
by Allen G. Taylor

SQL
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01 119280 ffirs.qxp 5/23/07 6:07 PM Page iii

01 119280 ffirs.qxp 5/23/07 6:07 PM Page ii

SQL
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01 119280 ffirs.qxp 5/23/07 6:07 PM Page i

01 119280 ffirs.qxp 5/23/07 6:07 PM Page ii

by Allen G. Taylor

SQL
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01 119280 ffirs.qxp 5/23/07 6:07 PM Page iii

SQL All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2007926383

ISBN: 978-0-470-11928-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01 119280 ffirs.qxp 5/23/07 6:07 PM Page iv

www.wiley.com

About the Author
Allen G. Taylor is a 30-year veteran of the computer industry and the author
of 25 books, including SQL For Dummies, Crystal Reports 10 For Dummies,
Database Development For Dummies, Access 2003 Power Programming with
VBA, and SQL Weekend Crash Course. He lectures internationally on data-
bases, networks, innovation, and entrepreneurship. He also teaches database
development through a leading online education provider and teaches micro-
processor design at Portland State University. For the latest news on Allen’s
activities, check out www.DatabaseCentral.Info. You can contact Allen at
allen.taylor@ieee.org.

01 119280 ffirs.qxp 5/23/07 6:07 PM Page v

01 119280 ffirs.qxp 5/23/07 6:07 PM Page vi

Dedication
This book is dedicated to Joyce Carolyn Taylor, who still puts up with me
after all these years.

01 119280 ffirs.qxp 5/23/07 6:07 PM Page vii

01 119280 ffirs.qxp 5/23/07 6:07 PM Page viii

Author’s Acknowledgments
First and foremost, I would like to acknowledge the help of Jim Melton,
editor of the ISO/ANSI specification for SQL. Without his untiring efforts, this
book, and indeed SQL itself as an international standard, would be of much
less value. Andrew Eisenberg has also contributed to my knowledge of SQL
through his writing. I would also like to thank my project editor, Nicole
Sholly, and my acquisitions editor, Kyle Looper, for their key contributions to
the production of this book. Thanks also to my agent, Carole McClendon of
Waterside Productions, for her support of my career.

01 119280 ffirs.qxp 5/23/07 6:07 PM Page ix

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Nicole Sholly

Acquisitions Editor: Kyle Looper

Copy Editor: Linda Morris

Technical Editor: Robert Schneider

Editorial Manager: Kevin Kirschner

Media Development and Quality Assurance:
Angela Denny, Kate Jenkins,
Steven Kudirka, Kit Malone

Media Development Coordinator:
Jenny Swisher

Media Project Supervisor:
Laura Moss-Hollister

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Kristie Rees

Layout and Graphics: Carl Byers,
Carrie A. Foster, Denny Hager,
Stephanie D. Jumper, Heather Ryan

Proofreaders: Laura Albert, Aptara,
John Greenough

Indexer: Aptara

Anniversary Logo Design: Richard Pacifico

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01 119280 ffirs.qxp 5/23/07 6:07 PM Page x

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: SQL Concepts..7
Chapter 1: Relational Database Basics ..9
Chapter 2: Modeling a System ..27
Chapter 3: SQL Overview ..49
Chapter 4: SQL and the Relational Model ...59
Chapter 5: The Major Components of SQL ...67
Chapter 6: SQL Characteristics ..89

Book II: Relational Database Development117
Chapter 1: System Development Overview ..119
Chapter 2: Building a Database Model...135
Chapter 3: Balancing Performance and Correctness...159
Chapter 4: Creating a Database with SQL..189

Book III: SQL Queries..201
Chapter 1: Values, Variables, Functions, and Expressions..203
Chapter 2: SELECT Statements and Modifying Clauses ..227
Chapter 3: Querying Multiple Tables with Subqueries..269
Chapter 4: Querying Multiple Tables with Relational Operators.............................297
Chapter 5: Cursors ...315

Book IV: Data Security..325
Chapter 1: Protecting Against Hardware Failure and External Threats327
Chapter 2: Protecting Against User Errors and Conflicts..343
Chapter 3: Assigning Access Privileges...371
Chapter 4: Error Handling ...383

Book V: SQL and Programming397
Chapter 1: Database Development Environments ...399
Chapter 2: Interfacing SQL to a Procedural Language...403
Chapter 3: Using SQL in an Application Program...409
Chapter 4: Designing a Sample Application ..423
Chapter 5: Building a Sample Application...443
Chapter 6: SQL’s Procedural Capabilities..459
Chapter 7: Connecting to a Remote Database ..475

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xi

Book VI: SQL and XML..489
Chapter 1: XML/SQL Basics...491
Chapter 2: Storing XML Data in SQL Tables..515
Chapter 3: Retrieving Data from XML Documents ...535

Book VII: Database Tuning Overview..........................551
Chapter 1: Tuning the Database ...553
Chapter 2: Tuning the Environment...565
Chapter 3: Finding and Eliminating Bottlenecks ..587

Book VIII: Appendixes...619
Appendix A: SQL:2003 Reserved Words ..621
Appendix B: Glossary ..629

Index ...639

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xii

Table of Contents
Introduction..1

About This Book...1
Foolish Assumptions ...2
Conventions Used in This Book ...2
What You Don’t Have to Read ..3
How This Book Is Organized...3

Book I: SQL Concepts...3
Book II: Relational Database Development ...3
Book III: SQL Queries ...4
Book IV: Data Security ...4
Book V: SQL and Programming...4
Book VI: SQL and XML ...4
Book VII: Database Tuning Overview...5
Book VIII: Appendixes..5

Icons Used in This Book..5
Where to Go from Here..6

Book I: SQL Concepts ..7

Chapter 1: Relational Database Basics .9
Data Files and Databases ..9

Irreducible complexity...10
The complex program/simple data organization10
The simple program/complex data organization12

Which type of organization is better?..12
Databases, Queries, and Database Applications13

Making data useful ...14
Retrieving the data you want — and only the data you want14

Competing Database Models ..14
The hierarchical database model...15
The network database model ...17
The relational database model ...20

What makes a database relational? ..20
Codd’s Rules..20
Inherent flexibility ..23

The object-oriented database...23
The object-relational database ...23

Why Did the Relational Model Win? ..24

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xiii

SQL All-in-One Desk Reference For Dummiesxiv

Chapter 2: Modeling a System .27
Capturing the Users’ Data Model ...27

Identifying and interviewing stakeholders..27
Reconciling conflicting requirements..28
Obtaining stakeholder buy-in ...29

Translating the Users’ Data Model to a Relational Model29
Entity-Relationship modeling techniques ...29

Entities ...30
Attributes...30
Identifiers...31
Relationships...31

Drawing Entity-Relationship diagrams ..34
Maximum cardinality ...34
Minimum cardinality ..35

Advanced E-R model concepts ...37
Strong entities and weak entities..37
ID-dependent entities ...39
Supertype and subtype entities..39
Incorporating business rules ..40

A simple example of an E-R model ...41
A slightly more complex example ..42
Problems with complex relationships ...46
Simplifying relationships using normalization47
Translating an E-R model into a relational model47

The Relational Database Hierarchy ...47

Chapter 3: SQL Overview .49
Where SQL Came From..49
What SQL Does ...50
The ANSI/ISO SQL Standard..51
What SQL Does Not Do..51
Available Implementations ...52

Microsoft Access ..52
Microsoft SQL Server ...56
IBM DB2 ...56
Oracle...56
InterBase..57
MySQL..57
PostgreSQL..57

Chapter 4: SQL and the Relational Model .59
Sets, Relations, Multisets, and Tables ...59
Functional Dependencies..60
Keys ...61
Views..62

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xiv

Table of Contents xv

Users ..63
Privileges...63
Schemas ..64
Catalogs...64
Connections, Sessions, and Transactions...64
Routines ..65
Paths ..66

Chapter 5: The Major Components of SQL .67
The Data Definition Language (DDL) ...67

The containment hierarchy ..67
Creating tables..68
Specifying columns ..68
Specifying constraints ..69

Column constraints ..70
Table constraints ..71
Assertions..71

Creating other objects ...72
Views ..72
Schemas ...77
Domains ...77

Modifying tables and other objects ...78
Removing tables and other objects ...78

The Data Manipulation Language (DML) ..78
Retrieving data from a database...79
Adding data to a table..80

Adding data the dull and boring way (typing it in)80
Adding incomplete data...81
Adding data in the fastest and most efficient way:

Bypassing typing altogether..81
Updating data in a table ..81
Deleting data from a table ...84
Updating views ...85

The Data Control Language (DCL) ...86
Granting access privileges ..86
Revoking access privileges ...87
Preserving database integrity with transactions87

Chapter 6: SQL Characteristics .89
Executing SQL Statements ..89

Interactive SQL ...90
Challenges to combining SQL with a host language90
Embedded SQL ...91
Module language ..93

Using Reserved Words Correctly ...94

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xv

SQL All-in-One Desk Reference For Dummiesxvi

SQL’s Data Types ..94
Exact numerics ...95

INTEGER...95
SMALLINT ..96
BIGINT ..96
NUMERIC..96
DECIMAL ..96
BINARY LARGE OBJECT (BLOB)...97

Approximate numerics ..97
REAL ...97
DOUBLE PRECISION ...98
FLOAT...98

Character strings..99
CHARACTER ..99
CHARACTER VARYING ...99
CHARACTER LARGE OBJECT (CLOB)99
NATIONAL CHARACTER, NATIONAL CHARACTER

VARYING, and NATIONAL CHARACTER
LARGE OBJECT..100

Booleans ..101
Datetimes...101

DATE ...101
TIME WITHOUT TIME ZONE..101
TIME WITH TIME ZONE..102
TIMESTAMP WITHOUT TIME ZONE102
TIMESTAMP WITH TIME ZONE ...102

Intervals...103
XML type ...103
Row types ..104
Collection types..105

ARRAY ..105
Multiset ..105

REF types...106
User-defined types ...106

Distinct types ..106
Structured types ...107

Data type summary..109
Handling Null Values..110
Applying Constraints ...111

Column constraints..111
NOT NULL..111
UNIQUE ..112
CHECK ..112

Table constraints..113
Foreign key constraints ...114
Assertions..115

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xvi

Table of Contents xvii

Book II: Relational Database Development117

Chapter 1: System Development Overview .119
The Components of a Database System..119

The database...120
The database engine ..120
The DBMS front end...120
The database application..120
The user...121

The System Development Life Cycle ...121
Definition phase..122
Requirements phase ..123

Establishing requirements: An example123
The users’ data model..124
Statement of Requirements ...124

Evaluation phase ..125
Determining project scope ..126
Reassessing feasibility ...127
Documenting the evaluation phase..127

Design phase ...127
Designing the database..128
The database application ..129
Documenting the design phase...129

Implementation phase ...130
Final documentation and testing phase ..130

Testing the system with sample data.....................................131
Finalizing the documentation..132
Delivering the results (and celebrating)................................132

Maintenance phase ..132

Chapter 2: Building a Database Model .135
Finding and Listening to Interested Parties..135

Your immediate supervisor...136
The users...136
The standards organization ..137
Upper management..137

Building Consensus..138
What do people want, and how badly do they want it?138
Arriving at a consensus ...139
The three-option proposal ..139

The Entity-Relationship Modeling Method...140
Entities ...140
Attributes ..141
Identifiers ..141
Relationships ..142

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xvii

SQL All-in-One Desk Reference For Dummiesxviii

Maximum cardinality ...145
Minimum cardinality..145
Business rules...147

Building a Relational Model ..147
Different worlds, different terminology...147
The relational tradition..147
What exactly is a relation? ..149
Functional dependencies ..149
Keys..150

Being Aware of the Danger of Anomalies ..150
Eliminating anomalies..152
The higher normal forms ..155

The Database Integrity versus Performance Tradeoff156

Chapter 3: Balancing Performance and Correctness 159
Designing a Sample Database ...160

The E-R model for Honest Abe’s ..160
Converting an E-R model into a relational model161
Normalizing a relational model...162
Handling binary relationships ..164
A sample conversion..168

Maintaining Integrity ...170
Entity integrity ..171
Domain integrity...172
Referential integrity ...172

Avoiding Data Corruption ...174
Speeding Data Retrievals ..175

Hierarchical storage...176
Full table scans ...177
How indexes work ..177
Creating the right indexes ...177

Indexes and the ANSI/ISO Standard...178
Index costs ..178
Query type dictates the best index..178

Point query..178
Multipoint query...179
Range query ..179
Prefix match query ...179
Extremal query..179
Ordering query..180
Grouping query...180
Equi-join query..180

Data structures used for indexes ...180
B+ trees ..181
Hash structures...181

Indexes, sparse and dense ..181
Index clustering ..181
Composite indexes...182

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xviii

Table of Contents xix

Index effect on join performance ...183
Table size as an indexing consideration..183
Indexes versus full-table scans...183

Reading SQL Server Execution Plans...183
Robust execution plans ...183
A sample database ...184

A typical query..185
The execution plan...185
Running the Database Engine Tuning Advisor......................185

Hot Tables and Load Balancing..187

Chapter 4: Creating a Database with SQL .189
First Things First: Planning Your Database...189
Building Tables ...190

Locating table rows with keys ..191
Using the CREATE TABLE statement..192

Setting Constraints...193
Column constraints..193
Table constraints..194

Keys and Indexes ...194
Ensuring Data Validity with Domains ..194
Establishing Relationships between Tables ...195
Altering Table Structure ..198
Deleting Tables ...199

Book III: SQL Queries ..201

Chapter 1: Values, Variables, Functions, and Expressions 203
Entering Data Values..203

Row values have multiple parts ...203
Identifying values in a column..204
Literal values don’t change...204

Variables Vary...205
Special Variables Hold Specific Values ..206
Working with Functions...207

Summarizing data with set functions ..207
COUNT ...207
AVG ...208
MAX ..208
MIN ...209
SUM...209

Dissecting data with value functions...209
String value functions ..209
Numeric value functions..212
Datetime value functions...216

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xix

SQL All-in-One Desk Reference For Dummiesxx

Using Expressions ..217
Numeric value expressions ...217
String value expressions..218
Datetime value expressions ..218
Interval value expressions ..219
Boolean value expressions..219
Array value expressions ..220
Conditional value expressions..220

Handling different cases ..221
The NULLIF special CASE ..222
Bypassing null values with COALESCE223

Converting data types with a CAST expression223
Casting one SQL data type to another224
Using CAST to overcome data type incompatibilities

between SQL and its host language....................................224
Row value expressions ..225

Chapter 2: SELECT Statements and Modifying Clauses 227
Finding Needles in Haystacks with the SELECT Statement227
Modifying Clauses ..228

FROM clauses..228
WHERE clauses ...229

Comparison predicates..230
BETWEEN...231
IN and NOT IN ...232
LIKE and NOT LIKE...234
SIMILAR..235
NULL...235
ALL, SOME, ANY ...236
EXISTS ..239
UNIQUE ..240
DISTINCT..240
OVERLAPS ...241
MATCH ...241
The MATCH predicate and referential integrity....................243

Logical connectives..245
AND...245
OR ...246
NOT ..247

GROUP BY clauses ...247
HAVING clauses ..249
ORDER BY clauses..249

Tuning Queries ...251
SELECT DISTINCT...252
Temporary tables ...255
The ORDER BY clause..259
The HAVING clause...262
The OR logical connective ..266

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xx

Table of Contents xxi

Chapter 3: Querying Multiple Tables with Subqueries 269
What Is a Subquery? ..269
What Subqueries Do ..269

Subqueries that return multiple values...270
Subqueries that retrieve rows satisfying a condition270
Subqueries that retrieve rows that

don’t satisfy a condition...271
Subqueries that return a single value..272
Quantified subqueries return a single value...................................275
Correlated subqueries ...277

Using a subquery as an existence test...................................278
Introducing a correlated subquery with the IN keyword279
Introducing a correlated subquery

with a comparison operator..279
Correlated subqueries in a HAVING clause281

Using Subqueries in INSERT, DELETE, and UPDATE Statements282
Tuning Considerations for Statements Containing Nested Queries......285
Tuning Correlated Subqueries..290

Chapter 4: Querying Multiple Tables with Relational Operators . . .297
UNION..297

UNION ALL ..299
UNION CORRESPONDING..300

INTERSECT..300
EXCEPT..302
JOINS..303

Cartesian product or cross join..303
Equi-join...305
Natural join..307
Condition join ...307
Column-name join ..308
Inner join ...309
Outer join ..310

Left outer join..310
Right outer join ...312
Full outer join ..313

ON versus WHERE..313
Join Conditions and Clustering Indexes..314

Chapter 5: Cursors .315
Declaring a Cursor ...316

The query expression ..317
Ordering the query result set ...317
Updating table rows ...319
Sensitive versus insensitive cursors..319
Scrolling a cursor ...320

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxi

SQL All-in-One Desk Reference For Dummiesxxii

Opening a Cursor ...320
Fetching Data from a Single Row..322

FETCH syntax..322
Absolute versus relative fetches ..323
Deleting a row ...323
Updating a row..324

Closing a Cursor ...324

Book IV: Data Security ..325

Chapter 1: Protecting Against Hardware
Failure and External Threats .327

What Could Possibly Go Wrong?..327
Equipment failure ...328
Platform instability...329
Database design flaws..330
Data entry error..330
Operator error ..331

Taking Advantage of RAID...331
Striping...332
RAID levels ..332

RAID 0...332
RAID 1...334
RAID 5...334
RAID 10...334
RAID level comparison...335

Backing Up Your System ...335
Preparing for the worst ...335
Full or incremental backup ...336
Frequency..336
Backup maintenance..337

Coping with Internet Threats ...337
Viruses ...337
Worms..338
Denial-of-service attacks ...339
Phishing scams ...339
Zombie spambots...339

Installing Layers of Protection ...340
Network layer firewalls..340
Application layer firewalls...340
Antivirus software ..340
Vulnerabilities, exploits, and patches..341
Education ..341
Alertness..341

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxii

Table of Contents xxiii

Chapter 2: Protecting Against User Errors and Conflicts343
Reducing Data Entry Errors..343

Data types: the first line of defense ...344
Constraints: the second line of defense ..344
Sharp-eyed humans: the third line of defense345

Unreliable Database Design ..345
Programming Errors ..345
Conflicts Arising from Concurrent Operation ..346
Atomicity, Consistency, Isolation, and Durability....................................347
Operating with Transactions..348

Using the SET TRANSACTION statement ..348
Starting a transaction ..349

Access modes..350
Isolation levels ..350

Committing a transaction..352
Rolling back a transaction...352

Why roll back a transaction?...353
The log file ...353
The write-ahead log protocol..354
Checkpoints...355

Implementing deferrable constraints ..355
Getting Familiar with Locking...360

Two-phase locking..360
Granularity ..361
Deadlock ..361

Tuning Locks...362
Measuring performance with throughput.......................................363
Eliminating unneeded locks ..363
Shortening transactions ..363
Weaken isolation levels (but ver-r-ry carefully)364
Controlling lock granularity ..365
Don’t run DDL statements concurrently with transactions..........365
Partitioning insertions...365
Cooling down hot spots...365
Tuning the deadlock interval..366

Enforcing Serializability with Timestamps ...366
Tuning the Recovery System..369

Chapter 3: Assigning Access Privileges .371
The SQL Data Control Language ..371
Identifying Authorized Users..372

User identifiers ...372
Getting familiar with Roles..372

Creating roles ..373
Destroying roles..373

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxiii

SQL All-in-One Desk Reference For Dummiesxxiv

Classifying Users ..373
Granting Privileges...374

Looking at data ...375
Deleting data ...375
Adding data ...376
Changing data ...376
Referencing data in another table ..376
Using certain database facilities ..378
Responding to an event ...378
Defining new data types ..378
Executing an SQL statement ...378
Doing it all ...379
Passing on the power...379

Revoking Privileges..380
Granting Roles ..381
Revoking Roles ...381

Chapter 4: Error Handling .383
Identifying Error Conditions ...383
Getting to Know SQLSTATE...384
Handling Conditions ..386

Handler declarations ...386
Handler actions and handler effects..387
Conditions that aren’t handled...388

Dealing with Execution Exceptions: The WHENEVER Clause388
Getting More Information: The Diagnostics Areas...................................389

The diagnostics header area...390
The diagnostics detail area ...391

Examining a Constraint Violation Example...393
Adding Constraints to an Existing Table...394
Interpreting SQLSTATE Information...394
Handling Exceptions ..395

Book V: SQL and Programming...................................397

Chapter 1: Database Development Environments 399
Microsoft Access..399

The Jet engine...400
DAO ..400
ADO ..400
ODBC..400
OLE DB...400
MDB..401
ACCDB..401

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxiv

Table of Contents xxv

Microsoft SQL Server...401
IBM DB2 ...401
Oracle 10g ...402
MySQL..402

Chapter 2: Interfacing SQL to a Procedural Language 403
Building an Application with SQL and a Procedural Language..............403
Access and VBA..404

The ADODB library ..404
The ADOX library ...405
Other libraries ..405

SQL Server and the .NET languages ..405
MySQL and C++.NET or C#..406
MySQL and C...406
MySQL and Perl ..406
MySQL and PHP..407
Oracle SQL and Java ..407
DB2 and Java...407

Chapter 3: Using SQL in an Application Program 409
Comparison of SQL to Procedural Languages..409

Classic procedural languages ...410
Object-oriented procedural languages ..411
Non-procedural languages ..411

Difficulties in Combining SQL with a Procedural Language412
Challenges to using SQL with a classical procedural language....412

Contrasting operating modes ...412
Data type incompatibilities ...413

Challenges to using SQL with an object-oriented
procedural language...413

Embedding SQL in an Application ...414
Embedding SQL in an Oracle Pro*C application414

Declaring host variables ..416
Converting data types..416

Embedding SQL in an Java application ...417
Using SQL in a Perl application ..417
Embedding SQL in a PHP application ..417
Using SQL with a Visual Basic .NET application.............................418
Using SQL with other .NET languages ...418

Using SQL Modules with an Application ...418
Module declarations ..419
Module procedures ..420
Modules in Oracle ..421

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxv

SQL All-in-One Desk Reference For Dummiesxxvi

Chapter 4: Designing a Sample Application .423
The Client’s Problem ...423
Approaching the Problem...424

Interviewing the stakeholders ..424
Drafting a detailed statement of requirements...............................425
Following up with a proposal..425

Determining the Deliverables ...426
Finding out what’s needed now and later426
Planning for organization growth...427
Nailing down project scope ..428

Building an Entity-Relationship Model ..429
Determining what the entities are..429
Relating the entities to each other...429

Relationships...430
Maximum cardinality ...430
Minimum cardinality ..431
Business rules ...431
Deep thinking ..432

Transforming the Model..432
Eliminating any many-to-many relationships433
Normalizing the E-R model..435

Creating Tables...437
Changing Table Structure..440
Removing Tables ..440
Designing the User Interface...441

Chapter 5: Building a Sample Application .443
Designing from the Top Down ..443

Determining what the application should include.........................444
Designing the user interface ...444
Connecting the user interface to the database445

Coding from the Bottom Up..447
Work to do before starting to build the application447

Create the database..448
Fill database tables with sample data....................................449

Creating the application’s building blocks......................................454
Developing screen forms ...454
Developing reports...455

Gluing everything together ...455
Testing, Testing, Testing..455

Fix the bugs ...456
Turn naive users loose ..456
Bring on the hackers..456
Fix the newly found bugs...456
Retest everything ...457

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxvi

Table of Contents xxvii

Chapter 6: SQL’s Procedural Capabilities .459
Embedding SQL Statements in Your Code ..459
Introducing Compound Statements...460

Atomicity ...461
Variables ..462
Cursors ..462
Conditions ...462
Assignment..463

Following the Flow of Control Statements ..463
IF . . . THEN . . . ELSE . . . END IF..464
CASE . . . END CASE ..464

Simple CASE statement..464
Searched CASE statement..465

LOOP . . . ENDLOOP ...466
LEAVE...466
WHILE . . . DO . . . END WHILE...467
REPEAT . . . UNTIL . . . END REPEAT...467
FOR . . . DO . . . END FOR..468
ITERATE ...468

Using Stored Procedures...469
Working with Triggers ...469

Trigger events ...471
Trigger action time...471
Triggered actions..471
Triggered SQL statement...472

Stored Functions ..472
Passing Out Privileges ...473
Stored Modules ..473

Chapter 7: Connecting to a Remote Database 475
Native Drivers...475
ODBC and Its Major Components ..477

Application ..478
Driver manager ...479
Drivers ...479

File-based drivers ...480
DBMS-based drivers ...480

Data sources..482
What Happens When the Application Makes a Request.........................482

Using handles to identify objects...482
The six stages of an ODBC operation ..484

Stage 1: The application allocates environment and
connection handles in the driver manager........................484

Stage 2: The driver manager finds the appropriate driver...484
Stage 3: The driver manager loads the driver.......................484

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxvii

SQL All-in-One Desk Reference For Dummiesxxviii

Stage 4: The driver manager allocates environment
and connection handles in the driver485

Stage 5: The driver manager connects to
the data source through the driver485

Stage 6: The data source (finally)
executes an SQL statement..485

Book VI: SQL and XML ..489

Chapter 1: XML/SQL Basics .491
Introducing XML...491
The Parts of an XML Document ...492

XML declaration ...493
Elements ..493

Nested elements ...494
The document element ..494
Empty elements ..494

Attributes ..494
Entity references...495
Numeric character references ..496

XML Schema ...496
Relating SQL to XML ..497
The XML Data Type..497

When to use the XML type ..498
When not to use the XML type ...499

Mapping SQL to XML ...499
Mapping character sets to XML ...499
Mapping identifiers to XML...500
Mapping data types to XML ..500
Mapping non-predefined data types to XML501

Domain ...501
Distinct UDT ..502
Row...503
Array...504
Multiset ..505

Mapping tables to XML..505
Handling null values...506
Creating an XML schema for an SQL table......................................507

Operating on XML Data with SQL Functions ..508
XMLELEMENT...508
XMLFOREST ..509
XMLCONCAT ...509
XMLAGG ..510
XMLCOMMENT...510

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxviii

Table of Contents xxix

XMLPARSE ...511
XMLPI...511
XMLQUERY..511
XMLCAST...512

XML Predicates...512
DOCUMENT...512
CONTENT ..513
XMLEXISTS ..513
VALID..513

Chapter 2: Storing XML Data in SQL Tables .515
Inserting XML Data into an SQL Pseudo-Table...515
Creating a Table to Hold XML Data..517
Updating XML Documents ..517
Discovering Oracle’s Tools for Updating XML Data in a Table...............518

APPENDCHILDXML...518
INSERTCHILDXML ..519
INSERTXMLBEFORE ...520
DELETEXML ..521
UPDATEXML..522

Introducing Microsoft’s Tools for Updating XML Data in a Table..........523
Updategram namespace and keywords ..523
Specifying a mapping schema...525

Implicit mapping...525
Explicit mapping ...526
Element-centric mapping...531
Attribute-centric mapping ...531
Mixed element-centric and attribute-centric mapping532
Schemas that allow null values...533

Chapter 3: Retrieving Data from XML Documents 535
XQuery...536

Where XQuery came from...536
What XQuery requires ...536
XQuery functionality..537
Usage scenarios..538

FLWOR Expressions ...542
The for clause ...543
The let clause..544
The where clause..545
The order by clause ...545
The return clause ...546

Comparing XQuery to SQL..547
XQuery’s FLWOR expression and SQL’s SELECT expression........547
Relating XQuery data types to SQL data types547

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxix

SQL All-in-One Desk Reference For Dummiesxxx

Book VII: Database Tuning Overview551

Chapter 1: Tuning the Database .553
Analyzing the Workload ..554
Considering the Physical Design..555
Choosing the Right Indexes ..556

Avoiding unnecessary indexes ...556
Choosing a column to index ...557
Multi-column indexes...557
Clustering indexes..557
Choosing index type ..559
Weighing the cost of index maintenance...559
Composite indexes...559

Tuning Indexes ...560
Tuning Queries ...561
Tuning Transactions ..562
Separating User Interactions from Transactions562
Minimizing Traffic between Application and Server563
Precompiling Frequently Used Queries...563

Chapter 2: Tuning the Environment .565
Surviving Failures with Minimum Data Loss ..566

What happens to transactions where there is no failure?566
What happens when a failure occurs before a committed

or aborted transaction is written to stable storage?567
Tuning the Recovery System..567

Putting logs and transactions on different disks............................569
Put logs and transactions on different disks.........................569
Hard disk drive construction ..569
Hard disk drive performance considerations570

Tuning write operations ..572
Dumps..573
Checkpoints ..574
Optimizing batch transactions ...575

Tuning the Operating System ...575
Scheduling threads...575

Threads improve throughput..576
Context switching...577
Round-robin scheduling...577
Priority-based scheduling..577
Priority inversion..578
Deadlock ..579

Determining database buffer size...579
Tuning page usage factor ..580

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxx

Table of Contents xxxi

Maximizing the Hardware You Have ..580
Optimizing placement of code and data on hard disks.................580
Tuning the page replacement algorithm ...581
Disk controller cache ...581

Adding Hardware ...582
Faster processor...583
More RAM..583
Faster hard disks ..583
More hard disks..583
Performance advantages of RAID arrays...584

Multiprocessor Environments..585

Chapter 3: Finding and Eliminating Bottlenecks 587
Pinpointing the Problem ...587

Slow query...588
Slow update...588

Determining the Possible Causes of Trouble ...589
Problems with indexes ..589

B+ tree indexes..589
Index pluses and minuses ...589
Index-only queries ..590
Full table scans versus indexed table access590

Pitfalls in communication..591
ODBC/JDBC versus native drivers..591
Locking and client performance ...592
Application development tools making

suboptimal decisions ...592
Determining whether hardware is robust

enough and configured properly ..593
Implementing General Pointers: A First Step

Toward Improving Performance...593
Avoid direct user interaction..593
Examine the application/database interaction594
Don’t ask for columns that you don’t need.....................................594
Don’t use cursors unless you absolutely have to594
Precompile queries ..595

Tracking Down Bottlenecks ..595
Isolating performance problems ..595
Performing a top-down analysis...595
Partitioning..597
Locating hotspots...598

Analyzing Query Efficiency...598
Using query analyzers ...599

The Database Engine Tuning Advisor602
SQL Server Profiler ...607

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxxi

SQL All-in-One Desk Reference For Dummiesxxxii

Using performance monitors ..608
Finding problem queries ...611

Analyzing a query’s access plan ...611
Examining a query’s execution profile...................................615

Managing Resources Wisely ...615
The disk subsystem ...615
The database buffer manager...617
The logging subsystem..617
The locking subsystem..617

Book VIII: Appendixes ...619

Appendix A: SQL:2003 Reserved Words .621

Appendix B: Glossary .629

Index..639

02_119280 ftoc.qxp 5/23/07 6:08 PM Page xxxii

Introduction

SQL is the internationally recognized standard language for dealing with
data in relational databases. Originally developed by IBM, SQL became

an international standard in 1986. The standard was updated in 1989, 1992,
1999, and 2003. It continues to evolve and gain capability. Database vendors
continually update their products to incorporate the new features of the
ANSI/ISO standard. (ANSI is the American National Standards Institute, and
ISO is the International Organization for Standardization.)

SQL is not a general-purpose language, such as C++ or Java. Instead, it is
strictly designed to deal with data in relational databases. With SQL, you can

✦ Create a database, including all tables and relationships

✦ Fill database tables with data

✦ Change the data in database tables

✦ Delete data from database tables

✦ Retrieve specific information from database tables

✦ Grant and revoke access to database tables

✦ Protect database tables from corruption due to access conflicts or user
mistakes

About This Book
This book is not just about SQL, but also about how SQL fits into the
process of creating and maintaining databases and database applications. In
this book, I cover how SQL fits into the larger world of application develop-
ment and how it handles data coming in from other computers, which may
be on the other side of the world, or even in interplanetary space.

Here are some of the things you can do with this book:

✦ Create a model of a proposed system and then translate that model into
a database

✦ Find out about the capabilities and limitations of SQL

✦ Discover how to develop reliable and maintainable database systems

✦ Create databases

✦ Speed up database queries

03 119280 intro.qxp 5/23/07 10:07 AM Page 1

Foolish Assumptions2

✦ Protect databases from hardware failures, software bugs, and Internet
attacks

✦ Control access to sensitive information

✦ Write effective database applications

✦ Deal with data from a variety of non-traditional data sources using XML

Foolish Assumptions
I know this is a . . . For Dummies book, but I don’t really expect that you are
a dummy. In fact, I assume that you are a very smart person. After all, you
decided to read this book, which is a sign of high intelligence indeed. There-
fore, I assume you may want to do a few things; for example, recreate some
of the examples in the book. You may even want to enter some SQL code and
execute it. To do that, you need at the very least an SQL editor, and more
likely a database management system of some sort. Many choices are avail-
able, both proprietary and open-source. I mention several of these at various
places throughout the book. I don’t recommend any one in particular. Any
product that complies with the ANSI/ISO international SQL standard should
be fine.

However, take claims of ANSI/ISO compliance with a grain of salt. No data-
base management system available today is 100% compliant with the ANSI/
ISO SQL standard. For that reason, some of the code examples I give in this
book may not work on the particular SQL implementation that you are using.
The code samples I use in this book are consistent with the international stan-
dard rather than agreeing with the syntax of any particular implementation,
unless I specifically specify that the code is for a particular implementation.

Conventions Used in This Book
By conventions, I simply mean a set of rules I’ve employed in this book to
present information to you consistently. When you see a term italicized,
look for its definition, which I’ve included so that you know what things
mean in the context of SQL. Web site addresses and e-mail addresses appear
in monofont so that they stand out from regular text. Many aspects of the
SQL language, such as statements, data types, constraints, and keywords
also appear in monofont. Code appears in its own font, set off from the rest
of the text, like this:

CREATE SCHEMA RETAIL1 ;

03 119280 intro.qxp 5/23/07 10:07 AM Page 2

How This Book Is Organized 3

What You Don’t Have to Read
I’ve structured this book modularly — that is, it’s designed so that you can
easily find just the information you need — so you don’t have to read what-
ever doesn’t pertain to your task at hand. I include sidebars here and there
throughout the book that contain interesting information that isn’t necessar-
ily integral to the discussion at hand; feel free to skip over these. You also
don’t have to read the Technical Stuff icons, which parse out über-techy tid-
bits (which you may or may not be your cup of tea).

How This Book Is Organized
SQL All-in-One Desk Reference For Dummies is split into eight minibooks. You
don’t have to read it sequentially; you don’t have to look at every minibook;
you don’t have to review each chapter; and you don’t even have to read all
the sections in any particular chapter. (Of course, you can if you want to; it’s
a good read.) And the Table of Contents and the index can help you quickly
find whatever information you need. In this section, I briefly describe what
each minibook contains.

Book I: SQL Concepts
SQL is a language specifically and solely designed to create, operate on, and
manage relational databases. I start with a description of databases and how
relational databases differ from other kinds. I then move on to modeling
business and other kinds of tasks in relational terms. How SQL relates to
relational databases is covered next, along with a detailed description of the
components of SQL and how to use them. The types of data that SQL deals
with are described, as are constraints that restrict the data that can be
entered into a database.

Book II: Relational Database Development
Many database development projects, like other software development proj-
ects, start in the middle rather than at the beginning as they should. This
fact is responsible for the notorious tendency of software development proj-
ects to run behind schedule and over budget. Many self-taught database
developers don’t even realize that they are starting in the middle. They think
they are doing everything right. This minibook introduces the System Devel-
opment Life Cycle (SDLC), which shows what the true beginning of a soft-
ware development project is, as well as the middle and the end.

Key to the development of an effective database that does what you want is
an accurate model of the system you are abstracting in your database.

03 119280 intro.qxp 5/23/07 10:07 AM Page 3

How This Book Is Organized4

Modeling is described here, as is the delicate tradeoff between performance
and reliability. The actual SQL code used to create a database rounds out the
discussion.

Book III: SQL Queries
Queries sit at the core of any database system. The whole reason for storing
data in databases is so that you can retrieve the information you want from
them at a later time. SQL is above all a query language. Its specialty is enabling
you to extract from a database the exact information you want, without clut-
tering up what you retrieve with a lot of stuff you don’t want.

This book starts off with a description of values, expressions, and functions.
It then gives detailed coverage to the powerful tools SQL gives you to zero in
on the information you want, even if it is scattered across multiple tables.

Book IV: Data Security
Your data is one of your most valuable assets. Acknowledging that fact, I dis-
cuss ways to protect it from a diverse array of threats. One threat is outright
loss due to hardware failures. Another is attack by hackers wielding mali-
cious viruses and worms. I discuss how you can protect yourself from such
threats, whether they are random or purposeful.

Other sources of error, such as the entry of bad data or the harmful interac-
tion of simultaneous users, are extensively dealt with in this book. I also
cover how to control access to sensitive data and how to handle errors
gracefully when they occur, as they inevitably will.

Book V: SQL and Programming
SQL’s primary use is as a component of an application program that operates
on a database. Because SQL is a data language and not a general-purpose
programming language, this means that SQL statements must be integrated
somehow with the commands of a language such as Visual Basic, Java, C++,
or C#. This book outlines the process with the help of a fictitious sample
application, taking it from the beginning, when the need for a new applica-
tion is perceived, to the final release of the finished application. Best prac-
tices are emphasized throughout.

Book VI: SQL and XML
XML is the language used to transport data between dissimilar data stores. The
2005 extensions to the SQL:2003 standard greatly expanded SQL’s capacity to
handle XML data. This book gives the basics of XML and how it relates to SQL.
SQL functions that are specifically designed to operate on data in XML format
are described as the operations of storing and retrieving data in XML format.

03 119280 intro.qxp 5/23/07 10:07 AM Page 4

Icons Used in This Book 5

Book VII: Database Tuning Overview
Depending on how they are structured, databases can efficiently respond to
requests for information or perform very poorly. Often the performance of a
database degrades over time as its structure and the data in it change, or as
the types of retrievals typically performed change. This book describes the
parts of a database that are amenable to tuning and optimization. It also
gives a procedure for tracking down bottlenecks that are choking the per-
formance of the entire system.

Book VIII: Appendixes
Appendix A lists words that have a special meaning in SQL. You can’t use
these words as the names of tables, columns, views, or anything other than
what they were meant to be used for. If you receive a strange error message
to an SQL statement that you have entered, check to see if you have inadver-
tently used a reserved word inappropriately.

Appendix B is a glossary that gives brief definitions of many of the terms
used in this book as well as many others that relate to SQL and databases,
whether they are used in this book or not.

Icons Used in This Book
. . . For Dummies books are known for those helpful icons that point you in
the direction of really great information. This section briefly describes each
icon used in this book.

The Tip icon points out helpful information that is likely to make your job
easier.

This icon marks a generally interesting and useful fact — something that you
might want to remember for later use.

The Warning icon highlights lurking danger. When you see this icon, pay
attention and proceed with caution.

This icon denotes that there’s techie stuff nearby. If you’re not feeling very
techie, you can skip this info.

03 119280 intro.qxp 5/23/07 10:07 AM Page 5

Where to Go from Here6

Where to Go from Here
Book I is the place to go if you are just getting started with databases. It
explains why databases are useful and describes the different types. It
focuses on the relational model and describes SQL’s structure and features.

Book II goes into detail on how to build a database that is reliable as well as
responsive. Unreliable databases are much too easy to create, and this book
tells you how to avoid the pitfalls that lie in wait for the unwary.

Go directly to Book III if your database already exists and you just want to
know how to use SQL to pull from it the information you want.

Book IV is primarily aimed at the database administrator (DBA) rather than
the database application developer or user. It discusses how to build a
robust database system that resists data corruption and data loss.

Book V is for the application developer. In addition to discussing how to write
a database application, it gives an example that describes in a step-by-step
manner how to build a reliable application.

If you are already an old hand at SQL and just want to know how to handle
data in XML format in your SQL database, Book VI is for you.

Book VII gives you a wide variety of techniques for improving the perform-
ance of your database. This is the place to go if your database is operating,
but not as well as you think it should. Most of these techniques are things
that the DBA can do, rather than the application developer or the database
user. If your database isn’t performing the way you think it should, take it up
with your DBA. There are things she can do that could help immensely.

Book VIII is a handy reference that helps you quickly find the meaning of a
word you have encountered, or to see why an SQL statement you have
entered did not work as expected. (Maybe you used a reserved word
without realizing it.)

03 119280 intro.qxp 5/23/07 10:07 AM Page 6

Book I

SQL Concepts

04 119280 pt01.qxp 5/23/07 10:07 AM Page 7

Contents at a Glance
Chapter 1: Relational Database Basics ..9

Chapter 2: Modeling a System ..27

Chapter 3: SQL Overview ..49

Chapter 4: SQL and the Relational Model ..59

Chapter 5: The Major Components of SQL..67

Chapter 6: SQL Characteristics ..89

04 119280 pt01.qxp 5/23/07 10:07 AM Page 8

Chapter 1: Relational
Database Basics

In This Chapter
� Discovering data files and databases

� Finding out what makes a database relational

� Databases, queries, and database applications

� Understanding SQL and relational database management systems

� Capturing the users’ data model

� Translating the users’ data model to a relational model

� Getting to know the relational database hierarchy

� Building a database from a relational model

� Building a database application

In order to understand why relational databases are the primary reposito-
ries for the data of both small and large organizations, you must first

understand the various ways in which computer data can be stored, and
how those ways relate to the relational database model. To help you gain
that understanding, in this chapter, I go back to the earliest days of elec-
tronic computers and recap the history of data storage. The different data
storage strategies that have been used over the years each have their own
strengths and weaknesses. Ultimately, the strengths of the relational model
overshadowed its weaknesses, and it became the most frequently used
method of data storage. Shortly after that, SQL became the most frequently
used method of dealing with data stored in a relational database.

Data Files and Databases
In the early days of computers, the concept of a database was more theoreti-
cal than practical. Vannevar Bush, the twentieth-century visionary, conceived
the idea of a database in 1945, even before the first electronic computer was
built. However, practical implementations of databases did not appear for a
number of years after that. Initially, computer data was kept in files rather
than in databases.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 9

Data Files and Databases10

Irreducible complexity
Any software system that performs a useful function is going to be complex.
The more valuable the function, the more complex its implementation will
be. Regardless of how the data is stored, the complexity remains. The only
question is where that complexity resides.

Any non-trivial computer application has two major components: the pro-
gram and the data. Although an application’s level of complexity depends on
the task to be performed, developers have some control over the location of
that complexity. The complexity may reside primarily in the program part of
the overall system, or it may reside in the data part.

The complex program/simple data organization
In the earliest applications of computers to solve problems, all of the com-
plexity resided in the program. The data consisted of one data record of
fixed length after another, stored sequentially in a file. This is called a flat file
data structure. The data file contains nothing but data. Information about
where particular records are within the data file (one form of metadata) must
be included in the program. Thus, for this type of organization, the complex-
ity of managing the data is entirely in the program.

Here’s an example of data organized in a flat file structure:

Harold Percival26262 S. Howards Mill Rd.Westminster CA92683
Jerry Appel 32323 S. River Lane Road Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette Street Garden GroveCA92643
Michael Pens 77730 S. New Era Road Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Drive Stanton CA92610
Linda Smith 444 S.E. Seventh StreetCosta Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Drive Stanton CA92610
Jed Style 3535 Randall Street Santa Ana CA92705

There are fields for name, address, city, state, and ZIP code. Each field has a
specific length, and data entries must be truncated to fit into that length. If
entries don’t use all the space allotted to them, storage space is wasted.

This organization has several consequences, some beneficial and some not.
First the beneficial consequences:

✦ Storage requirements are minimized. Because the data files contain
nothing but data, they take up a minimum amount of space on hard
disks or other storage media. The code that must be added to any one
program that contains the metadata is small compared to the overhead
involved with adding a database management system (DBMS) to the
data side of the system.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 10

Book I
Chapter 1

Relational Database
Basics

Data Files and Databases 11

✦ Operations on the data can be fast. Because the program interacts
directly with the data, with no DBMS in the middle, well-designed appli-
cations can run as fast as the hardware permits.

Wow! What could be better? A data organization that minimizes storage
requirements and at the same time maximizes speed of operation seems like
the best of all possible worlds. But wait a minute . . .

Flat file systems came into use in the 1940s. We have known about them
for a long time, and yet today they have been almost entirely replaced by
database systems. What’s up with that? Perhaps it is the not-so-beneficial
consequences:

✦ Updating the data’s structure can be a huge task. It is common for an
organization’s data to be operated on by multiple application programs,
with multiple purposes. If the metadata about the structure of data is
in the program rather than attached to the data itself, all the programs
that access that data must be modified whenever the data structure is
changed. Not only does this cause a lot of redundant work (because the
same changes must be made in all the programs), but it is an invitation
to problems. All the programs must be modified in exactly the same way.
If one is inadvertently forgotten, it will fail the next time it is run. Even if
all the programs are modified, any that aren’t modified exactly as they
should be will fail, or even worse, corrupt the data without giving any
indication that something is wrong.

✦ Flat file systems provide no protection of the data. Anyone who can
access a data file can read it, change it, or delete it. A database manage-
ment system restricts access to authorized users.

✦ Portability becomes an issue. If the specifics of retrieving a particular
piece of data from a particular disk drive is coded into each program,
what happens when your hardware becomes obsolete and you must
migrate to a new system? All your applications will have to be changed
to reflect the new way of accessing the data. This task is so onerous that
many organizations have chosen to limp by on old, poorly performing
systems rather than enduring the pain of transitioning to a system that
would meet their needs much more effectively. Organizations with
legacy systems consisting of millions of lines of code are pretty much
trapped.

In the early days of electronic computers, storage was relatively expensive,
so system designers were highly motivated to accomplish their tasks using
as little storage space as possible. Also, in those early days, computers were
much slower than they are today, so doing things the fastest possible way
also had a high priority. Both of these considerations made flat file systems
the architecture of choice, despite the problems inherent in updating the
structure of a system’s data.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 11

Data Files and Databases12

The situation today is radically different. The cost of storage has plummeted
and continues to drop on an exponential curve. The speed at which compu-
tations are performed has increased exponentially also. As a result, minimiz-
ing storage requirements and maximizing the speed with which an operation
can be performed are no longer the primary driving forces that they once
were. Because systems have continually become bigger and more complex,
the problem of maintaining them has likewise grown. For all these reasons,
flat file systems have lost their attractiveness, and databases have replaced
them in practically all application areas.

The simple program/complex data organization
The major selling point of database systems is that the metadata resides on
the data end of the system rather than in the program. The program doesn’t
have to know anything about the details of how the data is stored. It makes
logical requests for data, and the DBMS translates those logical requests into
commands that go out to the physical storage hardware to perform whatever
operation has been requested. Here are the advantages of this organization:

✦ Because application programs only need to know what data they want to
operate on, and not where that data is located, they are unaffected when
the physical details of where data is stored changes.

✦ Portability across platforms, even when they are highly dissimilar, is
easy as long as the DBMS used by the first platform is also available on
the second. Generally, the programs need not be changed at all.

What about the disadvantages? They include the following:

✦ Placing a database management system in between the application pro-
gram and the data slows down operations on that data significantly.

✦ Databases take up more space on disk storage than the same amount of
data would take up in a flat file system. This is due to the fact that meta-
data is stored along with the data. The metadata contains information
about how the data is stored, so that the application programs don’t
have to include it.

Which type of organization is better?
I bet you think you already know how I am going to answer this question.
You are probably right, but the answer is not quite so simple. There is no
one correct answer that applies to all situations. In the early days of elec-
tronic computing, flat file systems were the only viable option. To perform
any reasonable computation in a timely and economical manner, you had to
use whatever approach was the fastest and required the least amount of
storage space. As more and more application software was developed for

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 12

Book I
Chapter 1

Relational Database
Basics

Databases, Queries, and Database Applications 13

these systems, the organizations that owned them became locked in tighter
and tighter to what they had. To change to a more modern database system
requires rewriting all their applications from scratch and reorganizing all
their data, a monumental task. As a result, we still have legacy flat file sys-
tems that continue to exist because switching to more modern technology
isn’t feasible, both economically and in terms of the time it would take to
make the transition.

Databases, Queries, and Database Applications
What are the chances that a person could actually find a needle in a haystack?
Not very good. Finding the proverbial needle is so hard because the haystack
is a random pile of hay with individual pieces of hay going in every direction,
and the needle is located at some random place among all that hay.

A flat file system is not really very much like a haystack, but it does lack
structure, and in order to find a particular record in such a file, you must use
tools that lie outside of the file itself. This is like applying a powerful magnet
to the haystack to find the needle.

The first database system
The first true database system was developed
by IBM in the 1960s in support of NASA’s Apollo
moon landing program. The number of compo-
nents in the Saturn V launch vehicle, the Apollo
Command and Service Module, and the Lunar
Lander far exceeded anything that had been
build up to that time. Every component had to
be tested more exhaustively than anything had
ever been tested before because they were all
going to have to withstand the rigors of an envi-
ronment that was more hostile and more unfor-
giving than any environment that humans had
ever attempted to work in. Flat file systems
were out of the question. IBM’s solution, which
it later transformed into a commercial database
product named IMS, kept track of each individ-
ual component, as well its complete history.

When the ill-fated Apollo 13’s main oxygen tank
ruptured on the way to the Moon, engineers

worked frantically to come up with a plan to
save the lives of the three astronauts onboard.
The engineers succeeded and transmitted a
plan to the astronauts that worked. After the
crew had returned safely to Earth, querying
IMS about the oxygen tank that failed showed
that somewhere between its manufacture and
its installation in Apollo 13, it had been dropped
on the floor. It was retested for its ability to
withstand the pressure it would have to contain
during the mission, and then replaced in stock
after passing the test. In this case, the test did
not detect the hidden damage to the tank, but
at least the history stored in IMS showed that
passing a pressure test is not enough to assure
that a dropped tank is undamaged. No dropped
tanks were ever used on subsequent Apollo
missions.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 13

Competing Database Models14

Making data useful
For a collection of data to be useful, you must be able to easily and quickly
retrieve the particular data you want, without having to wade through all the
rest of the data. One way to make this happen is to store the data in a logical
structure. Flat files don’t have much structure, but databases do. Historically,
the hierarchical database model and the network database model were devel-
oped before the relational model. Each one organizes data in a different way,
but all three produce a highly structured result. As a result, starting in the
1970s, any new development projects were most likely to be done using one
of three database models: either the hierarchical model, the network model,
or the relational model. I explore database models further in the “Competing
Database Models” section, later in this chapter.

Retrieving the data you want —
and only the data you want
Of all the operations that people perform on a collection of data, the
retrieval of specific elements out of the collection is the most important.
This is because retrievals are performed more often than any other opera-
tion. Data entry is done only once. Changes to existing data are made infre-
quently, and data is deleted only once. Retrievals, on the other hand, are
performed frequently, and the same data elements may be retrieved many
times. Thus, if you could optimize only one operation performed on a collec-
tion of data, that one operation should be data retrieval. As a result, modern
database management systems put a great deal of effort into making retrievals
fast. Retrievals are performed by queries. A modern database management
system analyzes a query that is presented to it and decides how best to per-
form it. Generally there are multiple ways of performing a query, some much
faster than others. A good DBMS consistently chooses a near-optimal execu-
tion plan. Of course, it helps if the query is formulated in an optimal manner
to begin with. I discuss this subject in depth in Book VII, which covers data-
base tuning.

Competing Database Models
IBM’s precursor to IMS, which first went “live” at an Apollo contractor’s site
on August 14, 1968, was the first functioning database system. Amazingly,
IMS (Information Management System) is still in use today, almost 40 years
later, because IBM has continually upgraded it in support of its customers.

If you are in the market for a database management system, you may want to
consider buying it from a vendor that will be around and that is committed
to supporting it, for as long as you will want to use it. IBM has shown itself to
be such a vendor, and of course, there are others as well.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 14

Book I
Chapter 1

Relational Database
Basics

Competing Database Models 15

IMS is an example of a hierarchical database product. About a year after IMS
was first run, the network database model was described by an industry
committee. About a year after that, Dr. E. F. Codd, also of IBM, proposed the
relational model. Within a short span of years, the three models that were to
dominate the database market for decades were spawned. Quite a few years
went by before the object-oriented database model appeared to address
some of the deficiencies of the relational model. The object-relational model
is a merger of the relational and object models that is designed to capture
the strengths of both, while leaving behind their major weaknesses.

The hierarchical database model
The hierarchical database model organizes data into a hierarchy of levels,
where each level contains a single category of data, and parent/child rela-
tionships are established between levels. Each parent item can have multiple
children, but each child item can have one and only one parent. Thus all
relationships in a hierarchical database are either one-to-one or one-to-many.
Many-to-many relationships are not allowed.

A bill of materials application is well suited for a hierarchical database. An
entire machine is composed of assemblies, which are each composed of sub-
assemblies, and so on, down to individual components. As an example of such
an application, consider the mighty Saturn V Moon rocket that sent American
astronauts to the Moon in the late 1960s and early 1970s. Figure 1-1 shows a
hierarchical diagram of major components of the Saturn V.

Three relationships can occur between objects in a database:

✦ One-to-one relationship: One object of the first type is related to one
and only one object of the second type. In Figure 1-1, there are several
examples of one-to-one relationships. One is the relationship between
the S-2 stage LOX tank and the aft LOX bulkhead. Each LOX tank has one
and only one aft LOX bulkhead, and each aft LOX bulkhead belongs to
one and only one LOX tank.

✦ One-to-many relationship: One object of the first type is related to mul-
tiple objects of the second type. In the Saturn V’s S-1C stage, the thrust
structure contains five F-1 engines, but each engine belongs to one and
only one thrust structure.

✦ Many-to-many relationship: Multiple objects of the first type are related
to multiple objects of the second type. This kind of relationship is not
handled cleanly by a hierarchical database. Attempts to do so tend to be
kludgy. One example might be two-inch hex-head bolts. These bolts are
not considered to be uniquely identifiable, and any one such bolt is
interchangeable with any other. An assembly might use multiple bolts,
and a bolt could be used in any of several different assemblies.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 15

Competing Database Models16

LO
X

tu
nn

el
s Bu

lk
he

ad
sY-

rin
gs

LO
X

su
ct

io
n

lin
es

Bu
lk

he
ad

s

Lo
w

er
th

ru
st

 ri
ng

as
se

m
bl

y

F-
1

en
gi

ne
s

Ce
nt

er
en

gi
ne

 s
up

po
rt

as
se

m
bl

y

Up
pe

r
th

ru
st

 ri
ng

as
se

m
bl

y Ho
ne

yc
om

b
in

su
la

tio
n

Sl
os

h
ba

ffl
es

Co
m

m
on

bu
lk

he
ad

Af
t L

OX
bu

lk
he

ad

Sl
os

h
ba

ffl
es

J-
2

en
gi

ne
s

An
ti-

vo
rte

x
ba

ffl
es

Co
m

m
on

bu
lk

he
ad

Af
t

do
m

e

Fo
rw

ar
d

do
m

e

Sl
os

h
ba

ffl
es

J-
2

en
gi

ne

Fu
el

ta
nk

LO
X

ta
nk

Th
ru

st
st

ru
ct

ur
e

Li
qu

id
hy

dr
og

en
ta

nk

LO
X

ta
nk

Th
ru

st
st

ru
ct

ur
e

Li
qu

id
hy

dr
og

en
ta

nk

LO
X

ta
nk

Th
ru

st
st

ru
ct

ur
e

S-
1C

st
ag

e
S-

2
st

ag
e

S-
IV

 B
st

ag
e

Sa
tu

rn
 V

la
un

ch
 v

eh
ic

le

Figure 1-1:
A
hierarchical
model of the
Saturn V
moon
rocket.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 16

Book I
Chapter 1

Relational Database
Basics

Competing Database Models 17

A great strength of the hierarchical model is its high performance. Because
relationships between entities are simple and direct, retrievals from a hierar-
chical database that are set up to take advantage of the way the data is
structured can be very fast. However, retrievals that don’t take advantage
of the way the data is structured are slow and sometimes can’t be made at
all. It’s difficult to change the structure of a hierarchical database to address
new requirements. This structural rigidity is the greatest weakness of the
hierarchical model. Another problem with the hierarchical model is the fact
that, structurally, it requires a lot of redundancy.

Not many organizations today are designing rockets capable of launching
payloads to the Moon. The hierarchical model can also be applied to more
common tasks, such as tracking sales transactions for a retail business. As
an example, I use some sales transaction data from Gentoo Joyce’s fictitious
online store of penguin collectibles.

As shown in Figure 1-2, customers who have made multiple purchases
show up in the database multiple times. This is a waste of storage space
because one copy of the data about a customer is sufficient. Perhaps even
more damaging than the wasted space that results from redundant data is
the possibility of data corruption. Whenever multiple copies of the same
data exist in a database, there is the potential for modification anomalies.
A modification anomaly is an inconsistency in the data after a modification
is made. Suppose you want to delete a customer who is no longer buying
from you. If multiple copies of that customer’s data exist, you must find
and delete all of them to maintain data integrity. Suppose you want to
update a customer’s address information. If multiple copies of the cus-
tomer’s data exist, you must find and modify all of them in exactly the
same way to maintain data integrity. This can be a time-consuming and
error-prone operation.

The network database model
The network model, which appeared in 1969, is almost the exact opposite of
the hierarchical model. Wanting to avoid the redundancy of the hierarchical
model without sacrificing too much in the way of performance, the designers
of the network model opted for an architecture that does not duplicate
items, but instead increases the number of relationships associated with
some items. Figure 1-3 shows this architecture for the same data that was
shown in Figure 1-2.

The network model eliminates redundancy, but at the expense of more com-
plicated relationships. This model can be better than the hierarchical model
for some kinds of data storage tasks, but worse for others. Neither one is
consistently superior to the other.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 17

Competing Database Models18

Pl
us

h
to

y,
ge

nt
oo

,
8-

in
ch

T-
sh

irt
,

ge
nt

oo
,

ad
ul

t s
m

al
l

Fi
gu

rin
e,

ge
nt

oo
,

ce
ra

m
ic

Pl
us

h
to

y,
ad

el
ie

,
8-

in
ch

T-
sh

irt
,

ad
el

ie
,

ad
ul

t s
m

al
l

Fi
gu

rin
e,

ad
el

ie
,

ce
ra

m
ic

Pl
us

h
to

y,
ch

in
st

ra
p,

8-
in

ch

T-
sh

irt
,

ch
in

st
ra

p,
ad

ul
t s

m
al

l

Fi
gu

rin
e,

ch
in

st
ra

p,
ce

ra
m

ic

Ly
nn

e
Sa

ra
W

an
da

Ly
nn

e
Ly

nn
e

Sa
ra

W
an

da

Pa
yP

al
M

as
te

rC
ar

d
Vi

sa
M

on
ey

 O
rd

er
Fo

rm
 o

f P
ay

m
en

t

Cu
st

om
er

Pr
od

uc
t

Figure 1-2:
A
hierarchical
model of
sales
database for
a retail
business.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 18

Book I
Chapter 1

Relational Database
Basics

Competing Database Models 19

Pl
us

h
to

y,
ge

nt
oo

,
8-

in
ch

T-
sh

irt
,

ge
nt

oo
,

ad
ul

t s
m

al
l

Fi
gu

rin
e,

ge
nt

oo
,

ce
ra

m
ic

Pl
us

h
to

y,
ad

el
ie

,
8-

in
ch

T-
sh

irt
,

ad
el

ie
,

ad
ul

t s
m

al
l

Fi
gu

rin
e,

ad
el

ie
,

ce
ra

m
ic

Pl
us

h
to

y,
ch

in
st

ra
p,

8-
in

ch

T-
sh

irt
,

ch
in

st
ra

p,
ad

ul
t s

m
al

l

Fi
gu

rin
e,

ch
in

st
ra

p,
ce

ra
m

ic

Ly
nn

e
Sa

ra
W

an
da

Pa
yP

al
M

as
te

rC
ar

d
Vi

sa
M

on
ey

 O
rd

er
Fo

rm
 o

f P
ay

m
en

t

Cu
st

om
er

Pr
od

uc
t

Figure 1-3:
A network
model of
transactions
at an online
store.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 19

Competing Database Models20

The relational database model
In 1970, Edgar F. (Ted) Codd of IBM published a paper introducing the rela-
tional database model. Initially, it was given little consideration by database
experts. It clearly had an advantage over the hierarchical model in that data
redundancy was minimal; it had an advantage over the network model with
its relatively simple relationships. However, it had what was perceived to be
a fatal flaw. Due to the complexity of the relational database engine that it
required, any implementation would be much slower than a comparable
implementation of either the hierarchical or the network model. As a result,
it was almost ten years before the first implementation of the relational data-
base idea hit the market. IBM delivered a relational DBMS integrated into the
operating system of the System 38 in 1978, and Relational Software, Inc.
delivered the first version of Oracle in 1979.

What makes a database relational?
The original definition of a relational database specified that it must consist
of two-dimensional tables of rows and columns, where the cell at the inter-
section of every row and column contains an atomic value (where atomic
means not divisible into subvalues). This definition is commonly stated by
saying that a relational database table may not contain any repeating groups.
The definition also specified that each row in a table be uniquely identifiable.
Another way of saying this is that every table in a relational database must
have a primary key. A primary key uniquely identifies a row in a database
table. Figure 1-4 shows the structure of the online store database, built
according to the relational model.

Codd’s Rules
As the relational model gained in popularity, vendors of database products
that were not really relational started to advertise their products as rela-
tional database management systems. To fight the dilution of his model,
Codd formulated 12 rules that served as criteria for determining whether a
database product was relational. Codd’s idea was that a database must sat-
isfy all 12 criteria in order to be considered relational.

Here are Codd’s 12 rules:

1. The information rule: Data can be represented only one way, as values
in column positions within rows of a table.

2. The guaranteed access rule: Every value in a database must be acces-
sible by specifying a table name, a column name, and a row. The row is
specified by the value of the primary key.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 20

Book I
Chapter 1

Relational Database
Basics

Competing Database Models 21

Tr
an

sa
ct

io
n

1
Pa

yP
al

Tr
an

sa
ct

io
n

2
Pa

yP
al

Tr
an

sa
ct

io
n

3
Pa

yP
al

Tr
an

sa
ct

io
n

4
Pa

yP
al

Tr
an

sa
ct

io
n

5
Pa

yP
al

Tr
an

sa
ct

io
n

6
M

as
te

rC
ar

d

Tr
an

sa
ct

io
n

7
Vi

sa

Tr
an

sa
ct

io
n

8
Vi

sa

Tr
an

sa
ct

io
n

9
M

on
ey

 O
rd

er

Pl
us

h
to

y
ge

nt
oo

8-
in

ch

T-
sh

irt
ge

nt
oo

ad
ul

t s
m

al
l

Fi
gu

rin
e

ge
nt

oo
ce

ra
m

ic

Pl
us

h
to

y
ad

el
ie

8-
in

ch

T-
sh

irt
ad

el
ie

ad
ul

t s
m

al
l

Fi
gu

rin
e

ad
el

ie
ce

ra
m

ic

Pl
us

h
to

y
ch

in
st

ra
p

8-
in

ch

T-
sh

irt
ch

in
st

ra
p

ad
ul

t s
m

al
l

Fi
gu

rin
e

ch
in

st
ra

p
ce

ra
m

ic

Cu
st

om
er

 ta
bl

e

Pr
od

uc
t t

ab
le

Tr
an

sa
ct

io
n

ta
bl

e

Ly
nn

e

Sa
ra

W
an

da

Figure 1-4:
A relational
model of
transactions
at an online
store.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 21

Competing Database Models22

3. Systematic treatment of null values: Missing data is distinct from spe-
cific values, such as zero or an empty string.

4. Relational online catalog: Authorized users must be able to access the
database’s structure (its catalog) using the same query language they
use to access the database’s data.

5. The comprehensive data sublanguage rule: The system must support
at least one relational language that can be used both interactively
and within application programs, that supports data definition, data
manipulation, and data control functions. Today, that one language
is SQL.

6. The view updating rule: All views that are theoretically updatable must
be updatable by the system.

7. The system must support set-at-a-time insert, update, and delete opera-
tions. This means that the system must be able to perform insertions,
updates, and deletions of multiple rows in a single operation.

8. Physical data independence: Changes to the way data is stored must
not affect the application.

9. Logical data independence: Changes to the tables must not affect the
application. For example, adding new columns to a table should not
“break” an application that accesses the original rows.

10. Integrity independence: Integrity constraints must be specified inde-
pendently from the application programs and stored in the catalog.

11. Distribution independence: Distribution of portions of the database to
various locations should not change the way applications function.

12. The nonsubversion rule: If the system provides a record-at-a-time inter-
face, it should not be possible to use it to subvert the relational security
or integrity constraints.

Over and above the original 12 rules, in 1990, Codd added one more rule:

Rule Zero: For any system that is advertised as, or claimed to be, a
relational database management system, that system must be able to
manage databases entirely through its relational capabilities, no matter
what additional capabilities the system may support.

