt sttt se e st 418
Configuring APAChEcooiiviiiiiiiiieeec e 419
Changing Settingsccccooeeiiirerienieneeteeee e 419
Changing the location of your Web spaceccccccuvevveeieerennnnne. 420
Changing the port nNUMDEYccccociiiiiiiiiniiee e 420

JOACK ceeeeaeeeaaaeeeeeeeeeneeeeeeeeeesasassaaaeaeeaasasannnnnnnensD2]

X(/”i PHP & MySQL For Dummies, 2nd Edition

Introduction

Welcome to the exciting world of Web database applications. This book
provides the basic techniques to build any Web database application,
but I certainly recommend that you start with a fairly simple one. In this
book, I develop two sample applications, both chosen to represent two types
of applications frequently encountered on the Web: product catalogs and
customer/member-only sites that require the user to register and log in with
a password. The sample applications are complicated enough to require
more than one program and to use a variety of data and data manipulation
techniques, yet simple enough to be easily understood and adapted to a vari-
ety of Web sites. After you master the simple applications, you can expand
the basic design to include all the functionality that you can think of.

About This Book

Think of this book as your friendly guide to building a Web database applica-
tion. This book is designed as a reference, not as a tutorial, so you don’t have
to read this book from cover to cover, unless you want to. You can start read-
ing at any point in the book — in Chapter 1, Chapter 9, wherever. I divide the
task of building a Web database application into manageable chunks of infor-
mation, so check out the table of contents and locate the topic that you're
interested in. If you need to know information from another chapter to under-
stand the chapter you're reading, I reference that chapter number.

Here’s a sample of the topics that I discuss in this book:

v Building and using a MySQL database

v Adding PHP to HTML files

v Using the features of the PHP language

v Using HTML forms to collect information from users
v Showing information from a database in a Web page

v Storing information in a database

2 PHP & MySQL For Dummies, 2nd Edition

Conventions Used in This Book

This book includes many examples of PHP programming statements, MySQL
statements, or HTML. Such statements in this book are shown in a different
typeface that looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement, showing
the exact text, within the paragraph text.

In examples, you will often see some words in italic. Italicized words are gen-
eral types that need to be replaced with the specific name appropriate for
your data. For instance, when you see an example like the following

SELECT fieldl,field2 FROM tablename

you know that fieldl, field?, and tablename need to be replaced with real
names because they are in italic. When you use this statement in your pro-
gram, you might use it in the following form:

SELECT name,age FROM Customer

In addition, you might see three dots (...) following a list in an example line.
You don’t need to type the three dots. The three dots just mean that you can
have as many items in the list as you want. For instance, when you see the
following line

SELECT fieldl,field?,... FROM tablename

you don’t need to include the three dots in the statement. The three dots just
mean that your list of fields can be longer than two. It means you can go on
with field3, field4, and so forth. For example, your statement might be

SELECT name,age,height,shoesize FROM Customer
From time to time, you'll also see some things in bold type. Pay attention to

these; they either indicate something I want you to see or something that you
need to type in.

Introduction 3

What You're Not to Read

Some information in this book is flagged as Technical Stuff with an icon off to
the left side. Sometimes you’ll see this technical stuff is in a sidebar: Consider
it information that you don’t need to read in order to create a Web database
application. This extra info might contain a further look under the hood or
perhaps describe a technique that requires more technical knowledge to exe-
cute. Some readers may be interested in the extra technical information or
techniques, but feel free to ignore them if you don’t find them interesting or
useful.

Foolish Assumptions

To write a focused book rather than an encyclopedia, [need to assume some
background for you, the reader. I am assuming that you know HTML and have
created Web sites with HTML. Consequently, although [use HTML in many
examples, I do not explain the HTML. If you don’t have an HTML background,
this book will be more difficult for you to use. I suggest that you read an
HTML book — such as HTML 4 For Dummies, 4th Edition, by Ed Tittel and
Natanya Pitts, or HTML 4 For Dummies Quick Reference, 2nd Edition, by
Deborah S. Ray and Eric J. Ray (Wiley) — and build some practice Web pages
before you start this book. In particular, some background in HTML forms
and tables is useful. However, if you're the impatient type, I won't tell you it’s
impossible to proceed without knowing HTML. You may be able to glean
enough HTML from this book to build your particular Web site. If you choose
to proceed without knowing HTML, I would suggest that you have an HTML
book by your side to assist you when you need to figure out some HTML that
isn’t explained in this book.

If you are proceeding without any experience with Web pages, you might not
know some basics that are required. You must know how to create and save
plain text files with an editor such as Notepad or save the file as plain text
from your word processor (not in the word processor format). You also must
know where to put the text files containing the code (HTML or PHP) for your
Web pages so that the Web pages are available to all users with access to
your Web site, and you must know how to move the files to the appropriate
location.

You do not need to know how to design or create databases or how to
program. All the information that you need to know about databases and
programming is included in this book.

4

PHP & MySOL For Dummies, 2nd Edition

How This Book Is Organized

This book is divided into six parts, with several chapters in each part. The
content ranges from an introduction to PHP and MySQL to installation to cre-
ating and using databases to writing PHP programs.

Part I: Developing a Web Database
Application Using PHP and MySOL

This part provides an overview of using PHP and MySQL to create a Web
database application. It describes and gives the advantages of PHP, of MySQL,
and of their use together. You find out how to get started, including what you
need, how to get access to PHP and MySQL, and how to test your software.
You then find out about the process of developing the application.

Part II: MySQL Database

This part provides the details of working with MySQL databases. You find out
how to create a database, change a database, and move data in and out of a
database.

Part 111: PHP

This part provides the details of writing PHP programs that enable your Web
pages to insert new information, update existing information, or remove
information from a MySQL database. You find out how to use the PHP fea-
tures that are used for database interaction and forms processing.

Part IU: Applications

Part IV describes the Web database application as a whole. You find out how
to organize the PHP programs into a functioning application that interacts
with the database. Two complete sample applications are provided,
described, and explained.

Introduction

Part U: The Part of Tens

This part provides some useful lists of important things to do and not to do
when developing a Web database application.

Part Vl: Appendixes

This part provides instructions for installing PHP and MySQL for those who
need to install the software themselves. Appendix C discusses the installation
and use of Web servers, such as Apache and IIS, for those who need to install
and administer the Web server themselves.

Icons Used in This Book

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you must
take or must avoid to prevent dire consequences.

This icon flags information and techniques that are more technical than other
sections of the book. The information here can be interesting and helpful, but
you don’t need to understand it to use the information in the book.

This icon is a sticky note of sorts, highlighting information that’s worth
committing to memory.

Where to Go from Here

This book is organized in the order in which things need to be done. If you're
a total newbie, you probably need to start with Part I, which describes how
to get started, including how to design the pieces of your application and

6 PHP & MySOL For Dummies, 2nd Edition

how the pieces will interact. When implementing your application, you need
to create the MySQL database first, so I discuss MySQL before PHP. After you
understand the details of MySQL and PHP, you need to put them together
into a complete application, which I describe in Part IV. If you're already
familiar with any part of the book, you can go directly to the part that you
need. For instance, if you're familiar with database design, you can go
directly to Part II, which describes how to implement the design in MySQL.
Or if you know MySQL well, you can just read about PHP in Part III.

Part|
Developing a
Web Database
Application Using
PHP and MySQL

The 5th Wav Rich Tennant

7 N SR SSUN

“To0K, Te dlready launched 4 search for
*teammated. babe cadavers’ thyee times
and. hothing came up!”

In this part . . .

n this part, I provide an overview. I describe PHP and

MySQL, how each one works, and how they work
together to make your Web database application possible.
After describing your tools, [show you how to set up your
working environment. [present your options for accessing
PHP and MySQL and point out what to look for in each
environment.

After describing your tools and your options for your
development environment, | provide an overview of the
development process. I discuss planning, design, and
building your application.

Chapter 1

Introduction to PHP and MySQL

In This Chapter
Finding out what a Web database application is
Taking a look at PHP
Discovering how MySQL works
Finding out how PHP and MySQL work together

S) you need to develop an interactive Web site. Perhaps your boss just
put you in charge of the company’s online product catalog. Or you want
to develop your own Web business. Or your sister wants to sell her paintings
online. Or you volunteered to put up a Web site open only to members of
your circus acrobats’ association. Whatever your motivation might be, you
can see that the application needs to store information (for instance, informa-
tion about products, information about paintings, member passwords), thus
requiring a database. You can also see that the application needs to interact
dynamically with the user; for instance, the user selects a product to view,

or the user enters membership information. This type of Web site is a Web
database application.

[assume that you’ve created static Web pages before, using HTML
(HyperText Markup Language), but creating an interactive Web site is a new
challenge, as is designing a database. You asked three computer gurus you
know what you should do. They said a lot of things you didn’t understand,
but among the technical jargon, you heard “quick” and “easy” and “free” men-
tioned in the same sentence as PHP and MySQL. Now you want to know more
about using PHP and MySQL to develop the Web site that you need.

PHP and MySQL work together very well; it’s a dynamic partnership. In this
chapter, you find out the advantages of each, how each one works, and how
they work together to produce a dynamic Web database application.

’ 0 Part I: Developing a Web Database Application Using PHP and MySQL

What Is a Web Database Application?

An application is a program or a group of programs designed for use by an
end user (for example, customers, members, circus acrobats, and so on). If
the end user interacts with the application via a Web browser, the application
is a Web-based or Web application. If the Web application requires the long-
term storage of information, using a database, it is a Web database applica-
tion. This book provides you with the information that you need to develop a
Web database application that can be accessed with Web browsers such as
Internet Explorer and Netscape.

A Web database application is designed to help a user accomplish a task. It
can be a simple application that displays information in a browser window
(for example, it displays current job openings when the user selects a job
title) or a complicated program with extended functionality (for example, the
book-ordering application at Amazon.com or the bidding application at eBay).

Not surprisingly, a Web database application consists of a database and an
application — just two pieces:

1 Database: The database is the long-term memory of your Web database
application. The application can’t fulfill its purpose without the data-
base. However, the database alone is not enough.

v~ Application: The application piece is the program or group of programs
that performs the tasks. Programs create the display that the user sees
in the browser window; they make your application interactive by
accepting and processing information that the user types in the browser
window and they store information in the database and get information
out of the database. (The database is useless unless you can move data
in and out.)

The Web pages that you've previously created with HTML alone are static,
meaning the user can’t interact with the Web page. All users see the same
Web page. Dynamic Web pages, on the other hand, allow the user to interact
with the Web page. Different users might see different Web pages. For instance,
one user looking at a furniture store’s online product catalog might choose to
view information about the sofas, whereas another user might choose to view
information about coffee tables. To create dynamic Web pages, you must use
another language in addition to HTML.

One language widely used to make Web pages dynamic is JavaScript.
JavaScript is useful for several purposes, such as mouse-overs (for example,
to highlight a navigation button when the user moves the mouse pointer over
it) or accepting and validating information that users type into a Web form.
However, it’s not useful for interacting with a database. You wouldn’t use
JavaScript to move the information from the Web form into a database. PHP,
however, is a language that is particularly well suited to interacting with data-
bases. PHP can accept and validate the information that users type into a

Chapter 1: Introduction to PHP and MySQL

Web form and can also move the information into a database. The programs
in this book are written with PHP.

The database

The core of a Web database application is the database, which is the long-
term memory (hopefully more efficient than my long-term memory) that

stores information for the application. A database is an electronic file cabinet
that stores information in an organized manner so that you can find it when

you need it. After all, storing information is pointless if you can’t find it. A
database can be small, with a simple structure — for example, a database
containing the titles and authors’ names of all the books that you own. Or a
database can be huge, with an extremely complex structure — such as the
database that Amazon.com must have to hold all its information.

E-mail discussion lists

Good technical support is available from e-mail
discussion lists. E-mail discussion lists are
groups of people discussing specific topics via
e-mail. E-mail lists are available for pretty much
any subject you can think of: Powerball, ancient
philosophy, cooking, the Beatles, Scottish terri-
ers, politics, and so on. The discussion takes
place via e-mail. The /ist manager maintains a
distribution list of e-mail addresses for anyone
who wants to join the discussion. When you
send a message to the discussion list, your mes-
sage is sent to the entire list so that everyone
can see it. Thus, the discussion is a group effort,
and anyone can respond to any message that
interests him or her.

E-mail discussion lists are supported by various
sponsors. Any individual or organization can run
a list. Most software vendors run one or more
lists devoted to their software. Universities run
many lists for educational subjects. In addition,
some Web sites manage discussion lists, such
as Yahoo! Groups and Topica. Users can create
a new list or join an existing list via the Web
application.

Software-related e-mail lists are a treasure
trove of technical support. Anywhere from a

hundred to several thousand users of the soft-
ware subscribe to the list. Many have extensive
experience with the software. Often the devel-
opers, programmers, and technical support
staff for the software vendor are on the list.
Whatever your question or problem, someone
on the list probably knows the answer or the
solution. You are unlikely to be the first person
to ever experience your problem. When you
post a question to an e-mail list, the answer usu-
ally appears in your inbox within minutes. In
addition, most lists maintain an archive of pre-
vious discussions so that you can search for
answers to your specific problem. When you're
new to any software, you can find out a great
deal simply by joining the discussion lists for the
software and reading the messages for a few
days.

Of course, PHP and MySQL have e-mail discus-
sion lists. Actually, each has several discussion
lists for special topics, such as databases and
PHP You can find the names of the mailing lists
and instructions for joining them on the PHP and
MySQL Web sites.

11

’ 2 Part I: Developing a Web Database Application Using PHP and MySQL

The information that you store in the database comes in many varieties. A
company’s online catalog requires a database to store information about all
the company’s products. A membership Web site requires a database to store
information about members. An employment Web site requires a database
(or perhaps two databases) to store information about job openings and
information from résumés. The information that you plan to store could be
similar to information that’s stored by Web sites all over the Internet — or
information that’s unique to your application.

Technically, the term database refers to the file or group of files that holds the
actual data. The data is accessed by using a set of programs called a DBMS
(Database Management System). Almost all DBMSs these days are RDBMSs
(Relational Database Management Systems), in which data is organized and
stored in a set of related tables.

In this book, MySQL is the RDBMS used because it is particularly well suited
for Web sites. MySQL and its advantages are discussed in the section,
“MySQL, My Database,” later in this chapter. You can find out about how to
organize and design a MySQL database in Chapter 3.

The application: Moving data in
and out of the database

For the database to be useful, you need to be able to move data into and out
of it. Programs are your tools for this because they interact with the database
to store and retrieve data. A program connects to the database and makes a
request: “Take this data and store it in the specified location.” Another pro-
gram makes the request: “Find the specified data and give it to me.” The
application programs that interact with the database run when the user inter-
acts with the Web page. For instance, when the user clicks the submit button
after filling in a Web form, a program processes the information in the form
and stores it in a database.

MySOL, My Database

MySQL is a fast, easy-to-use RDBMS used for databases on many Web sites.
Speed was the developers’ main focus from the beginning. In the interest of
speed, they made the decision to offer fewer features than their major com-
petitors (for instance, Oracle and Sybase). However, even though MySQL is
less full featured than its commercial competitors, it has all the features
needed by the large majority of database developers. It’s easier to install and
use than its commercial competitors, and the difference in price is strongly in
MySQL's favor.

