
by John Paul Mueller

RibbonX
FOR

DUMmIES
‰

01_169940 ffirs.qxp 7/13/07 10:17 PM Page iii

File Attachment
C1.jpg

01_169940 ffirs.qxp 7/13/07 10:17 PM Page ii

RibbonX
FOR

DUMmIES
‰

01_169940 ffirs.qxp 7/13/07 10:17 PM Page i

01_169940 ffirs.qxp 7/13/07 10:17 PM Page ii

by John Paul Mueller

RibbonX
FOR

DUMmIES
‰

01_169940 ffirs.qxp 7/13/07 10:17 PM Page iii

RibbonX For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2007932463

ISBN: 978-0-470-16994-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_169940 ffirs.qxp 7/13/07 10:17 PM Page iv

www.wiley.com

About the Author
John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 74 books and over 300 articles to date. The topics
range from networking to artificial intelligence and from database manage-
ment to heads-down programming. Some of his current books include a
Windows power optimization book, a book on .NET security, and books on
Amazon Web Services, Google Web Services, and eBay Web Services. His
technical editing skills have helped over 52 authors refine the content of their
manuscripts. John has provided technical editing services to both DataBased
Advisor Magazine and Coast Compute magazines. He’s also contributed arti-
cles to magazines like CIO.com, DevSource, InformIT, Informant, DevX, SQL
Server Professional, Visual C++ Developer, Hard Core Visual Basic, asp.netPRO,
Software Test and Performance, and Visual Basic Developer.

When John isn’t working at the computer, you can find him in his workshop.
He’s an avid woodworker and candlemaker. On any given afternoon, you can
find him working at a lathe or putting the finishing touches on a bookcase. He
also likes making glycerin soap and candles, which comes in handy for gift
baskets. You can reach John on the Internet at JMueller@mwt.net. John is
also setting up a Web site at http://www.mwt.net/~jmueller/; feel free
to look and make suggestions on how he can improve it. Check out his weekly
blog at http://www.amazon.com/gp/blog/id/AQOA2QP4X1YWP.

01_169940 ffirs.qxp 7/13/07 10:17 PM Page v

01_169940 ffirs.qxp 7/13/07 10:17 PM Page vi

Dedication
This book is dedicated to my good friend Tom Cirtin. We’ve considered many
mysteries over the years, and I’m always amazed at his thoughtful perspec-
tive on life. Our working experiences have always been fulfilling, and I know
that we’ll continue to work together for many years.

01_169940 ffirs.qxp 7/13/07 10:17 PM Page vii

01_169940 ffirs.qxp 7/13/07 10:17 PM Page viii

Author’s Acknowledgments
Thanks to my wife, Rebecca, for working with me to get this book completed.
I really don’t know what I would have done without her help in researching
and compiling some of the information that appears in this book. She also did
a fine job of proofreading my rough draft.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material that you see here. I really
appreciated the time that he devoted to checking my code for accuracy. I also
spent a good deal of time bouncing ideas off of Russ as I wrote this book,
which is a valuable aid to any author.

Matt Wagner, my agent, deserves credit for helping me get the contract in the
first place and taking care of all the details that most authors don’t really con-
sider. I always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the
approach, test the examples, and generally provide input that every reader
wishes they could have. These unpaid volunteers helped in ways too numer-
ous to mention here. I especially appreciate the efforts of Eva Beattie who
read the entire book and selflessly devoted herself to this project. A number
of other people, including Ant Burnham helped me in many and significant
ways. I’d love to thank each person by name who wrote me with an idea, but
there are simply too many.

Finally, I would like to thank Kyle Looper, Nicole Sholly, Barry Childs-Helton,
and the rest of the editorial and production staff for their assistance in bring-
ing this book to print. It’s always nice to work with such a great group of
professionals.

01_169940 ffirs.qxp 7/13/07 10:17 PM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Nicole Sholly

Acquisitions Editor: Kyle Looper

Senior Copy Editor: Barry Childs-Helton

Technical Editor: Russ Mullen

Editorial Manager: Kevin Kirschner

Media Development and Quality Assurance:
Angela Denny, Kate Jenkins,
Steven Kudirka, Kit Malone

Media Development Coordinator:
Jenny Swisher

Media Project Supervisor: Laura Moss-Hollister

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Senior Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Carl Byers,
Joyce Haughey, Stephanie D. Jumper,
Alicia B. South, Ronald Terry

Proofreaders: Aptara, David Faust,
Todd Lothery

Indexer: Aptara

Anniversary Logo Design: Richard Pacifico

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_169940 ffirs.qxp 7/13/07 10:17 PM Page x

Contents at a Glance
Introduction ...1

Part I: An Overview of RibbonX9
Chapter 1: Getting to Know the Ribbon...11
Chapter 2: Creating an Effective RibbonX Design ..31

Part II: Interacting with the Ribbon47
Chapter 3: Designing New RibbonX Elements ..49
Chapter 4: Writing RibbonX Scripts ...71
Chapter 5: RibbonX and Visual Studio...91

Part III: Creating New RibbonX Applications119
Chapter 6: Developing Business Applications for Word ...121
Chapter 7: Developing Business Applications for Excel ...163
Chapter 8: Developing Business Applications for Access...201
Chapter 9: Developing Business Applications for Outlook.......................................235
Chapter 10: Developing Business Applications for PowerPoint261
Chapter 11: Working with Web Services..285

Part IV: Converting Existing Toolbars and Macros........309
Chapter 12: Simple Fixes for Older Menus and Toolbars..311
Chapter 13: Conversion Techniques for VBA Users ..327
Chapter 14: Conversion Techniques for Visual Studio Users345

Part V: The Part of Tens ..363
Chapter 15: Ten New Tasks You Can Perform with RibbonX....................................365
Chapter 16: Ten RibbonX Resources ...375

Index ...385

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xi

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xii

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
What You Should Read ..3
What You Don’t Have to Read ..3
Foolish Assumptions ...4
How This Book Is Organized...4

Part I: An Overview of RibbonX..5
Part II: Interacting with the Ribbon..5
Part III: Creating New RibbonX Applications5
Part IV: Converting Existing Toolbars and Macros6
Part V: The Part of Tens...6
The accompanying Web site ...6

Icons Used in This Book..7
Where to Go from Here..7

Part I: An Overview of RibbonX9

Chapter 1: Getting to Know the Ribbon .11
Understanding the Office Ribbon ..12

Considering Office support for the Ribbon.......................................13
Understanding support for old toolbars and menus.......................16

Defining the RibbonX Elements..23
Understanding tabs..24
Understanding groups ...26
Understanding controls...26

Considering the Ribbon in Office 2007 ..27
Understanding the common Ribbon elements.................................27
Looking at the Ribbon in Word...28
Looking at the Ribbon in Excel ...28
Looking at the Ribbon in Access ..29
Looking at the Ribbon in Outlook ..29
Looking at the Ribbon in PowerPoint ..30

Chapter 2: Creating an Effective RibbonX Design 31
Developing RibbonX Element Goals ..32
Considering RibbonX Element Accessibility and Visibility34

Using tooltips..34
Using existing Office features ...36

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xiii

Using the Office Menu..36
Using Contextual Tabsets..37
Repurposing the MiniToolbar...38

Defining an Effective RibbonX Design ...39
Using names effectively ...40
Considering the number of items on a tab..40
Looking at groups from the user’s perspective................................41
Using the right control...41
Providing user hints...43
Using feature hiding effectively ..43

Understanding the XML Connection ...44

Part II: Interacting with the Ribbon..............................47

Chapter 3: Designing New RibbonX Elements .49
Creating a RibbonX Tab...50
Using Groups to Your Advantage ...52
Defining the RibbonX Controls...55

An overview of the RibbonX controls..56
Common RibbonX control attributes ..59
Common RibbonX control callbacks ...61

Developing with the Office 2007 Custom UI Editor....................................64
Creating Custom Control Graphics..66

Obtaining a list of Office icons..67
Tools for creating control graphics..68
Choosing between bitmaps and icons...69
Understanding how transparency works ..69
Relying on 32-bit images..70

Chapter 4: Writing RibbonX Scripts .71
Understanding RibbonX Basics for VBA Developers72
Considering the RibbonX Limitations in VBA ..73
Creating a Basic Tab ..75
Writing the Scripts ...76

Automatically generating the callback subs.....................................76
Coding a new tab with groups and controls77
Obtaining an identifier for an existing tab, group, or control78
Modifying or repurposing existing tabs, groups, and controls79
Modifying or repurposing the Office menu.......................................83
Performing tasks when the Ribbon loads ...86

Creating a Ribbon Using startFromScratch Mode87
Adding Forms Instead of RibbonX Controls ...88

RibbonX For Dummies xiv

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xiv

Chapter 5: RibbonX and Visual Studio .91
Defining the Advantages of Using Visual Studio ..92

Understanding the levels of RibbonX support92
Working with dynamic document content ..93
Creating a secure environment...94
Considering the advantages of managed code.................................94

Creating the RibbonX Environment in Visual Studio.................................95
Understanding RibbonX Basics for VB.NET and C# Developers98
Choosing Between VBA and Visual Studio..99
Creating a Basic Tab ..100

Defining the project..100
Adding the RibbonX files...101
Adding some code..102
Creating a package for end users ...103
Removing the add-in ..104

Writing Code Behind for RibbonX..106
Handling graphics in Visual Studio ..107
Performing tasks when the Ribbon loads109
Creating new tabs, groups, and controls...110
Modifying or repurposing existing tabs, groups, and controls111
Modifying or repurposing the Office menu.....................................114

Creating a Ribbon Using startFromScratch Mode116

Part III: Creating New RibbonX Applications...............119

Chapter 6: Developing Business Applications for Word 121
Getting Started with Word Applications ...122

Understanding Word and VBA..122
Understanding Word and Visual Studio...123

Creating a Letter/Memo Tab...123
Setting the style ..124
Adding a recipient ..129
Working with dates...133
Adding the sender ..136
Greeting the recipient and adding a signature138
Considering the CC, routing, and approval requirements139

Automating Envelopes...142
Creating Labels...145
Filling Out Forms..146

Creating the forms..147
Selecting a form ..150
Adding the user information...156
Including a date ..159

xvTable of Contents

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xv

Chapter 7: Developing Business Applications for Excel 163
Getting Started with Excel Applications ...164

Understanding Excel and VBA..164
Understanding Excel and Visual Studio...164
Combining VBA and Visual Studio in Excel applications165

Creating a Nonstandard Equations Tab ..165
Creating a starting element...166
Choosing the correct equation...167
Defining the multiple Ribbon elements ...168
Obtaining the data entered in the Ribbon.......................................172
Performing the calculation..174

Performing Redundant Calculations..176
Defining the problem solution ..177
Designing the dialog boxes ...178
Creating the calculation code...179
Defining linkages to existing data...180
Performing the redundant calculations...182
Considering the data identification requirements186

Automating Data Entry with Forms ...187
Creating the form..187
Adding the Ribbon code..192
Performing content sleight-of-hand ...192
Creating the worksheet linkage ..194
Defining the employee selections ..195
Calculating the cost ...198

Chapter 8: Developing Business Applications for Access 201
Getting Started with Access Applications ..202
Creating the XML File ..202
Loading the Ribbon Changes..208

Defining the Ribbon macros..208
Using the system table USysRibbons ..209
Using a standard user table ..212
Using an XML file directly..214

Obtaining the Sample Database ...218
Generating Temporary Tables or Filtered Results...................................220

Hiding the Add-Ins tab ...221
Placing the groups in the correct order ..221
Creating a temporary table ...223
Defining a filtered result ..226

Chapter 9: Developing Business Applications for Outlook 235
Getting Started with Outlook Applications...235
Creating a Mail-Management Tab...237

Trying the default project ...237
Detecting the caller’s class..239

RibbonX For Dummies xvi

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xvi

Designing the filing interface ..241
Obtaining the folder list...243
Creating the copy ...245
Saving as a draft ...246

Processing Incoming Mail Based on User Selections247
Considering multiple Outlook class issues247
Designing the task-creation interface ..251
Defining the task...253
Adding supplemental information ...258
Closing the task ..259

Chapter 10: Developing Business Applications for PowerPoint . . .261
Getting Started with PowerPoint Applications ..262
Defining the Custom Presentation Tab Interface263
Creating the Initial Slide ..267

Starting the process ...268
Saving custom properties for later use ...271
Getting built-in property values ...272
Getting custom property values...273
Interacting with Outlook to obtain user data274

Adding the Optional Slide Elements ..276
Supporting Constant Data...278
Providing a Presentation Ending..280
Saving and Using the Template ..283

Chapter 11: Working with Web Services .285
Getting Started with Web Service Applications286
Understanding Public and Private Web Service Differences287
Creating an Amazon.com Custom Application...288

Getting an AWS developer tag...289
Seeing how queries work in a browser..290
Understanding AWS tasks..292
Defining the AWS Ribbon interface ..293
Adding the dialog-box launcher ...298
Making a query ...300

Part IV: Converting Existing Toolbars and Macros309

Chapter 12: Simple Fixes for Older Menus and Toolbars311
Training Users for the New Paradigm ...311
Substituting Forms for Menus and Toolbars ..313
Relying on the Menu Control ..318
Using Existing Office Features ..320

Relying on context menus...322
Relying on task panes ..323

xviiTable of Contents

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xvii

Performing Simple Interface Changes and Storing Them323
Customizing the Quick Access Toolbar...324
Modifying the Quick Style Set in Word and

storing it in the template ...325

Chapter 13: Conversion Techniques for VBA Users 327
Defining the Issues behind VBA Conversion ..328
Creating a Conversion Strategy..329

Using forms ...330
Using existing menus and toolbars ..330
Designing toolbars and menus, rather than creating them331
Using the Quick Access Toolbar (QAT) ...331

Developing a List of RibbonX Changes..333
Creating a Conversion Solution for Word, Excel, and PowerPoint334
Creating a Conversion Solution for Access...335
Creating a Conversion Solution for Outlook...337
Designing Parallel Version Solutions ...339

Considering the Office XP/2003 user ...339
Considering the Office 2007 user ...341
Defining the common code ...342

Chapter 14: Conversion Techniques for Visual Studio Users 345
Using Existing Add-Ins ...346

Existing add-ins from the RibbonX perspective346
Considering project conversion ...348
Re-creating a project ..350

Defining a Conversion Strategy ..352
Converting VBA Solutions...355

Performing a VBA walkthrough ..357
Working with menus and toolbars ...358
Developing workflows and task-based solutions358

Considering Application-specific Conversion Requirements.................359
Creating Custom Conversions When Necessary......................................360

Part V: The Part of Tens ...363

Chapter 15: Ten New Tasks You Can Perform with RibbonX 365
Creating a Workflow Solution ...366
Targeting Specific User Needs ..367
Defining Alternatives for Common Tasks..368
Developing Organizational Aids ...368
Performing User-Assisted Application Integration..................................369
Working with Web Services...370

RibbonX For Dummies xviii

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xviii

Working with Hybrid Applications...370
Considering the User Task Criteria..371
Using Code More Than Once ..372
Reining In Support and Training Costs ...373

Chapter 16: Ten RibbonX Resources .375
Starting with the Microsoft Developer Network376
Getting Tips from the Microsoft Blogs ..377
Finding Other News Sources for RibbonX ..377
Interacting with Others Through the Microsoft Forums378
Obtaining Answers from Other Sources..379
Getting Tools, Examples, and Products from PSchmid.net379
Working with the RibbonCustomizer ..380
Using Blogs to Your Advantage with Technorati382
Using OpenXMLDeveloper.org..382
Using MSDN and Other Print Magazines...383

Index..385

xixTable of Contents

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xix

RibbonX For Dummies xx

02_169940 ftoc.qxp 7/13/07 10:17 PM Page xx

Introduction

The new Ribbon interface is here, and it’s here to stay. According to
Microsoft, this is the interface that everyone in the world voted to have

through surveys and direct conversations. (Of course, if you truly believe that,
I have a really cool-looking bridge to sell you.) No matter where the idea for
the Ribbon comes from, though, the fact of the matter is that you’re stuck
(or is that blessed?) with it. Fortunately, this book can ease your pain.
RibbonX For Dummies provides a comprehensive view of the Ribbon and
makes your new application development or application conversions signifi-
cantly easier.

Many people see the Ribbon as an entirely different way to work, and it is.
For many people, different isn’t better or worse, it’s just plain scary. The
chapters in this book help you discover techniques for making the Ribbon
considerably less scary and reduce the learning curve for people who’ve
used the menu-and-toolbar interface for years. As you work through these
issues, you may come to conclude that the Ribbon truly is a good solution for
some tasks. Although power users may find it a hindrance to working quickly,
most novice users are going to find that the Ribbon does reduce what they
need to know about the application; the need to remember one less thing
often translates into improved productivity.

The Ribbon can benefit you as well. Instead of spending your weekends pro-
viding support for poorly designed applications, you can create a new work-
flow application that does much of the thinking for the user. That’s right! The
Ribbon is part of your support staff. It tends to enforce certain actions on the
user’s behalf, which means the user makes fewer mistakes and works faster.
Fewer mistakes translates into fewer support calls and a longer weekend for
you. Yes, as much as you (or your users) might like to dislike the Ribbon for
being newfangled and unfamiliar, it has something to offer you.

About This Book
RibbonX For Dummies contains everything you need to work with the Ribbon.
You get complete details on the RibbonX interfaces, discover how to use
controls effectively, and learn about all of the ways you can use the Ribbon
to make your applications better. You’ll find a comprehensive listing of the

03_169940 intro.qxp 7/13/07 10:18 PM Page 1

controls, their attributes, and the callbacks associated with them. Each
control appears in use at least once in the book, and most significantly more
often than that. Consequently, you won’t have to worry about seeing an inter-
esting control and then not knowing how to use it.

You’ll also find examples for both VBA and Visual Studio users. The Visual
Studio examples are available on both VB.NET and C#. All of the things you
should consider for RibbonX development appear in your favorite language
so you won’t have to worry about translating the code. In addition, this book
doesn’t treat either group as a second-class citizen — all of the material
appears in a manner that addresses the needs of both VBA and Visual Studio
developers.

This book contains an entire chapter of coding examples for each major
Office application, so you don’t have to worry about finding examples for
your product. The examples include Word, Excel, Access, Outlook, and
PowerPoint. Not only will find you find a great selection of Office applica-
tions, you’ll also find examples of using Web services from the new Ribbon
interface as well.

Converting existing applications is a major concern for all companies. After
all, you have a huge investment in all that code you created for older ver-
sions of Office. RibbonX For Dummies contains a solution for every RibbonX
need. Not only will you find multiple solutions in Part IV of the book, you’ll
also find the reasons that each solution works for particular needs so you
don’t have to guess about which solution to use in a particular situation.

Conventions Used in This Book
I always try to show you the fastest way to accomplish any task. In many
cases, this means using a menu command such as Tools➪Macro➪Visual
Basic Editor. When working with the Ribbon, I tell you which tab to access
first, and then which feature to use on that tab.

Whenever possible, I use shortcut keys to help you access a command faster.
For example, you can also start the VBA Integrated Development
Environment (IDE) by pressing Alt+F11.

This book also uses special type to emphasize some information. For exam-
ple, entries that you need to type appear in bold. All code, Web site URLs,
and on-screen messages appear in monofont type. Whenever I define a new
word, you’ll see that word in italics.

2 RibbonX For Dummies

03_169940 intro.qxp 7/13/07 10:18 PM Page 2

Because you use multiple applications when you’re working with the Ribbon,
I always point out when to move from one application to the next. When a
chapter begins, I introduce the main application for that chapter. All the com-
mands in that chapter are for the main application until I specifically tell you
to move to another application. I also specifically tell you when it’s time to
move back to the main application.

What You Should Read
What you read depends on your level of experience. If you’ve already worked
with the Ribbon for a while, you can probably skip Chapter 1. In addition, if
you’ve already created a simple Ribbon design, you can probably skip
Chapter 2 as well.

VBA developers should read Chapters 3 and 4 to get started. If you’re con-
verting an application, then you should also read Chapters 12 and 13.

Visual Studio developers should read Chapters 3 and 5 to get started. If
you’re converting an application, then you should also read Chapters 12
and 14.

The Part III chapters you read depend on the Office products you work
with. These chapters discuss Word (Chapter 6), Excel (Chapter 7), Access
(Chapter 8), Outlook (Chapter 9), and PowerPoint (Chapter 10). The book
also includes special information for working with Web services in Chap-
ter 11.

No matter which programming language you use (or Office product you work
with), you’ll want to read Chapters 15 and 16 at some point. Chapter 15 tells
you about ten new tasks you can perform with the Ribbon. Chapter 16 tells
you about resources that will make your Ribbon programming experience
significantly easier.

What You Don’t Have to Read
Most of the chapters contain some advanced material that will interest only
some readers. When you see one of these specialized topics (such as obtain-
ing the correct visual effects in a Visual Studio add-in when your add-in
has only a minimal interface), feel free to skip it.

3Introduction

03_169940 intro.qxp 7/13/07 10:18 PM Page 3

You can also skip any material marked with a Technical Stuff icon. This mate-
rial is helpful, but you don’t have to know it to work with the Ribbon. I
include this material because I find it helpful in my programming efforts and
hope that you will, too.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you —
after all, I haven’t even met you yet! But I have made a few assumptions.
Although most assumptions are indeed foolish, I made these assumptions to
provide a starting point for the book.

I assume you’ve worked with Windows long enough to know how the key-
board and mouse work. You should also know how to use menus and other
basic Windows features. It’s also essential to know how to use at least one
Office application. I assume that you’ve already spent time discovering how
to use the Ribbon in a new Office 2007 application. Some portions of the book
work with Web pages, and others use eXtensible Markup Language (XML);
you need to know at least a little about these technologies to use those sec-
tions. You don’t have to be an expert in any of these areas, but more knowl-
edge is better. You must also have a very good knowledge of the
programming language you use to work with the Ribbon.

This is a book for someone who does have development experience. I assume
that you have a very good knowledge of either VBA or a .NET programming
language such as VB.NET or C#. Knowledge of both VBA and a .NET program-
ming language is helpful for this book, but not a requirement. It’s also impor-
tant to know how to work with both the Office 2003 product and the Office
2007 product you want to use for creating your Ribbon application.

How This Book Is Organized
This book contains several parts. Each part demonstrates a particular
Ribbon concept. In each chapter, I discuss a particular topic and include
example programs that you can use to discover more about the Ribbon on
your own. You can find the source code for this book on the Dummies.com
Web site at http://www.dummies.com/go/ribbonxfd.

4 RibbonX For Dummies

03_169940 intro.qxp 7/13/07 10:18 PM Page 4

Part I: An Overview of RibbonX
You may not know what RibbonX is, except that it promises to become the
next major annoyance for your overworked IT department. Chapters 1 and 2
of this book export the Ribbon and the RibbonX interface used to interact
with it. In Chapter 1, you’ll find an introduction to basic concepts, but already
in this chapter you’ll begin working with the XML that defines RibbonX.
Chapter 2 begins the process of creating your first Ribbon. The example in
this chapter actually has useful code so you can see the Ribbon in action.
More importantly, Chapter 2 begins providing you with the tips and tech-
niques you need to create Ribbon applications fast.

Part II: Interacting with the Ribbon
This part of the book gets into the details of working with the Ribbon.
Chapter 3 introduces all of the controls, their attributes, and the callbacks
you can use to interact with them. You’ll also begin working with the special-
ized tools used to create Ribbon applications in Chapter 3. Chapter 4 pro-
vides specialized coverage of how to create a full-fledged application for VBA
developers. Chapter 5 provides the same coverage for Visual Studio develop-
ers. Since each development group has special needs, you’ll find sections
that address concerns that only a VBA or a Visual Studio developer will have.

Part III: Creating New RibbonX
Applications
At this point, it’s time to begin working with real-world applications. You’ll
create applications in this part of the book that you can augment and use
within your company. In fact, many of the examples in this section are simpli-
fied versions of applications already in use in companies just like yours. For
example, the letter-writing example in Chapter 6 is already in use at a com-
pany. The users of this application produce letters in about a third of the
time they did when working with the menu-and-toolbar interface. In addition,
user error is almost down to zero, which is amazing; the rate using the menu-
and-toolbar interface was significantly higher.

5Introduction

03_169940 intro.qxp 7/13/07 10:18 PM Page 5

This part provides examples for Word (Chapter 6), Excel (Chapter 7), Access
(Chapter 8), Outlook (Chapter 9), and PowerPoint (Chapter 10) users. By the
time you finish this part, you’ll be able to write a Ribbon application for any
Office application. The detailed information tells you about all of the tips and
tricks you can use with each Office product to make that product work better.
You’ll also know where Microsoft has deviated from the basic Ribbon strat-
egy in a particular application, and what you need to look out for when you
create your Ribbon application.

Part IV: Converting Existing
Toolbars and Macros
Once you see just how well the Ribbon works, you’ll want to begin converting
some of your applications. Either that or someone at the top will decide that
it’s time for you to convert the applications as part of an overall strategy for
adopting Office 2007. Whatever your reason for converting existing applica-
tions, this part of the book will provide you with the best techniques pos-
sible. Chapter 12 provides you with some general techniques that work for
both VBA and Visual Studio developers. Chapter 13 provides specific conver-
sion techniques for VBA developers, while Chapter 14 provides conversion
techniques for Visual Studio developer.

Part V: The Part of Tens
This final part of the book provides you with some helpful tips and resources
you can use to make your Ribbon development experience even better.
Chapter 15 provides a list of ten new tasks you can perform now that you’re
more expert with the Ribbon. Chapter 16 provides ten truly useful resources
that will help reduce your development time.

The accompanying Web site
This book contains a lot of code, and you might not want to type it. Fortunately,
you can find the source code for this book on the Dummies.com Web site at
http://www.dummies.com/go/ribbonxfd. The source code is organized by
chapter, and I’ll always tell you about the example files in the text. The best way
to work with a chapter is to download all the source code for it at one time.

6 RibbonX For Dummies

03_169940 intro.qxp 7/13/07 10:18 PM Page 6

Icons Used in This Book
As you read this book, you’ll see icons in the margins that indicate material of
interest (or not, as the case may be). This section briefly describes each icon
used in this book.

Tips are nice because they help you save time or perform some task without
a lot of extra work. The tips in this book are timesaving techniques or point-
ers to resources that you should try to get the maximum benefit from VBA.

I don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise you
could find that your program melts down and takes your data with it.

Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution that you need to get a program running. Skip these bits
of information whenever you like.

If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This material usually contains an essen-
tial process or bit of material that you must know to write VBA programs
successfully.

Where to Go from Here
It’s time to start your Ribbon adventure! I recommend that anyone who has
only a passing knowledge of Ribbon go right to Chapter 1. This chapter con-
tains essential, get-started information that you need for writing your first
Ribbon program.

Those who already know Ribbon might want to skip to Part III to sink their
teeth into some complex examples. If you’ve seen the Ribbon, but haven’t
developed a Ribbon application, start with Part II first. You might want to
check out the resources in Part V if you find your current Ribbon develop-
ment experience lacking.

7Introduction

03_169940 intro.qxp 7/13/07 10:18 PM Page 7

Anyone who needs to convert an existing application should avoid the temp-
tation to go directly to Part IV. Make sure you build a good foundation for
your programming efforts first: I recommend going to Part II, and then seeing
how a Ribbon application should work for the target Office product in Part III.
Only then should you skip ahead to Part IV and discover the conversion tech-
niques there.

8 RibbonX For Dummies

03_169940 intro.qxp 7/13/07 10:18 PM Page 8

Part I
An Overview
of RibbonX

04_169940 pt01.qxp 7/13/07 10:18 PM Page 9

In this part...
You take your first look at Office 2007, notice that all

your menus and toolbars are missing, and instantly
know that the upgrade is going to be hard — or perhaps
worry that it might be impossible. Don’t fret! The Ribbon
isn’t nearly as difficult to configure as you might imagine.
In fact, it offers some advantages that aren’t immediately
apparent. Chapter 1 describes the issues the Ribbon pre-
sents and describes why it might actually provide some
benefits to your organization. Chapter 2 starts you down
the path to creating your first RibbonX application.

04_169940 pt01.qxp 7/13/07 10:18 PM Page 10

Chapter 1

Getting to Know the Ribbon
In This Chapter
� Getting the overview of the Office Ribbon

� Understanding the RibbonX elements

� Using the Ribbon in Office 2007

Microsoft has made significant changes to Office 2007. The most notice-
able change is the new Ribbon, which appears across the top of appli-

cations in place of the menu-and-toolbar interface of old. Unfortunately, in
creating this new interface, Microsoft also decided against backward compat-
ibility. All of those well-ordered toolbars and menus you created in the past
now appear on a single Ribbon tab, Add-Ins. Yes, your code will still work —
but users will find it significantly more difficult to use your applications.

If you have a relatively simple application, using the Add-Ins tab might not
result in a loss of productivity. Most applications, however, don’t translate
well to the Add-Ins tab. That’s because they rely on the context of the old
menu-and-toolbar system — which means you probably end up with a mess
instead of the nice interface you used in the past. Microsoft hasn’t provided a
clear and easy method to overcome the mess they created, which is (presum-
ably) why you’re reading this book.

This chapter introduces you to the Ribbon. The new interface really does
have an appeal from an ease-of-use perspective. The chapter also examines
the few aids that Microsoft has provided to help you overcome the problems
with the new interface and tells you how to use them.

You’ll discover that the Ribbon does have a few redeeming features for the
developer as you examine the Ribbon elements. Theoretically, once you tran-
sition your application to the Ribbon, users can become more productive
because the Ribbon hides complexity and makes application features more
visible. By using the new screen elements carefully, you can create amazing
new interfaces. Not only do you have access to new controls, but you also
use new grouping features to use those controls with greater success.

05_169940 ch01.qxp 7/13/07 10:19 PM Page 11

Finally, this chapter shows you how the Ribbon appears in the target applica-
tions for this book. Knowing how Microsoft has put the Ribbon together in
the various applications can help you create better application elements of
your own.

This book uses the term Ribbon to refer to the physical presentation of appli-
cation elements such as tabs, groups, and controls. The Ribbon is the part of
the application interface that you can see. A similar term, RibbonX, refers to
the programming interface you use to create the Ribbon elements for your
application. You define how the Ribbon appears in the application by using
the RibbonX programming interface.

Understanding the Office Ribbon
The Ribbon is the new interface for Office. Microsoft doggedly pursues most
of its innovations — so it’s quite likely that you’ll see the new Ribbon in most,
or all, Microsoft applications of the future. Because of the change in interface,
the options available to Office users who have a substantial investment in
custom templates consist of the following:

� Use the Add-Ins tab to access custom features in existing templates,
which isn’t a viable option for custom templates of any complexity.

� Continue to use an older version of Office, which means that you won’t
have updates at some point to protect against real-world dangers such
as viruses.

� Convert existing applications to use the Ribbon, which means writing
the interface code from scratch.

� Scrap existing applications as they become outdated — which means
you’ll eventually incur substantial development costs, but have a
completely updated application.

None of these options would be optimal in every situation. Yes, you can use
the Add-Ins tab for less complex applications — but the moment you have
more than one or two menu or toolbar entries, the Add-Ins tab quickly
becomes unviable. Even if you do use the Add-Ins tab, users will require some
level of retraining because the options won’t appear in the same locations
they occupied in the past.

It’s tempting to think that you can simply ignore the Ribbon completely by
holding on to your current version of Office. Certainly, some companies are
still using Office 97 without a pressing need to update to obtain new features.
However, the risks of this approach are many. The biggest risk is that a new
virus will appear, and because Microsoft won’t provide updates for your old

12 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 12

copy of Office, you can easily get it and lose all of your data. Keeping the old
version of Office is really only viable if your office is completely closed to the
outside world — especially the Internet — and few offices are in that position
any longer.

The paragraphs that follow consider the last two options in a bit more detail.
It’s important to become familiar with the Ribbon, decide whether it meets
specific needs in your organization, look at the tools that Microsoft provides
to update your templates, and then perform all the required manual conver-
sion. Of course, you may simply decide that the features the Ribbon provides
are too significant to ignore, and create a completely new version of your
application. The “new application” option is probably going to be a little chal-
lenging for many organizations, though, considering the amount of custom
code they already have in place.

The techniques you discover in this book may help you in more than one
way in the future. You may eventually find the Ribbon in other applications.
Microsoft has decided to license the Ribbon interface to third parties free of
charge. Obviously, Microsoft wants to entrench the new Ribbon interface into
a broad range of applications as quickly as possible. Making RibbonX avail-
able to third parties is an efficient way to perform the task. You can discover
more about third-party licensing at

http://msdn2.microsoft.com/en-us/office/aa973809.aspx

Considering Office support for the Ribbon
The first question anyone with a perfectly running Office application will ask
is why Microsoft decided to change the interface completely. The old system
of menus and toolbars had simply become too cumbersome for most users;
some organizations have found that users have a hard time locating a partic-
ular command or feature. Even though the menu-and-toolbar system is
straightforward, commands often appear several layers deep, or on a toolbar
that the user doesn’t have displayed. Microsoft designed the Ribbon to over-
come these problems by making the interface simpler and options easier to
find. For example, you can choose programmatically to display tabs when the
user needs them, and then hide them when the user has finished performing
a task. (Whether the new approach actually works remains to be seen.)

Figure 1-1 shows the old menu-and-toolbar approach used with Excel. Fig-
ure 1-2 shows the same view, using the new Ribbon. As you can see, the new
Ribbon does tend to make features easier to find by grouping them together
and reducing the view to just the current task. By organizing the application
features and focusing user attention, Microsoft contends that it’s possible to
obtain a significant improvement in user performance of common tasks.

13Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 13

Figure 1-2:
The new

Ribbon
interface

groups like
items

together.

Figure 1-1:
The old

menu and
toolbar

interface
looks

cluttered.

14 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 14

When you decide to update your application, you’ll want to consider how
you can also use these new features to your advantage. Chapter 2 discusses
this topic in detail. However, for now, you’ll want to think about the advan-
tages that grouping and the new controls provide. Instead of placing certain
features on a toolbar, you can place them on a tab. The tab need not be avail-
able at all times; you can make it visible only when the user’s task context
requires. In short, the developer also receives a number of benefits by using
the Ribbon.

You might notice something else in Figure 1-2: The Ribbon seems to take up a
lot of space. In fact, during beta testing, many people complained that the
new interface requires too much space — so Microsoft makes it possible to
hide the Ribbon when you’re not using it. Simply right-click the menu bar and
choose Minimize the Ribbon from the context menu. Consequently, any con-
cerns that the Ribbon consumes more space than the old toolbar and menu
interface are unfounded. In fact, the Ribbon can actually provide you with
more screen real estate for editing documents.

However, the biggest plus of the new Ribbon is the ability to hide things in
such a way that the user knows that they exist, but can easily ignore them.
For example, many groups contain a special button in the lower-right corner
that lets you display a dialog box with detailed settings, as shown in Fig-
ure 1-3. Simply click the button to display the associated dialog box.

Figure 1-3:
Use the

Ribbon to
hide special

features in
plain sight.

15Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 15

The user knows that the Font dialog box exists, but can choose to ignore it
when the controls provided on the Ribbon suffice. Using this approach
means you can monitor users of your application to determine which fea-
tures they use most often, and then you can place those features on the
Ribbon. This approach addresses the needs of normal users. Power users can
display a dialog box that includes the full set of application features, so they
won’t have to give up flexibility to make the interface easier for novice users
to use.

Understanding support for
old toolbars and menus
You might be under the impression that the new Ribbon interface is an all-or-
nothing proposition. In fact, there’s a migration path of sorts; you can exploit
that path in a number of ways. (For example, the “Performing Simple Interface
Changes and Storing Them” section of Chapter 12 tells how you can make the
transition easier by highlighting custom styles and adding some features to
the user’s Quick Access Toolbar.) The following sections describe the tools
that Microsoft offers to make the transition easier. The Office Compatibility
Pack lets you continue using Office 2003 even as you move to Office 2007 docu-
ments, while the Office Migration Planning Manager reduces the work
required to plan an upgrade path.

Working with the Office Compatibility Pack
One capability that will undoubtedly make your life interesting is that you
can provide backward compatibility for users of previous versions of Office
as you move to Office 2007. The Office Compatibility Pack installs support for
the new Office 2007 file formats for Office XP and Office 2003 users. Although
users of these older versions of Office still can’t use the new RibbonX appli-
cations, they can at least interact with the data found in the documents. In
fact, you can create document templates in a way that provides support for
both older and newer users, using parallel code. (The “Designing Parallel
Version Solutions” section of Chapter 13 addresses this technique.)

Make certain you install all current updates for Office XP or Office 2003
before you install the Office Compatibility Pack. Otherwise, the installation
will fail and you might find it difficult at best to obtain the desired results.
Use the Office Update link at

http://office.microsoft.com/en-us/default.aspx

16 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 16

to locate and install the required updates.

After you download and install all the required Office updates, you can down-
load the Office Compatibility Pack from

http://www.microsoft.com/downloads/details.aspx?familyid=
941b3470-3ae9-4aee-8f43-c6bb74cd1466

Install the Office Compatibility Pack as you would any other program. Fig-
ure 1-4 shows the changes to Word. Notice that you can now open Office 2007
documents.

It’s important to remember that Office 2007 makes a distinction between stan-
dard documents and those that contain macros. For example, when working
with Word 2003, you’d normally use the DOC file extension. However, when
working with Word 2007, you’ll always save documents with macros using the
DOCM file extension. Likewise, if the file contains no macros, save it using the
DOCX file extension.

Working with the Office Migration Planning Manager
It’s important to plan the migration to Office 2007. No one is going to move a
complex set of applications to Office 2007 without performing some type of
review process and understanding precisely what the move requires. The

Figure 1-4:
Open Office

2007
documents

using the
familiar

Office XP/
2003

interfaces.

17Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 17

Office Migration Planning Manager (OMPM) performs an audit of your system
and helps you plan the migration to Office 2007 with greater ease. You can
download this tool from

http://www.microsoft.com/downloads/details.aspx?FamilyID=
13580cd7-a8bc-40ef-8281-dd2c325a5a81

The product actually consists of two downloads. The first download contains
release information that tells you about the changes in the OMPM, which is in
version 2 as of this writing. For example, if you don’t read the release notes,
you won’t know that the OMPM doesn’t work on 64-bit systems. The second
download is the actual Office Migration Planning Manager utility.

You should also review the documentation at

http://technet2.microsoft.com/Office/en-us/library/
d8f318d4-84ea-4d3e-8918-ea8dacd14f7e1033.mspx

This documentation explains the inner workings of the Office Migration
Planning Manager and tells how you can best use it to meet specific migra-
tion needs. You begin by extracting the files to a specific location on your
hard drive, such as \OMPM. The rest of this discussion assumes you extracted
the files to the C:\OMPM folder of your hard drive, but you can use any other
folder you choose. (Choosing the C:\OMPM folder has the advantage of reduc-
ing the number of configuration choices you have to make.)

If you don’t really want to work with OMPM now, you can probably skip the
rest of this section. The OMPM tool uses a command line interface. You’ll
begin by configuring a special file to tell the program how to run. The listing
of Offscan.ini entries appears at

http://technet2.microsoft.com/Office/en-us/library/
1850987f-87bb-47e9-b370-f4b8af3c39d71033.mspx

You’ll find this file in the C:\OMPM\scan folder. Of all of the setting changes
you can make, the most important configuration change (the one you must
make) is the [FoldersToScan] entry. Beneath this heading, you include the
Folder= entries that define the locations to scan. You must also provide a
unique RunID= entry for each scan you perform. After you complete the
Offscan.ini changes, you can run the Offscan utility. When working in
Vista, you must open the command prompt by right-clicking the Command
Prompt entry in the Start menu and choosing Run as Administrator from the
context menu. Figure 1-5 shows typical output from the command (notice
that the title bar begins with the word Administrator to show that this com-
mand prompt is in administrator mode).

18 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 18

Microsoft suggests that you distribute the scanning tools to everyone on the
network to ensure you get all of the client drives, as well as the data, on the
server. Whether you need to perform this step depends on how centralized
you keep your data. Some organizations need only an administrator scan of
the server’s hard drive to locate the required updates.

Eventually you’ll end up with a host of CAB files that are useless by them-
selves; you need to import the data into a database to make it useful. This
tool requires a copy of SQL Server to run, and, because of compatibility
problems, you need SQL Server 2005 SP2 or better when working in Vista.
Fortunately, you can obtain a free copy of SQL Server 2005 Express SP2 at

http://www.microsoft.com/sql/editions/express/default.mspx

that performs well for this task. You can download the basic version of SQL
Server Express (a 36.5MB download), but I recommend getting SQL Server 2005
Express Edition with Advanced Services (a 234MB download) to ensure you
have everything you need. If you haven’t worked with SQL Server before, check
out SQL Server 2005 For Dummies, by Andrew Watt, or SQL Server 2005 Express
Edition For Dummies, by Robert Schneider (both from Wiley Publishing, Inc.).

SQL Server requires a second installation to work with XML data. Be sure you
download and install the SqlXml 3.0 Service Pack 3 (SP3) add-in found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=
51d4a154-8e23-47d2-a033-764259cfb53b

Figure 1-5:
Scan your
hard drive

for potential
problem

documents
and

conversion
issues.

19Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 19

After you install SQL Server or SQL Server Express, use the CreateDB batch
file found in the C:\OMPM\Database folder to create a database to hold the
data you’ve collected. When you run CreateDB, you must supply the name of
the server, the SQL Server instance, and the name of the database you use.
For example, if you’re using SQL Server Express and the name of your server
is MyServer, you’ll likely type something like

CreateDB MyServer\SQLExpress OMPM001

at the command line and then press Enter. You can always delete the data-
base if you make a mistake by using the DeleteDB batch file.

You may get an error message from the CreateDB batch file, complaining
that it can’t create the required database. Don’t worry; you can normally
fix this problem with a simple change. The following steps tell you how to
perform this task.

1. Select Start➪Programs➪Microsoft SQL Server 2005➪Configuration
Tools➪SQL Server Configuration Manager.

You’ll see the SQL Server Configuration Manager window.

2. Open the SQL Server Configuration Manager (Local)\SQL Server 2005
Network Configuration\Protocols for SQLEXPRESS (or other server
instance) folder.

You’ll see a list of protocols for the selected SQL Server instance, as
shown in Figure 1-6.

3. Right-click TCP/IP and choose Enable from the context menu.

You’ll see a warning message stating the change won’t take effect until
you restart the service.

Figure 1-6:
Enable the

TCP/IP
protocol

so the
system can

communicate
with SQL

Server.

20 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 20

4. Click OK.

5. Open the Server Configuration Manager (Local)\SQL Server 2005
Services folder.

You’ll see a list of SQL Server-related services installed on your system,
as shown in Figure 1-7.

6. Right-click the SQL Server (SQLEXPRESS) (or other instance) entry
and choose Restart from the context menu.

The CreateDB batch file should execute properly when you try it again.

Now that you have a handy database to use for storage, you can import the
data into it. The ImportScans batch file in the C:\OMPM\Database folder
performs this task. As with the CreateDB batch file, you supply the name of
the server, the SQL Server instance, and the database. In addition, you must
supply the location of the scan files, which is C:\OMPM\SCANDATA if you use
the default settings. Given the same setup as before, you might type

ImportScans MyServer\SQLExpress OMPM001 C:\OMPM\SCANDATA

at the command line and press Enter to complete this part of the task.

If you find that the ImportScans batch file fails because it can’t find the OSQL
utility, you can add the utility to the command prompt path. Normally you’ll
find this utility in the following folder on your system:

C:\Program Files\Microsoft SQL Server\90\Tools\Binn

Figure 1-7:
Restart the
SQL Server

service to
make the
changes

permanent.

21Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 21

To get there, type

Path = C:\Program Files\Microsoft SQL Server\90\Tools\
Binn;%PATH%

With this new path added to your command prompt, try the ImportScans
batch file again.

After all of this work, you’re probably wondering about the payoff. Importing
the data into the database lets you begin analysis. The OMPM helps you
create reports that you’ll use to update your Office environment later. To
begin using reports, double-click the OMPM.ACCDR icon in the
C:\OMPM\Report folder. If you’re using Vista, you’ll very likely see a number
of security messages that you’ll use to elevate your privileges to the required
level. After you supply the name of the database used to hold your data
(OMPM001 in the example), you can begin working with reports. Figure 1-8
shows a typical example. In this case, the report tells you about the Word
compatibility concerns for a set of existing documents.

Figure 1-8:
Create a

strategy for
updating to
Office 2007

using these
reports as a

basis.

22 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 22

It’s important to consider all the compatibility concerns for a set of docu-
ments before you begin updating your application. Only when the documents
provide a reasonable level of compatibility should you consider updating
your applications. If you have hundreds of documents that require consider-
able conversion, it may be better to stick with the old version of Office for
those documents and start fresh with a new application for new documents.
Obviously, the decision to update depends on a number of factors, including
the value of the data to your organization. Sometimes you have to update the
documents, no matter how much it costs, because of the data’s value. You
can find a complete listing of migration considerations at

http://technet2.microsoft.com/Office/en-us/library/
1db55715-df10-428d-ad42-4ce3c58a8edf1033.mspx

Defining the RibbonX Elements
Every physical element in the Ribbon has a corresponding element in the
RibbonX programming interface. The user sees the results of changes you
make with code. Unlike previous versions of Office, however, RibbonX doesn’t

23Chapter 1: Getting to Know the Ribbon

Getting quick information about XML
Many of the new features of Windows and
Office rely on XML for configuration. The rea-
sons that Microsoft uses XML are that it’s easy
to understand, very flexible, standardized in
format, and text based. Of course, you may not
have used XML and might not understand how
it works. Fortunately, the XML used with Office
for RibbonX is straightforward; you don’t need
to delve into the depths of XML to understand it.
Even so, if you haven’t used XML before, you
might want to visit the XML tutorial at
http://www.w3schools.com/xml/.

RibbonX also relies on at least one namespace
to get the job done. In this case, the URL defines
a location that specifies how the RibbonX

entries work. Generally, you don’t need to know
too much about the namespace — except for
how to include it (as described in the
“Understanding tabs” section of the chapter). If
you do want to know more about namespaces,
check out the tutorial at http://www.
zvon.org/index.php?nav_id=172&
ns=34.

At some point, you might find that you want to
go deeper into XML. You’ll find great references
online — including one at http://www.
xml.com/axml/axml.html. Don’t forget
to review Microsoft’s offerings at http://
msdn.microsoft.com/xml/.

05_169940 ch01.qxp 7/13/07 10:19 PM Page 23

rely on a hierarchical set of objects to control the interface. Instead, the inter-
face relies on an XML file that describes the various elements. This file fol-
lows the following hierarchy of XML elements:

� Tabs

� Groups

� Controls

Unlike many other Microsoft offerings, the hierarchy for RibbonX is relatively
absolute. A tab can’t contain other tabs, and it only holds groups. Likewise,
you place controls in groups; you don’t place them directly in tabs. Chapters
2 and 3 provide detailed descriptions of how to build a good Ribbon inter-
face. The following sections provide an overview of the various elements.

Understanding tabs
Tabs are the uppermost element in the Ribbon hierarchy. You can see an
example of a custom tab in Figure 1-9. In this case, you’re looking at a custom
tab called My Tab that contains a single group. The group, My Group, con-
tains a single button named My Button. Obviously, you wouldn’t create a real-
world tab like this, but it’s good for explanation purposes.

Figure 1-9:
Each

physical
element of
the Ribbon

has a corre-
sponding
RibbonX
element.

24 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 24

Generally, you’ll use tabs to focus user attention on a particular task or
requirement. For example, when you look at the Word Mailings tab, you see
everything required to mail a document to someone. The tab focuses the
user’s attention on mailing the document; not on another task such as for-
matting it. You can also create custom tabs that focus user attention on spe-
cific tasks for your company.

To create My Tab, I wrote the XML file shown in Listing 1-1. As you can see,
this is a standard XML file with all of the usual features including a processing
instruction, root element (<customUI>), child elements such as <ribbon>,
and properties. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/ribbonxfd.)

Listing 1-1: Creating New Ribbon Elements Using XML

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<customUI
xmlns=
“http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon>
<tabs>
<tab id=”myTab” label=”My Tab”>
<group id=”myGroup” label=”My Group”>
<button id=”myButton”

label=”My Button”
imageMso=”HappyFace”
size=”large”
onAction=”myButton_ClickHandler”/>

</group>
</tab>

</tabs>
</ribbon>

</customUI>

You must define a namespace for the custom interface. In this case, the name-
space resides at http://schemas.microsoft.com/office/2006/01/
customui, which is the location you’ll use for every custom interface
element you create.

Office does a lot of the work for you when it comes to creating a new tab.
Although this implementation is minimal, it gives you an idea of what you
can do with very little XML. All you need to create a new tab is the <tab>
element with id and label properties. You use the id attribute to access
the tab from your application. The user sees the text you provide as part of
the label attribute. As you can see, the physical presentation on the Ribbon
always corresponds to the XML you provide as part of the RibbonX interface.

25Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 25

Understanding groups
Groups gather like controls together so the user doesn’t spend as much time
looking for the right control. Using groups reduces user confusion and makes
it easier to show users how to perform a particular task. For example, when
working with the Word Mailings tab, you’ll see a Create group. The Create
group contains controls for creating both envelopes and labels. The user
doesn’t have to look around for either item; they both appear in the same
place.

In the example shown in Figure 1-9, you see My Group, which contains a
single control. You create a group in XML by using the <group> element. As
with a tab, you must include an id attribute, which identifies the group in
your code, and a label attribute, which provides text that the user can use
to identify the group on-screen.

Understanding controls
A control performs a specific task. You don’t want to pile multiple tasks onto
one control because, in many cases, doing so confuses the user. Each control
should perform a specific task; you should always choose a control that per-
forms the task well. For example, you can use a pushbutton control to help
the user execute a task. On the other hand, you might use a check box to let
the user make a choice. A drop-down list box lets the user choose between
multiple choices instead of a simple yes/no choice.

Some controls come in multiple sizes. Look at the Word Review tab and you’ll
notice that the Proofing group contains multiple pushbutton sizes. The large
pushbuttons draw the user’s attention to major tasks, such as checking
spelling and grammar. The small pushbuttons help the user perform less
common tasks, such as setting the document language or performing a word
count.

Controls always require more code than any other Ribbon element because
they aren’t static; they perform some task. Look again at Listing 1-1 — you’ll
notice that the simple <button> element requires multiple arguments. As
with the other elements discussed so far, you must provide id and label
attributes. When your button includes an image, you must provide the name
of the image as part of the imageMso attribute. The image must also appear
within the file that references it; you’ll see how the referencing works in
Chapters 3, 4, and 5. The size attribute defines the size of the pushbutton.
Most pushbuttons also include an onAction attribute that connects the
pushbutton to code you create.

26 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 26

The onAction attribute is special because it reflects an event instead of a
property. When the user clicks the pushbutton, the onAction event occurs.
Most controls provide access to more than one event (as you’ll see in the
“Defining the RibbonX Controls “ section of Chapter 3).

Considering the Ribbon in Office 2007
Before you embark on the journey of creating your own Ribbon elements, it
helps to understand what Microsoft provides within Office. You may find that
you can make small changes to the existing setup and still obtain a usable
interface. For example, you may decide to place your custom styles in the
Styles group of the Home tab, rather than create a custom tab for the pur-
pose. The following sections provide you with an overview of the existing
Ribbon elements found in Office 2007 so you can choose which application
features to update and which to make part of existing Ribbon elements.

Understanding the common
Ribbon elements
Every Office application except Outlook has a Home tab included with it. The
Home tab contains the elements that the user needs most often. For example,
the Home tab for Word contains common formatting groups such as Font,
Paragraph, and Styles. It also has common editing tools and provides access
to the Clipboard. The Home tab for PowerPoint includes many of these ele-
ments, along with a Drawing group that contains common drawing tools.
Access doesn’t really feature much in the way of data formatting; its Home
tab focuses more on data sorting and manipulation. Excel includes some for-
matting tools on its Home tab, but you’ll also find Number, Alignment, and
Cells groups that contain tools for working with worksheets.

The Office applications also include common task-based tabs. The two most
common tabs are Insert and Review. The Insert tab contains groups that help
the user insert data. When working with Word, you’ll find groups for headers,
footers, text, symbols, links, tables, illustrations, and pages. Excel has
special features on its Insert tab to add charts to a worksheet; PowerPoint
provides numerous graphics features on its Insert tab. The Insert tab is an
example of a task-based tab that focuses on a particular task as it occurs in
that application.

27Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 27

Contrast the Insert tab with the Review tab. The Review tab varies little
between applications. For example, all of the applications that support it
include Proofing and Comments groups since these are common review task
requirements. The Review tab also includes document protection features,
even though these features don’t always appear as part of a Protect group.
The point is that this task is common among applications and you should
strive to maintain that commonality as much as possible when creating a
custom application.

Because Word and Excel deal with larger documents, they both include a
Page Layout tab as well. In both cases, you find Themes and Page Setup
groups that contain controls for managing the pages as a whole. Word
includes a Paragraph group because it works specifically with text in para-
graphs. Excel, on the other hand, includes a Sheet Options group with con-
trols that help you manage the appearance of a single large worksheet. The
Page Layout tab is an example of a tab that includes both common and
application-specific features.

Looking at the Ribbon in Word
Word is one of the most complex implementations of the Ribbon for good
reason: Manipulating text so it looks perfect when printed is a difficult task,
and even with the right tools you can make mistakes. The References tab in
Word is an example of a tab that performs a specialized task. You use the
groups on the References tab to add citations, footnotes, a table of contents,
an index, and other document-specific features to a file. Not everyone will use
this particular tab, so this is a tab you may choose to remove from view when
creating a custom application.

The specialized toolbars and menus that developers add to Word also indi-
cate the complexity of working with the written word. Unfortunately, Word
has the dubious distinction of providing the applications least likely to move
from previous versions of Office to Office 2007. The reason that people have
created so many applications for Word is also the reason you’ll probably end
up moving the application to Office 2007 or starting over from scratch.

Looking at the Ribbon in Excel
Excel users require access to formulas to compute entries in a worksheet. The
Formulas tab contains features that help the user work with formulas, includ-
ing the Function Library group, which contains common formulas. You’ll also

28 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 28

find groups for managing named ranges, auditing existing formulas, and per-
forming calculations. Generally, if you have to add a new formula to Excel, this
is the tab to hold it. Rather than create a custom tab for the task, you can
remove the features you aren’t using and add the custom features your appli-
cation requires.

Worksheets often require external access to data stored in another location.
The Data tab provides basic data-access functionality, including the Get
External Data button. Unfortunately, these features are generic; and they may
not meet your specific needs. If you have complex data requirements for your
application, you’ll very likely add those features to this tab. Unlike many
other tabs, this one isn’t loaded with a lot of extra features you won’t use, so
you should be able to maintain the default setup and simply add the new con-
trols you need.

Looking at the Ribbon in Access
The first thing that will surprise you when you look at Access is the small
number of tabs (as compared to other Office products). The two main tabs
are Create and External Data. You use the Create tab to define new database
objects, and the External Data tab to access data outside of Access. The
Database Tools folder contains esoteric items for creating macros, defining
relationships, analyzing and moving data, manipulating database content,
and administering the database. Generally speaking, you probably won’t want
to modify any of these tabs, but you may want to hide them from users.
Placing any custom features you want to provide on a special tab makes
sense with Access, especially considering that you aren’t fighting with the
application for space.

Looking at the Ribbon in Outlook
When you initially start Outlook, you might wonder whether it even uses the
Ribbon. The Ribbon doesn’t appear as part of the main application, but it
does appear as part of special features, such as creating a message, adding
an appointment, and defining a new task. Consequently, any work you per-
form with the Outlook Ribbon will be task-specific.

Outlook developers are also going to have to maintain their current skills,
because Outlook uses the older toolbar and menu interface for performing
general tasks. For example, if you want to add a special feature for signing up

29Chapter 1: Getting to Know the Ribbon

05_169940 ch01.qxp 7/13/07 10:19 PM Page 29

for Internet access, you’ll need to add it to a toolbar or menu, not to the
Ribbon. Only when you want to add a task-specific feature — such as special
headings for an e-mail message — do you need to worry about the Ribbon in
Access.

Looking at the Ribbon in PowerPoint
The special Ribbon features in PowerPoint all deal with the slides you create.
These tabs include Design, Animations, and Slideshow.

All three tabs control the slides in some way. The Design tab includes fea-
tures for changing the slide appearance. For example, you can use the fea-
tures in the Themes group to control the overall theme for your presentation.
The Animations tab controls how you move from one slide to another. For
example, you can add a special transition or sound between slides. The
Slideshow tab contains controls for changing the slide presentation. For
example, the Set Up group contains controls that let you choose how the
slideshow begins and ends. You can also use these features to rehearse the
slideshow timing. When you want to add custom features to PowerPoint that
affect the slides in any of these ways, you’ll want to augment one of the exist-
ing tabs.

Of course, slideshows don’t deal just with slides. You might want to add a
special tab for accessing external data. In some cases, you won’t find a
standard tab to hold the special features you want to add to PowerPoint, in
which case, you’ll want to add a new tab, rather than change the focus of an
existing tab.

30 Part I: An Overview of RibbonX

05_169940 ch01.qxp 7/13/07 10:19 PM Page 30

Chapter 2

Creating an Effective
RibbonX Design

In This Chapter
� Deciding on realistic and effective goals

� Making your RibbonX design work for everyone

� Considering the best way to arrange RibbonX elements

� Defining how XML plays a part in RibbonX

Developers spend a great deal of time on design issues. A productivity
application isn’t much good if the user doesn’t become more productive

because of using it. When an application places undue burden on the users
and forces them to jump through hoops to accomplish even basic tasks, then
the application has failed. As mentioned in Chapter 1, Microsoft’s main goal
in moving to the Ribbon interface is to make Office easier to use. Whether
this design change proves effective depends a great deal on how users per-
ceive the change. If the Ribbon doesn’t truly make users more productive,
Microsoft may very well end up going back to the (virtual) drawing board.

Your applications have to meet productivity, usability, visibility, and other
goals as well. The Ribbon presents some special challenges to developers, as
well as opportunities to excel. Overall, you’ll need to change your develop-
ment techniques to match the new Ribbon interface. While you may have
placed a new command on a menu in the past, now you’re going to need to
find a tab to use instead. In many cases, you can’t simply stick the new fea-
ture just anywhere; it’s important to follow the task-oriented focus of the
Ribbon interface.

This chapter helps you design effective RibbonX interfaces for your applica-
tions. An effective interface — at minimum — meets all of the user’s produc-
tivity, usability, and visibility goals. In addition, the interface has to meet all
the requirements for your application. Here’s where those two requirements
come together: It’s important that the application behave as anticipated
when the user clicks the button. Part of your ability to meet that goal resides
in how the user interacts with the Ribbon, which means that the interface
could make or break your application. The last part of this chapter delves a

06_169940 ch02.qxp 7/13/07 10:20 PM Page 31

little deeper into the XML part of the interface. Once you have an idea of how
to design an effective interface, you’ll have to put those design decisions to
work by creating the required XML for your application.

Developing RibbonX Element Goals
This chapter considers the interface that the application you create relies on
to perform a given task. The Ribbon forces you to consider how a user per-
forms a task. When you work with menu-and-toolbar applications, it’s easy to
consider convenience as one of the major goals in an application design. An
application designer can place a new feature on a toolbar when the user
requires quick access; otherwise a menu may be more appropriate. The
choice of toolbar or menu depends as much on the other items in that tool-
bar or menu as it does on how the user works with them. However, look at
the Ribbon display shown in Figure 2-1: The focus is now on the task.

In this case, you’re looking at the Formulas tab of the Excel Ribbon. The focus
is on manipulating data using some type of math. The user isn’t concerned
about creating new data or importing data from another source. Everything
on this tab concerns working with formulas in some way. If your application
doesn’t work with formulas, you shouldn’t place any part of your application
here because the focus is on formulas. In fact, this intense focus on tasks is
going to cause many developers problems because (in many cases) they
don’t actually know how users work; questioning the users probably won’t
provide much good information, either.

The overall goal is to create a task-oriented application when working with
RibbonX. However, designing such an application requires that you also
achieve a number of sub-goals. The following list provides an overview of the
sub-goals you should achieve to ensure that the RibbonX additions you make
actually work with the rest of the Ribbon elements in the target application
(try to achieve the goals in the order shown):

Figure 2-1:
The Ribbon

focuses
attention

on a task,
rather than
on conven-

ience.

32 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 32

1. Separate tasks into steps that a user is likely to perform at one time.
For example, writing a letter necessarily implies that the user will
perform an addressing task at some point in the process.

2. Observe a user performing the task. Some organizations record key-
strokes; others use cameras. The point is to capture the process the
user actually relies on to perform the task.

3. Break down the process into individual steps that each require inter-
action with (at most) one control.

4. Determine how often users are likely to perform a particular step.
For example, when addressing an envelope, not all users will look up the
addressee; some users will have the address information memorized or
obtain it from alternative sources.

5. Create a list of controls that the user needs to perform the task.
Remember that the Ribbon provides a wealth of alternative controls that
you didn’t have access to when working with the menu and toolbar
setup.

6. Determine whether the controls fit within an existing tab. Consider
using Contextual Tabsets whenever possible so the tabs appear only
when the user needs them. (Don’t worry about how Contextual Tabsets
work for now; you get a closer look at them later in the chapter.)

If you don’t find an existing tab to use for the controls, define a new tab
to hold them. Never use multiple tabs to hold the controls for a single
task.

7. Determine whether any of the existing groups can hold your controls.
If not, define a series of task-oriented groups to hold the controls. You
might break down an addressing task into locating an addressee, format-
ting labels, and adding postage groups.

8. Order groups by usage. The user’s attention should move from left to
right on-screen (or right to left if the user’s language normally moves in
that direction) while using the groups.

9. Place the controls that you previously defined into their groups.

10. Assign prominence to each of the controls. If a user uses a particular
control every time, then the control should receive greater prominence
than a control the user seldom requires. Use larger controls and better
placement for controls with greater prominence.

11. Determine whether you need to include dialog boxes to show
advanced or alternative options. If so, you’ll want to add the appropri-
ate button in the lower-right corner of the group area (some developers
are calling this a dialog-box launcher, which is the term I use throughout
the book).

33Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 33

You may find you need to perform additional steps — and create additional
goals — for a particular application. For example, you might find that power
users require one set of steps, and standard users another set of steps. In
addition, power users may require access to features that you don’t want
standard users to use. All these goals should help you think about the Ribbon
in a manner that you might not have thought about in the menu-and-toolbar
interface.

Never include the Quick Access Toolbar (QAT) as part of your application
design goals. Microsoft sets the QAT apart for user customization. The only
way you can override the QAT is to create a completely new Ribbon, using
the StartFromScratch mode. Using the StartFromScratch mode means
the application removes all standard tabs and Office Menu entries. You start
(of course) from scratch — and have to implement everything from the
ground up. That’s why it’s usually easier to avoid using the QAT.

Considering RibbonX Element
Accessibility and Visibility

When you’re creating a RibbonX application, one of the most important
enabling goals is to improve the accessibility and visibility of features.
The focus on tasks, rather than features, attains part of this goal for you.
Unfortunately, a pretty new interface and reorganization of existing features
probably won’t accomplish all of your application goals. Making it easier for
the user to work with your application is at least as important. In some cases,
achieving this goal means hiding features, but generally it means putting
them in the right location and providing visible usage aids. The following sec-
tions describe some techniques you can use to achieve the goals of enabling
better accessibility and visibility.

Using tooltips
The menu-and-toolbar interface provides limited opportunities to enhance
the user experience. For example, you can add tooltips to a menu-and-toolbar
application, but the tooltips provide a single line of limited information (even
when the tooltip appears on multiple lines, it actually consumes just one line
within the application code). The elements in a menu-and-toolbar interface
are the same size and you don’t have good access to icons. Yes, you can
create an icon, but the icon size reduces the amount of information available
to the user of the application.

34 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 34

The Ribbon overcomes some of the problems that users experienced in the
past in figuring out what a particular control does. Hover the mouse pointer
over the Paste icon in any of the applications that support that operation
(you’ll see it on the Home tab), and you’ll see a standard tooltip like the one
shown in Figure 2-2. Because most people understand what the Paste control
does, you can use a standard tooltip. However, notice that even a standard
tooltip provides more information than the tooltips of the past. In this case,
the user knows that pressing Ctrl+V will perform a standard paste operation
in the current application.

In addition to the standard tooltip, the Ribbon can also support a super-
tooltip. Figure 2-3 shows an example of a super-tooltip. Notice that the help
text appears on multiple lines. Using this approach lets you create clearer
direction to the user. Notice that this tooltip also includes a help indicator. If
the user presses F1 while the super-tooltip is displayed, the system displays
context-sensitive help about the topic.

Figure 2-3:
Use super-

tooltips
when a
control

performs a
complex

task and you
want to

provide a
better

explanation.

Figure 2-2:
Standard
tooltips in

the Ribbon
convey

more
information

than
standard

tooltips in
the past.

35Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 35

A third kind of tooltip displays little dialog boxes that you can display when
the user hovers the mouse pointer over a dialog-box launcher. In addition,
you’ll see this kind of tooltip when you hover the mouse pointer over a special
area, such as the Office button. (Figure 2-4 shows an example of a dialog-box
tooltip.) Notice that you can see the entire dialog box as a thumbnail. The
user obtains a complete description of what the dialog box contains. In addi-
tion, you can add a help indicator to the information the tooltip provides.

Using existing Office features
In some cases, you might want to use some of the remaining Office features
from previous versions of Office. For example, the task pane is the same as
before from a programming perspective. It’s possible to add some of your
existing application features to a custom task pane so that the same feature
appears in both Office 2007 and older versions of Office. Unfortunately, you
can’t use VBA to implement this solution.

Another alternative to consider is context menus, which rely on the existing
CommandBars object model (so this strategy also works for all versions of
Office). Right-clicking an object displays a context menu whose content is
limited to tasks you can perform with the selected object. Even so, you may
find that this is a good solution to overcome some version differences. You
can even use VBA to implement this solution. The “Using Existing Office
Features” section of Chapter 12 describes both the custom task pane and
context menu strategies in detail.

Using the Office Menu
Remember that you can also change the Office Menu (shown in Figure 2-5) as
needed to meet application requirements. Look at the Office Menu as a kind of
advanced File menu from days past. You shouldn’t use it to hold task-based
features of your application (more about that in a minute). However, if your

Figure 2-4:
Dialog-box

tooltips help
a user see a

dialog box
before

opening it.

36 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 36

application performs a special kind of save or other file-related task, you can
place that feature on the Office Menu, rather than on the Ribbon.

You can add new options to an existing entry, such as an alternative printing
method to the Print entry, or you can create entirely new entries. The Office
menu can help you fill the gaps between standard and power users as
needed. In addition, it does make the best place to put nontask-related items.

Make sure you avoid the trap of adding tasks to the Office menu, however.
Adding a task to the Office menu makes it less visible to the end user (after all,
one of the main purposes of using the Ribbon is to make application features
more visible). Such an addition also runs counter to the workflow emphasis of
the new Office products. Developers who are used to working with the menu-
and-toolbar system will have to pay special attention to this trap.

Using Contextual Tabsets
Contextual Tabsets appear when you perform certain tasks in Office. For
example, when you create a table in Word, you see the Table Tools
Contextual Tabset shown in Figure 2-6. Notice that the Contextual Tabset
appears above the normal tags on the Ribbon; this is your first clue that this
is a Contextual Tabset, rather than a standard tab.

Figure 2-5:
The Office
menu is an

excellent
place to put

nontask
application

features.

37Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 37

Below the Contextual Tabset are tabs related to the Contextual Tabset. A line
extends from the Contextual Tabset to highlight the two tabs: Design and
Layout. These tabs appear only when Word displays the Table Tools
Contextual Tabset.

The bad news is that you can’t create your own Contextual Tabsets in Office
2007. Microsoft purportedly plans to add this feature to a future version of
Office (but they aren’t saying when). Fortunately, you can modify the existing
tabs for a Contextual Tabset, hide the existing tabs when that’s required, and
add custom tabs of your own.

Repurposing the MiniToolbar
The MiniToolbar provides a listing of formatting commands that the user
can use with highlighted text or other objects in a document, as shown in
Figure 2-7. It appears wherever you right-click on text within the document.
You can’t add any new content to the MiniToolbar, which means that you
should probably consider the MiniToolbar as the last alternative for adding
new features. You can, however, hide existing features or repurpose elements
to perform another task.

Figure 2-6:
Contextual

Tabsets
offer an

opportunity
to add

custom
context-

based
features.

38 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 38

Repurposing is the act of hijacking a control for your own use. For example,
you might decide to hijack the Format Painter control to add custom format-
ting required by your company to a document. You can actually repurpose
controls in the Ribbon and in the Office Menu as well.

It’s usually a bad idea to repurpose controls. When the user expects a control
to perform a certain task and it no longer performs that task, you can expect
a high level of confusion, not to mention added support costs for the applica-
tion. The only time you should consider repurposing a control is when the
control does something you don’t want the user to do (because of company
policy or simply because you consider the action dangerous). Make certain
that you document any repurposing you do — completely — because other
people might not have the same understanding about it that you do.

Whenever you repurpose a control, you should consider making the original
functionality available to the user. For example, you might repurpose the
Print control on the Office Menu to point the user to a specific printer on
your network. You could also let the user choose the original printing feature
when the designated printer is in use by someone else for a long print job.

Defining an Effective RibbonX Design
The previous sections of this chapter describe how to define Ribbon design
goals and where to place various application elements that you define. After
you make these decisions, consider the precise design of your Ribbon ele-
ments. For example, you can use text, icons, or a combination of both to
relate the purpose of most controls. The method you use to convey the con-
trol purpose depends on the application user and the purpose of the control
within your application. The following sections describe naming and other
concerns for RibbonX applications.

Figure 2-7:
The

MiniToolbar
appears

automati-
cally when

the user
selects text

or an object.

39Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 39

Using names effectively
Look again at Figure 2-1. You’ll notice that every tab and every group has a
name. Whenever you create new tabs or groups, you must also provide a
name. The name should meet the following criteria:

� Short: The name should contain only one or two words or you won’t be
able to see it if the user resizes the application.

� Task-focused: Make sure the name reflects the task you want the user to
perform.

� Unique: Even though you could possibly create (say) two Page Layout
tabs in Word, doing so would confuse the user.

� Simple: Use the simplest possible term to define the task.

Controls don’t always include a name. Less-used controls often rely on
smaller pushbuttons and only an icon. Using a larger control and text tends
to draw the user’s attention to that control. As with the text for tabs and
groups, you should make the control label short, unique, and simple. In this
case, however, you should ensure the label reflects the purpose of the con-
trol, rather than the task the user is performing.

Considering the number of items on a tab
The Ribbon automatically adjusts itself to display the amount of information
that can fit within the space the user allows. In most cases, the user can see
all the tabs and groups you provide, as long as the display area doesn’t
become too small. For example, I was able to size Excel down to 650 pixels in
width before the group names began to disappear, and I could still access all
groups — even when I reduced the application width to 420 pixels (as shown
in Figure 2-8). However, many of the Home tab features begin to disappear at
around 700 pixels. Consequently, the effective productive size for Excel is 700
pixels — which works for most systems today.

What happens, though, if you begin placing more items on a tab than Excel
places on the Home tab? The effective productive size begins to increase. At
some point, the user can’t make the application large enough to display all of
the controls you place on the tab. When the application reaches this point,
the changes you make to the Ribbon are extraneous because the user won’t
even see them. In general, you should use the tab with the most default con-
trols in an application as the basis for your custom changes. For most Office
applications, the Home tab contains the most controls.

40 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 40

Looking at groups from
the user’s perspective
One of the disconnects between developers and users is that they look at appli-
cations differently. The Ribbon certainly helps to redirect developer attention
toward user needs, but it still probably isn’t enough to provide the ultimate
solution. The problem is one that probably won’t go away — simply because a
user’s perspective is always going to differ from that of the developer.

The user’s goal in working with an application is to accomplish work that has
(in most cases) absolutely nothing to do with computers or applications. The
user really doesn’t want to think too much about the computer; only the task
matters. That’s why the Ribbon is a good update to Office, even if it completely
ruins years of interface work by developers (your business logic works just as
well with the Ribbon as it did in the past).

Of course, a developer can still choose not to view tasks from the user’s per-
spective or simply create the application incorrectly because the older applica-
tion had a certain appearance. When creating groups for your application,
always think about contiguous tasks — one step after another. Use action
words that convey the task orientation of the Ribbon or nouns that describe
the task activity that the group accomplishes. Always order the groups from
left to right, just as you’d read a line of text. (Of course, if you normally read
text from right to left, you’ll want to place the groups from right to left as well.)

Using the right control
An important issue for the Ribbon is choosing the correct control to interact
with the user. Unlike the menu-and-toolbar setup of the past, the Ribbon pro-
vides you with a wealth of very usable controls that make it easy for the

Figure 2-8:
Excel can

display all of
its tabs and

groups on
the Home

tab even at
420 pixels.

41Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 41

developer to provide just the right presentation to the user. For example,
consider the simple pushbutton. The Ribbon supports a number of button
types, including these:

� Button: Performs an action or displays a dialog box.

� Toggle Button: Turns a feature on or off.

� Split Button: Performs one of several actions based on user selection.
The split includes a drop-down list of acceptable actions.

However, you actually have more than three button types at your disposal
because you can modify the basic buttons. Here are some examples of poten-
tial modifications:

� Size: You can make the button large or small to change its emphasis.

� Order: Placing the buttons in a particular order changes their signifi-
cance as well. Buttons placed in a particular order may make a user
think of related functions or a particular process.

� Custom images: You don’t have to use icons or text to describe the
button. Using a custom image on a large button can significantly change
how the user sees it.

The issue of images is an important one to consider because Ribbon controls
let you do far more than you could in the past. You can use any of the graph-
ics formats listed in Table 2-1 with the Ribbon. Table 2-1 also tells you about
the advantages of using each type.

Table 2-1 Graphics Formats Supported by the Ribbon
File Type Advantages

BMP This graphic type is easy to create and there are a lot of tools for
manipulating it.

JPG Easily used on Web pages and useful for pictures or other complex
graphics.

GIF Easily used on Web pages. This format doesn’t suffer from lossy data
storage. It also provides a single level of transparency on the Ribbon
for special effects.

PNG Easily used on Web pages and used to store complex graphics. This
format also provides full support for all Ribbon transparency effects.

42 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 42

Providing user hints
The Ribbon provides features you can use to improve the user experience
through hints. Some of these hints are built in; you don’t need to worry about
them. For example, the Ribbon makes the control selection very clear when a
user hovers the mouse pointer over the control.

Some of the hints are things you have done in the past. For example, you can
use tooltips to improve user communication. The “Using Tooltips” section of
the chapter describes this feature in detail. Adding super-tooltips to your
application will significantly improve user communication.

Another kind of hint isn’t so obvious. When you look at the Styles group in
Word, you see an actual presentation of the various styles. This kind of hint
isn’t readily available in older versions of Office, yet it makes it easy for a
user to choose the correct style for a particular need. Below the style repre-
sentation, the user sees the actual style name — which makes it easy to
choose the style by name as well.

Using feature hiding effectively
Feature hiding is a new Microsoft watchword, and they employ it effectively
in Office 2007. One example of feature hiding is the use of Contextual Tabsets
(described in the “Using Contextual Tabsets” section of this chapter). A
Contextual Tabset is a set of tabs that appears on-screen only when you per-
form a specific task — such as editing a table. When you create an applica-
tion feature that works with a Contextual Tabset, you can let Office hide the
feature for you.