This was in response to the vendors of various database products who
claimed their product was a relational DBMS, when it fact it was not pri-
marily relational.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 22

Book I
Chapter 1

Relational Database
Basics

Competing Database Models 23

Codd’s rules are so stringent, that even today, there is not a DBMS on the
market that completely complies with all of them. However, they have pro-
vided a good goal toward which database vendors strive.

Inherent flexibility
You might wonder why it is that relational databases have conquered the
planet and relegated hierarchical and network databases to niches consist-
ing mainly of legacy customers who have been using them for more than 20
years. It’s even more surprising in light of the fact that when the relational
model was first introduced, most of the experts in the field considered it to
be utterly uncompetitive with either the hierarchical or the network model.

One advantage of the relational model is its flexibility. It is much easier to
restructure a relational database than it is to restructure either a hierarchi-
cal or network database. This is a tremendous advantage in dynamic busi-
ness environments where requirements are constantly changing.

The reason database practitioners originally “dissed” the relational model is
because the extra overhead of the relational database engine was sure to
make any product based on that model so much slower than either hierar-
chical or network databases, as to be non-competitive. I say more about this
later in this chapter.

The object-oriented database
Object-oriented database management systems (OODBMS) first appeared in
1980. They were developed primarily to handle non-text, non-numeric data
such as graphical objects. Relational DBMS typically do not do a good job
with such so-called complex data types. OODBMS use the same data model
as object-oriented programming languages such as Java, C++, and C#, and
work well with such languages. Although object-oriented databases outper-
form relational databases for selected applications, they do not do as well in
most mainstream applications, and have not made much of a dent in the
hegemony of the relational products.

The object-relational database
An object-relational database is a relational database that allows users to
create and use new data types that are not part of the standard set of data
types provided by SQL. User-defined types were added to the SQL:1999 speci-
fication and are available in current implementations of IBM’s DB2, Oracle,
and Microsoft SQL Server. Current relational database management systems
are actually therefore object-relational database management systems rather
than pure relational database management systems.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 23

Why Did the Relational Model Win?24

Why Did the Relational Model Win?
Throughout the 1970s and into the 1980s, hierarchical and network were the
database technologies of choice for large organizations. Oracle, the first
standalone relational database system to reach the market, did not appear
until 1979, and initially met with limited success.

For the following reasons, as well as just plain old inertia, relational data-
bases caught on slowly at first:

✦ The earliest implementations of relational database management sys-
tems were slow performers. This was due to the fact that they required
more computations to be made than other database systems did to per-
form the same operation.

✦ Most business managers were reluctant to try something new
when they were already familiar with one or the other of the older
technologies.

✦ Data and applications that already existed for an existing database
system would be very difficult to translate to work with a relational
DBMS. For most organizations with an existing hierarchical or network
database system, it would be too costly to make a conversion.

✦ Employees would have to learn an entirely new way of dealing with
data. This would be very costly, too.

However, things gradually started to change.

Although databases structured according to the hierarchical and the net-
work models had excellent performance, they were difficult to maintain.
Structural changes to a database took a high level of expertise and a lot of
time. In many organizations, backlogs of change requests grew from months
to years. Department managers started putting their work on personal com-
puters rather than going to the corporate IT department to ask for a change
to a database. IT managers, fearing that their power in the organization was
eroding, took the drastic step of considering relational technology.

Meanwhile, Moore’s Law was inexorably changing the performance situation.
In 1965, Gordon Moore of Intel noted that about every 18 months the price of
semiconductor memory would be cut in half. He predicted that this exponen-
tial trend would continue. A corollary of the law was that the performance of
integrated circuit processors would double every 18 months. Both of these
laws have held true for more than 40 years, and the end is not yet in sight. In
addition, the capacities and performance of hard disk storage devices have
also improved at an exponential rate, paralleling the improvement in semicon-
ductor chips.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 24

Book I
Chapter 1

Relational Database
Basics

Why Did the Relational Model Win? 25

The performance improvements in processors, memories, and hard disks
combined to dramatically improve the performance of relational database
systems, making them more competitive with hierarchical and network sys-
tems. When this improved performance was added to the relational architec-
ture’s inherent advantage in structural flexibility, relational database
systems started to become much more attractive, even to large organiza-
tions with major investments in legacy systems. In many of these companies,
although existing applications remained on their current platforms, new
applications and the databases that held their data were developed using
the new relational technology.

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 25

Book I: SQL Concepts26

05 119280 bk01ch01.qxp 5/23/07 10:07 AM Page 26

Chapter 2: Modeling a System

In This Chapter
� Capturing the users’ data model

� Translating the users’ data model to a relational model

� Drawing entity-relationship diagrams

� The relational database hierarchy

In order to have any hope of developing a database system that delivers
the results, performance, and reliability that the users need, you must

understand, in a highly detailed way, what those needs are. To understand
the users’ needs, you must create a model of what they have in mind. After
perfecting the model through much dialog with the user, you need to trans-
late the model into something that can be implemented with a relational
database. This chapter takes you through the steps of taking what might be
a vague and fuzzy idea in the minds of the users, and transforming it into
something that can be converted directly into a robust and high-performance
database.

Capturing the Users’ Data Model
The whole purpose of a database is to hold useful data and to enable one or
more people to selectively retrieve and use the data they want. Generally,
before a database project is begun, interested parties have some idea of
what data they want to store, and what subsets of the data they are likely to
want to retrieve. More often than not, peoples’ ideas of what should be
included in the database and what they want to get out of it are not terribly
precise. Vague and nebulous as it may be, the concepts each of these people
have in their mind is their own individual user’s data model. To have any hope
of building a database system that meets the needs of the users, you must
understand this data model. Beyond understanding it, you must help to clari-
fy it so that it can become the basis for a database system that is useful.

Identifying and interviewing stakeholders
The first step in discovering the users’ data model is to find out who the
users are. This goes beyond the people who actually sit in front of a PC and
run your database application. A number of other people usually have a
stake in the development effort. Perhaps several people will be interacting
directly with the system. They, of course, are very interested parties. So are

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 27

Capturing the Users’ Data Model28

their supervisors, and even higher management. If the database will deal
with customer or vendor information, the customers and vendors are prob-
ably stakeholders too. The IT department, which is responsible for keeping
systems up and running, is also a major stakeholder. There may be others,
such as owners or major stockholders in the company. All of these people
will have an image in their mind of what the system ought to be. You need to
find these people, interview them, and find out how they envision the system,
how they expect it to be maintained, and what they want it to produce.

Reconciling conflicting requirements
Just as the set of stakeholders will be diverse, so will their ideas of what the
system should be and do. If not reconciled, this is a recipe for disaster. You
run the risk of developing a system that is not satisfactory to anybody.

It is your responsibility as the database developer to develop a consensus.
You are the only independent, outside party who does not have a personal
stake in what the system is and does. Generally the stated requirements of
the stakeholders will fall into three categories. They are

✦ A feature that is absolutely mandatory: The system would be of limited
value without it.

✦ A feature that is important and that adds greatly to the value of the
system.

✦ A feature that would be nice to have, but is not actually needed.

Database developers are like army doctors
Battleground field hospitals make use of a tech-
nique called triage to allocate their limited
resources in the most beneficial way. When
people are brought in for treatment, they are
examined to determine the extent of their
injuries. After the examination, they are placed
into one of three categories:

� The person has critical wounds and must
receive treatment immediately, or he
will die.

� The person has serious wounds, but they
are not immediately life-threatening. The

doctors can afford to let this person wait
while patients with more serious injuries
are treated.

� The person is so badly wounded that no
treatment available will save her.

Patients in the first category are treated imme-
diately. Patients in the second category are
treated as soon as circumstances permit.
Patients in the third category are made as com-
fortable as possible, but treated only for pain.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 28

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 29

Once you have appropriately categorized the want lists of the stakeholders,
you are in a position to determine what is really required, and what is pos-
sible within the allotted budget and development time. Now comes the fun
part. You must convince all the stakeholders that their cherished features
that fall into the third category, must be deleted or changed if they conflict
with someone else’s first-category or second-category feature. Of course,
politics also intrudes here. Some stakeholders have more “clout” than others.
You must be sensitive to this. Sometimes the politically acceptable solution
is not exactly the same as the technically optimal solution.

Obtaining stakeholder buy-in
One way or another, you will have to get all the stakeholders to agree on one
set of features that will be included in the system you are planning to build.
This is critical. If the system does not adequately meet the needs of all those
for whom it is being built, it is not a success. You must get the agreement of
everyone that the system you propose meets their needs. Get it in writing.
Enumerate everything that will be provided in a formal Statement of Require-
ments, and then have every stakeholder sign off on it. This will potentially
save you from much grief later on.

Translating the Users’ Data Model
to a Relational Model

After you have a coherent users’ data model in a clear, concise, concrete
form, the real work begins. Somehow, you must transform that model into a
relational model that serves as the basis for a database. In most cases, a
users’ data model is not in a form that can be directly translated into a rela-
tional model. A helpful technique is to first translate it into one of several
formal modeling systems that make the various entities in the users model
and the relationships between them clear. Probably the most popular of
those formal modeling techniques is the Entity-Relationship (E-R) model.

Entity-Relationship modeling techniques
In 1976, six years after Dr. Codd published the relational model, Peter Chen
published a paper in the ACM Transactions on Database Systems, introducing
the Entity-Relationship (E-R) model. The E-R model represented a conceptual
breakthrough because it provided a means to translate a users’ data model
into a relational model. In 1976, the relational model was still nothing more
than a theoretical construct. It would be three more years before the first
standalone relational database product (Oracle) appeared on the market.
The E-R model was an important factor in turning theory into practice.

One of the strengths of the E-R model is its generality. E-R models can be
used to represent a wide variety of different systems. An E-R model can be

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 29

Translating the Users’ Data Model to a Relational Model30

used to represent a physical system as big and complex as a fleet of cruise
ships, or as small as the livestock maintained by a gentleman farmer on his
two acres of land.

Any entity-relationship model, big or small, consists of four major compo-
nents: entities, attributes, identifiers, and relationships. I examine each one
of these concepts in turn.

Entities
Dictionaries will tell you that an entity is something that has a distinct, sepa-
rate existence. It could be a material entity, such as the Great Pyramid of
Giza, or an abstract entity, such as a tetrahedron. Just about any distinct,
separate thing that you can think of qualifies as being an entity. When used
in a database context, an entity is something that the user can identify and
that she wants to keep track of.

A group of entities with common characteristics is called an entity class. Any
one example of an entity class is an entity instance. A common example of an
entity class for most organizations would be the EMPLOYEE entity class. An
instance of that entity class would be a particular employee, such as Duke
Kahanamoku.

Attributes
Entities are things that users can identify and want to keep track of. However,
the users probably don’t want to use up valuable storage space keeping
track of every conceivable aspect of an entity. Some aspects are of more
interest than others. For example, in the EMPLOYEE model, you probably
want to keep track of such things as first name, last name, and job title. You
probably do not want to keep track of the employee’s favorite surfboard
manufacturer or favorite musical group. Figure 2-1 shows an example of an
entity class, including typical attributes. Figure 2-2 shows an example of an
instance of the EMPLOYEE entity class.

EMPLOYEE
EmpID
FirstName
LastName
JobTitle
Exempt/Non-exempt
HireDate
Extension
E-mail
Department

Figure 2-1:
EMPLOYEE,
an example
of an entity
class.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 30

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 31

Identifiers
In order to do anything meaningful with data, you must be able to tell one
piece of data from another. That means each piece of data must have an
identifying characteristic that is unique. In the context of a relational data-
base, a “piece of data” is a row in a two-dimensional table. For example, in
the EMPLOYEE table, the row describing Duke Kahanamoku would be the
piece of data, and the EmpID attribute would be the identifier. No other
employee will have the same EmpID as the one that Duke has.

In the above example, EmpID is not just an identifier — it is a unique identi-
fier. There is one and only one EmpID that corresponds to Duke Kahanamoku.
Non-unique identifiers are also possible. For example, a FirstName of Duke
does not uniquely identify Duke Kahanamoku. There might be another
employee named Duke Snyder. Having an attribute such as EmpID is a good
way to guarantee that you are getting the employee you want when you are
searching for Duke Kahanamoku, the former Olympic swimming champion.
Another way, however, is to use a composite identifier. A composite identifier
is a combination of several attributes that is sufficient to uniquely identify a
record. The combination of FirstName and LastName would be sufficient to
distinguish Duke Kahanamoku from Duke Snyder, but would not be enough
to distinguish the Olympic champion from his father, who had the same
name. In such a case, a composite identifier consisting of FirstName,
LastName, and BirthDate would suffice.

Relationships
Any non-trivial database contains more than one table. When you have more
than one table, the question arises as to how the tables relate to each other. A
company might have an EMPLOYEE table, a CUSTOMER table, and a PRODUCT
table. These become related when an employee sells a product to a customer.
Such a sales transaction can be recorded in a TRANSACTION table. Thus the
EMPLOYEE, CUSTOMER, and PRODUCT tables are related to each other via
the TRANSACTION table. Relationships such as these are key to the way rela-
tional databases operate. Relationships can differ in the number of entities
that they relate.

EMPLOYEE
172850
Duke
Kahanamoku
Cultural ambassador
E
01/01/2002
10
duck@surfboardsrus.com
Public Relations

Figure 2-2:
Duke
Kahanamoku,
an example
of an
instance
of the
EMPLOYEE
entity class.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 31

Translating the Users’ Data Model to a Relational Model32

Degree-two relationships
Degree-two relationships are ones that relate one entity directly to one other
entity. EMPLOYEE is related to TRANSACTION by a degree-two relationship,
also called a binary relationship. CUSTOMER is also related to TRANSAC-
TION by a binary relationship, as is PRODUCT. Figure 2-3 shows a diagram of
an example degree-two relationship.

Degree-two relationships are the simplest possible, and, happily, just about any
system that you are likely to want to model consists of entities connected by
degree-two relationships, although more complex relationships are possible.

There are three kinds of binary relationships:

✦ A one-to-one (1:1) relationship relates one instance of one entity class to
one instance of a second entity class.

✦ A one-to-many (1:N) relationship relates one instance of one entity class
to multiple instances of a second entity class.

✦ A many-to-many (N:M) relationship relates multiple instances of one
entity class to multiple instances of a second entity class.

Figure 2-4 is a diagram of an example of a one-to-one relationship between a
person and that person’s driver’s license. A person can have one and only one
driver’s license, and a driver’s license can apply to one and only one person.

PERSON LICENSE1:1

PERSON:LICENSE

Figure 2-4:
A one-to-
one
relationship
between
PERSON
and
LICENSE.

EMPLOYEE TRANSACTION

EMPLOYEE:TRANSACTION

Figure 2-3:
An
EMPLOYEE:
TRANS-
ACTION
relationship.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 32

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 33

Figure 2-5 is a diagram of an example of a one-to-many relationship between
a person and that person’s traffic violation tickets. A person can be served
with multiple tickets, but a ticket can apply to one and only one person.

Figure 2-6 is a diagram of an example of a many-to-many relationship
between a person and the route she takes on her drive to work. A person
can take one of several routes from home to work, and each one of those
routes can be taken by multiple people.

Complex relationships
Degree-three relationships are possible, but rarely occur in practice.
Relationships of degree higher than three probably mean that you need to
redesign your system to use simpler relationships. An example of a degree-
three relationship would be the relationship between a musical composer, a
lyricist, and a song. Figure 2-7 shows a diagram of this relationship.

Although it is possible to build a system with such relationships, it is prob-
ably better in most cases to restructure the system in terms of binary
relationships.

PERSON ROUTEN:M

PERSON:ROUTE

Figure 2-6:
A many-
to-many
relationship
between
PERSON
and ROUTE.

PERSON TICKET1:N

PERSON:TICKET

Figure 2-5:
A one-to-
many
relationship
between
PERSON
and TICKET.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 33

Translating the Users’ Data Model to a Relational Model34

Drawing Entity-Relationship diagrams
I find it easier to understand relationships between things if I see a diagram
instead of merely looking at sentences describing the relationships. Apparently
a lot of other people feel the same way because systems represented by the
E-R model are universally depicted in the form of diagrams. A few simple
examples of E-R diagrams appear in the previous section. In this section, I
introduce some concepts that add detail to the diagrams. One of those con-
cepts is cardinality. In mathematics, cardinality is the number of elements in
a set. In the context of relational databases, a relationship between two
tables has two cardinalities of interest, the cardinality associated with the
first table and the cardinality associated with the second table. We look at
these cardinalities two primary ways: maximum cardinality and minimum
cardinality.

Maximum cardinality
The E-R diagram’s representation of maximum cardinality is shown in
Figures 2-4, 2-5, and 2-6. The diamond between the two entities in the rela-
tionship holds the two cardinality values. Figure 2-4 shows a one-to-one
relationship. In the example, a person is related to that person’s driver’s
license. One driver can have at most one license, and one license can belong
at most to one driver. The maximum cardinality on both sides of the
relationship is one.

Figure 2-5 illustrates a one-to-many relationship. When relating a person to
the tickets he has accumulated, each ticket belongs to one and only one

COMPOSER LYRICIST

SONG

COMPOSITION

Figure 2-7:
The
COMPOSER:
SONG:
LYRICIST
relationship.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 34

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 35

driver, but a driver may have more than one ticket. The number of tickets
above one is indeterminate, so it is represented by the variable N.

Figure 2-6 shows a many-to-many relationship. The maximum cardinality on
the PERSON side is represented by the variable N, and the maximum cardi-
nality on the ROUTE side is represented by the variable M because although
both the number of drivers and the number of routes are more than one,
they are not necessarily the same. You might have seventeen different driv-
ers that take any one of ten routes, for example.

Minimum cardinality
Just as the maximum cardinality of one side of a relationship shows the
largest number of entities that can be on that side of the relationship, the
minimum cardinality shows the least number of entities that can be on that
side of the relationship. In some cases, the least number of entities that can
be on one side of a relationship can be zero. In other cases, the minimum
cardinality could be one or more.

Refer to the relationship in Figure 2-4 between a person and that person’s
driver’s license. The minimum cardinalities in the relationship depend heav-
ily on subtle details of the users’ data model. Take the case where a person has
been a licensed driver, but due to excessive citations, his driver’s license has
been revoked. The person still exists, but the license does not. If the users’ data
model stipulates that the person is retained in the PERSON table, but the corre-
sponding row is removed from the LICENSE table, the minimum cardinality on
the PERSON side is one, and the minimum cardinality on the LICENSE side is
zero. Figure 2-8 shows how minimum cardinality is represented in this example.

The slash mark on the PERSON side denotes a minimum cardinality of
mandatory, meaning at least one instance must exist. The oval on the

PERSON LICENSE1:1

PERSON:LICENSE

Figure 2-8:
E-R diagram
showing
minimum
cardinality,
where a
person must
exist, but his
correspon-
ding license
need not
exist.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 35

Translating the Users’ Data Model to a Relational Model36

LICENSE side denotes a minimum cardinality of optional, meaning at least
one instance need not exist.

For this one-to-one relationship, a given person can correspond to at most
one license, but may correspond to none. A given license must correspond to
one person.

If only life were that simple . . . Remember that I said that minimum cardinal-
ity depends subtly on the users’ data model? What if the users’ data model
were slightly different, based on another possible case? Suppose a person
has a very good driving record and a valid driver’s license in her home
state of Washington. Next, suppose that she accepts a position as a wildlife
researcher on a small island that has no roads and no cars. She is no longer
a driver, but her license will remain valid until it expires in a few years. This
is the reverse case of what is shown in Figure 2-8; a license exists, but the
corresponding driver does not (at least as far as the state of Washington is
concerned). Figure 2-9 shows this situation.

The lesson to take home from this example is that minimum cardinality is
often difficult to determine. You will need to question the users very care-
fully and explore unusual cases such as those cited above before deciding
how to model minimum cardinality.

If the minimum cardinality of one side of a relationship is mandatory, that
means the cardinality of that side is at least one, but might be more. Suppose,
for example, you were modeling the relationship between a basketball team
and its players. A person cannot be a basketball player unless she is a member
of a basketball team, so the minimum cardinality on the TEAM side is manda-
tory, and in fact is one. This assumes that the users’ data model states that a
player cannot be a member of more than one team. Similarly, it is not possible
for a basketball team to exist unless it has at least five players. This means
that the minimum cardinality on the PLAYER side is also mandatory, but in

PERSON LICENSE1:1

PERSON:LICENSE

Figure 2-9:
E-R diagram
showing
minimum
cardinality,
where a
license must
exist, but its
correspond-
ing person
need not
exist.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 36

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 37

this case is five. Once again, depending on the users’ data model, the rule
might be that a team cannot exist unless it has at least five players. The mini-
mum cardinality of the PLAYER side of the relationship is five.

Primarily you are interested in whether the minimum cardinality on a side of
a relationship is either mandatory or optional and less interested in whether
a mandatory minimum cardinality has a value of one or more than one. The
difference between mandatory and optional is the difference between whether
an entity exists or not. The difference between existence and non-existence
is substantial. In contrast, the difference between one and five is just a matter
of degree. Both cases refer to a mandatory minimum cardinality. For most
applications, the difference between one mandatory value and another does
not matter.

Advanced E-R model concepts
In the previous sections of this chapter, I talk about entities, relationships,
and cardinality. I have pointed out that subtle differences in the way users
model their system can modify the way minimum cardinality is modeled.
These concepts are a good start, and are sufficient for many simple systems.
However, more complex situations are bound to arise. These call for exten-
sions of various sorts of the E-R model. So now I take a look at a few of these
situations and at the extensions to the E-R model that have been made to
deal with them.

Strong entities and weak entities
All entities are not created equal. Some are “stronger” than others. An entity
that does not depend on any other entity for its existence is considered a
strong entity. Consider the sample E-R model in Figure 2-10.

CUSTOMER SALES_ORDER SALES PERSON

PRODUCT

1:1

N:M

N:1

Figure 2-10:
The E-R
model for
a retail
transaction
database.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 37

Translating the Users’ Data Model to a Relational Model38

First consider maximum cardinality. A CUSTOMER can make multiple pur-
chases, each one recorded on a SALES_ORDER. A SALESPERSON can make
multiple sales, each one recorded on a SALES_ORDER. A SALES_ORDER can
include multiple PRODUCTs, and a PRODUCT can appear on multiple
SALES_ORDERs.

Minimum cardinality may be modeled a variety of ways, depending on how the
users’ data model views things. For example, a person might be considered a
customer even before he buys anything because the store received his infor-
mation in a promotional campaign. An employee might be considered to be a
salesperson as soon as she is hired, even though she has not sold anything
yet. A sales order might exist before it lists any products, and a product might
exist on the shelves before any of them have been sold. According to this
model, all the minimum cardinalities are optional. A different users’ data
model could mandate that some of these relationships be mandatory.

In a model such at the one described, where all the minimum cardinalities
are optional, none of the entities depends on any of the other entities for its
existence. A customer can exist without any associated sales orders. An
employee can exist without any associated sales orders. A product can exist
without any associated sales orders. A sales order can exist in the order pad
without any associated customer, salesperson, or product. In this arrange-
ment, all of these entities are classified as strong entities. They all have an
independent existence.

Not all entities are strong, however. Consider the case shown in Figure 2-8. In
this model, a driver’s license cannot exist unless the corresponding driver
exists. The license is existence-dependent upon the driver. Any entity that is
existence-dependent on another entity is a weak entity. In an E-R diagram, a
weak entity is represented with a box that has rounded corners. The diamond
that shows the relationship between a weak entity and its corresponding
strong entity also has rounded corners. Figure 2-11 shows this representation.

PERSON LICENSE1:1

Figure 2-11:
A PERSON-
LICENSE
relationship,
showing
LICENSE as
a weak
entity.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 38

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 39

ID-dependent entities
A weak entity cannot exist without a relationship to a strong entity. A special
case of a weak entity is one that depends on a strong entity not only for its
existence, but also for its identity. One example of an ID-dependent entity is
a seat on an airliner flight. Figure 2-12 illustrates the relationship.

The seat number, for example 23-A, does not completely identify an airline
seat. However, seat 23-A on Hawaiian Airlines flight 25 from PDX to HNL, on
October 2, 2007 does completely identify a particular seat that a person can
reserve. That additional information would all be attributes of the FLIGHT
entity.

Supertype and subtype entities
In some databases, some entity classes might share attributes with other
entity classes, rather than being as dissimilar as customers and products.
One example might be an academic community. There are a number of
people in such a community: students, faculty members, and non-academic
staff. All of those people share some attributes, such as name, home
address, home telephone number, and e-mail address. However, there are
also attributes that are not shared. A student would also have attributes of
grade point average, class standing, and advisor. A faculty member would
have attributes of department, academic rank, and phone extension. A staff
person would have attributes of job category, job title, and phone extension.

You can create an E-R model of this academic community by making STUDENT,
FACULTY, and STAFF all subtypes of the supertype COMMUNITY. Figure 2-13
shows the relationships.

FLIGHT SEAT1:N

Figure 2-12:
The
SEAT is ID-
dependent
on FLIGHT
via the
FLIGHT-
SEAT
relationship.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 39

Translating the Users’ Data Model to a Relational Model40

Supertype/subtype relationships borrow the concept of inheritance from
object-oriented programming. The attributes of the supertype entity are
inherited by the subtype entities. Each subtype entity has additional attrib-
utes that it does not necessarily share with the other subtype entities. In the
example, everyone in the community has a name, a home address, a telephone
number, and an e-mail address. However, only students have a grade point
average, an advisor, and a class standing. Similarly, only a faculty member
can have an academic rank, and only a staff member can have a job title.

Some aspects of Figure 2-13 require a little additional explanation. The _ next
to each relationship line signifies that the lower entity is a subtype of the
higher entity, so STUDENT, FACULTY, and STAFF are subtypes of COMMU-
NITY. The curved arc with a number 1 at the right edge represents the fact
that every member of the COMMUNITY must be a member of one of the sub-
type entities. In other words, you cannot be a member of the community
unless you are either a student, or a faculty member, or a staff member. It is
possible in some models that an element could be a member of a supertype
without being a member of any of the subtypes. However, that is not the
case for the community example.

Incorporating business rules
Business rules are formal statements about how an organization does busi-
ness. Business rules typically differ from one organization to another. For

COMMUNITY

STUDENT FACULTY STAFF

∈
∈∈

1

COMMUNITY contains:
 Name
 Home Address
 Telephone Number
 E-mail Address

STUDENT contains:
 Grade Point Average
 Advisor
 Class Standing

FACULTY contains:
 Academic Rank
 Department
 Phone Extension

STAFF contains:
 Job Category
 Job Title
 Phone Extension

Figure 2-13:
The
COMMUNITY
supertype
entity with
STUDENT,
FACULTY,
and STAFF
subtype
entities.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 40

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 41

example, one university may have a rule that a faculty member must hold a
PhD degree. Another university could well have no such rule.

Sometimes you may not find important business rules written down anywhere.
They may just be things that everyone in the organization understands. It is
important to conduct an in-depth interview of everyone involved to fish out
any business rules that people failed to mention when the job of creating the
database was first described to you.

A simple example of an E-R model
In this section, as an example, I apply the principles of E-R models to a hypo-
thetical Web-based business named Gentoo Joyce that sells apparel items
with a penguin motif, such as T-shirts, scarves, and dresses. The business
displays its products and takes credit card orders on its Web site. There is
no “brick and mortar” store. Fulfillment is outsourced to a fulfillment house,
which receives and warehouses product from vendors, and then, upon
receiving orders from Gentoo Joyce, ships the orders to customers.

The Web site front end consists of pages that include descriptions and pictures
of the products, a shopping cart, and a form for capturing customer and pay-
ment information. The Web site back end holds a database that stores cus-
tomer, transaction, inventory, and order shipment status information. Figure
2-14 shows an E-R diagram of the Gentoo Joyce system. It is an example typi-
cal of a very small “boutique” business.

Gentoo Joyce buys goods and services from three kinds of vendors: product
suppliers, Web hosting services, and fulfillment houses. In the model,
VENDOR is a supertype of SUPPLIER, HOST, and FULFILLMENT_HOUSE.
Some attributes are shared among all the vendors; these are assigned to the
VENDOR entity. Other attributes are not shared and are instead attributes of
the subtype entities.

A many-to-many relationship exists between SUPPLIER and PRODUCT because
a supplier may provide more than one product, and a given product may be
supplied by more than one supplier. Similarly, any given product will (hope-
fully) appear on multiple orders, and an order may include multiple products.
Such many-to-many relationships can be problematic. I discuss how to handle
such problems in Book II.

The other relationships in the model are one-to-many. A customer can place
many orders, but each order comes from one and only one customer. A ful-
fillment house can stock multiple products, but each product is stocked by
one and only one fulfillment house.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 41

Translating the Users’ Data Model to a Relational Model42

A slightly more complex example
The Gentoo Joyce system that I describe in the preceding section is an easy-
to-understand example, similar to what you often find in database textbooks.
Most real-world systems are much more complex. I don’t try to show a gen-
uine real-world system here, but to move at least one step in that direction,
I’ll model the hypothetical Clear Creek Medical Clinic (CCMC). As I discuss in

VE
N

DO
R

HO
ST

SU
PP

LI
ER

FU
LF

IL
LM

EN
T

HO
US

E

PR
OD

UC
T

OR
DE

R
CU

ST
OM

ER

1:
N

N
:1

N
:1

1:
N

pl
ac

es

pr
od

uc
es

fil
ls

st
oc

ks1

∈
∈

∈

Figure 2-14:
An E-R
diagram of a
small Web-
based retail
business.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 42

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 43

Book II, one of the first things to do when assigned the project of creating a
database for a client is to interview everyone who has a stake in the system,
including management, users, and anyone else who has a say in how things
are run. Listen carefully to these people and discern how these people
model in their minds the system they envision. Find out what information
they need to capture and what they intend to do with it.

CCMC employs doctors, nurses, medical technologists, medical assistants,
and office workers. The company provides medical, dental, and vision bene-
fits to employees and their dependents. The doctors, nurses, and medical
technologists must all be licensed by a recognized licensing authority.
Medical assistants may be certified, but need not be. Neither licensure nor
certification is required of office workers.

Typically, a patient will see a doctor, who will examine the patient, and then
order one or more tests. A medical assistant or nurse may take samples of
the patient’s blood, urine, or both, and take the samples to the laboratory.
In the lab, a medical technologist performs the tests that the doctor has
ordered. The results of the tests are sent to the doctor who ordered them,
as well as to perhaps one or more consulting physicians. Based on the test
results, the primary doctor, with input from the consulting physicians,
makes a diagnosis of the patient’s condition and prescribes a treatment. A
nurse then administers the prescribed treatment.

Based on the descriptions of the envisioned system, as described by the
interested parties (called stakeholders), you can come up with a proposed
list of entities. A good first shot at this is to list all the nouns that were used
by the people you interviewed. Many of these will turn out to be entities in
your model, although you may end up classifying some of those nouns as
attributes of entities. For this example, say you generated the following list:

Employee

Office worker

Doctor (physician)

Nurse

Medical technologist

Medical assistant

Benefits

Dependents

Patients

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 43

Translating the Users’ Data Model to a Relational Model44

Doctor’s license

Nurse’s license

Medical technologist’s license

Medical assistant’s certificate

Examination

Test order

Test

Test result

Consultation

Diagnosis

Prescription

Treatment

In the course of your interviews of the stakeholders, you found that one of
the categories of things to track is employees, but there are several different
employee classifications. You also found that there are benefits and that ben-
efits apply to dependents. From this, you conclude that EMPLOYEE is an entity
and it is a supertype of the OFFICE_WORKER, DOCTOR, NURSE, MEDTECH,
and MEDASSIST entities. A DEPENDENT entity also should fit into the picture
somewhere.

Although doctors, nurses, and medical technologists all must have current
valid licenses, because a license applies to one and only one professional
and each professional has one and only one license, it makes sense for those
licenses to be attributes of their respective DOCTOR, NURSE, and MEDTECH
entities rather than to be entities in their own right.

PATIENT clearly should be an entity, as should EXAMINATION, TEST,
TESTORDER, and TESTRESULT. CONSULTATION, DIAGNOSIS, PRESCRIPTION,
and TREATMENT also deserve to stand on their own as entities.

After you have decided what the entities are, you can start thinking about
how they relate to each other. You may be able to model the relationships in
one of several ways. This is where the interviews with the stakeholders are
critical. The model you arrive at must be consistent with the organization’s
business rules, both those written down somewhere and those that are under-
stood by everyone, but not usually talked about. Figure 2-15 shows one
possible way to model this system.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 44

Book I
Chapter 2

M
odeling a System

Translating the Users’ Data Model to a Relational Model 45

From this diagram, you can extract certain facts:

✦ An employee can have zero, one, or multiple dependents, but each
dependent is associated with one and only one employee. (Business
rule: If both members of a married couple work for the clinic, for insur-
ance purposes, the dependents are associated with only one of them.)

✦ An employee must be either an office worker, a doctor, a nurse, a med-
ical technologist, or a medical assistant. (Business rule: An office worker
cannot, for example, also be classified as a medical assistant. Only one
job classification is permitted.)

✦ A doctor can perform many examinations, but each examination is per-
formed by one and only one doctor. (Business rule: If more than one
doctor is present at a patient examination, only one of them takes
responsibility for the examination.)

✦ A doctor can issue many test orders, but each test order can specify one
and only one test.

DEPENDENT N:1
ε

ε ε ε
ε

1

N:1

SPECIMEN N:1

EMPLOYEE

MANAGER MEDTECH

PATIENT TREATMENT

PRESCRIPTION

DIAGNOSIS

TEST

NURSEMEDASSIST DOCTOR

EXAMINATION

CONSULTATION

BENEFIT
PLAN

TEST
ORDER

RESULT

N:1

N:1

N:1

1:N

1:N

1:1
1:N

1:N

N:M

N:M

N:MN:M

N:1

N:1N:1

N:1
N:1

N:1

requests

collectsperforms

performed on

writesperforms
makes

specifies
sent to

specifies
receives

suggests

issues

administrators

collects

collected
from

performed on

produces

suggests

Figure 2-15:
The E-R
diagram for
Clear Creek
Medical
Clinic.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 45

Translating the Users’ Data Model to a Relational Model46

✦ A medical assistant or a nurse can collect multiple specimens from a
patient, but each specimen is from one and only one patient.

✦ A medical technologist can perform multiple tests on a specimen, and
each test can be applied to multiple specimens.

✦ A test may have one of several results; for example, positive, negative,
below normal, normal, above normal, as well as specific numeric values.
However, each such result applies to one and only one test.

✦ A test result can be sent to one or more doctors. A doctor can receive
many test results.

✦ A doctor may request a consultation with one or more other doctors.

✦ A doctor may make a diagnosis of a patient’s condition, based on test
results and possibly on one or more consultations.

✦ A diagnosis could suggest one or more prescriptions.

✦ A doctor can write many prescriptions, but each prescription is written
by one and only one doctor for one and only one patient.

✦ A doctor may order a treatment, to be administered to a patient by a nurse.

Often after drawing an E-R diagram, and then determining all the things
that the diagram implies by compiling a list such as that given above, the
designer finds missing entities or relationships, or that the model does not
accurately represent the way things are actually done in the organization.
Creating the model is an iterative process of progressively modifying the dia-
gram until it reflects the desired system as closely as possible.

Problems with complex relationships
The Clear Creek Medical Clinic example in the preceding section contains
some many-to-many relationships, such as the relationship between TEST
and SPECIMEN. Multiple tests can be run on a single specimen, and multiple
specimens, taken from multiple patients, can all be run through the same
test. There is a problem in storing the relevant information. If the TEST
entity is translated into a table in a relational database, how many columns
should be set aside for specimens? Because you don’t know how many speci-
mens a test will be run on, and because the number of specimens could be
quite large, it doesn’t make sense to allocate space in the TEST table to show
that the test was performed on a particular specimen.

Similarly, if the SPECIMEN entity is translated into a table in a relational data-
base, how many columns should be set aside to record the tests that might
be performed on it? That is unknown. It doesn’t make sense to allocate space
in the SPECIMEN table to hold all the tests that might be run on it. For these

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 46

Book I
Chapter 2

M
odeling a System

The Relational Database Hierarchy 47

reasons, it is common practice to convert a many-to-many relationship into
two one-to-many relationships, both connected to a new entity that lies
between the original two. You can make that conversion with no loss of
accuracy, and the problem of how to store things disappears. In Book II I go
into detail on how to make this conversion.

Simplifying relationships using normalization
Even after you have eliminated all the many-to-many relationships in an E-R
model, there can still be problems if you have not conceptualized your enti-
ties in the simplest way. The next step in the design process is to examine
your model and see if operations of adding, changing, or deleting data can
cause inconsistencies or even outright wrong information to be retained in
your database. Such problems are called anomalies, and if they are possible,
you will need to adjust your model to eliminate them. This process of model
adjustment is called normalization and is covered in Book II.

Translating an E-R model into a relational model
After you are satisfied that your E-R model is not only correct, but economi-
cal and robust, the next step is to translate it into a relational model. The
relational model is the basis for all relational database management systems.
I go through that translation process in Book II.

The Relational Database Hierarchy
A relational database is organized in a hierarchical structure, where the high-
est level is the catalog. Generally only the largest, most complex databases
will have multiple catalogs.

Catalogs: A database catalog only comes into play in large, complex
databases that have multiple schemas.

Schemas: A database schema contains metadata. This metadata
includes definitions of tables, views, value ranges, indexes, users, and
user groups. It could also include stored procedures and triggers.

Tables: A database table is a set of elements organized as a two-
dimensional table with horizontal rows and vertical columns. The
columns correspond to the attributes in the E-R model of an entity.
The rows hold the data about individual instances of the entity.

Columns: A column is a component of a database table. Each column in
the table corresponds to one of the attributes in the E-R model of the
entity that is being actualized by the table.

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 47

Book I: SQL Concepts48

06 119280 bk01ch02.qxp 5/23/07 10:07 AM Page 48

Chapter 3: SQL Overview

In This Chapter
� Where SQL came from

� What SQL does

� The ANSI/ISO SQL standard

� What SQL doesn’t do

� Implementations

In the early days of relational database management systems, as is true
for the early days of just about anything, there was no standard language

for performing relational operations on data. A number of companies came
out with relational database management system products, and each had its
own associated language. There were some general similarities among the
languages because they all were performing essentially the same operations
on the same kinds of data, structured in the same way. However, there were
differences in syntax and in functionality that made it impossible for a
person using the language of one RDBMS to operate on data that had been
stored by another RDBMS. All the RDBMS vendors tried to gain dominant
market share so that their particular proprietary language would prevail.
The logic was that once developers learned a language, they would want to
stick with it on subsequent projects. This steaming cauldron of ideas set the
stage for the emergence of SQL. There was one company that had more
market power than all the others combined, and had the additional advan-
tage of being the employer of the inventor of the relational database model.

Where SQL Came From
It is interesting to note that even though Dr. Codd was an IBM employee
when he developed the relational database model, IBM’s initial support of
that model was lukewarm at best. One reason might have been the fact that
IBM already had a leading position in the database market with its IMS hier-
archical DBMS. In 1978, IBM released System/38, a minicomputer that came
with a RDBMS that was not promoted heavily.

As a result, in 1979, the world was introduced to a fully realized RDBMS by a
small startup company named Relational Software, Inc. headed by Larry
Ellison. Relational’s product, called Oracle, is still the leading relational data-
base management system on the market today.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 49

What SQL Does50

Although Oracle had the initial impact on the market, other companies,
including IBM, followed. In the process of developing the SQL/DS RDBMS
product, IBM created a language code-named SEQUEL, which was an
acronym for Structured English QUEry Language. This moniker was appro-
priate because SEQUEL statements looked like English-language sentences,
but were more structured than most casual speech.

When it came time to actually release its RDBMS product, along with its
associated language, IBM’s legal department flagged a possible copyright
issue with the name SEQUEL. In response, management elected to drop the
vowels and call the language SQL (pronounced ess-cue-ell). The reference to
Structured English was lost in the process. As a result, many people thought
that SQL was an acronym for Structured Query Language. This is not the
case. In computer programming, a structured language has some very well-
defined characteristics. SQL does not share those characteristics and is thus
not a structured language, query or otherwise.

What SQL Does
SQL does far more than just execute queries. Yes, of course you can use it to
retrieve the data you want from a database, using a query. However, you can
also use SQL to create and destroy databases, as well as modify their struc-
ture. In addition, you can add, modify, and delete database data with SQL.
Even with all that capability, SQL is still considered only a data sublanguage.
It does not have all the features of general-purpose programming languages
such as C, C++, C#, or Java.

SQL is specifically designed for dealing with relational databases, and thus
does not include a number of features that are needed for creating useful
application programs. As a result, to create a complete application that
accesses a database, you must write the code in one of the general-purpose
languages, and embed SQL statements within the program whenever it com-
municates with the database.

SQL is a joke
There is a joke about the inappropriateness
of saying SQL stands for Structured Query
Language. It says that SQL is not structured, not
restricted to performing queries, and is not a
language. The language part refers to the fact

that SQL is not Turing-complete, as are general-
purpose programming languages. This joke
echoes Voltaire’s comment about the Holy
Roman Empire, which he said was neither holy,
Roman, nor an empire.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 50

Book I
Chapter 3

SQL Overview

What SQL Does Not Do 51

The ANSI/ISO SQL Standard
In the early 1980s, IBM started using SQL in its first relational database
product, which was incorporated into the System/38 minicomputer. Smaller
companies in the DBMS industry, in an effort to be compatible with IBM’s
offering, modeled their languages after SQL. In this way, SQL became a de
facto standard. In 1986, the de facto standard became a standard de jure
when the American National Standards Institute (ANSI) issued the SQL-86
standard. The SQL standard has been continually updated since then, with
subsequent revisions named SQL-89, SQL-92, SQL:1999, and SQL:2003.
SQL:2003 was updated in 2005 with a section called SQL/XML, which signifi-
cantly enhances SQL’s ability to deal with data in XML format.

What SQL Does Not Do
In the 1930s, Alan Turing defined a very simple machine that could perform
any computation that could be performed by any computer imaginable,
regardless of how big and complex. This simple machine has come to be
known as a Universal Turing Machine. Any computer that can be shown to
be equivalent to a Universal Turing Machine is said to be Turing-complete.
All modern computers are Turing-complete. Similarly, a computer language
that is capable of expressing any possible computation is said to be Turing-
complete. Practically all popular languages, such as C, C#, C++, BASIC,
Fortran, COBOL, Pascal, Java, and many others are Turing-complete. SQL,
however, is not. It lacks flow of control structures that are needed for some
classes of computations.

Because SQL is not Turing-complete, you cannot write an SQL program to
perform a complex series of steps, as you can with a language such as C or
Java. On the other hand, languages such as C and Java do not have the data
manipulation facilities that SQL has, so you cannot write a program with
them that will efficiently operate on database data. There are several ways
to solve this dilemma:

✦ Combine the two types of language by embedding SQL statements
within a program written in a host language such as C.

✦ Have the C program make calls to SQL modules to perform data manipu-
lation functions.

✦ Create a new language that includes SQL, but also incorporates those
structures that would make the language Turing-complete.

All three of these solutions are offered by one or another of the DBMS
vendors.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 51

Available Implementations52

Available Implementations
A number of database management systems are currently available, and they
all include a version of SQL that adheres more or less closely to the ANSI/ISO
international standard for the SQL language. No SQL version available today
is completely compliant with the standard, and probably none ever will be.
The standard is updated every few years, adding new capability, putting the
vendors in the position of always playing catch-up. In addition, in most cases,
the vendors do not want to be 100% compliant with the standard. They like
to include useful features that are not in the standard in order to make their
product more attractive to developers. If a developer uses a vendor’s non-
standard feature, this has the effect of locking in the developer to that vendor.
It makes it difficult for the developer to switch to a different DBMS.

Microsoft Access
Microsoft Access is an entry-level DBMS with which developers can build rela-
tively small and simple databases and database applications. It is designed
for use by people with little or no training in database theory. You can build
databases and database applications using Access, without ever seeing SQL.
Access does include an implementation of SQL, and you can use it to query
your databases, but it is a severely limited subset of the language and Microsoft

What’s a database?
There is a lot of confusion about what exactly
someone is talking about when they mention
the word database. I have mentioned database
management systems (DBMSs), database
applications, and databases. Some people
lump these things together and call the whole
lot databases. Loose usage of this sort just con-
fuses everybody. To keep things clear in your
own mind, remember the following distinctions:

� A database is a structured collection of
integrated records. In other words, it is the
data, but organized in a structured way.

� A database application is a computer pro-
gram that operates on a database, that
enables users to maintain the database
and query it for needed information.

� A database management system is the
engine that controls access to a database.
Database applications must work through
a DBMS in order to access the database.
Conceptually, the DBMS lies between the
database and the database application.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 52

Book I
Chapter 3

SQL Overview

Available Implementations 53

does not encourage its use. Instead, they prefer that you use the graphical
database creation and manipulation tools and use the query-by-example
(QBE) interface to ask questions of your database. “Under the covers” and
beyond user control, the table creation tasks that the user specifies using
the graphical tools are translated to SQL before being sent to the database
engine, which is the part of the DBMS that actually operates on the database.
Microsoft Access runs under any of the Microsoft Windows operating sys-
tems, but not under Linux, Apple’s OS X, or any other non-Microsoft operat-
ing system.

To reach the SQL editor in Access, do the following:

1. Open a database that already has tables and at least one query defined.

You see a database window that looks something like Figure 3-1.

2. Select Queries from the menu on the left side of the database window,
and then click on the Design icon at the top of the database window.

This opens a window that resembles Figure 3-2.

Figure 3-1:
A Microsoft
Access 2003
database
window.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 53

Available Implementations54

3. Drop down the View menu in the upper-left corner of the database
window as shown in Figure 3-3.

4. Select SQL View from the View menu.

As Figure 3-4 shows, this displays an SQL editor window, with the SQL
statement selected that was generated by the query shown in the QBE
window.

Figure 3-3:
The QBE
window of
the query
that was
selected in
Figure 3-1,
showing the
View menu.

Figure 3-2:
The QBE
window of
the query
that was
selected in
Figure 3-1.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 54

Book I
Chapter 3

SQL Overview

Available Implementations 55

5. You can now delete the existing SQL statement and type in your own.

Figure 3-5 shows what this looks like.

6. Click the exclamation point icon to execute the statement.

This produces the result shown in Figure 3-6.

Figure 3-5:
The SQL
editor
window,
showing a
newly
entered SQL
statement.

Figure 3-4:
The SQL
editor
window,
showing
an SQL
statement.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 55

Available Implementations56

Microsoft SQL Server
Microsoft SQL Server is Microsoft’s entry into the enterprise database market.
It runs only under one of the various Microsoft Windows operating systems.
The latest version is SQL Server 2005. Unlike Microsoft Access, SQL Server
requires a high level of expertise in order to use it at all. Users interact with
SQL Server using Transact-SQL, also known as T-SQL. T-SQL adheres quite
closely to the syntax of ANSI/ISO standard SQL and provides much of the func-
tionality described in the standard. Additional functionality, not specified in
the ANSI/ISO standard, provides the developer with usability and performance
advantages that Microsoft hopes will make SQL Server more attractive than its
competitors. Like Access, SQL Server runs only in Microsoft Windows envi-
ronments. There is a free version of SQL Server 2005 called SQL Server 2005
Express Edition that you might think of as SQL Server on training wheels.
Read Microsoft SQL Server 2005 Express Edition For Dummies (Wiley) by
Robert Schneider to find out more about it.

IBM DB2
DB2 is a flexible product that runs on Windows and Linux PCs on the low end,
all the way up to IBM’s largest mainframes. As you would expect for a DBMS
that runs on “big iron,” it is a full-featured product. It incorporates key features
that were added to the SQL standard in 1999, as well as numerous non-standard
additions. Like Microsoft’s SQL Server, to use DB2 effectively, a developer
must have received extensive training and considerable hands-on experience.

Oracle
Oracle is another DBMS that runs on PCs, running either the Windows,
Linux, or Mac OS X operating system, and also on very large, powerful com-
puters. Oracle SQL is a superset of SQL:1999 and SQL Developer is a free
graphical tool that developers can use to enter and debug Oracle SQL code.
A free version of Oracle 10g, called Oracle 10g Express Edition, is available

Figure 3-6:
The result of
the query in
Figure 3-5.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 56

Book I
Chapter 3

SQL Overview

Available Implementations 57

for download from the Oracle Web site. It provides a convenient environ-
ment for learning Oracle. Migration to the full Oracle 10g product is smooth
and easy when you are ready to move into production mode. The enterprise-
class edition of Oracle hosts some of the largest databases in use today. The
same can be said for DB2 and SQL Server.

InterBase
InterBase is a relational DBMS produced by Borland Software Corporation.
Its capabilities are similar to those of the other proprietary databases listed
above, but it has a significantly smaller resource footprint, requiring both
less RAM and less hard disk space. It is also easier to configure and run.
InterBase’s sophisticated handling of concurrency control can give it per-
formance advantages in environments where both short and long transac-
tions are common. InterBase runs in both Windows and Linux environments,
as well as under the Sun Solaris operating system.

MySQL
MySQL is the most widely used open-source DBMS. Actually, there are four
different versions of MySQL, each with a different database engine and differ-
ent capabilities. The most feature-rich of these is MySQL InnoDB. People
often use one or another of the MySQL versions as the back ends for a large
number of data-driven Web sites. The level of compliance with the ANSI/
ISO SQL standard differs between versions, but the compliance of MySQL
InnoDB is comparable to that of the proprietary DBMS products mentioned
above. MySQL is particularly noted for its speed. MySQL runs under Windows
and Linux, but not under IBM’s proprietary mainframe operating systems. It
is supported by a large and dedicated user community.

PostgreSQL
PostgreSQL is another open source DBMS, that is generally considered to be
more robust than MySQL, and more capable of supporting large enterprise-
wide applications. It is also supported by an active user community.
PostgreSQL runs under Linux, Unix, Windows, and IBM’s z/OS mainframe
operating system.

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 57

Book I: SQL Concepts58

07 119280 bk01ch03.qxp 5/23/07 10:07 AM Page 58

Chapter 4: SQL and the
Relational Model

In This Chapter
� Relating SQL to the relational model

� Figuring out functional dependencies

� Discovering keys, views, users, privileges, schemas, and catalogs

� Checking out connections, sessions, and transactions

� Understanding routines and paths

The relational database model, as I mention in Chapter 1 of this minibook,
existed as a theoretical model for almost a decade before the first rela-

tional database product appeared on the market. The first commercial imple-
mentation of the relational model, from the company that later became
Oracle Corporation, did not use SQL, which had not yet been released by
IBM. In those early days, there were a number of competing data sub-
languages. Gradually, SQL became a de facto standard, thanks in no small
part to IBM’s dominant position in the market, and the fact that Oracle
started offering it as an alternative to its own language early on.

Although SQL was developed to work with a relational database manage-
ment system, it’s not entirely consistent with the relational model. However,
it is close enough, and, in many cases, it even offers capabilities that are not
present in the relational model. Some of the most important aspects of SQL
are direct analogs of some aspects of the relational model. Others are not.
This chapter gives a brief introduction to some of these concepts and terms.

Sets, Relations, Multisets, and Tables
The relational model is based on the mathematical discipline known as set
theory. In set theory, a set is defined as a collection of unique objects —
duplicates are not allowed. This carries over to the relational model. A rela-
tion is defined as a collection of unique objects called tuples — no dupli-
cates are allowed among tuples.

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 59

Functional Dependencies60

In SQL, the equivalent of a relation is a table. However, tables are not exactly
like relations in that a table can have duplicate rows. For that reason, tables
in a relational database are not modeled on the sets of set theory, but rather
on multisets, which are similar to sets except they allow duplicate objects.

Although a relation is not exactly the same thing as a table, the terms are
often used interchangeably. Because relations were defined by theoreticians,
they have a very precise definition. The word table, on the other hand, is in
general use and is often much more loosely defined. When I use the word
table in this book, I use it in the more restricted sense, as being an alternate
term for relation. The attributes and tuples of a relation are strictly equiva-
lent to the columns and rows of a table.

So, what’s a relation? Formally, a relation is a two-dimensional table that has
the following characteristics:

✦ Every cell in the table must contain a single value, if it contains any
value at all. Repeating groups and arrays are not allowed as values.

✦ All the entries in any column must be of the same kind. For example, if a
column contains an employee name in one row, it must contain employee
names in all rows that contain values.

✦ Each column has a unique name.

✦ The order of the columns doesn’t matter.

✦ The order of the rows doesn’t matter.

✦ No two rows may be identical.

If and only if a table meets all these criteria, it is a relation. You might have
tables that fail to meet one or more of these criteria. For example, a table
might have two identical rows. It is still a table in the loose sense, but it is
not a relation.

Functional Dependencies
Functional dependencies are relationships between or among attributes.
Consider the example of two attributes of the CUSTOMER relation, Zipcode
and State. If you know the customer’s ZIP Code, the state can be obtained by
a simple lookup because each ZIP Code resides in one and only one state.
You say that State is functionally dependent on Zipcode or that Zipcode deter-
mines state. Zipcode is called a determinant. The reverse is not true. State
does not determine Zipcode because states can contain multiple Zipcodes.
You denote functional dependencies as follows:

Zipcode ➪ State

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 60

Book I
Chapter 4

SQL and the
Relational M

odel
Keys 61

A group of attributes may act as a determinant. Consider the relation INVOICE
(Inv#, CustID, W/R, ProdID, Quantity, Price, Extprice). Assuming that prod-
ucts have both a wholesale and a retail price, the W/R attribute tells whether
this is a wholesale or a retail transaction. ProdID identifies the product.
Extprice is extended price, derived by multiplying Quantity by Price.

(W/R, ProdID) ➪ Price
(Quantity, Price) ➪ Extprice

ProdID shows which product you are considering. W/R tells you whether
you are charging the wholesale price or the retail price. Thus the combina-
tion of W/R and ProdID determines Price. Similarly, the combination of
Quantity and Price determines Extprice. Neither W/R nor ProdID by itself
determines Price; they are both needed to determine Price. Both Quantity
and Price are needed to determine Extprice.

Keys
Keys are groups of one or more attributes that uniquely identify a tuple in a
relation. One of the characteristics of a relation is that no two rows (tuples)
are identical. You can guarantee that no two rows are identical if at least one
field (attribute) is guaranteed to have a unique value in each row, or if some
combination of fields is guaranteed to be unique for each row. Table 4-1 shows
an example of the PROJECT relation. It lists researchers affiliated with the
Gentoo Institute’s Penguin Physiology Lab, the projects they are working on,
and the locations at which they are conducting their research.

Table 4-1 PROJECT Relation
ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Nansen How penguin diet varies by season Peterman Island

In this table, each researcher is assigned to only one project. Is this a rule?
Must a researcher be assigned to only one project, or is it possible for a
researcher to be assigned to more than one? If a researcher can be assigned
to only one project, ResearcherID is a key. It guarantees that every row in the
PROJECT table is unique. What if there is no such rule? What if a researcher
may work on several projects at the same time? Table 4-2 shows this
situation.

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 61

Views62

Table 4-2 PROJECTS Relation
ResearcherID Project Location

Pizarro Why penguin feet don’t freeze Bahia Paraiso

Pizarro How penguin eggs stay warm in pebble nests Peterman Island

Whitehead Why penguins don’t get the bends Port Lockroy

Shelton How penguin eggs stay warm in pebble nests Peterman Island

Shelton How penguin diet varies by season Peterman Island

Nansen How penguin diet varies by season Peterman Island

In this scenario, Dr. Pizarro works on both the cold feet and the warm eggs
projects, whereas Professor Shelton works on both the warm eggs and the
varied diet projects. Clearly, ResearcherID cannot be used as a key. However,
the combination of ResearcherID and Project is unique and is thus a key.

You are probably wondering how you can reliably tell what is a key and what
isn’t. Looking at the relation in Table 4-1, it looks like Researcher ID is a key
because every entry in that column is unique. However, this could be due to
the fact that you are looking at a limited sample, and any minute now some-
one could add a new row that duplicates the value of ResearcherID in one of
the existing rows. How can you be sure that won’t happen? Ask the users.

The relations you build are models of the mental images that the users have
of the system they are dealing with. You want your relational model to corre-
spond as closely as possible to the model the users have in their minds. If
they tell you that in their organization researchers never work on more than
one project at a time, you can use ResearcherID as a key. On the other hand,
if it is even remotely possible that a researcher might be assigned to two
projects simultaneously, you have to revert to a composite key made up of
both ResearcherID and Project.

A question that might arise in your mind is, “Is it possible for a relation to
exist that has no key?” By the definition of a relation, the answer is no. Every
relation must have a key. One of the characteristics of a relation is that no
two rows may be exactly the same. That means that you are always able to
distinguish rows from each other, although you may have to include all the
relation’s attributes in the key to do it.

Views
Although the most fundamental constituent of a relational database is undoubt-
edly the table, another important concept is that of the virtual table or view.

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 62

Book I
Chapter 4

SQL and the
Relational M

odel
Privileges 63

Unlike an ordinary table, a view has no physical existence until it is called
upon in a query. There is no place on disk where the rows in the view are
stored. The view exists only in the metadata as a definition. The definition
describes how to pull data from tables and present it to the user in the form
of a view.

From the user’s viewpoint (no pun intended), a view looks just like a table.
You can do almost everything to a view that you can do to a table. The major
exception is that you cannot always update a view the same way that you
can update a table. The view may contain columns that are the result of
some arithmetic operation on the data in columns from the tables upon
which the view is based. You can’t update a column that doesn’t exist in
your permanent storage device. Despite this limitation, views, after they’re
formulated, can save you considerable work: You don’t need to code the
same complex query every time you want to pull data from multiple tables.
Create the view once, and then use it every time you need it.

Users
Although it may seem a little odd to include them, the users are an impor-
tant part of any database system. After all, without the users, no data would
be written into the system, no data would be manipulated, and no results
would be displayed. When you think about it, the users are mighty impor-
tant. Just as you want your hardware and software to be of the highest qual-
ity you can afford, in order to produce the best results, you want the highest
quality people too, for the same reason. To assure that only the people who
meet your standards have access to the database system, you should have a
robust security system that enables authorized users to do their job and at
the same time prevents access to everyone else.

Privileges
A good security system not only keeps out unauthorized users, but also pro-
vides authorized users with access privileges that are tailored to their
needs. The night watchman has different database needs from those of the
company CEO. One way of handling privileges is to assign every authorized
user an authorization ID. When the person logs on with his authorization ID,
the privileges associated with that authorization ID become available to the
user. This could include the ability to read the contents of certain columns
of certain tables, the ability to add new rows to certain tables, delete rows,
update rows, and so on.

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 63

Schemas64

A second way to assign privileges is with roles, which were introduced in
SQL:1999. Roles are particularly valuable in large organizations where a
number of people have essentially the same job and thus the same needs for
data. For example, the night watchman noted above might have the same
data needs as other security guards. A suite of privileges could be granted to
the SECURITY_GUARD role. From then on, whenever a new guard is hired, by
assigning him to the SECURITY_GUARD role, all the privileges appropriate
for that role are automatically assigned to him. When a person leaves or
changes jobs, revocation of his role can be just as easy.

Schemas
Relational database applications typically make use of multiple tables. As
a database grows to support multiple applications, it becomes more and
more likely that an application developer will try to give one of her tables
the same name as a table that already exists in the database. This can cause
problems and frustration. To get around this problem, SQL has a hierarchical
namespace structure. A developer can define her tables as being members
of a schema. With this structure, one developer can have a table named
CUSTOMER in her schema, whereas a second developer can also have an
entirely different table, also named CUSTOMER, but in a different schema.

Catalogs
These days, organizations can be so big that if every developer had a schema
for each of her applications, the number of schemas itself could be a prob-
lem. Someone might inadvertently give a new schema the same name as an
existing schema. To head off this possibility, an additional level was added at
the top of the namespace hierarchy. A catalog can contain multiple schemas,
which in turn can contain multiple tables. The smallest organizations don’t
have to worry about either catalogs or schemas, but those levels of the
namespace hierarchy are there if they’re needed. If your organization is big
enough to worry about duplicate catalog names, it is big enough to figure
out a way to deal with the problem.

Connections, Sessions, and Transactions
A database management system is typically divided into two main parts, a
client side, which interfaces with the user, and a server side, which holds the
data and operates on it. To operate on a database, a user must establish a
connection between her client and the server that holds the data she wants
to access. Generally the first thing you must do, if you want to work on a

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 64

Book I
Chapter 4

SQL and the
Relational M

odel
Routines 65

database at all, is to establish a connection to it. You can do this with a
CONNECT statement that specifies your authorization ID and names the server
you want to connect to. The exact implementation of this varies from
one DBMS to another. Most people today would use the DBMS’s graphical
user interface to connect to a server rather than using the SQL CONNECT
statement.

A session is the context in which a single user executes a sequence of SQL
statements, using a single connection. A “user” can either be a person enter-
ing SQL statements at the client console, or a program running on the client
machine.

A transaction is a sequence of SQL statements that is atomic with respect to
recovery. This means that if a failure occurs while a transaction is in progress,
the effects of the transaction are erased so that the database is left in the
state it was in before the transaction started. Atomic in this context means
indivisible. Either the transaction runs to completion or it aborts in such a
way that any changes it made before the abort are undone.

Routines
Routines are procedures, functions, or methods that can be invoked either
by an SQL CALL statement, or by the host language program that the SQL
is operating with. Methods are a kind of function used in object-oriented
programming.

Because either a host language program or SQL can invoke a routine, and
because the routine being invoked can be either written in SQL or in host
language code, routines can cause confusion. A few definitions help to clarify
the situation:

✦ Externally invoked routine: A procedure, written in SQL, residing in a
module located on the client, which is invoked by the host language
program

✦ SQL-invoked routine: Either a procedure or a function, residing in a
module located on the server, which could be written in either SQL or
the host language, that is invoked by SQL code

✦ External routine: Either a procedure or a function, residing in a module
located on the server, which is written in the host language, but is
invoked by SQL

✦ SQL routine: Either a procedure or a function, residing in a module
located on either the server or the client, which is written in SQL and
invoked by SQL

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 65

Paths66

Routines enable SQL code to take advantage of calculations performed by
host language code, and enable host language code to take advantage of
data operations performed by SQL code.

Paths
A path in SQL, similar to a path in operating systems, tells the system what
order to search locations in to find a routine that has been invoked. For a
system with several schemas (perhaps one for testing, one for QA, and one
for production), the path tells the executing program where to look first,
where to look next, and so on, to find an invoked routine.

08 119280 bk01ch04.qxp 5/23/07 10:08 AM Page 66

Chapter 5: The Major
Components of SQL

In This Chapter
� The Data Definition Language (DDL)

� The Data Maintenance Language (DML)

� The Data Control Language (DCL)

You can view SQL as being divided into three distinct parts, each of which
has a different function. With one part, the Data Definition Language

(DDL), you can create the structure (the metadata) of a database. With the
second part, the Data Manipulation Language (DML), you can operate on
the data contained in the database, and with the third part, the Data Control
Language (DCL), you can maintain a database’s security and reliability.
Throughout this chapter, I look at each of these SQL components in turn.

The Data Definition Language (DDL)
The Data Definition Language (DDL) is the part of SQL that you use to create
a database and all of its structural components. It is also the tool that you
use to modify the structure of an existing database or to destroy it after you
no longer need it.

The containment hierarchy
The defining difference between databases and flat files is that databases
are structured. As I’ve shown you in previous chapters, the structure of rela-
tional databases differs from the structure of other database models, such
as the hierarchical model and the network model. However, there is a defi-
nite hierarchical aspect to the structure of a relational database. Like
Russian nesting dolls, one level of structure contains another, which in turn
contains yet another, as shown in Figure 5-1.

Not all databases use all the available levels, but larger databases tend to
use more of them. The top level is the database itself. As you would expect,
every part of the database is contained within the database. A database can
have one or more catalogs. Each catalog can have one or more schemas.
Each schema can include one or more tables. Each table may consist of one
or more columns.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 67

The Data Definition Language (DDL)68

For small to moderately large databases, you need concern yourself only
with tables and the columns they contain. Schemas and catalogs are invoked
only when you have multiple unrelated collections of tables in the same
database. To keep these groups separate, you can put them into separate
schemas. If there is any danger of confusing unrelated schemas, you can put
them in separate catalogs.

Creating tables
At its simplest, a database is a collection of two-dimensional tables, each of
which has a collection of closely related attributes. The attributes are stored
in columns of the tables. You can use SQL’s CREATE statement to create a
table, with its associated columns. Later, using SQL’s Data Manipulation
Language, you can add data to the table in the form of rows.