Chapter 1: Introduction to PHP and MySQL

MySQL is developed, marketed, and supported by MySQL AB, which is a
Swedish company. The company licenses it two ways:

+* Open source software: MySQL is available via the GNU GPL (General
Public License) for no charge. Anyone who can meet the requirements of
the GPL can use the software for free. If you're using MySQL as a data-
base on a Web site (the subject of this book), you can use MySQL for
free, even if you'’re making money with your Web site.

v Commercial license: MySQL is available with a commercial license for
those who prefer it to the GPL. If a developer wants to use MySQL as
part of a new software product and wants to sell the new product, rather
than release it under the GPL, the developer needs to purchase a com-
mercial license. The fee is very reasonable.

Finding technical support for MySQL is not a problem. You can join one of
several e-mail discussion lists offered on the MySQL Web site at www.mysqT.
com. You can even search the e-mail list archives, which contain a large
knowledge base of MySQL questions and answers. If you're more comfortable
getting commercial support, MySQL AB offers technical support contracts —
five support levels, ranging from direct e-mail support to phone support, at
five price levels.

Advantages of MySOL

MySQL is a popular database with Web developers. Its speed and small size

make it ideal for a Web site. Add to that the fact that it’s open source, which
means free, and you have the foundation of its popularity. Here is a rundown
of some of its advantages:

v It’s fast. The main goal of the folks who developed MySQL was speed.
Consequently, the software was designed from the beginning with speed
in mind.

v It’s inexpensive. MySQL is free under the open source GPL license, and
the fee for a commercial license is very reasonable.

v~ It’s easy to use. You can build and interact with a MySQL database by
using a few simple statements in the SQL language, which is the stan-
dard language for communicating with RDBMSs. Check out Chapter 4 for
the lowdown on the SQL language.

v It can run on many operating systems. MySQL runs on a wide variety of
operating systems — Windows, Linux, Mac OS, most varieties of Unix
(including Solaris, AIX, and DEC Unix), FreeBSD, 0S/2, Irix, and others.

v Technical support is widely available. A large base of users provides
free support via mailing lists. The MySQL developers also participate in
the e-mail lists. You can also purchase technical support from MySQL AB
for a very small fee.

13

’4 Part I: Developing a Web Database Application Using PHP and MySQL

v It’s secure. MySQL's flexible system of authorization allows some or all
database privileges (for example, the privilege to create a database or
delete data) to specific users or groups of users. Passwords are
encrypted.

1 It supports large databases. MySQL handles databases up to 50 million
rows or more. The default file size limit for a table is 4GB, but you can
increase this (if your operating system can handle it) to a theoretical
limit of 8 million terabytes (TB).

v It’s customizable. The open source GPL license allows programmers to
modify the MySQL software to fit their own specific environments.

How MySQOL works

The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database, you
send a message to the MySQL server that says “create a new database and
call it newdata.” The MySQL server then creates a subdirectory in its data
directory, names the new subdirectory newdata, and puts the necessary files
with the required format into the newdata subdirectory. In the same manner,
to add data to that database, you send a message to the MySQL server, giving
it the data and telling it where you want the data to be added. You find out
how to write and send messages to MySQL in Part II of this book.

Before you can pass instructions to the MySQL server, it must be running and
waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a Web site. However, it’s not necessary to set it up to start
when the computer starts. If you need to, you can start it manually whenever
you want to access a database. When it’s running, the MySQL server listens
continuously for messages that are directed to it.

Communicating with the MySQL server

All your interaction with the database is done by passing messages to the
MySQL server. You can send messages to the MySQL server several ways, but
this book focuses on sending messages by using PHP. The PHP software has
specific statements that you use to send instructions to the MySQL server.

Chapter 1: Introduction to PHP and MySQL

The MySQL server must be able to understand the instructions that you send
it. You communicate by using SQL (Structured Query Language), which is a
standard language understood by many RDBMSs. The MySQL server under-
stands SQL. PHP doesn’t understand SQL, but it doesn’t need to: PHP just
establishes a connection with the MySQL server and sends the SQL message
over the connection. The MySQL server interprets the SQL message and fol-
lows the instructions. The MySQL server sends a return message, stating its
status and what it did (or reporting an error if it was unable to understand or
follow the instructions). For the lowdown on how to write and send SQL mes-
sages to MySQL, check out Part II of this book.

PHP, a Data Mover

PHP, a scripting language designed specifically for use on the Web, is your
tool for creating dynamic Web pages. Rich in features that make Web design
and programming easier, PHP is in use on over 13 million domains (according
to the Netcraft survey at www.php.net/usage.php). Its popularity continues
to grow, meaning that it must be fulfilling its function pretty well.

PHP stands for PHP: HyperText Preprocessor. In its early development by a guy
named Rasmus Lerdorf, it was called Personal Home Page tools. When it
developed into a full-blown language, the name was changed to be more in
line with its expanded functionality.

The PHP language’s syntax is similar to the syntax of C, so if you have experi-
ence with C, you’ll be comfortable with PHP. PHP is actually simpler than C
because it doesn’t use some of the more difficult concepts of C. PHP also
doesn’t include the low-level programming capabilities of C because PHP is
designed to program Web sites and doesn’t require those capabilities.

PHP is particularly strong in its ability to interact with databases. PHP sup-
ports pretty much every database you've ever heard of (and some you
haven’t). PHP handles connecting to the database and communicating with it.
You don’t need to know the technical details for connecting to a database or
for exchanging messages with it. You tell PHP the name of the database and
where it is, and PHP handles the details. It connects to the database, passes
your instructions to the database, and returns the database response to you.

Technical support is available for PHP. You can join one of several e-mail dis-
cussion lists offered on the PHP Web site (www . php.net), including a list for
databases and PHP. In addition, a Web interface to the discussion lists is avail-
able at news.php.net, where you can browse or search the messages.

15

’ 6 Part I: Developing a Web Database Application Using PHP and MySQL

Advantages of PHP

The popularity of PHP is growing rapidly because of its many advantages:

v~ It’s fast. Because it is embedded in HTML code, the response time is
short.

v It’s inexpensive — free, in fact. PHP is proof that free lunches do exist
and that you can get more than you paid for.

v~ It’s easy to use. PHP contains many special features and functions
needed to create dynamic Web pages. The PHP language is designed to
be included easily in an HTML file.

v~ It can run on many operating systems. It runs on a wide variety of oper-
ating systems — Windows, Linux, Mac OS, and most varieties of Unix.

v Technical support is widely available. A large base of users provides
free support via e-mail discussion lists.

v It’s secure. The user does not see the PHP code.

1 It’s designed to support databases. PHP includes functionality designed
to interact with specific databases. It relieves you of the need to know
the technical details required to communicate with a database.

v It’s customizable. The open source license allows programmers to
modify the PHP software, adding or modifying features as needed to fit
their own specific environments.

How PHP works

PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose the
PHP language that you embed in your HTML file — the same way that you
would use other HTML tags. You create and edit Web pages containing PHP
the same way that you create and edit regular HTML pages.

The PHP software works in conjunction with the Web server. The Web server
is the software that delivers Web pages to the world. When you type a URL
into your Web browser, you're sending a message to the Web server at that
URL, asking it to send you an HTML file. The Web server responds by sending
the requested file. Your browser reads the HTML file and displays the Web
page. You also request the Web server to send you a file when you click a link
in a Web page. In addition, the Web server processes a file when you click a
Web page button that submits a form.

Chapter 1: Introduction to PHP and MySQL ’ 7

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is . php
or .phtml, but any extension can be used. When the Web server gets a
request for a file with the designated extension, it sends the HTML state-
ments as-is, but PHP statements are processed by the PHP software before
they’re sent to the requester.

When PHP language statements are processed, only the output is sent by the
Web server to the Web browser. The PHP language statements are not
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo "<p>Hello World"; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP instruc-
tion that tells PHP to output the upcoming text. The PHP software processes
the PHP statement and outputs this:

<p>Hello World

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and dis-
plays a Web page with one paragraph — Hello World. The PHP statement is
not delivered to the browser, so the user never sees any PHP statements.

PHP and the Web server must work closely together. PHP is not integrated
with all Web servers, but it does work with many of the most popular Web
servers. PHP is developed as a project of the Apache Software Foundation —
consequently, it works best with Apache. PHP also works with Microsoft IIS/
PWS, iPlanet (formerly Netscape Enterprise Server), and others.

Although PHP works with several Web servers, it works best with Apache. If
you can select or influence the selection of the Web server used in your orga-
nization, select Apache. By itself, Apache is a good choice. It is free, open
source, stable, and popular. It currently powers over 60 percent of all Web
sites, according to the Web server survey at wow.netcraft.com. It runs on
Windows, Linux, Mac OS, and most flavors of Unix.

\\J

MySOL and PHP, the Perfect Pair

MySQL and PHP are frequently used together. They are often called the
dynamic duo. MySQL provides the database part, and PHP provides the appli-
cation part of your Web database application.

’8 Part I: Developing a Web Database Application Using PHP and MySQL

Advantages of the relationship

MySQL and PHP as a pair have several advantages:

v~ They're free. It’s hard to beat free for cost-effectiveness.

v They’re Web-oriented. Both were designed specifically for use on Web
sites. Both have a set of features that are focused on building dynamic
Web sites.

v They’re easy to use. Both were designed to get a Web site up quickly.

v They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

v They communicate well with one another. PHP has built-in features for
communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

v A wide base of support is available for both. Both have large user
bases. Because they are often used as a pair, they often have the same
user base. Many people are available to help, including those on e-mail
discussion lists who have experience using MySQL and PHP together.

v They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

How MySOL and PHP work together

PHP provides the application part, and MySQL provides the database part of
a Web database application. You use the PHP language to write the programs
that perform the application tasks. PHP is flexible enough to perform all the
tasks that your application requires. It can be used for simple tasks (such as
displaying a Web page) or for complicated tasks (such as accepting and veri-
fying data that a user typed into an HTML form). One of the tasks that your
application must do is move data into and out of the database — and PHP
has built-in features to use when writing programs that move data into and
out of a MySQL database.

PHP statements are embedded in your HTML files with PHP tags. When the
task to be performed by the application requires storing or retrieving data,
you use specific PHP statements designed to interact with a MySQL database.
You use one PHP statement to connect to the correct database, telling PHP
where the database is located, its name, and the password needed to connect
to it. The database doesn’t need to be on the same machine as your Web site;

Chapter 1: Introduction to PHP and MySQL ’ 9

PHP can communicate with a database across a network. You use another
PHP statement to send instructions to MySQL. You send an SQL message
across the connection, giving MySQL instructions for the task that you want
done. MySQL returns a status message that shows whether it successfully
performed the task. If there was a problem, it returns an error message. If
your SQL message asked to retrieve some data, MySQL sends the data that
you asked for, and PHP stores it in a temporary location where it is available
to you.

You then use one or more PHP statements to complete the application task.
For instance, you can use PHP statements to display data that you retrieved.
Or you might use PHP statements to display a status message in the browser,
informing the user that the data was saved.

As an RDBMS, MySQL can store very complex information. As a scripting lan-
guage, PHP can perform very complicated manipulation of data, either data
that you need to modify before saving it in the database or data that you
retrieved from the database and need to modify before displaying or using it
for another task. Together, PHP and MySQL can be used to build a Web data-
base application that has a very sophisticated and complicated purpose.

Keeping Up with PHP and
MySOL Changes

PHP and MySQL are open source software. If you’ve only used software from
major software publishers — such as Microsoft, Macromedia, or Adobe —
you’ll find that open source software is an entirely different species. It’s
developed by a group of programmers who write the code in their spare time,
for fun and for free. There’s no corporate office.

Open source software changes frequently, rather than once every year or two
like commercial software does. It changes when the developers feel that it’s
ready. It also changes quickly in response to problems. When a serious prob-
lem is found — such as a security hole — a new version that fixes the prob-
lem can be released in days. You don’t receive glossy brochures or see
splashy magazine ads for a year before a new version is released. Thus, if you
don’t make the effort to stay informed, you could miss the release of a new
version or be unaware of a serious problem with your current version.

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Join the mailing lists, which often are very high in traf-
fic. When you first get acquainted with PHP and MySQL, the large number of
mail messages on the discussion lists bring valuable information into your

20

Part I: Developing a Web Database Application Using PHP and MySQL

e-mail box; you can pick up a lot by reading those messages. And soon, you
might be able to help others based on your own experience. At the very least,
subscribe to the announcement mailing list, which only delivers e-mail occa-
sionally. Any important problems or new versions are announced here. The
e-mail that you receive from the announcement list contains information

that you need to know. So, right now, before you forget, hop over to the PHP
and MySQL Web sites and sign up for a list or two at www.php.net/
mailing-Tists.phpand lists.mysqgl.com.

QNING/ You should be aware of some significant changes in previous PHP versions
& because existing scripts that work fine on earlier versions could have prob-
lems when they’re run on a later version and vice versa. The following are
some changes that you should be aware of:

v Version 5.0.0: Added support for MySQL 4.1. Support for MySQL 4.0 is
not included automatically; it must be included with an option when
PHP is installed. Changed the filename of the PHP interpreter used with
a Web server from .php to .php-cgi.

v Version 4.3.1: Fixed a security problem in 4.3.0. It’s not wise to continue
to run a Web site using versions 4.3.0 or earlier.

v Version 4.2.0: Changed the default setting for register_globals
to Off. Scripts running under previous versions might depend on
register_globals being set to On and could stop running with the
new setting. It’s best to change the coding of the script so that it runs
with register_globals set to Off.

v Version 4.1.0: Introduced the superglobal arrays. Scripts written with
the superglobals (as I describe in Chapter 6) won’t run in earlier ver-
sions. Prior to 4.1.0, you must use the old style arrays, such as
$HTTP_POST_VARS.

Chapter 2
Setting Up Your Work Environment

In This Chapter

Getting access to PHP and MySQL through company Web sites
and Web hosting companies

Building your own Web site from scratch
Testing PHP and MySQL

A fter you decide to use PHP and MySQL, your first task is to get access to
them. A work setting already set up for Web application development
might be ready and waiting for you with all the tools that you need. On the
other hand, it might be part of your job to set up this work setting yourself.
Perhaps your job is to create a whole new Web site. In this chapter, I describe
the tools that you need and how to get access to them.

The Required Tools

To put up your dynamic Web site, you need to have access to the following
three software tools:

v A Web server: The software that delivers your Web pages to the world

v MySQL: The RDBMS (Relational Database Management System) that will
store information for your Web database application

v PHP: The scripting language that you’ll use to write the programs that

W provide the dynamic functionality for your Web site

[describe these three tools in detail in Chapter 1.

22 Part I: Developing a Web Database Application Using PHP and MySQL

Finding a Place to Work

To create your dynamic Web pages, you need access to a Web site that pro-
vides your three software tools (see the preceding section). All Web sites
include a Web server, but not all Web sites provide MySQL and PHP. These
are the most common environments in which you can develop your Web site:

v A Web site put up by a company on its own computer: The company —
usually the company’s IT (Information Technology) department —
installs and administers the Web site software. Your job, for the pur-
poses of this book, is to program the Web site, either as an employee of
the company or as a contractor.

v A Web site that’s hosted by a Web hosting company: The Web site is
located on the Web hosting company’s computer. The Web hosting com-
pany installs and maintains the Web site software and provides space on
its computer where you can install the HTML (HyperText Markup
Language) files for a Web site.

1 A Web site that doesn’t yet exist: You plan to install and maintain the
Web site software yourself. It could be a Web site of your own that
you’re building on your own computer, or it might be a Web site that
you're installing for a client on the client’s computer.

How much you need to understand about the administration and operation
of the Web site software depends on the type of Web site access that you
have. In the next few sections, I describe these environments in more detail
and explain how you gain access to PHP and MySQL.

