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Introduction

Too often, differential equations seem like torture. They seem so bad in fact that you may 

be tempted to cringe or shudder when you’re assigned homework that involves ’em.

Differential Equations Workbook For Dummies may not get you to embrace differential equa-

tions with open arms, but it will improve your understanding of the pesky things. Here you 

get ample practice working through the most common types of differential equations, along 

with detailed solutions, so you can truly master the subject. Get ready to add “differential 

equations expert” to your résumé!

About This Book
Differential Equations Workbook For Dummies is all about practicing solving differential 

equations. It’s crammed full of the good stuff — and only the good stuff. Each aspect of dif-

ferential equations is addressed with some brief text to refresh your memory of the basics, 

a worked-out example, and multiple practice problems. (If you’re looking for in-depth 

explanation of differential equations topics, your best resource is Differential Equations 
For Dummies [Wiley] or your class textbook.) So that you’re not left hanging wondering 

whether your solution is right or wrong, each chapter features an answers section with all 

the practice problems worked out, step by glorious step.

You can leaf through this workbook as you like, solving problems and reading solutions as 

you go. Like other For Dummies books, this one is designed to let you skip around to your 

heart’s content.

Conventions Used in This Book
Some books have a dozen confusing conventions that you need to know before you can 

even start. Not this one. You need to keep just these few things in mind:

 ✓ New terms appear in italics the first time they’re presented. And like other math books, 

this one also employs italics to indicate variables.

 ✓ Web sites appear in monofont to help them stand out. (In some cases, a Web site may 

break across multiple lines. Rest assured I haven’t inserted any extra spaces or punc-

tuation; just type the address as provided.)

 ✓ In the answers section at the end of every chapter, the practice problems and solutions 

appear in bold (the step-by-step info that follows is in regular text). Matrices and key-

words in bulleted lists are also given in bold.
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Foolish Assumptions
Any study of differential equations takes knowledge of calculus as its starting point. You 

should know how to take basic derivatives and how to integrate before reading this workbook 

(and if you don’t, I recommend picking up a copy of Calculus For Dummies [Wiley] first).

Most importantly, I’m assuming you already have an in-depth resource about differential 

equations available to you. This workbook is intended to give you extra practice tackling 

standard differential equations concepts; it doesn’t provide detailed instruction on the fun-

damentals of differential equations. I do include some brief refresher text on each aspect 

of differential equations, but if you’re brand-new to the subject, check out Differential 
Equations For Dummies or your class textbook.

How This Book Is Organized
This workbook is organized modularly, into parts, following the same organizational struc-

ture as Differential Equations For Dummies. Here’s what you’re going to find in each part.

Part I: Tackling First Order Differential Equations
First order differential equations are the easiest differential equations to solve. That’s why 

this part gives you practice finding solutions to linear, separable, and exact first order dif-

ferential equations.

Part II: Finding Solutions to Second and 
Higher Order Differential Equations
The most interesting differential equations used in the real world are second order dif-

ferential equations. Here, you practice multiple ways of solving this type of equation. You 

also get to try your hand at solving third and higher order differential equations. Things get 

pretty steep pretty fast, but fortunately you have some surprising techniques at your dis-

posal, as you discover in this part.

Part III: The Power Stuff: Advanced Techniques
I’ve pulled out all the stops in Part III. In these chapters, you find some powerful solution 

techniques, including power series, which you can use to convert a tough differential equa-

tion into an algebra problem and then solve for the coefficients of each power, and Laplace 

transforms, which can occasionally give you the solution you’re looking for in no time.
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Part IV: The Part of Tens
The classic For Dummies Part of Tens provides you with a couple collections of top ten 

resources. Flip to this part to find help with the ten common ways of solving differential 

equations or to discover ten real-world applications for differential equations.

Icons Used in This Book
For Dummies books always use icons to point out important information; this workbook is 

no different. Here’s the quick-and-dirty of what the icons mean:

 This icon points out practice problems that have been worked out for you to get you off on 

the right foot.

 Looking for the juicy tidbits that are essential to your study of differential equations? Then 

watch for paragraphs marked with this icon.

 This icon denotes tricks and techniques to make your life easier (at least as it relates to solv-

ing differential equations).

Where to Go from Here
You can start anywhere you feel you need the most practice. In fact, this workbook was 

written to allow you to do just that. However, if you want to follow along with Differential 
Equations For Dummies or your textbook, your best bet is to start with Chapter 1.

You may also want to grab a few pieces of scratch paper. I’ve tried to leave you enough 

room to work the problems right in the book, but you still might find a little extra paper 

helpful.
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Part I
Tackling First 

Order Differential 
Equations



In this part . . .

Welcome to the world of first order differential equa-

tions! Here, you put your skills to the test with lin-

ear first order differential equations, which means you’re 

dealing with first order derivatives that are to the first 

power, not the second or any other higher power. You 

also work with separable first order differential equations, 

which can be separated so that only terms in y appear on 

one side of the equation and only terms in x appear on the 

other side (okay, okay, constants can appear on this side 

too). Finally, you practice solving exact differential 

equations.



Chapter 1

Looking Closely at Linear First 
Order Differential Equations

In This Chapter
▶ Knowing what a first order linear differential equation looks like

▶ Finding solutions to first order differential equations with and without y terms

▶ Employing the trick of integrating factors

One important way that you can classify differential equations is as linear or nonlinear. 

A differential equation is considered linear if it involves only linear terms (that is, 

terms to the power 1) of y, y', y", and so on. The following equation is an example of a linear 

differential equation:

 

Nonlinear differential equations simply include nonlinear terms in y, y', y", and so on. This 

next equation, which describes the angle of a pendulum, is considered a nonlinear differen-

tial equation because it involves the term sin θ (not just θ):

 

This chapter focuses on linear first order differential equations. Here you have the chance 

to sharpen your linear-equation-spotting eye. You also get to practice solving linear first 

order differential equations when y is and isn’t involved. Finally, I clue you in to a little (yet 

extremely useful!) trick o’ the trade called integrating factors.

Identifying Linear First Order 
Differential Equations

 Here’s the general form of a linear differential equation, where p(x) and q(x) are functions 

(which can just be constants):
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2. Is the following a linear first order 

 differential equation?

    

 Solve It

1. Is this equation a linear first order 

 differential equation?

    

 Solve It

A. Yes.

  This equation is a linear first order differ-

ential equation because it involves solely 

first order terms in y and y'.

Q. Is this equation a linear first order 

differential equation?

    

Following are some examples of linear differential equations:

 

 

 

For a little practice, try to figure out whether each of the following equations is linear or 

nonlinear.
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Solving Linear First Order Differential 
Equations That Don’t Involve Terms in y

 The simplest type of linear first order differential equation doesn’t have a term in y at all; 

instead, it involves just the first derivative of y, y', y", and so on. These differential equations 

are simple to solve because the first derivatives are easy to integrate. Here’s the general form 

of such equations (note that q(x) is a function, which may be a constant):

 

Take a look at this linear first order differential equation:

 

Note that there’s no term in just y. So how do you solve this kind of equation? Just move the 

dx over to the right:

dy = 3dx

4. Is the following a linear first order 

 differential equation?

    

 Solve It

3. Is this equation a linear first order 

 differential equation?

    

 Solve It
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Then integrate to get

y = 3x + c

where c is a constant of integration.

To figure out what c is, simply take a look at the initial conditions. For example, say that 

y(0) — that is, the value of y when x = 0 — is equal to

y(0) = 15

Plugging y(0) = 15 into y = 3x + c gives you

y(0) = c = 15

So c = 15 and y = 3x + 15. That’s the complete solution!

To deal with constants of integration like c, look for the specified initial conditions. For 

example, the problem you just solved is usually presented as

 

where

y(0) = 15

Time for a more advanced problem! (Note that this one still doesn’t involve any simple 

terms in y.)

 

where

y(0) = 3

Because this equation doesn’t involve any terms in y, you can move the dx to the right, 

like this:

dy = x3 dx – 3x2 dx + x dx

Then just integrate to get

 

To evaluate c, use the initial condition, which is

y(0) = 3

Plugging x = 0 → y = 3 into the equation for y gives you

y(0) = 3 = c
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6. What’s y in the following equation?

    

    where

    y(0) = 2

 Solve It

5. Solve for y in this differential equation:

    

    where

    y(0) = 4

 Solve It

So the full solution is

 

 As you can see, the way to deal with linear first order differential equations that don’t involve 

a term in just y is simply to

 1. Move the dx to the right and integrate.

 2. Apply the initial conditions to solve for the constant of integration.

Following are some practice problems to make sure you have the hang of it.

2. Integrate both sides to get the follow-

ing, where c is a constant of integration:

  y = x2 + c

3. Apply the initial condition to get

  c = 3

4. Having solved for c, you can find the 

solution to the differential equation:

  y = x2 + 3

Q. Solve for y in this differential equation:

    

    where

    y(0) = 3

A. y = x2 + 3

1. Multiply both sides by dx:

  dy = 2x dx
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Solving Linear First Order Differential 
Equations That Involve Terms in y

Wondering what to do if a differential equation you’re facing involves both x and y?

 

Start by taking a look at this representative problem:

 

The preceding is a linear first order differential equation that contains both dy/dx and y. How 

do you handle it and find a solution? By using some algebra, you can rewrite this equation as

 

8. What’s y in the following equation?

    

    where

    y(0) = 12

 Solve It

7. Solve for y in this differential equation:

    

    where

    y(0) = 10

 Solve It
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Multiplying both sides by dx gives you

 

Congrats! You’ve just separated x on one side of this differential equation and y on the other, 

making the integration much easier. Speaking of integration, integrating both sides gives you

ln |y – (b/a)| = ax + C

where C is a constant of integration. Raising both sides to the power e gives you this, where 

c is a constant defined by c = eC:

y = (b/a) + ceax

Anything beyond this level of difficulty must be approached in another way, and you deal 

with such equations throughout the rest of the book.

If you think you have solving linear first order differential equations in terms of y all figured 

out, try your hand at these practice questions.

A. y = 2 + e2x

1. Use algebra to get

  

2. Then multiply both sides by dx:

  

3. Integrate to get

  ln |y – 2| = 2x + C

4. Then raise e to the power of both 

sides:

  y = 2 + eC e2x = 2 + ce2x

5. Finally, apply the initial condition 

to get

  y = 2 + e2x

Q. Solve for y in this differential equation:

    

    where

    y(0) = 3
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9. What’s y in the following equation?

    

    where

    y(0) = 5

 Solve It

10. Solve for y in this differential equation:

    

    where

    y(0) = 9

 Solve It

12. Solve for y in this differential equation:

    

    where

    y(0) = 16

 Solve It

11. What’s y in the following equation?

    

    where

    y(0) = 5

 Solve It
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Integrating Factors: A Trick of the Trade
Because not all differential equations are as nice and neat to work with as the ones featured 

earlier in this chapter, you need to have more power in your differential equation–solving 

arsenal. Enter integrating factors, which are functions of μ(x). The idea behind an integrating 

factor is to multiply the differential equation by it so that the resulting equation can be inte-

grated easily.

Say you encounter this differential equation:

 

where

y(0) = 7

To solve this equation with an integrating factor, try multiplying by μ(x), your as-yet-

undetermined integrating factor:

 

The trick now is to select μ(x) so you can recognize the left side as a derivative of something 

that can be easily integrated. If you take a closer look, you notice that the left side of this 

equation appears very much like differentiating the product μ(x)y, because the derivative of 

μ(x)y with respect to x is

 

Comparing the right side of this differential equation to the left side of the previous one 

gives you

 

At last! That looks like something you can work with. Rearrange the equation to get the 

following:

 

Then go ahead and multiply both sides by dx to get

 

Integrating gives you

ln |μ(x)| = 3x + b

where b is a constant of integration.
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Raising e to the power of both sides gives you

μ(x) = ce3x

where c is another constant (c = eb).

Guess what? You’ve just found an integrating factor, specifically μ(x) = ce3t.

You can use that integrating factor with the original differential equation, multiplying the 

equation by μ(x):

 

which is equal to

 

As you can see, the constant c drops out, leaving you with

 

 Because you’re only looking for a multiplicative integrating factor, you can either drop the 

constant of integration when you find an integrating factor or set c = 1.

This is where the whole genius of integrating factors comes in, because you can recognize 

the left side of this equation as the derivative of the product e3xy. So the equation becomes

 

That sure looks a lot easier to handle than the original version of this differential equation, 

doesn’t it?

Now you can multiply both sides by dx to get

d(e3xy) = 9e3x dx

Then integrate both sides:

e3xy = 3e3x + c

and solve for y:

y = 3 + ce–3x
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Because the initial condition stated that y(0) = 7, that means c = 4, so

y = 3 + 4e–3x

Pretty cool, huh?

Here are some practice equations to get you better acquainted with the trick of integrating 

factors.

Q. Solve for y by using an integrating factor:

    

    where

    y(0) = 6

A. y = 2 + 4e–5x

1. Multiply both sides of the differential 

equation by μ(x) to get

  

2. Identify the left side with a derivative 

(in this case, the derivative of a 

product):

  

3. Then identify the right side of the 

equation in Step 2 with the left side of 

the equation in Step 1:

  

4. Rearrange terms to get

  

5. Then integrate:

  ln |μ(x)| = 5x + b

6. Next up, raise e to the power of both 

sides(where c = eb) to get

  μ(x) = ce5x

7. Multiply the original differential 

equation by the integrating factor 

(canceling out c) to get

  

8. Combine the terms on the left side of 

this equation:

  

9. Then multiply by dx:

  d(e5xy) = 10e5x dx

10. Integrate:

  e5xy = 2e5x + c

11. Divide both sides by e5x to get

  y = 2 + ce–5x

12. Finally, apply the initial condition:

  y = 2 + 4e–5x
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13. Solve for y by using an integrating factor:

    

    where

    y(0) = 3

 Solve It

14. In the following differential equation, find y 

by using an integrating factor:

    

    where

    y(0) = 8

 Solve It

15. Solve for y by using an integrating factor:

    

    where

    y(0) = 9

 Solve It

16. In the following differential equation, find y 

by using an integrating factor:

    

    where

    y(0) = 8

 Solve It
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Answers to Linear First Order Differential 
Equation Problems

Following are the answers to the practice questions presented throughout this chap-

ter. Each one is worked out step by step so that if you messed one up along the way, 

you can more easily see where you took a wrong turn.

a  Is this equation a linear first order differential equation?

   

  Yes. This equation is a linear first order differential equation because it involves solely first 

order terms in y and y'.

b  Is the following a linear first order differential equation?

   

  No. This equation is not a linear first order differential equation because it doesn’t involve 

solely first order terms in y and y'.

c  Is this equation a linear first order differential equation?

   

  No. This equation is not a linear first order differential equation because it doesn’t involve 

solely first order terms in y and y'.

d  Is the following a linear first order differential equation?

   

  No. This equation is not a linear first order differential equation because it doesn’t involve 

solely first order terms in y and y'.

e  Solve for y in this differential equation:

   

   where

   y(0) = 4

  Solution: y = 4x2 + 4

 1. Multiply both sides by dx:

   dy = 8x dx
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 2. Then integrate both sides to find the following, where c is a constant of integration:

   y = 4x2 + c

 3. Apply the initial condition to get

   c = 4

 4. Having solved for c, you can now find the solution, which is

   y = 4x2 + 4

f  What’s y in the following equation?

   

   where

   y(0) = 2

  Solution: y = x2 + 2x + 2

 1. Start by multiplying both sides by dx:

   dy = 2x dx + 2dx

 2. Integrate both sides (noting that c is a constant of integration):

   y = x2 + 2x + c

 3. Apply the initial condition:

   c = 2

 4. Having solved for c, obtain the solution to the equation:

   y = x2 + 2x + 2

g  Solve for y in this differential equation:

   

   where

   y(0) = 10

  Solution: y = 3x2 + 5x + 10

 1. Multiply both sides by dx:

   dy = 6x dx + 5dx

 2. Integrate both sides to find the following, where c is a constant of integration:

   y = 3x2 + 5x + c

 3. Apply the initial condition to get

   c = 10

 4. Having solved for c, you can now find the solution, which is

   y = 3x2 + 5x + 10
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h  What’s y in the following equation?

   

   where

   y(0) = 12

  Solution: y = 4x2 + 3x + 12

 1. Start by multiplying both sides by dx:

   dy = 8x dx + 3dx

 2. Integrate both sides (noting that c is a constant of integration):

   y = 4x2 + 3x + c

 3. Apply the initial condition:

   c = 12

 4. Having solved for c, obtain the solution to the equation:

   y = 4x2 + 3x + 12

i  What’s y in the following equation?

   

   where

   y(0) = 5

  Solution: y = 2 + 3e4x

 1. First, use algebra to get

   

 2. Then multiply both sides by dx:

   

 3. Integrate:

   ln |y – 2| = 4x + c

 4. Raise e to the power of both sides:

   y = 2 + ce4x

 5. Finally, apply the initial condition:

   y = 2 + 3e4x
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j  Solve for y in this differential equation:

   

   where

   y(0) = 9

  Solution: y = 3 + 6e3x

 1. Use algebra to change the equation to

   

 2. Multiply both sides by dx:

   

 3. Then integrate to get

   ln |y – 3| = 3x + c

 4. Raise e to the power of both sides:

   y = 3 + ce3x

 5. Last but not least, apply the initial condition to get

   y = 3 + 6e3x

k  What’s y in the following equation?

   

   where

   y(0) = 5

  Solution: y = 2 + 3e9x

 1. First, use algebra to get

   

 2. Then multiply both sides by dx:

   

 3. Integrate:

   ln |y – 2| = 9x + c

 4. Raise e to the power of both sides:

   y = 2 + ce9x

 5. Finally, apply the initial condition:

   y = 2 + 3e9x
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l  Solve for y in this differential equation:

   

   where

   y(0) = 16

  Solution: y = 5 + 11e4x

 1. Use algebra to change the equation to

   

 2. Multiply both sides by dx:

   

 3. Then integrate to get

   ln |y – 5| = 4x + c

 4. Raise e to the power of both sides:

   y = 5 + ce4x

 5. Last but not least, apply the initial condition to get

   y = 5 + 11e4x

m  Solve for y by using an integrating factor:

   

   where

   y(0) = 3

  Solution: y = 2 + e–2x

 1. Multiply both sides of the equation by μ(x) to get

   

 2. Identify the left side with a derivative (in this case, the derivative of a product):

   

 3. Then identify the right side of the equation in Step 2 with the left side of the equation in Step 1:

   

 4. Rearrange the terms to get
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 5. Then integrate:

   ln |μ(x)| = 2x + b

 6. Raise e to the power of both sides (where c = eb) to get

   μ(x) = ce2x

 7. Multiply the original differential equation by the integrating factor (canceling out c):

   

 8. Then combine the terms on the left side of this equation to get

   

 9. Next, multiply by dx:

   d(e2xy) = 4e2x dx

 10. Integrate:

   e2xy = 2e2x + c

 11. Then divide both sides by e2x to get

   y = 2 + ce–2x

 12. Finally, apply the initial condition to achieve your answer:

   y = 2 + e–2x

n  In the following differential equation, find y by using an integrating factor:

   

   where

   y(0) = 8

  Solution: y = 3 + 5e–3x

 1. Multiply both sides by μ(x):

   

 2. Identify the left side of the equation with a derivative (in this case, the derivative of a 

product):

   

 3. Identify the right side of the equation in Step 2 with the left side of the equation in Step 1:
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 4. Next, rearrange the terms:

   

 5. Integrate to get

   ln |μ(x)| = 3x + b

 6. Raise e to the power of both sides(where c = eb):

   μ(x) = ce3x

 7. Multiply the original equation by the integrating factor (canceling out c) to get

   

 8. Combine terms on the left side of the equation:

   

 9. Multiply by dx:

   d(e3xy) = 3e3x dx

 10. Then integrate to get

   e3xy = 3e3x + c

 11. Next, divide both sides by e3x:

   y = 3 + ce–3x

 12. After applying the initial condition, you should have

   y = 3 + 5e–3x

o  Solve for y by using an integrating factor:

   

   where

   y(0) = 9

  Solution: y = 7 + 2e–2x

 1. Multiply both sides of the equation by μ(x) to get

   

 2. Identify the left side with a derivative (in this case, the derivative of a product):

   

 3. Then identify the right side of the equation in Step 2 with the left side of the equation in Step 1:
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 4. Rearrange the terms to get

   

 5. Then integrate:

   ln |μ(x)| = 2x + b

 6. Raise e to the power of both sides (where c = eb) to get

   μ(x) = ce2x

 7. Multiply the original differential equation by the integrating factor (canceling out c):

   

 8. Then combine the terms on the left side of this equation to get

   

 9. Next, multiply by dx:

   d(e2xy) = 14e2x dx

 10. Integrate:

   e2xy = 7e2x + c

 11. Then divide both sides by e2x to get

   y = 7 + ce–2x

 12. Finally, apply the initial condition to achieve your answer:

   y = 7 + 2e–2x

p  In the following differential equation, find y by using an integrating factor:

   

   where

   y(0) = 8

  Solution: y = 7 + e–9x

 1. Multiply both sides by μ(x):

   

 2. Identify the left side of the equation with a derivative (in this case, the derivative of a 

product):
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 3. Identify the right side of the equation in Step 2 with the left side of the equation in Step 1:

   

 4. Next, rearrange the terms:

   

 5. Integrate to get

   ln |μ(x)| = 9x + b

 6. Raise e to the power of both sides (where c = eb)

   μ(x) = ce9x

 7. Multiply the original equation by the integrating factor (canceling out c) to get

   

 8. Combine terms on the left side of the equation:

   

 9. Multiply by dx:

   d(e9xy) = 63e9x dx

 10. Then integrate to get

   e9xy = 7e9x + c

 11. Next, divide both sides by e9x:

   y = 7 + ce–9x

 12. After applying the initial condition, you should have

   y = 7 + e–9x
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Chapter 2

Surveying Separable First Order 
Differential Equations

In This Chapter
▶ Diving into separable differential equations

▶ Knowing how to obtain implicit solutions

▶ Practicing the y = vx trick for separating differential equations

▶ Solving separable first order differential equations with initial conditions

Welcome to separable differential equations! You know ’em; you may even love ’em. 

After all, they let you separate out the variables so only one variable appears on 

each side of the equal sign. What’s not to love about that?

In this chapter, you’re not going to limit yourself to linear differential equations (like those 

covered in Chapter 1). That is, you may see something like this:

 

But because the equations in this chapter are still considered first order, you can expect to 

see something along these lines:

 

To restrict the form of this differential equation even more, say that M(x, y) is really just a 

function of x — that is, M(x). Similarly, say that N(x, y) is really just a function of y — that is, 

N(y). Combined, that gives you

 

This differential equation is considered separable, because it can be written in a form where 

all terms in x are on one side of the equal sign and all terms in y are on the other side.
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For instance, multiplying by dx gives you

M(x) dx + N(y) dy = 0

and that can be written as

M(x) dx = –N(y) dy

which means you’ve separated the differential equation so that only x appears on one side 

and only y appears on the other.

Now that that’s settled, check out the following sections. They help you find implicit solu-

tions, make the supposedly inseparable separable, and get a handle on how initial condi-

tions affect a separable differential equation.

The Ins and Outs of Working with 
Separable Differential Equations

 If you can separate a differential equation, you’re that much closer to solving it. Here’s the 

general form of a separable first order differential equation:

 

Note that both M(x) and N(y) don’t have to be linear in x and y, respectively. For example, 

you may encounter this differential equation, which is separable but not linear:

 

You can separate this equation like so:

x dx + y2 dy = 0

which gives you

x dx = –y2 dy

As you can see, the resulting equation is clearly separated.

Now consider this differential equation:

 

where

y(0) = 0
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You can separate this one into

dy = x2 dx

Integrating both sides gives you the following:

 

When you apply the initial condition, y(0) = 0, you get

c = 0

So the answer is

 

Here’s another example of a typical separable first order differential equation, followed by 

some practice problems you can work out for yourself.

 Q. Solve this differential equation:

    

    where

    y(0) = 1

 A. 

1. Multiply both sides by dx:

 dy – x dx – x2 dx = 0

2. Separate x and y terms on different 

sides of the equal sign:

 dy = x dx + x2 dx

3. Then integrate to get

 

4. Apply the initial conditions to find that

 c = 1

5. Tada! The solution is
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 4. Solve this differential equation:

    

    where

    y(0) = 0

 Solve It

 3. What’s the solution to this equation?

    

    where

    y(0) = 0

 Solve It

 2. Figure out the answer to the following:

    

    where

    y(0) = 1

 Solve It

 1. Solve this differential equation:

    

    where

    y(0) = 5

 Solve It
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 6. What’s the solution to this equation?

    

    where

    y(0) = ln (2)

 Solve It

 5. Figure out the answer to the following:

    

    where

    y(0) = 0

 Solve It

Finding Implicit Solutions
Separating differential equations into x and y parts is fine; it can also be quite helpful. Yet 

sometimes you just can’t come up with a neat y = f(x) solution, no matter how hard you try. 

For example, what if you encounter a differential equation like this one?

 

You can multiply both sides by dx to get

(1 – y2) dy = x2 dx

As you can see, this is a separable differential equation. Integrating both sides gives you

 

Doesn’t exactly look easy to write in the form y = f(x), does it? That’s because it’s an implicit 
solution, also known as any solution you can’t write like y = f(x). (Solutions that can be writ-

ten the easy way are considered explicit solutions.)
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 7. Find the implicit solution to this differential 

equation:

    

 Solve It

 8. What’s the implicit solution to this 

equation?

    

 Solve It

Although finding implicit solutions can be useful, sometimes you end up having to resort to 

numerical methods on a computer to convert them into the standard y = f(x) form. On the 

other hand, finding an implicit solution is occasionally the very best you can do.

Check out how to solve the following implicit solution problem and then try your hand at a 

few that are just like it.

 Q. Find an implict solution to this 

differential equation:

    

 A. 

1. Multiply both sides by dx:

 (y – y2) dy – x2 dx = 0

2. Separate x and y terms on different 

sides of the equal sign:

 (y – y2) dy = x2 dx

3. Integrate to get
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 9. Find the implicit solution to this differential 

equation:

    

 Solve It

 10. What’s the implicit solution to this 

equation?

    

 Solve It

Getting Tricky: Separating 
the Seemingly Inseparable

Sometimes you can convert differential equations that don’t look separable into separable 

ones by using a cool trick. Why would you want to take the time? Because separable equa-

tions are usually much easier to solve than differential equations that don’t appear separable.

 To work some conversion magic on a differential equation, simply substitute y = vx into the 

equation. Often the result is an easier-to-solve separable equation.

Using y = vx is a useful trick when your differential equation is of the following form:

 

 Note that this trick only has a hope of working if f(x, y) = f(tx, ty) where t is a constant 

 (meaning when you put in tx for x and ty for y, the t drops out).

Take a look at this problem:
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This differential equation may seem hopelessly inseparable to the uneducated, but lucky for 

you, you’re armed with the y = vx substitution trick!

First things first though: Make sure that f(x, y) = f(tx, ty). Substituting tx for x and ty for y 

gives you

 

The t drops out, leaving you with

 

So f(x, y) = f(tx, ty), which means you can try applying the y = vx trick. Substituting y = vx 

into this differential equation gives you

 

which becomes

 

Looks like this equation can be separated. When you do that, you get

 

Not too shabby. Now you can integrate to get

 

where k is a constant of integration. If you use the fact that

ln (a) + ln (b) = ln (ab)

and

a ln (b) = ln (ba)

you get

v3 + 1 = (mx)3

where m is a constant.

This equation is still in terms of v and x, but you want a solution in terms of x and y. Start 

substituting! From

v = y/x
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you get

(y/x)3 + 1 = (mx)3

or

y3 + x3 = m3x6

Solving for y gives you

y = (cx6 – x3)1/3

where c is a constant. And that’s the solution. Pretty cool, huh?

Review the following problem if you want to see another example of how to apply this 

handy trick that will make you the envy of all your friends (well, probably not really, but 

it’ll definitely make your differential equations experience a little easier!). Think you have a 

handle on it already? Move ahead to the practice problems.

 Q. Solve this differential equation by con-

verting it into a separable form:

    

 A. y = (cx8 – x4)1/4

1. First, test whether f(x, y) = f(tx, ty). 

Substituting tx for x and ty for y 
gives you

 

  Because the t drops out, you can try 

the y = vx trick.

2. Substituting y = vx into the equation 

gives you

 

  which becomes

 

3. Separate this result and get

 

4. Then integrate (where k is a constant 

of integration):

 

5. Using the fact that

 ln (a) + ln (b) = ln (ab)

  and

 a ln (b) = ln (ba)

  you get

 v4 + 1 = (mx)4

  where m is a constant.

6. Next, substitute v = y/x:

 (y/x)4 + 1 = (mx)4

  or

 y4 + x4 = m4x8

7. Last, but certainly not least, solve for y 

to get

 y = (mx8 – x4)1/4

  where m is a constant.
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 14. Convert this equation so that it’s separable 

and solve:

    

 Solve It

 13. Solve this differential equation by 

separating it:

    

 Solve It

 12. Convert this equation so that it’s separable 

and solve:

    

 Solve It

 11. Solve this differential equation by 

separating it:

    

 Solve It
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 15. Solve this differential equation by 

separating it:

    

 Solve It

 16. What’s the solution if you separate this 

equation?

    

 Solve It

Practicing Your Separation Skills
Here’s your chance to practice some general separable first order differential equations. (I 

promise it’ll be more fun than stabbing yourself in the eye, so put that pencil back down.) 

I include differential equations of all sorts so you can get some practice with the various 

possibilities. But first, a quick example.

 Q. Solve this differential equation:

    

 A. 

1. Separate the equation to get

 

2. Multiply both sides by dx:

 y dy = x2 dx

3. Then integrate both sides of the 

equation:

 

4. Multiply by 2 (and absorb 2 into the 

constant c):

 

5. You’re left with
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 20. Find the answer to this equation by 

separating it:

    

 Solve It

 19. What’s the solution if you separate this 

equation?

    

 Solve It

 18. Solve this differential equation by 

separating it:

    

 Solve It

 17. Find the answer to this equation by 

separating it:

    

 Solve It
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An Initial Peek at Separable Equations 
with Initial Conditions

It’s a given in the world of differential equations: You’re going to run into separable first 

order differential equations with initial conditions. Having to solve a problem with an initial 

condition adds another dimension to the problem, as you can see in the following example 

and practice problems.

 Q. Solve this differential equation:

    

    where

    y(0) = 2

 A. 
1. Multiply both sides of the equation by 

y2 to get

 

2. Then multiply both sides by dx:

 y2 dy = x4 dx

3. Integrating both sides gives you

 

4. Multiply by 3 (and absorb 3 into the 

constant c):

 

5. Then take the cube root:

 

6. Solve for c:

 2 = (c)1/3

7. Here’s your solution:
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 24. Solve this equation:

    

    where

    y(0) = 2

 Solve It

 23. Figure out the answer to this differential 

equation:

    

    where

    y(0) = 1

 Solve It

 22. Solve this equation:

    

    where

    y(1) = 3

 Solve It

 21. Figure out the answer to this differential 

equation:

    

    where

    y(0) = 3

 Solve It
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Answers to Separable First Order 
Differential Equation Problems

Here are the answers to the practice questions I provide throughout this chapter. I walk you 

through each answer so you can see the problems worked out step by step. Enjoy!

a Solve this differential equation:

   

  where

  y(0) = 5

 Solution: 

 1. First, multiply both sides by dx:

   dy – x3 dx = 0

 2. Separate x and y terms on different sides of the equal sign:

   dy = x3 dx

 3. Then integrate to get

   

 4. Last but not least, apply the initial condition to find that

   c = 5

 5. So your answer is

   

b Figure out the answer to the following:

   

  where

  y(0) = 1

 Solution: y = sin (x) + 1

 1. Multiply both sides by dx:

   dy – cos (x) dx = 0

 2. Then separate x and y terms on opposite sides of the equal sign:

   dy = cos (x) dx

 3. Next up, integrate:

   y = sin (x) + c
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 4. Applying the initial condition tells you that

   c = 1

 5. So the solution is

   y = sin (x) + 1

c What’s the solution to this equation?

   

  where

  y(0) = 0

 Solution: y = x

 1. First, multiply both sides by dx:

   y dy – x dx = 0

 2. Separate x and y terms on different sides of the equal sign:

   y dy = x dx

 3. Then integrate to get

   

 4. Apply the initial condition to find that

   c = 0

  which means

   

 5. Multiply by 2 to get

   y2 = x2

 6. So your answer is

   y = x

d Solve this differential equation:

   

  where

  y(0) = 0

 Solution: 

 1. Multiply both sides by dx:

   dy – x3 dx – x4 dx = 0

 2. Then separate x and y terms on opposite sides of the equal sign:

   dy = x3 dx + x4 dx
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 3. Next up, integrate:

   

 4. Applying the initial condition tells you that

   c = 0

 5. So the solution is

   

e Figure out the answer to the following:

   

  where

   y(0) = 0

 Solution: 

 1. First, multiply both sides by dx:

   cos (y) dy – x dx = 0

 2. Separate x and y terms on different sides of the equal sign:

   cos (y) dy = x dx

 3. Then integrate to get

   

 4. Go ahead and take the inverse sine:

   

 5. Last but not least, apply the initial condition to find that

   c = nπ   n = 0, 1, 2 . . .

 6. So your answer is

       n = 0, 1, 2 . . .

f What’s the solution to this equation?

   

  where

   y(0) = ln (2)

 Solution: y = ln |x2 + 2|
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 1. Multiply both sides by dx:

   ey dy – 2x dx = 0

 2. Then separate x and y terms on opposite sides of the equal sign:

   ey dy = 2x dx

 3. Next up, integrate:

   ey = x2 + c

  and take the natural log:

   y = ln |x2 + c|

 4. Applying the initial condition tells you that

   c = 2

 5. So the solution is

   y = ln |x2 + 2|

g Find the implicit solution to this differential equation:

   

 Solution: 

 1. Multiply both sides by dx:

   (y2 + y) dy – x dx = 0

 2. Then separate x and y terms on different sides of the equal sign:

   (y2 + y) dy = x dx

 3. Finally, integrate to get

   

h What’s the implicit solution to this equation?

   

 Solution: 

 1. Start off by multiplying both sides of the equation by dx:

    (y3 + y2 + y) dy – x2 dx – x dx = 0

 2. Next, separate x and y terms on opposite sides of the equal sign:

   (y3 + y2 + y) dy = x2 dx + x dx

 3. Then integrate:
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i Find the implicit solution to this differential equation:

   

 Solution: y = cos–1 (sin (x)) + C

 1. Multiply both sides by dx:

   sin (y) dy – cos (x) dx = 0

 2. Then separate x and y terms on different sides of the equal sign:

   sin (y) dy = cos (x) dx

 3. Integrate to get the following (where C is a constant of integration):

   cos (y) = –sin (x) + C

 4. The result is an explicit solution:

   y = cos–1 (sin (x)) + C

j What’s the implicit solution to this equation?

   

 Solution: ey + y3 = x2

 1. Start off by multiplying both sides of the equation by dx:

   (ey + 3y2) dy – 2x dx = 0

 2. Next, separate x and y terms on opposite sides of the equal sign:

   (ey + 3y2) dy = 2x dx

 3. Then integrate:

   ey + y3 = x2

k Solve this differential equation by separating it:

   

 Solution: y = (mx8 – 2x4)1/4

 1. First, test whether f(x, y) = f(tx, ty). Substituting tx for x and ty for y gives you

   

  The t drops out, which means you can try the y = vx trick.

 2. Substitute y = vx to get

   

  which becomes
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 3. Separate the terms as follows:

   

 4. Then integrate:

   

  Note: Here, k is a constant of integration.

 5. Using the fact that

   ln (a) + ln (b) = ln (ab)

  and

   a ln (b) = ln (ba)

  you get

   v4 + 2 = (mx)4

  where m is a constant.