Specifying columns
The two dimensions of a table are its columns and rows. Each column corre-
sponds to a specific attribute of the entity being modeled. Each row contains
one specific instance of the entity. You can create a table with an SQL CREATE
statement. Following is an example. Like all examples in this book, the code
uses ANSI/ISO standard syntax:

Database

Catalog

Schema Schema

Table Table

Attribute Attribute

Attribute Attribute

Table Table

Attribute Attribute

Attribute Attribute

Attribute Attribute

Table Table

Attribute

Attribute
Attribute

Attribute
Attribute

Attribute

Schema Schema

Table

Attribute

Attribute

Attribute

Catalog

Figure 5-1:
The
relational
database
containment
hierarchy.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 68

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Definition Language (DDL) 69

CREATE TABLE CUSTOMER (
CustomerID INTEGER,
FirstName CHARACTER (15),
LastName CHARACTER (20),
Street CHARACTER (30),
City CHARACTER (25),
Region CHARACTER (25),
Country CHARACTER (25),
Phone CHARACTER (13)) ;

In the CREATE TABLE statement, you specify the name of each column and the
type of data that column contains. In the preceding example, the CustomerID
column contains data of the INTEGER type, and the other columns contain
character strings. The maximum lengths of the strings are also specified.
Most implementations accept the abbreviation CHAR in place of CHARACTER.

Specifying constraints
It is important to keep erroneous data out of your databases. One way to do
this is to prevent incorrect values from being entered in the first place. You
can prevent the entry of invalid data with a constraint. There are several
kinds of constraints, which I look at in more detail shortly. For now, I discuss
a simple but very important constraint: the NOT NULL constraint.

SQL is different from many other computer languages in that in SQL, null values
are legal. It is important to distinguish a null value from some other value that
might be confused with it. A null value is a value that is either not known or
not specified. It could be anything or nothing. This is quite a different thing
from, for example, zero, which is a very definite numeric value. It is also quite
different from a blank space, which is a very definite character value.

Although in SQL, a null value is legal, there may be columns in a table where
you want to insist that a value is always present. You can enforce that require-
ment by adding a NOT NULL constraint to the table definition. Here’s an
example:

CREATE TABLE CUSTOMER (
CustomerID INTEGER NOT NULL,
FirstName CHARACTER (15),
LastName CHARACTER (20) NOT NULL,
Street CHARACTER (30),
City CHARACTER (25),
Region CHARACTER (25),
Country CHARACTER (25),
Phone CHARACTER (13)) ;

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 69

The Data Definition Language (DDL)70

In any business’s customer table, you want to be able to distinguish one cus-
tomer from another, even if they have the same name. A good way to do this
is to assign a unique ID number to each customer when that customer is first
entered into the database. You can enforce uniqueness by adding a NOT NULL
constraint to the CustomerID line of the table definition. In this example, a
NOT NULL constraint has also been applied to the LastName column. This
reflects a business rule that every customer must have at least one name,
and that name is to be recorded in the LastName column. Other organizations
may have different business rules. When you are interviewing the users, you
must find out what those business rules are, so that you can enforce them
with constraints.

Column constraints
The NOT NULL constraint is an example of a column constraint. As the name
implies, column constraints apply to a single column in a table. You can gain
more control over constraints by naming them. For example, you could name
the NOT NULL constraints in the previous example as follows:

CREATE TABLE CUSTOMER (
CustomerID INTEGER

CONSTRAINT Customer_not_null NOT NULL,
FirstName CHARACTER (15),
LastName CHARACTER (20)

CONSTRAINT LastName_not_null NOT NULL,
Street CHARACTER (30),
City CHARACTER (25),
Region CHARACTER (25),
Country CHARACTER (25),
Phone CHARACTER (13)) ;

Naming a constraint makes it easier to change or delete at a later time. You
can do that with an ALTER TABLE statement, described below.

Constraints more complex than the NOT NULL constraint can be described
by an expression. Such constraints use the keyword CHECK. Suppose, due to
government export restrictions, that you do not want to accept any new cus-
tomers who do not reside in the USA. You can enforce that policy with a
CHECK constraint.

CREATE TABLE CUSTOMER (
CustomerID INTEGER

CONSTRAINT Customer_not_null NOT NULL,
FirstName CHARACTER (15),
LastName CHARACTER (20)

CONSTRAINT LastName_not_null NOT NULL,
Street CHARACTER (30),
City CHARACTER (25),
Region CHARACTER (25),

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 70

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Definition Language (DDL) 71

Country CHARACTER (25)
CONSTRAINT USA_only CHECK (Country = ‘USA’),

Phone CHARACTER (13)) ;

With these constraints, the DBMS doesn’t allow a new record to be added to
the CUSTOMER table unless the CustomerID column contains a value, the
LastName column contains a value, and the Country column contains the
value USA.

Table constraints
Whereas some constraints apply to a single column or to a selected subset
of the columns in a table, a constraint may apply to an entire table. The
PRIMARY KEY constraint is an example of such. A table can have one and
only one primary key. Here’s an example of such a usage:

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
FirstName CHARACTER (15),
LastName CHARACTER (20)

CONSTRAINT LastName_not_null NOT NULL,
Street CHARACTER (30),
City CHARACTER (25),
Region CHARACTER (25),
Country CHARACTER (25)

CONSTRAINT USA_only CHECK (Country = ‘USA’),
Phone CHARACTER (13)) ;

Every table should have a primary key. A primary key uniquely identifies a row
in a table. It is a stronger constraint than the NOT NULL constraint, which
prevents one kind of duplication (two or more rows with the same null value
for an attribute), but not others (two or more rows with the same specific
value for an attribute). The DBMS will not allow you to add a row to a table if
the new row has the same primary key as a row that already exists in the table.

Assertions
Constraints that apply to more than one table are called assertions. Suppose
a small bookstore wants to control its exposure to dead inventory by not
allowing total inventory to grow beyond 20,000 items. Suppose further that
stocks of books and DVDs are maintained in different tables. An assertion
can guarantee that the maximum is not exceeded.

CREATE TABLE BOOKS (
ISBN INTEGER,
Title CHAR (50),
Quantity INTEGER) ;

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 71

The Data Definition Language (DDL)72

CREATE TABLE DVD (
BarCode INTEGER,
Title CHAR (50),
Quantity INTEGER) ;

CREATE ASSERTION
CHECK ((SELECT SUM (Quantity)

FROM BOOKS)
+ (SELECT SUM (Quantity)

FROM DVD)
< 20000)

Most popular implementations do not support assertions. For example, SQL
Server 2005, DB2, Oracle 10g, Borland InterBase, MySQL, and PostgreSQL do
not. Assertions may become available in the future, since they are a part of
SQL:2003, but it would not be wise to hold your breath until this functional-
ity appears.

Creating other objects
Tables aren’t the only things you can create with a CREATE statement. A few
other possibilities are views, schemas, and domains.

Views
Sometimes what is stored in database tables is not exactly in the form that
you want users to see. Perhaps a table containing employee data has
address information that the social committee chairperson needs, but also
contains salary information that should be seen only by authorized person-
nel in the human resources department. How can you show the social com-
mittee chairperson what she needs to see without spilling the beans on what
everyone is earning? In another scenario, perhaps the information a person
needs is spread across several tables. How do you deliver what is needed in
one convenient result set? The answer to both questions is the view.

A view is a virtual table that has no physical existence apart from the tables
that it draws from. Some views draw selected columns from one table.
Others, called multi-table views, draw selected columns from multiple
tables.

Single-table view
Consider a single-table view. Consider the social committee chairperson’s
requirement, which I mention in the preceding section. She needs the con-
tact information for all employees, but is not authorized to see anything else.
You can create a view based on the EMPLOYEE table that includes only the
information she needs.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 72

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Definition Language (DDL) 73

CREATE VIEW EMP_CONTACT AS
SELECT EMPLOYEE.FirstName,

EMPLOYEE.LastName,
EMPLOYEE.Street,
EMPLOYEE.City,
EMPLOYEE.State,
EMPLOYEE.Zip,
EMPLOYEE.Phone,
Employee.Email

FROM EMPLOYEE ;

This CREATE VIEW statement uses an embedded SELECT statement to pull
from the EMPLOYEE table only the columns desired. Now all you need to do
is grant SELECT rights on the EMP_CONTACT view to the social committee
chairperson. The right to look at the records in the EMPLOYEE table contin-
ues to be restricted to duly authorized human resources personnel and
upper-management types.

Most implementations assume that if only one table is listed in the FROM
clause, the columns being selected are in that same table. You can save some
typing by eliminating the redundant references to the EMPLOYEE table.

CREATE VIEW EMP_CONTACT AS
SELECT FirstName,

LastName,
Street,
City,
State,
Zip,
Phone,
Email

FROM EMPLOYEE ;

There is a danger in using the abbreviated format, however. A query may use
a join to pull some information from this view and other information from
another view or table. If the other view or table has a field with the same
name, the database engine doesn’t know which to use. It’s always safe to use
a fully qualified column name, but don’t be surprised if you see the abbrevi-
ated form in somebody else’s code. I discuss joins in Book III, Chapter 4.

Multi-table view
Although there are occasions when you might want to pull a subset of
columns from a single table, a much more common requirement is to pull
together selected information from multiple related tables and present the
result in a single report. You can do this with a multi-table view. Creating
multi-table views involves joins, so to be safe you should use fully qualified
column names.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 73

The Data Definition Language (DDL)74

Suppose, for example, that you are tasked to create an order entry system for
a retail business. The key things involved are the products that are ordered,
the customers who order them, the invoices that record the order, and the
individual line items on each invoice. It makes sense to separate invoices
and invoice lines because an invoice can have an indeterminate number of
invoice lines that varies from one invoice to another. You can model this
system with an E-R diagram. Figure 5-2 shows one way to model the system.

The entities relate to each other through the columns they have in common.
Here are the relationships:

✦ The CUSTOMER entity bears a one-to-many relationship to the INVOICE
entity. One customer can make multiple purchases, generating multiple
invoices. Each invoice, however, applies to one and only one customer.

✦ The INVOICE entity bears a one-to-many relationship to the
INVOICE_LINE entity. One invoice may contain multiple lines, but each
line appears on one and only one invoice.

✦ The PRODUCT entity bears a one-to-many relationship to the
INVOICE_LINE entity. A product may appear on more than one line on an
invoice, but each line deals with one and only one product.

The links between entities are the attributes they hold in common. Both the
CUSTOMER and the INVOICE entities have a CustomerID column. It is the pri-
mary key in the CUSTOMER entity and a foreign key in the INVOICE entity. I
discuss keys in detail in Book II, Chapter 4. The InvoiceNumber attribute
connects the INVOICE entity to the INVOICE_LINE entity, and the ProductID
attribute connects PRODUCT to INVOICE_LINE.

CUSTOMER 1:N

1:N

INVOICE

N:1INVOICE_
LINE PRODUCT

Figure 5-2:
The E-R
diagram
of the
database for
an order
entry
system.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 74

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Definition Language (DDL) 75

The first step in creating a view is to create the tables upon which the view is
based. These tables are based on the entities and attributes in the E-R model.
I discuss table creation in detail in Book II, Chapter 4. For now, I just show
how to create the tables in the sample retail database.

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
FirstName CHAR (15),
LastName CHAR (20) NOT NULL,
Street CHAR (25),
City CHAR (20),
State CHAR (2),
Zipcode CHAR (10),
Phone CHAR (13)) ;

The first column in the code contains attributes; the second column con-
tains data types, and the third column contains constraints. I touch on pri-
mary key constraints in Book II, Chapter 2 and then describe them more fully
in Book II, Chapter 4. For now, all you need to know is that good design prac-
tice requires that every table have a primary key. The NOT NULL constraint
means that the LastName field must contain a value. I say more about null
values in Book I, Chapter 6.

CREATE TABLE PRODUCT (
ProductID INTEGER PRIMARY KEY,
Name CHAR (25),
Description CHAR (30),
Category CHAR (15),
VendorID INTEGER,
VendorName CHAR (30)) ;

CREATE TABLE INVOICE (
InvoiceNumber INTEGER PRIMARY KEY,
CustomerID INTEGER,
InvoiceDate DATE,
TotalSale NUMERIC (9,2),
TotalRemitted NUMERIC (9,2),
FormOfPayment CHAR (10)) ;

CREATE TABLE INVOICE_LINE (
LineNumber Integer PRIMARY KEY,
InvoiceNumber INTEGER,
ProductID INTEGER,
Quantity INTEGER,
SalePrice NUMERIC (9,2)) ;

You can create a view containing data from multiple tables by joining tables
in pairs until you get the combination you want. Suppose you want a display
showing the first and last names of all customers along with all the products
they have bought. You can do it with views.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 75

The Data Definition Language (DDL)76

CREATE VIEW CUST_PROD1 AS
SELECT FirstName, LastName, InvoiceNumber
FROM CUSTOMER JOIN INVOICE
USING (CustomerID) ;

CREATE VIEW CUST_PROD2 AS
SELECT FirstName, LastName, ProductID
FROM CUST_PROD1 JOIN INVOICE_LINE
USING (InvoiceNumber) ;

CREATE VIEW CUST_PROD AS
SELECT FirstName, LastName, Name
FROM CUST_PROD2 JOIN PRODUCT
USING (ProductID) ;

The CUST_PROD1 view combines the customer’s first and last name with
the invoice numbers of all the invoices generated for that customer. The
CUST_PROD2 view combines the customer’s first and last name from the
CUST_PROD1 view with the ProductID from the INVOICE_LINE table. Finally,
the CUST_PROD view combines the customer’s first and last name from the
CUST_PROD2 view with the Name of the product from the PRODUCT table.
This gives the display that we want. Figure 5-3 shows the flow of information
from the source tables to the final destination view. I discuss joins in detail in
Book III, Chapter 5.

CustomerID
FirstName
LastName
Street
City
State
Zipcode
Phone

CUSTOMER

FirstName
LastName
InvoiceNumber

CUST_PROD1

FirstName
LastName
ProductID

CUST_PROD2

InvoiceNumber
CustomerID
InvoiceDate
TotalSale
TotalRemitted
FormOfPayment

INVOICE

LineNumber
InvoiceNumber
ProductID
Quantity
SalePrice

INVOICE_LINE

ProductID
Name
Description
Category
VendorID
VendorName

PRODUCT

FirstName
LastName
Name

CUST_PROD

Figure 5-3:
Creating a
multi-table
view using
joins.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 76

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Definition Language (DDL) 77

There will be a row in the final view for every purchase. Customers who
bought multiple items will be represented by multiple lines in CUST_PROD.

Schemas
In the containment hierarchy, the next level up from the one that includes
tables and views is the schema level. It makes sense to place tables and
views that are related to each other in the same schema. In many cases, a
database may have only one schema, the default schema. This is the sim-
plest situation, and when it applies, you don’t need to think about schemas
at all. However, more complex cases do occur. In those cases, it is important
to keep one set of tables separated from another set. You can do this by cre-
ating a named schema for each set. Do this with a CREATE SCHEMA state-
ment. I won’t go into the detailed syntax for creating a schema here because
it may vary from one platform to another, but you can create a named
schema in the following manner:

CREATE SCHEMA RETAIL1 ;

There are a number of clauses that you can add to the CREATE SCHEMA
statement, specifying the owner of the schema and creating tables, views
and other objects. However, you can create a schema as shown above, and
create the tables and other objects that go into it later. If you do create a
table later, you must specify which schema it belongs to:

CREATE TABLE RETAIL1.CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
FirstName CHAR (15),
LastName CHAR (20) NOT NULL,
Street CHAR (25),
City CHAR (20),
State CHAR (2),
Zipcode CHAR (10),
Phone CHAR (13)) ;

This customer table will go into the RETAIL1 schema and will not be con-
fused with the customer table that was created in the default schema, even
though the table names are the same.

Domains
A domain is the set of all values that a table’s attributes can take on. Some
implementations of SQL allow you to define domains within a CREATE
SCHEMA statement. You can also define a domain with a standalone CREATE
DOMAIN statement, such as

CREATE DOMAIN Color CHAR (15)
CHECK (VALUE IS “Red” OR “White” OR “Blue”) ;

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 77

The Data Manipulation Language (DML)78

When a table attribute is defined as of type Color, only Red, White, and
Blue will be accepted as legal values. Domains can save you a lot of typing,
since you have to specify constraints only once, rather than every time you
define a corresponding table attribute.

Modifying tables and other objects
After you create a table, complete with a full set of attributes, you may not
want it to remain the same for all eternity. Requirements have a way of
changing, based on changing conditions. The system you are modeling may
change, requiring you to change your database structure to match. SQL’s
Data Definition Language gives you the tools to change what you have
brought into existence with a CREATE statement. The primary tool is the
ALTER statement. Here’s an example of a table modification:

ALTER TABLE CUSTOMER
ADD COLUMN Email CHAR (50) ;

This has the effect of adding a new column to the CUSTOMER table without
affecting any of the existing columns. You can get rid of columns that are no
longer needed in a similar way:

ALTER TABLE CUSTOMER
DROP COLUMN;

I guess we don’t want to keep track of customer e-mail addresses after all.

The ALTER TABLE statement also works for adding and dropping constraints.

Removing tables and other objects
It’s really easy to get rid of tables, views, and other things that you no longer
want. Here’s how easy:

DROP TABLE CUSTOMER ;
DROP VIEW EMP_CONTACT ;

When you drop a table, it simply disappears, along with all of its data.

The Data Manipulation Language (DML)
Just as the DDL is that part of SQL that you can use to create database struc-
tural elements such as schemas, tables, and views, the Data Manipulation
Language (DML) is the part of SQL that operates on the data that inhabits
that structure. There are four things that you want to do with data:

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 78

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Manipulation Language (DML) 79

✦ Store the data in a structured way that makes it easily retrievable.

✦ Change the data that is stored.

✦ Selectively retrieve information that responds to a need that you cur-
rently have.

✦ Remove data from the database that is no longer needed.

SQL statements that are part of the DML enable you to do all of these things.
Adding, updating, and deleting data are all relatively straightforward opera-
tions. Retrieving the exact information you want out of the vast store of data
that is not relevant to your current need can be more complicated. I give
you only a quick look at retrieval here and go into more detail in Book III,
Chapter 2.

Retrieving data from a database
The one operation that will be performed on a database more than any other
is the retrieval of needed information. Data is placed into the database only
once. It may never be updated, or at most only a few times. However, retrievals
will be made constantly. After all, the main purpose of a database is to pro-
vide you with information when you want it. The SQL SELECT statement is
the primary tool for extracting whatever information you want. Because the
SELECT statement inquires about the contents of a table, it is called a query.

In its simplest form, a SELECT statement returns all the data in all the rows
and columns in whatever table you specify. Here’s an example:

SELECT * FROM PRODUCTS ;

The asterisk (*) is a wildcard character that means ‘everything.’ In this con-
text, it means return data from all the columns in the PRODUCTS table.
Because there is no restriction on which rows to return, all the data in all the
rows of the table will be returned in the result set of the query.

I suppose there may be times when you want to see all the data in all the
columns and all the rows in a table, but usually you will have a more specific
question in mind. Perhaps you are not interested in seeing all the informa-
tion about all the items in the PRODUCTS table right now, but are only inter-
ested in seeing the quantities in stock of all the guitars. You can restrict the
result set that is returned by specifying the columns you want to see and by
restricting the rows returned with a WHERE clause.

SELECT ProductID, ProductName, InStock
FROM PRODUCTS
WHERE Category = ‘guitar’ ;

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 79

The Data Manipulation Language (DML)80

This statement will return the product ID number, product name, and number
in stock of all products in the guitar category, and nothing else. An ad hoc
query such as this is a good way to get a quick answer to a question. Of course,
there is a lot more to retrieving information than what I have covered briefly
here. In Book III, Chapter 2, I will have a lot more to say on the subject.

Adding data to a table
Somehow, you have to get data into your database. This data may be records
of sales transactions, employee personnel records, instrument readings
coming in from interplanetary spacecraft, or just about anything you care to
keep track of. The form that the data is in determines how it gets entered
into the database.

Adding data the dull and boring way (typing it in)
If the data to be kept in the database was originally written down on paper,
in order to get it into the database, it will have to be transcribed from the
paper to computer memory by keying it in with a computer keyboard. This
used to be the most frequently used method for entering data into a data-
base because most data was initially captured on paper. People called data
entry clerks worked from nine to five, typing data into computers. What a
drag! It was pretty mind-deadening work. More recently, rather than first
writing things down on paper, when a transaction occurs, it is entered
directly into a point of sale terminal or computer. This is not nearly so bad
because entering the data is only a small part of the total task.

The dullest and most boring way to enter data into a database is to enter
one record at a time, using SQL INSERT statements. It works, if you have no
alternative way to enter the data, and all other methods of entering data ulti-
mately get translated into SQL INSERT statements, but after entering one or
two records into the database this way, you will probably have had enough.
Here’s an example of such an INSERT operation:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName,
Street, City, State, Zipcode, Phone)
VALUES (:vcustid, ‘Abe’, ‘Lincoln’, ‘1600 Pennsylvania
Avenue NW’, ‘Washington’, ‘DC’, ‘20500’, ‘202-555-1414’) ;

The first value listed, :vcustid, is a variable that gets incremented each
time a new record is added to the table. This guarantees that there will be no
duplication of a value in the CustomerID field, which serves as the table’s
primary key. In a more realistic situation, all the values would be variables
rather than the actual data items as shown. Rather than entering an INSERT
statement into SQL, the data entry person would enter data values into fields
on a form. The values would be captured into variables, which would then
be used, out of sight of humans, to populate the VALUES clause of an
INSERT statement.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 80

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Manipulation Language (DML) 81

Adding incomplete data
Sometimes you might want to add a record to a table before you have data
for all the record’s columns. As long as you have the primary key and data
for all the columns that have a NOT NULL or UNIQUE constraint, you can
enter the record. Because SQL allows null values in other columns, you can
enter such a partial record now and fill in the missing information later.
Here’s an example of how to do it:

INSERT INTO CUSTOMER (CustomerID, FirstName, LastName)
VALUES (:vcustid, ‘Abe’, ‘Lincoln’) ;

Adding data in the fastest and most efficient way:
Bypassing typing altogether
Keying in a succession of SQL INSERT statements is the slowest and most
tedious way to enter data into a database table. Entering data into fields on a
video form on a computer monitor is not as bad because there is less typing
and you probably have other things to do, such as talking to customers,
checking in baggage, or consulting patient records.

Fast food outlets make matters even easier by giving you a special data entry
panel rather than a keyboard. You can enter a double cheeseburger and a
root beer float just by touching a couple of buttons. The correct information
gets translated to SQL and put into the database and also gets sent back to
the kitchen to tell the culinary staff what to do next.

If a business’ data is inputted via a bar code scanner, the job is even faster
and easier for the clerk. All he has to do is slide the merchandise past the
scanner and listen for the beep that tells him the purchase has been regis-
tered. He doesn’t have to know that besides printing the sales receipt, the
data from the scan is being translated into SQL and then sent to a database.

Although the clerks at airline ticket counters, fast food restaurants, and
supermarkets don’t need to know anything about SQL, somebody does. In
order to make the clerks’ life easier, someone has to write programs that
process the data coming in from keyboards, data entry pads, and bar code
scanners, and send it to a database. Those programs are typically written in
a general-purpose language such as C, Java, or Visual Basic, and incorporate
SQL statements that are used in the actual ‘conversation’ with the database.

Updating data in a table
The world in the twenty-first century is a pretty dynamic place. Things are
changing constantly, particularly in areas that involve technology. Data that
was of value last week may be irrelevant tomorrow. Facts that were inconse-
quential a year ago may be critically important now. In order for a database to
be useful, it must be capable of rapid change to match the rapidly changing

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 81

The Data Manipulation Language (DML)82

piece of the world that it models. This means that in addition to the ability
to add new records to a database table, you also need to be able to update
the records that it already contains. With SQL, you do this with an UPDATE
statement. With an UPDATE statement, you can change a single row in a
table, a set of rows that share one or more characteristics, or all the rows in
the table. Here’s the generalized syntax:

UPDATE table_name
SET column_1 = expression_1, column_2 = expression_2,
..., column_n = expression_n
[WHERE predicates] ;

The SET clause specifies which columns will get new values and what those
new values will be. The optional WHERE clause (square brackets indicate that
the WHERE clause is optional) specifies which rows the update applies to. If
there is no WHERE clause, the update is applied to all rows in the table.

Now for some examples. Consider the PRODUCT table shown in Table 5-1.

Table 5-1 PRODUCT Table
ProductID Name Category Cost

1664 Bike helmet Helmets 20.00

1665 Motorcycle helmet Helmets 30.00

1666 Bike gloves Gloves 15.00

1667 Motorcycle gloves Gloves 19.00

1668 Sport socks Footwear 10.00

Now suppose the cost of bike helmets has gone up to $22.00. You can make
that change in the database with the following UPDATE statement:

UPDATE PRODUCT
SET Cost = 22.00
WHERE Name = ‘Bike helmet’ ;

This statement makes a change in all rows where Name is equal to Bike
helmet (Table 5-2).

Table 5-2 PRODUCT Table
ProductID Name Category Cost

1664 Bike helmet Helmets 22.00

1665 Motorcycle helmet Helmets 30.00

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 82

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Manipulation Language (DML) 83

ProductID Name Category Cost

1666 Bike gloves Gloves 15.00

1667 Motorcycle gloves Gloves 19.00

1668 Sport socks Footwear 10.00

Because there is only one such row, only one is changed. If there is a possibil-
ity that more than one product might have the same name, you might erro-
neously update a row that you did not intend, along with the one that you did.
To avoid this problem, assuming you know the ProductID of the item you want
to change, you should use it in your WHERE clause. In a well-designed data-
base, ProductID would be the primary key and thus guaranteed to be unique.

UPDATE PRODUCT
SET Cost = 22.00
WHERE ProductID = 1664 ;

You may want to update a select group of rows in a table. Suppose manage-
ment decides that the Helmets category should be renamed as Headgear, to
include hats and bandannas. You can change all the rows in the table that
have a category of Helmets:

UPDATE PRODUCT
SET Category = ‘Headgear’
WHERE Category = ‘Helmets’ ;

This would give you what is shown in Table 5-3:

Table 5-3 PRODUCT Table
ProductID Name Category Cost

1664 Bike helmet Headgear 22.00

1665 Motorcycle helmet Headgear 30.00

1666 Bike gloves Gloves 15.00

1667 Motorcycle gloves Gloves 19.00

1668 Sport socks Footwear 10.00

Now suppose management decides it would be more efficient to lump head-
gear and gloves together into a single category named Accessories. Here’s
the UPDATE statement that will do that:

UPDATE PRODUCT
SET Category = ‘Accessories’
WHERE Category = ‘Headgear’ OR Category = ‘Gloves’ ;

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 83

The Data Manipulation Language (DML)84

The result would be what is shown in Table 5-4:

Table 5-4 PRODUCT Table
ProductID Name Category Cost

1664 Bike helmet Accessories 22.00

1665 Motorcycle helmet Accessories 30.00

1666 Bike gloves Accessories 15.00

1667 Motorcycle gloves Accessories 19.00

1668 Sport socks Footwear 10.00

All the headgear and gloves items are now considered accessories, but other
categories, such as footwear, are unaffected.

Now suppose management sees that considerable savings have been
achieved by merging the headgear and gloves categories. The decision is
made that the company is actually in the active-wear business. To convert
all company products to the new Active-wear category, a really simple
UPDATE statement will do the trick:

UPDATE PRODUCT
SET Category = ‘Active-wear’ ;

This produces the table shown in Table 5-5:

Table 5-5 PRODUCT Table
ProductID Name Category Cost

1664 Bike helmet Active-wear 22.00

1665 Motorcycle helmet Active-wear 30.00

1666 Bike gloves Active-wear 15.00

1667 Motorcycle gloves Active-wear 19.00

1668 Sport socks Active-wear 10.00

Deleting data from a table
After you become really good at collecting data, your database starts to fill
up with the stuff. With hard disk capacities getting bigger all the time, this
may not seem like much of a problem. However, although you may never
have to worry about filling up your new 2TB (that’s 2,000,000,000,000 bytes)
hard disk, the larger your database gets, the slower retrievals will become. If

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 84

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Manipulation Language (DML) 85

much of that data consists of rows that you will probably never need to access
again, it makes sense to remove it. Financial information from the previous
fiscal year after the books have been closed on it does not need to be in your
active database. You may have to keep such data for a period of years to
meet government regulatory requirements. If so, you can keep it in an off-line
archive rather than burdening your active database with it. Additionally,
data of a confidential nature may present a legal liability if compromised. If
you no longer need it, get rid of it. With SQL, this is easy to do. First, decide
whether you need to archive the data that you are about to delete. After that
is taken care of, deletion can be as simple as this:

DELETE FROM TRANSACTION
WHERE TransDate < ‘2007-01-01’ ;

Poof! All of last year’s transaction records are gone, and your database is
speedy again. You can be as selective as you need to be with the WHERE
clause, and delete all the records you want to delete and only the records
you want to delete.

Updating views
Although ANSI/ISO standard SQL makes it possible to update a view, it rarely
makes sense to do so. Recall that a view is a virtual table. It does not have
any existence apart from the table or tables that it draws columns from. If
you want to update a view, updating the underlying table will accomplish
your intent and avoid problems in the process. Problems? What problems?
Consider a view that draws salary and commission data from the SALES-
PERSON table:

CREATE VIEW TOTALPAY (EmployeeName, Pay)
AS SELECT EmployeeName, Salary + Commission AS Pay
FROM SALESPERSON ;

The view TOTALPAY has two columns, EmployeeName and Pay. The Pay
column is created by adding together the values in the Salary and the
Commission columns in the SALESPERSON table. This is fine, as long as you
don’t ever need to update the virtual Pay column, like this:

UPDATE TOTALPAY SET PAY = PAY + 100

You may think you are giving all the salespeople a hundred dollar raise.
Instead, you are just generating an error message. The data in the TOTALPAY
view isn’t stored as such on the system. It is stored in the SALESPERSON
table, and the SALESPERSON table does not have a Pay column. Salary +
Commission is an expression, and you cannot update an expression.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 85

The Data Control Language (DCL)86

Another source of potential problems is views that draw data from more
than one table. If you try to update such a view, even if expressions are not
involved, the database engine may get confused about which of the underly-
ing tables to apply the update to.

The lesson here is that although it is possible to update views, it is generally
not a good practice to do so. Update the underlying tables instead, even if it
causes you to make a few more keystrokes. You will have fewer problems in
the long run.

The Data Control Language (DCL)
The third major component of SQL performs a function that is just as impor-
tant as the functions performed by the DDL and the DML. The Data Control
Language consists of statements that protect your precious data from misuse,
misappropriation, corruption, and destruction. It would be a shame to go to
all the trouble of creating a database and filling it with data that is critical to
your business, and then have the whole thing destroyed. It would be even
worse to have the data end up in the possession of your fiercest competitor.
The DCL gives you the tools to address all those concerns. I discuss the DCL
in detail in Book IV, Chapter 3. For now, here’s an overview.

Granting access privileges
Most organizations have several different kinds of data with several different
levels of sensitivity. Some data, such as the retail price list for your com-
pany’s products, doesn’t cause any problems even if everyone in the world
can see it. In fact, you probably want everyone out there to see your retail
price list. Somebody might buy something. On the other hand, you don’t
want unauthorized people to be making changes to your retail price list. You
might find yourself giving away product for under your cost. Data of a more
confidential nature, such as personal information about your employees or
customers, should be accessible to only those who have a legitimate need to
know about it. Finally, some forms of access, such as the ability to erase the
entire database, should be restricted to a very small number of highly
trusted individuals.

You have complete control over who has access to the various elements of
a database, as well as what level of access they have, by using the GRANT
statement. The GRANT statement gives you a fine-grained ability to grant
specific privileges to specific individuals or to well-defined groups of
individuals.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 86

Book I
Chapter 5

The M
ajor

Com
ponents of SQL

The Data Control Language (DCL) 87

One example might be

GRANT SELECT ON PRICELIST TO PUBLIC ;

The PUBLIC keyword means everyone. No one is left out when you grant
access to the public. The particular kind of access here, SELECT, enables
people to retrieve the data in the price list, but not to change it in any way.

Revoking access privileges
If it is possible to grant access to someone, it better be possible to revoke
those privileges too. People’s jobs change within an organization, requiring
different access privileges than those that were appropriate before the
change. An employee may even leave the company and go to a competitor.
Privilege revocation is especially important in such cases. The REVOKE state-
ment does the job. Its syntax is almost identical to the syntax of the GRANT
statement. Only its action is reversed.

REVOKE SELECT ON PRICELIST FROM PUBLIC ;

Now the pricelist is no longer accessible to the general public.

Preserving database integrity with transactions
Two problems that can damage database integrity are

✦ System failures: Suppose you are performing a complex, multi-step
operation on a database when the system goes down. Some changes
have been made to the database, and others have not. After you get
back on the air, the database is no longer in the condition it was in
before you started your operation, and it is not yet in the condition you
hoped to achieve at the end of your operation. It is in some unknown
intermediate state that is almost surely wrong.

✦ Interactions between users: When two users of the database are operat-
ing on the same data at the same time, they can interfere with each
other. This interference can slow them both down or, even worse, the
changes each makes to the database can get mixed up, resulting in
incorrect data being stored.

The common solution to both these problems is to use transactions. A trans-
action is a unit of work that has both a beginning and an end. If a transaction
is interrupted between the beginning and the end, after operation resumes,
all the changes to the database made during the transaction are reversed in

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 87

The Data Control Language (DCL)88

a ROLLBACK operation, returning the database to the condition it was in
before the transaction started. Now the transaction can be repeated, assum-
ing whatever caused the interruption has been corrected.

Transactions can also help eliminate harmful interactions between simulta-
neous users. If one user has access to a resource such as a row in a database
table, other users cannot access that row until the first user’s transaction
has been completed with a COMMIT operation. In Book IV, Chapter 2, I dis-
cuss these important issues in considerable detail.

09 119280 bk01ch05.qxp 5/23/07 6:56 PM Page 88

Chapter 6: SQL Characteristics

In This Chapter
� Executing SQL statements

� Using (and misusing) reserved words

� Working with SQL’s data types

� Handling null values

� Applying constraints

In this chapter, I get into the nitty-gritty of SQL. This is background knowl-
edge you need to master before you embark on actually writing SQL state-

ments. SQL has some similarities to computer languages you may already be
familiar with, and some important differences. I touch on some of these simi-
larities and differences in this chapter. I discuss others later when I get to
the appropriate points in a complete discussion of SQL.

Executing SQL Statements
SQL is not a complete language, but a data sub-language. As such, you
cannot write a “program” in the SQL language like you can with C or Java.
There are several ways that you can use SQL. If you have a query editor up
on your screen and all you want is the answer to a simple question, you can
type an SQL query into your keyboard, and the answer, in the form of one or
more lines of data, appears on your screen. This mode of operation is called
interactive SQL.

If your needs are more complex, you have two additional ways of making
SQL queries:

✦ You can write a program in a “host” language, such as C or Java, and
embed single SQL statements here and there in the program as needed.
This mode of operation is called embedded SQL.

✦ You can write a module containing SQL statements in the form of proce-
dures. Call these procedures from a program written in a language such
as C or Java. This mode of operation is called module language.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 89

Executing SQL Statements90

Interactive SQL
Interactive SQL consists of entering SQL statements into a database manage-
ment system such as SQL Server, Oracle, or DB2. The DBMS then performs
the commands specified by the statements. You could build a database from
scratch this way, starting with a CREATE DATABASE statement, and building
everything from there. You could fill it with data, and then type queries to
selectively pull information out of it.

Although it is possible to do everything you need to do to a database with
interactive SQL, this approach has a couple of disadvantages:

✦ It can get awfully tedious to enter everything in the form of SQL state-
ments from the keyboard.

✦ Only people fluent in the SQL language can operate on the database, and
most people have never even heard of SQL, let alone are able to use it
effectively.

SQL is the only language that most relational databases understand, so there
is no getting around using it. However, the people who interact with databases
the most, those that ask questions of the data, do not need to be exposed to
naked SQL. They can be protected from that intimidating prospect by wrap-
ping the SQL in a blanket of code written in another language. With that other
language, a programmer can generate screens, forms, menus, and other famil-
iar objects for the user to interact with. Ultimately, those things translate the
user’s actions to SQL code that the DBMS understands, the desired informa-
tion is retrieved, and the user sees the result.

Challenges to combining SQL with a host language
SQL has some fundamental differences from host languages that you might
want to combine it with:

✦ SQL is non-procedural. One basic feature of all common host languages
is that they are procedural, meaning that programs written in those lan-
guages execute procedures in a step-by-step fashion. They deal with
data the same way, one row at a time. Because SQL is non-procedural, it
does whatever it is going to do all at once and deals with data a set of
rows at a time. Procedural programmers coming to SQL for the first time
need to adjust their thinking in order to use SQL effectively as a data
manipulation and retrieval tool.

✦ SQL recognizes different data types than does whatever host language
you are using with it. Because there are a large number of languages out
there that could serve as host languages for SQL, and the data types of
any one of them do not necessarily agree with the data types of any other,

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 90

Book I
Chapter 6

SQL Characteristics

Executing SQL Statements 91

the committee that created the ANSI/ISO standard defined the data types
for SQL that they thought would be most useful, without referring to the
data types recognized by any of the potential host languages. This data
type incompatibility presents a problem if you want to perform calcula-
tions with your host language on data that was retrieved from a database
with SQL. The problem is not serious; you just need to be aware of it. SQL
provides the CAST statement for translating one data type into another.

Embedded SQL
By far, the most common form of SQL is embedded SQL. This method uses a
general-purpose computer language such as C, Java, or Visual Basic to write
the bulk of an application. Such languages are great for creating an applica-
tion’s user interface. They can create forms with buttons and menus. They
can format reports. They can perform calculations. They can do all the
things that SQL cannot do. In a database application, however, sooner or
later, the database must be accessed. That is a job for SQL.

It makes sense to write the application in a host language, and, when needed,
drop in SQL statements to interact with the data. It is the best of both worlds.
The host language does what it is best at, and the embedded SQL does what
it is best at. The only downside to the cooperative arrangement is that the
host language compiler will not recognize the SQL code when it encounters
it and will issue an error message. To avoid this problem, a pre-compiler
processes the SQL before the host language compiler takes over. When
everything works, this is a great arrangement. Before everything works, how-
ever, debugging can be tough because a host language debugger doesn’t
know how to handle any SQL that it encounters. Nevertheless, embedded
SQL remains the most popular way to create database applications.

For example, look at a fragment of C code that contains embedded SQL state-
ments. This particular fragment is written in Oracle’s Pro*C dialect of the C
language. It is code that might be found in an organization’s human
resources department, which authenticates and logs on a user, and then
enables the user to change the salary and commission information for an
employee.

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR uid[20];
VARCHAR pwd[20];
VARCHAR ename[10];
FLOAT salary, comm;
SHORT salary_ind, comm_ind;

EXEC SQL END DECLARE SECTION;
main()
{

int sret; /* scanf return code */

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 91

Executing SQL Statements92

/* Log in */
strcpy(uid.arr,”Mary”); /* copy the user name */
uid.len=strlen(uid.arr);
strcpy(pwd.arr,”Bennett”); /* copy the password */
pwd.len=strlen(pwd.arr);
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL WHENEVER NOT FOUND STOP;
EXEC SQL CONNECT :uid;
printf(“Connected to user: percents \n”,uid.arr);
printf(“Enter employee name to update: “);
scanf(“percents”,ename.arr);
ename.len=strlen(ename.arr);
EXEC SQL SELECT SALARY,COMM INTO :salary,:comm

FROM EMPLOY
WHERE ENAME=:ename;

printf(“Employee: percents salary: percent6.2f comm:
percent6.2f \n”,

ename.arr, salary, comm);
printf(“Enter new salary: “);
sret=scanf(“percentf”,&salary);
salary_ind = 0;
if (sret == EOF !! sret == 0) /* set indicator */

salary_ind =-1; /* Set indicator for NULL */
printf(“Enter new commission: “);
sret=scanf(“percentf”,&comm);
comm_ind = 0; /* set indicator */
if (sret == EOF !! sret == 0)

comm_ind=-1; /* Set indicator for NULL */
EXEC SQL UPDATE EMPLOY

SET SALARY=:salary:salary_ind
SET COMM=:comm:comm_ind
WHERE ENAME=:ename;

printf(“Employee percents updated. \n”,ename.arr);
EXEC SQL COMMIT WORK;
exit(0);

}

Here’s a closer look at what the code does:

✦ First comes an SQL declaration section, where variables are declared.

✦ Next, C code accepts a user name and password.

✦ A couple of SQL error traps follow, and then a connection to the data-
base is established.

✦ C code prints out some messages and accepts the name of the employee
whose record will be changed.

✦ SQL retrieves that employee’s salary and commission data.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 92

Book I
Chapter 6

SQL Characteristics

Executing SQL Statements 93

✦ C displays the salary and commission data and solicits new salary and
commission data.

✦ SQL updates the database with the new data.

✦ C displays a successful completion message.

✦ SQL commits the transaction.

✦ C terminates the program.

Note that every SQL statement is introduced with an EXEC SQL directive.
This is a clue to the compiler not to try to compile what follows, but instead
to pass it directly to the DBMS’ database engine.

Module language
Module language is similar to embedded SQL in that it combines the strengths
of SQL with those of a host language. However, it does it in a slightly differ-
ent way. All the SQL code is stored in a module that is separate from the host
language program. The SQL is in the form of procedures. Whenever the host
language program needs to perform a database operation, it calls a procedure
from the SQL module to do the job. With this arrangement, there is no SQL in
the main program, so the host language compiler has no problem and nei-
ther does the debugger. All they see is host language code, including the pro-
cedure calls. The procedures themselves cause no difficulty because they
are in a separate module and the compiler and debugger just skip over them.

Another advantage of module language over embedded SQL is due to the fact
that the SQL code is separated from the host language code. Because high
skill in both SQL and any given host language is rare, it is difficult to find good
people to program embedded SQL applications. Because a module language
implementation separates the languages, you can hire the best SQL program-
mer to write the SQL and the best host language programmer to write the
host language code. Neither one has to be an expert in the other language.

You can declare a module with the following syntax:

MODULE [module-name]
[NAMES ARE character-set-name]
LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}
[SCHEMA schema-name]
[AUTHORIZATION authorization-id]
[temporary-table-declarations...]
[cursor-declarations...]
[dynamic-cursor-declarations...]
procedures...

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 93

Using Reserved Words Correctly94

The MODULE declaration is mandatory, but the module name is not. It is a
good idea to name your modules anyway, just to reduce the confusion. With
the optional NAMES ARE clause, you can specify a character set. The default
character set will be used if you don’t include a NAMES ARE clause. You
must specify a host language. Each language has different expectations
about what the procedure will look like, so the LANGUAGE clause determines
the format of the procedures in the module.

Although the SCHEMA clause and the AUTHORIZATION clause are both
optional, you must specify at least one of them. The AUTHORIZATION clause
is a security feature. If your authorization ID does not carry sufficient privi-
leges, you will not be allowed to use the procedures in the module.

If any of the procedures use temporary tables, cursors, or dynamic cursors,
they must be declared before they are used. I talk about cursors in Chapter 5
of Book III.

Using Reserved Words Correctly
SQL has command words such as CREATE and ALTER. Clearly, it’s unwise to
use these same words at the names of tables or variables. To do so is a guar-
anteed way to confuse your DBMS. In addition to such command words, a
number of other words also have a special meaning in SQL. These reserved
words should also not be used for any purpose other than the one for which
they are designed. Consider the following SQL statement:

SELECT CustomerID, FirstName, LastName
FROM Customer
WHERE CustomerID < 1000;

SELECT is a command word, and FROM and WHERE are reserved words. SQL
has hundreds of reserved words, and you must be careful not to inadver-
tently use any of them as the names of objects or variables. Appendix A of
this book contains a list of reserved words in ANSI/ISO standard SQL.

SQL’s Data Types
SQL is capable of dealing with data of many different types. From the begin-
ning, SQL has been able to handle the common types of numeric and charac-
ter data. More recently, new types have been added that enable SQL to deal
with non-traditional data types. At present, there are 11 major categories of
data types. Within each category, one or more specific types may exist.
Some implementations of SQL may include data types not mentioned here.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 94

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 95

These additional types are not mentioned in the ANSI/ISO standard and thus
are not guaranteed to be available in other implementations. To maximize
portability for your applications, stick to the standard types. Here’s a brief
description of each of the categories and the standard types they include.

Exact numerics
Because computers store numbers in registers of finite size, there is a limit to
how large or small a number can be and still be represented exactly. There is a
range of numbers centered on zero that can be represented exactly. The size of
that range depends on the size of the registers that the numbers are stored in.
Thus a machine with 64-bit registers can exactly represent a range of numbers
that is wider than the range that can be exactly represented on a machine with
32-bit registers. There are six standard exact numeric data types. They are

✦ INTEGER

✦ SMALLINT

✦ BIGINT

✦ NUMERIC

✦ DECIMAL

✦ BINARY LARGE OBJECT (BLOB)

INTEGER
Data of the INTEGER type is numeric data that has no fractional part. Any
given implementation of SQL will have a limit to the number of digits that an
integer can have. If for some reason, you want to specify a maximum size for
an integer that is less than the default maximum, you can restrict the maxi-
mum number of digits by specifying a precision argument. By declaring a
variable as having type INTEGER (10), you are saying numbers of this type
can have no more than ten digits, even if the system you are running on is
capable of handling more digits. Of course, if you specify a precision that
exceeds the maximum capacity of the system, you will not get it. You cannot
magically expand the sizes of the hardware registers in a machine with an
SQL declaration.

If there is a possibility that sometime in the future, your application may be
ported to a system that has a different default precision for exact numeric
numbers, you should specify a precision. That way, the precision you have
planned on will carry over to the new system. If you rely on the default preci-
sion, and the default precision of the system you port to is different, your
operations may produce different results from those produced by your origi-
nal system.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 95

SQL’s Data Types96

SMALLINT
The SMALLINT data type is similar to the INTEGER type, but how it differs
from the INTEGER type is implementation-dependant. It may not differ from
the INTEGER type at all. The only constraint on the SMALLINT type is that
its precision may be no larger than the precision of the INTEGER type.

For systems where the precision of the SMALLINT type actually is less than
the precision of the INTEGER type, it may be advantageous to specify vari-
ables as being of the SMALLINT type if you can be sure that the values of
those variables will never exceed the precision of the SMALLINT type. This
saves you some storage space. If storage space is not an issue, or if you
cannot be absolutely sure that the value of a variable will never exceed the
precision of the SMALLINT type, you may be better off specifying it as being
of the INTEGER type.

BIGINT
The BIGINT type is similar to the SMALLINT type. The only difference is that
the precision of the BIGINT type can be no smaller than the precision of the
INTEGER type. As is the case with SMALLINT, the precision of the BIGINT
type could be the same as the precision of the INTEGER type.

If the precision of the BIGINT type for any given implementation is actually
larger than the precision of the INTEGER type, a variable of the BIGINT type
will take up more storage space than a variable of the INTEGER type. Only
use the BIGINT type if there is a possibility that the size of a variable may
exceed the precision of the INTEGER type.

NUMERIC
Data of the numeric type does have a fractional part. This means the number
contains a decimal point and zero or more digits to the right of the decimal
point. For NUMERIC data, you can specify both precision and scale. The scale
of a number is the number of digits to the right of the decimal point. For
example, a variable declared as of type NUMERIC (10, 2) would have a maxi-
mum of ten digits, with two of those digits to the right of the decimal point.
The largest number you can represent with this type is 99,999,999.99. If the
system you are running on happens to be able to handle numbers with preci-
sion greater than ten, only the precision you specify will be used.

DECIMAL
Data of the DECIMAL type is similar to data of the NUMERIC type with one
difference. For data of the DECIMAL type, if the system you are running on
happens to be able to handle numbers with larger precision than what you
have specified, the extra precision will be used.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 96

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 97

The NUMERIC data type is better if portability is a possibility. When you use
the NUMERIC type, you can be sure the precision you specify will be the pre-
cision that is used, regardless of the capabilities of the system. This ensures
consistent results across diverse platforms.

BINARY LARGE OBJECT (BLOB)
The BINARY LARGE OBJECT (BLOB) type is not normally considered an exact
numeric type. However, that is what it essentially is. It is a large binary
number. That large binary number may represent a graphical image, or
something else that doesn’t seem to be a number. However, at the most fun-
damental level, it is a number.

The BLOB type is a relatively recent addition to the ANSI/ISO standard that
was added to reflect the reality that more and more of the things that people
want to store in databases do not fall into the classical categories of being
either numbers or text. You cannot perform arithmetic operations on BLOB
data, but at least you can store it in a relational database and perform some
elementary operations on it.

Approximate numerics
The approximate numeric types exist so you can represent numbers that are
either too large or too small to be represented by an exact numeric type. If,
for example, a system has 32-bit registers, the largest number that can be
represented with an exact numeric type is the largest number that can be
represented with 32 binary digits. That number is composed of 32 binary
ones, or 4,294,967,295 in decimal. If you have to deal with numbers larger
than that, you must move to approximate numerics. This may not be much
of a hardship: For most applications, after you get above 4 billion, approxi-
mations are good enough.

Similarly, values that are very close to zero cannot be represented with exact
numerics either. The smallest number that can be represented exactly on a
32-bit machine has a one in the least significant bit position and zeros every-
where else. This is a very small number, but there a lot of numbers of inter-
est, particularly in science, that are smaller. For such numbers, you must
also rely on approximate numerics.

REAL
The REAL data type is what you would normally use for single-precision
floating-point numbers. The exact meaning of the term single precision
depends on the implementation. This is hardware-dependent, and a machine
with 64-bit registers will, in general, have a larger precision than a machine

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 97

SQL’s Data Types98

with 32-bit registers. How much larger may vary from one implementation to
another.

A floating-point number is a number that contains a radix point. In the case
of decimal numbers, that means a decimal point. The decimal point could
appear anywhere in the number, which is why it is called floating. 2.7, 2.73,
27.3, and 2735.53894 are all examples of floating-point numbers. Although we
humans are accustomed to seeing numbers expressed in this form, approxi-
mate numerics are expressed as a combination of a mantissa and an expo-
nent. This form is a little less user friendly, but enables the approximate
representation of very large and very small numbers in a compact form.
6.626 X 10-34 is an approximation of Planck’s constant, a very small number.
6.626 is the mantissa, and -34 is the exponent. It would not be possible to
represent a number that small exactly with any currently existing hardware.

DOUBLE PRECISION
A double-precision number on any given system has greater precision than
a real number on the same system. However, despite the name, a double-
precision number does not necessarily have twice the precision of a real
number. The most that can be said in general is that a double-precision number
on any given system has greater precision than does a real number on the
same system. On some systems, a double-precision number may have a larger
mantissa than does a real number. On other systems, a double-precision
number may support a larger exponent (absolute value). On yet other sys-
tems, both mantissa and exponent of a double-precision number may be
larger than for a real number. You will have to look at the specifications for
whatever system you are using to find out what is true for you.

FLOAT
The FLOAT data type is very similar to the REAL data type. The difference is
that with the FLOAT data type you can specify a precision. With the REAL and
DOUBLE PRECISION data types, the default precision is your only option.
Because the default precision of these data types can vary from one system
to another, porting your application from one system to another could be a
problem. With the FLOAT data type, specifying the precision of an attribute
on one machine guarantees that the precision will be maintained after port-
ing the application to another machine. If a system’s hardware supports
double-precision operations and the application requires double-precision
operations, the FLOAT data type will automatically use the double-precision
circuitry. If single-precision is sufficient, it will use that.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 98

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 99

Character strings
After numbers, the next most common thing to be stored is strings of alphanu-
meric characters. SQL provides several character string types, each with some-
what different characteristics from the others. The three main types are
CHARACTER, CHARACTER VARYING, and CHARACTER LARGE OBJECT. These
three types are mirrored by NATIONAL CHARACTER, NATIONAL CHARACTER
VARYING, and NATIONAL CHARACTER LARGE OBJECT, which deal with
character sets other than the default character set, which is usually the
character set of the English language.

CHARACTER
A column defined as being of type CHARACTER or CHAR can contain any of
the normal alphanumeric characters of the language being used. A column
definition also includes the maximum length allowed for an item of the CHAR
type. Consider this example:

Name CHAR (15)

This field can hold a name that is up to 15 characters long. If the name is less
than 15 characters long, the remaining spaces are filled with blank charac-
ters to bring to total length up to 15. Thus a CHARACTER field always takes
up the same amount of space in memory, regardless of how long the actual
data item in the field is.

CHARACTER VARYING
The CHARACTER VARYING or VARCHAR data type is like the CHARACTER type
in all respects except that short entries are not padded out with blanks to fill
the field to the stated maximum.

Name VARCHAR (15)

The VARCHAR data type doesn’t add blanks on the end of a name. Thus if the
Name field contains ‘Joe’, the length of the field that is stored will be only
three characters rather than fifteen.

CHARACTER LARGE OBJECT (CLOB)
Any implementation of SQL has a limit to the number of characters that are
allowed in a CHARACTER or CHARACTER VARYING field. For example, the maxi-
mum length of a character string in Oracle 10g is 1,024 characters. If you

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 99

SQL’s Data Types100

want to store text that goes beyond that limit, you can use the CHARACTER
LARGE OBJECT data type. The CLOB type is much less flexible than either the
CHAR or VARCHAR types in that it does not allow you to do many of the fine-
grained manipulations that you can do in those other types. You can com-
pare two CLOB items for equality, but that is about all you can do. With
CHARACTER type data you can, for instance, scan a string for the first occur-
rence of the letter W, and display where in the string it occurs. This type of
operation is not possible with CHARACTER LARGE OBJECT data. Here’s an
example of the declaration of a CHARACTER LARGE OBJECT:

Dream CLOB (8721)

Another restriction on CLOB data is that a CLOB data item may not be used
as a primary key or a foreign key. Furthermore, you cannot apply the
UNIQUE constraint to an item of the CLOB type. The bottom line is that the
CLOB data type enables you to store and retrieve large blocks of text, but not
to do much with them beyond that.

NATIONAL CHARACTER, NATIONAL CHARACTER VARYING,
and NATIONAL CHARACTER LARGE OBJECT
Different languages use different character sets. For example, Spanish and
German have letters with diacritical marks that change the way the letter is
pronounced. Other languages, such as Russian, have an entirely different
character set. To store character strings that contain these different charac-
ter sets, the National character types have been added to SQL. If the English
character type is the default on your system, as it is for most people, you
can designate a different character set as your national character set. From
that point on, when you specify a data type as NATIONAL CHARACTER,
NATIONAL CHARACTER VARYING, or NATIONAL CHARACTER LARGE
OBJECT, items in columns so specified use the national character set rather
than the default character set.

In addition to whatever national character set you specify, you can use multi-
ple other character sets in a table definition, by specifying them explicitly.
Here’s an example where the national character set is Russian:

CREATE TABLE BOOK_TITLE_TRANSLATIONS (
English CHARACTER (40),
Greek VARCHAR (40) CHARACTER SET GREEK,
Russian NATIONAL CHARACTER (40),
Japanese CHARACTER (40) CHARACTER SET KANJI

) ;

Some implementations may not support all the character sets. For example,
MySQL does not currently support Kanji.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 100

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 101

Booleans
A column of the BOOLEAN data type, named after nineteenth-century English
mathematician George Boole, will accept any one of three values: TRUE,
FALSE, and UNKNOWN. The fact that SQL entertains the possibility of NULL
values expands the traditional restriction of Boolean values from just TRUE
and FALSE to TRUE, FALSE, and UNKNOWN. If a Boolean TRUE or FALSE value
is compared to a NULL value, the result is UNKNOWN. Of course, comparing a
Boolean UNKNOWN value to any value also gives an UNKNOWN result.

Datetimes
You often need to store either dates, times, or both, in addition to numeric
and character data. ANSI/ISO standard SQL defines five datetime types.
Because considerable overlap exists among the five types, not all implemen-
tations of SQL include all five types. This could cause problems if you try to
migrate a database from a platform that uses one subset of the five types to
a platform that uses a different subset. There is not much you can do about
this except deal with it when it arises.

DATE
The DATE data type is the one to use, if you care about the date, but not the
time of day within a date. The DATE data type stores a year, month, and day
in that order, using ten character positions in the form yyyy-mm-dd. If you
were recording the dates that humans have landed on the Moon, the entry
for Apollo 11 would be 1969-07-20.

TIME WITHOUT TIME ZONE
Suppose you want to store the time of day, but don’t care which day, and fur-
thermore, don’t even care which time zone the time refers to? In that case
the TIME WITHOUT TIME ZONE data type is for you. It stores hours, min-
utes, and seconds. The hours and minutes data occupies two digits apiece.
The seconds data also occupies two digits, but in addition may include a
fractional part for fractions of a second. If you specify a column as being of
TIME WITHOUT TIME ZONE type, with no parameter, it will hold a time that
has no fractional seconds. An example would be: 02:56:31, which is fifty-six
minutes and thirty-one seconds after two in the morning.

For greater precision in storing a time value, you can use a parameter to
specify the number of digits beyond the decimal point that will be stored for
seconds. Here’s an example of such a definition:

Smallstep TIME WITHOUT TIME ZONE (2),

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 101

SQL’s Data Types102

In this example, there are two digits past the decimal point, so time is meas-
ured down to a hundredth of a second. It would take the form of 02:56:31.17.

TIME WITH TIME ZONE
The TIME WITH TIME ZONE data type gives you all the information that you
get in the TIME WITHOUT TIME ZONE data type, and adds the additional fact
of what time zone the time refers to. All time zones around the Earth are refer-
enced to Universal Time (UTC), formerly known as Greenwich Mean Time
(GMT). Universal Time is the time in Greenwich, UK, which was the place
where people first started being concerned with highly accurate timekeeping.
Of course, the United Kingdom is a fairly small country, so UTC is in effect
throughout the entire UK. In fact, a huge “watermelon slice” of the Earth, run-
ning from the North Pole to the South Pole, is also in the same time zone as
Greenwich. There are 24 such slices that girdle the Earth. Times around the
earth range from 11 hours and 59 minutes behind UTC to 12 hours ahead of
UTC (not counting Daylight Savings Time). If Daylight Savings Time is in effect,
the offset from UTC could be as much as -12:59 or +13:00. The International
Date Line is theoretically exactly opposite Greenwich on the other side of the
world, but is offset in spots so as to keep some countries in one time zone.

TIMESTAMP WITHOUT TIME ZONE
Just as sometimes you will need to record dates, and other times you will
need to record times, it’s certain that there will also be times when you need
to store both times and dates. That is what the TIMESTAMP WITHOUT TIME
ZONE data type is for. It is a combination of the DATE type and the TIME
WITHOUT TIMEZONE type. The one difference between this data type and
the TIME WITHOUT TIMEZONE type is that the default value for fractions of
a second is six digits rather than zero. You can, of course specify zero frac-
tional digits, if that is what you want. Suppose you specified a database table
column as follows:

Smallstep TIMESTAMP WITHOUT TIME ZONE (0),

A valid value for Smallstep would be 1969-07-21 02:56:31. That was the date
and time in Greenwich when Neil Armstrong’s foot first touched the lunar
soil. It consists of ten date characters, a blank space separator, and eight
time characters.

TIMESTAMP WITH TIME ZONE
If you have to record the time zone that a date and time refers to, use the
TIMESTAMP WITH TIME ZONE data type. It is the same as the TIMSESTAMP
WITHOUT TIME ZONE data type, with the addition of an offset that shows
the time’s relationship to Universal Time. Here’s an example:

Smallstep TIMESTAMP WITH TIME ZONE (0),

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 102

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 103

In this case, Smallstep might be recorded as 1969-07-20 20:56:31-05:00. That
is the date and time in Houston when Neil Armstrong’s foot first touched the
lunar soil. Houston time is normally six hours ahead of Greenwich time, but,
in July, it is only five hours ahead due to Daylight Savings Time.

Intervals
An interval is the difference between two dates, two times, or two datetimes.
There are two different kinds of intervals, the year-month interval and the day-
hour-minute-second interval. A day always has 24 hours. An hour always has 60
minutes. A minute always has 60 seconds. However, a month may have 28, 29,
30, or 31 days. Because of that variability, you cannot mix the two kinds of
intervals. A field of the INTERVAL type can store the difference in time between
two instants in the same month, but cannot store an interval such as two years,
seven months, thirteen days, five hours, six minutes, and forty-five seconds.

XML type
The SQL/XML:2003 update to the ANSI/ISO SQL standard introduced the XML
data type. Values in the XML type are XML values, meaning you can now
manage and query XML data in an SQL database. SQL/XML:2006 moves to
the XQuery Data Model. This means that any XML value is also an XQuery
sequence. The details of the XQuery Data Model are beyond the scope of
this book. Refer to Querying XML by Jim Melton and Stephen Buxton (pub-
lished by Morgan Kaufmann) for detailed coverage of this topic.

In SQL/XML:2006, three subtypes of the XML type were defined. They are
XML(SEQUENCE), XML(CONTENT), and XML(DOCUMENT). The three sub-
types are related to each other hierarchically. An XML(SEQUENCE) is any
sequence of XML nodes, XML values, or both. An XML(CONTENT) is an
XML(SEQUENCE) that is an XML fragment wrapped in a document node. An
XML(DOCUMENT) is an XML(CONTENT) that is a well-formed XML document.

Every XML value is at least an XML(SEQUENCE). An XML(SEQUENCE) that is
a Document node is an XML(CONTENT). An XML(CONTENT) that has legal
Document children is an XML(DOCUMENT).

XML types may be associated with an XML Schema. There are three
possibilities:

✦ UNTYPED: There is no associated XML Schema

✦ XMLSCHEMA: There is an associated XML Schema

✦ ANY: There may or may not be an associated XML Schema

So a document of type XML(DOCUMENT(ANY)) may or may not have an
associated XML Schema. If you specify a column as being of type XML with

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 103

SQL’s Data Types104

no modifiers, it must be either XML(SEQUENCE), XML(CONTENT(ANY),
or XML(CONTENT(UNTYPED)). Which of those it is depends on the
implementation.

Row types
Row types, introduced in the 1999 version of the ANSI/ISO SQL standard
(SQL:1999), represent the first break of SQL away from the relational model,
as defined by its creator, E. F. Codd. With the introduction of this type, SQL
databases can no longer be considered pure relational databases. One of the
defining characteristics of Codd’s First Normal Form (1NF) is the fact that no
field in a table row may be multi-valued. Multi-valued fields are exactly what
the ROW type introduces. The ROW type enables you to place a whole row’s
worth of data into a single field, effectively nesting a row within a row. To see
how this works, create a ROW type:

CREATE ROW TYPE address_type (
Street VARCHAR (25),
City VARCHAR (20),
State CHAR (2),
PostalCode VARCHAR (9)
) ;

This code effectively compresses four attributes into a single type. After you
have created a Row type, you can use it in a table definition:

CREATE TABLE VENDOR (
VendorID INTEGER PRIMARY KEY,
VendorName VARCHAR (25),
Address address_type,
Phone VARCHAR (15)

) ;

If you have tables for multiple groups, such as vendors, employees, cus-
tomers, stockholders, or prospects, you have to declare only one attribute
rather than four. That may not seem like much of a savings, but you are not
limited to putting four attributes into a Row type. What if you had to type in
the same forty attributes into a hundred tables?

First appearing in SQL:1999, the ROW type, like many other aspects of SQL
that have been added relatively recently, has not yet been included into
many of the most popular implementations of SQL. Even Oracle, which is
one of the closest implementations to the ANSI/ISO standard, does not sup-
port the ROW type.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 104

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 105

Collection types
The introduction of ROW types in SQL:1999 was not the only break from the
ironclad rules of relational database theory. In that same standard, the
ARRAY type was introduced. Then in SQL:2003 the MULTISET type was
added. Both of these collection types violate 1NF and thus take SQL data-
bases a couple of steps further away from relational purity.

ARRAY
The ARRAY type violates 1NF, but not in the same way that the ROW type
does. The ARRAY type enables you to enhance a field of an existing type by
putting more than one entry into it. This creates a repeating group, which
was demonized in Codd’s original formulation of the relational model, but
now reappears as a desirable feature. Arrays are ordered in the sense that
each element in the array corresponds to exactly one ordinal position in
the array.

As an example, suppose you want to have alternate ways of contacting your
vendors in case the main telephone number does not work for you. Perhaps
you would like the option of storing as many as four telephone numbers, just
to be safe. A slight modification to the code shown above will do the trick.

CREATE TABLE VENDOR (
VendorID INTEGER PRIMARY KEY,
VendorName VARCHAR (25),
Address address_type,
Phone VARCHAR (15) ARRAY [4]

) ;

When he created the relational model, Dr. Codd made a conscious decision to
sacrifice some functional flexibility in exchange for enhanced data integrity.
The addition of the ARRAY type, along with the ROW type and later the MULTI-
SET type, takes back some of that flexibility in exchange for added complex-
ity. That added complexity could lead to data integrity problems if it is not
handled correctly.

Multiset
Whereas an array is an ordered collection of elements, a multiset is an
unordered collection. You cannot reference individual elements in a multiset
because you don’t know where they are located in the collection.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 105

SQL’s Data Types106

REF types
REF types are different from distinct data types such as INTEGER or
CHARACTER. Rather than holding values, they reference locations that hold
values. Furthermore, REF types are not a part of core SQL. This means that
database vendors can claim compliance with the SQL standard without
implementing REF types. An item of the REF type is a pointer to a data item,
row type, or abstract data type that resides in a site in a table. Dereferencing
the pointer can retrieve the value stored at the target site.