A company Web site

When the Web site is run by the company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site. In most cases, the Web site
already exists, and your job is to add to, modify, or redesign the existing Web
site. In a few cases, the company might be installing its first Web site, and
your job is to design the Web site. In either case, your responsibility is to
write and install the HTML files for the Web site. You are not responsible for
the operation of the Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up-to-date.

Chapter 2: Setting Up Your Work Environment 23

If PHP and/or MySQL aren’t available on the company’s Web site, IT needs to
install them and make them available to you. PHP and MySQL have many
options, but IT might not understand the best options — and might have
options set in ways that aren’t well suited for your purposes. If you need PHP
or MySQL options changed, you need to request that IT make the change; you
won’t be able to make the change yourself. For instance, PHP must be
installed with MySQL support enabled, so if PHP isn’t communicating cor-
rectly with MySQL, IT might have to reinstall PHP with MySQL support
enabled.

In order for the world to see the company’s Web pages, the HTML files must
be in a specific location on the computer. The Web server that delivers the
Web pages to the world expects to find the HTML files in a specific directory.
The IT department should provide you with access to the directory where
the HTML files need to be installed. In most cases, you develop and test your
Web pages in a test location and then transfer the completed files to their
permanent home. Depending on the access that IT gives you, you might copy
the files from the test location to the permanent location, or you might trans-
fer the files via FTP (File Transfer Protocol), which is a method of copying a
file from one computer to another on a network). In some cases, for security
reasons, the IT folks won’t give you access to the permanent location, prefer-
ring to install the files in their permanent location themselves.

In order to use the Web software tools and build your dynamic Web site, you
need the following information from IT:

v The location of Web pages: You need to know where to put the files for
the Web pages. IT needs to provide you with the name and location of
the directory where the files should be installed. Also, you need to know
how to install the files — copy them, FTP them, or use other methods.
You might need a user ID and password in order to install the files.

v The default file name: When users point their browsers at a URL, a file
is sent to them. The Web server is set up to send a file with a specific
name when the URL points to a directory. The file that is automatically
sent is the default file. Very often the default file is named index.htm or
index.html, but sometimes other names are used, such as default.htm.
Ask IT what you should name your default file.

v A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. IT sets up a MySQL account
for you that has the appropriate permissions and also gives you the
MySQL account name and password. (I explain MySQL accounts in detail
in Chapter 5.)

24 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
@&
&

v The location of the MySQL databases: MySQL databases need not be
located on the same computer as the Web site. If the MySQL databases
are located on a computer other than that of the Web site, you need to
know the hostname (for example, thor.companyname.com) where the
databases can be found.

1 The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtm1, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won’t be processed. Ask IT what extension to use for your
PHP programs.

You will interact with the IT folks frequently as needs arise. For example, you
might need options changed, you might need information to help you inter-
pret an error message, or you might need to report a problem with the Web
site software. So a good relationship with the IT folks will make your life
much easier. Bring them tasty cookies and doughnuts often.

A Web hosting company

A Web hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified by
the Web hosting company.

About a gazillion companies offer Web hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all, of
the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your Web site. For instance, a
Web site with 2MB of disk space for your Web page files would cost less than
a Web site with 10MB of disk space.

When looking for a place to host your Web site, make sure that the Web host-
ing company offers the following:

v PHP and MySQL: Not all companies provide these tools. You might have
to pay more for a site with access to PHP and MySQL; sometimes you
have to pay an additional fee for MySQL databases.

v A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. You certainly shouldn’t even consider a Web site
that has access only to PHP 3. You want PHP 4 at least. Preferably, you
want access to PHP 5.

Other considerations when choosing a Web hosting company are

Chapter 2: Setting Up Your Work Environment

v Reliability: You need a Web hosting company that you can depend on —
one that won'’t go broke and disappear tomorrow, and one that isn’t run-
ning on old computers, held together by chewing gum and baling wire,
with more downtime than uptime.

1 Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages could be a result of a
Web hosting company that started its business on a shoestring and has
a shortage of good equipment — or the Web hosting company might be
so successful that its equipment is overwhelmed by new customers.
Either way, Web hosting companies that deliver Web pages too slowly
are unacceptable.

v Technical support: Some Web hosting companies have no one available
to answer questions or troubleshoot problems. Technical support is
often provided through e-mail only, which can be acceptable if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or test the e-mail
response time by sending an e-mail.

v The domain name: Each Web site has a domain name that Web
browsers use to find the site on the Web. Each domain name is regis-
tered for a small yearly fee so that only one Web site can use it. Some
Web hosting companies allow you to use a domain name that you have
registered independently of the Web hosting company, some assist you
in registering and using a new domain name, and some require that you
use their domain name. For instance, suppose that your name is Lola
Designer and you want your Web site to be named LolaDesigner. Some
Web hosting companies will allow your Web site to be LolaDesigner.
com, but some will require that your Web site be named LolaDesigner.
webhostingcompanyname.com, or webhostingcompanyname.com/~
LoTaDesigner, or something similar. In general, your Web site will look
more professional if you use your own domain name.

v Backups: Backups are copies of your Web page files and your database
that are stored in case your files or database are lost or damaged. You
want to be sure that the company makes regular, frequent backup copies
of your application. You also want to know how long it would take for
backups to be put in place to restore your Web site to working order
after a problem.

v~ Features: Select features based on the purpose of your Web site.
Usually a hosting company bundles features together into plans —
more features = higher cost. Some features to consider are

¢ Disk space: How many MB/GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite
large.

¢ Data transfer: Some hosting companies charge you for sending
Web pages to users. If you expect to have a lot of traffic on your
Web site, this cost should be a consideration.

26

Part I: Developing a Web Database Application Using PHP and MySQL

¢ E-mail addresses: Many hosting companies provide you with a
number of e-mail addresses for your Web site. For instance, if your
Web site is LolaDesigner.com, you could allow users to send you
e-mail at me@LolaDesigner.com.

¢ Software: Hosting companies offer access to a variety of software
for Web development. PHP and MySQL are the software that I dis-
cuss in this book. Some hosting companies might offer other data-

bases, and some might offer other development tools such as
FrontPage extensions, shopping cart software, and credit card

validation.

e Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,

and so on.

Domain names

Every Web site needs a unique address on the
Web. The unique address used by computers to
locate a Web site is the /P address, which is a
series of four numbers between 0 and 255, sep-
arated by dots — for example, 172.17.204.2
or192.163.2.33.

Because IP addresses are made up of numbers
and dots, they're not easy to remember.
Fortunately, most IP addresses have an associ-
ated name that's much easier to remember,
such as amazon.com, www.irs.gov, or
mycompany .com. A name that is an address
for a Web site is a domain name. A domain can
be one computer or many connected comput-
ers. When a domain refers to several comput-
ers, each computer in the domain can have its
own name. A name that includes an individual
computer name, such as thor.mycompany .
com, identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn't already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it's
available. If it's available, you register it in your
name or a company name and pay the fee. The
name is then yours to use, and no one else can
use it. The standard fee for domain name regis-
tration is $35 per year. You should never pay
more, but bargains are often available.

Many Web sites provide the ability to register
a domain name, including the Web sites of
many Web hosting companies. A search at
Google (www.google.com) for domain name
register results in over 3 million hits. Shop
around to be sure that you find the lowest price.
Also, many Web sites allow you to enter a
domain name and see whom it is registered to.
These Web sites do a domain name database
search using a tool called whois. A search at
Google for domain name whois results in
770,000 hits. A couple of places where you can
do a whois search are Allwhois.com (www.
allwhois.com)and BetterWhois.com (www .
betterwhois.com).

Chapter 2: Setting Up Your Work Environment 2 7

One disadvantage of hosting your site with a commercial Web hosting com-
pany is that you have no control over your development environment. The
Web hosting company provides the environment that works best for it —
probably setting up the environment for ease of maintenance, low cost, and
minimal customer defections. Most of your environment is set by the com-
pany, and you can’t change it. You can only beg the company to change it.
The company will be reluctant to change a working setup, fearing that a
change could cause problems for the company’s system or for other
customers.

Access to MySQL databases is controlled via a system of accounts and pass-
words that must be maintained manually, thus causing extra work for the
hosting company. For this reason, many hosting companies either don’t offer
MySQL or charge extra for it. Also, PHP has a myriad of options that can be
set, unset, or given various values. The hosting company decides the option
settings based on its needs, which might or might not be ideal for your
purposes.

It’s pretty difficult to research Web hosting companies from a standing start —
a search at Google.com for Web hosting results in almost 6 million hits. The
best way to research Web hosting companies is to ask for recommendations
from people who have experience with those companies. People who have
used a hosting company can warn you if the service is slow or the computers
are down often. After you gather a few names of Web hosting companies from
satisfied customers, you can narrow the list to the one that is best suited to
your purposes and is the most cost-effective.

Setting up and running your own Web site

If you're starting a Web site from scratch, you need to understand the Web
site software fairly well. You have to make several decisions regarding hard-
ware and software. You have to install a Web server, PHP, and MySQL — as
well as maintain, administer, and update the system yourself. Taking this
route requires more work and more knowledge. The advantage is that you
have total control over the Web development environment.

Here are the general steps that lead to your dynamic Web site (I explain these
steps in more detail in the next few sections):

1. Set up the computer.

2. Install the Web server.

3. Install MySQL.

4. Install PHP.

28 Part I: Developing a Web Database Application Using PHP and MySQL

S

If you're starting from scratch, with nothing but an empty space where the
computer will go, start at Step 1. If you already have a running computer but
no Web software, start at Step 2. Or if you have an existing Web site that does
not have PHP and MySQL installed, start with Step 3.

Setting up the computer

Your first decision is to choose which hardware platform and operating
system to use. In most cases, you’ll choose a PC with either Linux or
Windows as the operating system. Here are some advantages and disadvan-
tages of these two operating systems:

v Linux: Linux is open source, so it’s free. It also has advantages for use as
a Web server: It runs for long periods without needing to be rebooted;
and Apache, the most popular Web server, runs better on Linux than
Windows. Running Linux on a PC is the lowest cost option. The disad-
vantage of running Linux is that many people find Linux more difficult to
install, configure, administer, and install software on than Windows.

v Windows: Unlike Linux, Windows is not free. However, the advantages
are that most people feel that Windows is easier to use, and because it’s
widely used, many people can help you if you have problems.

[assume that you’re buying a computer with the operating system and soft-
ware installed, ready to use. It’s easier to find a computer that comes with
Windows installed on it than with Linux, but Linux computers are available.
For instance, at this time, Dell, IBM, and Hewlett-Packard offer computers
with Linux installed.

If you're building your own hardware, you need more information than I have
room to provide in this book. If you have the hardware and plan to install an
operating system, Windows is easier to install, but Linux is getting easier all
the time. You can install Linux from a CD, like Windows, but you often must
provide information or make decisions that require more knowledge about
your system. If you already know how to perform system administration
tasks (such as installing software and making backups) in Windows or in
Linux, the fastest solution is to use the operating system that you already
know.

For using PHP and MySQL, you should seriously consider Linux. PHP is a pro-
ject of the Apache Software Foundation, so it runs best with the Apache
server. And Apache runs better on Linux than on Windows. Therefore, if all
other things are equal and the computer is mainly for running a Web site with
a Web database application, Linux is well suited for your purposes.

Other solutions besides a PC with Windows or Linux are available, but
they’re less popular:

Chapter 2: Setting Up Your Work Environment 2 9

gMBER
S

v Unix-based: Other free, Unix-based operating systems are available for
PCs, such as FreeBSD (which some people prefer to Linux) or a version
of Solaris provided by Sun for free download.

v Mac: Mac computers can be used as Web servers. Most newer Macs
come with PHP installed. Installing PHP and MySQL on Mac OS X is fairly
simple. There are fewer Mac users, however, so it can be difficult to find
help when you need it. One good site is www.phpmac. com.

Installing the Web server

After you set up the computer, you need to decide which Web server to
install. The answer is almost always Apache. Apache offers the following
advantages:

v It’s free. What else do | need to say?

v It runs on a wide variety of operating systems. Apache runs on
Windows, Linux, Mac OS, FreeBSD, and most varieties of Unix.

v It’s popular. Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at www.netcraft.com/survey and at
www.securityspace.com/s_survey/data/. This wouldn’t be true if it
didn’t work well. Also, this means that a large group of users can provide
help.

v It’s reliable. After Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are extremely
rare.

v It’s customizable. The open source license allows programmers to
modify the Apache software, adding or modifying modules as needed to
fit their own specific environment.

v It’s secure. Free software is available that runs with Apache to make it
into an SSL (Secure Sockets Layer) server. Security is an essential issue if
you’re using the site for e-commerce.

Apache is automatically installed when you install most Linux distributions.
Most recent Macs come with Apache installed. For most other Unix flavors,
you have to download the Apache source code and compile it yourself,
although some binaries (programs that are already compiled for specific
operating systems) are available. For Windows, you need to install a binary
file — preferably on Windows NT/2000/XP, although Apache also runs on
Windows 95/98/Me. As of this writing, Apache 1.3.28 and 2.0.47 are the cur-
rent stable releases. (Information on Apache versions is available in
Appendix C.) See the Apache Web site (httpd.apache.org) for information,
software downloads, documentation, and installation instructions for various
operating systems. The Web site provides extensive documentation that is
improving all the time.

30 Part I: Developing a Web Database Application Using PHP and MySQL

\\J

Other Web servers are available. Microsoft offers IIS (Internet Information
Server), which is the second most-popular Web server on the Internet with
approximately 27 percent of Web sites. Sun offers iPlanet (formerly Netscape
Enterprise Server), which serves less than 5 percent of the Internet. Other
Web servers are available, but they have even smaller user bases.

Installing MySOL

After setting up the computer and installing the Web server, you're ready to
install MySQL. You need to install MySQL before installing PHP because you
need to provide the path to the MySQL software when you install PHP.

But before installing MySQL, be sure that you actually need to install it. It
might already be running on your computer, or it might be installed but not
running. For instance, many Linux distributions automatically install MySQL.
Here’s how to check whether MySQL is currently running:

v Linux/Unix/Mac: At the command line, type the following:
ps -ax

The output should be a list of programs. Some operating systems (usu-
ally flavors of Unix) have different options for the ps command. If the
above comment does not produce a list of the programs that are run-
ning, type man ps to see which options you need to use.

In the list of programs that appears, look for one called mysqld.

v Windows: If MySQL is running, you should see it in your system tray at
the bottom of your screen, possibly as a traffic signal with a green light.
If you cannot find an icon for it, it’s probably not running.

Even if MySQL isn’t currently running, it might be installed, just not started.
Here’s how to check to see whether MySQL is installed on your computer:
v Linux/Unix/Mac: Type the following:
find / -name "mysql*"
If a directory named mysq]1 is found, MySQL has been installed.

v Windows: Look for a program called WinMySQLadmin, which starts and
stops MySQL, among other functions. You might be able to find it on the
Start menu (choose Start=>Programs). If not, look for it in a MySQL direc-
tory, which is probably at c:\mysqgl\bin.

If MySQL is installed but not started, here’s how to start it:

Chapter 2: Setting Up Your Work Environment 3 ’

\\3

A\

v Linux/Unix/Mac:
1. Change to the directory mysql/bin.

This is the directory that you should have found when you were
checking whether MySQL was installed.

2. Type safe_mysqld &.
When this command finishes, the prompt is displayed.
3. Check that the MySQL server started by typing ps -ax.
In the list of programs that appears, look for one called mysqld.
1+ Windows:
1. Start the WinMySQLadmin program.

If you can’t find it on the menu, navigate to the program, which is
probably at c:\mysgl\bin\winmysgladmin.exe, and then
double-click it.