Unfortunately, the Contextual Tabsets won’t answer every feature-hiding
need. For example, you might need to hide features based on a user’s role in
an organization or a task for which Microsoft hasn’t provided a Contextual
Tabset. You can still hide tabs, groups, or individual controls programmati-
cally. It’s also possible to hide functionality according to a template or a par-
ticular document. Global features can appear as an add-in to ensure that the
user can always see them.

Some developers hide features a bit too enthusiastically. What the user ends
up with is what I call the Las Vegas Effect: the glittering array of appearing
and disappearing controls that dazzles the eye, but doesn’t do anything for
productivity. If you plan to hide features in your application based on certain
criteria, you should place the controls in a single group or on a single tab and
hide everything at once if possible. Don’t keep displaying and then hiding a
feature if the user will need it occasionally while using the application.

43Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 43

Understanding the XML Connection
RibbonX relies on a hierarchical description of tabs, groups, and controls to
modify the physical appearance of the Ribbon (the “Defining the RibbonX
Elements” section of Chapter 1 describes how this works). The XML you
create also affects design decisions. Microsoft hasn’t provided a graphical
design tool for Office 2007 yet, so you must write the actual XML by hand. In
some cases, the use of hand-coding techniques will result in potential errors
in the resulting Ribbon interface — so complete testing and verification is
important. You should actually make a drawing of how you expect the result-
ing Ribbon additions to appear to reduce the potential for errors.

Keep in mind that the XML can become quite complex. As you add new
features to a control, the number of attributes within the XML increases.
For example, here’s the XML for a button that includes an image:

<button id=”MyButton”
imageMSO=”ButtonImage”
size=”Large”
label=”My Button”
onAction=”ClickMe” />

The imageMSO attribute defines the image to use with the button. You can
store this image as part of the add-in, template, or document that you create
because RibbonX won’t look on the hard drive for the image. If you do decide
to load the image, then you have to create special code to do it. Don’t worry
about the particulars now; you’ll discover more about graphics in Chapter 3.
When working with graphics — especially custom images — you’ll need to
use one of the image formats listed in Table 2-1.

It’s also possible to use built-in images for your control. For example, if you
wanted to use the icon from the Underline control, you would simply
include imageMSO=”Underline” as part of your control description. You
can download a complete list of the control identifiers for Office 2007 at

http://www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae

The order in which you place entries in the XML file is important. The appli-
cation displays the tabs, groups, and controls in the order you specify.
Consequently, if you want Button1 to appear first in the physical presenta-
tion on-screen, you must also place it first in the XML file. Unfortunately, it’s
all too easy to obtain awkward, odd-looking layouts if you aren’t careful.
Listing 2-1 shows one such example (the listing shows only the tab code).

44 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 44

Listing 2-1: An Example of a Problem Layout

<tab id=”myTab” label=”My Tab”>
<group id=”Group1” label=”First Group”>
<button id=”Button1”

label=”Big Button 1”
imageMso=”HappyFace” size=”large”
onAction=”myButton_ClickHandler”/>

<button id=”Button2”
label=”Button 1”
imageMso=”Bold”
onAction=”myButton_ClickHandler”/>

<button id=”Button3”
label=”Big Button 2”
imageMso=”HappyFace”
size=”large”
onAction=”myButton_ClickHandler”/>

<button id=”Button4”
label=”Button 2”
imageMso=”Italic”
onAction=”myButton_ClickHandler”/>

<button id=”Button5”
label=”Button 3”
imageMso=”Underline”
onAction=”myButton_ClickHandler”/>

</group>
<group id=”Group2” label=”Second Group”>
<button id=”Button6”

label=”Button 1”
imageMso=”Bold”
onAction=”myButton_ClickHandler”/>

<button id=”Button7”
label=”Button 2”
imageMso=”Italic”
onAction=”myButton_ClickHandler”/>

<button id=”Button8”
label=”Button 3”
imageMso=”Underline”
onAction=”myButton_ClickHandler”/>

</group>
</tab>

You should notice some special issues in this example. All images listed in
the code appear as part of Office, so you don’t have to supply any of them. It
also contains big buttons and regular buttons. However, because of the order
in which the big buttons and regular buttons appear, the layout is less than
optimal in Group1. Figure 2-9 shows what happens when you place the but-
tons in the wrong order.

45Chapter 2: Creating an Effective RibbonX Design

06_169940 ch02.qxp 7/13/07 10:20 PM Page 45

Notice the big gaps in this layout. You can actually get three buttons in the
space of a single large button, as shown in Group2. A better layout for
Group1 would be to place the three regular buttons together so that the two
large buttons would attract the proper user attention and the group would
use Ribbon space efficiently. The Ribbon does provide a great deal of flexibil-
ity, so saying that one layout is the best is impossible. You’ll see a consider-
able number of functional layouts as you review the examples in this book.
The accompanying text describes why I used a particular layout so you can
more easily decide on a layout for your own application.

Figure 2-9:
Ineffective

layouts
come from
placing the

buttons in
the wrong

order.

46 Part I: An Overview of RibbonX

06_169940 ch02.qxp 7/13/07 10:20 PM Page 46

Part II
Interacting with

the Ribbon

07_169940 pt02.qxp 7/13/07 10:20 PM Page 47

In this part...

The Ribbon is amazingly flexible. In fact, the flexibility
could overwhelm some developers who are used to

handling just a few controls when they’re working with
the menu-and-toolbar setup. Chapter 3 starts the adven-
ture by presenting the various strategies for creating a
Ribbon. You discover some of the new tools for working
with the Ribbon and begin to get a handle on the new
techniques you’ll use to improve the user experience.

Chapters 4 and 5 complement each other. Chapter 4 shows
how to work with the Ribbon using scripts. You discover
that VBA users have considerable flexibility in working
with the Ribbon — they can even start the Ribbon from
scratch — so you can have it your way. Chapter 5 looks
at many of the same issues as Chapter 4, but from the
perspective of the Visual Studio developer. Your add-ons
never looked so good as they can with the Ribbon.

07_169940 pt02.qxp 7/13/07 10:20 PM Page 48

Chapter 3

Designing New RibbonX Elements
In This Chapter
� Developing a RibbonX tab

� Working with groups

� Adding controls

� Creating a simple RibbonX document

� Understanding how to work with graphics

It’s time to create your first RibbonX tab. This chapter looks at the process
of adding the graphical interface from a number of perspectives and using

a variety of techniques. The manual method of adding a Ribbon isn’t hard,
but it can be cumbersome and error-prone. However, it’s important to know
how to use this technique (very carefully) if you ever have to repair a docu-
ment you’ve created.

Fortunately, you also have an alternative method for working with the Ribbon
by using the Office Custom UI Editor created by a third-party developer. This
tool doesn’t provide you with a graphical interface for working with the XML
that RibbonX requires, but it does make the process of adding the XML to the
document significantly easier and less error-prone.

Adding new RibbonX elements to a template is the same as adding them to a
document. However, when you work with a template, you have to consider
the effect of that template on every document that uses it. The problem that
some developers might encounter is creating RibbonX elements that don’t
apply to an entire class of documents.

This chapter doesn’t consider adding RibbonX elements to add-ins (DLLs).
Creating add-ins requires that you use Visual Studio instead of VBA to perform
tasks. Consequently, you’ll find add-ins discussed in Chapter 5. However, the
techniques for creating the RibbonX XML in this chapter apply to add-ins as
well. In addition, even though this chapter works with Excel, you’ll find that the
RibbonX techniques apply equally well to other Office 2007 products. Part III
of this book discusses each of the Office applications in individual chapters.

08_169940 ch03.qxp 7/13/07 10:21 PM Page 49

Creating a RibbonX Tab
The first step in creating a new RibbonX application is to define the goals for
the application as described in Chapter 2. When you decide that you need a
new tab to display the groups and controls for your application, it’s a good
idea to add the tab first and ensure that it appears as you think it will. In addi-
tion, adding the tab first lets you create and test any code required to make
the tab functional. The following steps get you started working with an exam-
ple tab in Excel. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/ribbonxfd.)

1. Open Excel, define any data required for the example (none in this
case), and save the file using the XLSM extension.

Make sure you use the XLSM extension or Excel won’t recognize any
macros you provide in the application. The example uses a filename of
NewElements.xlsm.

2. Close Excel and open the folder where you stored the Excel file in
Windows Explorer.

You see the Excel file you created.

3. Create a new folder named customUI.

4. Add a new text file to the folder named customUI.xml. Don’t retain
the TXT extension.

Windows asks whether you’re sure you want to change the file
extension. Make sure you answer yes.

5. Change the extension of the Excel file from XLSM to ZIP.

Windows asks whether you’re sure you want to change the file
extension. Make sure you answer yes.

6. Extract the _rels folder from the ZIP file.

You see the _rels folder and the customUI folder in the same folder as
the Excel file. You’re now ready to add the tab.

Adding the tab requires two steps. The first step is to define the tab in the
customUI.xml file. Here’s the XML you’ll need to add to the file:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customu

i”>

50 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 50

<ribbon>
<tabs>
<tab id=”myTab” label=”My Tab” keytip=”MT”>
</tab>

</tabs>
</ribbon>

</customUI>

This is the first time you’ve seen the keytip attribute. Whenever you add
this attribute, you control the appearance of the keytips that appear when
the user presses Alt. If you don’t provide a keytip, the Office application
assigns one randomly that doesn’t affect the other keytips in use. The keytips
are an accessibility feature that makes it easy for anyone to access any part
of the Ribbon without using the mouse. After selecting that tab, a user can
choose other elements on that tab. In this case, the user would select the tab
by pressing Alt+MT. A keytip can have as many characters as needed to avoid
collisions with other elements at the same level. For example, every tab must
have a unique keytip, but a control can have the same keytip as a tab (as long
as it doesn’t have the same keytip as any other control).

After you add this code, save the file. The second step is to tell Excel that the
customUI.xml file exists. Otherwise Excel won’t display the custom tab. You
perform this task by modifying the .rels file located in the _rels folder
(that’s right, the file doesn’t have a filename). Add a new <relationship>
element like the one shown here:

<Relationship
Id=”rID4”

Type=”http://schemas.microsoft.com/office/2006/relationshi
ps/ui/extensibility”

Target=”customUI/customUI.xml”/>

You must provide a unique Id attribute value. The example uses rID4
(short for “relationship identify four”). The Type attribute has to point to the
schema for the custom user interface extension, so you’ll use the URL shown
in the code. Finally, the Target attribute points to the location of the file.
Your .rels file should look like the one shown in Figure 3-1 at this point.

Place the _rels and customUI folders inside the NewElements.zip file.
You shouldn’t compress the customUI folder. For some reason, Excel doesn’t
display the result properly when you do. Windows will ask if you want to
overwrite the _rels folder if you use the default ZIP file handler. If you use
an alternative ZIP file handler, such as WinZIP, make sure you retain the direc-
tory structure. Rename the NewElements.zip file to NewElements.xlsm.
Open the file in Excel and you’ll see the new tab shown in Figure 3-2. The new
tab is blank because you haven’t added any groups to it yet. Notice how this
tab shows the MT keytip.

51Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 51

Using Groups to Your Advantage
Adding groups to your new tab is relatively easy now that you’ve created the
initial setup. All you need to do is modify the customUI.xml file with the
new entries you want to make. It’s important to start with just the basic
layout. Don’t try to connect anything to code for right now. After you get the
basic layout finished, you can start adding code to each of the elements.
Here’s the updated myTab with three new groups added to it.

Figure 3-2:
A blank tab
may not be

exciting, but
it demon-

strates that
elements

work
individually.

Figure 3-1:
The .rels file

contains
one entry
for each

Excel
relationship.

52 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 52

<tab id=”myTab” label=”My Tab” keytip=”MT”>

<group id=”Default” label=”Default Group”>
</group>

<group id=”SeparatorGroup”
label=”Group with Separator”>

<separator id=”SeparatorItem” visible=”true”/>
</group>

<group id=”DialogBoxLaunch”
label=”Group with Dialog Box Launcher”>

<dialogBoxLauncher>
<button id=”LaunchDialog”

screentip=”Launch Dialog Box”
supertip=”Clicking this button would

normally display a dialog box.”
keytip=”LD”/>

</dialogBoxLauncher>
</group>

</tab>

The code begins with a standard group that doesn’t contain any special
features. Normally, you’ll place controls between the beginning and ending
<group> tags. Groups have a considerable number of additional attributes
you can use, including

� image (adds an image to the group)

� imageMso (adds a built-in image to the group)

� keytip (provides an accelerator key for the group)

� screentip (displays a short tip for using the group)

� supertip (displays an extended tip for using the group)

Normally, you won’t use these additional attributes even though they
appear in the Microsoft documentation. In fact, experimentation shows that
Office doesn’t even react to these special attributes. For example, because
you can’t select a group anyway, there’s little reason to assign an accelerator
to it (using the keytip attribute). The document, template, or add-in will
load as it normally does — it won’t generate an error, but you won’t see any
difference because Office ignores the attribute. However, Office does pay
attention to other special attributes (which appear in other areas of this
book), such as insertAfterMso, insertAfterQ, insertBeforeMso, and
insertBeforeQ, which control the positioning of the group in relation to
other groups on the tab.

53Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 53

Groups only require occasional use of special attributes. However, controls
normally require significant use of attributes. (The “Defining the RibbonX
Controls” section of this chapter describes control attributes in detail.)
A simple attribute change can affect the functionality of the various control
elements considerably. Although this book does explore a considerable
number of elements and their attributes, it doesn’t provide you with a
complete list. To obtain a complete list, download the 2007 Office System:
XML Schema Reference from

http://www.microsoft.com/downloads/details.aspx?familyid=
15805380-F2C0-4B80-9AD1-2CB0C300AEF9

Besides controls, the <group> element can have two additional child ele-
ments. The <separator> element places a line in the middle of the group.
You can place the <separator> element anywhere within a list of controls to
provide separation between the controls. The Window group of the View tab
provides a good example of how to use a <separator> to further control the
appearance of a group. You must provide the visible=”true” attribute and
value to see the <separator> in any group you create. Modifying this
attribute in your code lets you control when the <separator> appears on-
screen. Figure 3-3 shows how the <separator> appears in this example.

Figure 3-3:
Three

different
kinds of

group
setups that

you can use
to manage

your
controls.

54 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 54

Many of the groups in Office include the dialog-box launcher, a feature
that a power user can click to see advanced features. You use the
<dialogBoxLauncher> element to add the visual element to a group.
However, the <dialogBoxLauncher> element requires that you include a
<button> control, or Office won’t display the visual element. This is the only
time that you must include a control within a group. In fact, Office is quite
fussy about this particular element, and it could cause problems with your
development efforts. The <dialogBoxLauncher> element must contain one
and only one <button> control, and you can’t use any other control. Look
again at Figure 3-3, and you’ll see the results of adding the dialog-box
launcher to a group.

As shown in Figure 3-3, the button also includes both a screentip (the bold
text) and a supertip (the regular text). You can add control characters and
special characters to the text by prefacing the character value with &# and
ending it with a semicolon (;). For example, if you want to add a new line to a
supertip, you would use  as the character value.

The current version of Office doesn’t provide a hook for the help information
that appears below the tip information shown in Figure 3-3. Consequently,
you’ll always see the name of the module that contains the group or control,
plus the text for pressing F1 to obtain help about the element (even when
help isn’t available). Microsoft is supposedly fixing this problem in a future
version of Office.

Now that you have a better idea of how the code works, you’ll want to
add it to the example. The following steps tell you how to perform this task.
(You can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/ribbonxfd.)

1. Type the code into the customUI.xml file.

2. Rename NewElements.xlsm to NewElements.zip.

3. Add the customUI folder to the NewElements.zip file.

4. Rename NewElements.zip to NewElements.xlsm.

Defining the RibbonX Controls
The third element of any RibbonX implementation is controls. Not only can
you use more controls on the Ribbon than you have in the past, but, in many
cases, you can also change the control size. This diversity of control options
means you can create a better interface for the user by choosing the right
control from the RibbonX toolbox and giving it the correct emphasis. The
following sections describe controls in greater detail.

55Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 55

An overview of the RibbonX controls
The term control takes on a new meaning with RibbonX. A control not only
has a purpose, but it also has a size and context. For example, a button is
normally just that in most programming environments. However, in RibbonX,
you can create either a large or a normal-size button. In addition, the use
(and sometimes the appearance) of the button varies by context. A button
has no less than eight contexts in the Ribbon:

� standard button in the Ribbon

� part of a dialog-box launcher

� part of a drop-down list

� within the Quick Access Toolbar (QAT)

� part of a split button

� part of a split button with a title

� within a controls group

� part of a menu

The context can make a significant difference in how you use the control. For
example, you must include just one button within a dialog box launcher.
Office limits the number of buttons in a drop-down list to 16, but you don’t
have to include any at all. A button that you include within a split button is
always visible, and Office will raise an error if you try to use the visible
attribute. Consequently, if you run into a problem, but you feel you haven’t
made any errors in creating the XML for a particular control, you’ll want to
check the 2007 Office System: XML Schema Reference at

http://www.microsoft.com/downloads/details.aspx?familyid=
15805380-F2C0-4B80-9AD1-2CB0C300AEF9

to ensure you’ve used the control correctly in context.

The actual list of RibbonX controls is impressive when compared to what
Office provided in the past. Table 3-1 provides a list of these controls and pro-
vides a short description of each of them. You’ll see all these controls used
somewhere in the book.

56 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 56

Table 3-1 RibbonX Controls
Control Name Description

box Groups controls together within a group. You can place any
control within a box, and flow the set of controls either hori-
zontally or vertically. You must supply a boxStyle attribute
with a value of vertical or horizontal to use this con-
trol. Unlike the buttonGroup control, a box control doesn’t
provide a visual presentation other than flowing the controls.

button Provides a basic execution function. Click the button and
something happens within Office. As previously mentioned,
Office provides eight different contexts in which you can use
the button control.

buttonGroup Groups various types of buttons together. The buttons appear
within a physical box, and Office places them closer together
to show that they’re associated in some way. You can use this
grouping control with the button, toggleButton,
gallery, menu, dynamicMenu, and splitButton
controls.

checkBox Provides a basic selection function. The user enables or dis-
ables an option by clicking the control. Office provides two
contexts for the checkBox control, including as a standalone
control or as part of a menu.

comboBox Displays a list of options for the user. You create the list of
options using the item control. Every comboBox control
must include at least one item control as a child. When
working with a comboBox control, the user can also type a
value that doesn’t appear in the list (a dropDown control
requires the user to choose one of the options in the list).

dropDown Displays a list of options for the user. You create the list of
options using the item or button control. The list must con-
tain at least one of the two acceptable controls. The user must
choose one of the options in the list that you provide. When
the user chooses a button, rather than an item, control,
Office executes the requested action, rather than choose the
desired option.

dynamicMenu Defines a menu that you create at runtime, rather than during
design time. The menu contents can change to meet specific
needs. You must include the getContent callback to use
this control. A dynamicMenu control can appear as part of a
buttonGroup, menu, or splitButton control.

(continued)

57Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 57

Table 3-1 (continued)
Control Name Description

editBox Lets the user enter plain text into the Ribbon. You might use
this feature to perform a task such as searching. Use this
control for any input that you can’t define through using
some other control.

gallery Displays a group of controls in a drop-down structure to
save space on the Ribbon. Word uses such a grouping in
the Styles group of the Home tab. A gallery control dif-
fers from other grouping controls in that it provides a drop-
down list that you can control in various ways. You can
change the presentation of the controls using the rows
and columns attributes. The itemWidth and
itemHeight attributes help you control the size of each
item in the group. You use the Gallery control within a
buttonGroup or menu control, or as a standalone con-
trol. To display items in a gallery, you add code to the
getItemCount, getItemImage, and
getItemLabel callbacks.

labelControl Creates a label on-screen. You can use this control to label
control groups or other elements that don’t easily lend
themselves to other forms of identification. The user can’t
interact with the labels you provide.

menu Defines a menu that you create at design time. The
menu can contain controls such as the button and
checkbox controls. You can use a menu in standalone
mode, or as part of a splitButton control. Use the
menuSeparator control to place separations between
menu elements. Unlike a gallery control, the menu
control presents all of the options in a single column (much
like the menu system in older versions of Office).

menuSeparator Provides a means of separating elements within any
control group.

splitButton Creates a button that has a default action and a list of alter-
native options. One of the best examples of the split button
is the Paste button in the Clipboard group on the Home tab.
You must include a button or toggleButton control
for the default control. The optional actions appear within
a menu control, where you can add a button or
toggleButton control.

toggleButton Provides a combination of a checkBox and a button
control. The user selects a state and performs an action
by clicking the toggleButton.

58 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 58

Common RibbonX control attributes
RibbonX provides a number of common attributes that you can use to con-
trol the appearance of your application. Table 3-2 describes the most
common attributes that you’ll use when creating your application. You’ll see
many of these attributes in use throughout the book.

Table 3-2 Common RibbonX Attributes
Attribute Description

description* Specifies the description text that Office displays when
the itemSize attribute for a menu is set too large.

enabled* Determines whether Office enables or disables a control.
You can choose between true and false as values.

id* Specifies the identifier for a custom control. You can’t use
this attribute with either the idMso or idQ attribute.

idMso* Specifies the identifier for a built-in control. You can’t use
this attribute with either the id or idQ attribute.

(continued)

59Chapter 3: Designing New RibbonX Elements

Relating RibbonX to object terminology
Many developers are used to working with
objects. The elements described in the “An
overview of the RibbonX controls” section
of the chapter correspond to objects. Calling
these elements something else isn’t improper
because they really aren’t objects; they simply
take the place of objects from the developer’s
perspective. As far as you (the user) are con-
cerned, the elements that RibbonX defines as
controls work every bit as well as the objects
you normally use. However, they work very
differently under the hood — in a way that users
really don’t need to worry about.

As with objects, RibbonX elements have the
concepts of properties and events. When you’re
working with an object, a property defines
object functionality, such as the color used to

present text on-screen. In RibbonX terminology,
a property becomes an attribute. This word has
the same meaning as it does for XML, but in
reality, it affects how the RibbonX control
functions in some way.

User actions signal events when you use them
with objects. When a user clicks a button, the
system receives an event message that tells
your application to perform some action, such
as displaying a dialog box. RibbonX calls events
callbacks. Again, the name change is appropri-
ate because your code sits outside the RibbonX
environment — RibbonX literally makes a call-
back to your code to signal an event. However,
from your perspective, the callback still works
the same as an event.

08_169940 ch03.qxp 7/13/07 10:21 PM Page 59

Table 3-2 (continued)
Attribute Description

idQ* Specifies the identifier for a qualified control.
(A qualified control relies on a custom namespace
for definition.) You can’t use this attribute with either
the id or idMso attribute.

image* Defines the name of a custom image to use with the
control.

imageMso* Defines the name of a built-in image to use with the
control.

insertAfterMso* Identifies the location of a new control, based on the
position of a built-in control.

insertAfterQ* Identifies the location of a new control, based on the
position of a qualified control.

insertBeforeMso* Identifies the location of a new control, based on the
position of a built-in control.

insertBeforeQ* Identifies the location of a new control, based on the
position of a qualified control.

itemSize* Determines the size of a menu or other control item. You
can choose between large and normal as values.

keyTip* Adds a specific accelerator-key combination to the
control. The keytip appears when the user presses Alt.
You can specify any key combination, using from one to
three letters.

label* Specifies the text that appears as part of the control
when it’s displayed on-screen.

screenTip* Provides a short tip to help the user understand the
purpose of a control.

showImage* Determines whether Office displays the image associ-
ated with a control. You can choose between true and
false as values.

showItemImage Determines whether Office displays the image associ-
ated with a menu or other control item. You can choose
between true and false as values.

showItemLabel Determines whether Office displays the label associ-
ated with a menu or other control item. You can choose
between true and false as values.

60 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 60

Attribute Description

showLabel* Determines whether Office displays the label associated
with a control. You can choose between true and false as
values.

size* Determines the size of a control. You can choose between
large and normal as values.

sizeString Sets the size of the control to hold a string of the specified
width.

superTip* Provides a detailed tip (super-tooltip) to help the user
understand the purpose of a control.

tag* Contains user-defined data that you can use within your
application to interact with the control or other element.

title Specifies the text that Office displays in place of a
horizontal line for a menuSeparator control.

visible* Determines whether Office displays a control or other
feature. You can choose between true and false as
values.

* Used by four or more controls

Common RibbonX control callbacks
RibbonX provides a number of common callbacks that you can use to moni-
tor your application. Table 3-3 describes the most common callbacks that
you’ll use when creating your application. You’ll see many of these callbacks
in use throughout the book.

Table 3-3 Common RibbonX Callbacks
Callback Associated Controls Description

getContent dynamicMenu Defines the content of the control.

getDescription Various* Obtains a description of the con-
trol that you provide as part of
your application, and displays it
on-screen.

getEnabled Various* Lets your code enable or disable
controls.

getImage Various* Retrieves a custom image you
provide for the control.

(continued)

61Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 61

Table 3-3 (continued)
Callback Associated Controls Description

getImageMso Various* Retrieves a standard
image that you define for
the control.

getItemCount comboBox, dropDown, Obtains the number of
gallery items in the control’s item

list.

getItemHeight gallery Determines the item
height in pixels when dis-
played on-screen.

getItemID comboBox, dropDown, Determines the ID of the
gallery current item.

getItemImage comboBox, dropDown, Obtains the image associ-
gallery ated with the current item.

getItemLabel comboBox, dropDown, Obtains the label associ-
gallery ated with the current item.

getItemScreenTip comboBox, dropDown, Obtains the screentip
gallery associated with the

current item.

getItemSuperTip comboBox, dropDown, Objects the supertip asso-
gallery ciated with the current

item.

getItemWidth gallery Determines the item width
in pixels when displayed
on-screen.

getKeytip Various* Obtains a keytip (acceler-
ator) for the control that
you provide as part of
your application, and
displays it on-screen.

getLabel Various* Obtains a label for the
control that you provide
as part of your applica-
tion, and displays it on-
screen.

getPressed checkBox, Determines whether the
toggleButton user has clicked the

control in a manner that
activates it.

62 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 62

Callback Associated Controls Description

getScreentip Various* Obtains a screentip for
the control that you
provide as part of your
application.

getSelectedItemIndex dropDown, Determines which item
gallery the user has selected

from the list.

getSelectItemID gallery Obtains the ID of the
item that the user has
selected from a list.

getShowImage button Determines whether the
control displays an image
(which allows you to sup-
press the image even
when you’ve defined one
for the control).

getShowLabel button Determines whether the
control displays a label
(which allows you to
suppress the label, even
when you’ve defined one
for the control).

getSize Various* Defines the size for the
control, based on your
application’s output.

getSupertip Various* Obtains a super-tooltip
for the control that you
provide as part of your
application.

getText comboBox, Obtains the text associ-
editBox ated with the currently

selected item in a list.

getTitle menuSeparator Provides a title for the
specified control. Office
displays the text in place
of the horizontal line that
it normally displays.

getVisible button Determines whether the
control is visible.

(continued)

63Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 63

Table 3-3 (continued)
Callback Associated Controls Description

loadImage customUI Loads an image associated with the
user interface as a whole.

onAction Various* Executes the action for the control as
defined in your application code.

onChange comboBox, Detects a change in the user selection
editBox or control content.

onLoad customUI Performs a specific act during the
loading process.

* Used by four or more controls

Developing with the Office 2007
Custom UI Editor

The official method for modifying the Ribbon has you changing the file exten-
sion, extracting the required files, making modifications in an editor, archiv-
ing the files again, and (finally) changing the file extension back every time
you want to make any change at all. The beginning of this chapter uses that
manual process — which is error-prone at best.

A better way to make changes is to rely on a utility called Office 2007 Custom
UI Editor, or Custom UI Editor, for short. You can get it at

http://openxmldeveloper.org/articles/CustomUIeditor.aspx

The direct download link is at

http://openxmldeveloper.org/attachment/808.ashx

Using the Custom UI Editor is easier than the difficult process that Microsoft
suggests. All you do is open your document, template, or add-in, make the
required Ribbon additions, and save the file. The next time you open the file
in the Office application, it contains the updated Ribbon. Figure 3-4 shows a
typical example of the Custom UI Editor in action. The left pane contains the
XML for the example for this chapter, while the right pane shows a graphic
embedded in the file and used as a custom image.

64 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 64

One of the tasks that you commonly perform is creating your own tabs on the
Ribbon. However, just creating a tab isn’t enough; you must also create a
group and a control of some sort. Figure 3-4 shows a typical setup in Custom
UI Editor. The following steps describe the setup for this example:

1. Download and install Custom UI Editor on your system.

To do so, use the information earlier in this section.

2. Create a file to hold the new Ribbon tab, group, and button.

The example uses Excel, but you can also create the example using Word
or any other Office 2007 application that relies on the Ribbon. The
Ribbon has certain advantages over the older menu-and-toolbar setup
because it relies on a generic XML file to define the setup.

3. Close the application you used to create the data file.

Always close the host application before you use the Custom UI Editor
to make any changes to the target file. After you make the changes, save
them and reopen the file in the host application. Never make any
changes in the Custom UI Editor while you have the host application
open. Although your data will remain safe, making changes with both
the Custom UI Editor and the host application on the same file can have
unpredictable results, including lost VBA code.

Figure 3-4:
The Custom

UI Editor
makes short

work of
Ribbon

changes.

65Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 65

4. Start the Custom UI Editor.

5. Open the data file you created.

You may need to set the Files of Type field to All Files (*.*) to see
templates and documents.

The Custom UI tab in the editor is blank because you haven’t added any
custom UI features to this file yet.

6. Choose Sample➪Custom Tab in the Custom UI Editor.

The Custom UI Editor automatically creates the entries for a custom tab
for you.

7. Modify the entries as needed to create the custom interface.

You can open the sample code for this chapter to see the XML required
to use most of the controls described in Table 3-1. Opening the Excel file
will show you how these controls appear and let you work with them.

8. Click Save.

9. Open the file in the application you used to create it.

You see a new tab like the one shown in Figure 3-5. The tab isn’t func-
tional yet, but you can see it.

Creating Custom Control Graphics
The Ribbon brings a number of new features for graphics as well as the devel-
oper goodies described in the rest of the chapter. For example, you’ll find
that Office supports standardized graphics better, and you won’t spend
nearly as much time trying to get the right look for your application. The
following sections describe a number of interesting graphics considerations
for your applications.

Figure 3-5:
Adding a
new tab,
group, or
control is

the first step
to program-

ming the
Ribbon.

66 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 66

Obtaining a list of Office icons
Microsoft does provide a list of all of the Office icons. However, the list isn’t a
straightforward download; you have to do a little work to obtain the informa-
tion. The following steps describe the process you use to download and view
a list of Office icons.

1. Download the Office2007IconsGallery.EXE file from the follow-
ing location:

http://www.microsoft.com/downloads/details.aspx?family
id=12b99325-93e8-4ed4-8385-74d0f7661318

You’ll need to validate your copy of Office to obtain this download,
which means you can’t use alternative browsers, such as Firefox, to per-
form the download. In addition, even though the .EXE file is an archive,
you can’t use WinZIP or other utilities to open it.

2. Double-click the .EXE file.

You see a message box asking whether you want to install the icon
gallery.

3. Click Yes.

You see a license-agreement dialog box.

4. Click Yes.

You’ll see a WinZIP Self-Extractor dialog box.

5. Choose a location for the icon gallery and click Unzip.

The default location of the icon gallery is C:\2007 Office System
Developer Resources\2007OfficeIconsGallery. Microsoft uses
the C:\2007 Office System Developer Resources folder for
other Office 2007 downloads, so you’ll normally want to use the default
location.

6. Double-click the Office2007IconsGallery.xlsm file found in the
location you used to unzip the file.

You see an Excel window.

7. Click the Office button and click Excel Options.

You’ll see the Excel Options dialog box with the Popular folder
selected.

8. Check Show Developer Tab in the Ribbon and click OK.

The Developer tab contains a number of entries, including a special
Office Icons group. You can now determine the names of all of the built-
in icons.

67Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 67

Click any of the buttons in this group to display a list of the icons that it con-
tains, such as Gallery 1, shown in Figure 3-6. You can determine the name
used for a particular icon by hovering the mouse over it. For example, if you
wanted to use the selected icon in your application, you’d access it by typing
BevelShapeGallery as the imageMSO attribute value.

Tools for creating control graphics
Because Office provides a more standardized approach for working with
graphics, you can use all of the standard industry tools to create images now.
No longer do you need to worry about creating a transparency mask, because
Office supports the alpha bits (the bits in addition to blue, green, and red
used to code a particular bit within an image) that determine transparency.

In the past, many developers have used Paint — or the graphics features of
Visual Studio — to create icons. This approach works fine when you’re work-
ing with older versions of Office. Unfortunately, because Office 2007 now sup-
ports a number of new graphics features, these older tools are inadequate to
the task. If you use an older tool to create your graphics, you can run into all
kinds of problems. An icon may look just fine on your system, but it may not
display very well at all on a user’s machine.

Figure 3-6:
The Office
2007 Icons

Gallery tells
you how to
access the

built-in
icons.

68 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 68

If you’re going to update your graphics tools, make sure you obtain a product
that supports all of the formats listed in Table 2-1. However, of all of the
image formats that Office supports, the PNG format is the most important
because it provides the best transparency support. The reason that trans-
parency is so important is that images that don’t support it tend to cause
problems when working in Vista in the Aero Glass mode.

If you really do need a free alternative for creating your images, Paint.NET
provides a great graphics editor that you can simply download and use. This
editor supports JPEG, PNG, and BMP images, so you have great options for
creating Office graphics. Even though it looks similar to Paint, you’ll be
amazed at the number of tasks that Paint.NET can perform — including the
creation of transparent effects. You can obtain this product at

http://www.getpaint.net/index2.html

Choosing between bitmaps and icons
Many developers think that their only choice in graphics is icons. In the past,
developers did experience a problem using bitmaps where an icon was the
most appropriate choice. However, when working with Office, you’ll find that
bitmaps actually work very well when you need an icon. In addition, because
they size better, bitmaps are actually a better choice for Office 2007. You can
create an image at the size that feels most comfortable to you, and Office will
automatically resize it to meet whatever need it has at the time.

The only problem with bitmaps is that sometimes Office does resize them in
such a way that you see unusual effects, such as moiré patterns or a signifi-
cant loss of detail. In addition, bitmaps can consume considerable space in
your document, template, or add-in, so you need to consider the tradeoff
between flexibility and file size when working with a large number of graphics.

Understanding how transparency works
Transparency is an important consideration for your graphics for a number
of reasons. When a graphic doesn’t support transparency correctly, you see
the icon or bitmap background, rather than the Office background when you
display it on-screen. If you just happen to have a rectangular icon or bitmap
where every space contains information, you probably won’t experience a
problem. However, you’ll always experience problems with images that con-
tain irregular borders. The background will show through, and the image will
prove quite distracting to your users (making them think that you’ve done a
less-than-professional job).

69Chapter 3: Designing New RibbonX Elements

08_169940 ch03.qxp 7/13/07 10:21 PM Page 69

Modern transparency relies on a fourth color. A single pixel relies on a combi-
nation of red, green, and blue to determine its color. A fourth color — called
the alpha color — determines the transparency of the pixel. You can set a
pixel to provide complete transparency, complete opacity, or something in-
between. Graphics cards include alpha-blending features to ensure that the
user can see through multiple levels of graphics as needed to obtain the
desired visual effect. In fact, you can see this effect quite readily when view-
ing Vista’s Aero Glass interface, and many game applications also use trans-
parency to good effect.

Relying on 32-bit images
Most graphics programs today save your images in 32-bit format. Assuming
that you also write your application to use 32-bit graphics, you won’t ever
experience a problem trying to display graphics on a range of machines.
However, if you’re using an older graphics program that stores images in 16-
bit format, or you use the wrong programming technique to load the image,
you can inadvertently end up with images that work great on one machine
and not-so-great on another.

Windows supports a concept of Device-Dependent Bitmaps (DDBs) and
Device-Independent Bitmaps (DIBs). A DIB always requires a 32-bit graphic —
which allows 8 bits for each of the four colors (including transparency) for
each pixel in the image. On the other hand, a DDB normally relies on a 16-bit
graphic, which provides 5 bits for each of the colors you can see and only 1
bit for the transparency. Clearly, one measly bit of transparency support isn’t
enough (in most cases) to display graphics in Office correctly.

The best way to avoid this problem is to use a newer graphics editor and
always save your images in 32-bit format. If you’re using VBA to create your
application, this is the only step you need to consider, because the Office
application automatically uses the correct technique to load the image for
you. When you’re working with Visual Studio, always make sure you load the
image as a DIB to ensure it looks just as good on the user’s machine as it does
on yours.

70 Part II: Interacting with the Ribbon

08_169940 ch03.qxp 7/13/07 10:21 PM Page 70

Chapter 4

Writing RibbonX Scripts
In This Chapter
� Understanding RibbonX scripting when using VBA

� Defining the limits of RibbonX for VBA developers

� Developing a basic tab

� Adding tab script

� Developing a Ribbon from scratch

� Working with forms in the RibbonX environment

Some VBA developers are under the impression that Microsoft is leaving
them out in the cold when it comes to Office 2007. It’s true that you can’t

perform as many tasks using VBA with Office 2007 as you can with Visual
Studio, but that’s always been true. VBA provides a level of access to Office
that lets people do amazing things, but it never has provided complete
access.

This chapter helps you create several RibbonX applications using VBA. The
first application helps you understand the basics of working with VBA and
RibbonX. It doesn’t spend a lot of time with the visual elements of the Ribbon
(those features appear as part of Chapters 2 and 3), but it does provide
enough information so you can use the examples.

The second application shows how to design a Ribbon interface from
scratch. Depending on the complexity of the templates you want to move
from previous versions of Office or your security requirements, you may find
that starting from scratch is the only way to obtain usable results. In addi-
tion, the starting from scratch approach does allow you to limit the users’
access to Office features that you don’t want them to use.

The third application moves from basic interaction with the Ribbon into
using forms. Adding forms to your application could help you adapt older
applications significantly faster than you could by creating an entirely new
Ribbon interface for them. Of course, how well this technique works depends
on how you put your application together. In some cases, a full conversion is
the only reliable method.

09_169940 ch04.qxp 7/13/07 10:22 PM Page 71

Understanding RibbonX Basics
for VBA Developers

VBA developers might initially feel as if Microsoft has left them out of the
loop, especially after loading a carefully crafted application into an Office
2007 application and, when it appears on-screen, seeing that nothing’s where
they left it. In most cases, you’ll see everything special about your applica-
tion crammed onto the Add-Ins tab — where it’s very hard to use and may
not work at all. Many people feel that Microsoft’s reasoning behind this
particular developmental decision is flawed.

According to the blog at http://pschmid.net/blog/2006/10/18/68,
Microsoft’s statistics show that 99.7% of all Office sessions don’t customize.
Given the cost of supporting a version of Office that provides maximum cus-
tomization, Microsoft simply decided not to support much customization at
all. You can still modify the following features without resorting to using
RibbonX:

� Quick Access Toolbar (QAT)

� Status bar

� Galleries

� Add-ins tab

Writing new applications may present a bit of a problem, too. If you’re used
to working with the older event-driven CommandBar objects, moving to the
new setup could prove troublesome. The ideas are basically the same as
before. When a user clicks a button, the system calls your code and your
code reacts to the action. Now, however, you’re working with callbacks and
you have to describe the buttons as part of an XML file, rather than directly
changing a toolbar. Even so, the issue is one of learning to work with new
objects, not with an entirely new programming culture.

Because of the way you’re working with Office 2007 documents, you have to
remember to save them in a format that allows macros. For example, when
working with Word, you’ll save the file using a DOCM extension, rather than a
DOCX extension. Interestingly enough, the file content doesn’t appear to
change when you use one extension over the other, so you can simply change
the extension if you make a mistake and use the wrong one. The Office appli-
cation simply opens the file differently when it sees one extension or the
other. In fact, as you saw in Chapter 3, the Office documents aren’t really
extended DOC files at all; they’re a kind of ZIP archive files in disguise.

72 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 72

The business-logic code you’ve used in the past continues to work in Office
2007. Working with a file on disk is the same as before, as is creating XML or
interacting with a Web service. Accessing a database hasn’t changed either.
All of this business-logic code from the past can remain the same.

The part of your application that does change is the user interface. The exam-
ples in this chapter show that working with the user interface is perhaps easier
than it was in the past because RibbonX passes more information to your appli-
cation. However, the fact that the user interface code is different is going to
cause problems for many developers, especially when the application interacts
a lot with the user. In many cases, it’s best to separate this code out of your
application and provide functions for the business logic as a first step toward
making the move to Office 2007. (Chapter 13 provides complete information on
how best to move various kinds of VBA applications from older versions of
Office to Office 2007 and even making the two versions work together.)

Considering the RibbonX
Limitations in VBA

Even though developers have created amazing VBA applications, VBA simply
doesn’t provide all the programming features of a high-level language, such
as VB.NET or C#. That doesn’t mean you can’t create significant applications
with VBA; many developers do.

VBA is no longer a complete tool as it was in earlier versions of Office. You
have to add some tools to the mix in order to achieve good results using
Office 2007. Fortunately, the two tools you need are free and you’ll find them
discussed in Chapter 3. The first tool, Office 2007 Custom UI Editor (the book
simply calls this tool the Custom UI Editor from this point on), makes it possi-
ble to create the XML needed to interact with the Ribbon in a reasonable
amount of time (see the discussion in the “Developing with the Office 2007
Custom UI Editor” section of Chapter 3). The second tool is a good graphics
editor. You’ll find a discussion of Paint.NET in the “Tools for creating control
graphics” section of Chapter 3.

You’ll also hear a lot of discussion about add-ins for Office 2007 because that
seems to be the Microsoft emphasis at the moment. A VBA developer can’t
create add-ins because writing VBA code doesn’t result in an executable file.
However, even though this is a VBA limitation, it isn’t a new limitation; VBA
developers have never created add-ins.

73Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 73

Some online sites also discuss exotic techniques that VBA developers are
likely going to want to avoid. For example, you can inject graphics into an
Office 2007 application so the images on-screen match some dynamic crite-
ria. (The text styles presented in the Styles group of the Home tab in Word
are an example of this approach.) When working with VBA, it’s generally a
better idea to place the graphics you need in the template or document
(using the Custom UI Editor) than to try to inject the graphic from disk.

One type of injection that VBA developers can’t use is XML injection.
Although a Visual Studio developer can use this technique to create tabs,
groups, and controls at runtime, the option simply isn’t available to VBA
developers.

More than a few early implementers have complained about a particular
problem with VBA. If you’re not careful, it’s easy to erase all your hard work
from a document or template. The _rels and CustomUI files apparently dis-
appear or revert to an earlier state. An important issue for VBA developers is
to realize that you’re not using a single tool any longer. Modifying the docu-
ment or template while you also have it open in the Office application will
almost certainly result in disaster. The order in which you create a RibbonX
application is important; here’s the correct sequence:

1. Create the document or template.

2. Define any required styles or other document features.

3. After saving and closing the document or template and the associated
application, add any required graphics and XML using the Custom UI
Editor.

4. After saving and closing the document or template and the Custom UI
Editor, open the document or template again in the application, and
check the user interface.

5. Add the VBA code required to make the application work.

Custom Task Panes (CTPs) can greatly ease some movement tasks between ear-
lier versions of Office and Office 2007. Placing tasks within a CTP makes it easy
to access by anyone no matter which version of Office they use. Unfortunately,
VBA programmers can’t use CTPs because they require executable code — in
particular, a COM (Component Object Model) component. Some developers
have overcome this problem by creating a COM add-in that reads VBA user
forms. For example, check out the CTP post at

http://blogs.msdn.com/excel/archive/2006/07/11/662623.aspx

One of the more interesting deficiencies for VBA developers is that you can
use — but not create — menus and toolbars. Consequently, the Add-Ins tab
will show you all the menus and toolbars you actually designed into the

74 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 74

template — but nothing that you create programmatically. If you’re looking
for missing application features, check to see if they’re created programmati-
cally as part of your update process.

Creating a Basic Tab
Chapters 2 and 3 describe the mechanics of creating a tab. The best way for a
VBA developer to work with tabs is to use the Custom UI Editor. An important
consideration before you begin working with VBA is how you plan to present
the options to the user. When working with VBA, you can perform the follow-
ing actions:

� Create a new tab with groups and controls

� Add new controls to an existing tab

� Add new controls to the Office menu

� Repurpose controls on an existing tab

� Repurpose controls on the Office menu

The first example in this chapter shows how to perform all five of these
actions. This section begins with the tabs. The example shows how to create
a new tab with the requisite group and controls, add new controls to both an
existing tab and the Office menu, and repurpose controls on both an existing
tab and the Office menu.

Repurposing is the act of changing the functionality of an existing control. You
can still perform the old action after you perform the custom action, but the
point is that you’re changing the default behavior of a control. By and large,
don’t repurpose a control unless it’s absolutely necessary.

This example also uses custom graphics for two of the controls. The first
image is a simple bitmap, while the second is an icon. The following steps tell
how to insert your own graphics into a file using the Custom UI Editor.

1. Open the file you want to modify in the Custom UI Editor.

2. Click Insert Icons on the toolbar.

You’ll see an Insert Custom Icons dialog box. This dialog box works like
any typical file open dialog box.

3. Locate the bitmap or icon that you want to include in the template or
document and click Open.

You see the icon or bitmap added to the file. Figure 4-1 shows a typical
example.

75Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 75

Don’t worry about the actual XML for the Excel worksheet changes right now.
You’ll see each of the XML elements in the “Writing the Scripts” section of the
chapter. For now, all you really need to consider is the act of creating this
content and adding graphics to dress up the interface.

Writing the Scripts
After you have the pieces of the interface in place, you can begin adding VBA
code to your application. The techniques you use vary by addition type. The
following sections describe how to implement each of the five additions
described in the “Creating a Basic Tab” section of the chapter.

Automatically generating
the callback subs
Writing code for the Ribbon differs significantly from writing code for the
menu-and-toolbar setup. Fortunately, the Custom UI Editor can help reduce the
difficulty of the coding experience for you, as shown in the following steps:

Figure 4-1:
Add the

XML and
graphics

required to
create your

custom
interface.

76 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 76

1. Select the Custom UI Editor and click Generate Callbacks on the
toolbar.

You see a Callbacks tab appear with VBA code in it. The code provides
precisely what you need to access the button you created. Using this
approach takes the guesswork out of creating a Sub for your button.
Notice that the callback includes a variable you can use to access the
button. You can’t access the button directly from VBA.

2. Highlight all the code and press Ctrl+C.

3. Open the VBA Editor and add a new module called RibbonX.

4. Select the VBA Editor. Place the cursor on a new line at the end of the
file and press Ctrl+V.

You see the VBA code added to the module.

Always perform this task at the outset of the development effort, before
you’ve written any other code. Using this approach ensures that you get your
application off to a good and fast start.

Coding a new tab with groups and controls
One of the most common tasks you’ll perform is creating a new tab with
groups and controls. This section shows how to work with My Button in My
Group on My Tab — which you create using the following XML:

<tab id=”myTab” label=”My Tab”>
<group id=”myGroup” label=”My Group”>
<button id=”myButton”

label=”My Button”
image=”Colorblk2”
size=”large”
onAction=”myButton_ClickHandler”/>

</group>
</tab>

Notice that this example uses a custom image, so it relies on the image
attribute, rather than the imageMso attribute. You can see this image
added to the example document in Figure 4-1. This button also includes
the onAction attribute to provide a callback to the VBA code. You can see
this tab in Figure 4-2.

77Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 77

In this case, the example performs a simple interaction with the control
passed by RibbonX. The control variable provides only a few, but essential,
values you can use. The following code shows how you can display the
control’s identifier:

‘Callback for myButton onAction
Sub myButton_ClickHandler(control As IRibbonControl)

MsgBox control.ID + “ Clicked”
End Sub

Add the MsgBox call, as shown, to display a dialog box. Save the file and
click My Button on the My Tab tab. You see a dialog box that contains the
My Button identifier.

The same techniques described for a Ribbon addition also work for the appli-
cation menu. However, rather than use the <tabs> element, you use the
menu element that you want to change, such as the <fileMenu> element.
You can obtain a complete list of all the Ribbon schema elements (the special
elements you use to write Ribbon additions) at

http://www.microsoft.com/downloads/details.aspx?familyid=
15805380-F2C0-4B80-9AD1-2CB0C300AEF9

Obtaining an identifier for an
existing tab, group, or control
Often, you’ll find that a new feature you want to add fits better on an existing
tab than creating a new tab of your own. You can modify any existing element
as long as you know the required identifier. Microsoft provides these identi-
fiers as a download at

Figure 4-2:
The simple

tab example
is now

complete
with VBA

code to
react to

the button.

78 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 78

http://www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae

You can also view the identifiers by using a special feature of the Office
products with the Ribbon interface. The following steps describe how:

1. Click the Office menu to display its menu.

2. Click Options (such as Word Options in Word).

You see the Options dialog box for that application.

3. Select the Customize folder in the Options dialog box.

4. Select an entry in the Choose Command From field.

5. Hover the mouse pointer over the control you want to work with.

You see a tooltip that displays the identifier for that control in parenthe-
ses after the control name.

Unfortunately, this technique works with controls only. If you want to find the
identifiers for tabs or groups, you need to download the Microsoft-supplied
documentation.

Modifying or repurposing existing
tabs, groups, and controls
The example in this section shows (first) how to add a new control to an
existing tab, and then how to work with an existing control. It demonstrates
two techniques:

� The example adds a new group and control to an existing tab.

� You see how to change the behavior of an existing control by using
repurposing.

Creating the custom user interface
Repurposing usually involves two steps. First, you must determine some
mechanism to signal the change in behavior. The example uses a simple
toggle button for the task, but you could use anything. For example, you
might want to disable printing when the user is on the road and doesn’t have
a printer connected to the system. Second, you must provide the required
linkage to repurpose the control. Listing 4-1 shows the code for the simple
toggle button used in this example. You would insert this code into the
<ribbon> element. (You can find the source code for this example on the
Dummies.com site at http://www.dummies.com/go/ribbonxfd.)

79Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 79

Listing 4-1: Creating a Toggle Button

<tab idMso=”TabHome”>
<group id=”BehaviorChange”

label=”Behavior”
insertAfterMso=”GroupFont”>

<toggleButton
id=”StopUnderline”
label=”Stop Underlining”
onAction=”StopUnderline_ClickHandler”
getPressed=”StopUnderline_GetPressed”
size=”large”
imageMso=”ColorPickerXLFill”/>

</group>
</tab>

This new group actually appears on the Home tab. Notice that the <tab>
element uses idMso instead of id as the identifier. The idMso attribute
defines an existing identifier — TabHome in this case. The <group> element
defines a new group on the existing tab. The example inserts the new group
after the GroupFont group, as shown in Figure 4-3.

The toggle button includes a number of new features. Notice that you must
provide two callbacks: onAction and getPressed. The onAction callback
performs the same task as a standard button by letting you know when the
user clicks the toggle button. The getPressed callback records the state of
the toggle button. Notice that this example uses ColorPickerXLFill as the
imageMso value. You can use the icon from any existing button for controls
you create.

80 Part II: Interacting with the Ribbon

Using the Control UI Editor with care
I’m showing you this example because the
Control UI Editor doesn’t always provide the
correct arguments for some events, such as
onAction. When you run this application,
you see an error message stating that some-
thing has the wrong number of arguments.
Unfortunately, VBA doesn’t tell you what piece
of code has the wrong number of arguments,
and troubleshooting doesn’t help you find the
problem. In this case, the signature (the argu-
ments) for the Underline toggle-button

callback is incorrect. You can see these signa-
tures at http://msdn2.microsoft.
com/en-us/library/ms406047.aspx.
The correct callback signature looks like this:

sub OnAction(control as
IRibbonControl, _

pressed as
Boolean, _

ByRef
fCancelDefault)

09_169940 ch04.qxp 7/13/07 10:22 PM Page 80

81Chapter 4: Writing RibbonX Scripts

The linkage for the repurposing appears as a new child of the <customUI>
element rather than in the <ribbon> element. The <commands> provides a
list of commands you want to repurpose and the VBA scripts that handle
them. Here’s the repurposing linkage for this example:

<commands>
<command idMso=”Underline” onAction=”myUnderline”/>

</commands>

Because you’re creating linkage to an existing control, you must use the
idMso attribute with a value that tells which control to repurpose. In this
case, the code repurposes the Underline control. The Sub used as a
callback is myUnderline.

Reacting to user input
Now that you have the custom Ribbon changes made, you can create code
required to interact with the Ribbon in VBA. Listing 4-2 shows the code
required to make this part of the example work. (You can find the source code
for this example on the Dummies.com site at http://www.dummies.com/
go/ribbonxfd.)

Listing 4-2: VBA Interaction with the Ribbon

‘Determines the behavior button state.
Dim lBehavior As Boolean

‘Callback for StopUnderline onAction
Sub StopUnderline_ClickHandler(_

control As IRibbonControl, _
pressed As Boolean)

‘ Change the behavior state.
lBehavior = pressed

(continued)

Figure 4-3:
You can

place new
groups

anywhere
within an

existing tab.

09_169940 ch04.qxp 7/13/07 10:22 PM Page 81

Listing 4-2 (continued)

‘ Update the control.
Rib.InvalidateControl (control.ID)

End Sub

‘Callback for StopUnderline getPressed
Sub StopUnderline_GetPressed(_

control As IRibbonControl, _
ByRef returnedVal)

‘ Return the current behavior state.
returnedVal = lBehavior

End Sub

‘Callback for myUnderline onAction
Sub myUnderline(control As IRibbonControl, _

pressed As Boolean, _
ByRef fCancelDefault)

If (lBehavior) Then
MsgBox “No Underlined Allowed!”
pressed = False
fCancelDefault = True

Else
fCancelDefault = False

End If
End Sub

The code begins by defining a variable to track the behavioral state of the
application. You need this variable to ensure that the StopUnderline
control you added reflects the correct state.

The StopUnderline_ClickHandler() Sub receives the current control
and its pressed state. Theoretically, you can use the same Sub for all your
controls by checking the control’s identifier. However, most developers use a
separate Sub for each control. The code stores the state of the control in
lBehavior and then uses InvalidateControl() to redraw everything.

The StopUnderline_GetPressed() Sub completes the process of show-
ing the current toggle button state by returning lBehavior to the Ribbon.
Because the Ribbon calls this Sub when you first load the document, you
must also provide a default value for lBehavior in RibbonLoaded().

You can repurpose a control to perform any task you want, or you can turn it
off completely. In this case, myUnderline() performs the default action
when lBehavior is False. When the user sets Stop Underlining and
lBehavior is True, however, the code displays a message telling the user
that no underlining is allowed. In addition, the code tells the Ribbon not to
depress the Underline toggle button and not to perform the default action.

82 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 82

Modifying or repurposing the Office menu
As with the Office tabs, you can modify or repurpose items on the Office
menu. You can also add new controls and even new major menu items.
However, there’s only one Office menu, so you can’t perform something
similar to adding a new tab. The following sections describe how to add
new items to the Office menu and repurpose existing items.

Adding items to the Office menu
Working with the Office menu requires use of a few new techniques. The
Office menu items don’t appear within the <tab> element, they appear
within the <officeMenu> element instead, as shown in Listing 4-3. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/ribbonxfd.)

Listing 4-3: Changing Items on the Office Menu

<officeMenu>

<menu idMso=”FilePrepareMenu”>
<button id=”NewPrepButton”

label=”My Prepare Button”
description=”Prepare Time”
image=”TIME”
insertBeforeMso=”FileProperties”
onAction=”NewPrepButton_ClickHandler”/>

</menu>

<splitButton idMso=”FileSaveAsMenu”>
<menu idMso=”FileSaveAsMenu”>
<button id=”SayHello”

label=”Say Hello”
description=”This button says hello!”
imageMso=”Colorblk2”
onAction=”SayHello_ClickHandler”/>

</menu>
</splitButton>

</officeMenu>

In the first case, the code simply adds a new control to the Prepare menu, as
shown in Figure 4-4. This control uses a custom icon, as compared to the
custom bitmap for the control shown in Figure 4-2. Notice how the example
uses the insertBeforeMso attribute to place the control at the top of
the list. It’s also important to see how the example uses the label and
description attributes because they work differently from the tabs. The
label attribute provides a name for the control, while the description
attribute tells how to use it.

83Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 83

The second case may take you by surprise. Notice that the FileSaveAsMenu
entry starts with a <splitButton> element. If you attempt to add a new
control without this entry, Office will raise an error despite the fact that the
FileSaveAsMenu entry looks physically the same as the FilePrepare
Menu entry. The only clue you have about a potential problem is the
WordRibbonControls.xlsx file found in the 2007OfficeControlIDs
Excel2007.exe file you can download from the 2007 Office System
Document: Lists of Control IDs site at

http://www.microsoft.com/downloads/details.aspx?FamilyId=
4329D9E9-4D11-46A5-898D-23E4F331E9AE

This example demonstrates the reason you should always check the control
specifics before you attempt to work with them. The listing of control IDs
tells you that the FileSaveAsMenu entry is actually a split button and not a
menu. Notice how the code adds a <menu> element to the <splitButton>
element before adding the <button> control.

Interacting with Office menu controls is pretty much the same as interacting
with those on the tabs, as shown in Listing 4-4. Each of the callback handlers
displays a message box; the Custom UI Editor generated all these handlers
correctly.

Figure 4-4:
This

Prepare
menu option
shows how

to add
controls to
the Office

menu.

84 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 84

Listing 4-4: Reacting to Controls on the Office Menu

‘ Callback for My Prepare Button on the
‘ Prepare menu of the Office menu.
Sub NewPrepButton_ClickHandler(control As IRibbonControl)

‘ Display a message.
MsgBox “Are you prepared?”, vbYesNo

End Sub

‘ Provides support for the Say Hello Button on the
‘ Save As menu of the Office Menu.
Sub SayHello_ClickHandler(control As IRibbonControl)

‘ Display a message.
MsgBox “Hello!”

End Sub

Repurposing Office menu controls
Repurposing an Office menu control works about the same as it does for the
tab. You begin by adding an entry to the <commands> element, as shown
here. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/ribbonxfd.)

<commands>
<command idMso=”FileSaveAsExcel97_2003”

onAction=”FileSaveAs_ClickHandler”/>
</commands>

In this case, the example provides an additional warning when someone tries
to save an Office 2007 document in an older format. Listing 4-5 shows the
VBA code required to handle this scenario.

Listing 4-5: Verifying a Conversion to an Older Office Format

‘ Repurposes callback for the File Save As button.
Sub FileSaveAs_ClickHandler(_

control As IRibbonControl, _
ByRef fCancelDefault)

‘ Holds the user response.
Dim Answer As VbMsgBoxResult

‘ Display a message.
Answer = _
MsgBox(“Saving as an old version. Are you sure?”, _
vbYesNo)

(continued)

85Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 85

Listing 4-5 (continued)

‘ Act on the response.
If Answer = vbYes Then

fCancelDefault = False
Else

fCancelDefault = True
End If

End Sub

This example shows one use of the fCancelDefault argument. The code
begins by displaying a message box. If the user clicks Yes, the code sets
fCancelDefault to False, which means that Office displays the Save As
dialog box. Otherwise the code sets fCancelDefault to True, which means
the user doesn’t see anything.

Performing tasks when the Ribbon loads
Not every task you perform with the Ribbon involves a control. You have
access to a wealth of information about the Ribbon, and one of the most
important callbacks concerns Ribbon loading. You use the onLoad attribute
for the <customUI> element, as shown here:

<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
onLoad=”RibbonLoaded”>

This callback looks for a RibbonLoaded Sub in your VBA code. As with
button and other control events, you can ask the Custom UI Editor to gener-
ate the required Sub code for you automatically. All you need to do then is
fill in the Sub with the actions you want to perform. Listing 4-6 shows an
example of a common task you could perform in the Ribbon onLoad call-
back. (You can find the source code for this example on the Dummies.com
site at http://www.dummies.com/go/ribbonxfd.)

Listing 4-6: Defining a Callback for Ribbon Loading

‘Define a global variable to hold the Ribbon reference.
Dim Rib As IRibbonUI

‘Callback for customUI.onLoad
Sub RibbonLoaded(ribbon As IRibbonUI)

‘Save the ribbon reference.
Set Rib = ribbon

‘ Tell the user the Ribbon is loaded.
MsgBox “Ribbon Loaded”

End Sub

86 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 86

This example may not look like much, but you often need the Ribbon refer-
ence (Rib in this case) when you make changes to the Ribbon. You use the
Invalidate method to tell the Ribbon to redraw itself and display any
features you remove, change, or add.

Creating a Ribbon Using
startFromScratch Mode

In most cases, you won’t want to modify the Ribbon so much that it actually
pays to start from scratch, without any controls on the display. The reasons
are simple. If you modify the user interface completely, it’s possible that
you’ll make the application unusable because it lacks a necessary standard
control. In fact, this very problem happened with previous versions of Office,
costing Microsoft (and other companies) a lot of money in support.

Even though you won’t want to start from scratch normally, you might find
occasion to remove unneeded controls from view. For example, you might
create a special-purpose application that has no use beyond the single task it
performs. (An application that keeps track of your bids on eBay might fall
into this category.)

The essential change to the XML that enables you to begin from scratch
appears in the <ribbon> element. You simply add the startFromScratch
attribute, as shown here:

<ribbon startFromScratch=”true”>

To see startFromScratch in action, create a new Excel document. Open
the document in the Custom UI Editor and choose Sample➪Excel – A Custom
Tab. The Custom UI Editor creates a new interface for you. Change the
<ribbon> element so that it includes startFromScratch=”true”. You’ll
also want to remove the insertAfterMso=”TabHome” attribute from the
<tab> element. Close the file and you’ll see something like the interface
shown in Figure 4-5.

Except for the major change in interface, working in startFromScratch
mode isn’t any different from working in RibbonX normally. You’ll create the
interface, and then add VBA to support the interface. Any default controls
that you add to the interface will react normally unless you repurpose them.

87Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 87

Adding Forms Instead
of RibbonX Controls

Don’t get the idea that the Ribbon suddenly negates the techniques you’ve
used in the past. Yes, you’ll always experience some level of complexity —
but you can significantly reduce that complexity by using approaches you’ve
always used. For example, you can add a form to your application to display
in place of a series of RibbonX controls. All you really need is a single button
that displays the form.

Working with forms has several advantages for the VBA developer, not the
least of which is keeping the majority of your code in the VBA editor. Using
forms can also ease the learning curve for users who are more accustomed to
forms than they are to the Ribbon interface. With this in mind, the example in
this section shows how to display and work with a simple form. Listing 4-7
shows the XML you’ll need to add to an Excel file to begin the example. (You
can find the source code for this example on the Dummies.com site at
http://www.dummies.com/go/ribbonxfd.)

Listing 4-7: Adding a Button to Access a Form

<customUI
xmlns=”http://schemas.microsoft.com/office/2006
/01/customui”>

<ribbon>
<tabs>
<tab idMso=”TabHome”>
<group id=”FormList” label=”Forms”>
<button id=”ShowForm”

label=”Show Form”
imageMso=”HappyFace”
size=”large”
onAction=”ShowMyForm” />

Figure 4-5:
Starting

from
scratch

means you
won’t see

anything but
the items

you create.

88 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 88

</group>
</tab>

</tabs>
</ribbon>

</customUI>

The example begins with a standard button displayed on the Home tab.
When you use forms, you’ll very likely want to place the buttons for them on
existing tabs whenever possible. Creating a custom tab could reduce part of
the benefit of using forms — after all, users still have to discover where you
put the button before they can access it.

After you create the button to access the form, you work with the form just
as you always have. You create the module to hold the callback, use the call-
back to create the form, let the user interact with it, and then process the
form data. Nothing changes from what you’ve done in the past, and this
technique even works across Office versions (with careful programming).
Listing 4-8 shows the form-handling code for this example.

Listing 4-8: Handling a Form with RibbonX

‘ Callback for ShowMyForm onAction
Sub ShowMyForm(control As IRibbonControl)

‘ Call the common processing routine.
ProcessForm

End Sub

‘ Provides common processing for all Office versions.
Sub ProcessForm()

‘ Contains the custom form.
Dim ThisForm As SimpleForm

‘ Holds the message the user chooses.
Dim Msg As String

‘ Create the form.
Set ThisForm = New SimpleForm

‘ Display the form.
ThisForm.Show

‘ Check which option the user selected.
If ThisForm.optGoodbye = True Then

Msg = ThisForm.optGoodbye.Caption
ElseIf ThisForm.optHello Then

Msg = ThisForm.optHello.Caption
ElseIf ThisForm.optToday Then

Msg = ThisForm.optToday.Caption

(continued)

89Chapter 4: Writing RibbonX Scripts

09_169940 ch04.qxp 7/13/07 10:22 PM Page 89

Listing 4-8 (continued)

ElseIf ThisForm.optYesterday Then
Msg = ThisForm.optYesterday.Caption

End If

‘ Display the result.
MsgBox “You Chose: “ + Msg

End Sub

In this case, the form contains four message output options, as shown in
Figure 4-6. When the user selects an option and clicks OK, the code processes
the option and displays a message.

Figure 4-6:
Forms let

you provide
extra

options that
don’t appear

on the
Ribbon.

90 Part II: Interacting with the Ribbon

09_169940 ch04.qxp 7/13/07 10:22 PM Page 90

Chapter 5

RibbonX and Visual Studio
In This Chapter
� Understanding why you should use Visual Studio

� Configuring your system for RibbonX

� Defining how RibbonX works for C# and Visual Basic.NET developers

� Making a decision between VBA and Visual Studio

� Designing a tab

� Adding code behind to interact with the RibbonX controls

� Creating a Ribbon interface from scratch

RibbonX and Visual Studio are made for each other. You can use these
two products together to create some amazing applications with less

effort than you might think. Microsoft has really put a lot of effort into making
Visual Studio and RibbonX work together. Not only are there special tem-
plates you can use to create every kind of RibbonX project, you’ll find that
Visual Studio does a lot more to help you along. However, don’t get the idea
that Visual Studio somehow magically makes everyone into a developer. You
still need good programming skills to use Visual Studio — but once you have
the basic skills, you’ll find that working with Office is no longer the painful
act of slow torture that it used to be.

This chapter helps you perform a number of tasks to use Visual Studio with
RibbonX. The first piece of software you’ll need is a copy of Visual Studio 2005.
Theoretically, you could also create these applications using Visual Studio
2003, but Visual Studio 2005 provides so many advantages that you really owe
it to yourself to use the newer product. (Microsoft doesn’t support Visual
Studio 2003 in Vista, so you must use Visual Studio 2005 when working in the
Vista environment.) You’ll have to perform a number of configuration tasks to
make Visual Studio work with RibbonX (described in the first few sections of
the chapter). You’ll also find a discussion of when to use VBA versus when to
use Visual Studio. The differences are actually easy to define, so you’ll find that
you have clear-cut choices among application-programming solutions.

10_169940 ch05.qxp 7/13/07 10:23 PM Page 91

The remainder of this chapter is all about examples. You’ll see three kinds of
examples in this chapter: document, template, and add-in. Although you can
create documents and templates using Visual Basic for Applications (VBA),
the add-in is unique to Visual Studio and one of the reasons you might want
to use Visual Studio in place of VBA. The examples also highlight some spe-
cial features that Visual Studio provides, such as the ability to provide
dynamic content changes and inject XML into a document as needed to
address specific document or user requirements.

Defining the Advantages
of Using Visual Studio

Microsoft seems to be leaning toward creating Office applications with Visual
Studio, rather than holding on to the legacy of developing with VBA. This is
terrible news for VBA developers who have thousands of lines of code to
update to Office 2007. The initial reason for this change might appear to be
yet another way for Microsoft to grab more of your money. (Actually, as
shown in Chapter 4, you can perform a considerable number of tasks using
VBA, and VBA developers may not want to update to Visual Studio unless
they have a pressing need to do so.) However, there are many good reasons
to use Visual Studio for development. The following sections describe the
benefits of using Visual Studio to develop your Office applications.

Understanding the levels
of RibbonX support
Visual Studio provides three levels of support for RibbonX. These levels of
support are more extensive than you might initially think because Visual
Studio brings considerable programming functionality to the table. The fol-
lowing sections describe the three levels of support and how you might use
them for an application.

Add-ins
Visual Studio creates add-ins as a DLL that you install into the Office environ-
ment. Because of the way that you install add-ins, you can actually make
them global to the application as a whole or install them only as needed. You
may need to use a particular add-in with one document and not with another,
even if both documents use the same template or perform essentially the
same task, such as a form (think about an invoice that you fill in locally
versus one you fill in on the road — the invoice you create on the road may
require an add-in to transmit it for processing). Add-ins are the only form of

92 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 92

support for Office 2007. If you want to work with the Ribbon using Visual
Studio, you must do it using an add-in.

Templates
Templates affect a class of documents as a whole. For example, you might
create an application that someone uses for all of the letters produced by a
company. You use templates when you always want a special feature avail-
able for use with a particular kind of document, but not with any other docu-
ment. Templates aren’t global in nature; they always affect only one
document. In some cases, you might find that you need to combine a tem-
plate with an add-in to obtain the right mix of application functionality.
Templates are a compatibility option for Visual Studio at this time, but
Microsoft could add Office 2007 support for them later.

Documents
Creating code for a specific document is more specialized than you might ini-
tially think. Any code you create with Visual Studio for a document affects
only that document. However, even document features have their use. For
example, you might use a single document to interact with a Web service or
check on the status of customer orders. Because the document doesn’t fulfill
a single, one-time purpose, but rather, an ongoing purpose, you can success-
fully create code without considering the effort a loss. Documents are a com-
patibility option for Visual Studio at this time, but Microsoft could add Office
2007 support for them later.

Many developers find it helpful to use a single document for experimentation
as well. For example, you might have an idea for a particular kind of applica-
tion that could reduce the time spent looking up resources online — but you
need to test your theory before you present it to anyone. Working with a
single document is significantly faster than trying to make the idea work with
a template. Since Visual Studio 2005 provides add-in templates for Office 2007
only, you must create the add-in on your local machine and attach it to the
local document, rather than using network resources to perform the task
(which could possibly corrupt production documents, templates, or add-ins).
Using a single document for experimentation makes sense from a develop-
ment-time perspective and makes it less likely that you’ll contaminate other
documents accidentally (as you might with a template or add-in).

Working with dynamic document content
One of the best features of working with Visual Studio is the capability to
inject both XML code and resources into Office. If you decide to create an
additional tab, groups, and associated controls to meet a particular user
need, you can do so. It’s also possible to use this technique to customize the
display to meet specific role requirements; a manager may see more controls

93Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 93

than other employees to meet role requirements. Using XML injection also
means that you could possibly store the Ribbon changes in a standard XML
file on disk and simply add the features as needed during runtime. Using
standalone XML would make it considerably easier to create a graphical
design tool for your development team.

Resources — such as the XML used to define the interface — are easy to
inject into the Office environment. For example, you can easily add the icons
or bitmaps required for buttons at runtime, rather than having to include
them as part of the file. This added flexibility means that someone could
update the icons or bitmaps without ever touching the add-ins, templates, or
documents you create. The only criterion for successful implementation is
that the new resource have the same filename as the one that the application
originally used.

Creating a secure environment
Depending on your organization and how you use the Office applications you
create, the secure environment provided by Visual Studio can become an
overriding reason to work with it, rather than with VBA. When working with
VBA, you can’t hide your code even when you protect the document. In addi-
tion, VBA has all the security holes that Office and the host operating system
have — without any additional functionality to provide a secure computing
environment. When working with Visual Studio, you can secure both the user
and the code in a way that greatly reduces the chances of a security breach.

Some developers are under the impression that they can create a completely
secure environment through devious coding practices and other tactics. If
someone wants to break your security, you’ll have a hard time keeping them
from doing so. As most major vendors have discovered, the largest obstacle
in the world can’t keep crackers from trying to discover some way inside
your organization. Consequently, the best course of action is to couple good
application security with vigilance. Regularly check your network for prob-
lems as part of a good security plan.

Considering the advantages
of managed code
Anyone working with VBA code knows there’s always the chance that a COM
component is going to ruin your day by causing application failures. The COM
component could cause memory leaks — which means the host system could
run out of memory at some point. Security leaks occur in COM components as
well. You may also find that the component simply fails to work, and the older

94 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 94

code doesn’t provide the best error messages in many cases. Using managed
code can reduce all these problems and eliminate (at least) the memory leak.

Some tasks are also simply easier to perform using the managed environment
provided by Visual Studio. Yes, you can access and use Web services using
VBA (I’ve done so with many public Web services including those offered by
Amazon, eBay, and Google). However, the code for accessing a Web service
can become quite convoluted in VBA; in Visual Studio, working with a Web
service requires that you add a simple Web reference and access the Web-
service features just as you would any other class.

Creating the RibbonX Environment
in Visual Studio

VBA developers have a definite edge when it comes to setup for Office 2007; a
couple of quick tool downloads and you’re ready to go. Visual Studio devel-
opers have a relatively long journey by comparison. Setting up the RibbonX
environment for Visual Studio begins with the Office 2007 installation. Make
sure you install Office 2007 first so Visual Studio can find the correct Interop
(IOP) modules when it installs. The .NET Programmability Support option,
shown in Figure 5-1, lets Visual Studio interact with Office 2007. You must
install this feature for every application you want to work with.

Figure 5-1:
Install

the .NET
Program-

mability
Support
feature

when you
install Office

2007.

95Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 95

After you install Office 2007, install Visual Studio 2005. When working with
Visual Studio 2005 Team Edition, you’ll find a special Office-interoperability
support feature for the language you want to use, as shown in Figure 5-2.
(Users of other versions of Visual Studio 2005 need to download and install
the required Office interoperability support separately from http://www.
microsoft.com/downloads/details.aspx?familyid=F5539A90-
DC41-4792-8EF8-F4DE62FF1E81.) Be sure to install this feature, even
though the installation program will later tell you that you need to install
Office to get the desired support.

Anyone installing Visual Studio on Vista is going to encounter an error mes-
sage during installation. The error message tells you that there’s a compati-
bility problem with Vista. The error message is correct, so you shouldn’t try
to run Visual Studio until you apply the patches described later in this sec-
tion. For now, simply install Visual Studio on your system.

At this point, you need to install Visual Studio 2005 SP1 (a 431.7 MB down-
load). When working with Windows XP or earlier versions of Windows, click
the Check for Service Releases link in the Visual Studio 2005 Setup dialog box.
Vista requires that you open the Windows Update applet in the Control Panel
and click the Check for Updates link (perform this task even if Windows
Update tells you that Vista is up to date). Make sure you install any required
patches for Office 2007 during this time as well.

Figure 5-2:
Install Office

support as
part of the

Visual
Studio

installation.

96 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 96

If you’re using Vista, you’ll want to install a special Vista patch for Visual
Studio (29 MB). You can download this patch from the Visual Studio 2005
Service Pack 1 Update for Windows Vista site at

http://www.microsoft.com/downloads/details.aspx?familyid=
90E2942D-3AD1-4873-A2EE-4ACC0AACE5B6

This patch won’t install until you have Visual Studio 2005 SP1 installed. The
patch does fix the incompatibility problem that Vista warned you about ear-
lier. Be patient when installing this update; even with the right setup, it seems
to require an inordinate amount of time to complete its task.