The REF type is an aspect of the object-oriented nature of SQL since the
SQL:1999 standard. If object-oriented programming seems obscure to you, as
it does to many programmers of a more traditional bent, you can probably
survive quite well without ever needing the REF type.

User-defined types
User-defined types (UDTs) are another addition to SQL imported from the
world of object-oriented programming. If the data types that I have enumer-
ated above are not enough for you, you can define your own data types. To
do so, use the principles of abstract data types (ADTs) that are major fea-
tures of such object-oriented languages as C++.

SQL is not a complete programming language, and as such must be used with
a host language that is complete, such as C. One of the problems with this
arrangement is that the data types of the host language often do not match
the data types of SQL. User-defined types come to the rescue here. You can
define a type that matches the corresponding type in the host language.

The object-oriented nature of UDTs becomes evident when you see that a
UDT has attributes and methods encapsulated within it. The attribute defini-
tions and the results of the methods are visible to the outside world, but the
ways the methods are implemented are hidden from view. You can declare
attributes and methods to be public, private, or protected. A public attribute
or method is available to anyone who uses the UDT. A private attribute or
method may be used only by the UDT itself. A protected attribute or method
may be used only by the UDT itself and its subtypes. If this sounds familiar
to you, don’t be surprised. An SQL UDT is much like a class in object-oriented
programming. There are two kinds of UDTs: distinct types and structured
types.

Distinct types
A distinct type is very similar to a regular predefined SQL type. In fact, a dis-
tinct type is derived directly from a predefined type, called the source type.
You can create multiple distinct types from a single source type, each one

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 106

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 107

distinct from all the others and from the source type. Here’s how to create a
distinct type from a predefined type:

CREATE DISTINCT TYPE USdollar AS DECIMAL (10,2) ;

This definition creates a new data type for U.S. dollars, based on the pre-
defined DECIMAL type. You can create additional distinct types in the
same way:

CREATE DISTINCT TYPE Euro AS DECIMAL (10,2) ;

Now you can create tables that use the new types:

CREATE TABLE USinvoice (
InvoiceNo INTEGER PRIMARY KEY,
CustomerID INTEGER,
SalesID INTEGER,
SaleTotal USdollar,
Tax USdollar,
Shipping USdollar,
GrandTotal USdollar
) ;

CREATE TABLE Europeaninvoice (
InvoiceNo INTEGER PRIMARY KEY,
CustomerID INTEGER,
SalesID INTEGER,
SaleTotal Euro,
Tax Euro,
Shipping Euro,
GrandTotal Euro
) ;

The USdollar type and the Euro type are both based on the DECIMAL type,
but you cannot directly compare a USdollar value to a Euro value, nor can
you directly compare either of those to a DECIMAL value. This is consistent
with reality because one U.S. dollar is not equal to one Euro. However, it is
possible to exchange dollars for Euros and vice versa when traveling. You
can make that exchange with SQL too, but not directly. You must use a CAST
operation, which I describe in Book III, Chapter 1.

Structured types
Structured types are not based on a single source type as are the distinct
types. Instead, they are expressed as a list of attributes and methods. When
you create a structured UDT, the DBMS automatically creates a constructor
function, a mutator function, and an observer function. The constructor for a
UDT is given the same name as the UDT. Its job is to initialize the UDT’s

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 107

SQL’s Data Types108

attributes to their default values. When you invoke a mutator function, it
changes the value of an attribute of a structured type. You can use an
observer function to retrieve the value of an attribute of a structured type. If
you include an observer function in a SELECT statement, it will retrieve
values from the database.

Subtypes and supertypes
A hierarchical relationship can exist between two structured types. One struc-
tured type can be a “child” or subtype of a “parent” or supertype. Consider
an example involving books. Suppose you have a UDT named BookUDT, which
has a subtype named NovelUDT and another subtype named TechBookUDT.
BookUDT is a supertype of both subtypes. Suppose further that TechBookUDT
has a subtype named DatabaseBookUDT. DatabaseBookUDT is not only a
subtype of TechBookUDT, but also a subtype of BookUDT. Because Database
BookUDT is a direct child of TechBookUDT it is considered a proper subtype
of TechBookUDT.

A structured type that has no supertype is considered a maximal supertype,
and a structured type that has no subtypes is considered a leaf subtype.

Structured type example
Here’s how you can create structured UDTs:

/* Create a UDT named BookUDT */
CREATE TYPE BookUDT AS
/* Specify attributes */

Title CHAR (40),
Author CHAR (40),
MyCost DECIMAL (9,2),
ListPrice DECIMAL (9.2)

/* Allow for subtypes */
NOT FINAL ;

/* Create a subtype named TechBookUDT */
CREATE TYPE TechBookUDT UNDER BookUDT NOT FINAL ;

/* Create a subtype named DatabaseBookUDT */
CREATE TYPE DatabaseBookUDT UNDER TechBookUDT FINAL ;

Now that the types are defined, we can create tables that use them.

CREATE TABLE DATABASEBOOKS (
StockItem DatabaseBookUDT,
StockNumber INTEGER
) ;

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 108

Book I
Chapter 6

SQL Characteristics

SQL’s Data Types 109

Now that the table exists, we can add data to it.

BEGIN
/* Declare a temporary variable x */
DECLARE x = DatabaseBookUDT;
/* Execute the constructor function */
Set x = DatabaseBookUDT() ;
/* Execute the first mutator function */
SET x = x.Title(‘SQL for Dummies’) ;
/* Execute the second mutator function */
SET x = x.Author(‘Allen G. Taylor’) ;
/* Execute the third mutator function */
SET x = x.MyCost(22.55) ;
/* Execute the fourth mutator function */
SET x = x.ListPrice(24.95) ;
INSERT INTO DATABASEBOOKS VALUES (x, 271828) ;

END

Data type summary
Table 6-1 summarizes the SQL data types and gives an example of each.

Table 6-1 Data Types
Data Type Example Value

CHARACTER (20) ‘Amateur Radio ‘

VARCHAR (20) ‘Amateur Radio’

CLOB (1000000) ‘This character string is a million
characters long . . .’

SMALLINT, BIGINT 7500
or INTEGER

NUMERIC or DECIMAL 3425.432

REAL, FLOAT, or 6.626E-34
DOUBLE PRECISION

BLOB (1000000) ‘1001001110101011010101010101. . .’

BOOLEAN ‘true’

DATE 1957-08-14

TIME WITHOUT 12:46:02.43
TIME ZONE (2)1

TIME WITH 12:46:02.432-08:00
TIME ZONE (3)

1Argument specifies number of fractional digits. (continued)

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 109

Handling Null Values110

Table 6-1 (continued)
Data Type Example Value

TIMESTAMP WITHOUT 1957-08-14 12:46:02
TIME ZONE (0)

TIMESTAMP WITH 1957-08-14 12:46:02-08:00
TIME ZONE (0)

INTERVAL DAY INTERVAL ‘4’ DAY

ROW ROW (Street VARCHAR (25), City
VARCHAR (20), State CHAR (2),
PostalCode VARCHAR (9))

ARRAY INTEGER ARRAY [15]

MULTISET No literal applies to the MULTISET type.

REF Not a type, but a pointer

USER DEFINED TYPE Currency type based on DECIMAL

Your SQL implementation may not support all the data types that I describe
in this section. Furthermore, your implementation may support nonstandard
data types that I don’t describe here.

Handling Null Values
SQL is different from practically any computer language that you may have
encountered up to this point in that it allows null values: Other languages
don’t. Allowing null values gives SQL a flexibility that other languages lack,
but also contributes to the “impedance mismatch” between SQL and host
languages that it must work with in an application. If an SQL database con-
tains null values that the host language does not recognize, provision must
be made to handle that difference in a consistent way.

A null value is a non-value. If you are talking about numeric data, a null value
is not the same as zero. Zero is a definite value. It is one less than one. If you
are talking about character data, a null value is not the same as a blank
space. A blank space is also a definite value. If you are talking about Boolean
data, a null value is not the same as FALSE. A false Boolean value is a defi-
nite value too.

A null value is the absence of a value. It reminds me of the Buddhist concept
of emptiness. I almost feel that if I ever come to understand null values

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 110

Book I
Chapter 6

SQL Characteristics

Applying Constraints 111

completely I will have transcended the illusions of this world and achieved a
state of enlightenment.

A field may contain a null value for several reasons:

✦ A field may have a definite value, but the value is currently unknown.

✦ A field may not yet have a definite value, but it may gain one in the
future.

✦ For some rows in a table, a particular field in that row may not be
applicable.

✦ The old value of a field has been deleted, but it has not yet been
replaced with a new value.

In any situation where knowledge is incomplete, null values are possible.
Because in most application areas, knowledge is never complete, null values
are very likely to appear in most databases.

Applying Constraints
Constraints are one of the primary mechanisms for keeping the contents of
a database from turning into a misleading or confusing mess. By applying
constraints to tables, columns, or entire databases, you prevent the addition
of invalid data or the deletion of data that is required to maintain overall
consistency. A constraint can also identify invalid data that already exists in
a database. If an operation that you perform in a transaction causes a con-
straint to be violated, the DBMS will prevent the transaction from taking
effect (being committed). This protects the database from being put into an
inconsistent state.

Column constraints
You can constrain the contents of a table column. In some cases, that means
constraining what the column must contain and in other cases what it may
not contain. There are three kinds of column constraints: the NOT NULL,
UNIQUE, and CHECK constraints.

NOT NULL
Although SQL allows a column to contain null values, there are times when
you want to be sure that a column always has a distinct value. In order for
one row in a table to be distinguished from another, there must be some way

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 111

Applying Constraints112

of telling them apart. This is usually done with a primary key, which must
have a unique value in every row. Because a null value in a column could be
anything, it might match the value for that column in any of the other rows.
Thus it makes sense to disallow a null value in the column that is used to dis-
tinguish one row from the rest. You can do this with a NOT NULL constraint,
as shown in the following example:

CREATE TABLE CLIENT (

ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30)
) ;

When entering a new client into the CLIENT table, you must make an entry
in the ClientName column.

UNIQUE
The NOT NULL constraint is a fairly weak constraint. You can satisfy the con-
straint as long as you put anything at all into the field, even if what you put
into it would allow inconsistencies into your table. For example, suppose
you already had a client named David Taylor in your database, and someone
tried to enter another record with the same client name. If the table was only
protected by a NOT NULL constraint, the entry of the second David Taylor
would be allowed. Now when you go to retrieve David Taylor’s information,
which one will you get? How will you tell whether you have the one you
want? A way around this problem is to use the stronger UNIQUE constraint.
The UNIQUE constraint will not only disallow the entry of a null value in a
column, but it will also disallow the entry of a value that matches a value
already in the column.

CHECK
Use the CHECK constraint for preventing the entry of invalid data that goes
beyond maintaining uniqueness. For example, you can check to make sure
that a numeric value falls within an allowed range. You can also check to see
that a particular character string is not entered into a column. Here’s an
example that ensures that the charge for a service falls within the acceptable
range. It ensures that a customer is not mistakenly given a credit rather than
a debit, and that she is not charged a ridiculously high amount either.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 112

Book I
Chapter 6

SQL Characteristics

Applying Constraints 113

CREATE TABLE TESTS (
TestName CHARACTER (30) NOT NULL,
StandardCharge NUMERIC (6,2)

CHECK (StandardCharge >= 0.00
AND StandardCharge <= 200.00)

) ;

The constraint is only satisfied if the charge is positive and less than or
equal to $200.

Table constraints
Sometimes a constraint applies not just to a column, but to an entire table.
The PRIMARY KEY constraint is the principal example of a table constraint.
The primary key applies to an entire table. Although a primary key may con-
sist of a single column, it could also be made up of a combination of two or
more columns. Because a primary key must be guaranteed to be unique,
multiple columns may be needed if one column is not enough to guarantee
uniqueness. Here’s an example of a table with a single-column primary key:

CREATE TABLE PROSPECT (
ProspectName CHARACTER (30) PRIMARY KEY,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13)
) ;

This may cause a problem. Some people have rather common names. It is
quite possible that two people with the same name might both be prospects
of your business. You could overcome that problem by using more than one
column for the primary key. Here’s one way to do that:

CREATE TABLE PROSPECT (
ProspectName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30) NOT NULL,
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),

CONSTRAINT prospect_pk PRIMARY KEY
(ProspectName, Address1)

) ;

A composite primary key is made up of both ProspectName and Address1.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 113

Applying Constraints114

You might ask, “What if a father and son have the same name and live at the
same address?” The more such scenarios you think up, the more complex
things tend to get. In many cases, it’s best to make up a unique ID number
for every row in a table and let that be the primary key. If you use an auto-
incrementer to generate the keys, you can be sure they are unique. This
keeps things relatively simple:

CREATE TABLE PROSPECT (
ProspectID INTEGER PRIMARY KEY,
ProspectName CHARACTER (30),
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13)
) ;

Many database management systems will automatically create auto-
incrementing primary keys for you as you enter new rows into a table.

Foreign key constraints
Relational databases are named as they are because the data is stored in tables
that are related to each other in some way. The relationship occurs because
a row in one table may be directly related to one or more rows in another
table. For example, in a retail database, the record in the CUSTOMER table
for customer Lisa Mazzone is directly related to the records in the INVOICE
table for purchases that Ms. Mazzone has made. To establish this relation-
ship, one or more columns in the CUSTOMER table must have corresponding
columns in the INVOICE table.

The primary key of CUSTOMER uniquely identifies each customer. The primary
key of INVOICE uniquely identifies each invoice. In addition, the primary key
of CUSTOMER acts as a foreign key in INVOICE to link the two tables. The
foreign key in each row of the INVOICE table identifies the customer who
made this particular purchase. Here’s an example:

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
CustomerName CHARACTER (30),
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13)
) ;

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 114

Book I
Chapter 6

SQL Characteristics

Applying Constraints 115

CREATE TABLE SALESPERSON (
SalespersonID INTEGER PRIMARY KEY,
SalespersonName CHARACTER (30),
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13)
) ;

CREATE TABLE INVOICE (
InvoiceNo INTEGER PRIMARY KEY,
CustomerID INTEGER,
SalespersonID INTEGER,

CONSTRAINT customer_fk FOREIGN KEY (CustomerID)
REFERENCES CUSTOMER (CustomerID),

CONSTRAINT salesperson_fk FOREIGN KEY (SalespersonID)
REFERENCES SALESPERSON (SalespersonID)

) ;

Each invoice is related to the customer who made the purchase and the
sales person who made the sale.

Assertions
Sometimes a constraint may apply not just to a column or a table, but to
multiple tables or even an entire database. A constraint with such broad
applicability is called an assertion. None of the currently popular implemen-
tations support assertions, so I will say no more about them here. They may
be included in some future edition of one or more of the popular database
management systems.

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 115

Book I: SQL Concepts116

10 119280 bk01ch06.qxp 5/23/07 10:08 AM Page 116

Book II

Relational Database
Development

11 119280 pt02.qxp 5/23/07 10:14 AM Page 117

Contents at a Glance
Chapter 1: System Development Overview ..119

Chapter 2: Building a Database Model..135

Chapter 3: Balancing Performance and Correctness ..159

Chapter 4: Creating a Database with SQL ..189

11 119280 pt02.qxp 5/23/07 10:14 AM Page 118

Chapter 1: System
Development Overview

In This Chapter
� The components of a database system

� The System Development Life Cycle

Databases don’t exist in isolation. They are part of a system that is
designed to perform some needed function. To create a useful and reli-

able database system, you must be aware of all the parts of the system and
how they work together. You must also follow a disciplined approach to
system development to have any hope of delivering an effective and reliable
product on time and on budget. In this chapter, I lay out the component
parts of such a system, and then break down the steps you must go through
to successfully complete a database system development project.

The Components of a Database System
A database containing absolutely critical information would not be of much
use if there was no way to operate on the data or retrieve the particular
information that you wanted. Between the database and the user are several
intermediate components that translate the user’s requests into a form that
the database understands and then returns the requested information to the
user in a form that the user understands. Figure 1-1 shows the information
flow from the user to the database and back again, through the intermediate
components.

Users
Database Application
(The user interface)

Database
Database
Front End

(Code)

Database
Engine

(Back End)
(Code)

Figure 1-1:
Information
flow in a
database
system.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 119

The Components of a Database System120

I examine each of these components one by one, starting with the database
itself.

The database
The core component of a database system is the database itself. It is the
place where the data is stored. It is stored in a structured way, which is what
makes it a database rather than a random pile of data items. The structure
enables the efficient retrieval of specific items. A database may be stored in
one place, or it could be distributed across multiple locations. Regardless of
its physical form, logically it behaves as a single, unified repository of data.

The database engine
The database engine, also called the back end of a DBMS, is where the pro-
cessing power of the database system resides. The database engine is that
part of the system that acts upon the database. It responds to commands in
the form of SQL statements and performs the requested operations on the
database. In addition to its processing functions, it is a two-way communica-
tions channel, accepting commands from the DBMS front end and translating
them into actions on the database. Results of those actions are then passed
back to the front end for further processing by the database application and
ultimate presentation to the user.

The DBMS front end
Whereas the back end is that portion of a DBMS that interfaces directly with
the database, the front end is the portion that communicates with the data-
base application or directly with the user. It translates instructions it receives
from the user or the user’s application into a form that the back end can
understand. On the return path, it translates the results it receives from the
back end into a form the user or the user’s application can understand. The
front end is what you see after you click an icon to launch a DBMS such as
Access, SQL Server, or Oracle. Despite appearances, what you see is not the
database. It is not even the database management system. It is just a transla-
tor, designed to make it easier for you to communicate with the database.

The database application
Although it is possible for a person to interact directly with the DBMS front
end, this is not the way database systems are normally used. Most people
deal with databases indirectly through an application. An application is a
program, written in a combination of a host language such as C or Java, and
SQL, which performs actions that are required on a repeating basis. The
application provides a friendly environment for the user, with helpful
screens, menus, command buttons, and instructive text, to make the job of

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 120

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 121

dealing with the database more understandable and easier. Although it may
take significant time and effort to build a database application, after it’s
built, it can be used multiple times. It also makes the user’s job much easier,
so that high-level understanding of the database is not needed in order to
effectively maintain and use it.

The user
The user is a human being, but one who is typically not you, dear reader.
Because you are reading this book, I assume that your goal is to learn to use
SQL effectively. The user in a database system typically does not use SQL at
all and may be unaware that it even exists. The user deals with the screens,
menus, and command buttons of the database applications that you write.
Your applications shield the user from the complexities of SQL.

It is possible for a user, in interactive SQL mode, to enter SQL statements
directly into a DBMS and receive result sets or other feedback from the
DBMS. This however is not the normal case. Usually a database application
developer such as you operates in this manner, rather than the typical user.

The System Development Life Cycle
Producing both a reliable database and an easy-to-use application that fills a
real need is a complex task. If you take the task too lightly and build a system
without careful preparation, you are likely to produce something that is nei-
ther reliable nor adequately functional.

The best way to accomplish a large, complex task is to break it down into
steps, each one of which you can do and do well. To develop a robust and
reliable database system, you must go through the seven phases of the
System Development Life Cycle (SDLC):

✦ Definition

✦ Requirements

✦ Evaluation

✦ Design

✦ Implementation

✦ Final documentation and testing

✦ Maintenance

Each one of these phases is important. Sometimes schedule pressure may
tempt you to shortchange or even skip one of the phases. To do so invites
costly errors or a final product that does not meet the needs of the users.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 121

The System Development Life Cycle122

Definition phase
At the beginning of a project, the person who is assigning you the task of
building a system, the client, has some idea of what is needed. That idea
may be very specific, sharp, and concise, or it may be vague, nebulous,
and ill-defined. Your first task is to generate and put into writing a detailed
description of exactly what the end result of the project, called the deliver-
ables, should be. This is the primary task of the definition phase, but this
phase also includes the following tasks:

✦ Define the task to be performed. Define the problem to be solved by
your database and associated application as accurately as possible. Do
this by listening carefully to your client as she describes what she envi-
sions the system to be. Ask questions to clarify vague points. Often, the
client will not have thought things through completely. She will have a
general idea of what she wants, but no clear idea of the specifics. You
must come to an agreement with her on the specifics before you can
proceed.

✦ Determine the project’s scope. How big a job will it be? What will it
require in terms of systems analyst time, programmer time, equipment,
and other cost items? Is there a deadline?

✦ Perform a feasibility analysis. Ask yourself, “Is it possible to do this
job within the time and cost constraints placed on it by the client?” To
answer this question, you must do a feasibility analysis. After you com-
plete the analysis, you may decide that the project is not feasible as cur-
rently defined, and you must either decline it or convince the client to
reduce the scope to something more manageable.

✦ Form a project team. Decide who will work on the project. You may be
able to do a small job all by yourself, but most development efforts will
require a team of several individuals. Finding people who have the requi-
site skills and who are also available to work on the project when you
need them can be just as challenging as any other part of the total devel-
opment effort.

✦ Document the task definition, the project scope, the feasibility analy-
sis, and the membership of the project team. Carefully document the
project definition, its scope, the feasibility analysis, and the develop-
ment team membership. This documentation will be a valuable guide for
everything that follows.

✦ Get the client to approve the definition phase document. Make sure
the client sees and agrees with everything recorded in the definition
phase document. It is best to have her sign the document, signifying that
she understands and approves of your plan for the development effort.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 122

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 123

Requirements phase
In the definition phase, you talk with the client. This is the person who has the
authority to hire you, or, if you are already an employee, to assign you to this
development task. This person is not, however, the only one with an interest
in the project. Chances are, someone other than the client will be using the
system on a daily basis. Even more people may depend on the results gener-
ated by the system. It is important to find out what these people need and
what they prefer because your primary client may not have a complete under-
standing of what would serve them best.

The amount of work you must do in the requirements phase depends on the
client. It can be quick and easy if you are dealing with a client who has prior
experience with similar database development projects. Such a client has a
clear idea of what he wants and, equally important, what is feasible within
the time and budget constraints that apply.

On the other hand, this phase can be difficult and drawn-out if the client has
no experience with this kind of development, only a vague idea of what she
wants, and an even vaguer idea of what can reasonably be done within the
allotted time and budget.

Aside from your primary client, the one who hired you, other stakeholders
in the project, such as various users, managers, executives, and board mem-
bers, also have ideas of what they need. These ideas often conflict with each
other. Your job at this point is to come up with a set of requirements that
everyone can agree on. This will probably not meet everyone’s needs com-
pletely. It will represent a compromise between conflicting desires, but will
be the solution that gives the most important functions to the people who
need them.

Establishing requirements: An example
I once created a database application for an adoption agency. First I talked
to the manager who had overall charge of the agency. She had very definite
ideas about how she wanted the system to perform. The agency already had
a computerized adoption application, but it was becoming progressively less
satisfactory as its business grew. The company had many facts to track to be
able to match children with the best prospective adoptive parents and to
meet stringent government requirements.

The manager wanted a system with expanded capacity, additional features,
and higher performance compared to its existing system. However, she
wanted the user interface to be as close as possible to that of its current
system to minimize the confusion of users and the retraining time that they
would require.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 123

The System Development Life Cycle124

After talking to the manager, I talked to the users, each one specializing on a
specific segment of the overall process. These people, who would be using
the system every day, each had their own perspective on what was needed
for them to do their jobs most effectively. I had to find a way to come up
with a set of requirements that met the needs of the users and the desires
of the manager, and at the same time one that specified a system that was
feasible to build.

After considerable dialog with all concerned, I crafted a set of requirements
that everyone could endorse. At every succeeding stage of development, I
went back to the same people and kept them informed of progress. This way,
they all felt they had a personal stake in the final product. These follow-up
meetings also helped me to be sure that I had a good understanding of what
they had in mind when they told me what they wanted.

The users’ data model
After you have consensus among the stakeholders, you can use their
requirements to construct a users’ data model. The users’ data model
includes all the items of interest and how they relate to each other. It also
incorporates any business rules that you may have been able to infer from
people’s comments. Business rules place restrictions on the items that can
be included in a database and on what can be done with those items.

Statement of Requirements
After you have constructed the users’ data model and verified its accuracy
with your client, you can write a formal Statement of Requirements. The
Statement of Requirements is an explicit statement of the database applica-
tion’s display, update, and control mechanisms. It will answer such ques-
tions as

✦ What will the display look like? What arrangement of items? What color
scheme?

✦ What items will need to be updated, and how will that be done?

✦ How will navigation between screens be done?

✦ Will selections be made by key depressions? If so, which keys will do
what?

✦ Will operations be initiated by mouse clicks? If so, which operations?

✦ What will the maximum acceptable response time to a query be?

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 124

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 125

The Statement of Requirements must be as detailed as possible because it
is essentially a contract between you and your client. You are agreeing on
exactly what will be delivered and when it will be delivered. To seal the
arrangement, both you and your client should sign the Statement of
Requirements, signifying agreement on what you will be responsible for
delivering. This step may seem rather formal, but it protects both parties.
There can never be any question later as to what was agreed upon.

Here’s a summary of what you must do in the requirements phase:

✦ Interview typical members of all classes of stakeholders in the project.

✦ Provide leadership in getting stakeholders to agree on what is needed.

✦ Create a users’ data model of the proposed system.

✦ Create the Statement of Requirements, which describes in detail what
the system will look like and what it will do.

✦ Obtain client approval of the Statement of Requirements, indicated by a
signature and date.

Evaluation phase
Upon completion of the requirements phase (see the preceding section), it is
a good idea to do some serious thinking about what you will need to do in
order to meet the requirements. This thinking is the main task of the evalua-
tion phase, in which you address the issues of scope and feasibility more
carefully than you have up to this point. You know more now. You know who
all the stakeholders are and what they want. You know who is on your team
and what their skills are. The Statement of Requirements document tells you
exactly what you are expected to deliver.

Important considerations for the evaluation phase:

✦ Determine the project’s scope. This step includes several tasks,
including

• Selecting the best DBMS for the job, based on all relevant
considerations.

• Selecting the best host language.

• Writing job descriptions for all team members.

✦ Reassess the feasibility of the project and adjust project scope, dead-
lines, or budget if needed.

✦ Document all the decisions made in this phase and the reasoning for
them.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 125

The System Development Life Cycle126

Determining project scope
Now that you know what you need to do, it is time to decide on exactly how
you are going to do it. You have to choose what development tools you will
use. What is the best DBMS to accomplish this particular project? To deter-
mine this, you need to consider these several factors:

✦ All DBMS products have limitations in terms of number of tables and
records they will support, supported data types, and number of users.
Considering the size and complexity of the task, which DBMS products
will support the current project and any reasonable extensions to it that
might be required in the years to come?

✦ Has the client standardized on a specific DBMS for all development? If
so, will it work for the current project?

✦ Is your development team proficient with the selected DBMS? If not, what
will it take for them to climb the learning curve and become proficient?

✦ Is the DBMS you choose supported by a strong company or developer
community that will be able to provide upgrades and other services in
the coming years?

✦ Is the best DBMS from a performance standpoint affordable to the client
from a financial standpoint?

✦ Does the DBMS have a track record of reliable operation in applications
similar to the one you are planning?

Another consideration is the language that you will use to develop the appli-
cation. You can develop some database applications without writing a single
line of program code. These tend to be simple applications that are useful in
small organizations. More complex applications require at least some pro-
gramming. For those more complex applications, you must choose the com-
puter language that they will be written in. Some of the same considerations
that apply to the selection of a DBMS apply here:

✦ Languages have limitations. Choose one that has all the functionality
you need.

✦ Clients sometimes have a language standard. Is their standard language
adequate?

✦ Is your development team familiar with the chosen language?

✦ Is the language popular enough to have a large number of practitioners?
Ongoing maintenance of your code depends on the availability of people
who are able to understand it.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 126

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 127

With a clear idea of your task and the tools you will use to perform it, you
can now write detailed job descriptions for everyone who will have a part in
the development effort. This important step eliminates any confusion and
finger-pointing about who is responsible for what.

Reassessing feasibility
At this stage in the process, you probably have a clearer idea than ever of
the assigned task and what it will take to accomplish it. This is a good time
to reassess the feasibility of the project. Is it really doable, or are your client
and you both too optimistic in thinking that you can achieve everything in
the Statement of Requirements, given the DBMS, language, team, budget, and
time that you have decided upon?

If the job is not really feasible, it is much better to speak up now than to
plunge ahead, burn through your budget and your scheduled time, only to
fail to deliver a satisfactory product. At this point, when not much has been
invested, you still have some flexibility. You may be able to reduce the scope
of the project by deferring until later or even eliminating elements of the
project that are not crucial. You may be able to negotiate for a schedule that
is not quite so tight, or for a larger budget. You may even decide that the
best course for all concerned would be to abandon the project.

At this point, you can bow out relatively gracefully. It will not cost either you
or the client very much. If instead, you push ahead with a project that is
doomed from the start, you could both suffer substantial loss, both monetar-
ily and in terms of reputation. Making the correct decision here is of critical
importance.

Documenting the evaluation phase
As you should do for every phase, document the steps you took in evaluat-
ing development tools such as DBMSs and languages. Place the job descrip-
tions with the documentation. Document the feasibility analysis, the
conclusions you came to, and the adjustments to the task scope, budget,
and schedule that you made, if any.

Design phase
Up until this point, the project has primarily been analysis. Now you can
enter the design phase and make the transition from analysis to design. You
most likely know everything you need to know about the problem and can
now start designing the solution.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 127

The System Development Life Cycle128

Here’s an overview of what you do in the design phase:

✦ Translate the users’ data model into an E-R model.

✦ Convert the E-R model into a relational model.

✦ Design the user interface.

✦ Design the logic that performs the database application’s functions.

✦ Determine what might go wrong and design in safeguards to avoid
problems.

✦ Document the database design and the database application design
thoroughly.

✦ Obtain client signoff of the complete design.

Designing the database
Database design is all about models. Now you have the users’ data model,
which captures the users’ concept of the structure of the database. It
includes all the major types of objects, as well as the characteristics of those
objects, and how the objects are related to one another. This is great as far
as it goes. However, it’s not sufficiently structured to be the basis for a data-
base design. For that, you need to convert the users’ data model into a
model that conforms to one of the formal database modeling systems that
have been developed over the past few decades.

The most popular of the formal modeling systems is the entity-relationship
model, commonly referred to as the E-R model. In the next chapter, I
describe the E-R model in detail. With this model, you can capture what the
users have told you into a well-defined form that you can then easily trans-
late into a relational database.

As you convert the users’ data model into an E-R model, you need to make
decisions that affect how that conversion is made. Make sure you document
your reasoning for why you do things the way you do. At some later time,
someone is going to have to modify, update, or add to the database you are
building. That person will need all possible information about why the
system is designed the way it is. Take the time to document your reasoning
as well as documenting the model itself.

After you have the system in the form of an E-R model, it is easy to convert
into a relational model. The relational model is something that your DBMS
understands, and you can create the database directly from it.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 128

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 129

The database application
After you have designed the database, the design task is only half done. You
have a structure that you can now fill with data, but you do not yet have a
tool for operating on that data. The tool you must design now is the data-
base application.

The database application is the part of the total system that interacts with
the user. It creates everything that the user sees on the screen. It senses and
responds to every time the user presses a key or uses the mouse. It prints
every report that is read by the user’s coworkers. From the standpoint of the
user, the database application is the system.

In designing the database application, you must ensure that it enables the
users to do everything that the Statement of Requirements promises that
they will be able to do. It must also present a user interface that is under-
standable and easy to use. The functions of the system must appear in logi-
cal positions on the screen. The user must easily grasp how to perform all
the functions that the application provides.

What functions must the application perform? Using the DBMS and language
that you chose, or that was chosen for you by the client, how will you imple-
ment those functions? At this point, you must conceive of and map out the
logical flow of the application. Make sure you know exactly how each func-
tion will be performed.

Aside from mapping out all the functions that the application will perform,
you must also think about protecting the database from inadvertent or inten-
tional harm. People make mistakes. Sometimes they press the wrong key and
perform an operation they really didn’t want to perform. Sometimes they
enter incorrect data. Sometimes they want to mess up the database on pur-
pose. You need to design the application in such a way that minimizes the
damage that such actions cause. Anticipate that someone might make an
inappropriate keystroke, or enter a wrong value, or delete something that
should not be deleted. If you anticipate such problems, you can incorporate
recovery procedures that will restore things to their proper state.

Documenting the design phase
The final part of the design phase is — you guessed it — to document every-
thing carefully and completely. The documentation should be so complete
that a new development team could come in and implement the system with-
out asking you a single question about the analysis and design efforts that
you have just completed. Take the completed design document to the client
and get them to sign it, signifying that they understand your design and
authorize you to build it.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 129

The System Development Life Cycle130

It is critically important to keep the client informed of what you are doing,
every step of the way. This gives the client a sense of ownership in the deci-
sions that have been made, and makes it less likely that they will experience
an unpleasant surprise when you deliver the final product. They will know in
advance what they are getting and will feel as if they had a major part in
shaping its development and its final form.

Implementation phase
Many non-developers believe that developing a database and application is
synonymous with writing the code to implement them. By now, you should
realize that there is much more to developing a database system than that.
In fact, writing the code is only a minor fraction of the total effort. However,
it is a very important minor fraction! The best planning and design in the
world would not be of much use if they did not lead to the building of an
actual database and its associated application.

In the implementation phase, you

✦ Build the database structure. In the following chapters of Book II, I
describe how to create a relational model, based on the E-R model that
you derive from the users’ data model. The relational model consists of
major elements called relations, which have properties called attributes
and are linked to other relations in the model. You build the structure of
your database by converting the model’s relations to tables in the data-
base, whose columns correspond to the relation’s attributes. You imple-
ment the links between tables that correspond to the links between the
model’s relations, using constraints.

✦ Build the database application. Building the database application con-
sists of constructing the screens that the user will see and interact with.
It also involves creating the formats for any printed reports and writing
program code to make any calculations or to perform database opera-
tions such as adding data to a table, changing the data in a table, delet-
ing data from a table, or retrieving data from a table.

✦ Generate user documentation and maintenance programmer docu-
mentation. I’m repeating myself, but I can’t emphasize enough the
importance of creating and updating documentation at each phase.

Final documentation and testing phase
Documenting the database is relatively easy because most DBMS products
do it for you. You can retrieve the documentation they create at any time, or
print it out to add to the project records. You definitely need to print out at
least one copy for that purpose.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 130

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 131

Documenting a database application calls for some real work on your part.
Application documentation comes in two forms, aimed at two potential
audiences:

✦ You must create user documentation that describes all the functions the
application is capable of and how to perform them.

✦ You must create maintenance documentation aimed at the developers
who will be supporting the system in the future. Typically, those mainte-
nance programmers will be people other than the members of your
team. You must make your documentation so complete that a person
completely unfamiliar with the development effort will be able to under-
stand what you did and why you did it that way. Program code must be
heavily documented in addition to the descriptions and instructions that
you write in documents that are separate from the program code.

The testing and documentation phase includes the following tasks:

✦ Giving your completed system to an independent testing entity to test it
for functionality, ease of use, bugs, and compatibility with all the plat-
forms it is supposed to run on.

✦ Generating final documentation.

✦ Delivering system to client and receiving signed acceptance.

✦ Celebrating!

Testing the system with sample data
After you have built and documented a database system, it may seem like
you are finished and you can enjoy a well-deserved vacation. I’m all in favor
of vacations, but you’re not quite finished yet. The system needs to be rigor-
ously tested, and that testing needs to be done by someone who does not
think the same way you do. After the system becomes operational, users
will do things to it that you never imagined. They will make combinations of
selections that you did not foresee. They will enter values into fields that
make no sense. They will do things backwards and upside down. There is no
telling what they will do. Whatever unexpected thing the user does, you
want the system to respond in a way that protects the database and that
guides the user into making appropriate input actions.

It is hard to build into a system protections against problems that you can’t
foresee. For that reason, before you turn the system over to your client, you
must have an independent tester try to make it fail. The tester performs a
functional test to see that the system does everything it is supposed to do.
Also the tester runs it on all the types of computers and all the operating
systems that it is supposed to run on. If it is a Web-based application, it

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 131

The System Development Life Cycle132

needs to be tested for compatibility with all popular browsers. In addition,
the tester needs to do illogical things that a user might do to see how the
system reacts. If it crashes, or responds in some other unhelpful way, you
will have to modify your implementation so it will prompt the user with help-
ful responses.

Quite often, when you modify a database or application to fix a problem, the
modification will cause another problem. So after such a modification, the
entire system must be retested to make sure that no new problems have
been introduced. You might have to go through several iterations of testing
and modification before you have a system that you can be very confident
will operate properly under all possible conditions.

Finalizing the documentation
While the independent tester is trying everything conceivable (and several
things inconceivable) to make your product fail, you and your team are still
not ready to take that well-deserved vacation. Now is the time for you to put
your documentation into final form. You have been carefully documenting
every step along the way of every phase. At this time, you need to organize
all that documentation because it is an important part of what you’ll deliver
to the client.

User documentation will probably consist of both context-sensitive help that
is part of the application and a printed user’s manual. The online help is best
for answers to quick questions that arise when a person is in the middle of
trying to perform a function. The printed manual is best as a general refer-
ence and as an overview of the entire system. Both are important and
deserve your full attention.

Delivering the results (and celebrating)
When the testing and documentation phase is complete, all that is left to do
is to formally deliver the system, complete with full documentation, to your
client. This usually triggers the client’s final payment to you if you are an
independent contractor. If you are an employee, it will most likely result in a
favorable entry in your personnel file that may help you get a raise at your
next review.

Now you and your team can celebrate!

Maintenance phase
Just because you have delivered the system on time and on budget, have cel-
ebrated, and have collected your final payment for the job does not mean
that your responsibilities are over. Even if the independent tester has done a

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 132

Book II
Chapter 1

System
Developm

ent
Overview

The System Development Life Cycle 133

fantastic job of trying to make the system fail, after delivery it may still
harbor latent bugs that show up weeks, months, or even years later. You
may be obligated to fix those bugs at no charge, depending on your contrac-
tual agreement with the client.

Even if no bugs are found, you may still have some ongoing responsibility.
After all, no one understands the system as well as you do. As time goes on,
your client’s needs will change. Perhaps she will need additional functions.
Perhaps she will want to migrate to newer, more powerful hardware. Perhaps
she will want to upgrade to a newer operating system. All of these possibili-
ties may require modifications to the database application, and you are in
the best position to do those modifications, based on your prior knowledge.

This kind of maintenance can be good because it is revenue that you don’t
have to go out hunting for. It can also be bad because it ties you down to
technology that, over time, you may consider obsolete and no longer of
interest. Be aware that you may have at least an ethical obligation to provide
this kind of ongoing support.

Every software development project that gets delivered has a maintenance
phase. You may be required to provide the following services during that
phase:

✦ Fix latent bugs that are discovered after the client has accepted the
system. Often the client doesn’t pay you any extra for this work on the
assumption that the bugs are your responsibility. However, if you write
your contract correctly, their signoff at acceptance protects you from
perpetual bug fixing.

✦ Provide enhancements and updates requested by the client. This is a
good, recurring income source.

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 133

Book II: Relational Database Development134

12 119280 bk02ch01.qxp 5/23/07 10:14 AM Page 134

Chapter 2: Building
a Database Model

In This Chapter
� Finding and listening to interested parties

� Building consensus

� The Entity-Relationship modeling method

� Building a relational model

� Knowing the dangers of anomalies

� Avoiding anomalies with normalization

� Denormalizing with care

A successful database system must satisfy the needs of a diverse group
of people. This group includes the people who will actually be entering

data and retrieving results. It also includes others, though. People at various
levels of management may rely on reports generated by the system. People
in other functional areas, such as sales, or manufacturing, may use the prod-
ucts of the system, such as reports or bar code labels. The information
technology (IT) people who set overall data processing standards for the
organization may also weigh in on how the system is constructed and the
form of the outputs it will produce. You must consider the needs of all these
groups, and possibly others, when designing your system. You will have to
combine all these inputs into a consensus called the users’ data model.

Finding and Listening to Interested Parties
When you are assigned the task of building a database system, one of the
first things that you must do is determine who all the interested parties are
and what their levels of involvement are.

Human relations is an important part of your job here. When the views of
different people in the organization conflict with each other, as they often
do, you have to decide on a path to follow. You cannot simply take the word
of the person with the most impressive title. Often unofficial lines of author-
ity in an organization (which are the ones that really count) differ signifi-
cantly from what the official organization chart might show.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 135

Finding and Listening to Interested Parties136

Your immediate supervisor
Generally, if you are dealing with a medium- to large-sized organization, the
person who contacts you about doing the development project is a middle
manager. This person typically has the authority to find and recommend a
developer for a needed application, but may not have the budget authority
to approve the total development cost.

The person who hired you is probably your closest ally in the organization.
She wants you to succeed because it will reflect badly on her if you don’t.
Be sure that you have a good understanding of what she wants and how
important her stated desires are to her. It could be that she has merely been
tasked with obtaining a developer and does not have strong opinions about
what is to be developed. On the other hand, she may be directly responsible
for what the application delivers and may have a very specific idea of what
is needed. In addition to hearing what she tells you, you must also be able to
“read between the lines” and determine how much importance she ascribes
to what she is saying.

The users
After the manager who hires you, the next group of people you are likely to
meet are the future hands-on users of the system you will build. They enter
the data that populates the database tables. They run the queries that
answer questions that they and others in the organization may have. They
generate the reports that are circulated to coworkers and managers. They
are the ones who come into closest contact with what you have built.

In general, these people are already accustomed to dealing with the data
that will be in your system, or data very much like it. They are either using a
manual system, based on paper records, or a computer-based system that
your system will replace. In either case, they have become comfortable with
a certain look and feel for forms and reports.

To ease the transition from the old system to the new one you are building,
you will probably want to make your forms and reports look as much like the
old ones as possible. Your system may present new information, but if it is
presented in a familiar way, the users will accept it more readily and start
making effective use of it sooner.

The people who will be using your system probably have very definite ideas
about what they like and what they don’t like about the system they are cur-
rently using. In your new system, you want to eliminate the aspects of the
old system that they don’t like, and retain the things they do like. It is critical
for the success of your system that the hands-on users like it. Even if your
system does everything that the Statement of Requirements specifies, it will

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 136

Book II
Chapter 2

Building a Database
M

odel
Finding and Listening to Interested Parties 137

be a failure if the everyday users don’t like it. Aside from providing them
with what they want, it is also important to build rapport with these people
during the development effort. Make sure they agree with what you are
doing, every step along the way.

The standards organization
Large organizations with existing software applications have probably stan-
dardized on a particular hardware platform and operating system. These
choices can constrain which DBMS you use because not all database man-
agement systems are available on all platforms. The standards organization
may even have a preferred DBMS. This is almost certain to be true if they
already support other database applications.

Supporting database applications on an ongoing basis requires a significant
infrastructure. That infrastructure includes DBMS software, periodic DBMS
software upgrades, training of users, and training of support personnel. If
the organization already supports applications based on one DBMS, it makes
sense to leverage that investment by mandating that all future database
applications use the same DBMS. If the application you have been brought in
to create would best be built upon a foundation of a different DBMS, you will
have to justify the increased support burden. Often this can only be done if
the currently supported DBMS is downright incapable of doing the job.

Aside from your choice of DBMS, the standards people might also have
something to say about your coding practices. They might have standards
requiring structured programming and modular development, as well as
very specific documentation guidelines. Where such standards and guide-
lines exist, they are usually all to the good. You will have to make sure that
you comply with all of them. Your product will doubtless be better for it
anyway.

Smaller organizations probably will not have any IT people enforcing data
processing standards and guidelines. In those cases, you must act as if you
were the IT people. Try to understand what would be best for the client
organization in the long term. Make your selection of DBMS, coding style,
and documentation with those long-term considerations in mind, rather than
what would be most expedient for the current project. Be sure that your
clients are aware of why you make the choices you do. They may want to
participate in the decision, and at any rate, will appreciate the fact that you
have their long-term interests at heart.

Upper management
Unless you are dealing with a very small organization, the manager who
hired you for this project is not the highest-ranking person who has an inter-
est in what you will be producing. It is likely that the manager with whom

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 137

Building Consensus138

you are dealing must carry your proposals to a higher level for approval.
It is important to find out who that higher-up is and to get a sense of what
he wants your application to accomplish for the organization. Be aware that
this person may not carry the most prestigious title in the organization and
may not even be on a direct line to the person who hired you on the com-
pany organization chart. Talk to the troops on the front line, the people who
will actually be using your application. They can tell you where the real
power resides. After you find out what is most important to this key person,
make sure that it is included in the final product.

Building Consensus
The interested parties in the application you are developing are called stake-
holders, and you must talk to at least one representative of each group. After
you talk to them, you are likely to be confused. Some people insist that one
feature is crucial and not care about a second feature. Others insist that the
second feature is very important and not even mention the first. Some will
want the application to look and act one way, and others will want an entirely
different look and feel. Some people consider one particular report to be the
most important thing about the application, and other people don’t care
about reports at all, but only about the application’s ad hoc query ability. It
is just not practical to expect everyone in the client organization to want the
same things and to ascribe the same levels of importance to those things.
Your job is to bring some order out of this chaos. You will have to transform
all these diverse points of view into a consensus that everyone can agree
upon. This requires compromise on the part of the stakeholders. You want
to build an application that meets the needs of the organization in the best
possible way.

What do people want, and how
badly do they want it?
As the developer, it should not be your job to resolve conflicts among the
stakeholders regarding what the proposed system should do. However, as
the technical person who is building it and has no vested interest in exactly
what it should look like or what it should do, you may be the only person
who can break the gridlock. This means that negotiating skills are a valuable
addition to your toolkit of technical know-how.

Find out who cares passionately about what the system will provide, and
whose opinions carry the most weight. The decisions that are ultimately
made about project scope, functionality, and appearance will affect the
amount of time and budget that will be needed to complete development.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 138

Book II
Chapter 2

Building a Database
M

odel
Building Consensus 139

Arriving at a consensus
Somehow, the conflicting input you receive from all the stakeholders must
be combined into a uniform vision of what the proposed system should be
and do. You may need to ask disagreeing groups of people to sit down
together and arrive at a compromise that is at least satisfactory to all, if not
everything they had wished for.

To specify a system that can be built within the time and budget constraints
that have been set out for the project, some people may have to give up fea-
tures they would like to have, but which are not absolutely necessary. As an
interested but impartial outsider, you may be able to serve as a facilitator in
the discussion.

After the stakeholders have agreed upon what they want the new database
system to do for them, you need to transform this consensus into a model
that represents their thinking. The model should include all the items that
are of interest. It should describe how these items relate to each other. It
should also describe in detail the attributes of the items of interest. This
users’ data model will be the basis for a more formal entity-relationship (E-R)
model that you will then convert into a relational model. I cover these
models and transformations later in this chapter.

The three-option proposal
Sometimes it is not easy to get all the stakeholders to agree on what they
want. Some might want more features, and others might want lower cost. One
way to break this logjam is to come up with three proposals for the project
rather than just one. Present the three proposals to your clients and let them
decide which one they want. Here’s what the three proposals should be:

✦ A minimal project that includes all the elements that everyone agrees
are absolutely mandatory. This is also the lowest cost option in terms of
time and dollars.

✦ A medium project that includes everything in option 1, plus additional
features that most of the stakeholders believe would be valuable. This is
a medium cost option in terms of time and dollars.

✦ A maximum project that includes everything that everyone wants.

Typically, option 3 is rejected immediately because it is too expensive and
takes too long to complete. Next, option 1 is usually rejected because it is
not really satisfactory to anybody. The stakeholders will then most likely
agree to go ahead with option 2, perhaps with some minor modifications. Be
sure to recalculate the time and cost estimates for any such changes to your
original proposal. At this point, you are on your way. The project can start in
earnest.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 139

The Entity-Relationship Modeling Method140

The Entity-Relationship Modeling Method
After you have constructed a users’ data model that all stakeholders can
support, you must put that model into a more formal structure that you can
map directly into a relational model, which is the foundation of a relational
database. A number of formalisms are available to give you such a structure,
but the most widely used is the Entity-Relationship (E-R) model.

The E-R model is used to represent a wide variety of systems that people
want to track in some detailed manner. The system being tracked could be
physical, such as a jet airliner or the human genome, or it could be concep-
tual, such as the accounts receivable of a manufacturing company. One of
the strengths of the E-R model is that even the largest and most complex
systems can be modeled using just four basic elements:

✦ Entities

✦ Attributes

✦ Identifiers

✦ Relationships

Entities
In the context of the E-R model, an entity is something that the user can
identify and wants to keep track of. An example might be an employee
named Tracy Stein. Entities of a given type are grouped together into entity
classes. EMPLOYEE is an instance of an entity class, and Tracy Stein is an
example of an instance of an entity class, an entity instance. Figure 2-1 shows
an example of the EMPLOYEE entity class, and Figure 2-2 shows an example
of an instance of the EMPLOYEE entity class.

EmpID
FirstName
LastName
JobTitle
HireDate
Extension
E-mail
Department

EMPLOYEE

Figure 2-1:
EMPLOYEE,
an example
of an entity
class.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 140

Book II
Chapter 2

Building a Database
M

odel
The Entity-Relationship Modeling Method 141

Attributes
Entities have attributes, which are characteristics of the entity, that you want
to know about. Most entities have lots of characteristics, most of which you
don’t want to know about. Take the example of the EMPLOYEE entity class
shown in Figure 2-1. An employer probably wants to know every employee’s
first name, last name, home address, and home telephone number. These are
attributes that are relevant to the employer’s relationship with the employee.
However, the employer probably does not want to keep track of each
employee’s hair color, shoe size, or favorite baseball team. These are attrib-
utes of the employee that are not relevant to the employer’s relationship with
the employee.

Identifiers
In a database, it is pretty important that you be able to distinguish one entity
instance from another. For example, consider the CUSTOMER entity class. It
is bad form to send a bill to a customer for an item that the customer did not
order. It is an even bigger mistake to fail to bill a customer who has taken
delivery on the most expensive product that you sell.

You must be able to identify individual instances of an entity class. You can
do this with attributes or combinations of attributes called identifiers:

✦ A unique identifier identifies one and only one instance of an entity class.

✦ A non-unique identifier identifies a set of instances that share some
common characteristic or group of characteristics.

✦ An identifier that is composed of two or more attributes is called a com-
posite identifier.

801385
Tracy
Stein
IT Manager
10-15-2006
Information Tech
503-555-1234
Fred@xyz.com

Figure 2-2:
Tracy Stein,
an instance
of the
EMPLOYEE
class.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 141

The Entity-Relationship Modeling Method142

Often, a single attribute serves as a unique identifier for an entity class.
At other times, however, no single attribute narrows things down enough.
In such cases, you can add additional attributes, making up a composite
identifier, until the combination of attributes uniquely identifies every
instance of the entity class. As an example, a Social Security Number (SSN)
is a single-attribute unique identifier of a resident of the United States. A
person’s last name is typically a non-unique identifier of a resident of the
United States. A composite identifier that includes a person’s first name and
street, city, state, and ZIP code, as well as last name, might still not consti-
tute a unique identifier if, for example, a mother and daughter with the same
first and last names lived in the same house.

Relationships
Entities are associated with other entities through relationships. Relationship
classes are associations among entity classes. Relationship instances are
associations among entity instances.

Relationships can exist in varying degrees. A degree-2 relationship is one
between two entity classes or two entity instances. A degree-3 relationship
relates three entity classes or entity instances to each other. An example of a
degree-2 relationship would be that between a major league baseball team
and its players. Each team has a set of players, none of whom are members
of any other major league baseball team. Figure 2-3 is an E-R diagram of this
relationship.

The rectangles represent the entities and the lines between them represent
the relationships. The diamond in the middle of a relationship is used to rep-
resent maximum cardinality, which I discuss in a later section.

A degree-3 relationship would be one between three entities, such as that
between a composer, a librettist, and an opera. In an opera, the composer
writes the musical score, and the librettist writes the words that are sung.
Together, they create a work of art called an opera. Figure 2-4 is an E-R dia-
gram of this degree-3 relationship.

TEAM

TEAM-PLAYER

PLAYER

Figure 2-3:
A degree-2
relationship.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 142

Book II
Chapter 2

Building a Database
M

odel
The Entity-Relationship Modeling Method 143

Degree-2 relationships are sometimes called binary relationships. They are
easier to work with than are relationships of higher degree. Fortunately,
most of the systems that people want to build can be modeled quite effec-
tively with binary relationships.

The three kinds of binary relationships are

✦ A one-to-one relationship relates one instance of one entity class to one
instance of a second entity class.

✦ A one-to-many relationship relates one instance of one entity class to
multiple instances of a second entity class.

✦ A many-to-many relationship relates multiple instances of one entity
class to multiple instances of a second entity class.

Figure 2-5 is an E:R diagram of a one-to-one relationship. A traveler who is
a citizen of one and only one country can have one and only one passport.
A passport is an official document that corresponds to one and only one
person.

COMPOSER

OPERA

COMPOSITION

LIBRETTIST

Figure 2-4:
A degree-3
relationship.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 143

The Entity-Relationship Modeling Method144

Figure 2-6 shows an example of a one-to-many relationship. A traveler to for-
eign lands typically takes many photographs and then saves them later in an
archive. A photographer can take many photographs, but each photograph
was taken by one and only one photographer.

Figure 2-7 shows a many-to-many relationship. A traveler can visit many
countries, and each country can be visited by many travelers.

TRAVELER

TRAVELER-COUNTRY

N:M COUNTRY

Figure 2-7:
A many-to-
many
relationship
between
travelers
and
countries.

PHOTOGRAPHER

PHOTOGRAPHER-PHOTOGRAPH

1:N PHOTOGRAPH

Figure 2-6:
A one-to-
many
relationship
between a
photog-
rapher and
her photo-
graphs.

TRAVELER

TRAVELER-PASSPORT

1:1 PASSPORT

Figure 2-5:
A one-
to-one
relationship
between
a traveler
and her
passport.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 144

Book II
Chapter 2

Building a Database
M

odel
The Entity-Relationship Modeling Method 145

Maximum cardinality
In an E-R diagram, the diamond at the center of the relationship line shows
the maximum cardinality of each side of the relationship. The maximum car-
dinality is the maximum number of instances on each side of the relation-
ship. For example, in a one-to-one relationship, the 1:1 designation means
that a single instance of the entity on the left is related to a single instance
of the entity on the right. In a 1:N relationship, a single instance of the entity
on the left is related to multiple instances of the entity on the right. Finally,
in an N:M relationship, multiple instances of the entity on the left are related
to multiple instances of the entity on the right, and the maximum number of
instances on the left is not necessarily equal to the maximum number of
instances on the right.

Minimum cardinality
Just as maximum cardinality is the maximum number of instances of an
entity on each side of a relationship, minimum cardinality is the minimum
number of instances of an entity on each side of a relationship. In some
cases, the minimum number of instances of an entity might be zero. For
example, in the TRAVELER-PASSPORT relationship, a person traveling only
within the United States does not need a passport and may not have one.
In this case, an instance of the TRAVELER entity class may have no corre-
sponding instance in the PASSPORT entity class, so the minimum cardinality
of the PASSPORT side of the relationship is zero. On the other hand, every
instance of the PASSPORT entity class corresponds to the person in the
TRAVELER entity class to whom that passport was issued, so the minimum
cardinality on the TRAVELER side is one.

Figure 2-8 shows the same relationship as Figure 2-5, but here minimum car-
dinality is indicated. The oval on the PASSPORT side of the relationship
means that the minimum cardinality of PASSPORT is zero. The slash on the
TRAVELER side means that the minimum cardinality is one or more. Another
way of saying this is that existence of a passport is optional, but existence of
the traveler is mandatory.

TRAVELER

TRAVELER-PASSPORT

1:1 PASSPORT
Figure 2-8:
An E-R
diagram
showing
minimum
cardinality.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 145

The Entity-Relationship Modeling Method146

Now that I have just told you that the minimum cardinality of the TRAVELER-
PASSPORT relationship is mandatory to optional, get ready for a shock. It’s
not necessarily true. In fact, the minimum cardinality of that relationship
might well be optional to mandatory. Suppose a traveler is issued a passport
and then, through an unfortunate circumstance, passes away. The passport
still exists and will continue to exist until it expires. However the traveler is
no longer with us. The passport exists but the traveler does not. In this case,
the relationship would be as shown in Figure 2-9, optional to mandatory.
How can this be?

The structure of an E-R model depends critically on the users’ data model.
How the users view the system determines how it is modeled. The TRAVELER-
PASSPORT example shows that the way you model a system depends not only
on the physical facts of the system, but also on the way the users view the
facts. This is why capturing the users’ data model accurately is so important.
If your model does not match their expectations, your database application
will not deliver them the information they are expecting. It may well mislead
them into making bad decisions. This is why the very beginning stages of a
database development project are the most important.

In most cases, the minimum cardinality of one side of a relationship will be
either zero or one. It is zero if the existence of at least one instance of the
entity on that side is not required, and it is one if the existence of at least
one instance of the entity on that side is required. In some cases, however,
the minimum cardinality of an entity may be more than one. For example, a
baseball team must have at least nine players in order to compete in a base-
ball game. Any collection of athletes that consists of fewer than nine players
is therefore not a baseball team. This fact argues that the minimum cardinal-
ity for PLAYER in the TEAM-PLAYER relationship is nine. Depending on the
users’ data model, you could also argue otherwise. It all depends on how the
users see the system.

TRAVELER

TRAVELER-PASSPORT

1:1 PASSPORT

Figure 2-9:
The
minimum
cardinality
depends on
the users’
data model.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 146

Book II
Chapter 2

Building a Database
M

odel
Building a Relational Model 147

Don’t spend too much time agonizing over whether the minimum cardinality
for an entity in a relationship is one or nine or ten or any other non-zero
number. The difference between zero and one is huge. It is the difference
between whether something must exist or not. However, the difference
between one and nine is just a matter of degree. The fact of existence is
firmly established. The exact magnitude of the minimum cardinality on the
mandatory side of a relationship generally has little effect on the design of
the system.

Business rules
In addition to the entities and relationships that form the basis for the data-
base application that you are constructing, another important element is the
organization’s business rules. Business rules may show up in formal policy
statements or they may be unwritten rules that are generally understood by
the people in the organization. In either case, you need to know what those
rules are, and how they will affect the system you are designing. Business
rules can differ drastically between two organizations that seem on the out-
side to be practically identical. There is no substitute for time spent in face-
to-face meetings with stakeholders, asking probing questions, to tease out all
the important business rules.

Building a Relational Model
Database modeling consists of a progression from the abstract to the con-
crete. The users’ data model is a high-level description of what the users
envisage the system to be and do. When you convert the users’ data model
to an entity-relationship model, you are solidifying things a little, but there is
still more to do. In order to have a model that can be directly applied to the
database management system, you need to make one more conversion, from
the E-R model to a relational model.

Different worlds, different terminology
Newcomers to database sometimes get confused when listening to old-
timers talk. This is due to the historical fact that those old-timers come out
of three distinct traditions, each with its own set of terms for things. The
three traditions are the relational tradition, the flat file tradition, and the per-
sonal computer tradition.

The relational tradition
The relational tradition had its beginnings in a paper published in 1970 by
E. F. Codd, who was at that time employed by IBM. In that paper, Dr. Codd gave

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 147

Building a Relational Model148

names to the major constituents of the relational model. The major elements
of the relational model correspond closely to the major elements of the E-R
model, making it fairly easy to translate one into the other.

In the relational model, items that people can identify and that they consider
important enough to track are called relations. Relations in the relational
model are similar to entities in the E-R model. Relations have certain proper-
ties, called attributes, which correspond to the attributes in the E-R model.

Relations can be represented in the form of two-dimensional tables. Each
column in the table holds the information about a single attribute. The
rows of the table are called tuples. Each tuple corresponds to an individual
instance of a relation. Figure 2-10 shows an example of a relation, with attrib-
utes and tuples. Attributes are the columns: Title, Author, ISBN, and Pub.
Date. The tuples are the rows.

I mentioned that current database practitioners come out of three different
traditions, the relational tradition being one of them. A second group con-
sists of people who were dealing with flat files before the relational model
became popular. Their terms files, fields, and records correspond to what
Codd called relations, attributes, and tuples. The third group, the PC commu-
nity, came to databases by way of the electronic spreadsheet. They used the
spreadsheet terms tables, columns, and rows, to mean the same things as
files, fields, and records. Table 2-1 shows how to translate what they are
saying when database veterans talk about databases.

Table 2-1 Describing the Elements of a Database
Relational community says Relation Attribute Tuple

Flat-file community says File Field Record

PC community says Table Column Row

Title

The Road To Reality

Saturn Rukh

Red Mars

The Artful Universe

Author

Roger Penrose

Robert L. Forward

Kim Stanley Robinson

John D. Barrow

ISBN

0679454438

0312863217

0553092049

0198539967

Pub. Date

2004

1997

1993

1995

Figure 2-10:
The BOOK
relation.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 148

Book II
Chapter 2

Building a Database
M

odel
Building a Relational Model 149

Don’t be surprised if you hear database veterans mix these terms in the
course of explaining or describing something. They may use them inter-
changeably within a single sentence. For example, one might say, “The
value of the TELEPHONE attribute in the fifth record of the CUSTOMER table
is Null.”

What exactly is a relation?
Despite the casual manner in which database old-timers use the words rela-
tion, file, and table interchangeably, a relation is not exactly the same thing
as a file or table. Relations were defined by a database theoretician, and thus
the definition is very precise. The words file and table, on the other hand,
are in general use and are often much more loosely defined. When I use
these terms in this book, I mean them in the strict sense, as alternates for
relation. That said, what’s a relation? A relation is a two-dimensional table
that must satisfy all of the following criteria:

✦ Each cell in the table must contain a single value, if it contains a value
at all.

✦ All the entries in any column must be of the same kind. For example, if a
column contains a telephone number in one row, it must contain tele-
phone numbers in all rows that contain a value in that column.

✦ Each column has a unique name.

✦ The order of the columns is not significant.

✦ The order of the rows is not significant.

✦ No two rows can be identical.

A table qualifies as a relation if and only if it meets all the above criteria. A
table that fails to meet one or more of them might still be considered a table
in the loose sense of the word, but it is not a relation, and thus not a table in
the strict sense of the word.

Functional dependencies
Functional dependencies are relationships between or among attributes. For
example, two attributes of the VENDOR relation are State and Zipcode. If you
know a vendor’s ZIP code, you can determine the vendor’s state by a simple
table lookup because each ZIP code appears in only one state. Therefore,
State is functionally dependent on Zipcode. Another way of describing this sit-
uation is to say that Zipcode determines State, thus Zipcode is a determinant of
State. Functional dependencies are shown diagrammatically as follows:

Zipcode ➪ State (Zipcode determines State)

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 149

Being Aware of the Danger of Anomalies150

Sometimes, a single attribute may not be a determinant, but when it is com-
bined with one or more other attributes, the group of them collectively is a
determinant. Suppose you receive a bill from your local department store. It
would list the bill number, your customer number, what you bought, how
many you bought, the unit price, and the extended price for all of them. The
bill you receive represents a row in the BILLS table of the store’s database. It
would be of the form

BILL(BillNo, CustNo, ProdNo, ProdName, UnitPrice, Quantity, ExtPrice)

The combination of UnitPrice and Quantity determines ExtPrice.

(UnitPrice, Quantity) ➪ ExtPrice

Thus, ExtPrice is functionally dependent upon UnitPrice and Quantity.

Keys
A key is a group of one or more attributes that uniquely identify a tuple in a
relation. For example, VendorID is a key of the VENDOR relation. VendorID
determines all the other attributes in the relation. All keys are determinants,
but not all determinants are keys. In the BILL relation, (UnitPrice, Quantity)
is a determinant because it determines ExtendedPrice. However, (UnitPrice,
Quantity) is not a key. It does not uniquely identify its tuple because another
line in the relation might have the same values for Price and Quantity. The
key of the BILL relation is BillNo. BillNo identifies one particular bill.

Sometimes it is hard to tell whether a determinant qualifies as a key. In the
BILL case, we consider BillNo to be a key, based on the assumption that bill
numbers are not duplicated. If this assumption is valid, BillNo is a unique
identifier of a bill and qualifies as a key. When you are defining the keys for
the relations that you build, you must make sure that your keys uniquely
identify each tuple (row) in the relation.

Being Aware of the Danger of Anomalies
Just because a database table meets the qualifications to be a relation does
not mean that it is well designed. In fact, bad relations are incredibly easy
to create. By a bad relation, I mean one that is prone to errors or that is con-
fusing to users. The best way to illustrate a bad relation is to show you an
example.