2. Right-click in the WinMySQLadmin window.
A submenu appears.

3. Select the menu item for your operating system — Win 9x or Win
NT (which includes Win 2000 and XP).

4. Click Start the Server.

If MySQL isn’t installed on your computer, you need to download it and
install it from www.mysq1.com. The Web site provides all the information and
software that you need. (You can find detailed installation instructions in
Appendix A.)

Installing PHP

After you install MySQL, you're ready to install PHP. As [mention earlier, you
must install MySQL before you install PHP because you need to provide the
path to the MySQL software when you install PHP. If PHP isn’t compiled with
MySQL support when it is installed, it won’t communicate with MySQL.

Before you install PHP, check whether it’s already installed. For instance,
some Linux and Mac distributions automatically install PHP. To see whether
PHP is installed, search your disk for any PHP files:

v Linux/Unix/Mac: Type the following:
find / -name "php*"

1 Windows: Use the Find feature (choose Start=’Find) to search for php*.

32 Part I: Developing a Web Database Application Using PHP and MySQL

If you find PHP files, PHP is already installed, and you might not need to rein-
stall it. For instance, even if you installed MySQL yourself after the PHP was
installed, you might have installed it in the location where PHP is expecting
it. Better safe than sorry, however: Perform the testing that I describe in the
next section to see whether MySQL and PHP are working correctly together.

If you don’t find any PHP files, PHP is not installed. In order to install PHP,
you need access to the Web server for your site. For instance, when you
install PHP with Apache, you need to edit the Apache configuration file. All
the information and software that you need is provided on the PHP Web site
(www.php.net). I provide detailed installation instructions in Appendix B.

Testing, Testing, 1, 2, 3

Suppose you believe that PHP and MySQL are available for you to use, for
one of the following reasons:

v The IT department at your company or your client company gave you all
the information that you asked for and told you that you're good to go.

v The Web hosting company gave you all the information that you need
and told you that you’re good to go.

v You followed all the instructions and installed PHP and MySQL yourself.

Now you need to test to make sure that PHP and MySQL are working correctly.

Testing PHP

To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the Document Root. The default Web space
for Apache is htdocs in the directory where Apache is installed. For IIS,
it’s Inetpub\wwwroot. In Linux, it might be /var/www/htm1. The Web
space can be set to a different directory by configuring the Web server
(see Appendix C). If you're using a Web hosting company, the staff will
supply the directory name.

Chapter 2: Setting Up Your Work Environment

WING/
g‘?‘

\NG/
&VQ‘“

2. Create the following file somewhere in your Web space with the name

test.php.

<html1>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line
<p>
<?php
echo "This is a PHP Tine";
phpinfo();
7>
</body></html>

The file must be saved in your Web space for the Web server to find it.

. Point your browser at the file test.php created in Step 1. That is,

type the name of your Web server (www.myfinecompany.com) into the
browser address window.

If your Web server, PHP, and the test.php file are on the same com-
puter that you'’re testing from, you can type localhost/test.php.

In order for the file to be processed by PHP, you need to access the file
through the Web server — not by choosing Filec>Open from your Web
browser menu.

You should see the following in the Web browser:

This is an HTML Tine
This is a PHP Tine

Below these lines, you should see a large table, which shows all the
information associated with PHP on your system. It shows PHP informa-
tion, path and filenames, variable values, and the status of various
options. The table is produced by the line phpinfo() in the test script.
Anytime that you have a question about the settings for PHP, you can
use the statement phpinfo() to display this table and check a setting.

. Check the PHP values for the values that you need.

For instance, you need MySQL support enabled. Looking through the
listing, find the section for MySQL and make sure that MySQL support
is On.

. Change values if necessary.

If you don’t have administrative access to PHP, you have to ask the
administrator to change any values that need changing. If you installed
PHP yourself and/or have administrative access to PHP, you can change
the values yourself. (Changing PHP settings is discussed in Appendix B.)

33

34 Part I: Developing a Web Database Application Using PHP and MySQL

Testing MySOL

After you know that PHP is running okay, you can test whether you can
access MySQL by using PHP. Just follow these steps:

1. Create the following file somewhere in your Web space with the name
<P mysql_up.php.

You can download the file from my Web site at janet.valade.com.

<htm1>

<head><title>Test MySQL<L/title></head>
<body>

<I-- mysql_up.php -->

<?php

$host="hostname" ;
$user="mysqlaccount";
$password="mysqglpassword";

mysql_connect($host, $user,$password);
$sql="show status";
$result = mysql_query($sql);
if ($result == 0)
echo "Error " . mysql_errno() . ": "
. mysql_error() . "";
else
{
?>
<!-- Table that displays the results -->
{table border="1">
<tr><td>Variable_name</td><td>Value
</td></tr>
<?php
for ($i = 0; $i < mysql_num_rows($result); $i++) {
echo "<TR>";
$row_array = mysql_fetch_row($result);
for ($j = 0; $j < mysql_num_fields($result); $j++)
{
echo "<TD>" . $row_array[$j] . "</td>";
}
echo "</tr>";
?>}
</table>
<?php } 2>
</body></html1>

Chapter 2: Setting Up Your Work Environment

2. Lines 6, 7, and 8 of the program need to be changed. These lines are

$host="host";
$user="mysqglaccount";
$password="mysqglpassword";

Change host to the name of the computer where MySQL is installed —
for example, databasehost.mycompany.com. If the MySQL database is
on the same computer as your Web site, you can use 1Tocalhost as the
hostname.

Change mysqlaccountname and mysqlpassword to the appropriate
values. (I discuss MySQL accounts and passwords in Chapter 5.) If your
MySQL account doesn’t require a password, type nothing between the
quotes, as follows:

$password="";
3. Point your browser at mysql_up.php.

You should see a table with a long list of variable names and values. You
don’t want to see an error message or a warning message. Don’t worry
about the contents of the table. It’s only important that the table is dis-
played so that you know your connection to MySQL is working correctly.

If no error or warning messages are displayed, MySQL is working fine. If
you see an error or a warning message, you need to fix the problem
that’s causing the message.

Error and warning messages are usually fairly clear. The following is a
common error message.

MySQL Connection Failed: Access denied for user:
'user73@localhost' (Using password: YES)

This message means that MySQL did not accept your MySQL account number
or your MySQL password. Notice that the message reads YES for Using
password but doesn’t show the actual password that you tried for security
reasons. If you tried with a blank password, the message would read NO.

If you receive an error message, double-check your account number and
password. Remember that this is your MySQL account number — not your
account number to log on to the computer. If you can’t connect with the
account number and password that you have, you might need to contact the
IT department or the Web hosting company that gave you the account
number. (For a further discussion of MySQL accounts and passwords, see
Chapter 5.)

35

36 Part I: Developing a Web Database Application Using PHP and MySQL

Chapter 3

Developing a Web Database
Application

In This Chapter
Planning your application
Selecting and organizing your data
Designing your database
Overview of building your database

Overview of writing your application programs

Developing a Web database application involves more than just storing
data in MySQL databases and typing in PHP programs. Development
has to start with planning. Building the application pieces comes after plan-
ning. The development steps are

1. Develop a plan, listing the tasks that your application will perform.

2. Design the database needed to support your application tasks.

3. Build the MySQL database, based on the database design.

4. Write the PHP programs that perform the application tasks.

[discuss these steps in detail in this chapter.

Planning Your Web Database
Application

Before you ever put finger to keyboard to write a PHP program, you need to
plan your Web database application. This is possibly the most important step
in developing your application. It’s painful to discover, especially just after
you finish the last program for your application, that you left something out

38 Part I: Developing a Web Database Application Using PHP and MySQL

\\J

and have to start over from the beginning. It’s also hard on your computer
(and your foot) when you take out your frustrations by drop-kicking it across
the room.

Good planning prevents such painful backtracking. In addition, it keeps you
focused on the functionality of your application, thus preventing you from
writing pieces for the application that do really cool things but turn out to
have no real purpose in the finished application. And if more than one person
is working on your application, planning ensures that all the pieces will fit
together in the end.

Identifying what you want
from the application

The first step in the planning phase is to identify exactly why you’re develop-
ing your application and what you want from it. For example, your main pur-
pose might be to

v Collect names and addresses from users so that you can develop a
customer list.

v Deliver information about your products to users, as in a customer
catalog.

v Sell products online.

v Provide technical support to people who already own your product.
After you clearly identify the general purpose of your application, make a list
of exactly what you want that application to do. For instance, if your goal is
to develop a database of customer names and addresses for marketing pur-
poses, the application’s list of required tasks is fairly short:

v Provide a form for customers to fill out.

v Store the customer information in a database.
If your goal is to sell products online, the list is a little longer:

v Provide information about your products to the customer.

v Motivate the customer to buy the product.

v Provide a way for the customer to order the product online.

v Provide a method for the customer to pay for the product online.

v Validate the payment so you know that you’ll actually get the money.

v Send the order to whomever is responsible for filling it and sending the
product to the customer.

Chapter 3: Developing a Web Database Application

At this point in the planning process, the tasks that you want your application
to perform are still pretty general. You can accomplish each of these tasks in
many different ways. So now you need to examine the tasks closely and detail
exactly how the application will accomplish them. For instance, if your goal is
to sell products online, you might expand the previous list like this:
v Provide information about products to the customer.
¢ Display a list of product categories. Each category is a link.

e When the customer clicks a category link, the list of products in
that category is displayed. Each product name is a link.

e When a customer clicks a product link, the description of the prod-
uct is displayed.

v Motivate the customer to buy the product.

¢ Provide well-written descriptions of the products that communi-
cate their obviously superior qualities.

¢ Use flattering pictures of the products.
e Make color product brochures available online.
e Offer quantity discounts.
v Provide a way for customers to order the product online.

¢ Provide a button that customers can click to indicate their inten-
tion to buy the product.

¢ Provide a form that collects necessary information about the prod-
uct the customer is ordering, such as size, color, and so on.

e Compute and display the total cost for all items in the order.
e Compute and display the shipping costs.
e Compute and display the sales tax.

¢ Provide forms for customers to enter shipping and billing
addresses.

v Provide a method for customers to pay for the product online.

¢ Provide a button that customers can click to pay with a credit
card.

¢ Display a form that collects customers’ credit card information.
v~ Validate the payment so you know that you’ll actually get the money.

The usual method is to send the customer’s credit card information to a
credit card processing service.

1 Send the order to whoever is responsible for filling it and sending the
product to the customer.

E-mailing order information to the shipping department should do it.

39

40 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
‘x&
&

At this point, you should have a pretty clear idea of what you want from your
Web database application. However, this doesn’t mean that your goals can’t
change. (In fact, your goals are very likely to change as you develop your
Web database application and discover new possibilities.) At the onset of the
project, start with as comprehensive of a plan as possible to keep you
focused so that you avoid running into a dead end or getting sidetracked.

Taking the user into consideration

Identifying what you want your Web database application to do is only one
aspect of planning. You must also consider what your users will want from
it. For example, say your goal is to gather a list of customer names and
addresses for marketing purposes. Will customers be willing to give up that
information?

Your application needs to fulfill a purpose for the users as well as for your-
self. Otherwise, they’ll just ignore it. Before users will be willing to give you
their names and addresses, for example, they need to perceive that they will
benefit in some way from giving you this information. Here are a few exam-
ples of why users might be willing to register their names and addresses at
your site:

v To receive a newsletter: To be perceived as valuable, the newsletter
should cover an industry related to your products. It should offer news
and spot trends — and not just serve as marketing material about your
products.

+ To enter a sweepstakes for a nice prize: Who can turn down a chance
to win an all-expense-paid vacation to Hawaii or a brand-new SUV?

v To receive special discounts: For example, you can periodically e-mail
special discount opportunities to customers.

+ To be notified about new products or product upgrades when they
become available: For example, customers might be interested in being
notified when a software update is available for downloading.

v To get access to valuable information: For instance, you must register
at The New York Times Web site in order to gain access to its articles
online.

Now add the customer tasks to your list of tasks that you want the applica-
tion to perform. For example, consider this list of tasks that you identified for
setting up an online retailer:

v Provide a form for customers to fill out.

v Store the customer information in a database.

\\J

Chapter 3: Developing a Web Database Application 4 ’

If you take the customer’s viewpoint into account, the list expands a bit:

v Present a description of the advantages customers receive by registering
with the site.

v Provide a form for customers to fill out.
v Add customers’ e-mail addresses to the newsletter distribution list.

v Store the customer information in a database.

After you have a list of tasks that you want and tasks that your users want,
you have a plan for a Web application that is worth your time to develop and
worth your users’ time to use.

Making the site easy to use

In addition to planning what your Web application is going to do, you need to
consider how it is going to do it. Making your application easy to use is
important: If customers can’t find your products, they aren’t going to buy
them. And if customers can’t find the information that they need in a pretty
short time, they will go look elsewhere. On the Web, customers can always
easily go elsewhere.

Making your application easy to use is usability engineering. Web usability
includes such issues as

v~ Navigation: What is on your site and where it is located should be imme-
diately obvious to a user.

v Graphics: Graphics make your site attractive, but graphic files can be
slow to display.

v Access: Some design decisions can make your application accessible or
not accessible to users who have disabilities such as impaired vision.

v Browsers: Different browsers (even different versions of the same
browser) can display the same HTML (HyperText Markup Language) file
differently.

Web usability is a large and important subject, and delving into the topic
more deeply is beyond the scope of this book. But fear not, you can find lots
of helpful information on Web usability on — you guessed it — the Web. Be
sure to check out the Web sites of usability experts Jakob Nielsen (www.useit.
com) and Jarod Spool (http://world.std.com/~uieweb/). Vincent
Flanders also has a fun site full of helpful information about Web design at
WebPagesThatSuck.com. And books on the subject can be very helpful, such
as Web Design For Dummies by Lisa Lopuck (Wiley).

42 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
Q"c
&

Leaving room for expansion

One certainty about your Web application is that it will change over time.
Down the line, you might think of new functions for it or just simply want to
change something about it. Or maybe Web site software improves so that
your Web application can do things that it couldn’t do when you first put it
up. Whatever the reason, your Web site will change. When you plan your
application, you need to keep future changes in mind.

You can design your application in steps, taking planned change into
account. You can develop a plan in which you build an application today that
meets your most immediate needs and make it available as soon as it’s ready.
Your plan can include adding functions to the application as quickly as you
can develop them. For example, you can build a product catalog and publish
it on your Web site as soon as it’s ready. You can then begin work on an
online ordering function for the Web site, which you will add when it’s ready.

You can’t necessarily foresee all the functions that you might want in your
application in the future. For instance, you might design your travel Web site
with sections for all possible destinations today, but the future could surprise
you. Trips to Mars? Alpha Centauri? An alternate universe? Plan your applica-
tion with the flexibility needed to add functionality in the future.

Writing it down

Write your plan down. You will hear this often from me. I speak from the
painful experience of not writing it down. When you develop your plan, it’s
foremost in your mind and perfectly clear. But in a few short weeks, you will
be astonished to discover that it has gone absolutely hazy while your atten-
tion was on other pressing issues. Or you want to make some changes in the
application a year from now and won’t remember exactly how the application
was designed. Or you're working with a partner to develop an application
and you discover that your partner misunderstood your verbal explanation
and developed functions for the application that don’t fit in your plan. You
can avoid these types of problems by writing everything down.

Presenting the Two Running
Examples in This Book

In the next two sections, I introduce the two example Web database applica-
tions that [created for this book. I refer to these examples throughout the
book to demonstrate aspects of application design and development.