 6. Substitute v = y/x:

   (y/x)4 + 2 = (mx)4

  or

   y4 + 2x4 = m4x8

 7. Finally, solve for y:

   y = (mx8 – 2x4)1/4

  where m is a constant.

l Convert this equation so that it’s separable and solve:

   

  Solution: y = (mx4 – x2)1/2

 1. Test whether f(x, y) = f(tx, ty). Substituting tx for x and ty for y gives you

   

  Because the t drops out, you can employ the y = vx trick.

 2. Substituting y = vx gives you

   

  That equation becomes
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 3. Separate the x and v variables:

   

 4. Now integrate to get

   

  where k is a constant of integration.

 5. Using the fact that

   ln (a) + ln (b) = ln (ab)

  and

   a ln (b) = ln (ba)

  you wind up with

   v2 + 1 = (mx)2

  where m is a constant.

 6. Substituting v = y/x gives you

   (y/x)2 + 1 = (mx)2

  or

   y2 + x2 = m2x4

 7. Now just solve for y to get

   y = (mx4 – x2)1/2

  where m is a constant.

m Solve this differential equation by separating it:

  

 Solution: y = (mx6 – x3)1/3

 1. First, test whether f(x, y) = f(tx, ty). Substituting tx for x and ty for y gives you

   

  The t drops out, which means you can try the y = vx trick.

 2. Substitute y = vx to get

   

  which becomes
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 3. Separate the terms as follows:

   

 4. Then integrate:

   

  Note: Here, k is a constant of integration.

 5. Using the fact that

   ln (a) + ln (b) = ln (ab)

  and

   a ln (b) = ln (ba)

  you get

   v3 + 1 = (mx)3

  where m is a constant.

 6. Substitute v = y/x:

   (y/x)3 + 1 = (mx)3

  or

   y3 + x3 = m3x6

 7. Finally, solve for y:

   y = (mx6 – x3)1/3

  where m is a constant.

n Convert this equation so that it’s separable and solve:

  

 Solution: y = (mx10 – 5x5)1/5

 1. Test whether f(x, y) = f(tx, ty). Substituting tx for x and ty for y gives you

   

  Because the t drops out, you can employ the y = vx trick.

 2. Substituting y = vx gives you

   

  That equation becomes
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 3. Separate the x and v variables:

   

 4. Now integrate to get

   

  where k is a constant of integration.

 5. Using the fact that

   ln (a) + ln (b) = ln (ab)

  and

   a ln (b) = ln (ba)

  you wind up with

   v5 + 5 = (mx)5

  where m is a constant.

 6. Substituting v = y/x gives you

   (y/x)5 + 5 = (mx)5

  or

   y5 + 5x5 = m5x10

 7. Now just solve for y to get

   y = (mx10 – 5x5)1/5

  where m is a constant.

o Solve this differential equation by separating it:

   

 Solution: 

 1. Multiply both sides by y:

   

 2. Then multiply both sides by dx:

   

 3. Integrate to get
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 4. Multiply by 2:

   

 5. Finally, take the square root to get

   

p What’s the solution if you separate this equation?

   

 Solution: y = (cos (x) + c)–1

 1. Divide both sides of the equation by y2:

   

 2. Next, multiply both sides by dx:

   

 3. Separate the two terms to get

   

 4. Then integrate:

   y–1 = cos (x) + c

 5. Finally, take the reciprocal:

   y = (cos (x) + c)–1

q Find the answer to this equation by separating it:

   

 Solution: y = (2x4 – 2x + c)1/2

 1. Multiply both sides by y:

   

 2. Then multiply both sides by dx:

   y dy = (4x3 – 1) dx

 3. Integrate to get
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 4. Multiply by 2 (and absorb 2 into the constant c):

   y2 = 2x4 – 2x + c

 5. Finally, take the square root to get

   y = (2x4 – 2x + c)1/2

r Solve this differential equation by separating it:

   

 Solution: y = sin (ln |x| + c)

 1. Divide both sides of the equation by x:

   

 2. Next, multiply both sides by dx:

   

 3. Divide both sides by (1 – y2)1/2:

   

 4. Then integrate:

   sin–1 (y) = ln |x| + c

 5. Finally, take the sine of both sides:

   y = sin (ln |x| + c)

s What’s the solution if you separate this equation?

   

 Solution: y = (3x5 – 3x + c)1/3

 1. Multiply both sides by y2:

   

 2. Then multiply both sides by dx:

   y2 dy = (5x4 – 1) dx

 3. Integrate to get
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 4. Multiply both sides by 3 (and absorb 3 into the constant c):

   y3 = 3x5 – 3x + c

 5. Finally, take the cube root to get

   y = (3x5 – 3x + c)1/3

t Find the answer to this equation by separating it:

   

 Solution: 

 1. Multiply both sides of the equation by 1 + y4:

   

 2. Next, multiply both sides by dx:

   (1 + y4) dy = x2 dx

 3. Then integrate:

   

  Leave this one as an implicit solution.

u Figure out the answer to this differential equation:

   

  where

  y(0) = 3

 Solution: 

 1. Start by multiplying both sides of the equation by y3 to get

   

 2. Multiplying both sides by dx gives you

   y3 dy = x5 dx

 3. Go ahead and integrate both sides of the equation:

   

 4. Then multiply by 4 (and absorb 4 into the constant c):
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 5. Take the fourth root:

   

 6. Solve for c:

   3 = (c)1/4

 7. Here’s your solution:

   

v Solve this equation:

   

  where

   y(1) = 3

 Solution: y = (3x4 + 6x3 +18)1/3

 1. Multiply both sides by y2 to get

   

 2. Next, multiply both sides by dx:

   y2 dy = (4x3 + 6x2) dx

 3. Integrate both sides:

   

 4. Then multiply by 3 (and absorb 3 into the constant c):

   y3 = 3x4 + 6x3 + c

 5. Take the cube root:

   y = (3x4 + 6x3 + c)1/3

 6. Now solve for c using the initial condition:

   3 = (9 + c)1/3

  which gives you this value for c:

   c = 18

  resulting in this solution:

   y = (3x4 + 6x3 +18)1/3

w Figure out the answer to this differential equation:

   

  where

  y(0) = 1
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 Solution: y = (x2 – x + 1)–1

 1. Start by dividing both sides of the equation by y2:

   

 2. Multiplying both sides by dx gives you

   

 3. Go ahead and integrate both sides of the equation:

   

 4. Then take the reciprocal to get

   –y = (x – x2 + c)–1

 5. Multiply by –1:

   y = –(x – x2 + c)–1

 6. Solve for c using the initial condition:

   1 = –(c)–1

 7. You should wind up with this value for c:

   c = –1

 8. Here’s your solution:

   y = –(x – x2 – 1)–1

  which you can also write as

   y = (x2 – x + 1)–1

x Solve this equation:

  

  where

  y(0) = 2

 Solution: y = (2ex + 2)1/2

 1. Multiply both sides by ex to get

   

 2. Next, multiply both sides by dx:

   ex dx – y dy = 0

 3. Separate the terms:

   ex dx = y dy

 4. Then integrate both sides:

   



57 Chapter 2: Surveying Separable First Order Differential Equations

 5. Multiply both sides by 2 (and absorb 2 into the constant c):

   2ex + c = y2

 6. Take the square root:

   y = (2ex + c)1/2

 7. Now solve for c using the initial condition:

   2 = (2 + c)1/2

  which gives you this value for c:

   c = 2

  resulting in this solution:

   y = (2ex + 2)1/2
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Chapter 3

Examining Exact First Order 
Differential Equations

In This Chapter
▶ Figuring out whether a differential equation is exact

▶ Solving exact differential equations

An exact differential equation is a differential equation that can be cast into the 

following form:

 

You can integrate the derivative in this case and get the solution f(x, y), which is precisely 

what this chapter is all about: finding f(x, y). In the following pages, you practice a simple 

test to determine whether a differential equation is exact (so that you don’t waste your time 

looking for f(x, y) if it’s not), and then you work on solving exact differential equations.

Exactly, Dear Watson: Determining whether 
a Differential Equation Is Exact

Unlike a detective who has to spend time (sometimes lots of it!) analyzing evidence, you can 

figure out whether a particular differential equation is exact or not in a flash. The approach 

I show you in this section saves you a good deal of time in the long run because you don’t 

have to invest any effort in trying to find the function f(x, y) if an equation isn’t exact.

 Here’s the test for determining whether a differential equation is exact:

If you have the differential equation

 



60 Part I: Tackling First Order Differential Equations 

then there exists a function f(x, y) such that

 

and

 

if and only if

 

Following is an example to illustrate this test in action. I suggest you take a few minutes 

to review it before diving into the following practice problems that ask you to determine 

whether a differential equation is exact or not.

 Q. Is this differential equation exact?

    

 A. Yes.

1. To solve this equation, you first need 

to put it into this form:

 

2. So

 M(x, y) = 2x + y2

  and

 N(x, y) = 2xy

3. Now calculate the following equations:

 

 

4. So

 

  Therefore, the differential equation is 

exact.
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 4. Is this differential equation exact?

    

 Solve It

 3. Following is an exact differential equation . . . 

or is it? Calculate to decide.

    

 Solve It

 2. Determine whether this differential 

equation is exact:

    

 Solve It

 1. Is this differential equation exact?

    

 Solve It
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 8. Determine whether this differential 

equation is exact:

    

 Solve It

 7. Is this differential equation exact?

    

 Solve It

 6. Following is an exact differential equation . . . 

or is it? Calculate to decide.

    

 Solve It

 5. Determine whether this differential 

equation is exact:

    

 Solve It
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Getting Answers from Exact 
Differential Equations

To find the solution to an exact differential equation like this one:

 

in a systematic way, you need to find a function f(x, y) such that

 

and

 

The correct function allows you to write the differential equation like this:

 

Here’s your assignment, should you choose to accept it: Try to integrate M(x, y) and N(x, y) 

with respect to x and y to see whether you can find f(x, y).

 

In this case,

M(x, y) = 2xy

which means that

 

If you integrate both sides, you get

f(x, y) = x2y + g(y)

where g(y) is a function that depends only on y, not on x. What’s g(y)? Ah, but you already 

know the answer to that question because

 

and

N(x, y) = (1 + x2)
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so

 

Because you know that

f(x, y) = x2y + g(y)

you get this:

 

So

 

Integrating with respect to y gives you the following:

g(y) = y + k

where k is a constant of integration. And because

f(x, y) = x2y + g(y)

you get

f(x, y) = x2y + y + k

You now know that the solution is

f(x, y) = c

which can be rewritten as

x2y + y = c

Note that k, the constant of integration, has been absorbed into the constant c. That’s the 

implicit solution to the exact differential equation. Want the explicit solution instead? Here 

you go:

 

The following example walks you through this process again, but feel free to skip ahead to 

the practice problems if you think you’re ready to test out your skills.
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 Q. Solve this exact differential equation:

    

 A. y = c/x

1. You can identify that

 M(x, y) = y

  or

 

2. Integrate to get

 f(x, y) = xy + g(y)

  where g(y) is a function.

3. Do the same with the second part of 

the equation. Identify that

 N(x, y) = x

  Because

 

  that means

 

4. If

 

  then

 

5. Integrate again to get

 g(y) = k

  where k is a constant of integration.

6. Because

 f(x, y) = xy + g(y)

  you get

 f(x, y) = xy + k

7. In general, the solution is

 f(x, y) = c

  so

 xy + k = c

8. Absorbing k into c gives you

 y = c/x
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 12. Solve this exact differential equation:

    

 Solve It

 11. What’s the solution to this exact 

differential equation?

    

 Solve It

 10. Solve this exact differential equation:

    

 Solve It

 9. What’s the solution to this exact 

differential equation?

    

 Solve It
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Answers to Exact First Order Differential 
Equation Problems

Following are the answers to the practice questions presented throughout this chapter. 

Each one is worked out step by step so that if you messed one up along the way, you can 

more easily see where you took a wrong turn.

a Is this differential equation exact?

   

 Answer: Yes

 1. Start by casting the differential equation in this form:

   

 2. So

   M(x, y) = y2

  and

   N(x, y) = 2xy

 3. Now calculate the following equations:

   

  and

   

 4. So

   

  Therefore, the differential equation is exact.

b Determine whether this differential equation is exact:

   

 Answer: No

 1. Put the equation into the following form:
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 2. You know that

   M(x, y) = y

  and

   N(x, y) = xy

 3. Consequently, you can calculate that

   

  and

   

  to get

   

  Thus, the differential equation must not be exact.

c Following is an exact differential equation . . . or is it? Calculate to decide.

   

 Answer: Yes

 1. Start by casting the differential equation in this form:

   

 2. So

   M(x, y) = 5y + 10x

  and

   N(x, y) = 5x

 3. Now calculate the following equations:

   

  and

   

 4. So

   

  Therefore, the differential equation is exact.
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d Is this differential equation exact?

   

 Answer: Yes

 1. Put the equation into the following form:

   

 2. You know that

   M(x, y) = –2y

  and

   N(x, y) = –2x

 3. Consequently, you can calculate that

   

  and

   

  to get

   

  Thus, the differential equation is exact.

e Determine whether this differential equation is exact:

   

 Answer: No

 1. Start by casting the differential equation in this form:

   

 2. So

   

  and
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 3. Now calculate the following equations:

   

  and

   

 4. So

   

  Therefore, the differential equation must not be exact.

f Following is an exact differential equation . . . or is it? Calculate to decide.

   

 Answer: Yes

 1. Put the equation into the following form:

   

 2. You know that

   M(x, y) = xy

  and

   

 3. Consequently, you can calculate that

   

  and

   

  to get

   

  Thus, the differential equation is exact.
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g Is this differential equation exact?

   

 Answer: No

 1. Start by casting the differential equation in this form:

   

 2. So

   

  and

   

 3. Now calculate the following equations:

   

  and

   

 4. So

   

  Therefore, the differential equation must not be exact.

h Determine whether this differential equation is exact:

   

 Answer: No

 1. Put the equation into the following form:
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 2. You know that

   M(x, y) = y2 + 1

  and

   N(x, y) = xy

 3. Consequently, you can calculate that

   

  and

   

  to get

   

  Thus, the differential equation must not be exact.

i What’s the solution to this exact differential equation?

   

 Solution: y = (c – x3)1/2

 1. From the original equation, you can identify either

   M(x, y) = 3x2

  or

   

 2. Integrating gives you

   f(x, y) = x3 + g(y)

  where g(y) is a function.

 3. From the original equation, you can also determine that

   N(x, y) = 2y

  Because

   

  that means
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 4. Also, because

   f(x, y) = x3 + g(y)

  then

   

  so

   

 5. Integrating gives you

   g(y) = y2 + k

  where k is a constant of integration.

 6. Knowing that

   f(x, y) = x3 + g(y)

  you get

   f(x, y) = x3 + y2 + k

 7. In general, the solution is

   f(x, y) = c

  so

   c = x3 + y2 + k

 8. Absorbing k into c gives you the following:

   c = x3 + y2

 9. Finally, solving for y leaves you with

   y = (c – x3)1/2

j Solve this exact differential equation:

   

 Solution: y = (cx)1/2

 1. Here’s what you know right off the bat:

   

  or
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 2. Integrate to get the following:

   

  where g(y) is a function of y.

 3. Next up, identify that

   

  Because

   

  you know that

   

 4. Because

   

  you can differentiate to get

   

  so

   

 5. Integrate:

   

  where k is a constant of integration.

 6. Because

   

  you get this:
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 7. In general, the solution is

   f(x, y) = m

  where m is a constant, so

   

 8. Absorb k and the minus sign into m:

   

 9. Then solve for y (where c = 1/m):

   y = (cx)1/2

k What’s the solution to this exact differential equation?

   

 Solution: 

 1. From the original equation, you can identify either

   M(x, y) = y + 2x

  or

   

 2. Integrating gives you

   f(x, y) = xy + x2 + g(y)

  where g(y) is a function of y.

 3. From the original equation, you can also determine that

   N(x, y) = x

  Because

   

  that means
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 4. Also, because

   f(x, y) = xy + x2 + g(y)

  then differentiating with respect to y should give you this:

   

  so

   

 5. Integrating gives you

   g(y) = k

  where k is a constant of integration.

 6. Knowing that

   f(x, y) = xy + x2 + g(y)

  you get

   f(x, y) = xy + x2 + k

 7. In general, the solution is

   f(x, y) = c

  where c is a constant, so

   c = xy + x2 + k

 8. Absorbing k into c gives you the following:

   c = xy + x2

 9. Finally, solving for y leaves you with

   

l Solve this exact differential equation:

   

 Solution: 

 1. Here’s what you know right off the bat:

   

  or
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 2. Integrate with respect to x to get the following:

   

  where g(y) is a function of y.

 3. Next up, identify that

   

  Because

   

  you know that

   

 4. Because

   

  you can differentiate with respect to y to get

   

  so

   

 5. Integrate:

   g(y) = k

  where k is a constant of integration.

 6. Because

   

  you get this:

   

 7. In general, the solution is

   f(x, y) = c

  where c is a constant, so

   

 8. Absorb k into c:

   

 9. Then solve for y:
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Part II
Finding Solutions to 

Second and Higher Order 
Differential Equations



In this part . . .

Get ready to take your differential equations skills to 

the next level as you practice solving second (and 

higher) order differential equations. You also get reac-

quainted with dazzling and time-saving techniques, such 

as the method of undetermined coefficients.



Chapter 4

Working with Linear Second 
Order Differential Equations

In This Chapter
▶ Solving second order differential equations that are both linear and homogeneous

▶ Reveling in the three roots: real, distinct roots; complex roots; and real, identical roots

Are linear second order differential equations keeping you up at night? You know the 

ones. They look like this:

y" + p(x)y' + q(x)y = g(x)

where

 

and

 

Then this is the chapter for you because it’s all about practicing solving linear second order 

differential equations that are also homogeneous.

Note: In this chapter, you only solve differential equations for regions where p(x), q(x), and 

g(x) are continuous functions (that is, where they don’t take quick jumps in value). Usually 

there will be an initial condition, such as

y(x
o
) = y

o

and

y'(x
o
) = y

o
'
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Getting the Goods on Linear Second 
Order Differential Equations

 In linear second order differential equations, the exponent of y", y', and y is 1. Equations not 

in that form are called nonlinear (but don’t worry, I don’t deal with those nasty things here).

The equation I present at the beginning of this chapter is the typical form used for linear 

second order differential equations in most textbooks. However, some textbooks seem to 

just want to make your life difficult, so they write the equation as follows:

P(x)y" + Q(x)y' + R(x)y = G(x)

Note that the only difference in this form is that y" has a coefficient, P(x).

 You can convert such equations into the first format I present simply by noting that

 

and

 

and

 

Of course, linear second order differential equations can also be homogeneous, meaning 

that in an equation such as the following, g(x) = 0:

y" + p(x)y' + q(x)y = 0

Using the P(x), Q(x), R(x), and G(x) terminology that some textbooks prefer, note that you 

can also rewrite this equation with G(x) = 0:

P(x)y" + Q(x)y' + R(x)y = 0

If a linear second order differential equation can’t be put into either form, the equation is 

considered nonhomogeneous.

So now you’re up to speed on what makes a second order differential equation both linear 

and homogeneous, but can you tell just by looking at an equation that it has both character-

istics? Test yourself with the following practice problems.
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 1. Is this differential equation linear and 

homogeneous?

    

 Solve It

 2. Is the following equation both linear and 

homogeneous?

    (y" )2 + 4y' + 8y = 0

 Solve It

 Q. Is this differential equation linear and 

homogeneous?

    

 A. Homogeneous but not linear

1. If you group all the nonconstant terms 

on the left side of the equation, the 

result equals 0, so you can cast the dif-

ferential equation in this form (where 

the function f( ) has no constant terms):

 

  Therefore, the differential equation is 

homogeneous.

2. You can’t, however, put the differential 

equation into this form, because the 

exponent of y is 2 (not 1):

 y" + p(x)y' + q(x)y = g(x)

  Consequently, the differential equation 

isn’t linear.
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 3. Is this differential equation linear and 

homogeneous?

    

 Solve It

 4. Is the following equation both linear and 

homogeneous?

    

 Solve It

Finding the Solution When Constant 
Coefficients Come into Play

After you know that the second order differential equation you’re working with is both 

linear and homogeneous, the next step is to work it out. This section offers you some 

practice doing just that.

Following is an example of a second order differential equation that’s both linear and 

homogeneous:

y" – y = 0

where

y(0) = 9

and

y'(0) = –1
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To solve this differential equation, you need a solution y = f(x) whose second derivative is 

the same as f(x) itself because subtracting the f(x) from f"(x) gives you 0. I bet you can think 

of one such solution: y = ex. Substituting y = ex gives you

ex – ex = 0

so y = ex is a solution.

In fact, y = c
1
ex is also a solution, because y" still equals c

1
ex, which means that substituting 

y = c
1
ex gives you

c
1
ex – c

1
ex = 0

Guess what? That means y = c
1
ex is also a solution. In fact, it’s more general than just y = ex, 

because y = c
1
ex represents an infinite number of solutions, depending on the value of c

1
.

You can keep on going if you note that y = e–x is also a solution because

y" – y = e–x – e–x = 0

Of course, that realization alerts you to the fact that y = c
2
e–x is yet another solution because

y" – y = c
2
e–x – c

2
e–x = 0

Hmmm. If y = c
1
ex is a solution and y = c

2
e–x is a solution, then the sum of these two solutions 

must also be a solution:

y = c
1
ex + c

2
e–x

To match the initial conditions, you can use the form of the solution y = c
1
ex + c

2
e–x, which 

means that y' = c
1
ex  – c

2
e–x. Using the initial conditions, you get

y(0) = c
1
ex + c

2
e–x = c

1
 + c

2
 = 9

y'(0) = c
1
ex – c

2
e–x = c

1
 – c

2
 = –1

which leaves you with these two equations:

c
1
 + c

2
 = 9

c
1
 – c

2
 = –1

So now you have two equations in two unknowns. To solve them, write the first equation in 

this form:

c
2
 = 9 – c

1
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Then substitute this expression for c
2
 into the other equation:

c
1
 – 9 + c

1
 = –1

or

2c
1
 = 8

so

c
1
 = 4

Substituting this value of c
1
 into the first equation (c

1
 + c

2
 = 9) gives you

4 + c
2
 = 9

or

c
2
 = 5

The values of c
1
 and c

2
 give you your solution, which is

y = 4ex + 5e–x

Rooted in reality: Second order differential 
equations with real and distinct roots
Guessing solutions is great when it works, but you can’t count on always being lucky 

enough to get your desired answer. Instead, try assuming a solution of the form

y = erx

and plug that into the differential equation you’re working on. In the case of y" – y = 0, 

you get

r2y – y = 0

Dividing by y gives you

r2 – 1 = 0

which is actually the characteristic equation (the equation you get when you substitute in 

your assumed solution) for the differential equation. After you find the roots of the charac-

teristic equation, r
1
 and r

2
, you can determine that the solution to the differential equation is

y = c
1
er

1
x + c

2
er

2
x



87 Chapter 4: Working with Linear Second Order Differential Equations

 Three types of solutions are possible for the characteristic equation:

 ✓ r
1
 and r

2
 are real and distinct

 ✓ r
1
 and r

2
 are complex numbers (complex conjugates of each other)

 ✓ r
1
 = r

2
 where r

1
 and r

2
 are real

Here’s an example problem that shows you how to solve a differential equation in which r
1
 and 

r
2
 are real and distinct. Check it out and then try to solve the practice problems on your own.

 Q. Solve this differential equation:

    

    where

    y(0) = 2

    y'(0) = –3

 A. y = e–x + e–2x

1. Assume a solution of the form

 y = erx

2. Plug the assumed solution into the 

d ifferential equation to get

 r2y + 3ry + 2y = 0

3. Divide by y to get the characteristic 

equation:

 r2 + 3r + 2 = 0

4. Use the quadratic equation to get the 

two roots of the characteristic equation:

 r
1
 = –1 and r

2
 = –2

5. Plug the two roots in to get the follow-

ing general solution:

 y = c
1
e–x + c

2
e–2x

6. Find the derivative, y':

 y' = –c
1
e–x – 2c

2
e–2x

7. Use the initial conditions to get the 

first equation

 y(0) = c
1
 + c

2
 = 2

  and the second equation

 y'(0) = –c
1
 – 2c

2
 = –3

8. Add the first and second equations 

together to get

 –c
2
 = –1 or c

2
 = 1

9. Then plug this result into the first 

equation:

 c
1
 + 1 = 2, or c

1
 = 1

10. Finally, use c
1
 and c

2
 to get the solution:

 y = e–x + e–2x
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 8. What’s the solution to this differential 

equation?

    

    where

    y(0) = 4

    y'(0) = –14

 Solve It

 7. Solve this differential equation:

    

    where

    y(0) = 3

    y'(0) = –8

 Solve It

 6. What’s the solution to this differential 

equation?

    

    where

    y(0) = 2

    y'(0) = –5

 Solve It

 5. Solve this differential equation:

    

    where

    y(0) = 2

    y'(0) = –4

 Solve It
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 9. Solve this differential equation:

    

    where

    y(0) = 3

    y'(0) = –11

 Solve It

 10. What’s the solution to this differential 

equation?

    

    where

    y(0) = 5

    y'(0) = –25

 Solve It

Adding complexity: Second order differential 
equations with complex roots
Now it’s time to solve second order differential equations where the roots of the character-

istic equation are complex, meaning they involve the imaginary number i. In this case, the 

roots, which you get from the quadratic equation, are of the form

r
1
 = m + in and r

2
 = m – in

where m and n are both real numbers.

The solutions to the differential equation are

y
1
 = er

1
x and y

2
 = er

2
x

so

y
1
 = e(m + in)x

and

y
2
 = e(m – in)x
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Time to resort to two well-known formulas:

eiax = cos ax + i sin ax

and

e–iax = cos ax – i sin ax

to get the following:

y
1
 = e(m + in)x = emx(cos nx + i sin nx)

and

y
2
 = e(m – in)x = emx(cos nx – i sin nx)

By adding these two solutions and doing a little trigonometry, you can cast the solution as

y(x) = c
1
emx cos nx + c

2
emx sin nx

Want to walk through the process again? Review the following example. Or if you’re feeling 

up to the challenge, skip ahead to the practice problems.

 Q. Solve this differential equation:

    2y" + 2y' + y = 0

    where

    y(0) = 1

    and

    y'(0) = 0

 A. 
1. Get the following characteristic equation:

 2r2 + 2r + 1 = 0

2. Use the quadratic equation to solve for 

the two roots:

 r
1
 = –1/2 + (1/2)i

  and

 r
2
 = –1/2 – (1/2)i

3. Put the solutions in this form:

 r
1
 = m + in and r

2
 = m – in

  In this case,

 m = –1/2 and n = 1/2

4. Use the equation:

 y(x) = c
1
emx cos nx + c

2
emx sin nx

5. So the solution is

 

6. Use the initial conditions to find c
1
 and 

c
2
. Plugging into the initial conditions 

gives you the following first equation:

 y(0) = c
1
 = 1

  as well as this second one:

 

7. Substituting c
1
 = 1 into the second 

equation gives you

 

  so c
2
 = 1, which makes the solution
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 11. Solve this differential equation:

    y" + 4y' + 5y = 0

    where

    y(0) = 1

    and

    y'(0) = –1

 Solve It

 12. Find the solution to this differential 

equation:

    y" + 4y = 0

    where

    y(0) = 1

    and

    y'(0) = 1

 Solve It

Look-alike city: Second order differential 
equations with real, identical roots
The third and final type of solution for a characteristic equation involves identical real 

roots. If you substitute y = erx into the following differential equation:

ay" + by' + cy = 0

you get this:

ar2 + br + c = 0

For the purposes of this section, the roots are

r
1
 = –b/2a and r

2
 = –b/2a

That’s a problem, because you get these two solutions (which differ only by a constant):

y
1
 = c

1
e–bx/2a and y

2
 = c

2
e–bx/2a

Because the difference between these two equations is merely a constant, they’re really the 

same solution. Ah, but the fun doesn’t stop there! The actual two solutions really differ by 
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a factor of x (see the proof for yourself in Differential Equations For Dummies), so the real 

solution is

y(x) = c
1
xe–bx/2a + c

2
e–bx/2a

Following is another example so you can see the process in action before trying to solve the 

next four practice problems on your own.

 Q. Solve this differential equation:

    y" + 2y' + y = 0

    where

    y(0) = 1

    and

    y'(0) = 1

 A. y(x) = 2xe–x + e–x

1. Solve for the characteristic equation:

 r2 + 2r + 1 = 0

2. Then factor the characteristic equation 

this way:

 (r + 1)(r + 1) = 0

  Looks like the roots of the differential 

equation are identical, –1 and –1.

3. Therefore, the solution is of the form

 y(x) = c
1
xe–x + c

2
e–x

4. To find c
1
 and c

2
, use the initial 

conditions. Substitute the first initial 

condition into the solution to get

 y(0) = c
2
 = 1

  So c
2
 = 1.

5. Differentiate the solution to get y'(x):

 y'(x) = c
1
e–x – c

1
xe–x = c

1
e–x(1 – x) – c

2
e–x

6. From the initial condition for y'(0), 

you get

 y'(0) = c
1
 – 1 = 1

  So c
1
 = 2.

7. Plugging in c
1
 and c

2
 gives you the 

following general solution:

 y(x) = 2xe–x + e–x
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 16. What’s the solution to this equation?

    y" + 6y' + 9y = 0

    where

    y(0) = 4

    and

    y'(0) = 4

 Solve It

 15. Solve this differential equation:

    y" + 8y' + 16y = 0

    where

    y(0) = 2

    and

    y'(0) = 4

 Solve It

 14. What’s the solution to this equation?

    y" + 10y' + 25y = 0

    where

    y(0) = 1

    and

    y'(0) = 2

 Solve It

 13. Solve this differential equation:

    y" + 4y' + 4y = 0

    where

    y(0) = 1

    and

    y'(0) = 0

 Solve It
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Answers to Linear Second Order 
Differential Equation Problems

Here are the answers to the practice questions I provide throughout this chapter. I walk you 

through each answer so you can see the problems worked out step by step. Enjoy!

a Is this differential equation linear and homogeneous?

   

 Answer: Homogeneous and linear

 1. If you group all the nonconstant terms on the left side, the result equals 0, so you can cast the 

differential equation in this form (where the function f( ) has no constant terms):

   

  Therefore, the differential equation is homogeneous.

 2. You can also put the differential equation into this form, because the exponent of y is 2:

   y" + p(x)y' + q(x)y = g(x)

  Consequently, the differential equation is linear.

b Is the following equation both linear and homogeneous?

  ( y" )2 + 4y' + 8y = 0

 Answer: Homogeneous but not linear

 1. Because all nonconstant terms can be grouped on the left side of the equation, your result 

equals 0. Consequently, you can cast the differential equation in this form (where the function 

f( ) has no constant terms):

   (y")2 – f(x, y, y') = 0

  This differential equation is homogeneous.

 2. You can’t put the differential equation into this form, because the exponent of y" is 2 (not 1):

   y" + p(x)y' + q(x)y = g(x)

  This equation isn’t linear.

c Is this differential equation linear and homogeneous?

   

 Answer: Nonhomogeneous but linear

 1. In this case, you can’t group all the nonconstant terms on the left side of the equation and have the 

result equal 0, so you can’t cast the differential equation in this form (where the function f( ) has no 

constant terms):
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  Therefore, the differential equation isn’t homogeneous.

 2. You can put the differential equation into this form, because the exponent of y is 2:

   y" + p(x)y' + q(x)y = g(x)

  Consequently, the differential equation is linear.

d Is the following equation both linear and homogeneous?

   

d
2
y

dx
2

+ 5 
dy

dx
+ 9 y

2 = 3

 Answer: Neither homogeneous nor linear

 1. Not all the nonconstant terms can be grouped on the left side and have the result equal 0, so you 

can’t cast the differential equation in this form (where the function f( ) has no constant terms):

   

  This differential equation isn’t homogeneous.

 2. You can’t put the differential equation into this form, because the exponent of y" is 2 (not 1):

   y" + p(x)y' + q(x)y = g(x)

  This equation isn’t linear.

e Solve this differential equation:

   

  where

  y(0) = 2

  y'(0) = –4

 Solution: y = e–x + e–3x

 1. Assume a solution of the form

   y = erx

 2. Plug the assumed solution into the differential equation to get

   r2y +4ry + 3y = 0

 3. Divide by y to find the characteristic equation:

   r2 +4r + 3 = 0

 4. Use the quadratic equation to get the two roots of the characteristic equation:

   r
1
 = –1 and r

2
 = –3

 5. Plug the two roots in to get the general solution:

   y = c
1
e–x + c

2
e–3x

 6. Next, find the derivative, y':

   y' = –c
1
e–x – 3c

2
e–3x
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 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 2

  and the second equation:

   y'(0) = –c
1
 – 3c

2
 = –4

 8. Add the first and second equations together to get

   –2c
2
 = –2, or c

2
 = 1

 9. Plug this result into the first equation:

   c
1
 + 1 = 2, or c

1
 = 1

 10. Then just use c
1
 and c

2
 to get your solution:

   y = e–x + e–3x

f What’s the solution to this differential equation?

   

  where

  y(0) = 2

  y'(0) = –5

 Solution: y = e–2x + e–3x

 1. Assume a solution of the form

   y = erx

 2. Plug that solution into the differential equation:

   r2y + 5ry + 6y = 0

 3. Then divide by y to get the characteristic equation:

   r2 + 5r + 6 = 0

 4. Find the two roots of the characteristic equation by using the quadratic equation:

   r
1
 = –2 and r

2
 = –3

 5. Plug the two roots in to get your general solution:

   y = c
1
e–2x + c

2
e–3x

 6. Then find the derivative, y':

   y' = –2c
1
e–2x – 3c

2
e–3x

 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 2

  and the second equation:

   y'(0) = –2c
1
 – 3c

2
 = –5

 8. Then add twice the first equation to the second equation:

   –c
2
 = –1, or c

2
 = 1
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 9. Plug this result into the first equation to get

   c
1
 + 1 = 2, or c

1
 = 1

 10. Finally, use c
1
 and c

2
 to find your solution:

   y = e–2x + e–3x

g Solve this differential equation:

   

  where

  y(0) = 3

  y'(0) = –8

 Solution: y = e–2x + 2e–3x

 1. Assume a solution of the form

   y = erx

 2. Plug the assumed solution into the differential equation to get

   r 2y + 5ry + 6y = 0

 3. Divide by y to find the characteristic equation:

   r 2 + 5r + 6 = 0

 4. Use the quadratic equation to get the two roots of the characteristic equation:

   r
1
 = –2 and r

2
 = –3

 5. Plug the two roots in to get the general solution:

   y = c
1
e–2x + c

2
e–3x

 6. Next, find the derivative, y':

   y' = –2c
1
e–2x – 3c

2
e–3x

 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 3

  and the second equation:

   y'(0) = –2c
1
 – 3c

2
 = –8

 8. Add twice the first equation to the second equation to get

   –c
2
 = –2, or c

2
 = 2

 9. Plug this result into the first equation:

   c
1
 + 2 = 3, or c

1
 = 1

 10. Then just use c
1
 and c

2
 to get your solution:

   y = e–2x + 2e–3x

h What’s the solution to this differential equation?
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  where

  y(0) = 4

  y'(0) = –14

 Solution: y = e–2x + 3e–4x

 1. Assume a solution of the form

   y = erx

 2. Plug that solution into the differential equation:

   r 2y + 6ry + 8y = 0

 3. Then divide by y to get the characteristic equation:

   r 2 + 6r + 8 = 0

 4. Find the two roots of the characteristic equation by using the quadratic equation:

   r
1
 = –2 and r

2
 = –4

 5. Plug the two roots in to get your general solution:

   y = c
1
e–2x + c

2
e–4x

 6. Then find the derivative, y':

   y' = –2c
1
e–2x – 4c

2
e–4x

 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 4

  and the second equation:

   y'(0) = –2c
1
 – 4c

2
 = –14

 8. Then add twice the first equation to the second equation:

   –2c
2
 = –6, or c

2
 = 3

 9. Plug this result into the first equation to get

   c
1
 + 3 = 4, or c

1
 = 1

 10. Finally, use c
1
 and c

2
 to find your solution:

   y = e–2x + 3e–4x

i Solve this differential equation:

   

  where

  y(0) = 3

  y'(0) = –11

 Solution: y = e–x + 2e–5x

 1. Assume a solution of the form

   y = erx
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 2. Plug the assumed solution into the differential equation to get

   r 2y + 6ry + 5y = 0

 3. Divide by y to find the characteristic equation:

   r 2 + 6r + 5 = 0

 4. Use the quadratic equation to get the two roots of the characteristic equation:

   r
1
 = –1 and r

2
 = –5

 5. Plug the two roots in to get the general solution:

   y = c
1
e–x + c

2
e–5x

 6. Next, find the derivative, y':

   y' = –c
1
e–x – 5c

2
e–5x

 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 3

  and the second equation:

   y'(0) = –c
1
 – 5c

2
 = –11

 8. Add the first equation to the second equation to get

   –4c
2
 = –8, or c

2
 = 2

 9. Plug this result into the first equation:

   c
1
 + 2 = 3, or c

1
 = 1

 10. Then just use c
1
 and c

2
 to get your solution:

   y = e–x + 2e–5x

j What’s the solution to this differential equation?