Suppose an automotive service shop specializes in transmissions, brakes,
and suspension systems. Tyson is the lead mechanic for transmissions,
Dave is the lead mechanic for brakes, and Keith is the lead mechanic for

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 150

Book II
Chapter 2

Building a Database
M

odel
Being Aware of the Danger of Anomalies 151

suspension systems. Tyson works out of the Alabama Avenue location, Dave
works at the Perimeter Road shop, and Keith operates out of the Main Street
garage. You could summarize this information with a relation MECHANICS,
as shown in Figure 2-11.

This table qualifies as a relation. Each cell contains only one value. All
entries in each column are of the same kind, all names, or all specialties, or
all locations. Each column has a unique name. The order of the columns and
rows is not significant. If the order were changed, no information would be
lost. And finally, no two rows are identical.

So what’s the problem? Problems can arise when things change, and things
always change, sooner or later. Problems caused by changes are known
as modification anomalies and come in different types, two of which I
describe here:

✦ Deletion anomaly: Suppose that Dave decides to go back to school
and study computer science. When he quits his job, you can delete the
second row in the table shown in Figure 2-11. If you do however, you
lose more than the fact that Dave is the brakes mechanic. You also lose
the fact that brake service takes place at the Perimeter Road location.
This is a deletion anomaly. It is called a deletion anomaly because you
lose information that you don’t want to lose, as a result of a deletion
operation.

✦ Insertion anomaly: Suppose you want to start working on engines at
the Alabama Avenue facility. You cannot record that fact until an engine
mechanic is hired to work there. This is an insertion anomaly. Because
Mechanic is the key to this relation, you cannot insert a new tuple into
the relation unless it has a value in the Mechanic column.

If modification anomalies are possible in a database, they will probably
occur. If they occur, they can seriously degrade a database’s usefulness.
They may even cause users to draw incorrect conclusions from the results
of queries they pose to the database.

Mechanic

Tyson

Dave

Keith

Specialty

Transmissions

Brakes

Suspensions

Location

Alabama Avenue

Perimeter Road

Main Street

Figure 2-11:
The
MECHANICS
relation.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 151

Being Aware of the Danger of Anomalies152

Eliminating anomalies
When Dr. Codd created the relational model, he recognized the possibility of
data corruption due to modification anomalies. To address this problem, he
devised the concept of normal forms. Any table that satisfies the require-
ments for being a relation is in First Normal Form (1NF). As I discuss in the
preceding section, tables in 1NF are subject to certain modification anom-
alies. Codd’s Second Normal Form (2NF) removes these anomalies, but the
possibility of others still remains. Codd foresaw some of those anomalies
and defined Third Normal Form (3NF) to deal with them. Subsequent
research uncovered the possibility of progressively more obscure anomalies
and a succession of normal forms was devised to eliminate them. Boyce-
Codd Normal Form (BCNF), Fourth Normal Form (4NF), Fifth Normal Form
(5NF), and Domain/Key Normal Form (DKNF) provide increasing levels of
protection against modification anomalies.

It is instructive to look at the normal forms in order to gain an insight into
the kinds of anomalies that can occur, and how normalization eliminates the
possibility of such anomalies. To start, consider the Second Normal Form.
Suppose Tyson receives certification to repair brakes and spends some of
his time at the Perimeter Road garage fixing brakes as well as continuing to
do his old job repairing transmissions at the Alabama Avenue shop. This
leads to the table shown in Figure 2-12.

This table still qualifies as a relation, but the Mechanic column no longer is a
key because it does not uniquely determine a row. However, the combination
of Mechanic and Specialty does qualify as a determinant and as a key.

(Mechanic, Specialty) ➪ Location

This looks fine, but there is a problem. What if Tyson decides to work full time
on brakes, and not fix transmissions any longer. If we delete the Tyson/
Transmissions/Alabama row, we not only remove the fact that Tyson works on
transmissions, but we also lose the fact that transmission work is done at the
Alabama shop. This is a deletion anomaly. This problem is caused by the fact
that Specialty is a determinant, but is not a key. It is only part of a key.

Specialty ➪ Location

Mechanic

Tyson

Tyson

Dave

Keith

Specialty

Transmissions

Brakes

Brakes

Suspensions

Location

Alabama Avenue

Perimeter Road

Perimeter Road

Main Street

Figure 2-12:
The
modified
MECHANICS
relation.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 152

Book II
Chapter 2

Building a Database
M

odel
Being Aware of the Danger of Anomalies 153

For a relation to be in Second Normal Form, every non-key attribute must be
dependent on the entire key.

We can meet that requirement by breaking up the MECHANICS relation into
two relations. This is illustrated in Figure 2-13.

The old MECHANICS relation had problems because it dealt with more than
one idea. It dealt with the idea of the specialties of the mechanics, and it also
dealt with the idea of where various specialties are performed. By breaking
the MECHANICS relation into two, each one of which deals with only one
idea, the modification anomalies disappear. Mechanic and Specialty together
comprise a composite key of the MECH-SPEC relation and all the non-key
attributes depend on the entire key because there are no non-key attributes.
Specialty is the key of the SPEC-LOC relation and all of the non-key attributes
(Location) depend on the entire key, which in this case is Specialty. Now if
Tyson decides to work full time on brakes, the Tyson/Transmissions row can
be removed from the MECH-SPEC relation. The fact that transmission work is
done at the Alabama garage is still recorded in the SPEC-LOC relation.

A relation in Second Normal Form could still harbor anomalies. Suppose you
are concerned about your cholesterol intake and want to track the relative
levels of cholesterol in various foods. You might construct a table such as
the one shown in Figure 2-14.

FoodItem

apple

beefsteak

hen’s egg

salmon

FoodType

fruit

red meat

egg

fish

Cholesterol

none

high

very high

medium

Figure 2-14:
The
LIPIDLEVEL
relation.

Mechanic

Tyson

Tyson

Dave

Keith

Specialty

Transmissions

Brakes

Brakes

Suspensions

Table MECH-SPEC

Table SPEC-LOC

Specialty

Transmissions

Brakes

Suspensions

Location

Alabama Avenue

Perimeter Road

Main Street

Figure 2-13:
The
MECHANICS
relation has
been broken
into two
relations,
MECH-
SPEC and
SPEC-LOC.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 153

Being Aware of the Danger of Anomalies154

This relation is in First Normal Form, and because it has a single attribute
key (FoodItem), it is automatically in Second Normal Form also. All non-key
attributes are dependent on the entire key. Nonetheless, there is still the
chance of an anomaly. What if you decide to eliminate all beef products
from your diet? If you delete the ‘Beefsteak’ row from the table, you not
only eliminate beefsteak, but you also lose the fact that red meat is high in
cholesterol. This fact might be important to you if you are considering sub-
stituting some other red meat such as pork, bison, or lamb for the beef you
no longer eat. This is a deletion anomaly. There is a corresponding insertion
anomaly. You cannot add a FoodType of Poultry, for instance, and assign it a
Cholesterol value of High until you actually enter in a specific FoodItem of
the Poultry type.

The problem this time is once again a matter of keys and dependencies.
FoodType depends on FoodItem. If the FoodItem is Apple the FoodType
must be Fruit. If the FoodItem is Salmon, the FoodType must be Fish.
Similarly, Cholesterol depends on FoodType. If the FoodType is Egg, the
Cholesterol value will be Very High. This is a transitive dependency.

FoodItem ➪ FoodType ➪ Cholesterol

Transitive dependencies are a source of modification anomalies. You can
eliminate the anomalies by eliminating the transitive dependency. Breaking
the table into two tables, each one of which embodies a single idea, does
the trick. Figure 2-15 shows the resulting tables, which are now in Third
Normal Form.

Now if you delete the Beefsteak row from the ITEM-TYPE relation, the fact
that red meat is high in cholesterol is retained in the TYPE-CHOL relation.
You can add poultry to the TYPE-CHOL relation, even though you don’t have
a specific type of poultry in the ITEM-TYPE relation.

FoodItem

apple

beefsteak

hen’s egg

salmon

Table ITEM-TYPE Table TYPE-CHOL

FoodType

fruit

red meat

egg

fish

FoodType

fruit

red meat

egg

fish

Cholesterol

none

high

very high

medium

Figure 2-15:
The ITEM-
TYPE
relation and
the TYPE-
CHOL
relation.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 154

Book II
Chapter 2

Building a Database
M

odel
Being Aware of the Danger of Anomalies 155

The higher normal forms
Boyce-Codd Normal Form, Fourth Normal Form, and Fifth Normal Form each
eliminate successively more obscure types of anomalies. In all likelihood,
you might never encounter the types of anomalies they remove. There is
one higher normal form, however, that is worth discussing: the Domain/Key
Normal Form. DKNF is the only normal form that guarantees that a database
contains no modification anomalies. If you want to be absolutely certain that
your database is anomaly-free, put it into DKNF.

Happily, Domain/Key Normal Form is easier to understand than most of the
other normal forms. You need to understand only three things: constraints,
keys, and domains.

A relation is in Domain/Key Normal Form if every constraint on the relation
is a logical consequence of the definition of keys and domains:

✦ A constraint is a rule that restricts the static values that attributes may
assume. The rule must be precise enough for you to tell whether the
attribute follows the rule. A static value is one that does not vary
with time.

✦ A key is a unique identifier of a tuple.

✦ The domain of an attribute is the set of all values that the attribute
can take.

If enforcing key and domain restrictions on a table causes all constraints to
be met, the table is in DKNF. It is also guaranteed to be free of all modifica-
tion anomalies.

As an example of putting a table into DKNF, look again at the LIPIDLEVEL
relation in Figure 2-14. You can analyze it as follows:

LIPIDLEVEL(FoodItem, FoodType, Cholesterol)

Key: FoodItem

Constraints: FoodItem ➪ FoodType

FoodType ➪ Cholesterol

Cholesterol in (‘none’, ‘low’, ‘medium’, ‘high’, ‘very high’)

This relation is not in DKNF. It is not even in 3NF. However, you can put it
into DKNF by making all constraints a logical consequence of domains and
keys. We can make the Cholesterol constraint a logical consequence of

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 155

The Database Integrity versus Performance Tradeoff156

domains by defining the domain of Cholesterol to be (‘none’, ‘low’, ‘medium’,
‘high’, ‘very high’). The constraint ‘FoodItem➪FoodType’ is a logical conse-
quence of keys because FoodItem is a key. Those were both easy. One more
constraint to go! We can handle the third constraint by making FoodType
a key. The way to do this is to break the LIPIDLEVEL relation into two
relations, one having FoodItem as its key and the other having FoodType
as its key. This is exactly what we did in Figure 2-15. What we did to put
LIPIDLEVEL into 3NF put it into DKNF at the same time.

Here is the new description for this system:

Domain Definitions:

FoodItem in CHAR(30)

FoodType in CHAR(30)

Cholesterol in (‘none’, ‘low’, ‘medium’, ‘high’, ‘very high’)

Relation and Key Definitions:

ITEM-TYPE (FoodItem, FoodType)

Key: FoodItem

TYPE-CHOL (FoodType, Cholesterol)

Key: FoodType

All constraints are a logical consequence of keys and domains.

The Database Integrity versus Performance Tradeoff
In the previous section, we saw some of the problems that can arise with
database relations, and how they can be solved through normalization. We
saw that the ultimate in normalization is Domain/Key Normal Form, which
provides solid protection from the data corruption that can occur due to
modification anomalies. It might seem that whenever you create a database,
you should always put all its tables into DKNF. This, however, is not true.

When you guarantee a database’s freedom from anomalies by putting all its
tables into DKNF, you do so at a cost. Why? When you made your original
unnormalized design, you grouped attributes together into relations because
they had something in common. If you normalize some of those tables by
breaking them up into multiple tables, you are separating attributes that
would normally be grouped together. This can degrade your performance on

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 156

Book II
Chapter 2

Building a Database
M

odel
The Database Integrity versus Performance Tradeoff 157

retrievals if you want to use those attributes together. You will have to com-
bine these now-separated attributes again before proceeding with the rest of
the retrieval operation.

Consider an example. Suppose you are the secretary of a club made up of
people located all around the United States who share a hobby. It is your job
to send them a monthly newsletter as well as notices of various sorts. You
have a database consisting of a single relation, named MEMBERS.

MEMBERS(MemID, Fname, Lname, Street, City, State, ZIP)

Key: MemID

Functional Dependencies:

MemID ➪ all non-key attributes

ZIP ➪ State

This relation is not in DKNF because State is dependent on ZIP and ZIP is not
a key. If you know a person’s ZIP code, you can do a simple table lookup and
you will know what state he lives in.

You could put the database into DKNF by breaking the MEMBERS table into
two tables as follows:

MEM-ZIP(MemID, Fname, Lname, Street, City, ZIP)

ZIP-STATE(ZIP, State)

MemID is the key of MEM-ZIP, and ZIP is the key of ZIP-STATE. The database
is now in DKNF, but consider what you have gained and what you have lost:

✦ What you have gained: In MEMBERS, if we delete the last club member
in ZIP code 92027, we lose the fact that ZIP code 92027 is in California.
However, in the normalized database, that information is retained in
ZIP-STATE when the last member with that ZIP code is removed from
MEM-ZIP.

In MEMBERS, if you want to add the fact that ZIP code 07110 is in New
Jersey, you can’t, until you have a member living in that ZIP code. The
normalized database handles this nicely by allowing you to add that
state and ZIP code to ZIP-STATE, even though there are no members
who live there in the MEM-ZIP table.

✦ What you have lost: Because the primary purpose of this database is to
facilitate mailings to members, every time a mailing is made, the MEM-
ZIP table and the ZIP-STATE table have to be joined together to generate
the mailing labels. This is an extra operation that would not be needed if
the data were all kept in a single MEMBERS table.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 157

The Database Integrity versus Performance Tradeoff158

✦ What you care about: Considering the purpose of this database, the
club secretary probably doesn’t care what state a particular ZIP code is
in if the club has no members in that ZIP code. She also probably doesn’t
care about adding ZIP codes where there are no members. In this case,
both of the gains from normalization are of no value to the user. However,
the cost of normalization is a genuine penalty. It will take longer for the
address labels to print out based on the data in the normalized database
than it would if they were stored in the unnormalized MEMBERS table.
For this case, and others like it, normalization to DKNF does not make
sense.

13 119280 bk02ch02.qxp 5/23/07 6:56 PM Page 158

Chapter 3: Balancing Performance
and Correctness

In This Chapter
� Designing a database

� Maintaining database integrity

� Avoiding data corruption

� Speeding data retrievals

� Indexes

� Data structures

� Reading execution plans

� Optimizing execution plans

� Load balancing

There is a natural conflict between the performance of a database and
its correctness. If you want to minimize the chance that incorrect or

inappropriate data will appear in a database, you must include safeguards
against it. These safeguards take time and thus slow down operation.

Configuring a database for the highest possible performance may make the
data it contains unreliable to the point of being unacceptable. Conversely,
making the database as immune to corruption as possible could reduce
performance to the point of being unacceptable. A database designer must
aim for that “sweet spot” somewhere in the middle where performance is
high enough to be acceptable, and the few data errors that occur do not sig-
nificantly affect the conclusions that are drawn from information that is
retrieved. Some applications put the sweet spot closer to the performance
end; others put it closer to the reliability end. Each situation is potentially
different, and depends on what is most important to the stakeholders. To
illustrate the considerations that apply when designing a database system,
in this chapter, I show you a fictional example, as well as discuss other fac-
tors you must consider when you’re navigating the delicate balance
between correctness and performance.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 159

Designing a Sample Database160

Designing a Sample Database
Imagine a local auto repair business located in the small town of Springfield,
owned and operated by the fictional Abraham “Abe” Hanks. Abe employs
mechanics who perform repairs on automobiles brought in by Abe’s corpo-
rate customers. Repair jobs are recorded in invoices, which include charges
for parts and labor. Charges are itemized on separate lines on the invoices.
The mechanics hold certifications in such specialty areas as brakes, trans-
missions, electrical systems, and engines. Abe buys parts from multiple sup-
pliers. Multiple suppliers could potentially supply the same part.

The E-R model for Honest Abe’s
Figure 3-1 shows the E-R model for Honest Abe’s Fleet Auto Repair.

CUSTOMER 1:N

1:N

N:1

1:N

SUPPLIER N:M

INVOICE N:1

1:1

MECHANIC

INVOICE_LINE

PART LABOR

CERTIFICATION

Figure 3-1:
The E-R
model for
Honest
Abe’s Fleet
Auto Repair.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 160

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Designing a Sample Database 161

Take a look at the relationships.

✦ A customer can make purchases on multiple invoices, but each invoice
deals with one and only one customer.

✦ An invoice can have multiple invoice lines, but each invoice line appears
on one and only one invoice.

✦ A mechanic can work on multiple jobs, each one represented by one
invoice, but each invoice is the responsibility of one and only one
mechanic.

✦ A mechanic may have multiple certifications, but each certification
belongs to one and only one mechanic.

✦ Multiple suppliers can supply a given standard part, and multiple parts
can be sourced by a single supplier.

✦ One and only one part can appear on a single invoice line, and one and
only one invoice line on an invoice can contain a particular part.

✦ One and only one standard labor charge can appear on a single invoice
line, and one and only one invoice line on an invoice can contain a par-
ticular standard labor charge.

After you have an E-R model that accurately represents your target system,
the next step is to convert the E-R model into a relational model. The rela-
tional model is the direct precursor to a relational database.

Converting an E-R model into a relational model
The first step in converting an E-R model into a relational model is to under-
stand how the terminology used for one relates to the terminology used for
the other. In the E-R model, we speak of entities, attributes, identifiers, and
relationships. In the relational model, the primary items of concern are rela-
tions, attributes, keys, and relationships. How do these two sets of terms
relate to each other?

In the E-R model, an entity is something we have identified as being impor-
tant: Entities are physical or conceptual objects that we want to keep track
of. This sounds a lot like the definition of a relation. The difference is that for
something to be a relation, it must satisfy the requirements of First Normal
Form. An entity might translate into a relation, but you have to be careful to
assure that the resulting relation is in First Normal Form (1NF).

If you can translate an entity into a corresponding relation, the attributes of
the entity translate directly into the attributes of the relation. Furthermore,
an entity’s identifier translates into the corresponding relation’s key. The
relationships between entities correspond exactly with the relationships

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 161

Designing a Sample Database162

between relations. Based on these correspondences, it’s not too difficult to
translate an E-R model into a relational model. The resulting relational model
is not necessarily a good relational model, however. You may have to nor-
malize the relations in it to protect it from modification anomalies. You may
also have to decompose any many-to-many relationships to simpler one-to-
many relationships. After your relational model is appropriately normalized
and decomposed, the translation to a relational database is straightforward.

Normalizing a relational model
A database is fully normalized when all the relations in it are in Domain/Key
Normal Form. As I mention in Chapter 2 of this minibook, at times, you may
not want to normalize all the way to DKNF. As a rule, however, it is best to nor-
malize to DKNF, and then check performance. Only if performance is unaccept-
able should you consider selective denormalization to speed things up.

Consider the example system shown in Figure 3-1, and then focus on one of
the entities in the model. An important entity in the Honest Abe model is the
CUSTOMER entity. Figure 3-2 shows a representation of the CUSTOMER
entity (top) and the corresponding relation in the relational model (bottom).

The attributes of the CUSTOMER entity are listed in Figure 3-2. Figure 3-2
also shows the standard way of listing the attributes of a relation. The
CustID attribute is underlined to signify that it is the key of the CUSTOMER
relation. Every customer has a unique CustID number.

CustID
CustName
StreetAddr
City
State
PostalCode
ContactName
ContactPhone
ContactEmail

CUSTOMER

CUSTOMER (CustID, CustName, Street Addr, City, State, PostalCode, ContactName, ContactPhone, ContactEmail)

Figure 3-2:
The
CUSTOMER
entity
and the
CUSTOMER
relation.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 162

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Designing a Sample Database 163

One way to determine whether CUSTOMER is in DKNF is to see whether all
constraints on the relation are the result of the definitions of domains and
keys. An easier way, one that works well most of the time, is to see if the rela-
tion deals with more than one idea. It does, and thus cannot be in DKNF. One
idea is the customer itself. CustId, CustName, StreetAddr, and City are pri-
marily associated with this idea. Another idea is the geographic idea. As we
saw earlier, if you know the postal code of an address, you can find the state
or province that contains that postal code. Finally, there is the idea of the con-
tact person at the customer. ContactName, ContactPhone, and ContactEmail
are the attributes that cluster around this idea.

You can normalize the CUSTOMER relation by breaking it into three relations
as follows:

CUSTOMER (CustID, CustName, StreetAddr, City, PostalCode,
ContactName)

POSTAL (PostalCode, State)

CONTACT (ContactName, ContactPhone, ContactEmail)

These three relations are in DKNF. They also demonstrate a new idea about
keys. The three relations are closely related to each other because they share
attributes. The PostalCode attribute is contained in both the CUSTOMER and
the POSTAL relations. The ContactName attribute is contained in both the
CUSTOMER and the CONTACT relations. CustID is called the primary key of
the CUSTOMER relation. It must uniquely identify each tuple in the relation.
Similarly, PostalCode is the primary key of the POSTAL relation and
ContactName is the primary key of the CONTACT relation.

In addition to being the primary key of the POSTAL relation, PostalCode is a
foreign key in the CUSTOMER relation. It provides a link between the two
relations. In the same way, ContactName is a foreign key in the CUSTOMER
relation as well as being the primary key of the CONTACT relation. An attrib-
ute need not be unique in a relation where it is serving as a foreign key, but
it must be unique on the other end of the relationship where it is the pri-
mary key.

After you have normalized a relation into DKNF, as we did above with the
original CUSTOMER relation, you should ask yourself whether full normaliza-
tion makes sense in this specific case. Depending on how you plan to use the
relations, you may want to denormalize somewhat to improve performance.
In this example, you may want to fold the POSTAL relation back into the
CUSTOMER relation if you frequently need to access your customers’ com-
plete address. On the other hand, it might make sense to keep CONTACT as
a separate relation, if you frequently refer to customer address information
without specifically needing your primary contact at that company.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 163

Designing a Sample Database164

Handling binary relationships
In Chapter 2 of this minibook, I describe the three kinds of binary relation-
ships: one-to-one, one-to-many, and many-to-many. The simplest of these is
the one-to-one relationship. In the Honest Abe model earlier in this chapter, I
use the relationship between a part and an invoice line to illustrate a one-to-
one relationship. Figure 3-3 shows the E-R model of this relationship.

The maximum cardinality diamond explicitly shows that this is a one-to-one
relationship. The relationship is, “one PART connects to one INVOICE_LINE.”
The minimum cardinality oval at both ends of the PART:INVOICE_LINE rela-
tionship shows that it is possible to have a PART without an INVOICE_LINE,
and it is also possible to have an INVOICE_LINE without an associated PART. A
part on the shelf has not yet been sold, so it would not appear on an invoice.
In addition, an invoice line could hold a labor charge rather than a part.

A relational model corresponding to the E-R model shown in Figure 3-3 might
look something like the model in Figure 3-4. Figure 3-4 is an example of a data
structure diagram.

PartNo is the primary key of the PART relation, and InvoiceLineNo is the pri-
mary key of the INVOICE_LINE relation. PartNo also serves as a foreign key
in the INVOICE_LINE relation, binding the two relations together. Similarly,
InvoiceNo, the primary key of the INVOICE relation, serves as a foreign key
in the INVOICE_LINE relation.

Note: For a business that sells only products, the relationship between prod-
ucts and invoice lines might be different. In such a case, the minimum cardi-
nality on the products side might be mandatory. That is not the case for the
fictitious company in this example. It is important that your model reflect
accurately the system you are modeling. You could model very similar sys-
tems for two different clients and end up with very different models. You
need to account for differences in business rules and standard operating
procedure.

PART

Appears on

1:1 INVOICE_LINEFigure 3-3:
The E-R
model of
PART:
INVOICE_
LINE
relationship.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 164

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Designing a Sample Database 165

A one-to-many relationship is somewhat more complex than a one-to-one
relationship. One instance of the first relation corresponds to multiple
instances of the second relation. An example of a one-to-many relationship in
the Honest Abe model would be the relationship between a mechanic and
his or her certifications. A mechanic can have multiple certifications, but
each certification belongs to one and only one mechanic. The E-R diagram
shown in Figure 3-5 illustrates that relationship.

The maximum cardinality diamond shows that one mechanic may have
many certifications. The minimum cardinality slash on the CERTIFICATIONS
side indicates that a mechanic must have at least one certification. The oval
on the MECHANICS side shows that a certification may exist that is not held
by any of the mechanics.

MECHANIC

Hold

1:N CERTIFICATION
Figure 3-5:
An E-R
diagram
of a one-
to-many
relationship.

PartNo PartName Size QuantityInStock

PARTS

INVOICE_LINE

INVOICE

PartName InvoiceNoSize QuantityOrdered PartNoInvoiceLineNo

InvoiceNo CustID InvoiceDate RequiredDate

Figure 3-4:
A relational
model rep-
resentation
of the one-
to-one
relationship
in Figure 3-3.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 165

Designing a Sample Database166

You can convert this simple E-R model to a relational model and illustrate
the result with a data structure diagram, as shown in Figure 3-6.

Many-to-many relationships are the most complex of the binary relation-
ships. Two relations that are connected by a many-to-many relationship can
have serious integrity problems, even if both relations are in DKNF. To illus-
trate the problem and then the solution, consider a many-to-many relation-
ship in the Honest Abe model.

The relationship between suppliers and parts is a many-to-many relation-
ship. A supplier may be a source for multiple different parts and a specific
part may be obtainable from multiple suppliers. Figure 3-7 is an E-R diagram
that illustrates this relationship.

SUPPLIER

PROVIDES

N:M PART
Figure 3-7:
The E-R
diagram of
a many-
to-many
relationship.

EmployeeID EmployeeFirstName

MECHANIC

CERTIFICATION

CertificationID CertificationName EmployeeID

EmployeeLastName JobCategory

Figure 3-6:
A relational
model rep-
resentation
of the one-
to-many
relationship
in Figure 3-5.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 166

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Designing a Sample Database 167

The maximum cardinality diamond shows that one supplier can supply dif-
ferent parts, and one specific part can be supplied by multiple suppliers.
The fact that N is different from M shows that the number of suppliers that
can supply a part does not have to be equal to the number of different parts
that a single supplier can supply. The minimum cardinality slash on the
SUPPLIER side of the relationship indicates that a part must come from a
supplier. Parts don’t materialize out of thin air. The oval on the PART side
of the relationship means that a company could have qualified a supplier
before it has supplied any parts.

So, what’s the problem? The difficulty arises with how you use keys to link
relations together. In the MECHANIC:CERTIFICATION one-to-many relation-
ship, I linked MECHANIC to CERTIFICATION by placing EmployeeID, the pri-
mary key of the MECHANIC relation, into CERTIFICATION as a foreign key.
I could do this because there was only one mechanic associated with any
given certification. However, I can’t put SupplierID into PART as a foreign
key because any part can be sourced by multiple suppliers, not just one.
Similarly, I can’t put PartNo into SUPPLIER as a foreign key. A supplier can
supply multiple parts, not just one.

To turn the E-R Model of the SUPPLIER:PART relationship into a robust rela-
tional model, decompose the many-to-many relationship into two one-to-
many relationships by inserting an intersection relation between SUPPLIER
and PART. The intersection relation, which I name SUPPLIER_PART, contains
the primary key of SUPPLIER and the primary key of PART. Figure 3-8 shows
the data structure diagram for the decomposed relationship.

SupplierID SupplierName Street City State PostalCode ContactPerson ContactTelephone

SUPPLIER

SUPPLIER_PART

PART

SupplierID PartNo

PartNo PartName Size QuantityInStock

Figure 3-8:
The
relational
model rep-
resentation
of the
decom-
position of
the many-
to-many
relationship
in Figure 3-7.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 167

Designing a Sample Database168

The SUPPLIER relation has a record (row, tuple) for every qualified supplier.
The PART relation has a record for every part that Honest Abe uses. The
SUPPLIER_PART relation has a record for every part that is supplied by
every supplier. Thus there are multiple records in the SUPPLIER_PART rela-
tion for each supplier, depending on the number of different parts supplied
by that supplier. Similarly, there are multiple records in the SUPPLIER_PART
relation for each part, depending on the number of suppliers that supply
each different part. If five suppliers are supplying N2457 alternators, there
are five records in SUPPLIER_PART corresponding to the N2457 alternator. If
Roadrunner Distribution supplies 15 different parts, 15 records in SUPPLIER_
PART will relate to Roadrunner Distribution.

A sample conversion
Figure 3-9 shows the E-R diagram constructed earlier for Honest Abe’s Fleet
Auto Repair.

CUSTOMER 1:N

1:N

N:1

1:N

SUPPLIER N:M

INVOICE N:1

1:1

MECHANIC

INVOICE_LINE

PART LABOR

CERTIFICATION

Figure 3-9:
The E-R
diagram for
Honest
Abe’s Fleet
Auto Repair.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 168

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Designing a Sample Database 169

The many-to-many relationship tells you that you have to decompose it by
creating an intersection relation. First, however, look at the relations that
correspond to the pictured entities and their primary keys:

Relation Primary Key

CUSTOMER CustomerID

INVOICE InvoiceNo

INVOICE_LINE Invoice_Line_No

MECHANIC EmployeeID

CERTIFICATION CertificationNo

SUPPLIER SupplierID

PART PartNo

LABOR LaborChargeCode

In each case, the primary key uniquely identifies a row in its associated
table.

There is one many-to-many relationship, SUPPLIER:PART, so you need to
place an intersection relation between these two relations. As shown in
Figure 3-8, call it SUPPLIER_PART. Figure 3-10 shows the data structure dia-
gram for this relational model.

This relational model includes eight relations that correspond to the eight
entities in Figure 3-9, plus one intersection relations that replaces the many-
to-many relationship. There are two one-to-one relationships and six one-to-
many relationships. Minimum cardinality is denoted by slashes and ovals.
For example, in the SUPPLIER:PART relationship, in order for a part to be in
Honest Abe’s inventory, that part must have been provided by a supplier.
Thus there is a slash on the SUPPLIER side of that relationship. However, a
company can be considered a qualified supplier without ever having sold
Honest Abe a part. That is why there is an oval on the PART side of the rela-
tionship. Similar logic applies to the slashes and ovals on the other relation-
ship lines.

When you have a relational model that accurately reflects the E-R model and
contains no many-to-many relationships, construction of a relational data-
base is straightforward. You have identified the relations, the attributes of
those relations, the primary and foreign keys of those relations, and the rela-
tionships between those relations.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 169

Maintaining Integrity170

Maintaining Integrity
Probably the most important characteristic of any database system is that it
takes good care of the data. There is no point in collecting and storing data if
you cannot rely on its accuracy. Maintaining the integrity of data should be

CustomerID CustomerName

CUSTOMER

INVOICE InvoiceNo CustomerID EmployeeID ...

INVOICE_LINE

Invoice_Line_No InvoiceNo PartNo LaborChargeCode ...

CERTIFICATION

CertificationNo EmployeeID ...

PART

PartNo PartName ...

LABOR

LaborChargeCode ...

SUPPLIER_PART

SupplierID PartNo ...

SUPPLIER

SupplierID SupplierName ...

... ...EmployeeID EmployeeFirstName

MECHANIC

Figure 3-10:
The
relational
model
repre-
sentation of
the Honest
Abe’s model
in Figure 3-9.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 170

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Maintaining Integrity 171

one of your primary concerns as either a database administrator or data-
base application developer. There are three main kinds of data integrity to
consider — entity, domain, and referential — and, in this section, I look at
each in turn.

Entity integrity
An entity is either a physical or conceptual object that you deem to be
important. Entity integrity just means that our database representation of an
entity is consistent with the entity it is modeling. Database tables are repre-
sentations of physical or conceptual entities. Although the tables are in no
way copies or clones of the entities they represent, they capture the essen-
tial features of those entities and do not in any way conflict with the entities
they are modeling.

An important requisite of a database with entity integrity is that every table
has a primary key. The defining feature of a primary key is that it distin-
guishes any given row in a table from all the other rows. We can enforce
entity integrity in a table by applying constraints. We have already seen that
the NOT NULL constraint protects against one kind of duplication because
one row with a null value for the primary key may not be distinguishable
from another row that also has a primary key with a null value. This is not
sufficient, however, because it does not prevent two rows in the table from
having duplicate non-null values. One solution to that problem is to apply
the UNIQUE constraint. Here’s an example:

CREATE TABLE CUSTOMER (
CustName CHAR (30),
Address1 CHAR (30),
Address2 CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
Telephone CHAR (13),
Email CHAR (30),

UNIQUE (CustName)) ;

The UNIQUE constraint prevents two people with the exact same name from
being entered into the database. In some businesses, it is likely that two cus-
tomers will have the same name. In that case, using an auto-incrementing
integer as the primary key is the best solution: It leaves no possibility of
duplication.

Although the UNIQUE constraint guarantees that at least one column in a
table contains no duplicates, you can achieve the same result with the
PRIMARY KEY constraint, which applies to the entire table rather than just

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 171

Maintaining Integrity172

one column of the table. Below is an example of the use of the PRIMARY KEY
constraint:

CREATE TABLE CUSTOMER (
CustName CHAR (30) PRIMARY KEY,
Address1 CHAR (30),
Address2 CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
Telephone CHAR (13),
Email CHAR (30)) ;

A primary key is an attribute of a table. It could comprise a single column or
a combination of columns. In some cases, every column in a table must be
part of the primary key in order to guarantee that there are no duplicate rows.

Domain integrity
The set of values that an attribute of an entity can have is that attribute’s
domain. For example, say that a manufacturer identifies its products with
part numbers that all start with the letters GJ. Any time a person tries to
enter a new part number that doesn’t start with GJ into the system, a viola-
tion of domain integrity occurs. Domain integrity in this case is maintained
by adding a constraint to the system that all part numbers must start with
the letters GJ. You can specify a domain with a domain constraint, as follows:

CREATE DOMAIN PartNoDomain CHAR (15)
CHECK (SUBSTRING (PartNo FROM 1 FOR 2) = ‘GJ’) ;

After a domain has been created, you can use it in a table definition:

CREATE TABLE PRODUCT (
PartNo PartNoDomain PRIMARY KEY,
PartName CHAR (30),
Cost Numeric,
QuantityStocked Integer;

The domain is specified instead of the data type.

Referential integrity
Entity integrity and domain integrity apply to individual tables. Relational
databases depend not only on tables but also on the relationships between
tables. Those relationships are in the form of one table referencing another.
Those references must be consistent in order for the database to have

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 172

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Maintaining Integrity 173

referential integrity. Problems can arise when data is added to or changed in
a table and that addition or alteration is not reflected in the related tables.
Consider the sample database created by the following code:

CREATE TABLE CUSTOMER (
CustomerName CHAR (30) PRIMARY KEY,
Address1 CHAR (30),
Address2 CHAR (30),
City CHAR (25) NOT NULL,
State CHAR (2),
PostalCode CHAR (10),
Phone CHAR (13),
Email CHAR (30)
) ;

CREATE TABLE PRODUCT (
ProductName CHAR (30) PRIMARY KEY,
Price CHAR (30)
) ;

CREATE TABLE EMPLOYEE (
EmployeeName CHAR (30) PRIMARY KEY,
ADDRESS1 CHAR (30),
Address2 CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
HomePhone CHAR (13),
OfficeExtension CHAR (4),
HireDate DATE,
JobClassification CHAR (10),
HourSalComm CHAR (1)
) ;

CREATE TABLE ORDERS (
OrderNumber INTEGER PRIMARY KEY,
ClientName CHAR (30),
TestOrdered CHAR (30),
Salesperson CHAR (30),
OrderDate DATE,
CONSTRAINT NameFK FOREIGN KEY (CustomerName)
REFERENCES CUSTOMER (CustomerName)

ON DELETE CASCADE,
CONSTRAINT ProductFK FOREIGN KEY (ProductOrdered)
REFERENCES PRODUCT (ProductName)

ON DELETE CASCADE,
CONSTRAINT SalesFK FOREIGN KEY (Salesperson)
REFERENCES EMPLOYEE (EmployeeName)

ON DELETE CASCADE
) ;

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 173

Avoiding Data Corruption174

In this system, the ORDERS table is directly related to the CUSTOMER table,
the PRODUCT table, and the EMPLOYEE table. One of the attributes of
ORDERS serves as a foreign key by corresponding to the primary key of
CUSTOMER. The ORDERS table is linked to PRODUCT and to EMPLOYEE by
the same mechanism.

The ON DELETE CASCADE clause is included in the definition of the con-
straints on the ORDERS table to prevent deletion anomalies, which I cover in
the next section.

Some implementations do not yet support the ON DELETE CASCADE syntax,
so don’t be surprised if it doesn’t work for you. In such cases, you will have
to cascade the deletes to the child tables by hand.

Avoiding Data Corruption
Databases are susceptible to corruption. It is possible, but extremely rare,
for data in a database to be altered by some physical event, such as the flip-
ping of a one to a zero by a cosmic ray. In general, only three occasions
cause the data in a database to be corrupted:

✦ Adding data to a table

✦ Changing data in a table

✦ Deleting data from a table

If you don’t allow changes to be made to a database (in other words, if you
make it a read-only database), it can’t be modified in a way that adds erro-
neous and misleading information (although it can still be destroyed com-
pletely). However, read-only databases are of limited use. Most things that
you want to track change over time, and the database needs to change too.
Changes to the database can lead to inconsistencies in its data, called anom-
alies. By careful design, you can minimize the impact of these anomalies, or
even prevent them from ever occurring.

As discussed in Chapter 2 of this minibook, anomalies can be largely pre-
vented by normalizing a database. This can be done by ensuring that each
table in the database deals with only one idea. The E-R model of the Honest
Abe database shown earlier in Figures 3-1 and 3-9 is a good example of a
model where each entity represents a single idea. The only problem with it
is the presence of a many-to-many relationship. As in the relational model
shown in Figure 3-10, you can eliminate that problem in the E-R model by
inserting an intersection relation between the SUPPLIERS entity and the
PARTS entity to convert the many-to-many relationship to two one-to-many
relationships. Figure 3-11 shows the result.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 174

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Speeding Data Retrievals 175

Speeding Data Retrievals
Clearly, maintaining the integrity of a database is of vital importance. A data-
base is worthless, or even worse than worthless, if erroneous data in it leads
to bad decisions and lost opportunities. However, the database must also
allow needed information to be retrieved in a reasonable amount of time.
Sometimes late information causes just as much harm as no information.
The speed with which information is retrieved from a database depends on
a number of factors. The size of the database and the speed of the hardware
it is running on are obvious factors. Perhaps most critical, however, is the
method used to access table data, which depends on the way the data is
structured on the storage medium.

CUSTOMER 1:N

1:N

N:1

1:N

SUPPLIER_
PART

N:1

INVOICE N:1

N:1

MECHANIC

INVOICE_LINE

PART LABOR

CERTIFICATION

1:N

SUPPLIER

Figure 3-11:
Revised E-R
model for
Honest
Abe’s Fleet
Auto Repair.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 175

Speeding Data Retrievals176

Hierarchical storage
How quickly a system can retrieve desired information depends on the
speed of the device that stores it. Different storage devices have a wide
range of speeds, spanning many orders of magnitude. For fast retrievals, the
information you want should reside on the fastest devices. Because it is diffi-
cult to predict which data items will be needed next, you can’t always make
sure the data you are going to want next will be contained in the fastest stor-
age device. Some storage allocation algorithms are nonetheless quite effec-
tive at making such predictions.

There is a hierarchy of storage types, ranging from the fastest to the slowest.
In general, the faster a storage device is, the smaller its capacity. As a con-
sequence, it is generally not possible to hold a large database entirely in
the fastest available storage. The next best thing is to store that subset of
the database that is most likely to be needed soon in the faster memory. If
this is done properly, the overall performance of the system will be almost
as fast as if the entire memory was as fast as the fastest component of it.
Here are the components of a typical memory system, starting with the
fastest part:

✦ Registers: The registers in a computer system are the fastest form of
storage. They are integrated into the processor chip, which means they
are implemented with the fastest technology and the delay for transfers
between the processing unit and the registers is minimal. It is not feasi-
ble to store any portion of a database in the registers, which are limited
in number and in size. Instead, registers hold the operands that the
processor is currently working on.

✦ L1 cache: Level 1 cache is typically also located in the processor chip,
but is not as intimately integrated with the processor as are the regis-
ters. It is the fastest form of storage that can store a significant fraction
of a database.

✦ L2 cache: Level 2 cache is generally located on a separate chip from the
processor. It has greater capacity and is usually somewhat slower than
the L1 cache.

✦ Hard disk: Hard disk storage has orders of magnitude more capacity
than does cache and is orders of magnitude slower. This is where data-
bases are stored. Registers, L1 cache, and L2 cache are all volatile forms
of memory. The data is lost when power is removed. Hard disk storage,
on the other hand, is non-volatile. The data is retained even when the
system is turned off. Because hard disk systems can hold a large data-
base and retain it when power is off or interrupted, such systems are the
normal home of all databases.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 176

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Speeding Data Retrievals 177

✦ Offline storage: It is not necessary to have immediate access to data-
bases that are not in active use. They can be retained on storage media
that are slower than hard drives. A sequential storage medium such as
magnetic tape is fine for such use. Data access is exceedingly slow, but
acceptable for data that is rarely if ever needed. Huge quantities of data
can be stored on tape. Tape is the ideal home for archives of obsolete
data that nevertheless need to be retained against the day when they
might be called upon again.

Full table scans
The simplest data retrieval method is the full table scan, which entails read-
ing a table sequentially, one row after another. Sooner or later, all the rows
that satisfy the retrieval criteria will be reached, and a result set can be
returned to the database application. If you are retrieving just a few rows
from a large table, this method can waste a lot of time accessing rows that
you don’t want. If a table is so large that most of it does not fit into cache,
this retrieval method can be so slow as to make retrievals impractical. The
alternative is to use an index.

How indexes work
Indexes speed access to table rows. An index is a data structure consisting
of pointers to the rows in a data table. Data tables are typically not main-
tained in sorted order. Re-sorting a table every time it is modified is time-
consuming, and sorting for fast retrieval by one retrieval key guarantees that
the table is not sorted for all other retrieval keys. You can have an index for
every potential retrieval key, keeping each index sorted by its associated
retrieval key. For example, in a CUSTOMER table, one index might be sorted
in CustID order and another index sorted in PostalCode order. This would
enable rapid retrieval of selected records by CustID or all the records with
a given range of postal codes.

Creating the right indexes
A major factor in maximizing performance is choosing the best columns to
index in a table. Because all the indexes on a table must be updated every
time a row in the table is added or deleted, maintaining an index creates a
definite performance penalty. This penalty is negligible compared to the
performance improvement provided by the index if it is frequently used, but
is a significant drain on performance if the index is rarely or never used to
locate rows in the data table.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 177

Indexes and the ANSI/ISO Standard178

Analyze the way the tables in your database will be used and build indexes
accordingly. Primary keys should always be indexed. Other columns
should be indexed if they will frequently be used as retrieval keys. Columns
that will not be frequently used as retrieval keys should not be indexed.
Removing unneeded indexes from a database can often significantly
improve performance.

Indexes and the ANSI/ISO Standard
The ANSI/ISO SQL standard does not specify how indexes should be con-
structed. This leaves the implementation of indexes up to each DBMS vendor.
That means that the indexing scheme of one vendor may differ from that of
another. If you want to migrate a database system from one vendor’s DBMS to
another’s, you may have to recreate all the indexes.

Index costs
There are costs to excessive indexing that go beyond updating them when-
ever changes are made to their associated tables. If there are multiple
indexes, the DBMS’s optimizer may choose the wrong one when making a
retrieval. This could impact performance in a major way. Updates to indexed
columns are particularly hard on performance because the old index value
must be deleted and the new one added. The bottom line is that you should
index only columns that will frequently be used as retrieval keys or that are
used to enforce uniqueness, such as primary keys.

Query type dictates the best index
For a typical database, the number of possible queries that could be run is
huge. In most cases, however, a few specific types of queries are run fre-
quently, others are run infrequently, and many are not run at all. You want to
optimize your indexes so that the queries you run frequently gain the most
benefit. There is no point in adding indexes to a database to speed up query
types that are never run. This just adds system overhead and results in no
benefit. To help you understand which indexes work best with which query
types, I describe the most frequently used query types.

Point query
A point query returns at most one record. The query includes an equality
condition.

SELECT FirstName FROM EMPLOYEE
WHERE EmployeeID = 31415 ;

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 178

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Indexes and the ANSI/ISO Standard 179

There is only one record in the database where EmployeeID is equal to 31415
because EmployeeID is the primary key of the EMPLOYEE table.

Multipoint query
A multipoint query may return more than one record, using an equality
condition.

SELECT FirstName FROM EMPLOYEE
WHERE Department = ‘Advanced Research’ ;

There are probably multiple people in the Advanced Research department.
The first names of all of them will be retrieved by this query.

Range query
A range query returns a set of records whose values lie within an interval or
half interval.

SELECT FirstName, LastName FROM EMPLOYEE
WHERE AGE >= 55
AND < 65 ;

SELECT FirstName, LastName FROM EMPLOYEE
WHERE AGE >= 65 ;

A range where both lower and upper bound are specified is an interval. A
range where only one bound is specified is a half interval.

Prefix match query
A prefix match query is one in which only the first part of an attribute or
sequence of attributes is specified.

SELECT FirstName, LastName FROM EMPLOYEE
WHERE LastName LIKE ‘Sm%’ ;

This query returns all the Smarts, Smetanas, Smiths, and Smurfs.

Extremal query
An extremal query returns the extremes, the minima and maxima.

SELECT FirstName, LastName FROM EMPLOYEE
WHERE Age = MAX(SELECT Age FROM EMPLOYEE) ;

This query returns the name of the oldest employee.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 179

Indexes and the ANSI/ISO Standard180

Ordering query
An ordering query is one that includes an ORDER BY clause. The records
returned are sorted by a specified attribute.

SELECT FirstName, LastName FROM EMPLOYEE
ORDER BY LastName, FirstName ;

This query returns a list of all employees in ascending alphabetical order,
sorted first by last name and within each last name, by first name.

Grouping query
A grouping query is one that includes a GROUP BY clause. The records
returned are partitioned into groups.

SELECT FirstName, LastName FROM EMPLOYEE
GROUP BY Department ;

This query returns the names of all employees, with the members of each
department listed together as a group.

Equi-join query
Equi-join queries are common in normalized relational databases. The
condition that filters out the rows you don’t want to retrieve is based on an
attribute of one table being equal to a corresponding attribute in a second
table.

SELECT EAST.EMP.FirstName, EAST.EMP.LastName
FROM EAST.EMP, WEST.EMP
WHERE EAST.EMP.EmpID = WEST.EMP.EMPID ;

One schema (EAST) holds the tables for the eastern division of a company,
and another schema (WEST) holds the tables for the western division. Only
the names of the employees who appear in both the eastern and western
schemas are retrieved by this query.

Data structures used for indexes
Closely related to the types of queries that are typically run on a database is
the way the indexes are structured. Because of the huge difference in speed
between semiconductor cache memory and online hard disk storage, it
makes sense to keep the indexes you are most likely to need soon in cache.
The less often you must go out to hard disk storage, the better.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 180

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Indexes and the ANSI/ISO Standard 181

A variety of data structures are possible. Some of these structures are partic-
ularly efficient for some types of queries, whereas other structures work
best with other types of queries. The best data structure for a given applica-
tion depends on the types of queries that will be run against the data.

B+ trees
Most popular data structures for indexes have a tree-like organization where
one master node (the root) connects to multiple nodes, each of which in
turn connects to multiple nodes, and so on. The B+ tree, where B stands for
“balanced,” is a good index structure for queries of a number of types. B+
trees are particularly efficient in handling range queries. They also are good
in databases where inserts are frequently made.

Hash structures
Hash structures use a key and a pseudo-random hash function to find a loca-
tion. They are particularly good at making quick retrievals of point queries
and multipoint queries, but perform poorly on range, prefix, and extremal
queries. If a query requires a scan of all the data in the target tables, hash
structures are less efficient than B+ tree structures.

Indexes, sparse and dense
The best choice of indexes depends largely on the types of queries to be
supported and on the size of the cache that is available for data, compared
to the total size of the database.

Data is shuttled back and forth between the cache and the disk storage in
chunks called pages. In one table, a page may hold many records; in another,
it may contain few. Indexes are pointers to the data in tables, and if there is
at most one such pointer per page, it is called a sparse index. At the other
end of the scale, a dense index is one that points to every record in the table.
A sparse index entails less overhead than a dense index does, and if there
are many records per page, for certain types of queries, it can perform
better. Whether that performance improvement materializes depends on
clustering.

Index clustering
The rationale for maintaining indexes is that it is too time-consuming to
maintain data tables in sorted order for rapid retrieval of desired records.
Instead, we keep the index in sorted order. Such an index is said to be clus-
tered. A clustered index is organized in a way similar to the way a telephone
book is organized. In a telephone book, the entries are sorted by a person’s

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 181

Indexes and the ANSI/ISO Standard182

last name, and secondarily by his or her first name. This means that all the
Smiths are together and so are all the Taylors. This organization is good for
partial match, range, point, multipoint, and general join queries. If you pull
up a page that contains one of the target records into cache, it’s likely that
other records that you want are on the same page and are pulled into cache
at the same time.

A database table can have multiple indexes, but only one of them can be
clustered. The same is true of a telephone book. If the entries in the book are
sorted by last name, the order of the telephone numbers is a random jumble.
This means that if you must choose one table attribute to assign a clustered
index, choose the attribute that is most likely to be used as a retrieval key.
Building unclustered indexes for other attributes is still of value, but isn’t as
beneficial as the clustered index.

Composite indexes
Composite indexes are, as the name implies, based on a combination of
attributes. In certain situations, a composite index can give better perform-
ance than can a combination of single attribute indexes. For example, a com-
posite index on last name and first name zeroes in on the small number of
records that match both criteria. Alternatively, if last name and first name
are separately indexed, first all the records with the desired last name are
retrieved, and then these are scanned to find the ones with the correct first
name. The extra operation takes extra time and makes extra demands on the
bandwidth of the path between the database and the database engine.

Although composite indexes can be helpful, you must be careful when you
craft your query to call for the components of the index in the same order
that they exist in the index itself. For example, if you have an index on
LastName, FirstName, the following query would perform well:

SELECT * FROM CUSTOMER
WHERE LastName = ‘Smith’
AND FirstName = ‘Bob’ ;

This efficiently retrieves the records for all the customers named Bob Smith.
However, the following seemingly equivalent query doesn’t perform as well:

SELECT * FROM CUSTOMER
WHERE FirstName = ‘Bob’
AND LastName = ‘Smith’ ;

The same rows are retrieved, but not as quickly. A DBMS with an intelligent
query optimizer would examine the query and reverse the order of retrieval
in order to deliver the best performance. You can check how smart your

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 182

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Reading SQL Server Execution Plans 183

optimizer is by coding a sample retrieval both ways and noting the retrieval
time. If it is the same in both instances, your query optimizer has passed
the test.

Index effect on join performance
As a rule, joins are expensive in terms of the time it takes to construct them.
If the join attribute in both tables is indexed, the amount of time needed is
dramatically reduced. (I discuss joins in Book III, Chapter 4.)

Table size as an indexing consideration
The amount of time it takes to scan every row in a table becomes an issue as
the table becomes large. The larger the table is, the more time indexes can
save you. The corollary to this fact is that indexes of small tables don’t do
much good. If a table has no more than a few hundred rows, it doesn’t make
sense to create indexes for it. The overhead involved with maintaining the
indexes overshadows any performance gain you might get from having them.

Indexes versus full-table scans
The point of using indexes is to save time in query and join operations by
enabling you to go directly to the records you want rather than having to look
at every record in a table to see whether it satisfies your selection conditions.
If you can anticipate the types of queries that are likely to be run, you can con-
figure indexes accordingly to maximize performance. There will still likely be
queries of a type that you did not anticipate. For those, full-table scans are
run. Hopefully, these queries won’t be run often and thus won’t have a major
effect on overall performance. Full-table scans are the preferred retrieval
method for small tables that are likely to be completely contained in cache.

Reading SQL Server Execution Plans
When you enter an SQL query into a database, the DBMS decides how to
execute it by developing an execution plan. In most cases, the execution
plan the DBMS develops is the best possible, but sometimes it could do with
a little tuning to make it better. In this section, I look at how Microsoft SQL
Server develops an execution plan, and then I apply the Database Engine
Tuning Advisor to determine whether the plan can be improved.

Robust execution plans
Any non-trivial query draws data from multiple tables. How you reach those
tables, how you join them, and the order in which you join them determines,
to a large extent, how efficient your retrieval will be. The order in which you

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 183

Reading SQL Server Execution Plans184

do these things is called an execution plan. For any given retrieval, there is
a myriad of possible execution plans. One of them is optimal, and a small
number are near-optimal.

The optimal plan may be hard to find, but in many cases the near-optimal
plans, called robust execution plans, are quite adequate. You can identify a
robust execution plan by noting its characteristics. All major DBMS products
include a query optimizer that takes in your SQL and comes up with an
execution plan to implement it. In many cases, plans derived in this manner
are satisfactory. Sometimes, however, for complex queries involving many
joins, manual tuning significantly improves performance.

Query performance largely depends on the number of rows that are touched
by the query — the fewer the better. This means that with a query involving
multi-table joins, it is a good practice for the execution plan to start with
the table with the best filter ratio. A table’s filter ratio is the number of rows
remaining after a condition is applied divided by the total number of rows in
the table. The lower the filter ratio, the fewer rows that are joined to the next
table in line in a join. For best performance in most cases, construct the join
from the many side to the one side of one-to-many relationships, choosing
the table on the one side that has the lowest filter ratio.

A sample database
The Northwinds database is a sample database that Microsoft supplies
along with SQL Server. Look at the Northwinds database schema shown in
Figure 3-12.

Figure 3-12:
Tables and
relationships
in the
Northwinds
database.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 184

Book II
Chapter 3

Balancing
Perform

ance and
Correctness

Reading SQL Server Execution Plans 185

There is a one-to-many relationship between Customers and Orders, a
one-to-many relationship between Shippers and Orders, and a one-to-many
relationship between Employees and Orders. Furthermore, there is a one-
to-many relationship between Orders and Order Details and a one-to-many
relationship between Products and Order Details. Similarly, there is a one-to-
many relationship between Suppliers and Products, and a one-to-many rela-
tionship between Categories and Products.

You might have a number of questions about the Northwinds business, as
modeled by this database. In the following section, I build a query to answer
one of those questions.

A typical query
Suppose you want to know if any of Northwind’s salespeople are promising
more than Northwind can deliver. We can get an indication of this by seeing
which employees took orders where the ShippedDate was later than the
RequiredDate. An SQL query will give us the answer to that question.

SELECT Employees.LastName
From Employees, Orders

WHERE Employees.EmployeeID = Orders.EmployeeID
AND Orders.ShippedDate > Orders.RequiredDate ;

Figure 3-13 shows the result. Late shipments were spread around among the
orders of quite a few salespeople. No single one seems particularly prone to
over-promising. There were 37 late shipments out of a total of 772 total ship-
ments. To some companies, that might be an acceptable number; to others,
it would not.

The execution plan
Figure 3-14 shows the execution plan for the query in the preceding section.
An index scan, a clustered index scan, and a hash match consumed proces-
sor cycles, with the hash match taking up more than half of the time used.

The hash match, representing the formation of the inner join of the Employees
and the Orders tables, takes up more time than do the index scans of the two
tables involved.

Running the Database Engine Tuning Advisor
Although the answer to this query came back pretty fast, one might wonder
whether it could have been faster. Executing the Database Engine Tuning
Advisor may find a possible improvement. Run it to see.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 185

Reading SQL Server Execution Plans186

Wow! The Tuning Advisor estimates that the query could be speeded up
by 65% by creating some new indexes, as shown in Figure 3-15. Not surpris-
ingly, the fields it suggests indexing in the Orders table are EmployeeID,
RequiredDate, and ShippedDate. There is no recommendation for improve-
ment of the Employees table.

Figure 3-14:
The
execution
plan for the
delivery
time query.

Figure 3-13:
SQL Server
2005
Manage-
ment Studio
execution
of an SQL
query.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 186

Book II
Chapter 3

Balancing
Perform

ance and
Correctness
Hot Tables and Load Balancing 187

Hot Tables and Load Balancing
A hot table is one that is accessed by many transactions at the same time.
For such a table, you may get a performance improvement by locating the
non-clustering indexes on a different disk from the one that contains the
data and the clustering index. This form of load balancing enables the paral-
lel execution of tasks that would otherwise be contending for the same
resource. In Book VII, Chapter 3, I go into detail about balancing the load
on the storage system to improve performance.

Figure 3-15:
The
recommen-
dations
of the
Database
Engine
Tuning
Advisor.

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 187

Book II: Relational Database Development188

14 119280 bk02ch03.qxp 5/23/07 6:57 PM Page 188

Chapter 4: Creating a
Database with SQL

In This Chapter
� Building tables

� Setting constraints

� Establishing relationships between tables

� Altering table structure

� Deleting tables

As stated in Chapter 5 of Book I, SQL is functionally divided into three
components: the Data Definition Language (DDL), the Data Manipu-

lation Language (DML), and the Data Control Language (DCL). The DDL con-
sists of three statements: CREATE, ALTER, and DROP. You can use these
statements to create database objects (such as tables), change the structure
of existing object, or delete an object. After you have designed a database,
the first step in bringing it into reality is to build a table with the DDL. After
you have built the tables, the next step is to fill them with data. That is the
job of the DML. With the DCL, you can preserve data integrity. In this chap-
ter, I discuss the functions of the DDL.

First Things First: Planning Your Database
Before you can start constructing a database, you need to have a clear idea
of the real-world or conceptual system that you are modeling. Some aspects
of the system are of primary importance. Other aspects are subsidiary to the
ones you have identified as primary. Additional aspects may not be important
at all, depending on what you are using the database for. Based on these con-
siderations, you will build an E-R model of the system, with primary aspects
identified as entities, and subsidiary aspects identified as attributes of those
entities. Unimportant aspects don’t appear in the model at all.

After you have finalized your E-R model, you can translate it into a normal-
ized relational model. The relational model is your guide for creating data-
base tables and establishing the relationships between them.

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 189

Building Tables190

Building Tables
The fundamental object in a relational database is the table. Tables corre-
spond directly to the relations in a normalized relational model. Table cre-
ation can be simple or quite involved. In either case, it is accomplished with
a CREATE TABLE statement.

In Chapter 3 of this minibook, I take you through the creation of a relational
model for Honest Abe’s Fleet Auto Repair. Using that sample design, you can
take it to the next step by creating database tables based on the model.
Table 4-1 shows the tables and their attributes.

Table 4-1 Tables for Honest Abe
Table Column

CUSTOMER CustomerID
CustomerName
StreetAddr
City
State
PostalCode
ContactName
ContactPhone
ContactEmail

MECHANIC EmployeeID
FirstName
LastName
StreetAddr
City
State
PostalCode
JobTitle

CERTIFICATION CertificationNo
CertName
Expires

INVOICE InvoiceNo
Date
CustomerID
EmployeeID

INVOICE_LINE Invoice_Line_No
PartNo
UnitPrice
Quantity
Extended Price

LABOR LaborChargeCode
TaskDescription
StandardCharge

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 190

Book II
Chapter 4

Creating a
Database w

ith SQL
Building Tables 191

Table Column

PART PartNo
Name
Description
CostBasis
ListPrice
QuantityInStock

SUPPLIER SupplierID
SupplierName
StreetAddr
City
State
PostalCode
ContactName
ContactPhone
ContactEmail

SUPPLIER_PART SupplierID
PartNo

You can construct the DDL statements required to build the database tables
directly from the enumeration of tables and columns in Table 4-1, but first
you should understand the important topic of keys, which I discuss in the
next section.

Locating table rows with keys
Keys are the main tool used to locate specific rows within a table. Without a
key that guarantees that a row in a table is not a duplicate of any other row
in the table, ambiguities arise. The row you want to retrieve may be indistin-
guishable from one or more other rows in the table. You wouldn’t be able to
tell which one was the right one. There are several different terms you may
see in discussions of keys that uniquely identify rows in a table.

✦ Candidate keys: Ideally, at least one column or combination of columns
within a table contains a unique entry in every row. Any such column or
combination of columns is a candidate key. Perhaps your table has more
than one such candidate. If your table has multiple candidate keys,
select one of them to be the table’s primary key.

✦ The primary key: A table’s primary key has the characteristic of being a
unique identifier of all the rows in the table. It is specifically chosen from
among the candidate keys to serve as the primary identifier of table rows.

✦ Composite keys: Sometimes no single column uniquely identifies
every row in a table, but a combination of two or more columns does.
Together, those columns comprise a composite key, which can collec-
tively serve as a table’s primary key.

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 191

Building Tables192

Using the CREATE TABLE statement
If you understand one of the functions of keys (see the preceding bulleted
list), you can create tables using the CREATE TABLE statement:

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
CustomerName CHAR (30),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
ContactName CHAR (30),
ContactPhone CHAR (13),
ContactEmail CHAR (30)) ;

CREATE TABLE MECHANIC (
EmployeeID INTEGER PRIMARY KEY,
FirstName CHAR (15),
LastName CHAR (20),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
JobTitle CHAR (30)) ;

CREATE TABLE CERTIFICATION (
CertificationNo INTEGER PRIMARY KEY,
CertName CHAR (30),
Expires Date) ;

CREATE TABLE INVOICE (
InvoiceNo INTEGER PRIMARY KEY,
Date DATE,
CustomerID INTEGER,
EmployeeID INTEGER) ;

CREATE TABLE INVOICE_LINE (
Invoice_Line_No INTEGER PRIMARY KEY,
PartNo INTEGER,
UnitPrice NUMERIC (9,2),
Quantity INTEGER,
ExtendedPrice NUMERIC (9,2)) ;

CREATE TABLE LABOR (
LaborChargeCode INTEGER PRIMARY KEY,
TaskDescription CHAR (40),
StandardCharge NUMERIC (9,2)) ;

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 192

Book II
Chapter 4

Creating a
Database w

ith SQL
Setting Constraints 193

CREATE TABLE PART (
PartNo INTEGER PRIMARY KEY,
Name CHAR (30),
Description CHAR (40),
CostBasis NUMERIC (9,2),
ListPrice NUMERIC (9,2),
QuantityInStock INTEGER) ;

CREATE TABLE SUPPLIER (
SupplierID INTEGER PRIMARY KEY,
SupplierName CHAR (30),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
ContactName CHAR (30),
ContactPhone CHAR (13),
ContactEmail CHAR (30)) ;

CREATE TABLE SUPPLIER_PART (
SupplierID INTEGER NOT NULL,
PartNo INTEGER NOT NULL) ;

All the tables except SUPPLIER_PART have a single attribute as their primary
key. In the SUPPLIER_PART table, no single attribute uniquely identifies a
row, so the table has a composite key made up of both SupplierID and
PartNo. Those two attributes together do uniquely identify each row in the
table. Not all suppliers supply all parts, but there is a row in SUPPLIER_
PART for every case where a specific supplier supplies a specific part.

Setting Constraints
One way to protect the integrity of your data is to add constraints to your
table definitions. There are several different kinds of constraints, including
column constraints, table constraints, check constraints, and foreign key
constraints. In this section, I cover column constraints and table constraints.
Other types of constraints will pop up here and there in the book as we
go along.

Column constraints
Column constraints determine what may or may not appear in a column of
a table. For example, in the SUPPLIER_PART table, NOT NULL is a constraint
on the SupplierID column. It guarantees that the SupplierID column must
contain a value. It doesn’t say what that value must be, as long as it is
some value.

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 193

Keys and Indexes194

Table constraints
A table constraint is not restricted to a particular column, but applies to an
entire table. The PRIMARY KEY constraint is an example of a table constraint.
A primary key may consist of one column, multiple columns, or even all the
columns in the table — whatever it takes to uniquely identify every row in
the table. Regardless of how many columns are included in the primary key,
the primary key is a characteristic of the entire table.

Keys and Indexes
Because primary keys uniquely identify each row in a table, they are ideal
for indexes. The purpose of an index is to point to a row or set of rows that
satisfies a condition. Because a primary key identifies one and only one row
in a table, an index on a table’s primary key provides the fastest, most direct
access to the row it points to. Less selective indexes give access to multiple
rows that all satisfy the selection condition. Thus, although CustomerID
may take you directly to the record of the customer you want, you may not
remember every customer’s CustomerID. A search on LastName might
return several records, but you can probably determine pretty quickly which
one is the one you want. In such a case, you may want to create an index on
the LastName column as well as on CustomerID. Any column that you fre-
quently use as a retrieval condition should probably be indexed. If a table’s
primary key is a composite key, the index would be on the combination of
all the columns that make up the key. Composite keys that are not a table’s
primary key can also be indexed.