Now it’s time to install the actual Office 2007 support. You can download Visual
Studio Tools for Office 2005 Second Edition (VSTO 2005 SE) from the site at

http://www.microsoft.com/downloads/details.aspx?familyid=
5e86cab3-6fd6-4955-b979-e1676db6b3cb

97Chapter 5: RibbonX and Visual Studio

Running Visual Studio under Vista
Even after you apply all of the required patches,
running Visual Studio under Vista isn’t any
picnic because of new Vista features such as
the User Access Control (UAC). Many Visual
Studio features require administrator privileges,
and no one has administrator privileges in Vista
by default (not even the administrator account).

The first change you’ll want to make to Visual
Studio is to run it in Administrator mode:

1. Right-click the Start➪Programs➪Microsoft
Visual Studio 2005➪Microsoft Visual Studio
2005 entry.

2. Choose Properties from the context menu.

You’ll see a Microsoft Visual Studio 2005
Properties dialog box.

3. Choose the Compatibility tab and check
the Run this Program as an Administrator
option. Click OK.

4. Now repeat these steps for all the other
Visual Studio applications.

If more than one user uses Visual Studio on
your machine, you can click Show Settings
for All Users and change the settings on the
new dialog box to let everyone run the
application as an administrator.

Whenever you run Visual Studio after you make
the change, you’ll see a User Access Control
dialog box that asks your permission to con-
tinue. Vista is elevating the application’s privi-
leges to let it run in Administrator mode, and you
must approve this change. After you see the
UAC message, you’ll see a Visual Studio dialog
box that leads you to believe it doesn’t have the
proper rights to run. Unfortunately, this dialog
box shows up whether Visual Studio has the
correct rights or not. Click Continue to clear it.
At this point, Visual Studio will start, and you’ll
use it as you would normally. If you do experi-
ence other Visual Studio problems, you can find
more information at the Visual Studio on
Windows Vista site:

http://msdn2.microsoft.com/en-
us/vstudio/aa948853.aspx?lcid=
1033

10_169940 ch05.qxp 7/13/07 10:23 PM Page 97

This is only a 6.1 MB download. After you download the file, perform the
installation and you’re finally ready to work with Office 2007 in Visual Studio.

Understanding RibbonX Basics
for VB.NET and C# Developers

You can create a number of Office application types in Visual Basic. The docu-
ments and templates appear in the Visual Basic\Office folder, as shown in
Figure 5-3. Notice that these offerings work for Excel and Word. Don’t use the
Outlook Add-in template shown in the Office folder because it isn’t Office
2007–specific.

The offerings in the Office folder are Office 2003–specific. You must have a
copy of Office 2003 installed to use them. If you want to create a Ribbon-
specific solution, you must use an add-in. Consequently, this book generally
considers the add-in solution when working with Visual Studio 2005, because
it focuses on working with the Ribbon and not with older versions of Office.
You can, however, work at the document-and-template level for compatibility
solutions, as considered in Chapter 14.

Select the Visual Basic\Office\2007 Add-ins folder when you want to work
with add-ins. Remember that an add-in lets you create an application that
works across documents and templates. An add-in is always available until
the user either removes it or disables it. You can easily add and remove add-
ins as needed.

Figure 5-3:
Choose

between
documents

and
templates in

the Office
folder.

98 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 98

Figure 5-4 shows the list of add-ins that Office 2007 provides. These solutions
include Excel, InfoPath, Outlook, PowerPoint, Visio, and Word. The Office
2007 setup provides a template for creating an InfoPath add-in. This template
is a new feature in Office 2007.

The templates you see in Figure 5-4 represent the support that Microsoft pro-
vides at the time of writing. At some point, Microsoft is going to add more
templates to Visual Studio 2005. To determine whether Microsoft has pro-
vided additional templates, choose Search Online Templates and click OK.
Visual Studio searches online for additional templates and (if it finds them)
lets you install them to your system. The new templates provide additional
project types that make your Office 2007 development tasks easier.

Choosing Between VBA
and Visual Studio

Visual Studio and VBA are complementary tools when it comes to the
Ribbon. Visual Studio has many advantages that VBA doesn’t enjoy; likewise,
you must use VBA to accomplish other tasks. Chapter 4 points out that you
must use VBA if you want to create a RibbonX solution for a document or
template, except in the case of a compatibility scenario. Visual Studio, as
mentioned earlier in the chapter, is your only option when you want to create
an add-in.

Figure 5-4:
Select a
template

project from
the 2007
Add-ins

folder.

99Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 99

However, the choices aren’t simply a matter of choosing the kind of imple-
mentation. You may have noticed that there isn’t an add-in template for
Access in Figure 5-4. That’s because Visual Studio doesn’t provide Access
support (Microsoft may provide this support later). Consequently, you can’t
use Visual Studio to create an add-in to modify Access. It turns out that you
can’t use the process defined in Chapter 4 for VBA either. Access is a special
situation, in which you use XML in a different way — with VBA — to define
changes to the Ribbon. Chapter 8 provides complete details on this Access-
only RibbonX methodology.

Visual Studio also has its specialized application. Outlook doesn’t provide
standard files you can modify (using the Custom UI Editor) either. In this
case, you must create an add-in using Visual Studio to modify the Ribbon.
Given that Outlook doesn’t really lend itself to documents in the same way
that Excel and Word do, the use of add-ins makes sense in this situation.
You’ll always modify Outlook as a whole, rather than individual files.

Creating a Basic Tab
You can create add-in code using a number of techniques. For example, when
the application allows it, you could add the required XML directly to a docu-
ment or template, and then implement the callbacks using an add-in. Every
document or template with the required custom controls could provide
access to the functions within the add-in. Of course, you have to exercise
extreme care when using this approach because you might inadvertently call
the wrong add-in should you give two functions in different add-ins the same
name.

The second method is safer because you define the XML directly in the add-
in or as part of an external file that you load into the add-in during runtime.
The example uses this second approach because it provides an easier path to
Ribbon modification.

Defining the project
Unlike VBA, Visual Studio provides a complete solution for working with the
Ribbon. You never have to leave the IDE to create anything, not even the
XML. The easiest way to work with the Ribbon is to start with one of the
Add-in project templates, shown in Figure 5-4. This example works with Excel,
but the same concepts work for the other Office products. (You can find
the source code for this example on the Dummies.com site at http://
www.dummies.com/go/ribbonxfd.) The following steps get you started:

100 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 100

1. Open Visual Studio.

2. Choose File➪New➪Project.

You see the New Project dialog box, as shown in Figure 5-4.

3. Open the 2007 Add-ins folder, shown in Figure 5-4, for your favorite
language.

The screenshots show C# as the example language, but the same
processes work in Visual Basic.

4. Choose the add-in template for your application, type a name for the
application, and click OK.

The example uses an application name of BasicTab and uses the Excel
Add-in project template. Whichever settings you choose, Visual Studio
creates the project for you.

Adding the RibbonX files
It may seem counterintuitive, but the project that you create isn’t complete.
In order to work with the Ribbon, you must add another piece to the puzzle.
The Ribbon files include a code file that contains the code behind for the con-
trols you create, and it includes the XML file that tells Office how to configure
the Ribbon. The following steps tell how to create this part of the example:

1. Right-click the project entry (BasicTab) in Solution Explorer and then
choose Add➪New Item from the context menu.

You see the Add New Item - BasicTab dialog box, as shown in Figure 5-5.

Figure 5-5:
This dialog

box lets you
add the
Ribbon

functionality
your

application
needs.

101Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 101

2. Highlight the Ribbon Support entry, optionally type a name for the
file (the example uses the default name), and click Add.

Visual Studio adds a new code file and an XML file. The Ribbon1.XML
file already contains a simple tab, group, and button. So, the example
relies on these default entries. However, before you can actually see
changes to the Ribbon, you add the XML file to the application
resources.

3. Open the <Project>\Properties folder in Solution Explorer.
Double-click Resources.RESX to open it.

You’ll see the Resources window.

4. Drag and drop the Ribbon1.XML file onto the Resources window.

Visual Studio adds the file to the resources, as shown in Figure 5-6.

Adding some code
You may have noticed that most of the code required to make the example
complete also appears as part of the project you created. Of course, you do
need to make a few changes to complete the example. The first task is to
uncomment the ThisAddIn partial class found in the Ribbon1 code file. This
code creates a connection between your Ribbon and the Office application.

Figure 5-6:
Add the

XML file to
the project

as a
resource.

102 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 102

The next change appears in the IRibbonExtensibility region. Open this
region and change the GetCustomUI method so it looks like the one shown
here:

public string GetCustomUI(string ribbonID)
{

Return Properties.Resources.Ribbon1;
}

The example code obtains the XML from the Properties.Resources.
Ribbon1 resource and sends it to the Office application, which then uses it
to change how the Ribbon appears. At this point, you can build and run the
application. Simply click Debug to start the application. When the application
starts, choose the Add-Ins tab and you’ll see a new button on-screen, as
shown in Figure 5-7. When you click this button, you’ll see a message box
telling you the button state (pressed or released).

Creating a package for end users
The add-in project template also creates a setup program for you. You can
use this setup program to make the add-in you create available for end users.
They install the add-in just as they would any other program. The setup pro-
gram isn’t part of the build process at the outset, though; Microsoft wants to
ensure that you don’t have to wait too long to test your add-in.

Figure 5-7:
The new

button
appears in
the default

position
on the

Add-Ins tab.

103Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 103

To create the setup program, choose Configuration Manager from the System
Configurations drop-down list box on the Standard toolbar. You’ll see a
Configuration Manager dialog box, like the one shown in Figure 5-8. Place a
check mark next to the BasicTabSetup entry and click Close. Then build your
project and you’ll have an installation program you can distribute to end
users for your add-in.

Removing the add-in
When you create code for a document or template, the code stays with it and
you don’t have to worry about very much. However, when you create an add-
in, the code isn’t associated with a document or template, so it affects the
application as a whole. Consequently, you can’t simply delete a document or
template to get rid of it. You may notice that after you run the BasicTab add-
in that it appears every time you start Excel. In fact, if you delete the project
without deleting the add-in reference, you’ll find that Excel continues to look
for it and may even display an error message.

Fortunately, it isn’t too hard to get rid of the add-in when it’s done its job. The
following steps tell how to get rid of an add-in you no longer need:

1. Choose Office Menu➪Excel Options.

You see the Excel Options dialog box.

2. Select the Add-Ins folder.

You’ll see the BasicTab (or other) add-in listed in the Active Application
Add-ins list, as shown in Figure 5-9. Notice that the Type column tells
you that this is a COM Add-in type.

Figure 5-8:
Add a setup
program to

the build
sequence
after you

debug your
add-in.

104 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 104

3. Choose COM Add-ins in the Manage field, and click Go.

The option you choose in the Manage field must reflect the add-in type.
Visual Studio always produces COM add-ins. However, you might see
other add-in types. You’ll see the COM Add-Ins dialog box, as shown in
Figure 5-10.

4. Clear the check mark next to the add-in to deactivate it. Highlight the
entry and click Remove.

The Office application removes the application from the add-in list.

Figure 5-10:
The add-in

you want to
remove will

appear in
this list.

Figure 5-9:
Locate your

add-in in the
list of active

add-ins
for the

application.

105Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 105

5. Click OK.

You no longer see the changes the add-in supplied to the Ribbon.

Unfortunately, these steps don’t actually remove the add-in from your
Registry. You also have to remove the COM entries for the DLL. To perform
this task, you can either uninstall the add-in (assuming you installed it using
the setup program that you created in the “Creating a package for end users”
section of the chapter), or you can use a special utility to remove the
Registry entries. The following steps tell how to use the RegAsm (Register
Assembly) utility to remove the entries.

1. Choose Start➪Programs➪Microsoft Visual Studio 2005➪Visual Studio
Tools➪Visual Studio 2005 Command Prompt.

You see a command prompt. If you’re using Vista, you’ll want to right-
click this entry and choose Run As Administrator from the context
menu.

2. Locate the DLL used for your add-in and use the CD (change directory)
command to see it in the command prompt.

3. Type RegAsm /Unregister <Name of DLL> at the command prompt and
press Enter.

Make sure you include the full DLL name, such as BasicTab.DLL. The
RegAsm utility tells you that it has unregistered the types successfully.

After you ensure that all of the Registry entries are gone — using the Registry
Editor (RegEd) utility or a similar tool — you can finally delete the project
from your system. Nothing bad will happen if you don’t remove the Registry
entries, but the Registry does eventually get clogged with these unnecessary
entries and your system slows down.

Writing Code Behind for RibbonX
Although the basic tab example gets you going, you can do a lot more with
RibbonX in Visual Studio. You can break down these tasks into five major
groups:

� Create a new tab with groups and controls

� Add new controls to an existing tab

� Add new controls to the Office menu

� Repurpose controls on an existing tab

� Repurpose controls on the Office menu

106 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 106

Repurposing is the act of using an existing control for a new purpose or aug-
menting the existing purpose. For example, you can change the Office 97-2003
document save feature to display a dialog box that asks whether the user
really wants to save the document in the older format. The following sections
describe how you can perform each of these tasks. (You can find the source
code for this example on the Dummies.com site at http://www.dummies.
com/go/ribbonxfd.) The steps in the following section get you started.

Handling graphics in Visual Studio
When you’re working with VBA, you normally embed the graphics you want
to use directly in the document or template file. When you program with
Visual Studio, however, you work with an add-in that isn’t attached to a par-
ticular document or template — so embedding the graphics won’t work. In
this case, you must serve up the graphics as part of the add-in, which means
creating additional code. The XML for this particular need appears as part of
the customUI element, as shown in Listing 5-1.

Listing 5-1: Creating the <customUI> Element
<customUI onLoad=”OnLoad”

xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
loadImage=”GetImage”>

The loadImage attribute provides a call to the GetImage() method in your
code. Unfortunately, the GetImage() method never knows which icon or
image it must send to the Office application — so you have to create it in
such a way that it can handle any need. Listing 5-2 shows an example of the
code you might create for GetImage().

Listing 5-2: Handling Graphics in Visual Studio

public stdole.IPictureDisp GetImage(string ImageName)
{

// Holds the bitmap to pass to Office.
Bitmap ThisBitmap = new Bitmap(20, 20);

// Detect the image name and corresponding resource.
switch (ImageName)
{

case “Colorblk2”:
ThisBitmap =

new Bitmap(Properties.Resources.Colorblk2);
break;

case “TIME”:

(continued)

107Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 107

Listing 5-2 (continued)

ThisBitmap =
new Bitmap(

Properties.Resources.TIME.ToBitmap());
break;

}

// Convert the bitmap to an IPictureDisp.
return

PictureConverter.ImageToPictureDisp(ThisBitmap);
}

This example works with two different kinds of images. The first, Colorblk2, is
a standard bitmap, so you can use it directly. The second, TIME, is an icon; you
have to convert it to a bitmap before you can use it by calling the ToBitmap()
method. Using a case statement ensures that no one tries to use a nonexistent
bitmap — but you could also create a generic method to handle all possible
bitmaps and icons the user might request.

Notice that the code requests the images from Properties.Resources.
You can add images to the embedded add-in resources by choosing Add
Resource➪Add Existing File in the Resource.RESX window. Visual Studio
displays a dialog box where you can locate the image and add it directly to
the add-in.

After this first level of selection and conversion, the GetImage() method
calls the PictureConverter.ImageToPictureDisp() method. You might
initially wonder why you have to make this special call to an internal class
you create, but Microsoft has protected certain AxHost features — which
means you can’t access them directly. Listing 5-3 shows the internal class you
have to create to convert the image to a stdole.IPictureDisp type.

Listing 5-3: Converting an Image into the stdole.IPictureDisp Type

internal class PictureConverter : AxHost
{

private PictureConverter() : base(String.Empty) { }

// This method converts a bitmap to an Office
// compatible bitmap.
static public stdole.IPictureDisp

ImageToPictureDisp(Image image)
{

// Here’s the reason for the separate class. The
// GetIPictureDispFromPicture() is protected, so
// you can’t access it directly.
return

(stdole.IPictureDisp)GetIPictureDispFromPicture(image);
}

}

108 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 108

The code is very simple, in this case, because it’s doing something you
should be able to perform directly: The PictureConverter class inherits
AxHost. It then adds a single new method, ImageToPictureDisp(), and
calls the protected GetIPictureDispFromPicture() method to convert a
.NET image into an object, which you then cast into the
stdole.IPictureDisp type.

Performing tasks when the Ribbon loads
The default project that you create with Visual Studio includes an OnLoad()
method. This method automatically executes when Office loads the Ribbon.
Of course, you’ll overwrite the original XML and will probably remove the
default callbacks at some point, so it’s important to know how this feature
works. The XML for this need appears in Listing 5-1. The onload attribute
determines which method Office calls for any initialization needs. You can
modify the method, the default name is OnLoad(), to meet any need. Listing
5-4 shows the code for this example.

Listing 5-4: Performing Tasks When the Ribbon Loads

public void OnLoad(Office.IRibbonUI ribbonUI)
{

// Save the Ribbon reference.
this.ribbon = ribbonUI;

// Initialize the underline state.
UnderlineState = false;

// Display a loaded message.
MessageBox.Show(“Ribbon Loaded”);

}

You always have to save a reference to the Ribbon in order to perform some
required tasks such as dynamically updating the Ribbon content. The project
template provides the ribbon variable for this purpose, so the example
performs the default action of saving the reference to it.

This example provides an example of a control that works in a certain way
depending on a selection a user makes with another control. In this case, the
user can control whether the application allows underlining or not. Because
Excel needs to determine the state of this control when the Ribbon loads, the
code includes an initialization variable named UnderlineState.

109Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 109

It’s helpful to include a status message in the code while you’re debugging.
This one simply tells you that the Ribbon has loaded. If you don’t see the
message box, you know something has gone wrong with your add-in.

Creating new tabs, groups, and controls
One of the tasks you’ll perform most often is creating new tabs, groups, and
controls for your application. The process begins by adding XML for this pur-
pose to your application. You saw one example of this technique when creat-
ing the default application provided with the project template. Here’s the
XML used for this example:

<tab id=”myTab” label=”My Tab”>
<group id=”myGroup” label=”My Group”>
<button id=”myButton”

label=”My Button”
image=”Colorblk2”
size=”large”
onAction=”myButton_ClickHandler”/>

</group>
</tab>

This example provides a tab called My Tab, a group named My Group, and a
large button named My Button. The example uses a custom image, so it
adds this information to the image attribute. The “Handling graphics in
Visual Studio” section of the chapter describes the special techniques you
use to work with graphics in Visual Studio.

When the user clicks My Button, Office calls the myButton_Click
Handler() method in the add-in. At this point, your code gains control and
you can perform any task needed. In this case, the code performs the simple
task of displaying a message box. Notice that the method provides the con-
trol as input — so you could write one method to address the needs of multi-
ple controls, but it’s always better to handle each control on the Ribbon
individually to avoid potential confusion.

public void myButton_ClickHandler(
Office.IRibbonControl Control)

{
// Display a simple message box.
MessageBox.Show(“My Button Clicked”);

}

It’s important to note that this method doesn’t return a value to Office
because you don’t expect Office to do anything. When working with an exist-
ing control, you have to tell Office whether to perform a default action.

110 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 110

Modifying or repurposing existing
tabs, groups, and controls
Sometimes you’ll want to modify or repurpose an existing tab, group, or
control, rather than create something new. For example, you might want to
change the functionality of the Format Painter to meet internal formatting
requirements or hide some tabs, groups, or controls completely. Before you
can perform a modification of this sort, you need to know which tab, group,
or control to modify. The “Obtaining an identifier for an existing tab, group,
or control” section of Chapter 4 tells you how to perform this task.

When you modify an existing element, you work with it as you would when
working with a new feature. You add the required information to the existing
tab or group. Listing 5-5 shows an example of adding a control to the existing
Home tab.

Listing 5-5: Adding a Group and Control to the Home Tab

<tab idMso=”TabHome”>
<group id=”BehaviorChange”

label=”Behavior”
insertAfterMso=”GroupFont”>

<toggleButton id=”StopUnderline”
label=”Stop Underlining”
onAction=”StopUnderline_ClickHandler”
getPressed=”StopUnderline_GetPressed”
size=”large”
imageMso=”ShapeFillColorPicker”
insertBeforeMso=”UnderlineGallery”/>

</group>
</tab>

Whenever you want to change an existing feature, you use the idMso
attribute, in place of the id attribute. You supply the identifier that Office
uses for this feature. In this case, the TabHome identifier points to the Home
tab of Excel.

The new group, Behavior, includes the insertAfterMso attribute. You use
this attribute to control positioning of the new group on the Home tab. You
can only position groups and controls using an existing group or control or a
qualified group or control as a reference point. A qualified group or control is
one that has its own namespace so Office can ensure that the group or con-
trol is unique. The four attributes that control positioning are

111Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 111

� insertAfterMso

� insertAfterQ

� insertBeforeMso

� insertBeforeQ

Most controls require only that you provide an onAction attribute so
that something happens when the users interact with the control. The
<toggleButton> in this example also requires a getPressed attribute
entry so Office knows how to set the state of the button.

The process of repurposing an existing control is different from modifying
one. In this case, you must add <command> entries to the <commands>
element, as shown in Listing 5-6.

Listing 5-6: Repurposing Controls

<commands>
<command idMso=”Underline”

onAction=”myUnderline”/>
<command idMso=”FileSaveAsExcel97_2003”

onAction=”FileSaveAs_ClickHandler”/>
</commands>

This example has two repurposed controls. The first is the Underline button
that appears on the Home tab. The second is the Excel 97-2003 Workbook
entry found on the Save As menu of the Office menu. In both cases, the exam-
ple overrides the onAction attribute, which is the most common override
you’ll perform. However, you should look at other callbacks as needed, such
as getPressed when you’re working with a toggle button.

The callback code for implementing all of the features discussed in Listings
5-5 and 5-6 appears in the Ribbon Callbacks region of the Ribbon1.CS file.
The example must implement methods for the new control, as well as the
underline. Listing 5-7 shows the code you’ll need in this case.

Listing 5-7: Handling a Change in Tab Control Functionality

public void myUnderline(
Office.IRibbonControl Control,
Boolean Pressed,
ref Boolean CancelDefault)

{
// Check the underline control state.
if (UnderlineState)
{

112 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 112

// Display an error message.
MessageBox.Show(“No Underline Allowed”);
// Set the control so it isn’t pressed.
Pressed = false;

// Display the correct state on screen.
ribbon.InvalidateControl(Control.Id);

// Tell Office not to perform the default action.
CancelDefault = true;

}
else

// Otherwise, tell Office to perform the default
// action.
CancelDefault = false;

}

public void StopUnderline_ClickHandler(
Office.IRibbonControl Control,
Boolean Pressed)

{
// Store the current button state.
UnderlineState = Pressed;

// Display the correct state on screen.
ribbon.InvalidateControl(Control.Id);

}

public Boolean StopUnderline_GetPressed(
Office.IRibbonControl Control)

{
// Return the current pressed state.
return UnderlineState;

}

The code begins with the myUnderline() method, which controls whether
the Underline control works as normal or provides alternative functionality
based on whether the user has the Stop Underlining toggle button pressed.
During normal operation, the method simply sets CancelDefault to false
(which means that Office performs the default tasks) and exits.

On the other hand, when the user presses Stop Underlining, the method
displays a message box stating that the Underline control won’t work. It then
sets Pressed to false, which means that the Underline control won’t
appear depressed as it would if the command proceeded normally. Many
interface changes appear even when you cancel the default activity, so often

113Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 113

you must reset the control to the desired setting. Changes the code makes to
a control won’t appear unless it calls ribbon.InvalidateControl() with
the Control.Id argument. The code then sets CancelDefault to true
and exits.

Something seemingly odd happens in this case. When you run the code,
you’ll see the message box appear twice, even though you only clicked
Underline once. The first appearance of the error dialog box does occur
when you click Underline. The second appearance occurs because Office
pressed the button, but the code set Pressed to false. The result is the
same and you wouldn’t notice the second call normally (or you could add
code to keep from displaying it by checking the status of Pressed).

Modifying or repurposing the Office menu
All of the items on the tabs relate somehow to a task. However, you might not
always need to add task-related features to an application. The Office menu
contains a wealth of configuration and file entries that don’t relate directly to
a task. When you want to create a nontask entry, add the <OfficeMenu>
entry, as shown in Listing 5-8.

Listing 5-8: Modifying Office Menu Functionality

<officeMenu>
<menu idMso=”FilePrepareMenu”>
<button id=”NewPrepButton”

label=”My Prepare Button”
description=”Prepare Time”
image=”TIME”
insertBeforeMso=”FileProperties”
onAction=”NewPrepButton_ClickHandler”/>

</menu>

<splitButton idMso=”FileSaveAsMenu”>
<menu idMso=”FileSaveAsMenu”>
<button id=”SayHello”

label=”Say Hello”
description=”This button says hello!”
image=”Colorblk2”
onAction=”SayHello_ClickHandler”/>

</menu>
</splitButton>

</officeMenu>

114 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 114

Notice that you use buttons in the same way as normal, but that you may need
to implement special handling in some cases. The WordRibbonControls.
xlsx file is found in the 2007OfficeControlIDsExcel2007.exe file that
you can download from the 2007 Office System Document: Lists of Control
IDs site at

http://www.microsoft.com/downloads/details.aspx?FamilyId=
4329D9E9-4D11-46A5-898D-23E4F331E9AE

This file tells you how to handle the various controls. For Excel, the
FilePrepareMenu entry appears as a menu, and the FileSaveAsMenu
entry appears as a split button, despite the fact that they appear physically
the same in the application. You’ll need to exercise caution when working
with some Ribbon features for this reason.

Repurposing an Office menu control works precisely the same as it does on
the Ribbon. The FileSaveAsExcel97_2003 entry in Listing 5-6 actually
appears on the Office menu. Listing 5-9 shows the contents of the code-
behind file for these Ribbon changes.

Listing 5-9: Handling a Change in Office Menu Control Functionality

public void NewPrepButton_ClickHandler(
Office.IRibbonControl Control)

{
// Display a simple message box.
MessageBox.Show(“Are You Prepared?”);

}

public void FileSaveAs_ClickHandler(
Office.IRibbonControl Control,
ref Boolean CancelDefault)

{
// Holds the user’s response.
DialogResult Response;

// Ask the user about saving the file.
Response =
MessageBox.Show(

“Saving as an older version. Are you sure?”,
“Old File Version Warning”,
MessageBoxButtons.YesNo);

// Check the response.
if (Response == DialogResult.Yes)

CancelDefault = false;
else

CancelDefault = true;
}

(continued)

115Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 115

Listing 5-9 (continued)

public void SayHello_ClickHandler(Office.IRibbonControl
Control)

{
// Display a simple message box.
MessageBox.Show(“Hello”);

}

The NewPrepButton_ClickHandler entry handles the My Prepare button
that appears on the Prepare menu of the Office menu. As you can see, it dis-
plays a simple message box. The Say Hello button on the Save As menu
works the same way.

The repurposed code for the Excel 97-2003 Workbook entry on the Save As
menu is a bit different. This code begins by asking the user whether Excel
really should save the file in an older format. Only if the user clicks Yes
does the code permit the default action. This code has a very practical appli-
cation for organizations that are trying to wean users off the older Office file
formats.

Creating a Ribbon Using
startFromScratch Mode

This section appears in the chapter mostly as a warning. You really don’t
want to create a Ribbon from scratch using an add-in. It may seem like a good
idea, but it really isn’t — because your organization will suffer a deluge of
support calls. It’s possible that you could come up with a good reason to
create the Ribbon from scratch when working with a single document, or
you might even come up with a convincing argument (in rare cases) for a
template.

If you create the Ribbon from scratch with an add-in, it affects every docu-
ment that the Office application loads. The result is chaos because users will
almost certainly need the “lost” standard controls to perform their work.

You won’t find an example of how to create the Ribbon from scratch for
Visual Studio in the source code for this book. However, in the interest of
completeness, you’ll probably want to know how to check other people’s
code for this possible mistake. The essential change to the XML you’d use to

116 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 116

begin from scratch appears in the <ribbon> element. You simply add the
startFromScratch attribute, as shown here:

<ribbon startFromScratch=”true”>

If you do decide that you absolutely must start a Ribbon from scratch, use
VBA to do it. The “Creating a Ribbon Using startFromScratch Mode” section
of Chapter 4 tells you how to perform this task using VBA. The technique
works well for either single documents or templates. In fact, you’ll even find
an example of this technique in the Chapter 4 source code.

117Chapter 5: RibbonX and Visual Studio

10_169940 ch05.qxp 7/13/07 10:23 PM Page 117

118 Part II: Interacting with the Ribbon

10_169940 ch05.qxp 7/13/07 10:23 PM Page 118

Part III
Creating New

RibbonX
Applications

11_169940 pt03.qxp 7/13/07 10:23 PM Page 119

In this part...

Every Office product that supports the Ribbon has
something special to offer when it comes to creating a

RibbonX application. The chapters in this part show you
the unique characteristics of each Office product. Chapter
6 discusses Word applications and shows you an interest-
ing letter-writing application. Chapter 7 discusses Excel and
shows a new way to work with equations. Chapter 8 dis-
cusses Access and shows how to create multiple Ribbons
for a single database. Chapter 9 discusses Outlook and
demonstrates how to manage your e-mail more effectively.
Chapter 10 discusses PowerPoint and shows how you can
automate presentation tasks.

Chapter 11 is special because it shows how to work with
Web services from within a Ribbon application. You could
use this information to work with any Web service in any
Office product. In this case, you’ll work with Amazon Web
Services using Excel.

11_169940 pt03.qxp 7/13/07 10:23 PM Page 120

Chapter 6

Developing Business
Applications for Word

In This Chapter
� Understanding how to work with Word

� Designing a letter and memo tab

� Using automation to create envelopes

� Designing labels

� Defining and automating forms

Microsoft Word is the tool of choice for most documentation tasks in
organizations of every size. In fact, Word sees use in more than just

the corporate world; you’ll see it used in everything from home businesses to
college campuses. The kind of documents that people create using Word is
also nothing short of amazing. In many cases, developers think about Word
as a means of creating a letter or providing documentation to others.
However, Word also sees use as a means of filling out forms and even access-
ing Web services. Some people use Word exclusively to create reports, while
others use it to formulate presentations. You could possibly make a career
out of finding new uses for Word alone — and that’s not even considering the
other elements of the Office suite.

This chapter discusses a number of major application categories for Word
that include the typical letter or memo and more unusual uses such as
reports. In between, you’ll find applications to create envelopes, design
labels, and automate forms. The last application in the chapter even
describes how to use Word when working with graphics. Although this chap-
ter hardly exhausts every possible use for Word, you’ll find enough variety
here to make it significantly easier to create a Word application of your own
for your personal or organizational use.

12_169940 ch06.qxp 7/13/07 10:25 PM Page 121

122 Part III: Creating New RibbonX Applications

You’ll also find that the chapter divides the examples by language. The sim-
pler examples (letter and memo, envelopes, and labels) rely on VBA as a lan-
guage because they lend themselves to that particular environment. Yes, you
could easily create these examples using Visual Studio, but these examples
don’t really require such an advanced product. Likewise, the chapter uses
Visual Studio to create some of the more complex examples (forms, reports,
and graphics applications). Even though you could create these examples
using VBA, the complexity of doing so outweighs other benefits you receive
by using Visual Studio.

Getting Started with Word Applications
Word is one of the most used of the Office applications. The following list
tells some of the reasons that Word is so popular:

� Provides a broad range of uses

� Offers a significant amount of flexibility

� Customizes well to a variety of needs

� Lets you produce output in final format

You have a choice of using VBA or Visual Studio when working with Word, but
the choice isn’t simply one of personal taste or capabilities. Because of the way
that Microsoft has added Ribbon functionality to Word, you might find your
choice dictated more by the needs of the application than any other factor.

Understanding Word and VBA
VBA offers the best choice for document- or template-centric tasks. For exam-
ple, most companies rely on a particular template to create letters. Some
companies may have several templates for the purpose. However, it’s unlikely
that a company will have employees whose sole purpose is to type letters
(and absolutely nothing else), so it’s unlikely that a Ribbon add-in for letters
will work very well. Using VBA to produce a template for letter add-ins is a
significantly better choice.

Any application that affects only a subset of the documents produced by
Word is a candidate for VBA. However, don’t get the idea that VBA is always
the best choice. For example, it might appear at first that VBA is the only
choice when creating a forms application. The way the user employs the
form is the determining factor in this case. If you create a form that the user
must fill out for every project, such as a routing sheet, then the form may
work better as an add-in, which means you should use Visual Studio instead
of VBA to complete the task.

12_169940 ch06.qxp 7/13/07 10:25 PM Page 122

Unfortunately, you can’t combine VBA and Visual Studio with any ease unless
you plan carefully. For example, you could create an add-in that provides
basic functionality, and then augment that capability based on the document
or template using VBA. For example, thinking about the forms example again,
you could create general forms capability using a Visual Studio add-in, and
then augment that functionality using VBA. Each document or template could
include special form features for that particular need.

Understanding Word and Visual Studio
The add-ins you create using Visual Studio affect every document that the
user opens with Word. Consequently, Visual Studio is the best tool to use
when you want to create an application that affects the user all of the time. If
there’s a company policy in place that the user can’t underline anything in a
document or use strikethrough without employing revision marks, then you
could add that restriction quite easily, using an add-in. The policy would
remain in effect no matter which document the user opened.

As mentioned in the “Understanding Word and VBA” section of the chapter,
some forms lend themselves to add-ins. You might also want to offer final
output options as part of an add-in. For example, a user might always have to
create output in a report format no matter what document they work with.
The report format could be something as simple as adding the company’s
logo to the output or including a special notice. Of course, reports can take
other forms and you can make the output as simple or as fancy as needed.
The point is that reports often encompass more than one document type and
lend themselves to implementation as an add-in as a result.

A more common global application need is graphics. Word comes with a good
set of graphics primitives, which works fine if you happen to be an artist.
However, for those who don’t draw well, the graphics primitives are probably
a little too primitive. A graphics tab could provide access to company-
approved icons and clip art. The tab could even include guidelines for adding
the art to a document.

Creating a Letter/Memo Tab
The Letter/Memo tab, shown in Figure 6-1, demonstrates the perfect use of a
custom tab to promote workflow. In this case, the user moves from left to
right across the Ribbon. When the user reaches the last group, the user has a
new, perfectly formatted, letter in place. The major concept, in this case, is to
keep the user moving and yet provide complete assistance. The template
ensures that the user doesn’t miss anything and that every element appears

123Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 123

as it should according to company guidelines. Most important of all, the user
doesn’t have to think too hard about anything; the template helps the user
create a letter without forcing the user to think about menus, toolbars, spe-
cial formatting, or anything else of that nature. The tab doesn’t hide anything,
either; it doesn’t have to in order to make things easy.

One of the more important issues to consider is whether a particular set of
features applies to a document or a template. A user is quite likely to create
multiple letters and memos, so this example works best as a template.
However, when you create the Ribbon and associated VBA macros, it’s actu-
ally easier to work with a document because you can see the results of any
changes faster. Consequently, this example began with a document and
ended as a template to make development considerably easier.

The Letter/Memo tab example demonstrates several techniques, and the
chapter simply can’t hold all the required source code. For example, you
won’t see all of the source code for the Ribbon because the book already has
several examples of this code. The text also skips repetitive coding examples
and presents only one version of a particular coding technique. The sections
that follow do provide you with complete information about all of the essen-
tial techniques for working with this example and modifying it to meet your
specific needs. (You can find the complete source code for this example on
the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)
This example relies on the Letter and Memo.DOTM template, and the
Sample Letter.DOCM document.

Setting the style
The user begins all the way to the left of the Letter/Memo tab in the Style
group. The Split button defaults to the Letter style for new documents. The
other styles include a memo, an invitation, and a past due notice. You could
add as many styles as needed to support your organization. Each of the
styles sports a special icon, label, and appearance. Of course, RibbonX pro-
vides no obvious means of changing either the icon or the label as the user

Figure 6-1:
Use custom

tabs to
promote a
workflow

within your
organization.

124 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 124

works with the application. The trick is to provide the required functionality
as a callback. Listing 6-1 shows the required XML for the Style group.

Listing 6-1: Creating a Style Group

<group id=”Style” label=”Style”>
<splitButton id=”UseStyle” size=”large”>

<button id=”StSelected”
onAction=”StyleDefault”
getImage=”StyleGetImage”
getLabel=”StyleGetLabel”/>

<menu id=”OtherStyles”>
<button id=”StLetter”

label=”Letter”
onAction=”StyleLetter” />

<button id=”StPastDue”
label=”Past Due Notice”
onAction=”StylePastDue” />

<button id=”StMemo”
label=”Memo” onAction=”StyleMemo” />

<button id=”StInvitation”
label=”Invitation”
onAction=”StyleInvitation” />

</menu>
</splitButton>

</group>

Notice that the StSelected selected button has no image or label assigned
to it. This button uses the getImage and getLabel attributes instead to
assign a VBA callback to handle the image and label needs. The default
button actually shows the current document selection, so it doesn’t really do
anything, in this case, when you press it. This is an alternative use for a Split
button; it acts as a status indicator. The buttons that actually perform a
change appear as part of the OtherStyles menu. The code for performing
the image and label updates appears in Listing 6-2.

Listing 6-2: Modifying Labels and Images at Runtime

‘Callback for StDefault getLabel
Sub StyleGetLabel(control As IRibbonControl, _

ByRef returnedVal)

‘ Return the currently selected document style.
returnedVal = DocType

End Sub

‘Callback for StDefault getImage
Sub StyleGetImage(control As IRibbonControl, _

(continued)

125Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 125

Listing 6-2 (continued)
ByRef returnedVal)

‘ Choose an image based on the document type.
Select Case (DocType)

Case “Letter”
returnedVal = “EnvelopesAndLabelsDialog”

Case “Past Due Notice”
returnedVal = “PermissionRestrict”

Case “Memo”
returnedVal = “Paste”

Case “Invitation”
returnedVal = “FileCreateDocumentWorkspace”

Case Else
returnedVal = “EnvelopesAndLabelsDialog”

End Select
End Sub

The StyleGetLabel Sub simply returns a string called DocType. The
DocType variable is global, and the application uses it to track the document
type. You can use this information to add text to the document, change the
styles based on document type, and to control the actual document content.
In this case, the example adds special text for each of the document types
and modifies the labels and images.

The image change occurs when Word calls the StyleGetImage callback.
The code uses a Select Case statement to choose the image based on the
document type. All these images are built in rather than custom. If you use a
custom image, you must embed it as part of the document and then use the
name you supplied for the image.

You’ve seen the physical interface and the code that modifies the appearance
of the split button. However, the application still requires some code to trig-
ger the change. Listing 6-3 shows a typical example of one of the button
callbacks.

Listing 6-3: Changing the Document Type

‘Callback for StLetter onAction
Sub StyleLetter(control As IRibbonControl)

‘Set the new default document style.
DocType = “Letter”

‘ Change the custom document properties.
ActiveDocument.CustomDocumentProperties(_

“DocType”).Value = “Letter”

‘ Update the Ribbon.

126 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 126

Rib.InvalidateControl “StSelected”

‘ Set the document headers.
SetHeaders

End Sub

The code begins by changing the DocType variable to reflect the change in
document type. It then stores this information in a custom document prop-
erty using the CustomDocumentProperties() method. This step is
extremely important because without it, the document won’t know what type
it is when you open it later. The custom property acts as a permanent
memory of the current document type. You can see this custom property by
performing the following steps.

1. Choose Office Menu➪Prepare➪Properties.

You see the Document Properties window.

2. Click the down arrow next to Document Properties and choose
Advanced Properties from the menu.

You see a Properties dialog box.

3. Select the Custom tab.

Word displays a list of custom properties, including the DocType prop-
erty, as shown in Figure 6-2.

4. Click Cancel to close the Properties dialog box. Click the close box to
close the Document Properties window.

Figure 6-2:
Word stores

the custom
properties
you create

as part of
each

document.

127Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 127

The next code step in Listing 6-3 is the most important because it demon-
strates a RibbonX principle you need to remember. Notice that the
InvalidateControl method doesn’t use the control identifier for the cur-
rent control. Instead, the control identifier refers to the default button for the
Split button. By invalidating the default button, the code triggers the
getLabel and getImage methods described in Listing 6-2. Even though you
can’t modify the Ribbon controls directly, you can use these roundabout
methods to perform a change in appearance.

The code finally calls a Sub called SetHeaders. The SetHeaders Sub is an
example of business logic. You could use the same code in earlier versions of
Office to modify the content of the document. In this case, the Sub changes
the document style features including some heading text. It relies on search
techniques to find text that belongs to the older style and then updates the
document with any new style-specific entries.

The final step in the document type process is to ensure the document type
is correct when the user opens the document. Listing 6-4 shows the docu-
ment type code that appears in the OnLoad callback.

Listing 6-4: Restoring the Document Type After the Ribbon Loads

‘ Check the document type and add a custom property
‘ for the document if necessary.
DocType = “”
Dim CurrProp As DocumentProperty
For Each CurrProp In _

ActiveDocument.CustomDocumentProperties

If CurrProp.Name = “DocType” Then
DocType = CurrProp.Value

End If
Next
If DocType = “” Then

ActiveDocument.CustomDocumentProperties.Add _
Name:=”DocType”, _
LinkToContent:=False, _
Type:=msoPropertyTypeString, _
Value:=”Letter”, _
LinkSource:=False

DocType = “Letter”
End If

The code begins by initializing DocType to an empty string. It then looks for
the DocType custom property. If this property doesn’t appear in the docu-
ment, the code sets the property and the DocType variable to a default type
of Letter. Because so many parts of the application rely on DocType, you
must ensure that new documents receive the proper initialization.

128 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 128

Adding a recipient
The Style group is an example of a modification that can take several forms,
but the user can select only one form at a time. The Recipient group provides
another sort of entry. The output of this group is positional. The recipient’s
name is normally going to appear at the top of any document you create, so it
always appears first in the document no matter when the user adds the
name. Of course, the name does appear below any headings. The recipient’s
address always appears after the name. Again, it doesn’t matter when the
user adds the address. The technique that the example employs to ensure
the document fidelity is to use special styles throughout the document. The
code can then search for these styles and place content correctly regardless
of position within the document.

The layout of the Recipient group also shows a preference for some options
over others. The Recipient Name button is large to emphasize its importance.
Every document type requires a recipient name. The Address and Account
Number buttons appear next as smaller buttons because the user will need
them for most, but not all, documents. A separator keeps optional buttons
apart from the standard buttons. The user probably won’t need to include a
telephone number or office location, in most cases, so these buttons appear
separately and at the lowest priority.

Obtaining a recipient name is a little tricky; you have to consider where the
user is most likely to obtain the required recipient information. Because
many companies have Outlook (not Outlook Express), the example uses the
address book from Outlook as a source of information. To begin working with
Outlook, create a reference to the required object library in VBA. Select
Tools➪References, and you’ll see the References dialog box, as shown in
Figure 6-3. Check the Microsoft Outlook 12 Object Library entry and click OK.

Figure 6-3:
Add a

reference to
Outlook so
your Word

code can
interact

with it.

129Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 129

After you have the Outlook reference, you can begin interacting with Outlook
using standard VBA programming techniques. Listing 6-5 shows the callback
code for obtaining the recipient name. This code also creates the
ThisRecipient object that the rest of the recipient features use to obtain
information about the recipient.

Listing 6-5: Obtaining Recipient Information from Outlook

‘Callback for RcptName onAction
Sub RecipientName(control As IRibbonControl)

‘ Create a reference to the Outlook Address list.
Dim SelName As Outlook.SelectNamesDialog
Set SelName = _

Outlook.Application.Session.GetSelectNamesDialog

‘ Obtain the current pane object.
Dim CurrPane As Pane
Set CurrPane = Application.ActiveWindow.ActivePane

‘ Allow the user to select only one name.
SelName.AllowMultipleSelection = False

‘ Remove the standard email fields.
SelName.SetDefaultDisplayMode olDefaultSingleName

‘ Display the selection dialog box.
SelName.Display

‘ Make sure the user selected one and only one
‘ name.
If SelName.Recipients.Count = 1 Then

‘ Store the recipient information for later
‘ use.
Set ThisRecipient = SelName.Recipients.Item(1)

Else

‘ Display an error message.
MsgBox “You must select one recipient.”

‘ Leave the Sub.
Exit Sub

End If

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

‘ Check for a special header.
If CurrPane.Selection.Style = “Special Header” Then

‘ Move past the special header.

130 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 130

CurrPane.Selection.GoToNext wdGoToLine
End If

‘ Add a Special Heading paragraph.
CurrPane.Selection.InsertParagraph
CurrPane.Selection.Style = “Recipient Name”

‘ Insert the recipient’s name.
CurrPane.Selection.EndKey
CurrPane.Selection.Text = ThisRecipient.Name
CurrPane.Selection.GoToNext wdGoToLine

End Sub

The code begins by creating an instance of the SelectNamesDialog, which
provides access to the Outlook address book from inside Word. Because the
application is interested in obtaining a single name only, it sets the
AllowMultipleSelection property to False. In addition, it removes the
e-mail fields by setting the SetDefaultDisplayMode property to
olDefaultSingleName. When using the default settings, the user sees the
security dialog box, shown in Figure 6-4, when the code calls
SelName.Display.

Notice that you can check Allow Access For and set a time interval to avoid
seeing the message more than once. The longest interval you can set is 10
minutes, which provides sufficient time to perform all of the configuration
tasks for this application. After the user approves the Outlook Access, the
application displays the Select Name: Contacts dialog box, as shown in Figure
6-5. (The figure shows just one name, a test contact used for this example.)

Even with all of the precautions taken with the Select Name: Contacts dialog
box, the user can still choose to click OK without actually selecting a contact.
Consequently, the code verifies that the user has selected precisely one
entry.

Figure 6-4:
Outlook

displays this
security

dialog box
when using
the default

settings.

131Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 131

The data placement comes next. The code begins by placing the insertion
point at the beginning of the file. It then looks for the Special Header style in
the document. The document can have only one (or no) Special Header para-
graph when the user uses the application. That’s because selecting another
style automatically removes any other paragraph that uses the Special
Header style. When the code detects a Special Header paragraph, it moves
past it.

The code inserts a new paragraph at this point and selects the Recipient
Name style for it. You have to move the insertion point because Word selects
the entire paragraph when you insert a new one, so the code calls CurrPane.
Selection.EndKey. The actual data appears as part of ThisRecipient.
Name. The code ends by placing the insertion point on the next line.

Using ThisRecipient as global storage for the recipient information saves
time. The other entries that the user can select work with this variable,
rather than accessing Outlook directly. Consequently, adding other entries is
simply a matter of accessing the correct data in ThisRecipient. For exam-
ple, when the user wants to insert the recipient address, the code accesses
the ThisRecipient.AddressEntry.GetContact.BusinessAddress
property. All of the positioning depends on searching for particular styles
and then manipulating the insertion pointer as needed to ensure accurate
placement of new data. Figure 6-6 shows how typical recipient information
might appear. Notice the use of styles for each data type in the style bar on
the left side of the display.

Figure 6-5:
The user

can select
any contact

in their
address list.

132 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 132

Working with dates
Unlike other elements in this application, dates can appear anywhere in the
document and the user will very likely need more than the current date.
However, the application can still help the user with correctness, formatting,
and placement. The application accomplishes correctness by displaying sev-
eral common date options as part of the split button, as shown in Figure 6-7.
Notice that in this case (unlike the Style split button mentioned earlier), the
default option does have an actual purpose: inserting today’s date.

Figure 6-7:
Effective

use of menu
options can

serve to
reduce user

error.

Figure 6-6:
Styles play

an important
part in

positioning
data using

this
application.

133Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 133

The options don’t have icons, for the most part, because they insert the date
directly. After all, the application can make the required calculation for the
user. However, the View Calendar option does display a special selection
dialog box, as shown in Figure 6-8, because the user must choose a date. The
use of this dialog box does, however, ensure that the result is a correctly for-
matted date, and tends to reduce errors (such as choosing a Sunday when
your business isn’t open on Sunday).

No matter which date option the user selects, the application displays a posi-
tioning dialog box, as shown in Figure 6-9. The positioning dialog box offers
the user three alternatives for inserting the date. The code automatically
places the date and formats it as required after the user makes a selection.

The callbacks for the date are relatively simple. All you really need to do, in
most cases, is add the appropriate time to the existing DateTime.Date
property. Listing 6-6 shows the code for the most complex example, figuring
out precisely one month from the current date.

Figure 6-9:
Careful

planning
ensures that

the
workflow

isn’t broken
by

formatting
issues.

Figure 6-8:
Use a

calendar
control to

reduce user
errors.

134 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 134

Listing 6-6: Creating, Formatting, and Inserting a Date

‘Callback for NextMonth onAction
Sub DateNextMonth(control As IRibbonControl)

‘ Obtain the current month
Dim Month As Integer
Month = DateTime.Month(DateTime.Now) + 1

‘ Create a date string.
Dim DateStr As String
DateStr = _

CStr(Month) + “/” + _
CStr(DateTime.Day(DateTime.Now)) + “/” + _
CStr(DateTime.Year(DateTime.Now))

‘ Create a new date.
Dim NewDate As Date
NewDate = DateTime.DateValue(DateStr)

‘ Insert the required date.
InsertDate CStr(NewDate)

End Sub

Sub InsertDate(TheDate As String)

‘ Lets the user set the date position.
Dim GetPosition As ChoosePosition
Set GetPosition = New ChoosePosition

‘ Obtain the current pane object.
Dim CurrPane As Pane
Set CurrPane = Application.ActiveWindow.ActivePane

‘ Get the user input.
GetPosition.Show

‘ Determine the date position.
Select Case GetPosition.Result

Case PositionResult.Left

‘ Add a Date Left paragraph.
CurrPane.Selection.InsertParagraph
CurrPane.Selection.Style = “Date Left”

‘ Insert the date.
CurrPane.Selection.EndKey
CurrPane.Selection.Text = TheDate
CurrPane.Selection.GoToNext wdGoToLine

Case PositionResult.Right

‘ Add a Date Left paragraph.
(continued)

135Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 135

Listing 6-6 (continued)
CurrPane.Selection.InsertParagraph
CurrPane.Selection.Style = “Date Right”

‘ Insert the date.
CurrPane.Selection.EndKey
CurrPane.Selection.Text = TheDate
CurrPane.Selection.GoToNext wdGoToLine

Case PositionResult.Inline

‘ Insert the date.
CurrPane.Selection.Text = TheDate
CurrPane.Selection.EndKey

Case PositionResult.Cancel

‘ Don’t do anything.

End Select
End Sub

The example begins by obtaining the current month, adding a month to it,
and using the result to create a date string. It then uses the DateTime.
DateValue() method to create a date and pass it to the InsertDate Sub.

The InsertDate Sub begins by creating and displaying the Position the
Date dialog box, as shown in Figure 6-9. After the user makes a choice, the
code inserts the date using one of three methods. The first two methods
create a new paragraph and assign a style to it. All three methods insert the
date at the insertion point.

Adding the sender
From the user’s perspective, the buttons in the Sender group act much like
those in the Recipient group. The user clicks Your Name first, and then clicks
any of the other informational buttons as needed. All of the output is posi-
tional, like the recipient information. In this case, the application assumes
that the user is moving from left to right; it inserts the sender name at the
end of the document because that’s the next position in the workflow to
place data. You could base the position on other criteria, such as placing the
username immediately after the date. Using unique styles for each data type
means you have flexibility in determining where to place the next data item.

The code is different from the recipient code for a number of reasons. The
first reason is that you already know the user’s name because it appears as

136 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 136

part of the Word configuration information. Accessing the name and address
is very easy, as shown in Listing 6-7. However, since Word only provides
access to the user’s name and address, you must supply some other means
of obtaining other user information such as telephone number and office
location. The example relies on a user Outlook address-book entry, which
seems a reasonable choice because the user will probably want to add his or
her address entry to e-mails and other Outlook objects.

Listing 6-7: Obtaining the Sender Information

‘Callback for SendName onAction
Sub SenderName(control As IRibbonControl)

‘ Obtain the current pane object.
Dim CurrPane As Pane
Set CurrPane = Application.ActiveWindow.ActivePane

‘ Go to the end of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToLast

‘ Add a Sender Name paragraph.
CurrPane.Selection.InsertParagraph
CurrPane.Selection.Style = “Sender Name”

‘ Insert the sender’s name.
CurrPane.Selection.EndKey
CurrPane.Selection.Text = Application.UserName
CurrPane.Selection.GoToNext wdGoToLine

‘ Look up the sender in Outlook. Begin with the
‘ first name and go from there.
Dim CheckSender As AddressEntry
Set CheckSender = _

Outlook.Application.Session.AddressLists. _
Item(1).AddressEntries.GetFirst

‘ Check the name.
If CheckSender.Name = Application.UserName Then

Exit Sub
End If

‘ If this isn’t the right user, keep searching.
For Each CheckSender In _

Outlook.Application.Session.AddressLists. _
Item(1).AddressEntries

‘ Check the entry name.
If CheckSender.Name = Application.UserName Then

Exit For
End If

(continued)

137Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 137

Listing 6-7 (continued)
Next

‘ Determine whether we have an ID to use.
If Not CheckSender Is Nothing Then

Set ThisSender = _
Outlook.Session.GetRecipientFromID(_

CheckSender.ID)
End If

End Sub

The code begins by inserting the paragraph at the end of the document and
setting it to use the Sender Name style. The code then accesses the user’s
name with the Application.UserName property. Using this approach
means that you don’t have to ask the user for any of the required sender
information for a properly configured system.

As previously mentioned, however, you can’t obtain the rest of the sender
information that the application requires from Word because Word tracks
only the username and address. The code creates a new Outlook
AddressEntry object, CheckSender, to locate the user’s information in the
Outlook address list.

The Outlook.Application.Session.AddressLists.Item(1).
AddressEntries collection contains all of the AddressEntry objects
for the selected address book (as indicated by the Item(1) index). The
For Each loop checks each collection entry in turn until it locates an entry
where the Name property matches the Application.UserName.

The check depends on a user creating an address entry with precisely the
same name as his or her username in Word. This is a potential point of failure,
and you’ll probably want to set up configuration policies to guard against it.

When the code finds an address entry, it creates a Recipient object,
ThisSender, that functions precisely the same as ThisRecipient. The
code uses the GetRecipientFromID() method to obtain the Recipient
object. Notice that it relies on the CheckSender.ID property to obtain the
required entry ID value.

Greeting the recipient and
adding a signature
The Greeting and Signature groups are the easiest part of this application to
understand. All they do is insert standard text snippets, using the same tech-
niques as many of the other entries described for this article.

138 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 138

In fact, some developers would probably question the need for these entries.
However, they serve an important role when you create a workflow applica-
tion. It’s essential to maintain the perception that everything the user needs
appears on the Ribbon. In addition, your organization may actually have stan-
dardized greetings and signatures that it requires authors to use.

Of course, you might also make the argument that these bits of text could
actually appear in the template. That’s true if you have only one greeting and
signature, but again, you run into the problem of maintaining the workflow.
You don’t want the user to see the text until it’s time to add it to the docu-
ment. Consequently, adding the two groups and their associated controls to
the Ribbon is the best way to approach the problem.

Considering the CC, routing,
and approval requirements
The example has shown many kinds of entries so far. When you select a style,
the application removes all of the entries from the previous style first, and
then adds the new style changes. Some elements are positional and others
appear at the current insertion point. There are good reasons to use each of
these entries. The CC, Routing Slip, and Get Approvals check boxes show
another kind of entry. In this case, the entries must always appear at the
bottom of the document. In addition, the user will expect some type of on/off
functionality. The application provides all this required functionality.

The basic functionality requires two callbacks. The first callback performs
the application-specific tasks of adding the required data to the document.
The second callback changes the appearance of the check box on the Ribbon.
Remember that you can’t change the check yourself, but must ask Office to
perform the task for you. Listing 6-8 shows the code for these two callbacks.
Although this code shows the CC check box, the other two check boxes work
the same.

Listing 6-8: Adding CC Information to the Document

‘Callback for RtCC onAction
Sub RouteCC(control As IRibbonControl, _

pressed As Boolean)

‘ Obtain the current pane object.
Dim CurrPane As Pane
Set CurrPane = Application.ActiveWindow.ActivePane

‘ Perform an action based on the current value.
(continued)

139Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 139

Listing 6-8 (continued)
If CCPressed Then

‘ Create a search variable.
Dim DoSearch As Find
Set DoSearch = CurrPane.Selection.Find

‘ Look for the lines with the correct style.
DoSearch.Style = “CC”

‘ Look everywhere in the document.
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”

‘ Keep looking for CC lines until they’re gone.
While DoSearch.Execute()

‘ Remove the CC lines.
CurrPane.Selection.Delete

Wend

‘ Add a CC.
Else

‘ Go to the end of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToLast

‘ Add a CC paragraph.
CurrPane.Selection.InsertParagraph
CurrPane.Selection.Style = “CC”

‘ Insert the default text.
CurrPane.Selection.EndKey
CurrPane.Selection.Text = “CC: “
CurrPane.Selection.EndKey

End If

‘ Change the pressed value.
CCPressed = pressed

End Sub

‘Callback for RtCC getPressed
Sub RoutePressedCC(control As IRibbonControl, _

ByRef returnedVal)

‘ Return the current pressed status.
returnedVal = CCPressed

End Sub

140 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 140

The RouteCC code begins by obtaining a reference to the current document
pane. It then detects whether the user has checked the check box or cleared
it. When the user checks the check box, the code searches for the end of the
document and adds the required text. Likewise, when the user clears the
check box, the code locates the existing entry by style, and removes it.
Notice that the code handles the situation where the user has created multi-
ple paragraphs with the required style. The user could create such an entry
accidentally or to separate the list of names.

One mistake that you might make when searching for a style is forgetting to
clear the text entry. You must set DoSearch.Text = “” to clear the text or
the search could fail in unexpected ways. Worse yet, it could succeed in unex-
pected ways and produce odd results without displaying an error message.

The RoutePressedCC code may almost look too simple when contrasted to
other callbacks for this application. Check Listings 6-1 through 6-3 for com-
parison purposes. However, unlike the Style group, the Ribbon knows that
the user has interacted with the CC check box, so you can simply add a
getPressed attribute, as shown here:

<group id=”Routing” label=”Routing”>
<checkBox id=”RtCC” label=”CC”

onAction=”RouteCC”
getPressed=”RoutePressedCC”/>

<checkBox id=”RtRouting” label=”Routing Slip”
onAction=”RouteRouting”
getPressed=”RoutePressedRouting”/>

<checkBox id=”RtApproval” label=”Get Approvals”
onAction=”RouteApproval”
getPressed=”RoutePressedApproval”/>

</group>

Simply returning the current state of the check box is enough in this case.
Office doesn’t require that you invalidate the control separately or perform
any other odd programming tasks. However, you do have to consider the
startup state of the Ribbon for these controls, which means adding code to
the OnLoad callback. Listing 6-9 shows the code used to detect the current
checkbox state.

Listing 6-9: Determining the Initial Checkbox State

‘Create a search variable.
Dim DoSearch As Find
Set DoSearch = ThisSelect.Find

‘ Preset the routing checkboxes.
(continued)

141Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 141

Listing 6-9 (continued)
CCPressed = False
RoutingPressed = False
ApprovalPressed = False

‘Determine the state of each routing checkbox.
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”
DoSearch.Style = “CC”
If DoSearch.Execute() Then

CCPressed = True
End If
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”
DoSearch.Style = “Routing”
If DoSearch.Execute() Then

RoutingPressed = True
End If
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”
DoSearch.Style = “Approval”
If DoSearch.Execute() Then

ApprovalPressed = True
End If

The example uses the same technique as always to locate particular bits of
information in the document. The content doesn’t matter, but the style does
because the style determines the information type. The code begins by creat-
ing a search and setting each of the global check-box status variables to
false (meaning the user hasn’t checked them).

When the code finds a paragraph of the right type, it sets the associate vari-
able to true. Notice that each checkbox has its own style so the code doesn’t
confuse the entries. In addition, you must reset the DoSearch.Wrap prop-
erty to wdFindContinue every time you begin another search.

Automating Envelopes
Many of the Office 2007 features are generic and some are a little unintuitive
for the complete novice to use. Two such examples are envelopes and labels.
You can see the buttons for each on the Mailings tab with the Create group.
You have a number of decisions to make when you change or augment an
existing feature. Look again at the Letter/Memo tab in Figure 6-1. You may
simply decide to place the Create group on the Mailings tab there and leave
the original in place as well. Adding an existing group, with complete func-
tionality, to a custom tab is easy. Simply add the group name, as shown here:

<group idMso=”GroupEnvelopeLabelCreate” />

142 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 142

Remember, however, that you have to keep the whole workflow issue in mind
when you work out the details of an application that uses existing features.
You may decide that you really don’t want users creating labels within the
Letter/Memo tab because they won’t ordinarily perform that task for a single
letter. It’s always possible to use just part of a group. For example, you might
decide to display the Envelopes button using XML like this.

<group id=”MailIt” label=”Create”>
<button idMso=”EnvelopesAndLabelsDialog”

size=”large”/>
</group>

Notice that you still must define a size for the button. Otherwise you can’t
change anything about the Envelopes button — which means you still can’t
control the behavior. Unfortunately, there’s a problem with the Envelopes
dialog box. When you click the button, the Delivery Address field is blank
unless you know the secret of highlighting the text you want to see in the
output. The user also has to know details — such as the kind of envelope
loaded in your printer and whether that envelope has your address pre-
printed on it. In fact, there are a hundred ways in which the user can create a
pile of partially used and useless envelopes.

To overcome this problem (and keep the user from choosing the Envelopes
option on the Mailings tab), you can repurpose the control. Normally you
won’t want to repurpose the default behavior of a control, but in this case
you’re actually making things easier for the template user. Here’s the
<commands> element you add to override the existing envelope functionality:

<commands>
<command idMso=”EnvelopesAndLabelsDialog”

onAction=”CreateEnvelope” />
</commands>

Of course, now you have to duplicate the functionality that the Envelopes
and Labels dialog box provides using other techniques. Fortunately, Word
provides the Application.ActiveDocument.Envelope object you can
use to provide programmatic support for creating an envelope. Listing 6-10
shows how you can use this feature with the Letter/Memo tab.

Listing 6-10: Creating Custom Envelope Output

‘Callback for EnvelopesAndLabelsDialog onAction
Sub CreateEnvelope(control As IRibbonControl, _

ByRef cancelDefault)

‘Create an envelope reference.
Dim ThisEnvelope As Envelope
Set ThisEnvelope = _

(continued)

143Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 143

Listing 6-10 (continued)
Application.ActiveDocument.Envelope

‘ Set the envelope size.
ThisEnvelope.DefaultSize = “Size 10”

‘ Omit the return address.
ThisEnvelope.DefaultOmitReturnAddress = True

‘ Obtain the current pane object.
Dim CurrPane As Pane
Set CurrPane = Application.ActiveWindow.ActivePane

‘ Define a search.
Dim DoSearch As Find
Set DoSearch = CurrPane.Selection.Find

‘ Holds the address range start.
Dim AddressStart As Long

‘ Search for the start of the range.
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”
DoSearch.Style = “Recipient Name”
If DoSearch.Execute() Then

AddressStart = CurrPane.Selection.Range.Start
End If

‘ Search for the end of the range.
DoSearch.Wrap = wdFindContinue
DoSearch.Text = “”
DoSearch.Style = “Recipient Address”
While DoSearch.Execute()
Wend

‘ Reset the address start.
CurrPane.Selection.MoveStart _

wdCharacter, AddressStart - _
CurrPane.Selection.Start

‘ Output the envelope.
ThisEnvelope.PrintOut

‘ Go to the beginning of the document.
CurrPane.Selection.GoTo wdGoToLine, wdGoToFirst

End Sub

The example begins by creating an Envelope object, ThisEnvelope, based
on the default envelope for the active document. The resulting object con-
tains all of the system defaults (which may or may not meet your printing

144 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 144

requirements). You should always check essentials such as the envelope
size because you don’t know whether the user has changed these entries.

In this case, the example sets the envelope size and omits that return
address. The actual power of workflow applications, however, is that you can
more easily control the data that the application puts out. As shown in the
listing, the application finds the beginning and ending point of the recipient
information based solely on the document styles. It then selects the entire
range and calls ThisEnvelope.PrintOut to print the envelope.

If you decide to include the envelope information as part of the document,
you can also use ThisEnvelope.Insert. The envelope information
appears at the top of the document in a separate section.

Creating Labels
You override the Labels button on the Mailings tab for some of the same rea-
sons as you override the Envelopes button. Generally, you have a need to
control the output of labels on a system. When working with Ribbon applica-
tions, it’s important not to interrupt the workflow or you won’t gain all the
benefits that come from the new method of creating user applications.

Working with labels is almost the same as envelopes. You still need to create
an object and set any defaults, as shown here:

‘ Create the MailingLabel object.
Dim MyLabel As MailingLabel
Set MyLabel = Application.MailingLabel

‘ Set the output type.
MyLabel.DefaultLabelName = “30 Per Page”

Notice that the label isn’t part of the document; it’s part of the application,
which does make for some differences in printing. You select the text to print
just as you would for an envelope. However, when it comes time to print,
simply highlighting the text isn’t enough. The code must provide the text to
print as input to the output method, as shown here:

‘ Output the label.
MyLabel.PrintOut Address:=CurrPane.Selection.Text

As with envelopes, you can print labels to a document instead of to the
printer. However, the labels appear as a separate document, not as part of the
original document. You use the MyLabel.CreateNewDocument method to
accomplish the task. As with the printed output, you must provide text as
input using the Address argument of the call.

145Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 145

Filling Out Forms
Forms fulfill a number of purposes — everything from requesting services to
documenting work accomplished — in organizations. In fact, many organiza-
tions have so many forms that people create duplicates simply because they
don’t know the original exists. Your organization may have four or five ver-
sions of a single form right now, and the redundancy causes a wealth of prob-
lems. One method of overcoming this problem is to make forms instantly
available so that users can peruse them and choose the forms they need.
Figure 6-10 shows the Forms tab described in this section.

Notice that this example, like the letter example in this chapter, follows a left-
to-right flow of events: The user selects a form, fills out the personal data,
and then provides a date. Using this application produces three results:

� The user doesn’t have to search for forms.

� The forms contain the correct user information (making it easier to find
the user to ask questions).

� The forms have a better chance of containing complete information.

Figure 6-10:
Filling out

forms isn’t
a chore

when the
application
does much

of the work.

146 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 146

The sections that follow describe the major activities needed to make this
application work. (You can find the complete source code for this example on
the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)

Creating the forms
This example includes a new feature: The forms appear as part of a gallery, as
shown in Figure 6-11. The amazing thing is that you don’t have to rely on any
odd programming techniques to achieve this goal. The application relies on
some simple coding techniques and good directory organization to make this
gallery possible. The coding technique also makes it possible to add forms to the
gallery at any time without doing anything special. The application automati-
cally updates the gallery to reflect any new form templates added to the list.

Creating a form in Word 2007 is similar to older versions of Word, but there
are some important differences. The first difference is that the controls you
add to a form appear in a special section of the Developer tab, as shown in
Figure 6-12. You select the location of the control on-screen, and then choose
one of the controls from the list.

Figure 6-11:
The user

begins by
choosing

one of the
forms from
the Forms
directory.

147Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 147

The naming of controls is important when you want to create a Ribbon appli-
cation with them. For example, every form in this example that has a date
field calls it ReqDate. To set the field properties, right-click the control and
choose Properties from the context menu. The Bookmark field of the con-
trol’s Options dialog box determines the name you’ll use for that control in
your code. If you want to save time and effort, using consistent names is
essential.

After you add and configure all of the controls on your form, you need to test
it. You have to protect the form in order to activate the form fields. Microsoft
has changed this functionality in Office 2007 as well. Use the following steps
to protect a form:

1. Click Protect Document on either the Developer or Review tab.

You see a list of protection options.

2. Choose Restrict Formatting and Editing from the list.

Word displays a Restrict Formatting and Editing task pane like the one
shown in Figure 6-12.

Figure 6-12:
Choose the

controls you
want to use

from the
special
Legacy
Forms

gallery.

148 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 148

3. Check the Allow Only This Type of Editing in the Document option.

Word activates the option and lets you choose the level of restriction.

4. Select the Filling in Forms option.

5. Click Yes, Start Enforcing Protection.

Word displays the Start Enforcing Protection dialog box, as shown in
Figure 6-13.

6. Type passwords to protect your document, and then click OK.

Word activates the fields on the document so that you can test the form
functionality.

You can remove document protection by clicking Stop Protection at the
bottom of the Restrict Formatting and Editing task pane. Word asks you to
provide the password you supplied earlier. After you enter the password, you
can make changes to the document again.

Make sure you save your form as a template, and not as a document. If you
save the form as a document, the application won’t recognize it; even if you
do open it, the form won’t create a new version of itself. The form will act as a
one-time fill-in, rather than as a means of creating multiple copies.

One of the tasks that you must perform for this example, in addition to creat-
ing a form, is to take a screenshot of the form. The example uses the screen-
shot to show how the form will appear when the user accesses it using the
gallery. The screenshot must have the same filename as the form, but with
the image extension. The example code relies on the Portable Network
Graphic (PNG) file format. However, you can easily modify the code to meet
any need.

Figure 6-13:
Type

passwords
to protect

your
document

from
change.

149Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 149

Selecting a form
The user’s first task is selecting a form. Because the user could have multiple
forms in progress at any given time, the application closes only the current
document if it’s obvious that the user has opened Word for this specific docu-
ment. Consequently, the user will have to close any documents that aren’t
needed for a particular session.

150 Part III: Creating New RibbonX Applications

Understanding differences between Content
Controls and Legacy Controls

Anyone who worked with forms in older ver-
sions of Office knows about the controls that
Microsoft provides for creating forms. You
simply add the controls you want to the page,
configure them, and then add some VBA code
as needed to perform required tasks in the
background. It’s still possible to use these con-
trols in Office 2007, but you must look for them in
a different location. The controls that you’re
used to working with appear on the Developer
tab in the Controls group in a small button called
Legacy Controls. When you click this button,
you’ll see a small window containing two areas:
Legacy Forms and ActiveX Controls. To use a
control, simply place the cursor where you want
the control to appear on the form and then click
on the control as you normally would.

Microsoft also makes it possible to add new
ActiveX controls. For example, the form in the
“Filling Out Forms” section of the chapter
includes a Calendar control. To add this control
to your form, click the More Controls button that
appears at the end of the list in the ActiveX
Controls section. You’ll see the More Controls
dialog box, where you can choose the Calendar
Control 12.0 entry and click OK. Adding the
Calendar control to your form doesn’t add it to
the ActiveX Controls list, so you must perform
this action every time you want to use the spe-
cial control.

Content Controls are new to Office 2007 and
Microsoft has given them a prominent location in
the Controls Group. These controls don’t work like
the form controls you used in the past. In fact,
these controls are part of a new technology
called Building Blocks that you can read about at

http://blogs.msdn.com/microsoft
_office_word/archive/2006/11/21/
building-blocks-part-i.aspx

You can read more about how Building Blocks
and Custom Controls work together at

http://blogs.msdn.com/microsoft_
office_word/archive/2006/11/22/
inserting-and-swapping-building-
blocks.aspx

You can even create your own Building Blocks
using information from the article at

http://blogs.msdn.com/microsoft
_office_word/archive/2007/01/03
/creating-building-blocks.aspx

The special editor found at

http://www.codeplex.com/Wiki/
View.aspx?ProjectName=dbe

helps you manage and work with Custom
Controls. Because this topic is so complex and
is outside the scope of this book, you won’t see
any further references to either Building Blocks
or Custom Controls in this book.

12_169940 ch06.qxp 7/13/07 10:25 PM Page 150

Creating the physical presentation
The user sees the gallery control when choosing a form. However, you don’t
provide any content for this control at design time. That’s because you can’t
predict which forms the user’s machine will contain. All content appears at
runtime. Consequently, the XML for this example contains a lot of callbacks,
as shown in Listing 6-11.

Listing 6-11: Defining the Gallery Content

<gallery id=”FormList”
label=”Available Forms”
imageMso=”BusinessFormWizard”
size=”large”
columns=”2” rows=”2”
itemHeight=”100” itemWidth=”180”
getItemCount=”GetItemCount”
getItemID=”GetItemID”
getItemImage=”GetItemImage”
getItemLabel=”GetItemLabel”
onAction=”ItemClicked”/>

You do need to consider a few configuration issues when creating the
<gallery> element. Notice how the code uses the columns and rows
attributes to control the number of templates the user sees at any time. You
need to provide some amount of control or the gallery could very well fill the
screen, making a selection more difficult, rather than easier.

It’s also important to control the item size. Otherwise Word displays each of the
templates at the full size you used to capture the image. You may have to spend
some time figuring out the right size for the image. The user has to see what the
form looks like, but you don’t want the form full-size either. Maintaining the
aspect ratio also helps in the recognition process. For example, if the screen-
shot height is 500 and the width is 900, and you reduce the height to 100 for dis-
play purposes, then you should set the itemWidth attribute to 180.

Creating the Templates variable and interacting with Word
Many of the callbacks rely on a global variable named Templates that con-
tains a list of the templates for the current user. The example places the code
to create this variable in the OnLoad() callback. Here’s the code that makes
everything else work:

// Obtain the user’s path to templates.
string TemplatePath =

Globals.ThisAddIn.GetTemplatePath();

// Build a list of form templates.
Templates = Directory.GetFiles(

TemplatePath + @”\Forms”, “*.DOTX”);

151Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 151

The code begins by obtaining the location of the templates for the current
user. You could use any other location on the hard drive as a starting point,
but using the current user’s folder ensures that Word can find the templates
it needs. All of the forms reside in a special folder named Forms and have a
DOTX file extension, so using the GetFiles() method makes it easy to fill
the Templates array with a list of template filenames. Of course, the big
question is where the Globals.ThisAddIn.GetTemplatePath() method
resides.

You can’t interact directly with Word from the Ribbon1.CS file; all you can
do is interact with the Ribbon. Consequently, if you want the add-in to per-
form any useful work, you must call on public methods in the ThisAddIn
class located in ThisAddIn.CS. Unfortunately, you can’t access this class
directly. If you try to create an instance of the class or create static members,
you quickly find that you can’t achieve any results, even if the code compiles.
You always access the members of the ThisAddIn class using the Globals
object as shown. When you type Globals, instantly you see a list of add-ins;
after selecting a list of add-ins, you’ll see the public members for that add-in.
Here, the reason for the special emphasis is that Microsoft isn’t particularly
good about documenting these interactions — you almost need to know
already that they exist, without Microsoft’s help. The GetTemplatePath()
method simply accesses Word and obtains the current path, as shown here:

public String GetTemplatePath()
{

// Obtain the template path for Word and return it.
return Application.NormalTemplate.Path;

}

Obtaining the template information for display
The remaining attributes define callbacks that Word needs to define the
gallery content. Each image requires the getItemID and getItemImage
attributes as a minimum (the getItemLabel attribute is optional, as are
many of the other callbacks). The code must also implement the
getItemCount attribute or the gallery won’t know how many templates to
display. Finally, you need to implement onAction to provide some means of
reacting to user selections. Listing 6-12 shows the code required to imple-
ment the callbacks for this part of the example.