   

  where

  y(0) = 5

  y'(0) = –25

 Solution: y = e–x + 4e–6x

 1. Assume a solution of the form

   y = erx

 2. Plug that solution into the differential equation:

   r 2y + 7ry + 6y = 0

 3. Then divide by y to get the characteristic equation:

   r 2 + 7r + 6 = 0

 4. Find the two roots of the characteristic equation by using the quadratic equation:

   r
1
 = –1 and r

2
 = –6
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 5. Plug the two roots in to get the general solution:

   y = c
1
e–x + c

2
e–6x 

 6. Then find the derivative, y':

   y' = –c
1
e–x – 6c

2
e–6x

 7. Use the initial conditions to get the first equation:

   y(0) = c
1
 + c

2
 = 5

  and the second equation:

   y'(0) = –c
1
 – 6c

2
 = –25

 8. Then add the first equation to the second equation:

   –5c
2
 = –20, or c

2
 = 4

 9. Plug this result into the first equation to get

   c
1
 + 4 = 5, or c

1
 = 1

 10. Finally, use c
1
 and c

2
 to find your solution:

   y = e–x + 4e–6x

k Solve this differential equation:

  y" + 4y' + 5y = 0

  where

  y(0) = 1

  and

  y'(0) = –1

 Solution: y(x) = e–2x cos (x) + e–2x sin (x)

 1. Get the following characteristic equation:

   r 2 + 4 = 0

 2. Solve for the two roots:

   r
1
 = 2i and r

2
 = –2i

 3. Put the solutions into these forms:

   r
1
 = m + in and r

2
 = m – in

  In this case,

   m = 0 and n = 2

 4. Use the equation:

   y(x) = c
1
emx cos nx + c

2
emx sin nx

 5. So the solution is

   y(x) = c
1
 cos (2x) + c

2
 sin (2x)

 6. Use the initial conditions to find c
1
 and c

2
. Plugging into the initial conditions gives you the 

following first equation:

   y(0) = c
1
 = 1
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  as well as this second one:

   y'(0) = 2c
1
 = 4

 7. Substituting c
1
 = 1 into the second equation gives you

   y'(0) = –2 + c
2
 = –1

  so c
2
 = 1.

 8. Plug c
1
 and c

2
 in to find the solution:

   y(x) = e–2x cos (x) + e–2x sin (x)

l Find the solution to this differential equation:

  y" + 4y = 0

  where

  y(0) = 1

  and

  y'(0) = 1

 Solution: 

 1. Find the characteristic equation:

   r 2 + 4 = 0

 2. Then solve for the two roots:

   r
1
 = 2i and r

2
 = –2i

 3. Put the solutions in the following forms:

   r
1
 = m + in and r

2
 = m – in

  In this case,

   m = 0 and n = 2

 4. Use this equation:

   y(x) = c
1
emx cos nx + c

2
emx sin nx

  to get this solution:

   y(x) = c
1
 cos (2x) + c

2
 sin (2x)

 5. Use the initial conditions to find c
1
 and c

2
; plug into the initial conditions to get the first equation:

   y(0) = c
1
 = 1

  and the second one:

   y'(0) = 2c
2
 = 1

 6. You now know that c
1
 = 1. Go ahead and solve for c

2
:

   

 7. Plugging c
1
 and c

2
 in gives you your solution, which is
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m Solve this differential equation:

  y" + 4y' + 4y = 0

  where

  y(0) = 1

  and

  y'(0) = 0

 Solution: y(x) = 2xe–2x + e–2x

 1. Solve for the characteristic equation:

   r 2 + 4r + 4 = 0

 2. Then factor the characteristic equation this way:

   (r + 2)(r + 2) = 0

  You now know that the roots of the differential equation are identical, –2 and –2.

 3. Therefore, the solution is of the form

   y(x) = c
1
xe–2x + c

2
e–2x

 4. To find c
1
 and c

2
, use the initial conditions provided and substitute the first initial condition 

into the solution to get

   y(0) = c
2
 = 1

  So c
2
 = 1.

 5. Differentiate the solution to get y'(x):

   y'(x) = c
1
e–2x – 2c

1
xe–2x – 2c

2
e–2x = c

1
e–2x(1 – 2x) – 2c

2
e–2x

 6. From the initial condition for y'(0), you get

   y'(0) = c
1
 – 2c

2
 = 0

  So c
1
 = 2.

 7. Plugging in c
1
 and c

2
 gives you this general solution:

   y(x) = 2xe–2x + e–2x

n What’s the solution to this equation?

  y" + 10y' + 25y = 0

  where

  y(0) = 1

  and

  y'(0) = 2

 Solution: y(x) = 7xe–5x + e–5x

 1. Find the characteristic equation:

   r 2 + 10r + 25 = 0
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 2. Factor it as follows:

   (r + 5)(r + 5) = 0

  Hmmm, the roots of the differential equation are identical, –5 and –5, so the solution must 

be of this form:

   y(x) = c
1
xe–5x + c

2
e–5x

 3. Use the initial conditions to find c
1
 and c

2
. Substituting the first initial condition into the 

solution gives you

   y(0) = c
2
 = 1

  so c
2
 = 1.

 4. Differentiating the solution gives you y'(x)

   y'(x) = c
1
e–5x – 5c

1
xe–5x – 5c

2
e–5x = c

1
e–5x(1 – 5x) – 5c

2
e–5x

 5. From the initial condition for y'(0), you get

   y'(0) = c
1
 – 5 = 2

  so c
1
 = 7.

 6. Plug c
1
 and c

2
 in to obtain the general solution:

   y(x) = 7xe–5x + e–5x

o Solve this differential equation:

  y" + 8y' + 16y = 0

  where

  y(0) = 2

  and

  y'(0) = 4

 Solution: y(x) = 12xe–4x + 2e–4x

 1. Solve for the characteristic equation:

   r 2 + 8r + 16 = 0

 2. Then factor the characteristic equation this way:

   (r + 4)(r + 4) = 0

  You now know that the roots of the differential equation are identical, –4 and –4.

 3. Therefore, the solution is of the form

   y(x) = c
1
xe–4x+ c

2
e–4x

 4. To find c
1
 and c

2
, use the initial conditions provided and substitute the first initial condition 

into the solution to get

   y(0) = c
2
 = 2

  So c
2
 = 2.
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 5. Differentiate the solution to get y'(x):

   y'(x) = c
1
e–4x – 4c

1
xe–4x – 4c

2
e–4x = c

1
e–4x(1 – 4x) – 4c

2
e–4x

 6. From the initial condition for y'(0), you get

   y'(0) = c
1
 – 4c

2
 = c

1
 – 8 = 4

  So c
1
 = 12.

 7. Plugging in c
1
 and c

2
 gives you this general solution:

   y(x) = 12xe–4x + 2e–4x

p What’s the solution to this equation?

  y" + 6y' + 9y = 0

  where

  y(0) = 4

  and

  y'(0) = 4

 Solution: y(x) = 16xe–3x + e–3x

 1. Find the characteristic equation:

   r2 + 6r + 9 = 0

 2. Factor it as follows:

   (r + 3)(r + 3) = 0

  Hmmm, the roots of the differential equation are identical, –3 and –3, so the solution must 

be of this form:

   y(x) = c
1
xe–3x + c

2
e–3x

 4. Use the initial conditions to find c
1
 and c

2
. Substituting the first initial condition into the 

solution gives you

   y(0) = c
2
 = 4

  so c
2
 = 4.

 5. Differentiating the solution gives you y'(x):

   y'(x) = c
1
e–3x – 3c

1
xe–3x – 3c

2
e–3x = c

1
e–3x(1 – 3x) – 3c

2
e–3x

 6. From the initial conditions for y'(0), you get

   y'(0) = c
1
 – 3 c

2
 = c

1
 – 12= 4

  so c
1
 = 16.

 7. Plug in c
1
 and c

2
 to obtain the general solution:

   y(x) = 16xe–3x + e–3x



Chapter 5

Tackling Nonhomogeneous Linear 
Second Order Differential Equations

In This Chapter
▶ Refreshing your memory of the method of undetermined coefficients

▶ Working with g(x) in its various forms

Welcome to the wonderful world of nonhomogeneous second order differential equa-

tions! (If you’re thinking “Homoge-huh?” flip to Chapter 4 for a refresher on what 

makes a second order differential equation homogeneous in the first place.) In other words, 

here’s your chance to play with equations that look like this:

y" + p(x)y' + q(x)y = g(x)

where g(x) ≠ 0.

You, lucky person that you are, get to handle linear second order differential equations like 

this one in the following pages:

y" – y' – 2y = 10e4x

 The method of undetermined coefficients advises that when you find a candidate solution, y, 
and plug it into the left-hand side of the equation, you end up with g(x). Because g(x) is just 

a function of x, you can often guess the form of y
p
(x), up to arbitrary coefficients, and then 

solve for those coefficients by plugging y
p
(x) into the differential equation.

 This method works because you’re handling only g(x), and the form of g(x) can often tell you 

what a particular solution looks like. For example, if g(x) is in the form of

 ✓ erx, then try a particular solution of the form Aerx, where A is a constant. Because 

derivatives of erx reproduce erx, you have a good chance of finding a particular solution 

this way.

 ✓ a polynomial of order n, then try a polynomial of order n. For instance, if g(x) = x2 + 1, 

try a polynomial of the form Ax2 + Bx+ C.

 ✓ a combination of sines and cosines, sin αx + cos βx, then try a combination of sines 

and cosines with undetermined coefficients, A sin αx + B cos βx. Then plug into the dif-

ferential equation and solve for A and B.
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You get practice with each of these problem types within this chapter as you work to find 

the general solution to each equation.

 In order to find the general solution to a nonhomogeneous linear second order differential 

equation, you must add the corresponding homogeneous equation’s solution to a particular 

solution of the nonhomogeneous equation (a particular solution is any solution of the non-

homogeneous differential equation).

Finding the General Solution for Differential 
Equations with a Nonhomogeneous erx Term

As you may know from class or from Differential Equations For Dummies, you can’t just find 

the solution to a nonhomogeneous linear second order differential equation that happens to 

give you g(x) when you plug it in. You have to do some extra work by adding the solution to 

the homogeneous version of the same differential equation.

Think about it. Say you have this differential equation:

y" + p(x)y' + q(x)y = g(x)

and the following solution gives you g(x) when you plug it in:

y = y
p
(x)

In order for your answer to be correct, you must add in the homogeneous solution; when 

you plug that into the differential equation, you get 0. So the general solution to the differen-

tial equation is

y = c
1
y

1
(x) + c

2
y

2
(x) + y

p
(x)

where c
1
y

1
(x) + c

2
y

2
(x) is the solution of the corresponding homogeneous differential equation:

y" + p(x)y' + q(x)y = 0

That is, y
1
 and y

2
 are a fundamental set of solutions to the homogeneous differential equa-

tion, and y
p
(x) is a particular (or specific) solution to the nonhomogenuous equation.

 So to solve a second order differential equation that’s both linear and nonhomogeneous, you 

follow these overall steps:

 1. Find the corresponding homogeneous differential equation by setting g(x) to 0.

 2. Find the general solution, y = c
1
y

1
(x) + c

2
y

2
(x), of the corresponding homogeneous 

differential equation.

  This general solution of the homogeneous equation is referred to as y
h
.

 3. Find a single solution to the nonhomogeneous equation.

  This solution is sometimes referred to as the particular (or specific) solution, y
p
.

 4. The general solution of the nonhomogeneous differential equation is the sum of y
h
 + y

p
.
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 Q. Find the general solution to this 

differential equation:

    y" – y' – 2y = 10e4x

 A. y = c
1
e–x + c

2
e2x + e4x

1. Start by getting the homogeneous 

version of the differential equation:

 y" – y' – 2y = 0

2. Assume that the solution to the homo-

geneous differential equation is of the 

form y = erx. When you substitute that 

into the differential equation, you get 

this as your characteristic equation:

 r2 – r – 2 = 0

3. Factor the characteristic equation this 

way:

 (r + 1)(r – 2) = 0

4. You can now determine that the roots, 

r
1
 and r

2
, of the characteristic equation 

are –1 and 2, giving you

 y
1
 = e–x and y

2
 = e2x

5. So the general solution to the homoge-

neous differential equation is given by

 y = c
1
e–x + c

2
e2x

6. Now you need a particular solution to 

the nonhomogeneous differential equa-

tion that you started with:

 y" – y' – 2y = 10e4x

  Because g(x) has the form e4x here, you 

can assume that the particular solu-

tion has the form

 y
p
(x) = Ae4x

7. Substitute y
p
(x) into the differential 

equation to get

 16Ae4x – 4Ae4x – 2Ae4x = 10e4x

8. Cancel out the e4x term:

 16A – 4A – 2A = 10

  or

 10A = 10

  so A = 1.

9. Tada! Your particular solution is

 y
p
(x) = e4x

10.  Now, because the general solution of 

the nonhomogeneous equation that 

you started with is the sum of the cor-

responding homogeneous equation’s 

general solution and a particular solu-

tion of the nonhomogeneous equation, 

you get the following as your solution:

 y = y
h
 + y

p

  which is actually

 y = c
1
e–x + c

2
e2x + e4x

The following example problem walks you through each of these steps. Take a few minutes 

to check it out and then try your hand at the practice problems.
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 4. What’s the general solution to this non-

homogeneous second order differential 

equation?

    y" + 2y' + y = 8ex

 Solve It

 3. Solve for the general solution to this 

equation:

    y" + 5y' + 6y = 36ex

 Solve It

 2. Find the general solution to the following 

nonhomogeneous second order differential 

equation:

    y" + 4y' + 3y = 30e2x

 Solve It

 1. What’s the general solution to this non-

homogeneous second order differential 

equation?

    y" + 3y' + 2y = 6ex

 Solve It
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 5. Find the general solution to the following 

nonhomogeneous second order differential 

equation:

    y" + 6y' + 8y = 70e3x

 Solve It

 6. Solve for the general solution to this 

equation:

    y" + 6y' + 5y = 36ex

 Solve It

Getting the General Solution 
When g(x) Is a Polynomial

Sometimes g(x) acts as a polynomial, like in the case of g(x) = ax n + bx n – 1 + cx n – 2 (where a, 
b, and c are all constants). You need to know how to handle such situations so you can find 

the general solution to the nonhomogeneous second order differential equation in question.

 Here’s how to solve a differential equation of this form, ay" + by' + cy = g(x), where a, b, and c 

are constants and g(x) is a polynomial of order n:

 1. If g(x) is a polynomial, you can assume the particular solution is of the same form, 

using coefficients whose values have yet to be determined.

  y
p
 = A

n
xn + A

n – 1
 xn – 1 + A

n – 2
xn – 2 + . . . + A

1
x + A

0

 2. If g(x) is the sum of terms, g
1
(x), g

2
(x), g

3
(x) and so on, then you can break the prob-

lem into various subproblems.

  ay" + by' + cy = g
1
(x)

  ay" + by' + cy = g
2
(x)

  ay" + by' + cy = g
3
(x)

  The particular solution is the sum of the solutions of these subproblems.
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 3. Substitute y
p
 into the differential equation and solve for the undetermined 

 coefficients.

 4. Find the general solution, y
h
 = c

1
y

1
 + c

2
y

2
, of the associated homogeneous differen-

tial equation.

 5. The general solution of the nonhomogeneous differential equation is the sum of 

y
h
 and y

p
.

 6. Use the initial conditions to solve for c
1
 and c

2
, if the problem calls for that.

Take a look at the following example. Then, if you’re game, try the following practice prob-

lems that ask you to solve for the general solution when g(x) is a polynomial.

 Q. Find the general solution to this differen-

tial equation:

    y" = 12x2 + 12x – 2

    where

    y(0) = 1

    and

    y'(0) = 3

 A. y = x4 + 2x3 – x2 + 3x + 1

1. The homogeneous equation is simply

 y" = 0

2. You can get the solution by integrating

 y' = c
1

  and then integrating again to get y
h

 y
h
 = c

1
x + c

2

  So the solution to the homogeneous 

equation is y
h
 = c

1
x + c

2
.

3. Now you need to find the solution to 

the nonhomogeneous equation. The 

g(x) term is 12x2 + 12x – 1, so you can 

assume that the particular solution has 

a similar form:

 y
p
 = Ax2 + Bx + C

  where A, B, and C are constant coeffi-

cients that you must determine.

4. Uh oh. Your assumed form of y
p
 

has terms in common with y
h
, the 

general solution of the homogeneous 

equation:

 y
h
 = c

1
x + c

2

 y
p
 = Ax2 + Bx + C

  Both of these equations have an x term 

and a constant term. When y
h
 and y

p
 

have terms in common — differing 

only by a multiplicative constant — 

that’s not good because those terms 

are really part of the same solution.

5. Handle this issue by multiplying y
p
 

by successive powers of x until you 

don’t have any terms of the same 

power as in y
h
. For example, multiply y

p
 

by x to get

 y
p
 = Ax3 + Bx2 + Cx

6. You still have a problem, however, 

because the Cx term overlaps with the 

c
1
x term in y

h
. Go ahead and multiply 

by x again:

 y
p
 = Ax4 + Bx3 + Cx2

  This result has no terms in common 

with the homogeneous solution, y
h
, so 

now you’re good to go on.

7. Substitute the assumed solution into 

the differential equation:

 12Ax2 + 6Bx + 2C = 12x2 + 12x – 2
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 7. Find the general solution to the following 

nonhomogeneous second order differential 

equation:

    y" + 3y' + 2y = 4x

 Solve It

 8. Solve for the general solution to this 

equation:

    y" + 4y' + 3y = 3x + 10

 Solve It

8. Then compare coefficients of like 

terms:

 12A = 12

 6B = 12

 2C = –2

  So

 A = 1

 B = 2

 C = –1

9. Here’s your particular solution:

 y
p
 = x4 + 2x3 – 1x2

10.  Now you can determine that your 

general solution is

 y = y
h
 + y

p
 = c

1
x + c

2
 + x4 + 2x3 – x2

  or, rearranging, you get

 y = y
h
 + y

p
 = x4 + 2x3 – x2 + c

1
x + c

2

11.  You can find c
1
 and c

2
 by using the 

initial conditions. Substituting y(0) = 1 

gives you

 y(0) = 1 = c
2

  so c
2
 = 1.

12.  Take the derivative of the general 

solution:

 y' = 4x3 + 3x2 – 2x + c
1

13.  Then substitute the initial condition, 

y'(0) = 3, to get

 y'(0) = 3 = c
1

14. The general solution is thus

 y = x4 + 2x3 – x2 + 3x + 1



112 Part II: Finding Solutions to Second and Higher Order Differential Equations 

 9. Find the general solution to the following 

nonhomogeneous second order differential 

equation:

    y" + 5y' + 6y = 12x – 2

 Solve It

 10. Solve for the general solution to this 

equation:

    y" + 6y' + 5y = 5x + 16

 Solve It

Solving Equations with a Nonhomogeneous 
Term That Involves Sines and Cosines

The third form g(x) can take on is a combination of sines and cosines. Take a look at this 

differential equation:

y" + 3y' + 2y = sin (x)

Of course, the general solution is the sum of the homogeneous solution and a particular 

solution:

y = y
h
 + y

p

Because g(x) = sin (x) in this case, you can make an educated guess that

y
p
 = A sin (x) + B cos (x)

where A and B are undetermined coefficients. How do you find A and B? Simply plug y
p
 into 

the differential equation and then solve to get your coefficients.

The following problems give you practice using the method of undetermined coefficients 

to solve for the general solution to the nonhomogeneous equation when g(x) includes sines 

and cosines.
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 Q. Find the general solution to this 

differential equation:

    y" + 3y' + 2y = 10 sin (x)

    where

    y(0) = –1

    and

    y'(0) = –2

 A. y = e–x + e–2x + sin (x) – 3 cos (x)

1. Start by getting the homogeneous ver-

sion of the differential equation:

 y" + 3y' + 2y = 0

2. Assume that the solution to the homo-

geneous differential equation is of the 

form y = erx. When you substitute that 

into the differential equation, you get the 

following as the characteristic equation:

 r 2 + 3r + 2 = 0

3. Factor the characteristic equation this 

way:

 (r + 1)(r + 2) = 0

4. Determine that the roots, r
1
 and r

2
, 

of the characteristic equation are –1 

and –2, giving you

 y
1
 = e–x and y

2
 = e–2x

5. Therefore, the solution to the homoge-

neous differential equation is given by

 y
h
 = c

1
e–x + c

2
e–2x

6. Now you need a particular solution to 

the differential equation:

  y" + 3y' + 2y = 10 sin (x)

7. Assume that the particular solution is 

of the form

  y
p
 = A sin (x) + B cos (x)

8. Then plug the A sin (x) term into the left 

side of the differential equation to get

  y" + 3y' + 2y = –A sin (x) + 

3A cos (x) + 2A sin (x)

9. Now plug the B cos (x) term into the 

left side of the differential equation:

  y" + 3y' + 2y = –B cos (x) – 

  3B sin (x) + 2B cos (x)

10.  So you can write the differential equa-

tion as follows:

  –A sin (x) + 3A cos (x) + 2A sin (x) – 

  B cos (x) – 3B sin (x) + 2B cos (x) = 

  10 sin (x)

  which means that

  3A cos (x) – B cos (x) + 2B cos (x) = 0

  and

  –A sin (x) + 2A sin (x) – 3B sin (x) 

= 10 sin (x)

11.  Dividing by sin (x) and cos (x) as 

appropriate gives you the first equation:

  3A – B + 2B = 3A + B = 0

  as well as the second:

  –A + 2A – 3B = A – 3B = 10

12.  Add three times the first equation to 

the second one:

  9A + A = 10

  Looks like A = 1.

13. Use the second equation to find that

  A – 3B = 1 – 3B = 10

  Guess what? B = –3.

14. So the particular solution is

  y
p
 = sin (x) – 3 cos (x)

15. The general solution is

  y = y
h
 + y

p

  so that’s

  y = c
1
e–x + c

2
e–2x + sin (x) – 3 cos (x)
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 11. Find the solution to the following non-

homogeneous second order differential 

equation:

    y" + 5y' + 6y = 10 sin (x)

    where

    y(0) = 1

    and

    y'(0) = –4

 Solve It

 12. Solve for the general solution of this 

equation:

    y" + 4y' + 3y = 5 cos (x)

    where

    y(0) = 7⁄2

    and

    y'(0) = –6

 Solve It

16.  Use the initial conditions to find the 

first equation:

  y(0) = –1 = c
1
 + c

2
 + sin (0) – 

  3 cos (0) = c
1
 + c

2
 – 3

  (so you get c
1
 + c

2
 = 2)

  and the second equation:

  y'(0) = –2 = –c
1
 – 2c

2
 + cos (0) = 

–c
1
 – 2c

2
 +1

  (which gives you –c
1
 – 2c

2
 = –3)

17.  Add the first equation to the second 

equation to get

  –c
2
 = –1

  Tada! c
2
 = 1

18.  Plug that result into the first equation 

to get

  1 + c
2
 = 2

  so c
1
 = 1.

19.  All of that means the general 

solution is

  y = e–x + e–2x + sin (x) – 3 cos (x)
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Answers to Nonhomogeneous Linear Second 
Order Differential Equation Problems

Following are the answers to the practice questions presented throughout this chapter. 

Each one is worked out step by step so that if you messed one up along the way, you can 

more easily see where you took a wrong turn.

a What’s the general solution to this nonhomogeneous second order differential equation?

  y" + 3y' + 2y = 6ex

 Solution: y = c
1
e–x + c

2
e–2x + ex

 1. First, find the homogeneous version of the original equation:

   y" + 3y' + 2y = 0

 2. Assume that the solution to the homogeneous differential equation is of the form y = erx. When you 

substitute that solution into the equation, you get the characteristic equation

   r 2 + 3r + 2 = 0

 3. Go ahead and factor that out as follows:

   (r + 1)(r + 2) = 0

 4. If you determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –2, you know that

   y
1
 = e–x and y

2
 = e–2x

 5. Thus, the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
e–2x

 6. Now you need a particular solution to the differential equation:

   y" + 3y' + 2y = 6ex

  Note that g(x) has the form ex here, so assume that the particular solution has the form

   y
p
(x) = Aex

 7. Substitute y
p
(x) into the equation:

   Aex + 3Aex + 2Aex = 6ex

 8. Cancel out the ex term:

   A + 3A + 2A = 6

  or 6A = 6, so A = 1.

 9. Your particular solution is

   y
p
(x) = ex

 10. Because the general solution of the nonhomogeneous equation that you started with is the sum 

of the corresponding homogeneous equation’s general solution and a particular solution of the 

  nonhomogeneous equation, you should get the following as the solution:

   y = y
h
 + y

p

  which is actually

   y = c
1
e–x + c

2
e–2x + ex
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b Find the general solution to the following nonhomogeneous second order differential equation:

  y" + 4y' + 3y = 30e2x

 Solution: y = c
1
e–x + c

2
e–3x + 2e2x

 1. Start by getting the homogeneous version of the differential equation:

   y" + 4y' + 3y = 0

 2. Go ahead and assume that the solution to this equation is of the form y = erx and that when you 

  substitute this solution into the equation you get the following as your characteristic equation:

   r2 + 4r + 3 = 0

 3. Factor the characteristic equation this way:

   (r + 1)(r + 3) = 0

 4. Determining that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –3 gives you

   y
1
 = e–x and y

2
 = e–3x

 5. Therefore, you know that the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
e–3x

 6. Now you need a particular solution to the equation:

   y" + 4y' + 3y = 30e2x

  Note that g(x) has the form e2x here, so assume that the particular solution has this form:

   y
p
(x) = Ae2x

 7. Substituting y
p
(x) into the differential equation gives you

   4Ae2x + 8Ae2x + 3Ae2x = 30e2x

 8. If you cancel out the e2x term, you get

   4A + 8A + 3A = 30

  which is

   15A = 30

  and that means A = 2, which gives you your particular solution of

   y
p
(x) = 2e2x

 9. Put it all together and you get this equation as the answer:

   y = y
h
 + y

p

  or

   y = c
1
e–x + c

2
e –3x + 2e2x

c Solve for the general solution to this equation:

  y" + 5y' + 6y = 36ex

 Solution: y = c
1
e–2x + c

2
e–3x + 3ex

 1. First, find the homogeneous version of the original equation:

   y" + 5y' + 6y = 0
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 2. Assume that the solution to the homogeneous differential equation is of the form y = erx. When you 

substitute that solution into the equation, you get the characteristic equation

   r 2 + 5r + 6 = 0

 3. Go ahead and factor that out as follows:

   (r + 2)(r + 3) = 0

 4. If you determine that the roots, r
1
 and r

2
, of the characteristic equation are –2 and –3, you know that

   y
1
 = e–2x and y

2
 = e–3x

 5. Thus, the solution to the homogeneous differential equation is given by

   y = c
1
e–2x + c

2
e–3x

 6. Now you need a particular solution to the differential equation:

   y" + 5y' + 6y = 36ex

  Note that g(x) has the form ex here, so assume that the particular solution has the form

   y
p
(x) = Aex

 7. Substitute y
p
(x) into the equation:

   Aex + 5Aex + 6Aex = 36ex

 8. Cancel out the ex term:

   A + 5A + 6A = 36

  or 12A = 36, so A = 3.

 9. Your particular solution is

   y
p
(x) = 3ex

 10. When you put all that together, you should get the following as the solution:

   y = y
h
 + y

p

  which is actually

   y = c
1
e–2x + c

2
e–3x + 3ex

d What’s the general solution to this nonhomogeneous second order differential equation?

  y" + 2y' + y = 8ex

 Solution: y = c
1
e–x + c

2
xe–x + 2ex

 1. Start by getting the homogeneous version of the differential equation:

   y" + 2y' + y = 0

 2. Go ahead and assume that the solution to this equation is of the form y = erx and that when you 

substitute this solution into the equation you get the following as your characteristic equation:

   r2 + 2r + 1 = 0

 3. Factor the characteristic equation this way:

   (r + 1)(r + 1) = 0

 4. Determining that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –1 (which means you 

have real, identical roots) gives you

   y
1
 = e–x and y

2
 = xe–x
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 5. Therefore, you know that the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
xe–x

 6. Now you need a particular solution to the equation:

   y" + 2y' + y = 8ex

  Note that g(x) has the form ex here, so assume that the particular solution has this form:

   y
p
(x) = Aex

 7. Substituting y
p
(x) into the differential equation gives you

   Aex + 2Aex + Aex = 8ex

 8. If you cancel out the ex term, you get

   A + 2A + A = 8

  which is

   4A = 8

  and that means A = 2, which gives you your particular solution of

   y
p
(x) = 2ex

 9. Put it all together and you get this equation as the answer:

   y = y
h
 + y

p

  or

   y = c
1
e–x + c

2
xe–x + 2ex

e Find the general solution to the following nonhomogeneous second order differential equation:

  y" + 6y' + 8y = 70e3x

 Solution: y = c
1
e–2x + c

2
e–4x + 2e3x

 1. First, find the homogeneous version of the original equation:

   y" + 6y' + 8y = 0

 2. Assume that the solution to the homogeneous differential equation is of the form y = erx. When you 

substitute that solution into the equation, you get the characteristic equation

   r2 + 6r + 8 = 0

 3. Go ahead and factor that out as follows:

   (r + 2)(r + 4) = 0

 4. If you determine that the roots, r
1
 and r

2
, of the characteristic equation are –2 and –4, you know that

   y
1
 = e–2x and y

2
 = e–4x

 5. Thus, the solution to the homogeneous differential equation is given by

   y = c
1
e–2x + c

2
e–4x

 6. Now you need a particular solution to the differential equation:

   y" + 6y' + 8y = 70e3x
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  Note that g(x) has the form ex here, so assume that the particular solution has the form

   y
p
(x) = Ae3x

 7. Substitute y
p
(x) into the equation:

   9Ae3x + 18Ae3x + 8Ae3x = 70e3x

 8. Cancel out the ex term:

   9A + 18A + 8A = 70

  or 35A = 70, so A = 2.

 9. Your particular solution is

   y
p
(x) = 2e3x

 10. When you put all that together, you should get the following as the solution:

   y = y
h
 + y

p

  which is actually

   y = c
1
e–2x + c

2
e–4x + 2e3x

f Solve for the general solution to this equation:

  y" + 6y' + 5y = 36ex

 Solution: y = c
1
e–x + c

2
e–5x + 3ex

 1. Start by getting the homogeneous version of the differential equation:

   y" + 6y' + 5y = 0

 2. Go ahead and assume that the solution to this equation is of the form y = erx and that when you 

substitute this solution into the equation you get the following as your characteristic equation:

   r2 + 6r + 5 = 0

 3. Factor the characteristic equation this way:

   (r + 1)(r + 5) = 0

 4. If you determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –5, you know that

   y
1
 = e–x and y

2
 = e–5x

 5. Therefore, you know that the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
e–5x

 6. Now you need a particular solution to the equation:

   y" + 6y' + 5y = 36ex

  Note that g(x) has the form ex here, so assume that the particular solution has this form:

   y
p
(x) = Aex

 7. Substituting y
p
(x) into the differential equation gives you

   Aex + 6Aex + 5Aex = 36ex

 8. If you cancel out the ex term, you get

   A + 6A + 5A = 36
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  which is

   12A = 36

  and that means A = 2, which gives you your particular solution of

   y
p
(x) = 3ex

 9. Put it all together and you get this equation as the answer:

   y = y
h
 + y

p

  or

   y = c
1
e–x + c

2
e–5x + 3ex

g Find the general solution to the following nonhomogeneous second order differential equation:

  y" + 3y' + 2y = 4x

 Solution: y = c
1
e–x + c

2
e–2x + 2x – 3

 1. Get the homogeneous version of the equation first:

   y" + 3y' + 2y = 0

 2. If you assume that the solution to the homogeneous equation is of the form y = erx, you get the 

following characteristic equation when you substitute that solution in:

   r 2 + 3r + 2 = 0

 3. Factor out the characteristic equation as follows:

   (r + 1)(r + 2) = 0

 4. Then determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –2. Doing so gives 

you

   y
1
 = e–x and y

2
 = e–2x

 5. So the solution to the homogeneous equation is given by

   y = c
1
e–x + c

2
e–2x

 6. Hold up! You’re not done yet. You still need a particular solution to the differential equation:

   y" + 3y' + 2y = 4x

  Note that here g(x) has the form of a polynomial, so you can assume that the particular solution has 

the form

   y
p
(x) = Ax2 + Bx + C

 7. Great. Now substitute y
p
(x) into the differential equation:

   2A + 6Ax +3B + 2Ax2 + 2Bx + 2C = 4x

 8. There’s no term in x2 on the right, so A = 0, giving you

   3B + 2Bx + 2C = 4x

 9. Looking at the coefficient of x gives you

   2B = 4, so B = 2.

 10. Now you can take a look at the remaining constant terms; doing so gives you

   3B + 2C = 0
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  Because B = 2, that means C = –3.

 11. So the particular solution is

   y
p
(x) = 2x – 3

 12. Of course, you haven’t forgotten that the general solution of the nonhomogeneous equation you 

started with is the sum of the corresponding homogeneous equation’s general solution and a partic-

ular solution of the nonhomogeneous equation. That means you’ve found this solution:

   y = y
h
 + y

p

  which can also be written as

   y = c
1
e–x + c

2
e–2x + 2x – 3

h Solve for the general solution to this equation:

  y" + 4y' + 3y = 3x + 10

 Solution: y = c
1
e–x + c

2
e–3x + x + 2

 1. Start by finding the homogeneous version of the original differential equation:

   y" + 4y' + 3y = 0

 2. Assuming that the solution to the homogeneous equation is of the form y = erx means that when you 

substitute that solution into the differential equation, you get this characteristic equation:

   r2 + 4r + 3 = 0

 3. Here’s how to factor it:

   (r + 1)(r + 3) = 0

 4. Now go ahead and determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –3, 

which gives you

   y
1
 = e–x and y

2
 = e–3x

 5. Thus, the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
e–3x

 6. Now you need a particular solution to this equation:

   y" + 4y' + 3y = 3x + 10

  Note that g(x) has the form of a polynomial here, which means you can safely bet that the particular 

solution has this form:

   y
p
(x) = Ax2 + Bx + C

 7. Substituting y
p
(x) into the equation gives you

   2A + 8Ax + 4B + 3Ax2 + 3Bx + 3C = 3x + 10

 8. Without an x2 term on the right, A = 0, giving you

   4B + 3Bx + 3C = 3x + 10

 9. Look at the coefficient of x to get

   3B = 3, which means B = 1.

 10. A quick look at the remaining constant terms gives you

   4B + 3C = 10
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  What do you know? B = 1, so C = 2.