Ensuring Data Validity with Domains
Although you, as a database creator, can’t guarantee that the data entry
operator always enters the correct data, at least you can assure that the data
entered is valid — that it excludes values that cannot possibly be correct. Do
this with a CREATE DOMAIN statement. For example, in the LABOR table defi-
nition given in “The CREATE TABLE statement” section, the StandardCharge
field holds currency values that are of the NUMERIC type. Suppose you want
to assure that a negative value is never entered for a StandardCharge. You can
do so by creating a domain, as in the following example:

CREATE DOMAIN CurrencyDom NUMERIC (9,2)
CHECK (VALUE >= 0);

The definition of the LABOR table is altered correspondingly:

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 194

Book II
Chapter 4

Creating a
Database w

ith SQL
Establishing Relationships between Tables 195

CREATE TABLE LABOR (
LaborChargeCode INTEGER PRIMARY KEY,
TaskDescription CHAR (40),
StandardCharge CurrencyDom) ;

The data type of StandardCharge is replaced by the new domain. With a
domain, you can constrain an attribute to assume only those values that
are valid.

Establishing Relationships between Tables
After you have created tables for a database, the next step is to establish the
relationships between the tables. A normalized relational database has mul-
tiple tables, perhaps hundreds of them. Most queries or reports require data
from more than one table. In order to pull the correct data from the tables,
you must have a way of relating the rows in one table to corresponding rows
in another table. This is accomplished with links consisting of columns in
one table that correspond to columns in a related table.

Earlier in this chapter, I talk about primary keys and composite keys (which
are a kind of primary key). Another kind of key that is important is the for-
eign key. Unlike primary keys, foreign keys do not uniquely identify a row in
a table. Instead, they serve as links to other tables.

Relational databases are characterized by having multiple tables that are
related to each other. Those relationships are established by columns that
are shared between two tables. In a one-to-one relationship, one row in the
first table corresponds to one and only one row in the second table. For a
given row, one or more columns in the first table match a corresponding
column or set of columns in the second table. In a one-to-many relationship,
one row in the first table matches multiple rows in the second table. Once
again, the match is made by columns in the first table that correspond to
columns in the second table.

Consider the Honest Abe sample database of Book II, Chapter 3. It has a one-
to-many link between CUSTOMER and INVOICE, mediated by the shared
CustomerID column, and there is also a one-to-many link between MECHANIC
and INVOICE mediated by the EmployeeID column. To create these links, you
have to add a little more SQL code to the definition of the INVOICE table.
Here’s the new definition:

CREATE TABLE INVOICE (
InvoiceNo INTEGER PRIMARY KEY,
Date DATE,
CustomerID INTEGER,
EmployeeID INTEGER,

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 195

Establishing Relationships between Tables196

CONSTRAINT CustFK FOREIGN KEY (CustomerID)
REFERENCES CUSTOMER (CustomerID),

CONSTRAINT MechFK FOREIGN KEY (EmployeeID)
REFERENCES MECHANIC (EmployeeID)

) ;

Adding the foreign key constraints to the table on the many side of a one-to-
many relationship creates the links. For a one-to-one relationship, it doesn’t
matter which of the two tables you add the foreign key constraint to.

To tie the Honest Abe database together, add foreign key constraints to
establish all of the relationships. Here’s the result:

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
CustomerName CHAR (30),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
ContactName CHAR (30),
ContactPhone CHAR (13),
ContactEmail CHAR (30)) ;

CREATE TABLE MECHANIC (
EmployeeID INTEGER PRIMARY KEY,
FirstName CHAR (15),
LastName CHAR (20),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
Specialty CHAR (30),
JobTitle CHAR (30)) ;

CREATE TABLE CERTIFICATION (
CertificationNo INTEGER PRIMARY KEY,
CertName CHAR (30),
MechanicID INTEGER,
Expires Date,
CONSTRAINT CertMechFK FOREIGN KEY (MechanicID)

REFERENCES MECHANIC (EmployeeID)
) ;

CREATE TABLE INVOICE (
InvoiceNo INTEGER PRIMARY KEY,
Date DATE,
CustomerID INTEGER,
EmployeeID INTEGER,

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 196

Book II
Chapter 4

Creating a
Database w

ith SQL
Establishing Relationships between Tables 197

CONSTRAINT CustFK FOREIGN KEY (CustomerID)
REFERENCES CUSTOMER (CustomerID),

CONSTRAINT MechFK FOREIGN KEY (EmployeeID)
REFERENCES MECHANIC (EmployeeID)

) ;

CREATE TABLE INVOICE_LINE (
Invoice_Line_No INTEGER PRIMARY KEY,
InvoiceNo INTEGER,
LaborChargeCode INTEGER,
PartNo INTEGER,
UnitPrice NUMERIC (9,2),
Quantity INTEGER,
ExtendedPrice NUMERIC (9,2),
CONSTRAINT InvFK FOREIGN KEY (InvoiceNo)

REFERENCES INVOICE (InvoiceNo),
CONSTRAINT LaborFK FOREIGN KEY (LaborChargeCode)

REFERENCES LABOR (LaborChargeCode),
CONSTRAINT PartFK FOREIGN KEY (PartNo)

REFERENCES PART (PartNo)
) ;

CREATE DOMAIN CurrencyDom NUMERIC (9,2)
CHECK (VALUE >= 0);

CREATE TABLE LABOR (
LaborChargeCode INTEGER PRIMARY KEY,
TaskDescription CHAR (40),
StandardCharge CurrencyDom) ;

CREATE TABLE PART (
PartNo INTEGER PRIMARY KEY,
Name CHAR (30),
Description CHAR (40),
CostBasis NUMERIC (9,2),
ListPrice NUMERIC (9,2),
QuantityInStock INTEGER) ;

CREATE TABLE SUPPLIER (
SupplierID INTEGER PRIMARY KEY,
SupplierName CHAR (30),
StreetAddr CHAR (30),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
ContactName CHAR (30),
ContactPhone CHAR (13),
ContactEmail CHAR (30)) ;

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 197

Altering Table Structure198

CREATE TABLE SUPPLIER_PART (
SupplierID INTEGER NOT NULL,
PartNo INTEGER NOT NULL,
CONSTRAINT SuppFK FOREIGN KEY (SupplierID)

REFERENCES SUPPLIER (SupplierID),
CONSTRAINT PartSuppFK FOREIGN KEY (PartNo)

REFERENCES PART (PartNo)
) ;

Note that the CERTIFICATION table has a column named MechanicID, which
corresponds to the column named EmployeeID in the MECHANIC table.
This is to show that a foreign key need not have the same name as the
corresponding column in the table that it links to. Note also that additional
columns that serve as foreign keys have been added to some of the tables
on the many sides of relationships. These are required in addition to the
constraint clauses.

A database that is properly linked together using foreign keys is said to
have referential integrity. The key to assuring referential integrity is to make
sure that the E-R diagram of the database is accurate and that it is properly
translated into a relational model, which is then converted into a relational
database.

Altering Table Structure
In the real world, requirements tend to change. Sooner or later this is bound
to affect the databases that model some aspect of that world. SQL provides
a means to change the structure of a database that has already been created.
Structural changes can either be adding a new column to a table or deleting
an existing one. The SQL to perform these tasks is pretty straightforward.
Here is an example of adding a column:

ALTER TABLE MECHANIC
ADD COLUMN Birthday DATE ;

Here’s an example of deleting a column:

ALTER TABLE MECHANIC
DROP COLUMN Birthday ;

I guess Honest Abe decided not to keep track of employee birthdays
after all.

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 198

Book II
Chapter 4

Creating a
Database w

ith SQL
Deleting Tables 199

Deleting Tables
It’s just as easy to delete an entire table as it is to delete a column in a table.
Here’s how:

DROP TABLE CUSTOMER ;

Uh-oh. Be really careful about dropping tables. When it’s gone, it’s gone,
along with all its data.

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 199

Book II: Relational Database Development200

15 119280 bk02ch04.qxp 5/23/07 10:15 AM Page 200

Book III

SQL Queries

16 119280 pt03.qxp 5/23/07 10:15 AM Page 201

Contents at a Glance
Chapter 1: Values, Variables, Functions, and Expressions ..203

Chapter 2: SELECT Statements and Modifying Clauses ..227

Chapter 3: Querying Multiple Tables with Subqueries ..269

Chapter 4: Querying Multiple Tables with Relational Operators297

Chapter 5: Cursors ..315

16 119280 pt03.qxp 5/23/07 10:15 AM Page 202

Chapter 1: Values, Variables,
Functions, and Expressions

In This Chapter
� Discovering valid values for table columns

� Summarizing data with set functions

� Dissecting data with value functions

� Converting data types

This chapter describes the tools that SQL provides to operate on data. In
addition to specifying the value of a data item, you can slice it and dice

it in a variety of ways. Rather than just retrieving raw data as it exists in the
database, you can preprocess it to deliver just the information you want, in
the form that you want it.

Entering Data Values
After you have created a database table, the next step is to enter data into
it. SQL supports a number of different data types. Refer to Book I, Chapter 6
for coverage of those types. The five different kinds of values that can
appear in table rows are

✦ Row values

✦ Literal values

✦ Variables

✦ Special variables

✦ Column references

I discuss each in turn throughout this section.

Row values have multiple parts
A row value includes the values of all the data in all the columns in a row in
a table. It is actually multiple values rather than just one. The intersection

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 203

Entering Data Values204

of a row and a column, called a field, contains a single, so-called “atomic”
value. All the values of all the fields in a row, taken together, are that row’s
row value.

Identifying values in a column
Just as you can specify a row value consisting of multiple values, you can
specify the value contained in a single column. For illustration, consider this
example from the Honest Abe database shown in Book II, Chapter 3:

SELECT * FROM CUSTOMER
WHERE LastName = ‘Smith’ ;

This query returns all the rows in the CUSTOMER table where the value in
the LastName column is Smith.

Literal values don’t change
In SQL, a value can either be a constant, or it can be represented by a vari-
able. Constant values are called literals. Table 1-1 shows sample literals for
each of the SQL data types.

Table 1-1 Sample Literals of Various Data Types
Data Type Sample Literal

BIGINT 8589934592

INTEGER 186282

SMALLINT 186

NUMERIC 186282.42

DECIMAL 186282.42

REAL 6.02257E23

DOUBLE PRECISION 3.1415926535897E00

FLOAT 6.02257E23

CHARACTER(15) ‘GREECE ’

Note: Fifteen total characters and spaces are between the quote marks above.

VARCHAR (CHARACTER VARYING) ‘lepton’

NATIONAL CHARACTER(15) ‘ΕΛΛΑΣ ’1

Note: Fifteen total characters and spaces are between the quote marks above.

NATIONAL CHARACTER VARYING ‘λεπτον’2

CHARACTER LARGE OBJECT (CLOB) (A really long character string)
1This term is the word that Greeks use to name their own country in their own language. (The English
equivalent is ‘Hellas.’)
2This term is the word ‘lepton’ in Greek national characters.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 204

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Variables Vary 205

Data Type Sample Literal

BINARY LARGE OBJECT (BLOB) (A really long string of ones and zeros)

DATE DATE ‘1969-07-20’

TIME(2) TIME ‘13.41.32.50’

TIMESTAMP(0) TIMESTAMP ‘2007-07-25-13.03.16.000000’

TIME WITH TIMEZONE(4) TIME ‘13.41.32.5000-08.00’

TIMESTAMP WITH TIMEZONE(0) TIMESTAMP ‘2007-07-25-13.03.16.0000+02.00’

INTERVAL DAY INTERVAL ‘7’ DAY

Numeric literals are just the values that they represent. Non-numeric literals
are enclosed in single quotes.

Variables Vary
Literals, which explicitly hold a single value, are fine if that value appears
only once or twice in an application. However, if a value appears multiple
times, and if there is any chance that value might change in the future, you
should represent it with a variable. That way, if changes are necessary, you
have to change the code in one place only, where the value is assigned to
the variable, rather than in all the places in the application where that value
appears.

For example, suppose in an application dealing with a table containing the
archives of a magazine, there are numerous spots where retrievals are
made on various sections of the current issue. One such retrieval might
look like this:

SELECT Editorial FROM PENGUINLIFE
WHERE Issue = 47 ;

Another could be

SELECT LeadStory FROM PENGUINLIFE
WHERE Issue = 47 ;

There could be many more like these two in the application. When next week
rolls around and you want to run the application again for the latest issue,
you must go through the program by hand and change all the instances of 47
to 48. Computers are supposed to rescue us from such boring, repetitive

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 205

Special Variables Hold Specific Values206

tasks, and they do. Rather than using literals in such cases, use variables
instead, like this:

SELECT Editorial FROM PENGUINLIFE
WHERE Issue = :IssueNumber ;

You have to change the IssueNumber variable in one place only, and the
change affects all the places in the application where the variable appears.

Special Variables Hold Specific Values
SQL has a few special variables that hold information about system usage. In
multiuser systems, you often need to know who is using the system at any
given time. This information can be captured in a log file, using the special
variables. The special variables are

✦ SESSION_USER holds a value that’s equal to the user authorization iden-
tifier of the current SQL session. If you write a program that performs a
monitoring function, you can interrogate SESSION_USER to find out who
is executing SQL statements.

✦ CURRENT_USER stores a user-specified authorization identifier. If a
module has no such identifier, CURRENT_USER has the same value as
SESSION_USER.

✦ SYSTEM_USER contains the operating system’s user identifier. This iden-
tifier may differ from that user’s identifier in an SQL module. A user may
log on to the system as ANDREW, for example, but identify himself to a
module as DIRECTOR. The value in SESSION_USER is DIRECTOR. If he
makes no explicit specification of the module identifier and CURRENT_
USER also contains DIRECTOR, SYSTEM_USER holds the value ANDREW.

One use of the SYSTEM_USER, SESSION_USER, and CURRENT_USER special
variables is to track who is using the system. You can maintain a log table
and periodically insert into that table the values that SYSTEM_USER,
SESSION_USER, and CURRENT_USER contain. The following example
shows how:

INSERT INTO USAGELOG (SNAPSHOT)
VALUES (‘User ‘ || SYSTEM_USER ||

‘ with ID ‘ || SESSION_USER ||
‘ active at ‘ || CURRENT_TIMESTAMP) ;

This statement produces log entries similar to the following example:

User ANDREW with ID DIRECTOR active at 2007-08-07-23.50.00

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 206

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Working with Functions 207

Working with Functions
Functions perform computations or operations that are more elaborate than
what you would expect a simple command statement to do. SQL has two
kinds of functions: set functions and value functions. Set functions are so
named because they operate on a set of rows in a table rather than on a
single row. Value functions operate on the values of fields in a table row.

Summarizing data with set functions
When dealing with a set of table rows, often what you want to know is some
aggregate property that applies to the whole set. SQL has five such aggre-
gate or set functions: COUNT, AVG, MAX, MIN, and SUM. To see how these
work, consider the example data in Table 1-2. It is a price table for photo-
graphic papers of various sizes and characteristics.

Table 1-2 Photographic Paper Price List per 20 Sheets
Paper Type Size8 Size11

Dual-sided matte 8.49 13.99

Card stock dual-sided matte 9.49 16.95

Professional photo gloss 10.99 19.99

Glossy HW 9M 8.99 13.99

Smooth silk 10.99 19.95

Royal satin 10.99 19.95

Dual-sided semi-gloss 9.99 17.95

Dual-sided HW semi-gloss -- --

Universal two-sided matte -- --

Transparency 29.95 --

The fields that contain dashes do not have a value. The dash in the table rep-
resents a null value.

COUNT
The COUNT function returns the number of rows in a table, or the number of
rows that meet a specified condition. In the simplest case, we have

SELECT COUNT (*)
FROM PAPERS ;

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 207

Working with Functions208

This returns a value of 10 because there are ten rows in the PAPERS table.
You can add a condition to see how many types of paper are available in
Size 8:

SELECT COUNT (Size8)
FROM PAPERS ;

This returns a value of 8 because of the ten types of paper in the PAPERS
table, only eight are available in size 8. You might also want to know how
many different prices there are for papers of size 8. That is also easy to
determine:

SELECT COUNT (DISTINCT Size8)
FROM PAPERS ;

This returns a value of 6 because there are three instances of 10.99, only one
of which gets counted. Null values are ignored.

AVG
The AVG function calculates and returns the average of the values in the
specified column. It works only on columns that contain numeric data.

SELECT AVG (Size8)
FROM PAPERS ;

This returns a value of 12.485. If you wonder what the average price is for
the Size 11 papers, you can find out this way:

SELECT AVG (Size11)
FROM PAPERS ;

This returns a value of 17.539.

MAX
As you might expect, the MAX function returns the maximum value found in
the specified column. Find the maximum value in the Size8 column:

SELECT MAX (Size8)
FROM PAPERS ;

This returns 29.95, the price for 20 sheets of Size8 transparencies.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 208

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Working with Functions 209

MIN
The MIN function gives you the minimum value found in the specified
column.

SELECT MIN (Size8)
FROM PAPERS ;

Here the value returned is 8.49.

SUM
In the case of the photographic paper example, it doesn’t make much sense
to calculate the sum of all the prices for the papers being offered for sale,
but in other applications, this type of calculation can be valuable. Just in
case you wanted to know what it would cost to buy 20 sheets of every Size11
paper being offered, you could make the following query:

SELECT SUM (Size11)
FROM PAPERS ;

It would cost 122.77 to buy 20 sheets of each of the seven kinds of Size11
paper that are available.

Dissecting data with value functions
A number of data manipulation operations come up fairly frequently. SQL
provides value functions to perform these tasks. There are four types of
value functions:

✦ String value functions

✦ Numeric value functions

✦ Datetime value functions

✦ Interval value functions

In the following subsections, I look at the functions that are available in each
of these categories.

String value functions
String value functions take one character string as input and produce
another character string as output. There are eight string value functions.

✦ SUBSTRING (FROM)

✦ SUBSTRING (SIMILAR)

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 209

Working with Functions210

✦ UPPER

✦ LOWER

✦ TRIM

✦ TRANSLATE

✦ CONVERT

✦ OVERLAY

SUBSTRING (FROM)
The operation of SUBSTRING (FROM) is similar to substring operations in
many other computer languages. Here’s an example:

SUBSTRING (‘manual transmission’ FROM 8 FOR 4)

This returns trans, the substring that starts in the eighth character posi-
tion and continues for four characters. You want to make sure that the start-
ing point and substring length you specify locate the substring entirely
within the source string. If part or all of the substring falls outside the source
string, you could receive a result you are not expecting.

Some implementations do not adhere strictly to the ANSI/ISO standard
syntax for the SUBSTRING function, or for the other functions that follow.
Check the documentation of the implementation you are using if the code
samples given here do not work for you.

SUBSTRING (SIMILAR)
SUBSTRING (SIMILAR) is a regular expression substring function. It divides
a string into three parts and returns the middle part. Consider this example:

SUBSTRING (‘antidisestablishmentarianism’
SIMILAR ‘antidis\”[:ALPHA:]+\”arianism’
ESCAPE ‘\’)

The original string is the first operand. The operand following the SIMILAR
keyword is a character string literal that includes a regular expression in the
form of another character string literal, a separator (\”), a second regular
expression that means “one or more alphabetic characters,” a second sepa-
rator (\”), and a third regular expression in the form of a different character
string literal. The value returned is

establishment

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 210

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Working with Functions 211

UPPER
The UPPER function converts its target string to all uppercase.

UPPER (‘ChAoTic’) returns ‘CHAOTIC’

The UPPER function has no effect on character sets, such as Hebrew, that do
not distinguish between upper- and lowercase.

LOWER
The LOWER function converts its target string to all lowercase.

LOWER (‘INTRUDER ALERT!’) returns ‘intruder alert!’

As is the case for UPPER, LOWER has no effect on character sets that do not
include the concept of case.

TRIM
The TRIM function enables you to crop a string, shaving off characters at
either the front or the back of the string or both. Here are a few examples:

TRIM (LEADING ‘ ‘ FROM ‘ ALERT ‘) returns ‘ALERT ‘
TRIM (TRAILING ‘ ‘ FROM ‘ ALERT ‘) returns ‘ ALERT’
TRIM (BOTH ‘ ‘ FROM ‘ ALERT ‘) returns ‘ALERT’
TRIM (LEADING ‘A’ FROM ‘ALERT’) returns ‘LERT’

If you don’t specify what to trim, the blank space (“ “) is the default.

TRANSLATE and CONVERT
The TRANSLATE and CONVERT functions take a source string in one charac-
ter set and transform the original string into a string in another character
set. Examples might be Greek to English or Katakana to Norwegian. The con-
version functions that specify these transformations are implementation-
specific, so I don’t give any details here.

These functions do not really translate character strings from one language
to another. All they do is translate a character from the first character set
to the corresponding character in the second character set. In going from
Greek to English, it would convert ‘Ελλασ’ as ‘Ellas’ rather than translating it
as “Greece.” “Ελλασ” is what the Greeks call their country. I have no idea
why English speakers call it “Greece.”

OVERLAY
The OVERLAY function is a SUBSTRING function with a little extra functional-
ity. As with SUBSTRING, it finds a specified substring within a target string.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 211

Working with Functions212

However, rather than returning the string that it found, it replaces it with a
different string. For example:

OVERLAY (‘I Love Paris’ PLACING ‘New York’ FROM 8 FOR 5)

This changes the string to

I Love New York

Numeric value functions
Numeric value functions can take a variety of data types as input, but the
output is always a numeric value. SQL has 13 types of numeric value functions:

✦ Position expression (POSITION)

✦ Extract expression (EXTRACT)

✦ Length expression (CHAR_LENGTH, CHARACTER_LENGTH, OCTET_LENGTH)

✦ Cardinality expression (CARDINALITY)

✦ Absolute value expression (ABS)

✦ Modulus expression (MOD)

✦ Natural logarithm (LN)

✦ Exponential function (EXP)

✦ Power function (POWER)

✦ Square root (SQRT)

✦ Floor function (FLOOR)

✦ Ceiling function (CEIL, CEILING)

✦ Width bucket function (WIDTH_BUCKET)

POSITION
POSITION searches for a specified target string within a specified source
string and returns the character position where the target string begins. The
syntax is as follows:

POSITION (target IN source)

Table 1-3 shows a few examples.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 212

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Working with Functions 213

Table 1-3 Sample Uses of the POSITION Statement
This Statement Returns

POSITION (‘T’ IN ‘Transmission, automatic’) 1

POSITION (‘Tra’ IN ‘Transmission, automatic’) 1

POSITION (‘au’ IN ‘Transmission, automatic’) 15

POSITION (‘man’ IN ‘Transmission, automatic’) 0

POSITION (‘’ IN ‘Transmission, automatic’) 1

If the function doesn’t find the target string, the POSITION function returns
a zero value. If the target string has zero length (as in the last example), the
POSITION function always returns a value of one. If any operand in the func-
tion has a null value, the result is a null value.

EXTRACT
The EXTRACT function extracts a single field from a datetime or an interval.
The following statement, for example, returns 12:

EXTRACT (MONTH FROM DATE ‘2007-12-04’)

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in a
character string. The following statement, for example, returns 20:

CHARACTER_LENGTH (‘Transmission, manual’)

This function is not particularly useful if its argument is a literal like
‘Transmission, manual’. I can write 20 just as easily as I can write
CHARACTER_LENGTH (‘Transmission, manual’). In fact, writing 20 is
easier. This function is more useful if its argument is an expression rather
than a literal value.

OCTET_LENGTH
In music, a vocal ensemble made up of eight singers is called an octet.
Typically, the parts that the ensemble represents are first and second
soprano, first and second alto, first and second tenor, and first and second
bass. In computer terminology, an ensemble of eight data bits is called a
byte. The word byte is clever in that the term clearly relates to bit but implies
something larger than a bit. A nice wordplay — but, unfortunately, nothing in
the word byte conveys the concept of “eightness.” By borrowing the musical
term, a more apt description of a collection of eight bits becomes possible.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 213

Working with Functions214

Practically all modern computers use eight bits to represent a single alphanu-
meric character. More complex character sets (such as Chinese) require 16
bits to represent a single character. The OCTET_LENGTH function counts and
returns the number of octets (bytes) in a string. If the string is a bit string,
OCTET_LENGTH returns the number of octets you need to hold that number
of bits. If the string is an English-language character string (with one octet per
character), the function returns the number of characters in the string. If the
string is a Chinese character string, the function returns a number that is
twice the number of Chinese characters. The following string is an example:

OCTET_LENGTH (‘Brakes, disc’)

This function returns 12 because each character takes up one octet.

Some character sets use a variable number of octets for different characters.
In particular, some character sets that support mixtures of Kanji and Latin
characters use escape characters to switch between the two character sets.
A string that contains both Latin and Kanji may have, for example, 30 charac-
ters and require 30 octets if all the characters are Latin; 62 characters if
all the characters are Kanji (60 characters plus a leading and trailing shift
character); and 150 characters if the characters alternate between Latin
and Kanji (because each Kanji character needs two octets for the character
and one octet each for the leading and trailing shift characters). The
OCTET_LENGTH function returns the number of octets you need for the
current value of the string.

CARDINALITY
Cardinality deals with collections of elements such as arrays or multisets,
where each element is a value of some data type. The cardinality of the
collection is the number of elements that it contains. One use of the
CARDINALITY function is something like this:

CARDINALITY (TeamRoster)

This function would return 12, for example, if there were 12 team members
on the roster. TeamRoster, a column in the TEAM table, can be either an
array or a multiset. An array is an ordered collection of elements, and a mul-
tiset is an unordered collection of elements. For a team roster, which
changes frequently, multiset makes more sense.

ABS
The ABS function returns the absolute value of a numeric value expression.

ABS (-273)

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 214

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Working with Functions 215

This returns 273.

MOD
The MOD function returns the modulus of two numeric value expressions.

MOD (6,4)

This function returns 2, the modulus of six divided by four.

LN
The LN function returns the natural logarithm of a numeric value
expression.

LN (6)

This function returns something like 1.791759469. The number of digits
beyond the decimal point is implementation-dependent.

EXP
This function raises the base of the natural logarithms e to the power speci-
fied by a numeric value expression:

EXP (2)

This function returns something like 7.389056. The number of digits beyond
the decimal point is implementation-dependent.

POWER
This function raises the value of the first numeric value expression to the
power of the second numeric value expression:

POWER (3,7)

This function returns 2187, which is three raised to the seventh power.

SQRT
This function returns the square root of the value of the numeric value
expression:

SQRT (9)

This function returns 3, the square root of nine.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 215

Working with Functions216

FLOOR
This function rounds the numeric value expression to the largest integer not
greater than the expression:

FLOOR (2.73)

This function returns 2.0.

CEIL or CEILING
This function rounds the numeric value expression to the smallest integer
not less than the expression.

CEIL (2.73)

This function returns 3.0.

WIDTH_BUCKET
The WIDTH_BUCKET function, used in online application processing (OLAP),
is a function of four arguments, returning an integer between the value of the
second (minimum) argument and the value of the third (maximum) argu-
ment. It assigns the first argument to an equiwidth partitioning of the range
of numbers between the second and third arguments. Values outside this
range are assigned to either the value of zero or one more than the fourth
argument (the number of buckets).

For example:

WIDTH_BUCKET (PI, 0, 10, 5)

Suppose PI is a numeric value expression with a value of 3.141592. The
example partitions the interval from zero to ten into five equal buckets, each
with a width of two. The function returns a value of 2 because 3.141592 falls
into the second bucket, which covers the range from two to four.

Datetime value functions
SQL includes three functions that return information about the current date,
current time, or both. CURRENT_DATE returns the current date; CURRENT_
TIME returns the current time; and CURRENT_TIMESTAMP returns both the
current date and the current time. CURRENT_DATE doesn’t take an argument,
but CURRENT_TIME and CURRENT_TIMESTAMP both take a single argument.
The argument specifies the precision for the seconds part of the time value
that the function returns. Datetime data types and the precision concept are
described in Chapter 6 of Book I.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 216

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Using Expressions 217

The following table offers some examples of these datetime value functions.

This Statement Returns

CURRENT_DATE 2007-05-31

CURRENT_TIME (1) 08:36:57.3

CURRENT_TIMESTAMP (2) 2007-05-31 08:36:57.38

The date that CURRENT_DATE returns is DATE type data. The time that
CURRENT_TIME (p) returns is TIME type data, and the timestamp that
CURRENT_TIMESTAMP(p) returns is TIMESTAMP type data. Because SQL
retrieves date and time information from your computer’s system clock, the
information is correct for the time zone in which the computer resides.

In some applications, you may want to deal with dates, times, or timestamps
as character strings to take advantage of the functions that operate on char-
acter data. You can perform a type conversion by using the CAST expression,
which I describe later in this chapter.

Using Expressions
An expression is any combination of elements that reduces to a single value.
The elements could be numbers, strings, dates, times, intervals, Booleans, or
more complex things. What they are doesn’t matter, as long as after all oper-
ations have taken place, the result is a single value.

Numeric value expressions
The operands in a numeric value expression can be numbers of an exact
numeric type or of an approximate numeric type. Operands of different
types can be used within a single expression. If at least one operand is of
an approximate type, the result is of an approximate type. If all operands are
of exact types, the result is of an exact type. The SQL specification does not
specify exactly what type the result of any given expression will be, due to
the wide variety of platforms that SQL runs on.

Here are some examples of valid numeric value expressions:

✦ –24

✦ 13+78

✦ 4*(5+8)

✦ Weight/(Height*Height)

✦ Miles/5280

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 217

Using Expressions218

String value expressions
String value expressions can consist of a single string or a concatenation
of strings. The concatenation operator (||) is the only one you can use in
a string value expression. Table 1-4 shows some examples of string value
expressions and the strings that they produce.

Table 1-4 Examples of String Value Expressions
String Value Expression Resulting String

‘nanotechnology’ ‘nanotechnology’

‘nano’ || ‘technology’ ‘nanotechnology’

‘nano’ || ‘’ || ‘technology’ ‘nanotechnology’

‘Isaac’ || ‘ ‘ || ‘Newton’ ‘Isaac Newton’

FirstName || ‘ ‘ || LastName ‘Isaac Newton’

B’10101010’ || B’01010101 B’1010101001010101’

Datetime value expressions
Datetime value expressions perform operations on dates and times. Such
data is on the DATE, TIME, TIMESTAMP, or INTERVAL type. The result of a
Datetime value expression is always of the DATE, TIME, or TIMESTAMP type.
Intervals are not one of the datetime types, but an interval can be added to
or subtracted from a datetime to produce another datetime. Here’s an exam-
ple datetime value expression:

CURRENT_DATE + INTERVAL ‘2’ DAY

This expression evaluates to the day after tomorrow.

Datetimes can also include time zone information. The system maintains
times in Universal Time Coordinated (UTC), which until recently was known
as Greenwich Mean Time (GMT). (I guess the feeling was that Greenwich was
too provincial and a more general name for world time was called for.) You
can specify a time as being either at your local time, or as an offset from
UTC. An example is

TIME ‘13:15:00’ AT LOCAL

for 1:15 PM local time. Another example is

TIME ‘13:15:00’ AT TIME ZONE INTERVAL ‘-8:00’ HOUR TO MINUTE

for 1:15 PM Pacific Standard Time. (Pacific Standard Time is eight hours ear-
lier than UTC.)

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 218

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Using Expressions 219

Interval value expressions
An interval is the difference between two datetimes. If you subtract one date-
time from another, the result is an interval. It makes no sense to add two
datetimes, so SQL does not allow you to do it.

There are two kinds of intervals: year-month and day-time. This situation is a
little messy, but necessary because not all months contain the same number
of days. Because a month could be 28, 29, 30, or 31 days long, there is no
direct translation from days to months. As a result, when using an interval,
you must specify which kind of interval it is. Suppose you expect to take an
around-the-world cruise after you retire, starting on June 1, 2045. How many
years and months is that from now? An interval value expression gives you
the answer.

(DATE ‘2048-06-01’ – CURRENT_DATE) YEAR TO MONTH

You can add two intervals to obtain an interval result.

INTERVAL ‘30’ DAY + INTERVAL ‘14’ DAY

However, you cannot do the following:

INTERVAL ‘30’ DAY + INTERVAL ‘14’ MONTH

The two kinds of intervals do not mix. Besides addition and subtraction,
multiplication and division of intervals also are allowed. The expression

INTERVAL ‘7’ DAY * 3

is valid and gives an interval of 21 days. The expression

INTERVAL ‘12’ MONTH / 2

is also valid and gives an interval of 6 months. Intervals can also be negative.

INTERVAL ‘-3’ DAY

gives an interval of -3 days. Aside from the literals I used in the examples
above, any value expression or combination of value expressions that evalu-
ates to an interval can be used in an interval value expression.

Boolean value expressions
Only three legal Boolean values exist: TRUE, FALSE, and UNKNOWN. The
UNKNOWN value becomes operative when a NULL is involved. Suppose the

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 219

Using Expressions220

Boolean variable Signal1 is TRUE, and the Boolean variable Signal2 is FALSE.
The following Boolean value expression evaluates to TRUE.

Signal1 IS TRUE

So does this one:

Signal1 IS TRUE OR Signal2 IS TRUE

However, the following Boolean value expression evaluates to FALSE.

Signal1 IS TRUE AND Signal2 IS TRUE

The AND operator means that both predicates must be true for the result to
be true. Because Signal2 is false, the entire expression evaluates to a FALSE
value.

Array value expressions
You can use a couple of types of expressions with arrays. The first has to
do with cardinality. The maximum number of elements an array can have is
called the array’s maximum cardinality. The actual number of elements in the
array at a given time is called its actual cardinality. You can combine two
arrays by concatenating them, summing their maximum cardinalities in the
process. Suppose you want to know the actual cardinality of the concatena-
tion of two array-type columns in a table, where the first element of the first
column has a given value. You could execute the following statement:

SELECT CARDINALITY (FirstColumn || SecondColumn)
FROM TARGETTABLE

WHERE FirstColumn[1] = 42 ;

The CARDINALITY function gives the combined cardinality of the two
arrays, where the first element in the first array has a value of 42.

Note: The first element of an SQL array is considered to be element 1, rather
than element 0 as is true for some other languages.

Conditional value expressions
The value of a conditional value expression depends on a condition. SQL
offers three variants of conditional value expressions: CASE, NULLIF, and
COALESCE. I look at each of these separately.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 220

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Using Expressions 221

Handling different cases
The CASE conditional expression was added to SQL to give it some of the
functionality that all full-featured computer languages have, the ability to do
one thing if a condition holds and another thing if the condition does not
hold. Originally conceived as a data sublanguage that was only concerned
with managing data, SQL has gradually gained features that enable it to take
on more of the functions needed by application programs.

SQL actually has two different CASE structures: the CASE expression
described here, and a CASE statement. The CASE expression, like all expres-
sions, evaluates to a single value. You can use a CASE expression anywhere
where a value is legal. The CASE statement, on the other hand, doesn’t evalu-
ate to a value. Instead, it executes a block of statements.

The CASE expression searches a table, one row at a time, taking on the value
of a specified result whenever one of a list of conditions is TRUE. If the first
condition is not satisfied for a row, the second condition is tested, and if it is
TRUE, the result specified for it is given to the expression, and so on until all
conditions are processed. If no match is found, the expression takes on a
NULL value. Processing then moves to the next row.

Searching for table rows that satisfy various conditions
You can specify the value to be given to a CASE expression, based on which
of several conditions is satisfied. Here’s the syntax:

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
. . .
WHEN conditionN THEN resultN
ELSE resultx

END

If, in searching a table, the CASE expression finds a row where condition1 is
true, it takes on the value of result1. If condition1 is not true, but condtion2
is true, it takes on the value of result2. This continues for all conditions. If
none of the conditions are met and there is no ELSE clause, the expression is
given the NULL value. Here’s an example of usage:

UPDATE MECHANIC
Set JobTitle = CASE

WHEN Specialty = ‘Brakes’
THEN ‘Brake Fixer’

WHEN Specialty = ‘Engines’
THEN ‘Motor Master’

WHEN Specialty = ‘Electrical’

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 221

Using Expressions222

THEN ‘Wizard’
ELSE ‘Apprentice’

END ;

The equality condition allows a compact CASE value expression
A shorthand version of the CASE statement can be used when the condition,
as in the previous example, is based on equality. The syntax is as follows:

CASE valuet
WHEN value1 THEN result1
WHEN value2 THEN result2
. . .
WHEN valueN THEN resultN
ELSE resultx

END

For the preceding example, this translates to

UPDATE MECHANIC
Set JobTitle = CASE Specialty

WHEN ‘Brakes’ THEN ‘Brake Fixer’
WHEN ‘Engines’ THEN ‘Motor Master’
WHEN ‘Electrical’ THEN ‘Wizard’
ELSE ‘Apprentice’

END ;

If the condition involves anything other than equality, the first, non-abbreviated
form must be used.

The NULLIF special CASE
SQL databases are unusual in that NULL values are allowed. A NULL value
can represent an unknown value, a known value that has just not been
entered into the database yet, or a value that does not exist. Most other lan-
guages that deal with data do not support nulls, so whenever a situation
arises in such databases where a value is not known, not yet entered, or non-
existent, the space is filled with a value that would not otherwise occur, such
as -1 in a field that never holds a negative value, or *** in a character field
in which asterisks are not valid characters.

To migrate data from a database that does not support nulls to an SQL data-
base that does, you can use a CASE statement such as

UPDATE MECHANIC
SET Specialty = CASE Specialty

WHEN ‘***’ THEN NULL
ELSE Specialty

END ;

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 222

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Using Expressions 223

You can do the same thing in a shorthand manner, using a NULLIF expres-
sion, as follows:

UPDATE MECHANIC
SET Specialty = NULLIF(Specialty, ‘***’) ;

Admittedly, this looks more cryptic than the CASE version, but it does save
some tedious typing. You could interpret it as, “Update the MECHANIC table
by setting the value of Specialty to NULL if its current value is ‘***’”.

Bypassing null values with COALESCE
The COALESCE expression is another shorthand version of CASE that deals
with null values. It examines a series of values in a table row and assumes
the value of the first one that is not NULL. If all the listed values are NULL,
the COALESCE expression takes on the NULL value. Here’s the syntax for a
CASE expression that does this:

CASE
WHEN value1 IS NOT NULL

THEN value1
WHEN value2 IS NOT NULL

THEN value2
. . .
WHEN valueN is NOT NULL

THEN valueN
ELSE NULL

END

Here’s the syntax for the equivalent COALESCE expression:

COALESCE(value1, value2, . . ., valueN)

If you are dealing with a large number of cases, the COALESCE version can
save you quite a bit of typing.

Converting data types with a CAST expression
In Chapter 6 of Book I, I describe the data types that SQL recognizes. The
host languages that SQL statements are often embedded in also recognize
data types, and those host language data types are never an exact match for
the SQL data types. This could present a problem, except for the fact that,
with a CAST expression, you can convert data of one type into data of
another type. Whereas the first type might not be compatible with the place
you want to send the data, the second type is. Of course, not all conversions
are possible. If you have a character string such as ‘2007-08-14’, you can

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 223

Using Expressions224

convert it to the DATE type with a CAST expression. However, SQL doesn’t
let you convert a character string such as ‘rhinoceros’ to the DATE type.
The data to be converted must be compatible with the destination type.

Casting one SQL data type to another
The simplest kind of cast is from one SQL data type to another SQL data
type. Even for this operation, however, you cannot indiscriminately make
any conversion you want. The data you are converting must be compatible
with the target data type. For example, suppose you have a table named
ENGINEERS with a column named SSN, which is of the NUMERIC type.
Perhaps you have another table named MANAGERS that has a column
named SocSecNo, which is of the CHAR (9) type. A typical entry in SSN
might be 987654321. To find all the engineers who are also managers, you
can use the following query. The CAST expression converts the CHAR (9)
type to the NUMERIC type so that the operation can proceed.

SELECT * FROM ENGINEER
WHERE ENGINEER.SSN = CAST(MANAGER.SocSecNo AS INTEGER) ;

This returns all the rows from the ENGINEER table that have Social Security
Numbers that match Social Security Numbers in the MANAGERS table. To do
so, it changes the Social Security Number from the MANAGER table from the
CHAR (9) type to the INTEGER type, for the purposes of the comparison.

Using CAST to overcome data type incompatibilities
between SQL and its host language
Problems arise when you want to send data between SQL and its host lan-
guage. For example, SQL has the DECIMAL and NUMERIC types, but some
host languages, such as Fortran and Pascal, do not. One way around this
problem is to use CAST to put a numeric value into a character string, and
then put the character string into a host variable that the host language can
take in and deal with.

Suppose you maintain salary information as REAL type data in the EMPLOYEE
table. You want to make some manipulations on that data that SQL is not well-
equipped to perform, but your host language is. You can cast the data into a
form the host language can accept, operate on it at the host level, and then
cast the result back to a form acceptable to the SQL database.

SELECT CAST(Salary AS CHAR (10)) INTO :salary_var
FROM EMPLOYEE
WHERE EmpID = :emp_id_var ;

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 224

Book III
Chapter 1

Values, Variables,
Functions, and

Expressions
Using Expressions 225

That puts the salary value where the host language can grab it and in a form
that the host language understands. After the host language is finished oper-
ating on the data item, it can return to the SQL database via a similar path:

UPDATE EMPLOYEE
SET Salary = CAST(:salary_var AS DECIMAL(10,2))

WHERE EmpID = :emp_id_var ;

In addition to the conversions shown above, you can do a number of other
conversions:

✦ Any numeric type to any other numeric type

✦ Any exact numeric type to a single-component interval, such as
INTERVAL DAY

✦ Any DATE to a TIMESTAMP

✦ Any TIME to a TIME with a different fractional seconds precision or a
TIMESTAMP

✦ Any TIMESTAMP to a DATE, a TIME, or a TIMESTAMP with a different
fractional seconds precision

✦ Any year-month INTERVAL to an exact numeric type

✦ Any day-time INTERVAL to an exact numeric type

✦ Any character string to any other type, where the data makes sense

✦ Any bit string to a character string

✦ A Boolean to a character string

Row value expressions
Row value expressions enable you to deal with the data in an entire table
row or a subset of a row. The other expressions that I’ve shown deal only
with a single field in a row at a time. Row value expressions are useful for
adding new data to a table a row at a time, or to specify the retrieval of multi-
ple fields from a table row. Here’s an example of a row value expression used
to enter a new row of data to a table:

INSERT INTO CERTIFICATIONS
(CertificationNo, CertName, MechanicID, Expires)
VALUES
(1, ‘V8 Engines’, 34, 2008-07-31) ;

One advantage of using row value expressions is that many SQL implementa-
tions can process them faster than the equivalent one-field-at-a-time opera-
tions. This could make a significant difference in performance at runtime.

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 225

Book III: SQL Queries226

17 119280 bk03ch01.qxp 5/23/07 10:15 AM Page 226

Chapter 2: SELECT Statements
and Modifying Clauses

In This Chapter
� Retrieving data from a database

� Zeroing in on what you want

� Optimizing retrieval performance

� Using views to optimize performance

The main purpose of storing data on a computer is to be able to retrieve
specific elements of the data when you need them. As databases grow in

size, the proportion that you are likely to want on any given occasion grows
smaller. As a result, SQL provides tools that enable you to make retrievals
in a variety of ways. With these tools — SELECT statements and modifying
clauses — you can zero in on the precise pieces of information that you
want, even though they may be buried among megabytes of data that you’re
not interested in at the moment.

Finding Needles in Haystacks
with the SELECT Statement

SQL’s primary tool for retrieving information from a database is the SELECT
statement. In its simplest form, with one modifying clause (a FROM clause), it
retrieves everything from a table. By adding more modifying clauses, you
can whittle down what it retrieves until you are getting exactly what you
want, no more and no less.

Suppose you want to display a complete list of all the customers in your
CUSTOMER table, including every piece of data that the table stores about
each one. That is the simplest retrieval you can do. Here’s the syntax:

SELECT * FROM CUSTOMER ;

The asterisk (*) is a wildcard character that means “all columns.” This
statement returns all the data held in all the rows of the CUSTOMER table.
Sometimes that is what you want. At other times, you may only want some

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 227

Modifying Clauses228

of the data on some of the customers: those that satisfy one or more condi-
tions. For such refined retrievals, you must use one or more modifying
clauses.

Modifying Clauses
In any SELECT statement, the FROM clause is mandatory. You must specify
the source of the data you want to retrieve. Other modifying clauses are
optional. They serve several different functions:

✦ The WHERE clause specifies a condition. Only those table rows that sat-
isfy the condition are returned.

✦ The GROUP BY clause rearranges the order of the rows returned by plac-
ing rows together than have the same value in a grouping column.

✦ The HAVING clause that filters out groups that do not meet a specified
condition.

✦ The ORDER BY clause sorts whatever is left after all the other modifying
clauses have had a chance to operate.

FROM clauses
The FROM clause is easy to understand if you specify only one table, as in the
example above:

SELECT * FROM CUSTOMER ;

This statement returns all the data in all the rows of every column in the
CUSTOMER table. You can, however, specify more than one table in a FROM
clause. Consider the following example:

SELECT *
FROM CUSTOMER, INVOICE ;

This statement forms a virtual table that combines the data from the
CUSTOMER table with the data from the INVOICE table. Each row in the
CUSTOMER table combines with every row in the INVOICE table to form the
new table. The new virtual table that this combination forms contains the
number of rows in the CUSTOMER table multiplied by the number of rows
in the INVOICE table. If the CUSTOMER table has 10 rows and the INVOICE
table has 100, the new virtual table has 1,000 rows.

This operation is called the Cartesian product of the two source tables. The
Cartesian product is a type of JOIN. I cover JOIN operations in detail in
Chapter 4 of this minibook.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 228

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 229

In most applications, the majority of the rows that form as a result of taking
the Cartesian product of two tables are meaningless. In the case of the vir-
tual table that forms from the CUSTOMER and INVOICE tables, only the rows
where the CustomerID from the CUSTOMER table matches the CustomerID
from the INVOICE table are of interest. You can filter out the rest of the rows
by using a WHERE clause.

WHERE clauses
I use the WHERE clause many times throughout this book without really
explaining it because its meaning and use are obvious: A statement performs
an operation (such as a SELECT, DELETE, or UPDATE) only on table rows
where a stated condition is True. The syntax of the WHERE clause is as
follows:

SELECT column_list
FROM table_name
WHERE condition ;

DELETE FROM table_name
WHERE condition ;

UPDATE table_name
SET column1=value1, column2=value2, ..., columnn=valuen

WHERE condition ;

The condition in the WHERE clause may be simple or arbitrarily complex.
You may join multiple conditions together by using the logical connectives
AND, OR, and NOT (which I discuss later in this chapter) to create a single
condition.

The following statements show you some typical examples of WHERE clauses:

WHERE CUSTOMER.CustomerID = INVOICE.CustomerID
WHERE MECHANIC.EmployeeID = CERTIFICATION.MechanicID
WHERE PART.QuantityInStock < 10
WHERE PART.QuantityInStock > 100 AND PART.CostBasis > 100.00

The conditions that these WHERE clauses express are known as predicates. A
predicate is an expression that asserts a fact about values.

The predicate PART.QuantityInStock < 10, for example, is True if the
value for the current row of the column PART.QuantityInStock is less than 10.
If the assertion is True, it satisfies the condition. An assertion may be True,
False, or unknown. The unknown case arises if one or more elements in the
assertion are null. The comparison predicates (=, <, >, <>, <=, and >=) are the

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 229

Modifying Clauses230

most common, but SQL offers several others that greatly increase your capa-
bility to distinguish, or “filter out,” a desired data item from others in the
same column. The following list notes the predicates that give you that filter-
ing capability:

✦ Comparison predicates

✦ BETWEEN

✦ IN [NOT IN]

✦ LIKE [NOT LIKE]

✦ NULL

✦ ALL, SOME, ANY

✦ EXISTS

✦ UNIQUE

✦ OVERLAPS

✦ MATCH

✦ SIMILAR

✦ DISTINCT

Comparison predicates
The examples in the preceding section show typical uses of comparison
predicates in which you compare one value to another. For every row in
which the comparison evaluates to a TRUE value, that value satisfies the
WHERE clause, and the operation (SELECT, UPDATE, DELETE, or whatever)
executes upon that row. Rows that the comparison evaluates to FALSE are
skipped. Consider the following SQL statement:

SELECT * FROM PART
WHERE QuantityInStock < 10 ;

This statement displays all rows from the PART table that have a value of
less than 10 in the QuantityInStock column.

Six comparison predicates are listed in Table 2-1.

Table 2-1 SQL’s Comparison Predicates
Comparison Symbol

Equal =

Not equal <>

Less than <

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 230

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 231

Comparison Symbol

Less than or equal <=

Greater than >

Greater than or equal >=

BETWEEN
Sometimes, you want to select a row if the value in a column falls within a
specified range. One way to make this selection is by using comparison pred-
icates. For example, you can formulate a WHERE clause to select all the rows
in the PART table that have a value in the QuantityInStock column greater
than 10 and less than 100, as follows:

WHERE PART.QuantityInStock > 10 AND PART.QuantityInStock < 100

This comparison doesn’t include parts with a quantity in stock of exactly 10
or 100 — only those values that fall in between these two numbers. To
include the end points, you can write the statement as follows:

WHERE PART.QuantityInStock >= 10 AND PART.QuantityInStock <= 100

Another way of specifying a range that includes the end points is to use a
BETWEEN predicate, like this:

WHERE PART.QuantityInStock BETWEEN 10 AND 100

This clause is functionally identical to the preceding example, which uses
comparison predicates. This formulation saves some typing and is a little
more intuitive than the one that uses two comparison predicates joined by
the logical connective AND.

The BETWEEN keyword may be confusing because it doesn’t tell you explic-
itly whether the clause includes the end points. In fact, the clause does
include these end points. BETWEEN also fails to tell you explicitly that the
first term in the comparison must be equal to or less than the second. If, for
example, PART.QuantityInStock contains a value of 50, the following clause
returns a True value:

WHERE PART.QuantityInStock BETWEEN 10 AND 100

However, a clause that you may think is equivalent to the preceding example
returns the opposite result, False:

WHERE PART.QuantityInStock BETWEEN 100 AND 10

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 231

Modifying Clauses232

If you use BETWEEN, you must be able to guarantee that the first term in your
comparison is always equal to or less than the second term.

You can use the BETWEEN predicate with character, bit, and datetime data
types as well as with the numeric types. You may see something like the fol-
lowing example:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE CUSTOMER.LastName BETWEEN ‘A’ AND ‘Mzzz’ ;

This example returns all customers whose last names are in the first half of
the alphabet.

IN and NOT IN
The IN and NOT IN predicates deal with whether specified values (such as
GA, AL, and MS) are contained within a particular set of values (such as the
states of the United States). You may, for example, have a table that lists sup-
pliers of a commodity that your company purchases on a regular basis. You
want to know the phone numbers of those suppliers located in the southern
United States. You can find these numbers by using comparison predicates,
such as those shown in the following example:

SELECT Company, Phone
FROM SUPPLIER
WHERE State = ‘GA’ OR State = ‘AL’ OR State = ‘MS’ ;

You can also use the IN predicate to perform the same task, as follows:

SELECT Company, Phone
FROM SUPPLIER
WHERE State IN (‘GA’, ‘AL’, ‘MS’) ;

This formulation is more compact than the one using comparison predicates
and logical OR.

The NOT IN version of this predicate works the same way. Say that you have
locations in New York, New Jersey, and Connecticut, and to avoid paying
sales tax, you want to consider using suppliers located anywhere except in
those states. Use the following construction:

SELECT Company, Phone
FROM SUPPLIER
WHERE State NOT IN (‘NY’, ‘NJ’, ‘CT’) ;

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 232

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 233

Using the IN keyword this way saves you a little typing. Saving a little typing,
however, isn’t that great of an advantage. You can do the same job by using
comparison predicates, as shown in this section’s first example.

You may have another good reason to use the IN predicate rather than com-
parison predicates, even if using IN doesn’t save much typing. Your DBMS
probably implements the two methods differently, and one of the methods
may be significantly faster than the other on your system. You may want to
run a performance comparison on the two ways of expressing inclusion in
(or exclusion from) a group and then use the technique that produces the
quicker result. A DBMS with a good optimizer will probably choose the more
efficient method, regardless of which kind of predicate you use. A perform-
ance comparison gives you some idea of how good your DBMS’s optimizer
is. If a significant difference between the run times of the two statements
exists, the quality of your DBMS’s optimizer is called into question.

The IN keyword is valuable in another area, too. If IN is part of a subquery,
the keyword enables you to pull information from two tables to obtain
results that you can’t derive from a single table. I cover subqueries in detail
in Chapter 3, but following is an example that shows how a subquery uses
the IN keyword.

Suppose that you want to display the names of all customers who’ve bought
the flux capacitor product in the last 30 days. Customer names are in the
CUSTOMER table, and sales transaction data is in the PART table. You can
use the following query:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE CustomerID IN
(SELECT CustomerID
FROM INVOICE
WHERE SalesDate >= (CurrentDate – 30) AND InvoiceNo IN
(SELECT InvoiceNo
FROM INVOICE_LINE
WHERE PartNo IN
(SELECT PartNo
FROM PART
WHERE NAME = ‘flux capacitor’) ;

The inner SELECT of the INVOICE table nests within the outer SELECT of the
CUSTOMER table. The inner SELECT of the INVOICE_LINE table nests within
the outer SELECT of the INVOICE table. The inner select of the PART table
nests within the outer SELECT of the INVOICE_LINE table. The innermost
SELECT finds the CustomerID numbers of all customers who bought the flux
capacitor product in the last 30 days. The outermost SELECT displays the
first and last names of all customers whose CustomerID is retrieved by the
inner SELECT statements.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 233

Modifying Clauses234

LIKE and NOT LIKE
You can use the LIKE predicate to compare two character strings for a partial
match. Partial matches are valuable if you don’t know the exact form of the
string for which you’re searching. You can also use partial matches to retrieve
multiple rows that contain similar strings in one of the table’s columns.

To identify partial matches, SQL uses two wildcard characters. The percent
sign (%) can stand for any string of characters that have zero or more char-
acters. The underscore (_) stands for any single character. Table 2-2 pro-
vides some examples that show how to use LIKE.

Table 2-2 SQL’s LIKE Predicate
Statement Values Returned

WHERE String LIKE ‘auto%’ auto

automotive

automobile

automatic

autocracy

WHERE String LIKE ‘%ode%’ code of conduct

model citizen

WHERE String LIKE ‘_o_e’ mope

tote

rope

love

cone

node

The NOT LIKE predicate retrieves all rows that don’t satisfy a partial match,
including one or more wildcard characters, as in the following example:

WHERE Email NOT LIKE ‘%@databasecentral.info’

This example returns all the rows in the table where the e-mail address is not
hosted at DatabaseCentral.Info.

You may want to search for a string that includes a percent sign or an under-
score. In this case, you want SQL to interpret the percent sign as a percent
sign and not as a wildcard character. You can conduct such a search by
typing an escape character just prior to the character you want SQL to take

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 234

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 235

literally. You can choose any character as the escape character, as long as
that character doesn’t appear in the string that you’re testing, as shown in
the following example:

SELECT Quote
FROM BARTLETTS
WHERE Quote LIKE ‘20#%’

ESCAPE ‘#’ ;

The % character is escaped by the preceding # sign, so the statement inter-
prets this symbol as a percent sign rather than as a wildcard. You can escape
an underscore or the escape character itself, in the same way. The preceding
query, for example, would find the following quotation in Bartlett’s Familiar
Quotations:

20% of the salespeople produce 80% of the results.

The query would also find the following:

20%

SIMILAR
The SIMILAR predicate offers a more powerful way of finding partial matches
than the LIKE predicate provides. With the SIMILAR predicate, you can
compare a character string to a regular expression. For example, say you’re
searching the ChessPiece column of the inventory table of a chess game man-
ufacturer. You could construct a WHERE clause such as the following:

WHERE ChessPiece SIMILAR TO
‘(‘Black ‘(pawn|knight|bishop|rook|queen|king))’

This predicate retrieves all rows that contain any of the specified chess
pieces. The vertical bar is the OR operator, so any row that has a black pawn,
or a black knight, and so on, is retrieved.

NULL
The NULL predicate finds all rows where the value in the selected column is
null. In the photographic paper price list table in Chapter 1, several rows
have null values in the Size11 column. You can retrieve their names by using
a statement such as the following:

SELECT (PaperType)
FROM PAPERS
WHERE Size11Price IS NULL ;

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 235

Modifying Clauses236

This query returns the following values:

Dual-Sided HW Semi-Gloss
Universal 2-Sided Matte
Transparency

As you may expect, including the NOT keyword reverses the result, as in the
following example:

SELECT (PaperType)
FROM PAPERS
WHERE Size11Price IS NOT NULL ;

This query returns all the rows in the table except the three that the preced-
ing query returns.

The statement Size11Price IS NULL is not the same as Size11Price =
NULL. To illustrate this point, assume that, in the current row of the PAPERS
table, both Size11Price and Size8Price are null. From this fact, you can draw
the following conclusions:

✦ Size11Price IS NULL is True.

✦ Size8Price IS NULL is True.

✦ (Size11Price IS NULL AND Size8Price IS NULL) is True.

✦ Size11Price = Size8Price is unknown.

✦ Size11Price = NULL is an illegal expression.

Using the keyword NULL in a comparison is meaningless because the answer
always returns as unknown.

Why is Size11Price = Size8Price defined as unknown, even though
Size11Price and Size8Price have the same (null) value? Because NULL simply
means “I don’t know.” You don’t know what Size11Price is, and you don’t
know what Size8Price is; therefore, you don’t know whether those
(unknown) values are the same. Maybe Size11Price is 9.95 and Size8Price is
8.95, or maybe Size11Price is 10.95 and Size8Price is 10.95. If you don’t know
both the Size 11 value and the Size8 value, you can’t say whether the two are
the same.

ALL, SOME, ANY
Thousands of years ago, the Greek philosopher Aristotle formulated a
system of logic that became the basis for much of Western thought. The
essence of this logic is to start with a set of premises that you know to be

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 236

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 237

true, apply valid operations to these premises, and, thereby arrive at new
truths. The classic example of this procedure is as follows:

Premise 1: All Greeks are human.

Premise 2: All humans are mortal.

Conclusion: All Greeks are mortal.

Another example:

Premise 1: Some Greeks are women.

Premise 2: All women are human.

Conclusion: Some Greeks are human.

Another way of stating the same logical idea of this second example is as
follows:

If any Greeks are women and all women are human, then some Greeks
are human.

The first example uses the universal quantifier ALL in both premises, enabling
you to make a sound deduction about all Greeks in the conclusion. The
second example uses the existential quantifier SOME in one premise, enabling
you to make a deduction about some, but not all, Greeks in the conclusion.
The third example uses the existential quantifier ANY, which is a synonym for
SOME, to reach the same conclusion you reach in the second example.

ANY can be ambiguous
The original SQL used the word ANY for exis-
tential quantification. This usage turned out to be
confusing and error-prone because the English
language connotations of any are sometimes
universal and sometimes existential:

� “Do any of you know where Wilbur
Street is?”

� “I can eat more pizza than any of you.”

The first sentence is probably asking whether
at least one person knows where Wilbur Street

is. Any is used as an existential quantifier. The
second sentence, however, is a boast that’s
stating that I can eat more pizza than the
biggest eater among all you people can eat. In
this case, any is used as a universal quantifier.

Thus, for the SQL-92 standard, the developers
retained the word ANY for compatibility with
early products but added the word SOME as a
less confusing synonym. SQL continues to sup-
port both existential quantifiers.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 237

Modifying Clauses238

Look at how SOME, ANY, and ALL apply in SQL.

Consider an example in baseball statistics. Baseball is a physically demand-
ing sport, especially for pitchers. A pitcher must throw the baseball from the
pitcher’s mound, at speeds up to 100 miles per hour, to home plate between
90 and 150 times during a game. This effort can be very tiring, and many
times, the pitcher becomes ineffective, and a relief pitcher must replace him
before the game ends. Pitching an entire game is an outstanding achieve-
ment, regardless of whether the effort results in a victory.

Suppose that you’re keeping track of the number of complete games that all
major-league pitchers pitch. In one table, you list all the American League
pitchers, and in another table, you list all the National League pitchers. Both
tables contain the players’ first names, last names, and number of complete
games pitched.

The American League permits a designated hitter (DH) (who isn’t required
to play a defensive position) to bat in place of any of the nine players who
play defense. Usually the DH bats for the pitcher because pitchers are noto-
riously poor hitters. (Pitchers must spend so much time and effort on per-
fecting their pitching that they do not have as much time to practice batting
as the other players do.)

Say that you have a theory that, on average, American League starting pitch-
ers throw more complete games than do National League starting pitchers.
This is based on your observation that designated hitters enable hard-
throwing, but weak-hitting, American League pitchers to stay in close games.
Because the DH is already batting for them, the fact that they are poor hit-
ters is not a liability. In the National League, however, a pinch hitter would
replace a comparable National League pitcher in a close game because he
would have a better chance at getting a hit. To test your theory, you formu-
late the following query:

SELECT FirstName, LastName
FROM AMERICAN_LEAGUER
WHERE CompleteGames > ALL

(SELECT CompleteGames
FROM NATIONAL_LEAGUER) ;

The subquery (the inner SELECT) returns a list, showing for every National
League pitcher, the number of complete games he pitched. The outer query
returns the first and last names of all American Leaguers who pitched more
complete games than ALL of the National Leaguers. The query returns the
names of those American League pitchers who pitched more complete
games than the pitcher who has thrown the most complete games in the
National League.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 238

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 239

Consider the following similar statement:

SELECT FirstName, LastName
FROM AMERICAN_LEAGUER
WHERE CompleteGames > ANY

(SELECT CompleteGames
FROM NATIONAL_LEAGUER) ;

In this case, you use the existential quantifier ANY instead of the universal
quantifier ALL. The subquery (the inner, nested query) is identical to the
subquery in the previous example. This subquery retrieves a complete list of
the complete game statistics for all the National League pitchers. The outer
query returns the first and last names of all American League pitchers who
pitched more complete games than ANY National League pitcher. Because
you can be virtually certain that at least one National League pitcher hasn’t
pitched a complete game, the result probably includes all American League
pitchers who’ve pitched at least one complete game.

If you replace the keyword ANY with the equivalent keyword SOME, the result
is the same. If the statement that at least one National League pitcher hasn’t
pitched a complete game is a true statement, you can then say that SOME
National League pitcher hasn’t pitched a complete game.

EXISTS
You can use the EXISTS predicate in conjunction with a subquery to deter-
mine whether the subquery returns any rows. If the subquery returns at
least one row, that result satisfies the EXISTS condition, and the outer query
executes. Consider the following example:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE EXISTS
(SELECT DISTINCT CustomerID
FROM INVOICE
WHERE INVOICE.CustomerID = CUSTOMER.CustomerID);

The INVOICE table contains all of your company’s sales transactions. The
table includes the CustomerID of the customer who makes each purchase, as
well as other pertinent information. The CUSTOMER table contains each cus-
tomer’s first and last names, but no information about specific transactions.

The subquery in the preceding example returns a row for every customer
who has made at least one purchase. The outer query returns the first and
last names of the customers who made the purchases that the INVOICE table
records.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 239

Modifying Clauses240

EXISTS is equivalent to a comparison of COUNT with zero, as the following
query shows:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE 0 <>
(SELECT COUNT(*)
FROM INVOICE
WHERE INVOICE.CustomerID = CUSTOMER.CustomerID);

For every row in the INVOICE table that contains a CustomerID that’s
equal to a CustomerID in the CUSTOMER table, this statement displays the
FirstName and LastName columns in the CUSTOMER table. For every sale
in the INVOICE table, therefore, the statement displays the name of the
customer who made the purchase.

UNIQUE
As you do with the EXISTS predicate, you use the UNIQUE predicate with a
subquery. Although the EXISTS predicate evaluates to True only if the sub-
query returns at least one row, the UNIQUE predicate evaluates to True only
if no two rows that the subquery returns are identical. In other words, the
UNIQUE predicate evaluates to True only if all rows that its subquery returns
are unique. Consider the following example:

SELECT FirstName, LastName
FROM CUSTOMER
WHERE UNIQUE
(SELECT CustomerID FROM INVOICE

WHERE INVOICE.CustomerID = CUSTOMER.CustomerID);

This statement retrieves the names of all new customers for whom the
INVOICE table records only one sale. Two null values are considered to be
not equal to each other and thus unique. When the UNIQUE keyword is
applied to a result table that only contains two null rows, the UNIQUE predi-
cate evaluates to True.

DISTINCT
The DISTINCT predicate is similar to the UNIQUE predicate, except in the
way it treats nulls. If all the values in a result table are UNIQUE, they’re also
DISTINCT from each other. However, unlike the result for the UNIQUE predi-
cate, if the DISTINCT keyword is applied to a result table that contains only
two null rows, the DISTINCT predicate evaluates to False. Two null values
are not considered distinct from each other, while at the same time they are
considered to be unique. This strange situation seems contradictory, but
there’s a reason for it. In some situations, you may want to treat two null

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 240

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 241

values as different from each other, whereas in other situations, you want to
treat them as if they’re the same. In the first case, use the UNIQUE predicate.
In the second case, use the DISTINCT predicate.