Chapter 3: Developing a Web Database Application

Stuff for Sale

The first example is an online product catalog. You're the owner of a pet
store, and you want your catalog to provide customers with information
about the pets that are for sale. Selling the pets online is not feasible
although you’re toying with the idea of allowing customers to “reserve” pets
online — that is, before they come into the store to purchase them. Currently,
the application is simply an online catalog. Customers can look through the
catalog online and then come into the store to buy the pet. The information
about all the pets is stored in a database, and customers can search the data-
base for information on specific pets or types of pets.

Here is your plan for this application:

v~ Allow customers to select which pet they want to see information
about.

Offer two selection methods:

¢ Selecting from a list of links: Display a list of links that are pet cat-
egories (for example, dog, cat, dinosaur, and so on). When the cus-
tomer clicks a category link, a list of pets is displayed. Each pet in
the list is a link to a description of the pet.

¢ Typing in search terms: Display a search form in which customers
can type words that describe the type of pet they're looking for.
The application searches the database for matching words and
displays the pet information for any pets that match the search
words. For example, a customer can type cat to see a list of all avail-
able cats. Each cat in the list is a link to a description of that cat.

v~ Display a description of the pet when the customer clicks the link.

The description is stored in a database.

Members Only

The second example Web database application is related to the preceding pet
store example. In addition to the online catalog, you also want to put up a
section on your pet store Web site for members only. In order to access this
area of the site, customers have to register — providing their names and
addresses. In this Members Only section, customers can order pet food at a
discount, find out about pets that are on order but haven'’t arrived yet, and
also gain access to articles with news and information about pets and pet
care.

43

44 Part I: Developing a Web Database Application Using PHP and MySQL

This is your plan for this application:
v~ Display a description of what special features and information are
available in the Members Only section.

v Provide an area where customers can register for the Members Only
section.

¢ Provide a link to the registration area.

¢ Display a form in the registration area where customers can type
their registration information.

The form should include space for a user login name and password
as well as the information that you want to collect.

¢ Validate the information that the user entered.

For example, verify that the ZIP code is the correct length, the
e-mail address is in the correct format, and so on.

¢ Store the information in the database.

v Provide a login section for customers who are already registered for
the Members Only section.

¢ Display a login form that asks for the customer’s user name and
password.

¢ Compare the user name and password that are entered with the
user names and passwords in the database.

If no match is found, display an error message.

v~ Display the Members Only Web page after the customer has success-
fully logged in.

Designing the Database

After you determine exactly what the Web database application is going to do
(see the beginning part of this chapter if you haven’t done this yet), you're
ready to design the database that holds the information needed by the appli-
cation. Designing the database includes identifying the data that you need
and organizing the data in the way required by the database software.

Choosing the data

First, you must identify what information belongs in your database. Look at
the list of tasks that you want the application to perform and determine what
information you need to complete each of those tasks.

Chapter 3: Developing a Web Database Application 45

Here are a few examples:

v An online catalog needs a database containing product information.

v An online order application needs a database that can hold customer
information and order information.

v A travel Web site needs a database with information on destinations,
reservations, fares, schedules, and so on.

In many cases, your application might include a task that collects information
from the user. You'll have to balance your urge to collect all the potentially
useful information that you can think of against your users’ reluctance to give
out personal information — as well as their avoidance of forms that look too
time-consuming. One compromise is to ask for some optional information.
The users who don’t mind can enter it, but users who object can leave it
blank. Another possibility is to offer an incentive: The longer the form is, the
stronger the incentive that you’ll need to motivate the user to fill out the
form. A user might be willing to fill out a very short form to enter a sweep-
stakes that offers two sneak-preview movie tickets for a prize. But if the form
is long and complicated, the prize needs to be more valuable, such as a free
trip to California and a tour of a Hollywood movie studio.

In the first example application, your customers search the online catalog for
information on pets that they might want to buy. You want customers to see
information that will motivate them to buy a pet. The information that you
want to have available in the database for the customer to see is

v The name of the pet

For example, poodle, unicorn, and so on

v A description of the pet

v A picture of the pet

1 The cost of the pet
In the second example application, the Members Only section, you want to
store information about registered members. The information that you want
to store in the database is

» Member name

v Member address

v Member phone number

v Member fax number

1 Member e-mail address

A7

Part I: Developing a Web Database Application Using PHP and MySQL

P Take the time to develop a comprehensive list of the information that you
need to store in your database. Although you can change and add informa-
tion to your database after it’s developed, including the information from the
beginning is easier. Also, if you add information to the database later — after
it’s in use — the first users in the database will have incomplete information.
For example, if you change your form so that it now asks for the user’s age,
you won'’t have the age for the people who have already filled out the form
and are already in the database.

Organizing the data

MySQL is a RDBMS (Relational Database Management System), which means
that the data is organized into tables. (See Chapter 1 for more on MySQL.)
You can establish relationships between the tables in the database.

Organizing data in tables

RDBMS tables are organized like other tables that you're used to — in rows
and columns, as shown in Figure 3-1. The place where a particular row and
column intersect, the individual cell, is a field.

Column 1 Column 2 Column 3 Column 4
Row 1
Row 2
Row 3 Field
Row 4
Figure 3-1: ow
MySQL data
is organized Row 5
into tables.
|

The focus of each table is an object (a thing) that you want to store informa-
tion about. Here are some examples of objects:

v Customers
v Products

v Companies

Chapter 3: Developing a Web Database Application

v Animals

v~ Cities

» Rooms

v Books

v Computers
v Shapes

v Documents
v Projects
v Weeks

You create a table for each object. The table name should clearly identify the
objects that it contains with a descriptive word or term. The name must be a
character string with no spaces in it. The table name can contain letters,
numbers, underscores (), or dollar signs ($). It’s customary to name the
table in the singular. Thus, a name for a table of customers might be
Customer, and a table containing customer orders might be named
CustomerOrder. Upper- and lowercase is significant on Linux/Unix but not

on Windows: CustomerOrder and Customerorder are the same to Windows —
but not to Linux or Unix.

In database talk, an object is an entity, and an entity has attributes. In the
table, each row represents an entity, and the columns contain the attributes
of each entity. For example, in a table of customers, each row contains infor-
mation for a single customer. Some of the attributes contained in the columns
might be first name, last name, phone number, age, and so on.

Here are the steps for organizing your data into tables:

1. Name your database.

Assign a name to the database for your application. For instance, a data-
base containing information about households in a neighborhood might
be named HouseholdDirectory.

2. Identify the objects.

Look at the list of information that you want to store in the database.

(If you haven’t done this yet, check out the section, “Choosing the data,”
earlier in this chapter.) Analyze your list and identify the objects. For
instance, the HouseholdDirectory database might need to store the
following:

¢ Name of each family member
e Address of the house

¢ Phone number

b7

48 Part I: Developing a Web Database Application Using PHP and MySQL

<MBER

¢ Age of each household member
¢ Favorite breakfast cereal of each household member

When you analyze this list carefully, you realize that you're storing infor-
mation about two objects: the household and the household members.
That is, the address and phone number are for the household in general,
but the name, age, and favorite cereal are for a particular household
member.

. Define and name a table for each object.

For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

. Identify the attributes for each object.

Analyze your information list and identify the attributes that you need to
store for each object. Break the information to be stored into its smallest
reasonable pieces. For example, when storing the name of a person in a
table, you can break down the name into first name and last name. Doing
this enables you to sort by the last name, which would be more difficult
if the first and last name were stored together. In fact, you can even
break down the name into first name, middle name, and last name,
although not many applications need to use the middle name separately.

. Define and name columns for each separate attribute that you identi-

fied in Step 4.

Give each column a name that clearly identifies the information in that
column. The column names should be one word, with no spaces. For
example, you might have columns named firstName and 1astName or
first_name and Tast_name.

Some words are reserved by MySQL or SQL for its own use and can’t be
used as column names. The words are currently used in SQL statements
or are reserved for future use. For example, ADD, ALL, AND, CREATE, DROP,
GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE, WHERE, and many, many
more can’t be used as column names. For a complete list of reserved
words, see the online MySQL manual at www.mysql.com/doc/en/
Reserved_words.html.

. Identify the primary key.

Each row in a table needs a unique identifier. No two rows in a table
should be exactly the same. When you design your table, you decide
which column holds the unique identifier, called the primary key. The
primary key can be more than one column combined. In many cases,
your object attributes will not have a unique identifier. For example, a
customer table might not have a unique identifier because two cus-
tomers can have the same name. When there is no unique identifier
column, you need to add a column specifically to be the primary key.
Frequently, a column with a sequence number is used for this purpose.
For example, in Figure 3-2, the primary key is the cust_1id field because
each customer has a unique ID number.

Chapter 3: Developing a Web Database Application 4 9

|
Figure 3-2:
A sample
from the
Customer
table.
|

A\

cust_id first_name last_name phone

27895 John Smith 555-5555
44555 Joe Lopez 555-5553
23695 Judy Chang 555-5552
27822 Jubal Tudor 555-5556
29844 Joan Smythe 555-5559

7. Define the defaults.

You can define a default that MySQL will assign to a field when no data is
entered into the field. A default is not required but is often useful. For
example, if your application stores an address that includes a country,
you can specify US as the default. If the user does not type a country, US
will be entered.

8. Identify columns with required data.

You can specify that certain columns are not allowed to be empty (also
called NULL). For instance, the column containing your primary key can’t
be empty. That means that MySQL will not create the row if no value is
stored in the column. The value can be a blank space or an empty string
(for example, ""), but some value must be stored in the column. You can
set other columns, as well as the primary key, to be in error if they are
empty.

Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if infor-
mation needs to be changed. If you change information in one place but
forget to change it in another place, your database can have serious problems.

If you find that you're storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you're storing data
about books, including the publisher’s address. When you enter the data,
you realize that you're entering the same publisher’s address in many rows.
A more efficient way to store this data would be to store the book informa-
tion in one table and the book publisher information in a separate table.
You can define two tables: Book and BookPublisher. In the Book table,
you would have the columns title, author, pub_date, and price.

In the BookPub1isher table, you would have columns such as name,
streetAddress, city, and so on.

50

Part I: Developing a Web Database Application Using PHP and MySQL

|
Figure 3-3:
A sample
from the
Order
table.
|

Creating relationships between tables

Some tables in a database are related to one another. Most often, a row in one
table is related to several rows in another table. A column is needed to con-
nect the related rows in different tables. In many cases, you include a column
in one table to hold data that matches data in the primary key column of
another table.

A common application that needs a database with two related tables is a cus-
tomer order application. For example, one table contains the customer infor-
mation, such as name, address, phone, and so on. Each customer can have
from zero to many orders. You could store the order information in the table
with the customer information, but a completely new row would be created
each time that the customer placed an order, and each new row would con-
tain all the customer’s information. It would be much more efficient to store
the orders in a separate table. The Order table would have a column that
contains the primary key from a row in the Customer table so that the order
is related to the correct row of the Customer table. The relationship is shown
in the tables in Figures 3-2 and 3-3.

The Customer table in this example looks like Figure 3-2 (see the preceding
section). Notice the unique cust_id for each customer.

The related Order table is shown in Figure 3-3. Notice that it has the same
cust_id column that appears in the Customer table. In this way, the order
information in the Order table is connected to the related customer’s name
and phone number in the Customer table.

Order_no cust_id item_num cost
87-222 27895 cat-3 200.00
87-223 27895 cat-4 225.00
87-224 44555 horse-1 550.00
87-225 44555 dog-27 210.00
87-226 27895 bird-1 50.00

Chapter 3: Developing a Web Database Application 5 ’

In this example, the columns that relate the Customer table and the Order
table have the same name. They could have different names as long as the
data in the columns is the same.

Designing the Sample Databases

In the following two sections, I design the two databases for the two example
applications used in this book.

Pet Catalog design process

You want to display the following list of information when customers search
your pet catalog:

v The name of the pet

For example, poodle, unicorn, and so on

v A description of the pet

1 A picture of the pet

v The cost of the pet
In the Pet Catalog plan, a list of pet categories is displayed. This requires that

each pet be classified into a pet category and that the pet category be stored
in the database.

You design the PetCatalog database by following the steps presented in the
“Organizing data in tables” section, earlier in this chapter:
1. Name your database.
The database for the Pet Catalog is named PetCatalog.
2. Identify the objects.
The information list is
¢ The name of the pet (for example, poodle, unicorn, and so on)
e A description of the pet
¢ A picture of the pet
¢ The cost of the pet
¢ The category for the pet

All this information is about pets, so the only object for this list is Pet.

52 Part I: Developing a Web Database Application Using PHP and MySQL

3. Define and name a table for each object.

The Pet Catalog application needs a table called Pet.
4. Identify the attributes for each object.

Now you look at the information in detail:

e Name of the pet: A single attribute — for example, poodle, uni-
corn, and so on. However, it seems likely that your pet shop might
have more than one poodle for sale at a time. Therefore, your table
needs a unique identifier to serve as the primary key.

¢ Pet identification number: A sequence number assigned to each
pet when it’s added to the table. This number is the primary key.

¢ Description of the pet: Two attributes: the written description of
the pet as it would appear in a printed catalog and the color of
the pet.

¢ Picture of the pet: A path name to a graphic file containing a beau-
tiful picture of the pet.

¢ Cost of the pet: The dollar amount that the store is asking for
the pet.

¢ Category for the pet: Two attributes: a category name that
includes the pet — for example, dog, horse, dragon — and a
description of the category.

It would be inefficient to include two types of information in the Pet
table:

¢ The category information includes a description of the category.
Because each category can include several pets, including the
category description in the Pet table would result in the same
description appearing in several rows. It is more efficient to define
Pet Category as an object with its own table.

e [f the pet comes in several colors, all the pet information will be
repeated in a separate row for each color. It is more efficient to
define Pet Color as an object with its own table.

The added tables are named PetType and PetColor.
5. Define and name columns.

The Pet table has one row for each pet. The columns for the Pet
table are

e petID: Unique sequence number assigned to each pet.
e petName: Name of the pet.

e petType: The category name. This is the column that connects the
pet to the correct row in the PetType table.

e petDescription: The description of the pet.

Chapter 3: Developing a Web Database Application 53

e price: The price of the pet.

¢ pix: The filename of a graphics file that contains a picture of
the pet.

The PetType table has one row for each pet category. It has the follow-
ing columns:

e petType: The category name of a type of pet. This is the primary
key for this table. Notice that the Pet table has a column with the
same name. These columns link this table with the Pet table.

e typeDescription: The description of the pet type.

The PetColor table has one row for each pet color. It has the following
columns:

e petName: The name of the pet. This is the column that connects
the color row to the correct row in the Pet table.

e petColor: The color of the pet.
6. Identify the primary key.
e The primary key of the Pet table is petID.
e The primary key of the PetType table is petType.

e The primary key of the PetColor table is petName and petColor
together.

7. Define the defaults.
No defaults are defined for either table.
8. Identify columns with required data.
The following columns should never be allowed to be empty:
® petlID
e petName
e petColor
® petType

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Members Only design process

You create the following list of information that you want to store when cus-
tomers register for the Members Only section of your Web site:

v Member name

v Member address

54 Part I: Developing a Web Database Application Using PHP and MySQL

v Member phone number
v Member fax number
v Member e-mail address
In addition, you also would like to collect the date when the member regis-

tered and track how often the member actually goes into the Members Only
section.

You design the Members Only database by following the steps presented in
the “Organizing data in tables” section, earlier in this chapter:
1. Name your database.

The database for the Members Only section is named
MemberDirectory.

2. Identify the objects.
The information list is

e Member name
¢ Member address
¢ Member phone number
¢ Member fax number
e Member e-mail address
* Member registration date
¢ Member logins

All this information pertains to members, so the only object for this list
is member.