 11. Your particular solution is

   y
p
(x) = x + 2

 12. Put it all together to get the following equation as your solution:

   y = y
h
 + y

p

  so

   y = c
1
e–x + c

2
e–3x + x + 2

i Find the general solution to the following nonhomogeneous second order differential equation:

  y" + 5y' + 6y = 12x – 2

 Solution: y = c
1
e–2x + c

2
e–3x + 2x – 2

 1. Get the homogeneous version of the equation first:

   y" + 5y' + 6y = 0

 2. If you assume that the solution to the homogeneous equation is of the form y = erx, you get the 

following characteristic equation when you substitute that solution in:

   r2 + 5r + 6 = 0

 3. Factor out the characteristic equation as follows:

   (r + 2)(r + 3) = 0

 4. Then determine that the roots, r
1
 and r

2
, of the characteristic equation are –2 and –3. Doing so gives 

you

   y
1
 = e–2x and y

2
 = e–3x

 5. So the solution to the homogeneous equation is given by

   y = c
1
e–2x + c

2
e–3x

 6. Hold up! You’re not done yet. You still need a particular solution to the differential equation:

   y" + 5y' + 6y = 12x – 2

  Note that here g(x) has the form of a polynomial, so you can assume that the particular solution has 

the form

   y
p
(x) = Ax2 + Bx + C

 7. Great. Now substitute y
p
(x) into the differential equation:

   2A + 10Ax + 5B + 6Ax2 + 6Bx + 6C = 12x – 2

 8. There’s no term in x2 on the right, so A = 0, giving you

   5B + 6Bx + 6C = 12x – 2

 9. Looking at the coefficient of x gives you

   6B = 12, so B = 2.

 10. Now you can take a look at the remaining constant terms; doing so gives you

   5B + 6C = –2
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  Because B = 2, that means C = –2.

 11. So the particular solution is

   y
p
(x) = 2x – 2

 12. When you put that all together, you should get this as the general solution:

   y = y
h
 + y

p

  which can also be written as

   y = c
1
e–2x + c

2
e–3x + 2x – 2

j Solve for the general solution to this equation:

  y" + 6y' + 5y = 5x + 16

 Solution: y = c
1
e–x + c

2
e–5x + x + 2

 1. Start by finding the homogeneous version of the original differential equation:

   y" + 6y' + 5y = 0

 2. Assuming that the solution to the homogeneous equation is of the form y = erx means that when you 

substitute that solution into the equation, you get this characteristic equation:

   r2 + 6r + 5 = 0

 3. Here’s how to factor it:

   (r + 1)(r + 5) = 0

 4. Now go ahead and determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –5, 

which gives you

   y
1
 = e–x and y

2
 = e–5x

 5. Thus, the solution to the homogeneous differential equation is given by

   y = c
1
e–x + c

2
e–5x

 6. Now you need a particular solution to this equation:

   y" + 6y' + 5y = 5x + 16

  Note that g(x) has the form of a polynomial here, which means you can safely bet that the particular 

solution has this form:

   y
p
(x) = Ax2 + Bx + C

 7. Substituting y
p
(x) into the equation gives you

   2A + 12Ax + 6B + 5Ax2 + 5Bx + 5C = 5x + 16

 8. Without an x2 term on the right, A = 0, giving you

   6B + 5Bx + 5C = 5x + 16

 9. Look at the coefficient of x to get

   5B = 5, which means B = 1.

 10. A quick look at the remaining constant terms gives you

   6B + 5C = 16
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  What do you know? B = 1, so C = 2.

 11. Your particular solution is

   y
p
(x) = x + 2

 12. Put it all together to get the following equation as your solution:

   y = y
h
 + y

p

  so

   y = c
1
e–x + c

2
e–5x + x + 2

k Find the solution to the following nonhomogeneous second order differential equation:

  y" + 5y' + 6y = 10 sin (x)

  where

  y(0) = 1

  and

  y'(0) = –4

 Solution: y = e–2x + e–3x + sin (x) – cos (x)

 1. First, find the homogeneous version of the differential equation:

   y" + 5y' + 6y = 0

 2. Work under the assumption that the solution to the homogeneous equation is of the form y = erx. 
Doing so means that when you substitute that solution into the differential equation, you get this 

characteristic equation:

   r2 + 5r + 6 = 0

 3. The next step is to factor the characteristic equation as follows:

   (r + 2)(r + 3) = 0

 4. Then determine that the roots, r
1
 and r

2
, of the characteristic equation are –2 and –3, which 

gives you

   y
1
 = e–2x and y

2
 = e–3x

 5. You now know that the solution to the homogeneous equation is given by

   y
h
 = c

1
e–2x + c

2
e–3x

 6. Next, you need a particular solution to the differential equation:

   y" + 5y' + 6y = 10 sin (x)

 7. Assume the particular solution is of this form:

   y
p
 = A sin (x) + B cos (x)

 8. Plug the A sin (x) term into the left side of the equation:

   y" + 5y' + 6y = –A sin (x) + 5A cos (x) + 6A sin (x)

 9. Then plug the B cos (x) term into the left side of the equation:

   y" + 5y' + 6y = –B cos (x) – 5B sin (x) + 6B cos (x)
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 10. Hmmm. It appears you can write the differential equation this way:

   –A sin (x) + 5A cos (x) + 6A sin (x) – B cos (x) – 5B sin (x) + 6B cos (x) = sin (x)

  which means that

   5A cos (x) – B cos (x) + 6B cos (x) = 0

  and

   –A sin (x) + 6A sin (x) – 5B sin (x) = 10 sin (x)

 11. Dividing by sin (x) and cos (x) as appropriate gives you the first equation:

   5A – B + 6B = 5A + 5B = 0

  as well as the second one:

   –A + 6A – 5B = 5A – 5B = 10

 12. Add the first equation to the second:

   10A = 10, so A = 1.

 13. Use the second equation to find the following:

   5A – 5B = 5 – 5B = 10

  so B = –1.

 14. Therefore, the particular solution is

   y
p
 = sin (x) – cos (x)

  and the general solution is

   y = y
h
 + y

p

  so that’s

   y = c
1
e–2x + c

2
e–3x + sin (x) – cos (x)

 15. Use the initial conditions to find the first equation:

   y(0) = 1 = c
1
e–x + c

2
e–2x + sin (x) – cos (x) = c

1
 + c

2
 – 1

  and the second equation:

   y'(0) = –4 = – 2c
1
 – 3c

2
 + 1

 16. Add twice the first equation to the second one to get

   –c
2
 + 1 = 0

  so c
2
 = 1

 17. Plug that result into the first equation to get

   –2c
2
 – 3 = –5

  so c
1
 = 1

 18. That means the general solution is

   y = e–2x + e–3x + sin (x) – cos (x)
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l Solve for the general solution of this equation:

  y" + 4y' + 3y = 5 cos (x)

  where

  y(0) = 7/2

  and

  y'(0) = –6

 Solution: y = e–x + 2e–3x + sin (x) + cos (x)/2

 1. Start by getting the homogeneous version of the original differential equation:

   y" + 4y' + 3y = 0

 2. Go ahead and assume that the solution to the homogeneous equation is of the form y = erx. When 

you substitute that into the equation, you get this characteristic equation:

   r 2 + 4r + 3 = 0

 3. Factor that out:

   (r + 1)(r + 3) = 0

 4. Determine that the roots, r
1
 and r

2
, of the characteristic equation are –1 and –3. Doing so gives you

   y
1
 = e–x and y

2
 = e–3x

 5. So the solution to the homogeneous differential equation is given by

   y
h
 = c

1
e–x + c

2
e–3x

 6. That’s all well and good, but you still need a particular solution to the differential equation

   y˝ + 4y' + 3y = 5 cos (x)

 7. Assume that the particular solution is of this form:

   y
p
 = A sin (x) + B cos (x)

 8. Then plug A sin (x) into the left side of the differential equation to get

   y" + 4y' + 3y = –A sin (x) + 4A cos (x) + 3A sin (x)

 9. Next, plug B cos (x) into the left side of the equation to get

   y" + 4y' + 3y = –B cos (x) – 4B sin (x) + 3B cos (x)

 10. Surprise! Turns out you can write the differential equation this way:

   –A sin (x) + 4A cos (x) + 3A sin (x) – B cos (x) – 4B sin (x) + 3B cos (x) = cos (x)

  which means that

   4A cos (x) – B cos (x) + 3B cos (x) = 5 cos (x)

  and

   –A sin (x) + 3A sin (x) – 4B sin (x) = 0

 11. Dividing by sin (x) and cos (x) as appropriate gives you this as the first equation:

   4A – B + 3B = 4A + 2B = 5

  and this as the second equation:

   –A + 3A – 4B = 2A – 4B = 0
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 12. Add twice the first equation to the second one; the result is

   10A = 10, so A = 1.

 13. Use the second equation to find that

   2A – 4B = 0, so B = 1/2

  which means the particular solution is

   y
p
 = sin (x) + cos (x)/2

  and the general solution is

   y = y
h
 + y

p

  which is actually

   y = c
1
e–x + c

2
e–3x + sin (x) + cos (x)/2

 14. Use the initial conditions to find the first equation:

   y(0) = 7/2 = c
1
e–x + c

2
e–3x + sin (x) + cos (x)/2 = c

1
 + c

2
 + 1/2

  and the second equation:

   y'(0) = –6 = –c
1
 – 3c

2
 + 1.

 15. Rewrite the first equation as follows:

   3 = c
1
 + c

2

  and the second equation like this:

   –7 = –c
1
 – 3c

2

 16. Add the first equation to the second one to get

   –4 = –2c
2
, which means that c

2
 = 2.

 17. Plug that result into the first equation to get

   –7 = –c
1
 – 6, so c

1
 = 1.

 18. Consequently, your general solution is

   y = e–x + 2e–3x + sin (x) + cos (x)/2
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Chapter 6

Handling Homogeneous Linear Higher 
Order Differential Equations

In This Chapter
▶ Reviewing the higher order process with real and distinct roots

▶ Adding complexity with complex roots

▶ Avoiding double duty with duplicate roots

This chapter is where you get to practice tackling higher order differential equations, 

where n > 2. (Note: Higher order equations are sometimes referred to as nth order 

equations.) A general linear higher order differential equation looks like this:

 

 Solving higher order differential equations where n = 3 or more is a lot like solving differential 

equations of the first or second order, with two exceptions: You need more integrations, and 

you have to solve larger systems of simultaneous equations to meet the initial conditions.

Every linear higher order differential equation you encounter in this chapter has constant 

coefficients, and the main way you can plan to tackle these problems is by attempting a 

solution of the form

y = erx

Substituting in this attempted solution results in a characteristic equation in powers of r, 
just as it does for the linear second order differential equations covered in Chapters 4 and 5. 

The problem here is that you’re dealing with cubic (or higher!) characteristic equations, 

as well as 3 × 3 systems of simultaneous equations to handle the initial conditions.

 Whenever you’re facing a characteristic equation that’s tough to solve by hand, I recommend 

turning to a Web-based equation solver. You can find a good one at www.quickmath.com. 

From the home page, look for the Equations listing on the left-hand navigation bar. Then click 

the Solve link under the Equations listing. You can also solve systems of simultaneous equa-

tions online at math.cowpi.com/systemsolver. To make your life a little easier, you may 

want to refer to these Web sites as you solve the practice problems in this chapter.
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As with linear second order differential equations, the characteristic equation you find can 

have three types of roots:

 ✓ Real and distinct roots

 ✓ Complex roots

 ✓ Real and identical roots

In this chapter, you get to try your hand at each of these possibilities in homogeneous 

linear higher order differential equations.

Distinctly Different: Working 
with Real and Distinct Roots

In this section, you practice the case where the characteristic equation has real and distinct 

roots first — that is, the roots aren’t imaginary, and they’re not the same.

Here’s a linear second order differential equation that’s homogeneous and has constant 

coefficients:

y" + 3y' + 2 = 0

Given this equation’s form, you can safely bet that the solutions are something like

y = erx

Plugging that solution into the differential equation gives you

r2erx +3rerx + 2erx = 0

and dividing by erx gives you

r2 +3r + 2 = 0

Surprise! There’s your characteristic equation, which you can solve with the quadratic 

equation to get

(r + 1)(r + 2) = 0

So the characteristic equation’s roots are –1 and –2, giving you these two solutions:

y = e–x and y = e–2x

The process is similar for higher order differential equations, but the algebra is a little 

tougher because the characteristic equation is of a higher order. See what I mean in the fol-

lowing example problem and then try to solve a few of the practice problems on your own.
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 Q. Find the solution to this differential 

equation:

    y''' – 6y" + 11y' – 6y = 0

    with these initial conditions:

    y(0) = 9

    y'(0) = 20

    y"(0) = 50

 A. y = 2ex + 3e2x + 4e3x

1. This differential equation has constant 

coefficients, so you can start by assum-

ing a solution of the form

  y = erx

2. Plugging your attempted solution into 

the differential equation gives you

  r3erx – 6r2erx + 11rerx – 6erx = 0

3. Canceling out erx leaves you with

  r3 – 6r2 + 11r – 6 = 0

4. Now you have a cubic equation. Curb 

that racing pulse and take a minute to 

really look at the equation. See how 

you can factor it into the following?

  (r – 1)(r – 2)(r – 3) = 0

  If you’re not a fan of factoring the char-

acteristic equation by hand, try using 

the equation-solving function at www.
quickmath.com. (Flip back to the 

chapter introduction to see exactly how 

to access that part of the Web site.)

5. The roots are

  r
1
 = 1, r

2
 = 2, and r

3
 = 3

6. Because the roots are real and distinct, 

the solutions are as follows:

  y
1
 = ex, y

2
 = e2x, and y

3
 = e3x

7. Therefore, the general solution is

  y = c
1
ex + c

2
e2x + c

3
e3x

8. Now you can apply the initial condi-

tions (about time, huh?). In addition to 

the form for y, you also need y', which 

you can calculate as

  y' = c
1
ex + 2c

2
e2x + 3c

3
e3x

  as well as y", which you can calculate as

  y" = c
1
ex + 4c

2
e2x + 9c

3
e3x

9. From the initial conditions, here are 

your three simultaneous equations in 

c
1
, c

2
, and c

3
 that you must solve to find 

those coefficients:

  y(0) = c
1
 + c

2
 + c

3
 = 9

  y'(0) = c
1
 + 2c

2
 + 3c

3
 = 20

  y"(0) = c
1
 + 4c

2
 + 9c

3
 = 50

10.  If you solve this system of three 

equations by hand, you should get

  c
1
 = 2, c

2
 = 3, and c

3
 = 4

  Of course, you can also take advantage 

of math.cowpi.com/systemsolver. 

Just click the 3 × 3 link and input the 

equations to solve the system.

11.  So the solution of the differential equa-

tion with the initial conditions applied is

  y = 2ex + 3e2x + 4e3x
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 4. Find the solution to the following differen-

tial equation:

    y''' + 10y" + 31y' + 30y = 0

    with these initial conditions:

    y(0) = 6

    y'(0) = –19

    y"(0) = 71

 Solve It

 3. Obtain the solution to this equation:

    y''' + 9y" + 26y' + 24y = 0

    by using these initial conditions:

    y(0) = 5

    y'(0) = –16

    y"(0) = 54

 Solve It

 2. Solve this equation:

    y''' + 8y" + 19y' + 12y = 0

    where

    y(0) = 4

    y'(0) = –12

    y"(0) = 42

 Solve It

 1. Find the solution to the following differen-

tial equation:

    y''' + 7y" + 14y' + 8y = 0

    with these initial conditions:

    y(0) = 3

    y'(0) = –7

    y"(0) = 14

 Solve It
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 5. Solve this equation:

    y''' + 11y" + 36y' + 36y = 0

    where

    y(0) = 5

    y'(0) = –17

    y"(0) = 67

 Solve It

 6. Obtain the solution to this equation:

    y''' + 10y" + 29y' + 20y = 0

    by using these initial conditions:

    y(0) = 7

    y'(0) = –30

    y"(0) = 142

 Solve It

A Cause for Complexity: Handling 
Complex Roots

What if a differential equation’s characteristic equation has roots that are complex 

(meaning they involve the imaginary number i), such as

r
1
 = i and r

2
 = –i

You can handle such a case with these two relationships:

e(α + iβ)x = eαx(cos βx + i sin βx)

and

e(α + iβ)x = eαx(cos βx – i sin βx)

Spend a few minutes reviewing the following example of how to solve this type of equation, 

or if you’re feeling up to it, take advantage of the opportunity to work through some prac-

tice problems that feature linear higher order differential equations with complex roots.
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 Q. Find the solution to this differential 

equation:

    y(4) – y = 0

    where

    y(0) = 3

    y'(0) = 1

    y"(0) = –1

    y'''(0) = –3

 A. y = e–x + 2 cos x + 2 sin x

1. You know that this differential equa-

tion has constant coefficients, so go 

ahead and assume a solution of the 

form

  y = erx

2. Plug your solution into the differential 

equation to get

  r4erx – erx = 0

3. Then cancel out erx:

  r4 – 1 = 0

4. You can factor the resulting character-

istic equation into

  (r2 – 1)(r2 + 1) = 0

5. So the roots of the characteristic 

equation are

  r
1
 = 1, r

2
 = –1, r

3
 = i, and r

4
 = –i

6. Use these relationships to make the 

solution easier to find:

  eiβx = cos βx + i sin βx

  and

  e–iβx = cos βx – i sin βx

7. Okay, so you’ve determined that y
3
 and 

y
4
 can be expressed as a linear combi-

nation of sines and cosines (note that 

you can absorb the i into a multiplica-

tive constant). That means you have 

these solutions:

  y
1
 = ex

  y
2
 = e–x

  y
3
 = cos x

  y
4
 = sin x

8. So the general solution is

  y = c
1
ex + c

2
e–x + c

3 
cos x + c

4
 sin x

9. To apply the initial conditions, you 

need to figure out y':

  y' = c
1
ex – c

2
e–x – c

3 
sin x + c

4 
cos x

  and y":

  y" = c
1
ex + c

2
e–x – c

3 
cos x – c

4 
sin x

  as well as y''':

  y''' = c
1
ex – c

2
e–x + c

3 
sin x – c

4 
cos x

10.  Substituting the forms for y, y', y", and 

y''' into the initial conditions gives you

  y(0) = c
1
 + c

2
 + c

3
 = 3

  y'(0) = c
1
 – c

2
 + c

4
 = 1

  y"(0) = c
1
 + c

2
 – c

3
 = –1

  y'''(0) = c
1
 – c

2
 – c

4
 = –3

11.  Solve this 4 × 4 simultaneous equation 

system by hand or with an online tool 

such as the 4 × 4 system solver at 

math.cowpi.com/systemsolver:

  c
1
 = 0, c

2
 = 1, c

3
 = 2, and c

4
 = 2

12.  After all that, the general solution with 

initial conditions applied is

  y = e–x + 2 cos x + 2 sin x
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 8. Find the solution to this differential 

equation:

    y(4) – 81y = 0

    where

    y(0) = 4

    y'(0) = 12

    y"(0) = –18

    y'''(0) = –162

 Solve It

 7. What’s the solution to the following 

differential equation?

    y(4) – 16y = 0

    where

    y(0) = 3

    y'(0) = 2

    y"(0) = –4

    y'''(0) = –24

 Solve It

Identity Issues: Solving Equations When 
Identical Roots Are Involved

Identical roots are a no-brainer to spot, but they can be a bit messy to solve if you don’t 

know what you’re doing. Why? Well, if you have a differential equation whose characteristic 

equation has the roots –2, –2, –2, and –2, then those four –2s are an issue, because you can’t 

just say the solutions are

y
1
 = e–2x

y
2
 = e–2x

y
3
 = e–2x

y
4
 = e–2x
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Using all of these solutions would give you a general solution like

y = c
1
e–2x + c

2
e–2x +c

3
e–2x +c

4
e–2x

which is really equivalent to the following if you combine the constants:

y = ce–2x

where c = c
1
 + c

2
 +c

3
 + c

4
.

You can handle such scenarios by adding powers of x. For example, if y
1
 equals c

1
e–2x, then 

you get

y
2
 = c

2
xe–2x

y
3
 = c

3
x2e–2x

y
4
 = c

4
x3e–2x

for the rest. So the general solution is

y = c
1
e–2x + c

2
xe–2x +c

3
x2e–2x +c

4
x3e–2x

Take a look at this example to see another linear higher order differential equation with 

identical roots being worked out and then try a few equations yourself.

 Q. Find the solution to this differential 

equation:

    y(4) + 4y''' + 6y" + 4y' + y = 0

 A. y = c
1
e–x + c

2
xe–x +c

3
x2e–x +c

4
x3e–x

1. Here you have a fourth order differen-

tial equation with constant coeffi-

cients, so try a solution of the form

  y = erx

2. Plug your attempted solution into the 

differential equation:

  r4erx + 4r3erx + 6r2erx + 4rerx + erx = 0

3. Then divide by erx to get the character-

istic equation:

  r4 + 4r3 + 6r2 + 4r + 1 = 0

4. Factor the characteristic equation as 

follows, either by hand or by using the 

equation-solving tool at www.quick
math.com (see the chapter intro for 

specifics on accessing this tool):

  (r + 1)(r + 1)(r + 1)(r + 1)

5. The roots of the characteristic equa-

tion are –1, –1, –1, –1 — all repeated 

roots. Because the resulting solutions 

are all the same, these are all degener-
ate solutions:

  y
1
 = e–x

  y
2
 = e–x

  y
3
 = e–x

  y
4
 = e–x

6. Multiply the degenerate solutions by 

ascending powers of x to get

  y
1
 = c

1
e–x

  y
2
 = c

2
xe–x

  y
3
 = c

3
x2e–x

  y
4
 = c

4
x3e–x

7. Put all four individual solutions 

together so that the general solution 

looks like

  y = c
1
e–x + c

2
xe–x +c

3
x2e–x +c

4
x3e–x
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 12. Obtain the solution to the following 

equation:

    y''' + 4y" + 5y' + 2y = 0

 Solve It

 11. What’s the solution to this equation?

    y''' + 15y" + 75y' + 125y = 0

 Solve It

 10. Solve this differential equation:

    y''' + 9y" + 27y' + 27y = 0

 Solve It

 9. Obtain the solution to the following 

equation:

    y''' + 3y" + 3y' + y = 0

 Solve It
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 14. What’s the solution to this equation?

    y''' + 5y" + 7y' + 3y = 0

 Solve It

 13. Solve this differential equation:

    y''' + 5y" + 8y' + 4y = 0

 Solve It
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Answers to Homogeneous Linear Higher 
Order Differential Equation Problems

Here are the answers to the practice questions I provide throughout this chapter. 

I walk you through each answer so you can see the problems worked out step by 

step. Enjoy!

a  Find the solution to the following differential equation:

   y''' + 7y" + 14y' + 8y = 0

   with these initial conditions:

   y(0) = 3

   y'(0) = –7

   y"(0) = 14

  Solution: 

 1. Because this differential equation has constant coefficients, start by assuming a solution of 

the following form:

   y = erx

 2. Plug your attempted solution into the differential equation:

   r 3erx + 7r 2erx + 14rerx + 8erx = 0

 3. Then cancel out erx:

   r 3 + 7r 2 + 14r + 8 = 0

 4. Now you have a cubic equation, which you can factor into the following either by hand or by 

using the equation-solving tool at www.quickmath.com (see the chapter intro for specifics 

on accessing this tool):

   (r + 1)(r + 2)(r + 4) = 0

 5. So the roots are

   r
1
 = –1, r

2
 = –2, and r

3
 = –4

 6. These roots are real and distinct, so the solutions are

   y
1
 = e–x, y

2
 = e–2x, and y

3
 = e–4x

 7. Thus, the general solution is

   y = c
1
e–x + c

2
e–2x + c

3
e–4x

 8. Now you can apply the initial conditions. But in addition to the form for y, you also need y':

   y' = –c
1
e–x – 2c

2
e–2x – 4c

3
e–4x

  and y":

   y" = c
1
e–x + 4c

2
e–2x + 16c

3
e–4x
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 9. From the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 that you must 

solve to find the coefficients are

   y(0) = c
1
 + c

2
 + c

3
 = 3

   y'(0) = –c
1
 – 2c

2
 – 4c

3
 = –7

   y"(0) = c
1
 + 4c

2
 + 16c

3
 = 14

 10. If you solve this system of three equations by hand (or by using the 3 × 3 system solver at 

math.cowpi.com/systemsolver), you should get

   c
1
 = 1, c

2
 = 1, and c

3
 = 1

 11. So the solution of the differential equation with initial conditions applied is

   

b  Solve this equation:

   y''' + 8y" + 19y' + 12y = 0

   where

   y(0) = 4

   y'(0) = –12

   y"(0) = 42

  Solution: y = e–x + e–3x + 2e–4x

 1. Begin by assuming a solution of the form

   y = erx

 2. Plugging your attempted solution into the differential equation gives you

   r 3erx + 8r 2erx + 19rerx + 12erx = 0

 3. Canceling out erx leaves you with

   r 3 + 8r 2 + 19r + 12 = 0

 4. Looks like you now have a cubic equation that can be factored as follows:

   (r + 1)(r + 3)(r + 4) = 0

  which means the roots are

   r
1
 = –1, r

2
 = –3, and r

3
 = –4

 5. Because the roots are real and distinct, the solutions are

   y
1
 = e–x, y

2
 = e–3x, and y

3
 = e–4x

 6. That means the general solution must be

   y = c
1
e–x + c

2
e–3x + c

3
e–4x

 7. Great. Now you can apply the initial conditions, but make sure to first find y' as

   y' = –c
1
e–x – 3c

2
e–3x – 4c

3
e–4x

  and y" as

   y" = c
1
e–x + 9c

2
e–3x + 16c

3
e–4x
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 8. Thanks to the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 (which 

you have to solve to find the coefficients) are

   y(0) = c
1
 + c

2
 + c

3
 = 4

   y'(0) = –c
1
 – 3c

2
 – 4c

3
 = –12

   y"(0) = c
1
 + 9c

2
 + 16c

3
 = 42

 9. When you solve this system of three equations, you get the following:

   c
1
 = 1, c

2
 = 1, and c

3
 = 2

 10. Therefore, the solution of the original equation with initial conditions applied is

   y = e–x + e–3x + 2e–4x

c  Obtain the solution to this equation:

   y''' + 9y" + 26y' + 24y = 0

   by using these initial conditions:

   y(0) = 5

   y'(0) = –16

   y"(0) = 54

  Solution: y = e–2x + 2e–3x + 2e–4x

 1. Because this differential equation has constant coefficients, start by assuming a solution of 

the following form:

   y = erx

 2. Plug your attempted solution into the differential equation:

   r 3erx + 9r 2erx + 26rerx + 24erx = 0

 3. Then cancel out erx:

   r 3 + 9r 2 + 26r + 24 = 0

 4. Now you have a cubic equation, which you can factor into

   (r + 2)(r + 3)(r + 4) = 0

 5. So the roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –4

 6. These roots are real and distinct, so the solutions are

   y
1
 = e–2x, y

2
 = e–3x, and y

3
 = e–4x

 7. Thus, the general solution is

   y = c
1
e–2x + c

2
e–3x + c

3
e–4x

 8. Now you can apply the initial conditions. But in addition to the form for y, you also need y':

   y' = –2c
1
e–2x – 3c

2
e–3x – 4c

3
e–4x

  and y":

   y" = 4c
1
e–2x + 9c

2
e–3x + 16c

3
e–4x
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 9. From the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 that you must 

solve to find the coefficients are

   y(0) = c
1
 + c

2
 + c

3
 = 5

   y'(0) = –2c
1
 – 3c

2
 – 4c

3
 = –16

   y"(0) = 4c
1
 + 9c

2
 + 16c

3
 = 54

 10. Solving this system of three equations gives you

   c
1
 = 1, c

2
 = 2, and c

3
 = 2

 11. So the solution of the differential equation with initial conditions applied is

   y = e–2x + 2e–3x + 2e–4x

d  Find the solution to the following differential equation:

   y''' + 10y" + 31y' + 30y = 0

   with these initial conditions:

   y(0) = 6

   y'(0) = –19

   y"(0) = 71

  Solution: y = 3e–2x + e–3x + 2e–5x

 1. Begin by assuming a solution of the form

   y = erx

 2. Plugging your attempted solution into the differential equation gives you

   r 3erx + 10r 2erx + 31rerx + 30erx = 0

 3. Canceling out erx leaves you with

   r 3 + 10r 2 + 31r + 30 = 0

 4. Looks like you now have a cubic equation that can be factored as follows:

   (r + 2)(r + 3)(r + 5) = 0

  which means the roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –5

 5. Because the roots are real and distinct, the solutions are

   y
1
 = e–2x, y

2
 = e–3x, and y

3
 = e–5x

 6. That means the general solution must be

   y = c
1
e–2x + c

2
e–3x + c

3
e–5x

 7. Great. Now you can apply the initial conditions, but make sure to first find y' as

   y' = –2c
1
e–2x – 3c

2
e–3x – 5c

3
e–5x

  and y" as

   y" = 4c
1
e–2x + 9c

2
e–3x + 25c

3
e–5x
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 8. Thanks to the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 (which 

you have to solve to find the coefficients) are

   y(0) = c
1
 + c

2
 + c

3
 = 6

   y'(0) = –2c
1
 – 3c

2
 – 5c

3
 = –19

   y"(0) = 4c
1
 + 9c

2
 + 25c

3
 = 71

 9. When you solve this system of three equations, you get the following:

   c
1
 = 3, c

2
 = 1, and c

3
 = 2

 10. Therefore, the solution of the original equation with initial conditions applied is

   y = 3e–2x + e–3x + 2e–5x

e  Solve this equation:

   y''' + 11y" + 36y' + 36y = 0

   where

   y(0) = 5

   y'(0) = –17

   y"(0) = 67

  Solution: y = e–2x + 3e–3x + e–6x

 1. Because this differential equation has constant coefficients, start by assuming a solution of 

the following form:

   y = erx

 2. Plug your attempted solution into the differential equation:

   r 3erx + 11r 2erx + 36rerx + 36erx = 0

 3. Then cancel out erx:

   r 3 + 11r 2 + 36r + 36 = 0

 4. Now you have a cubic equation, which you can factor into

   (r + 2)(r + 3)(r + 6) = 0

 5. So the roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –6

 6. These roots are real and distinct, so the solutions are

   y
1
 = e–2x, y

2
 = e–3x, and y

3
 = e–6x

 7. Thus, the general solution is

   y = c
1
e–2x + c

2
e–3x + c

3
e–6x

 8. Now you can apply the initial conditions. But in addition to the form for y, you also need y':

   y' = –2c
1
e–2x – 3c

2
e–3x – 6c

3
e–6x

  and y":

   y" = 4c
1
e–2x + 9c

2
e–3x + 36c

3
e–6x
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 9. From the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 that you must 

solve to find the coefficients are

   y(0) = c
1
 + c

2
 + c

3
 = 5

   y'(0) = –2c
1
 – 3c

2
 – 6c

3
 = –17

   y"(0) = 4c
1
 + 9c

2
 + 36c

3
 = 67

 10. Solving this system of three equations gives you

   c
1
 = 1, c

2
 = 3, and c

3
 = 1

 11. So the solution of the differential equation with initial conditions applied is

   y = e–2x + 3e–3x + e–6x

f  Obtain the solution to this equation:

   y''' + 10y" + 29y' + 20y = 0

   by using these initial conditions:

   y(0) = 7

   y'(0) = –30

   y"(0) = 142

  Solution: y = e–x + e–4x + 5e–5x

 1. Begin by assuming a solution of the form

   y = erx

 2. Plugging your attempted solution into the differential equation gives you

   r 3erx + 10r 2erx + 29rerx + 20erx = 0

 3. Canceling out erx leaves you with

   r 3 + 10r 2 + 29r + 20 = 0

 4. Looks like you now have a cubic equation that can be factored as follows:

   (r + 1)(r + 4)(r + 5) = 0

  which means the roots are

   r
1
 = –1, r

2
 = –4, and r

3
 = –5

 5. Because the roots are real and distinct, the solutions are

   y
1
 = e–x, y

2
 = e–4x, and y

3
 = e–5x

 6. That means the general solution must be

   y = c
1
e–x + c

2
e–4x + c

3
e–5x

 7. Great. Now you can apply the initial conditions, but make sure to first find y' as

   y' = –c
1
e–x – 4c

2
e–4x – 5c

3
e–5x

  and y" as

   y" = c
1
e–2x + 16c

2
e–3x + 25c

3
e–5x
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 8. Thanks to the initial conditions, your three simultaneous equations in c
1
, c

2
, and c

3
 (which 

you have to solve to find the coefficients) are

   y(0) = c
1
 + c

2
 + c

3
 = 7

   y'(0) = –c
1
 – 4c

2
 – 5c

3
 = –30

   y"(0) = c
1
 + 16c

2
 + 25c

3
 = 142

 9. When you solve this system of three equations, you get the following:

   c
1
 = 1, c

2
 = 1, and c

3
 = 5

 10. Therefore, the solution of the original equation with initial conditions applied is

   y = e–x + e–4x + 5e–5x

g  What’s the solution to the following differential equation?

   y(4) – 16y = 0

   where

   y(0) = 3

   y'(0) = 2

   y"(0) = –4

   y'''(0) = –24

  Solution: y = e–2x + 2 cos 2x + 2 sin 2x

 1. Because this differential equation has constant coefficients, you can safely assume a solution 

of the form

   y = erx

 2. Plug your solution into the equation to get

   r 4erx – 16erx = 0

 3. Then cancel out erx to get

   r 4 – 16 = 0

 4. You can factor the resulting characteristic equation into

   (r 2 – 4)(r 2 + 4) = 0

 5. Looks like the roots of the characteristic equation are

   r
1
 = 2, r

2
 = –2, r

3
 = 2i, and r

4
 = –2i

 6. Use these relationships to simplify:

   eiβx = cos βx + i sin βx

  and

   e–iβx = cos βx – i sin βx
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 7. Well, y
3
 and y