OVERLAPS
You use the OVERLAPS predicate to determine whether two time intervals
overlap each other. This predicate is useful for avoiding scheduling conflicts.
If the two intervals overlap, the predicate returns a True value. If they don’t
overlap, the predicate returns a False value.

You can specify an interval in two ways: either as a start time and an end
time or as a start time and a duration. Following are a few examples:

(TIME ‘2:55:00’, INTERVAL ‘1’ HOUR)
OVERLAPS
(TIME ‘3:30:00’, INTERVAL ‘2’ HOUR)

The preceding example returns a True because 3:30 is less than one hour
after 2:55.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:29:00’, TIME ‘9:31:00’)

The preceding example returns a True because you have a one-minute over-
lap between the two intervals.

(TIME ‘9:00:00’, TIME ‘10:00:00’)
OVERLAPS
(TIME ‘10:15:00’, INTERVAL ‘3’ HOUR)

The preceding example returns a False because the two intervals don’t
overlap.

(TIME ‘9:00:00’, TIME ‘9:30:00’)
OVERLAPS
(TIME ‘9:30:00’, TIME ‘9:35:00’)

This example returns a False because even though the two intervals are
contiguous, they don’t overlap.

MATCH
In Book 2 Chapter 3, I discuss referential integrity, which involves maintain-
ing consistency in a multitable database. You can lose integrity by adding a
row to a child table that doesn’t have a corresponding row in the child’s

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 241

Modifying Clauses242

parent table. You can cause similar problems by deleting a row from a parent
table if rows corresponding to that row exist in a child table.

Say that your business has a CUSTOMER table that keeps track of all your
customers and a TRANSACT table that records all sales transactions. You
don’t want to add a row to TRANSACT until after you enter the customer
making the purchase into the CUSTOMER table. You also don’t want to
delete a customer from the CUSTOMER table if that customer made pur-
chases that exist in the TRANSACT table. Before you perform an insertion
or deletion, you may want to check the candidate row to make sure that
inserting or deleting that row doesn’t cause integrity problems. The MATCH
predicate can perform such a check.

To examine the MATCH predicate, I use an example that employs the
CUSTOMER and TRANSACT tables. CustomerID is the primary key of the
CUSTOMER table and acts as a foreign key in the TRANSACT table. Every
row in the CUSTOMER table must have a unique, nonnull CustomerID.
CustomerID isn’t unique in the TRANSACT table because repeat customers
buy more than once. This situation is fine and does not threaten integrity
because CustomerID is a foreign key rather than a primary key in that table.

Seemingly, CustomerID can be null in the TRANSACT table because someone
can walk in off the street, buy something, and walk out before you get a
chance to enter his name and address into the CUSTOMER table. This
situation can create a row in the child table with no corresponding row in
the parent table. To overcome this problem, you can create a generic cus-
tomer in the CUSTOMER table and assign all such anonymous sales to that
customer.

Say that a customer steps up to the cash register and claims that she
bought a flux capacitor on May 18, 2007. She now wants to return the device
because her Delorean lacks time circuits, and so the flux capacitor is of no
use. You can verify her claim by searching your TRANSACT database for a
match. First, you must retrieve her CustomerID into the variable vcustid;
then you can use the following syntax:

... WHERE (:vcustid, ‘flux capacitor’, ‘2007-05-18’)
MATCH
(SELECT CustomerID, ProductName, Date

FROM TRANSACT)

If a sale exists for that customer ID for that product on that date, the MATCH
predicate returns a True value. Take back the product and refund the cus-
tomer’s money. (Note: If any values in the first argument of the MATCH predi-
cate are null, a True value always returns.)

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 242

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 243

SQL’s developers added the MATCH predicate and the UNIQUE predicate for
the same reason — they provide a way to explicitly perform the tests
defined for the implicit referential integrity (RI) and UNIQUE constraints.

The general form of the MATCH predicate is as follows:

Row_value MATCH [UNIQUE] [SIMPLE| PARTIAL | FULL] Subquery

The UNIQUE, SIMPLE, PARTIAL, and FULL options relate to rules that come
into play if the row value expression R has one or more columns that are
null. The rules for the MATCH predicate are a copy of corresponding referen-
tial integrity rules.

The MATCH predicate and referential integrity
Referential integrity rules require that the values of a column or columns in
one table match the values of a column or columns in another table. You
refer to the columns in the first table as the foreign key and the columns in
the second table as the primary key or unique key. For example, you may
declare the column EmpDeptNo in an EMPLOYEE table as a foreign key that
references the DeptNo column of a DEPT table. This matchup ensures that if
you record an employee in the EMPLOYEE table as working in department
123, a row appears in the DEPT table where DeptNo is 123.

This situation is fairly straightforward if the foreign key and primary key
both consist of a single column. The two keys can, however, consist of multi-
ple columns. The DeptNo value, for example, may be unique only within a
Location; therefore, to uniquely identify a DEPT row, you must specify both a
Location and a DeptNo. If both the Boston and Tampa offices have a depart-
ment 123, you need to identify the departments as (‘Boston’, ‘123’) and
(‘Tampa’, ‘123’). In this case, the EMPLOYEE table needs two columns to
identify a DEPT. Call those columns EmpLoc and EmpDeptNo. If an employee
works in department 123 in Boston, the EmpLoc and EmpDeptNo values are
‘Boston’ and ‘123’. And the foreign key declaration in EMPLOYEE is as
follows:

FOREIGN KEY (EmpLoc, EmpDeptNo)
REFERENCES DEPT (Location, DeptNo)

Drawing valid conclusions from your data is complicated immensely if the
data contains nulls. Sometimes you want to treat null-containing data one
way, and sometimes you want to treat it another way. The UNIQUE, SIMPLE,
PARTIAL, and FULL keywords specify different ways of treating data that con-
tains nulls. If your data does not contain any null values, you can save yourself
a lot of head-scratching by merely skipping to the section called “Logical

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 243

Modifying Clauses244

Connectives” later in this chapter. If your data does contain null values, drop
out of Evelyn Woods speed-reading mode now and read the following para-
graphs slowly and carefully. Each paragraph presents a different situation with
respect to null values and tells how the MATCH predicate handles it.

If the values of EmpLoc and EmpDeptNo are both nonnull or both null, the ref-
erential integrity rules are the same as for single-column keys with values that
are null or nonnull. But if EmpLoc is null and EmpDeptNo is nonnull — or
EmpLoc is nonnull and EmpDeptNo is null — you need new rules. What should
the rules be if you insert or update the EMPLOYEE table with EmpLoc and
EmpDeptNo values of (NULL, ‘123’) or (‘Boston’, NULL)? You have six
main alternatives, SIMPLE, PARTIAL, and FULL, each either with or without
the UNIQUE keyword. The UNIQUE keyword, if present, means that a matching
row in the subquery result table must be unique in order for the predicate to
evaluate to a True value. If both components of the row value expression R
are null, the MATCH predicate returns a True value regardless of the contents
of the subquery result table being compared.

If neither component of the row value expression R is null, SIMPLE is speci-
fied, UNIQUE is not specified, and at least one row in the subquery result
table matches R, the MATCH predicate returns a True value. Otherwise, it
returns a False value.

If neither component of the row value expression R is null, SIMPLE is speci-
fied, UNIQUE is specified, and at least one row in the subquery result table is
both unique and matches R, the MATCH predicate returns a True value.
Otherwise, it returns a False value.

If any component of the row value expression R is null and SIMPLE is speci-
fied, the MATCH predicate returns a True value.

If any component of the row value expression R is nonnull, PARTIAL is speci-
fied, UNIQUE is not specified, and the nonnull parts of at least one row in the
subquery result table matches R, the MATCH predicate returns a True value.
Otherwise, it returns a False value.

If any component of the row value expression R is nonnull, PARTIAL is speci-
fied, UNIQUE is specified, and the nonnull parts of R match the nonnull parts
of at least one unique row in the subquery result table, the MATCH predicate
returns a True value. Otherwise, it returns a False value.

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is not specified, and at least one row in the subquery result table
matches R, the MATCH predicate returns a True value. Otherwise, it returns
a False value.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 244

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 245

If neither component of the row value expression R is null, FULL is specified,
UNIQUE is specified, and at least one row in the subquery result table is both
unique and matches R, the MATCH predicate returns a True value.
Otherwise, it returns a False value.

If any component of the row value expression R is null and FULL is specified,
the MATCH predicate returns a False value.

Logical connectives
Often, as a number of previous examples show, applying one condition in a
query isn’t enough to return the rows that you want from a table. In some
cases, the rows must satisfy two or more conditions. In other cases, if a
row satisfies any of two or more conditions, it qualifies for retrieval. On
other occasions, you want to retrieve only rows that don’t satisfy a specified
condition. To meet these needs, SQL offers the logical connectives AND, OR,
and NOT.

AND
If multiple conditions must all be True before you can retrieve a row, use the
AND logical connective. Consider the following example:

SELECT InvoiceNo, SaleDate, SalesPerson, TotalSale
FROM SALES
WHERE SaleDate >= ‘2007-05-14’

AND SaleDate <= ‘2007-05-21’ ;

Rule by committee
The SQL-89 version of the standard specified
the UNIQUE rule as the default, before anyone
proposed or debated the alternatives. During
development of the SQL-92 version of the stan-
dard, proposals appeared for the alternatives.
Some people strongly preferred the PARTIAL
rules and argued that they should be the only
rules. These people thought that the SQL-89
(UNIQUE) rules were so undesirable that they
thought those rules should be considered a bug
and the PARTIAL rules specified as a correc-
tion. Other people preferred the UNIQUE rules

and thought that the PARTIAL rules were
obscure, error-prone, and inefficient. Still other
people preferred the additional discipline of the
FULL rules. The issue was finally settled by
providing all three keywords so that users
could choose whichever approach they pre-
ferred. SQL:1999 added the SIMPLE rules. The
proliferation of rules makes dealing with nulls
anything but simple. If SIMPLE, PARTIAL, or
FULL is not specified, the SIMPLE rules are
followed.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 245

Modifying Clauses246

The WHERE clause must meet the following two conditions:

✦ SaleDate must be greater than or equal to May 14, 2007.

✦ SaleDate must be less than or equal to May 22, 2007.

Only rows that record sales occurring during the week of May 14 meet both
conditions. The query returns only these rows.

Notice that the AND connective is strictly logical. This restriction can some-
times be confusing because people commonly use the word and with a
looser meaning. Suppose, for example, that your boss says to you, “I’d like
to see the sales for Acheson and Bryant.” He said, “Acheson and Bryant,” so
you may write the following SQL query:

SELECT *
FROM SALES
WHERE Salesperson = ‘Acheson’

AND Salesperson = ‘Bryant’;

Well, don’t take that answer back to your boss. The following query is more
like what he had in mind:

SELECT *
FROM SALES
WHERE Salesperson IN (‘Acheson’, ‘Bryant’) ;

The first query won’t return anything, because none of the sales in the
SALES table were made by both Acheson and Bryant. The second query
returns the information on all sales made by either Acheson or Bryant,
which is probably what the boss wanted.

OR
If any one of two or more conditions must be True to qualify a row for
retrieval, use the OR logical connective, as in the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES

WHERE Salesperson = ‘Bryant’
OR TotalSale > 200 ;

This query retrieves all of Bryant’s sales, regardless of how large, as well as
all sales of more than $200, regardless of who made the sales.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 246

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 247

NOT
The NOT connective negates a condition. If the condition normally returns a
True value, adding NOT causes the same condition to return a False value. If
a condition normally returns a False value, adding NOT causes the condi-
tion to return a True value. Consider the following example:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES

WHERE NOT (Salesperson = ‘Bryant’) ;

This query returns rows for all sales transactions completed by salespeople
other than Bryant.

When you use AND, OR, or NOT, sometimes the scope of the connective isn’t
clear. To be safe, use parentheses to make sure that SQL applies the connec-
tive to the predicate you want. In the preceding example, the NOT connective
applies to the entire predicate (Salesperson = ‘Bryant’).

GROUP BY clauses
Sometimes, rather than retrieving individual records, you want to know
something about a group of records. The GROUP BY clause is the tool you
need.

Suppose you’re the sales manager and you want to look at the performance
of your sales force. You could do a simple SELECT such as the following:

SELECT InvoiceNo, SaleDate, Salesperson, TotalSale
FROM SALES;

You would receive a result similar to that shown in Figure 2-1.

Figure 2-1:
The result
set for
retrieval of
sales from
08/01/2007
to
08/07/2007.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 247

Modifying Clauses248

This result gives you some idea of how well your salespeople are doing
because so few total sales are involved. However, in real life, a company
would have many more sales, and it wouldn’t be as easy to tell whether sales
objectives were being met. To do that, you can combine the GROUP BY
clause with one of the aggregate functions (also called set functions) to get a
quantitative picture of sales performance. For example, you can see which
salesperson is selling more of the profitable high-ticket items by using the
average (AVG) function as follows:

SELECT Salesperson, AVG(TotalSale)
FROM SALES
GROUP BY Salesperson;

You would receive a result similar to that shown in Figure 2-2.

As shown in Figure 2-2, Bennett’s average sale is considerably higher than
that of the other two salespeople. You compare total sales with a similar
query:

SELECT Salesperson, SUM(TotalSale)
FROM SALES
GROUP BY Salesperson;

This gives the result shown in Figure 2-3.

Figure 2-3:
Total sales
for each
salesperson.

Figure 2-2:
Average
sales for
each
salesperson.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 248

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Modifying Clauses 249

Bennett also has the highest total sales, which is consistent with having the
highest average sales.

HAVING clauses
You can analyze the grouped data further by using the HAVING clause. The
HAVING clause is a filter that acts similar to a WHERE clause, but on groups of
rows rather than on individual rows. To illustrate the function of the HAVING
clause, suppose the sales manager considers Bennett to be in a class by him-
self. His performance distorts the overall data for the other salespeople. You
can exclude Bennett’s sales from the grouped data by using a HAVING clause
as follows:

SELECT Salesperson, SUM(TotalSale)
FROM SALES
GROUP BY Salesperson
HAVING Salesperson <> ‘Bennett’;

This gives the result shown in Figure 2-4. Only rows where the salesperson is
not Bennett are considered.

ORDER BY clauses
Use the ORDER BY clause to display the output table of a query in either
ascending or descending alphabetical order. Whereas the GROUP BY clause
gathers rows into groups and sorts the groups into alphabetical order, ORDER
BY sorts individual rows. The ORDER BY clause must be the last clause that
you specify in a query. If the query also contains a GROUP BY clause, the
clause first arranges the output rows into groups. The ORDER BY clause then
sorts the rows within each group. If you have no GROUP BY clause, the state-
ment considers the entire table as a group, and the ORDER BY clause sorts all
its rows according to the column (or columns) that the ORDER BY clause
specifies.

Figure 2-4:
Total sales
for all
salespeople
except
Bennett.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 249

Modifying Clauses250

To illustrate this point, consider the data in the SALES table. The SALES table
contains columns for InvoiceNo, SaleDate, Salesperson, and TotalSale. If you
use the following example, you see all the SALES data, but in an arbitrary
order:

SELECT * FROM SALES ;

In one implementation, this order may be the one in which you inserted the
rows in the table, and in another implementation, the order may be that of
the most recent updates. The order can also change unexpectedly if anyone
physically reorganizes the database. Usually, you want to specify the order
in which you want to display the rows. You may, for example, want to see the
rows in order by the SaleDate, as follows:

SELECT * FROM SALES ORDER BY SaleDate ;

This example returns all the rows in the SALES table, in order by SaleDate.

For rows with the same SaleDate, the default order depends on the imple-
mentation. You can, however, specify how to sort the rows that share the
same SaleDate. You may want to see the SALES for each SaleDate in order by
InvoiceNo, as follows:

SELECT * FROM SALES ORDER BY SaleDate, InvoiceNo ;

This example first orders the SALES by SaleDate; then for each SaleDate, it
orders the SALES by InvoiceNo. But don’t confuse that example with the fol-
lowing query:

SELECT * FROM SALES ORDER BY InvoiceNo, SaleDate ;

This query first orders the SALES by INVOICE_NO. Then for each different
INVOICE_NO, the query orders the SALES by SALE_DATE. This probably
won’t yield the result you want because it is unlikely that multiple sale dates
exist for a single invoice number.

The following query is another example of how SQL can return data:

SELECT * FROM SALES ORDER BY Salesperson, SaleDate ;

This example first orders by SALESPERSON and then by SALE_DATE. After
you look at the data in that order, you may want to invert it, as follows:

SELECT * FROM SALES ORDER BY SaleDate, Salesperson ;

This example orders the rows first by SaleDate and then by Salesperson.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 250

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 251

All these ordering examples are ascending (ASC), which is the default sort
order. The last SELECT shows earlier SALES first and, within a given date,
shows SALES for ‘Adams’ before ‘Baker’. If you prefer descending (DESC)
order, you can specify this order for one or more of the order columns, as
follows:

SELECT * FROM SALES
ORDER BY SaleDate DESC, Salesperson ASC ;

This example specifies a descending order for sales date, showing the more
recent sales first, and an ascending order for salespeople, putting them in
normal alphabetical order.

Tuning Queries
Performance is almost always a top priority for any organizational database
system. As usage of the system goes up, if resources such as processor
speed, cache memory, and hard disk storage do not go up proportionally,
performance starts to suffer and users start to complain. Clearly, one thing
that a system administrator can do is increase the resources — install a
faster processor, add more cache, buy more hard disks. These solutions may
give the needed improvement, and may even be necessary, but you should
try a cheaper solution first: improving the efficiency of the queries that are
loading down the system.

Generally there are several different ways that you can obtain the informa-
tion you want from a database; in other words, there are several different
ways that you can code a query. Some of those ways are more efficient than
others. If one or more queries that are run on a regular basis are bogging
down the system, you may be able to bring your system back up to speed
without spending a penny on additional hardware. You may just have to
recode the queries that are causing the bottleneck.

Popular database management systems have query optimizers that try
to eliminate bottlenecks for you, but they don’t always do as well as you
could do if you tested various alternatives and picked the one with the best
performance.

Unfortunately, no general rules apply across the board. The way a database
is structured and the columns that are indexed have definite effects. In addi-
tion, a coding practice that would be optimal if you use Microsoft SQL Server
might result in the worst possible performance if you use Oracle. Because
the different DBMSs do things in different ways, what is good for one is not

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 251

Tuning Queries252

necessarily good for another. There are some things you can do, however,
that enable you to find good query plans. In the following sections, I show
you some common situations.

SELECT DISTINCT
You use SELECT DISTINCT when you want to make sure there are no dupli-
cates in records you retrieve. However, the DISTINCT keyword potentially
adds overhead to a query that could impact system performance. The impact
it may or may not have depends on how it is implemented by the DBMS.
Furthermore, including the DISTINCT keyword in a SELECT operation may
not even be needed to assure there are no duplicates. If you are doing a select
on a primary key, the result set is guaranteed to contain no duplicates anyway,
so adding the DISTINCT keyword provides no advantage.

Rather than relying on general rules such as “Avoid using the DISTINCT
keyword if you can,” if you suspect that a query that includes a DISTINCT
keyword is inefficient, test it to see. First, make a typical query into
Microsoft’s NorthwindCS sample database. The NorthwindCS database con-
tains records typical of a trading company. There is a Customers table and
an Orders table, among others. One thing you might want to do is see what
companies in the Customers table have actually placed orders, as recorded
in the Orders table. Because a customer may place multiple orders, it makes
sense to use the DISTINCT keyword, so that only one row is returned for
each customer. Here’s the code for the query:

SELECT DISTINCT Customers.CompanyName
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID ;

The result is shown in Figure 2-5, which shows the first few names of compa-
nies that have placed at least one order.

Figure 2-5:
Customers
who have
placed at
least one
order.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 252

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 253

Note that in Object Explorer on the left side, in the Orders table, OrderID is
the primary key, and CustomerID is one of several foreign keys. In this query,
I used CustomerID to link the Customers table to the Orders table so that I
could pull information from both.

It would be interesting to see how efficient this query is. Use Microsoft SQL
Server 2005’s tools to find out. First, look at the execution plan that was fol-
lowed to run this query in Figure 2-6.

The execution plan shows that an index seek on the Orders table took 77% of
the total time consumed by the query. An index scan of the smaller Customers
table took 11% of the time, and the nested loops join took 11%. To see how
well or how poorly I’m doing, I look at the client statistics (Figure 2-7).

Total execution time is 80 time units, with client processing time at 30 time
units and wait time on server replies at 50 time units.

The execution plan shows that the bulk of the time consumed is due to the
index seek on the large Orders table. There is no getting around this opera-
tion, and it is doing it about as efficiently as possible. Will rerunning the
query deliver better performance due to caching? After rerunning the query,
SQL Server gave me the client statistics in Figure 2-8.

The execution plan is the same, but the execution time is less. Small differ-
ences in time may be due to other tasks the system is performing during
test runs.

Figure 2-6:
The
SELECT
DISTINCT
query
execution
plan.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 253

Tuning Queries254

Figure 2-8:
SELECT
query client
statistics for
rerun.

Figure 2-7:
SELECT
DISTINCT
query client
statistics.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 254

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 255

Temporary tables
SQL is so feature-rich that there are multiple ways to perform many opera-
tions. Not all those ways are equally efficient. Often, the DBMSs optimizer
dynamically changes an operation that was coded in a sub-optimal way into a
more efficient operation. Sometimes, however, this doesn’t happen. To be sure
your query is running as fast as possible, code it different ways and test each
one. Settle on the one that does the best. Sometimes the best method on one
type of query performs poorly on another, so take nothing for granted.

One method of coding a query that has multiple selection conditions is to
use temporary tables. Consider an example. Suppose you want to know the
names of all the Northwind employees who are residents of the state of
Washington and who have been with the company for more than ten years.
First you can create a temporary table that holds only Washington residents:

SELECT * INTO Temp
FROM Employees
WHERE Region = ‘WA’ ;

Then you can find the employees in the Temp table that have more than ten
years of service:

SELECT EmployeeID, LastName, FirstName
FROM Temp
WHERE (Current_Timestamp – HireDate) > 10 ;

This gives the result shown in Figure 2-9.

Figure 2-9:
Retrieve
ten-year
veterans
who live in
Washington.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 255

Tuning Queries256

Five of Northwind’s nine employees have been with the company for more
than ten years. Look at the execution plan to see how this retrieval was done
(Figure 2-10).

Creation of the temporary table is one operation, and finding the veterans is
another. In the table creation query, scanning the index of the Employees table
took 25% of the time used, and creating the temporary table took up the other
75%. The table scan of the temporary table took up all the time of the second
query. How did you do performance-wise? Figure 2-11 gives the details.

Total execution time was 180 time units, equally divided between client pro-
cessing time and wait time on server replies. 488 bytes were sent from the
client, and 37,573 bytes were returned by the server.

Now suppose you performed the same operation without using a temporary
table. You could do so with the following code:

SELECT EmployeeID, LastName, FirstName
FROM Employees
Where Region = ‘WA’
AND (Current_Timestamp – HireDate) > 10 ;

You get the same result (Figure 2-12) as in Figure 2-9.

Figure 2-10:
SELECT
query
execution
plan using a
temporary
table.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 256

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 257

How does the execution plan (Figure 2-13) compare with the one in
Figure 2-10?

It’s really simple. The clustered index scan on Employees takes up all the
time. The real story, however, is in the client statistics (Figure 2-14). How
does performance compare with the temporary table version?

Figure 2-12:
SELECT
query result
with
compound
condition.

Figure 2-11:
SELECT
query
execution
client
statistics
using a
temporary
table.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 257

Tuning Queries258

Hmmm. Total execution time is only 40 time units, and that is all due to wait
time for server replies. 426 bytes were sent from the client, which is compara-
ble to the upstream traffic in the temporary table case. However, only 8,475
bytes were sent from the server down to the client. That is considerably less
than the 37,573 bytes that were downloaded using the temporary table. From
both a bandwidth usage standpoint and an execution time standpoint, using a
compound condition in this case beats using a temporary table. There may be
situations where using a temporary table is better, but using one to avoid a
compound condition in a query is generally not one of them.

Figure 2-14:
SELECT
query client
statistics,
with
compound
condition.

Figure 2-13:
SELECT
query
execution
plan with
compound
condition.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 258

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 259

The ORDER BY clause
The ORDER BY clause can be expensive in terms of both bandwidth between
the server and the client and execution time. If you can minimize the number
of ORDER BY clauses in a series of queries, you may save resources. This is
one place where using a temporary table might actually help. Consider an
example. Suppose you want to do a series of retrievals on your Products
table, in which you see which products are available in several price ranges.
For example, you want one list of products priced between ten dollars and
twenty dollars, ordered by unit price. Then you want a list of products
priced between twenty dollars and thirty dollars, similarly ordered, and so
on. To cover four such price ranges, you could make four queries, all four
with an ORDER BY clause. Alternatively, you could create a temporary table
with a query that uses an ORDER BY clause, and then draw the data for the
ranges in separate queries that do not have ORDER BY clauses. Compare the
two approaches. Here’s the code for the temporary table approach:

SELECT ProductName, UnitPrice INTO Temp
FROM Products
WHERE UnitPrice > 10
AND UnitPrice <= 50
ORDER BY UnitPrice;

SELECT ProductName, UnitPrice
FROM Temp
WHERE UnitPrice > 10
AND UnitPrice <= 20;

SELECT ProductName, UnitPrice
FROM Temp
WHERE UnitPrice > 20
AND UnitPrice <= 30;

SELECT ProductName, UnitPrice
FROM Temp
WHERE UnitPrice > 30
AND UnitPrice <= 40;

SELECT ProductName, UnitPrice
FROM Temp
WHERE UnitPrice > 40
AND UnitPrice <= 50;

The execution plans for this series of queries is shown in Figure 2-15.

The first query, the one that creates the temporary table, has the most com-
plex execution plan. By itself, it takes up 61% of the allotted time, and the
other four queries take up the remaining 39%. Figure 2-16 shows the client
statistics, measuring resource usage.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 259

Tuning Queries260

Figure 2-16:
Client
statistics,
minimizing
occurrence
of ORDER
BY clauses.

Figure 2-15:
Execution
plan,
minimizing
occurrence
of ORDER
BY clauses.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 260

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 261

Total execution time is 500 time units, and 39,544 bytes were received from
the server. Now compare that with no temporary table, but four separate
queries, each with its own ORDER BY clause. Here’s the code:

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > 10
AND UnitPrice <= 20
ORDER BY UnitPrice;

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > 20
AND UnitPrice <= 30
ORDER BY UnitPrice;

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > 30
AND UnitPrice <= 40
ORDER BY UnitPrice;

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > 40
AND UnitPrice <= 50
ORDER BY UnitPrice;

The resulting execution plan is shown in Figure 2-17.

Figure 2-17:
Execution
plan,
queries with
separate
ORDER BY
clauses.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 261

Tuning Queries262

Each of the four queries involves a sort. This could be costly. Figure 2-18
shows what the client statistics look like.

Total execution time is 100 time units, and 32,498 bytes were returned by the
server. On both quality metrics, this method performs better than the tem-
porary table method, at least for a database of this size with these character-
istics, on SQL Server 2005. As table sizes increase, the time it takes to sort
them goes up at an even faster rate. For large tables, the performance advan-
tage tips to the temporary table method as some point.

The HAVING clause
Think about the order in which you do things. Performing operations in the
correct order can make a big difference in performance. Whereas the WHERE
clause filters out rows that don’t meet a search condition, the HAVING clause
filters out entire groups that don’t meet a search condition. It makes sense to
filter first (with a WHERE clause) and group later (with a GROUP BY clause)
rather than to group first and filter later (with a HAVING clause). If you group

Figure 2-18:
Client
statistics,
queries with
separate
ORDER BY
clauses.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 262

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 263

first, you perform the grouping operation on everything. If you filter first,
you perform the grouping operation only on what is left after the rows you
don’t want have been filtered out.

This line of reasoning sounds good. To see if it is borne out in practice, con-
sider this code:

SELECT AVG(UnitPrice) AS AvgPrice, CategoryID
FROM Products
GROUP BY CategoryID
HAVING CategoryID = 3 ;

It finds the average price of all the products in Category 3 by first grouping
the products into categories and then filtering out all except those in
Category 3. Figure 2-19 shows what SQL Server returns.

Figure 2-20 shows what the execution plan tells us.

Figure 2-20:
Retrieval
with a
HAVING
clause
execution
plan.

Figure 2-19:
Retrieval
with a
HAVING
clause.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 263

Tuning Queries264

A clustered index scan takes up most of the time. This is a fairly efficient
operation. The client statistics are shown in Figure 2-21.

Total execution time is 130 time units, and 11,107 bytes were returned from
the server. Now, try filtering first and grouping second.

SELECT AVG(UnitPrice) AS AvgPrice
FROM Products
WHERE CategoryID = 3 ;

There is no need to group because all categories except category 3 are fil-
tered out by the WHERE clause. Figure 2-22 shows that the result is the same
as in the previous case.

Figure 2-22:
Retrieval
without a
HAVING
clause.

Figure 2-21:
Retrieval
with a
HAVING
clause
client
statistics.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 264

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 265

Figure 2-23 shows how the execution plan differs. Interesting! The execution
plan is the same. SQL Server’s optimizer has done its job in both cases. Are
the client statistics the same too? Check Figure 2-24 to find out.

Client processing time is down, total processing time is up slightly due to
waiting for the server, and there has been a significant reduction in the
number of bytes transferred. Is this a fluke? What if I ran the same query
again? Figure 2-25 shows the client statistics for a repeat run.

Figure 2-24:
Retrieval
without a
HAVING
clause
client
statistics.

Figure 2-23:
Retrieval
without a
HAVING
clause
execution
plan.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 265

Tuning Queries266

Now that the query has been cached, execution times are dramatically low-
ered. However, the number of bytes transferred is the same. The second for-
mulation actually does reduce the traffic between the server and the client
and is thus the better way to code the query, even though the execution plan
is the same in both cases.

The OR logical connective
Some systems never use indexes when expressions in a WHERE clause are
connected by the OR logical connective. Check your system to see if it does.
See how SQL Server handles it.

SELECT ProductID, ProductName
FROM Products
WHERE UnitPrice < 20
OR UnitsInStock < 30 ;

Check the execution plan to see if SQL Server uses an index (Figure 2-26).
SQL Server does use an index in this situation, so there is no point in looking
for alternative ways to code this type of query.

Figure 2-25:
Repeat run
client
statistics.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 266

Book III
Chapter 2

SELECT Statem
ents

and M
odifying

Clauses
Tuning Queries 267

Run performance tests such as those shown in this chapter on the exact
database you are attempting to tune, rather than on a sample database such
as NorthwindCS or even on another production database. Due to differences
in table size, indexing, and other factors, conclusions you come to based on
one database don’t necessarily apply to another.

Figure 2-26:
Query with
OR logical
connective.

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 267

Book III: SQL Queries268

18 119280 bk03ch02.qxp 5/23/07 10:15 AM Page 268

Chapter 3: Querying Multiple
Tables with Subqueries

In This Chapter
� Defining subqueries

� Discovering how subqueries work

� Nesting subqueries

� Tuning nested subqueries

� Tuning correlation subqueries

Relational databases have multiple tables. That’s where the word rela-
tional comes from — multiple tables that relate to each other in some

way. One consequence of the distribution of data across multiple tables is
that most queries need to pull data from more than one of them. There are a
couple of ways to do this. One is to use relational operators, which I cover
in the next chapter. The other method is to use subqueries, which is the
subject of this chapter.

What Is a Subquery?
A subquery is an SQL statement that is embedded within another SQL state-
ment. It’s possible for a subquery to be embedded within another subquery,
which is in turn embedded within an outermost SQL statement. Theoretically
there is no limit to the number of levels of subquery that an SQL statement
may include, although any given implementation has a practical limit. A key
feature of a subquery is that the table or tables that it references need not be
the same as the table or tables referenced by its enclosing query. This has the
effect of returning results based on the information in multiple tables.

What Subqueries Do
Subqueries are located within the WHERE clause of their enclosing state-
ment. Their function is to set the search conditions for the WHERE clause.
The combination of a subquery and its enclosing query is called a nested

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 269

What Subqueries Do270

query. Different kinds of nested queries produce different results. Some sub-
queries produce a list of values that is then used as input by the enclosing
statement. Other subqueries produce a single value that the enclosing state-
ment then evaluates with a comparison operator. A third kind of subquery,
called a correlated subquery, operates differently, and I discuss it in the
“Correlated subqueries” section.

Subqueries that return multiple values
A key concern of many businesses is inventory control. When you are build-
ing products that are made up of various parts, you want to make sure that
you have an adequate supply of all the parts. If just one part is in short
supply, it could bring the entire manufacturing operation to a screeching
halt. To see how many products are impacted by the lack of a part they
need, you can use a subquery.

Subqueries that retrieve rows satisfying a condition
Suppose your company (Penguin Electronics, Inc.) manufactures a variety of
electronic products, such as audio amplifiers, FM radio tuners, and hand-
held metal detectors. You keep track of your inventory of all your products,
as well as all the parts that go into their manufacture, in a relational data-
base. The database has a PRODUCTS table that holds the inventory levels of
finished products and a PARTS table that holds the inventory levels of the
parts that go into the products.

A part could be included in multiple products, and each product is made up
of multiple parts. This means that there is a many-to-many relationship
between the PRODUCTS table and the PARTS table. Because this could pres-
ent problems, you decide to insert an intersection table between PRODUCTS
and PARTS, transforming the problematical many-to-many relationship into
two easier-to-deal-with one-to-many relationships. The intersection table,
named PROD_PARTS, takes the primary keys of PRODUCTS and PARTS as its
only attributes. You can create these three tables with the following code:

CREATE TABLE PRODUCTS (
ProductID INTEGER PRIMARY KEY,
ProductName CHAR (30),
ProductDescription CHAR (50),
ListPrice NUMERIC (9,2),
QuantityInStock INTEGER) ;

CREATE TABLE PARTS (
PartID INTEGER PRIMARY KEY,
PartName CHAR (30),

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 270

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 271

PartDescription CHAR (50),
QuantityInStock INTEGER) ;

CREATE TABLE PROD_PARTS (
ProductID INTEGER NOT NULL,
PartID INTEGER NOT NULL) ;

Suppose some of your products include an APM-17 DC analog panel meter.
Now you find, to your horror, that you are completely out of the APM-17
part. You can’t complete the manufacture of any product that includes it.
It is time for management to take some emergency actions. One is to check
on the status of any outstanding orders to the supplier of the APM-17 panel
meters. Another is to notify the sales department to stop selling all products
that include the APM-17, and switch to promoting products that do not
include it.

To discover which products include the APM-17, you can use a nested query
such as the following:

SELECT ProductID
FROM PROD_PARTS
WHERE PartID IN
(SELECT PartID

FROM PARTS
WHERE PartDescription = ‘APM-17’) ;

SQL processes the innermost query first, so it queries the PARTS table, return-
ing the PartID of every row in the PARTS table where the PartDescription is
APM-17. The outer query uses the IN keyword to find all the rows in the
PROD_PARTS table that include a PartID that appears in the result set from the
inner query. The outer query then extracts from the PROD_PARTS table the
ProductIDs of all the products that include the APM-17 part. These are the
products that Sales should stop selling.

Subqueries that retrieve rows that don’t satisfy a condition
Because sales are the lifeblood of any business, it is even more important to
determine which products the sales team can continue to sell than it is to
tell them what not to sell. You can do this with another nested query. Use
the query just executed in the preceding section as a base, add one more
“layer” of query to it, and return the ProductIDs of all the products that are
not affected by the APM-17 shortage.

SELECT ProductID
FROM PROD_PARTS
WHERE ProductID NOT IN
(SELECT ProductID

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 271

What Subqueries Do272

FROM PROD_PARTS
WHERE PartID IN
(SELECT PartID

FROM PARTS
WHERE PartDescription = ‘APM-17’) ;

The two inner queries return the ProductIDs of all the products that include
the APM-17 part. The outer query returns all the ProductIDs of all the prod-
ucts that are not included in the result set from the inner queries. This final
result set is the list of ProductIDs of products that do not include the APM-17
analog panel meter.

Subqueries that return a single value
Introducing a subquery with one of the six comparison operators (=, <>, <,
<=, >, >=) is often useful. In such a case, the expression preceding the oper-
ator evaluates to a single value, and the subquery following the operator
must also evaluate to a single value. An exception is the case of the quanti-
fied comparison operator, which is a comparison operator followed by a
quantifier (ANY, SOME, or ALL).

To illustrate a case in which a subquery returns a single value, look at
another piece of Penguin Electronics’ database. It contains a CUSTOMER
table that holds information about the companies that buy Penguin prod-
ucts. It also contains a CONTACT table that holds personal data about indi-
viduals at each of Penguin’s customer organizations. The following code
creates Penguin’s CUSTOMER and CONTACT tables.

CREATE TABLE CUSTOMER (
CustomerID INTEGER PRIMARY KEY,
Company CHAR (40),
Address1 CHAR (50),
Address2 CHAR (50),
City CHAR (25),
State CHAR (2),
PostalCode CHAR (10),
Phone CHAR (13)) ;

CREATE TABLE CONTACT (
CustomerID INTEGER PRIMARY KEY,
FirstName CHAR (15),
LastName CHAR (20),
Phone CHAR (13),
Email CHAR (30),
Fax CHAR (13),
Notes CHAR (100),
CONSTRAINT ContactFK FOREIGN KEY (CustomerID)
REFERENCES CUSTOMER (CustomerID)) ;

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 272

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 273

Say that you want to look at the contact information for the customer named
Baker Electronic Sales, but you don’t remember that company’s CustomerID.
Use a nested query like this one to recover the information you want:

SELECT *
FROM CONTACT

WHERE CustomerID =
(SELECT CustomerID

FROM CUSTOMER
WHERE Company = ‘Baker Electronic Sales’) ;

The result looks something like this:

CustomerID FirstName LastName Phone Notes
---------- --------- -------- ------------ --------------

767 David Lee 505-876-3456 Likes to visit
El Pollo Loco
when in Cali.

You can now call Dave at Baker and tell him about this month’s special sale
on metal detectors.

When you use a subquery in an “=” comparison, the subquery’s SELECT list
must specify a single column (CustomerID in the example). When the sub-
query is executed, it must return a single row in order to have a single value
for the comparison.

In this example, I assume that the CUSTOMER table has only one row with a
Company value of Baker Electronic Sales. If the CREATE TABLE state-
ment for CUSTOMER specified a UNIQUE constraint for Company, such a
statement guarantees that the subquery in the preceding example returns a
single value (or no value). Subqueries like the one in the example, however,
are commonly used on columns that are not specified to be UNIQUE. In such
cases, you are relying on some other reasons for believing that the column
has no duplicates.

If more than one CUSTOMER has a value of Baker Electronic Sales in
the Company column (perhaps in different states), the subquery raises an
error.

If no Customer with such a company name exists, the subquery is treated
as if it were null, and the comparison becomes unknown. In this case, the
WHERE clause returns no row (because it returns only rows with the condi-
tion True and filters rows with the condition False or Unknown). This
would probably happen, for example, if someone misspelled the COMPANY
as Baker Electronics Sales.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 273

What Subqueries Do274

Although the equals operator (=) is the most common, you can use any of
the other five comparison operators in a similar structure. For every row in
the table specified in the enclosing statement’s FROM clause, the single value
returned by the subquery is compared to the expression in the enclosing
statement’s WHERE clause. If the comparison gives a True value, a row is
added to the result table.

You can guarantee that a subquery returns a single value if you include a set
function in it. Set functions, also known as aggregate functions, always return
a single value. (Set functions are described in Chapter 1.) Of course, this
way of returning a single value is helpful only if you want the result of a set
function.

Say that you are a Penguin salesperson and you need to earn a big commis-
sion check to pay for some unexpected bills. You decide to concentrate on
selling Penguin’s most expensive product. You can find out what that prod-
uct is with a nested query:

SELECT ProductID, ProductName, ListPrice
FROM PRODUCT

WHERE ListPrice =
(SELECT MAX(ListPrice)

FROM PRODUCT) ;

This is an example of a nested query where both the subquery and the
enclosing statement operate on the same table. The subquery returns a
single value: the maximum list price in the PRODUCTS table. The outer
query retrieves all rows from the PRODUCTS table that have that list price.

The next example shows a comparison subquery that uses a comparison
operator other than =:

SELECT ProductID, ProductName, ListPrice
FROM PRODUCTS

WHERE ListPrice <
(SELECT AVG(ListPrice)

FROM PRODUCTS) ;

The subquery returns a single value: the average list price in the PRODUCTS
table. The outer query retrieves all rows from the PRODUCTS table that have
a list price less than the average list price.

In the original SQL standard, a comparison could have only one subquery,
and it had to be on the right side of the comparison. SQL:1999 allowed either
or both operands of the comparison to be subqueries, and later versions of
SQL retain that expanded capability.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 274

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 275

Quantified subqueries return a single value
One way to make sure a subquery returns a single value is to introduce it
with a quantified comparison operator. The universal quantifier ALL, and
the existential quantifiers SOME and ANY, when combined with a comparison
operator, process the result set returned by the inner subquery, reducing it
to a single value.

Look at an example. From the 1960s through the 1980s, there was fierce com-
petition between Ford and Chevrolet to produce the most powerful cars.
Both companies had small block V-8 engines that went into Mustangs,
Camaros, and other performance-oriented vehicles.

Power is generally measured in units of horsepower. In general, a larger
engine delivers more horsepower, all other things being equal. Because the
displacements (sizes) of the engines varied from one model to another, it’s
unfair to look only at horsepower. A better measure of the efficiency of an
engine is horsepower per displacement. Displacement is measured in cubic
inches (CID). Table 3-1 shows the year, displacement, and horsepower rat-
ings for Ford small-block V-8s between 1960 and 1980.

Table 3-1 Ford Small-Block V-8s, 1960–1980
Year Displacement (CID) Maximum Horsepower Notes

1962 221 145

1963 289 225 4bbl carburetor

1965 289 271 289HP model

1965 289 306 Shelby GT350

1969 351 290 4bbl carburetor

1975 302 140 Emission regulations

The Shelby GT350 was a classic “muscle car” — not a typical car for the
weekday commute. Emission regulations taking effect in the early 1970s
halved power output and brought an end to the muscle car era. Table 3-2
shows what Chevy put out during the same timeframe.

Table 3-2 Chevy Small-Block V-8s, 1960–1980
Year Displacement (CID) Maximum Horsepower Notes

1960 283 315

1962 327 375

(continued)

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 275

What Subqueries Do276

Table 3-2 (continued)
Year Displacement (CID) Maximum Horsepower Notes

1967 350 295

1968 302 290

1968 307 200

1969 350 370 Corvette

1970 400 265

1975 262 110 Emission regulations

Here again you see the effect of the emission regulations that kicked in in
1971 — a drastic drop in horsepower per displacement.

Use the following code to create tables to hold these data items:

CREATE TABLE FORD (
EngineID INTEGER PRIMARY KEY,
Year CHAR (4),
Displacement NUMERIC (5,2),
MaxHP NUMERIC (5,2),
Notes CHAR (30)) ;

CREATE TABLE CHEVY (
EngineID INTEGER PRIMARY KEY,
Year CHAR (4),
Displacement NUMERIC (5,2),
MaxHP NUMERIC (5,2),
Notes CHAR (30)) ;

After filling these tables with the data in Tables 3-1 and 3-2, you can run
some queries. Suppose you are a dyed-in-the-wool Chevy fan and are quite
certain that the most powerful Chevrolet has a higher horsepower to dis-
placement ratio than any of the Fords. To verify that assumption, enter the
following query:

SELECT *
FROM CHEVY
WHERE (MaxHP/Displacement) > ALL
(SELECT (MaxHP/Displacement) FROM FORD) ;

This returns the result shown in Figure 3-1:

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 276

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 277

The subquery (SELECT (MaxHP/Displacement) FROM FORD) returns the
horsepower-to-displacement ratios of all the Ford engines in the FORD table.
The ALL quantifier says to return only those records from the CHEVY table
that have horsepower-to-displacement ratios that are higher than all the
ratios returned for the Ford engines. Three different Chevy engines had
higher ratios than any Ford engine of that era, including the highly regarded
Shelby GT350. Ford fans should not be bothered by this result, however.
There’s more to what makes a car awesome than just the horsepower-to-
displacement ratio.

What if you had made the opposite assumption? What if you had entered the
following query?

SELECT *
FROM FORD
WHERE (MaxHP/Displacement) > ALL
(SELECT (MaxHP/Displacement) FROM CHEVY) ;

Because none of the Ford engines has a higher horsepower to displacement
ratio than all of the Chevy engines, the query doesn’t return any rows.

Correlated subqueries
In all the nested queries I show in the previous sections, the inner subquery
is executed first, and then its result is applied to the outer enclosing state-
ment. A correlated subquery first finds the table and row specified by the
enclosing statement and then executes the subquery on the row in the sub-
query’s table that correlates with the current row of the enclosing state-
ment’s table.

Figure 3-1:
Chevy
muscle
cars with
horsepower
to displace-
ment ratios
higher than
any of the
Fords listed.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 277

What Subqueries Do278

Using a subquery as an existence test
Subqueries introduced with the EXISTS or the NOT EXISTS keyword are
examples of correlated subqueries. The subquery either returns one or more
rows, or it returns none. If it returns at least one row, the EXISTS predicate
succeeds, and the enclosing statement performs its action. In the same cir-
cumstances, the NOT EXISTS predicate fails, and the enclosing statement
does not perform its action. After one row of the enclosing statement’s table
is processed, the same operation is performed on the next row. This action
is repeated until every row in the enclosing statement’s table has been
processed.

Testing for existence
Say that you are a salesperson for Penguin Electronics and you want to call
your primary contact people at all of Penguin’s customer organizations in
New Hampshire. Try the following query:

SELECT *
FROM CONTACT
WHERE EXISTS

(SELECT *
FROM CUSTOMER
WHERE State = ‘NH’

AND CONTACT.CustomerID = CUSTOMER.CustomerID) ;

Notice the reference to CONTACT.CustomerID, which is referencing a column
from the outer query and comparing it with another column, CUSTOMER.
CustomerID, from the inner query. For each candidate row of the outer
query, you evaluate the inner query, using the CustomerID value from the
current CONTACT row of the outer query in the WHERE clause of the inner
query.

The CustomerID column links the CONTACT table to the CUSTOMER table.
SQL looks at the first record in the CONTACT table, finds the row in the
CUSTOMER table that has the same CustomerID, and checks that row’s State
field. If CUSTOMER.State = ‘NH’, the current CONTACT row is added to
the result table. The next CONTACT record is then processed in the same
way, and so on, until the entire CONTACT table has been processed. Because
the query specifies SELECT * FROM CONTACT, all the contact table’s fields
are returned, including the contact’s name and phone number.

Testing for nonexistence
In the previous example, the Penguin salesperson wanted to know the names
and numbers of the contact people of all the customers in New Hampshire.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 278

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 279

Imagine that a second salesperson is responsible for all of the United States
except New Hampshire. She can retrieve her contacts by using NOT EXISTS
in a query similar to the preceding one:

SELECT *
FROM CONTACT
WHERE NOT EXISTS

(SELECT *
FROM CUSTOMER
WHERE State = ‘NH’

AND CONTACT.CustomerID = CUSTOMER.CustomerID) ;

Every row in CONTACT for which the subquery does not return a row is
added to the result table.

Introducing a correlated subquery with the IN keyword
As I noted in a previous section of this chapter, subqueries introduced by
IN or by a comparison operator need not be correlated queries, but they
can be. In the “Subqueries that retrieve rows satisfying a condition” section,
I give examples of how a non-correlated subquery can be used with the
IN predicate. To show how a correlated subquery may use the IN predicate,
ask the same question that came up with the EXISTS predicate: What
are the names and phone numbers of the contacts at all of Penguin’s cus-
tomers in New Hampshire? You can answer this question with a correlated
IN subquery:

SELECT *
FROM CONTACT
WHERE ‘NH’ IN

(SELECT State
FROM CUSTOMER
WHERE CONTACT.CustomerID = CUSTOMER.CustomerID) ;

The statement is evaluated for each record in the CONTACT table. If, for that
record, the CustomerID numbers in CONTACT and CUSTOMER match, the
value of CUSTOMER.State is compared to ‘NH’. The result of the subquery
is a list that contains, at most, one element. If that one element is ‘NH’, the
WHERE clause of the enclosing statement is satisfied, and a row is added to
the query’s result table.

Introducing a correlated subquery with a comparison operator
A correlated subquery can also be introduced by one of the six comparison
operators, as shown in the next example.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 279

What Subqueries Do280

Penguin pays bonuses to its salespeople based on their total monthly sales
volume. The higher the volume is, the higher the bonus percentage is. The
bonus percentage list is kept in the BONUSRATE table:

MinAmount MaxAmount BonusPct
--------- --------- --------

0.00 24999.99 0.
25000.00 49999.99 0.01
50000.00 99999.99 0.02
100000.00 249999.99 0.03
250000.00 499999.99 0.04
500000.00 749999.99 0.05
750000.00 999999.99 0.06

If a person’s monthly sales are between $100,000.00 and $249,999.99, the
bonus is 3% of sales.

Sales are recorded in a transaction master table named TRANSMASTER,
which is created as follows:

CREATE TABLE TRANSMASTER (
TransID INTEGER PRIMARY KEY,
CustID INTEGER FOREIGN KEY,
EmpID INTEGER FOREIGN KEY,
TransDate DATE,
NetAmount NUMERIC,
Freight NUMERIC,
Tax NUMERIC,
InvoiceTotal NUMERIC) ;

Sales bonuses are based on the sum of the NetAmount field for all of a
person’s transactions in the month. You can find any person’s bonus rate
with a correlated subquery that uses comparison operators:

SELECT BonusPct
FROM BONUSRATE

WHERE MinAmount <=
(SELECT SUM(NetAmount)

FROM TRANSMASTER
WHERE EmpID = 133)

AND MaxAmount >=
(SELECT SUM(NetAmount)

FROM TRANSMASTER
WHERE EmpID = 133) ;

This query is interesting in that it contains two subqueries, making use of the
logical connective AND. The subqueries use the SUM aggregate operator, which

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 280

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
What Subqueries Do 281

returns a single value: the total monthly sales of employee number 133. That
value is then compared against the MinAmount and the MaxAmount columns
in the BONUSRATE table, producing the bonus rate for that employee.

If you had not known the EmpID but had known the person’s name, you
could arrive at the same answer with a more complex query:

SELECT BonusPct
FROM BONUSRATE

WHERE MinAmount <=
(SELECT SUM(NetAmount)

FROM TRANSMASTER
WHERE EmpID =

(SELECT EmployeeID
FROM EMPLOYEE

WHERE EmplName = ‘Thornton’))
AND MaxAmount >=

(SELECT SUM(NetAmount)
FROM TRANSMASTER

WHERE EmpID =
(SELECT EmployeeID

FROM EMPLOYEE
WHERE EmplName = ‘Thornton’));

This example uses subqueries nested within subqueries, which in turn
are nested within an enclosing query, to arrive at the bonus rate for the
employee named Thornton. This structure works only if you know for sure
that the company has one, and only one, employee whose name is Thornton.
If you know that more than one employee is named Thornton, you can add
terms to the WHERE clause of the innermost subquery until you’re sure that
only one row of the EMPLOYEE table is selected.

Correlated subqueries in a HAVING clause
You can have a correlated subquery in a HAVING clause just as you can in a
WHERE clause. As I mention in Chapter 2 of this minibook, a HAVING clause is
normally preceded by a GROUP BY clause. The HAVING clause acts as a filter
to restrict the groups created by the GROUP BY clause. Groups that don’t sat-
isfy the condition of the HAVING clause are not included in the result. When
used in this way, the HAVING clause is evaluated for each group created by
the GROUP BY clause. In the absence of a GROUP BY clause, the HAVING
clause is evaluated for the set of rows passed by the WHERE clause, which is
considered to be a single group. If neither a WHERE clause nor a GROUP BY
clause is present, the HAVING clause is evaluated for the entire table:

SELECT TM1.EmpID
FROM TRANSMASTER TM1

GROUP BY TM1.EmpID

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 281

Using Subqueries in INSERT, DELETE, and UPDATE Statements282

HAVING MAX(TM1.NetAmount) >= ALL
(SELECT 2 * AVG (TM2.NetAmount)

FROM TRANSMASTER TM2
WHERE TM1.EmpID <> TM2.EmpID) ;

This query uses two aliases for the same table, enabling you to retrieve the
EmpID number of all salespeople who had a sale of at least twice the aver-
age value of all the other salespeople. The query works as follows:

1. The outer query groups TRANSMASTER rows by the EmpID. This is done
with the SELECT, FROM, and GROUP BY clauses.

2. The HAVING clause filters these groups. For each group, it calculates the
MAX of the NetAmount column for the rows in that group.

3. The inner query evaluates twice the average NetAmount from all rows of
TRANSMASTER whose EmpID is different from the EmpID of the current
group of the outer query. Note that in the last line, you need to reference
two different EmpID values, so in the FROM clauses of the outer and
inner queries, you use different aliases for TRANSMASTER.

4. You then use those aliases in the comparison of the query’s last line to
indicate that you’re referencing both the EmpID from the current row of
the inner subquery (TM2.EmpID) and the EmpID from the current group
of the outer subquery (TM1.EmpID).

Using Subqueries in INSERT, DELETE,
and UPDATE Statements

In addition to SELECT statements, UPDATE, DELETE, and INSERT statements
can also include WHERE clauses. Those WHERE clauses can contain sub-
queries in the same way that SELECT statement WHERE clauses do.

For example, Penguin has just made a volume purchase deal with Baker
Electronic Sales and wants to retroactively provide Baker with a 10-percent
credit for all its purchases in the last month. You can give this credit with an
UPDATE statement:

UPDATE TRANSMASTER
SET NetAmount = NetAmount * 0.9
WHERE CustID =

(SELECT CustID
FROM CUSTOMER
WHERE Company = ‘Baker Electronic Sales’) ;

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 282

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Using Subqueries in INSERT, DELETE, and UPDATE Statements 283

You can also have a correlated subquery in an UPDATE statement. Suppose
the CUSTOMER table has a column LastMonthsMax, and Penguin wants
to give such a credit for purchases that exceed LastMonthsMax for the
customer:

UPDATE TRANSMASTER TM
SET NetAmount = NetAmount * 0.9
WHERE NetAmount >

(SELECT LastMonthsMax
FROM CUSTOMER C
WHERE C.CustID = TM.CustID) ;

Note that this subquery is correlated: The WHERE clause in the last line refer-
ences both the CustID of the CUSTOMER row from the subquery and the
CustID of the current TRANSMASTER row that is a candidate for updating.

A subquery in an UPDATE statement can also reference the table that is
being updated. Suppose that Penguin wants to give a 10% credit to cus-
tomers whose purchases have exceeded $10,000:

UPDATE TRANSMASTER TM1
SET NetAmount = NetAmount * 0.9
WHERE 10000 < (SELECT SUM(NetAmount)

FROM TRANSMASTER TM2
WHERE TM1.CustID = TM2.CustID);

The inner subquery calculates the SUM of the NetAmount column for all
TRANSMASTER rows for the same customer. What does this mean? Suppose
that the customer with CustID = 37 has four rows in TRANSMASTER with
values for NetAmount: 3000, 5000, 2000, and 1000. The SUM of NetAmount for
this CustID is 11000.

The order in which the UPDATE statement processes the rows is defined
by your implementation and is generally not predictable. The order may
differ depending on how the rows are arranged on the disk. Assume that
the implementation processes the rows for this CustID in this order: first
the TRANSMASTER with a NetAmount of 3000, and then the one with
NetAmount = 5000, and so on. After the first three rows for CustID 37 have
been updated, their NetAmount values are 2700 (90 percent of 3000), 4500
(90 percent of 5000), and 1800 (90 percent of 2000). Then when you process
the last TRANSMASTER row for CustID 37, whose NetAmount is 1000, the
SUM returned by the subquery would seem to be 10000 — that is, the SUM of
the new NetAmount values of the first three rows for CustID 37, and the old
NetAmount value of the last row for CustID 37. Thus it would seem that the
last row for CustID 37 isn’t updated because the comparison with that SUM is
not True (10000 is not less than SELECT SUM (NetAmount)). But that is not
how the UPDATE statement is defined when a subquery references the table

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 283

Using Subqueries in INSERT, DELETE, and UPDATE Statements284

that is being updated. All evaluations of subqueries in an UPDATE statement
reference the old values of the table being updated. In the preceding UPDATE
for CustID 37, the subquery returns 11000 — the original SUM.

The subquery in an UPDATE statement WHERE clause operates the same as it
does in a SELECT statement WHERE clause. The same is true for DELETE and
INSERT. To delete all of Baker’s transactions, use this statement:

DELETE FROM TRANSMASTER
WHERE CustID =

(SELECT CustomerID
FROM CUSTOMER
WHERE Company = ‘Baker Electronic Sales’) ;

As with UPDATE, DELETE subqueries can also be correlated and can also ref-
erence the table being deleted. The rules are similar to the rules for UPDATE
subqueries. Suppose you want to delete all rows from TRANSMASTER for
customers whose total NetAmount is larger than $10,000:

DELETE FROM TRANSMASTER TM1
WHERE 10000 < (SELECT SUM(NetAmount)

FROM TRANSMASTER TM2
WHERE TM1.CustID = TM2.CustID) ;

This query deletes all rows from TRANSMASTER that have CustID 37, as well
as any other customers with purchases exceeding $10,000. All references to
TRANSMASTER in the subquery denote the contents of TRANSMASTER
before any deletes by the current statement. So even when you are deleting
the last TRANSMASTER row for CustID 37, the subquery is evaluated on the
original TRANSMASTER table and returns 11000.

When you update, delete, or insert database records, you risk making a
table’s data inconsistent with other tables in the database. Such an inconsis-
tency is called a modification anomaly, discussed in Chapter 2 of Book II.
If you delete TRANSMASTER records and a TRANSDETAIL table depends
on TRANSMASTER, you must delete the corresponding records from
TRANSDETAIL, too. This operation is called a cascading delete because
the deletion of a parent record cascades to its associated child records.
Otherwise, the undeleted child records become orphans. In this case, they
would be invoice detail lines that are in limbo because they are no longer
connected to an invoice record.

INSERT can include a SELECT clause. One use for this statement is filling
“snapshot” tables. For a table with the contents of TRANSMASTER for
October 27, do this:

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 284

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Considerations for Statements Containing Nested Queries 285

CREATE TABLE TRANSMASTER_1027
(TransID INTEGER, TransDate DATE,
...) ;

INSERT INTO TRANSMASTER_1027
(SELECT * FROM TRANSMASTER

WHERE TransDate = 2007-10-27) ;

Or you may want to save rows only for large NetAmounts:

INSERT INTO TRANSMASTER_1027
(SELECT * FROM TRANSMASTER TM

WHERE TM.NetAmount > 10000
AND TransDate = 2007-10-27) ;

Tuning Considerations for Statements
Containing Nested Queries

How do you tune a nested query? In some cases, there is no need because the
nested query is about as efficient as it can be. In other cases, nested queries
are not particularly efficient. Depending on the characteristics of the DBMS
you are using, you may want to recode a nested query for higher performance.
I mentioned at the beginning of this chapter that many tasks performed by
nested queries could also be performed using relational operators. In some
cases, using a relational operator yields better performance than a nested
query that produces the same result. If performance is an issue in a given
application and a nested query seems to be the bottleneck, you might want to
try a statement containing a relational operator instead and compare execu-
tion times. I discuss relational operations extensively in the next chapter, but
for now, take a look at an example.

As I mention earlier in this chapter, there are two kinds of subqueries, uncor-
related and correlated. Use the NorthwindCS database to take a look at a
non-correlated subquery without a set function.

SELECT OrderID
FROM [Order Details]
WHERE ProductID IN
(SELECT ProductID

FROM Products
WHERE UnitsInStock = 0) ;

This query takes data from both the Products table and the Order Details
table. It returns the OrderIDs of all orders that include products that are out
of stock. Figure 3-2 shows the result of the query. Figure 3-3 shows the execu-
tion plan, and Figure 3-4 shows the client statistics.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 285

Tuning Considerations for Statements Containing Nested Queries286

This was a pretty efficient query. 9070 bytes were transferred from the
server, but execution time was only 30 time units. The execution plan shows
that an efficient nested loop join was used, which only used 4% of the total
time consumed by the query.

How would performance change if the WHERE clause condition was inequal-
ity rather than equality?

SELECT OrderID
FROM [Order Details]
WHERE ProductID IN

Figure 3-3:
An
execution
plan for a
query
showing
orders for
out-of-stock
products.

Figure 3-2:
Orders that
contain
products
that are out
of stock.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 286

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Considerations for Statements Containing Nested Queries 287

(SELECT ProductID
FROM Products
WHERE UnitsInStock < 10) ;

Suppose you don’t want to wait until a product is out of stock to see if you
have a problem. Take a look at Figures 3-5, 3-6, and 3-7 to see how costly a
query is that retrieves orders that include products that are almost out of
stock.

Figure 3-5:
A nested
query
showing
orders that
contain
products
that are
almost out
of stock.

Figure 3-4:
Client
statistics for
a query
showing
orders for
out-of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 287

Tuning Considerations for Statements Containing Nested Queries288

More rows were returned because this query retrieves all the rows the previ-
ous one did plus more. The execution plan shows that a merge join was
used instead of a nested loop join, and that it consumed proportionally more
of the total time. The client statistics show that execution time increased
significantly.

Figure 3-7:
Client
statistics for
a nested
query
showing
orders for
almost out-
of-stock
products.

Figure 3-6:
An
execution
plan for a
nested
query
showing
orders for
almost out-
of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 288

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Considerations for Statements Containing Nested Queries 289

Could you achieve the same result more efficiently by recoding with a rela-
tional operator? It doesn’t seem likely that you could do much better than
the query with the equality condition. Take a look at an alternative to the
query with the inequality condition:

SELECT OrderID
FROM [Order Details], Products
WHERE [Order Details].ProductID = Products.ProductID
AND UnitsInStock < 10 ;

Figures 3-8, 3-9, and 3-10 show the results.

Figure 3-9:
The
execution
plan for a
relational
query
showing
orders for
almost out-
of-stock
products.

Figure 3-8:
A relational
query
showing
orders that
contain
products
that are
almost out
of stock.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 289

Tuning Correlated Subqueries290

Figure 3-8 shows that the same rows are returned. Figure 3-9 shows that the
execution plan is the same as it was for the nested query. Figure 3-10 shows
that client processing time is up slightly. In this case, it appears that there is
no performance penalty involved with using a nested query as opposed to a
relational query. This could be due to the fact that the SQL Server query
optimizer is smart enough to choose the best execution plan regardless of
how you code the query.

Tuning Correlated Subqueries
Compare a correlated subquery to an equivalent relational query and see if a
performance difference shows up:

SELECT OD1.OrderID
FROM [Order Details] OD1

GROUP BY OD1.OrderID
HAVING MAX (OD1.UnitPrice) >= ALL

(SELECT 2 * AVG (OD2.UnitPrice)
FROM [Order Details] OD2
WHERE OD1.OrderID <> OD2.OrderID) ;

This query into the NorthwindCS database extracts from the Order Details
table the order numbers of all the Order Details rows that contain a product

Figure 3-10:
Client
statistics for
a relational
query
showing
orders for
almost out-
of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 290

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Correlated Subqueries 291

whose unit price is greater than or equal to twice the average unit price of
all the other products in the table. Figures 3-11, 3-12, and 3-13 show the
result.

As shown in the lower-right corner of Figure 3-11, 149 orders contained a
product whose unit price is greater than or equal to twice the average unit
price of all the other products in the table.

Figure 3-12 shows the biggest execution plan that I show you. Correlated
subqueries are intrinsically more complex than are the non-correlated vari-
ety. Many parts of the plan have minimal cost, but the clustered index seek
takes up 68% of the total and the stream aggregate due to the MAX set func-
tion takes up 31%. If you had been dealing with a larger table, the Top N Sort
operation would also have become significant.

The client statistics table in Figure 3-13 shows that 37281 bytes were
returned by the server and that the total execution time was 3384 time units.
Most of the time was taken up by server processing rather than activity on
the client side.

Would a relational query do better? You can formulate one, using a tempo-
rary table:

SELECT 2 * AVG(UnitPrice) AS twiceavgprice INTO Temp
FROM [Order Details] ;

SELECT OrderID
FROM [Order Details], Temp
WHERE UnitPrice >= twiceavgprice ;

Figure 3-11:
A correlated
subquery
showing
orders that
contain
products
that are at
least twice
as costly as
the average
product.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 291

Tuning Correlated Subqueries292

Figure 3-13:
Client
statistics for
a correlated
subquery
showing
orders for
almost out-
of-stock
products.

Figure 3-12:
An
execution
plan for a
correlated
subquery
showing
orders for
almost out-
of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 292

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Correlated Subqueries 293

When you run this two-part query, you get the results shown in Figures 3-14,
3-15, and 3-16.