3. Define and name a table for each object.
The MemberDirectory database needs a table called Member.
4. Identify the attributes for each object.
Look at the information list in detail:
e Member name: Two attributes: first name and last name.

e Member address: Four attributes: street address, city, state, and
ZIP code. Currently, you only have pet stores in the United States,
so you can assume the member address is an address in the U.S.
mailing address format.

¢ Member phone number: One attribute.
¢ Member fax number: One attribute.
e Member e-mail address: One attribute.

¢ Member registration date: One attribute.

Chapter 3: Developing a Web Database Application

<MBER
S

Several pieces of information are related to member logins:

¢ Logging into the Members Only section requires a login name and
a password. These two items need to be stored in the database.

¢ The easiest way to keep track of member logins is to store the
date/time when the user logged into the Members Only section.

Because each member can have many logins, many date/times for logins
need to be stored. Therefore, rather than defining the login time as an
attribute of the member, define login as an object, related to the
member, but requiring its own table.

The added table is named Login. The attribute of a login object is its
login time (time includes date).

. Define and name columns.

The Member table has one row for each member. The columns for the
Member table are

e JoginName

Each login name must be unique. The programs in the application make
sure that no two members ever have the same login name.

e password
e createDate
e firstName
* lastName
® street

e City

e state
®zip

e email

e phone

e fax

The Login table has one row for each login: that is, each time a member
logs into the Members Only section. It has the following columns:

e 1oginName: The login name of the member who logged in. This is
the column that links this table to the Member table. This is a
unique value in the Member table but not a unique value in this
table.

e 1oginTime: The date and time of login.

55

56 Part I: Developing a Web Database Application Using PHP and MySQL

6. Identify the primary key.
e The primary key for the Member table is ToginName.

¢ The primary key for the Login tableis ToginName and ToginTime
together.

7. Define the defaults.
No defaults are defined for either table.
8. Identify columns with required data.
The following columns should never be allowed to be empty:
e JoginName
e password
e JoginTime

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Types of Data

MySQL stores information in different formats based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to be
used in different ways. The main types of data are character, numerical, and
date/time data.

Character data

The most common type of data is character data — data that is stored as
strings of characters and can only be manipulated in strings. Most of the
information that you store will be character data, such as customer name,
address, phone number, pet description, and so on. Character data can be
moved and printed. Two character strings can be put together (concate-
nated), a substring can be selected from a longer string, and one string can
be substituted for another.

Character data can be stored in a fixed-length format or a variable-length
format.

v Fixed-length format: In this format, MySQL reserves a fixed space for
the data. If the data is longer than the fixed length, only the characters
that fit are stored — the remaining characters on the end are not stored.
If the string is shorter than the fixed length, the extra spaces are left
empty and wasted.

Chapter 3: Developing a Web Database Application 5 7

v Variable-length format: In this format, MySQL stores the string in a field
that is the same length as the string. You still specify a length for the
string, but if the string is shorter than the specified length, MySQL only
uses the space required rather than leaving the extra space empty. If the
string is longer than the space specified, the extra characters are not
stored.

If a character string length varies only a little, use the fixed-length format. For
example, a length of 10 works for all ZIP codes, including those with the ZIP+4
number. If the ZIP code does not include the ZIP+4 number, only five spaces
are left empty. However, if your character string can vary more than a few
characters, use a variable-length format to save space. For example, your pet
description might be Small bat or it might run to several lines of description.
So it would be better to store this description in a variable-length format.

Numerical data

Another common type of data is numerical data — data that is stored as a
number. Decimal numbers (for example, 10.5, 2.34567, 23456.7) can be stored
as well as integers (for example, 1, 2, 248). When data is stored as a number,
it can be used in numerical operations, such as adding, subtracting, squaring,
and so on. If data isn’t used for numerical operations, however, storing it as a
character string is better because the programmer will be using it as a char-
acter string. No conversion is required. For example, you probably won’t
want to add the digits in the users’ phone numbers, so phone numbers
should be stored as character strings.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data will not be negative, store the data
as unsigned (without using a + or — sign before the number). For example, a
city population or the number of pages in a document can never be negative.

Date and time data

A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. It can also be used to determine the
length of time between two dates or two times — or between a specific date
or time and some arbitrary date or time.

Enumeration data

Sometimes data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a data
type called enumeration for use with this type of data. You tell MySQL what

58 Part I: Developing a Web Database Application Using PHP and MySQL

values can be stored in the column (for example, yes, no), and MySQL will
not store any other values in the column.

MySOL data type names

When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-1 shows
the MySQL data types used most often in Web database applications.

Table 3-1 MySQL Data Types

MySaQL Data Type Description

CHAR(T7ength) Fixed-length character string.
VARCHAR(Tength) Variable-length character string. The longest

string that can be stored is 7ength, which
must be between 1 and 255.

TEXT Variable-length character string with a maxi-
mum length of 64KB of text.

INT(Tength) Integer with a range from —2147483648 to
+2147483647. The number that can be displayed
is limited by 7ength. For example, if Tength is
4, only numbers from =999 to 9999 can be dis-
played, even though higher numbers are stored.

INT(Tength) UNSIGNED Integer with a range from 0 to 4294967295.
length is the size of the number that can be
displayed. For example, if 7ength is 4, only
numbers up to 9999 can be displayed, even
though higher numbers are stored.

DECIMAL(7ength,dec) Decimal number where 7ength is the number
of characters that can be used to display the
number, including decimal points, signs, and
exponents, and dec is the maximum number of
decimal places allowed. For example, 12.34 has
length of 5and dec of 2.

DATE Date value with year, month, and date. Displays
the value as YYYY-MM-DD (for example,
2001-04-03).

TIME Time value with hour, minute, and second.

Displays as HH:MM:SS.

Chapter 3: Developing a Web Database Application 59

MySQOL Data Type Description

DATETIME Date and time are stored together. Displays as
YYYY-MM-DD HH:MM:SS.

ENUM ("vall","valZ2"...) Onlythe values listed can be stored. A maximum
of 65535 values can be listed.

MySQL allows many other data types, but they're less frequently needed. For
a description of all the available data types, see the documentation on the
MySQL documentation at www.mysql.com/doc/C/o/Column_types.html.

Writing it down

Here’s my usual nagging: Write it down. You probably spent considerable time
making the design decisions for your database. At this point, the decisions
are firmly fixed in your mind. You don’t believe that you can forget them.
However, suppose that a crisis intervenes, and you don’t get back to this pro-
ject for two months. You will have to analyze your data and make all the
design decisions again. You can avoid this by writing down the decisions now.

Document the organization of the tables, the column names, and all other
design decisions. A good format is a document that describes each table in
table format, with a row for each column and a column for each design deci-
sion. For example, your columns would be column name, data type, and
description.

Taking a Look at the Sample
Database Designs

This section contains the database designs for the two example Web data-
base applications.

Stuff for Sale database tables

The database design for the Pet Catalog application includes three tables:
Pet, PetType, and PetColor. Tables 3-2 through 3-4 show the organization of
these tables. The table definition is not set in concrete; MySQL allows you to
change tables pretty easily. For example, if you set the data type for a vari-
able to CHAR(20) and find that isn’t long enough, you can easily change the
data type.

60

Part I: Developing a Web Database Application Using PHP and MySQL

The database design is as follows:

Database name: PetCatalog

Table 3-2 Database Table 1: Pet

Variable Name Type Description

petlID INT(5) Sequence number for pet (primary key)

petName CHAR(25) Name of pet

petType CHAR(15) Category of pet

petDescription VARCHAR(255) Description of pet

price DECIMAL(9,2) Price of pet

pix CHAR(15) Path name to graphic file that contains
picture of pet

Table 3-3 Database Table 2: PetType

Variable Name Type Description

petType CHAR(15) Name of pet category (primary key)

typeDescription VARCHAR(255) Description of category

Table 3-4 Database Table 3: PetColor
Variable Name Type Description

petName CHAR(25) Name of pet (primary key 1)
petColor CHAR(15) Color name (primary key 2)

Members Only database tables

The database design for the Members Only application includes two tables
named Member and Login. Tables 3-5 and 3-6 document the organization of

these tables. The table definition is not set in concrete; MySQL allows you to
change tables pretty easily. If you set the data type for a variable to CHAR(25)
and find that it isn’t long enough, it’s easy to change the data type.

The database design is as follows:

Database name: MemberDirectory

Chapter 3: Developing a Web Database Application 6 ’

Table 3-5 Database Table 1: Member

Variable Name Type Description

loginName VARCHAR(20) User-specified login name (primary key)

password CHAR(255) User-specified password

createDate DATE Date member registered and created login
account

lastName VARCHAR(50) Member's last name

firstName VARCHAR(40) Member's first name

street VARCHAR(50) Member's street address

city VARCHAR(50) Member's city

state CHAR(2) Member's state

zip CHAR(10) Member's ZIP code

email VARCHAR(50) Member's e-mail address

phone CHAR(15) Member's phone number

fax CHAR(15) Member's fax number

Table 3-6 Database Table 2: Login

Variable Name Type Description

loginName CHAR(20) Login name specified by user (primary key 1)

loginTime DATETIME Date and time of login (primary key 2)

Developing the Application

After you develop a plan listing the tasks that your application is going to
perform and you develop a database design, you're ready to create your

62 Part I: Developing a Web Database Application Using PHP and MySQL

application. First, you build the database; then, you write your PHP pro-
grams. You are moments away from a working Web database application.
Well, perhaps that’s an exaggeration. But you are making progress.

Building the database

Building the database means turning the paper database design into a work-
ing database. Building the database is independent of the PHP programs that
your application uses to interact with the database. The database can be
accessed using programming languages other than PHP, such as Perl, C, or
Java. The database stands on its own to hold the data.

You should build the database before writing the PHP programs. The PHP
programs are written to move data in and out of the database, so you can’t
develop and test them until the database is available.

The database design names the database and defines the tables that make
up the database. To build the database, you communicate with MySQL by
using the SQL language. You tell MySQL to create the database and to add
tables to the database. You tell MySQL how to organize the data tables
and what format to use to store the data. Detailed instructions for building
the database are provided in Chapter 4.

Writing the programs

Your programs perform the tasks for your Web database application. They
create the display that the user sees in the browser window. They make your
application interactive by accepting and processing information typed in the
browser window by the user. They store information in the database and get
information out of the database. The database is useless unless you can
move data in and out of it.

The plan that you develop (as I discuss in the earlier sections in this chapter)
outlines the programs that you need to write. In general, each task in your
plan calls for a program. If your plan says that your application will display a
form, you need a program that displays a form. If your plan says that your
application will store the data from a form, you need a program that gets the
data from the form and puts it in the database.

The PHP language was developed specifically to write interactive Web appli-
cations. It has the built-in functionality needed to make writing application
programs as painless as possible. It has methods that were included in the
language specifically to access data from forms. It has methods to put data
into a MySQL database, and it has methods to get data from a MySQL data-
base. Detailed instructions for writing PHP programs are provided in Part I
of this book.

Part i
MySQL Database

The 5th Wave By Rich Tennant
CRILTTENNANT

“Our avtomated vesponse policy to a lawge
company-wide data cvash is to notify

manzgement, back up existing data and
sell G0 of my shaves in the company.’

In this part . . .

Flis part provides the details of working with a MySQL
database. You find out how to use SQL to communi-
cate with MySQL. In addition, you discover how to create
a database, change a database, and move data in and out
of a database.

Chapter 4
Building the Database

In This Chapter
Using SQL to make requests to MySQL
Creating a new database

Adding information to an existing database
Looking at information in an existing database

Removing information from an existing database

A fter completing your database design (see Chapter 3 if you haven’t done
this yet), you're ready to turn it into a working database. In this chapter,
you find out how to build a database based on your design — and how to
move data in and out of it.

The database design names the database and defines the tables that make up
the database. In order to build the database, you must communicate with
MySQL, providing the database name and the table structure. Later on, you
must communicate with MySQL to add data to (or request information from)
the database. The language that you use to communicate with MySQL is SQL.
In this chapter, I explain how to create SQL queries and use them to build
new databases and interact with existing databases.

Communicating with MySOL

The MySQL server is the manager of your database:

v It creates new databases.
v It knows where the databases are stored.
v It stores and retrieves information, guided by the requests (queries) that

it receives.

To make a request that MySQL can understand, you build an SQL query and
send it to the MySQL server. (For a more complete description of the MySQL
server, see Chapter 1.) The next two sections detail how to do this.

66

Part Il: MySQL Database

<MBER

Building SOL queries

SOL (Structured Query Language) is the computer language that you use to
communicate with MySQL. SQL is almost English; it is made up largely of
English words, put together into strings of words that sound similar to
English sentences. In general (fortunately), you don’t need to understand any
arcane technical language to write SQL queries that work.

The first word of each query is its name, which is an action word (a verb)
that tells MySQL what you want to do. The queries that I discuss in this chap-
ter are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT, UPDATE, and
DELETE. This basic vocabulary is sufficient to create — and interact with —
databases on Web sites.

The query name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL query. As you can see, it uses English words:

SELECT TastName FROM Member

This query retrieves all the last names stored in the table named Member.
Of course, more complicated queries (such as the following) are less
English-like:

SELECT TastName,firstName FROM Member WHERE state="CA" AND
city="Fresno" ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno and then puts them in alphabetical order by last name. This query
is less English-like but still pretty clear.

Here are some general points to keep in mind when constructing an SQL
query, as illustrated in the preceding sample query:

v~ Capitalization: In this book, I put the SQL language words in all caps;
items of variable information (such as column names) are usually given
labels that are all or mostly lowercase letters. I did this to make it easier
for you to read — not because MySQL needs this format. The case of the
SQL words doesn’t matter; select is the same as SELECT, and from is the
same as FROM, as far as MySQL is concerned. On the other hand, the
case of the table names, column names, and other variable information
does matter if your operating system is Unix and Linux. When using Unix
or Linux, MySQL needs to match the column names exactly, so the case
for the column names has to be correct — lastname is not the same as
lastName. Windows, however, isn’t as picky as Unix and Linux; from its
point of view, lastname and lastName are the same.

Chapter 4: Building the Database 6 7

v Spacing: SQL words need to be separated by one or more spaces. It
doesn’t matter how many spaces you use; you could just as well use 20
spaces or just 1 space. SQL also doesn’t pay any attention to the end of
the line. You can start a new line at any point in the SQL statement or
write the entire statement on one line.

1 Quotes: Notice that CA and Fresno are enclosed in double quotes (") in
the preceding query. CA and Fresno are series of characters called text
strings or character strings. (I explain strings in detail later in this chap-
ter.) You are asking MySQL to compare the text strings in the SQL query
with the text strings already stored in the database. Text strings are
enclosed in quotes. When you compare numbers (such as integers)
stored in numeric columns, you don’t enclose the numbers in quotes.
(In Chapter 3, I explain the types of data that can be stored in a MySQL
database.)

Sending SOL queries

This book is about PHP and MySQL as a pair. Consequently, [don’t describe
the multitude of ways in which you can send SQL queries to MySQL — many
of which have nothing to do with PHP. Rather, I provide a simple PHP pro-
gram that you can use to execute SQL queries. (For the lowdown on PHP and
how to write PHP programs, check out Part III of this book.)

The program mysql_send.php has one simple function: to execute queries
and display the results. Enter the program into the directory where you're
developing your Web application (or download it from my Web site at
Jjanet.valade.com), change the information in lines 9-19, and then point
your browser at the program. Listing 4-1 shows the program.