4
 can be expressed as a linear combination of sines and cosines, which gives 

you these solutions (note that i has been absorbed into a multiplicative constant):

   y
1
 = e2x

   y
2
 = e–2x

   y
3
 = cos 2x

   y
4
 = sin 2x

 8. You can therefore determine that the general solution is

   y = c
1
e2x + c

2
e–2x + c

3 
cos 2x + c

4
 sin 2x

 9. To apply the initial conditions, you need to figure out y':

   y' = 2c
1
e2x – 2c

2
e–2x – 2c

3 
sin 2x + 2c

4 
cos2x

  y":

   y" = 4c
1
e2x + 4c

2
e–2x – 4c

3 
cos 2x – 4c

4 
sin 2x

  and y''':

   y''' = 8c
1
e2x – 8c

2
e–2x + 8c

3 
sin 2x – 8c

4 
cos 2x

 10. Substituting the forms for y, y', y", and y''' into the initial conditions gives you

   y(0) = c
1
 + c

2
 + c

3
 = 3

   y'(0) = 2c
1
 – 2c

2
 + 2c

4
 = 2

   y"(0) = 4c
1
 + 4c

2
 – 4c

3
 = –4

   y'''(0) = 8c
1
 – 8c

2
 – 8c

4
 = –24

 11. Solve this 4 × 4 simultaneous equation system by hand or with an online tool such as the 4 × 4 

system solver at math.cowpi.com/systemsolver to get the following:

   c
1
 = 0, c

2
 = 1, c

3
 = 2, and c

4
 = 2

 12. Tada! The general solution with initial conditions applied is

   y = e–2x + 2 cos 2x + 2 sin 2x

h  Find the solution to this differential equation:

   y(4) – 81y = 0

   where

   y(0) = 4

   y'(0) = 12

   y"(0) = –18

   y'''(0) = –162

  Solution: y = e–3x + 3 cos 3x + 5 sin 3x

 1. You know this differential equation has constant coefficients, so go ahead and assume a 

solution of this form:

   y = erx
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 2. Plug your solution into the equation:

   r 4erx – 81erx = 0

 3. Next, cancel out erx:

   r 4 – 81 = 0

 4. You can factor the resulting characteristic equation into

   (r 2 – 3)(r 2 + 3) = 0

 5. So the roots of the characteristic equation are

   r
1
 = 3, r

2
 = –3, r

3
 = 3i, and r

4
 = –3i

 6. To simplify, use these relationships:

   eiβx = cos βx + i sin βx

  and

   e–iβx = cos βx – i sin βx

 7. Okay, so you’ve determined that y
3
 and y

4
 can be expressed as a linear combination of sines 

and cosines (note that you can absorb i into a multiplicative constant). That means you have 

these solutions:

   y
1
 = e3x

   y
2
 = e–3x

   y
3
 = cos 3x

   y
4
 = sin 3x

 8. So the general solution is

   y = c
1
e3x + c

2
e–3x + c

3 
cos 3x + c

4
 sin 3x

 9. To apply the initial conditions, you need to figure out y':

   y' = 3c
1
e3x – 3c

2
e–3x – 3c

3 
sin 3x + 3c

4 
cos 3x

  and y":

   y" = 9c
1
e3x + 9c

2
e–3x – 9c

3 
cos 3x – 9c

4 
sin 3x

  as well as y''':

   y''' = 27c
1
e3x – 27c

2
e–3x + 27c

3 
sin 3x – 27c

4 
cos 3x

 10. Substituting the forms for y, y', y", and y''' into the initial conditions gives you

   y(0) = c
1
 + c

2
 + c

3
 = 4

   y'(0) = 3c
1
 – 3c

2
 + 3c

4
 = 12

   y"(0) = 9c
1
 + 9c

2
 – 9c

3
 = –18

   y'''(0) = 27c
1
 – 27c

2
 – 27c

4
 = –162

 11. Solve this 4 × 4 simultaneous equation system by hand or with an online tool such as the 

4 × 4 system solver at math.cowpi.com/systemsolver:

   c
1
 = 0, c

2
 = 1, c

3
 = 3, and c

4
 = 5
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 12. After all that, the general solution with initial conditions applied is

   y = e–3x + 3 cos 3x + 5 sin 3x

i  Obtain the solution to the following equation:

   y''' + 3y" + 3y' + y = 0

  Solution: y = c
1
e–x + c

2
xe–x +c

3
x2e–x

 1. First, try a solution of the following form:

   y = erx

 2. Plug your attempted solution into the differential equation to get

   r 3erx + 3r 2erx + 3rerx + erx = 0

 3. Then divide by erx to get this characteristic equation:

   r 3 + 3r 2 + 3r + 1 = 0

 4. Factor the characteristic equation either by hand or by using the equation-solving tool at 

www.quickmath.com (see the chapter intro for specifics on accessing this tool):

   (r + 1)(r + 1)(r + 1)

 5. It appears the roots of the characteristic equation are repeated roots, because all three roots 

are –1. Consequently, your three resulting solutions are considered degenerate solutions, 

because they’re all the same.

   y
1
 = e–x

   y
2
 = e–x

   y
3
 = e–x

 6. Go ahead and multiply the degenerate solutions by ascending powers of x to get

   y
1
 = c

1
e–x

   y
2
 = c

2
xe–x

   y
3
 = c

3
x2e–x

 7. Put the individual solutions together to form your general solution, like so:

   y = c
1
e–x + c

2
xe–x +c

3
x2e–x

j  Solve this differential equation:

   y''' + 9y" + 27y' + 27y = 0

  Solution: y = c
1
e–3x + c

2
xe–3x +c

3
x

2
e–3x

 1. Because the problem features a third order differential equation with constant coefficients, 

try a solution of the form

   y = erx

 2. Then plug the attempted solution into the equation:

   r3erx + 9r2erx + 27rerx + 27erx = 0
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 3. Divide by erx to get the characteristic equation:

   r3 + 9r2 + 27r + 27 = 0

  which you can factor as follows:

   (r + 3)(r + 3)(r + 3)

 4. The roots of the characteristic equation are –3, –3, –3 — all repeated roots — which give you 

these degenerate solutions:

   y
1
 = e–3x

   y
2
 = e–3x

   y
3
 = e–3x

 5. Multiply the degenerate solutions by ascending powers of x:

   y
1
 = c

1
e–3x, y

2
 = c

2
xe–3x, and y

3
 = c

3
x2e–3x

 6. Finally, put the individual solutions together to form this general solution:

   y = c
1
e–3x + c

2
xe–3x +c

3
x2e–3x

k  What’s the solution to this equation?

   y''' + 15y" + 75y' + 125y = 0

  Solution: y = c
1
e–5x + c

2
xe–5x + c

3
x2e–5x

 1. First, try a solution of the following form:

   y = erx

 2. Plug your attempted solution into the differential equation to get

   r 3erx + 15r 2erx + 75rerx + 125erx = 0

 3. Then divide by erx to get this characteristic equation:

   r 3 + 15r 2 + 75r + 125 = 0

 4. Factor the characteristic equation this way:

   (r + 5)(r + 5)(r + 5)

 5. It appears the roots of the characteristic equation are repeated roots, because all three roots 

are –5. Consequently, your three resulting solutions are considered degenerate solutions, 

because they’re all the same.

   y
1
 = e–5x

   y
2
 = e–5x

   y
3
 = e–5x

 6. Go ahead and multiply the degenerate solutions by ascending powers of x to get

   y
1
 = c

1
e–5x

   y
2
 = c

2
xe–5x

   y
3
 = c

3
x2e–5x
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 7. Put the individual solutions together to form your general solution, like so:

   y = c
1
e–5x + c

2
xe–5x + c

3
x2e–5x

l  Obtain the solution to the following equation:

   y''' + 4y" + 5y' + 2y = 0

  Solution: y = c
1
e–x + c

2
xe–x +c

3
e–2x

 1. Because the problem features a third order differential equation with constant coefficients, 

try a solution of the form

   y = erx

 2. Then plug the attempted solution into the equation:

   r 3erx + 4r 2erx + 5rerx + 2erx = 0

 3. Divide by erx to get the characteristic equation:

   r 3 + 4r 2 + 5r + 2 = 0

  which you can factor as follows:

   (r + 1)(r + 1)(r + 2)

 4. The roots of the characteristic equation are –1, –1, –2 — two of the roots are repeated. Find 

the solutions:

   y
1
 = e–x

   y
2
 = e–x

   y
3
 = e–2x

 5. Multiply the degenerate solutions by ascending powers of x:

   y
1
 = c

1
e–x, y

2
 = c

2
xe–x, and y

3
 = c

3
e–2x

 6. Finally, put the individual solutions together to form this general solution:

   y = c
1
e–x + c

2
xe–x +c

3
e–2x

m  Solve this differential equation:

   y''' + 5y" + 8y' + 4y = 0

  Solution: y = c
1
e–2x + c

2
xe–2x + c

3
e–x

 1. First, try a solution of the following form:

   y = erx

 2. Plug your attempted solution into the differential equation to get

   r 3erx + 5r 2erx + 8rerx + 4erx = 0

 3. Then divide by erx to get this characteristic equation:

   r 3 + 5r 2 + 8r + 4 = 0

 4. Factor the characteristic equation this way:

   (r + 2)(r + 2)(r + 1)
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 5. It appears two of the characteristic equation’s roots are repeated, –2 and –2. Consequently, 

two of your three resulting solutions are considered degenerate solutions, because they’re 

the same.

   y
1
 = e–2x

   y
2
 = e–2x

   y
3
 = e–x

 6. Go ahead and multiply the degenerate solutions by ascending powers of x to get

   y
1
 = c

1
e–2x

   y
2
 = c

2
xe–2x

   y
3
 = c

3
e–x

 7. Put the individual solutions together to form your general solution, like so:

   y = c
1
e–2x + c

2
xe–2x + c

3
e–x

n  What’s the solution to this equation?

   y''' + 5y" + 7y' + 3y = 0

  Solution: y = c
1
e–x + c

2
xe–x + c

3
e–3x

 1. Because the problem features a third order differential equation with constant coefficients, 

try a solution of the form

   y = erx

 2. Then plug your attempted solution into the equation:

   r 3erx + 5r 2erx + 7rerx + 3erx = 0

 3. Divide by erx to get the characteristic equation:

   r 3 + 5r 2 + 7r + 3 = 0

  which you can factor as follows:

   (r + 1)(r + 1)(r + 3)

 4. The roots of the characteristic equation are –1, –1, –3 — two of the roots are repeated. Find 

the solutions:

   y
1
 = e–x

   y
2
 = e–x

   y
3
 = e–3x

 5. Multiply the degenerate solutions by ascending powers of x:

   y
1
 = c

1
e–x

   y
2
 = c

2
xe–x

   y
3
 = c

3
e–3x

 6. Finally, put the individual solutions together to form this general solution:

   y = c
1
e–x + c

2
xe–x + c

3
e–3x
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Chapter 7

Taking On Nonhomogeneous Linear 
Higher Order Differential Equations

In This Chapter
▶ Finding answers with the help of Aerx

▶ Working with polynomial differential equations

▶ Knowing what to do when you see sines and cosines

In this chapter, you work with general nonhomogeneous linear higher order differential 

equations (which are sometimes referred to as nth order equations) that look like this:

 

Such an equation may seem complex, but you can easily solve it by using the method of 

undetermined coefficients for nonhomogeneous higher order differential equations.

 The method of undetermined coefficients says that if g(x) has a certain form, then you must 

attempt to find a particular solution of a similar form. After you find the particular solu-

tion, you must solve for the general solution, which is the sum of the homogeneous solution 

(which you find by setting g(x) to 0) and the particular solution.

The various forms of g(x) give you a clue as to what the form of the particular solution may 

be. If g(x) equals

 ✓ erx, then try a particular solution of the form Aerx, where A is a constant. Because 

derivatives of erx reproduce erx, you have a good chance of finding a particular 

solution this way.

 ✓ a polynomial of order n, then try a polynomial of order n.

 ✓ a combination of sines and cosines, sin αx + cos βx, then try a combination of sines 

and cosines with undetermined coefficients (A sin βx + B cos βx), plug into the differen-

tial equation, and solve for A and B.

In this chapter, you practice working with each of these forms.

 As you solve the practice problems throughout this chapter, you may need help factoring the 

characteristic equations that crop up in the process of finding the homogeneous solution. 

I recommend turning to a trusty Web-based equation solver, such as www.numberempire.
com/equationsolver.php. (Just be sure to use “x^3” for x3).
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Seeking Out Solutions of the Form Aerx

 Solving for a solution in the form of Aerx is what you should try first when you want to find 

a solution to the homogeneous version of a nonhomogeneous linear higher order equation, 

like this one:

y''' + 3y" + 3y' + y = 432e5x

You know that the general solution of this equation is the sum of the particular solution and 

the homogeneous solution. You also know that in variable-speak, the general solution looks 

like this:

y = y
h
 + y

p

Perfect. So now you need to get the homogeneous version of the previous differential 

equation, which is

y''' + 3y" + 3y' + y = 0

Solve the homogeneous equation first; then plug in a particular solution of the form

y
p
 = Ae5x

All that’s left to do is solve for A!

That was just a quick outline of the process; the following example walks you through the 

steps of solving the previous equation from start to finish. Check it out and then take a shot 

at solving the related practice problems.

 Q. Find the solution to this differential 

equation:

    y''' + 3y" + 3y' + y = 432e5x

 A. y = c
1
e–x + c

2
xe–x + c

3
x2e–x + 2e5x

1. Start by realizing that obtaining the 

general solution to the problem means 

finding the sum of the particular solu-

tion and the solution to the homo-

geneous version of the differential 

equation:

  y = y
h
 + y

p

2. Then find the homogeneous version of 

the differential equation:

  y''' + 3y" + 3y' + y = 0

3. The homogeneous version has con-

stant coefficients, so you can assume a 

homogeneous solution of the form

  y = erx

4. Plugging your attempted solution into 

the differential equation gives you

  r 3erx + 3r 2erx + 3rerx + erx = 0

5. Canceling out erx leaves you with

  r 3 + 3r 2 + 3r + 1 = 0

6. Now you have a cubic equation, which 

you can factor into the following either 

by hand or by using the equation-

solving tool at www.numberempire.
com/equationsolver.php:

  (r + 1)(r + 1)(r + 1) = 0
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 1. What’s the solution to this differential 

equation?

    y''' – 6y" + 11y' – 6y = 18e4x

 Solve It

 2. Solve the following equation:

    y''' + 7y" + 14y' + 8y = 378e5x

 Solve It

7. So the roots of the characteristic 

equation are

  r
1
 = –1, r

2
 = –1, and r

3
 = –1

  which gives you

  y
1
 = c

1
e–x

  y
2
 = c

2
xe–x

  y
3
 = c

3
x2e–x

8. So the solution to the homogeneous 

differential equation is

  y
h
 = c

1
e–x + c

2
xe–x + c

3
x2e–x

9. Now you need to find a particular 

solution to the differential equation 

by using the method of undetermined 

coefficients. Start by assuming a 

solution of the form

  y
p
 = Ae5x

10.  Substitute y
p
 into the differential 

equation to get

  125Ae5x + 75Ae5x + 15Ae5x + Ae5x = 

432e5x

11. Then cancel out e5x:

  125A + 75A + 15A + A = 432

  which is actually

  216A = 432

  so

  A = 2

  and the particular solution is

  y
p
 = 2e5x

12.  Add the homogeneous solution and 

the particular solution together to find 

that the general solution to the original 

differential equation is

  y = c
1
e–x + c

2
xe–x + c

3
x2e–x + 2e5x
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 6. Find the answer to this equation:

    y''' + 4y" + 5y' + 2y = 68e–3x

 Solve It

 5. Solve the following equation:

    y''' – 6y" + 11y' – 6y = 48e5x

 Solve It

 4. What’s the solution to this differential 

equation?

    y''' + 9y" + 26y' + 24y = 12e–x

 Solve It

 3. Find the answer to this equation:

    y''' + 8y" + 19y' + 14y = –36e–5x

 Solve It
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Trying for a Solution in Polynomial Form
Whenever you come across a linear higher order differential equation that’s nonhomo-

geneous and in polynomial form, forget the other tricks to the method of undetermined 

coefficients and try for a polynomial of order n.

With that in mind, how would you handle this equation?

y''' + 3y" + 3y' + y = x + 5

Obviously the general solution you need to find is the sum of the homogeneous solution 

and a particular solution. The formula for that looks like this:

y = y
h
 + y

p

The homogeneous version of the original differential equation is

y''' + 3y" + 3y' + y = 0

Okay. Now what? Well, first you must solve this homogeneous equation and then plug in a 

particular solution of the form

y
p
 = Ax4 + Bx3 + Cx2 + Dx + E

and solve for A, B, C, D, and E. Nothing to it, right? For the step-by-step process, take a look 

at the following example. Or if you think you have the hang of it from this general overview, 

skip ahead to the following two practice problems.

Q. What’s the solution to this differential 

equation?

    y''' + 3y" + 3y' + y = x + 5

 A. y = c
1
e–x + c

2
xe–x + c

3
x2e–x + x + 2

1. First things first: Make sure you’re 

looking for the sum of the particular 

solution and the solution to the homo-

geneous version of the differential 

equation:

  y = y
h
 + y

p

2. Now you can find the homogeneous 

version of the equation in the 

question:

  y''' + 3y" + 3y' + y = 0

3. Because the homogeneous differential 

equation has constant coefficients, go 

ahead and assume a homogeneous 

solution of the form

  y = erx

4. Plug your attempted solution into the 

equation:

  r 3erx + 3r 2erx + 3rerx + erx = 0

5. Then cancel out erx:

  r 3 + 3r 2 + 3r + 1 = 0

6. The resulting equation is a cubic one 

that you can factor as follows either by 

hand or by using the equation-solving 

tool found at www.numberempire.
com/equationsolver.php:

  (r + 1)(r + 1)(r + 1) = 0
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7. This equation’s roots are

  r
1
 = –1, r

2
 = –1, and r

3
 = –1

  so

  y
1
 = c

1
e–x

  y
2
 = c

2
xe–x

  y
3
 = c

3
x2e–x

8. Tada! The solution to the homoge-

neous differential equation is

  y
h
 = c

1
e–x + c

2
xe–x + c

3
x2e–x

9. To find a particular solution to the dif-

ferential equation, assume a solution 

of the form

  y
p
 = Ax4 + Bx3 + Cx2 + Dx + E

10. First, find y
p
''':

  y
p
''' = 24Ax + 6B

11. Then find 3y
p
":

  3y
p
" = 36Ax2 + 18Bx + 6C

12. Next, find 3y
p
':

  3y
p
' = 12Ax3 + 9Bx2 + 6Cx + 3D

13. Finally, find y
p
:

  y
p
 = Ax4 + Bx3 + Cx2 + Dx + E

14.  Add together the results of Steps 10 

through 13:

  y''' + 3y" + 3y' + y = 24Ax + 6B + 

36Ax2 + 18Bx + 6C + 12Ax3 + 9Bx2 + 

6Cx + 3D + Ax4 + Bx3 + Cx2 + Dx + E 
= x + 5

15.  That’s a lot of terms to mess with. Why 

not combine them to get

  Ax4 + (12A + B)x3 + (36A + 9B + C)

x2 + (24A + 18B + 6C + D)x + (6B + 

6C + 3D + E) = x + 5

16.  Comparing the coefficient of x4 gives 

you

  A = 0

17.  Similarly, comparing the coefficient of 

x3 gives you

  12A + B = 0

  so

  B = 0

18.  Amazingly enough, comparing the 

coefficient of x2 gives you

  36A + 9B + C = 0

  so

  C = 0

19.  And comparing the coefficient of x 

gives you

  24A + 18B + 6C + D = 1

  so

  D = 1

20.  Finally, comparing the coefficient of 

the constant term gives you

  6B + 6C + 3D + E = 5

  so

  E = 2

21.  After all that work, you now have your 

particular solution, which is

  y
p
 = x + 2

22.  Add that solution to the homogeneous 

solution and you get this as your gen-

eral solution:

  y = c
1
e–x + c

2
xe–x + c

3
x2e–x + x + 2
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 7. Find the solution to the following differen-

tial equation:

    y''' + 9y" + 26y' + 24y = 24x + 2

 Solve It

 8. What’s the solution to this equation?

    y''' + 4y" + 5y' + 2y = 4x + 16

 Solve It

Working with Solutions Made Up of 
Sines and Cosines

Spotting a sine or cosine in a nonhomogeneous linear higher order differential equation 

you’re facing is a surefire sign that you need to find a particular solution that includes sines 

and cosines so you can plug it into the equation and solve for A and B.

Say you’re tackling this differential equation:

y''' + 7y" + 14y' + 8y = 5 sin (x)

You’re well aware that the general solution is of this form:

y = y
h
 + y

p

where y
h
 equals the homogeneous solution and y

p
 equals the particular solution.

The homogeneous version of your original equation is

y''' + 7y" + 14y' + 8y = 0
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What you need to do next is solve this homogeneous equation first and then plug in a 

particular solution of the form

y
p
 = A sin (x) + B cos (x)

so you can solve for A and B.

The following example shows you how to solve this type of equation. Spend a few minutes 

reviewing it before trying out a couple practice problems on your own.

 Q. Find the solution to this differential 

equation:

    y''' + 7y" + 14y' + 8y = 2 sin (x) + 

  26 cos (x)

 A. y = c
1
e–x + c

2
e–2x + c

3
e–4x + 2 sin (x)

1. You already know that the general 

solution looks like this:

  y = y
h
 + y

p

  so start by finding the homogeneous 

version of the differential equation:

  y''' + 7y" + 14y' + 8y = 0

2. You can assume a homogeneous solu-

tion of the following form because the 

homogeneous version of the equation 

has constant coefficients:

  y = erx

3. Plug in your attempted solution to get

  r 3erx + 7r 2erx + 14rerx + 8erx = 0

4. Then cancel out erx:

  r 3 + 7r 2 + 14r + 8 = 0

5. Looks like you now have a cubic equa-

tion on your hands. Don’t worry. This 

one isn’t as scary as it may look. 

Simply factor it as follows (either by 

hand or with the help of the equation-

solving tool at www.numberempire.
com/equationsolver.php):

  (r + 1)(r + 2)(r + 4) = 0

6. Doing so shows you that the roots are

  r
1
 = –1, r

2
 = –2, and r

3
 = –4

  so

  y
1
 = e–x

  y
2
 = e–2x

  y
3
 = e–4x

7. Thus, your homogeneous solution is

  y
h
 = c

1
e–x + c

2
e–2x + c

3
e–4x

8. Now you need to find a particular solu-

tion. Start that process by assuming a 

solution of this form:

  y
p
 = A sin (x) + B cos (x)

9. Find the following:

  y
p
'''

  which is

  y
p
''' = –A cos (x) + B sin (x)

  then

  7y
p
"

  which is

  7y
p
" = –7A sin (x) – 7B cos (x)

  then

  14y
p
'

  which is

  14y
p
' = 14A cos (x) – 14B sin (x)

  and finally

  8y
p
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 9. Solve the following differential equation:

    y''' + 10y" + 31y' + 30y = 20 sin (x) + 

  30 cos (x)

 Solve It

 10. What’s the answer to this equation?

    y''' + 11y" + 36y' + 36y = 75 sin (x) + 

  105 cos (x)

 Solve It

  which is

  8y
p
 = 8A sin (x) + 8B cos (x)

10.  Adding everything together gives 

you:

  y''' + 7y" + 14y' + 8y = –A cos (x) + 

B sin (x) –7A sin (x) – 7B cos (x) + 

14A cos (x) – 14B sin (x) + 8A sin 

(x) + 8B cos (x) = 5 sin (x)

11.  To get rid of some of the mess, go 

ahead and combine terms:

  (B –7A –14B + 8A) sin (x) + (–A 

–7B + 14A + 8B) cos (x) = 5 sin (x)

12.  Combining terms further gives you

  (–13B + A) sin (x) + (13A + B) cos 

(x) = 2 sin (x) + 26 cos (x)

13. When you solve for A, you get

  A = 2

  and when you solve for B, you get

  B = 0

  so the particular solution is

  y
p
 = 2 sin (x)

14.  Only one thing left to do: Add the par-

ticular solution to the homogeneous 

solution to get

  y = c
1
e–x + c

2
e–2x + c

3
e–4x + 2 sin (x)
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Answers to Nonhomogeneous Linear Higher 
Order Differential Equation Problems

Following are the answers to the practice questions presented throughout this chapter. 

Each one is worked out step by step so that if you messed one up along the way, you 

can more easily see where you took a wrong turn.

a  What’s the solution to this differential equation?

   y''' – 6y" + 11y' – 6y = 18e4x

  Solution: y = c
1
ex + c

2
e2x + c

3
e3x + 3e4x

 1. First off, get the homogeneous version of the equation:

   y''' – 6y" + 11y' – 6y = 0

 2. Looks like the homogeneous version has constant coefficients, so go ahead and assume a 

homogeneous solution of the form

   y = erx

 3. Plug your attempted solution into the differential equation:

   r 3erx – 6r 2erx + 11rerx – 6erx = 0

 4. Cancel out erx:

   r 3 – 6r 2 + 11r – 6 = 0

 5. Now you have a cubic equation that can be factored into

   (r – 1)(r – 2)(r – 3) = 0

  Note: For some help factoring cubic (or higher!) equations, you can always turn to www.
numberempire.com/equationsolver.php.

 6. So the roots are

   r
1
 = 1, r

2
 = 2, and r

3
 = 3

 7. Hmmm. Those roots are real and distinct, which makes the solutions

   y
1
 = ex

   y
2
 = e2x

   y
3
 = e3x

 8. Therefore, you can calculate that the homogeneous solution is

   y
h
 = c

1
ex + c

2
e2x + c

3
e3x

 9. Well done. Now you need to assume a solution of the following form in order to find your 

particular solution:

   y
p
 = Ae4x

 10. Substitute y
p
 into the differential equation to get

   64Ae4x – 96Ae4x + 44Ae4x – 6Ae4x = 18e4x



163 Chapter 7: Taking On Nonhomogeneous Linear Higher Order Differential Equations

 11. Canceling out e4x gives you

   6A = 18

  which is actually

   A = 3

 12. The particular solution is therefore

   y
p
 = 3e4x

 13. Add the particular solution to the homogeneous solution to get your general solution of

   y = c
1
ex + c

2
e2x + c

3
e3x + 3e4x

b  Solve the following equation:

   y''' + 7y" + 14y' + 8y = 378e5x

  Solution: y = c
1
e–x + c

2
e–2x + c

3
e–4x + e5x

 1. Find the homogeneous version of the differential equation:

   y''' + 7y" + 14y' + 8y = 0

 2. Because the homogeneous version has constant coefficients, you can try a solution of 

the form

   y = erx

 3. Plugging your attempted solution into the differential equation gives you

   r 3erx + 7r 2erx + 14rerx + 8erx = 0

 4. Canceling out erx leaves you with

   r 3 + 7r 2 + 14r + 8 = 0

 5. Factor the resulting cubic equation as follows:

   (r + 1)(r + 2)(r + 4) = 0

 6. You now know that the roots are

   r
1
 = –1, r

2
 = –2, and r

3
 = –4

 7. The roots are real and distinct, so the solutions are

   y
1
 = e–x

   y
2
 = e–2x

   y
3
 = e–4x

 8. Thus, the homogeneous solution must be

   y
h
 = c

1
e–x + c

2
e–2x + c

3
e–4x

 9. You still need to find a particular solution, so assume a solution of the form

   y
p
 = Ae5x

 10. Substituting y
p
 into the differential equation gives you

   125Ae5x + 175Ae5x + 70Ae5x + 8Ae5x = 378e5x
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 11. Canceling out e5x leaves you with the following:

   125A + 175A + 70A + 8A = 378

  or

   378A = 378

  which means

   A = 1

 12. So the particular solution is

   y
p
 = e5x

 13. To get the general solution you’re looking for, simply add together the homogeneous solution 

and the particular solution:

   y = c
1
e–x + c

2
e–2x + c

3
e–4x + e5x

c  Find the answer to this equation:

   y''' + 8y" + 19y' + 14y = –36e–5x

  Solution: y = c
1
e–x + c

2
e–3x + c

3
e–4x + 6e–5x

 1. First off, get the homogeneous version of the equation:

   y''' + 8y" + 19y' + 14y = 0

 2. Looks like the homogeneous version has constant coefficients, so go ahead and assume a 

solution of the form

   y = erx

 3. Plug your attempted solution into the differential equation:

   r 3erx + 8r 2erx + 19rerx + 14erx = 0

 4. Cancel out erx:

   r 3 + 8r 2 + 19r + 14 = 0

 5. Now you have a cubic equation that can be factored into

   (r + 1)(r + 3)(r + 4) = 0

 6. So the roots are

   r
1
 = –1, r

2
 = –3, and r

3
 = –4

 7. Hmmm. Those roots are real and distinct, which makes the solutions

   y
1
 = e–x

   y
2
 = e–3x

   y
3
 = e–4x

 8. Therefore, you can calculate that the homogeneous solution is

   y
h
 = c

1
e–x + c

2
e–3x + c

3
e–4x

 9. Well done. Now you need to assume a solution of the following form in order to find your 

particular solution:

   y
p
 = Ae–5x
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 10. Substitute y
p
 into the differential equation to get

   –125Ae–5x + 200Ae–5x – 95Ae–5x + 14Ae–5x = –36e–5x

 11. Canceling out e–5x gives you

   –125A + 200A – 95A + 14A = –36

  which is actually

   –6A = –36

  so

   A = 6

 12. The particular solution is therefore

   y
p
 = 6e–5x

 13. Add the particular solution to the homogeneous solution to get your general solution of

   y = c
1
e–x + c

2
e–3x + c

3
e–4x + 6e–5x

d  What’s the solution to this differential equation?

   y''' + 9y" + 26y' + 24y = 12e–x

  Solution: y = c
1
e–2x + c

2
e–3x + c

3
e–4x + 2e–x

 1. Find the homogeneous version of the differential equation:

   y''' + 9y" + 26y' + 24y = 0

 2. Because the homogeneous version has constant coefficients, you can try a solution of 

the form

   y = erx

 3. Plugging your attempted solution into the differential equation gives you

   r 3erx + 9r 2erx + 26rerx + 24erx = 0

 4. Canceling out erx leaves you with

   r 3 + 9r 2 + 26r + 24 = 0

 5. Factor the resulting cubic equation as follows:

   (r + 2)(r + 3)(r + 4) = 0

 6. You now know that the roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –4

 7. The roots are real and distinct, so the solutions are

   y
1
 = e–2x

   y
2
 = e–3x

   y
3
 = e–4x

 8. Thus, the homogeneous solution must be

   y
h
 = c

1
e–2x + c

2
e–3x + c

3
e–4x

 9. You still need to find a particular solution, so assume a solution of the form

   y
p
 = Ae–x
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 10. Substituting y
p
 into the differential equation gives you

   –Ae–x + 9Ae–x – 26Ae–x + 24Ae–x = 12e–x

 11. Canceling out e–x leaves you with the following:

   –A + 9A – 26A + 24A = 12

  or

   6A = 12

  which means

   A = 2

 12. So the particular solution is

   y
p
 = 2e–x

 13. To get the general solution you’re looking for, simply add together the homogeneous solution 

and the particular solution:

   y = c
1
e–2x + c

2
e–3x + c

3
e–4x + 2e–x

e  Solve the following equation:

   y''' – 6y" + 11y' – 6y = 48e5x

  Solution: y = c
1
ex + c

2
e2x + c

3
e3x + 2e5x

 1. First off, get the homogeneous version of the equation:

   y''' – 6y" + 11y' – 6y = 0

 2. Looks like the homogeneous version has constant coefficients, so go ahead and assume a 

homogeneous solution of the form

   y = erx

 3. Plug your attempted solution into the differential equation:

   r 3erx – 6r 2erx + 11rerx – 6erx = 0

 4. Cancel out erx:

   r 3 – 6r 2 + 11r – 6 = 0

 5. Now you have a cubic equation that can be factored into

   (r – 1)(r – 2)(r – 3) = 0

 6. So the roots are

   r
1
 = 1, r

2
 = 2, and r

3
 = 3

 7. Hmmm. Those roots are real and distinct, which makes the solutions

   y
1
 = ex

   y
2
 = e2x

   y
3
 = e3x

 8. Therefore, you can calculate that the homogeneous solution is

   y
h
 = c

1
ex + c

2
e2x + c

3
e3x
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 9. Well done. Now you need to assume a solution of the following form in order to find your 

particular solution:

   y
p
 = Ae5x

 10. Substitute y
p
 into the differential equation to get

   125Ae5x – 150Ae5x + 55Ae5x – 6Ae5x = 48e5x

 11. Canceling out e5x gives you

   24A = 48

  which is actually

   A = 2

 12. The particular solution is therefore

   y
p
 = 2e5x

 13. Add the particular solution to the homogeneous solution to get your general solution of

   y = c
1
ex + c

2
e2x + c

3
e3x + 2e5x

f  Find the answer to this equation:

   y''' + 4y" + 5y' + 2y = 68e–3x

  Solution: y = c
1
e–x + c

2
xe–x + c

3
e–2x – 17e–3x

 1. Find the homogeneous version of the differential equation:

   y''' + 4y" + 5y' + 2y = 0

 2. Because the homogeneous version has constant coefficients, you can try a solution of 

the form

   y = erx

 3. Plugging your attempted solution into the differential equation gives you

   r 3erx + 4r 2erx + 5rerx + 2erx = 0

 4. Dividing by erx to get the characteristic equation leaves you with

   r 3 + 4r 2 + 5r + 2 = 0

 5. Factor the characteristic equation as follows:

   (r + 1)(r + 1)(r + 2)

 6. Notice that two of the roots of the characteristic equation (–1 and –1) are repeated. Does it 

look as if the solutions are

   y
1
 = e–x

   y
2
 = e–x

   y
3
 = e–2x

  The first two are clearly degenerate solutions because they’re the same.

 7. Go ahead and multiply the degenerate solutions by ascending powers of x to get

   y
1
 = c

1
e–x

   y
2
 = c

2
xe–x

   y
3
 = c

3
e–2x
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 8. Put the individual solutions together so that the homogeneous solution looks like this:

   y = c
1
e–x + c

2
xe–x +c

3
e–2x

 9. You still need to find a particular solution, so assume a solution of the form

   y
p
 = Ae–3x

 10. Substituting y
p
 into the differential equation gives you

   –27Ae–3x + 36Ae–3x – 15Ae–3x + 2Ae–3x = 68e–3x

 11. Canceling out e–3x leaves you with the following:

   –4A = 68

  or

   A = –17

 12. So the particular solution is

   y
p
 = –17e–3x

 13. To get the general solution you’re looking for, simply add together the homogeneous solution 

and the particular solution:

   y = c
1
e–x + c

2
xe–x + c

3
e–2x – 17e–3x

g  Find the solution to the following differential equation:

   y''' + 9y" + 26y' + 24y = 24x + 2

  Solution: y = c
1
e–2x + c

2
e–3x + c

3
e–4x + x – 1

 1. First things first: Obtain the homogeneous version of the differential equation:

   y''' + 9y" + 26y' + 24y = 0

 2. Looks like the homogeneous version has constant coefficients, so you can safely try a 

solution of the following form:

   y = erx

 3. Now plug your attempted solution into the equation:

   r 3erx + 9r 2erx + 26rerx + 24erx = 0

 4. Then cancel out erx:

   r 3 + 9r 2 + 26r + 24 = 0

 5. You now have a cubic equation, which you can factor as follows either by hand or by using 

the equation-solving tool found at www.numberempire.com/equationsolver.php:

   (r + 2)(r + 3)(r + 4) = 0

 6. The roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –4

  so

   y
1
 = e–2x

   y
2
 = e–3x

   y
3
 = e–4x
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  which makes the homogeneous solution

   y
h
 = c

1
e–2x + c

2
e–3x + c

3
e–4x

 7. Now you need to find a particular solution to the differential equation by using the method of 

undetermined coefficients. Because g(x) has the form of a polynomial in the original equation, 

start by assuming a solution of the form

   y
p
 = Ax4 + Bx3 + Cx2 + Dx + E

 8. First, find y
p
''':

   y
p
''' = 24Ax + 6B

 9. Then find 9y
p
":

   9y
p
" = 108Ax2 + 54Bx + 18C

 10. Next, find 26y
p
':

   26y
p
' = 104Ax3 + 78Bx2 + 52Cx + 26D

 11. Finally, find 24y
p
:

   24y
p
 = 24Ax4 + 24Bx3 + 24Cx2 + 24Dx + 24E

 12. Add together the results of Steps 8 through 11:

   y''' + 9y" + 26y' + 24y = 24Ax + 6B + 108Ax2 + 54Bx + 18C + 104Ax3 + 78Bx2 + 52Cx + 26D + 

 24Ax4 + 24Bx3 + 24Cx2 + 24Dx + 24E = 24x + 2

 13. Looks a wee bit nasty, doesn’t it? Combining terms gives you

   24Ax4 + (104A + 24B)x3 + (108A + 78B + 24C)x2 + (24A + 54B + 52C + 24D)x + (6B + 18C + 26D + 

 24E) = 24x + 2

 14. That’s somewhat better. Try comparing the coefficient of x4 to get

   A = 0

 15. Then compare the coefficient of x3:

   104A + 24B = 0

  so

   B = 0

 16. While you’re at it, why not compare the coefficient of x2 to get

   108A + 78B + 24C = 0

  or

   C = 0

 17. Then compare the coefficient of x (this is almost the last time you have to compare 

coefficients in this problem, I swear):

   24A + 54B + 52C + 24D = 24

  so

   D = 1

 18. Finally, compare the coefficient of the constant term to get

   6B + 18C + 26D + 24E = 2
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  or

   E = –1

 19. If you put all that together, you can figure out that the particular solution is

   y
p
 = x – 1

 20. Take it one step further by adding the homogeneous solution and the particular solution to 

get your general solution of

   y = c
1
e–2x + c

2
e–3x + c

3
e–4x + x – 1

h  What’s the solution to this equation?

   y''' + 4y" + 5y' + 2y = 4x + 16

  Solution: y = c
1
e–x + c

2
xe–x + c

3
e–2x + 2x + 3

 1. Find the homogeneous version of the equation in question:

   y''' + 4y" + 5y' + 2y = 0

 2. Because the homogeneous version is a third order differential equation with constant 

coefficients, assume a solution of the form

   y = erx

 3. Plugging your attempted solution into the equation gives you

   r 3erx + 4r 2erx + 5rerx + 2erx = 0

 4. Dividing by erx to get the characteristic equation results in this:

   r 3 + 4r 2 + 5r + 2 = 0

 5. Go ahead and factor the characteristic equation as

   (r + 1)(r + 1)(r + 2)

 6. Two of the roots of the characteristic equation are repeated roots (–1 and –1). Does it look as 

if the solutions are

   y
1
 = e–x

   y
2
 = e–x

   y
3
 = e–2x

  The first two solutions are degenerate because they’re the same.