Listing 6-12: Providing the Gallery Items

public long GetItemCount(Office.IRibbonControl control)
{

// Return the number of items based on the template
// length.
return Templates.Length;

152 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 152

}

public string GetItemID(Office.IRibbonControl control,
int index)

{
// Obtain the template name.
string ThisID =

Path.GetFileNameWithoutExtension(
Templates[index]);

// Remove any extra spaces.
ThisID = ThisID.Replace(“ “, “”);

// Return the item id based on the template name.
return ThisID;

}

public Bitmap GetItemImage(
Office.IRibbonControl control, int index)

{
// Obtain a pointer to the current template image.
String TemplateLocation = Templates[index];
TemplateLocation =

TemplateLocation.Replace(“.dotx”, “.png”);

// Create a bitmap based on the image.
Bitmap TemplateImage = new Bitmap(TemplateLocation);

// Return the bitmap.
return TemplateImage;

}

public string GetItemLabel(
Office.IRibbonControl control, int index)

{
// Return the template name.
return

Path.GetFileNameWithoutExtension(
Templates[index]);

}

public void ItemClicked(Office.IRibbonControl control,
string selectedId,
int selectedIndex)

{
// Use this path to supply information for the
// template.
Globals.ThisAddIn.CreateNewDocument(

Templates[selectedIndex]);
}

153Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 153

The GetItemCount() method simply returns the length of a special variable
named Templates that contains an array of template path strings. For right
now, all you need to know is that the array shows where each template in the
list resides. The “Creating the Templates variable and interacting with Word”
section of the chapter describes how the application creates this variable.
The Templates.Length property tells how many items the array contains,
which therefore tells you how many elements the gallery has.

Every item in the gallery must have a unique ID. The GetItemID() method
provides a unique ID based on the template filename. It’s unlikely that two
templates will have a name variation so close that it results in an ID collision.
Notice how the code uses the Path.GetFileNameWithoutExtension()
method to obtain just the filename, and then takes the spaces out of the file-
name to produce the ID.

Using the filename approach to creating IDs also makes it easier to debug
your application. If a particular template causes problems, you can discover
its name quickly and perform any required changes.

Remember that every one of the templates has an associated .PNG file that
contains the screenshot of that template. The GetItemImage() method
uses this feature to obtain an image for the gallery. The code begins by
obtaining a template location, and then replaces the template file extension
with the PNG extension. The code can then create a Bitmap for the image
and return it to Word. Notice how none of the resources in this example
require an absolute directory location — the code automatically compen-
sates for differences in system setup.

The templates for this example have descriptive names; that way they’re
easier to locate if they require changes. In fact, there’s no reason not to give
them descriptive names. The GetItemLabel() method uses this template
feature to create the labels for each gallery item. You can’t count on the user
seeing enough of the template to make a choice, so the distinctive name is a
requirement to ensure the user makes the right selection at the outset.

The ItemClicked() method provides that last piece of the puzzle. When a
user clicks on one of the templates, Word calls this callback with the selected
item’s ID and index. The code makes a call to the Globals.ThisAddIn.
CreateNewDocument() method to actually create a new form, basing the
form on the template location provided in the Templates variable. You’ll
always need to add this extra code because Office doesn’t let you access the
application directly through the Ribbon callback code.

Creating the new document with a particular template
In many respects, working with Word in Visual Studio looks like merely a dif-
ferent kind of VBA application. Of course, there are differences, but the essen-
tial coding tasks are the same. Listing 6-13 shows the code required to create
a new form based on one of the templates you created earlier in this example.

154 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 154

Listing 6-13: Creating the new form based on the selected template

public void CreateNewDocument(string ThisTemplate)
{

// Get rid of Document1 if the user has recently
// opened Word and this is the first document
// created.
if (Application.ActiveDocument.Name == “Document1”)
{

// Use wdPromptToSaveChanges to ensure the user
// still has a chance to save any changes. The
// prompt won’t appear if the user hasn’t made
// any changes to Document1.
object SaveChanges =
(object)Word.WdSaveOptions.wdPromptToSaveChanges;

// Save the document in its original format.
object OriginalFormat =

(object)Word.WdOriginalFormat.wdOriginalDocumentFormat;

// Don’t route the document anywhere.
object RouteDocument = (object)false;

// Close Document1.
Application.ActiveDocument.Close(

ref SaveChanges, ref OriginalFormat,
ref RouteDocument);

}

// Create the new document.
// Define the template to use to create the
// document.
object objTemplate = (object)ThisTemplate;

// Don’t create a new template based on the document
// template.
object objNewTemplate = (object)false;

// Define the kind of document to create.
object objDocumentType =
(object)Word.WdNewDocumentType.wdNewBlankDocument;

// Make sure the document is visible so the user can
// see it.
object objVisible = (object)true;

// Create the document.
Application.Documents.Add(ref objTemplate,

ref objNewTemplate,
ref objDocumentType,
ref objVisible);

}

155Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 155

The code begins by checking for Document1, the default name of the docu-
ment that appears when you open Word. Notice that the code makes this
check without creating any special objects. If you try to type Application
and don’t see the IntelliSense for the relation objects, you’re probably work-
ing in the wrong file.

The code begins by creating some variables for the Application.Active
Document.Close() method. Unlike VBA, this code won’t let you simply skip
arguments. You must provide every required argument for the method calls,
even if that means supplying a default value.

Most of the calls you’ll make refer to the object class — they don’t provide
much in the way of information about the kind of input the call expects. The
example doesn’t take any chances with the user’s data. If you have any doubt
about the data type, look up the method call in the VBA documentation.
Notice how the example uses type coercion to document the values for each
argument. The code uses the actual VBA types, but then coerces them to the
object type. VB.NET users will find that they need to do less work than C#
developers because VB.NET performs some of the type coercion for you.

The example calls the Application.ActiveDocument.Close() method
using the ref keyword in C#. VB.NET developers don’t have to add the extra
keyword. The reason you must include this keyword in C# is to allow Word to
pass back information (it happens rarely — make sure you understand how
the method call works before you assume that Word will provide any return
values). Notice that the example uses Word.WdSaveOptions.wdPromptTo
SaveChanges to ensure that the user doesn’t lose any data. Word won’t dis-
play a dialog box unless the user has made changes to the document.

Creating the new document comes next. As with the Application.
ActiveDocument.Close() method, the Application.Documents.
Add() method requires not only that you pass arguments of the object
type, but also that you pass them by reference. The objTemplate argument
always contains the name of the template you want to create. The remaining
arguments define how Word creates the document. You can choose to create
the document as a template, to use a document type other than a blank docu-
ment (such as an e-mail), and even to create invisible documents so you can
work in the background.

Adding the user information
When the user reaches the Employee Information group, the Ribbon-handling
code becomes a little boring. All that it does is pass the request to the
ThisAddIn class, using code like this:

156 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 156

public void EmpName(Office.IRibbonControl control)
{

// Insert the data into the field.
Globals.ThisAddIn.InsertUserName();

}

Of course, if you fail to include any of these little glue-code calls, a feature of
your application will fail to work. However, most of the activity occurs in the
ThisAddIn class; there you begin by adding an Outlook reference. As with
the letter-and-memo example, this example relies on a user entry within
Outlook to supply user information that Word can’t. To add the required ref-
erence, right-click References in Solution Explorer and choose Add Reference
from the context menu to display the Add Reference dialog box, shown in
Figure 6-14.

Locate the Microsoft Outlook 12.0 Object Library entry, shown in Figure 6-14,
and click OK. You’ll see the Outlook reference added to the References folder
of your project. Rather than type the long list of object names for Outlook in
your code, however, make sure your Imports or using statement looks like
the one shown here:

using Outlook = Microsoft.Office.Interop.Outlook;

After you have the required reference in place, you can begin creating the
methods for handling the user entries. These entries fall into two categories.
The username is a value that you can obtain from Word, so the example uses
this information directly. In addition, you have to have the username before
you can locate the remaining data in Outlook. The remaining entries all come
from the user’s address book entry in Outlook. Listing 6-14 shows examples
of both kinds of code.

Figure 6-14:
Add a

reference to
the Outlook

object
library.

157Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 157

Listing 6-14: Obtaining User Information and Placing It in Fields

public void InsertUserName()
{

// Obtain the username.
string UserName = Application.UserName;

// Define the field to fill.
object SelectEmpReq = (object)”EmpName”;

// Insert the data into the field.
Application.ActiveDocument.FormFields.get_Item(

ref SelectEmpReq).Result = UserName;

// Locate the user in the Outlook address book.
Outlook._Application ThisOutlook =

new Outlook.Application();
foreach (Outlook.AddressEntry UserEntry in
ThisOutlook.Session.AddressLists[1].AddressEntries)
{

if (UserEntry.Name == Application.UserName)
{

UserOutlookEntry =
ThisOutlook.Session.GetRecipientFromID(

UserEntry.ID);
return;

}
}

}

public void InsertUserID()
{

// Get the user identifier, which is stored in the
// CustomerID field.
string UserID =

UserOutlookEntry.AddressEntry.GetContact().CustomerID;

// Define the field to fill.
object SelectEmpReq = (object)”EmpID”;

// Insert the data into the field.
Application.ActiveDocument.FormFields.get_Item(

ref SelectEmpReq).Result = UserID;
}

The code begins by obtaining the username using a technique that looks very
similar to VBA. The code also creates the SelectEmpReq variable, which
contains the name of the field to work with on the form. Notice that this code
isn’t designed to work with a specific form — it works with any form that con-
tains a field with the right name. Consequently, you can create any number of
forms and use the same code to modify them all — as long as you use consis-
tent field names. This single application could end up working with hundreds
of forms.

158 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 158

After the code creates the required variables, it calls the Application.
ActiveDocument.FormFields.get_Item() method to access the
required field. The Result property lets you obtain or modify the value of
the field. This particular piece of code is very much different from VBA,
which points out a problem with simply moving your VBA code to Visual
Studio and assuming you can make minor changes to it.

At this point, the code begins locating the user’s information in Outlook. As a
point of interest, compare this code to the VBA version of the code in Listing
6-7. You’ll notice that the C# code is actually more compact and it executes
faster than the VBA equivalent. The code begins by using a foreach loop to
look at the UserEntry.Name property for each user in the address book and
compare it to the Application.UserName property value. When the code
finds a match, it assigns the information to the UserOutlookEntry using
the ThisOutlook.Session.GetRecipientFromID() method, just as you
would in VBA. When this code executes, you may see the dialog box shown in
Figure 6-4, just as you would when the same code executes in VBA.

Now that the code has access to the UserOutlookEntry variable, it can use
a simple technique to place values from Outlook into the form fields. The code
relies on the same UserOutlookEntry.AddressEntry.GetContact()
method call that you do in VBA; then it assigns the resulting value to the
appropriate field, as it does for the username.

Including a date
One of the problems that occurs most often with forms is that users enter the
date incorrectly. People are forever forgetting the current date (or they don’t
have a calendar handy for looking up the precise date when they do remem-
ber the approximate date). The code in this section helps a user enter an
accurate date using one of two methods. Either the user lets the application
calculate the date (based on some static criterion such as the time interval)
or the user uses a calendar to choose the date. Listing 6-15 shows examples
of both scenarios.

Listing 6-15: Choosing the Correct Date

public void DateLastMonth(
Office.IRibbonControl control)

{
// Obtain the correct date.
int DaysInMonth =

DateTime.DaysInMonth(DateTime.Today.Year,
DateTime.Today.Month);

DateTime TargetDate = DateTime.Today.Subtract(
(continued)

159Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 159

Listing 6-15 (continued)
new TimeSpan(DaysInMonth, 0, 0, 0));

string InsertDate = TargetDate.ToShortDateString();

// Insert the date into the field.
Globals.ThisAddIn.InsertDateInEmpReqField(

InsertDate);
}

public void DateCalendar(Office.IRibbonControl control)
{

// Create and display the dialog box.
Select_Date ChooseDate = new Select_Date();
if (ChooseDate.ShowDialog() == DialogResult.OK)
{

// Obtain the correct date.
string InsertDate =

ChooseDate.SelectDate.SelectionStart.ToShortDateString();

// Insert the date into the field.
Globals.ThisAddIn.InsertDateInEmpReqField(

InsertDate);
}

}

The DateLastMonth() callback shows an example of a date calculation (the
most complex for the example). The code begins by creating a variable that
contains the number of days in the current month. When the application sub-
tracts this value from the current date, it receives the proper date from the pre-
vious month. The calculation relies on the DateTime.Today.Subtract()
method, which requires a TimeSpan as input. As always, the code must call
the ThisAddIn class to make the actual entry.

The calendar method relies on the form shown in Figure 6-15. The user
chooses a date in the dialog box and clicks OK to make the date entry. The
code obtains the information directly from the MonthCalendar control
(make sure you make the control public). Notice that the code calls the same
ThisAddIn class method as the DateLastMonth() callback to add the date
to the form.

160 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 160

The final method appears as part of the ThisAddIn class. The application
uses the following method to add all of the dates to the form:

public void InsertDateInEmpReqField(String InsertDate)
{

// Define the field to fill.
object SelectEmpReq = (object)”ReqDate”;

// Insert the date into the field.
Application.ActiveDocument.FormFields.get_Item(

ref SelectEmpReq).Result = InsertDate;
}

As with the other form methods, the InsertDateInEmpReqField()
method begins by creating a variable to represent the name of the field on
the form. It then uses the Application.ActiveDocument.FormFields.
get_Item() method to add the date to the form.

Figure 6-15:
Select a

date from
the calendar

when a
static

choice
won’t work.

161Chapter 6: Developing Business Applications for Word

12_169940 ch06.qxp 7/13/07 10:25 PM Page 161

162 Part III: Creating New RibbonX Applications

12_169940 ch06.qxp 7/13/07 10:25 PM Page 162

Chapter 7

Developing Business
Applications for Excel

In This Chapter
� Understanding how to work with Excel

� Working with nonstandard equations

� Working with redundant calculations

� Performing data entry using forms

Most people use Excel for calculations of various kinds — everything
from mundane accounting to complex scientific needs. A few people

use Excel to create presentation graphics, and you’ll even find a few people
who use Excel for rudimentary word processing or database needs. In short,
Excel is an extremely flexible application that helps you perform a wide range
of tasks. The number of customizations you’ll find for Excel is extraordinary.
It would be very hard to say whether Word or Excel has the most number of
applications written for it. One thing is certain: The variety of applications for
Excel users does exceed that of Word.

Needless to say, the examples in this chapter provide you with only a basic
view of some application types you can create in Excel. The examples in this
chapter help you explore common applications, such as nonstandard equa-
tions and redundant calculations. You’ll also find an example of using forms.
The result is that you’ll work with enough application types in this chapter to
perform just about any business task you can imagine and a few of those
extraordinary tasks that Excel users love to create.

This chapter also provides examples in both VBA and Visual Studio. The VBA
examples focus on document-oriented tasks, such as working with a particu-
lar kind of calculation that would normally appear on a single worksheet. The
Visual Studio examples create add-ins you could use anywhere in Excel. For
example, nonstandard calculations can affect just about any worksheet you
create, so you’ll probably use Visual Studio to define them as add-ins.

13_169940 ch07.qxp 7/13/07 10:27 PM Page 163

164 Part III: Creating New RibbonX Applications

Getting Started with Excel Applications
It’s relatively easy to create a workflow scenario for most Office applications.
For example, when you create a letter in Word, there’s a definite process in
play; you can use that process as the basis for your Ribbon tab. Likewise,
Access developers can point to a definite process for adding and removing
records. However, when it comes to Excel, you must consider both the
process and the individual action scenario. When processes occur in Excel,
they generally lend themselves to a workflow that you can exploit as a work-
flow-based tab. An example of a process in Excel is creating a chart or per-
forming an analysis according to strict criteria.

Individual actions occur in Excel when the process required to obtain data
isn’t understood or the process is so complex that it isn’t possible to create a
workflow. Anyone performing experimental or what-if analysis falls into the
first group because the data by its very nature isn’t well understood. An exam-
ple of an extremely complex workflow is one where the individual performs an
analysis of a natural process or a living entity. Creating workflow might not
even be worthwhile when the user performs the analysis only once.

Most business applications can rely on a workflow strategy. For example,
entering accounting data or creating a database both require strict
processes. On the other hand, most scientific applications perform individual
actions that focus on the task, rather than the workflow. Because science is
experimental in nature, you’ll often find that you create individual buttons to
perform tasks such as working with particular equations.

Understanding Excel and VBA
You’ll generally use VBA for processes that relate to a specific action such as
calculating mortgage interest or creating a chart based on this week’s data. VBA
works well when you create a single workbook to hold data from an external
source. The VBA application can perform the required analysis, generate a
report, and output graphics based on the ever-changing output of the external
source. However, VBA isn’t always the optimal choice. For example, it’s often
easier to work with Web services and databases using Visual Studio. In this case,
the essential criterion is whether the user will work with only one workbook.

Understanding Excel and Visual Studio
Visual Studio is the only choice when it comes to certain kinds of Excel appli-
cations. For example, if you create a tab containing specialized applications
for your company, you probably want to create an add-in, rather than rely
on VBA to perform the task. The specialized applications are then available
wherever you need them, rather than as part of a single workbook.

13_169940 ch07.qxp 7/13/07 10:27 PM Page 164

Combining VBA and Visual Studio
in Excel applications
Excel is one of the few Office applications where you might actually combine
VBA and Visual Studio to create a complete solution. The Visual Studio por-
tion of the application can include any features, such as equation or graphics
support, that must appear with every application you create. The VBA por-
tion of the application can enforce workflow requirements. Combining gen-
eral features with specific implementations of those features can help you
create extremely flexible applications with a minimum of code.

Creating a Nonstandard Equations Tab
Many businesses use nonstandard equations. For example, insurance compa-
nies use specialized equations to determine rates. The equations aren’t
standardized across the industry; in fact, some equations are proprietary
because each insurance company feels that its own equation gives it a busi-
ness advantage. These equations are so closely guarded that it’s unlikely
you’ll find them online.

Another kind of nonstandard equation is one that doesn’t see common use
except within a particular industry. For example, circuit analysis is a common
need for the electronics industry, but your bank probably won’t require any
of the equations used for such analysis. You can read an article on statistical
circuit analysis with Excel at

http://www.maxim-ic.com/appnotes.cfm/appnote_number/2878/

A third kind of nonstandard equation is one that provides some type of
public-use benefit. For example, you might need an Excel worksheet to help
you compare the benefits of one car loan over another, or help you determine
the mortgage rate on your home (you can find a loan-calculator template
for Excel at http://office.microsoft.com/en-us/templates/
TC062062871033.aspx). Some equations help you perform tasks such as
determining the interest on a credit card or selecting the best repayment plan
for your current credit cards. A special worksheet might help you convert
units of measure or determine a physical characteristic, such as percentage
of body fat. You can find an entire assortment of templates at

http://office.microsoft.com/en-us/templates/FX100595491033.
aspx

All three of these examples define times when you might want to create a
nonstandard equations tab for Excel. However, just creating nonstandard
equations doesn’t really use the Ribbon all that well. You could create such

165Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 165

an application quite easily using previous versions of Excel. The focus of the
Ribbon is to make more efficient workflows possible. Consequently, this
example demonstrates how you can use multiple versions of the same
Ribbon tab to facilitate a workflow within Excel.

This example demonstrates a considerable number of techniques; the chap-
ter simply can’t hold all the source code required to create it. The sections
that follow do provide you with complete information about all the essential
techniques for working with this example. They also show how to modify it to
meet your specific needs. (You can find the complete source code for this
example on the Dummies.com site at http://www.dummies.com/go/
ribbonxfd.) This example relies on the code found in the
NonStandardEquation folder.

Creating a starting element
Figure 7-1 shows one form of the example application; the first thing most
people are going to notice is that the Start group apparently doesn’t contain
any controls. Many developers are used to the idea that every feature in an
application must perform a task. In this case, the Start group simply serves
as a starting point. It’s a reminder, and the application uses three labels to
provide the information. The whole idea behind a workflow is ensuring the
user can follow a process. In this case, the first step of the process is simply
to place the cursor in the correct cell.

Figure 7-1:
Calculating
a loan is no

longer an
error-prone

process.

166 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 166

Choosing the correct equation
The list of equations in Figure 7-1 isn’t extensive, but it does provide a simple
view of what you might do with this application. You could also choose to
use the split button or gallery approaches used with the Word examples in
Chapter 6. No matter which approach you use, you have to provide some
means for the user to select an equation. The toggle-button approach used
for this example works very well in many cases. The example even highlights
the selected equation. Of course, you have to coordinate all three toggle but-
tons — which means performing a little extra coding. The linkage begins with
the XML shown here:

<toggleButton id=”Loan”
label=”Loan”
onAction=”SetupLoan”
getPressed=”SelectedEquation”/>

When the user initially clicks one of the toggle buttons, the code calls the
methods pointed to by the onAction attribute. In this case, the code calls
the SetupLoan() method that appears in Listing 7-1.

Listing 7-1: Choosing an Equation Type

public void SetupLoan(Office.IRibbonControl control,
bool pressed)

{
// Set the calculation type.
CalcType = “Loan”;

// Set the pressed state.
pressed = true;

// Invalidate the entire Ribbon.
ribbon.Invalidate();

}

The CalcType variable is a global string that tracks the equation in use. This
particular variable appears in quite a few places because it determines many
of the application actions and even the final appearance of the tab.

Setting pressed to true changes the condition of the target control, but it
doesn’t do anything for the other controls on the tab. This application
changes quite a few of the controls when the user chooses a different equa-
tion, so simply setting the target button won’t work. That’s why the code
ends with a call to ribbon.Invalidate() to invalidate the entire Ribbon.
You could use individual calls to controls, but there are too many of them to
change in this example — invalidating the Ribbon as a whole works far better.

167Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 167

Now that the system has pressed the control, Excel calls the method pointed
to by the getPressed attribute. In this case, all three toggle buttons use the
same method because the method performs essentially the same task for all
of them. You can see the SelectedEquation() method in Listing 7-2.

Listing 7-2: Setting the Equation Control State

public bool SelectedEquation(
Office.IRibbonControl control)

{
// Determine the pressed state based on the current
// equation.
switch (CalcType)
{

case “Loan”:
if (control.Id == “Loan”)

return true;
else

return false;
case “Annuity”:

if (control.Id == “Annuity”)
return true;

else
return false;

case “Effective Rate”:
if (control.Id == “EffectiveRate”)

return true;
else

return false;
default:

return false;
}

}

The code uses a switch to choose a calculation type based on the content of
CalcType. Once the code chooses a particular case, it uses an if statement
to determine whether to pass true or false to the caller. The return value
determines whether Excel presses the control.

Defining the multiple Ribbon elements
This example relies on a single Ribbon tab, but multiple designs give the
application the appearance of providing multiple functionality on a single tab.
When the user selects a particular equation, the tab content changes to
reflect the needs of that equation. The user doesn’t even worry about the
worksheet. The controls across the Ribbon let the user move from left to
right to solve a specific problem. The worksheet shows the result of the
entries that the user makes as part of the workflow. Figure 7-1 shows an
example of one of the equations with the data entered into it.

168 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 168

The three equations are relatively simple financial equations that Excel actu-
ally provides on the Formulas tab as PMT, FV, and EFFECT. The problem is
that using the Formulas tab requires a good knowledge of the equations, and
there’s a very good chance that a user could type incorrect data. Figure 7-2
shows what happens when you choose the PMT option. Excel displays a
dialog box containing a number of potentially confusing entries. For example,
to provide the entry in the Rate field, you must calculate the interest rate per
period first. A 12% interest rate for monthly loan payments translates to 0.12 /
12 or 0.01 per period. However, the dialog box doesn’t make the required
information apparent.

Compare the process for using PMT in Figure 7-1 against that in Figure 7-2.
Using the custom tab is clearly less error prone and enforces company poli-
cies without much effort on the part of the user.

Of course, creating the tab shown in Figure 7-1 requires some effort on the
part of the developer to create a design that works for all of the equations.
The PMT function requires the periodic interest rate, number of periods, and
loan amount as required input for this application. The optional future value
amount is 0 since the borrower achieves a 0 value when the loan reaches
maturity. The type value is also 0 since the bank calculates the loan amount
at the end of the accounting period. Consequently, the PMT function requires
three inputs, as shown in Figure 7-1. Notice that the number of periods
appears as a drop-down list box so the user can choose only loan-term
lengths that the bank actually supports.

The FV function requires the most entries on the tab. These entries appear in
Figure 7-3. In this case, the user must provide an interest rate, the amount of
time for the annuity, the initial deposit the client makes, and the amount of
money the client pays into the annuity each month. Although this calculation
uses one additional control, you don’t have to get rid of any existing controls
from the PMT function.

Figure 7-2:
Even when

Excel
provides an

equation,
you have to

know how
to use it.

169Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 169

The least control-intensive function is EFFECT. All you really need is a single
field to hold the current interest rate. You might think that the various config-
urations would be problematic, but you control it using standard Ribbon
features. Listing 7-3 shows the XML required to present the different view
of the tab.

Listing 7-3: Providing Flexible Data Entry

<group id=”DataEntry” getLabel=”GetDataEntryLabel”>
<editBox id=”Rate”

label=”Interest Rate”
onChange=”GetRateText”/>

<dropDown id=”Term”
label=”Term”
getVisible=”TermVisible”
getItemCount=”TermCount”
getItemID=”TermItemID”
getItemLabel=”TermItemLabel”
onAction=”GetSelectedTerm”/>

<editBox id=”Payment”
label=”Initial Payment”
getVisible=”PaymentVisible”
onChange=”GetPaymentText”/>

<editBox id=”Amount”
getLabel=”AmountLabel”
getVisible=”AmountVisible”
onChange=”GetAmountText”/>

</group>

Notice how the application uses the various attributes to see each of the con-
trols as needed. The Rate control appears in every application, so it has a
default label and doesn’t require the getVisible attribute. All the other
controls do have a getVisible attribute that determines whether the con-
trol appears on the Ribbon, depending on the current equation selection. In
all cases, the getVisible attribute method uses a simple selection method
(such as the one shown in Listing 7-4).

Figure 7-3:
The FV

function
requires an

additional
field to work

properly
in this

application.

170 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 170

Listing 7-4: Showing or Hiding Controls

public bool TermVisible(Office.IRibbonControl control)
{

// The application doesn’t use this field for the
// effective rate calculation.
if (CalcType == “Effective Rate”)

return false;
else

return true;
}

Notice that this choice, like many others, depends on the CalcType variable.
You can keep your code simple by maintaining a single variable of this kind to
control the application’s on-screen appearance.

Compare Figures 7-1 and 7-3 and you’ll notice that group and Amount control
labels change to differentiate the equation types. In both cases, the example
relies on the getLabel attribute to provide the required connectivity. Listing
7-5 shows the code used for this example.

Listing 7-5: Changing the Group and Control Labels

public string GetDataEntryLabel(
Office.IRibbonControl control)

{
// Determine the group label by the kind of
// calculation selected.
switch (CalcType)
{

case “Loan”:
return “Enter Loan Information”;

case “Annuity”:
return “Enter Annuity Information”;

case “Effective Rate”:
return “Enter Effective Rate Information”;

default:
return “Not Implemented”;

}
}

public string AmountLabel(
Office.IRibbonControl control)

{
// Determine the amount label by the kind of
// calculation selected. Since the effective rate
// calculation doesn’t use this control, the
// application doesn’t supply a label for it.
switch (CalcType)
{

(continued)

171Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 171

Listing 7-5 (continued)
case “Loan”:

return “Loan Amount”;
case “Annuity”:

return “Monthly Annuity Payment”;
default:

return “Not Implemented”;
}

}

You’ll notice that many of the switch statements used in this application
include a default option. Using this approach is going to save you a lot of
debugging time at some point — because someone will almost certainly come
behind you and add other options to your application. In some cases, the
changes result in a broken application unless you include a default option
to handle unanticipated modifications.

In both cases, the application returns a string that redefines how the control
appears on-screen. You might wonder why the application doesn’t include a
ribbon.Invalidate() call in this and other callbacks. In many cases, care-
ful placement of the ribbon.Invalidate() call means that you have to
include it only once in the application. Because clicking one of the equation
options begins all the changes noted in this section, placing the ribbon.
Invalidate() call there makes the most sense.

Always use the ribbon.Invalidate() call with care. If you include it more
than once in an application, you might cause significant problems. The appli-
cation could end up in a long loop of repetitive updates. Theoretically, the
application could even crash — or cause the user to terminate the applica-
tion when the Ribbon-updating process takes too much time.

Obtaining the data entered in the Ribbon
The Ribbon doesn’t allow any direct interaction, so you can’t obtain the infor-
mation the user types into the Ribbon controls directly. The answer to this
problem, as with many other problems, is to create a callback. Listing 7-3
shows the two answers needed in this case. Most controls provide an
onChange attribute that you can use to detect changes in the control data.
One of the exceptions to this rule is the drop-down list box, which requires
that you use the onAction attribute to detect a change in selection. Listing
7-6 shows a typical example of an onChange implementation and the
onAction implementation for the Term control.

172 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 172

Listing 7-6: Obtaining Data from the Ribbon

public void GetRateText(Office.IRibbonControl control,
string text)

{
// Save the input value of the text.
Rate = Int32.Parse(text);

}

public void GetSelectedTerm(
Office.IRibbonControl control,
string selectedId, int selectedIndex)

{
// Store the default value.
Term = 0;

// Save the terms for loans.
if (CalcType == “Loan”)

switch (selectedIndex)
{

case 0:
Term = 10;
break;

case 1:
Term = 15;
break;

case 2:
Term = 20;
break;

case 3:
Term = 30;
break;

}

// Save the terms for annuities.
if (CalcType == “Annuity”)

switch (selectedIndex)
{

case 0:
Term = 5;
break;

case 1:
Term = 7;
break;

case 2:
Term = 10;
break;

case 3:
(continued)

173Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 173

Listing 7-6 (continued)
Term = 15;
break;

case 4:
Term = 20;
break;

}
}

Converting the numeric input of the edit boxes is relatively easy because the
Int32.Parse() method does all that work for you. The best part is that this
method call also safeguards your application to some extent. If a user puts
anything other than a number in the edit box, the Int32.Parse() method
outputs a 0. In short, if someone tries to input a script or other nasty into
your application, the application will simply see a 0.

The drop-down list box requires considerably more processing. In this case,
the code must interpret the information based on the selections available for
each of the equations. Although a drop-down list box prevents the user from
inputting inaccurate data, you can cause problems for yourself if you don’t
check the interpretation code carefully.

Performing the calculation
It’s finally time to perform the calculation. The application requires two pieces
of code: The first reacts to the click of Calculate on the Ribbon; the second con-
verts all the data into a string, and then places the string in Excel before per-
forming the calculation. Listing 7-7 shows the code that reacts to user input.

Listing 7-7: Reacting to the Calculate Button

public void Calculate(Office.IRibbonControl control)
{

// Choose a calculation and call it.
switch (CalcType)
{

case “Loan”:
Globals.ThisAddIn.CalculatePMT(Rate, Term,

Amount);
break;

case “Annuity”:
Globals.ThisAddIn.CalculateFV(

Rate, Term, Payment, Amount);
break;

case “Effective Rate”:
Globals.ThisAddIn.CalculateEFFECT(Rate);
break;

}
}

174 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 174

The call is simple, at this point, because the application has already placed
the required data in global variables. All the code has to do is call the appro-
priate add-in function and provide the required input. The actual calculation
requires a bit more effort because you have to construct the same string that
the Excel formula commands create. Listing 7-8 shows the code for the loan
calculation.

Listing 7-8: Performing the Actual Calculation

// Calculate a loan amount.
public void CalculatePMT(double Rate, int NPer, int PV)
{

// Compute the rate.
double PeriodicRate = (Rate / 100) / 12;

// Compute the number of periods.
int Periods = NPer * 12;

// Perform the actual calculation.
Application.ActiveWindow.ActiveCell.Cells[1, 1] =

(object)”=PMT(“ + PeriodicRate.ToString() + “,” +
Periods.ToString() + “,” + PV.ToString() +
“,0,0)”;

Application.ActiveWindow.ActiveCell.Calculate();
}

Notice how the code performs a subtle, yet essential, conversion of the int
Rate value to a double Rate value using a change in argument type. If you
don’t perform this conversion, the first calculation in the example fails
because Visual Studio insists on performing it as an integer value.

The first calculation converts the annual percentage rate as an integer into a
periodic rate that the equation can actually use to perform the calculation.
The second calculation converts the years provided by the user into the
required number of periods for the equation. In both cases, the application
assumes a monthly payment schedule, which is the default for most banks
(even though many now offer a host of alternatives that dizzy the mind of the
most savvy financial expert).

Creating the string comes next. The application uses the Application.
ActiveWindow.ActiveCell.Cells[1, 1] property to place the string
in the upper-left corner of the worksheet selection. Notice that it’s working
with ActiveCell.Cells, which is the currently selected cell range. Even
if the user selects a range of cells, the answer will appear in the upper-left
corner of that range. The actual equation looks something like this (the
numbers will vary based on what the user provides as input):

=PMT(0.01,360,105000,0,0)

175Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 175

Simply adding the text to the worksheet doesn’t assure that the calculation
takes place. The code ends by calling Application.ActiveWindow.
ActiveCell.Calculate() to perform the calculation.

The effective rate calculation requires special formatting, as will many other
calculations you perform. Excel defaults to the General number format.
However, the example formats the cells to the Percentage number format
with four places of accuracy after the decimal point for easier reading. Here’s
the code you need to perform the formatting:

// Format the cell.
Excel.Range ThisRange;
ThisRange = (Excel.Range)Application.Cells[(object)1,

(object)1];
ThisRange.NumberFormat = “0.0000%”;

Although you can modify the value of a cell directly by using the
Application.ActiveWindow.ActiveCell.Cells[1, 1] property, you
can’t use this property to change the formatting. To perform this task, and
any other formatting-related tasks such as changing the font, you must create
an Excel.Range object, use it to obtain the cell you want to modify, and
then change the formatting information. Notice how you must coerce the
type of the output of Application.Cells to make it a range (Excel returns
a simple object).

The number formats aren’t always easy to discover because the VBA help file
doesn’t list them. The easiest way to obtain the required NumberFormat (or
other formatting) value is to open a copy of Excel, format a cell the way you
want it, and then use a simple VBA macro to return the required strings. You
obtain the NumberFormat string using the following VBA macro:

Public Sub TestNumberFormat()
Dim ThisRange As Range
Set ThisRange = Application.Cells(1, 1)
MsgBox ThisRange.NumberFormat

End Sub

Performing Redundant Calculations
Redundant calculations are those you must set up and perform more than
once in a particular worksheet. For example, you might want to compute a
range of mortgage values, rather than a single value, to provide a client with
a number of options. Using the example in the “Creating a Nonstandard
Equations Tab” section of the chapter, you could guide a user into performing
the same calculation multiple times without any problem. However, this
approach is going to drive a seasoned user nuts — not to mention waste

176 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 176

considerable time, which the Ribbon is supposed to prevent. Consequently,
you need something different to make this application work a little better.

The sections that follow provide you with complete information about all the
essential techniques for working with this example and modifying it to meet
your specific needs. (You can find the complete source code for this example
on the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)
This example relies on the code found in the RedundantCalculations
folder.

Defining the problem solution
You could solve the problem by performing the same calculation with differ-
ent values multiple times, using a number of techniques, including (say)
adding ranges to the current tab. It’s important to remember, though, that the
Ribbon is supposed to promote a workflow, so adding these ranges directly
to the tab is going to prove confusing when the user really does need to per-
form a single calculation. A better idea is to make the range calculation part
of a dialog box and to use a dialog-box launcher to access it. Consequently,
the new version of the nonstandard equations application has one minor
change, as shown in Figure 7-4.

The XML for this addition is relatively simple. All you need is the standard
dialog-box launcher information added to the DataEntry group, as shown
here:

<dialogBoxLauncher>
<button id=”RedundantCalcsLaunch”

screentip=”Multiple Calculations”
supertip=”Perform this calculation multiple

times.”
onAction=”DisplayRedundantCalc”/>

</dialogBoxLauncher>

Figure 7-4:
Adding

functionality
sometimes

means
using a

dialog-box
launcher.

177Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 177

Implementing the dialog-box launcher is another story. Here are the criteria
for implementing this example:

� You must create three different dialog boxes, one for each equation.

� The code must distinguish between the different equations.

� Any dialog boxes used to interact with the user will require linkage with
the information on the Ribbon; the Ribbon controls will likewise require
updates from the dialog boxes.

� The code must make multiple calls to the required ThisAddIn method,
once for each cell in the range.

� Depending on your requirements, you might need to provide additional
information, such as column and row headings, to make the output
usable.

Designing the dialog boxes
The dialog box design is important. You must weigh the advantages of user
flexibility against the complexities of coding a usable design. The example
specifically limits the user to two range choices, which means that you can
display the output as a table. Of course, this means you also have to decide
which two ranges the user is likely to need. The example uses the simple
design shown in Figure 7-5 for the loan calculation. Notice that the two range
values are those that the user is most likely to need — the interest rate and
the payoff period. The user is going to know the loan amount at the outset, so
keeping this value fixed probably won’t present a problem.

Figure 7-5:
The choice

of range
variables is

relatively
easy with

the loan
calculation.

178 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 178

The annuity dialog box, shown in Figure 7-6, is different from the loan dialog
box because you have to make some hard choices when designing it. The
user may actually need four ranges in this case. In addition to the interest
and deposit terms, the user may also require the payment amount and even
the initial deposit. If you provide ranges for three variables (the periodic pay-
ment amount is the likely candidate), you could present the output as a
series of tables. However, when you start working with four variables, it
becomes difficult to provide the user with data at a glance because you’ll
likely need to start using multiple worksheets to display the data, which
means the user is going to become easily confused.

The purpose of moving an application to the Ribbon is to reduce complexity.
If you end up adding more complexity due to some unfortunate design
choices (even for the expert user), then the user doesn’t receive any benefit
from using the Ribbon. In general, your design of dialog boxes should move
in the same direction as the Ribbon as a whole — look for ways to reduce the
number of decisions the user must make to use the application.

Of the three calculations, creating a range dialog box for the effective rate cal-
culation is the easiest. In this case, all you need to supply is a single range for
the interest rate, so the dialog box design is almost trivial.

Creating the calculation code
Performing the required calculations is essentially the same whether you per-
form one or many calculations. In fact, the differences are subtle. Listing 7-9
shows the code for this example. Compare this code to Listing 7-8.

Figure 7-6:
The annuity

dialog box
presents

tough
tradeoffs

that you’ll
have to

consider.

179Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 179

Listing 7-9: Performing Multiple Calculations

// Calculate a loan amount and include positional data.
public void CalculatePMT(double Rate, int NPer, int PV,

int X, int Y)
{

// Compute the rate.
double PeriodicRate = (Rate / 100) / 12;

// Compute the number of periods.
int Periods = NPer * 12;

// Perform the actual calculation.
Application.ActiveWindow.ActiveCell.Cells[X, Y] =

(object)”=PMT(“ + PeriodicRate.ToString() + “,” +
Periods.ToString() + “,” +
PV.ToString() + “,0,0)”;

Application.ActiveWindow.ActiveCell.Calculate();
}

The most noticeable difference between the two methods is that this sec-
tion’s version requires two additional positioning arguments. The version in
Listing 7-8 assumes that you want to put the output in a particular place. This
version lets you move the output to any location on the worksheet.

The Application.ActiveWindow.ActiveCell.Cells[X, Y] property
performs the positioning. Instead of providing specific numbers, this version
uses the input arguments. Other than this small change, the code works pre-
cisely as before. Even though the change is subtle, it’s important; you’ll prob-
ably want to maintain both versions of the method to make coding easier.

Defining linkages to existing data
When you start creating dialog boxes for your Ribbon application, you need
to create linkage between each of the dialog boxes and the appropriate
Ribbon controls. Otherwise the two elements will get out of sync and you’ll
find your application displays erroneous data. The linkage requires three
elements:

� Getting information from the Ribbon

� Setting information on the Ribbon

� Defining the required callbacks in XML

You’ve already seen the first element in the list. Listing 7-6 shows how to get
text from the Ribbon and use it in your application. Listing 7-10 shows the
third element. Normally, you’ll create the XML for the linkage before you
create the code to ensure that you have the methods defined properly.

180 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 180

Listing 7-10: Creating XML Linkages

<editBox id=”Rate”
label=”Interest Rate”
onChange=”GetRateText”
getText=”SetRateText”/>

<dropDown id=”Term”
label=”Term”
getVisible=”TermVisible”
getItemCount=”TermCount”
getItemID=”TermItemID”
getItemLabel=”TermItemLabel”
onAction=”GetSelectedTerm”
getSelectedItemIndex=”SetSelectedTerm”/>

The attribute you use to implement the linkage depends on the control type.
Most controls use the getText attribute, which actually draws information
from your application and displays it in the control (an editBox, in this
case). Some controls require that you use an alternative attribute, such as
the getSelectedItemIndex attribute shown in Listing 7-10.

The example already has global variables defined for the various controls on
the Ribbon. For example, Rate contains the value of the Rate edit box on the
Ribbon. All you need to do, in many cases, is convert the value and output it
to the Ribbon as a string, as shown in Listing 7-11.

Listing 7-11: Setting Data Values on the Ribbon

public string SetRateText(
Office.IRibbonControl control)

{
// Return the current value of the Rate variable.
return Rate.ToString();

}

public int SetSelectedTerm(
Office.IRibbonControl control)

{
// Set the term for loans.
if (CalcType == “Loan”)

switch (Term)
{

case 10:
return 0;

case 15:
return 1;

case 20:
return 2;

case 30:
return 3;

(continued)

181Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 181

Listing 7-11 (continued)
}

// Set the term for annuities.
if (CalcType == “Annuity”)

switch (Term)
{

case 5:
return 0;

case 7:
return 1;

case 10:
return 2;

case 15:
return 3;

case 20:
return 4;

}

// Provide a default return value.
return 0;

}

All that the SetRateText() method requires is a single line of code to per-
form the required work. To make this code work, keep the Rate variable
updated and invalidate the associated control as needed.

The SetSelectedTerm() method shows the work required to keep the
drop-down list box synchronized. You can’t simply base a value on the cur-
rent value of Term and send it to the control. Since the value can vary
depending on the drop-down list box items, you can’t perform a direct trans-
lation. Using switch to perform the task works well.

Performing the redundant calculations
The <dialogBoxLauncher> has only one onAction attribute, so the start-
ing point for any calculation is the method that this attribute points to,
DisplayRedundantCalc. Of course, the calculations for each of the equa-
tions are different, so you need to provide some means of calling these
unique implementations. Listing 7-12 shows the code used for this purpose.

Listing 7-12: Choosing a Redundant Calculation Procedure

public void DisplayRedundantCalc(
Office.IRibbonControl control)

{
// Select the correct procedure.

182 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 182

switch (CalcType)
{

case “Loan”:
PerformLoanRangeCalc();
break;

case “Annuity”:
PerformAnnuityRangeCalc();
break;

case “Effective Rate”:
PerformEffectiveRateRangeCalc();
break;

}
}

As you can see, the code is a simple switching network for a more complex
process. The actual calculation loop takes up much of the additional code for
this example; it can become significantly more complex when you allow for
additional ranges. Listing 7-13 shows a typical example of the redundant cal-
culation loop.

Listing 7-13: Performing the Redundant Calculation Loop

private void PerformLoanRangeCalc()
{

// Create the dialog box.
LoanRangeSelection ThisSelection =

new LoanRangeSelection();

// Add the existing variables to it.
ThisSelection.txtIntBeg.Text = Rate.ToString();
ThisSelection.txtIntEnd.Text = Rate.ToString();
ThisSelection.txtIntInc.Text = “1”;
ThisSelection.cbTermBeg.Text = Term.ToString();
ThisSelection.cbTermEnd.Text = Term.ToString();
ThisSelection.txtLoanAmt.Text = Amount.ToString();

// Display the dialog box and process the data if
// the user clicks OK.
if (ThisSelection.ShowDialog() == DialogResult.OK)
{

// Convert the data values to integers.
Rate = Int32.Parse(ThisSelection.txtIntBeg.Text);
Term = Int32.Parse(ThisSelection.cbTermBeg.Text);
Amount =

Int32.Parse(ThisSelection.txtLoanAmt.Text);

// Create local variables to hold the calculation
// data.
Int32 EndRate =

Int32.Parse(ThisSelection.txtIntEnd.Text);
(continued)

183Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 183

Listing 7-13 (continued)
Int32 IncRate =

Int32.Parse(ThisSelection.txtIntInc.Text);
Int32 EndTerm =

Int32.Parse(ThisSelection.cbTermEnd.Text);

// Update the values on the Ribbon.
ribbon.InvalidateControl(“Rate”);
ribbon.InvalidateControl(“Term”);
ribbon.InvalidateControl(“Amount”);

// Add the initial heading.
Globals.ThisAddIn.SetHeading(“Interest”, 1, 1);

// Perform the calculations.
for (int i = Rate; i <= EndRate; i += IncRate)
{

// Calculate the X and Y positioning value.
int X = i + 2 - Rate;
int Y = 2;

// Print the interest rate.
Globals.ThisAddIn.SetHeading(

i.ToString() + “%”, X, 1);

// Use a series of if statements to determine
// the year settings.
if ((Term == 10) && (EndTerm >= 10))
{

// Perform the calculation.
Globals.ThisAddIn.CalculatePMT(

i, 10, Amount, X, Y);

// Print the heading.
Globals.ThisAddIn.SetHeading(

“10 Year”, 1, Y);

// Increment Y if we’ve used it.
Y++;

}

if ((Term <= 15) && (EndTerm >= 15))
{

// Perform the calculation.
Globals.ThisAddIn.CalculatePMT(

i, 15, Amount, X, Y);

// Print the heading.
Globals.ThisAddIn.SetHeading(

“15 Year”, 1, Y);

// Increment Y if we’ve used it.
Y++;

184 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 184

}

if ((Term <= 20) && (EndTerm >= 20))
{

// Perform the calculation.
Globals.ThisAddIn.CalculatePMT(

i, 20, Amount, X, Y);

// Print the heading.
Globals.ThisAddIn.SetHeading(

“20 Year”, 1, Y);

// Increment Y if we’ve used it.
Y++;

}

if ((Term <= 30) && (EndTerm >= 30))
{

// Perform the calculation.
Globals.ThisAddIn.CalculatePMT(

i, 30, Amount, X, Y);

// Print the heading.
Globals.ThisAddIn.SetHeading(

“30 Year”, 1, Y);

// Increment Y if we’ve used it.
Y++;

}
}

}
}

The code begins by creating the requisite dialog box. Figures 7-5 and 7-6
show two examples of these dialog boxes. However, the code doesn’t display
the dialog boxes immediately. Instead, it fills the various dialog boxes with
the values the user needs to create a range with the least amount of work.
After the dialog box contains the required information, the code displays
the dialog box using the ShowDialog() method and then tests for the
DialogResult value. When the user clicks OK, the code begins processing
the data the user provides.

The first task is to update the global variables so that the code can update
the Ribbon later. The code also needs to create local variables to hold the
range data. The ranges don’t appear on the Ribbon, so you don’t have to
maintain global variables for them. At this point, the code calls ribbon.
InvalidateControl() to update the Ribbon. The code updates the
individual Ribbon controls, rather than the Ribbon as a whole, because there
are only three controls to consider. Using this approach makes the applica-
tion work more efficiently and reduces the potential for problems such as
screen blinking.

185Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 185

The calculations occur in what amounts to a double loop. The Rate loop is
easy to see because it relies on a standard for structure. The second loop is
harder to see because you have to unroll it as a series of if statements.
Remember that Term has no standard increment, so you can’t use a for
structure to handle it. Instead, the code must use a series of if statements to
test the potential Term and EndTerm values.

Of course, you also don’t know where the range will begin or end, so you
can’t assign definite values to the positioning variables either. The code
begins with a starting point and then updates the variables for each range
entry. When the code encounters one of the Term values in the specified
range, it calls Globals.ThisAddIn.CalculatePMT() to perform the calcu-
lation and display the result on-screen.

The code has one potential inefficiency: Because you don’t know where the
range starts or ends, you can’t determine where to place a heading to
describe the range entry. Consequently, the code makes several calls to
Globals.ThisAddIn.SetHeading() to set the heading information. This
call is very short and won’t have much impact on the application’s perform-
ance, but you should consider avoiding it when you can. The “Considering
the data identification requirements” section of the chapter describes the
Globals.ThisAddIn.SetHeading() method in detail.

Considering the data identification
requirements
The final piece of this example provides a means of adding headings to the
output. It’s easy to argue that a single calculation doesn’t require any headings.
However, to make the data meaningful when you perform multiple calcula-
tions, you must provide headers. The code in Listing 7-14 performs this task.

Listing 7-14: Creating a Worksheet Heading

public void SetHeading(
String Heading, Int32 X, Int32 Y)

{
// Add the requested heading.
Application.ActiveWindow.ActiveCell.Cells[X, Y] =

(object)Heading;
}

Now that all the pieces are in place, you can run the code, create a range, and
see the output. Figure 7-7 shows an example of the output for a loan with a
starting amount of $105,000, payoff times between 10 and 30 years, and inter-
est rates between 5% and 12%. Creating the output this way is definitely
easier than using the individual entries in the Formulas tab (see Figure 7-2 for
an example of the dialog box used for calculations on the Formulas tab).

186 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 186

Automating Data Entry with Forms
Forms are one of the more common business applications for both Word and
Excel. While forms in Word tend to have a universal appeal (such as a form
you use to requisition supplies), those in Excel often have more limited uses.
Consequently, you might find that you want to create an Excel form as a tem-
plate or even as a document, rather than as an add-in. (You may want to con-
trast the use of forms in Word with the use of forms in Excel by reviewing the
example in the “Filling Out Forms” section of Chapter 6.)

The sections that follow provide you with complete information about all the
essential techniques for working with this example and modifying it to meet
your specific needs. (You can find the complete source code for this example
on the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)
This example relies on the code found in the ExcelForm.xltm file.

Creating the form
Many people don’t realize that you can create forms with Excel (they don’t
have the popularity of the Word variety because they’re not as easy to create
in an eye-pleasing form) or that you can create Excel templates. The form
controls for Excel don’t follow precisely the same conventions as those for
Word. You’ll still find them on the Developer tab, but they appear as part of
the Insert split button, as shown in Figure 7-8. If you need to choose addi-
tional controls, click the More Controls button in the lower-right corner of
the ActiveX Controls section to display the More Controls dialog box.

Figure 7-7:
The output

from this
example

produces a
table of
values

based on
the input

ranges.

187Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 187

As with Word, you must protect the form before you can work with the con-
trols. However, unlike Word, Microsoft places the Excel document-protection
feature on the Review tab, as shown in Figure 7-9. The following steps tell
how to protect the document:

1. Select the Review tab.

2. Click Protect Workbook and choose Protect Structure and Windows.

You see the Protect Structure and Windows dialog box, shown in
Figure 7-10.

Figure 7-9:
Excel places

document
protection

on the
Review tab.

Figure 7-8:
Excel

provides
form

controls
on the

Developer
tab.

188 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 188

3. Check the protection options you want to use.

Make sure you choose structure protection to enable the form controls
(this is the default option). Protect the windows when you also want to
prevent the user from modifying the worksheet layout.

4. (Optional) Type a password for the document and click OK.

Excel enables protection in the document and activates the controls
you’ve placed on the form. If you don’t provide a password, anyone can
remove the protection you’ve put in place.

You’ll need to decide whether you want to create your form as a document or
a template. The example uses a template. When creating a template, you
need to use the XLTM extension. Excel automatically places files in the appro-
priate folder:

In Windows XP:

\Documents and Settings\<User Name>\Application Data\Microsoft\Templates

In Windows Vista:

\Users\<User Name>\AppData\Roaming\Microsoft\Templates

Excel doesn’t provide a direct option to save a document as a template,
though, so you’ll need to use the following procedure to save it:

1. Choose Office Menu➪Save As➪Other Formats.

You see the Save As dialog box, shown in Figure 7-11.

2. Select the Excel Macro-Enabled Template (*.xltm) option from the
Save as Type drop-down list box.

3. Optionally, right-click any blank area of the file listing area and
choose New➪Folder to create a new folder for the template.

Figure 7-10:
Protect the

document to
enable the
fields that
you place

on the form.

189Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 189

4. Check the Save Thumbnail option.

Excel saves a picture of the form. Saving a thumbnail lets you see the
template when you want to create a new document based on it later.

5. Type a name for your template and click Save.

Excel saves a copy of the template.

When you want to use the template later, choose Office Menu➪New to dis-
play the New Workbook dialog box. Select the My Templates option and
you’ll see the template on the Excel Forms tab of the resulting New dialog
box. If you’ve saved a thumbnail for your template, you’ll see a picture of the
form in the Preview window, as shown in Figure 7-12.

Remove the grid lines from your worksheet when you’re working with forms.
Doing so provides a nicer appearance and also makes it easier for the user to
work with the form. Figure 7-13 shows the Employee Expense Report work-
sheet used for this example. You’ll find the gridlines option on the Page
Layout tab within the Sheet Options group. Clear the check next to the View
option in the Gridlines area of the group.

Figure 7-11:
Use the

options in
the Save As

dialog box
to save your

worksheet
as a

template.

190 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 190

If you’re experiencing problems in working with the fields, then choose the
Developer tab and click Design Mode. The Design Mode toggle button must
remain depressed while you modify features such as field properties. Excel
automatically resets the Design Mode button when you perform certain
tasks. For example, when you make changes to your VBA code, Excel nor-
mally takes the application out of Design mode.

Figure 7-13:
Removing

the gridlines
makes this

form easier
to see and

use.

Figure 7-12:
Save a

thumbnail
for your

form so that
you can see

how it
appears

later.

191Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 191

Adding the Ribbon code
The Ribbon code is relatively simple for this example, despite the number of
items you see in Figure 7-13. Every group has an identifier and label associated
with it. The employee buttons use the standard button setup shown here:

<button id=”EmpName”
label=”Your Name”
size=”large”
onAction=”OAEmpName”
imageMso=”ContactPictureMenu” />

<button id=”EmpID”
label=”Your ID”
onAction=”OAEmpID” />

The only button that includes an image is the large Your Name button. You’ll
sometimes find that a descriptive label provides everything that a user needs
and that the images simply end up using space. That’s the case with this
example. Images normally help more with tasks that the user might not per-
form every day or that require decisions by less skilled workers. Each of the
check boxes also uses a relatively simple setup, as shown here:

<checkBox id=”TripPurpose”
label=”Trip Purpose”
onAction=”OATripPurpose”
getPressed=”GPTripPurpose” />

Notice that you must provide both onAction and getPressed attributes.
Otherwise the check box won’t provide the correct status information when
the user reopens the file. Even though the Ribbon code is simple in this case,
it still performs everything expected from a Ribbon application, including
reducing complexity and maintaining a workflow.

Performing content sleight-of-hand
This example may seem as if it should perform almost magical manipulations
of the form. Yet, the entire form is always in place with this example. All the
fields you see in Figure 7-13 are always available. However, the person filling
out the form sees only the fields checked in the Ribbon. This content sleight-
of-hand is easy to perform when you follow a few rules.

The example uses a simple technique where each row is dedicated to one
kind of data. You make each row large enough to hold just one set of controls.
For example, the Employee Name field shown in Figure 7-13 is 18 pixels high.
The row containing it is 20 pixels high, which allows one pixel on each side of
the control. By hiding the row, you can hide the field within the row. Yes, the

192 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 192

field still exists, but the user can’t see it and it won’t print out either. As far as
the user is concerned, the field doesn’t exist. The field must reside entirely
within the row to make this feature work.

In addition to sizing and placement considerations, you must also change one
of the field properties. Right-click the field and choose Format Control from
the context menu. Select the Properties tab. You’ll see the Format Control
dialog box, as shown in Figure 7-14. Select the Move and Size with Cells
option or the field won’t hide automatically when you hide the row.

Now that you have the required form structure in place, you can write code
to hide and show the various form elements as needed. The onAction
attribute Subs perform the task of showing and hiding the fields, as shown in
Listing 7-15.

Listing 7-15: Showing and Hiding the Form Fields

‘Callback for TripPurpose onAction
Sub OATripPurpose(control As IRibbonControl, _

pressed As Boolean)

‘Change the screen appearance.
If pressed Then

Rows(“7:7”).Select
Selection.EntireRow.Hidden = False

Else
Rows(“7:7”).Select
Selection.EntireRow.Hidden = True

End If
End Sub

Figure 7-14:
Setting the

field
properly

ensures the
user only

sees it when
needed.

193Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 193

The code simply selects the appropriate row in this case, and then it hides or
displays the entire row. Because you set the controls to change with the
rows, showing or hiding a row also shows or hides the associated controls.

To maintain the illusion of disappearing and reappearing fields, the applica-
tion must include some type of status information. You could save custom
data to perform this task, but the easiest way to accomplish the goal is to ask
Excel to track the information for you. The getPressed attribute Subs
request the information from Excel, as shown in Listing 7-16.

Listing 7-16: Returning the Control Pressed State

‘Callback for TripPurpose getPressed
Sub GPTripPurpose(control As IRibbonControl, _

ByRef returnedVal)

‘Detect the row condition.
If Rows(“7:7”).Hidden Then

returnedVal = False
Else

returnedVal = True
End If

End Sub

Excel saves the status of each row in the worksheet. If the row holding the
field controls is hidden, so are the controls. A hidden control means that the
associated Ribbon check box isn’t checked, so when Rows(“7:7”).Hidden
is true, the application returns False.

Creating the worksheet linkage
The controls you create on the worksheet won’t do much because you can’t
work with the values they contain. You must add a cell range to the
LinkedCell property of each control. Every control must have a unique
link. You assign the property by right-clicking the control and choosing
Properties to display the Properties dialog box, shown in Figure 7-15. (The
screenshot shows the field highlighted.) Notice that you provide a letter
column and a numeric row as input.

194 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 194

After you assign a unique cell location for every control (it pays to put these
cells out of sight), it helps to assign a named range to each cell. Although this
may seem like a lot of extra work, using the named ranges makes your code
considerably easier to read. You set a named range by clicking the cell in
question and choosing Name a Range from the context menu. Excel displays
the New Name dialog box, as shown in Figure 7-16. As a matter of conven-
ience and self-documentation, you’ll want to give the named range the same
name as the control.

Defining the employee selections
Most of the fields on the form require explicit input from the user. For exam-
ple, you can’t automatically generate a tome on the purpose for the trip.
However, you can provide some essential information and ensure that it’s
correct. The employee information is an essential part of the expense report,
and you need it in order to ask the employee questions later. Consequently,
automating this input can have a big impact on the validity of essential form
data.

Figure 7-16:
Add named

ranges for
each of the

control
links.

Figure 7-15:
Provide a

LinkedCell
field input

so the
control can

communicate
with VBA.

195Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 195

Before you can add the employee information, you need a source. In many
companies, you could access the information from a database. This example
uses Outlook as a source of information because many people have it installed
on their systems; it would be a viable information source in most organiza-
tions. Before you can use Outlook in Excel, you must add a reference to the
appropriate Outlook library. Choose Tools➪References to display the
References – VBAProject dialog box, shown in Figure 7-17. Check the Microsoft
Outlook 12.0 Object Library entry and click OK to complete the reference.

Excel does provide one critical piece of information for the employee — the
employee name. With this piece of information, you can look up any other
required information in Outlook. Listing 7-17 shows the code required to
complete two typical employee inputs (the rest of the inputs use the same
technique as the OAEmpID() method).

Listing 7-17: Obtaining and Displaying Employee Information

‘Callback for EmpName onAction
Sub OAEmpName(control As IRibbonControl)

‘Obtain a reference to the worksheet.
Dim ThisSheet As Worksheet
Set ThisSheet = Application.ActiveSheet

‘Place the username in the appropriate linked cell.
ThisSheet.Range(“txtEmpName”) = Application.UserName

‘Look up the sender in Outlook. Begin with the
‘first name and go from there.
Dim CheckSender As AddressEntry
Set CheckSender = _

Outlook.Application.Session.AddressLists. _

Figure 7-17:
Adding an

Outlook
library

reference to
your

application.

196 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 196

Item(1).AddressEntries.GetFirst

‘ Check the name.
If CheckSender.Name = Application.UserName Then

Exit Sub
End If

‘ If this isn’t the right user, keep searching.
For Each CheckSender In _

Outlook.Application.Session.AddressLists. _
Item(1).AddressEntries

‘ Check the entry name.
If CheckSender.Name = Application.UserName Then

Exit For
End If

Next

‘ Determine whether we have an ID to use.
If Not CheckSender Is Nothing Then

Set ThisSender = _
Outlook.Session.GetRecipientFromID(CheckSender.ID)

End If
End Sub

‘Callback for EmpID onAction
Sub OAEmpID(control As IRibbonControl)

‘Obtain a reference to the worksheet.
Dim ThisSheet As Worksheet
Set ThisSheet = Application.ActiveSheet

‘Get the required information from Outlook
‘and place it in the appropriate cell.
ThisSheet.Range(“txtEmpID”) = _

ThisSender.AddressEntry.GetContact.CustomerID
End Sub

The code begins by creating a reference to the current worksheet. It then
assigns the username (as defined by the application settings) to the cell
range assigned to the txtEmpName textbox. The linkage you put in place ear-
lier automatically transfers the value in this cell to the control, so the user
sees the information on-screen as if you had placed it there directly.

The code creates an Outlook AddressEntry object next and uses it to begin
searching for the user’s name. The code initially sets the collection pointer to
the beginning of the list using AddressEntries.GetFirst(). If the first name
isn’t the one that contains the user information, then the code uses a For Each
loop to continue looking for it. When the code finally locates the user, it stores
the user’s information in a global Recipient object, ThisSender. Notice how
the code uses the Outlook.Session.GetRecipientFromID() method to
perform the user data conversion.

197Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 197

At this point, all the hard work is done. The OAEmpID Sub begins by creating a
worksheet reference. It then uses the same technique to store information for
the txtEmpID control as the OAEmpName Sub. All the code has to do is obtain
the correct information from the ThisSender.AddressEntry.GetContact
property. In this case, the application stores the CustomerID property value,
which contains the employee ID.

Calculating the cost
The application can also ensure that the user provides an accurate total.
Clicking the Calculate Total button calls the OACalculate Sub shown in
Listing 7-18.

Listing 7-18: Performing the Final Expense Report Calculation

‘Callback for Calculate onAction
Sub OACalculate(control As IRibbonControl)

‘ Holds the total cost.
Dim Total As Single
Total = 0

‘Obtain a reference to the worksheet.
Dim ThisSheet As Worksheet
Set ThisSheet = Application.ActiveSheet

‘Perform the calculations based on the rows that
‘appear on screen.
If Rows(“11:11”).Hidden = False Then

Total = CSng(ThisSheet.Range(“txtMotel”).Value)
End If
If Rows(“12:12”).Hidden = False Then

Total = Total + _
CSng(ThisSheet.Range(“txtCarRental”).Value)

End If
If Rows(“13:13”).Hidden = False Then

Total = Total + _
CSng(ThisSheet.Range(“txtMeals”).Value)

End If
If Rows(“15:15”).Hidden = False Then

Total = Total + _
CSng(ThisSheet.Range(“txtParkingTolls”).Value)

End If
If Rows(“16:16”).Hidden = False Then

Total = Total + _
CSng(_

ThisSheet.Range(“txtMiscellaneous”).Value)

198 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 198

End If

‘Display the total on screen.
ThisSheet.Range(“txtTotal”) = Total

End Sub

One of the problems with the expense report is that the user might encounter
some expenses and not others. The user could make mistakes and add
entries into fields that aren’t required. If the user makes those fields invisible
later, the code could come up with the wrong total if it simply looks for a
value in the field. Consequently, the code has to provide a means of adding
only the visible fields to the total. To perform this task, it relies on the
Rows(<Range>).Hidden property.

Whenever the code encounters a visible field, it obtains the current value of
the associated cell for that field on the worksheet. It’s important to remem-
ber that you can’t retrieve the required information directly. The code simply
adds the value to Total and then moves on to the next field.

The technique used in this example has an interesting protection factor: The
user can enter only numbers into the associated fields and obtain anything in
return. The CSng() function used to convert the text into a number automat-
ically ignores any non-numeric value. If the user has entered text or special
characters, the CSng() function outputs a 0.

The code ends by placing the total in the cell associated with the txtTotal
control. The user sees the output as you’d expect.

199Chapter 7: Developing Business Applications for Excel

13_169940 ch07.qxp 7/13/07 10:27 PM Page 199

200 Part III: Creating New RibbonX Applications

13_169940 ch07.qxp 7/13/07 10:27 PM Page 200

Chapter 8

Developing Business
Applications for Access

In This Chapter
� Understanding how to work with Access

� Defining an XML file for Access

� Letting Access see the changes you make to the Ribbon

� Installing the sample database for the examples

� Working with temporary tables or filtered results

Access is a different kind of application when it comes to the Ribbon —
but then, you use Access differently from other Office applications to

create new applications. The reason: Access isn’t self-contained. After all, a
data source that doesn’t communicate with the outside world isn’t much
good. In fact, you can use Access without ever opening the Access applica-
tion. For example, you can interact with Access just fine by creating a Word
application to provide the user interaction — all of the database activity can
occur in the background and the user might not even know it happens.

You can create standalone applications for Access. For example, you might
design a virtual “Rolodex” to maintain your contact list. Certainly you don’t
have to create such an application in Word or Excel. A standalone application
works fine for data entry and contact access. Should you decide to access the
information from Word to type a letter or the data from Excel to perform a
calculation, you can access the database as you normally would. Most busi-
nesses do use the combination approach with users relying on the user inter-
face that makes the most sense for their particular need. In almost every
case, the database administrator (DBA) will require some level of access to
the database through the Access interface for management tasks. Users often
require access to the interface for generating reports as well.

The method of interacting with the Ribbon in Access is similar to other Office
applications, but it’s also significantly different. For example, you can’t use
the Custom UI Editor to make changes to the XML for the Ribbon — you use
an entirely different technique in Access. On the other hand, you still use the

14_169940 ch08.qxp 7/13/07 10:29 PM Page 201

same XML entries to create entries on the Access Ribbon. In addition, all the
same techniques you normally use to create callbacks in other Office prod-
ucts also work with Access. Consequently, you’ll find some old and some new
techniques in this chapter.

Getting Started with Access Applications
The most important consideration for Access applications is that you can’t
create an add-in for Access. You won’t find a project for Access in Visual
Studio. Any application you create must interact with a specific Access data-
base or group of databases. For example, you can’t create a new Ribbon tab
for Access that promotes specific formatting procedures for comments across
all databases. If you want that kind of functionality, you need to install it for
every Access database (including every new database). Consequently, every
application presented in this chapter relies on VBA to interact with the Ribbon.

Working with Access also requires that you perform the Ribbon changes
using special techniques. The changes don’t appear in the CustomUI folder
as they do in other Office applications. In fact, you have three options avail-
able to you for loading Ribbon changes in Access (all of which appear in the
“Loading the Ribbon Changes” section of the chapter):

� USysRibbons table

� Standard user table

� External XML file

The approach you use to work with the Ribbon depends on how you use the
database. In some cases, it’s actually counterproductive to create custom
Ribbon applications for Access. For example, if the mode of access is external,
then you probably won’t want to invest the time in creating a custom Ribbon
application. The biggest benefit of creating a Ribbon application is to provide
access to a series of product features in a workflow-based configuration. In
some cases, you’ll also want to include access to custom applications or less
accessible features through a Ribbon application, but the DBA managing your
Access database may not receive much of a benefit from the improved access,
which means the additional programming time that the Ribbon requires is lost.

Creating the XML File
Access doesn’t let you use the CustomUI Editor to create the XML file you
need. Consequently, unless you’re willing to trust your fate to typing the
required XML in Notepad, you’ll need a different XML editor for Access. You
could use the XML editing capabilities in Visual Studio, but that seems like

202 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 202

overkill unless you use Visual Studio for other tasks. It’s also possible to
download one of the Express products for free from

http://msdn.microsoft.com/vstudio/express/

You’ll have to register to obtain the products, but at the time of writing,
Microsoft isn’t charging for them. Any of the Express products will work fine.

A better alternative for creating the Access files is an XML editor because the
download is small and you can use it for any editing task. You could invest in
a high-end product such as XMLSpy, available at

http://www.altova.com/products/xmlspy/xml_editor.html

Fortunately, Microsoft provides a free alternative that works great for Access.
You can get XML Notepad 2007 at

http://www.microsoft.com/downloads/details.aspx?familyid=
72d6aa49-787d-4118-ba5f-4f30fe913628

and it finally provides the full schema support that previous versions of this
product didn’t. Consequently, you can use the very small, fast, and most impor-
tantly, free XML Notepad 2007 to perform all the editing you need. Figure 8-1
shows an example of XML Notepad 2007 with a customUI.xml file loaded.

Figure 8-1:
Use XML
Notepad

2007 to
perform

edits of your
Access

XML files.

203Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 203

Notice the dynamic help displayed at the bottom of Figure 8-1. The help won’t
appear until you add an XML schema (XSD) file to your project. You can down-
load the XSD file for the Ribbon from http://officeblogs.net/UI/
customUI.xsd. Place this XSD file in your project folder, and then use the
following steps to add it to XML Notepad:

1. Choose View➪Schemas.

You see the XML Schemas dialog box, as shown in Figure 8-2.

2. Click the ellipsis at the end of the first open row.

You see an Open dialog box.

3. Locate the customUI.xsd file you downloaded earlier; click Open.

XML Notepad loads the XSD file. You’ll now see the dynamic help, shown
in Figure 8-1, when you create the Access XML file.

The application will tell you of an error by displaying the following error mes-
sage in the Dynamic Help window:

Dynamic help displays the xsd:documentation for the selected
node. You currently have no associated XML schema or your
selected node has no corresponding xsd:documentation in an
xsd:annotation.

In addition, you’ll see an error message in the Error List window, shown in
Figure 8-3, but only if you load the schema before you type the erroneous entry.

Figure 8-2:
The XML
Schemas

dialog box
provides the

means for
adding

XSD files.

204 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 204

You can remove a schema from use at any time in XML Notepad by placing a
check mark next to the entry in the XML Schemas dialog box (refer to Figure
8-2). The dynamic help window won’t display the helpful messages any
longer when you remove the schema from consideration. In addition, XML
Notepad won’t display any error messages.

XML Notepad also helps you make the correct entries. Double-click the entry
when you add a new element or attribute. You’ll see a list of acceptable
entries for that position, as shown in Figure 8-4.

The XML used for this example is very similar to the XML used for the Excel
example in Chapter 1. However, it has a couple of important differences:

� Access doesn’t always use precisely the same names for the tabs.

� The Ribbon layout is different.

Figure 8-3:
XML

Notepad
shows
errant

entries
using two

different
techniques.

205Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 205

Listing 8-1 shows the XML for this example. (You can find the complete source
code for this example on the Dummies.com site at http://www.dummies.
com/go/ribbonxfd.)

Listing 8-1: Defining Some Simple Ribbon Changes

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<customUI onLoad=”RibbonLoaded”
xmlns=”http://schemas.microsoft.com/office/2006/01/customu

i”>
<commands>
<command idMso=”Underline”

onAction=”myUnderline” />
</commands>
<ribbon>
<tabs>
<tab id=”myTab” label=”My Tab”>
<group id=”myGroup” label=”My Group”>
<button id=”myButton”

label=”My Button”
imageMso=”HappyFace”
size=”large”
onAction=”myButton_ClickHandler” />

</group>
</tab>

Figure 8-4:
Let XML
Notepad
help you

make the
correct
entries.

206 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 206

<tab idMso=”TabHomeAccess”>
<group id=”BehaviorChange”

label=”Behavior”
insertAfterMso=”GroupTextFormatting”>

<toggleButton id=”StopUnderline”
label=”Stop Underlining”
onAction=”StopUnderline_ClickHandler”
getPressed=”StopUnderline_GetPressed”
size=”large”
imageMso=”ShapeFillColorPicker”
insertBeforeMso=”UnderlineGallery” />

</group>
</tab>

</tabs>
</ribbon>

</customUI>

One of the first changes you’ll need to make is to ensure that you use
TabHomeAccess, rather than TabHome (as found in the other Office prod-
ucts). Because the TabHome identifier doesn’t appear in Access, you’ll see an
error message when you try to load the errant Ribbon.

The other change is more subtle and Access won’t complain about it. Notice,
however, that the group you add to the Home tab appears in the wrong place.
The GroupFont identifier changes to GroupTextFormatting in Access.

The best lesson you can learn with this example is that the identifiers aren’t
necessarily consistent across Office applications, so you have to exercise
caution when you move code from one application to the other.

The example defines two changes. First, it adds a new tab to the example
(named My Tab). The tab contains a single group, My Group, with a single
large button, My Button. The button has a smiley-face icon like the one
shown in Figure 8-5.

The second change is to the Home tab. The example adds the Behavior
group and places a single large toggle button in it, Stop Underlining. The

Figure 8-5:
The new tab

contains a
single test

button.

207Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 207

button has the icon shown in Figure 8-6, which uses an imageMso value of
ShapeFillColorPicker.

Loading the Ribbon Changes
You can choose whether to embed the XML for a change to the Ribbon in
your Access file. Here Access differs from other Office products: You can
actually choose to load the XML from an external source using VBA. You
could use the external-load approach for an application that requires a level
of dynamic response to user needs.

The more conventional approaches are to load the XML as part of a table.
You use the USysRibbons table to store the XML when you want to modify
the Ribbon for an entire database. Load the XML into a standard user table
when you want to change the Ribbon only when working with that table. The
following sections describe your options in detail.

Defining the Ribbon macros
The macros for this example are precisely the same as those found in the
“Modifying or repurposing existing tabs, groups, and controls” section of
Chapter 4. The fact that you can use the same Ribbon code in multiple appli-
cations says a lot about the Ribbon. You still need to consider any differences
between applications. Some applications use different identifiers for essen-
tially the same on-screen elements. You also have to consider how each appli-
cation uses the Ribbon element and whether the element exists at all within
a particular application. For example, Access doesn’t include a Styles
group, though Word does.

Figure 8-6:
The first
example

also
includes a
button that

changes the
Underline

button’s
behavior.

208 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 208

Using the system table USysRibbons
Using the USysRibbons approach requires that you create a new system
table. The table contains the name of the Ribbon (you can use it to create
multiple Ribbons and load the one you want programmatically) and the XML
required to create the Ribbon. The following steps help you get started with
this approach:

1. Open the database you want to use for the Ribbon.

2. Create a new table.

The Ribbon requires that you create a table that contains three fields: ID
(AutoNumber data type), RibbonName (Text data type), and
RibbonXML (Memo data type), as shown in Figure 8-7. You don’t need to
change any of the default properties for the table elements.

3. Save the new table with the name USysRibbons.

Access creates the new system table. Unfortunately, you can’t see the
new table in the All Tables list.

Figure 8-7:
Create a

table to hold
the XML for

your Ribbon.

209Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 209

4. Right-click the All Tables heading and choose Navigation Options
from the context menu.

You see the Navigation Options dialog box, shown in Figure 8-8.

5. Check Show System Objects and click OK.

You see the tables for your application and the USysRibbons table,
along with other system tables, as shown in Figure 8-7.

6. Select the Data Sheet view from the View split button on the Home tab.

You see a data-entry table for the USysRibbons table.

At this point, you have a new table to hold any number of Ribbons you might
want to create for Access. Unlike other Office applications, you can choose
one Ribbon from any of the Ribbons you create. Consequently, even though
Access is different from other Office products, it’s also more flexible. The fol-
lowing steps help you create a new Ribbon entry and select it for use:

1. Create a new record for the USysRibbons table.

2. Type MyRibbon in the RibbonName field.

3. In XML Notepad, choose View➪Source.

XML Notepad opens a copy of Notepad containing the XML that you
created.