Listing 4-1: PHP Program for Sending SQL Queries to MySQL

{!-- Program: mysql_send.php
Desc: PHP program that sends an SQL query to the
MySQL server and displays the results.

-=>

<html>

<head><title>SQL Query Sender</title></head>
<body>

<?php

$host="hostname" ;
$user=" mysqglaccountname
$password="mysqlpassword";

/* Section that executes query */
if(@$_GET['form'] == "yes")
{

(continued)

68

Part Il: MySQL Database

Listing 4-1 (continued)

}

mysql_connect($host,$user, $password) ;

mysql_select_db($ _POST['database']);

$query = stripSlashes($_POST['query']1);

$result = mysql_query($query);

echo "Database Selected: {$ POST['database']}

Query: $query<h3>Results</h3><hr>";

if($result == 0)

echo "Error ".mysql_errno().": ".mysqgl_error().
"";
elseif (@mysqgl_num_rows($result) == 0)
echo("Query completed. No results returned.

");
else

echo "<table border="1"'>

<thead>

<tr>"s
for($i = 0;%7 < mysql_num_fields($result);$i++)
{
echo "<th>".mysql_field_name($result,$i).

"</th>"

}

echo " </tr>
</thead>
<tbody>";
for ($1 = 0; $i < mysqgl_num_rows($result); $i++)
{
echo "<tr>";
$row = mysql_fetch_row($result);
for($j = 0;$j<mysql_num_fields($result);$j++)
{

}
echo "</tr>";
}
echo "</tbhody>
</table>";
} //end else
echo "
<hr>

<form action=\"{$_SERVER['PHP_SELF'J}\" method=\"POST\">
<input type='hidden' name='query' value='$query'>
<input type='hidden' name='database'
value={$_POST['database']}>
<input type='submit' name=\"queryButton\"
value=\"New Query\">
<input type='submit' name=\"queryButton\"
value=\"Edit Query\">
</form>";
unset($form);
exit();
// endif form=yes

echo("<td>" . $rowl[$j] . "</td>");

Chapter 4: Building the Database 69

/* Section that requests user input of query */
@$query=stripSlashes($_POST['query'1);
if (@$_POST['queryButton']l != "Edit Query")
{

$query =
}
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>?form=yes"
method="P0OST">
{table>
<tr>
<td align=right>Type in database name</td>
<td><input type="text" name="database"
value=<?php echo @$_POST['database'] ?> ></td>
</tr>
<tr>
<td align="right" valign="top">
Type in SQL query</td>
<td><textarea name="query" cols="60"
rows="10"><?php echo $query ?></textarea>
</td>
</tr>
<tr>
<td colspan="2" align="center"><input type="submit"
value="Submit Query"></td>
</tr>
</table>
</form>
</body></htm1>

You need to change lines 9, 10, and 11 of the program before you can use it.
These lines are

$host="hostname" ;
$user="mysqlaccountname" ;
$password="mysqlpassword";

Change hostname to the name of the computer where MySQL is installed:
for example, databasehost.mycompany.com. If the MySQL database is
installed on the same computer as your Web site, you can use 1ocalhost
as the hostname.

Change mysqlaccountname and mysqlpassword to the account name and
password that you were given by the MySQL administrator to use to access
your MySQL database. If you installed MySQL yourself, an account named
root with no password is automatically installed. Sometimes an account with
a blank account name and password is installed. You can use either the root
or the blank account, but it’s much better if you install an account specifi-
cally for use with your Web database application. (I discuss MySQL accounts
and passwords in detail in Chapter 5.)

70 Part Il: MySQL Database

\NG/
&VQ‘“

|
Figure 4-1:
An SQL
query Web
page pro-
duced by
mysql_
send.php.
|

An account named root with no password is not secure. You should give it a
password right away. An account with a blank account name and password is
even less secure. Anyone can access your database without needing to know
an account name or password. You should delete this account if it exists

(see Chapter 5).

If your MySQL account doesn’t require a password, type nothing between the
double quotes, as follows:

$password="";

After you enter the correct hostname, account name, and password in
mysqlsend.php, these are the general steps that you follow to execute an
SQL query:
1. Point your browser at mysql_send.php.
You see the Web page shown in Figure 4-1.
2. Type the SQL query in the large text box.

3. Enter a database name in the first text box if the SQL query
requires one.

I explain the details of writing specific SQL queries in the following sec-
tions of this chapter.

A SOL Query Sender - Microsoft Internet Explorer
_\ File Edit ¥View Favorites Tools Help

I - R - e

Back Fomward Stop Refresh ~ Home Search Favortes History Mail Print Edit Real.cam
e .]
\Address i@ hitp:/fjanetval san m.com/PHPEMyS O LForDummies/mysgl_send.php ‘V_! & Go “ Links ”‘ ! Y? »
Type in datahase name I
Type in SQL query :_l
Submit Query
&) Done r r |Q Intermet

Chapter 4: Building the Database 7 ’

4. Click the Submit Query button.

The query is executed, and a page is displayed, showing the results of
the query. If your query had an error, the error message is displayed.

You can test the mysql_send.php program by entering this test query in
Step 2 of the preceding steps:

SHOW DATABASES

This query does not require you to enter a database name, so you can skip
Step 3. When you click the Submit Query button in Step 4, a listing of the
existing databases is displayed. In most cases, you see a database called
Test, which is installed automatically when MySQL is installed. Also, you’ll
probably see a database called mysq1, which MySQL uses to store informa-
tion that it needs, such as account names, passwords, and permissions. Even
if there are no existing databases, your SQL query will execute correctly. If a
problem occurs, an error message is displayed. MySQL error messages are
usually pretty helpful in finding the problem.

A quicker way to send SQOL queries
to the MySQL server

When MySQL is installed, a simple, text-based program called mysq1 (or sometimes the terminal
monitor or the monitor) is also installed. Programs that communicate with servers are client soft-
ware; because this program communicates with the MySQL server, it's a client. When you enter
SQL queries in this client, the response is returned to the client and displayed onscreen. The mon-
itor program can send queries across a network; it doesn’t have to be running on the machine
where the database is stored.

To send SQAL queries to MySQL by using the mysq1 client, follow these steps:
1. Locate the mysq]1 client.

By default, the mysq1 client program is installed in the subdirectory bin, under the directory
where MySQL was installed. In Unix/Linux, the default is /usr/local/mysql/bin or
/usr/local/bin. In Windows, the defaultis c: \mysql\bin. However, the client might
have been installed in a different directory. Or, if you're not the MySQL administrator, you might
not have access to the mysql client. If you don’t know where MySQL is installed or can’t run
the client, ask the MySQL administrator to put the client somewhere where you can runit or to
give you a copy that you can put on your own computer.

2. Start the client.

In Unix/Linux, type the path/filename (for example, /usr/local/mysql/bin/mysql).In
Windows, open a command prompt window and then type the path/filename (for example,
c:\mysql\bin\mysql.exe). Press Enter after typing the path/filename unless you're using
the parameters shown in Step 3.

(continued)

72 Part Il: MySQOL Database

(continued)

3. If you're starting the mysq1 client to access a database across the network, use the follow-
ing parameters after the mysq1 command:

-h host: host is the name of the machine where MySQL is located.
-u user:user isyour MySQL account name.
-p: This parameter prompts you for the password for your MySQL account.

For instance, if you're in the directory where the mysq1 client is located, the command might
look like this:

mysql -h mysglhost.mycompany.com -u root -p
Press Enter after typing the command.
4. Enter your password when prompted for it.
The mysq] client starts, and you see something similar to this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 4.0.13
Type 'help;' or "\h' for help. Type '\c' to clear the buffer.
mysql>

5. Select the database that you want to use.
Atthe mysql prompt, type the following:
use databasename
Use the name of the database that you want to query.

6. Atthe mysql prompt, type your SQL query, followed by a semicolon (;), and then press the
Enter key.

Themysql client continues to prompt for input and does not execute the query until you enter
a semicolon. The response to the query is displayed onscreen.

1. To leave the mysq1 client, type quit at the prompt and then press the Enter key.

Building a Database

A database has two parts: a structure to hold the data and the data itself. In
the following few sections, I explain how to create the database structure.
First you create an empty database with no structure at all, and then you add
tables to it.

The SQL queries that you use to work with the database structure are
CREATE, ALTER, DROP, and SHOW. To use these queries, you must have a
MySQL account that has permission to create, alter, and drop databases and
tables. See Chapter 5 for more on MySQL accounts.

Chapter 4: Building the Database

A\

\NG/
&‘3‘“

Creating a new database

To create a new, empty database, use the following SQL query:
CREATE DATABASE databasename

where databasename is the name that you give the database. For instance,
these two SQL queries create the sample databases used in this book:

CREATE DATABASE PetCatalog
CREATE DATABASE MemberDirectory

Some Web hosting companies don’t allow you to create a new database. You
are given one database to use with MySQL, and you can only create tables in
this one database. You can try requesting another database, but you need a
good reason. MySQL and PHP don’t care that all your tables are in one data-
base instead of organized into databases with meaningful names. It’s just
easier for humans to keep track of projects when they’re organized.

To see for yourself that a database was in fact created, use this SQL query:

SHOW DATABASES

After you create an empty database, you can add tables to it. (Adding tables
to a database is described later in this chapter.)

Deleting a database

You can delete any database with this SQL query:

DROP DATABASE databasename

Use DROP carefully because it is irreversible. After a database is dropped, it is
gone forever. And any data that was in it is gone as well.

Adding tables to a database

You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in
it. You use the CREATE query to add tables to a database.

In the sample database designs that I introduce in Chapter 3, the PetCatalog
database is designed with three tables: Pet, PetType, and PetColor. The
MemberDirectory database is designed with two tables: Member and Login.
Because a table is created in a database, you must indicate the database
name where you want the table created. That is, when using the form shown

/3

74

Part Il: MySQL Database

in Figure 4-1, you must type a database name into the top field. If you don't,
you see the error message No Database Selected.

The query to add a table begins with

CREATE TABLE tablename

Next comes a list of column names with definitions. The information for each
column is separated from the information for the next column by a comma.
The entire list is enclosed in parentheses. Each column name is followed by
its data type (I explain data types in detail in Chapter 3) and any other defini-
tions required. Here are some definitions that you can use:

v NOT NULL: This column must have a value; it cannot be empty.

v DEFAULT value: This value is stored in the column when the row is cre-
ated if no other value is given for this column.

v AUTO_INCREMENT: You use this definition to create a sequence number.
As each row is added, the value of this column increases by one integer
from the last row entered. You can override the auto number by assign-
ing a specific value to the column.

v UNSIGNED: You use this definition to indicate that the values for this
numeric field will never be negative numbers.

The last item in a CREATE TABLE query indicates which column or combina-
tion of columns is the unique identifier for the row — the primary key. Each
row of a table must have a field or a combination of fields that is different for
each row. No two rows can have the same primary key. If you attempt to add
a row with the same primary key as a row that’s already in the table, you get
an error message, and the row is not added. The database design identifies
the primary key (as I describe in Chapter 3). You specify the primary key by
using the following format:

CREATE TABLE Member (
loginName VARCHAR(20) NOT NULL PRIMARY KEY,
createDate DATE NOT NULL);

PRIMARY KEY (columnname)

The columnname is enclosed in parentheses. If you’re using a combination of
columns as the primary key, include all the column names, separated by
commas. For instance, you would designate the primary key for the Login
table in the MemberDirectory database by using this query:

PRIMARY KEY (ToginName,loginTime)

Listing 4-2 shows the CREATE TABLE query used to create the Member table
of the MemberDirectory database. You could enter this query on a single
line if you wanted to. MySQL doesn’t care how many lines you use. However,
the format shown in Listing 4-2 makes it easier to read. This human-friendly
format also helps you spot typos.

Chapter 4: Building the Database

\!
V?\“

W
g‘?‘

NG/

NG/

Listing 4-2: An SQL Query for Creating a Table

CREATE TABLE Member (

lToginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL,
password CHAR(255) NOT NULL,
TastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(TloginName))

Notice that the list of column names in Listing 4-2 is enclosed in parentheses
(one on the first line and one on the last line), and a comma follows each
column definition.

Remember not to use any MySQL reserved words for column names, as
[discuss in Chapter 3. If you do, MySQL gives you an error message that
looks like this:

You have an error in your SQL syntax near 'order var(20))' at Tine 1

Notice this message shows the column definition that it didn’t like and the
line where it found the offending definition. However, the message doesn’t tell
you much about what the problem is. The error in your SQL syntax that
it refers to is using the MySQL reserved word order as a column name.

After a table has been created, you can query to see it, review its structure,
or remove it.

v To see the tables that have been added to a database, use this SQL
query:

SHOW TABLES

+* You can also see the structure of a table with this query:
SHOW COLUMNS FROM tablename

+ You can remove any table with this query:
DROP TABLE tablename

Use DROP carefully because it is irreversible. After a table is dropped, it
is gone forever. And any data that was in it is gone as well.

75

76

Part Il: MySQL Database

Changing the database structure

Your database isn’t written in stone. By using the ALTER query, you can
change the name of the table; add, drop, or rename a column; or change the
data type or other attributes of the column.

The basic format for this query is ALTER TABLE tablename, followed by the
specific changes that you're requesting. Table 4-1 shows the changes that you
can make.

Table 4-1 Changes You Can Make with the ALTER Query

Change Description

ADD columnname Adds a column; definitionincludes the data

definition

type and optional definitions.

ALTER columnname
SET DEFAULT value

Changes the default value for a column.

ALTER columnname
DROP DEFAULT

Removes the default value for a column.

CHANGE columnname
newcolumnname
definition

Changes the definition of a column and
renames the column; definition includes
the data type and optional definitions.

DROP columnname

Deletes a column, including all the data in the

column. The data cannot be recovered.

MODIFY columnname Changes the definition of a column;
definition definitionincludes the data type and
optional definitions.

RENAME newtablename Renames a table.

Changing a database is not a rare occurrence. You might want to change
your database for many reasons. For example, suppose that you defined

the column TastName with VARCHAR(20) in the Member table of the
MemberDirectory database. At the time, 20 characters seemed sufficient for
a last name. But now you just received a memo announcing the new CEO,
John Schwartzheimer-Losertman. Oops. MySQL will truncate his name to the
first 20 letters, a less-than-desirable new name for the boss. So you need to
make the column wider — pronto. Send this query to change the column in a
second:

ALTER TABLE Member MODIFY TastName VARCHAR(50)

Chapter 4: Building the Database

Moving Data In and Out of the Database

An empty database is like an empty cookie jar — it’s not much fun. And,
searching an empty database is no more interesting or fruitful than searching
an empty cookie jar. A database is only useful with respect to the information
that it holds.

A database needs to be able to receive information for storage and to deliver
information on request. For instance, the MemberDirectory database needs
to be able to receive the member information, and it also needs to be able to
deliver its stored information when you request it. For instance, if you want
to know the address of a particular member, the database needs to deliver
that information when you request it.

Your MySQL database responds to four types of requests:

v Adding information: Adding a row to a table.

v~ Updating information: Changing information in an existing row. This
includes adding data to a blank field in an existing row.

1 Retrieving information: Looking at the data. This request does not
remove data from the database.

+ Removing information: Deleting data from the database.

Sometimes your question requires information from more than one table. For
instance, the question, “How much does a green dragon cost?” requires infor-
mation from the Pet table and from the CoTor table. You can ask this ques-
tion easily in a single SELECT query by combining the tables.

In the following sections, I discuss how to receive and deliver information as
well as how to combine tables.