 7. Multiply the degenerate solutions by ascending powers of x to get

   y
1
 = c

1
e–x

   y
2
 = c

2
xe–x

   y
3
 = c

3
e–2x

 8. Then put the individual solutions together to form the following homogeneous solution:

   y = c
1
e–x + c

2
xe–x +c

3
e–2x

 9. You’re halfway there now. The next step is to find a particular solution, which you can do by 

assuming a solution of the form

   y
p
 = Ax4 + Bx3 + Cx2 + Dx + E
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 10. Find the following:

   y
p
'''

  which is

   y
p
''' = 24Ax + 6B

  then

   4y
p
"

  which is

   4y
p
" = 48Ax2 + 34Bx + 8C

  then

   5y
p
'

  which is

   5y
p
' = 20Ax3 + 15Bx2 + 10Cx + 5D

  and finally

   2y
p

  which is

   2y
p
 = 2Ax4 + 2Bx3 + 2Cx2 + 2Dx + 2E

 11. Add everything in Step 10 together:

   y''' + 4y" + 5y' + 2y = 24Ax + 6B + 48Ax2 + 34Bx + 8C + 20Ax3 + 15Bx2 + 10Cx + 5D + 2Ax4 + 2Bx3 + 

 2Cx2 + 2Dx + 2E = 4x + 16

 12. If that’s a little messy for your taste, combine like terms:

   2Ax4 + (20A + 2B)x3 + (48A + 15B + 2C)x2 + (24A + 34B + 10C + 2D)x + (6B + 8C + 5D + 2E) = 

 4x + 16

 13. Now you can begin comparing coefficients, starting with the coefficient of x4, which gives you

   A = 0

 14. Next up, compare the coefficient of x3 to get

   20A + 2B = 0

  so

   B = 0

 15. Then compare the coefficient of x2:

   48A + 15B + 2C = 0

  which means that

   C = 0

 16. Comparing the coefficient of x gives you

   24A + 34B + 10C + 2D = 4

  so

   D = 2
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 17. Last but not least, compare the coefficient of the constant term to get

   6B + 8C + 5D + 2E = 16

  which means that

   E = 3

 18. Thanks to all that work, you now know that the particular solution is

   y
p
 = 2x + 3

 19. Bring it home by finding the sum of the homogeneous solution and the particular solution 

(which gives you the general solution you were looking for to begin with!):

   y = c
1
e–x + c

2
xe–x + c

3
e–2x + 2x + 3

i  Solve the following differential equation:

   y''' + 10y" + 31y' + 30y = 20 sin (x) + 30 cos (x)

  Solution: y = c
1
e–2x + c

2
e–3x + c

3
e–5x + sin (x)

 1. Your first step is to get the homogeneous version of the differential equation:

   y''' + 10y" + 31y' + 30y = 0

 2. Try a solution of the following form because the homogeneous version of the equation has 

constant coefficients:

   y = erx

 3. Plug your attempted solution into the equation:

   r 3erx + 10r 2erx + 31rerx + 30erx = 0

 4. Then cancel out erx to get

   r 3 + 10r 2 + 31r + 30 = 0

 5. Factor the resulting cubic equation this way, either by hand or with the help of the equation-

solving tool at www.numberempire.com/equationsolver.php:

   (r + 2)(r + 3)(r + 5) = 0

 6. Looks like the roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –5

  so

   y
1
 = e–2x

   y
2
 = e–3x

   y
3
 = e–5x

 7. Thus, the homogeneous solution is

   y
h
 = c

1
e–2x + c

2
e–3x + c

3
e–5x

 8. Well done. Now you need to assume a solution of the following form in order to find your 

particular solution:

   y
p
 = A sin (x) + B cos (x)

 9. First, find y
p
''':

   y
p
''' = –A cos (x) + B sin (x)
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 10. Then find 10y
p
":

   10y
p
" = –10A sin (x) – 10B cos (x)

 11. Next, find 31y
p
':

   31y
p
' = 31A cos (x) – 31B sin (x)

 12. Finally, find 30y
p
:

   30y
p
 = 30A sin (x) + 30B cos (x)

 13. Add together the results from Steps 9 through 12:

   y''' + 10y" + 31y' + 30y = –A cos (x) + B sin (x) –10A sin (x) – 10B cos (x) + 31A cos (x) – 31B 
 sin (x) + 30A sin (x) + 30B cos (x) = 20 sin (x) + 30 cos (x)

 14. Messy, huh? Combine like terms to clean things up a bit:

   (B – 10A – 31B + 30A) sin (x) + (–A – 10B + 31A + 30B) cos (x) = 20 sin (x) + 30 cos (x)

 15. Go ahead and combine terms once more:

   (–30B + 20A) sin (x) + (30A + 20B) cos (x) = 20 sin (x) + 30 cos (x)

 16. Time to start solving! Solving for A gives you

   A = 1

  and solving for B gives you

   B = 0

 17. So the particular solution is

   y
p
 = sin (x)

 18. All that’s left to do is add the particular solution and the homogeneous solution together to 

get your general solution of

   y = c
1
e–2x + c

2
e–3x + c

3
e–5x + sin (x)

j  What’s the answer to this equation?

   y''' + 11y" + 36y' + 36y = 75 sin (x) + 105 cos (x)

  Solution: y = c
1
e–2x + c

2
e–3x + c

3
e–6x + 3 sin (x)

 1. Find the homogeneous version of the differential equation:

   y''' + 11y" + 36y' + 36y = 0

 2. Because the homogeneous version has constant coefficients, you can safely assume a 

solution of this form:

   y = erx

 3. Plugging your attempted solution into the equation gives you

   r 3erx + 11r 2erx + 36rerx + 36erx = 0

 4. Canceling out erx leaves you with

   r 3 + 11r 2 + 36r + 36 = 0

 5. The next step is to factor that cubic equation as follows:

   (r + 2)(r + 3)(r + 6) = 0
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 6. The roots are

   r
1
 = –2, r

2
 = –3, and r

3
 = –6

  which means

   y
1
 = e–2x

   y
2
 = e–3x

   y
3
 = e–6x

 7. Tada! Your homogeneous solution is

   y
h
 = c

1
e–2x + c

2
e–3x + c

3
e–6x

 8. You still need to find a particular solution though; go ahead and assume a solution of 

the form

   y
p
 = A sin (x) + B cos (x)

 9. First, find y
p
''':

   y
p
''' = –A cos (x) + B sin (x)

 10. Then find 11y
p
":

   11y
p
" = –11A sin (x) – 11B cos (x)

 11. Next, find 36y
p
':

   36y
p
' = 36A cos (x) – 36B sin (x)

 12. Finally, find 36y
p
:

   36y
p
 = 36A sin (x) + 36B cos (x)

 13. Add together what you found in Steps 9 through 12:

   y''' + 11y" + 36y' + 36y = –A cos (x) + B sin (x) –11A sin (x) – 11B cos (x) + 36A cos (x) – 36B 
 sin (x) + 36A sin (x) + 36B cos (x) = 75 sin (x) + 105 cos (x)

 14. Get rid of that mess by combining terms to get

   (B – 11A – 36B + 36A) sin (x) + (–A – 11B + 36A + 36B) cos (x) = 75 sin (x) + 105 cos (x)

 15. That equation still isn’t ideal to work with, so combine terms further:

   (–35B + 25A) sin (x) + (35A + 25B) cos (x) = 75 sin (x) + 105 cos (x)

 16. You’re almost done. You just need to solve for A; doing so gives you

   A = 3

  and for B, which gives you

   B = 0

 17. So the particular solution is

   y
p
 = 3 sin (x)

 18. For your final act, find the general solution (which is the sum of the homogeneous solution 

and the particular solution):

   y = c
1
e–2x + c

2
e–3x + c

3
e–6x + 3 sin (x)



Part III
The Power Stuff: 

Advanced Techniques



In this part . . .

Here’s where you improve your ability to use series 

solutions and Laplace transforms. You also tackle 

the trick of using differential equation systems to solve 

problems. Even though there’s no one-size-fits-all solution 

in the differential equations world, if you can use these 

power techniques and know when to apply them, you’ll be 

set no matter what kind of nasty differential equation gets 

thrown your way!



Chapter 8

Using Power Series to Solve 
Ordinary Differential Equations

In This Chapter
▶ Using the ratio test to see whether a series will converge

▶ Practicing your ability to shift the series index

▶ Applying power series to differential equations to find series solutions

A power series is an infinite sum of powers of x, which you can use to solve differential 

equations that can’t be solved in any other way. In this chapter, you practice working 

with power series to solve ordinary differential equations. (Keep in mind that this chapter 

focuses on ordinary differential equations; Chapter 9 deals with differential equations with 

singular points. A singular point is a value [or values] of x where a coefficient in the differen-

tial equation goes to infinity. An ordinary differential equation has no singular points.)

Kick things off by practicing the ratio test and shifting the series index. Then put your skills 

together to solve some equations.

Checking On a Series with the Ratio Test
Power series that become infinite aren’t of much help to anyone, which is why you only 

work with series that stay finite in the following pages. A finite series converges to a 

particular value.

 A series such as the following:

 

is said to converge for a particular x if this limit:

 

is finite. It this limit is infinite, the series doesn’t converge.
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2. This ratio becomes

  

3. So the ratio is |x – 4|, and the series 

converges if that ratio is less than 1. In 

other words, the range in which the 

series converges is |x – 4| < 1.

4. Therefore, if x is in the range 3 < x < 5, 

the series converges.

 Q. Does this series converge?

    

 A. Yes, if 3 < x < 5.

1. Take a look at the ratio of the (n + 1)th 

term to the nth term:

  

 How do you know whether a series converges? Just bust out the ratio test, which compares 

successive terms of a series to see whether the series is going to converge. If the ratio of the 

(n + 1)th term to the nth term is less than 1 for a fixed value of x, the series converges for 

that x.

For example, if you have this series:

 

then the ratio of the (n + 1)th term to the nth term is

 

The series converges if this ratio is less than 1 as n gets larger and larger.

Here’s another example of the ratio test. Take a look and then check out the following prob-

lems to practice using the ratio test to determine whether a particular series converges.
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 2. State whether this series converges:

    

 Solve It

 1. Does this series converge?

    

 Solve It
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 4. State whether this series converges:

    

 Solve It

 3. Does this series converge?

    

 Solve It
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1. You know that the series starts at 

n = 3, so substitute n + 3 for n:

  

2. Subtract 3 from both sides of the 

expression to get n = 0:

  

 Q. Shift this series index to start at n = 0:

    

 A. 

Shifting the Series Index
Before you can start solving differential equations by using series, you need to be comfort-

able with a little trick called shifting the series index, which allows you to take two series of 

different indices and make them have the same index so you can compare the two series 

term by term.

In these two series:

 

 

one starts at n = 0, and the other starts at n = 2, which makes comparing the two series term 

by term rather difficult. Say you want both series to start at n = 0. To do that, just replace n 

with n + 2 in the second series, which gives you

 

Note that this series index now starts at n + 2 = 2. You can subtract 2 from both sides of this 

expression, which leaves you with

 

Tada! The second series now starts at n = 0, just like you wanted.

Following are a few practice problems (as well as an additional example) to get you shifting 

the series index like a math whiz.
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 6. Make this series start at n = 0 by using the 

shifting the series index technique:

    

 Solve It

 5. Shift the following series index to start at 

n = 0:

    

 Solve It
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 8. Make this series start at n = 0 by using the 

shifting the series index technique:

    

 Solve It

 7. Shift the following series index to start at 

n = 0:

    

 Solve It
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  The general term here is

  n(n – 1)a
n
x n – 2

  which means you can state y" as

  

  Note that this series starts at n = 2, not 

n = 0, as the series for y does.

4. Now that you have y and y", go ahead 

and substitute them into the original 

differential equation for this result:

  

  That’s your differential equation in 

series form.

5. To compare these two series, make 

sure they start at the same index 

value, n = 0. Shift the first series (the 

one on the left) by replacing n with 

n + 2 to get

  

6. Then combine the two series:

  

 Q. Solve this differential equation by using a 

series solution:

    

 A. y = a
0
 cos (x) + a

1
 sin (x)

1. Start off with a solution y of the form

  

2. To find y", start by finding y'. Here’s 

what the terms of the series look like:

  y = a
0
 + a

1
x + a

2
x2 + a

3
x3 + . . .

  If you differentiate that equation term

by term, then y' equals

  y' = a
1
 + 2a

2
x + 3a

3
x2 + . . .

  The general nth term here is

  na
n
x n – 1

  so y' equals

  

3. You can find y" by differentiating the y' 
equation to get

  y" = 2a
2
 + 6a

3
x + . . .

Exploiting the Power of Power Series 
to Find Series Solutions

 Power series are pretty handy for solving ordinary differential equations because you 

can express just about any solution by using one. When tasked with solving an ordinary 

differential equation by using a series solution, arm yourself with these essential 

substitutions:

 ✓ Substitute this series for y: 

 ✓ Substitute this series for y': 

 ✓ Substitute this series for y": 

After making these substitutions in your equation, compare the coefficients of x on each 

side of the equation to solve for the coefficients a
n
 in the series terms. (And don’t forget 

to use the initial conditions to solve for the coefficients as well.)

Following is an example of this type of problem with each step worked out. I recommend 

reviewing it before putting your skills to the test solving ordinary differential equations 

with series solutions.
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  But (6)(5)(4!) = 6!, so you actually have

  

14. At this point, you know that

  

  

  

  Believe it or not, you’ve just generally 

related the even coefficients! If n = 2m 

(that is, if n is even), then

  

15. Now you need to find the odd coeffi-

cients. Remember that the recurrence 

relation for the solution is

  (n + 2)(n + 1)a
n + 2

 + a
n
 = 0

  You can see that for n = 1 you get the 

following:

  (3)(2)a
3
 + a

1
 = 0

  so

  

16. Similar to what happened with the 

even coefficients, (3)(2) = 3!, so you 

wind up with

  

17. When you try n = 3 in the recurrence 

relation, you get

  (5)(4)a
5
 + a

3
 = 0

  or

  

18. Substituting the equation you found in 

Step 16 for a
3
 gives you this:

  

  or

  

7. Next, factor out xn:

  

8. Because this series equals 0 and must 

be true for all x, each term must equal 

0. In other words, you get

  (n + 2)(n + 1) a
n + 2

 + a
n
 = 0

  This equation is called a recurrence 
relation; it relates the coefficients of 

later terms to the coefficients of earlier 

terms. In particular, you can get all the 

coefficients in terms of a
0
 and a

1
 

(which are set by the initial 

conditions).

9. First, you must determine the even 

coefficients, which means solving for 

a
2
 in terms of a

0
:

  (2)(1)a
2
 + a

0
 = 0

  so

  

10. Now find a
4
:

  (4)(3)a
4
 + a

2
 = 0

  so

  

11. Because you want the even coefficients 

in terms of a
0
, substitute the final equa-

tion in Step 9 for a
2
:

  

  Not so fast! Because (4)(3)(2)(1) = 4!, 

you get

  

12. For a
6
, you have

  (6)(5)a
6
 + a

4
 = 0

  or

  

13. Substituting the final equation from 

Step 11 for a
4
 gives you
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19. When you substitute n = 5 into the 

recurrence relation, you get

  (7)(6)a
7
 + a

5
 = 0

  or

  

20. Substituting the final equation from 

Step 18 for a
5
 leaves you with

  

  which means that

  

21. To summarize Steps 15 through 20, 

you now know that

  

  

  

22. If n = 2m + 1, you can generally relate 

the odd coefficients as follows:

  

23. You can now write the whole solution 

as

  

24. Surprise! The two series are recogniz-

able as cos (x) and sin (x):

  

  and

  

25. After all that work, you can write the 

solution as

  y = a
0
 cos (x) + a

1
 sin (x)
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 10. Find the solution to this differential 

equation by using a series solution:

    

 Solve It

 9. Solve this differential equation by using a 

series solution:

    

 Solve It
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Answers to Solving Ordinary Differential 
Equations with Power Series

Here are the answers to the practice questions I provide throughout this chapter. 

I walk you through each answer so you can see the problems worked out step by 

step. Enjoy!

a  Does this series converge?

   

  Answer: Yes, if 4 < x < 6.

 1. Take a look at the ratio of the (n + 1)th term to the nth term:

   

 2. This ratio becomes

   lim
x

n n

n n

x

x
x

→∞

+ +

−( ) −( )
−( ) −( )

= −
1 5

1 5
5

1 1

 3. So the ratio is |x – 5|, and the series converges if that ratio is less than 1. In other words, the 

range in which the series converges is |x – 5| < 1.

 4. Therefore, if x is in the range 4 < x < 6, the series converges.

b  State whether this series converges:

   

  Answer: Yes, if 0 < x < 2.

 1. Check out the ratio of the (n + 1)th term to the nth term:

   

 2. This ratio works out to

   

 3. As you can see, the ratio is |x – 1|; the series converges if that ratio is less than 1. So the 

range in which the series converges absolutely is |x – 1| < 1.

 4. Thus, if x is in the range 0 < x < 2, the series converges.

c  Does this series converge?
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  Answer: Yes, if x > 3 or x < 1.

 1. Take a look at the ratio of the (n + 1)th term to the nth term:

   

 2. This ratio becomes

   

 3. So the ratio is |x – 2|–1, and the series converges if that ratio is less than 1. In other words, 

the range in which the series converges is |x – 2|–1 < 1.

 4. Therefore, if x is in the range x > 3 or x < 1, the series converges.

d  State whether this series converges:

   

  Answer: Yes, if x > 2 or x < 0.

 1. Check out the ratio of the (n + 1)th term to the nth term:

   

 2. This ratio works out to

   

 3. As you can see, the ratio is |x – 1|–1; the series converges if that ratio is less than 1. So the 

range in which the series converges absolutely is |x – 1|–1 < 1.

 4. Thus, if x is in the range x > 2 or x < 0, the series converges.

e  Shift the following series index to start at n = 0:

   

  Solution: 

 1. The series starts at n = 2, so substitute n + 2 for n:

   

 2. Subtract 2 from both sides of the expression to get n = 0:

   

  That’s it! Your work here (on this problem anyway) is done.

f  Make this series start at n = 0 by using the shifting the series index technique:
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  Solution: 

 1. You know that the series begins at n = 2. That fact is your clue to substitute n + 2 for n:

   

 2. To set n equal to 0, simply subtract 2 from both sides of the expression:

   

g  Shift the following series index to start at n = 0:

   

  Solution: 

 1. The series starts at n = 2, so substitute n + 2 for n:

   

 2. Subtract 2 from both sides of the expression to get n = 0:

   

h  Make this series start at n = 0 by using the shifting the series index technique:

   

  Solution: 

 1. You know that the series begins at n = 3. That fact is your clue to substitute n + 3 for n:

   

 2. To set n equal to 0, simply subtract 3 from both sides of the expression:

   

i  Solve this differential equation by using a series solution:

   

  Solution: y = a
0
 cos (2x) + a

1
 sin (2x)

 1. Start off with a solution y of the form

   

 2. To find y", start by finding y'. Here’s what the terms of the series look like:

   y = a
0
 + a

1
x + a

2
x2 + a

3
x3 + . . .

  If you differentiate that equation term by term, then y' equals

   y' = a
1
 + 2a

2
x + 3a

3
x2 + . . .

  The general nth term here is

   na
n
xn – 1

  so y' equals
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 3. You can find y" by differentiating the y' equation to get

   y" = 2a
2
 + 6a

3
x + . . .

  The general term here is

   n(n – 1)a
n
xn – 2

  which means you can state y" as

   

  Note that this series starts at n = 2, not n = 0, as the series for y does.

 4. Now that you have y and y", go ahead and substitute them into the original differential equa-

tion for this result:

   

  That’s your differential equation in series form.

 5. To compare these two series, make sure they start at the same index value, n = 0. Shift the 

first series (the one on the left) by replacing n with n + 2 to get

   

 6. Then combine the two series:

   

 7. Next, factor out x
n
:

   

 8. Because this series equals 0 and must be true for all x, each term must equal 0. In other 

words, you get

   (n + 2)(n + 1)a
n + 2

 + 4a
n
 = 0

  This equation is called a recurrence relation; it relates the coefficients of later terms to the 

coefficients of earlier terms. In particular, you can get all the coefficients in terms of a
0
 and a

1
 

(which are set by the initial conditions).

 9. Your first step in relating coefficients is finding all the even coefficients in terms of a
0
. Start by 

solving for a
2
 in terms of a

0
:

   (2)(1)a
2
 + 4a

0
 = 0

  so

   

 10. Now find a
4
:

   (4)(3)a
4
 + 4a

2
 = 0

  so

   

 11. Because you want the even coefficients in terms of a
0
, substitute the final equation in Step 9 

for a
2
:
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  Not so fast! Because (4)(3)(2)(1) = 4!, you get

   

 12. For a
6
, you have

   (6)(5)a
6
 + 4a

4
 = 0

  or

   

 13. Substituting the final equation in Step 11 for a
4
 gives you

   

  But (6)(5)(4!) = 6!, so you actually have

   

 14. At this point, you know that

   

   

   

  Believe it or not, you’ve just generally related the even coefficients! If n = 2m (that is, if n is 

even), then

   

 15. Now you need to find the odd coefficients. Remember that the recurrence relation for the 

solution is

   (n + 2)(n + 1)a
n + 2

 + 4a
n
 = 0

  You can see that for n = 1, you get the following:

   (3)(2)a
3
 + 4a

1
 = 0

  so

   

 16. Similar to what happened with the even coefficients, (3)(2) = 3!, so you wind up with

   

 17. When you try n = 3 in the recurrence relation, you get

   (5)(4)a
5
 + 4a

3
 = 0

  or
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 18. Substituting the equation you found in Step 16 for a
3
 gives you this:

   

  or

   

 19. When you substitute n = 5 into the recurrence relation, you get

   (7)(6)a
7
 + 4a

5
 = 0

  or

   

 20. Substituting the final equation from Step 18 for a
5
 leaves you with

   

  which means that

   

 21. To summarize Steps 15 through 20, you now know that

   

   

   

 22. If n = 2m + 1, you can generally relate the odd coefficients as follows:

   

 23. You can now write the whole solution as

   

 24. Move the factor of 4 to the x term:

   

 25. In this case, the two series are recognizable as cos (2x) and sin (2x):

   

  and
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 26. After all that work, you can write the solution as

   y = a
0
 cos (2x) + a

1
 sin (2x)

j  Find the solution to this differential equation by using a series solution:

   

  Solution: y = c
0
ex + c

1
e–x

 1. Begin with a solution y of the following form:

   

 2. Your next step is to use y' to find y". Here’s what the terms of the series look like:

   y = a
0
 + a

1
x + a

2
x2 + a

3
x3 + . . .

  When you differentiate term by term, y' equals

   y' = a
1
 + 2a

2
x + 3a

3
x2 + . . .

  The general nth term here is

   na
n
xn – 1

  which makes y' equal to

   

 3. Find y" by differentiating the y' equation:

   y" = 2a
2
 + 6a

3
x + . . .

  The general term here is

   n(n – 1)a
n
xn – 2

  which means you can write y" as

   

  Note that this series starts at n = 2, not n = 0, as the series for y does.

 4. Refer to the original differential equation and substitute in y and y" to get the differential 

equation in series form:

   

 5. To compare these series, make sure they start at the same index value, n = 0. You can do so 

by shifting the first series index; just replace n with n + 2. The result is

   

 6. Next up, combine the two series to get
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 7. Then factor out xn:

   

 8. This series equals 0 and must be true for all x, so each term must equal 0. In other words, you 

wind up with

   (n + 2)(n + 1)a
n + 2

 – a
n
 = 0

  which is called a recurrence relation; it relates the coefficients of later terms to the coefficients 

of earlier terms. You can actually use this relation to get all the coefficients in terms of a
0
 and 

a
1
 (which are set by the initial conditions).

 9. Your first step in relating coefficients is finding all the even coefficients in terms of a
0
. Start by 

solving for a
2
:

   (2)(1)a
2
 – a

0
 = 0

  or

   

 10. Great. Now find a
4
:

   (4)(3)a
4
 – a

2
 = 0

  so

   

 11. Substituting the final equation in Step 9 for a
2
 gives you

   

  Ah, but (4)(3)(2)(1) = 4!, so in reality you actually have

   

 12. Now for a
6
:

   (6)(5)a
6
 – a

4
 = 0

  so

   

 13. When you substitute the final equation from Step 11 for a
4
, you get

   

  Wait a second. Because (6)(5)(4!) = 6!, you really have
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 14. To sum up Steps 9 through 13, you know that

   

   

   

  All of that together generally relates the even coefficients:

   

 15. Time to turn to the odd coefficients. Because the recurrence relation for the solution is

   (n + 2)(n + 1)a
n + 2

 – a
n
 = 0

  you can see that for n = 1 you get

   (3)(2)a
3
 – a

1
 = 0

  so

   

 16. No surprise that (3)(2) = 3!, right? So you’re left with

   

 17. Plug n = 3 into the recurrence relation to get

   (5)(4)a
5
 – a

3
 = 0

  or

   

 18. When you substitute the equation from Step 16 for a
3
, you wind up with

   

  so

   

 19. Substituting n = 5 into the recurrence relation gives you

   (7)(6)a
7
 – a

5
 = 0

  or

   

 20. Substituting the final equation from Step 18 for a
5
 leaves you with
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  which means

   

 21. At this point, you know that

   

   

   

 22. You can now generally write the odd coefficients of the solution as follows, if n = 2m + 1:

   

 23. So the whole solution can actually be written as

   

  Technically that’s your answer, but you can keep going so as to get the solution into an easier 

form.

 24. In fact, the series are equal to

   

  and

   

  which means you can write the solution as

   y = a
0
 cosh (x) + a

1
 sinh (x)

 25. Write sinh (x) and cosh (x) in terms of exponentials as follows:

   

  and

   

 26. Because sinh (x) and cosh (x) can be written as a sum of exponentials, you can rewrite the 

solution as

   y = c
0
ex + c

1
e–x

  where c
0
 and c

1
 are determined by the initial conditions. Nice work!
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Chapter 9

Solving Differential Equations with 
Series Solutions Near Singular Points

In This Chapter
▶ Identifying singular points

▶ Determining whether singular points are regular or irregular

▶ Getting familiar with Euler’s equation

▶ Solving general differential equations that look like Euler equations

Differential equations can get a little unruly when terms within them head off into infin-

ity (meaning they become unbounded). The points where functions go to infinity are 

called singular points, and you can expect to encounter both regular and irregular singular 

points in your dabbling with differential equations.

 The good news is you can handle regular singular points by using the methods in this 

chapter. As for irregular singular points? Forget ’em. They’re a lost cause because their 

differential equations can’t be solved near such irregular singular points.

This chapter has you find singular points, classify them as regular or irregular, and go about 

solving them. And to make solving differential equations near regular singular points that 

much easier, this chapter also shows you how to deal with a special class of differential 

equations called Euler equations. You can often create a series expansion around a known 

solution to Euler’s equation for a general differential equation with regular singular points.

Finding Singular Points
 Singular points occur when a coefficient in a particular differential equation becomes 

unbounded.
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  Doing so gives you

  

2. Therefore

  

  and

  

3. Looks like p(x) and q(x) both become 

unbounded when 4 – x2 = 0, so the 

singular points are

  x
1
 = 2 and x

2
 = –2

 Q. What are the singular points of this 

differential equation?

    

 A. x
1
 = 2 and x

2
 = –2

1. First, put the equation into the 

following form:

  

  where

  p(x) = Q(x)/P(x)

  and

  q(x) = R(x)/P(x)

For example, in this differential equation

 

where

p(x) = Q(x)/P(x)

and

q(x) = R(x)/P(x)

the singular points occur where Q(x)/P(x) and/or R(x)/P(x) become unbounded.

In the following problems, you practice finding singular points in differential equations. 

But first, a quick example.
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 2. Solve for the singular points of this 

equation:

    

 Solve It

 1. What are the singular points of this 

differential equation?

    

 Solve It
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 4. Solve for the singular points of this 

equation:

    

 Solve It

 3. What are the singular points of this 

differential equation?

    

 Solve It
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Classifying Singular Points 
as Regular or Irregular

 Singular points come in two different forms: regular and irregular. Regular singular points are 

well-behaved and defined in terms of the ratio Q(x)/P(x) and R(x)/P(x), where P(x), Q(x), and 

R(x) are the polynomial coefficients in the differential equation you’re trying to solve.

Irregular singular points are a totally different ball game — and one that I don’t get into 

in this chapter. As you work through the practice problems here, if the singular point in 

question doesn’t appear to be regular, you know it’s irregular.

Allow me to introduce you to this dainty differential equation:

 

In order for x
0
 to be a regular singular point, these two relations must be true:

 

and

 

If you define

p(x) = Q(x)/P(x)

and

q(x) = R(x)/P(x)

then the two limits become

 

and

 

If both of these statements are true, then the point x
0
 is a regular singular point.

In the following problems, you practice classifying singular points as regular or irregular. 

Don’t worry — it’s actually kind of fun!
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  So the singular points are x
1
 = 0 and 

x
2
 = 0.

3. Evaluate:

  

  The singular points, x
0
, are both 0, so 

this equation becomes

  

  and the value of the expression is 0, 

which is finite.

4. Next, evaluate the following:

  

  Again, the singular points, x
0
, are both 

0, so this equation becomes

  

  and the value of this expression is 2, 

which is finite.

5. Because the limits are finite, the 

singular points are regular. That 

wasn’t too hard, was it?

 Q. Are the singular points of this differential 

equation regular or irregular?

    

 A. The singular points are regular.

1. Start solving by putting the differential 

equation into the form

  

  where

  p(x) = Q(x)/P(x)

  and

  q(x) = R(x)/P(x)

2. Now you have

  

  which means

  p(x) = 0

  and
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 6. Determine whether the singular points of 

this equation are regular or irregular:

    

 Solve It

 5. Are the singular points of this differential 

equation regular or irregular?

    

 Solve It
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Working with Euler’s Equation
 Solving Euler’s equation allows you to find the solution to many differential equations with 

regular singular points. If you can put a differential equation into a similar form to Euler’s 

equation, you can use a series expansion around the solutions you develop for Euler’s 

equation. That’s a pretty cool trick in my book.

When you want to play nice with Euler’s equation, start by assuming a solution of this form: 

y = x r.

Then substitute that solution into Euler’s equation:

[r(r – 1) + αr + β] xr = 0

r(r – 1) + αr + β = 0

r2 – r + αr + β = 0

Ultimately, you wind up with

r2 + (α – 1) r + β = 0

The roots, r
1
 and r

2
, of this equation are

 

You don’t know what α and β are, so you’re forced to consider three cases for these roots:

 ✓ r
1
 and r

2
 are real and distinct.

 ✓ r
1
 and r

2
 are real and equal.

 ✓ r
1
 and r

2
 are complex conjugates.

Following are examples to illustrate each of the three cases. When you’re done reviewing 

them, get more acquainted with Euler’s equation in the practice problems.
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 Q. Find the solution to this differential 

equation:

    

 A. y = c
1
x –2 + c

2
 ln (x) x –2

1. Notice that the equation in the ques-

tion has the form of Euler’s equation:

  

2. Go ahead and assume that the solution 

is of this form:

  y = x r

3. Then substitute your attempted 

solution into the equation:

  [r(r – 1) + 5r + 4] x r = 0

  or

  [r(r – 1) + 5r + 4] = 0

  which is

  r 2 + 4r – 4 = 0

4. Factoring this equation gives you

  (r + 2)(r + 2) = 0

5. So the roots are

  r
1
 = –2 and r

2
 = –2

6. Therefore, the general solution to the 

differential equation is

  y = c
1
x –2 + c

2
 ln (x) x –2

 Q. Solve this differential equation:

    

 A. y = c
1
x1/2 + c

2
x –1

1. This differential equation has the form 

of Euler’s equation:

  

  which means you can assume its 

solution looks like

  y = x r

2. Substituting your attempted solution 

into the differential equation gives you

  [6r(r – 1) + 9r – 3] x r = 0

  or

  [6r(r – 1) + 9r – 3] = 0

  which is actually

  6r 2 + 9r – 3 = 0

3. Factor this equation to get

  3(2r – 1)(r + 1) = 0

4. It appears that the roots are

  r
1
 = 1/2 and r

2
 = –1

5. So the general solution to the original 

equation is

  y = c
1
x1/2 + c

2
x –1
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3. Substituting your attempted solution 

into the equation gives you

  [r(r – 1) + r + 1] x r = 0

  or

  [r(r – 1) + r + 1] = 0

  which is actually

  r 2 + 1 = 0

4. So the roots are

  r
1
 = i and r

2
 = –i

5. All that mumbo jumbo means the 

general solution to the differential 

equation is

  y = c
1 
cos (ln |x|) + 

c
2
 sin (ln |x|), x ≠ 0

 Q. Solve this differential equation:

    

 A. y = c
1 
cos (ln |x|) + c

2
 sin (ln |x|), x ≠ 0

1. I bet you can guess by now that this 

differential equation has the form of 

Euler’s equation:

  

2. Next up, assume that the solution is of 

the form

  y = x r
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 7. Find the solution to this differential 

equation:

    

 Solve It

 8. Solve this differential equation:

    

 Solve It
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 10. Solve this differential equation:

    

 Solve It

 9. Find the solution to this differential 

equation:

    

 Solve It
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Solving General Differential Equations 
with Regular Singular Points

This section is where you get to put together everything you practice throughout this 

chapter (so if you haven’t reviewed the previous sections, you may want to flip back a few 

pages). All set? Then take a look at this general differential equation and assume that it has 

a regular singular point at x = 0:

 

Multiply by x 2 to make sure that the terms xp(x) and x 2q(x) (at least one of which has a 

singular point at x = 0) can be expanded into a series:

 

and

 

The Euler equation that matches the general differential equation you’re handling is

 

which means you can assume the Euler equation has a solution of the form

y = x r

To handle the fact that the differential equation you’re working with isn’t an exact Euler 

equation, add a series expansion to the solution (with the assumption that the n = 0 term 

is the largest term and that all other terms diminish rapidly):

 

The result is the form of your anticipated solution, based on the assumption that the 

differential equation you’re trying to solve isn’t too different from Euler’s equation.
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Substituting y, y', and y" into the differential equation gives you

 

where

f(r) = r(r + 1) + p
0
r + q

0

and

 

and

 

Putting all this information together gives you the following recurrence relation (see 

Chapter 8 for more practice with recurrence relations), which allows you to find the 

coefficients a
n
:

 

Note: If you’re not sure how to put everything together to achieve the preceding equation, 

check out Differential Equations For Dummies (Wiley) for the formal theorem.

The differential equation you’re solving for has two solutions, y
1
 and y

2
, which correspond 

to the two roots, r
1
 and r

2
, of its characteristic equation. The first solution, y

1
, is

 

where a
n
(r

1
) are the coefficients using the first root, r

1
.

If r
2
 ≠ r

1
, and if r

1
 and r

2
 don’t differ by an integer, then the second solution is given by

 

where a
n
(r

2
) are the coefficients using the second root, r

2
.

The following problems give you practice solving differential equations that look very much 

like Euler’s equation.