4. Copy the Ribbon XML in Notepad and paste it into the RibbonXML
field of the USysRibbons table in Access.

5. Close the Database and then reopen it.

Figure 8-8:
Change the
navigation
options to

see the
system
tables.

210 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 210

6. Choose Office Menu➪Access Options.

7. Select Current Database.

You see the list of options shown in Figure 8-9.

8. Choose MyRibbon in the Ribbon Name field of the Ribbon and
Toolbar Options group.

9. Click OK.

You may see a message telling you that you must close the current data-
base and reopen it to see the new Ribbon. Make sure that you close and
reopen the database as needed.

10. Close the current database and reopen it if necessary.

You see the new Ribbon shown in Figures 8-5 and 8-6.

If you haven’t done so already, you need to create a new VBA module. It’s nor-
mally a good idea to provide a descriptive name such as MyRibbon RibbonX
for the new module. You want to include the name of the Ribbon entry as
part of the module name so there isn’t any confusion when you provide mul-
tiple Ribbons in the same database. Provide a VBA sub for each of the call-
backs you define in your Ribbon XML entry.

Figure 8-9:
Select the

Ribbon you
want to use

from the
Ribbon

Name list.

211Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 211

Using a standard user table
Access provides a special method that comes in very handy for loading
the Ribbon on the fly — the Application.LoadCustomUI() method lets
you place the XML for the Ribbon in a standard user table, rather than the
USysRibbons table. This technique doesn’t eliminate the need to change the
Ribbon manually or close the database after you make the change. However,
it does give you two advantages:

� You can store your Ribbons in an easily accessible table.

� You can move both the Ribbons and their associated code between data-
bases with relative ease.

All you need do is export the table and place it in the new database, along
with the associated RibbonX modules for each Ribbon (another good reason
to use a separate module for each Ribbon).

The example uses a standard user table named RibbonData. You create this
table the same way that you do the USysRibbons table. The example includes
a single new Ribbon named UserTableRibbon. However, because of the
way the code is designed, you can add any number of Ribbons to your table
and the code will continue to work as before.

The XML for this Ribbon appears in the StandardUserDatabase.xml file
supplied with the source code for the book. Since the purpose of this exam-
ple is to demonstrate another technique for loading a Ribbon, the demonstra-
tion code is very simple. Here’s the single tab, group, and button that the
example uses:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/customu

i”>
<ribbon>
<tabs>
<tab id=”MyTab” label=”My Tab”>
<group id=”MyGroup” label=”User Database”>
<button

id=”TestMe” label=”Test Me” size=”large”
onAction=”TestMe_ClickHandler”
imageMso=”TentativeAcceptInvitation” />

</group>
</tab>

</tabs>
</ribbon>

</customUI>

212 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 212

The resulting Ribbon contains a single button with a big purple question
mark on it. Clicking the button calls the TestMe_ClickHandler() callback
method shown here:

‘Callback for TestMe onAction
Sub TestMe_ClickHandler(control As IRibbonControl)

MsgBox “Hello from UserTableRibbon!”
End Sub

You’ll need to create a function to load the XML. Generally, you’ll want to
place this function in its own module so you don’t accidentally move it with
the rest of the RibbonX code. The example uses a generic loading technique,
as shown in Listing 8-2.

Listing 8-2: Adding Ribbons to the User Interface

‘Adds Ribbons from a table.
Function AddRibbons()

‘Access the current database.
Dim CurrentDB As DAO.Database
Set CurrentDB = Application.CurrentDB

‘Obtain access to the standard user database.
Dim RibbonData As Recordset
Set RibbonData = _

Application.CurrentDB(“RibbonData”).OpenRecordset

‘Locate the data.
RibbonData.MoveFirst

‘Holds the name of the Ribbon.
Dim RibbonName As String

‘Holds the XML for the Ribbon
Dim XMLData As String

‘Obtain all of the Ribbons in the table.
While Not RibbonData.EOF

‘Obtain the Ribbon name.
RibbonName = _

RibbonData.Fields(“RibbonName”).Value

‘Obtain the XML.
XMLData = RibbonData.Fields(“RibbonXML”).Value

‘Load the new ribbon from a user database.

(continued)

213Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 213

Listing 8-2 (continued)

Application.LoadCustomUI RibbonName, XMLData

‘Move to the next record.
RibbonData.MoveNext

Wend

End Function

The code begins by creating a DAO.Database object that points to the cur-
rent database. It then creates a Recordset object to hold the records from
the RibbonData table.

At this point, the code begins loading the RibbonData rows one at a time
and adding them to the user interface. The code must supply both a Ribbon
name and the Ribbon’s XML content. In this case, the code places the
RibbonData.Fields(“RibbonName”) value in RibbonName and the
RibbonData.Fields(“RibbonXML”) value in XMLData.

One word of caution here: You need to ensure that the Ribbons you create
have unique names. Access requires that every Ribbon have a unique name.
If you try to load a Ribbon that has the same name as another Ribbon, Access
will display an error message.

Calling the AddRibbons() function every time you open the database is
important because the Ribbon entries have no permanent status within the
database. To perform this task, you create an AutoExec macro that contains
a single RunCode action. You provide the AddRibbons() function as input to
the Function Name field.

Whenever the database opens, it loads all of the Ribbons stored in
RibbonData. You can select any of these Ribbons using precisely the same
technique as you use for Ribbons found in the USysRibbons table. The only
difference is that these Ribbons aren’t a permanent part of the database and
you can move them around quite easily.

Using an XML file directly
You can gain a significant advantage by using XML files directly with Access.
The file resides outside of Access, so you can edit it without even opening
Access. The next time someone opens the database, it automatically loads
the changes you made to the Ribbon.

Working with an XML file directly follows the same pattern as working with a
user database. You begin by creating a function to load the XML files as strings
and then use the Application.LoadCustomUI() method to load the XML
files into Access. Because the technique is essentially the same, you also

214 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 214

have to provide the AutoExec macro to perform the required work when the
user opens the database.

Before you can begin working with this example, you’ll need to create a new
VBA module to hold it. As part of the configuration process, you’ll need to
add two new references: Microsoft Scripting Runtime and Microsoft XML (the
example uses version 6.0 of this feature). To add the references, choose Tools➪
References. You’ll see the References dialog box, shown in Figure 8-10, where
you can check the two required references. Click OK to complete the process.

It’s important to remember that VBA loads the XML file as XML, not as a
string. Consequently you have to perform the required conversions before
you can use the XML. Listing 8-3 shows the function you have to create in
order to work with XML directly.

Listing 8-3: Loading XML Directly

‘Adds Ribbons from an XML file.
Function LoadXMLRibbon(XMLFileLocation As String)

‘Provides a pointer to the file system.
Dim ThisFile As FileSystemObject
Set ThisFile = New FileSystemObject

‘Holds the XML file as a string.
Dim RibbonXML As String

‘Holds the Ribbon name.
Dim RibbonName As String

‘Holds the XML version of the file.
Dim ThisDoc As DOMDocument60

(continued)

Figure 8-10:
Add the

references
required to

make this
example

work.

215Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 215

Listing 8-3 (continued)

Set ThisDoc = New DOMDocument60

‘Locate the XML file.
If ThisFile.FileExists(XMLFileLocation) Then

‘Set the Ribbon name to the filename.
RibbonName = _

ThisFile.GetFileName(XMLFileLocation)

‘Remove the file extension.
RibbonName = _

Left(RibbonName, Len(RibbonName) - 4)

‘When the file exists, load it.
If ThisDoc.Load(XMLFileLocation) Then

‘Place the pure text into the Ribbon string.
RibbonXML = ThisDoc.XML

‘Load the XML file into Access.
Application.LoadCustomUI RibbonName, RibbonXML

‘Display an error message.
Else

MsgBox “Couldn’t read the XML file.”, _
vbOKOnly And vbExclamation, _
“Error Reading XML File”

End If

‘Display an error messages.
Else

MsgBox “The XML File: “ + XMLFileLocation + _
“ doesn’t exist.”, _
vbOKOnly And vbExclamation, _
“Error Loading XML File”

End If
End Function

The code begins by creating a FileSystemObject and using it to check for
the existence of the file with the ThisFile.FileExists() method. Even
the best-organized hard drive will occasionally lose a file, so you should
always perform this check, even if you’re certain that no one would tamper
with or remove the file. The FileSystemObject object appears as part of
the Microsoft Scripting Runtime library, which is why you need to add that
reference to the example. If the file doesn’t exist, the example displays an
error message and exits.

216 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 216

The example assumes that you won’t have two XML files with the same name,
so it uses the filename to create the RibbonName string. If you think you’ll have
multiple XML files with the same name, you’ll need to create another naming
convention; Access won’t allow two Ribbon entries with the same name.

At this point, the code loads the file into a Document Object Model (DOM)
document object (DOMDocument60 in this case) using the ThisDoc.Load()
method. You can read the file directly from the hard drive without creating an
intermediate TextStream object. This approach also frees you from worry-
ing about how to open the file (or how to close it later when you no longer
need it). If the XML file won’t load because it contains an error, the example
displays an error message and exits.

You may wonder why the code loads the text from the file into a DOMDocument.
The reason you have to perform this extra step is that the file will very likely
have a Byte Order Mark (BOM) in it. The BOM is a set of extra characters that
appear at the beginning of the file to tell what kind of encoding it uses. For
example, when a file uses UTF-8 encoding, it includes three hexadecimal
characters — EF BB BF — at the beginning of the file. The number of charac-
ters varies by encoding type, so you can’t simply skip a certain set number
of characters when you read the text file directly; loading the file into a
DOMDocument is the best way to remove them safely from the rest of the
content. You can read more about the BOM at

http://unicode.org/faq/utf_bom.html

You still need to convert the XML into a string. The code performs this task
by placing the ThisDoc.XML property into RibbonXML. Finally, the code
calls the Application.LoadCustomUI() method to load the new Ribbon
into Access.

A Ribbon that you load directly from an XML file behaves precisely the same
as one you load using USysRibbons or a standalone table. You still need to
select the new Ribbon from the list in the Ribbon Name field of the Ribbon
and Toolbar Options group of the Access Options dialog box. After you close
and reopen the database, Access displays it as normal. The process that
Access uses is very similar to a standalone table — only the source changes.

You also have to add an entry to the AutoExec macro, just as you do for the
standalone table. In this case, you must include the location of the XML file
on disk. The example contains the location of the file for my system. You’ll
need to change the path shown in Figure 8-11 to match your system or the
example won’t work. It’s possible to change the code to detect the applica-
tion path and use that path for the XML file as well, which makes the code
less brittle, but then you lose flexibility because the XML file must appear in a
specific location.

217Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 217

Obtaining the Sample Database
Access doesn’t come with a standard sample database. Microsoft provides
myriad templates, but none of them include sample data you could easily use
for testing. Consequently, you need a sample database you can use for quick
tests of working with the Ribbon using real data. This book uses the familiar
Northwind Traders database that you can download at

http://www.microsoft.com/downloads/details.aspx?FamilyID=
C6661372-8DBE-422B-8676-C632D66C529C

After you download and extract the database file, you’ll need to convert it to
an Access 2007 format. The following steps help you perform the required
conversion:

1. Choose Office Menu➪Open.

You see the Open dialog box.

2. Locate and highlight the NWind.mdb file. Click Open.

Access displays the Database Enhancement dialog box, as shown in
Figure 8-12.

3. Click Yes.

You see a Save As dialog box where you can choose a new filename for
the file.

Because Access 2007 uses a file extension other than MDB, saving the file
in the new format doesn’t overwrite the old file. Consequently, whenever
you need to create a new copy of the sample database, you can simply
open the original NWind.mdb file and convert it into a new Access 2007
file. The new file contains all the unchanged records of the original.

Figure 8-11:
Change the
path of the
XML file to

match your
system.

218 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 218

4. Click Save to accept the default filename of NWind.accdb.

You’ll see an error dialog box telling you that Access encountered errors
converting the database. The only error that you should see in the Con-
version Errors table is one that relates to user-level security. Access
2007 no longer supports user-level security, so it removes the user-level
protection from the file. Because this database is for testing purposes
only, the loss of security won’t matter.

5. Click OK to bypass the error dialog box.

Access tells you that the new database is in an updated format that you
can’t share with users of older Access versions.

6. Click OK to bypass the warning dialog box.

Access converts the file and saves it to the new file extension.

After you perform the required conversion, you’ll notice that Access performs
a few tasks differently from every other Office product. The custom menus
for Access still appear on the Add-Ins tab, but you’ll find that they are quite
usable. Figure 8-13 shows an example of what you’ll see when you open the
Alphabetical List of Products report.

Chapter 12 makes you aware of some other Access differences that can actu-
ally make it easier to move your application to Access 2007. In some cases,
you might find that your old application works fine with a few additional
tweaks. Access provides more flexibility in this regard than any other Office
product.

However, don’t get the idea that Access can fix every potential woe. Not only
do you need to compensate for a loss of user-level security in your security
plans, but you also need to consider operating system issues. For example,
you’ll have to rewrite any existing Access HLP (help) files, just as you would
for any other application running under Vista because Vista doesn’t support
the older HLP files. Click Show Me and you’ll see the usual Vista error mes-
sage, shown in Figure 8-14, for HLP files.

Figure 8-12:
Access

automatically
recognizes
the old file

format of
the sample
database.

219Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 219

Generating Temporary Tables
or Filtered Results

This example provides you with a means of performing several tasks that
you’ll commonly require in Access. The first is that the Access application

Figure 8-14:
Access

won’t
overcome

deficiencies
of the

operating
system.

Figure 8-13:
Access
tends to

leave
custom
menus

intact when
using the

Ribbon.

220 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 220

will very likely have to support multiple versions. Unlike other Office prod-
ucts, Access is very capable in this regard as long as you follow a few rules.
The following sections describe how to create an application that generates a
filtered result or temporary table, while demonstrating some basic Access
rules of the road. (You can find the complete source code for this example on
the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)

Hiding the Add-Ins tab
One of the basic rules for working with Access is hiding the Add-Ins tab
unless you really need it. Otherwise, you may find that some commands
don’t work as intended, which is the problem with the Show Me option in the
Northwind menu. Whether you hide the Add-Ins tab depends on how you
intend to work with the Access application. You may very well find that it
isn’t a requirement, but only when every menu item works as advertised in
Access 2007.

The XML for hiding any tab is relatively easy. Here’s all you need to hide the
Add-Ins tab:

<tab idMso=”TabAddIns” visible=”false” />

Notice that all you need to do is set the visible attribute to false. The
rules are the same for any Access feature. For example, if you want to hide a
group, you’d create a <tab> element with the correct idMso attribute value,
then a <group> child element with the idMso value for the group you want
to hide. Add a visible=”false” entry and the group will disappear.

Placing the groups in the correct order
Another issue is placing groups correctly. Because of the specific way you
work with the Ribbon in Access, you’ll probably want to add some new
groups to existing tabs or add new controls to existing groups. In this exam-
ple, you actually add two new groups to the existing Create tab. The first
defines the group for temporary tables, while the second defines the group
for the filtered results. You could use the following XML for the task:

<tab idMso=”TabCreate”>
<group id=”CreateTemporaryTable”

label=”Temporary Table”
insertAfterMso=”GroupCreateTables” />

<group id=”CreateFilteredResults”
label=”Filtered Results”
insertAfterMso=”GroupCreateTables” />

</tab>

221Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 221

The insertAfterMso attribute tells Access to place each of these groups
after the GroupCreateTables group. Unfortunately, this XML places the new
groups in reverse order. Yes, the resulting Ribbon will probably still work, but
it doesn’t appear precisely the way you’d like it to appear. The user sees the
Filtered Results group first, placing more emphasis on those features.

One way around this problem is to place all the entries in reverse order in the
XML file, but that hardly seems the best approach. A better way to control
the order is to use your own namespace and then employ the insertAfterQ
attribute for the CreateFilteredResults group. You place the namespace
in the <customUI> element, as shown in Figure 8-15.

Notice that xmlns:P points to a string, not a URL. Some people think that a
namespace always appears within an XSD file that you specify as part of a spe-
cific URL. In this case, the namespace serves only to differentiate between your
controls and those that Microsoft supplies as part of Access. Consequently,
you don’t need to provide anything more than a string such as My Namespace.

Now that you have a namespace to use, you can qualify the groups and order
them properly. The following XML shows the new group XML for TabCreate:

<tab idMso=”TabCreate”>
<group idQ=”P:CreateTemporaryTable”

label=”Temporary Table”
insertAfterMso=”GroupCreateTables” />

<group idQ=”P:CreateFilteredResults”
label=”Filtered Results”
insertAfterQ=”P:CreateTemporaryTable” />

Notice that both of the groups now use the idQ attribute, rather than
the id attribute. In addition, each of the IDs now has a namespace qualifier.
The CreateTemporaryTable group still uses the insertAfterMso=
”GroupCreateTables” entry. However, the CreateFilteredResults

Figure 8-15:
Create a
custom

namespace
for your

groups and
controls.

222 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 222

group now uses an insertAfterQ=”P:CreateTemporaryTable” entry to
correctly place this group after CreateTemporaryTable. Figure 8-16 shows
the updated Create tab for this example. Notice that the new tab also leaves
out the Add-Ins tab.

Creating a temporary table
DBAs use temporary tables for a number of tasks. For example, you might want
to see what happens to a table (or set of tables) when you create a certain
query, without risking your data. Using a set of temporary tables to perform
the task lets you perform the test without risking your data. Temporary tables
can also hold copies of records until you complete a given task. You can also
use them for other purposes when you don’t want to risk the data but you do
need to accomplish specific tasks within the database. The example uses the
XML shown here to create the single button shown in Figure 8-16:

<group label=”Temporary Table”
insertAfterMso=”GroupCreateTables”
idQ=”P:CreateTemporaryTable”>

<button id=”TempTable” label=”Create Temporary Table”
size=”large” imageMso=”CreateTable”
onAction=”TempTable_ClickHandler” />

</group>

Figure 8-16:
The new

Create tab
includes

entries for
temporary

and filtered
result tables.

223Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 223

At this point, you’re probably wondering how a single button can accomplish
the required task. The example relies on a special form to display the selec-
tion data. When working with Access, you can either use forms or place the
data selection on the Ribbon. You can see an example of the second option in
the “Defining a filtered result” section of the chapter; Figure 8-17 shows the
form used for this example.

Normally you’ll create a form in VBA, display it, and retrieve the user selec-
tions from it all in a single Sub. However, when working with Access, you
need to create a single Sub to display the form and then another Sub for each
button to perform any special processing. Fortunately, Access provides built-
in functionality to handle common tasks such as closing the form.
Consequently, this example needs to provide only a Sub to handle the OK
button. Listing 8-4 shows the code you need for this part of the example.

Listing 8-4: Choosing and Copying the Table

Sub TempTable_ClickHandler(control As IRibbonControl)

‘ Open the form.
DoCmd.OpenForm “SelectTable”, View:=acNormal

‘ Create a reference to the table selection form.
Dim ThisForm As Form
Set ThisForm = Application.Forms(“SelectTable”)

‘ Create a reference to the control that holds the
‘ selections.
Dim TableList As ComboBox
Set TableList = ThisForm.Controls(“cbTables”)

‘ Ensure the form is selected.
ThisForm.SetFocus

‘ Obtain a list of tables and place the names
‘ in the table selection form.

Figure 8-17:
Choose a

table to
temporarily
copy using

this form.

224 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 224

Dim SelTable As TableDef
For Each SelTable In Application.CurrentDb.TableDefs

‘ Add the table name.
TableList.AddItem SelTable.Name

Next
End Sub

Function TempTable_OK()

‘ Create a reference to the table selection form.
Dim ThisForm As Form
Set ThisForm = Application.Forms(“SelectTable”)

‘ Create a reference to the control that holds the
‘ selections.
Dim TableList As ComboBox
Set TableList = ThisForm.Controls(“cbTables”)

‘ Holds the current database selection.
Dim SelectedName As String

‘ Make sure the user actually selected something.
If IsNull(TableList.Value) Then

MsgBox “You must select a database!”, _
vbOKOnly And vbExclamation, _
“Selection Error”

Exit Function
End If

‘ Otherwise, save the database selection.
SelectedName = TableList.Value

‘ Create the temporary table based on the selection.
DoCmd.CopyObject _

NewName:=”Temp” + SelectedName + _
DateTime.Date$ + DateTime.Time$, _

SourceObjectType:=acTable, _
SourceObjectName:=SelectedName

‘ Close the form.
DoCmd.Close acForm, “SelectTable”

End Function

The code begins by opening the SelectTable form in Form view (rather
than Layout or Design view). You must have the form open before you can
begin populating the cbTables combo box. The code obtains references to
the form as ThisForm and to the cbTables control as TableList.

225Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 225

After the code displays the form and ensures it has focus (by calling
ThisForm.SetFocus), it begins filling cbTables with data. In this case, the
code uses a simple For Each loop and copies the names of the tables cur-
rently found in the database to the control. At this point, the user can select a
database to copy as a temporary table.

The TempTable_OK() function performs the required processing when the
user clicks OK, rather than Cancel. The code begins by obtaining a reference
to the cbTables combo box. It uses this reference to access the TableList.
Value property, which contains the user selection. Because the user could
click OK without actually selecting a table entry, you must provide error-
detection code that looks for a Null TableList.Value property using the
IsNull() function.

The code places the table selection in SelectedName. It then relies on
DoCmd.CopyObject to create the actual temporary database. The DoCmd.
CopyObject call will fail when the database already contains the requested
target table. Consequently, the example adds a date, DateTime.Date$, and
time, DateTime.Time$, to the table name. If you want to ensure that the
system contains only one temporary version of each table, you can always
use a For Each loop to scan the current table list looking for a duplicate.
Simply add code that looks similar to the code shown in the
TempTable_ClickHandler() method.

Defining a filtered result
Most users complain about seeing too much data. For that matter, data over-
load is a common problem for DBAs too. This part of the example shows one
way to make data filtering easier. It’s not a very complicated technique, but
you’ll find it works well, in many cases, to reduce on-screen clutter when you
need to find a few records quickly.

This example demonstrates a considerable number of techniques, and the
chapter simply can’t hold all the source code required to create it. The sec-
tions that follow do provide complete information about all the essential
techniques for working with this example and modifying it to meet your spe-
cific needs. (You can find the complete source code for this example on the
Dummies.com site at http://www.dummies.com/go/ribbonxfd.) This
example relies on the code found in the Nwind.accdb file.

Creating the Ribbon presentation
As previously mentioned, you can choose between forms and controls on the
Ribbon to accept input from the user. This example shows how to use the
Ribbon controls technique. Consequently, the XML for the Ribbon is a little

226 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 226

more complicated than the code shown in the “Creating a temporary table”
section of this chapter. Listing 8-5 shows the code needed to create the physi-
cal Ribbon presentation.

Listing 8-5: Defining the Filtered Results Group

<group label=”Filtered Results”
idQ=”P:CreateFilteredResults”
insertAfterQ=”P:CreateTemporaryTable”>

<comboBox id=”FilteredTable” label=”Table Selection”
getItemCount=”TableItemCount”
getItemID=”TableItemID”
getItemLabel=”TableItemLabel”
onChange=”TableChanged” />

<comboBox id=”ColumnSelect”
label=”Column (Field) Selection”
getItemCount=”ColumnItemCount”
getItemID=”ColumnItemID”
getItemLabel=”ColumnItemLabel”
onChange=”ColumnChanged”
getEnabled=”ColumnGetEnabled”
getText=”ColumnGetText” />

<editBox id=”FilterCriterion”
label=”Filter Specification”
onChange=”FilterChanged”
getEnabled=”FilterGetEnabled”
getText=”FilterGetText” />

<button id=”CreateFiltered”
label=”Create Filtered Table”
onAction=”CreateFiltered_ClickHandler”
size=”large” imageMso=”CreateTable” />

</group>

Notice that the ColumnSelect and FilterCriterion controls both use
the getEnabled attribute. It’s a good practice to disable controls that
require input from other controls until the user fills in the prerequisite con-
trols. That’s how these controls work. In this case, the ColumnSelect con-
trol remains disabled until the user provides a value for FilteredTable.
Likewise, FilterCriterion remains disabled until the user provides a
value for ColumnSelect.

All data-entry controls provide callbacks for the onChange attribute. Each
control’s callback maintains a record of the current control value so the
application can process the input later. In addition to the onChange
attribute, the ColumnSelect and FilterCriterion controls also imple-
ment a callback for the getText attribute, which clears the control values
when the user selects a new table.

227Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 227

The two combo boxes require lists of items. Because you can’t determine what
the list will contain at design time (in fact, the content of the ColumnSelect
control changes to reflect the fields supported by the current table), you
must provide callbacks for the getItemCount, getItemID, and
getItemLabel controls.

Filling the Table Selection field with data
Now that you have a better idea of how the controls work, it’s time to look at
the first set of callbacks. One of the first tasks the code has to perform is to
add a list of tables to the FilteredTable control in the current database.
Listing 8-6 shows the code used for this purpose.

Listing 8-6: Populating the Table Selection Combo Box with Data

Sub TableItemCount(control As IRibbonControl, _
ByRef count)

‘ Obtain the table count and return it.
count = Application.CurrentDb.TableDefs.count

End Sub

Sub TableItemID(control As IRibbonControl, _
index As Integer, ByRef ID)

‘ Return the table ID.
ID = “Table” + CStr(index)

End Sub

Sub TableItemLabel(control As IRibbonControl, _
index As Integer, ByRef label)

‘ Return the table name.
label = Application.CurrentDb.TableDefs(index).Name

End Sub

You actually need three Subs to perform this task. Each Sub handles a differ-
ent aspect of filling the control with data. The TableItemCount() Sub pro-
vides a simple count of the number of items in the combo box. The code
obtains this information from the Application.CurrentDb.
TableDefs.count property. The TableItemID() provides an identifier for
each of the items; in this case, the code uses the simple method of appending
the index number to the word Table. The only requirement is that you pro-
vide a unique identifier for each of the items. Finally, the TableItemLabel()
Sub provides the name of each of the tables. You can use index as a refer-
ence to the list of TableDefs, which makes providing the correct table name
easy.

Whenever the user changes a selection in the Ribbon, the code has to react.
In fact, it has to do more than react — it must coordinate the user’s activity
so that only the essential items remain active on-screen and the user can’t

228 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 228

accidentally make improper choices. Listing 8-7 shows the code needed to
react to user input.

Listing 8-7: Registering a Selection Change

Sub TableChanged(control As IRibbonControl, _
text As String)

‘ Save the selected value to a global variable.
TempVars(“TableSelected”) = text

‘ Set the field selection state.
If Not IsNull(text) Then

TempVars(“ColumnEnabled”) = True
Else

TempVars(“ColumnEnabled”) = False
End If

‘Verify the Ribbon reference.
If Rib Is Nothing Then

MsgBox “Close the Database and reopen it.”, _
vbOKOnly And vbExclamation, _
“Ribbon Reference Error”

Exit Sub
End If

‘ Set the field to an empty value.
TempVars(“ColumnChanged”) = “”

‘ Invalidate the control.
Rib.InvalidateControl “ColumnSelect”

End Sub

The code begins by saving the current value found in text to the
TableSelected global variable. Microsoft added the TempVars() function
to Access 2007 to overcome an issue where Access automatically clears all
variables when a macro encounters an error. In times past, this problem
would cause macros to stop functioning properly. The user often had to close
the database and start over. Unfortunately, this new technique doesn’t work
with the Ribbon reference, so you still have to use a global variable with it.

The next step is to enable or disable the ColumnEnabled control based on
the content of text. If the user hasn’t selected anything, then the
ColumnEnabled control remains disabled.

It’s important to check the status of the Ribbon reference before you use it;
Access can clear this variable at any time. Using Rib after Access clears it
results in an error. Always verify the status of the Ribbon reference before
you use it in your code.

229Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 229

At this point, the code sets the ColumnChanged value to a blank and invali-
dates the ColumnSelect control using the Rib.InvalidateControl()
method. Because of the way that you have to set up the Ribbon controls, it’s
important to initialize all the variables when the Ribbon loads. As with nearly
every other Ribbon application, you set an onLoad callback as part of the
customUI element. Listing 8-8 shows the initialization code for this example.
(You can find all of the XML for this example in the Filtered Results.xml
file supplied with the source code for this book.)

Listing 8-8: Saving the Ribbon Reference and Performing Setups

Public Rib As IRibbonUI

Sub TempTableOnLoad(ribbon As IRibbonUI)
‘ Save the Ribbon reference.
Set Rib = ribbon

‘ Set the state of the column selection.
TempVars(“ColumnEnabled”) = False
TempVars(“FilterEnabled”) = False

‘ Set the initial text values.
TempVars(“ColumnChanged”) = “”
TempVars(“FilterChanged”) = “”

End Sub

As previously mentioned, Rib is a standard public variable because you can’t
use the TempVars() method to store objects. This issue makes the Ribbon
problematic in Access because you can obtain a Ribbon reference only by
using the onLoad callback. Unfortunately, Access calls only the onLoad call-
back when you initially open the database.

Filling the Column (Field) Selection field with data
After a user selects one of the entries in the Table Selection field, the applica-
tion populates the Column (Field) Selection field. The code in Listing 8-9
shows how this process works.

Listing 8-9: Populating the Column (Field) Selection Combo Box with Data

Sub ColumnItemCount(control As IRibbonControl, _
ByRef count)

‘ Return the number of fields in the table.
count = _

Application.CurrentDb.TableDefs(_
TempVars(“TableSelected”)).Fields.count

230 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 230

End Sub

Sub ColumnItemID(control As IRibbonControl, _
index As Integer, ByRef ID)

ID = “Field” + CStr(index)
End Sub

Sub ColumnItemLabel(control As IRibbonControl, _
index As Integer, ByRef label)

label = _
Application.CurrentDb.TableDefs(_

TempVars(“TableSelected”)).Fields(index).Name
End Sub

Sub ColumnGetEnabled(control As IRibbonControl, _
ByRef enabled)

‘ Return the selected item state.
enabled = TempVars(“ColumnEnabled”)

End Sub

Sub ColumnGetText(control As IRibbonControl, _
text As String)

‘ Output the current value.
text = TempVars(“ColumnChanged”)

End Sub

The code performs essentially the same tasks as the code for the Table Selec-
tion field in Listing 8-6. Notice that you’re working with the fields associated
with a particular table. Consequently, most of the code in Listing 8-9 will fail
unless the user makes a table selection first. Considering the fact that any error
in Access will kill your Ribbon reference, it pays to reduce the possibilities
for error as much as possible. Generally speaking, if the user makes an entry
error, you’ll need to ask the user to close the database and then reopen it.

The ColumnGetText() method is new for the Column (Field) Selection field.
This method normally provides the combo box with an output value based
on criteria within your application. For example, you might use it to choose a
particular entry within the list. In this case, the method actually provides a way
of clearing the user’s current selection when that user chooses a new table.

Processing the user’s filtering selections
After all the data gathering the application has performed, you might wonder
whether the user will ever see a filtered table. The final step is to provide a
callback for the CreateFiltered control. Listing 8-10 shows the code
needed to process the user input and create filtered output.

231Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 231

Listing 8-10: Performing the Filtered Query

Sub CreateFiltered_ClickHandler(_
control As IRibbonControl)

‘ Define the SQL statement.
Dim SQLText As String
SQLText = _

“SELECT * FROM [“ + _
TempVars(“TableSelected”) + “]” + _

“ WHERE [“ + TempVars(“ColumnChanged”) + “]” + _
TempVars(“FilterChanged”)

‘ Holds the query.
Dim MyQuery As QueryDef

‘ Remove any existing queries.
For Each MyQuery In CurrentDb.QueryDefs

If MyQuery.Name = “MyQuery” Then
CurrentDb.QueryDefs.Delete “MyQuery”

End If
Next

‘ Create the new query.
Set MyQuery = _

CurrentDb.CreateQueryDef(“MyQuery”, SQLText)

‘ View the results.
DoCmd.OpenQuery “MyQuery”

End Sub

You might look at the code in Listing 8-10 and wonder why it doesn’t use the
simple DoCmd.RunSQL method. It’s true that the DoCmd.RunSQL method is
very powerful, and you’ll probably want to rely on it when you can. Remember,
however, that this method executes queries; therefore it doesn’t work with
SELECT queries. Since this method does use a SELECT query, you must use
the rather roundabout method shown here to ultimately display the output
shown in Figure 8-16.

The code begins by creating an SQL statement from the input the user pro-
vides. This is a standard SELECT statement. The WHERE clause defines the fil-
tering that the user wants to see. Notice that the code surrounds the table
name and selected field in square brackets; otherwise a space in either the
table name or selected field name could cause the query to fail.

The code looks for an existing copy of MyQuery next. As with the tables, the
query you create must have a unique name. In this case, you really don’t
want to build an application that generates a large quantity of queries, so
deleting any existing query makes sense.

232 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 232

Once the code removes any existing query, it creates a new query using the
CurrentDb.CreateQueryDef() method. The new query has the MyQuery
name and contains the SQL query that the code created earlier. Now that the
query exists, the code can use DoCmd.OpenQuery to open the query and dis-
play the results on-screen.

233Chapter 8: Developing Business Applications for Access

14_169940 ch08.qxp 7/13/07 10:29 PM Page 233

234 Part III: Creating New RibbonX Applications

14_169940 ch08.qxp 7/13/07 10:29 PM Page 234

Chapter 9

Developing Business Applications
for Outlook

In This Chapter
� Understanding how to work with Outlook

� Defining a mail-management tab

� Using user selections to manage incoming mail

Outlook (not to be confused with Outlook Express, which doesn’t provide
VBA or add-in capability) provides an interesting place in which to write

custom applications because you can interact with Outlook at many levels.
The applications you create for Outlook are always present. However, these
applications might affect only one aspect of Outlook. For example, you could
write an application to manage your calendar. The application would always
be present, but you’d use it for calendar tasks only.

You’ll also find that Outlook uses a mixed environment. It’s not a true Ribbon
environment, but it doesn’t rely exclusively on the menu-and-toolbar system
either. The main application still relies on a menu-and-toolbar setup. You use
the same options as you always have to set application options and to tell
Outlook about your accounts. The Ribbon interface appears when you
attempt to perform tasks such as writing an e-mail.

Getting Started with Outlook Applications
Outlook doesn’t provide any support for VBA when it comes to the Ribbon.
That may seem like a big problem, but when you look at Outlook, you’ll
quickly find that many of the Outlook features don’t actually rely on the
Ribbon. For example, you can add and remove toolbars from the main
Outlook interface, much as you always have using VBA. The difference for
VBA users is that you can’t use VBA to modify features such as the toolbar
for new messages. When working with Outlook, some of your scripts will fail,
but others won’t.

15_169940 ch09.qxp 7/13/07 10:29 PM Page 235

To perform any major reconfiguration of Outlook, you need to rely on an add-
in written using Visual Studio. As with all other add-ins in this book, you’ll
create an add-in class and a separate class for the Ribbon. Outlook actually
presents very few surprises when it comes to working with add-ins.

You do need to consider how Outlook manages data. Unlike what happens in
Word and Excel, you don’t create documents as such in Outlook. What you do,
instead, is create data that resides within a database. This single file contains
everything that Outlook knows about your e-mail — everything from your
address book, to your appointments, to the e-mails that you’ve collected. It
pays to think of each kind of data as a separate table within the database.
You’ll use a different form to work with each kind of data. The following list
summarizes how your old code behaves in Outlook 2007:

� Explorer.CommandBars: All of this code works precisely as before;
you don’t need to make any changes.

� Inspector.CommandBars: All of this code works, but Outlook places
the entries on the Add-Ins tab. The placement depends on the kind of
addition as follows:

• CommandBarControls on a built-in menu: The resulting controls
appear in the Menu Commands group of the Add-Ins tab.

• CommandBarControls on a built-in toolbar: The resulting con-
trols appear in the Toolbar Commands group of the Add-Ins tab.

• CommandBarControls on a custom toolbar: The resulting con-
trols appear in the Custom Toolbar group of the Add-Ins tab.

� Word.CommandBars: This code doesn’t work at all. You must move the
existing code from Word to Outlook. The code can use the Inspector.
WordEditor object to return a Word Document object that you can use
to provide the rich editing environment of Word within Outlook.

Because each of the data forms uses a different context in Outlook, you must
perform extra processing within the onLoad handler for the Ribbon. You
must determine whether the class calling your add-in is actually the class
that requires the Ribbon feature. When the wrong class calls, you need to
include code to disable the Ribbon functionality. The “Detecting the caller’s
class” section of the chapter provides details on this requirement.

Outlook also uses a slightly different means of accessing add-ins, compared
to how other Office products do it. To remove an add-in you no longer want,
choose Tools➪Trust Center. Select the Add-ins folder and you can now
remove the add-in as you would in any other Office application.

236 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 236

Creating a Mail-Management Tab
Most corporate users receive a lot of e-mail. In fact, they often receive so
much e-mail that it’s very hard to manage it effectively. In some cases, the
user ends up spending more time trying to figure out what to do with the
e-mail, than how to answer it. Providing an organizational aid can help reduce
the complexity of working with e-mail. This example looks at the task of
putting the e-mail into the right location. A location might be an action file
or a particular project file. The user might also need to make copies of it for
multiple storage folders.

Interestingly enough, Microsoft provides this feature when you read an
e-mail, but not when you respond to it. When you read an e-mail, you’ll see
Move to Folder as one of the buttons in the Actions group, but this group
doesn’t appear when you reply to a message. Consequently, your response
can end up in the wrong place. This example provides similar functionality
for storing responses so you can ensure that the response always appears
where you need it.

This example demonstrates a considerable number of techniques, and the
chapter simply can’t hold all of the source code required to create it. The sec-
tions that follow do provide you with complete information about all of the
essential techniques for working with this example and modifying it to meet
your specific needs. (You can find the complete source code for this example
on the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)
This example relies on the code found in the ManageMessage folder.

Trying the default project
You create an Outlook add-in just as you would any other add-in, but the
default project doesn’t buy you very much. Outlook presents a very differ-
ent programming problem for the developer from other Office products.
The default project compiles and you can even start it in the debugger.
Unfortunately, the results are anything but what you may have expected.
Open a new message and you’ll immediately discover that something is
wrong. Figure 9-1 shows the default output.

At this point, you’re probably asking yourself why the button doesn’t appear
in the right place — after all, it appears in a separate tab in the other default
applications. Actually, it turns out that the default location for all Outlook
add-ins is the Add-Ins tab. If you try to set the <tab> element to a custom
tab, the tab won’t appear at all within Outlook.

237Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 237

You can change the new content to another tab if you want to: Simply change
the idMso value to something like TabNewMailMessage. Now, when you
create a new message, you’ll see the new group and any associated buttons.
However, the lack of new tabs means that you always have to select one of
the existing tabs. This fact means you can’t really create a new workflow for
Outlook unless you want to grab the tab and clean everything else out before
you populate it with new content.

Outlook developers also have another problem to overcome. As previously
mentioned, some of the tabs you work with appear in more than one context.
When you create the default example, the Add-Ins tab appears everywhere;
you see the new group and button no matter what task you want to perform.
If the button did anything more than display a message, the user could
become quite confused. Imagine seeing a message-related group when you’re
working with a new appointment. Consequently, you always want to move
your add-in from the Add-Ins tab to some other tab, and you want to monitor
the class calling your add-in to ensure the code takes the appropriate action.

The problem becomes a little more complicated when you consider the con-
trol IDs that you have to work with in Outlook. The 2007OfficeControlIDs
Excel2007 download described in the “Understanding the XML Connection”
section of Chapter 2 contains 20 files for Outlook. While Word, Excel, Access,
and PowerPoint have a single file each, it takes 20 files to provide all the con-
trol IDs for Outlook. It’s important to look in the right file for the particular
control ID you need. Fortunately, it’s relatively easy to determine which file to
open. For example, if you want to see the control IDs for a new mail message,
you open the OutlookMailComposeItemRibbonControls.xlsx file. On
the other hand, if you want to change the way the Ribbon appears when you
read mail, open the OutlookMailReadItemRibbonControls.xlsx file
instead. Make sure you open the correct file to obtain the right control IDs
for your project.

Figure 9-1:
The default

project
output is
less than
inspiring.

238 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 238

Detecting the caller’s class
You can limit the use of a particular Ribbon element in Outlook by choosing
the correct tab for placement. For example, if you place a new group on
TabNewMailMessage, it won’t appear when you open a message for reading
or create a new appointment. However, something else does happen — you’ll
see the error message shown in Figure 9-2.

Figure 9-2:
Using

standard
Ribbon

development
techniques

in Outlook
results in

lots of error
messages.

239Chapter 9: Developing Business Applications for Outlook

Avoiding communication problems in Outlook
It’s important to consider how Outlook elements
communicate when you put your application
together in order to avoid potential problems.
In general, it’s almost best to view the various
elements — for example, creating an appoint-
ment based on the content of an e-mail — as
two separate applications communicating
together. This viewpoint means you can’t
assume certain things about the Outlook envi-
ronment. For example, you shouldn’t expect to
share data as part of a variable in memory;
instead, pass the data as part of the input to the
other element (as part of a method call, for
example). Passing data by value or reference,
rather than as part of a variable, is always good
programming practice, but Outlook tends to
enforce this requirement.

The communication problems also mean there
are no shortcuts you can use to obtain data
from other parts of the application. For example,
if you want to obtain an address from the
address book, you use the same technique as if
you were making the request outside of Outlook.
In many cases, this means you’re limited to only
the data that Outlook makes publicly available.
If you try to use internal data, you might be dis-
appointed in the results. Always view Outlook
as a collection of mini-applications that just
happen to work together to make e-mail and
time management possible.

15_169940 ch09.qxp 7/13/07 10:30 PM Page 239

An Outlook application must always be aware of the class that is calling so
it can provide the correct Ribbon handling. So far, you haven’t had much
reason to use the ribbonID value provided as part of the GetCustomUI()
method in the Ribbon Support item you add to your add-in, but in Outlook,
you must use it or face the fact your add-in is going to work poorly. Table 9-1
shows all of the message classes that Outlook supports, along with the
ribbonID value your application receives.

Table 9-1 Outlook Ribbon IDs and Classes
Message Class Ribbon Identifier

IPM.Activity.* Microsoft.Outlook.Journal

IPM.Appointment.* Microsoft.Outlook.Appointment

IPM.Contact.* Microsoft.Outlook.Contact

IPM.DistList.* Microsoft.Outlook.DistributionList

IPM.Note.* Microsoft.Outlook.Mail.Read

IPM.Note.* Microsoft.Outlook.Mail.Compose

IPM.Post.* Microsoft.Outlook.Post.Read

IPM.Post.* Microsoft.Outlook.Post.Compose

IPM.Post.Rss.* Microsoft.Outlook.RSS

IPM.Report.* Microsoft.Outlook.Report

IPM.Resend.* Microsoft.Outlook.Resend

IPM.Schedule.Meeting.Request Microsoft.Outlook.MeetingRequest.Send

IPM.Schedule.Meeting.Request or Microsoft.Outlook.MeetingRequest.Read
IPM.Schedule.Meeting.Canceled

IPM.Schedule.Meeting.Resp.* Microsoft.Outlook.Response.Read

IPM.Schedule.Meeting.Resp.* Microsoft.Outlook.Response.Compose

IPM.Schedule.Meeting.Resp.* Microsoft.Outlook.Response.CounterPropose

IPM.Sharing.* Microsoft.Outlook.Sharing.Read

IPM.Sharing.* Microsoft.Outlook.Sharing.Compose

IPM.StickyNote.* Not Implemented

IPM.Task.* and IPM.TaskRequest.* Microsoft.Outlook.Task

240 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 240

You use these values to detect the request class and provide the correct
Ribbon XML to the caller. Yes, you may even need to provide multiple XML
files in your add-in to ensure you can provide the same group to multiple
classes. Here’s the code you’d need to ensure a Ribbon group appears only as
part of the new message window:

public string GetCustomUI(string ribbonID)
{

// If this is a new mail message, then display the
// new group. Otherwise, don’t display anything.
if (ribbonID == “Microsoft.Outlook.Mail.Compose”)

return
GetResourceText(“ManageMessage.MailRead.xml”);

else
return string.Empty;

}

Because your Outlook add-ins are dealing with specific classes, it’s essen-
tial that you give your Ribbon Support items a meaningful name. Although
you can write a complex Word or Excel application using a Ribbon Support
item named Ribbon1, this naming convention won’t work in Outlook. Giving
the Ribbon Support item a meaningful name is an important part of the
documentation process. Otherwise, other people viewing your code will
have a hard time understanding what part of Outlook the Ribbon addition
affects.

Designing the filing interface
The filing interface requires a location and a button to perform the filing as a
minimum. This example also includes the option to save the current e-mail as
a draft. When the user checks this option, the application saves the current
e-mail in the Drafts folder and then closes the message. Otherwise you can
file the e-mail in as many places as needed. Figure 9-3 shows the interface for
this example.

Notice that the Filing Options group appears at the end of the Ribbon.
This position is natural for this example because the user will normally
file the e-mail after completing every other task with it. In some cases,
you can still maintain a good workflow in Outlook applications despite the
limitations that Microsoft places on good design. Listing 9-1 shows the XML
for the interface.

241Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 241

Listing 9-1: Creating an Interface for Filing E-mail

<tab idMso=”TabNewMailMessage”>
<group id=”FilingOptions”

label=”Filing Options”>
<comboBox id=”Location”

label=”Location”
getItemCount=”LocationCount”
getItemID=”LocationID”
getItemLabel=”LocationLabel”
onChange=”LocationChange”
getText=”LocationText”/>

<checkBox id=”CloseEmail”
label=”Save as a Draft”
getPressed=”ClosePressed”
onAction=”CloseClicked”/>

<button id=”FileIt”
label=”File Email”
size=”large”
imageMso=”CreateMailRule”
onAction=”FileIt_Clicked”/>

</group>
</tab>

Figure 9-3:
The new

filing feature
appears in

the Filing
Options

group.

242 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 242

The code provides maximum user convenience by including both the
onChange and getText options for the Location combo box. The getPressed
and onAction attributes provide the same functionality for the CloseEmail
check box. In both cases, the application retains the user’s last selections and
makes them available for the next application use. The callbacks simply make
use of a global variable to store the current setting. The code either stores or
returns the required value, as shown here, for the Location control:

public void LocationChange(
Office.IRibbonControl control, String text)

{
// Save the new folder selection.
SelectedFolder = text;

}

public String LocationText(
Office.IRibbonControl control)

{
// Return the current folder selection.
return SelectedFolder;

}

In all other ways, the example uses the standard, required, attributes. For
example, in order to make the combo box functional, you must include the
getItemCount, getItemID, and getItemLabel attributes.

Obtaining the folder list
Outlook uses a hierarchical folder structure. Normally, Outlook contains
a single top-level folder named Personal Folders. (Unless you’re using
Exchange Server — then it’s Mailbox - <user name>.) However, when you
open another e-mail file, Outlook normally creates a second top-level folder
for it. Consequently, Outlook could have as many top-level folders as needed
to hold all of the open e-mail files. The default e-mail file always appears as
the first item in the top-level folder list.

Within the top-level folder are all of the child folders associated with stan-
dard tasks such as the Inbox, Deleted Items, and Sent Items folders. The
children also include special folders such as Notes, Calendar, and Tasks.
Any first-level, user-created folders also appear as children of the top-level
folder. The hierarchy continues as you see it in Outlook. This example uses
only the first-level folders — those that appear as children of the top-level
folder. You can create as complex a hierarchy as needed to store everything
that Outlook supports.

243Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 243

The folder list appears within the Location combo box. However, you must
obtain it in the ThisAddIn class. Consequently, the Ribbon callback simply
makes a call to Globals.ThisAddIn.GetFolderList() to obtain a list
of folders. Since calling GetFolderList() multiple times would incur a
performance penalty, the actual call appears in the constructor and the
LocationLabel callback relies on a global array to obtain the desired
information. Listing 9-2 shows the code used to obtain both a count of
folders and the folder list.

Listing 9-2: Creating a List of Folders

public Int32 GetFolderCount()
{

// Return the number of folders.
return Application.Session.Folders[1].Folders.Count;

}

public String[] GetFolderList()
{

// Obtain the list of folders.
Outlook.Folders FolderList =

Application.Session.Folders[1].Folders;

// Holds the output list of names.
String[] FolderNames = new String[FolderList.Count];

// Place the names in the array.
for (int I = 1; I <= FolderList.Count; I++)

FolderNames[I - 1] = FolderList[I].Name;

// Return the name list.
return FolderNames;

}

The GetFolderCount() method simply returns the Application.
Session.Folders[1].Folders.Count property value. The first use of
Folders represents the top-level folder. The second use of Folders repre-
sents the first-level folders you want to add to the list. You use another
Folders object for each level of folders that you want to obtain. The index
array always points to the parent object that you want to work with.
Normally you’ll use a value of 1 for the top-level array so that you work with
the default Outlook e-mail file.

The GetFolderList() method begins by creating a reference to the list
of first-level folders. The only reason to take this approach is to reduce the
amount of typing you have to perform. The next step is to create a local

244 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 244

String array (FolderNames) of sufficient size to hold all of the entries.
You can’t perform this task during design time because it’s impossible to
know how many folders a particular Outlook file will have.

After the code creates the String array, it uses a for loop to fill the array
with the folder names. It then returns this array to the caller for display on
the Ribbon.

Creating the copy
At some point, the user will click File Email. At this point, the code has to
determine a course of action based on the user selections. Listing 9-3 shows
the code required for this task.

Listing 9-3: Determining the Filing Actions

public void FileIt_Clicked(
Office.IRibbonControl control)

{

// Save a copy of the file in the required location.
Globals.ThisAddIn.CopyEmail(SelectedFolder);

// Save a draft of the message when required.
if (SelectClose)

Globals.ThisAddIn.SaveDraft();

}

Notice that you need to provide the SelectedFolder (the folder name that
currently appears in the Location combo box) only when copying the e-mail.
A draft e-mail always appears in the Drafts folder, so you don’t have to worry
about a location in this case. Whenever the user clicks File Email, the code
copies the e-mail first. If the user also checks Save as a Draft, the code also
saves the draft. However, saving a draft closes the e-mail. Consequently,
you must always make the copy first, and then save the draft. Otherwise
the copying process fails because there isn’t anything to copy (the e-mail
is closed).

At this point, the code can perform the actual copying process. Listing 9-4
shows how the copying process works.

245Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 245

Listing 9-4: Copying the E-mail

public void CopyEmail(String Location)
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().CurrentIte
m;

// Create the MAPI folder.
Outlook.MAPIFolder DestFolder = null;

// Discover the subpath.
foreach (Outlook.Folder SubPath in

Application.Session.Folders[1].Folders)
if (SubPath.Name == Location)

DestFolder = SubPath;

// Save a copy of the message.
Outlook.MailItem NewMail =

(Outlook.MailItem)ThisMail.Copy();
NewMail.Move(DestFolder);

}

The code begins by obtaining a reference to the current e-mail. Notice that
you must coerce the object to the correct type because Outlook returns an
Object, not an Outlook.MailItem.

The next step is to create a destination for the e-mail based on the user’s
selection. You can’t use the user’s selection directly, you must convert it to
an Outlook.MAPIFolder instead. The code relies on a simple foreach
loop to look through the first-level folders. When it finds a match, it copies
the entire folder to DestFolder.

After the code obtains a destination for the e-mail, it must create a copy of
the existing e-mail (NewMail in this case). If you try to move the existing
e-mail to a new folder, the system will comply, but then it won’t appear in the
original folder. The code completes the task by using the Move() method of
the NewMail object to move the copy to the location the user specified.

Saving as a draft
There are many times when a user doesn’t have time to complete a particular
e-mail immediately. Although Outlook provides a method for saving the
e-mail as a draft, adding it as part of the Filing Options group can make the
task easier. Listing 9-5 shows the code for this task.

246 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 246

Listing 9-5: Saving a Message Draft

public void SaveDraft()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().CurrentIte
m;

// Save the message draft and close the file.
ThisMail.Close(Outlook.OlInspectorClose.olSave);

}

The code begins by obtaining a reference to the current e-mail. In this case, it
works directly with the e-mail, rather than creating a copy first. The applica-
tion creates a draft save by using the ThisMail.Close() method with the
Outlook.OlInspectorClose.olSave option.

Processing Incoming Mail
Based on User Selections

Users often have a need to perform tasks other than simply organizing their
e-mail. For example, you might receive an e-mail and need to use it as a basis
for a meeting later. Unfortunately, many users have to rely on cut and paste to
create the meeting information, and often don’t get all of the details. Sometimes
a task or meeting entry requires input from multiple e-mails, making the task
even harder. The example in this section reduces the need to move around
trying to create tasks based on an e-mail. Instead, the user highlights the text
associated with the task and clicks a few buttons to add a new task to the
Tasks list. (You can find the complete source code for this example on the
Dummies.com site at http://www.dummies.com/go/ribbonxfd.) This
example relies on the code found in the CreateTask folder.

Considering multiple Outlook class issues
As described in the “Detecting the caller’s class” section, Outlook add-ins can
affect one or more classes. Now, here’s where things can get very interesting.
Let’s say you have a group that you want to appear for both reading and com-
posing messages. You can’t simply send the same XML file to both windows
and expect it to work because the tabs you attach the groups to are different
for each window. The solution to this problem is to create a separate XML file
for each of the tabs and then send the appropriate XML to the tab. The fol-
lowing steps describe how to use multiple XML files in a single add-in.

247Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 247

1. Right-click the project entry in Solution Explorer and choose Add➪
New Item from the context menu.

Visual Studio displays the Add New Item dialog box shown in Figure 9-4.

2. Highlight the XML File entry.

3. In the Name field, type a meaningful name (such as TaskEdit) for the
XML file and click Add.

Visual Studio adds the new XML file to Solution Explorer and opens it for
you to edit.

4. Delete the <?xml version=”1.0” encoding=”utf-8” ?> process-
ing instruction.

5. Type <customUI
xmlns=”http://schemas.microsoft.com/office/2006/01/
customui” onLoad=”OnLoad”>.

Look at how Visual Studio formats the XML file when you add the
Ribbon Support item to a project. The file doesn’t include the XML-
processing instruction, but it does include the <customUI> element.

6. Click the ellipsis in the Schemas field of the Properties dialog box.

You see the XSD Schemas dialog box shown in Figure 9-5.

7. Locate the CustomUI.xsd file show in Figure 9-5 and add it to your
project.

8. Click OK.

Visual Studio adds the appropriate IntelliSense to your Ribbon XML file.
Make sure you follow all of the standard Ribbon XML conventions as you
create the new XML file.

Figure 9-4:
The Add

New Item
dialog box

contains
entries for
XML files.

248 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 248

9. Highlight the new XML file in Solution Explorer.

10. Select Embedded Resource in the Build Action property found in the
Properties window.

The new XML file is now ready for inclusion in your project.

Simply creating the XML file and embedding it in your project isn’t sufficient
to make it useable. You also have to provide code in the GetCustomUI()
method. Listing 9-6 provides a typical example of loading the appropriate
Ribbon XML for a particular class.

Listing 9-6: Making Multiple XML Files Access to Outlook

public string GetCustomUI(string ribbonID)
{

// Determine an action based on the Outlook class.
switch (ribbonID)
{

// If the user is reading a message, then display
// the new group.
case “Microsoft.Outlook.Mail.Read”:

return GetResourceText(
“ManageMessage.MailRead.xml”);

// If this is a new mail message, then display
// the new group.

(continued)

Figure 9-5:
Add the

appropriate
XSD file to

the new
Ribbon XML

file.

249Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 249

Listing 9-6 (continued)

case “Microsoft.Outlook.Mail.Compose”:
return GetResourceText(

“ManageMessage.MailCompose.xml”);

// When the user performs a task-related task,
// display the new group.
case “Microsoft.Outlook.Task”:

return GetResourceText(
“ManageMessage.TaskAdd.xml”);

// Otherwise, don’t display any special Ribbon
// features.
default:

return string.Empty;
}

}

The code begins by determining which class requires input. When the class
doesn’t appear as part of the switch statement, the add-in ignores it.
Otherwise the code returns the correct XML for the class in question, using
the GetResourceText() method. For example, when the user opens a task,
the code sees the Microsoft.Outlook.Task Ribbon identifier associated
with the IPM.Task.* and IPM.TaskRequest.* classes, and it returns the
ManageMessage.TaskAdd.xml file.

Of course, this code doesn’t answer the question of what happens to your spe-
cial group and buttons. The problem is figuring out what to do when you want
the same group to appear in several locations, but you don’t want to write the
code three separate times. It turns out that the separate XML files don’t hinder
you in any way. If you have a particular callback in one XML file, it executes
just the same as when it appears in another XML file. Consequently, if you
have a button named Click Me with a callback of ClickMe_Handler in the
MailCompose.XML file, you don’t have to write anything new for the hander
in the MailRead.XML file.

Unfortunately, the lack of special differentiation can also cause problems.
You might want to perform a little special processing based on the class
that issued the callback. Outlook doesn’t provide any special information to
handle this situation, so the tag attribute comes into play here. Say you’re
working with the default application again and have placed the group on the
first tab of whatever class you want to work with. The example for using that
tag might appear like this:

250 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 250

<toggleButton id=”toggleButton1”
size=”large”
label=”My Button”
screentip=”My Button Screentip”
onAction=”OnToggleButton1”
imageMso=”HappyFace”
tag=”MailRead”/>

In this case, the tag attribute identifies the XML file as MailRead.xml. You
could then process the tag attribute in the corresponding callback like this:

public void OnToggleButton1(
Office.IRibbonControl control, bool isPressed)

{
if (isPressed)

MessageBox.Show(“Pressed”, control.Tag);
else

MessageBox.Show(“Released”, control.Tag);
}

The name of the XML file (and therefore the XML class) appears in the con-
trol.Tag property. You’ll see the name in the title bar of the message box
that appears when the user clicks the button. Because you know precisely
which class issued the callback, you can now perform any required special
processing based on class.

Designing the task-creation interface
The idea of taking selected text from an e-mail and turning into a task entry
is compelling. It makes an error-prone task very simple. The example doesn’t
provide all of the bells and whistles that some people will want, but it does
do the job. You could probably implement additional features, such as setting
the start and due dates as part of a dialog-box launcher feature. Figure 9-6
shows the interface for the example. The new Create a Task group contains a
button, several check boxes, and a combo box you can use to set up a task
based on the highlighted text in the message.

One feature you should notice about this example is that the button is on the
left side of the selections. That’s because the selections are optional. The
user can simply highlight the pertinent text and click Create Task if desired.
Now compare this with the example shown in Figure 9-3. In this case, the
button appears to the right of the options. That’s because the Location
option is required in this case; the user must select a Location prior to click-
ing File Email. The Ribbon is a good tool, but you need to consider how the
user is going to interact with the controls. These examples show two cases
where the user must click a button, but the positioning of the button changes
to reflect the importance of the options.

251Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 251

As previously noted, this example adds the group shown in Figure 9-6
to the Message tab when the user either composes or reads a message.
Consequently, the application code actually contains two XML files with
slightly different content. Listing 9-7 shows typical code for the interface
shown in Figure 9-6.

Listing 9-7: Defining a Task-Creator Interface

<tab idMso=”TabNewMailMessage”>
<group id=”CreateTaskGroup”

label=”Create a Task”>
<button id=”CreateTask”

label=”Create Task”
size=”large”
imageMso=”ReviewAcceptChange”
onAction=”CreateTaskClicked”/>

<checkBox id=”AddSubject”
label=”Add to Subject”
getPressed=”AddSubjectPressed”
onAction=”AddSubjectClicked”/>

<checkBox id=”AddBody”
label=”Add to Body”
getPressed=”AddBodyPressed”
onAction=”AddBodyClicked”/>

<separator id=”Separator1”/>
<checkBox id=”AddEmail”

label=”Add Email Address”

Figure 9-6:
Creating

tasks from
e-mails is

easy using
this add-in.

252 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 252

getPressed=”AddEmailPressed”
onAction=”AddEmailClicked”/>

<checkBox id=”AddTelephone”
label=”Add Telephone Number”
getPressed=”AddTelephonePressed”
onAction=”AddTelephoneClicked”/>

<comboBox id=”AddPriority”
label=”Priority”
getText=”AddPriorityText”
onChange=”AddPriorityChanged”>

<item id=”PriorityLow” label=”Low”/>
<item id=”PriorityNormal” label=”Normal”/>
<item id=”PriorityHigh” label=”High”/>

</comboBox>
</group>

</tab>

Many of the features in this Ribbon XML have appeared in other examples.
For example, you always include an onAction attribute for buttons if you
want them to perform any useful work. The check boxes also include the
getPressed and onAction attributes as normal, along with the normal
code behind. (See the explanation in the “Designing the filing interface” sec-
tion of the chapter for details.)

The most significant difference, in this case, is that the <comboBox> element
has the <item> elements defined, so you don’t need callback to populate the
<comboBox> in this case. Make sure you use predefined entries whenever
you can to reduce application complexity.

Defining the task
Before you can do anything with the task, it’s important to define a procedure
for creating one. Listing 9-8 contains the Ribbon callback that handles creat-
ing a task when the user clicks Create Task.

Listing 9-8: Defining the Task Features

public void CreateTaskClicked(Office.IRibbonControl
control)

{
// Obtain the email subject.
String Subject =

Globals.ThisAddIn.GetEmailSubject();

// Obtain the email text.

(continued)

253Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 253

Listing 9-8 (continued)

String Body =
Globals.ThisAddIn.GetEmailSelectedText();

// Add the selected text to the subject if
// necessary.
if (AddSubject)

Subject = Subject + “ - “ + Body;

// Use the whole body when requested.
if (AddBody)

Body = Globals.ThisAddIn.GetWholeBody();

// Create the task.
Globals.ThisAddIn.CreateATask(

Subject, Body, AddPriority);

// Add the Email address to the body if asked.
if (AddEmail)

Globals.ThisAddIn.AddEmailToBody();

// Add the telephone number when asked.
if (AddTelephone)

Globals.ThisAddIn.AddTelephoneToBody();

// Make sure you close the task when finished.
Globals.ThisAddIn.CloseTask();

}

Even though the code calls a number of Globals.ThisAddIn methods, it
provides the structure required to make the task creation flexible. The user
has a number of options, all of which appear as part of the Ribbon, so this is
the best place to make the content decisions. Every task must have a subject,
body, and priority, so the code begins by obtaining the information for those
three elements. The subject and body come from the e-mail, while the prior-
ity is a Ribbon selection. Notice that the body can contain just the selected
text or the entire contents of the e-mail message.

The whole subject and e-mail body are relatively easy to get. Listing 9-9
shows that you can perform this task with just a few lines of code.

Listing 9-9: Getting the Subject and Entire Body

public String GetEmailSubject()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

254 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 254

(Outlook.MailItem)Application.ActiveInspector().
CurrentItem;

// Return the subject.
return ThisMail.Subject;

}

public String GetWholeBody()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().
CurrentItem;

// Return everything.
return ThisMail.Body;

}

In both cases, the code begins by creating a reference to the e-mail. It then
returns the appropriate property value from the e-mail to the caller. In the
first case, the code uses the Subject property; in the second case, it uses
the Body property.

Microsoft doesn’t make it easy to obtain the selected text in an e-mail. Part of
the problem is that you have to discover the editor used to create the e-mail
before you can do anything else. To provide even basic functionality, you
must include both an HTML and a Word editor for Outlook. You can use the
Word editor for text and Rich Text Format (RTF) messages as well.

Before you can work with either Word or HTML, you must create references
for them. This example uses the Microsoft.mshtml library for the HTML
editor and the Microsoft Word 12.0 Object Library for the Word editor. It
helps if you include using statements at the beginning of the ThisAddIn.cs
file, as shown here:

using mshtml;
using Word = Microsoft.Office.Interop.Word;

Once you have the references in place, you can begin coding. Listing 9-10
shows a typical example of how to obtain selected text from using an editor.
You can also use this technique for a wide range of other purposes. For exam-
ple, by creating your own selections (using the objects appropriate for the
editor in use), you can add highlighting and other special effects to your
e-mail messages.

255Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 255

Listing 9-10: Obtaining the Selected Text

public String GetEmailSelectedText()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().
CurrentItem;

// Create an HTML document for the HTML editor.
mshtml.HTMLDocument ThisHTMLDoc;

// Create a Word document for the Word editor.
Word.Document ThisWordDoc;

// Holds the selected text.
String SelText = “”;

// Look for an HTML document.
if (ThisMail.GetInspector.EditorType ==

Outlook.OlEditorType.olEditorHTML)
{

// Get the selected text.
ThisHTMLDoc =

(mshtml.HTMLDocument)ThisMail.GetInspector.HTMLEditor;
SelText = ThisHTMLDoc.selection.ToString();

}

// Look for a Word document.
if (ThisMail.GetInspector.EditorType ==

Outlook.OlEditorType.olEditorWord)
{

// Get the selected text.
ThisWordDoc =
(Word.Document)ThisMail.GetInspector.WordEditor;
SelText = ThisWordDoc.Application.Selection.Text;

}

// Return the selected text.
if (SelText.Length > 0)

return SelText;
else

return ThisMail.Body;
}

The code begins by creating some basic objects. It obtains a reference to the
current e-mail. It then creates two documents — one for an HTML document
and a second for a Word document — because you can’t tell which editor the
current e-mail uses. The SelText String contains the output from the editor if
the user has selected any text and the application can detect the editor type.

The key to detecting the editor type is to check the ThisMail.Get
Inspector.EditorType property. This is an enumerated value that

256 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 256

can detect plaintext, RTF, HTML, and Word documents. When the document
is an HTML document, the code begins by creating the ThisHTMLDoc object.
Notice that the code uses the ThisMail.GetInspector.HTMLEditor
object to perform this task. When you create a Word, plaintext, or RTF docu-
ment, you use the ThisMail.GetInspector.WordEditor object instead.

In both cases, the code uses the selection features of the editor to obtain the
selected text. In the case of the HTLM editor, the ThisHTMLDoc.selection.
ToString() method accomplishes the task. The Word editor relies on the
ThisWordDoc.Application.Selection.Text property. If the GetEmail
SelectedText() method fails to obtain the selected text (there are many
causes for that; you can’t write error-correcting code for them all), the method
returns the entire e-mail body using the ThisMail.Body property. Even
though the user will see the entire body, at least the application won’t fail.

At this point, the code has retrieved a subject and a body. It’s time to create
the task. Listing 9-11 shows how to create a basic task.

Listing 9-11: Creating a Basic Task Entry

public void CreateATask(
String Subject, String Task, String Priority)

{
// Create the task.
ThisTask = (Outlook.TaskItem)Application.CreateItem(

Outlook.OlItemType.olTaskItem);

// Add the subject and body.
ThisTask.Subject = Subject;
ThisTask.Body = Task;

// Set the priority.
switch (Priority)
{

case “Low”:
ThisTask.Importance =

Outlook.OlImportance.olImportanceLow;
break;

case “Normal”:
ThisTask.Importance =

Outlook.OlImportance.olImportanceNormal;
break;

case “High”:
ThisTask.Importance =

Outlook.OlImportance.olImportanceHigh;
break;

default:
ThisTask.Importance =

Outlook.OlImportance.olImportanceNormal;
break;

}
}

257Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 257

The code begins by obtaining a reference to a new task. It performs this task
by calling on the Application.CreateItem() method. You must define
the kind of object to create using the Outlook.OlItemType.olTaskItem
enumeration. Because this technique returns an Object in all cases, you
must always coerce the return value into the correct data type.

Adding the subject and body consists of providing the information sent by
the caller. The priority requires special handling. You must use a switch to
convert the string into the correct Outlook.OlImportance enumerated
value and place it within the ThisTask.Importance property.

Adding supplemental information
The task isn’t completed until you close it. Consequently, you can add any
amount of supplemental information to a basic task to refine the task infor-
mation. The example provides two basic pieces of information as part of the
task body. The first is the sender’s e-mail; the second is a telephone number.
Listing 9-12 shows how to add this information to the task.

Listing 9-12: Defining the Supplemental Information

public void AddEmailToBody()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().
CurrentItem;

// Obtain the email of the sender.
String SenderEmail = ThisMail.SenderEmailAddress;

// Add the email address to the body of the task.
ThisTask.Body = ThisTask.Body +

“\r\nEmail: “ + SenderEmail;
}

public void AddTelephoneToBody()
{

// Obtain the current email.
Outlook.MailItem ThisMail =

(Outlook.MailItem)Application.ActiveInspector().
CurrentItem;

// Get the sender’s name.
String SenderName = ThisMail.SenderName;

258 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 258

// Obtain the name from the contact database.
String UserTelephone = “”;
foreach (Outlook.AddressEntry ThisAddress in
Application.Session.AddressLists[1].AddressEntries)
if (ThisAddress.Name == SenderName)

UserTelephone =
ThisAddress.GetContact().

BusinessTelephoneNumber.ToString();

// Check the telephone number.
if (UserTelephone.Length > 0)

ThisTask.Body = ThisTask.Body +
“\r\nTelehone Number: “ + UserTelephone;

}

In both cases, the code begins by obtaining a reference to the current e-mail.
You might be surprised at the amount of information you can derive from a
simple-looking e-mail. In this case, the code can obtain the sender’s e-mail
address directly using the ThisMail.SenderEmailAddress property.
Adding the information to the body of the task is simply a matter of concate-
nating the appropriate strings.

E-mails don’t come with telephone numbers, in most cases, unless someone
sends one on a business card or as part of a signature. The example assumes
that the sender hasn’t provided this option. In this case, the code relies on
the sender’s name (found in the ThisMail.SenderName property).

The code then relies on a foreach loop to look through each of the address
entries in the user’s contact database. The information appears in the
AddressEntry as part of the ThisAddress.GetContact().Business
TelephoneNumber property.

Closing the task
It’s finally time to close the task. Up until this point, you can continue to add
as much or little information as you want to the task. Once the task is closed,
you have to obtain a reference to it again and reopen it before you can do any
work. Fortunately, closing the task requires a single call, as shown here:

public void CloseTask()
{

// Close the task.
ThisTask.Close(Outlook.OlInspectorClose.olSave);

}

259Chapter 9: Developing Business Applications for Outlook

15_169940 ch09.qxp 7/13/07 10:30 PM Page 259

Notice that you must provide one of the Outlook.OlInspectorClose enu-
merated values. You can choose to discard the task, prompt for a save, or save
the task automatically. The code uses an automatic save. Figure 9-7 shows the
output from this example, based on the selections shown in Figure 9-6.

Figure 9-7:
The output
of this task

shows its
origins in

the e-mail
message.

260 Part III: Creating New RibbonX Applications

15_169940 ch09.qxp 7/13/07 10:30 PM Page 260

Chapter 10

Developing Business Applications
for PowerPoint

In This Chapter
� Understanding how to work with PowerPoint

� Defining custom-feature tabs for presentations

� Designing the initial slide

� Considering the use of optional slides

� Providing constants for the user

� Ending the presentation

� Saving and using a template

Like Word and Excel, PowerPoint uses the Ribbon exclusively — you won’t
find any menu-and-toolbar holdovers in this application. In addition,

when you’re working with PowerPoint, you have access to all three levels of
Ribbon customization: add-in, template, and document. In fact, PowerPoint
provides a broad range of flexibility when it comes to the Ribbon; PowerPoint
may actually provide the simplest Ribbon programming experience in some
respects because the documents it creates are straightforward.

Of course, you still have a considerable number of tasks you can perform
with PowerPoint. The fact that it provides a straightforward document setup
actually makes it easier to customize this application; this setup also pro-
vides opportunities to speed up the user experience. All these advantages
work to the user’s favor because most users don’t want to spend a lot of time
learning PowerPoint features. Rather, they know that they must get a presen-
tation created and that the presentation is usually due in a hurry.

The following sections explore PowerPoint functionality that can help just
about anyone who needs to create a presentation quickly. How much you
customize your presentation depends on your users, of course. If you’re
working with engineering staff, providing a feature to look for keywords
within slides is going to be very helpful because engineers tend to use com-
plex terms. Likewise, if you work for a large company, creating presentations

16_169940 ch10.qxp 7/13/07 10:31 PM Page 261

with a precise look and feel is going to be a concern, which makes the
Custom Presentation tab very useful. This chapter contains a little something
for everyone.

Getting Started with PowerPoint
Applications

PowerPoint provides a standardized approach to working with the Ribbon.
Like other Office products, PowerPoint provides both standard and macro-
enabled versions of the documents and templates it creates. To work with
the Ribbon in VBA, you must save a document using the PPTM extension.
Likewise, if you want to save a template, you must use the POTM extension.

Unlike many other Office applications, the focal point of PowerPoint is the
template. You’ll create many presentations using the same basic layout, but
it’s unlikely that you’ll rework a single presentation for more than one topic.
After you finish a particular presentation, you might tweak it a little here or
there, but presentations aren’t like Word documents or Excel workbooks (in
which you can reuse a single document to perform more than one task). It’s
very likely that you’ll create more templates than documents; you may never
have to create a document with a modified Ribbon for PowerPoint.

As with most other Office applications, it’s often easier to create a document
in PowerPoint first, and then save the document as a template when the
document contains all the features you need to create a class of documents.
The VBA examples in this chapter rely on the document-to-template tech-
nique because it’s the most practical method of creating a template. Some
people do create templates directly, though, so you might want to try both
approaches to see which one works best for you.

When you’re working with an add-in (created using Visual Studio and the C#
or VB.NET language), you can save the output in any format. The format you
choose depends on whether the document contains any VBA. Always choose
the more secure non-macro-enabled versions of the file whenever possible.
These safer formats use the PPTX extension for documents and the POTX
extension for templates. Avoid using macro-enabled document formats when-
ever possible to improve security for your system as a whole.

You can also save documents as PowerPoint shows. However, in this case,
changes to the Ribbon won’t be of the presentation creation sort. Instead,
you might make changes for the benefit of the PowerPoint show viewer.
Because the controls that PowerPoint provides are adequate for viewing a
presentation, it’s unlikely that you’ll ever need to change the Ribbon for this
file format (which is why the chapter doesn’t discuss such a change).

262 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 262

Defining the Custom Presentation
Tab Interface

Every presentation includes some piece of required content that changes
according to presenter or other criteria. For example, every presentation
should include an opening slide with the name of the presentation, the
presenter’s name, and the contact information for the presenter. Even
though the format and layout of this information don’t change, the actual
content does, so having this material as a Ribbon feature works well. The
example includes these required, but changeable, content items. (You can
find the complete source code for this example on the Dummies.com site at
http://www.dummies.com/go/ribbonxfd.) This example relies on the
code found in the Custom Presentation.potm file.

The interface you design for your application requires a great deal of
thought, especially when you want to enforce corporate policies and make
it simple enough for all of your users to work with. The default PowerPoint
interface assumes that the user is knowledgeable in creating presentations
and has no corporate guidelines to hinder creativity. Consequently, the
sample application removes some features, consolidates others, and creates
new elements to meet the needs of this specific user. Figure 10-1 shows the
overall layout of this application.

263Chapter 10: Developing Business Applications for PowerPoint

Choosing between the Ribbon and the template
Presentations have a formal style that is unlike
other kinds of Office documents. The decision
between what you include on the Ribbon and
what you include as part of the template is more
precise. Some elements, such as the heading
that appears on every slide, belong in the tem-
plate, even if you modify these elements later
with optional features on the Ribbon. Likewise,
content features always appear on the Ribbon
when you can define them during design time.

The keyword for the Ribbon in PowerPoint is
optional. Normally, you include only optional

information as part of the Ribbon. All of the
mandatory information appears as part of the
template. This approach differs from an appli-
cation such as Word. Even though the recipient
address is a required part of a letter, you don’t
include it in the template because the informa-
tion changes every time you write another letter.
Contrast this content with the header for a pre-
sentation that includes your company name and
logo. Because the company name and logo
won’t change, including this content as part of
the template makes perfect sense.