Adding information

Every database needs data. For example, you might want to add data to your
database so that your users can look at it — an example of this is the Pet
Catalog that I introduce in Chapter 3. Or you might want to create an empty
database for users to put data into, making the data available for your eyes
only — an example of this is the Member Directory. In either scenario, data
will be added to the database.

If your data is still on paper, you can enter it directly into a MySQL database,
one row at a time, by using an SQL query. However, if you have a lot of data,
this process could be tedious and involve a lot of typing. Suppose that you

/7

/8

Part Il: MySQL Database

have information on 1,000 products that needs to be added to your database.
Assuming that you're greased lightening on a keyboard and can enter a row
per minute, that’s 16 hours of rapid typing — well, rapid editing, anyway.
Doable, but not fun. On the other hand, suppose that you need to enter 5,000
members of an organization into a database and that it takes five minutes to
enter each member. Now you're looking at over 400 hours of typing — who
has time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it could be faster to enter the data
into a big text file than to enter each row in a separate SQL query.

The SQL query LOAD can read data from a big text file (or even a small text
file). So, if your data is already in a computer file, you can work with that file;
you don’t need to type all the data again. Even if the data is in a format other
than a text file (for example, in an Excel, Access, or Oracle file), you can usu-
ally convert the file to a big text file, which can then be read into your MySQL
database. If the data isn’t yet in a computer file and there’s a lot of it, it might
be faster to enter that data into the computer in a big text file and transfer it
into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier than
others. If you're planning to enter the data into a big text file, read the sec-
tion, “Adding a bunch of data,” to find the best format for your text file. Of
course, if the data is already on the computer, you have to work with the file
as it is.

Adding one row at a time

You use the INSERT query to add a row to a database. This query tells MySQL
which table to add the row to and what the values are for the fields in the
row. The general form of the query is

INSERT INTO tablename (columnname, columnname,...., columnname)
VALUES (value, value,...., value)

The following rules apply to the INSERT query:

v Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list
is inserted into the column that’s named second in the column list; and
SO on.

v~ A partial column list is allowed. You don’t need to list all the columns.
Columns that are not listed are given their default value or left blank if
no default value is defined.

Chapter 4: Building the Database

v A column list is not required. If you're entering values for all the
columns, you don’t need to list the columns at all. If no columns are
listed, MySQL will look for values for all the columns, in the order in
which they appear in the table.

1 The column list and value list must be the same length. If the list of
columns is longer or shorter than the list of values, you get an error
message like this: Column count doesn't match value count.

The following INSERT query adds a row to the Member table:

INSERT INTO Member (loginName,createDate,password,lastName,
street,city,state,zip,email,phone,fax)
VALUES ("bigguy","2001-Dec-2","secret","Smith",
"1234 Happy St","Las Vegas","NV","88888",
"gsmith@GSmithCompany.com","(555) 555-5555","")

Notice that firstName is not listed in the column name list. No value is
entered into the firstName field. If firstName were defined as NOT NULL,
MySQL would not allow this, but because firstName is not defined as NOT
NULL, this is okay. Also, if the definition for firstName included a default, the
default value would be entered, but because it doesn’t, the field is left empty:.
Notice that the value stored for fax is an empty string; MySQL has no prob-
lem with empty strings.

To look at the data that you entered and ensure that you entered it correctly,
use an SQL query that retrieves data from the database. I describe these SQL
queries in detail in “Retrieving information,” later in this chapter. In brief, the
following query retrieves all the data in the Member table:

SELECT * FROM Member

Adding a bunch of data

If you have a large amount of data to enter and it’s already in a computer file,
you can transfer the data from the existing computer file to your MySQL data-
base. The SQL query that reads data from a text file is LOAD. The LOAD query
requires you to specify a database.

Because data in a database is organized in rows and columns, the text file
being read must indicate where the data for each column begins and ends
and where the end of a row is. To indicate columns, a specific character sepa-
rates the data for each column. By default, MySQL looks for a tab character
to separate the fields. However, if a tab doesn’t work for your data file, you
can choose a different character to separate the fields and tell MySQL in the
query that a different character than the tab separates the fields. Also by
default, the end of a line is expected to be the end of a row — although you
can choose a character to indicate the end of a line if you need to. A data file
for the Pet table might look like this:

79

80

Part Il: MySQL Database

\\3

WING/
&

Unicorn<TAB>horse<TAB>Spiral horn<Tab>5000.00<Tab>/pix/unicorn.jpg
Pegasus<TAB>horse<TAB>Winged<Tab>8000.00<Tab>/pix/pegasus.jpg
Lion<TAB>cat<TAB>Large; Mane on neck<Tab>2000.00<Tab>/pix/Tion.jpg

A data file with tabs between the fields is a tab-delimited file. Another common
format is a comma-delimited file, where commas separate the fields. If your
data is in another file format, you need to convert it into a delimited file.

To convert data in another file format into a delimited file, check the manual
for that software or talk to your local expert who understands the data’s cur-
rent format. Many programs, such as Excel, Access, or Oracle, allow you to
output the data into a delimited file. For a text file, you might be able to con-
vert it to delimited format by using the search-and-replace function of an
editor or word processor. For a truly troublesome file, you might need to seek
the help of an expert or a programmetr.

The basic form of the LOAD query is
LOAD DATA INFILE "datafilename" INTO TABLE tablename

This basic form can be followed by optional phrases if you want to change a
default delimiter. The options are

FIELDS TERMINATED BY 'character'
FIELDS ENCLOSED BY 'character'
LINES TERMINATED BY 'character'

Suppose that you have the data file for the Pet table, shown earlier in this
section, except that the fields are separated by a comma rather than a tab.
The name of the data file is pets.dat, and it’s located in the same directory
as the database. The SQL query to read the data into the table is

LOAD DATA INFILE "pets.dat" INTO TABLE Pet
FIELDS TERMINATED BY ",

In order to use the LOAD DATA INFILE query, the MySQL account must have
the FILE privilege on the server host. I discuss MySQL account privileges in
Chapter 5.

To look at the data that you loaded — to be sure that it’s correct — use an
SQL query that retrieves data from the database. I describe these types of
SQL queries in detail in the next section. In brief, use the following query to
look at all the data in the table so that you can check it:

SELECT * FROM Pet

Chapter 4: Building the Database 8 ’

Retrieving information

The only purpose in storing information is to have it available when you need
it. A database lives to answer questions. What pets are for sale? Who are the
members? How many members live in Arkansas? Do you have an alligator for
sale? How much does a dragon cost? What is Goliath Smith’s phone number?
And on and on. You use the SELECT query to ask the database questions.

The simplest, basic SELECT query is

SELECT * FROM tablename

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases in
the SELECT query can pinpoint exactly the information needed to answer
your question. You can specify what information you want, how you want it
organized, and what the source of the information is:

+* You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of members.

+ You can request information in a particular order. For instance, you
can request that the information be sorted in alphabetical order.

+* You can request information from selected objects (the rows) in your
table. (See Chapter 3 for an explanation of database objects.) For
instance, you can request the first and last names for only those mem-
bers whose addresses are in Florida.

Retrieving specific information

To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname,columnname,columnname, ... FROM tablename

This query retrieves the values from all the rows for the indicated column(s).
For instance, the following query retrieves all the last names and first names
stored in the Member table:

SELECT TastName,firstName FROM Member

You can perform mathematical operations on columns when you select them.
For example, you can use the following SELECT query to add two columns
together:

SELECT coll+col2 FROM tablename

82

Part Il: MySQL Database

Or you could use the following query:

SELECT price,price*1.08 FROM Pet

The result is the price and the price with the sales tax of 8 percent added on.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS priceWithTax FROM Pet

The AS clause tells MySQL to give the name priceWithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
priceWithTax.

In some cases, you don’t want to see the values in a column, but you want to

know something about the column. For instance, you might want to know the
lowest value in the column or the highest value in the column. Table 4-2 lists

some of the information that is available about a column.

Table 4-2 Information That Can Be Selected

SOL Format Description of Information

AVG(columnname) Returns the average of all the values in columnname

COUNT(columnname) Returnsthe number of rows in which columnname is
not blank

MAX (columnname) Returns the largest value in columnname

MIN(CcoTlumnname) Returns the smallest value in co7umnname

SUM(columnname) Returns the sum of all the values in columnname

For example, the query to find out the highest price in the Pet table is
SELECT MAX(price) FROM Pet

SQL words like MAX () and SUM() are functions. SQL provides many functions
in addition to those in Table 4-2. Some functions, like those in Table 4-2,
provide information about a column. Other functions change each value
selected. For example, SQRT () returns the square root of each value in the
column, and DAYNAME () returns the name of the day of the week for each
value in a date column, rather than the actual date stored in the column.
Over 100 functions are available for use in a SELECT query. For descriptions
of all the functions, see the MySQL documentation at www.mysql.com/
documentation.

Chapter 4: Building the Database 83

Retrieving data in a specific order

You might want to retrieve data in a particular order. For instance, in the
Member table, you might want members organized in alphabetical order by
last name. Or, in the Pet table, you might want the pets grouped by type
of pet.

Ina SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

v ORDER BY: To sort information, use the phrase
ORDER BY columnname
The data is sorted by columnname in ascending order. For instance, if

columnname is 1astName, the data is delivered to you in alphabetical
order by the last name.

a\\s
You can sort in descending order by adding the word DESC before the
column name. For example:
SELECT * FROM Member ORDER BY DESC TastName
v GROUP BY: To group information, use the following phrase:
GROUP BY columnname
The rows that have the same value of columnname are grouped together.
For example, use this query to group the rows that have the same value
as petType:
“&N\BER SELECT * FROM Pet GROUP BY petType
Y

You can use GROUP BY and ORDER BY in the same query.

Retrieving data from a specific source

Very frequently, you don’t want all the information from a table. You only
want information from selected database objects: that is, rows. Three SQL
words are frequently used to specify the source of the information:

v WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of mem-
bers who live in California, or you can list only the pets that are cats.

v LIMIT: Allows you to limit the number of rows from which information is
retrieved. For instance, you can request all the information from the first
three rows in the table.

v DISTINCT: Allows you to request information from only one row of
identical rows. For instance, in the Login table, you can request the
lToginName but specify no duplicate names, thus limiting the response

84

Part Il: MySQL Database

to one record for each member. This would answer the question, “Has
the member ever logged in?” rather than the question “How many times
has the member logged in?”

The WHERE clause of the SELECT query enables you to make very complicated
selections. For instance, suppose your boss asks for a list of all the members
whose last names begin with B, who live in Santa Barbara, and who have an 8
in either their phone or fax number. I'm sure there are many uses for such a
list. You can get this list for your boss with a SELECT query by using a WHERE
clause.

The basic format of the WHERE clause is
WHERE expression AND|OR expression AND|OR expression ...

expression specifies a value to compare with the values stored in the data-
base. Only the rows containing a match for the expression are selected. You
can use as many expressions as needed, each one separated by AND or OR.
When you use AND, both of the expressions connected by the AND (that is,
both the expression before the AND and the expression after the AND) must be
true in order for the row to be selected. When you use OR, only one of the
expressions connected by the OR must be true for the row to be selected.

Some common expressions are shown in Table 4-3.

Table 4-3 Expressions for the WHERE Clause
Expression Example Result
column = value zip="12345" Selects only the rows

where 12345 is stored in
the column named zip

column > value zip > "50000" Selects only the rows
where the ZIP code is
50001 or higher

column >= value zip >= "50000" Selects only the rows
where the ZIP code is
50000 or higher

column < value zip < "50000" Selects only the rows

where the ZIP code is
49999 or lower

column <= value zip <= "50000" Selects only the rows
where the ZIP code is
50000 or lower

Chapter 4: Building the Database

Expression

Result

column BETWEEN

valuel AND value?

Example
zip BETWEEN
"20000" AND
"30000"

Selects only the rows
where the ZIP code is
greater than 19999 but
less than 30001

column IN (valuel,

zip IN ("90001",

Selects only the rows

valueZ,...) "30044") where the ZIP code is
90001 or 30044
column NOT 1IN zip NOT 1IN Selects only the rows
(valuel,valueZ,...) ("90001", where the ZIP code is
"30044") any ZIP code except

90001 or 30044

column LIKE value —

value can contain the

zip LIKE "9%"

Selects all rows where
the ZIP code begins

85

wildcards % (which matches with 9
any string) and _ (which
matches any character)

column NOT LIKE zip NOT LIKE
value —value can contain "9%"

the wildcards % (which matches

any string) and _ (which

matches any character)

Selects all rows where
the ZIP code does not
begin with 9

You can combine any of the expressions in Table 4-3 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all the people in the Member Directory whose names begin with B,
who live in Santa Barbara, and who have an 8 in either their phone or fax
number:

SELECT TastName,firstName FROM Member
WHERE TastName LIKE "B%"
AND city = "Santa Barbara"
AND (phone LIKE "%8%" OR fax LIKE "%8%")

Notice the parentheses in the last line. You would not get the results that
your boss asked for without the parentheses. Without the parentheses, each
connector would be processed in order from the first to the last, resulting in
a list that includes all members whose names begin with B and who live in
Santa Barbara and whose phone numbers have an 8 in them and all members
whose fax numbers have an 8 in them, whether they live in Santa Barbara or
not and whether their name begins with a B or not. When the last OR is
processed, members are selected whose characteristics match the expres-
sion before the OR or the expression after the OR. The expression before the

86

Part Il: MySQL Database

A\\J

ORis connected to previous expressions by the previous ANDs and so does
not stand alone, but the expression after the OR does stand alone, resulting in
the selection of all members with an 8 in their fax number.

LIMIT specifies how many rows can be returned. The form for LIMIT is
LIMIT startnumber,numberofrows

The first row that you want to retrieve is startnumber, and the number of
rows that you want to retrieve is numberofrows. If startnumber is not speci-
fied, 1 is assumed. To select only the first three members who live in Texas,
use this query:

SELECT * FROM Member WHERE state="TX" LIMIT 3

Some SELECT queries will find identical records, but in this example, you only
want to see one — not all — of the identical records. To prevent the query
from returning all the identical records, add the word DISTINCT immediately
after SELECT.

Combining information from tables

In the earlier sections of this chapter, I assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Two words can be used in a SELECT query to combine information from two
or more tables:

v UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

v JOIN: The tables are combined side by side, and the information is
retrieved from both tables.

union

UNION is used to combine the results from two or more select queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNION query is as follows:

SELECT query UNION ALL SELECT query

You can combine as many SELECT queries as you need to. A SELECT query
can include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

Chapter 4: Building the Database 8 7

\NG/
Vg‘\\

v~ All the select queries must select the same number of columns.

v The columns selected in the queries must contain the same type of data.

The results set will contain all the rows from the first query followed by all
the rows from the second query and so on. The column names used in the
results set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s much
more likely that you want to combine columns from different tables. For
example, you might have a table of members who have resigned from the
club and a separate table of current members. You can get a list of all mem-
bers, both current and resigned, with the following query:

SELECT lastName,firstName FROM Member UNION ALL
SELECT TastName,firstName FROM OlTdMember

The result of this query is the last name and first name of all current mem-
bers, followed by the last name and first name of all the members who have
resigned.

Depending on how you organized your data, you might have duplicate names.
For instance, perhaps a member resigned, and his name is in the 01dMember
table — but he joined again, so his name is added to the Member table. If you
don’t want duplicates, don’t include the word ALL. If ALL is not included,
duplicate lines are not added to the result.

You can use ORDER BY with each SELECT query, as I discuss in the previous
section, or you can use ORDER BY with a UNION query to sort all the rows in
the result set. If you want ORDER BY to apply to the entire the result set,
rather than just to the query that it follo