213 Chapter 9: Solving Differential Equations with Series Solutions Near Singular Points

  where

  

  and

  

  so

  p
0
 = 1 and q

0
 = 1

3. Therefore, the Euler equation is

  

4. To find the roots of the Euler equation, 

substitute this form of y into the Euler 

equation:

  y = x r

5. Substituting y and dividing by x r leaves 

you with

  2r 2 – 3r + 1 = 0

6. Factor the resulting characteristic 

equation as follows:

  (r – 1)(2r – 1) = 0

7. So the roots are

  r
1
 = 1 and r

2
 = 1/2

 Q. Determine the Euler equation that this 

differential equation is similar to; then 

determine the Euler equation’s two 

roots, r
1
 and r

2
:

    

 A. 
1. First, put the differential equation into 

this form:

  

  

  Doing so gives you

  

  and

  

2. The Euler equation most similar to 

your differential equation is
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 12. Find the Euler equation that this differen-

tial equation is similar to; then find the 

Euler equation’s two roots, r
1
 and r

2
:

    

 Solve It

 11. Determine the Euler equation that this 

differential equation is similar to; then 

determine the Euler equation’s two roots, 

r
1
 and r

2
:

    

 Solve It
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Answers to Solving Differential Equations 
with Series Solutions Near Singular Points

Following are the answers to the practice questions presented throughout this chapter. 

Each one is worked out step by step so that if you messed one up along the way, you 

can more easily see where you took a wrong turn.

a  What are the singular points of this differential equation?

   

  Solution: x
1
 = 0 and x

2
 = 0

 1. First, put the equation into the following form:

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)

  Doing so gives you

   

 2. Therefore

   

  and

   

 3. Looks like p(x) and q(x) both become unbounded when x2 = 0, so the singular points are

   x
1
 = 0 and x

2
 = 0

b  Solve for the singular points of this equation:

   

  Solution: x
1
 = 9 and x

2
 = 0

 1. Covert the differential equation to this form:

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)
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 2. Now you have

   

  which means

   

  and

   

 3. These answers tell you that p(x) and q(x) become unbounded when x – 9 = 0 (and that q(x) 

also becomes unbounded when x = 0). Consequently, your singular points are

   x
1
 = 9 and x

2
 = 0

c  What are the singular points of this differential equation?

   

  Solution: x
1
 = �, x

2
 = –�

 1. First, put the equation into the following form:

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)

  Doing so gives you

   

 2. Therefore

   p(x) = x

  and

   q(x) = 1

 3. Looks like p(x) and q(x) aren’t unbounded anywhere, except when x → ±�, so the singular 

points are

   x
1
 = � and x

2
 = –�

d  Solve for the singular points of this equation:

   

  Solution: x
1
 = –1, x

2
 = –2
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 1. Convert the differential equation to this form:

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)

 2. Now you have

   

  which means

   

  and

   

 3. These answers tell you that the roots of the denominators are –1 and –2. Consequently, your 

singular points are

   x
1
 = –1 and x

2
 = –2

e  Are the singular points of this differential equation regular or irregular?

   

  Solution: The singular points are regular.

 1. Start solving by putting the differential equation into the form

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)

  Doing so gives you

   

 2. Therefore

   p(x) = 1

  and

   

  So the singular points are x
1
 = 0 and x

2
 = 0.
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 3. The next step is to evaluate:

   

  The singular points, x
0
, are both 0, so this expression becomes

   

  and the value of the expression is 0, which is finite.

 4. Nope, you’re not done evaluating yet. Now you have to look at

   

  The singular points, x
0
, are both 0, so this expression becomes

   

  and the value of the expression is 1, which is finite.

 5. Because the limits are finite, the singular points are regular.

f  Determine whether the singular points of this equation are regular or irregular:

   

  Solution: The singular points are regular.

 1. First things first. Convert the equation into the following form:

   

  where

   p(x) = Q(x)/P(x)

  and

   q(x) = R(x)/P(x)

 2. Now you have

   

  which means

   p(x) = 1

  and

   

  So the singular points are x
1
 = 2 and x

2
 = –2.

 3. Evaluate:

   

  The first singular point is 2, so this expression becomes

   

  and the value of the expression is 0, which is finite.
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  The second singular point is –2, so that expression becomes

   

  and the value of the expression is 0, which is finite.

 4. Next, evaluate:

   

  The first singular point is 2, so the limit becomes

   

  which equals

   

  which in turn equals

   

  and the value of this expression is 0, which is finite.

  The second singular point is –2, so the limit becomes

   

  which equals

   

  which in turn equals

   

  and the value of this expression is 0, which is finite.

 5. The limits are finite, so guess what? The singular points are regular!

g  Find the solution to this differential equation:

   

  Solution: y = c
1
x –1 + c

2
x –2

 1. This differential equation has the form of Euler’s equation:

   

  which means you can safely assume that its solution looks like

   y = x r
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 2. Substituting your attempted solution into the differential equation gives you

   [r(r – 1) + 4r + 2] x r = 0

  or

   [r(r – 1) + 4r + 2] = 0

  which is actually

   r 2 + 3r + 2 = 0

 3. Factor that equation to get

   (r + 1)(r + 2) = 0

 4. It appears that the roots are

   r
1
 = –1 and r

2
 = –2

 5. So the general solution to the original equation is

   y = c
1
x –1 + c

2
x –2

h  Solve this differential equation:

   

  Solution: y = c
1
x –1 + c

2
x –3

 1. Notice that the equation in the question has the form of Euler’s equation:

   

 2. Go ahead and assume that the solution is of this form:

   y = x r

 3. Then substitute your attempted solution into the equation to get

   [r(r – 1) + 5r + 3] x r = 0

  or

   [r(r – 1) + 5r + 3] = 0

  which is

   r 2 + 4r + 3 = 0

 4. Factoring this equation gives you

   (r + 1)(r + 3) = 0

 5. So the roots are

   r
1
 = –1 and r

2
 = –3

 6. Therefore, the general solution to the differential equation is

   y = c
1
x–1 + c

2
x–3

i  Find the solution to this differential equation:
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  Solution: y = c
1
x –2 + c

2
x –3

 1. This differential equation has the form of Euler’s equation:

   

  which means you can safely assume that its solution looks like

   y = xr

 2. Substituting your attempted solution into the differential equation gives you

   [r(r – 1) + 6r + 6] x r = 0

  or

   [r(r – 1) + 6r + 6] = 0

  which is actually

   r 2 + 5r + 6 = 0

 3. Factor that equation to get

   (r + 2)(r + 3) = 0

 4. It appears that the roots are

   r
1
 = –2 and r

2
 = –3

 5. So the general solution to the differential equation is

   y = c
1
x–2 + c

2
x–3

j  Solve this differential equation:

   

  Solution: y = c
1
x–1 + c

2
 ln (x) x–1

 1. Notice that the equation in the question has the form of Euler’s equation:

   

 2. Go ahead and assume that the solution is of this form:

   y = x r

 3. Then substitute your attempted solution into the equation to get

   [r(r – 1) + 3r + 1] x r = 0

  or

   [r(r – 1) + 3r + 1] = 0

  which is

   r 2 + 2r + 1 = 0

 4. Factoring this equation gives you

   (r + 1)(r + 1) = 0

 5. So the roots are

   r
1
 = –1 and r

2
 = –1



222 Part III: The Power Stuff: Advanced Techniques 

 6. Therefore, the general solution to the differential equation is

   y = c
1
x–1 + c

2
 ln (x) x–1

k  Determine the Euler equation that this differential equation is similar to; then determine the 

Euler equation’s two roots, r
1
 and r

2
:

   

  Solution: 

 1. First put the differential equation into this form:

   

  Doing so gives you

   

  and

   

 2. The Euler equation most similar to your differential equation is

   

  where

   

  and

   

  so

   p
0
 = 1/2 and q

0
 = 1/2

 3. Therefore, the Euler equation is

   

 4. Multiplying by 2 gives you

   

 5. To find the roots of the Euler equation, substitute this form of y into the Euler equation:

   y = x r

 6. Substituting y and dividing by x r leaves you with

   2r(r – 1) – r + 1 = 0

  which you can expand into

   2r 2 – 3r + 1 = 0

 7. Factor the resulting characteristic equation as follows:

   (r – 1)(2r – 1) = 0
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 8. So the roots are

   r
1
 = 1 and r

2
 = 1/2

l  Find the Euler equation that this differential equation is similar to; then find the Euler 

equation’s two roots, r
1
 and r

2
:

   

  Solution: 

 1. Begin by putting the differential equation into the following form:

   

  You now know that

   

  and

   

 2. The Euler equation most similar to your differential equation is

   

  where

   

  and

   

  so

   p
0
 = –3 and q

0
 = 2

 3. Therefore, the Euler equation is

   

 4. Substitute this form of y into the Euler equation to find the equation’s roots:

   y = x r

 5. When you substitute y and divide by x r, you get

   2r(r – 1) – 3r + 2 = 0

  which you can expand into

   2r 2 – 5r + 2 = 0

 6. Factoring the characteristic equation gives you

   (r – 2)(2r – 1) = 0

 7. Looks like the roots are

   r
1
 = 2 and r

2
 = 1/2
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Chapter 10

Using Laplace Transforms to 
Solve Differential Equations

In This Chapter
▶ Figuring out Laplace transforms by hand or by referencing a table

▶ Applying Laplace transforms when derivatives are in play

▶ Solving differential equations with the help of Laplace transforms

Laplace transforms, a type of integral transform, are another good tool in your differential 

equation solving toolkit. They have the great charm of being able to turn differential 

equations into algebra problems. Using algebra, you then group terms and see whether 

you have the recognizable Laplace transform of anything. If you do, you can get the reverse 

Laplace transform and your answer all in one fell swoop.

Care to see a Laplace transform in action? Take a standard differential equation like this one:

y" + 5y' + 6y = 0

and find the Laplace transform of it, which looks like this (note that the L{y} term always 

indicates a Laplace transform):

 

From there you need to consult tables of Laplace transforms. If you can identify the Laplace 

transform of what you have, you’re in business!

In this chapter, you practice finding Laplace transforms and then solving equations by using 

them.

Finding Laplace Transforms
To unlock the magic of Laplace transforms, you need to be able to find the Laplace trans-

form of the differential equation you’re working with. That’s why this section gives you 

practice calculating Laplace transforms of various mathematical expressions, such as 

exponentials and trigonometry functions.
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Here’s what a general integral transform looks like (note that this transform is not yet a 

Laplace transform):

 

In this case, f(t) is the function you’re taking an integral transform of, and F(s) is the transform. 

K(s, t) is called the kernel of the transform, which is the function you mix into the integral. 

(When calculating a Laplace transform, you choose your own kernel because doing so gives 

you a chance to simplify your differential equation.) The limits of integration, α and β, can be 

anything you choose, but the most common limits for Laplace transforms are 0 to +�.

 To calculate a Laplace transform by hand, simply follow these steps:

 1. Choose a kernel that transforms a differential equation into something simpler.

 2. Try to invert the transform to get the solution of your original differential equation.

 When you restrict yourself to differential equations with constant coefficients, which is what 

you’re doing in this chapter, a useful kernel is e–st. Differentiating that with respect to t gives 

you powers of s, which you can equate to the constant coefficients.

Here’s what this handy kernel looks like when placed in the previous equation (note that 

besides using the kernel e–st, the limits of integration are from 0 to �):

 

The symbol for Laplace transforms is L {f(t)}, which is the Laplace transform of f(t). So 

here’s what the Laplace transform of the previous equation turns out to be:

 

 The good news is that you don’t always have to go through the work of integrating by parts 

to find Laplace transforms. Sometimes you can use a table of Laplace transforms instead. To 

do so, simply take the Laplace transform of a differential equation and review a table of 

Laplace transforms (such as Table 10-1) to see whether you can identify any terms. Finding 

the inverse Laplace transform of the terms is easy: Just locate the correct entry in the table!

Table 10-1 Laplace Transforms of Common Functions
Function Laplace Transform Restrictions

1 s > 0

eat

  
s > a

tn s > 0, n an integer > 0

cos at s > 0
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you’ll once again have an integral that 

uses sine:

  

4. The second term is actually  multi-

  plied by L {sin at}, which means the 

equation becomes

  

5. You can recast this equation as 

follows:

  

  or

  

  which becomes

  

 Q. What’s the Laplace transform of sin (at)?

 A. 
1. Start with the general form of Laplace 

transforms and insert e–st as the kernel:

  

2. Integrate by parts to get

  

  

  which breaks down to

  

3. Note that the second term is similar to 

the original integral, except that it uses 

cosine. If you integrate by parts again, 

Function Laplace Transform Restrictions

sin at s > 0

cosh at s > |a|

sinh at s > |a|

eat cos bt 

     

s > a

eat sin bt s > a

tn eat s > a, n an integer > 0

f (ct ) c > 0

f (n)(t )

 No table can possibly hold all the math expressions you may be asked to find the Laplace 

transform of, so be sure to practice finding Laplace transforms by hand from time to time.

Enough with all the review. Are you ready to find some Laplace transforms? Then check out 

the following problems and try to calculate them by hand (rather than relying on Table 10-1).
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 1. What’s the Laplace transform of 1 (that is, 

f(t) = 1)?

    L {1} = ?

 Solve It

 2. Calculate the Laplace transform of eat (that 

is, f(t) = eat):

    L {eat} = ?

 Solve It
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2. First, do the k = 1 term:

  

3. Then do the k = 2 term:

  

  

4. Finally, do the k = 3 term:

  L{y'''} = s3 L{y} – y"(0) – sy'(0) 

– s2y(0)

 Q. What’s the Laplace transform of y'''?

 A. L{y'''} = s3 L{y} – y"(0) – sy'(0) – s2y(0)

1. Use the rule that relates Laplace 

transforms of derivatives:

  

Calculating the Laplace Transforms 
of Derivatives

Occasionally, you’re going to encounter differential equations such as the following that 

aren’t so easy to take the Laplace transform of:

y" + 5y' + 6y = 0

 In order to find the Laplace transform of a derivative, all you have to do is follow this rule, 

which relates the Laplace transforms of derivatives:

 

Using this rule gives you

L{y"} = s2 L{y} – sy(0) – y'(0)

and

L{y'} = s L{y} – y(0)

In the following example, I show you step by step how to find the Laplace transforms of 

derivatives. I then give you a couple chances to try the process out for yourself.
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 4. What’s the Laplace transform of y(5)?

 Solve It

 3. Find the Laplace transform of y(4):

 Solve It
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5. Now you can use the initial conditions

  y(0) = 2 and y'(0) = –4

  to get

  (s2 + 4s + 3) L{y} – (8 + 2s) + 4 = 0

  or

  (s2 + 4s + 3) L{y} – 2s – 4 = 0

6. You now have

  

7. Go ahead and factor the denominator 

so that you’re left with this equation 

for the Laplace transform of the 

solution:

  

8. Your next step is to find a function 

whose Laplace transform is the pre-

ceding equation. To do that, use the 

method of partial fractions to get

  

9. Figure out what a and b are by writing 

your result as

  

10. Then equate the numerators:

  2s + 4 = a(s + 3) + b(s + 1)

11. Because choosing s is up to you, try 

setting it to –1 to get

  2 = 2a

 Q. Solve this differential equation by using 

Laplace transforms:

    y" + 4y' + 3y = 0

    with the initial conditions

    y(0) = 2

    and

    y'(0) = –4

 A. y = e–x + e–3x

1. Take the Laplace transform of

  y" + 4y' + 3y = 0

  to get

  L{y"} + 4L{y'} + 3L{y}

2. Recall that the following equation is 

the Laplace transform of y":

  L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace 

transform of y':

  L{y'} = s L{y} – y(0)

3. You wind up with this result for the 

differential equation:

  s2 L{y} – sy(0) – y'(0) + 4[s L{y} – 

y(0)] + 3L{y} = 0

4. Collecting terms gives you

  (s2 + 4s + 3) L{y} – (4 + s)y(0) – 

y'(0) = 0

Using Laplace Transforms to 
Solve Differential Equations

If you’ve reviewed the previous sections, you have all the tools you need to solve differen-

tial equations with the help of Laplace transforms. (If you haven’t, I suggest you flip back a 

few pages and take a quick look at the earlier sections in this chapter.) The following prac-

tice problems let you put your skills to the test to solve various differential equations by 

using Laplace transforms. If you’re feeling up to the challenge, skip straight to Question 5; 

otherwise, check out the following step-by-step example.
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14. By using Table 10-1, you can see that 

the Laplace transform of eat is

  

15. Compare L{eat} to the first term in 

the Laplace transform of the solution, 

where a = –1, to find the solution’s first 

term:

  y
1
 = e–x

16. Then check out the second term in the 

Laplace transform of the solution:

  

17. Looks like the second term in the 

solution is

  y
2
 = e–3x

18. Because the solution to the differential 

equation is y = y
1
 + y

2
, your result is

  y = e–x + e–3x

  which means that

  1 = a

12. Now you can set s to –3 to get

  –2 = –2b

  or

  1 = b

13. So this equation:

  

  becomes

  

  Tada! You now know what the Laplace 

transform of the solution looks like. That 

means it’s time to find the inverse 

Laplace transform of this equation.



233 Chapter 10: Using Laplace Transforms to Solve Differential Equations

 6. Using Laplace transforms, find the solution 

to this differential equation:

    y" + 5y' + 4y = 0

    where

    y(0) = 2

    and

    y'(0) = –5

 Solve It

 5. Solve this differential equation by using 

Laplace transforms:

    y" + 3y' + 2y = 0

    with the initial conditions

    y(0) = 2

    and

    y'(0) = –3

 Solve It
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 7. Solve this differential equation by using 

Laplace transforms:

    y" + 5y' + 6y = 0

    with the initial conditions

    y(0) = 2

    and

    y'(0) = –5

 Solve It

 8. Using Laplace transforms, find the solution 

to this differential equation:

    y" + 4y' + 3y = 0

    where

    y(0) = 3

    and

    y'(0) = –5

 Solve It
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 10. Using Laplace transforms, find the solution 

to this differential equation:

    y" + 6y' + 8y = 0

    where

    y(0) = 4

    and

    y'(0) = –14

 Solve It

 9. Solve this differential equation by using 

Laplace transforms:

    y" + 6y' + 5y = 0

    with the initial conditions

    y(0) = 5

    and

    y'(0) = –9

 Solve It
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Answers to Laplace Transform Problems
Here are the answers to the practice questions I provide throughout this chapter. I walk 

you through each answer so you can see the problems worked out step by step. Enjoy!

a  What’s the Laplace transform of 1 (that is, f(t) = 1)?

    {1} = ?

  Solution: 

 1. According to the definition of a Laplace transform:

   

  or

   

 2. Performing the integration gives you

   

 3. Okay. Now substitute in t = 0 and t = �:

   

 4. So L {1} equals

   

  and L {1} remains finite for all terms s > 0.

b  Calculate the Laplace transform of eat (that is, f(t) = eat):

    {eat} = ?

  Solution: 

 1. Here’s what the Laplace transform of eat looks like:

   

 2. This transform becomes

   

  which in turn becomes

   

 3. When you plug in the limits for t, you get

   

  or

   

  This result depends on the value you choose for s.
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c  Find the Laplace transform of y(4):

  Solution: {y(4)} = s4 {y} – y'''(0) – sy"(0) – s2y'(0) – s3y(0)

 1. Use the rule that relates Laplace transforms of derivatives:

   

 2. First, do the k = 1 term:

   

 3. Then do the k = 2 term:

   

 4. Next, do the k = 3 term:

   

 5. Finally, do the k = 4 term and put everything together:

   L{y(4)} = s4 L{y} – y'''(0) – sy"(0) – s2y'(0) – s3y(0)

d  What’s the Laplace transform of y(5)?

  Solution: {y(5)} = s5 {y) – y(4)(0) – sy'''(0) – s2y"(0) – s3y'(0) – s4y(0)

 1. Use the rule that relates Laplace transforms of derivatives:

   

 2. Start applying the rule by doing the k = 1 term:

   

 3. Then do the k = 2 term:

   

 4. You guessed it, do the k = 3 term next:

   

 5. Then do the k = 4 term:

   

 6. Finally, do the k = 5 term and put everything together:

   L{y(5)} = s5 L{y) – y(4)(0) – sy'''(0) – s2y"(0) – s3y'(0) – s4y(0)

e  Solve this differential equation by using Laplace transforms:

   y" + 3y' + 2y = 0

   with the initial conditions

   y(0) = 2

   and

   y'(0) = –3

  Solution: y = e–x + e–2x
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 1. Take the Laplace transform of

   y" + 3y' + 2y = 0

  to get

   L{y"} + 3L{y'} + 2L{y}

 2. Recall that the following equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)

 3. You wind up with this result for the differential equation:

   s2 L{y} – sy(0) – y'(0) + 3[s L{y} – y(0)] + 2L{y} = 0

 4. Collecting terms gives you

   (s2 + 3s + 2) L{y} – (3 + s)y(0) – y'(0) = 0

 5. Now you can use the initial conditions

   y(0) = 2 and y'(0) = –3

  to get

   (s2 + 3s +2) L{y} – (6 + 2s) + 3 = 0

  or

   (s2 + 3s +2) L{y} – 2s – 3 = 0

 6. You now have

   

 7. Go ahead and factor the denominator so that you’re left with this equation for the Laplace 

transform of the solution:

   

 8. Your next step is to find a function whose Laplace transform is the preceding equation. To do 

that, use the method of partial fractions to get

   

 9. Figure out what a and b are by writing your result as

   

 10. Then equate the numerators:

   2s + 3 = a(s + 2) + b(s + 1)

 11. Because choosing s is up to you, try setting it to –1 to get

   2 = 2a

  which means that

   1 = a
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 12. Now you can set s to –2 to get

   –1 = –b

  or

   1 = b

 13. So this equation:

   

  becomes

   

  Tada! You now know what the Laplace transform of the solution looks like. That means it’s 

time to find the inverse Laplace transform of this equation.

 14. By using Table 10-1, you can see that the Laplace transform of eat is

   

 15. Compare L{eat} to the first term in the Laplace transform of the solution, where a = –1, to find 

the solution’s first term:

   y
1
 = e–x

 16. Then check out the second term in the Laplace transform of the solution:

   

 17. Looks like the second term in the solution is

   y
2
 = e–2x

 18. Because the solution to the differential equation is y = y
1
 + y

2
, your result is

   y = e–x + e–2x

f  Using Laplace transforms, find the solution to this differential equation:

   y" + 5y' + 4y = 0

   where

   y(0) = 2

   and

   y'(0) = –5

  Solution: y = e–x + e–4x

 1. Find the Laplace transform of the differential equation:

   L{y"} + 5L{y'} + 4L{y}

 2. Recall that this equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)
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 3. Consequently, your result for the differential equation is

   s2 L{y} – sy(0) – y'(0) + 5[s L{y} – y(0)] + 4L{y} = 0

 4. Collect terms to get

   (s2 + 5s + 4) L{y} – (5 + s)y(0) – y'(0) = 0

 5. At long last, you can use the initial conditions

   y(0) = 2 and y'(0) = –5

  which give you

   (s2 + 5s + 4) L{y} – (10 + 2s) + 5 = 0

  or

   (s2 + 5s + 4) L{y} – 2s – 5 = 0

 6. Now you have the following:

   

 7. Factoring the denominator leaves you with this equation for the Laplace transform of the 

solution:

   

 8. Next, use the method of partial fractions to find a function whose Laplace transform is the 

equation shown in Step 7:

   

 9. To figure out what a and b are, write your result as

   

 10. Now equate the numerators to get

   2s + 5 = a(s + 4) + b(s + 1)

 11. Then try setting s to –1. You wind up with

   3 = 3a

  which means that

   1 = a

 12. Now you can set s to –4 to get

   –3 = –3b

  or

   1 = b

 13. So this equation:
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  becomes

   

  That’s what the Laplace transform of the solution looks like.

 14. To find the inverse Laplace transform of the preceding equation, refer to Table 10-1. There 

you can see that the Laplace transform of eat is

   

 15. Comparing L{eat} to the first term in the Laplace transform of the solution, where a = –1, 

shows you that the first term in the solution is

   y
1
 = e–x

 16. A quick look at the second term in the Laplace transform of the solution

   

  reveals that the solution’s second term is

   y
2
 = e–4x

 17. Thus, the solution to the differential equation is y = y
1
 + y

2
, which equals

   y = e–x + e–4x

g  Solve this differential equation by using Laplace transforms:

   y" + 5y' + 6y = 0

   with the initial conditions

   y(0) = 2

   and

   y'(0) = –5

  Solution: y = e–2x + e–3x

 1. Take the Laplace transform of

   y" + 5y' + 6y = 0

  to get

   L{y"} + 5L{y'} + 6L{y}

 2. Recall that the following equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)

 3. You wind up with this result for the differential equation:

   s2 L{y} – sy(0) – y'(0) + 5[s L{y} – y(0)] + 6L{y} = 0

 4. Collecting terms gives you

   (s2 + 5s + 6) L{y} – (5 + s)y(0) – y'(0) = 0



242 Part III: The Power Stuff: Advanced Techniques 

 5. Now you can use the initial conditions

   y(0) = 2 and y'(0) = –5

  to get

   (s2 + 5s + 6) L{y} – (10 + 2s) + 5 = 0

  or

   (s2 + 5s + 6) L{y} – 2s – 5 = 0

 6. You now have

   

 7. Go ahead and factor the denominator so that you’re left with this equation for the Laplace 

transform of the solution:

   

 8. Your next step is to find a function whose Laplace transform is the preceding equation. To do 

that, use the method of partial fractions to get

   

 9. Figure out what a and b are by writing your result as

   

 10. Then equate the numerators:

   2s + 5 = a(s + 2) + b(s + 3)

 11. Because choosing s is up to you, try setting it to –3 to get

   –1 = –a

  which means that

   1 = a

 12. Now you can set s to –2 to get

   1 = b

 13. So this equation:

   

  becomes

   

  Tada! You now know what the Laplace transform of the solution looks like. That means it’s 

time to find the inverse Laplace transform of this equation.

 14. By using Table 10-1, you can see that the Laplace transform of eat is
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 15. Compare L{eat} to the first term in the Laplace transform of the solution, where a = –2, to find 

the solution’s first term:

   y
1
 = e–2x

 16. Then check out the second term in the Laplace transform of the solution:

   

 17. Looks like the second term in the solution is

   y
2
 = e–3x

 18. Because the solution to the differential equation is y = y
1
 + y

2
, your result is

   y = e–2x + e–3x

h  Using Laplace transforms, find the solution to this differential equation:

   y" + 4y' + 3y = 0

   where

   y(0) = 3

   and

   y'(0) = –5

  Solution: y = 2e–x + e–3x

 1. Find the Laplace transform of the differential equation:

   L{y"} + 4L{y'} + 3L{y}

 2. Recall that this equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)

 3. Consequently, your result for the differential equation is

   s2 L{y} – sy(0) – y'(0) + 4[s L{y} – y(0)] + 3L{y} = 0

 4. Collect terms to get

   (s2 + 4s + 3) L{y} – (4 + s)y(0) – y'(0) = 0

 5. At long last, you can use the initial conditions

   y(0) = 3 and y'(0) = –5

  which give you

   (s2 + 4s + 3) L{y} – (12 + 3s) + 5 = 0

  or

   (s2 + 4s + 3) L{y} – 3s – 7 = 0

 6. Now you have the following:
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 7. Factoring the denominator leaves you with this equation for the Laplace transform of the 

solution:

   

 8. Next, use the method of partial fractions to find a function whose Laplace transform is the 

equation shown in Step 7:

   

 9. To figure out what a and b are, write your result as

   

 10. Now equate the numerators to get

   3s + 7 = a(s + 3) + b(s + 1)

 11. Then try setting s to –1. You wind up with

   4 = 2a

  which means that

   2 = a

 12. Now you can set s to –3 to get

   –2 = –2b

  or

   1 = b

 13. So this equation:

   

  becomes

   

  That’s what the Laplace transform of the solution looks like. 

 14. To find the inverse Laplace transform of the preceding equation, refer to Table 10-1. There 

you can see that the Laplace transform of eat is

   

 15. Comparing L{eat} to the first term in the Laplace transform of the solution, where a = –1, 

shows you that the first term in the solution is

   y
1
 = 2e–x

 16. A quick look at the second term in the Laplace transform of the solution

   

  reveals that the solution’s second term is

   y
2
 = e–3x
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 17. Thus, the solution to the differential equation is y = y
1
 + y

2
, which equals

   y = 2e–x + e–3x

i  Solve this differential equation by using Laplace transforms:

   y" + 6y' + 5y = 0

   with the initial conditions

   y(0) = 5

   and

   y'(0) = –9

  Solution: y = 4e–x + e–5x

 1. Take the Laplace transform of

   y" + 6y' + 5y = 0

  to get

   L{y"} + 6L{y'} + 5L{y}

 2. Recall that the following equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)

 3. You wind up with this result for the differential equation:

   s2 L{y} – sy(0) – y'(0) + 6[s L{y} – y(0)] + 5L{y} = 0

 4. Collecting terms gives you

   (s2 + 6s + 5) L{y} – (6 + s)y(0) – y'(0) = 0

 5. Now you can use the initial conditions

   y(0) = 5 and y'(0) = –9

  to get

   (s2 + 6s + 5) L{y} – (30 + 5s) + 9 = 0

  or

   (s2 + 6s + 5) L{y} – 5s – 21 = 0

 6. You now have

   

 7. Go ahead and factor the denominator so that you’re left with this equation for the Laplace 

transform of the solution:
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 8. Your next step is to find a function whose Laplace transform is the preceding equation. To do 

that, use the method of partial fractions to get

   

 9. Figure out what a and b are by writing your result as

   

 10. Then equate the numerators:

   5s + 21 = a(s + 5) + b(s + 1)

 11. Because choosing s is up to you, try setting it to –1 to get

   16 = 4a

  which means that

   4 = a

 12. Now you can set s to –5 to get

   –4 = –4b

  or

   1 = b

 13. So this equation:

   

  becomes

   

  Tada! You now know what the Laplace transform of the solution looks like. That means it’s 

time to find the inverse Laplace transform of this equation.

 14. By using Table 10-1, you can see that the Laplace transform of eat is

   

 15. Compare L{eat} to the first term in the Laplace transform of the solution, where a = –1, to find 

the solution’s first term:

   y
1
 = 4e–x

 16. Then check out the second term in the Laplace transform of the solution:

   

 17. Looks like the second term in the solution is

   y
2
 = e–5x

 18. Because the solution to the differential equation is y = y
1
 + y

2
, your final result is

   y = 4e–x + e–5x
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j  Using Laplace transforms, find the solution to this differential equation:

   y" + 6y' + 8y = 0

   where

   y(0) = 4

   and

   y'(0) = –14

  Solution: y = e–2x + 3e–4x

 1. Find the Laplace transform of the differential equation:

   L{y"} + 6L{y'} + 8L{y}

 2. Recall that this equation is the Laplace transform of y":

   L{y"} = s2 L{y} – sy(0) – y'(0)

  and that this equation is the Laplace transform of y':

   L{y'} = s L{y} – y(0)

 3. Consequently, your result for the differential equation is

   s2 L{y} – sy(0) – y'(0) + 6[s L{y} – y(0)] + 8L{y} = 0

 4. Collect terms to get

   (s2 + 6s + 8) L{y} – (6 + s)y(0) – y'(0) = 0

 5. At long last, you can use the initial conditions

   y(0) = 4 and y'(0) = –14

  which give you

   (s2 + 6s + 8) L{y} – (24 + 4s) + 14 = 0

  or

   (s2 + 6s + 8) L{y} – 4s – 10 = 0

 6. Now you have the following:

   

 7. Factoring the denominator leaves you with this equation for the Laplace transform of the 

solution:

   

 8. Next, use the method of partial fractions to find a function whose Laplace transform is the 

equation shown in Step 7:
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 9. To figure out what a and b are, write your result as

   

 10. Now equate the numerators to get

   4s + 10 = a(s + 4) + b(s + 2)

 11. Then try setting s to –2. You wind up with

   2 = 2a

  which means that

   1 = a

 12. Now you can set s to –4 to get

   –6 = –2b

  or

   3 = b

 13. So this equation:

   

  becomes

   

  That’s what the Laplace transform of the solution looks like.

 14. To find the inverse Laplace transform of the preceding equation, refer to Table 10-1. There 

you can see that the Laplace transform of eat is

   

 15. Comparing L{eat} to the first term in the Laplace transform of the solution, where a = –1, 

shows you that the first term in the solution is

   y
1
 = e–2x

 16. A quick look at the second term in the Laplace transform of the solution

   

  reveals that the solution’s second term is

   y
2
 = 3e–4x

 17. Thus, the solution to the differential equation is y = y
1
 + y

2
, which equals

   y = e–2x + 3e–4x



Chapter 11

Solving Systems of Linear First 
Order Differential Equations

In This Chapter
▶ Reviewing the basics of matrix operations

▶ Calculating the determinant

▶ Figuring out eigenvalues and eigenvectors

▶ Seeking out the solution to various systems

This chapter is all about solving systems of linear first order differential equations and 

practicing various techniques involved in solving systems. First, you work out your 

matrix-handling skills by adding matrices, multiplying them, and finding their determinants. 

Then you practice finding eigenvalues and eigenvectors. Finally — drum roll please — you 

tackle solving some systems of differential equations.

Back to the Basics: Adding 
(And Subtracting) Matrices

Before you can solve systems of linear first order differential equations with the aid of 

matrices, you need to know how to handle some basic matrix operations, starting with the 

most basic of all: addition and subtraction.

 Adding two matrices together involves adding the elements at corresponding positions in the 

two matrices. The same is true when subtracting matrices: Elements must be at correspond-

ing positions in order for you to subtract them.

 When adding matrices, such as A and B, you can flip the order of the matrices and still get 

the same solution. In other words, A + B = B + A. However, subtracting matrices doesn’t work 

the same way. A – B can’t possibly equal B – A. In fact, when you flip the matrices within the 

operation, A – B = –(B – A).

Following is an example problem to refresh your memory on adding matrices. After review-

ing it, check out the following questions for some practice adding matrices. (Where are the 

subtraction practice problems, you ask? The process of adding and subtracting matrices is 

so similar that I’ve spared you the hassle of working on subtraction here so you can focus 

your energy on solving the differential equations presented later in this chapter.)
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 1. Find the sum of A + B if A and B are

  

 Solve It

 2. What’s A + B if A and B are

  

 Solve It

 Q. What’s A + B if A and B are

  

 A. 

1. A + B is

 

2. By adding element to element, you get
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An Exercise in Muddying Your Mind: 
Multiplying Matrices

To effectively employ matrices when solving systems of equations, you need to have some 

matrix-multiplication skills in your arsenal. Multiplying matrices is a little more involved than 

simply adding them. Why? Because AB is defined when the number of columns in A is the 

same as the number of rows in B. That is, if A is an l × m (that’s row × column notation, 

so A has l rows and m columns) matrix and B is an m × n matrix, then the product AB 

exists — and the product is an l × n matrix.

 If AB = C, then the (i, j) (that’s row, column) element of C is found by multiplying each ele-

ment of the ith row of A by the matching element in the jth column of B and then adding the 

resulting products. Following is the standard visual presentation of multiplying matrices:

 

 Here’s a little tidbit that may come in handy for you: AB ≠ BA.

As you multiply matrices, you may occasionally encounter something called the identity 
matrix. It’s labeled I and holds 1s along its upper-left to lower-right diagonal; the other num-

bers in it are all 0s. Check out this 2×2 identity matrix to see what I mean:

 

A 3×3 identity matrix looks like this:

 

 Multiplying any matrix, A, by the identity matrix gives you A back again. For example, take a 

look at this multiplication:

 

The product of AI is just A all by itself:

 

So are you ready to practice multiplying matrices? Well, here’s your chance!



252 Part III: The Power Stuff: Advanced Techniques 

 3. What’s the product of A and B if

  

 Solve It

 4. Find the product of A and B if

  

 Solve It

 Q. What’s the product of A and B if

  

 A. 

1. Here’s what the problem looks like 

with the numbers filled in:

 

2. Refer to the rule for matrix multiplica-

tion, which is

 

3. When you apply the rule, you get

 

4. Wrap up the problem by adding the 

products together:
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Determining the Determinant
When it comes to matrices, the determinant is your best friend because it reduces a matrix 

down to a single significant number. Whether or not that number is 0 is important because 

that can indicate whether there’s a solution to the system of equations.