16_169940 ch10.qxp 7/13/07 10:31 PM Page 263

The new features all appear on the Custom Presentation tab. Even though
this layout is basically a workflow layout, the user will need to move back
and forth between some of the groups. For example, after creating a new
slide using the options in the Standard Slides group, the user will provide
content for the slides using the items in the Entry Constants group. Listing
10-1 shows the code used to create the Custom Presentation tab.

Listing 10-1: Defining the Custom Presentation Interface

<tab id=”CPresent” label=”Custom Presentation”>
<group id=”Start” label=”Start Presentation”>

<button id=”StartSlide”
label=”Add Starting Slide”
size=”large”
imageMso=”QueryShowTable”
onAction=”StartSlideClick” />

</group>
<group id=”Constants” label=”Entry Constants”>

<buttonGroup id=”PresentationIdentification”>
<button id=”PresentTitle”

label=”Title”
onAction=”PresentTitleClick” />

<button id=”PresentSubject”

Figure 10-1:
The inter-

face for
the Custom

Presentation
tab includes

optional
content

items.

264 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 264

label=”Subject”
onAction=”PresentSubjectClick” />

<button id=”PresentDate”
label=”Date”
onAction=”PresentDateClick” />

</buttonGroup>
<buttonGroup id=”PresenterID”>

<button id=”PresentName”
label=”Name and Title”
onAction=”PresentNameClick” />

<button id=”PresentDept”
label=”Department”
onAction=”PresentDeptClick” />

</buttonGroup>
<buttonGroup id=”PresenterContact”>

<button id=”PresentEmail”
label=”Email”
onAction=”PresentEmailClick” />

<button id=”PresentTel”
label=”Telephone”
onAction=”PresentTelClick” />

</buttonGroup>
</group>
<group id=”AddSlide” label=”Standard Slides”>

<gallery idMso=”SlideNewGallery” size=”large” />
<button idMso=”SlideDelete” size=”large” />
<gallery idMso=”SlideLayoutGallery” />
<button idMso=”SlideReset” />

</group>
<group id=”GraphicContent” label=”Graphics”>

<toggleButton idMso=”ClipArtInsert”
size=”large”/>

<button idMso=”PictureInsertFromFilePowerPoint”/>
<button idMso=”SmartArtInsert” />
<button idMso=”ChartInsert” />

</group>
<group id=”End” label=”End Presentation”>

<button id=”EndSlide”
label=”Add Ending Slide”
size=”large”
imageMso=”QueryShowTable”
onAction=”EndSlideClick” />

</group>
</tab>

All of the action features of this example rely on pre-existing controls or on
buttons. For example, look at the GraphicContent group and you’ll see that
all of the controls are pre-existing controls that the example repurposes for
this workflow. Although it may seem like cheating, using pre-existing controls
whenever you can makes sense; doing so reduces development time. The
Ribbon makes it easy to move controls from anywhere to anywhere else.

265Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 265

The buttons rely on the usual XML. The larger buttons include the size,
imageMso, and onAction attributes, in addition to the standard id and
label attributes. Smaller buttons require only the id, label, and onAction
attributes.

Notice how the application uses the <buttonGroup> element to organize the
buttons. Using the <buttonGroup> element can help you imply functionality
to the user. In this case, the various <buttonGroup> elements show

� Presentation information

� Presenter identification

� Presenter contact information

If you’ve used PowerPoint 2007, you’ll immediately notice that this interface
is significantly simplified from the standard product. The Insert, Design,
Animations, and Slide Show tabs are gone. The Developer tab should be
missing in action too, but I left it in place to make it easier for you to work
with the example. The View tab is still in place, but many of its features are
gone as well, as shown in Figure 10-2. (You’ll also notice that the Drawing
group is missing from the Home tab.) What remains is a significantly simpli-
fied interface that won’t allow the user to make most changes to the interface
that interfere with the creation of corporate approved presentations.

Figure 10-2:
Remove the
application

features
that tend to

confuse,
rather than

help, the
user.

266 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 266

Removing the extraneous features does make the task easier for inexperi-
enced users. However, you’ll also hear complaints from experienced users
when their favorite feature is missing. You’ll need to balance the user experi-
ence based on the actual application requirements. In some cases, you may
want to consider returning some advanced user functionality (in the form of
dialog-box launchers) or even create two template versions and issue the one
that’s most appropriate for a given user. Listing 10-2 shows the XML used to
remove the extra features.

Listing 10-2: Removing Extraneous User Interface Elements

<tab idMso=”TabHome”>
<group idMso=”GroupDrawing” visible=”false” />

</tab>
<tab idMso=”TabInsert” visible=”false” />
<tab idMso=”TabDesign” visible=”false” />
<tab idMso=”TabAnimations” visible=”false” />
<tab idMso=”TabSlideShow” visible=”false” />
<tab idMso=”TabView”>

<group idMso=”GroupPresentationViews”
visible=”false” />

<group idMso=”GroupColorGrayscale”
visible=”false” />

<group idMso=”GroupMacros” visible=”false” />
</tab>

All you need to remove a feature is the identifier of the application element,
such as TabInsert, and the visible=”false” entry. You can remove
features at any level. However, if you want to remove a group, you must first
provide the <tab> tag. Likewise, when you’re removing a control, you must
provide both the <tab> and <group> tags.

In addition to creating the slideshow, the user needs to perform one addi-
tional task — viewing the slideshow. PowerPoint also provides this feature,
but it isn’t part of the custom tab. Adding the Start Slide Show group requires
one last piece of XML, as shown here:

<group idMso=”GroupSlideShowStart” />

Creating the Initial Slide
Every presentation has to start somewhere, and that first slide is important.
When you view some presentations, you wonder what happened because the
first slide is less than appealing or it doesn’t contain all of the right informa-
tion. This section shows how you can automate most of the task and provide

267Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 267

a wizard-like interface that asks for the rest of the information from the user.
By combining these two processes, the initial slide is filled out before the
user really gets to do anything with it, which ensures that the slide has a con-
sistent appearance no matter who creates the presentation.

Starting the process
Creating a complex interface requires quite a bit of code when working with
the Ribbon; it’s important to break the process into manageable pieces. This
section describes the overall process — what happens when the user clicks
Add Starting Slide on the Ribbon (shown in Figure 10-1). Listing 10-3 shows
the code needed to perform this task.

Listing 10-3: Creating the Initial Slide

‘Callback for StartSlide onAction
Sub StartSlideClick(control As IRibbonControl)

‘ Locate the layout for the slide.
Dim ThisLayout As CustomLayout
For Each ThisLayout In _

Presentations(1).SlideMaster.CustomLayouts

If ThisLayout.Name = “Starting Slide” Then

‘ After locating the layout, exit the loop.
Exit For

End If
Next

‘ Add the required slide to the presentation.
Dim ThisSlide As Slide
Set ThisSlide = _

ActivePresentation.Slides.AddSlide(1, ThisLayout)

‘ Add the presentation title.
PresentTitle = InputBox(_

“Provide a title for the presentation”, _
“Presentation Title”, “My Presentation”)

ThisSlide.Shapes(1).TextFrame.TextRange.Text = _
PresentTitle

‘ Add the presentation subject.
PresentSubject = InputBox(_

“Provide a subject for the presentation”, _
“Presentation Subject”, _
“My Presentation Subject”)

268 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 268

ThisSlide.Shapes(2).TextFrame.TextRange.Text = _
PresentSubject

‘ Save the data for later use.
SetCustomProperty “PresentationTitle”, PresentTitle
SetCustomProperty _

“PresentationSubject”, PresentSubject

‘ Build the presenter information string.
Dim PresenterInfo As String

‘ Get the username.
PresenterInfo = CStr(GetBuiltInProperty(“Author”))

‘ Get the additional user information.
PresenterTitle = GetCustomProperty(“PresenterTitle”)
PresenterDept = GetCustomProperty(“PresenterDept”)
PresenterEmail = GetCustomProperty(“PresenterEmail”)
PresenterTel = GetCustomProperty(“PresenterTel”)

‘ Make sure all of the values are available.
If PresenterTitle = “” Or PresenterDept = “” Or _

PresenterEmail = “” Or PresenterTel = “” Then

‘ Obtain the required information.
GetUserData

End If

‘ Add the additional information to the presenter
‘ string.
PresenterInfo = PresenterInfo + _

vbCrLf + “Title: “ + PresenterTitle + _
vbCrLf + “Department: “ + PresenterDept + _
vbCrLf + “Email: “ + PresenterEmail + _
vbCrLf + “Telephone: “ + PresenterTel

‘ Add the presenter information to the slide.
ThisSlide.Shapes(3).TextFrame.TextRange.Text = _

PresenterInfo

End Sub

The code begins by locating the custom layout used with this example. The
code can’t access the layout directly by using its name as an index, so the
example relies on a For Each loop to perform the task. The layout appears
as one of the members of the
Presentations(1).SlideMaster.CustomLayouts collection.

After the code locates the required layout, it uses the ActivePresentation.
Slides.AddSlide() method to add the new slide as the first slide in the
presentation.

269Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 269

You must provide both a slide number and the ThisLayout object as input
to the ActivePresentation.Slides.AddSlide() method.

The next step is to begin filling the new slide with information. You can
obtain a lot of information for these slides from other sources, such as
Outlook. However, only the user can provide the presentation title and
subject. The example uses a simple InputBox() to accomplish the task.
The output looks like the dialog box shown in Figure 10-3.

The user hasn’t touched the slide at this point, so you can make certain
assumptions about the slide content based solely on the layout you created.
Consequently, the code can use the ThisSlide.Shapes(1).TextFrame.
TextRange.Text property to assign the title to this slide. If the user had
accessed the slide, you couldn’t make this assumption because the title
might not appear as the first shape. The code performs the same sequence
of events for the subject.

Because the title and subject can appear almost anywhere in the presentation,
the code has to save the information for later use. The best way to accomplish
this task is to save the information as part of the document properties. The code
uses the SetCustomProperty() function (explained later) to perform this task.

At this point, the slide has a title and subject. It’s time to take care of the
third blank, the presenter information. In many cases, you can assume the
person creating the presentation is the one who will ultimately give it. In this
case, you can simply draw all of the presenter information from PowerPoint
and Outlook.

Although you can probably safely assume that the user will change the title
and subject every time the application creates a new starting slide, you
shouldn’t assume that the user will have a name change (or other change of
personal identity). Consequently, the example tries to draw as much informa-
tion as it can from local sources without bothering the user for input.

The first task is to obtain the username. Unfortunately, PowerPoint doesn’t
provide an Application.UserName property, so you can’t simply get the

Figure 10-3:
Request the

title and
subject

of the
presentation

from the
user.

270 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 270

name directly from the application. Consequently, the example retrieves the
username using the GetBuiltInProperty() function (explained later).
Because built-in properties can use any data type, the return type is an
Object that you must convert to a string using the CStr() function.

The code must locate the other user information (such as department and
telephone) next. The code calls the GetCustomProperty() function four
times, once for each piece of user information required in addition to the
username. At this point, the code has to check the values for blanks. If the
blanks exist, it calls the GetUserData() Sub (explained later) to obtain the
data from Outlook.

Now that the application has user data to use, the code builds a string and
inserts it into the third blank on the new slide. At this point, the slide is ready
to use. You can see typical slide content in Figure 10-1. Except for asking the
user two questions, the code obtains all the other information in this form
and places it in the correct location.

Saving custom properties for later use
The example saves the information the user supplies to custom properties in
the document. Because the document contains a number of custom proper-
ties, the example uses a special function named SetCustomProperty to per-
form the task. This function requires two inputs, the name of the property
and its value. Listing 10-4 shows the code for SetCustomProperty.

Listing 10-4: Saving Custom Properties

Function SetCustomProperty(PropertyName As String, Value
As String)

‘ Determines whether the property exists.
Dim Found As Boolean

‘ Contains the current property count.
Dim Counter As Integer

‘ Check for the property value.
For Counter = 1 To _

ActivePresentation.CustomDocumentProperties.Count

‘ Change the existing property.
If ActivePresentation.CustomDocumentProperties(_

Counter).Name = PropertyName Then

ActivePresentation.CustomDocumentProperties(_
PropertyName) = Value

(continued)

271Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 271

Listing 10-4 (continued)

‘ Indicate that the code has found the
‘ property.
Found = True
Exit For

End If
Next

If Not Found Then

‘ Add the new property.
ActivePresentation.CustomDocumentProperties.Add _

Name:=PropertyName, _
LinkToContent:=False, _
Type:=msoPropertyTypeString, _
Value:=Value

End If
End Function

The example can actually handle two scenarios with one call. In the first case,
the property already exists; the code merely updates its value. In the second
case, the property doesn’t exist yet in the document; the code adds it. The
code looks for the existing property using a For loop. When the code finds a
match between the PropertyName input and the ActivePresentation.
CustomDocumentProperties(Counter).Name property value, it assigns
the new value and exits the loop.

When the code doesn’t find the property, it adds a new property using the
ActivePresentation.CustomDocumentProperties.Add method. This
method requires four inputs for PowerPoint — the name, data type, value,
and a special indication of whether the property is linked to any content.

Getting built-in property values
Depending on the application you create, it’s likely that you’ll need to obtain
built-in property values, such as the username. Listing 10-5 shows the
GetBuiltInProperty() method.

Listing 10-5: Obtaining a Built-in Property Value

Function GetBuiltInProperty(PropertyName As String) _
As Object

‘ Keeps track of the current property.
Dim Counter As Integer

‘ Locate the requested property.
For Counter = 1 To _

272 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 272

ActivePresentation.BuiltInDocumentProperties.Count

If ActivePresentation.BuiltInDocumentProperties(_
Counter).Name = PropertyName Then

Set GetBuiltInProperty = _
ActivePresentation.BuiltInDocumentProperties(Counter)

‘ Exit the loop when the property is found.
Exit For

End If
Next

End Function

The GetBuiltInProperty() function uses a For loop to locate the required
property in the ActivePresentation.BuiltInDocumentProperties col-
lection. When the code finds the property, it assigns its value to the output of
the function. It’s essential to remember that this output is an Object, and not
a String. Because the built-in properties can contain any value, you must
handle them as objects, rather than as the desired data type.

Getting custom property values
It doesn’t pay to save custom property values if you can’t use them later. The
GetCustomProperty() function shown in Listing 10-6 retrieves any data
that you saved earlier.

Listing 10-6: Obtaining a Custom Property Value

Function GetCustomProperty(PropertyName As String) As
String

‘ Keeps track of the current property.
Dim Counter As Integer

‘ Locate the requested property.
For Counter = 1 To _

ActivePresentation.CustomDocumentProperties.Count

If ActivePresentation.CustomDocumentProperties(_
Counter).Name = PropertyName Then

GetCustomProperty = _
ActivePresentation.CustomDocumentProperties(Counter)

‘ Exit the loop when the property is found.
Exit For

End If
Next

End Function

273Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 273

The GetCustomProperty() function uses a For loop to locate the
required property in the ActivePresentation.CustomDocument
Properties() collection. When the code finds the property, it assigns
its value to the output of the function. Otherwise the function has an
empty-string output.

Interacting with Outlook
to obtain user data
The example requires more than a username, but the built-in properties can’t
provide any information. In this case, the application retrieves the current
user information values from Outlook using the GetUserData() Sub.
Obviously, you can use Active Directory, a database, or any other source
for the user information.

If you use the approach shown in the example, you must add a reference to
the Outlook library. Choose Tools➪References and you’ll see the References
dialog box shown in Figure 10-4. Check the Microsoft Outlook 12.0 Object
Library entry, as shown, and click OK.

After you create the reference, you can use Outlook to retrieve the required
user information, as shown in Listing 10-7. The reason that the example
places this code in a separate Sub is that the application might need to
retrieve the user information at several points.

Figure 10-4:
Set the
Outlook

reference
for this

example.

274 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 274

Listing 10-7: Obtaining the User Data from Outlook

Private Sub GetUserData()

‘ Search for the user information in Outlook.
Dim CheckSender As AddressEntry
For Each CheckSender In _

Outlook.Application.Session.AddressLists. _
Item(1).AddressEntries

‘ Check the entry name.
If CheckSender.Name = PresenterInfo Then

Exit For
End If

Next

‘ Save the data to the variables.
PresenterTitle = CheckSender.GetContact.JobTitle
PresenterDept = CheckSender.GetContact.Department
PresenterEmail = _

CheckSender.GetContact.Email1Address
PresenterTel = _

CheckSender.GetContact.BusinessTelephoneNumber

‘ Save the results for later use.
SetCustomProperty “PresenterTitle”, PresenterTitle
SetCustomProperty “PresenterDept”, PresenterDept
SetCustomProperty “PresenterEmail”, PresenterEmail
SetCustomProperty “PresenterTel”, PresenterTel

End Sub

The code begins by locating the current user in the Outlook.Application.
Session.AddressLists.Item(1).AddressEntries collection. The appli-
cation assumes that the user information appears in the first (default) address
list. The For Each loop exits when the PowerPoint username matches the
CheckSender.Name property value.

The code performs two tasks with the data:

� It sets the values of all of the global variables so that any Sub or
Function can access the user data.

� It uses the SetCustomProperty method to store the data for later use.

The second user data processing step is very important because you can’t
depend on the user having access to the required information at all times. The
user might use a presentation machine that doesn’t have Outlook installed, so
saving the user information as part of the document is important.

275Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 275

Adding the Optional Slide Elements
Sometimes Microsoft does part of the work for creating a custom application,
but the element appears in the wrong place. Look at the Home tab, and you’ll
see the Slides group shown in Figure 10-5.

In this case, the Slides group provides the functionality you need to add
optional slides to a presentation, but having the user go to the Home tab to
use it breaks up the workflow of the custom application. The group contains
four buttons that let you perform the following tasks:

� Add a slide

� Change the layout of the current slide

� Reset slide formatting

� Delete a slide

Figure 10-5:
Reuse

application
elements as

needed to
develop

your
application

faster.

276 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 276

In general, the buttons do everything you need them to do in the custom
application. You should also ask yourself these questions:

� Are there enough buttons to perform every task?

� Does the current button layout provide the correct emphasis?

� What do you need to do to reuse the existing Ribbon features?

The custom application requires layouts other than those provided by the
default PowerPoint installation. You can fix that problem by creating new
layouts. Select the View tab and click Slide Master. PowerPoint adds a new
Slide Master tab where you can add, replace, modify, and delete layouts and
master slides, as shown in Figure 10-6. Consequently, you can use the existing
PowerPoint features to customize the buttons as required. When you finish
adding the custom slides, click Close Master View on the Slide Master tab.

Make sure you create any new templates that your application requires
before you remove this functionality from the View tab. Otherwise you might
have the tendency to overwrite your template additions while working on the
Ribbon elements. Always be sure to close the file in PowerPoint before you
reopen it using the Custom UI Editor.

Figure 10-6:
Modify the

layouts
and slide

masters as
required

for the
application.

277Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 277

You’ve now answered the question of modifying the gallery to meet your
needs. However, the Slides group still may not provide everything needed.
Certainly, the user needs to add, change, reset, and delete slides, but is there
anything else the user needs? In this case, the user probably wants to add
some graphics to the slides and check the presentation for spelling. Given
that this is a workflow application, you want to make most tasks straight-
forward. Fortunately, you can move some other elements around to make
sure the slides are easy to create.

Because you’re adding and removing some functionality for this custom
application, it’s important to ask about emphasis. Adding a slide still requires
a strong emphasis. However, you might also want to give deleting a slide
more emphasis; the application layout shown in Figure 10-1 does so. The
resulting XML for all this movement, reorganization, and reemphasis appears
in Listing 10-1.

Supporting Constant Data
The application has a lot of constants stored that the user could possibly
employ when creating slides. For example, most of the slides will need the
presentation title, and the user will want to add personal information liber-
ally. The example provides the Entry Constants group to let the user access
this information. Listing 10-8 shows a typical example of how you can imple-
ment this functionality (see the source code on the Web site for a complete
code listing for this part of the example).

Listing 10-8: Supporting Typical User Information

‘Callback for PresentName onAction
Sub PresentNameClick(control As IRibbonControl)

‘ Verify the global variable contains good
‘ information.
If PresenterTitle = “” Then

‘ If not, obtain the value from the custom
‘ property, when avaialble.
PresenterTitle = _

GetCustomProperty(“PresenterTitle”)

‘ If the custom property is blank, then obtain
‘ the information from Outlook.

278 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 278

If PresenterTitle = “” Then
GetUserData

End If
End If

‘ Remove any highlighted material.
If ActiveWindow.Selection.TextRange.Count > 0 Then

ActiveWindow.Selection.Delete
End If

‘ Add the requested text at the insertion point.
ActiveWindow.Selection.TextRange.InsertAfter _

CStr(GetBuiltInProperty(“Author”))
ActiveWindow.Selection.TextRange.InsertAfter _

“, “ + PresenterTitle

End Sub

The code begins by checking for a value in the global variable. The user
might have exited the application between creating the initial slide and
clicking the constant button. Consequently, you can’t assume that the value
is available.

The code looks in the document data first using the GetCustomProperty()
function. When the data doesn’t appear as part of the document, the code
obtains it from another source. In this case, the code calls on Outlook for the
data using the GetUserData() function. However, it might also ask the user
for the information or obtain the information in other ways.

After the code obtains the required data, it removes any data that the
user has highlighted in the current location using the ActiveWindow.
Selection.Delete() method. You can check for the existence of a
highlight by checking the ActiveWindow.Selection.TextRange.
Count property.

Finally, the code adds the new data at the current insertion point using
the ActiveWindow.Selection.TextRange.InsertAfter() method.
PowerPoint provides a number of methods for working with data, so it’s
easy to insert the data in a way that the user expects.

Not every constant requires elaborate storage methods. Sometimes the
user wants to insert something simple, such as a date. Listing 10-9 shows
an example of how you could insert a date into any text area on the slide.

279Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 279

Listing 10-9: Providing Date Information

‘Callback for PresentDate onAction
Sub PresentDateClick(control As IRibbonControl)

‘ Display the date dialog box.
Dim ThisDate As ChooseDate
Set ThisDate = New ChooseDate
ThisDate.Show

‘ Obtain the selected date.
If ThisDate.Result = vbOK Then

‘ Insert the date.
ActiveWindow.Selection.TextRange.InsertAfter _

ThisDate.SelectedDate
End If

End Sub

The code begins by displaying the Select a Date dialog box shown in Figure 10-7.
This is a custom form created for the application. The reason you want to insert
the date using this approach is that the user might need any date, not just the
date of the presentation. By making the date-insertion technique flexible, the
code can serve many needs. After the code verifies that the user clicked OK
in the Select a Date dialog box, it inserts the date information, using the
ActiveWindow.Selection.TextRange.InsertAfter() method.

Providing a Presentation Ending
As with the beginning slide, the ending slide for a presentation is particularly
important because it often remains displayed for a long time after the presen-
tation. The user leaves with the impression created by the ending slide.

Figure 10-7:
The user

can choose
any date to
appear on

the slide.

280 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 280

Fortunately, you can automate a considerable portion of the ending slide —
perhaps not as much of it as the beginning slide, but certainly enough to
make a difference. Listing 10-10 shows the code used for this task.

Listing 10-10: Defining the Ending Slide

‘Callback for EndSlide onAction
Sub EndSlideClick(control As IRibbonControl)

‘ Locate the layout for the slide.
Dim ThisLayout As CustomLayout
For Each ThisLayout In _

Presentations(1).SlideMaster.CustomLayouts

If ThisLayout.Name = “Ending Slide” Then

‘ After locating the layout, exit the loop.
Exit For

End If
Next

‘ Add the required slide to the presentation.
Dim ThisSlide As Slide
Set ThisSlide = ActivePresentation.Slides. _

AddSlide(_
ActivePresentation.Slides.Count + 1, _
ThisLayout)

‘ Check the presentation title.
If PresentTitle = “” Then

‘ Get the information from the custom variable.
PresentTitle = _

GetCustomProperty(“PresentationTitle”)

‘ If the title is still missing, get it from the
‘ user.
If PresentTitle = “” Then

PresentTitle = InputBox(_
“Provide a title for the presentation”, _
“Presentation Title”, “My Presentation”)

‘ Save the data for later use.
SetCustomProperty _

“PresentationTitle”, PresentTitle
End If

End If

‘ Add the presentation title.
ThisSlide.Shapes(1).TextFrame.TextRange.Text = _

(continued)

281Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 281

Listing 10-10 (continued)

PresentTitle

‘ Get the username.
PresenterInfo = CStr(GetBuiltInProperty(“Author”))

‘ Get the additional user information.
PresenterTitle = GetCustomProperty(“PresenterTitle”)
PresenterDept = GetCustomProperty(“PresenterDept”)
PresenterEmail = GetCustomProperty(“PresenterEmail”)
PresenterTel = GetCustomProperty(“PresenterTel”)

‘ Make sure all of the values are available.
If PresenterTitle = “” Or PresenterDept = “” Or _

PresenterEmail = “” Or PresenterTel = “” Then

‘ Obtain the required information.
GetUserData

End If

‘ Add the additional information to the presenter
‘ string.
PresenterInfo = PresenterInfo + _

vbCrLf + “Title: “ + PresenterTitle + _
vbCrLf + “Department: “ + PresenterDept + _
vbCrLf + “Email: “ + PresenterEmail + _
vbCrLf + “Telephone: “ + PresenterTel

‘ Add the presenter information to the slide.
ThisSlide.Shapes(3).TextFrame.TextRange.Text = _

PresenterInfo
End Sub

Many of the techniques used for this part of the example mirror those used
for the starting slide. For example, the code begins by locating the appropri-
ate layout and using it to create a new slide. However, you’ll notice important
differences in this code as well. The slide appears at the end of the presenta-
tion, so the code uses the ActivePresentation.Slides.Count property
to place it in the proper location.

Because the ending slide should already have access to all the data it
requires, the code simply checks for the presence of the data and uses it
immediately. Only when the code can’t find the required data (for example,
because the user closed the file before completing the presentation) does the
code look up the data using custom properties or other means. Figure 10-8
shows typical output from this portion of the application.

282 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 282

Saving and Using the Template
The last part of this example is turning the presentation into a document. To
perform this task, follow these steps:

1. Choose Office Menu➪Save As➪Other Formats.

You’ll see a Save As dialog box.

2. Choose the PowerPoint Macro Enabled Template (*.potm) option in
the Save As Type field, as shown in Figure 10-9.

As soon as you choose the template option, PowerPoint changes the
folder to the default template-storage location. Normally the path to the
appropriate folder on your hard drive is

\Users\<User Name>\AppData\Roaming\Microsoft\Templates\PowerPoint Templates

3. Give your template a meaningful name and save it by clicking Save.

Figure 10-8:
The ending

slide
includes the
presentation

title, a
summary,

and the
presenter’s

contact
information.

283Chapter 10: Developing Business Applications for PowerPoint

16_169940 ch10.qxp 7/13/07 10:31 PM Page 283

When you want to use the template, follow these steps:

1. Choose Office Menu➪New.

2. Click My Templates in the New Presentation dialog box.

You’ll see the New Presentation dialog box.

3. Select the PowerPoint Templates tab shown in Figure 10-10.

You’ll see a list of the templates you’ve created. Whenever you highlight
a template that includes a starting slide, you’ll see the first slide in the
Preview pane.

Figure 10-10:
Choose the

template
you created
from the list
of available
templates.

Figure 10-9:
Make sure

you save
your work

as a
template.

284 Part III: Creating New RibbonX Applications

16_169940 ch10.qxp 7/13/07 10:31 PM Page 284

Chapter 11

Working with Web Services
In This Chapter
� Understanding how to work with Web services

� Considering differences between public and private Web services

� Working with Amazon Web Services

Web services have become an essential part of most business plans
today because they offer significant flexibility — offering services

without the problems of platform dependence. For example, when you access
Amazon Web Services (AWS), you have no idea of whether the system is
running Linux, and you don’t have to care. All that matters is sending a
properly formatted request and receiving a response with the data you
requested. Public and private Web services are springing up at an amazing
rate because they truly are so useful. A Web service does incur a small
performance penalty (compared to other technologies), but in a world
of high-speed computers, the penalty is hardly noticeable.

Of course, the question is what Web services have to do with the Ribbon.
When working with the toolbar and menu system, developers of Web ser-
vices often had to resort to kludges to create a connection between the Web
service and the Office application. The connection between the two was
quite noticeable, and it didn’t seem as if the Web service would ever truly
integrate with the application. Some developers actually resorted to creating
specialized documents to work with Web services, such as the sample Excel
document created for use with the eBay Web service as part of their Software
Development Kit (see http://developer.ebay.com/ for details).

Many people view the Ribbon as an impediment to working with Office, and it’s
true that your older applications will require updates. However, Web services
are newer sources of information for Office users, so they don’t have the incred-
ible number of applications associated with them that other Office applications
do. A Web service application may actually present an opportunity for you to
start fresh with the Ribbon using a new technology, which is the reason that I
chose the topic for this book. Because Web services also offer such a great
value to businesses, you’ll find that your Ribbon learning experiences also pay
real dividends to your company. This chapter explores both public and private
Web services so you get a better idea of how to work in both environments.

17_169940 ch11.qxp 7/13/07 10:33 PM Page 285

Getting Started with Web
Service Applications

Web service applications require a different perspective than some of the
other applications in this book. Normally, you’ll work with Web service appli-
cations in an integration mode. The Web service isn’t part of a workflow, nor
is it part of a specific task. Rather, the Web service will integrate into some
existing feature or appear integrated into the application in some other way.
Even though, from the developer’s perspective, a Web service is a different
kind of service from the normal network service, the user sees the Web ser-
vice as simply another form of data storage. It’s unlikely that the user will
even care that the Web service exists as such.

It’s important to consider how a Web service works in comparison with other
kinds of services that your application may use. Most Web services require
an Internet connection, which can prove unreliable. You need to provide
some sort of alternative form when the Web service is inaccessible, or at
least degrade the application functionality gracefully. For example, if the Web
service receives data from a user’s machine, you could simply cache it on the
local drive until such time as the service is restored. In one case, I actually
saw a developer create a mini-Web service on the user’s machine that the
application could use in the event of a failure. Of course, it could only serve
cached data from the user’s own machine, but at least the application didn’t
fail completely.

The best part about the Ribbon and Web services is that you can hide Web
service features all over. You can even repurpose some controls, such as the
research features of Office, to use resources you provide instead of those
Microsoft normally recommends. For example, you could build a connection
to Google Web Services to perform information lookups online, rather than
rely on the functionality that Office normally uses. A clip-art feature in Word
could actually rely on your private Web service to dish up approved art for
company purposes.

It’s not always necessary to hide the Web service completely. You might
choose to augment existing features in some cases. For example, you could
add a map button to the art features of an office application that uses Google
Maps (http://www.google.com/apis/maps/) to provide maps for your
Office application. In fact, you’ll find a whole list of Google APIs (Web serv-
ices) at http://code.google.com/. The point is that the Web service
shouldn’t be noticeable — the user should see it as a natural part of the
Office application.

286 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 286

Understanding Public and Private
Web Service Differences

Web services come in public and private flavors. The public version is some-
thing like Amazon Web Services (AWS) where you obtain data from Amazon
for a particular need, such as locating products you want or working with
your Amazon store. Of course, public infers that everyone can access the
Web service. A private Web service is generally something your company
puts together or you access as a third party on someone else’s machine. For
example, if you work with an ad service, you might be able to access the Web
service to upload new banner ads.

In most cases, public Web services aren’t completely public. You have to fill
out forms and request access to them. The vendor sends you a developer
key that you use to access the Web service. Normally, the vendor doesn’t
discriminate, so everyone gets to try the Web service. However, the vendor
can revoke your license for a number of reasons, including using the Web
service too much. Consequently, public doesn’t always mean easily accessed
or always accessible.

A public Web service may also charge fees and require that you jump through
hoops to get your application approved. The eBay Web service relies on both
of these techniques to ensure the reliability of its database. Your applications
start out on a special server that has no connection to the real eBay database
at all. This server is called the sandbox, and it lets you test your application
in a safe environment, which is a very good idea. When you feel your applica-
tion is ready, you pay eBay to test and certify it. Only at that point do you get
to run your application on the real Web service. In short, you need to know
what the public Web service demands as part of your application-planning
process. That’s because you might need several additional months of testing
to get through all the vendor’s Web service hoops.

Private Web services vary considerably. While you’ll nearly always contact a
public Web service using the Internet, a private Web service might exist on
the Internet, an intranet, your network, or even your own machine. The pri-
vate Web service is always locked down; only those who have an actual need
to access it can. Vendors don’t typically advertise private Web services, so
you won’t know they exist unless someone tells you about them. The need
for security in a private Web service is so great that you might find difficulty
accessing it at all. However, when all is said and done, the biggest difference
between private and public Web services is one of scope — one is hidden
from just about everyone, while the other is equally visible to anyone who
needs it.

287Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 287

From an operational perspective, there’s often little or no difference between
a public and a private Web service. The scope of the Web service doesn’t
affect the tasks you must perform to work with it. For example, no matter
which kind of Web service you work with, you still need to create a connec-
tion to it, send it requests, and do something with the responses that the Web
service sends back. Public and private Web services use a variety of methods
to communicate, and it’s possible that you’ll find the same technique used for
both public and private Web services. Consequently, when you have a Web
service set up for use, you really won’t see much of a difference between the
two while developing your application.

A public Web service does present more of a challenge for debugging your
application than a private Web service does. You have access to only the
client code when working with a public Web service, which means that you
have only the error messages that the Web service sends back to use as a
means for diagnosing errors. When you work with a private Web service, you
have access to both the client and the server. Consequently, it’s easier to
locate communication problems. In addition, you can choose whether you
want to fix them on the client or on the server.

Creating an Amazon.com
Custom Application

AWS provides you with a lot of opportunities to work with a public Web
service that provides a significant amount of features in a relatively safe
environment. This Web service is especially nice because it works so well
with either VBA or Visual Studio. In addition, you gain access to a number
of Web services, including these:

� Amazon E-Commerce Service (Amazon ECS)

� Amazon Elastic Compute Cloud (Amazon EC2) – beta

� Amazon Historical Pricing

� Amazon Mechanical Turk (Beta)

� Amazon Simple Storage Service (Amazon S3)

� Amazon Simple Queue Service (Amazon SQS)

� Alexa Site Thumbnail

� Alexa Top Sites

� Alexa Web Information Service

� Alexa Web Search

288 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 288

All of these Web services have different uses, and you can incorporate them
all into an Office application through the Ribbon. You can find a description
of all these Amazon Web services at

http://www.amazon.com/gp/browse.html/?node=15763381

Although this chapter won’t make you an AWS expert, you’ll gain enough
information to make use of all the services AWS provides.

This example demonstrates a considerable number of techniques, and the
chapter simply can’t hold all of the source code required to create it. The sec-
tions that follow do provide you with complete information about all of the
essential techniques for working with this example and modifying it to meet
your specific needs. (You can find the complete source code for this example
on the Dummies.com site at http://www.dummies.com/go/ribbonxfd.)
This example relies on the code found in the Amazon Example.xlsm file.

Getting an AWS developer tag
Before you can do anything with AWS, you need a developer tag. Many public
Web services require that you obtain a developer tag so the Web site’s owner
can track how you use the Web service. In addition, you’ll find that many of
these public Web services enforce limits on how you can interact with them.
A few, such as eBay, offer multiple levels of service (free at the lowest level
and paid for at the other levels). The following steps tell how to get an AWS
developer tag:

1. Go to the Web site at

http://www.amazon.com/gp/browse.html/?node=3435361

2. Click the Create Your Free Amazon Web Services Account link in the
Start Using Amazon Web Services section of the Web page (the precise
name of the link and section will vary as Amazon updates the Web site).

You’ll see a sign-in page where you enter your Amazon account informa-
tion. If you don’t have an account, you can create one by selecting the
No, I Am a New Customer option.

3. Provide the required sign-in information and click Continue.

Amazon will ask you to provide some account information.

4. Enter the account information and click Continue.

You’ll see a success message.

289Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 289

5. Open your e-mail program and check for new e-mails.

Amazon will send your developer tag as part of an e-mail message, along
with some other information and useful links for using their Web serv-
ices. Obtaining the developer tag can require a few minutes. If you don’t
receive the new developer tag immediately, keep trying and you’ll even-
tually receive it. Contact the Amazon staff if you wait more than an hour;
the developer tag normally arrives within an hour.

You must obtain an AWS developer tag to use the example. The file doesn’t
include a developer tag, and AWS won’t send a response without it. Click the
dialog-box launcher in the Search Criteria group the first time you run the
example to enter your AWS developer tag. The application automatically
stores this value so you won’t have to enter it again.

Seeing how queries work in a browser
One of the more interesting features of AWS is that you don’t need an applica-
tion to use it. You can simply view the information you want using a browser.
Of course, the output is in XML, but you can still use this simple approach to
get what you want. Try typing the following URL into your favorite browser,
but keep two things in mind:

� Even though this content appears on multiple lines in the book, be sure
you type it all as one continuous line in your browser.

� Make sure you replace Your-Developer-Tag with the developer tag
that Amazon provides.

Here’s the content to type:

http://ecs.amazonaws.com/onca/xml?
Service=AWSECommerceService&Operation=ItemSearch&
Author=John%20Mueller&SearchIndex=Books&Sort=salesrank&
AWSAccessKeyId=Your-Developer-Tag

The URL points to the basic AWS site (http://ecs.amazonaws.com/
onca/xml). It provides a number of arguments, including these:

� Service name (Amazon Web Services e-Commerce Service)

� Service operation requested (an ItemSearch)

� Author name

� Kind of output requested (for example, books)

� Output sort order

� Developer tag (an Amazon Web Services Access Key Identifier)

290 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 290

All of this information defines your request to the Web service. In most cases,
all you’ll change is one argument when you make another request, such as
getting the second page of results (Amazon returns ten at a time by default).
When you press Enter to go to the Web page, you’ll see XML output for my
books, as shown in Figure 11-1. (The screenshot is purposely modified to
exclude the author’s developer tag.)

The XML isn’t completely readable — at least not in a usable way, but you
can still obtain a lot of information from it. The topmost entries tell you about
the query you made. They include data such as your developer tag, which
you do know, and the total number of results pages, which you don’t know
until you make the call. You can also verify that Amazon sees your browser
correctly by checking the UserAgent argument.

Immediately after the introductory information, you’ll find a series of <Item>
nodes that contain the book information. This information includes

� Amazon Standard Item Number (ASIN)

� Detail page’s URL

� Author list

� Special contributors (such as illustrators)

� Publisher

� Book title

Figure 11-1:
Experiment

with AWS
using a
simple

browser.

291Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 291

Not all this information appears with every book or other product, but you’ll
find most of it. The application you create can display any or all of this informa-
tion. You can combine the output with information from other sources, or use
the URLs provided as part of the output to add more information for the user.
For example, the book images appear as URLs. Amazon normally provides you
with three URLs for three different image sizes, so you can download the image
that works best in your application.

Understanding AWS tasks
The AWS Ribbon interface for this example can actually reflect a workflow
because you’re using it to look for something — much as you would use a
search engine. The part of AWS that this example uses will help the user
locate a book. AWS uses the term operation to reflect a task that you want to
perform with the Web service. The operation that this example performs is an
ItemSearch. You can use the same techniques to locate any product that AWS
supports, which includes a broad range of categories called SearchIndexes.
The following list shows the SearchIndexes that AWS supports:

All Apparel Automotive

Baby Beauty Blended

Books Classical DigitalMusic

DVD Electronics GourmetFood

HealthPersonalCare HomeGarden Industrial

Jewelry Kitchen Magazines

Merchants Miscellaneous Music

MusicalInstruments MusicTracks OfficeProducts

OutdoorLiving PCHardware PetSupplies

Photo Software SportingGoods

Tools Toys VHS

Video VideoGames Wireless

WirelessAccessories

The SearchIndexes you can use vary by country. The previous list shows
the SearchIndexes for the United States. The Web site at

http://docs.amazonwebservices.com/AWSECommerceService/2007-04-04/DG/APPNDX_Searc
hIndexMatricesArticle.html

292 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 292

provides SearchIndexes for other countries. You’ll also find AWS opera-
tions for a number of other tasks, including those shown in the following list:

BrowseNodeLookup ItemLookup

CartAdd ItemSearch

CartClear ListLookup

CartCreate ListSearch

CartGet SellerListingLookup

CartModify SellerListingSearch

CustomerContentLookup SellerLookup

CustomerContentSearch SimilarityLookup

Help TransactionLookup

You can find complete documentation for each of these operations at

http://docs.amazonwebservices.com/AWSECommerceService/2007-04-04/DG/CHAP_Operati
onListAlphabetical.html

Each of these operations exercises a different portion of AWS. For example, if
you want to locate a particular seller, you use the SellerLookup operation.
The operation is the most important part of the request string for AWS, but
you’ll often have to combine it with other arguments. For example, a search
of any kind will always require a SearchIndex value.

All of the AWS operations include optional arguments that you can use to
refine your search. In addition, they all include features that help you obtain
more information. For example, when you perform a search, you can use the
ResponseGroup argument to return more than the default level of information.

Defining the AWS Ribbon interface
The interface for this example is a workflow. A workflow is the right choice in
this case because the example helps the user search for something. Because
you want your searches to provide orderly information, a workflow is the
best interface choice. If you were performing another AWS operation, such
as obtaining reviews about a particular product, you might use a task-based
interface instead. Some operations, such as CartAdd, require a hidden inter-
face because you want the user to concentrate on products, not on the
interface. Figure 11-2 shows the interface for this example.

293Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 293

Notice that this example includes a dialog-box launcher. This feature provides
important functionality for the example — it provides a way for the user to
enter a developer key. You can discover more about this feature in the
“Adding the dialog-box launcher” section of this chapter. Listing 11-1 shows
the XML for this example.

Listing 11-1: Defining the AWS Interface

<tab id=”AmazonTab” label=”Amazon Web Services”>
<group id=”CriteriaGroup” label=”Search Criteria”>

<editBox id=”AuthorName”
label=”Author Name”
getText=”GetAuthorName”
onChange=”ChgAuthorName” />

<editBox id=”Title”
label=”Title”
getText=”GetTitle”
onChange=”ChgTitle” />

<editBox id=”ISBN”
label=”ISBN”
getText=”GetISBN”
onChange=”ChgISBN” />

<dialogBoxLauncher>
<button id=”LaunchDialog”

screentip=”Add Developer Tag”

Figure 11-2:
A workflow

interface
works

well for
searches.

294 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 294

supertip=”Enter the AWS tag.”
onAction=”ShowSearchDetails”/>

</dialogBoxLauncher>
</group>
<group id=”SortGroup” label=”Sort Criterion”>

<splitButton id=”SortBtn” size=”large” >
<button id=”selected”

getLabel=”GetSelLbl”
imageMso=”SortDialog”
onAction=”DefaultSort” />

<menu id=”SortChoice”>
<button id=”relevancerank”

label=”Relevance”
onAction=”SetRelevance” />

... Other Sort Options ...
<button id=”inverse-titlerank”

label=”Alphabetical - Z to A”
onAction=”SetInvAlphabetical” />

</menu>
</splitButton>

</group>
<group id=”SearchGroup” label=”Perform Search”>

<button id=”NewSearch”
label=”New Search”
size=”large”
imageMso=”FindDialog”
onAction=”DoNewSearch” />

<button id=”NextPage”
label=”Next Page”
imageMso=”ViewGoForward”
onAction=”DoNextPage” />

<button id=”PreviousPage”
label=”Previous Page”
imageMso=”ViewGoBack”
onAction=”DoPrevPage” />

<button id=”Refresh”
label=”Refresh”
imageMso=”RecurrenceEdit”
onAction=”DoRefresh” />

</group>
</tab>

The code begins with the Search Criteria group, which contains three
edit boxes used to hold the search values. The user need only enter a search
criterion in one field to make the example work. However, if the user should
request a search without any criteria, the application responds with an empty
display (the expected output for no search criteria), rather than with an error.
The <editBox> elements include both the getText and onChange attrib-
utes. You could rely on just the onChange attribute in this case because the
application doesn’t actually need to output values, but it’s better to provide
both attributes in case you plan to increase the flexibility of the application.
For example, you might choose to add search suggestions at some point.

295Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 295

The code to support the search controls is much like the code for this kind of
entry in the rest of the book. All it does is provide a simple exchange with a
global variable that contains the current search value.

The Sort Criterion group includes a single split-button control that has all of
the sort options that AWS supports for users in the United States. If you
choose to provide international support, you’ll need to populate this control
during runtime and provide only the options that a particular country sup-
ports. If you use this approach, you’ll need to rely on a <dynamicMenu> ele-
ment, instead of the <menu> element shown. You provide the variable XML
for the buttons within the menu as part of the getContent callback. The
code to support the selected button appears in Listing 11-2.

Listing 11-2: Defining the Selected Button Label

‘Callback for selected getLabel
Sub GetSelLbl(control As IRibbonControl, _

ByRef returnedVal)

‘ Set a default sort label.
returnedVal = “Invalid Sort”

‘ Set the sort according to sort type.
Select Case SortType

Case “relevancerank”
returnedVal = “Relevance”

Case “salesrank”
returnedVal = “Sales”

Case “reviewrank”
returnedVal = “Customer Review”

Case “pricerank”
returnedVal = “Price - Low to High”

Case “inverse-pricerank”
returnedVal = “Price - High to Low”

Case “daterank”
returnedVal = “Publication Date”

Case “titlerank”
returnedVal = “Alphabetical - A to Z”

Case “inverse-titlerank”
returnedVal = “Alphabetical - Z to A”

End Select
End Sub

The GetSelLbl() method must always return a value. However, if the
Select Case statement fails to locate a proper match from the default sort
values, then the sort value is invalid. Theoretically, you can avoid letting the
user know about the problem at all by providing a default value when none of

296 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 296

the sort values is accurate. However, given the way that the application cre-
ates the sort value, an invalid value points to other issues in the application;
letting the user know there might be a problem by displaying Invalid Sort
is better than waiting for the application to crash. Each of the individual but-
tons in the menu also includes on onAction callback. Here’s an example of a
typical callback:

‘Callback for relevancerank onAction
Sub SetRelevance(control As IRibbonControl)

‘ Set the sort type.
SortType = “relevancerank”

‘ Invalidate the control.
Rib.InvalidateControl “selected”

End Sub

The code sets the SortType global variable to indicate the kind of sort the
user selected. It then calls Rib.InvalidateControl to update the
selected button, so the selected sort appears on the split button.

The Perform Search group consists of four buttons. The NewSearch button
is larger than the rest because it focuses on the first action the user will
perform. All four buttons have icons associated with them to focus attention
on their use because the user will access them regularly. The code to support
these buttons appears in the “Making a query” section of this chapter.

Not shown in the code is the usual onLoad=”RibbonLoaded” attribute in
the <customUI> element. You’ll always use this entry to provide a way to
save the Ribbon reference and initialize any variables used for the rest of the
example. Listing 11-3 shows the code used to initialize this application.

Listing 11-3: Initializing the Application

‘Callback for customUI.onLoad
Sub RibbonLoaded(ribbon As IRibbonUI)

‘ Save the Ribbon reference.
Set Rib = ribbon

‘ Set the default search values.
Author = “”
Title = “”
ISBN = “”

‘ Set the default sort type.

(continued)

297Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 297

Listing 11-3 (continued)

SortType = “salesrank”

‘ Set the default page number.
PageNumber = 1

‘ Set the total pages.
TotalPages = 1

‘ Determine whether there is a developer tag.
If ActiveWorkbook.CustomDocumentProperties.Count = 0

Then
DevTag = “”

Else
Dim TheseProperties As DocumentProperties
Set TheseProperties =

ActiveWorkbook.CustomDocumentProperties
DevTag = TheseProperties(“DevTag”)

End If
End Sub

The code begins by saving the Ribbon reference in Rib as normal. It also sets
all of the variables as you might expect. The Author, Title, and ISBN vari-
ables contain the search criteria. The SortType variable contains the sort
criterion. The PageNumber and TotalPages variables support the search
pages that AWS returns. You must keep track of the beginning and ending of
the page list to ensure the user doesn’t request a page that doesn’t exist.

The user must also provide a developer tag. Note, however, that this tag
won’t change while using the application, so there’s no point entering it more
than once. Consequently, the application stores the developer tag as a
custom property within the document. Notice how the code checks for the
developer DevTag custom property. This approach only works if you have
one property stored in the document. If you have multiple properties stored
in the document, you must first check for a zero property count, and then
check for the specific property you need.

Adding the dialog-box launcher
The XML for the dialog-box launcher appears in Listing 11-1. The code is the
standard dialog-box launcher setup with the <dialogBoxLauncher> ele-
ment enclosing a button. This particular dialog-box launcher requires only
one value, which makes it unique. You can simplify the code considerably by
using the technique shown in Listing 11-4 instead of creating a form.

298 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 298

Listing 11-4: Defining the Dialog-Box Launcher

‘Callback for LaunchDialog onAction
Sub ShowSearchDetails(control As IRibbonControl)

‘ Get the developer tag.
NewDevTag = _

InputBox(“Provide the AWS Developer Tag”, _
“AWS Tag Input”, DevTag)

‘ Verify the user has entered a value.
If NewDevTag = “” Then

Exit Sub
End If

‘ Add it to the custom properties for the document.
Dim TheseProperties As DocumentProperties
Set TheseProperties = _

ActiveWorkbook.CustomDocumentProperties
TheseProperties.Add Name:=”DevTag”, _

LinkToContent:=False, _
Type:=msoPropertyTypeString, _
Value:=NewDevTag

‘ Save the new tag.
DevTag = NewDevTag

End Sub

Notice that the code relies on an InputBox to request the developer-tag
input. You can use this technique only when the dialog box contains a single
input. Normally, you’ll create a complex dialog box with multiple fields, which
means creating a custom form. Of course, this raises the question of why
you should use a dialog box launcher at all. It’s important to remember that
dialog-box launchers hide advanced features from view. Adding the developer
tag is a required — though advanced — task that you’ll perform only one
time. Using a dialog-box launcher is a legitimate way to make the feature
accessible, yet hide it from view when it’s not in use.

The InputBox doesn’t provide return value when the user clicks Cancel. The
example handles this problem by checking NewDevTag for a value after the
call returns from InputBox. This check also works fine for ensuring the user
doesn’t accidentally click OK without entering a value.

After the code obtains the developer tag, it stores it as a custom document
property. The Add() method requires four inputs as normal:

299Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 299

� The name of the variable

� A Boolean that indicates whether the value is attached to document
content

� The data type of the variable

� The value

Making a query
The four buttons in the Perform Search group all perform essentially the
same task: They request information from AWS. Of course, the difference is
in how they make the request. Each button performs the task differently, as
shown in Listing 11-5.

Listing 11-5: Creating a Request Based on Specific Needs

‘Callback for NewSearch onAction
Sub DoNewSearch(control As IRibbonControl)

‘ Set the page number.
PageNumber = 1

‘ Perform a new search.
FetchAmazonData

End Sub

‘Callback for NextPage onAction
Sub DoNextPage(control As IRibbonControl)

‘ Make sure there are more pages to display.
If PageNumber < TotalPages Then

‘ Set the page number.
PageNumber = PageNumber + 1

‘ Perform a new search.
FetchAmazonData

Else

‘ Tell the user there aren’t any more
‘ pages to display.
MsgBox “Last Page of Data”

End If
End Sub

‘Callback for PreviousPage onAction

300 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 300

Sub DoPrevPage(control As IRibbonControl)

‘ Verify that the page number is greater than 1.
If PageNumber > 1 Then

‘ Set the page number.
PageNumber = PageNumber – 1

‘ Perform a new search.
FetchAmazonData

Else

‘ Tell the user there aren’t any more
‘ pages to display.
MsgBox “First Page of Data”

End If
End Sub

‘Callback for Refresh onAction
Sub DoRefresh(control As IRibbonControl)

‘ Refresh the existing data.
FetchAmazonData

End Sub

All four of the callbacks make a call to the FetchAmazonData() method at
some point. The DoNewSearch() method simply sets the page number to 1
before it makes the call. This button assumes that the user has already
changed all the required criteria. The only requirement is that the search
start at the first page of the results.

The DoNextPage() and DoPrevPage() methods perform similar tasks,
but in opposite directions of the search results. In the first case, the code
verifies that the example isn’t already displaying the last page, while in the
second case it ensures that the example isn’t already displaying the first
page. Making this check reduces the number of unnecessary calls the appli-
cation makes to AWS. Because you have a limit on the calls you can make, it’s
important to keep the unnecessary calls to a minimum.

Sometimes the user will want to refresh the data from a current search. The
DoRefresh() method is the most straightforward because it simply calls
AWS for an update of the data. You may need to throttle this particular con-
trol to ensure that the user doesn’t exceed the AWS limits on the number of
calls you can make in a given timeframe.

Before you can make a call to AWS, you need to add XML support to VBA.
Choose Tools➪References to display the References – VBAProject dialog box
shown in Figure 11-3. Locate the Microsoft XML library and check it. You can
use any version, 5.0 and greater, for this example (the example actually uses
version 6.0, which is the most current at the time of writing). Click OK and
VBA will add the required reference to your project.

301Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 301

The example uses a technique known as REpresentational State Transfer
(REST) to obtain the data it requires from AWS. This technique is simpler for
VBA developers to use than to build the actual XML required to make the
call. In this case, the code builds a URL and simply loads it for local process-
ing. The languages supported by Visual Studio often work better with Simple
Object Access Protocol (SOAP) requests. In this case, the language actually
builds an XML message and receives an XML message in return. SOAP offers
some flexibility that REST doesn’t provide, but it’s more complicated to use.
Listing 11-6 shows the request code for this example.

Listing 11-6: Making an AWS Request

Private Sub FetchAmazonData()
Dim XMLFile As String
Dim XMLData As DOMDocument
Dim CurrentNode As IXMLDOMNode
Dim DataNode As IXMLDOMNode
Dim AttributeNode As IXMLDOMNode
Dim NodeCount As Integer
Dim CellOffset As Integer

‘ Clear the worksheet data.
ActiveWorkbook.ActiveSheet.Cells.Clear

‘ Verify the sort type.
If SortType = “” Then

SortType = “salesrank”
End If

‘ Make sure the user has entered a Developer tag.
If DevTag = “” Then

Figure 11-3:
Make sure

you set a
reference

for XML
support in

VBA.

302 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 302

MsgBox “You Must Provide a Developer Tag” + _
vbCrLf + “Click the Dialog Box “ + _
“Launcher in the Search group” + _
“to Enter Your Developer Tag”, _
vbInformation And vbOKOnly, _
“Developer Tag Needed”

Exit Sub
End If

‘ Create the string.
XMLFile = _

“http://ecs.amazonaws.com/onca/xml?” + _
“Service=AWSECommerceService” + _
“&Operation=ItemSearch” + _
“&SearchIndex=Books” + _
“&Author=” + AuthorName + _
“&Title=” + Title + _
“&Keywords=” + ISBN + _
“&Sort=” + SortType + _
“&ItemPage=” + CStr(PageNumber) + _
“&AWSAccessKeyId=” + DevTag

‘ Load the data.
Set XMLData = New DOMDocument
XMLData.async = False
XMLData.Load XMLFile

‘ Verify the data is good.
If XMLData.ChildNodes(1).ChildNodes(1). _

ChildNodes(0).ChildNodes(0).text = “False” Then

Exit Sub
End If

‘ Save the total number of pages.
TotalPages = _

CInt(XMLData.ChildNodes(1).ChildNodes(1) _
.ChildNodes(2).text)

‘ Display a heading.
Sheet1.Cells(1, 1) = “Arguments”
Sheet1.Cells(3, 1) = “Name”
Sheet1.Cells(3, 2) = “Value”

‘ Get the ProductInfo/Request/Args node
Set CurrentNode = _

XMLData.ChildNodes(1).ChildNodes(0).ChildNodes(2)
For NodeCount = _

0 To CurrentNode.ChildNodes.Length – 1

(continued)

303Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 303

Listing 11-6 (continued)

‘ Display the name. Even if the argument doesn’t
‘ have a value, Amazon always returns the name.
Sheet1.Cells(NodeCount + 4, 1) = _

CurrentNode.ChildNodes(NodeCount). _
Attributes(0).text

‘ Some input won’t have a value.
If CurrentNode.ChildNodes(NodeCount). _

Attributes.Length > 1 Then

Sheet1.Cells(NodeCount + 4, 2) = _
CurrentNode.ChildNodes(NodeCount). _

Attributes(1).text
End If

Next

‘ Display the next heading.
CellOffset = NodeCount + 5
Sheet1.Cells(CellOffset, 1) = “Book Information”
CellOffset = CellOffset + 2
Sheet1.Cells(CellOffset, 1) = “ISBN”
Sheet1.Cells(CellOffset, 2) = “Name”
Sheet1.Cells(CellOffset, 3) = “Publisher”

‘ Get the ProductInfo/Details.
For NodeCount = 3 To _

XMLData.ChildNodes(1).ChildNodes(1). _
ChildNodes.Length – 1

Set CurrentNode = _
XMLData.ChildNodes(1).ChildNodes(1). _

ChildNodes(NodeCount)

‘ Process each of the data nodes.
For Each DataNode In CurrentNode.ChildNodes

If DataNode.nodeName = “ASIN” Then

Sheet1.Cells(CellOffset + _
NodeCount – 2, 1) = _

“‘“ + DataNode.text
End If

If DataNode.nodeName = “ItemAttributes” Then
For Each AttributeNode In _

DataNode.ChildNodes

If AttributeNode.nodeName = “Title” Then

Sheet1.Cells(CellOffset + _

304 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 304

NodeCount – 2, 2) = __
“‘“ + AttributeNode.text

End If

If AttributeNode.nodeName = _
“Manufacturer” Then

Sheet1.Cells(CellOffset + _
NodeCount – 2, 3) = _

“‘“ + AttributeNode.text
End If

Next
End If

Next
Next

End Sub

The code performs a number of pre-request tasks. First it clears the existing
data from the workbook so the user doesn’t see any old data. (You can use
the ActiveWorkbook.ActiveSheet.Cells.Clear() method to accom-
plish this task.)

Just in case the user makes a call without setting a sort criterion, the code
checks SortType next. If the code doesn’t find a SortType, it provides a
default value. The assumption is that the user simply didn’t choose a sort
value. Because the call also requires a developer tag, the code also checks
DevTag — but there isn’t any way to recover from this particular error. The
application displays an error message, telling the user what to do to correct
the problem at this point.

Even though it looks like a simple string, building XMLFile correctly is the
most important task in this method. You must provide the values as shown.
A good way to avoid problems is to put each variable on a separate line, as
shown in the example. Using this approach makes it easier to see errors.

The code performs the actual call to AWS next. The code shows the three
essential steps you always perform in this order:

1. Create a DOMDocument object to hold the XML data.

2. Set the document’s async property to false to ensure that the call is
complete before you begin processing the data.

3. Use the Load() method to obtain the data from the Web service.

At this point, XMLData contains data, even if the call fails. The example
checks the <IsValid> element to determine whether the return data is
valid. If the <IsValid> element contains false, an error has occurred and
you need to make the call again. You can also process the error information
to determine why the call failed.

305Chapter 11: Working with Web Services

17_169940 ch11.qxp 7/13/07 10:33 PM Page 305

VBA isn’t particularly friendly when it comes to processing XML data. The data
appears in levels. You can count these levels by calling AWS using your browser
and then translating the results into something VBA can understand. Every time
you go down one level in the XML data, you must add a ChildNodes collection
to your code. Nodes that appear at the same level are numbered starting at 0.
Consequently, when you see XMLData.ChildNodes(1).ChildNodes(1) in
the code, what you’re really seeing is the <Items> element for the result, which
is the second node under the <ItemSearchResponse> element. The “Seeing
how queries work in a browser” section of this chapter tells you more about
using a browser to see how AWS works.

When the call succeeds, the code saves the contents of the <TotalPages>
element to TotalPages. The code uses this information later to determine
how many pages of data the user can request.

At this point, the code knows that XMLData contains valid information, so it
adds headers for the arguments to the worksheet. It then begins processing
the data in the <Arguments> node of the response. The arguments always
provide a name, but they don’t always provide a value. The value only
appears when the code provides one as part of the XMLFile string. The code
relies on variables to track the current position of the attribute arguments
and obtains the argument name in all cases. It obtains the value only when
one exists.

After the code finishes processing the arguments, it begins with the book
data. The output includes the ISBN, book title, and book publisher. You
can obtain a considerable amount of data about books by adding more
ResponseGroup entries. The example shows a minimal implementation
to simplify the code.

Much of the data appears at different levels in a single <item> element; you’ll
have to exercise care in obtaining the data. For example, the <ASIN> element
(the ISBN) appears directly beneath the <item> element. However, the
<Title> element appears within the <ItemAttributes> element that
appears directly beneath the <item> element, so you need to go down an
additional level.

The data for each book doesn’t appear in any particular order and may not
appear at all for a given book. Consequently, the safest processing technique
is to use a For Each loop, as shown in the example. This technique can also
reduce the chance that a change in AWS will break your code. Making your
code flexible is an essential technique for working with Web services.

306 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 306

307Chapter 11: Working with Web Services

Considering types and uses of private Web services
Private Web services come in an amazing diversity of types. Of course, if you haven’t found one
that fits your work, you can always create a Web service with your Web server. Most development
products, such as Visual Studio, also include project templates for creating Web services. These
are traditional forms of Web service development.

You might think there are limits to private Web services, but you can literally create a Web service
out of most applications by adding the correct interface elements. For example, it’s possible to turn
your old COM+ application into a Web service using a few simple options that are part of the COM+
environment. For details on how to perform this task, see the article at

http://www.devsource.ziffdavis.com/article2/0,1759,1627474,00.
asp

Many applications also let you create a Web service now. For example, you can create a Web ser-
vice using SQL Server. (You can see a movie on creating a Web service with SQL Server at
http://channel9.msdn.com/Showpost.aspx?postid=129656 or an article at
http://msdn2.microsoft.com/en-us/library/ms345123.aspx.) The fact is that
an enterprise application you’re using today probably has the capability to provide a Web service.

The uses of private Web services are as varied as the means to create them. In many cases, the
goal is to share data or to at least provide data to someone, perhaps a third party, but often the
employees of the organization. However, Web services need not always output data. In some cases,
Web services now gather data. Agents on client machines output data to a Web service in order
to help the organization function better.

Most of your users won’t understand Web services and don’t care to know about them. As men-
tioned many times in this book, most users care about the task they have to perform and not the tool
used to do it. Consequently, the better you integrate your Web service into the Ribbon, the less the user
will notice it. For example, if you’re using a central document repository, you can simply make using it
part of the Save As command for the Office product. Users need never know that the document is
whisked away to a server somewhere or that the server is feeding the document back to them
when they open it.

17_169940 ch11.qxp 7/13/07 10:33 PM Page 307

308 Part III: Creating New RibbonX Applications

17_169940 ch11.qxp 7/13/07 10:33 PM Page 308

Part IV
Converting

Existing Toolbars
and Macros

18_169940 pt04.qxp 7/13/07 10:33 PM Page 309

In this part...

Those guys from Microsoft are such comedians! They
think you’re just going to drop your current invest-

ment (and all the hard work done) in Office applications
to create all new RibbonX applications. The reality is that
you’ve worked very hard to create your current applica-
tion suite and no one is going to convince you to give it
up. Then again, you do want to use the Ribbon. This part
helps you keep your investment in application code and
still use the Ribbon to reduce support costs.

You’ll use two of the chapters in this part, depending
on which environment you plan to use to support the
Ribbon. Everyone needs Chapter 12 because it shows
what to do with those pesky menus and toolbars in your
old application. Chapter 13 is for VBA developers. It
demonstrates how you can make your current applica-
tions live with the Ribbon and even thrive in this environ-
ment. Chapter 14 describes how to update add-ins that
you create using a Visual Studio language such as C# or
VB.NET. This chapter also describes some of the issues
you need to consider when updating your VBA applica-
tions to work in VB.NET.

18_169940 pt04.qxp 7/13/07 10:33 PM Page 310

Chapter 12

Simple Fixes for Older Menus
and Toolbars

In This Chapter
� Helping users learn the new Ribbon interface

� Designing forms that ease the transition from menus and toolbars

� Using the Menu control to re-create the interface

� Making the best use of existing Office features

� Defining and storing simple interface changes for later use

Most companies can’t simply step into the new Ribbon interface and
expect things to run smoothly. Users are going to whine about the

change, complain about the hassle of learning a new interface, and tell you
how inadequate the new interface is in meeting their needs. Anyone who
uses the older versions of Office regularly is going to dislike the new interface
because it’s different and forces them to work in another way. Okay, migra-
tion won’t be a picnic; it rarely is. (Let’s just say you should stock up on your
favorite antacid.) However, you don’t have to take the changes lying down —
you can do things that not only make your life significantly easier but also
ease the transition for your users.

This chapter may not meet everyone’s needs, but you’ll be amazed at how many
needs it can meet. Using the simple fixes in this chapter can probably help you
meet most of your transition needs, leaving a few hard nuts to crack later. In
fact, in some cases, the solutions in this chapter could provide everything you
need if you combine them effectively with the proper training and policies.

Training Users for the New Paradigm
At some point, you’re going to need to train users to use the new Ribbon
interface. Unless you can create a completely customized experience, the
user will have to make the changes required to use the new product. As

19_169940 ch12.qxp 7/13/07 10:34 PM Page 311

you may have noticed, creating custom solutions won’t reduce the need to
provide training. You can reduce the amount of training needed by creating a
well-designed application, but you can’t eliminate that need completely. This
fix may not seem all that simple, but there’s a way to simplify things. Here are
some methods you can use to fix the problem of moving to the new Ribbon:

� Provide workflow applications that direct user activity.

� Add task-based application additions for users who need to perform spe-
cific tasks.

� Use dialog-box launchers combined with forms to help advanced users
make the transition.

� Reduce complexity by hiding Ribbon elements that the user doesn’t
require.

� Use third party add-ins that mimic the menu-and-toolbar interface.

� Use third party add-ins that help you organize the Ribbon features in a
manner that reflects user usage patterns.

� Move new users to the Ribbon first, and then the advanced users, since the
new user will have less experience with the menu-and-toolbar interface.

� Provide incentives for using the new Ribbon interface.

312 Part IV: Converting Existing Toolbars and Macros

Easing the transition with RibbonCustomizer
Even though Microsoft’s goal in creating the
Ribbon is to reduce user confusion while
making support easier, you don’t have to stick
with the Ribbon in its current form. Of course,
you can write custom solutions as described in
this book, but a custom solution is only the
beginning. You might have power users who
agree that the new Ribbon is essentially a good
thing, but disagree with the layout. In this case,
you can purchase a product that makes it rela-
tively easy to modify the Ribbon, but still stay
within the original intent of the Ribbon. The
RibbonCustomizer (http://pschmid.net/
office2007/ribboncustomizer/
index.php) lets the power user move items

around on the Ribbon, including items from the
Add-Ins tab.

Using the RibbonCustomizer, you can reduce
the learning curve for the Ribbon, provide some
semblance of functionality for moderately com-
plex applications without reprogramming them,
and provide power users with the flexibility they
crave. The important consideration is that the
RibbonCustomizer works with the Ribbon and
assumes the user will eventually learn to inter-
act with it. You can learn more about the
RibbonCustomizer in the “Working with the
RibbonCustomizer” section of Chapter 16.

19_169940 ch12.qxp 7/13/07 10:34 PM Page 312

All these methods can help you ease the user’s transition to the new Ribbon,
but they can’t completely negate the need to train the user. Even though
there are many interesting ways to overcome Ribbon issues right now (and
you’ll find more of them as time goes on), the add-in vendors can only do so
much. The Ribbon is here to stay, so you need to create a training plan today,
rather than wait until the need to move to the Ribbon is dire. (The need will
become dire when Microsoft drops support for Office 2003 and you can’t
protect your network from Office-based viruses any longer. According to a
number of sources, mainstream Office 2003 support ends in January 2009
with extended support to January 2014.)

Substituting Forms for
Menus and Toolbars

A number of the examples in this book have used the dialog-box launcher as
a means for garnering additional information. When a user is used to seeing
custom options on a toolbar or menu, you can help reduce the pain of
moving to the Ribbon by placing these elements on a form instead. The user
can then launch the form and choose options with something approaching
the normal technique. In fact, Microsoft already uses this technique in a
number of cases. For example, look at the Styles group on the Home tab
of Word. When you click the dialog-box launcher in this group, you see the
Styles window shown in Figure 12-1.

Sometimes, however, it’s not convenient to use a pure RibbonX solution to
the problem. For example, you might want to maintain only a DOT file and not
have to worry about working with a DOTX file as well. In this case, you can
create a form that contains the toolbar buttons and/or the menu entries. Add
the form to the DOT file just as you normally would. Now you can add an
AutoOpen macro that checks the version of Word that the user is opening.
Here’s an example of the code you need:

Sub AutoOpen()
‘ Load the required forms when using the Ribbon.
If Application.Version = “12.0” Then

Dim DlgIcons As Icons
Set DlgIcons = New Icons
DlgIcons.Show False

End If
End Sub

The original toolbar for this example looks like the one shown in Figure 12-2.
The new form appears in Figure 12-3. Even though they aren’t precisely the
same, the two are close enough that a user can employ them without making
any changes to their usual procedures.

313Chapter 12: Simple Fixes for Older Menus and Toolbars

19_169940 ch12.qxp 7/13/07 10:34 PM Page 313

Figure 12-3:
Users can

still use the
form version

of the
toolbar
without

extensive
training.

Figure 12-2:
It’s easy to

view a
toolbar as

simply a
series of
buttons.

Figure 12-1:
Use forms to

mimic the
elements
found in

older
versions of

Office.

314 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 314

Obviously, you can’t dock the new toolbar. It has to remain standalone, but
most users won’t find this new arrangement problematic. In fact, many appli-
cations use the toolbars in standalone mode. The biggest benefit of this
approach is that you can usually use your existing code without any change.
All you need to do is create the same connection between the buttons on the
form that you did for the toolbar. In this case, the Tip button uses simple
code such as this for connectivity purposes:

Private Sub cmdTip_Click()
‘ Create a tip icon.
Tip.MAIN

End Sub

It’s also important to note that the code doesn’t show the form as a modal
form. In order to make the toolbar truly useful, you must set modality to
False using DlgIcons.Show False. Otherwise the Office application
simply continues to beep until you close the dialog box.

Be sure to set the TakeFocusOnClick property for each of the buttons to
False. The user expects that clicking a button will simply change an Office
feature. Although nothing bad will happen if you don’t set this property cor-
rectly, the user quickly becomes annoyed with having to click within the docu-
ment to restore the focus. In addition, you may find that some macros don’t
work as anticipated when the focus is set incorrectly.

When you know the basic technique, it’s easy to add other kinds of standard
toolbar features to a form. For example, many toolbars simply provide access
to styles in an organized way. You can implement this feature using a form
and the appropriate buttons as before. The connectivity code looks like this:

Private Sub cmdChapNum_Click()
‘ Set the proper style.
ActiveWindow.Selection.Style = “Chap #”

End Sub

By using this approach, you set the style for whatever the user has selected.
If the user hasn’t selected anything, then the style naturally affects whatever
it was designed to format. For example, a paragraph style will affect the para-
graph where the insertion pointer currently resides.

Some toolbar buttons are going to rely on graphics. The easiest way to obtain
the icon is to use these steps:

1. Right-click the toolbar and choose Customize from the context menu.

You see the Customize dialog box, shown in Figure 12-4.

2. Select the template you want to use in the Save In field.

The toolbar you want to work with appears on-screen.

315Chapter 12: Simple Fixes for Older Menus and Toolbars

19_169940 ch12.qxp 7/13/07 10:34 PM Page 315

3. Right-click the toolbar button containing the image you want to use
and choose Copy Button Image.

Office places the image on the Clipboard.

4. Paste the image into your favorite graphics editor.

5. Save the image as a BMP or other file that VBA supports.

6. Click Close in the Customize dialog box.

Office closes the Customize dialog box and returns the display to normal.

You can also use applications such as Resource Hacker (http://www.
angusj.com/resourcehacker/) to obtain images directly from the Office
DLLs and EXEs. Unfortunately, the images don’t appear in a single DLL or
EXE. For example, you’ll find many of them in the \Program Files\Common
Files\microsoft shared\OFFICE12 folder in files such as MSO.DLL and
MSOIcons.EXE.

After you obtain the required image, you can add it to the button on the form
by clicking the ellipses in the Picture property for that control. To make the
picture appear to the left of the text (where it normally appears in the tool-
bar), choose the option labeled 1 - frmPicturePositionLeftCenter in
the PicturePosition property for the control.

Even though this solution works very well, some users are going to insist on
customizing the setup. Obviously, you’ll need to implement your own code
for context menus and customization, which isn’t a small undertaking.
Fortunately, some third-party solutions exist for the context menu part of the
solution. For example, you’ll find an excellent third-party solution at

http://word.mvps.org/FAQS/Userforms/AddRightClickMenu.htm

Figure 12-4:
Use the

Customize
dialog box

to select the
template

you want to
work with.

316 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 316

317Chapter 12: Simple Fixes for Older Menus and Toolbars

Using third-party tools to regain functionality
You’ll find a number of add-in products online
that mimic the Office 2003 menus in various
ways. The ToolbarToggle add-in from Architects
Labs (http://www.toolbartoggle.
com/) provides an alternative to the Ribbon for
Word and Excel (it isn’t available for any other

Office 2007 product as of this writing). If you
hide the Ribbon, you almost feel as if you’re
working with Office 2003, as shown here (note
that this is the product running under Vista; the
Windows XP view is slightly different).

Of course, you have to hide the Ribbon because
it still exists and you won’t get rid of it. The
ToolbarToggle application actually appears
below the Ribbon as a new entry. That’s why it
can perform the tasks it does. You can fully cus-
tomize the menu, just as you do in Office 2003.
At the time of this writing, however, it doesn’t
appear to work with macros that modify
the toolbar. For example, if your application
depends on a custom toolbar, you’ll have to re-
create it in ToggleToolbar. The point is that you
can re-create the toolbar. Simply right-click in
the toolbar area and choose Customize from the
context menu as you normally would.

ToolbarToggle also provides you with the
Standard and Formatting toolbars. If you want
other standard toolbars, you have to create them
yourself. For example, you won’t find the
Reviewing toolbar provided as a default feature,
even though this feature comes with Office 2003.

Even though the menus are very close to the
Office 2003 version and the toolbars are a nice

feature, you’ll find that the keyboard accelera-
tors don’t work the same as before. For exam-
ple, Alt+F displays the Office Menu, not the File
menu (as you might normally expect).

I checked out ToolbarToggle on several machines;
it’s apparent that it works flawlessly under
Windows XP. However, older versions of the soft-
ware are very buggy under Vista. Make sure
you have the latest version of the software
(version 2.0.0.8 or higher) before you attempt
an installation under Vista. You have to run the
target application as an administrator the first
time, which means opening the \Program
Files\Microsoft Office\Office12
folder, right clicking the application, and choosing
Run As Administrator from the context menu. You
must have the User Account Control (UAC) fea-
ture enabled for this product to work. I also
noticed a definite performance penalty under
Vista that I didn’t see under Windows XP. The
vendor is working to remedy these remaining
issues. The vendor’s technical support was nearly
relentless in helping me solve product issues.