The following problems give you practice finding the determinants of various matrices. 

Good luck!

 Q. What’s the determinant of this matrix?

  

 A. –2

1. Here’s how the determinant is defined 

for a 2×2 matrix:

 det(A) = ad – cb

  where the matrix looks like this:

 

2. So the determinant is

 det(A) = (1)(4) – (3)(2)

  which works out to be

 det(A) = (4) – (6) = –2
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 8. Find the determinant of this matrix:

  

 Solve It

 7. What’s the determinant of this matrix?

  

 Solve It

 6. Find the determinant of this matrix:

  

 Solve It

 5. What’s the determinant of this matrix?

  

 Solve It
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More Than Just Tongue Twisters: 
Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are the last tools you need to solve systems of linear first 

order differential equations. These two items give you the ability to transform matrices into 

very simple forms.

Say you want to transform a matrix (such as A) so that when you multiply it by a vector 

(such as x), you get back A multiplied by some constant, which is λ.

Any values of λ that satisfy this equation are called eigenvalues of the original equation. The 

vectors that are solutions to this equation are called eigenvectors.

Take a few minutes to review the following example problem; then try your hand at finding 

eigenvalues and eigenvectors.

 Q. What are the eigenvalues and eigenvec-

tors of this matrix?

  

 A. The eigenvalues of A are λ
1
 = –2 and 

λ
2
 = –3. The eigenvectors are

  

  and

  

1. First, find A – λI:

 

2. Now find the determinant:

 det(A – λI) = (–1 – λ)(–4 – λ) + 2

  or

 det(A – λI) = λ2 + 5λ + 6

3. Factor this equation into

 (λ + 2)(λ + 3)

  So the eigenvalues of A are λ
1
 = –2 and 

λ
2
 = –3.

4. To find the eigenvector that corre-

sponds to λ
1
, substitute λ

1
 into A – λI:

 

5. Because

 (A –λI)x = 0

  you have

 

6. Every row of this matrix equation must 

be true, which means you can assume 

that x
1
 = x

2
. So, up to an arbitrary con-

stant, the eigenvector that corresponds 

to λ
1
 is
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7. Drop the arbitrary constant and write 

the eigenvector simply as

 

8. What about the eigenvector that corre-

sponds to λ
2
? Plugging λ

2
 in gives you

 

  which is actually

 

9. So 2x
1
 – x

2
 = 0 and x

1
 = x

2
/2. So, up to 

an arbitrary constant, the eigenvector 

that corresponds to λ
2
 is

 

10.  Good news! You can safely drop the 

arbitrary constant and write the 

eigenvector simply as
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 10. Find the eigenvalues and eigenvectors of 

this matrix:

  

 Solve It

 9. What are the eigenvalues and eigenvectors 

of this matrix?

  

 Solve It
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Solving Differential Equation Systems
When you have matrices and determinants, as well as eigenvalues and eigenvectors, mas-

tered (work through the problems in the previous sections if you still need practice), you’re 

ready to solve systems of linear first order differential equations.

Take a look at this system of homogeneous differential equations:

y
1
' = y

1
 + y

2

y
2
' = 4y

1
 + y

2

These differential equations are linked, which means they both contain y
1
 and y

2
, and there-

fore must be solved together. You can write them in this form:

 

which you can then write like this:

y' = Ay

In this case, y', A, and y are all matrices:

 

 

 

If A is a matrix of constant coefficients, then you can assume a solution of the form

y = ξert

No, ξ isn’t just a random symbol I’ve thrown in to see whether you’re still awake. It actually 

stands for an eigenvector. Substituting your supposed form of the solution into the system 

of differential equations gives you

rξert = Aξert

Now you can subtract Aξert from both sides to get

(A – rI)ξert = 0

or

(A – rI)ξ = 0
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Tada! You’ve just found the equation that specifies the eigenvalues and eigenvectors of 

matrix A. So the solution to this system of differential equations:

y' = Ay

is

y = ξert

provided that r is an eigenvalue of A and ξ is the associated eigenvector.

To see the previous differential equation system worked out step by step, be sure to review 

the following example problem. If you’re ready and raring to solve your first systems of the 

chapter, feel free to skip the example and dive into the practice problems instead.

 Q. Find the solution to this system of differ-

ential equations:

  y
1
' = y

1
 + y

2

  y
2
' = 4y

1
 + y

2

 A. y
1
 = c

1
e3t – c

2
e–t and y

2
 = 2c

1
e3t + 2c

2
e–t

1. Write this problem as

 

2. Because this system has constant coef-

ficients, try a solution of the form

 y = ξert

3. Substituting your attempted solution 

into the system gives you

 

  which you can rewrite as

 

4. Divide by ert to get

 

5. This system of linear equations has a 

(nontrivial) solution only if the deter-

minant of the 2×2 matrix is 0, so

 

6. Expanding the determinant gives you

 (1 – r)(1 – r) – 4 = 0

  which becomes

 r2 – 2r + 1 – 4 = 0

  or

 r2 – 2r – 3 = 0

7. Factor the characteristic equation as 

follows:

 (r – 3)(r + 1) = 0

  to reveal that the eigenvalues of the 

matrix are

 r
1
 = 3 and r

2
 = –1

8. Now you need to find the two eigen-

vectors. Start that process by taking the 

first eigenvalue, r
1
 = 3, and plugging it in:

 

  Doing so gives you

 –2ξ
1
 + ξ

2
 = 0

  and

 4ξ
1
 – 2ξ

2
 = 0

9. These equations are the same up to a 

factor of –1, so

 2ξ
1
 = ξ

2

  Therefore, the first eigenvector (up to 

an arbitrary constant, of course) is
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10.  Now on to the second eigenvector. 

This one corresponds to the eigen-

value r
2
 = –1:

 

11.  Plug r
2
 = –1 into the preceding matrix 

to get

 

  which gives you

 2ξ
1
 + ξ

2
 = 0

  and

 4ξ
1
 + 2ξ

2
 = 0

12.  These two equations offer you 

the same information: the fact that 

2ξ
1
 = –ξ

2
. So the second eigenvector 

becomes

 

13.  Therefore, the first solution to the 

system is

 

  and the second solution is

 

14.  As you can see, the general solution 

is a linear combination of the two 

solutions:

 

  which can also be written as

 

15.  So the solution to the system of 

differential equations is

 y
1
 = c

1
e3t – c

2
e–t and 

y
2
 = 2c

1
e3t + 2c

2
e–t
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 12. What’s the solution to this system of differ-

ential equations?

  y
1
' = 3y

1
 + 2y

2

  y
2
' = 4y

1
 + y

2

 Solve It

 11. Find the solution to this system of differen-

tial equations:

  y
1
' = –y

1
 – y

2

  y
2
' = 2y

1
 – 4y

2

 Solve It
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Answers to Systems of Linear First Order 
Differential Equation Problems

Following are the answers to the practice questions presented throughout this chapter. 

Each one is worked out step by step so that if you messed one up along the way, you can 

more easily see where you took a wrong turn.

a Find the sum of A + B if A and B are

  

 Solution: 

 1. A + B is

   

 2. By adding element to element, you get

   

b What’s A + B if A and B are

  

 Solution: 

 1. Here’s what A + B looks like written out fully:

   

 2. Add the corresponding elements to each other to find the solution:

   

c What’s the product of A and B if

  

 Solution: 
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 1. Here’s what the problem looks like with the numbers filled in:

   

 2. Refer to the rule for matrix multiplication, which is

   

 3. When you apply the rule, you get

   

 4. Wrap up the problem by adding the products together:

   

d Find the product of A and B if

  

 Solution: 

 1. When you fill in the numbers, the problem in Question 4 looks like this:

   

 2. Recall the rule for matrix multiplication:

   

 3. Applying the rule gives you

   

 4. So your final solution is as follows

   

e What’s the determinant of this matrix?

  

 Solution: 0

 1. Here’s how the determinant is defined for a 2×2 matrix:

   det(A) = ad – cb
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  where the matrix looks like this:

   

 2. So the determinant is

   det(A) = (2)(2) – (2)(2)

  which works out to be

   det(A) = (4) – (4) = 0

f Find the determinant of this matrix:

  

 Solution: –8

 1. Because the determinant for a 2×2 matrix is defined as

   det(A) = ad – cb

  where the matrix looks like this:

   

  the determinant is

   det(A) = (3)(9) – (7)(5)

 2. That makes the solution

   det(A) = (27) – (35) = –8

g What’s the determinant of this matrix?

  

 Solution: –8

 1. Here’s how the determinant is defined for a 2×2 matrix:

   det(A) = ad – cb

  where the matrix looks like this:

   

 2. So the determinant is

   det(A) = (2)(8) – (4)(6)

  which works out to be

   det(A) = (16) – (24) = –8

h Find the determinant of this matrix:
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 Solution: –2

 1. Because the determinant for a 2×2 matrix is defined as

   det(A) = ad – cb

  where the matrix looks like this:

   

  the determinant is

   det(A) = (9)(6) – (8)(7)

 2. That makes the solution

   det(A) = (54) – (56) = –2

i What are the eigenvalues and eigenvectors of this matrix?

  

 Solution: The eigenvalues of A are λ
1
 = 1 and λ

2
 = 3. The eigenvectors are

  

  and

  

 1. First, find A – λI:

   

 2. Now find the determinant, which is

   det(A – λI) = (2 – λ)(2 – λ) – 1

  or

   det(A – λI) = λ2 – 4λ + 3

 3. Factor this equation into

   (λ – 1)(λ – 3)

  So the eigenvalues of A are λ
1
 = 1 and λ

2
 = 3.

 4. To find the eigenvector that corresponds to λ
1
, substitute λ

1
 into A – λI:

   

 5. Because

   (A –λI)x = 0

  you have
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 6. Every row of this matrix equation must be true, which means you can assume that x
1
 = –x

2
. So, up to 

an arbitrary constant, the eigenvector that corresponds to λ
1
 is

   

 7. Drop the arbitrary constant and write the eigenvector simply as

   

 8. What about the eigenvector that corresponds to λ
2
? Plugging λ

2
 in gives you

   

  which is actually

   

 9. So x
1
 = 0, which means that, up to an arbitrary constant, the eigenvector that corresponds to λ

2
 is

   

 10. Good news! You can drop the arbitrary constant and just write the eigenvector simply as

   

j Find the eigenvalues and eigenvectors of this matrix:

  

 Solution: The eigenvalues of A are λ
1
 = 2 and λ

2
 = –1. The eigenvectors are

  

  and

  

 1. Start off by finding A – λI:

   

 2. Then find the determinant:

   det(A – λI) = (3 – λ)(–2 – λ) + 4

  which equals

   λ2 – λ – 2

 3. Factor this equation as follows:

   (λ + 1)(λ – 2)
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  to reveal that the eigenvalues of A are λ
1
 = 2 and λ

2
 = –1.

 4. Now it’s time to find the eigenvectors. Substitute λ
1
 into A – λI to find the eigenvector correspond-

ing to λ
1
:

   

 5. You already know that

   (A –λI)x = 0

  so

   

 6. Because every row of this matrix equation must be true, go ahead and assume that x
1
 = –x

2
. So, up 

to an arbitrary constant, the eigenvector corresponding to λ
1
 is

   

 7. Drop the arbitrary constant and write the eigenvector as follows:

   

 8. Great. Now plug λ
2
 in to get

   

  so

   

 9. Looks like 4x
1
 = x

2
, which means that, up to an arbitrary constant, the eigenvector corresponding 

to λ
2
 is

   

 10. For simplicity’s sake, drop the arbitrary constant:

   

k Find the solution to this system of differential equations:

  y
1
' = –y

1
 – y

2

  y
2
'= 2y

1
 – 4y

2

 Solution: y
1
 = c

1
e–2t + c

2
e–3t and y

2
 = c

1
e–2t + 2c

2
e–3t

 1. Write this problem as
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 2. Because this system has constant coefficients, try a solution of the form

   y = ξert

 3. Substituting your attempted solution into the system gives you

   

  which you can rewrite as

   

 4. Divide by ert to get

   

 5. This system of linear equations has a (nontrivial) solution only if the determinant of the 2×2 

matrix is 0, so

   

 6. Expanding the determinant gives you

   (–1 – r)(–4 – r) + 2 = 0

  which becomes

   (1 + r)(4 + r) + 2 = 0

  or

   r2 + 5r + 4 + 2 = 0

  which is also

   r2 + 5r + 6 = 0

 7. Factor the characteristic equation as follows:

   (r + 2)(r + 3) = 0

  to reveal that the eigenvalues of the matrix are

   r
1
 = –2 and r

2
 = –3

 8. Now you need to find the two eigenvectors. Start that process by taking the first eigenvalue, 

r
1
 = –2, and plugging it in:

   

  Doing so gives you

   ξ
1
 – ξ

2
 = 0

  and

   2ξ
1
 – 2ξ

2
 = 0

 9. These equations are the same up to a factor of –1, so

   ξ
1
 = ξ

2
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  Therefore, the first eigenvector (up to an arbitrary constant, of course) is

   

 10. Now on to the second eigenvector. This one corresponds to the eigenvalue r
2
 = –3:

   

 11. Plug r
2
 = –3 into the preceding matrix to get

   

  which gives you

   2ξ
1
 – ξ

2
 = 0

  and

   2ξ
1
 – ξ

2
 = 0

 12. These two equations offer you the same info: the fact that 2ξ
1
 = – ξ

2
. So the second eigenvector 

becomes

   

 13. Therefore, the first solution to the system is

   

  and the second solution is

   

 14. As you can see, the general solution is a linear combination of the two solutions:

   

  which can also be written as

   

 15. So the solution to the system of differential equations is

   y
1
 = c

1
e–2t + c

2
e–3t and y

2
 = c

1
e–2t + 2c

2
e–3t

l What’s the solution to this system of differential equations?

  y
1
' = 3y

1
 + 2y

2

  y
2
' = 4y

1
 + y

2

 Solution: y
1
 = c

1
e–t + c

2
e5t and y

2
 = –2c

1
e–t + c

2
e5t
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 1. Rewrite the original problem as follows:

   

 2. This system has constant coefficients, so go ahead and try a solution of this form:

   y = ξert

 3. Then substitute your attempted solution into the system:

   

  You can rewrite that result as

   

 4. Dividing by ert gives you

   

 5. This system of linear equations has a (nontrivial) solution only if the determinant of the 2×2 

matrix is 0, so

   

 6. Expand the determinant to get

   (3 – r)(1 – r) – 8 = 0

  which becomes

   r2 – 4r + 3 – 8 = 0

  or

   r2 – 4r – 5 = 0

 7. Factor the characteristic equation into

   (r + 1)(r – 5) = 0

 8. Now you can see that the eigenvalues of the matrix are

   r
1
 = –1 and r

2
 = 5

 9. Time to determine the two eigenvectors. First, take r
1
 = –1 (the first eigenvalue) and plug it in to get

   

  or

   4ξ
1
 + 2ξ

2
 = 0

  and

   4ξ
1
 + 2ξ

2
 = 0
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 10. These equations give you the same info, which is that

   2ξ
1
 = –ξ

2

  So, up to an arbitrary constant, the first eigenvector is

   

 11. How about the second eigenvector? Well, you know that it corresponds to the eigenvalue 

r
2
 = 5:

   

 12. Plugging r
2
 = 5 into the preceding equation gives you

   

  so you wind up with

   –2ξ
1
 + 2ξ

2
 = 0

  and

   4ξ
1
 – 4ξ

2
 = 0

 13. Surprise, surprise: These equations give you the same info, which is that ξ
1
 = ξ

2
. The second 

eigenvector therefore becomes

   

 14. Looks like the first solution to the system is

   

  and the second solution is

   

 15. The general solution you’re going for is a linear combination of the two solutions, which looks 

like this:

   

  which can also be written as

   

 16. Thus, the solution to the system of differential equations is

   y
1
 = c

1
e–t + c

2
e5t and y

2
 = –2c

1
e–t + c

2
e5t
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Part IV
The Part of Tens



In this part . . .

If you’re a fan of top ten lists (or even if you just want 

a break from tackling all the great practice problems 

throughout this workbook), then this is the part for you. 

First, I give you a tour of the ten common ways of solving 

differential equations, complete with online resources. And 

because differential equations don’t exist in a vacuum 

(believe it or not, they’re meant to solve real-world prob-

lems), I also show you ten real-world applications for them.



Chapter 12

Ten Common Ways of Solving 
Differential Equations

In This Chapter
▶ Surveying the different types of differential equations

▶ Taking stock of your solution-technique options

Tackling differential equations effectively — and with the least amount of frustration — 

means knowing what type of equation you’re dealing with and having a solution tech-

nique in mind. For example, are you looking at a homogeneous or separable differential 

equation, and can you solve it with either a series or numerical solution?

Consider this chapter your overview of the ten common ways of solving differential equa-

tions and where to find online help.

Looking at Linear Equations
 Linear differential equations exclusively involve linear terms (meaning terms to the first 

power) of y, y', y", y''', and so on. An equation that looks like this is considered linear:

y" + 3y' + 6y – 4 = 0

For a great explanation of linear first order differential equations and how to solve them, 

visit www.sosmath.com/diffeq/diffeq.html, look for the First Order Differential 

Equations bullet, and click the Linear Equations link. Then flip to Chapter 1 for some prac-

tice solving linear first order differential equations.

Scoping Out Separable Equations
 Separable differential equations can be written so that all x terms appear on one side of the 

equal sign and all other terms appear on the opposite side. Here’s an example:

 



276 Part IV: The Part of Tens 

This differential equation can be separated as

dy = x4 dx – x2 dx

For additional help spotting and understanding separable differential equations, head to 

www.sosmath.com/diffeq/diffeq.html, find the First Order Differential Equations 

bullet, and click the Separable Equations link. Or if you’re feeling up to it, head to Chapter 2 

to start solving separable differential equations.

Applying the Method of Undetermined 
Coefficients

When your differential equation has constant coefficients, like this one does:

y" + 9y' + 8y – 4 = 0

then you should try the method of undetermined coefficients to solve it. Flip to Chapter 5 

for a demonstration of this technique; then check out this additional resource: tutorial.
math.lamar.edu/Classes/DE/UndeterminedCoefficients.aspx.

Honing in on Homogeneous Equations
 In a homogeneous differential equation, all the terms involve y, as you can see in this 

example:

y" – 7y' + 12y = 0

You typically write homogeneous differential equations by setting the right side of the equa-

tion equal to 0. For some online help with recognizing and solving homogeneous equations, 

check out en.wikipedia.org/wiki/Homogeneous_differential_equation.

Examining Exact Equations
If you encounter a differential equation that can be written in this form:

M(x, y) dx + N(x, y) dy = 0

then the equation can be called exact if
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Want to check out exact differential equations on the Web? Visit www.sosmath.com/
diffeq/diffeq.html, find the First Order Differential Equations bullet, and click the 

Exact and Non-Exact Equations link. For some practice solving exact differential equations, 

flip to Chapter 3.

Finding Solutions with the Help 
of Integrating Factors

Whenever you see a differential equation like the following:

M(x, y) dx + N(x, y) dy = 0

but it isn’t exact — that is, this statement is true:

 

then you can try to find an integrating factor — μ(x, y) — such that the differential equation 

changes form to

μ(x, y)M(x, y) dx + μ(x, y)N(x, y) dy = 0

and becomes exact.

If you want a Web-based review on finding integrating factors, check out www.sosmath.
com/diffeq/diffeq.html, look for the First Order Differential Equations bullet, and click 

the Integrating Factor technique bullet.

Getting Serious Answers with Series Solutions
Is a tough differential equation like this one bogging you down?

y" + xy' + 2y = 0

Then try solving it with a series solution, which allows you to assume that y can be 

expanded in a power series like this:

 

For practice solving differential equations using series solutions, flip to Chapter 8. You can 

also check out this great online resource: tutorial.math.lamar.edu/Classes/DE/
SeriesSolutions.aspx.
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Turning to Laplace Transforms for Solutions
Laplace transforms offer you a powerful tool for solving differential equations like the 

following:

y" + 5y' + 6y = 0

Take the Laplace transform of this differential equation and apply any initial conditions to 

get, for example,

 

Then take the inverse Laplace transform to get the solution to the differential equation:

y = e–2x + e–3x

Check out Chapter 10 for some practice using Laplace transforms, or head to tutorial.
math.lamar.edu/Classes/DE/IVPWithLaplace.aspx for some additional refresher.

Determining whether a Solution Exists
Sometimes a differential equation may not have a solution. Fortunately, a number of theo-

rems are available to help you determine whether that’s the case. For more on the existence 

and uniqueness of solutions, head to www.sosmath.com/diffeq/diffeq.html, find 

the First Order Differential Equations bullet, and click the Existence and Uniqueness of 

Solutions link.

Solving Equations with Computer-Based 
Numerical Methods

Computer-based numerical methods are always an option when you’re faced with crazy, 

complex differential equations, such as

sin (y)y(4) – 93 cos (x)y''' + 3.7y' + 6y6 – 4ey = sin (x) cosh (x)

Several popular mathematical techniques, such as Euler’s method and the Runge-Kutta 

method, can be readily translated into computer code. Read all about these methods 

in Differential Equations For Dummies or at www.efunda.com/math/num_ode/num_
ode.cfm.



Chapter 13

Ten Real-World Applications of 
Differential Equations

In This Chapter
▶ Using differential equations to determine growth or decay

▶ Discovering motion-related facts with the help of differential equations

Ever find yourself wondering what’s so good about knowing how to solve differential 

equations — besides being able to complete problem sets? Well, differential equations 

are all about letting you model the real world mathematically, and in this chapter, you get a 

list of the ten best real-world uses for differential equations, along with Web sites that carry 

out these uses. (This chapter is just the tip of the iceberg, of course; an infinite number of 

real-world applications exist for differential equations.)

Calculating Population Growth
The rate of population change is proportional to the current size of the population, as 

shown in the following differential equation:

 

Note that P is the population, and k is a constant. For a good look at the solutions of this 

equation, head to www.analyzemath.com/calculus/Differential_Equations and 

click the applications.html link. Population growth is addressed in Application 1.

Determining Fluid Flow
Fluid in a pipe moves faster near the center of the pipe and slower near the pipe’s walls. 

You can find the velocity as a function of r, the radius from the center of the pipe, with this 

equation:
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where v (the velocity of the fluid) is a function of r, η is the fluid’s viscosity, and ΔP/Δx is 

the pressure gradient. See more at hyperphysics.phy-astr.gsu.edu/hbase/pfric2.
html#vpro2.

Mixing Fluids
When you mix fluids in tanks, you can relate the mass of a certain substance with the flow 

rate and concentration as follows:

 

In this equation, m is mass, t is time, q is the flow rate, and C is concentration. To get all the 

details on mixing fluids in tanks, visit www.tmt.ugal.ro/crios/Support/ANPT/Curs/
deqn/a1/stanks2/stanks2.html.

Finding Out Facts about Falling Objects
A basic use of differential equations is finding out information about falling objects. This 

equation tells you the object’s acceleration:

 

whereas this equation tells you the object’s velocity:

 

For more details, go to www.analyzemath.com/calculus/Differential_Equations, 

click the applications.html link, and scroll to Application 3.

Calculating Trajectories
You can describe the trajectories (paths) of objects with this differential equation:

 

where x and y are the standard coordinates of the object and C is a constant. For more 

on using differential equations to describe the trajectories of objects, take a look at www.
sosmath.com/diffeq/diffeq.html, find the First Order Differential Equations bullet, 

and click the Orthogonal Trajectories link.
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Analyzing the Motion of Pendulums
Need to figure out the specifics of a pendulum’s motion? Just bust out the following differen-

tial equation:

 

where θ is the angle of the pendulum at any given moment, L is the length of the pendulum, t 
is time, and g is the acceleration due to gravity. For a solution that describes the motion of a 

pendulum, check out hyperphysics.phy-astr.gsu.edu/hbase/pend.html#c5.

Applying Newton’s Law of Cooling
Newton’s law of cooling says that the rate of temperature change of an object is propor-

tional to the temperature difference of that object from the environment:

 

In this equation, T is the temperature of an object, t is time, k is a constant, and T
e
 is 

the temperature of the environment. You can see this differential equation solved by 

going to www.analyzemath.com/calculus/Differential_Equations, clicking the 

applications.html link, and scrolling to Application 4.

Determining Radioactive Decay
Atoms in radioactive materials decay at a certain rate, which is given by this differential 

equation:

 

where N is the number of atoms of the radioactive material, λ is the decay constant, and t is 

time. To see a worked-out problem about radioactive materials in Moon rocks, take a look 

at www.tmt.ugal.ro/crios/Support/ANPT/Curs/deqn/a1/mrocks/mrocks.html.

Studying Inductor-Resistor Circuits
If you have electrical circuits containing inductors and resistors, use the following differen-

tial equation to determine the current in the circuit:
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where I is the current, L is the inductance, R is the resistance in the circuit, and V is the 

voltage as a function of time of the driving voltage source. To see how to handle this kind 

of problem, check out www.analyzemath.com/calculus/Differential_Equations, 

click the applications.html link, and scroll down to Application 5.

Calculating the Motion of a Mass on a Spring
The motion of a mass on a spring that’s moving horizontally (which means gravity isn’t a 

factor) is given by this differential equation:

 

where x is the location of the mass, m is the mass, and k is the constant of the spring. Visit 

hyperphysics.phy-astr.gsu.edu/hbase/shm2.html#c2 to see the solution.
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identifying, 7–9
initial conditions with, 10–11, 15–17
integrating factors for solving, 15–18, 277
involving terms in y, solving, 12–14
nonlinear equations versus, 7
not involving terms in y, solving, 9–12
systems of

adding matrices, 249–250
answers to problems, 262–271
determinant of matrices, 253–254
eigenvalues and eigenvectors of 

matrices, 255–257
multiplying matrices, 251–252
solving, 258–261
subtracting matrices, 249

Web resource for, 275

linear higher order differential equations
general form, 129, 153
homogeneous

answers to problems, 139–151
attempting solutions in the form 

y = erx, 129
with complex roots, 133–135
with real and distinct roots, 130–133
with real, identical roots, 135–138
Web-based equation solver for, 129

nonhomogeneous
answers to problems, 162–174
general form, 153
method of undetermined coeffi cients, 

153–161
when g(x) involves sines and cosines, 

153, 159–161
when g(x) is in the form of erx, 153, 

154–156
when g(x) is a polynomial of order n, 153, 

157–159
linear second order differential equations

converting between forms, 82
general form, with coeffi cient of y", 82
general form, without coeffi cient of y", 81
homogeneous

answers to problems, 94–104
with complex roots, 89–91
constant coeffi cients for, 84–93
defi ned, 82
with real and distinct roots, 86–89
with real, identical roots, 91–93

initial conditions with, 81
nonhomogeneous

answers to problems, 115–127
defi ned, 82
method of undetermined coeffi cients, 

105–114
when g(x) involves sines and cosines, 

105, 112–114
when g(x) is in the form of erx, 105, 

106–109
when g(x) is a polynomial of order n, 105, 

109–112
where p(x), q(x), and g(x) are continuous 

functions, 81–93
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linked differential equations, 258. See also 
systems of linear fi rst order differential 
equations

• M •
mass on spring, motion of, 282
matrices

adding, 249–250
answers to problems, 262–271
determinant of, 253–254
eigenvalues and eigenvectors of, 255–257
multiplying, 251–252
solving systems of differential equations 

using, 258–261
subtracting, 249

mixing fl uids equation, 280
motion of mass on spring equation, 282
motion of pendulum equation, 7, 281
μ(x). See also integrating factors

identifying, for linear fi rst order equations, 
15–16

integrating factors as functions of, 15, 277
multiplying matrices, 251–252

• N •
Newton’s law of cooling, 281
nonhomogeneous linear higher order 

differential equations
answers to problems, 162–174
general form, 153
method of undetermined coeffi cients

overview, 153–154
when g(x) involves sines and cosines, 

153, 159–161
when g(x) is in the form of erx, 153, 

154–156
when g(x) is a polynomial of order n, 153, 

157–159
nonhomogeneous linear second order 

differential equations
answers to problems, 115–127
defi ned, 82
method of undetermined coeffi cients

overview, 105–106
when g(x) involves sines and cosines, 

105, 112–114

when g(x) is in the form of erx, 105, 
106–109

when g(x) is a polynomial of order n, 105, 
109–112

nonlinear differential equations
for angle of pendulum, 7
defi ned, 7
linear equations versus, 7
second order, 82
separable fi rst order, 30

nth order differential equations. See higher 
order differential equations

• O •
ordinary differential equations

answers to problems, 190–197
defi ned, 177
series solutions for, 184–186

orthogonal trajectories, 280

• P •
pendulum motion equation, 7, 281
pipe, fl uid fl ow in, 279–280
polynomials

coeffi cients in equations with regular 
singular points, 203

g(x) as polynomial of order n
for nonhomogeneous linear higher order 

equations, 153, 157–159
for nonhomogeneous linear second 

order equations, 105, 109–112
population growth equation, 279
power series

defi ned, 177
fi nite versus infi nite, 177
for ordinary differential equations

answers to problems, 188–197
ratio test for convergence, 178–180
shifting the series index, 181–183
solving, 184–186
substitutions for y, y', and y" terms, 184

overview, 277
for unbounded differential equations

answers to problems, 215–223
classifying singular points as regular or 

irregular, 203–205
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Euler’s equation for, 206–214
fi nding singular points, 199–202
with regular singular points, 211–214

Web resource for, 277
powers

linear and nonlinear equations 
distinguished by, 7

of r, in characteristic equation, 129
raising both sides of equation to power of 

e, 13, 16

• R •
radioactive decay equation, 281
ratio test for power series convergence

answers to problems, 188–189
overview, 178–180

real and distinct roots
of characteristic equation

for homogeneous linear higher order 
equations, 130–133

for homogeneous linear second order 
equations, 86–89

of Euler’s equation, 206
real, identical roots

of characteristic equation
for homogeneous linear higher order 

equations, 135–138
for homogeneous linear second order 

equations, 91–93
of Euler’s equation, 206

real-world applications, 279–282
regular singular points

answers to problems, 217–219, 222–223
defi ned, 203
identifying, 203–205
polynomial coeffi cients in equations 

with, 203
solving general differential equations 

with, 211–214
resistance, electrical, 281–282
roots of characteristic equation

for homogeneous linear higher order 
equations

answers to problems, 139–151
complex, 133–135
real and distinct, 130–133

real, identical, 135–138
Web-based equation solver for, 129

for homogeneous linear second order 
equations

answers to problems, 94–104
complex, 89–91
real and distinct, 86–89
real, identical, 91–93

types possible, 87, 130
Web-based equation solver for, 129

roots of Euler’s equation, cases for, 206
Runge-Kutta method, 278
Ryan, Mark (Calculus For Dummies), 2

• S •
second order differential equations

answers to problems, 94–104
assuming solutions in the form y = erx, 86
characteristic equation

with complex roots, 89–91
defi ned, 86
with real and distinct roots, 86–89
with real, identical roots, 91–93
types of solutions possible for, 87

guessing a solution, 84–86
linear

converting between forms, 82
general form, with coeffi cient of y", 82
general form, without coeffi cient of y", 81
initial conditions with, 81
where p(x), q(x), and g(x) are 

continuous functions, 81–93
linear homogeneous

answers to problems, 94–104
with complex roots, 89–91
constant coeffi cients for, 84–93
defi ned, 82
with real and distinct roots, 86–89
with real, identical roots, 91–93

linear nonhomogeneous
answers to problems, 115–127
defi ned, 82
method of undetermined coeffi cients, 

105–114
when g(x) involves sines and cosines, 

105, 112–114
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second order differential equations 
(continued)

when g(x) is in the form of erx, 105, 
106–109

when g(x) is a polynomial of order n, 105, 
109–112

nonlinear, 82
separable fi rst order differential equations

answers to problems, 43–57
converting to, using y = vx substitution 

trick, 35–38
defi ned, 29, 275
examples, 29–31
general form, 30
implicit solutions to, 33–35
initial conditions with, 41–42
nonlinear, 30
practicing separation skills, 39–40
Web resource for, 276

series solutions
for ordinary differential equations

answers to problems, 188–197
fi nite versus infi nite power series, 177
power series, defi ned, 177
ratio test for power series convergence, 

178–180
shifting the series index, 181–183
solving using power series, 184–186
substitutions for y, y', and y" terms, 184

overview, 277
for unbounded differential equations

answers to problems, 215–223
classifying singular points as regular or 

irregular, 203–205
Euler’s equation for, 206–214
fi nding singular points, 199–202
with regular singular points, 211–214

Web resource for, 277
shifting the power series index

answers to problems, 189–190
overview, 181–183

sines
g(x) involving

in nonhomogeneous linear higher order 
equations, 153, 159–161

in nonhomogeneous linear second order 
equations, 105, 112–114

Laplace transforms of functions, 227

singular points
answers to problems, 215–223
defi ned, 177, 199
fi nding, 199–202
irregular, equations unsolvable near, 199
regular versus irregular, 203–205
regular, solving general differential 

equations with, 211–214
unbounded differential equations 

resulting from, 199–200
spring, motion of mass on, 282
substitution

of power series for y, y', and y" terms, 184
y = erx for y = f(x), 85
y = vx, for solving separable fi rst order 

equations, 35–38
y = xr in Euler’s equation, 206

subtracting matrices, 249
systems of linear fi rst order differential 

equations
adding matrices, 249–250
answers to problems, 262–271
determinant of matrices, 253–254
eigenvalues and eigenvectors of matrices, 

255–257
multiplying matrices, 251–252
solving, 258–261
subtracting matrices, 249

• T •
temperature change equation, 281
tn functions, Laplace transform of, 226
trajectories equation, 280
trigonometry

g(x) involving sines and cosines
for nonhomogeneous linear higher order 

equations, 153, 159–161
for nonhomogeneous linear second 

order equations, 105, 112–114
for solving homogeneous linear second 

order equations with complex roots, 90

• U •
unbounded differential equations

answers to problems, 215–223
classifying singular points as regular or 

irregular, 203–205
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defi ned, 199
Euler’s equation for solving, 206–214
fi nding singular points in, 199–202
with regular singular points, solving, 

211–214
undetermined coeffi cients, method of. See 

also constant coeffi cients
for nonhomogeneous linear higher order 

equations
answers to problems, 162–174
overview, 153
when g(x) involves sines and cosines, 

153, 159–161
when g(x) is in the form of erx, 153, 

154–156
when g(x) is a polynomial of order n, 153, 

157–159
for nonhomogeneous linear second order 

equations
answers to problems, 115–127
overview, 105
when g(x) involves sines and cosines, 

105, 112–114
when g(x) is in the form of erx, 105, 

106–109
when g(x) is a polynomial of order n, 105, 

109–112
Web resource for, 276

• V •
velocity of falling object, 280

• W •
Web resources

acceleration and velocity of falling 
object, 280

computer-based numerical methods, 278
determining whether solution exists, 278

exact fi rst order differential equations, 277
fl uid fl ow, 279–280
homogeneous differential equations, 276
inductor-resistor circuits, 281–282
integrating factors, 277
Laplace transforms, 278
method of undetermined coeffi cients, 276
mixing fl uids, 280
motion of mass on spring, 282
Newton’s law of cooling, 281
orthogonal trajectories, 280
pendulum motion, 281
population growth equation solutions, 279
radioactive decay, 281
separable differential equations, 276
series solutions or power series, 277
solving linear fi rst order differential 

equations, 275
Web-based equation solvers, 129

• Y •
y, y', and y" terms

linear versus nonlinear equations 
distinguished by, 7, 275

power series substitution for, 184
y = erx. See also characteristic equation

solution in the form of
for homogeneous linear higher order 

equations, 129
for homogeneous linear second order 

equations, 86, 91
substituting for y = f(x), 85

y = vx substitution trick
answers to problems, 47–51
for converting to separable equations, 

35–38
general form suitable for, 35

y = xr, solution for Euler’s equation in form 
of, 206, 211
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