19_169940 ch12.qxp 7/13/07 10:34 PM Page 317

You can also see example code for this task at

http://www.vbforums.com/showthread.php?t=402050

With a right-click menu in place, you can create an environment where the
user will see very little change to a custom application due to the Ribbon. For
example, you can use the context menu to dynamically add and remove but-
tons from the toolbars.

Depending on the complexity of your application and how closely you plan to
mimic the menu-and-toolbar system, using the approach outlined in this sec-
tion can require very little time. Using simple forms, it can require as little as
half a day to completely convert an application that contains four or five tool-
bars, including testing time for each of the buttons.

Relying on the Menu Control
The Menu control can be a best friend when you’re working with RibbonX
conversions. Using this control lets you create an equivalent of the menus
that your custom applications used in the past. What you’ll see is a menu
setup similar to the one shown in Figure 12-5.

You can layer the number of levels as deeply as needed. The menus can con-
tain options, so users can check features, separators, and buttons that act as

Figure 12-5:
Create

menus to
mimic the

menus you
used in

previous
versions of

Office.

318 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 318

menu selections. In short, you can obtain all the functionality normally asso-
ciated with a menu in previous versions of Office. Listing 12-1 shows the code
used to create the display in Figure 12-5.

Listing 12-1: Using a Menu Control to Create an Older Office Setup

<ribbon>
<tabs>

<tab id=”MenuTab” label=”Menu Example”>
<group id=”MenuGroup” label=”Menu Group”>

<menu id=”ExMenu”
label=”My Menu”
size=”large”>

<button id=”Entry1” label=”Entry 1” />
<button id=”Entry2” label=”Entry 2” />
<button id=”Entry3” label=”Entry 3” />
<menuSeparator id=”Sep1” />
<checkBox id=”cbOption”

label=”Menu Option” />
<menuSeparator id=”Sep2” />
<menu id=”SubMenu” label=”Submenu”>

<button id=”Entry4”
label=”Entry 4” />

<button id=”Entry5”
label=”Entry 5” />

<menu id=”SubSubMenu”
label=”Sub-Submenu”>

<button id=”Entry6”
label=”Entry 6” />

<button id=”Entry7”
label=”Entry 7” />

</menu>
</menu>

</menu>
</group>

</tab>
</tabs>

</ribbon>

When using this kind of setup, you create the menu structure first and ensure
that it looks the same as the menu setup used in your Office application.
Once you have the setup correct, you can begin adding callbacks to make
the menu entries active. The Menu control works just like any other RibbonX
feature. The main difference is that it looks like the old menu system to a
user. Although you won’t normally use this kind of setup when working with
the Ribbon (because it doesn’t follow the new workflow methodology), you
can add menus to help ease the transition to the Ribbon.

319Chapter 12: Simple Fixes for Older Menus and Toolbars

19_169940 ch12.qxp 7/13/07 10:34 PM Page 319

Using Existing Office Features
Besides using forms and the Menu control to mimic Office features, you can
choose to move components of your application to Office features that exist
in all newer versions of Office. The following sections describe two common
Office features you can use to your benefit in moving applications from
earlier versions of Office to the new Ribbon interface.

320 Part IV: Converting Existing Toolbars and Macros

The Menu control in action
Sometimes users will definitely want the appear-
ance of the old menu-and-toolbar system when
they’re working with Office 2007. You can’t pro-
vide a complete lookalike, but you can improve
the appearance of the Ribbon to look more like
Office 2003 using some third-party products such
as Classic Menu for Office 2007 by Addintools
(http://www.addintools.com/

english/menuoffice/). When you initially
install the application, it displays a dialog box that
lets you choose how the menu appears. In addi-
tion, you can choose which applications (Excel,
Word, and PowerPoint) use the add-in. This add-
in provides a Ribbon tab that looks similar to the
Office 2003 menu, as shown here.

Classic Menu relies on the Menu control
described in the “Relying on the Menu Control”
section of this chapter to perform its job. In fact,
this add-in is probably the best example of the
complete Menu control solution for Office 2003.
However, you’ll find a few differences between
Office 2003 and this add-in. For one thing, some
of the accelerator keys don’t work as expected.
Pressing Alt+F still displays the Office Menu,
in place of the File menu. You’ll also notice some

differences in nomenclature, such as the
Header_Footer command on the View menu
(it should appear as the Header & Footer
command). A final issue is that you can’t change
the Classic Menu settings unless you also include
a product such as RibbonCustomizer (see the
“Easing the Transition with RibbonCustomizer”
sidebar of this chapter for details). Even so, an
experienced user can get up and running quite
quickly with this add-in.

19_169940 ch12.qxp 7/13/07 10:34 PM Page 320

321Chapter 12: Simple Fixes for Older Menus and Toolbars

Using menu bars in Access to regain
menus and toolbars

Access offers a number of features not found in
the other Office products. For example, you can
choose not to load any Ribbon at all. To remove

the Ribbon, choose Office Menu➪Access
Options. Select the Current Database folder and
clear the Ribbon Name field entry, as shown here.

At this point, you must close and reopen the
database to see the change. Access opens
without any special Ribbon features, though it
does load default Ribbon features and the Office
Menu as it would normally.

It’s also possible to display your custom menu
bar in Access. To use this feature, you must
open the Access database as an MDB file, not
as an ACCDB file. In this case, the Current
Database folder changes, as shown here.

Select the name of the toolbar you want to use,
clear the Allow Built-in Toolbars option, and close

and reopen the database. You’ll see your custom
menu in place of the Ribbon, as shown here.

Unfortunately, Access is the only Office product
to provide this feature. Consequently, in many
respects, Access can provide the easiest move

for organizations willing to use the older MDB
file format and do without any Ribbon function-
ality at all.

19_169940 ch12.qxp 7/13/07 10:34 PM Page 321

Relying on context menus
The most reliable of the standard Office features is the context menu because
it appears in all versions of Office since the earliest versions. You can create
complex menu structures using context menus; you can focus the controls on
specific document elements. The user is less likely to make errors when you
use this approach. Of course, the downside to using a context menu is that the
user must know to right-click in order to use it. Listing 12-2 shows how to add
a context menu entry to an Excel workbook. This technique works with any
type of Excel workbook, including the new XML formats used by Office 2007.

Listing 12-2: Defining a Context Menu Entry in Excel

Private Sub Workbook_Open()

‘ Create a new context menu element.
Dim NewControl As CommandBarControl

‘ Delete any existing copies of the control.
For Each NewControl In _

Application.CommandBars(“Cell”).Controls

If NewControl.Caption = “Insert Date” Then
NewControl.Delete

End If
Next

‘ Create a new control.
Set NewControl = _

Application.CommandBars(“Cell”). _
Controls.Add(Temporary:=True)

‘ Configure the control for use.
NewControl.Caption = “Insert Date”
NewControl.OnAction = “RibbonX.InsertDate”
NewControl.BeginGroup = True

End Sub

The code begins by defining a new context menu entry, which is of type
CommandBarControl. The code then searches for an existing entry with the
required Caption. You must perform this search or the Office application
could end up with multiple copies of the same context menu entry.

After the code checks to make sure no context menu entry exists, it creates
a new entry, using the Controls.Add(Temporary:=True) method. The
entry isn’t configured at this point. The code performs that task next by
assigning the control a Caption (which is an OnAction event) and telling
Excel that this context menu entry begins a new group. Every time the user
right-clicks a cell, the new context menu entry appears. When the user
selects this item, the code calls on the InsertDate() Sub shown here:

322 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 322

Public Sub InsertDate()
‘ Insert the date.
ActiveWindow.ActiveCell = DateTime.Now

End Sub

Although this is a very simple example, it works well with context menu
entries of any complexity. You can use this technique to ensure that your
application will work in any of the Office environments, but it does require
some additional action on the part of the user, which isn’t always ideal.

Relying on task panes
Task panes can access situations in which the user must perform complex
actions. As with context menus, task panes work equally well in newer ver-
sions of Office. However, you’ll find that you lose some compatibility with
older versions of Office, such as Office 2000 and Office 97. Despite vigorous
efforts by Microsoft, some companies still have copies of these older versions
of Office hanging around; a task-pane solution won’t work in such a situation.

A complete discussion of how to create a custom task pane is outside the
scope of this book. You can find a good article on how to create a custom
task pane using Visual Studio at

http://msdn2.microsoft.com/en-us/library/aa722570.aspx

If you’re using VBA, it won’t let you create a task pane. Another article, how-
ever, provides a great discussion of moving your user-form solutions to a task
pane. You can find it at

http://msdn2.microsoft.com/en-us/library/aa830702.aspx

Performing Simple Interface
Changes and Storing Them

It’s important not to disregard some simple changes you can make to the
interface that Office supports directly. Microsoft has provided methods that
let the user perform limited changes to the Office interface setup. Although
these changes might seem meager at first, using them carefully can make an
intimidating Ribbon friendlier. The following sections describe the changes a
user can make to the interface that can help ease the Ribbon pain.

323Chapter 12: Simple Fixes for Older Menus and Toolbars

19_169940 ch12.qxp 7/13/07 10:34 PM Page 323

Customizing the Quick Access Toolbar
Clicking between tabs on the Ribbon can quickly become frustrating and
time-consuming, especially if you use certain commands often. The Quick
Access Toolbar (QAT) answers the need to access a feature quickly. You use
it to hold items that you rely on to perform tasks often (such as the Copy,
Cut, and Paste commands). You can add either full groups or individual
commands to the QAT as needed. Simply right-click the element you want
to add and choose Add to Quick Access Toolbar from the context menu.
The element you right-clicked appears on the QAT immediately.

Sometimes you want to customize a little more than the context menu allows.
In this case, you can right-click anywhere on the Ribbon or QAT and choose
Customize Quick Access Toolbar from the context menu. You’ll see the
Customize folder of the Office application’s Options dialog box. Figure 12-6
shows the Word Options dialog box.

At this point, you can find any command and place it on the QAT by clicking
Add. If you want to add separators between commands, simply locate the
<Separator> entry and click Add. When you decide that you no longer
want a command on the QAT, highlight its entry and choose Remove. Click
Customize when you want to further customize access by using keyboard
shortcuts. If you find that the QAT has become too full, you can always dis-
play it below the Ribbon and gain some extra space.

Figure 12-6:
Customize

the QAT
to meet
specific

needs.

324 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 324

Modifying the Quick Style Set in Word
and storing it in the template
The Styles gallery on the Home tab always displays style selections in the
order that Microsoft thinks you want to use them. Unfortunately, Microsoft
guesses wrong most of the time. Customizing the Styles gallery can save you
significant time by making the styles you use most often instantly accessible.

To remove a current style from the list (you have to get rid of all of those
entries you’ll never use), right-click its entry and choose Remove from Quick
Style Gallery from the context menu. Office will remove the entry and move
all the other entries up.

To add an entry to the gallery, you must click the dialog-box launcher in the
Styles group to display the Styles dialog box. When you see a style you want
to add to the gallery, click the down arrow at the right side of the entry and
choose Add to Quick Style Gallery from the context menu.

Office always adds entries to the Quick Style Gallery in the order you choose
them. You can’t reorder the entries once you add them; be sure to choose
entries in the order you want them to have when they appear in the gallery.

You may decide you want to have several different setups to meet different
needs. Office lets you create Quick Style Sets — files that contain the galleries
you want to use. To save a Quick Style Set, follow these steps:

1. Click the down arrow on the Change Styles button.

2. Choose the Style Set➪Save as Quick Style Set command.

3. In the dialog box that appears, enter the name of the set you want to
create and then click Save.

When you want to change the styles, you simply select the style name from
the list that Office provides on the Change Styles menu.

325Chapter 12: Simple Fixes for Older Menus and Toolbars

19_169940 ch12.qxp 7/13/07 10:34 PM Page 325

326 Part IV: Converting Existing Toolbars and Macros

19_169940 ch12.qxp 7/13/07 10:34 PM Page 326

Chapter 13

Conversion Techniques
for VBA Users

In This Chapter
� Understanding the conversion issues

� Deciding how to perform the conversion

� Creating a list of RibbonX solutions

� Defining required RibbonX changes for Word, Excel, and PowerPoint

� Defining required RibbonX changes for Access

� Defining required RibbonX changes for Outlook

� Working with parallel version solutions

Creating a new solution for RibbonX is easy enough once you understand
the techniques. The examples in Chapters 6 through 11 explore many of

the methods you can use to create great workflow applications that serve the
user better, reduce support costs, and still don’t cost you a lot of time to put
together. All of these solutions are fine, but they don’t consider the thousands
of lines of code that you already have and the time you’ve invested in them.

In some cases, you’re going to have to make the code you have now perform
the required tasks despite what Microsoft would have you do with RibbonX.
You can’t simply throw that old code away. Chapter 12 begins exploring the
issues of moving from older versions of Office to Office 2007. The generic
techniques in that chapter are going to prove very useful to you. This chap-
ter moves on to more detailed solutions that focus specifically on VBA.

One of the issues that you’ll need to overcome is that VBA is outdated or
inadequate for use with the Ribbon. You’ve seen too many examples of just
how well VBA can work in this book to decide that VBA no longer fulfills its
role as an easy-to-use solution. However, Microsoft is starting to work pretty
hard at convincing people that they must move to Visual Studio in order to
obtain the functionality they need for the Ribbon, and that simply isn’t true.
You can move your existing VBA applications to the Ribbon, and you can
make them work in a dual Office environment where the same template serves
both the menu-and-toolbar system and the Ribbon at the same time.

20_169940 ch13.qxp 7/13/07 10:35 PM Page 327

Defining the Issues behind
VBA Conversion

Before you can begin the VBA conversion, you need to consider the essential
issues behind the conversion. By knowing what will and will not convert
easily, you can make a better decision about whether a conversion is worth-
while. It’s actually easy to convert many existing templates if you followed
good practices in putting them together initially.

You begin by dividing your code into functional areas. Business logic will
work no matter which version of Office you use. Consequently, if you kept
your business logic separate from everything else when working with Office
2003 and older versions of Office, you should already have a great start on
the conversion process.

Most forms will convert quite easily and some won’t need any changes at all.
To determine whether a form will work, open the UserForm in the Visual
Basic Editor and choose Run➪Sub/UserForm from the Visual Basic Editor
menu. Office will display the form for you so you can test it. Test each of the
buttons on the form to make sure they work in both Office 2003 (or older)
and Office 2007.

Menus and toolbars won’t convert to the Ribbon. The “Substituting Forms for
Menus and Toolbars” section of Chapter 12 shows one method of working
through the problems of toolbars. You can simply replace the toolbar with a
form and provide connections with VBA code. The code you must write is
short, but you have to provide one button for each button that originally
appeared on the toolbar. You can replace menus with the Menu control on
the Ribbon if desired.

User interface code, anything that works with a CommandBar, is likely to
cause problems. When possible, convert the code into a physical alternative
using a form. For example, if your code creates a special toolbar that the user
sees only when performing certain tasks, use a form for the purpose instead.
You can still choose to show or hide the form, just as you would with the
toolbar, but now the solution will work with all versions of Office.

The big issue for conversions is that you can’t use the new extended versions
of Office documents. You’ll still need to maintain the DOT file, rather than
move to a DOTX file. Even though Microsoft provides a special add-in for
Office 2003 that lets you read DOTX files, you’ll find that the support is for the
data only, not for new features that you use. This limitation makes sense
when you consider that Office 2003 isn’t designed to understand the Ribbon.
Of course, using just DOT files does limit you in some respects and means
that you won’t get all of the benefits of working with the new file formats.

328 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 328

All kinds of issues come into play when you perform conversions. If you’re in
a government agency, you might have a requirement to produce documents
that rely on XML to ensure future readability, which means that a conversion
won’t work in most cases.

Your company may have a good reason to use the new document formats. If
so, you’ll have to consider whether you can still use your existing business
logic and forms in one of the extended document formats. If necessary, export
the code first, create the new document, and then import the code. To export
your code, right-click the module in the Project window of the Visual Basic
Editor and choose Export File from the context menu. You’ll see an Export
File dialog box like the one shown in Figure 13-1.

Choose a location to store the code and click Save. The process is similar for
importing the file later. Right-click anywhere in the Project window and
choose Import File from the context menu. Locate the file that contains the
code you want to use and then click Open in the Import File dialog box. Some
people are advocating a switch to add-ins when you must update, and you
might find that making a break to Visual Studio is your best option (although
you should consider this approach under extreme conditions only).

Creating a Conversion Strategy
At some point, you’ll have a list of problem code and problem features —
including (at minimum) menus, toolbars, and user-interface code. You’ll need
a strategy for converting these items into something the Ribbon can under-
stand. The technique you use depends on many factors, including these:

� Multiple-version compatibility

� User training level

Figure 13-1:
Export your

code as
necessary

for use in
new files.

329Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 329

� Time limitations for conversion

� Conversion budget

� Need for new file-format support

� Reasons for updating to Office 2007

� Implementation details of existing code

The reason these criteria are so important is that they define how you con-
vert an existing application. For example, a UserForm works fine in a multi-
version environment where you maintain the existing Office 2003 file format,
but it might not work as well when you must use the extended file formats.
Although a complete conversion to the Ribbon is probably optimal, it’s not
the best solution when you have time constraints or when the user training
level is mediocre. The following sections describe more issues you should
consider as part of your conversion strategy.

Using forms
This chapter has already discussed using forms, but it’s important to under-
stand that this is probably the best strategy for many situations. If your tool-
bars are simply providing quick access to styles, then using a form that
replicates the toolbar is extremely fast and requires no user retraining at all.
This strategy also works great when you simply call a macro that has no user-
interface code in it. Code that changes document content, works with exter-
nal sources, and implements all your business logic will work just fine in
Office 2007, so using that existing code makes sense.

Using existing menus and toolbars
Many people are going to tell you that the Add-Ins tab is completely inade-
quate for updates to the Ribbon. However, the Add-Ins tab is only inadequate
for complex setups. If your application consists of a single toolbar or menu
(or even two or three), the user probably won’t notice the difference after a
very short time. All you really need to do is train the user to go to the Add-Ins
tab instead of working directly with the toolbar or menu. The only time you
need to use a more comprehensive system is when your application contains
many toolbars or menus, or it relies on the CommandBar object.

Of course, you have to consider the tradeoffs of using the Add-Ins toolbar. If you
have a hundred or so users to support and they all have trouble turning their
system on in the morning, you’re probably better off exploring any solution

330 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 330

other than using the Add-Ins tab. All the support calls needed to work each
user through the Add-Ins tab individually (several times, no less) will proba-
bly cost a lot more than simply converting the code to some other form.

Before you go to a lot of trouble, however, make sure you check the third-party
solutions discussed in Chapters 12 and 16. These solutions can help you over-
come many of the obstacles of working with the Ribbon. They can cost quite
a bit, but they’ll definitely cost a lot less than retraining all those users and
may cost less than performing a conversion. You have to consider how the
third-party solution is going to fit in with your application and whether it pro-
vides enough functionality to keep support costs to a minimum.

Designing toolbars and menus,
rather than creating them
At least some of the incompatibilities between Office 2007 and older versions
of Office are due to developers creating menus and toolbars programmati-
cally, rather than defining them statically. Using the programmed menus and
toolbars means the menu and toolbar entries won’t appear on the Add-Ins
tab, which means that even if you have a third-party support solution avail-
able, it won’t work. Whenever possible, consider converting the code that
creates the menus and toolbars to a static solution during runtime. Better
yet, because you have to perform this conversion anyway, use forms when
you need to support a dual-interface environment.

If you’re performing a complete conversion to Office 2007, but want to main-
tain some of the functionality of the existing application, try to create a sepa-
rate tab for all the menu items and each major toolbar. Place the tabs in the
order in which you expect the user to need them. Obviously, this solution
runs contrary to creating a task-based or workflow-oriented solution (the
forte of the Ribbon interface), but it could reduce training costs by giving
users something close to what they’re used to seeing. The examples in this
book show how to create a lot of tabs. You’ll also find a discussion of the
Menu control in the “Relying on the Menu Control” section of Chapter 12.

Using the Quick Access Toolbar (QAT)
By far, the fastest conversion technique is to place items from the Add-Ins tab
on the QAT. The “Customizing the Quick Access Toolbar” section of Chapter
12 tells you how to use this approach to performing a conversion. If you per-
form the task correctly, the user sees each major group on the Add-Ins tab as

331Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 331

an entry on the QAT, making the features accessible no matter what else the
user is doing.

Unfortunately, in many cases the QAT isn’t a good conversion solution. The
first reason is that the user doesn’t obtain any significant cues from the QAT
while puzzling out the purpose of an entry (as shown in Figure 13-2). All the
user gets for a cue, in this case, is Custom Toolbars — hardly an effective way
to help the user find a particular application feature. The user would need to
know that all of the toolbars from the old application appear in this one area.
Of course, less skilled users will take a lot longer to adjust (making third-
party solutions and the forms approach seem a lot better).

The second problem with the QAT is that it tends to show only part of long
toolbars, as shown in Figure 13-3. The problem, in this case, is that you have
to scroll back and forth to find anything (notice the right-pointing arrow
button at the right in the screenshot). It’s an annoying way to work and
wastes plenty of user time. When you multiply the wasted user time by all the
users of an application, it’s easy to see why the developer should take the
plunge and come up with a better solution.

Figure 13-3:
Scrolling
back and

forth to
locate a

toolbar or
menu feature

isn’t very
efficient.

Figure 13-2:
The QAT can

work as a
conversion

solution, but
only if you

know where
to look.

332 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 332

Even with its limitations, however, placing the Add-Ins tab entries on the QAT
does make them more accessible, which is useful. At least you can find what
you need without having to select the correct tab, too. No matter where you
are, you can find the entries, and each group appears as a separate entry,
rather than as part of a very long Ribbon on a tab. For example, imagine
trying to locate menu commands when the toolbars already require that you
scroll through three screens’ worth of Ribbon. Placing the menu commands
on the QAT gives you single-click access to the group.

Developing a List of RibbonX Changes
At some point, you’ll have considered the issues involved in converting your
VBA application and will have created a strategy for performing the task. In
some cases, you’ll use multiple strategies, one to solve each of the issues
you’ve identified. Although (for example) using the QAT may work for some
special menu items you’ve added, it won’t work for the toolbars because the
toolbars are too long. The point is that you know what you’re going to do to
overcome each issue.

Now it’s time to create a list of the needed changes. The point of this exercise
is to ensure that you make all the changes and don’t miss anything. Your list
of RibbonX changes should consider these elements (in the order shown):

� Menus

� Menu commands

� Toolbars

� Toolbar commands

� UserForms

� Modules

� Class modules

Make sure you go through each element carefully and consider the strategy
that works best. However, the important issue is to perform a comprehensive
check and to use (or devise) a method for ensuring that you check every-
thing. Perform the check in order or you’ll find that you miss items.

Of course, in addition to listing individual items, you need to consider inter-
actions. A toolbar button could open a UserForm that calls a Sub in a module
that relies on a class to create a menu item during runtime. The class might
actually service more than one Sub and you might have to devise a way
to answer the issues for each one of those uses. Searching through the

333Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 333

convoluted hierarchy of some applications can consume a great deal of time,
but you have to do it to ensure that your RibbonX solution works as intended.

It pays to perform a sanity check on your list once you complete it. Have
another worker (or other independent party) check your list for accuracy. Up
until this point, it’s relatively easy and painless to correct errors. After you
start implementing your solutions, however, it’s hard to make changes; they
become costly, time-consuming, and error-prone. Consequently, you want to
be sure the RibbonX change list you create is completely accurate, follows
company policy, considers all the issues, and uses the best solutions for your
particular needs.

Creating a Conversion Solution for
Word, Excel, and PowerPoint

You’ll find that converting a solution for Word, Excel, and PowerPoint is rela-
tively straightforward. Their use of menus and toolbars actually work pretty
well with the Ribbon when you use a form or a third-party solution. In fact,
it’s easy to convert the toolbars to forms in any of these applications.

Of course, if you have a lot of toolbars, you’ll need to provide a method for
hiding them as needed. What you might end up providing is a master toolbar
that shows all of the available toolbars. When a user clicks on a desired tool-
bar, its form appears on-screen. Even though the master toolbar might not
appear in your original application, it provides a means of selection that the
Ribbon interface doesn’t provide; the training time required for users to
adjust to it is minimal. For problem users — those with limited training and
experience — you could always provide a set number of toolbar forms that
allow access to standard features and leave out the toolbars that show
advanced functionality.

Always look for potential problems with a generic solution. For example, Word
is especially susceptible to the problem of toolbar forms showing up at the
wrong time. When a user opens multiple documents that use the same tem-
plate, the solution shown in the “Substituting Forms for Menus and Toolbars”
section of Chapter 12 opens one set of toolbar forms for each document. The
user could close the extra forms, but they really shouldn’t have to, and you’ll
definitely receive complaints if they do. You can modify the solution to set a
Boolean value to indicate the presence of the form, as shown here.

‘ Create and initialize the check variables.
Dim DlgIconsPresent As Boolean
DlgIconsPresent = False

‘ Check to determine if the forms are already
‘ present.

334 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 334

Dim ThisForm As Object
For Each ThisForm In UserForms

‘ When the Icons form is present, set its
‘ indicator to True.
If ThisForm.Caption = “Icons” Then

DlgIconsPresent = True
End If

Next

This code sets an indicator, DlgIconsPresent, to False, which means
that the form isn’t present. The code then searches through the VBA Global
variable, UserForms, looking for the form in question based on its Caption
property. When the code finds the form, it sets DlgIconsPresent to True,
which indicates the form actually is present. Now all you need to do is make
displaying the form conditional, as shown here:

‘ Display the Icons toolbar when necessary.
If Not DlgIconsPresent Then

Dim DlgIcons As Icons
Set DlgIcons = New Icons
DlgIcons.Show False

End If

This solution takes care of the problem of adding a RibbonX conversion to
templates. Remember that you don’t need to implement the solution like this
when you’re working with individual files (such as an individual Excel work-
book). Adding the solution when it isn’t needed can cause the opposite prob-
lem: The toolbar form doesn’t show up at all, even if it’s needed. When you
don’t know how to implement the toolbar-form solution, try the easier solu-
tion first, and then add selection code as necessary.

When you’re creating an actual Ribbon for your conversion solution, applica-
tions for these three Office products tend to work best when you can create
tabs that reflect the pre-Ribbon configuration:

� Always use a single tab for each toolbar.

� Place all menu additions on a single tab.

� Rely on the Menu control to provide a functional lookalike to your origi-
nal application.

Creating a Conversion Solution for Access
Access application conversions can rely on many of the same tips found in
the “Creating a Conversion Solution for Word, Excel, and PowerPoint” section

335Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 335

of this chapter. However, Access provides the capability to use other solu-
tions as needed; because you don’t use Access directly, in many cases you
might not need a solution at all.

When you do need a custom solution for Access, consider first all of the easy
techniques. For example, the “Using menu bars in Access to regain menus
and toolbars” sidebar in Chapter 12 points out a method you can use to dis-
play your toolbars directly without any additional work on your part. As
pointed out in the sidebar, this solution does come with some risks and
tradeoffs; consider whether it’s an appropriate solution for you. Sometimes,
using what appears to be the old solution denies access to too many new fea-
tures and makes Access harder to work with.

Unlike other Office applications, Access provides a simple method for using
multiple Ribbons. In addition, you can create Ribbons at multiple levels.
Consequently, you can customize Access to a degree you won’t find in other
Office products. However, with flexibility comes complexity. Make sure you
look at the various solutions in Chapter 8 and try them with a simple form of
your application before you make a decision. It’s quite possible that you’ll
find the multiple Ribbons that Access can support to be more of a nuisance
than a help.

336 Part IV: Converting Existing Toolbars and Macros

Using Access as a Ribbon storage solution
Although you can’t use this technique in VBA,
storing Ribbons in Access for add-ins is a valu-
able technique. If the add-in already uses
Access (or even SQL Server) for data storage,
you already have the required connection in
place, so using it to find an appropriate Ribbon
is a low-cost solution. A Visual Studio add-in
written in VB.NET or C# can query Access for a
list of Ribbons for a particular application. The
add-in can then choose the appropriate Ribbon
to fit the user’s role, the document, the environ-
ment, and any templates.

The user role is important because you might
want to provide solutions to managers that you
don’t provide to the average user. For example,
an authorization button should appear on the
manager’s Ribbon, but not on the user’s. Making
this slight change in functionality can make the
application more secure.

The document or its content can make a differ-
ence. For example, the add-in could check for
keywords, the document name, custom proper-
ties, or other criteria to determine which Ribbon
to load.

The environment can help you choose special
Ribbon features. A user calling in from home
may not need a printer button when you only
want users to print from work. A user calling in
over an Internet connection may not need
access to sensitive data, especially while work-
ing at an Internet café.

The template also makes a difference. You can
detect the template and choose an appropriate
Ribbon based on the template features. A letter
template may not require access to graphics,
but a layout template almost certainly will.

20_169940 ch13.qxp 7/13/07 10:35 PM Page 336

The Ribbon(s) you provide for Access won’t affect any other application that
relies on the database for input. Consequently, you don’t have to consider the
other applications in your Ribbon solution. Some developers seem confused
about this issue because other Access features do affect the applications it
supports. (For example, a query you create in Access is quite usable in Word.)

Access doesn’t provide any means of creating an add-in solution with Visual
Studio. Therefore any solution you define has to rely on VBA. The lack of tem-
plates in Access means you must create an individual solution for every data-
base. Of course, you can use cut-and-paste techniques to reduce the amount
of work involved, but you still have to add more time to your conversion esti-
mate for each database. Make sure you include the time required to create
new macros to go with your VBA modules.

Creating a Conversion
Solution for Outlook

Outlook presents the most problematic Office product when it comes to
many conversions because nothing is tied together. The Microsoft documen-
tation consists of a number of Excel files because you can’t get everything
you need from a single file. What you’ll end up with is a number of individual
solution scenarios instead of a single, cohesive scenario (as you do with
other Office products). Chapter 9 describes all of the individual pieces you’ll
need in order to provide a solution to the conversion problem in Outlook.

You do gain some benefits in Outlook. The main application still uses the
menu-and-toolbar setup (as shown in Figure 13-4), which means you don’t
have to do anything to convert applications at this level. You’ll also find that
form toolbars work very well when you need to replicate an existing toolbar
in Outlook. Because there aren’t any documents to speak of in Outlook, you
have to create only one conversion solution, rather than separate solutions
at the application, template, and document levels.

Figure 13-4:
Outlook can

present a
very difficult

conversion
target

because it
combines

old and new
elements.

337Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 337

It’s only possible to create RibbonX solutions for Outlook using a Visual
Studio add-in. If you’re a VBA developer and don’t really want to learn
Outlook, verify these essentials in the order shown in the following list:

� The solution works as is (test it thoroughly).

� It’s possible to use a form to replace the missing functionality.

� Placing the feature in a different location (such as a special toolbar on
the main Outlook display) provides the required functionality.

� The user doesn’t actually use the missing feature, so you don’t
replace it.

� It’s possible to replace the missing functionality by modifying Outlook
data with other applications.

338 Part IV: Converting Existing Toolbars and Macros

Creating a conversion-time estimate
When you go through the conversion process,
one of the first items that someone will ask for is
an estimate of the time the conversion will
require. Most companies have a policy in place
for estimating time; the policy works better in
some situations than in others, but it provides a
baseline estimate based on the company’s
experience. Unfortunately, you don’t have a
policy in place for the conversion (in VBA) from
the menu-and-toolbar system to the Ribbon.

Your first estimate is how much time is required
to define the issues — it’s a look at what you
need to convert in the first place. The second
estimate involves deciding on a conversion
strategy (with a rough timetable), which defines
how you plan to perform the conversion. Only
when you have these two estimates in place
can you do the work to come up with a com-
prehensive list of the items you need to convert.
Of course, the “someone” asking the questions
may want a complete estimate that you really
can’t provide until you do have the list — the
only thing you can estimate at the outset is how
long creating the list will take.

After you create a list of items you have to con-
vert, you must look at the list in terms of each
Office product. Access applications typically
take the least time because Access provides so
much flexibility, followed by Word, Excel, and
PowerPoint, and then by Outlook. When work-
ing with Outlook, you have to perform the testing
phase very carefully because you may find that
more of the original application works than you
anticipated.

The solution you choose also affects the time-
conversion estimate. In converting three Word
templates, I found that I could create form tool-
bars in a short time. One template took about a
half a day, including the time it took to create all
the forms required to mimic the toolbar.
Performing the same conversion using a
RibbonX tab required two days. Even though the
RibbonX solution does work better, it required
extra time because I had to create an XML file
and perform additional testing to ensure every-
thing worked. In addition, completing the link-
age from the Ribbon to the existing VBA code
required additional lines of code.

20_169940 ch13.qxp 7/13/07 10:35 PM Page 338

This list begs the question of why you should go to such extremes to avoid
creating an add-in. After all, add-ins are a perfectly legitimate way to provide
RibbonX functionality. The answer is somewhat complex, and it depends on
what your company is trying to achieve. The following list describes some of
the reasons that using an add-in might be a bad idea with Outlook:

� Your company doesn’t currently have any Outlook add-in code and
doesn’t wish to create any.

� Maintaining two code bases, one for Visual Studio and another for VBA,
can make support difficult at best; it reduces the efficiency of your
development team.

� Your company doesn’t have anyone versed in VB.NET or C# to create
the add-in.

� Working with add-in code for Outlook is considerably harder than add-in
code for other Office products because of the Outlook structure.

� The use of both VBA and Visual Studio can create unusual debugging sit-
uations and make finding some problems nearly impossible.

Designing Parallel Version Solutions
Not everyone’s going to start using Office 2007 immediately, and it’s unlikely
that many companies will perform a wholesale update. In other words, you’ll
have to work with both Office 2007 and some earlier version of Office for
quite some time. Of course, the Ribbon interface makes it quite hard to
create a dual-interface solution. The “Substituting Forms for Menus and
Toolbars” section of Chapter 12 provides one of the best options for parallel
solutions. The following sections describe some of the issues you need to
consider as part of creating such as solution.

Considering the Office XP/2003 user
The user of an earlier version of Office is accustomed to working with the menu-
and-toolbar interface. Changing the interface to some other form, no matter
how superior it is, is going to cause a certain amount of confusion, increase
support costs, and require extensive training. The Form toolbar is possibly
the best solution for this particular user if you must move to Office 2007.

It’s important to remember that the Office XP/2003 user already has a partic-
ular mindset and established skills. This user won’t be interested in throwing

339Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 339

away the old skill set to acquire a new one, and may not be very interested in
learning about your workflow or task-oriented solution (even though the new
approach will save the user time and effort). Having to learn new ways to use
a product that generates little user interest is going to be a stumbling block,
no matter how excited you are about it.

One way around the update issue is to implement a forced update and manda-
tory training. To ensure that no one reinstalls the old version of Office, you
can monitor the systems after the updates, using a product such as System
Center Operations Manager (SCOM), which you can get at

http://www.microsoft.com/systemcenter/opsmgr/default.mspx

Even though this approach is extremely painful and some people might actu-
ally leave the company over it, at least everyone who’s still in-house afterward
will be using the same product and templates.

Most companies today don’t want to use such draconian measures as enforc-
ing a particular product version. Because the Office XP/2003 user is going to
be less than thrilled about updating, you might end up supporting two code
bases. The first code base is for the original document and template files
(such as DOT files). The second code base is for the new Office 2007 docu-
ment and template files (such as DOTM). When you go this route, you’ll need
to define the common code for both environments so you can use copy-and-
paste techniques to move code changes from one environment to another
(see the “Defining the common code” section of this chapter for additional
details on the topic of common code).

The concept of degrees of parallelism might help you refine the solution to a
problem in such a way that it really does benefit your company and help it
to provide the best solution for everyone. When thinking about partial
parallelism, consider discussing these issues as possible points of parallel
development:

� Code base that includes business logic and document manipulation

� Document format

� Wizards and other user aids

� File menu (or Office Menu) commonality

� Toolbar commonality

� Other menus

� Move to workflows and task-oriented solutions

340 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 340

After you explore these issues, you can possibly reduce the number of areas
of contention to those that reflect the user interface. If you can also work in
forms as part of the solution, you might be able to reduce the problems still
further. The point is to keep working at the issues until you have optimized
the parallel development. Sometimes, if you keep chipping away at the out-
standing issues over time (the process may require months or even years),
you’ll eventually end up with a completely parallel solution, and then finally
end up with a single solution for everyone.

Considering the Office 2007 user
The Office 2007 user is a blank slate. You could train all new Office 2007 users
to rely on the same menu-and-toolbar interface that users of earlier versions
of Office use, but that’s probably a short-sighted and self-defeating approach;
it ensures that new users have the same expectations and bad habits that
older users have. If you do it that way, you’ll never update to Office 2007 in a
way that maximizes the productivity gains that this environment can provide.
Consequently, even though the new user is a blank slate, you shouldn’t use
that blank slate to sabotage your own efforts. Treat the blank slate as an
opportunity for change, albeit a painful change.

On the one hand, you have the old-version users, and on the other you have
the new-version users; except for some remarkable techniques, you can’t
really make the two groups work together. An alternative solution is to con-
vert the application, but only for new users. That way you can create a work-
flow solution that makes sense for the new user, but still relies on the old
code for business logic and document-content manipulation. Users of the
older versions of Office can continue to use the older version of Office that
they know how to use. To ensure that both the old and new Office users can
use the new file formats, you can install the file-format converters that
Microsoft provides for Office 2003. They’re available at

http://www.microsoft.com/downloads/details.aspx?familyid=941b3470-3ae9-4aee-
8f43-c6bb74cd1466

Figure 13-5 shows how this approach works.

If you decide to use the dual-version method with a single document format,
make sure you inform your support staff on how to fix document-compatibility
problems. Either the new-version users will have to save their documents
using the old file format, or the old-version users will have to use the new file
formats. No matter how well you train the users, they’re going to make mistakes
and save documents using the wrong format from time to time, which means
the support staff will need to know to check the file extensions for problems.

341Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 341

The Office 2007 user is looking for ease of use, which the workflow and task-
based solutions in this book provide. In addition, these new solutions help
users perform tasks significantly faster and with fewer errors. One way to
promote the new interface is to ensure that everyone hears about these
advantages. You can actually document the better performance and use it as
a way to help management understand the benefits of moving forward with
the rollout of Office 2007.

Defining the common code
When you must develop two code bases, it’s important to consider the situa-
tions where you might be able to use common code between environments.
At least using common code will reduce the amount of dual interface work
you must perform to a somewhat manageable level. A parallel solution need
not use all of the same code. The parallel portion of the application could
include only the business logic and document manipulation code.

When working with common code, you might consider moving code around
so that all the common code appears in a single module. Using this approach,
you can make changes to the common-code module in one environment,
export the module, and then import the resulting module into the second
environment. The code is transported between environments without error.
Make sure you use care in creating the common code module to ensure that
it contains only common code.

Figure 13-5:
Consider

using two
environments
with common

file format
support.

342 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 342

The common code should include any global variables or other resources
needed to make the code functional. Otherwise you risk introducing errors
into the user environment that are hard to detect because they are a global
issue. Make sure you keep copious notes in the common code file. Always
include a version number and last date of change so you can compare the
versions in the two environments when an odd problem pops up. For exam-
ple, you might think a code change will fix an error in both environments.
When you try out the code, however, Office 2007 still has the problem. You
can eliminate a failed code transfer as one cause of problems by comparing
the code versions.

Never include marginal or incompatible code within the common code module.
For example, your old application may require the use of the CommandBars
object, but you can’t include that portion of the code in the common code
module because it won’t work within Office 2007. You must either convert the
CommandBars object code into a physical representation or place it in a sep-
arate module that exists only within the older application. You’ll need to add
the interface elements that the CommandBars object supported as a new fea-
ture to the RibbonX version of the application. For example, you might create
a new tab to support the old interface elements in a new way.

343Chapter 13: Conversion Techniques for VBA Users

20_169940 ch13.qxp 7/13/07 10:35 PM Page 343

344 Part IV: Converting Existing Toolbars and Macros

20_169940 ch13.qxp 7/13/07 10:35 PM Page 344

Chapter 14

Conversion Techniques
for Visual Studio Users

In This Chapter
� Working with existing add-ins

� Understanding the conversion issues

� Obtaining the VBA code

� Defining application-specific conversion requirements

� Developing custom solutions

Most people who are familiar with Visual Studio and VBA see Visual
Studio as a way to create add-ins or turn existing VBA code into

VB.NET code. This viewpoint probably doesn’t match reality completely. Yes,
you’ll create add-ins with Visual Studio, but they may not be completely new
code or they might not be a replacement for existing code. In some cases,
you’ll use Visual Studio add-ins to merely augment existing code or to pro-
vide completely new functionality (such as a connection to a Web server).
Although Microsoft would love it if all of those VBA developers out there con-
verted their code to VB.NET, that scenario’s unlikely to happen as well.
Certainly you’ll see some code converted, but the millions of lines of VBA
code represent an obstacle too large for most developers to overcome. It’s
likely that VBA will remain the language of choice for some time to come.

Of course, this doesn’t mean you can just skip converting your Visual Studio
add-ins to use the Ribbon, or that you won’t have to deal with people who
use VB.NET as an alternative to VBA. That’s one of the interesting things
about working with computers — you always have more options to explore.
The limiting factor is usually the imagination of the developer, rather than
any limitation on the part of the computer. Consequently, this chapter explores
a number of solutions and strategies; some may meet your needs and others
won’t. The point is that you should at least try these strategies to determine
whether they’ll meet specific needs for your applications and users.

21_169940 ch14.qxp 7/13/07 10:36 PM Page 345

This chapter answers two questions. First, it helps you understand the issues
and strategies for converting existing add-ins when necessary. Second, it
explores the feasibility and desirability of moving VBA applications to VB.NET.

Using Existing Add-Ins
Visual Studio developers have things both easier and harder than VBA devel-
opers do when converting an add-in. The easier part of the equation is that
add-ins are more likely to run without much, if any, code conversion because
add-ins naturally force the developer to use alternatives to menus and tool-
bars. Even if you decided to use menus and toolbars, you have considerably
more options for performing the required conversion.

The harder part of the equation is that you have to convert the add-in project
in most cases. A VBA developer simply opens the same code modules as
before. The Visual Studio developer must upgrade to Visual Studio 2005, in
most cases, which means updating the project file, modifying references, and
changing some of the code so it works with Office 2007. Anyone who’s updated
a project realizes that some of the upgrade is automatic and some of it is
manual. As an alternative, you can choose to re-create the add-in in the new
form, which actually works better than converting it in most cases. The fol-
lowing sections explore both parts of the equation.

Existing add-ins from the
RibbonX perspective
How well your existing add-in works with Office 2007 depends on what the
add-in does. Many add-ins don’t include a significant interface because the
developer is more interested in manipulating data and presenting it within
the document. For example, an add-in that performs calculations based on
the selections within an Excel workbook might not have an interface as such.
It may actually appear as a single button, which means that the single button
would now appear on the Add-Ins tab, rather than in the old location. Some
add-ins actually monitor the document for specific conditions and act more
or less automatically. (For example, think about a specialized spelling
checker for scientific or legal documents that contain a lot of jargon.) Any
add-in that has a minimal interface or no interface at all shouldn’t require
modification to work with Office 2007.

It’s important to note that if your add-in works with a context menu or as a
SmartTag, you won’t have to perform any conversion. Add-ins that rely on
forms are also unlikely to experience problems in Office 2007. Even if the

346 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 346

interface is extensive, an add-in that manages to avoid the menus and tool-
bars of earlier versions of Office is unlikely to require any extra work.

One of the options Visual Studio users have that VBA users don’t is the task
pane. An add-in can create a task pane to perform its work. Using a task pane
can provide a considerable range of interface opportunities for the developer.
As shown in Figure 14-1, a task pane can include full input and output, all the
controls you might expect, and a means of letting the user work with the task
pane exposed in such a way that it doesn’t interfere with the current docu-
ment. Fortunately, task panes don’t require any form of conversion.

The only time you’ll experience direct issues with Office 2007 and your add-in
is when you use the CommandBars object to create menus and toolbars.
Unlike VBA applications, your Visual Studio add-in project won’t let you
create menus and toolbars directly; you always create them programmati-
cally. Consequently, this portion of your application will always require con-
version. Although you could use form-based menus and toolbars (described
in the “Substituting Forms for Menus and Toolbars” section of Chapter 12) as
a fix for this problem, Visual Studio developers have a significantly larger
number of choices for conversion that are likely to work better.

Figure 14-1:
Task panes

provide a
formidable

array of
features for
interacting

with the
user.

347Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 347

Considering project conversion
Unlike VBA, Visual Studio developers moving from earlier versions of Office
to Office 2007 are very likely going to update from Visual Studio 2003 to
Visual Studio 2005, or perhaps Orcas when it’s released. (Note that Orcas is in
beta as of this writing.) You can learn more about Orcas at

http://msdn2.microsoft.com/en-us/vstudio/default.aspx

or download the latest version at

http://www.microsoft.com/downloads/details.aspx?familyid=b533619a-
0008-4dd6-9ed1-47d482683c78)

The point is that with the upgrade of programming tools comes a required
upgrade of the add-in project as well.

The first step in creating the project is to bring the project up to date with
the new environment. The moment you open an existing add-in project, you’ll
see the Visual Studio Conversion Wizard. The following steps lead you
through the conversion process:

1. Click Next at the Welcome screen.

You’ll see the Choose Whether To Create a Backup dialog box (shown in
Figure 14-2). Normally you’ll want to create a backup of your old project,
just in case the conversion fails or you don’t have a current backup of
the add-in code somewhere else.

Figure 14-2:
Decide

whether
you want to

create a
backup of

the existing
project.

348 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 348

2. Choose a backup option and click Next.

You’ll see the Ready to Convert dialog box.

3. Read any notifications. Verify that the Summary text box contains all
the information for your project.

4. Click Finish.

If you requested a backup, Visual Studio performs the backup first. It
then performs the conversion of your project. When the conversion is
complete, you’ll see a Conversion Complete dialog box. Unless some-
thing unexpected occurred, the dialog box tells you that all projects con-
verted successfully.

5. Check the Show the Conversion Log When the Wizard is Closed
option. Click Close.

Visual Studio opens a conversion report. Check through the conversion
report for any problems (it shouldn’t list any). More importantly, check
through the list for references, and add all these references to your list
of items to update for the project.

The conversion report won’t tell you everything you need to know. Look in
Solution Explorer and you might see one or more references with warnings
next to them, as shown in Figure 14-3. You’ll need to update or correct every
reference that has a warning marker associated with it. At this point, you can
begin the compile/debug cycle that all developers know about (but don’t nec-
essarily like).

No matter what you do, some assemblies (such as Interop.Outlook,
shown in Figure 14-3) will rely on older versions of the .NET Framework.
Consequently, you won’t obtain access to all of the functionality that the
newer assemblies provide. In order to obtain the new features, you must
update all your references, which is significantly easier said than done. If
your add-in relies on menus or toolbars, then reconstructing the add-in is
probably better than working with the older code.

Figure 14-3:
Update the
assemblies
to gain the

full benefits
of the new

Office
features.

349Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 349

After you test your add-in, you’ll find that it works precisely as it did with
older versions of Office. That’s because you’re using the same version of the
.NET Framework, the same techniques for accessing Office, and the same
methodologies for interacting with the user. In many cases, this result is pre-
cisely what you want because it reduces user training time. However, it’s not
what you want if you eventually plan to move users to Office 2007. To make
your add-in Ribbon friendly, you’ll need to reconstruct it.

Re-creating a project
In some cases, when your project is simple enough, it’s actually easier to re-
create the add-in rather than convert it. The re-creation is easier because you
spend a lot less time debugging the application. In addition, this is the only

350 Part IV: Converting Existing Toolbars and Macros

Getting the Visual styles right
Many people complain that their lovely Visual Studio form looks nothing like what they expected
when it appears on-screen in Windows XP or Windows Vista. In fact, the form looks very much
the way it did in Windows 95, which makes it very obvious that the add-in generated the form and
that the form isn’t part of the Word product. Some users find the interface change distracting. If
you’re using forms to make up for problems in the Office 2007 interface, you can’t afford the
distraction. Fortunately, the fix for this problem is relatively easy: Open the form you created and
locate the Main() method. Make sure the Main() method contains the Application.
EnableVisualStyles() call to enable the visual styles used by newer versions of Windows,
as shown here:

Application.EnableVisualStyles();
Application.DoEvents();
Application.Run(new Form1());

Visual Studio 2005 automatically inserts the Application.EnableVisualStyles()
method call for you, but Visual Studio 2003 doesn’t, so you’ll want to add this code when you con-
vert a project. However, you may notice on some machines that the call still doesn’t work as
expected. That’s when you need to add Application.DoEvents() as well. This call ensures
that the application processes all Windows messages in the message queue before it goes to the
next step, which is to start displaying the form.

You may still run into controls that just don’t look right, and it’s important that they do look right for
an Office add-in. In this case, check the control’s FlatStyle property. Try setting the
FlatStyle property to System to clear up the display problems. A few controls, such as the
TabControl, never look quite right, but the differences between the standard control and the
newer Windows counterpart is often so small that the user won’t notice.

21_169940 ch14.qxp 7/13/07 10:36 PM Page 350

way to obtain easy access to the new RibbonX features provided by Office
2007. Sure, you can attempt to update the references in an older project, but
it won’t be very easy to make them work because there are so many depen-
dencies that you must also update.

To begin this process, convert your old project (using the information found
in the “Considering project conversion” section of this chapter). This step
ensures that you can use some older project resources without problems.
Close the converted project after you save it (no need to compile it).

Create a new Visual Studio 2005 project using the techniques described in the
“Creating a Basic Tab” section of Chapter 5. Add all of your existing forms to
the new project by right clicking the project in Solution Explorer and choos-
ing Add Existing Item from the context menu. You’ll see the Add Existing Item
dialog box shown in Figure 14-4. Highlight the form you want to add and click
Add to add it to your project.

After you’ve added all the required forms, replace any menus and toolbars
with Ribbon equivalents. As previously mentioned, even though you could
use form-based menus and toolbars of the same type used by VBA develop-
ers, it’s really not the best strategy for Visual Studio developers. Create con-
nections between the Ribbon elements and your forms, just as in the original
add-in.

Define new using or Imports statements as needed for your add-in. When
that’s done, add the required callbacks and use your original add-in code as
a basis for handling callbacks. You may need to provide small changes to
match the new references you’re using and to ensure the code works with the

Figure 14-4:
Save time

and effort by
using your

existing
forms

whenever
possible.

351Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 351

Ribbon as anticipated. Any business logic, document-content code, or other
non-interface code will move with few changes. It’s very likely, however, that
you’ll need to rewrite your user interface code — at least if it works with the
CommandBars object.

Many developers filled their older add-ins with unsafe code (for example, C#
code) and Platform Invoke (PInvoke) methods. Unfortunately, this code
is going to cause problems for you and may not transfer very readily. In addi-
tion, because Visual Studio 2005 provides better access to Office 2007 func-
tionality, you may not require the code at all. As part of your rewrite process,
make sure you verify and update any older code that relies on dubious
methodologies.

At this point, you can compile and test your add-in. The problems you’re
most likely to encounter include these:

� Graphics features you didn’t find and update

� Unsafe code that won’t work with Office 2007

� Usage of older assemblies that no longer exist

� Lack of support for new Ribbon features

� Code transferred to the wrong location in the add-in

� Forms that don’t work right or look incorrect with Office 2007 (see the
“Getting the Visual styles right” sidebar for details)

� Broken external references

Defining a Conversion Strategy
It’s important that you look at your current add-in realistically and create a
conversion strategy that makes sense. Microsoft hasn’t provided a clear update
path for add-ins. The assumption is that every developer’s going to create a
completely new add-in. In some cases, creating an add-in from scratch and
simply transferring your business and document change logic to it is going to
be the best idea, but this approach is time-consuming and it may not produce
the results you need to encourage users to interact with the add-in.

When reviewing your add-in, look for obvious solutions to the problems
you’re encountering. For example, Chapter 12 describes a number of third-
party solutions for moving things around or re-creating a display that looks
similar to the one the user is familiar with. These solutions don’t always
work, but if your add-in has just one or two buttons, it doesn’t make sense to
completely rewrite it for the Ribbon.

352 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 352

Consider using the form-based toolbar described in Chapter 12. Again, this
solution isn’t optimal for Visual Studio developers, but it does work. You’ll
need to create the forms as new Windows forms within your add-in, which
can be messy. Make sure you make the forms look as close as possible to the
native Office menus and toolbars, using the techniques described in the
“Getting the Visual styles right” sidebar in this chapter.

One of the better strategies I’ve seen is converting an application to use a
task pane instead of bothering with menus, toolbars, forms, or other
approaches. The task pane is part of the Office environment for both Office
2003 and 2007. You get precisely the same functionality and appearance in
both environments. In fact, if you do things right, your users should notice
very little difference when working with your add-in. Creating a task pane
from scratch is outside the scope of this book. However, you can find a
number of good resources for creating task panes online, including those in
the following list:

� Creating Custom task panes Using Visual Studio Tools for Office

http://msdn2.microsoft.com/en-us/library/aa722570.aspx

� Paul Ballard’s Weblog

http://weblogs.asp.net/PaulBallard/

� Video Tutorial: Creating a VSTO “v3” Custom Task Pane

http://blogs.msdn.com/vsto2/archive/2006/03/21/
556795.aspx

� Line-of-Business Data using Visual Studio Tools for Office 2005

http://www.microsoft.com/belux/msdn/nl/community/
columns/jtielens/lob_vsto2005.mspx

� Creating Smart Documents with Visual Studio 2005

http://www.devx.com/MicrosoftISV/Article/29546

� Task Pane Resources on Tech Republic

http://search.techrepublic.com.com/search/
Task+Pane.html

� MindManager Presenter

http://mindjetlabs.com/cs/files/folders/mindjetlabs/
entry47.aspx

These particular resources are exceptionally useful because they show you
how to work with task panes in a variety of ways. The technical articles, such
as “Creating Custom Task Panes Using Visual Studio Tools for Office,” provide

353Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 353

a traditional view of the entire task pane–creation process. (If you want some-
one to talk with about task panes, check out Paul Ballard’s Weblog.)

Some people learn better visually than they do through reading text. In this
case, check out the Video Tutorial: Creating a VSTO “v3” Custom task pane
site. The article on the Line-of-Business Data using Visual Studio Tools for
Office 2005 site tells you how to create a task pane as part of a much larger
solution. The article, “Creating Smart Documents with Visual Studio 2005,”
provides clear and easy steps for working with task panes. There are, in fact,
a wealth of task pane resources out there, and you can see a number of them
on the Task Pane Resources on Tech Republic site. Finally, the MindManager
Presenter is an example of an application that uses two task panes in an inter-
esting way, and you might want to check it out to develop ideas of your own.
All these Web sites have something useful to offer.

When you can’t use a task pane, another good solution is to make the add-in
accessible through the context menu. Using this technique, the user can
right-click in any area of the document and use the context menu to access
the add-in. This approach actually works better than you might think; users are
often looking for a way to interact with data when they need the add-in. The
approach that Visual Studio developers use to create an add-in differs enough
from those used by VBA developers that a context menu solution actually
works pretty well in this case. You can learn more about using the context
menu approach in the “Using Existing Office Features” section of Chapter 12.

Some developers have come up with interesting ways to use existing Office
features. For example, some developers have asked why they should provide
an interface at all if they can do without it. If you’re wondering how the user
interacts with the application, think about the SmartTag. You can easily
create a SmartTag solution with Visual Studio (this option doesn’t exist for
VBA developers). The add-in simply monitors what the user is doing and pre-
sents the appropriate functionality when required. You can learn more about
creating a SmartTag with Visual Studio at

http://msdn2.microsoft.com/en-us/library/ms178786(VS.80).aspx

This is the overview Web site — subfolders contain specific articles on vari-
ous SmartTag techniques.

A number of third parties make these alternative forms of user interaction
easier to create. For example, you’ll find a number of useful tools, including
one for creating SmartTags, on the Add-in-Express site at

http://www.add-in-express.com/

354 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 354

Don’t forget that you have the full range of Ribbon controls at your disposal
when creating a solution for your application. You can use the Menu control
to re-create essential menus. However, remember that your task pane can
include menus too. Using the Ribbon Menu control should be the option of
last choice.

Converting VBA Solutions
Most VBA developers aren’t very thrilled about moving their applications
from VBA to VB.NET. In fact, given the number of lines of VBA code out there,
it’s unlikely that VBA developers will ever move it all. At some point, the code
will become less useful because of changes that Microsoft makes to Office,
and some of the code will become unusable — developers will create new
solutions. However, the old solutions will remain, and you won’t see them dis-
appear for quite some time.

355Chapter 14: Conversion Techniques for Visual Studio Users

Understanding the Visual Studio
conversion choice

When you perform a conversion in VBA, you
have the option of keeping a lot of the old func-
tionality simply because of the way that VBA
interacts with the Office products and because
VBA doesn’t offer some of the flexibility that
you’ll find when working with Visual Studio.
However, working with Visual Studio is different
from working with VBA in important ways. For
example, you have the option of sticking with
the original add-in when the add-in doesn’t
break any significant Ribbon rules (as it would
if it used menus and toolbars). When you must
perform a conversion, the change is significant.
You can’t simply slide a solution in place and
hope it works. As a consequence, you’ll find that
Visual Studio presents more of an all-or-nothing
choice than VBA. You either stick with what you

used in the past or you create something com-
pletely new.

Many developers are going to view this all-or-
nothing approach as a tragedy. However, it’s
better to view it as an opportunity. Because
Visual Studio has so much to offer in the way of
flexibility, you really should consider a complete
update for your application, or, better yet, create
a dual version application that relies on task
panes, forms, context menus, SmartTags, and
other technologies that go well beyond menus
and toolbars. No matter what you think about
the Visual Studio environment, it does have a lot
to offer, but it would be a mistake to treat it the
same way you treat the VBA environment.

21_169940 ch14.qxp 7/13/07 10:36 PM Page 355

You’ll encounter situations where you really do need to convert a VBA solu-
tion into a VB.NET alternative. If you really want a compelling reason to make
the move based on functionality alone, check out the article at

http://www.devx.com/OfficeProDev/Article/28088/2046

Even so, most developers will make the move for more pressing reasons,
including these:

� VBA doesn’t provide a required feature such as task panes.

� Users complain that the VBA application doesn’t provide required
functionality.

� Your company wants to add new features such as SmartTags.

� The developers are experiencing difficulty in converting the existing
VBA code.

� Your company wants to protect the code better than VBA can protect it.

356 Part IV: Converting Existing Toolbars and Macros

Will this conversion work?
It’s the question that many VBA developers are
probably going to ask before they begin the con-
version process to VB.NET. The answer is that
the conversion will work only when VB.NET
provides the required functionality. It’s impor-
tant to remember that you can’t create docu-
ments and templates for Office 2007 products
using Visual Studio 2005. When your application
requires a document-centric or template-centric
approach, VB.NET may not provide a very
usable solution. However, the new Visual Studio
Orcas (yes, it’s still in beta at the time of this
writing) will provide document and template
capabilities, so you might have to postpone
moving your application to VB.NET until the new
version of Visual Studio appears. In the mean-
time, you can still use the VBA conversion tech-
niques described in Chapters 12 and 13 to
create a workable solution that will at least
allow access to your application.

You also need to consider the question of
whether you have someone capable of per-
forming the conversion. A conversion of this
type requires someone who speaks both VBA
and VB.NET fluently and understands the con-
version issues. If you don’t have someone who
can perform the task at the required level, the
conversion will eventually flounder and fail.
Make sure you have someone qualified before
you begin.

Finally, you need to know whether your com-
pany has the will required to complete the con-
version. A good part of your code is going to be
very easy to convert. If it makes sense to con-
vert that portion of the code first, do so; that way
people can at least begin working with the new
application and seeing some progress toward
the eventual goal of complete conversion. Agile
programming techniques work very well with
this kind of project.

21_169940 ch14.qxp 7/13/07 10:36 PM Page 356

Converting your application from VBA to VB.NET isn’t straightforward.
Although some language elements are the same and some are easy to convert,
you’ll likely run into at least a few areas where you’ll need to provide creative
solutions. The “Converting Code from VBA to Visual Basic .NET” article at

http://msdn2.microsoft.com/en-us/library/aa192490(office.11).aspx

provides a lot of generic tips and hints you can use to make the conversion
process easier. The following sections describe some considerations for
RibbonX conversion.

Performing a VBA walkthrough
In order to create a good VB.NET solution based on your VBA code, you need
to understand the VBA code. In many cases, a strict conversion won’t pro-
duce the results needed; VBA performs tasks differently from VB.NET. You
have to understand the logic used within the VBA application to provide a
good user experience before you can begin the conversion. In some cases,
you may actually have to watch the application work within the debugger in
order to understand what the application does today.

It’s impossible to overstate the need to create a good baseline, but even more
important is knowing where you’re going. The application requires an update
for some reason. You may simply want to move to VB.NET before Microsoft
chooses to end support for it as it did for VB 6.0. Whatever your reason for
moving, you must include that reason as part of your walkthrough. The
reason for moving provides reference points, so it’s clear not only where you
want to go, but why.

When you know where you are now and where you want to go, it’s important
to sit down and discuss your strategy with users, management, the develop-
ment staff, and any important third parties. The reason for all this prelimi-
nary work is that the conversion process is going to be time-consuming
anyway. You don’t want to compound the problem by starting with flawed
assumptions. Make sure you get input from everyone and create a solution
that everyone can live with.

Developers often downplay the importance of mockups. However, converting
an application from VBA to VB.NET is necessarily going to cause changes in
appearance, functionality, viewability, and performance that everyone will
notice. It’s best to create a mockup to show how the final application will appear
(and perhaps work). The goal is to ensure that everyone understands the
ways in which your converted application will differ from the original. Some-
times the differences are so subtle that users won’t even notice immediately;

357Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 357

but once they do, you can be sure that they’ll express their unhappiness with
your solution. The most common complaint is going to be that the new ver-
sion is different from what they’re used to using. Spending sufficient time to
address user concerns before and during the conversion reduces the amount
of rework you need to do later.

Working with menus and toolbars
Whenever possible, convert any code that deals with menus and toolbars to
a less cumbersome code in VB.NET. A major problem with the VBA applica-
tion you want to convert is the habits of the users who work with it. They’ll
remember that they accessed a certain feature by using the File➪Widget
command, and won’t realize that the new feature is simply the next step on
the Ribbon. They’ll complain that it’s very hard to select a particular option
right now, but then won’t like the combo-box control you provide to make the
selection easier. The battle you fight when converting a VBA application
toVB.NET isn’t simply with the code; it’s also with the mindset of the user
who works with the code.

Something you want to consider before making the conversion is whether the
users are actually using all the features of the current application. As part of
one update, I actually created a counter for each of the buttons and found
that some buttons weren’t clicked, not even once, over a month-long test. If a
button is so obscure that no one ever uses it, you have to wonder whether
you really do need that feature in the new application; why not (for example)
place it in something like a dialog box and access it with a dialog-box launcher?
Anything you can do to simplify the interface will make the conversion task
easier.

When you have to create a Ribbon equivalent of your application, make sure
you understand how the users interact with the features of the old applica-
tion. You’ll want to group common controls together. Because you’re convert-
ing this application to VB.NET, you can also consider adding a login feature
and using role-based security to control the features that the user sees. Novice
users need not see advanced features designed exclusively for advanced
users. Even if a feature receives a lot of use by one group, it doesn’t mean
that the same feature is equally useful to another group. Consider using roles
as a way to customize the interface for each group’s use. Again, the goal is to
simplify the interface to make it easier to use.

Developing workflows and
task-based solutions
Any VBA application you want to convert is going to rely on the menu-and-
toolbar mentality, even if it doesn’t currently include either feature. One of

358 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 358

the biggest reasons to update to the Ribbon is to gain the benefits of the
workflow-and-task-based solution. Of course, you actually have to under-
stand the way the user is presently working with the application before you
can create a workflow. Creating a workflow means observing the user’s
behavior in an unobtrusive way so you can determine the pattern of key-
presses and button pushes that the user currently relies on to perform a task.

Unfortunately, simple observation isn’t enough. Users often perform tasks in
a certain way because the person who taught them used that particular fea-
ture. The user might not even know why they use a particularly inefficient set
of steps, except that it eventually produces the correct result. Consequently,
when you convert your VBA application to VB.NET, you have to learn to ask
an important question: “Why?” If you don’t know why the users are doing
something in a certain way (and they don’t know, either), then what you’re
really doing is building a converted application that perpetuates an archaic
and inefficient way of doing things. Someone must know why the users are
performing a task in a certain way. If no one does, then you need to ask
whether there’s a better way to perform the task, and then test the new pro-
cedure before you commit it to code.

Considering Application-specific
Conversion Requirements

Each Office product has specific needs when it comes to a conversion solu-
tion. For example, you’ll find that forms work quite well with Word, but you
may find that Excel users prefer context menus. As with VBA, you must con-
sider the application as part of your solution. The “Creating a Conversion
Solution for Word, Excel, and PowerPoint,” “Creating a Conversion Solution
for Access,” and “Creating a Conversion Solution for Outlook” sections of
Chapter 13 describe general issues that you must consider as part of your
conversion solution.

However, you’ll find that Visual Studio adds some extra constraints to the
application-specific conversion scenario. The problem is one of interaction
between the RibbonX portion of your code and the ThisAddin portion of
your code. Unlike VBA, Visual Studio requires you to work around class
boundaries constantly. That can cause problems if you don’t think about the
issues in the right way. Most of the examples in this book have looked at the
two classes (more for complex applications) as a mere boundary that you
must pass in order to provide a complete application. When it comes to a
conversion, however, you should consider the RibbonX class as the portion
of the code devoted to the new interface, and the ThisAddin portion as the
place for old-interface code and document-manipulation code. In short, you’ll
probably spend a great deal more time working with the ThisAddin class
than you might think at first.

359Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 359

If you take extra care with the programming, Visual Studio actually offers you
several ways to perform parallel development beyond those offered by VBA.
One approach is to create classes for each Office version that you want to
support. When the application loads, you can detect the version, and then
load the class you require to interact with that specific Office product. This
approach might seem to be a very difficult way to accomplish the task, and it
is complex, but it does provide the “ultimate” in customization when you
have to support several Office versions.

Another technique you can use is selective parallelism. Your add-in can
include code for either CommandBars or Ribbon implementation as needed.
You can even include multiple solutions for the Ribbon. A laptop may display
the application options on a custom Ribbon, while a desktop application that
has more on-screen real estate may use forms to better mimic an existing
application. Obviously, this solution has a tradeoff: It optimizes the user envi-
ronment in consideration of hardware, but the user sees multiple interfaces,
which can make the interface difficult to use.

Creating Custom Conversions
When Necessary

In rare cases, you’ll find your current application is so different from other
applications that it defies easy conversion. For example, a real-time monitor
for a warehouse production line that feeds data into Excel and reports
progress on building the A1 Multi-widget may not fit within the normal
bounds of applications. It may require use of odd COM components, direct
access to a serial port, or other strange and exotic code. In this case, you
may question whether you really want to change something that’s working
because changes will undoubtedly introduce interesting problems that will
keep you busy for quite some time.

Eventually, you’ll have to update that application, and when you make the
attempt you’ll probably find that the exotic code is nearly impossible to under-
stand, breaks all of the rules, and even relies on undocumented techniques.
When this problem occurs, you don’t want to try fixing it by using VBA. In
fact, you probably don’t want to fix it at all. You’ll want to create a new appli-
cation that mimics the functionality of the old application (it probably won’t
include the same interface — think workflow since you have to put so much
work into this solution anyway).

One major issue you need to consider is the presence of unmanaged code in
the original application. Many exotic applications require use of external

360 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 360

DLLs, which the author could have written in anything from assembly lan-
guage to C to C++. In fact, you probably don’t have code for that module. Any
time you create a new managed application, you have to consider the prob-
lem of using native language elements as part of it because those native lan-
guage elements never gain the protections that the managed code possesses.
Using the native language module affects your new managed application in
the following ways:

� Security

� Memory

� Resource access

� Performance

� Debugging

� Management

� Portability

A native code module affects all these issues negatively. For example, an out-
sider can use the lax security that many native code modules provide to gain
access to your system. Even though the managed VB.NET code is well pro-
tected, the native code module isn’t, so security is significantly weakened.

Native code modules also have a tendency to develop memory leaks and
other memory problems that don’t occur with managed code. It’s quite possi-
ble that your new application will have a memory leak simply because the
native code module doesn’t release memory as expected.

All these issues are important. When you update your exotic Office applica-
tion, you need to consider all problems that the application encounters. When
you need to rewrite native code modules, you have to include a correspond-
ing increase in development time as part of your estimate. The cost for updat-
ing an exotic application can escalate out of control quite quickly; you won’t
want to undertake such a project lightly.

361Chapter 14: Conversion Techniques for Visual Studio Users

21_169940 ch14.qxp 7/13/07 10:36 PM Page 361

362 Part IV: Converting Existing Toolbars and Macros

21_169940 ch14.qxp 7/13/07 10:36 PM Page 362

Part V
The Part of Tens

22_169940 pt05.qxp 7/13/07 10:36 PM Page 363

In this part...

This part of the book is all about tens. In Chapter 15
you’ll discover ten new tasks you can perform using

the Ribbon. You might actually be amazed at just how
many ways the Ribbon can improve your life and those of
your users. Of course, to get the benefits, you must also
perform the work; fortunately, Chapter 15 provides all the
necessary details for you.

Everyone likes to have tools and resources that make
things easier. Chapter 16 discusses ten tools or resources
you can use to make working with the Ribbon significantly
easier. Even though the Ribbon has barely appeared in the
marketplace, third parties are already working feverishly
to make your job easier. Check out these tools and
resources when you have a special need for creating
better applications.

22_169940 pt05.qxp 7/13/07 10:36 PM Page 364

Chapter 15

Ten New Tasks You Can
Perform with RibbonX

In This Chapter
� Devising workflow solutions

� Developing targeted solutions

� Providing flexible alternatives

� Organizing data in new ways

� Letting the user help you integrate applications

� Getting information from Web services

� Developing the hybrid application

� Understanding the user’s role

� Transporting code between applications

� Reducing support and training costs

As stated in Chapter 1, the Ribbon isn’t a fix for some problems, and will
actually cause others. For example, you’ll have to update your existing

code to use it. However, the Ribbon does provide the means to perform tasks
that simply aren’t possible using the older menu-and-toolbar methodology.
For example, you can’t create a workflow using the menu-and-toolbar
approach.

The goal of this chapter isn’t to convince you that the Ribbon is the best
thing that ever happened to developers because (frankly) most developers
aren’t very thrilled about rewriting their applications. However, this chapter
does try to make the Ribbon a little less painful by pointing out the opportu-
nities it can provide. Even if you can’t make use of all of these ideas right
away, you can at least keep them in mind as you study ways to move your
applications to the Ribbon. This chapter summarizes the top ten new tasks
that you can perform with the Ribbon, through RibbonX, that a lot of pro-
grammers could never imagine doing in the past.

23_169940 ch15.qxp 7/13/07 10:37 PM Page 365

Creating a Workflow Solution
Perhaps the most exciting new task that you can perform with the Ribbon is
designing workflows. Most users aren’t too interested in learning all about
their Office applications. The reason that a user opens Word is to write a
letter, not to celebrate the intricacies of table creation. The goal is getting
some particular task done; the user isn’t particularly concerned with how
that happens. A workflow helps the user accomplish a task without placing
undue focus on the application itself. In fact, when you view the workflow
solutions for Word and Excel in this book, you’ll quickly discover that the
application appears to dissolve into the background. All the user need do is
move from left to right on the Ribbon. It’s all about clicking a button or filling
in a blank.

The letter-creation example in the “Creating a Letter/Memo Tab” section of
Chapter 6 is perhaps the best example in the book of a workflow. In this case,
the application doesn’t trust the user to do anything except provide the one
piece of information that the application can’t, which is the body of the letter.
Except for typing the body of the letter, the user relies on the Ribbon to per-
form every other task. Using this approach ensures that the letter follows a
standard format, always has the correct information, and doesn’t leave any-
thing out. The application works with the user to create a letter. As far as the
user is concerned, Word doesn’t even exist.

Obviously, you can take the workflow solution much farther than what
appears in this book. For example, if you’re a law firm and you use WorldDox
(http://www.worldox.com/), you could ask the application to perform all
the required filing based on recipient information and possibly on keywords
within the body of the letter. The goal is to automate every possible aspect of
the process so that all the user need consider is the content. This level of
user assistance is nearly impossible to create using the old menu-and-toolbar
approach. Hiding every possible non-application control is impossible with
the menus and toolbars — so even if you do succeed in creating a well-
designed application, user error will doom your creation to failure.

Of course, you can also take the concept of a workflow too far. When the work-
flow begins to hinder user activity, rather than work with it, then it becomes
a problem. Don’t confuse hindering user activity with reduction of tinkering in
this case. Some users want to tinker, and using a workflow tends to interfere
with tinkering. The interference is good, in this case, because you really don’t
want users tinkering with the application. However, when a user needs to
address multiple recipients and your letter application doesn’t allow for that
need, then the workflow becomes a hindrance. Consequently, when designing
a workflow, you need to pay particular attention to how users actually per-
form a task.

366 Part V: The Part of Tens

23_169940 ch15.qxp 7/13/07 10:37 PM Page 366

The workflow scenario works well with an Agile development strategy. Agile
development techniques rely on modular development where you create the
application as a series of goals. By using this technique, you can ensure that
the application is running faster and that everyone who uses it will have
some input. You can read more about Agile development techniques at

http://www.cio.com/article/100501/ABC_An_Introduction_to_
Agile_Programming

Targeting Specific User Needs
In some cases, the user need doesn’t fall neatly into a workflow. For example,
an Access developer might create a temporary table for some other task. The
need to create the temporary table for users falls outside the normal work-
flow. You could view it as a preparatory task — something the developer has
to do before performing the actual task of updating the database or testing a
new SQL statement.

Most novice users won’t have targeted needs. You can use the workflow sce-
nario for most applications designed for novice users. Some intermediate
users also rely almost exclusively on workflows because they simply need to
get work done quickly. However, as user experience grows, so does the need
to provide some targeted solutions. You should consider using a targeted
solution in these situations:

� The activity falls outside of a normal workflow.

� The user needs to perform the task intermittently and sometimes
not at all.

� You want to hide the solution from inexperienced users.

� The task is file-oriented, rather than task-related.

� The user normally performs the task directly on specific data, rather
than as part of achieving a particular goal.

Of course, the question is one of how a targeted solution differs from the
menu-and-toolbar solutions of the past. The keyword is targeted. The menu-
and-toolbar solution often uses the shotgun approach to solving problems,
which means that they aren’t very targeted. You can create a temporary table
using a menu-and-toolbar setup, but it requires multiple steps, and the results
aren’t guaranteed. Using the Ribbon, you can create a solution that’s quite
focused and provides consistent results.

367Chapter 15: Ten New Tasks You Can Perform with RibbonX

23_169940 ch15.qxp 7/13/07 10:37 PM Page 367

Defining Alternatives for Common Tasks
The dialog-box launcher adds a significant capability to the Ribbon. It lets
you create a workflow or targeted solution with added capability for those
who need it. For example, you could provide common features for the novice
and intermediate user, but add other features for the expert user as part of a
dialog-box launcher. The repetitive calculation example in the “Performing
Redundant Calculations” section of Chapter 7 provides an excellent view of
how this alternative-feature strategy can work.

Of course, you won’t want to miss the examples that Microsoft provides
either. Go through your favorite application and see all of the ways in which
Microsoft uses the dialog-box launcher to provide alternatives for common
tasks. For example, the Home tab often uses dialog-box launchers to provide
access to advanced formatting features that don’t appear as part of the
Ribbon. Even though you can set many of the common font characteristics
on the Ribbon, you can’t set a special effect such as shadow without launch-
ing the Font dialog box.

This approach differs from the toolbar and menu approach in that you don’t
have to see the options all of the time or perhaps at all. When working with
an older application, novice users would see options they really didn’t need
to use on the menus and toolbars. In many cases, these other options simply
stirred up confusion and didn’t really serve the user in any useful way. In fact,
the result was often lost data or an improperly configured application that
support staff had to spend time fixing. Using a dialog-box launcher makes fea-
tures available to those who need them, but completely hides the features
from everyone else.

Developing Organizational Aids
Many applications provide organizational aids that aren’t very organized —
at least not very flexible. Using the Ribbon can help a developer overcome
this problem by making the organizational aid part of a targeted or workflow
solution. For example, the “Creating a Mail-Management Tab” section of
Chapter 9 discusses the requirement of placing e-mail in the correct folder to
ensure that it doesn’t get lost. It sounds like something too simple to require
an actual application, but many users now get so much e-mail that an organi-
zational tool really does help.

Because this aid does appear on a separate tab, the user can choose to
ignore it if desired. Unlike toolbar and menu solutions, the Ribbon solution

368 Part V: The Part of Tens

23_169940 ch15.qxp 7/13/07 10:37 PM Page 368

you create doesn’t have to become obnoxious in order to perform the
required task. You can choose to make it an aid, a form of assistance, rather
than a required part of the user’s regimen.

Performing User-Assisted
Application Integration

Many of the examples in this book rely on other applications to perform a
task. For example, when Word or Excel requires information about the user,
the applications in this book use Outlook as a source of data. A user record
in Outlook contains all the details about the user that Word or Excel can’t
provide. Of course, you could just as easily store the information in Active
Directory or as part of an Access or SQL Server database. The point is that
the information resides outside of Word or Excel. In this case, the user isn’t a
participant — the interaction occurs automatically when the user selects
specific options on the Ribbon.

The part that isn’t automatic is that the user must make the selection. A
letter need not always include the user’s e-mail address, but the user can
choose to include the information whenever it’s desired. The user doesn’t
even have to remember that this option is available or locate it in some
buried menu — it’s part of the application workflow so the user simply has to
remember to click a button. Since the user doesn’t know or care where the
data comes from, there isn’t any need to complicate the application with too
many options.

However, you can ask the user to provide some level of application-assisted
configuration as part of the application. For example, you might choose to
include a simple “Update My Information” button that updates the informa-
tion in Outlook from a source in Active Directory. You’d probably place this
kind of option in a dialog box and make it accessible through a dialog-box
launcher.

The user-assisted integration can go to any level desired. You could add but-
tons to obtain information from specific sources (such as a specific data-
base), but a problem occurs if you rely too heavily on the user’s memory or
powers of observation. A Ribbon application should make the choices
simple. Rather than asking the user to choose a database from File Server
One, you should provide a clear integration option that reflects the user’s
view of the data. If the data source is a server in the Denver branch office (for
example), the button should probably say “Get Data from Denver” instead of
using a particular server name.

369Chapter 15: Ten New Tasks You Can Perform with RibbonX

23_169940 ch15.qxp 7/13/07 10:37 PM Page 369

Working with Web Services
Many applications today work with Web services. In fact, it’s obvious that
they work with Web services because the interface contains a wealth of clues
about the Web service. For example, when a developer builds an application
that interacts with Amazon Web Services, the Web service often takes a
prominent place in the menu-and-toolbar system.

Web services shouldn’t be obvious, and the Ribbon makes it possible to
make the Web service invisible to the user (or at least nearly so). The goal of
the Ribbon is to concentrate on the user’s work so the process of obtaining
and using data is merely a step, one that doesn’t rely on location. In the
“Creating an Amazon.com Custom Application” section of Chapter 11, the
example demonstrates that the Web service need not be seen in order to per-
form a useful task. Whatever tasks you can perform with a public Web ser-
vice, you can also perform with a private Web service.

For many companies, Web services are an important strategy for cross-platform
applications, so integrating them seamlessly into your application is impor-
tant. As companies merge and spin off new companies, the number of plat-
forms you need to support increases. It’s not just the idea of working with
Linux itself that becomes problematic, but also of integrating Macintoshes,
mainframes, minicomputers, and all kinds of other platforms into the mix.
Using a Web service lets an outside source access the data as if it were coming
from that platform. However, unless you can also hide the data source from
the user, the application becomes difficult to support. It’s important to
remember that a new data source isn’t very useful unless those who use it
can actually access it in a way that feels natural to them.

Working with Hybrid Applications
One of the controls explored in great detail in Chapter 12 is the Menu control.
With it, you can re-create all or part of a menu system. Of course, it doesn’t
possess the same flexibility of the menu system found in earlier versions of
Office, but it does let you re-create a generic version of the menu system.
This use of the Menu control lets you create what is effectively a hybrid appli-
cation. You can obtain most of the benefits of both the Ribbon and the menu-
and-toolbar interface in a single application. For some organizations, the
hybrid application will spell reduced support and training costs without any
loss of functionality.

370 Part V: The Part of Tens

23_169940 ch15.qxp 7/13/07 10:37 PM Page 370

A hybrid application provides a variety of ways for a user to get work done.
The user can rely on a workflow to rough out a particular task, such as writ-
ing a letter, creating a worksheet, or even designing a database. Once the
rough outline of the document, database, or other data container is in place,
the user can rely on task groups to perform specific configuration tasks.
Finally, when the user finds that a particular Ribbon-specific approach doesn’t
provide the required polish, it’s possible to rely on a toolbar to obtain the
final bit of required functionality.

Whether a hybrid application serves your needs depends on the current
skills of the users in your organization. Yes, you can let users perform tasks
using a combination of workflows, targeted groups, and menus, but the user
has to have the skills required to make this solution useful. You won’t want to
use this solution with novice users because they’ll become confused quite
quickly and make mistakes — the hybrid application is specifically for expert
users with a lot of experience with the application they’re using. In many
cases, you’ll find that moving the user to a pure workflow solution is a better
alternative.

One mistake that developers make is equating a user’s intelligence with skill
at using a computer. A lawyer or doctor is definitely intelligent but frequently
in need of significant handholding when working at the computer. These
users are often not well suited to using a hybrid application because the
output of the application is more important to them than learning to use the
application. However, a scientist working in a lab is a very good candidate for
a hybrid application because the scientist is often concerned about getting
more out of the application to successfully complete a task. For this group of
users, how the application performs a task is important; that’s your cue to
build a hybrid application rather than a more generic application form.

Considering the User Task Criteria
Many developers see their primary task as building an application. It has also
become popular to view the application as a solution to a problem. In most
cases, however, both views miss the point. The user might not have a prob-
lem to solve. After all, it’s relatively easy to write a letter with pen and paper
(albeit significantly slower). The Ribbon helps the developer accomplish a
new task — viewing the task at hand from the user’s perspective.

All the latest strategies for designing an application place a high value on com-
munication. In fact, many strategies place the user (or a representative of the

371Chapter 15: Ten New Tasks You Can Perform with RibbonX

23_169940 ch15.qxp 7/13/07 10:37 PM Page 371

user) directly on the development team. However, the developer often misses
the point anyway. Using a workflow approach to building a Ribbon applica-
tion forces the developer to understand what the user does. It answers a
useful question: “What does the user do to accomplish a task?”

Using the Ribbon as a tool to help understand the user’s workflow is a new
concept for many developers. Suddenly the developer isn’t looking at how to
build an application, but rather, how to build a process. This new task will
help developers learn about user needs considerably faster than most of the
other programming design strategies today. That’s because the developer
will see the user in the user’s environment perform tasks that may not solve
any problem at all, but simply log a new entry in a form or add a name to
a list.

Using Code More Than Once
If you ever tried to move code from one Office application to another in the
past, you know that any attempt to do so will usually result in some kind
of catastrophe. The old CommandBar approach to programming was too
application-specific. You had to know the structure of the application in order
to add new features. The features you added appeared directly in the menus
and toolbars that the user relied on to accomplish a task. Consequently, even
if you could move the code, you wouldn’t find it useful because the structure
of the other Office applications was different.

Several of the applications in this book borrow code from other applications.
You’ll find that some Excel applications borrow the concepts of a sender
entry from a Word application. In fact, it’s possible to move entire tabs from
one Office application to another. Except for some minor differences in the
way that the Office application approaches a particular programming prob-
lem, you might be able to move the tab intact and make few, if any, changes
to your code.

With careful programming, a developer tasked to create a person or place
lookup tab for one Office application will be able to move it with very little
effort to another Office application. When you think about it, this new task,
the ability to create generic tabs that you can move anywhere, is actually a
reduction of tasks because you have to create the tab only once. Obviously,
you can’t use this approach with every programming task, but you’ll find that
it works often enough to make it worth your while to at least study the feasi-
bility of making the code movable.

372 Part V: The Part of Tens

23_169940 ch15.qxp 7/13/07 10:37 PM Page 372

Reining In Support and Training Costs
You might not consider reducing support and training costs a new task
because every organization on the planet is looking for a way to accomplish
this goal. In fact, you might consider support or training as part of your job;
some developers are finding themselves in the trenches doing just that. If you
want to get out of the support-and-training field and back into programming
(or if you want to avoid going to the support-and-training field), consider the
Ribbon a good friend.

The examples in this book provide you with a considerable number of ideas
for reducing application complexity, while letting the application do more for
the user. The workflow and the targeted tasks are both strategies that you
should employ to make life easier for the user (and ultimately make life easier
for you as well).

It’s important to understand that the Ribbon also provides an opportunity to
exercise your creative talents. The large buttons with their icons help you com-
municate information to the user in ways that the older menu-and-toolbar
interface would never allow. If you don’t have a lot of artistic skill, you can
still rely on the built-in graphics that Office provides. Consider using clip-art
libraries if necessary — the Ribbon resizes your art to fit within the required
space. The whole idea of drawing the user a picture takes on a new meaning
with the Ribbon because you can do just that.

You don’t have to rely exclusively on the Ribbon to communicate with the
user. When necessary, you also have forms and menus that you can add to a
Ribbon application. The Ribbon provides a means of flowing information, of
communicating through graphics and a good choice of controls, but you still
have alternatives when you need them. The Ribbon lets you accomplish con-
siderably more toward creating a great user interface than anything you could
do in the past, so it really is a good technology despite the need to rebuild
your applications from scratch.

373Chapter 15: Ten New Tasks You Can Perform with RibbonX

23_169940 ch15.qxp 7/13/07 10:37 PM Page 373

374 Part V: The Part of Tens

23_169940 ch15.qxp 7/13/07 10:37 PM Page 374

Chapter 16

Ten RibbonX Resources
In This Chapter
� Getting the official news from MSDN

� Using the Microsoft blogs

� Locating other useful news sources

� Getting answers through the Microsoft forums

� Getting answers in other forums

� Obtaining RibbonX tools from PSchmid.net

� Installing the RibbonCustomizer

� Locating blogs with Technorati

� Understanding OpenXML better by visiting OpenXMLDeveloper.org

� Getting an MSDN or other print-magazine subscription

It’s always helpful to know where you can go for additional information and
helpful tools and enhancements when creating your RibbonX applications.

This book already contains a number of useful resources in other chapters.
For example, you’ll discover the Custom UI Editor in the “Developing with
the Office 2007 Custom UI Editor” section of Chapter 3. Likewise, the XML
Notepad utility appears in the “Creating the XML File” section of Chapter 8.
This chapter provides more of the same kind of information. The sections
that follow contain ten useful resources you can use to make your RibbonX
programming experience better.

Of course, this is my list of ten helpful resources; I might have missed your
favorite. Because I’m always looking for something better, please be sure to
write me about your favorite resource at JMueller@mwt.net. I can’t guaran-
tee that I’ll use the information you provide, but I do guarantee I’ll at least
check it out. It’s amazing to see how many sources people provide me over
time — many of which prove indispensable at some point.

24_169940 ch16.qxp 7/13/07 10:37 PM Page 375

Starting with the Microsoft
Developer Network

The Microsoft Developer Network (MSDN) has always provided the baseline
material for all Microsoft development products. Actually, you’ll find a whole
warehouse of information there — more than any one human being can proba-
bly read in a lifetime. Consequently, you need to sift the information carefully or
you’ll quickly become lost in the MSDN labyrinth. The main MSDN site for work-
ing with the Ribbon is the Office Fluent Ribbon Developer Portal at http://
msdn2.microsoft.com/en-us/office/aa905530.aspx. The links on this
site provide you with news, resources, and access to other information such as
samples. You’ll also want to check out these other locations on MSDN:

� Office 2007 Technical Articles:

http://msdn2.microsoft.com/en-us/library/bb187362.aspx

� Office 2007 Concepts:

http://msdn2.microsoft.com/en-us/library/aa432025.aspx

� Office 2007 Programs:

http://msdn2.microsoft.com/en-us/office/aa905359.aspx

� Office 2007 Tools and Technologies:

http://msdn2.microsoft.com/en-us/office/aa905362.aspx

� Office 2007 How Do I . . . :

http://msdn2.microsoft.com/en-us/library/aa432026.aspx

� User Experience:

http://msdn2.microsoft.com/en-us/architecture/
aa699447.aspx

� Word 2007 Technical Articles:

http://msdn2.microsoft.com/en-us/library/bb291002.aspx

� Excel 2007 Technical Articles:

http://msdn2.microsoft.com/en-us/library/bb244233.aspx

� Access 2007 Technical Articles:

http://msdn2.microsoft.com/en-us/library/bb190726.aspx

� RibbonX for Outlook:

http://msdn2.microsoft.com/en-us/library/bb177007.aspx

� Office User Interface Licensing:

https://msdn2.microsoft.com/en-us/aa973809.aspx

376 Part V: The Part of Tens

24_169940 ch16.qxp 7/13/07 10:37 PM Page 376

Getting Tips from the Microsoft Blogs
Microsoft wants you to know how to work with RibbonX. In the past, you’d
find much of the information you need on the MSDN Web site at http://
msdn2.microsoft.com. The MSDN Web site is still a very good place to go,
but many Microsoft developers complained that it was a bit too formal (the
articles are pretty difficult to understand in some cases), and there wasn’t
any opportunity to interact with the authors. The Microsoft blogs (http://
blogs.msdn.com) provide a friendlier environment to obtain information
where you can actually talk to the author. Here are some of the blogs you’ll
definitely want to visit when working with RibbonX:

� Jensen Harris: An Office User Interface Blog (http://blogs.msdn.
com/jensenh/)

� Kathleen’s Weblog (http://blogs.msdn.com/kathleen/)

� Brian Jones: Open XML Formats (http://blogs.msdn.com/
brian_jones/)

� Joe Friend: Word (http://blogs.msdn.com/joe_friend/)

� David Gainer: Excel (http://blogs.msdn.com/excel/)

� Erik Rucker: Access (http://blogs.msdn.com/access/)

� Will Kennedy: Outlook (http://blogs.msdn.com/willkennedy/)

� The PowerPoint & OfficeArt Team Blog (http://blogs.msdn.com/
powerpoint/)

This is just the tip of the iceberg. Microsoft has more blogs than you can
imagine (or possibly even Bill knows about). If you really want to get the full
scoop on what you’ll find on the Microsoft blogs, try this Google search:
http://www.google.com/search?q=RibbonX site:blogs.msdn.com.

Finding Other News Sources for RibbonX
You won’t find a tremendous number of news sources just yet for RibbonX,
but you can be sure that people are working on them. Make sure you look at
the usual sources that you rely on for other information such as DevSource
(http://www.devsource.com) and DevX (http://www.devx.com). A
great source for a less technical treatment of RibbonX topics is WindowsITPro
(http://www.windowsitpro.com/). Unfortunately, you might not find
what you need at the major Web sites until the editors obtain more articles
from authors.

Fortunately, you can also find a wealth of information from other alternatives
such as Feeds4All (http://www.feeds4all.nl/Item.aspx) and Softpedia

377Chapter 16: Ten RibbonX Resources

24_169940 ch16.qxp 7/13/07 10:37 PM Page 377

(http://news.softpedia.com/). In many cases, you’ll find good refer-
ences to stories on additional Web sites that might not show up using other
methods. In other cases, the news site will have articles of its own, such as
this article on graphics file usage on Softpedia:

http://news.softpedia.com/news/Image-Format-in-the-Office-
2007-RibbonX-41340.shtml

Interacting with Others Through
the Microsoft Forums

Microsoft has a significant number of forums that you can use to interact with
other developers. You can ask questions and normally receive responses
quite quickly. Although a majority of the responses you receive are from your
peers, you’ll also get occasional input from Microsoft Most Valuable Players
(MVPs) — non-Microsoft developers who have proven their worth in the
past. Sometimes the Office development staff will lend a hand in answering
questions as well. The main Microsoft forum URL is

http://forums.microsoft.com/MSDN/default.aspx

Of course, you’ll want to drill down into specific forums. Here are a few ideas
to try when looking for RibbonX-specific information:

� Visual Studio: http://forums.microsoft.com/MSDN/ShowForum.
aspx?ForumID=16

� VBA: http://forums.microsoft.com/MSDN/ShowForum.
aspx?ForumID=74

� Non-Visual Studio Tools for Office (VSTO) questions: http://forums.
microsoft.com/MSDN/ShowForum.aspx?ForumID=8

� Community Chat (discuss your latest ideas): http://forums.
microsoft.com/MSDN/default.aspx?ForumGroupID=273

� Site Feedback (when you need to know where to ask a question): http://
forums.microsoft.com/MSDN/default.aspx?ForumGroupID=14

If you don’t see a forum that interests you, or you need to use a language
other than English, check out the full range of Microsoft forums at http://
forums.microsoft.com/. Microsoft probably has a forum to meet your
specific need.

378 Part V: The Part of Tens

24_169940 ch16.qxp 7/13/07 10:37 PM Page 378

Obtaining Answers from Other Sources
Microsoft doesn’t have a lock on assistance with RibbonX problems. You’ll
find a wealth of developer-related forums online where you can ask questions
about RibbonX. In many cases, you’re probably already using this source and
they simply haven’t added a RibbonX section yet. If you have a list server or
other forum source that you already use, encourage the owner to add
RibbonX support.

One of the places you can look for help on RibbonX topics today is
Lockergnome (http://help.lockergnome.com/). You’ll find a number of
questions on Lockergnome already, with a lot of helpful answers. As with
many other forums, you’ll find that some professionals take time to review
the questions on Lockergnome and provide great responses. In some cases,
they’ll even provide you with some sample source code you can modify to
meet your specific needs.

Don’t neglect the Office product specific Web sites. For example, you’ll find
excellent help with Outlook questions on the All about Microsoft Office
Outlook site at http://office-outlook.com/outlook-forum/. This site
(http://office-outlook.com/) also provides you with an interesting
array of add-ins, tools, and news specifically designed for Outlook.

You can also explore sites that don’t have any affiliations with anyone, such
as Midtown Computer Systems Enterprise (http://www.mcse.ms/). This site
provides access to a number of useful usenet groups that can help you with
RibbonX questions. For example, you can find a complete list of Office-specific
usenet groups at http://www.mcse.ms/forumdisplay.php?f=34.

Getting Tools, Examples, and
Products from PSchmid.net

You’ll find the RibbonX Portal hosted by PSchmid.net at http://pschmid.
net/office2007/ribbonx/index.php. This is a mandatory place to visit
for anyone who is truly serious about working with RibbonX. You’ll find a
wealth of information and resources, including these:

� Getting Started guide

� RibbonX reference

379Chapter 16: Ten RibbonX Resources

24_169940 ch16.qxp 7/13/07 10:37 PM Page 379

� Tutorials

� Examples

� Downloads

� RibbonX forum

� RibbonCustomizer

Working with the RibbonCustomizer
The RibbonCustomizer is an interesting utility that you can install with Office
products that support add-ins. (Of course, this means you can’t use it with
products such as Access.) The RibbonCustomizer is a professional tool that
helps restore much of the customization capability provided with earlier ver-
sions of Office. The direct download for this product is at http://pschmid.
net/office2007/ribboncustomizer/index.php. The RibbonCustomizer
appears on the View tab, as shown in Figure 16-1.

If you want to try out the product, you can download either the 30-day trial
version or the free starter edition. Of course, the free starter edition (http://
pschmid.net/office2007/ribboncustomizer/starter.php) lacks a
considerable number of the more interesting product features. For example,
you can’t reorder the tabs in your application to meet specific needs. Even
so, the free starter edition can make your Office experience significantly better.

You can use RibbonCustomizer to change the appearance of the Ribbon in
any application that supports it. For example, you can move groups from one

Figure 16-1:
The Ribbon-
Customizer

appears
on the View

tab in the
Customize

group.

380 Part V: The Part of Tens

24_169940 ch16.qxp 7/13/07 10:37 PM Page 380

tab to another using the simple interface shown in Figure 16-2. All you need
to do to display this dialog box is choose Customize from the list of options
on the Customize Ribbon menu shown in Figure 16-1.

Notice that the options in Figure 16-2 also let you add new tabs or remove
existing tabs. It’s possible to create custom arrangements in workflows as
needed. You can also choose to ignore Microsoft features you find cumber-
some or move items from the Add-Ins tab to a standard tab. The product also
lets you create new groups. This feature is especially important because it
lets you move controls from the Add-Ins tab to specific groups.

It’s possible that you’ll want several Ribbon arrangements to perform differ-
ent tasks. RibbonCustomizer lets you save multiple arrangements as
schemes. Simply choose the scheme you want to use for a particular task.
Overall, RibbonCustomizer can help you overcome a significant number of
problems in moving your current applications to the Ribbon. Unfortunately, it
doesn’t solve them all.

Figure 16-2:
Move items

around on
the Ribbon

using this
simple

interface.

381Chapter 16: Ten RibbonX Resources

24_169940 ch16.qxp 7/13/07 10:37 PM Page 381

Installing this product means your users can move things around again —
adding to the support problems you already have with the Ribbon.

Using Blogs to Your Advantage
with Technorati

Most people are familiar with search engines such as Google that can help
you locate Web sites with information on a particular topic. A lot of good
information on RibbonX doesn’t appear on standard Web sites, and you
might not find it if you don’t look in the right place. One of the better places
to look for such information is blogs; one of the better blog search engines is
Technorati. You can normally locate a blog on any given topic using this
search engine. Use the http://technorati.com/tag/RibbonX URL to
find blogs on RibbonX topics. You should also try Office-specific tags, such as
Excel or Word. Simply type the tag into the Search field on the Technorati
Web site.

Using OpenXMLDeveloper.org
Open XML is the basis for the documents you create in Office. Consequently,
you’ll find more than a little discussion about the topic on one of the main
Web sites for Open XML information, OpenXMLDeveloper.org (http://
openxmldeveloper.org/). In most cases, you’ll find the information you
want in the various forums that this Web site supports. One of the more
important forums for RibbonX developers is Open Packaging Convention
(http://openxmldeveloper.org/forums/12/ShowForum.aspx), which
describes how Office packages the document and template content.

You can find a forum for each of the major markup languages used by Office at

http://openxmldeveloper.org/forums/default.aspx?GroupID=9

Here are the specific markup languages covered by this site:

� WordprocessingML: http://openxmldeveloper.org/forums/
13/ShowForum.aspx

� SpreadsheetML: http://openxmldeveloper.org/forums/14/
ShowForum.aspx

382 Part V: The Part of Tens

24_169940 ch16.qxp 7/13/07 10:37 PM Page 382

� PresentationML: http://openxmldeveloper.org/forums/15/
ShowForum.aspx

� DrawingML: http://openxmldeveloper.org/forums/31/
ShowForum.aspx

Using MSDN and Other Print Magazines
The MSDN magazine has always included a broad range of technical articles
on Microsoft product topics that appear well in advance of the actual prod-
uct. Obviously, Microsoft feeds this magazine with the information even as its
developers rush to complete the application. You’ll find that MSDN contains
high-quality articles with a lot of detail. It isn’t always readable by mere mor-
tals, but it does provide significant technical depth. If you find that MSDN
magazine is a little too unapproachable, look at other print magazines on the
market today.

The reason print magazines are nice is that you can take them anywhere,
review them anytime, and depend on them to provide good graphics. Some
people might think that print is dead, but there are a lot of reasons it contin-
ues to prosper, not the least of which is convenience and longevity. I’m
always wondering where I last saw a particular Web site, but my magazines
are always neatly filed away until I need them.

383Chapter 16: Ten RibbonX Resources

24_169940 ch16.qxp 7/13/07 10:37 PM Page 383

384 Part V: The Part of Tens

24_169940 ch16.qxp 7/13/07 10:37 PM Page 384

• Numerics •
32-bit images, 70
2007 Office System: XML Schema

Reference, 54

• A •
Access (Microsoft) applications

Add-Ins tab, hiding, 221
Column (Field) Selection field, filling with

data, 230–231
described, 201–202
filtered result, 226
groups, placing in correct order, 221–223
Home tab, 27
limitations, 202
menu bars, 321
new version, 29
Ribbon macros, defining, 208
Ribbon presentation, 226–228
sample database, obtaining, 218–220
standard user table, 212–214
system table, USysRibbons, 209–211
Table Selection field, filling with data,

228–230
tabs, adding, 207–208
temporary table, creating, 223–226
user filtering selections, processing,

231–233
VBA add-ins, 337
VBA conversion, 335–337
Visual Studio add-ins, 337–338
XML editor, 202–203, 206–207
XML file, using directly, 214–218
XML schema, 204–205

ActiveX controls, 150
Add Reference dialog box, 157
Add-in Express Web site, 354

add-ins (DLLs)
Access unavailability, 202
context menus, 346–347, 354
end users, making available for, 103–104
Outlook applications, 236
removing, 104–106
as Ribbon storage solution, 336
RibbonX and Visual Studio, 92–93
RibbonX elements, 49
VBA unavailability, 73
Visual Studio conversion, 351–352

Add-Ins tab
drawbacks of using, 11, 12
hiding, 221
limitations of, 330–331

Addintools software, 320
Agile development strategy, 367
alpha color, transparencies, 70
alternative use of controls

described, 39, 75, 107
sample code, 112

Amazon Web Services (AWS), 287
Amazon.com

AWS developer tag, 289–290
AWS Ribbon interface, 293–298
AWS tasks, 292–293
browser, queries working in, 290–292
dialog-box launcher, 298–300
query, making, 300–306
services, 288–289

Animations tab, 30
annuity dialog box, 179
application, reason to move to Ribbon, 179
approval requirements, 139–142
Architects Lab, 317
assembly language DLLs, 361
author, contacting, 375
AutoExec macro, 217
AWS (Amazon Web Services), 287

Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 385

• B •
bitmaps, icons versus, 69
BMP file type, 42
BOM (Byte Order Mark), 217
box control, 57
browser, queries working in, 290–292
business applications. See Excel

(Microsoft) applications
business logic, 328
businesses, calculations specific to. See

nonstandard equations tab
button control, 57
<button> element, 26
buttonGroup control, 57
buttons

Access, creating with temporary table,
223–226

as communication aid, 373
content callbacks, 63
described, 42
Envelopes, 143
Excel, images, 192
graphics, 315–316
multiple Outlook class issues, 250
PowerPoint, 265–266
Sort Criterion group, 296
XML code for image, 44

Byte Order Mark (BOM), 217

• C •
C#

add-ins, 336
DLLs, 361
RibbonX, 98–99
unsafe code, 352

CalcType variable, 167
calculations

date, 159–160
nonstandard equations tab, performing,

174–175
calculations, redundant

code, creating, 179–180
data identification requirements, 186–187
described, 176–177

dialog boxes, designing, 178–179
global and local variables, 185–186
linkages to existing data, 180–182
loop, 183–186
problem solution, defining, 177–178
procedure, choosing, 182–183

calendar method, 160
CartAdd interface, 293–294
CC requirements, 139–142
cell range, worksheet linkage, 194–195
changes in control data, detecting, 172
checkBox control

callback control, 62
described, 57

ChildNodes collection, 306
class boundaries, Visual Studio

conversions, 359
classes, XML and Outlook, 247–248
Classic Menu for Office 2007, 320
code, 102–103
Column (Field) Selection field, filling with

data, 230–231
ColumnGetText() method, 231
COM (Component Object Model), 74
COM+ application, Web services, 307
comboBox control

content callbacks, 62, 63, 64
described, 57

command line interface, Office Migration
Planning Manager, 18

CommandBar
common code module, 343
conversion issues, 328

CommandBars object
context menus, 36
Visual Studio, 347

Community Chat forum, 378
Component Object Model (COM), 74
context menus

add-ins, 346–347, 354
described, 36
Excel, relying on, 322–323
Excel entry, defining, 322–323

Contextual Tabsets
described, 33, 37–38
feature hiding, 43

386 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 386

Control IDs, Outlook, 238
controls. See also groups

attributes, 59–61
described, 12
graphics tools, 68–69
hiding unneeded, 87
IDs, checking listing of, 84

controls, RibbonX
choosing, 41–42
elements, defining, 55
overview, 56–58
scripts (VBA), 77–78
Visual Studio, 110

conversion
parsing numeric input, 174
rate values, 175

conversion, VBA
Access conversion, 335–337
common code, 342–343
conversion, issues behind, 328–329
conversion strategy, 329–330
described, 327
existing menus and toolbars, 330–331
forms, 330
Office 2007 user, 341–342
Office XP/2003 user, 339–341
Outlook conversion, 337–339
Quick Access Toolbar (QAT), 331–333
RibbonX changes, 333–334
toolbars and menus, designing rather

than creating, 331
Word, Excel, and PowerPoint conversion,

334–335
conversion, Visual Studio

considering, 348–350
customizing, 360–361
described, 345–346
existing add-ins from RibbonX, 346–347
feasibility, 356
form-based toolbars, 353
functions, preserving old, 355
menus and toolbars, 358
re-creating projects, 350–352
reviewing add-ins, 352
for specific applications, 359–360
styles, 350
task pane resources, 353–354

VBA walkthrough, 357–358
VB.NET alternative, 356–357
workflows and task-based solutions,

358–359
copy, e-mail, 245–246
cost calculations, 198–199
Create tab, 29
cross-platform applications,

Web services, 370
current state, Toggle Button, 82
CurrentDb.CreateQueryDef()

method, 233
custom namespace, 222
custom presentation tab, 263–267
Custom Task Panes (CTPs), 74
Custom UI Editor

Access unavailability, 202
callback subs, automatically generating,

76–77
content callbacks, 64
graphics, 75–76
RibbonX elements, 64–66

• D •
data, external access

constant, supporting, 278–280
control, detecting changes in, 172
entered, obtaining, 172–174
identification requirements, 186–187
redundant calculations, linking to

existing, 180–182
data entry forms

content, 192–194
controls, 188
cost, calculating, 198–199
creating, 187
date, validating, 159–160
Design Mode, fields, 191
employee selections, defining, 195–198
flexible, providing, 170
grid lines, 190–191
protection options, 189
Ribbon code, adding, 192
from template, 189–190
worksheet linkage, 194–195

data management, Outlook, 236

387Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 387

database
exporting table to new, 212
sample, obtaining, 218–220
saving file in new format, 218
SQL Server, creating, 20–21

dates
Letter/Memo tab, 133–136
validating, 159–160

DDBs (Device-Dependent Bitmaps), 70
description attribute, 59
design, RibbonX

Contextual Tabsets, 37–38
controls, choosing, 41–42
described, 31–32, 39
elements goals, 32–34
existing Office features, 36
features, hiding, 43
MiniToolbar, 38–39
names, effective use of, 40
number of items on tab, 40–41
Office Menu, 36–37
tooltips, 34–36
user hints, 43
user’s perspective on groups, 41

Design Mode toggle button, 191
Design tab, 30
desktop space, Ribbon’s use of, 15
Developer tab, 266
developers, Ribbon, 11
Device-Dependent Bitmaps (DDBs), 70
Device-Independent Bitmaps (DIBs), 70
dialog boxes

need, assessing, 33
redundant calculations, 178–179

dialog-box launcher
alternatives for common tasks, 368
Amazon.com, 298–300
described, 33
implementing, 178
tooltip, 36
visual element, adding to group, 55

display, Word forms, 152–154
DLLs

Access unavailability, 202
context menus, 346–347, 354
end users, making available for, 103–104
Outlook applications, 236
removing, 104–106

as Ribbon storage solution, 336
RibbonX and Visual Studio, 92–93
RibbonX elements, 49
VBA unavailability, 73
Visual Studio conversion, 351–352

.DOC extension, 17

.DOCM file extension, 17
document

caution against modifying while open, 74
compatibility, 23
document in older Word version, 85
dynamic content, 93–94
features, 124
protecting, 149
RibbonX and Visual Studio, 93
type, changing, 126–127
variable, 126–127
Word forms, creating, 154–156

Document Object Model (DOM) document
object, 217

document protection features, 28
.DOCX file extension, 17
DOT file

choosing to use only, 313
conversion issues, 328

DOTX file
conversion issues, 328
when not to use, 313

draft, saving e-mail as, 246–247
Drawing ML Web site, 383
dropDown control

content callbacks, 62–63
described, 57

dynamic document content, 93–94
Dynamic Help window, 204
dynamicMenu control

content callback, 61
described, 57

• E •
eBay Web service

application, 287
Software Development Kit, 285

editBox control
content callbacks, 63–64
described, 58

EFFECT equation, 169–170

388 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 388

elements, RibbonX
bitmaps versus icons, 69
control attributes, 59–61
control callbacks, 61–64
control graphics tools, 68–69
controls, choosing, 26
controls, coding, 28
controls, defining, 27, 55
controls overview, 56–58
described, 23–24, 49
groups, 26, 52–55
objects versus, 59
Office icons, obtaining list of, 67–68
Office 2007 Custom UI Editor, 64–66
tab, creating, 50–52
tabs, 24–25
32-bit images, 70
transparency, 69–70

e-mail handling
adding to task, 258–259
caller’s class, detecting, 239–241
closing task, 259–260
copy, creating, 245–246
default project, 237–238
defining task, 253–258
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
multiple class issues, 247–251
reading versus responding, 237
supplemental information, 258–259
task-creation interface, 251–253
text, turning into task entry, 251–253

Employee Name field, expense report,
192–194

employee selections, data entry forms,
195–198

enabled attribute, 59
ending, PowerPoint, 280–283
envelopes

button size, 143
custom output, 143–145
groups, 142–143

equation, in use, 167
equations, nonstandard

calculation, performing, 174–175
described, 165–166
entered data, obtaining, 172–174

equation type, choosing, 167–168
multiple Ribbon elements, 168–172
starting element, 166

error messages, XML Notepad, 204–205
Excel (Microsoft) applications

button to access form, 88–89
combining VBA and Visual Studio, 165
context menus, relying on, 322–323
described, 163
Design Mode toggle button, 191
equations, choosing, 167–168
Home tab, 27
new version, 28–29
protection, 189
sample RibbonX tab, 50–52
task panes, 323
template, saving document as, 189–190
variety of, 164
VBA conversion, 164, 334–335
Visual Studio, 164

Excel (Microsoft) data entry forms
content, 192–194
controls, 188
cost, calculating, 198–199
creating, 187
date, validating, 159–160
Design Mode, fields, 191
employee selections, defining, 195–198
flexible, providing, 170
grid lines, 190–191
protection options, 189
Ribbon code, adding, 192
from template, 189–190
worksheet linkage, 194–195

Excel (Microsoft) nonstandard
equations tab

calculation, performing, 174–175
described, 165–166
entered data, obtaining, 172–174
equation type, choosing, 167–168
multiple Ribbon elements, 168–172
starting element, 166

Excel (Microsoft) redundant calculations
code, creating, 179–180
data identification requirements, 186–187
described, 176–177
dialog boxes, designing, 178–179
global and local variables, 185–186

389Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 389

Excel (Microsoft) redundant calculations
(continued)

linkages to existing data, 180–182
loop, 183–186
problem solution, defining, 177–178
procedure, choosing, 182–183

expense report
cost calculations, 198–199
disappearing and reappearing fields, 194
Employee Name field, 192–194
employee selections, defining, 195–198

exporting table to new database, 212
eXtensible Markup Language (XML)

button image code, 44
file, using directly in Access, 214–218
group, creating (<group> element), 25
multiple Outlook class issues, 247–248
new Ribbon element, creating, 25
problem solution, defining, 177
schema in Access applications, 204–205
SQL Server version, 19
table, loading as part of, 208

eXtensible Markup Language (XML)
Notepad 2007

correct entries, ensuring, 205
downloading, 203
error messages, 204–205
schema, removing, 205

External Data tab, 29

• F •
FetchAmazonData() method, 301
File Email code, 245–246
file-format converters, 341–342
files, 101–102
filing interface, Outlook, 241–243
folder list, e-mail, 243–245
For Each loop, 306
foreign language forums, 378
formatting, effective rate calculation, 176
form-based toolbars, 353
forms

conversion issues, 328
Excel button to access, 88–89
protecting numbers, 199

substituting for menus and toolbars,
313–316, 318

VBA conversion, 328, 330
Visual Studio conversion, 351

forms, data entry
content, 192–194
controls, 188
cost, calculating, 198–199
creating, 187
date, validating, 159–160
Design Mode, fields, 191
employee selections, defining, 195–198
flexible, providing, 170
grid lines, 190–191
protection options, 189
Ribbon code, adding, 192
from template, 189–190
worksheet linkage, 194–195

forms, Word
Content Controls versus Legacy

Controls, 150
creating, 147–149
selecting, 150

Formulas tab
described, 28–29
goals, 32

functions
underlining normal versus

alternative, 113–114
Visual Studio conversion, preserving

old, 355
FV equation, 169

• G •
gallery

Business forms, 147
content, defining, 151
content callbacks, 62–63
form, choosing, 151
items, providing, 152–153

gallery control, 58
General number format, 176
getContent attribute, 61
getDescription attribute, 61
getEnabled attribute, 61

390 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 390

getImage attribute, 61
getImageMso attribute, 62
getItemCount attribute, 62
getItemCount() method, 154
getItemHeight attribute, 62
getItemID attribute, 62
getItemID() method, 154
getItemImage attribute, 62
getItemLabel attribute, 62
getItemLabel() method, 154
getItemScreenTip attribute, 62
getItemSuperTip attribute, 62
getItemWidth attribute, 62
getKeytip attribute, 62
getLabel attribute, 62
getPressed attribute, 62
getPressed callback, 80
getScreentip attribute, 63
getSelectedItemIndex attribute, 63
getSelectItemID attribute, 63
getSelLbl() method, 296–297
getShowImage attribute, 63
getShowLabel attribute, 63
getSize attribute, 63
getSupertip attribute, 63
getTemplatePath() method, 152
getText attribute, 63, 181–182
getTitle attribute, 63
getVisible attribute, 63
GIF file type, 42
global and local variables, redundant

calculations, 185–186
Google Maps, 286
graphics

Custom UI Editor, 75–76
RibbonX and Visual Studio, 107–109
toolbar buttons, 315–316
VBA, 74
Word, 123

graphics cards, 70
greeting, adding to letter, 138–139
grid lines, removing from forms, 190–191
groups

automating envelopes, 142–143
described, 12
envelopes, 142–143

line in middle, 54
multiple Outlook class issues, 250
organizing by usage, 33
as part of tabs, 24
placing in correct order, 221–223
user’s perspective on, 41
XML, creating (<group> element), 25

groups, RibbonX
elements, 52–55
scripts (VBA), 77–78
Visual Studio, 110

• H •
handling e-mail

adding to task, 258–259
caller’s class, detecting, 239–241
closing task, 259–260
copy, creating, 245–246
default project, 237–238
defining task, 253–258
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
multiple class issues, 247–251
reading versus responding, 237
supplemental information, 258–259
task-creation interface, 251–253
text, turning into task entry, 251–253

heading, worksheet, 186
help, keytip

appearance, 51
attribute (keyTip), 60
group, 53

hiding
expense report fields, 194
features, 15–16
Ribbon, 15
RibbonX features, 43
unneeded controls, 87
Web services, 286

hierarchy, XML elements, 24
HLP (help) files, rewriting, 219–220
Home tab

described, 27
group and control, adding, 111

391Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 391

Home tab (continued)
Styles gallery, 325
toggle buttons, 207–208

• I •
icons

Office, obtaining list of, 67–68
toolbar buttons, 315–316

ID
gallery, 154
obtaining for existing tab, group,

or control, 78–79
Outlook control, 238

id attribute, 59
idMso attribute, 59
idQ attribute, 60, 222–223
image attribute, 60
imageMso attribute, 60
images

button, providing, 26
button file types, 42
Custom UI Editor, 75–76
Excel buttons, 192
group, 53
linking to button, 26
modifying at runtime, 125
RibbonX and Visual Studio, 107–109
32-bit, 70
toolbar buttons, 315–316
VBA, 74
Word, 123

industry-specific calculations. See
nonstandard equations tab

inexperienced users
alternatives, 368
targeted solutions, 367

initial slide
creating, 268–271
importance of, 267–268

injection, VBA, 74
InputBox, developer tag, 299
Insert tab, 27
insertAfterMso attribute, 60
insertAfterQ attribute, 60, 222–223
insertBeforeMso attribute, 60

insertBeforeQ attribute, 60
Int32.Parse() method, 174

intelligence, computer skills versus, 371
interface, effective, 31
intermediate users, 367
Internet connection, Web services, 286
InvalidateControl method, 128
ItemClicked() method, 154
itemSize attribute, 60

• J •
JPG file type, 42

• K •
keytip

appearance, 51
attribute (keyTip), 60
group, 53

• L •
label attribute, 60
labelControl control, 58
labels, modifying at runtime, 125
Las Vegas effect, 43
Letter/Memo tab

CC, routing, and approval requirements,
139–142

custom envelope output, 143–145
dates, 133–136
described, 123–124
document type, changing, 126–127
greeting recipient and adding signature,

138–139
labels and images, modifying, 125–126
recipient, adding, 129–133
restoring document type after Ribbon

loads, 128
sender, adding, 136–138
style, setting, 124–125
workflow, 366

loadImage attribute, 64
loan dialog box, 179

392 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 392

Lockergnome Web site, 379
lookup tabs, sharing code between

applications, 372
loop, redundant calculation, 183–186

• M •
macros

file extensions, 17
Ribbon, defining for Access

applications, 208
saving, 72–73

magazines, print, 383
mail-management tab, Outlook

caller’s class, detecting, 239–241
copy, creating, 245–246
default project, 237–238
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
reading versus responding, 237

managed code, advantages of, 94–95
markup languages, online resources for,

382–383
MDB file extension, 218
memos (Letter/Memo tab)

CC, routing, and approval requirements,
139–142

custom envelope output, 143–145
dates, 133–136
described, 123–124
document type, changing, 126–127
greeting recipient and adding signature,

138–139
labels and images, modifying, 125–126
recipient, adding, 129–133
restoring document type after Ribbon

loads, 128
sender, adding, 136–138
style, setting, 124–125
workflow, 366

Menu control
described, 58
forms, 318–319
hybrid applications, 370–371
when to use, 320

menu conversion issues, 328

menus
forms, substituting, 313–316, 318
inadequacy of, 13–14
targeted solutions versus, 367
third-party tools, mimicking with, 317
VBA conversion, 330–331
Visual Studio conversion, 358

menuSeparator control, 58
Microsoft

decision to change interface, 13
magazines, 383
online forums, 377–378

Microsoft Access applications
Add-Ins tab, hiding, 221
Column (Field) Selection field, filling with

data, 230–231
described, 201–202
filtered result, 226
groups, placing in correct order, 221–223
Home tab, 27
limitations, 202
menu bars, 321
new version, 29
Ribbon macros, defining, 208
Ribbon presentation, 226–228
sample database, obtaining, 218–220
standard user table, 212–214
system table, USysRibbons, 209–211
Table Selection field, filling with data,

228–230
tabs, adding, 207–208
temporary table, creating, 223–226
user filtering selections, processing,

231–233
VBA add-ins, 337
VBA conversion, 335–337
Visual Studio add-ins, 337–338
XML editor, 202–203, 206–207
XML file, using directly, 214–218
XML schema, 204–205

Microsoft Developer Network (MSDN)
MSDN and other print magazines, 383
Web site, 377

Microsoft Excel applications
button to access form, 88–89
combining VBA and Visual Studio, 165
context menus, relying on, 322–323

393Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 393

Microsoft Excel applications (continued)
described, 163
Design Mode toggle button, 191
equations, choosing, 167–168
Home tab, 27
new version, 28–29
protection, 189
sample RibbonX tab, 50–52
task panes, 323
template, saving document as, 189–190
variety of, 164
VBA conversion, 164, 334–335
Visual Studio, 164

Microsoft Excel data entry forms
content, 192–194
controls, 188
cost, calculating, 198–199
creating, 187
date, validating, 159–160
Design Mode, fields, 191
employee selections, defining, 195–198
flexible, providing, 170
grid lines, 190–191
protection options, 189
Ribbon code, adding, 192
from template, 189–190
worksheet linkage, 194–195

Microsoft Excel nonstandard equations tab
calculation, performing, 174–175
described, 165–166
entered data, obtaining, 172–174
equation type, choosing, 167–168
multiple Ribbon elements, 168–172
starting element, 166

Microsoft Excel redundant calculations
code, creating, 179–180
data identification requirements, 186–187
described, 176–177
dialog boxes, designing, 178–179
global and local variables, 185–186
linkages to existing data, 180–182
loop, 183–186
problem solution, defining, 177–178
procedure, choosing, 182–183

Microsoft Office
customization, rate of, 72
existing version, hanging onto, 12–13
icons, obtaining list of, 67–68

interface changes, 323
new features, using, 320
Quick Access Toolbar, 324
reusing code, 372
Ribbon support, 13–16
RibbonCustomizer utility, 380–381
tab, creating, 25
VBA applications, converting to VB.NET,

355–356
Web resources, 379
workflow solutions, designing, 366–367

Microsoft Office Compatibility Pack, 16–17
Microsoft Office e-mail handling

adding to task, 258–259
caller’s class, detecting, 239–241
closing task, 259–260
copy, creating, 245–246
default project, 237–238
defining task, 253–258
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
multiple class issues, 247–251
reading versus responding, 237
supplemental information, 258–259
task-creation interface, 251–253
text, turning into task entry, 251–253

Microsoft Office Fluent Ribbon Developer
Portal, 376

Microsoft Office mail-management tab
caller’s class, detecting, 239–241
copy, creating, 245–246
default project, 237–238
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
reading versus responding, 237

Microsoft Office Migration Planning
Manager

command line interface, 18
described, 17
scanning tools, 18–19

Microsoft Office 2003 updates, 16, 339–341
Microsoft Office 2007

Access, 29
common Ribbon elements, 27–28
document, saving, 85
Excel, 28–29

394 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 394

Outlook, 29–30
PowerPoint, 30
VBA conversion, 341–342
Word, 28

Microsoft Office 2007 Custom UI Editor
Access unavailability, 202
callback subs, automatically generating,

76–77
content callbacks, 64
graphics, 75–76
RibbonX elements, 64–66

Microsoft Office XP
updates, 16
VBA conversion, 339–341

Microsoft Outlook applications. See also
e-mail handling; mail-management tab,
Outlook

accessing add-ins, 236
communications problems, avoiding, 239
data management, 236
messages, viewing at certain time

interval, 131
new version, 29–30
options, user selecting, 369
user data, obtaining, 274–275
VBA, lack of support for, 235
VBA conversion, 337–339
Visual Studio add-ins, 236

Microsoft PowerPoint applications
built-in property values, 272–273
constant data, supporting, 278–280
creating initial slide, 268–271
custom presentation tab, 263–267
custom properties, saving, 271–272
custom property values, 273–274
described, 261–262
ending, providing presentation, 280–283
Home tab, 27
initial slide, importance of, 267–268
new version, 30
optional slides, 276–278
template, saving and using, 283–284
template, usefulness of, 262–263
user data, obtaining from Outlook,

274–275
VBA conversion, 334–335

Microsoft Windows 95, 350

Microsoft Windows Vista
help (HLP) files, rewriting, 219–220
Visual Studio, installing, 96–97
Visual Studio appearance, 350

Microsoft Windows XP, 350
Microsoft Word applications. See also

Letter/Memo tab
described, 121–122
envelopes, 142–145
Home tab, 27
labels, 145
new version, 28
Quick Style Set, modifying and storing in

template, 325
Styles group user hint, 43
Table Tools Contextual Tabset, 37–38
VBA, 122–123
VBA conversion, 334–335
Visual Studio, 123

Microsoft Word forms
Content Controls versus Legacy

Controls, 150
creating, 147–149
date, including, 159–161
flow of information, 146–147
new document, creating, 154–156
physical presentation, 151
selecting, 150
tab, 146
template information for display, 152–154
Templates variable and interaction,

151–152
user information, adding, 156–159

Microsoft Word Letter/Memo tab
CC, routing, and approval requirements,

139–142
custom envelope output, 143–145
dates, 133–136
described, 123–124
document type, changing, 126–127
greeting recipient and adding signature,

138–139
labels and images, modifying, 125–126
recipient, adding, 129–133
restoring document type after Ribbon

loads, 128
sender, adding, 136–138

395Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 395

Microsoft Word Letter/Memo tab (continued)
style, setting, 124–125
workflow, 366

Midtown Computer Systems Enterprise
Web site, 379

MiniToolbar, 38–39
mockups, importance of, 357
Most Valuable Players (MVPs),

Microsoft, 378
MSDN (Microsoft Developer Network)

MSDN and other print magazines, 383
Web site, 377

• N •
names

controls, 148
RibbonX, effective use of, 40

namespaces
defining, 25
requirement for, 23

native code modules, 361
.NET framework, assemblies, 349
.NET Programmability Support option,

installing, 95–98
news sources, 377–378
non-English forums, 378
nonstandard equations tab

calculation, performing, 174–175
described, 165–166
entered data, obtaining, 172–174
equation type, choosing, 167–168
multiple Ribbon elements, 168–172
starting element, 166

Non-Visual Studio Tools for Office
(VSTO), 378

novice users
alternatives, 368
targeted solutions, 367

numbers
converting (Int32.Parse()

method), 174
forms, 199
VBA formats, 176

• O •
objects

Component Object Model (COM), 74
Document Object Model (DOM)

document object, 217
RibbonX elements versus, 59

Office (Microsoft)
customization, rate of, 72
existing version, hanging onto, 12–13
icons, obtaining list of, 67–68
interface changes, 323
new features, using, 320
Quick Access Toolbar, 324
reusing code, 372
Ribbon support, 13–16
RibbonCustomizer utility, 380–381
tab, creating, 25
VBA applications, converting to VB.NET,

355–356
Web resources, 379
workflow solutions, designing, 366–367

Office (Microsoft) e-mail handling
adding to task, 258–259
caller’s class, detecting, 239–241
closing task, 259–260
copy, creating, 245–246
default project, 237–238
defining task, 253–258
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
multiple class issues, 247–251
reading versus responding, 237
supplemental information, 258–259
task-creation interface, 251–253
text, turning into task entry, 251–253

Office (Microsoft) mail-management tab
caller’s class, detecting, 239–241
copy, creating, 245–246
default project, 237–238
draft, saving as, 246–247
filing interface, designing, 241–243
folder list, obtaining, 243–245
reading versus responding, 237

396 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 396

Office Compatibility Pack (Microsoft),
16–17

Office Fluent Ribbon Developer Portal
(Microsoft), 376

Office menu
adding items to, 83–84
controls, repurposing, 85–86
modifying with Visual Studio, 114–116
tasks, caution against adding to, 37

Office Migration Planning Manager
(Microsoft)

command line interface, 18
described, 17
scanning tools, 18–19

Office 2003 (Microsoft) updates,
16, 339–341

Office 2007 (Microsoft)
Access, 29
common Ribbon elements, 27–28
document, saving, 85
Excel, 28–29
Outlook, 29–30
PowerPoint, 30
VBA conversion, 341–342
Word, 28

Office 2007 (Microsoft) Custom UI Editor
Access unavailability, 202
callback subs, automatically generating,

76–77
content callbacks, 64
graphics, 75–76
RibbonX elements, 64–66

Office XP (Microsoft)
updates, 16
VBA conversion, 339–341

onAction
attribute, 26, 64
callback, 80
element, 26–27

onChange attribute, 64
onLoad attribute, 64
Open Packaging Convention, 382
OpenXMLDeveloper.org, 382–383
operation, 292
Orcas, 348

order, button, 42
organizational aids, Ribbon X, 368–369
OSQL utility, 21–22
Outlook (Microsoft) applications. See also

e-mail handling; mail-management tab,
Outlook

accessing add-ins, 236
communications problems, avoiding, 239
data management, 236
messages, viewing at certain time

interval, 131
new version, 29–30
options, user selecting, 369
user data, obtaining, 274–275
VBA, lack of support for, 235
VBA conversion, 337–339
Visual Studio add-ins, 236

• P •
Page Layout tab, 28
Paint, creating icons with, 68
Paint.NET graphics editor, 69
parallelism, 340–341
Percentage number format, 176
Personal Folders, Outlook, 243
pictures

Custom UI Editor, 75–76
RibbonX and Visual Studio, 107–109
toolbar buttons, 315–316
VBA, 74
Word, 123

Platform Invoke (PInvoke)
methods, 352

PMT equation, 169
PNG file type

buttons, 42, 69
templates, 154

PowerPoint (Microsoft) applications
built-in property values, 272–273
constant data, supporting, 278–280
creating initial slide, 268–271
custom presentation tab, 263–267
custom properties, saving, 271–272

397Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 397

PowerPoint (Microsoft) applications
(continued)

custom property values, 273–274
described, 261–262
ending, providing presentation, 280–283
Home tab, 27
initial slide, importance of, 267–268
new version, 30
optional slides, 276–278
template, saving and using, 283–284
template, uses for, 262–263
user data, obtaining from Outlook,

274–275
VBA conversion, 334–335

Presentation ML Web site, 383
printing labels to document, 145–146
procedure, redundant calculations,

182–183
project, defining, 100–101
properties, custom, 271–272
property values (PowerPoint)

built-in, 272–273
custom, 273–274

protection
Excel forms, 189
numbers into forms, 199
Word documents, 149

PSchmid.net tools, examples, and
products, 379–380

public versus private Web services,
287–288

public-use equations. See nonstandard
equations tab

pushbutton
onAction attribute, 26
size, 26

• Q •
Quick Access Toolbar (QAT)

design rules, 35
Office, 324
VBA conversion, 331–333

Quick Style Set, modifying and storing in
template, 325

• R •
rate values, converting, 175
reading e-mail, 237
recipient

greeting in letter, 138–139
Letter/Memo tab, adding, 129–133

redundant calculations
code, creating, 179–180
data identification requirements, 186–187
described, 176–177
dialog boxes, designing, 178–179
global and local variables, 185–186
linkages to existing data, 180–182
loop, 183–186
problem solution, defining, 177–178
procedure, choosing, 182–183

References tab, 28
Registry, removing DLL entries, 106
report, expense

cost calculations, 198–199
disappearing and reappearing fields, 194
Employee Name field, 192–194
employee selections, defining, 195–198

REpresentational State Transfer (REST), 302
repurposing controls

described, 39, 75, 107
sample code, 112

Resource Hacker, 316
resources

SmartTag, 354
task panes, 353–354
VBA, converting to VB.NET, 356–357

resources, RibbonX
answers from other sources, 379
Microsoft blogs, 377
Microsoft Developer Network, 376
Microsoft Forums, 378
MSDN and other print magazines, 383
news sources, 377–378
OpenXMLDeveloper.org, 382–383
PSchmid.net tools, examples, and

products, 379–380
RibbonCustomizer, 380–382
Technorati blogs, 382

398 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 398

responding to e-mail, 237
REST (REpresentational State

Transfer), 302
Restrict Formatting and Editing

task pane, 149
return address, omitting from

envelope, 145
reverse order, XML file entries, 222
Review tab, 28
Ribbon

benefits of using, 12–13, 373
creating from scratch with Visual Studio,

116–117
custom templates, 12
history of, 11–12
macros, defining in Access

applications, 208
Office Compatibility Pack, 16–17
Office Migration Planning Manager, 17–23
Office support, 13–16
training users to use, 311–313
XML information, 23

RibbonCustomizer utility, 312, 380–381
ribbon.Invalidate() call, 172
RibbonX

alternatives for common tasks, 368
hybrid applications, 370–371
namespaces, 23
organizational aids, 368–369
reusing code, 372
support and training costs, 373
user needs, targeting specific, 367
user task criteria, 371–372
user-assisted application integration, 369
VBA conversion, 333–334
Web services, 370
workflow solution, 366–367

RibbonX and Visual Studio
add-ins, 92–93
code, adding, 102–103
described, 91–92
documents, 93
dynamic document content, 93–94
end users, creating package for, 103–104
files, adding, 101–102
graphics, handling, 107–109

loading Ribbon, performing tasks while,
109–110

managed code, advantages of, 94–95
modifying Office menu, 114–116
.NET Programmability Support option,

installing, 95–98
new tabs, groups, and controls, 110
order of entries, 44
problem layout, 45–46
project, defining, 100–101
removing add-in, 104–106
repurposing tabs, groups, and controls,

111–114
Ribbon, creating from scratch, 116–117
secure environment, creating, 94
tasks to code, 106–107
templates, 93
VBA versus, 99–100
VB.NET and C#, 98–99

RibbonX design
Contextual Tabsets, 37–38
controls, choosing, 41–42
described, 31–32, 39
elements goals, 32–34
existing Office features, 36
features, hiding, 43
MiniToolbar, 38–39
names, effective use of, 40
number of items on tab, 40–41
Office Menu, 36–37
tooltips, 34–36
user hints, 43
user’s perspective on groups, 41

RibbonX elements
bitmaps versus icons, 69
control attributes, 59–61
control callbacks, 61–64
control graphics tools, 68–69
controls, choosing, 26
controls, coding, 28
controls, defining, 27, 55
controls overview, 56–58
described, 23–24, 49
groups, 26, 52–55
objects versus, 59
Office icons, obtaining list of, 67–68

399Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 399

RibbonX elements (continued)
Office 2007 Custom UI Editor, 64–66
tab, 24–25, 50–52
32-bit images, 70
transparency, 69–70

RibbonX groups
elements, 52–55
scripts (VBA), 77–78
Visual Studio, 110

RibbonX resources
answers from other sources, 379
Microsoft blogs, 377
Microsoft Developer Network, 376
Microsoft Forums, 378
MSDN and other print magazines, 383
news sources, 377–378
OpenXMLDeveloper.org, 382–383
PSchmid.net tools, examples, and

products, 379–380
RibbonCustomizer, 380–382
Technorati blogs, 382

RibbonX scripts (VBA)
basic tab, 75–76
callback subs, automatically generating,

76–77
creating Ribbon from scratch, 87–88
custom user interface, 79–81
described, 71
developers, 72–73
forms, adding, 88–90
groups and controls, 77–78
identifier, obtaining for existing tab,

group, or control, 78–79
limitations, 73–75
Office menu, adding items to, 83–84
Office menu controls, repurposing, 85–86
tasks, performing when Ribbon loads,

86–87
user input, reacting to, 81–82

routing requirements, 139–142
row size, optimal, 192
RTF (Rich Text Format), 255

• S •
saving

database file in new format, 218
e-mail as draft, 246–247
Excel document as template, 189–190

form as template, 149
macros, 72–73
Office 2007 document, 85
PowerPoint custom properties, 271–272
PowerPoint template, 283–284

scanning tools, Office Migration Planning
Manager, 18–19

schema, 205
Schneider, Robert (SQL Server 2005 Express

Edition For Dummies), 19
screenTip

attribute, 60
group, 53, 55

scripts, RibbonX (VBA)
basic tab, 75–76
callback subs, automatically generating,

76–77
creating Ribbon from scratch, 87–88
custom user interface, 79–81
described, 71
developers, 72–73
forms, adding, 88–90
groups and controls, 77–78
identifier, obtaining for existing tab,

group, or control, 78–79
limitations, 73–75
Office menu, adding items to, 83–84
Office menu controls, repurposing, 85–86
tasks, performing when Ribbon loads,

86–87
user input, reacting to, 81–82

Search Criteria group, 295
SearchIndexes, 292–293
secure environment, creating, 94
sender, adding to Letter/Memo tab, 136–138
SetRateText()method, 182
SetSelectedTerm() method, 182
showImage attribute, 60
showItemImage attribute, 60
showItemLabel attribute, 60
showLabel attribute, 61
signature, adding to letter, 138–139
Simple Object Access Protocol (SOAP),

302–305
Site Feedback forum, 378
size

bitmap button images, 69
button, 42, 56, 143
pushbutton, 26

400 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 400

size attribute, 61
sizeString attribute, 61
slide

initial, creating, 268–271
initial, importance of, 267–268
optional, 276–278
Slideshow tab, 30

Slideshow tab, 30
SmartTag

conversion issues, 346–347
resources, 354

Softpedia graphics file usage article, 378
Software Development Kit, eBay Web

service, 285
Solution Explorer

multiple Outlook class issues, 248–249
Visual Studio conversion, 349

Sort Criterion group, 296
Split Button

controls, 42
RibbonX element (splitButton), 58

Spreadsheet ML Web site, 382
SQL Server

database, creating, 20–21
downloading, 19
Web services, 307

SQL Server 2005 Express Edition For
Dummies (Schneider), 19

SQL Server 2005 For Dummies (Watt), 19
SqlXml 3.0 Service Pack 3 (SP3) add-in, 19
Start group, 166
StartFromScratch mode, QAT, 34
styles

Letter/Memo tab, 124–125
Visual Studio conversion, 350

Styles gallery, Home tab, 325
Styles group, Word, 43
superTip attribute, 61
supertip group, 53, 55
super-tooltip, 35
system table, USysRibbons, 209–211

• T •
tab

Access applications, adding, 207–208
creating with group and control, using

Custom UI Editor, 65–66
described, 12

groups as part of, 24
number of items on, 40–41
RibbonX and Visual Studio, 110
RibbonX elements, creating, 50–52

table
exporting to new database, 212
system, loading Ribbon in, 209–211
XML, loading as part of, 208

Table Selection field, filling with data,
228–230

tag attribute, 61
TakeFocusOnClick property, 315
targeted solutions, menus and toolbars

versus, 367
task entry, turning e-mail text into, 251–253
task pane

Excel, 323
resources, 353–354
Visual Studio, 347

tasks
Office menu, caution against adding to, 37
performing when Ribbon loads, 86–87
RibbonX and Visual Studio, performing

while loading Ribbon, 109–110
solutions based on, 358–359

Technorati blogs, 382
telephone number, adding to task, 259
template

caution against modifying while open, 74
custom, 12
data entry forms, 189–190
Excel, saving document as, 189–190
Excel forms, 189
features, 124
form, saving as, 149
PNG file type, 154
PowerPoint, saving and using, 283–284
PowerPoint applications, 262–263
RibbonX and Visual Studio, 93
Visual Studio, 99
Word forms information for display,

152–154
Word forms variable and interaction,

151–152
TempVars() function, 229
text

e-mail, defining task, 253–258
e-mail, turning into task entry, 251–253

third-party licensing, RibbonX, 13

401Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 401

third-party tools
Add-in Express Web site, 354
menus and toolbars, mimicking, 317

32-bit images, 70
ThisAddIn class, 152
time estimate, conversion, 338
time interval, viewing Outlook messages, 131
title attribute, 61
Toggle Button

callback control, 62
code sample, 80
control (toggleButton), 58
current state, showing, 82
described, 42
Excel equations, choosing, 167–168
getPressed callback, 80
Home tab, 207–208
onAction callback, 80

toolbar buttons. See buttons
Toolbar Toggle add-in, 317
toolbars

conversion issues, 328, 334–335
forms, substituting, 313–316, 318
in QAT, 332
inadequacy of, 13–14
targeted solutions versus, 367
third-party tools, mimicking with, 317
VBA conversion, 330–331
Visual Studio conversion, 358

tooltips, RibbonX design, 34–36
transition, easing with RibbonCustomizer,

312
transparency, RibbonX elements, 69–70
tutorials

task panes, 354
XML, 23

2007 Office System: XML Schema
Reference, 54

• U •
underlining

normal versus alternative function,
113–114

Toggle Button, 82
United States SearchIndexes, 292–293
updates

Office XP or Office 2003, 16
Ribbon interface, 15

URL, Amazon Web Services, 290
user customization, Quick Access Toolbar

(QAT), 35
user data, obtaining from Outlook, 274–275
user interface

conversion issues, 328
Ribbons, adding from table, 213–214
RibbonX, 73
RibbonX scripts (VBA), 79–81

user selections for incoming mail
closing task, 259–260
defining task, 253–258
multiple class issues, 247–251
supplemental information, 258–259
task-creation interface, 251–253

users
information, adding to Word forms,

156–159
RibbonX scripts (VBA), reacting to input,

81–82
specific needs, targeting, 367
training to use Ribbon, 311–313
transition, easing with RibbonCustomizer,

312
workflow solution, 366–367

users, meeting needs of. See
RibbonX design

USysRibbons, 209–211

• V •
validating data, 159–160
variables, global and local, 185–186
VBA

Access add-ins, 337
Excel applications, 164–165
graphics, 74
lack of support for, 235
number formats, 176
RibbonX and Visual Studio versus, 99–100
32-bit images, 70
VB.NET, converting to, 355–356
Visual Studio conversion, 357–358
Word applications, 122–123

VBA conversion
Access conversion, 335–337
common code, 342–343
conversion, issues behind, 328–329
conversion strategy, 329–330

402 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 402

described, 327
existing menus and toolbars, 330–331
forms, 330
Office 2007 user, 341–342
Office XP/2003 user, 339–341
Outlook conversion, 337–339
Quick Access Toolbar (QAT), 331–333
RibbonX changes, 333–334
toolbars and menus, designing rather

than creating, 331
Word, Excel, and PowerPoint conversion,

334–335
VBA forum, 378
VBA scripts, RibbonX

basic tab, 75–76
callback subs, automatically generating,

76–77
creating Ribbon from scratch, 87–88
custom user interface, 79–81
described, 71
developers, 72–73
forms, adding, 88–90
groups and controls, 77–78
identifier, obtaining for existing tab,

group, or control, 78–79
limitations, 73–75
Office menu, adding items to, 83–84
Office menu controls, repurposing, 85–86
tasks, performing when Ribbon loads,

86–87
user input, reacting to, 81–82

VB.NET
as Ribbon storage solution, 336
RibbonX and Visual Studio, 98–99
VBA solutions, converting, 355–356

versions, older
Access, 29, 335–337
documents, saving as, 85
Office Compatibility Pack, 16–17

visible attribute, 61
Visual Studio

Access add-ins, 337–338
Excel applications, 164–165
installing, 96–97
Outlook applications, 236
32-bit images, 70

Visual Studio and RibbonX
add-ins, 92–93
code, adding, 102–103

described, 91–92
documents, 93
dynamic document content, 93–94
end users, creating package for, 103–104
files, adding, 101–102
graphics, handling, 107–109
loading Ribbon, performing tasks while,

109–110
managed code, advantages of, 94–95
modifying Office menu, 114–116
.NET Programmability Support option,

installing, 95–98
new tabs, groups, and controls, 110
order of entries, 44
problem layout, 45–46
project, defining, 100–101
removing add-in, 104–106
repurposing tabs, groups, and controls,

111–114
Ribbon, creating from scratch, 116–117
secure environment, creating, 94
tasks to code, 106–107
templates, 93
VBA versus, 99–100
VB.NET and C#, 98–99

Visual Studio conversion
considering, 348–350
customizing, 360–361
described, 345–346
existing add-ins from RibbonX, 346–347
feasibility, 356
form-based toolbars, 353
functions, preserving old, 355
menus and toolbars, 358
re-creating projects, 350–352
reviewing add-ins, 352
for specific applications, 359–360
styles, 350
task pane resources, 353–354
VBA walkthrough, 357–358
VB.NET alternative, 356–357
workflows and task-based solutions,

358–359
Visual Studio Conversion Wizard, 348–349
Visual Studio forum, 378
Visual Studio Tools for Office 2005 Second

Edition, 97–98
VSTO (Non-Visual Studio Tools for Office), 37

403Index

25_169940 bindex.qxp 7/13/07 10:37 PM Page 403

• W •
warning

error messages, XML Notepad, 204–205
when saving document as older Word

version, 85
Watt, Andrew (SQL Server 2005 For

Dummies), 19
Web services. See also Amazon.com

described, 285
hiding, 286
private, 307
public versus private, 287–288
Ribbon X, 370

Windows 95 (Microsoft), 350
Windows Vista (Microsoft)

help (HLP) files, rewriting, 219–220
Visual Studio, installing, 96–97
Visual Studio appearance, 350

Windows XP (Microsoft), 350
Word (Microsoft) applications. See also

Letter/Memo tab
described, 121–122
envelopes, 142–145
Home tab, 27
labels, 145
new version, 28
Quick Style Set, modifying and storing in

template, 325
Styles group user hint, 43
Table Tools Contextual Tabset, 37–38
VBA, 122–123
VBA conversion, 334–335
Visual Studio, 123

Word (Microsoft) forms
Content Controls versus Legacy

Controls, 150
creating, 147–149
date, including, 159–161
flow of information, 146–147
new document, creating, 154–156
physical presentation, 151
selecting, 150
tab, 146
template information for display, 152–154

Templates variable and interaction,
151–152

user information, adding, 156–159
Word (Microsoft) Letter/Memo tab

CC, routing, and approval requirements,
139–142

custom envelope output, 143–145
dates, 133–136
described, 123–124
document type, changing, 126–127
greeting recipient and adding signature,

138–139
labels and images, modifying, 125–126
recipient, adding, 129–133
restoring document type after Ribbon

loads, 128
sender, adding, 136–138
style, setting, 124–125
workflow, 366

WordprocessingML Web site, 382
workflow solutions

designing, 366–367
Visual Studio conversion, 358–359

worksheet
cell range linkage, 194–195
external data access, 29
heading, 186

• X •
XML (eXtensible Markup Language)

button image code, 44
file, using directly in Access, 214–218
group, creating (<group> element), 25
multiple Outlook class issues, 247–248
new Ribbon element, creating, 25
problem solution, defining, 177
schema in Access applications, 204–205
SQL Server version, 19
table, loading as part of, 208

XML (eXtensible Markup Language)
Notepad 2007

correct entries, ensuring, 205
downloading, 203
error messages, 204–205
schema, removing, 205

404 RibbonX For Dummies

25_169940 bindex.qxp 7/13/07 10:37 PM Page 404

Notes

25_169940 bindex.qxp 7/13/07 10:37 PM Page 405

Notes

25_169940 bindex.qxp 7/13/07 10:37 PM Page 406

Notes

25_169940 bindex.qxp 7/13/07 10:37 PM Page 407

Notes

25_169940 bindex.qxp 7/13/07 10:37 PM Page 408

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

26_169940 bob.qxp 7/13/07 10:38 PM Page 409

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

26_169940 bob.qxp 7/13/07 10:38 PM Page 410

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

26_169940 bob.qxp 7/13/07 10:38 PM Page 411

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

26_169940 bob.qxp 7/13/07 10:38 PM Page 412

	RibbonX For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You Should Read
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: An Overview of RibbonX
	Chapter 1: Getting to Know the Ribbon
	Understanding the Office Ribbon
	Defining the RibbonX Elements
	Considering the Ribbon in Office 2007

	Chapter 2: Creating an Effective RibbonX Design
	Developing RibbonX Element Goals
	Considering RibbonX Element Accessibility and Visibility
	Defining an Effective RibbonX Design
	Understanding the XML Connection

	Part II: Interacting with the Ribbon
	Chapter 3: Designing New RibbonX Elements
	Creating a RibbonX Tab
	Using Groups to Your Advantage
	Defining the RibbonX Controls
	Developing with the Office 2007 Custom UI Editor
	Creating Custom Control Graphics

	Chapter 4: Writing RibbonX Scripts
	Understanding RibbonX Basics for VBA Developers
	Considering the RibbonX Limitations in VBA
	Creating a Basic Tab
	Writing the Scripts
	Creating a Ribbon Using startFromScratch Mode
	Adding Forms Instead of RibbonX Controls

	Chapter 5: RibbonX and Visual Studio
	Defining the Advantages of Using Visual Studio
	Creating the RibbonX Environment in Visual Studio
	Understanding RibbonX Basics for VB. NET and C# Developers
	Choosing Between VBA and Visual Studio
	Creating a Basic Tab
	Writing Code Behind for RibbonX
	Creating a Ribbon Using startFromScratch Mode

	Part III: Creating New RibbonX Applications
	Chapter 6: Developing Business Applications for Word
	Getting Started with Word Applications
	Creating a Letter/Memo Tab
	Automating Envelopes
	Creating Labels
	Filling Out Forms

	Chapter 7: Developing Business Applications for Excel
	Getting Started with Excel Applications
	Creating a Nonstandard Equations Tab
	Performing Redundant Calculations
	Automating Data Entry with Forms

	Chapter 8: Developing Business Applications for Access
	Getting Started with Access Applications
	Creating the XML File
	Loading the Ribbon Changes
	Obtaining the Sample Database
	Generating Temporary Tables or Filtered Results

	Chapter 9: Developing Business Applications for Outlook
	Getting Started with Outlook Applications
	Creating a Mail-Management Tab
	Processing Incoming Mail Based on User Selections

	Chapter 10: Developing Business Applications for PowerPoint
	Getting Started with PowerPoint Applications
	Defining the Custom Presentation Tab Interface
	Creating the Initial Slide
	Adding the Optional Slide Elements
	Supporting Constant Data
	Providing a Presentation Ending
	Saving and Using the Template

	Chapter 11: Working with Web Services
	Getting Started with Web Service Applications
	Understanding Public and Private Web Service Differences
	Creating an Amazon. com Custom Application

	Part IV: Converting Existing Toolbars and Macros
	Chapter 12: Simple Fixes for Older Menus and Toolbars
	Training Users for the New Paradigm
	Substituting Forms for Menus and Toolbars
	Relying on the Menu Control
	Using Existing Office Features
	Performing Simple Interface Changes and Storing Them

	Chapter 13: Conversion Techniques for VBA Users
	Defining the Issues behind VBA Conversion
	Creating a Conversion Strategy
	Developing a List of RibbonX Changes
	Creating a Conversion Solution for Word, Excel, and PowerPoint
	Creating a Conversion Solution for Access
	Creating a Conversion Solution for Outlook
	Designing Parallel Version Solutions

	Chapter 14: Conversion Techniques for Visual Studio Users
	Using Existing Add-Ins
	Defining a Conversion Strategy
	Converting VBA Solutions
	Considering Application-specific Conversion Requirements
	Creating Custom Conversions When Necessary

	Part V: The Part of Tens
	Chapter 15: Ten New Tasks You Can Perform with RibbonX
	Creating a Workflow Solution
	Targeting Specific User Needs
	Defining Alternatives for Common Tasks
	Developing Organizational Aids
	Performing User-Assisted Application Integration
	Working with Web Services
	Working with Hybrid Applications
	Considering the User Task Criteria
	Using Code More Than Once
	Reining In Support and Training Costs

	Chapter 16: Ten RibbonX Resources
	Starting with the Microsoft Developer Network
	Getting Tips from the Microsoft Blogs
	Finding Other News Sources for RibbonX
	Interacting with Others Through the Microsoft Forums
	Obtaining Answers from Other Sources
	Getting Tools, Examples, and Products from PSchmid. net
	Working with the RibbonCustomizer
	Using Blogs to Your Advantage with Technorati
	Using OpenXMLDeveloper. org
	Using MSDN and Other Print Magazines

	Index