This query is not exactly like the previous one, as evidenced by the fact
that it returns 163 rows (see Figure 3-14) rather than 149. The nested query
excluded the row being tested from the calculation of the average unit cost,
whereas the relational query did not. Depending on what you want the query
to show, this may or may not be a significant difference.

Figure 3-15 shows the execution plans for the two parts of the relational
query. In the first part, a clustered index scan and a table insert take up most
of the time. In the second part, a clustered index scan and an inner join con-
sume the time.

Figure 3-14:
Query
showing
orders that
contain
products
that are at
least twice
as costly as
the average
product.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 293

Tuning Correlated Subqueries294

Figure 3-15:
An
execution
plan for a
relational
query
showing
orders for
almost out-
of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 294

Book III
Chapter 3

Querying M
ultiple

Tables w
ith

Subqueries
Tuning Correlated Subqueries 295

Figure 3-16 shows a significant difference in performance. The number of
bytes transferred from the server is reduced by almost 50%. Execution time
is reduced by an even bigger factor to less than one-sixth the time taken by
the nested subquery.

Give serious consideration to performing a relational query instead of a cor-
related subquery if performance is an issue and if an equivalent relational
query can be composed.

Figure 3-16:
Client
statistics for
a relational
query
showing
orders for
almost out-
of-stock
products.

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 295

Book III: SQL Queries296

19 119280 bk03ch03.qxp 5/23/07 10:16 AM Page 296

Chapter 4: Querying Multiple
Tables with Relational Operators

In This Chapter
� The UNION statement

� The INTERSECT statement

� The EXCEPT statement

� The JOIN statements

In Chapter 3 of this minibook, I show you how, by using nested queries,
data can be drawn from multiple tables to answer a question that

involved different ideas. Another way to collect information from multiple
tables is to use the relational operators UNION, INTERSECT, EXCEPT, and
JOIN. SQL’s UNION, INTERSECT, and EXCEPT operators are modeled after
the union, intersect, and except operators of relational algebra. Each one
performs a very specific combining operation on the data in two or more
tables. The JOIN operator, on the other hand, is considerably more flexible.
A number of different joins exist, and each performs a somewhat different
operation. Depending on what you want in terms of information retrieved
from multiple tables, one or another of the joins or the other relational oper-
ators is likely to give it to you. In this chapter, I show you each of SQL’s rela-
tional operators, cover how it works, and discuss what it can be used for.

UNION
The UNION operator is the SQL implementation of relational algebra’s union
operator. The UNION operator enables you to draw information from two or
more tables that have the same structure. Same structure means

✦ The tables must all have the same number of columns.

✦ Corresponding columns must all have identical data types and lengths.

When these criteria are met, the tables are union-compatible. The union of
two tables returns all the rows that appear in either table and eliminates
duplicates.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 297

UNION298

Suppose you have created a database for a business named Acme Systems
that sells and installs computer products. Acme has two warehouses that
stock the products, one in Fort Deposit, Alabama, and the other in East
Kingston, New Hampshire. It contains two union-compatible tables named
DEPOSIT and KINGSTON. Both tables have two columns, and corresponding
columns are of the same type. In fact, corresponding columns have identical
column names (although this condition isn’t required for union compatibility).

DEPOSIT lists the names and quantity in stock of products in the Fort
Deposit warehouse. Kingston lists the same information about the East
Kingston warehouse. The UNION of the two tables gives you a virtual result
table containing all the rows in the first table plus all the rows in the second
table. For this example, I put just a few rows in each table to illustrate the
operation:

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock
----------- ---------------
185_Express 12
505_Express 5
510_Express 6
520_Express 2
550_Express 3

SELECT * FROM KINGSTON ;

ProductName QuantityInStock
----------- ---------------
185_Express 15
505_Express 7
510_Express 6
520_Express 2
550_Express 1

SELECT * FROM DEPOSIT
UNION
SELECT * FROM KINGSTON ;

ProductName QuantityInStock
----------- ---------------
185_Express 12
185_Express 15
505_Express 5
505_Express 7
510_Express 6
520_Express 2
550_Express 3
550_Express 1

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 298

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
UNION 299

The UNION DISTINCT operator functions identically to the UNION operator
without the DISTINCT keyword. In both cases, duplicate rows are eliminated
from the result set. In this example, because both warehouses had the same
number of 510_Express and 520_Express products, those rows in both tables
were exact duplicates, only one of which was returned.

I use the asterisk (*) as shorthand for all the columns in a table. This short-
cut is fine most of the time, but it can get you into trouble when you use
relational operators in embedded or module-language SQL. What if you add
one or more new columns to one table and not to another, or you add differ-
ent columns to the two tables? The two tables are then no longer union-
compatible, and your program is invalid the next time it’s recompiled. Even
if the same new columns are added to both tables so that they are still
union-compatible, your program is probably not prepared to deal with this
additional data. So, explicitly listing the columns that you want rather than
relying on the * shorthand is generally a good idea. When you’re entering ad
hoc SQL from the console, the asterisk will probably work fine because you
can quickly display table structure to verify union compatibility if your
query isn’t successful.

UNION ALL
As mentioned previously, the UNION operation normally eliminates any
duplicate rows that result from its operation, which is the desired result
most of the time. Sometimes, however, you may want to preserve duplicate
rows. On those occasions, use UNION ALL.

The following code shows you what UNION ALL produces when it’s used
with the DEPOSIT and KINGSTON tables:

SELECT * FROM DEPOSIT
UNION ALL
SELECT * FROM KINGSTON ;

ProductName QuantityInStock
----------- ---------------
185_Express 12
505_Express 5
510_Express 6
520_Express 2
550_Express 3
185_Express 15
505_Express 7
510_Express 6
520_Express 2
550_Express 1

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 299

INTERSECT300

UNION CORRESPONDING
You can sometimes form the union of two tables even if they are not union-
compatible. If the columns you want in your results table are present and
compatible in both tables, you can perform a UNION CORRESPONDING opera-
tion. Only the specified columns are considered, and they are the only
columns displayed in the result table.

Suppose ACME Systems opens a third warehouse in Jefferson, Maine. A new
table named JEFFERSON is added to the database, which includes Product and
QuantityInStock columns (as the DEPOSIT and KINGSTON tables do), but also
has an additional column named QuantityOnHold. A UNION or UNION ALL
of JEFFERSON with either DEPOSIT or KINGSTON would not return any rows
because there is not a complete match between all the columns of JEFFERSON
and all the columns of the other two tables. However, you can still add the
JEFFERSON data to that of either DEPOSIT or KINGSTON by specifying only
the columns in JEFFERSON that correspond with the columns in the other
table. Here’s a sample query:

SELECT *
FROM JEFFERSON

UNION CORRESPONDING BY
(ProductName, QuantityInStock)

SELECT *
FROM KINGSTON ;

The result table holds the products and the quantities in stock at both ware-
houses. As with the simple UNION, duplicates are eliminated. Thus, if the
Jefferson warehouse happens to have the same quantity of a particular
product that the Kingston warehouse has, the UNION CORRESPONDING
operation loses one of those rows. To avoid this problem, use UNION ALL
CORRESPONDING.

Each column name in the list following the CORRESPONDING keyword must
be a name that exists in both unioned tables. If you omit this list of names,
an implicit list of all names that appear in both tables is used. But this
implicit list of names may change when new columns are added to one or
both tables. Therefore, explicitly listing the column names is better than
omitting them.

INTERSECT
The UNION operation produces a result table containing all rows that appear
in any of the source tables. If you want only rows that appear in all the
source tables, you can use the INTERSECT operation, which is the SQL

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 300

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
INTERSECT 301

implementation of relational algebra’s intersect operation. I illustrate
INTERSECT by returning to Acme Systems warehouse table:

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock
----------- ---------------
185_Express 12
505_Express 5
510_Express 6
520_Express 2
550_Express 3

SELECT * FROM KINGSTON ;

ProductName QuantityInStock
----------- ---------------
185_Express 15
505_Express 7
510_Express 6
520_Express 2
550_Express 1

Only rows that appear in all source tables show up in the INTERSECT opera-
tion’s result table:

SELECT *
FROM DEPOSIT

INTERSECT
SELECT *

FROM KINGSTON;

ProductName QuantityInStock
----------- ---------------
510_Express 6
520_Express 2

The result table tells us that the Fort Deposit and East Kingston warehouses
both have exactly the same number of 510_Express and 520_Express prod-
ucts in stock, a fact of dubious value. Note that, as was the case with UNION,
INTERSECT DISTINCT produces the same result as the INTERSECT opera-
tor used alone. In this example, only one of the identical rows displaying
each of two products is returned.

The ALL and CORRESPONDING keywords function in an INTERSECT opera-
tion the same way they do in a UNION operation. If you use ALL, duplicates
are retained in the result table. If you use CORRESPONDING, the intersected
tables need not be union-compatible, although the corresponding columns
need to have matching types and lengths.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 301

EXCEPT302

Consider another example: A municipality keeps track of the cell phones car-
ried by police officers, firefighters, parking enforcement officers, and other
city employees. A database table called CELLPHONES contains data on all
phones in active use. Another table named OUT, with an identical structure,
contains data on all phones that have been taken out of service. No cell
phone should ever exist in both tables. With an INTERSECT operation, you
can test to see whether such an unwanted duplication has occurred:

SELECT *
FROM CELLPHONES

INTERSECT CORRESPONDING BY (PhoneID)
SELECT *

FROM OUT ;

If the result table contains any rows, you know you have a problem. You
should investigate any PhoneID entries that appear in the result table. The
corresponding cell phone is either active or out of service; it can’t be both.
After you detect the problem, you can perform a DELETE operation on one
of the two tables to restore database integrity.

EXCEPT
The UNION operation acts on two source tables and returns all rows that
appear in either table. The INTERSECT operation returns all rows that
appear in both the first and the second table. In contrast, the EXCEPT (or
EXCEPT DISTINCT) operation returns all rows that appear in the first table
but that do not also appear in the second table.

Returning to the municipal cell phone database example, say that a group of
phones that had been declared out of service and returned to the vendor for
repairs have now been fixed and placed back into service. The CELLPHONES
table was updated to reflect the returned phones, but the returned phones
were not removed from the OUT table as they should have been. You can
display the PhoneID numbers of the phones in the OUT table, with the reacti-
vated ones eliminated, using an EXCEPT operation:

SELECT *
FROM OUT

EXCEPT CORRESPONDING BY (PhoneID)
SELECT *

FROM CELLPHONES;

This query returns all the rows in the OUT table whose PhoneID is not also
present in the CELLPHONES table. These are the phones that are still out of
service.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 302

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
JOINS 303

JOINS
The UNION, INTERSECT, and EXCEPT operators are valuable in multitable
databases in which the tables are union-compatible. In many cases, however,
you want to draw data from multiple tables that have very little in common.
JOINs are powerful relational operators that combine data from multiple
tables into a single result table. The source tables may have little (or even
nothing) in common with each other.

SQL supports a number of types of JOINs. The best one to choose in a given
situation depends on the result you’re trying to achieve.

Cartesian product or cross join
Any multitable query is a type of JOIN. The source tables are joined in the
sense that the result table includes information taken from all the source
tables. The simplest JOIN is a two-table SELECT that has no WHERE clause
qualifiers. Every row of the first table is joined to every row of the second
table. The result table is the Cartesian product of the two source tables. The
number of rows in the result table is equal to the number of rows in the first
source table multiplied by the number of rows in the second source table.

For example, imagine that you’re the personnel manager for a company and
that part of your job is to maintain employee records. Most employee data,
such as home address and telephone number, is not particularly sensitive.
But some data, such as current salary, should be available only to author-
ized personnel. To maintain security of the sensitive information, keep it in
a separate table that is password protected. Consider the following pair of
tables:

EMPLOYEE COMPENSATION
-------- ------------
EmpID Employ
FName Salary
LName Bonus
City
Phone

Fill the tables with some sample data:

EmpID FName LName City Phone
----- ----- ----- ---- -----

1 Jenny Smith Orange 555-1001
2 Bill Jones Newark 555-3221
3 Val Brown Nutley 555-6905
4 Justin Time Passaic 555-8908

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 303

JOINS304

Employ Salary Bonus
------ ------ -----

1 63000 10000
2 48000 2000
3 54000 5000
4 52000 7000

Create a virtual result table with the following query:

SELECT *
FROM EMPLOYEE, COMPENSATION ;

which can also be written

SELECT *
FROM EMPLOYEE CROSS JOIN COMPENSATION ;

This query produces

EmpID FName LName City Phone Employ Salary Bonus
----- ----- ----- ---- ----- ------ ------ -----

1 Jenny Smith Orange 555-1001 1 63000 10000
1 Jenny Smith Orange 555-1001 2 48000 2000
1 Jenny Smith Orange 555-1001 3 54000 5000
1 Jenny Smith Orange 555-1001 4 52000 7000
2 Bill Jones Newark 555-3221 1 63000 10000
2 Bill Jones Newark 555-3221 2 48000 2000
2 Bill Jones Newark 555-3221 3 54000 5000
2 Bill Jones Newark 555-3221 4 52000 7000
3 Val Brown Nutley 555-6905 1 63000 10000
3 Val Brown Nutley 555-6905 2 48000 2000
3 Val Brown Nutley 555-6905 3 54000 5000
3 Val Brown Nutley 555-6905 4 52000 7000
4 Justin Time Passaic 555-8908 1 63000 10000
4 Justin Time Passaic 555-8908 2 48000 2000
4 Justin Time Passaic 555-8908 3 54000 5000
4 Justin Time Passaic 555-8908 4 52000 7000

The result table, which is the Cartesian product of the EMPLOYEE and
COMPENSATION tables, contains considerable redundancy. Furthermore, it
doesn’t make much sense. It combines every row of EMPLOYEE with every
row of COMPENSATION. The only rows that convey meaningful information
are those in which the EmpID number that came from EMPLOYEE matches
the Employ number that came from COMPENSATION. In those rows, an
employee’s name and address are associated with that same employee’s
compensation.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 304

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
JOINS 305

When you’re trying to get useful information out of a multitable database,
the Cartesian product produced by a cross join is almost never what
you want, but it’s almost always the first step toward what you want. By
applying constraints to the JOIN with a WHERE clause, you can filter out the
unwanted rows. The most common JOIN that uses the WHERE clause filter
is the equi-join.

Equi-join
An equi-join is a cross join with a WHERE clause containing a condition speci-
fying that the value in one column in the first table must be equal to the
value of a corresponding column in the second table. Applying an equi-join
to the example tables from the previous section brings a more meaningful
result:

SELECT *
FROM EMPLOYEE, COMPENSATION
WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces the following:

EmpID FName LName City Phone Employ Salary Bonus
----- ------ ----- ---- ----- ------ ------ -----

1 Jenny Smith Orange 555-1001 1 63000 10000
2 Bill Jones Newark 555-3221 2 48000 2000
3 Val Brown Nutley 555-6905 3 54000 5000
4 Justin Time Passaic 555-8908 4 52000 7000

In this result table, the salaries and bonuses on the right apply to the
employees named on the left. The table still has some redundancy because
the EmpID column duplicates the Employ column. You can fix this problem
with a slight reformulation of the query:

SELECT EMPLOYEE.*,COMPENSATION.Salary,COMPENSATION.Bonus
FROM EMPLOYEE, COMPENSATION
WHERE EMPLOYEE.EmpID = COMPENSATION.Employ ;

This produces the following result:

EmpID FName LName City Phone Salary Bonus
----- ----- ----- ---- ----- ------ -----

1 Jenny Smith Orange 555-1001 63000 10000
2 Bill Jones Newark 555-3221 48000 2000
3 Val Brown Nutley 555-6905 54000 5000
4 Justin Time Passaic 555-8908 52000 7000

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 305

JOINS306

This table tells you what you want to know, but doesn’t burden you with any
extraneous data. The query is somewhat tedious to write, however. To avoid
ambiguity, it makes good sense to qualify the column names with the names
of the tables they came from. However, writing those table names repeatedly
can be tiresome.

You can cut down on the amount of typing by using aliases (or correlation
names). An alias is a short name that stands for a table name. If you use
aliases in recasting the preceding query, it comes out like this:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E, COMPENSATION C
WHERE E.EmpID = C.Employ ;

In this example, E is the alias for EMPLOYEE, and C is the alias for
COMPENSATION. The alias is local to the statement it’s in. After you declare
an alias (in the FROM clause), you must use it throughout the statement.
You can’t use both the alias and the long form of the table name.

Mixing the long form of table names with aliases creates confusion. Consider
the following example, which is confusing:

SELECT T1.C, T2.C
FROM T1 T2, T2 T1
WHERE T1.C > T2.C ;

In this example, the alias for T1 is T2, and the alias for T2 is T1. Admittedly,
this isn’t a smart selection of aliases, but it isn’t forbidden by the rules.
If you mix aliases with long-form table names, you can’t tell which table is
which.

The preceding example with aliases is equivalent to the following SELECT
with no aliases:

SELECT T2.C, T1.C
FROM T1, T2
WHERE T2.C > T1.C ;

SQL enables you to join more than two tables. The maximum number varies
from one implementation to another. The syntax is analogous to the two-
table case:

SELECT E.*, C.Salary, C.Bonus, Y.TotalSales
FROM EMPLOYEE E, COMPENSATION C, YTD_SALES Y
WHERE E.EmpID = C.Employ

AND C.Employ = Y.EmpNo ;

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 306

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
JOINS 307

This statement performs an equi-join on three tables, pulling data from cor-
responding rows of each one to produce a result table that shows the sales-
people’s names, the amount of sales they are responsible for, and their
compensation. The sales manager can quickly see whether compensation is
in line with production.

Storing a salesperson’s year-to-date sales in a separate YTD_SALES table
ensures better performance and reliability than keeping that data in the
EMPLOYEE table. The data in the EMPLOYEE table is relatively static. A
person’s name, address, and telephone number don’t change very often. In
contrast, the year-to-date sales change frequently (you hope). Because the
YTD_SALES table has fewer columns than EMPLOYEE, you may be able to
update it more quickly. If, in the course of updating sales totals, you don’t
touch the EMPLOYEE table, you decrease the risk of accidentally modifying
EMPLOYEE information that should stay the same.

Natural join
The natural join is a special case of an equi-join. In the WHERE clause of an
equi-join, a column from one source table is compared with a column of a
second source table for equality. The two columns must be the same type
and length and must have the same name. In fact, in a natural join, all
columns in one table that have the same names, types, and lengths as
corresponding columns in the second table are compared for equality.

Imagine that the COMPENSATION table from the preceding example has
columns EmpID, Salary, and Bonus rather than Employ, Salary, and Bonus.
In that case, you can perform a natural join of the COMPENSATION table
with the EMPLOYEE table. The traditional JOIN syntax looks like this:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E, COMPENSATION C
WHERE E.EmpID = C.EmpID ;

This query is a natural join. An alternate syntax for the same operation is the
following:

SELECT E.*, C.Salary, C.Bonus
FROM EMPLOYEE E NATURAL JOIN COMPENSATION C ;

Condition join
A condition join is like an equi-join, except the condition being tested doesn’t
have to be equality (although it can be). It can be any well-formed predicate.
If the condition is satisfied, the corresponding row becomes part of the
result table. The syntax is a little different from what you have seen so far, in
that the condition is contained in an ON clause rather than a WHERE clause.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 307

JOINS308

Suppose Acme Systems wants to know which products the Fort Deposit
warehouse has in larger numbers than does the East Kingston warehouse.
This question is a job for a condition join:

SELECT *
FROM DEPOSIT JOIN KINGSTON
ON DEPOSIT.QuantityInStock > KINGSTON.QuantityInStock ;

Column-name join
The column-name join is like a natural join, but it’s more flexible. In a natural
join, all the source table columns that have the same name are compared
with each other for equality. With the column-name join, you select which
same-name columns to compare. You can choose them all if you want,
making the column-name join effectively a natural join. Or you may choose
fewer than all same-name columns. In this way, you have a great degree of
control over which cross product rows qualify to be placed into your result
table.

Suppose you are Acme Systems and you have shipped the exact same
number of products to the East Kingston warehouse that you have shipped
to the Fort Deposit warehouse. So far, nothing has been sold, so the number
of products in inventory in East Kingston should match the number in Fort
Deposit. If there are mismatches, it means that something is wrong. Either
some products were never delivered to the warehouse, or they were mis-
placed or stolen after they arrived. With a simple query, you can retrieve
the inventory levels at the two warehouses.

SELECT * FROM DEPOSIT ;

ProductName QuantityInStock
----------- ---------------
185_Express 12
505_Express 5
510_Express 6
520_Express 2
550_Express 3

SELECT * FROM KINGSTON ;

ProductName QuantityInStock
----------- ---------------
185_Express 15
505_Express 7
510_Express 6
520_Express 2
550_Express 1

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 308

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
JOINS 309

For such small tables, it is fairly easy to see which rows don’t match. However,
for a table with thousands of rows, it’s not so easy. You can use a column
name join to see whether any discrepancies exist. I showed only two columns
of the DEPOSIT and KINGSTON tables, to make it easy to see how the various
relational operators work on them. In any real application, such tables would
have additional columns, and the contents of those additional columns
would not necessarily match. With a column name join, the join operation
only considers the columns specified.

SELECT *
FROM DEPOSIT JOIN KINGSTON
USING (ProductName, QuantityInStock) ;

The result table shows only the rows for which the number of products in
stock at Fort Deposit equals the number of products in stock at East
Kingston:

ProductName QuantityInStock ProductName QuantityInStock
----------- --------------- ----------- ---------------
510_Express 6 510_Express 6
520_Express 2 520_Express 2

Wow! Only two products match. There is a definite “shrinkage” problem at
one or both warehouses. Acme needs to get a handle on security.

Inner join
By now, you’re probably getting the idea that joins are pretty esoteric and
that it takes an uncommon level of spiritual discernment to deal with them
adequately. You may have even heard of the mysterious inner join and spec-
ulated that it probably represents the core or essence of relational opera-
tions. Well, ha! The joke is on you: There’s nothing mysterious about inner
joins. In fact, all the joins covered so far in this chapter are inner joins. I
could have formulated the column-name join in the last example as an inner
join by using the following syntax:

SELECT *
FROM DEPOSIT INNER JOIN KINGSTON
USING (ProductName, QuantityInStock) ;

The result is the same.

The inner join is so named to distinguish it from the outer join. An inner join
discards all rows from the result table that don’t have corresponding rows in
both source tables. An outer join preserves unmatched rows. That’s the dif-
ference: nothing metaphysical about it.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 309

JOINS310

Outer join
When you’re joining two tables, the first one (call it the one on the left) may
have rows that don’t have matching counterparts in the second table (the
one on the right). Conversely, the table on the right may have rows that
don’t have matching counterparts in the table on the left. If you perform an
inner join on those tables, all the unmatched rows are excluded from the
output. Outer joins, however, don’t exclude the unmatched rows. Outer joins
come in three types: the left outer join, the right outer join, and the full
outer join.

Left outer join
In a query that includes a join, the left table is the one that precedes the key-
word JOIN, and the right table is the one that follows it. The left outer join
preserves unmatched rows from the left table but discards unmatched rows
from the right table.

To understand outer joins, consider a corporate database that maintains
records of the company’s employees, departments, and locations. Tables 4-1,
4-2, and 4-3 contain the database’s sample data.

Table 4-1 LOCATION
LocationID CITY

1 Boston

3 Tampa

5 Chicago

Table 4-2 DEPT
DeptID LocationID NAME

21 1 Sales

24 1 Admin

27 5 Repair

29 5 Stock

Table 4-3 EMPLOYEE
EmpID DeptID NAME

61 24 Kirk

63 27 McCoy

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 310

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
JOINS 311

Now suppose that you want to see all the data for all employees, including
department and location. You get this with an equi-join:

SELECT *
FROM LOCATION L, DEPT D, EMPLOYEE E
WHERE L.LocationID = D.LocationID

AND D.DeptID = E.DeptID ;

This statement produces the following result:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy

This results table gives all the data for all the employees, including their
location and department. The equi-join works because every employee has
a location and a department.

Suppose now that you want the data on the locations, with the related
department and employee data. This is a different problem because a loca-
tion without any associated departments may exist. To get what you want,
you have to use an outer join, as in the following example:

SELECT *
FROM LOCATION L LEFT OUTER JOIN DEPT D

ON (L.LocationID = D.LocationID)
LEFT OUTER JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID);

This join pulls data from three tables. First, the LOCATION table is joined to
the DEPT table. The resulting table is then joined to the EMPLOYEE table.
Rows from the table on the left of the LEFT OUTER JOIN operator that have
no corresponding row in the table on the right are included in the result.
Thus, in the first join, all locations are included, even if no department asso-
ciated with them exists. In the second join, all departments are included,
even if no employee associated with them exists. The result is as follows:

1 Boston 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy
3 Tampa NULL NULL NULL NULL NULL NULL
5 Chicago 29 5 Stock NULL NULL NULL
1 Boston 21 1 Sales NULL NULL NULL

The first two rows are the same as the two result rows in the previous exam-
ple. The third row (3 Tampa) has nulls in the department and employee
columns because no departments are defined for Tampa and no employees
are stationed there. The fourth and fifth rows (5 Chicago and 1 Boston)

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 311

JOINS312

contain data about the Stock and the Sales departments, but the employee
columns for these rows contain nulls because these two departments have
no employees. This outer join tells you everything that the equi-join told
you plus the following:

✦ All the company’s locations, whether they have any departments
or not

✦ All the company’s departments, whether they have any employees
or not

The rows returned in the preceding example aren’t guaranteed to be in the
order you want. The order may vary from one implementation to the next.
To make sure that the rows returned are in the order you want, add an
ORDER BY clause to your SELECT statement, like this:

SELECT *
FROM LOCATION L LEFT OUTER JOIN DEPT D

ON (L.LocationID = D.LocationID)
LEFT OUTER JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID)
ORDER BY L.LocationID, D.DeptID, E.EmpID;

You can abbreviate the left outer join language as LEFT JOIN because
there’s no such thing as a left inner join.

Right outer join
I’m sure you have figured out by now how the right outer join behaves. It
preserves unmatched rows from the right table but discards unmatched
rows from the left table. You can use it on the same tables and get the same
result by reversing the order in which you present tables to the join:

SELECT *
FROM EMPLOYEE E RIGHT OUTER JOIN DEPT D

ON (D.DeptID = E.DeptID)
RIGHT OUTER JOIN LOCATION L

ON (L.LocationID = D.LocationID) ;

In this formulation, the first join produces a table that contains all depart-
ments, whether they have an associated employee or not. The second join
produces a table that contains all locations, whether they have an associ-
ated department or not.

You can abbreviate the right outer join language as RIGHT JOIN because
there’s no such thing as a right inner join.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 312

Book III
Chapter 4

Querying M
ultiple

Tables w
ith

Relational Operators
ON versus WHERE 313

Full outer join
The full outer join combines the functions of the left outer join and the right
outer join. It retains the unmatched rows from both the left and the right
tables. Consider the most general case of the company database used in the
preceding examples. It could have

✦ Locations with no departments

✦ Departments with no locations

✦ Departments with no employees

✦ Employees with no departments

To show all locations, departments, and employees, regardless of whether
they have corresponding rows in the other tables, use a full outer join in the
following form:

SELECT *
FROM LOCATION L FULL OUTER JOIN DEPT D

ON (L.LocationID = D.LocationID)
FULL OUTER JOIN EMPLOYEE E

ON (D.DeptID = E.DeptID) ;

You can abbreviate the full outer join language as FULL JOIN because
there’s no such thing as a full inner join.

ON versus WHERE
The function of the ON and WHERE clauses in the various types of joins is
potentially confusing. These facts may help you keep things straight:

✦ The ON clause is part of the inner, left, right, and full joins. The cross join
and UNION join don’t have an ON clause because neither of them does
any filtering of the data.

✦ The ON clause in an inner join is logically equivalent to a WHERE clause;
the same condition could be specified either in the ON clause or a WHERE
clause.

✦ The ON clauses in outer joins (left, right, and full joins) are different
from WHERE clauses. The WHERE clause simply filters the rows that are
returned by the FROM clause. Rows that are rejected by the filter are
not included in the result. The ON clause in an outer join first filters the
rows of a cross product and then includes the rejected rows, extended
with nulls.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 313

Join Conditions and Clustering Indexes314

Join Conditions and Clustering Indexes
The performance of queries that include joins depends, to a large extent, on
which columns are indexed, and whether the index is clustering or not. A table
can have only one clustering index, where data items that are near each other
logically, such as ‘Smith’ and ‘Smithson’, are also near each other physi-
cally on disk. Using a clustering index to sequentially step through a table
speeds up hard disk retrievals and thus maximizes performance.

A clustering index works well with multi-point queries, which look for equal-
ity in non-unique columns. This is similar to looking up names in a telephone
book. All the Smiths are listed together on consecutive pages. Most or all of
them are located on the same hard disk cylinder. You can access multiple
Smiths with a single disk seek operation. A non-clustering index, on the
other hand, would not have this advantage. Each record typically requires a
new disk seek, greatly slowing down operation. Furthermore, you probably
have to touch every index to be sure you had not missed one. This is analo-
gous to searching the greater Los Angeles telephone book for every instance
of Area Code 626. Most of the numbers are in Area 213, but there will be
instances of 626 sprinkled throughout the book.

Consider the following sample query:

SELECT Employee.FirstName, Employee.LastName, Student.Major
FROM Employee, Students
WHERE Employee.IDNum = Student.IDNum ;

This query returns the first and last names and the majors of university
employees who are also students. How long it takes to run the query
depends on how the tables are indexed. If Employee has a clustering index
on IDNum, records searched are on consecutive pages. If Employee and
Student both have clustering indexes on IDNum, the DBMS will likely use a
merge join, which reads both tables in sorted order, minimizing the number
of disk accesses needed. Such clustering often eliminates the need for a
costly ORDER BY clause because the records are already sorted in the
desired order.

The one disadvantage of clustered indexes is that they can become “tired”
after a number of updates have been performed, causing the generation of
overflow pages, which require additional disk seeks. Rebuilding the index
corrects this problem.

20 119280 bk03ch04.qxp 5/23/07 10:16 AM Page 314

Chapter 5: Cursors

In This Chapter
� Declaring a cursor

� Opening a cursor

� Fetching data from a single row

� Closing a cursor

SQL differs from most other computer languages in that it is a non-
procedural language. Other languages, such as C, Java, or Basic, are

called procedural languages because programs written in those languages
execute procedures. First they execute one instruction, and then the next
one, and so on. They do one thing at a time. When dealing with data, they
operate on one table row at a time. SQL, on the other hand, is not restricted
to operating on one table row at a time. Its natural mode of operation is to
operate on a set of rows. For example, an SQL query may return 42 rows
from a database containing thousands of rows. That operation is performed
by a single SQL SELECT statement.

Because SQL is a data sublanguage, it does not contain all the features
needed to create a database application. It must be used in combination
with a procedural language. The SQL portion operates on the data, and the
procedural language takes care of the other aspects of the task.

The fact that SQL normally operates on data a set at a time rather than a
row at a time constitutes a major incompatibility between SQL and the
most popular application development languages. A cursor enables SQL to
retrieve (or update, or delete) a single row at a time so that you can use
SQL in combination with an application written in any of the procedural
languages.

A cursor is like a pointer that locates a specific table row. When a cursor is
active, you can SELECT, UPDATE, or DELETE the row at which the cursor
is pointing.

Cursors are valuable if you want to retrieve selected rows from a table,
check their contents, and perform different operations based on those
contents. SQL can’t perform this sequence of operations by itself. SQL can

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 315

Declaring a Cursor316

retrieve the rows, but procedural languages are better at making decisions
based on field contents. Cursors enable SQL to retrieve rows from a table
one at a time and then feed the result to procedural code for processing. By
placing the SQL code in a loop, you can process the entire table row by row.

In a pseudocode representation of embedded SQL, the most common flow of
execution looks like this:

EXEC SQL DECLARE CURSOR statement
EXEC SQL OPEN statement
Test for end of table
Procedural code
Start loop

Procedural code
EXEC SQL FETCH
Procedural code
Test for end of table

End loop
EXEC SQL CLOSE statement
Procedural code

The SQL statements in this listing are DECLARE, OPEN, FETCH, and CLOSE.
Each of these statements is discussed in detail in this chapter.

If you can perform the operation that you want with normal SQL (set-at-a-
time) statements, do so. Declare a cursor, retrieve table rows one at a time,
and use your system’s host language only when normal SQL can’t do what
you want.

Declaring a Cursor
To use a cursor, you first must declare its existence to the DBMS. You do this
with a DECLARE CURSOR statement. The DECLARE CURSOR statement doesn’t
actually cause anything to happen; it just announces the cursor’s name to
the DBMS and specifies what query the cursor will operate on. A DECLARE
CURSOR statement has the following syntax:

DECLARE cursor-name [<cursor sensitivity>]
[<cursor scrollability>]
CURSOR [<cursor holdability>] [<cursor returnability>]
FOR query expression

[ORDER BY order-by expression]
[FOR updatability expression] ;

Note: The cursor name uniquely identifies a cursor, so it must be unlike that
of any other cursor name in the current module or compilation unit.

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 316

Book III
Chapter 5

Cursors

Declaring a Cursor 317

To make your application more readable, give the cursor a meaningful name.
Relate it to the data that the query expression requests or to the operation
that your procedural code performs on the data.

Cursor sensitivity may be SENSITIVE, INSENSITIVE, or ASENSITIVE. Cursor
scrollability may be either SCROLL or NO SCROLL. Cursor holdability may
be either WITH HOLD or WITHOUT HOLD. Cursor returnability may be either
WITH RETURN or WITHOUT RETURN.

The query expression
The query expression can be any legal SELECT statement. The rows that the
SELECT statement retrieves are the ones that the cursor steps through one
at a time. These rows are the scope of the cursor.

The query is not actually performed when the DECLARE CURSOR statement
is read. You can’t retrieve data until you execute the OPEN statement. The
row-by-row examination of the data starts after you enter the loop that
encloses the FETCH statement.

Ordering the query result set
You may want to process your retrieved data in a particular order, depend-
ing on what your procedural code does with the data. You can sort the
retrieved rows before processing them by using the optional ORDER BY
clause. The clause has the following syntax:

ORDER BY sort-specification [, sort-specification]...

You can have multiple sort specifications. Each has the following syntax:

(column-name) [COLLATE BY collation-name] [ASC|DESC]

You sort by column name, and to do so, the column must be in the select list
of the query expression. Columns that are in the table but not in the query
select list do not work as sort specifications. For example, you want to per-
form an operation that is not supported by SQL on selected rows of the
CUSTOMER table. You can use a DECLARE CURSOR statement like this:

DECLARE cust1 CURSOR FOR
SELECT CustID, FirstName, LastName, City, State, Phone

FROM CUSTOMER
ORDER BY State, LastName, FirstName ;

In this example, the SELECT statement retrieves rows sorted first by state,
then by last name, and then by first name. The statement retrieves all cus-
tomers in Alaska (AK) before it retrieves the first customer from Alabama

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 317

Declaring a Cursor318

(AL). The statement then sorts customer records from Alaska by the cus-
tomer’s last name (Aaron before Abbott). Where the last name is the same,
sorting then goes by first name (George Aaron before Henry Aaron).

Have you ever made 40 copies of a 20-page document on a photocopier with-
out a collator? What a drag! You must make 20 stacks on tables and desks,
and then walk by the stacks 40 times, placing a sheet on each stack. This
process is called collation. A similar process plays a role in SQL.

A collation is a set of rules that determines how strings in a character set
compare. A character set has a default collation sequence that defines the
order in which elements are sorted. But, you can apply a collation sequence
other than the default to a column. To do so, use the optional COLLATE BY
clause. Your implementation probably supports several common collations.
Pick one and then make the collation ascending or descending by appending
an ASC or DESC keyword to the clause.

In a DECLARE CURSOR statement, you can specify a calculated column that
doesn’t exist in the underlying table. In this case, the calculated column
doesn’t have a name that you can use in the ORDER BY clause. You can give
it a name in the DECLARE CURSOR query expression, which enables you to
identify the column later. Consider the following example:

DECLARE revenue CURSOR FOR
SELECT Model, Units, Price,

Units * Price AS ExtPrice
FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;

In this example, no COLLATE BY clause is in the ORDER BY clause, so the
default collation sequence is used. Notice that the fourth column in the
select list comes from a calculation on the data in the second and third
columns. The fourth column is an extended price named ExtPrice. In the
ORDER BY clause, I first sort by model name and then by ExtPrice. The sort
on ExtPrice is descending, as specified by the DESC keyword; transactions
with the highest dollar value are processed first.

The default sort order in an ORDER BY clause is ascending. If a sort specifi-
cation list includes a DESC sort and the next sort should also be in descend-
ing order, you must explicitly specify DESC for the next sort. For example:

ORDER BY A, B DESC, C, D, E, F

is equivalent to

ORDER BY A ASC, B DESC, C ASC, D ASC, E ASC, F ASC

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 318

Book III
Chapter 5

Cursors

Declaring a Cursor 319

Updating table rows
Sometimes, you may want to update or delete table rows that you access
with a cursor. Other times, you may want to guarantee that such updates
or deletions can’t be made. SQL gives you control over this issue with the
updatability clause of the DECLARE CURSOR statement. If you want to pre-
vent updates and deletions within the scope of the cursor, use this clause:

FOR READ ONLY

For updates of specified columns only — leaving all others protected — use

FOR UPDATE OF column-name [, column-name]...

Any columns listed must appear in the DECLARE CURSOR’s query expres-
sion. If you don’t include an updatability clause, the default assumption is
that all columns listed in the query expression are updatable. In that case,
an UPDATE statement can update all the columns in the row to which the
cursor is pointing, and a DELETE statement can delete that row.

Sensitive versus insensitive cursors
The query expression in the DECLARE CURSOR statement determines the
rows that fall within a cursor’s scope. Consider this possible problem: What
if a statement in your program, located between the OPEN and the CLOSE
statements, changes the contents of some of those rows so that they no
longer satisfy the query? What if such a statement deletes some of those
rows entirely? Does the cursor continue to process all the rows that origi-
nally qualified, or does it recognize the new situation and ignore rows that
no longer qualify or that have been deleted?

Changing the data in columns that are part of a DECLARE CURSOR query
expression after some — but not all — of the query’s rows have been
processed results in a big mess. Your results are likely to be inconsistent
and misleading. To avoid this problem, make your cursor insensitive to any
changes that statements within its scope may make. Add the INSENSITIVE
keyword to your DECLARE CURSOR statement. As long as your cursor is
open, it is insensitive to table changes that otherwise affect rows qualified
to be included in the cursor’s scope. A cursor can’t be both insensitive and
updatable. An insensitive cursor must be read-only.

Think of it this way: A normal SQL statement, such as UPDATE, INSERT, or
DELETE, operates on a set of rows in a database table (perhaps the entire
table). While such a statement is active, SQL’s transaction mechanism pro-
tects it from interference by other statements acting concurrently on the
same data. If you use a cursor, however, your window of vulnerability to

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 319

Opening a Cursor320

harmful interaction is wide open. When you open a cursor, you are at risk
until you close it again. If you open one cursor, start processing through a
table, and then open a second cursor while the first is still active, the actions
you take with the second cursor can affect what the statement controlled by
the first cursor sees. For example, suppose that you write these queries:

DECLARE C1 CURSOR FOR SELECT * FROM EMPLOYEE
ORDER BY Salary ;

DECLARE C2 CURSOR FOR SELECT * FROM EMPLOYEE
FOR UPDATE OF Salary ;

Now, suppose you open both cursors and fetch a few rows with C1 and then
update a salary with C2 to increase its value. This change can cause a row
that you have already fetched with C1 to appear again on a later fetch that
uses C1.

The peculiar interactions that are possible with multiple open cursors, or
open cursors and set operations, are the sort of concurrency problems that
transaction isolation avoids. If you operate this way, you’re asking for trou-
ble. So remember: Don’t operate with multiple open cursors.

The default condition of cursor sensitivity is ASENSITIVE. The meaning
of ASENSITIVE is implementation-dependent. For one implementation, it
could be equivalent to SENSITIVE and, for another, it could be equivalent
to INSENSITIVE. Check your system documentation for its meaning in your
own case.

Scrolling a cursor
Scrollability is a capability that cursors didn’t have prior to SQL-92. In imple-
mentations adhering to SQL-86 or SQL-89, the only allowed cursor movement
was sequential, starting at the first row retrieved by the query expression and
ending with the last row. SQL-92’s SCROLL keyword in the DECLARE CURSOR
statement gives you the capability to access rows in any order that you want.
The current version of SQL retains this capability. The syntax of the FETCH
statement controls the cursor’s movement. I describe the FETCH statement
later in this chapter. (See the “Fetching Data from a Single Row” section.)

Opening a Cursor
Although the DECLARE CURSOR statement specifies which rows to include
in the cursor, it doesn’t actually cause anything to happen because DECLARE
is a declaration and not an executable statement. The OPEN statement brings
the cursor into existence. It has the following form:

OPEN cursor-name ;

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 320

Book III
Chapter 5

Cursors

Opening a Cursor 321

To open the cursor that I use in the discussion of the ORDER BY clause (ear-
lier in this chapter), use the following:

DECLARE revenue CURSOR FOR
SELECT Model, Units, Price,

Units * Price AS ExtPrice
FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;
OPEN revenue ;

You can’t fetch rows from a cursor until you open the cursor. When you open
a cursor, the values of variables referenced in the DECLARE CURSOR state-
ment become fixed, as do all current date-time functions. Consider the fol-
lowing example of SQL statements embedded in a host language program:

EXEC SQL DECLARE CURSOR C1 FOR SELECT * FROM ORDERS
WHERE ORDERS.Customer = :NAME
AND DueDate < CURRENT_DATE ;

NAME := ‘Acme Co’; //A host language statement
EXEC SQL OPEN C1;
NAME := ‘Omega Inc.’; //Another host statement
...
EXEC SQL UPDATE ORDERS SET DueDate = CURRENT_DATE;

The fix is in (for date-times)
A similar “fixing” of date-time values exists in
set operations. Consider this example:

UPDATE ORDERS SET RecheckDate
= CURRENT_DATE WHERE....;

Now suppose that you have a bunch of orders.
You begin executing this statement at a minute
before midnight. At midnight, the statement is
still running, and it doesn’t finish executing until
five minutes after midnight. It doesn’t matter. If
a statement has any reference to CURRENT_
DATE (or TIME or TIMESTAMP), the value is
fixed when the statement begins, so all the
ORDERS rows in the statement get the same
RecheckDate. Similarly, if a statement refer-
ences TIMESTAMP, the whole statement uses

only one timestamp value, no matter how long
the statement runs.

Here’s an interesting example of an implication
of this rule:

UPDATE EMPLOYEE SET KEY=
CURRENT_TIMESTAMP;

You may expect that statement to set a unique
value in the key column of each EMPLOYEE.
You’d be disappointed; it sets the same value in
every row.

So when the OPEN statement fixes date-time
values for all statements referencing the
cursor, it treats all these statements like an
extended statement.

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 321

Fetching Data from a Single Row322

The OPEN statement fixes the value of all variables referenced in the declare
cursor and also fixes a value for all current date-time functions. Thus the
second assignment to the name variable (NAME := ‘Omega Inc.’) has no
effect on the rows that the cursor fetches. (That value of NAME is used the
next time you open C1.) And even if the OPEN statement is executed a minute
before midnight and the UPDATE statement is executed a minute after mid-
night, the value of CURRENT_DATE in the UPDATE statement is the value of
that function at the time the OPEN statement executed. This is true even if
DECLARE CURSOR doesn’t reference the date-time function.

Fetching Data from a Single Row
Whereas the DECLARE CURSOR statement specifies the cursor’s name and
scope, and the OPEN statement collects the table rows selected by the
DECLARE CURSOR query expression, the FETCH statement actually retrieves
the data. The cursor may point to one of the rows in the cursor’s scope,
or to the location immediately before the first row in the scope, or to the
location immediately after the last row in the scope, or to the empty space
between two rows. You can specify where the cursor points with the orienta-
tion clause in the FETCH statement.

FETCH syntax
The syntax for the FETCH statement is

FETCH [[orientation] FROM] cursor-name
INTO target-specification [, target-specification]... ;

Seven orientation options are available:

✦ NEXT

✦ PRIOR

✦ FIRST

✦ LAST

✦ ABSOLUTE

✦ RELATIVE

✦ <simple value specification>

The default option is NEXT, which was the only orientation available in ver-
sions of SQL prior to SQL-92. It moves the cursor from wherever it is to the
next row in the set specified by the query expression. If the cursor is located

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 322

Book III
Chapter 5

Cursors

Fetching Data from a Single Row 323

before the first record, it moves to the first record. If it points to record n, it
moves to record n+1. If the cursor points to the last record in the set, it moves
beyond that record, and notification of a no data condition is returned in the
SQLSTATE system variable. (Chapter 4 of Book IV details SQLSTATE and the
rest of SQL’s error-handling facilities.)

The target specifications are either host variables or parameters, respec-
tively, depending on whether embedded SQL or module language is using
the cursor. The number and types of the target specifications must match the
number and types of the columns specified by the query expression in the
DECLARE CURSOR. So in the case of embedded SQL, when you fetch a list of
five values from a row of a table, five host variables must be there to receive
those values, and they must be the right types.

Absolute versus relative fetches
Because the SQL cursor is scrollable, you have other choices besides NEXT.
If you specify PRIOR, the pointer moves to the row immediately preceding
its current location. If you specify FIRST, it points to the first record in the
set, and if you specify LAST, it points to the last record.

An integer value specification must accompany ABSOLUTE and RELATIVE.
For example, FETCH ABSOLUTE 7 moves the cursor to the seventh row from
the beginning of the set. FETCH RELATIVE 7 moves the cursor seven rows
beyond its current position. FETCH RELATIVE 0 doesn’t move the cursor.

FETCH RELATIVE 1 has the same effect as FETCH NEXT. FETCH RELATIVE
–1 has the same effect as FETCH PRIOR. FETCH ABSOLUTE 1 gives you the
first record in the set, FETCH ABSOLUTE 2 gives you the second record in
the set, and so on. Similarly, FETCH ABSOLUTE –1 gives you the last record
in the set, FETCH ABSOLUTE –2 gives you the next-to-last record, and so on.
Specifying FETCH ABSOLUTE 0 returns the no data exception condition
code, as does FETCH ABSOLUTE 17 if only 16 rows are in the set. FETCH
<simple value specification> gives you the record specified by the
simple value specification.

Deleting a row
You can perform delete and update operations on the row that the cursor is
currently pointing to. The syntax of the DELETE statement is as follows:

DELETE FROM table-name WHERE CURRENT OF cursor-name ;

If the cursor doesn’t point to a row, the statement returns an error condition.
No deletion occurs.

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 323

Closing a Cursor324

Updating a row
The syntax of the UPDATE statement is as follows:

UPDATE table-name
SET column-name = value [,column-name = value]...
WHERE CURRENT OF cursor-name ;

The value you place into each specified column must be a value expression
or the keyword DEFAULT. If an attempted positioned update operation
returns an error, the update isn’t performed.

Closing a Cursor
After you finish with a cursor, make a habit of closing it immediately. Leaving
a cursor open as your application goes on to other issues may cause harm.
Also, open cursors use system resources.

If you close a cursor that was insensitive to changes made while it was open,
when you reopen it, the reopened cursor reflects any such changes.

The syntax for closing cursor C1 is

CLOSE C1 ;

21 119280 bk03ch05.qxp 5/23/07 10:16 AM Page 324

Book IV

Data Security

22 119280 pt04.qxp 5/23/07 10:16 AM Page 325

Contents at a Glance
Chapter 1: Protecting Against Hardware Failure and External Threats327

Chapter 2: Protecting Against User Errors and Conflicts..343

Chapter 3: Assigning Access Privileges ..371

Chapter 4: Error Handling ..383

22 119280 pt04.qxp 5/23/07 10:16 AM Page 326

Chapter 1: Protecting
Against Hardware Failure
and External Threats

In This Chapter
� Dealing with trouble in paradise

� Maintaining database integrity

� Enhancing performance and reliability with RAID

� Avoiding disaster with backups

� Coping with Internet threats

� Piling on layers of protection

Database applications are complex pieces of software that interact with
databases, which in turn are complex collections of data that run on

computer systems, which in their own right are complex assemblages of
hardware components. The more complex something is, the more likely it is
to have unanticipated failures. That being the case, a database application is
an accident waiting to happen. With complexity piled upon complexity, not
only is something sure to go wrong, but when it does, you’ll have a hard
time telling where the problem lies. However, you can do some things to
protect yourself against these threats. Of course, the protections require
you to spend time and money. You must evaluate the tradeoff between pro-
tection and expense, and find a level of protection you are comfortable with,
at an expense you can afford.

What Could Possibly Go Wrong?
Problems can arise in a number of areas. Here are a few:

✦ Your database could be incorrectly structured, making modification
anomalies inevitable.

✦ Data-entry errors could introduce bad data into the database.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 327

What Could Possibly Go Wrong?328

✦ Users accessing the same data at the same time could interfere with
each other.

✦ Changes to database structure could “break” existing database
applications.

✦ Upgrading to a new operating system could create problems with
existing database applications.

✦ Upgrading system hardware could “break” existing database
applications.

✦ Posing a query that has never been asked before could expose a
hidden bug.

✦ An operator could accidentally destroy data.

✦ A malicious person could intentionally destroy or steal data.

✦ Hardware could age or wear out and fail permanently.

✦ An environmental condition could cause a “soft” error that exists long
enough to alter data, but then disappear. (These are maddening.)

✦ A virus or worm could arrive over the Internet and corrupt data.

From the preceding partial list, you can clearly see that protecting your
data can require a significant effort, and as such should be budgeted for ade-
quately during the planning of a database project. In this chapter, I concen-
trate on hardware issues and malicious threats that arrive over the Internet.
I address the other concerns in the next chapter.

Equipment failure
Great strides have been made in recent years in improving the reliability of
computer hardware. However, we’re still a long way from perfect hardware
that will never fail. Anything with moving parts is subject to wear and tear.
As a consequence, such devices fail more often than do devices that have no
moving parts. Hard disk drives, CD-ROM drives, DVD-ROM drives, and floppy
disk drives all depend on mechanical movement, and thus are possible points
of failure. So are cooling fans and even on/off switches. Connectors such as
USB ports and audio and video jacks that see frequent insertions and extrac-
tions are also liable to fail before the non-moving parts do.

Even non-moving parts can fail due to overheating or just from carrying
electrical current for too long. Of course, anything can fail if it is physically
abused (dropped, shaken, or has coffee spilled into it, for example).

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 328

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

What Could Possibly Go Wrong? 329

You can do several things to minimize, if not eliminate, problems caused by
equipment failure. Here are a few ideas:

✦ Check the specifications of components with moving parts such as hard
disk and DVD-ROM drives. Pick components with a high MTBF (Mean
Time Between Failures). Do some comparison shopping. You will find a
range of values. When shopping for a hard disk, the number of gigabytes
per dollar should not be the only thing you look at.

✦ Make sure your computer system has adequate cooling. It is especially
important that the processor chips have sufficient cooling. They gener-
ate enormous amounts of heat.

✦ Buy memory chips with a high MTBF.

✦ Control the environment where your computer is located. Make sure it
gets adequate ventilation and is never subjected to high temperatures. If
you cannot control the ambient temperature, turn the system off when
the weather gets too hot. Humans can tolerate extreme heat better than
computers can.

✦ Isolate your system from shock and vibration.

✦ Establish a policy that prohibits liquids such as coffee, or even water,
from being anywhere near the computer.

✦ Restrict access to the computer, so that only those people who agree to
your protection rules can come near it.

Platform instability
What’s a platform? A platform is the system your database application is
running on. It includes the operating system, the basic input/output subsys-
tem (BIOS), the processor, the memory, and all the ancillary and peripheral
devices that make up a functioning computer system.

Platform instability is a fancy way of saying that you cannot count on your
platform to operate the way it is supposed to. Sometimes this is due to an
equipment failure or an impending equipment failure. Other times, it is due
to an incompatibility introduced when one or another element in the system
is changed.

Because of the danger of platform instability, many database administrators
(DBAs) are extremely reluctant to upgrade their system when a new release
of the operating system, or a larger, higher-capacity hard disk becomes avail-
able. The person who coined the phrase “If it ain’t broke, don’t fix it” must
have been a database administrator. Any change to a happily functioning

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 329

What Could Possibly Go Wrong?330

system is liable to cause platform instability problems, so DBAs resist such
changes fiercely, allowing them grudgingly only when it becomes clear that
important work cannot be performed without the upgrade.

So how do you protect against platform instability, aside from forbidding
any changes to the platform? Here are a few things you can do to protect
yourself:

✦ Install the upgrade when nothing important is running and furthermore
nothing important is scheduled to be run for several days. Yes, this
means coming in on the weekend.

✦ Change only one thing at a time and deal with any issues that arise
before making another change that could interact with the first change.

✦ Warn users in advance that you are about to make a configuration
change, so they can protect themselves from any possible adverse
consequences.

✦ If you can afford it, bring up the new environment on a parallel system
and switch over your production work only when it is clear that the new
system has stabilized.

Database design flaws
The design of robust, reliable, and high-performing databases is a topic that
goes beyond SQL and is worthy of a book in its own right. I recommend my
Database Development For Dummies (published by Wiley). Many problems
that show up long after a database has been placed into service can be
traced back to faulty design at the very beginning. It is important to get it
right from the start. Give the design phase of every development project
the time and consideration it deserves.

Data entry error
It’s really hard to draw valid conclusions from information retrieved from a
database if faulty data was entered into the database to begin with. Chapter
5 of Book I describes how to enter data into a database with SQL’s INSERT
statement, and how to modify the data in an existing database record with
the UPDATE statement. If a person is entering a series of such statements,
keyboarding errors are a real possibility. Even if you’re entering records
through a form that does validation checks on what you enter, mistypes are
still a concern. Entered data can be valid, but nonetheless incorrect. Zero
through nine are all valid decimal digits, but if a field is supposed to contain

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 330

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Taking Advantage of RAID 331

a seven, six is just as wrong as Tuesday. The best defense against data entry
errors is to have someone other than the person who entered the data check
it against the original source document.

Operator error
People make mistakes. You can minimize the impact of such mistakes by
making sure that only intelligent, highly trained, and well-meaning people can
get their hands on the database. However, even the most intelligent, highly
trained, and well-meaning people make mistakes from time to time. Sometimes
those mistakes destroy data or alter it in a way that makes it unusable. Your
best defense from such an eventuality is to have a robust and active backup
policy, which I discuss in detail later, in the “Backing Up Your System” section.

Taking Advantage of RAID
Equipment failure is one of the things that can go wrong with your database.
Of all the pieces of equipment that make up a computer system, the one
piece that is most likely to fail is the hard disk drive. A motor is turning a
spindle from seven to ten thousand revolutions per minute. Platters holding
data are attached to the spindle and spinning with it. Read/write heads on
cantilevers are moving in and out across the platter surfaces. Significant
heat is generated by the motor and the moving parts. Sooner or later, wear
takes it toll and the disk drive fails. When it does, whatever information it
contained becomes unrecoverable. Disk failures are inevitable — you just
don’t know when they will occur. You can do a couple of things to protect
yourself from the worst consequences of disk failure. One is to maintain a
regular backup discipline that copies production data at intervals and stores
it in a safe place offline. The other thing you can do is to put some redun-
dancy into the storage system. This redundancy is accomplished using RAID
(Redundant Array of Inexpensive Disks).

RAID technology has two main advantages. The redundancy aspect gives the
system a measure of fault tolerance. The inexpensive aspect comes from the
fact that several disks with smaller capacities are generally cheaper than a
single disk of the same capacity because the large single disk is using the
most recent, most advanced technology and is operating on the edge of
what is possible. In fact, a RAID array may be configured to have a capacity
that is larger than the largest disk drive that is available at any price.

In a RAID array, two or more disks are combined to form a logical disk drive.
To the database, the logical disk drive appears to be a single unit, although
physically it may be made up of multiple disk drives.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 331

Taking Advantage of RAID332

Striping
A key concept of RAID architecture is the idea of striping. With striping, data
is spread across multiple disks in chunks. One chunk is placed on the first
disk; the next chunk is placed on the next disk; and so on. After a chunk is
placed on the last disk in the array, the next chunk goes on the first disk,
and the cycle starts over. In this way, the data is evenly spread across all the
disks in the array, and no single disk contains anything meaningful. In a five-
disk array, for example, each disk holds one-fifth of the data. If the chunks
are words in a text file, one disk holds every fifth word in the document.
You need all of them to put the text back together again in a readable form.
Figure 1-1 illustrates the idea of striping.

In Figure 1-1, chunks 1, 2, 3, and 4 constitute one stripe; chunks 5, 6, 7, and
8 constitute the next stripe, and so on. A stripe is made up of contiguous
chunks on the logical drive, but physically, each chunk is on a different hard
disk drive.

RAID levels
There are several levels of RAID, each with its own advantages and disadvan-
tages. Depending on your requirements, you may decide to use one RAID
level for some of your data and another RAID level for data that has different
characteristics. In the following sections, I briefly discuss the RAID levels
that are most commonly used.

RAID 0
RAID 0 is the simplest of the RAID levels. A round robin method distributes
data across all the disks in the array in a striped fashion. Striping enhances
performance because multiple disks can perform seeks in parallel rather
than sequentially, as would be the case with a single large disk. However,
RAID 0 offers no fault tolerance. There is no redundancy. If you lose any one
disk in the array, you have lost all of your data. The data remaining on the
disks that are still functioning is of no use without the missing chunks. It’s
as if, in a five-disk array, every fifth word of a text document is missing, or
every fifth reservation in an airline reservation system has disappeared.
Actually, it is even worse than that because the chunks typically don’t
exactly match text words or database records. What remains is unintelligible.

Although it increases performance, RAID 0 provides no benefit over running
on a non-RAID disk in terms of fault tolerance. It’s not wise to put mission-
critical data on a RAID 0 array.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 332

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Taking Advantage of RAID 333

1
5

9
2

8
4

7
3

6
10

11
12

1
2

3
4

5
6

7
8

9
10

11
12

Di
sk

 1
Di

sk
 2

Di
sk

 3
Di

sk
 4

Lo
gi

ca
l D

is
k. .

 .

Ch
un

k
N

Ch
un

k
1

Figure 1-1:
RAID
striping.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 333

Taking Advantage of RAID334

RAID 1
RAID 1 is the simplest of the fault-tolerant RAID levels. It does not employ
striping. Also known as disk mirroring, RAID 1 duplicates the content of one
disk on a second disk. Performance is somewhat worse than the perform-
ance of a non-RAID disk because every write operation has to go to two disks
rather than one. A second disadvantage is that you use two hard disks to
hold one hard disk’s worth of data — your disk cost is doubled. The benefit
of RAID 1 is in the area of fault tolerance. If either of the mirrored disks fails,
the other one contains all the data, and performance is unaffected. You can
replace the failed disk and fill it up with data to match the surviving disk, to
return to the same level of fault tolerance you had at the beginning. RAID 1 is
a good choice when both fault tolerance and performance are important,
when all your data will fit on a single disk drive, and when cost is not a pri-
mary concern.

RAID 5
RAID 5 is a RAID level that uses parity rather than data duplication to
achieve fault tolerance. In an array of, say, six physical disks, each stripe
consists of five data chunks and one parity chunk. If any one of the physical
drives fails, its contents can be deduced from the parity information on the
other five drives. The advantage of RAID 5 is that the space available to hold
data is N–1, where N is the number of disk drives. This compares favorably
with RAID 1, where the space available to hold data is N/2. A six-drive RAID 5
array holds up to five disks full of data. Three two-drive RAID 1 arrays only
hold up to three disks full of data. You pay a performance penalty for the
additional capacity. In a RAID 5 system, every write operation requires four
disk accesses: two reads and two writes. Both the target disk stripe and the
parity stripe must be read, the parity calculated, and then both stripes must
be written.

Because of the performance penalty RAID 5 exacts on writes, RAID 5 isn’t a
good choice for disks that are often written to. RAID 5 is fine for databases
that are read-only or read-mostly. If more than ten percent of disk operations
are writes, RAID 5 is probably not the best choice.

RAID 10
RAID 10 combines aspects of RAID 0 and RAID 1. Like RAID 1, RAID 10 mir-
rors disks. Each disk has an exact duplicate. Like RAID 0, the disks in the
array are striped. RAID 10 gives the fault tolerance of RAID 1 and the per-
formance of RAID 0. A RAID 10 array can consist of a large number of disks,
so it is a good level to use when a large amount of data is being stored. It is
also good from a fault tolerance point of view because it can tolerate the loss
of more than one disk, although it cannot handle the loss of both members
of a mirror pair.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 334

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Backing Up Your System 335

RAID level comparison
When deciding which RAID level is appropriate for a given database and its
associated applications, performance, fault tolerance, and cost are the main
considerations. Table 1-1 shows the comparison of these metrics.

Table 1-1 RAID Level Comparison
RAID Level Performance Fault Tolerance Disk Capacity/Data Size

RAID 0 Best: One disk Worst: None Best: 1
access/write

RAID 1 Good: Two disk Good: No degradation Worst: 2
accesses/write with single failure

RAID 5 Fair: Four disk Fair: Full recovery Good: N/(N–1)
accesses/write possible

RAID 10 Good: Two disk Excellent: No Worst: 2
accesses/write degradation with

multiple failures

Backing Up Your System
Fault tolerance, as described in the section on RAID, and also as imple-
mented with redundant hardware that goes beyond RAID, responds to some,
but not all of the threats listed at the top of this chapter. The most effective
defense you have against the full spectrum of potential problems is an effec-
tive backup procedure. Backing up means making copies of all your impor-
tant programs and data as often as necessary, so that you can easily and
quickly regain full functionality after some misfortune has corrupted or
destroyed your system. Depending on the criticality of your application, you
should go to greater or lesser lengths to protect your assets.

Preparing for the worst
On September 11, 2001, a terrorist attack destroyed the twin towers of the
World Trade Center in lower Manhattan. Along with the lives of thousands of
people, the financial hub of the American economy was snuffed out. Virtually
all of America’s major financial institutions, including the New York Board
of Trade (NYBOT), had their center of operations in the World Trade Center.
The lives that were lost that day were gone for good. However, within hours,
the NYBOT was up and running again, hardly missing a beat. This was pos-
sible because it had prepared for the worst. It had implemented the most
effective (and most expensive) form of backup. It continuously sent its infor-
mation off site to a hot site in Queens. The hot site was close enough so that

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 335

Backing Up Your System336

employees who had evacuated the World Trade Center could get to it
quickly and start the recovery effort, yet it was far enough away so as not to
be affected by a major disaster.

Many companies and government entities can justify the investment in the
level of backup employed by the NYBOT. That investment was made because
analysis showed that downtime would cost the NYBOT and its clients close
to $4,000,000 a day. For enterprises where downtime is not so costly, a lesser
investment in backup is justified. However, if loss of your data or programs
would cause you any pain at all, some level of backup is called for. This may
be no more than copying your active work onto a thumb drive every night
after work and taking it home with you. It could mean putting removable
hard disks into a fireproof safe in another building. It could mean distribut-
ing copies of your data to remote sites over your corporate network. Think
carefully about what your threats are, what losses are possible, what the
consequences of those losses are, and what investment in backup is justi-
fied, in light of those threats, losses, and consequences.

Full or incremental backup
Perhaps you have only one or two megabytes of data that you are actively
working on that would cause pain if you were to lose them. Alternatively,
you might have a critical database in the terabyte range. In the first case, it
won’t take much time for you to back up the entire database and remove the
backup copy to a safe place. On the other hand, you probably do not want to
back up a terabyte database completely several times a day, or even once a
day. The size of your database, the speed of your backup procedure, and the
cost of your backup medium dictate whether you implement a full backup
procedure, or only back up the changes that have been made since the last
backup. Backing up only the changes is called incremental backup. When a
failure occurs, you can go back to your last full backup, and then restore all
the incremental backups that followed it, one by one.

Frequency
A big question about backup is, “How often should I do it?” I answer that
question with another question, “How much pain are you willing to endure,
if you were to suddenly and unexpectedly lose your data?” If you don’t mind
redoing a couple of hours of work, there is no point in backing up more fre-
quently than every couple of hours. Many organizations perform backups at
night after the workers have gone home for the day. These organizations run
the risk of losing no more than a day’s work. Think carefully about your total
situation and what effect data loss could have on you, and then choose an
appropriate backup interval. Be sure to adhere to your backup schedule with-
out fail. Long intervals without a failure should not weaken your resolve to
maintain your schedule. It is the unexpected that you are defending against.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 336

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Coping with Internet Threats 337

Backup maintenance
When your latest backup is sent to off site storage or your hot site, don’t
immediately recycle the backup media from the previous backup. Sometimes
problems in the data are not realized right away, and several backup genera-
tions are made before anyone recognizes that the data is corrupted. One
good discipline, if you are backing up on a daily basis, is to keep a whole
week of daily backups, as well as a month’s worth of weekly backups, and a
year’s worth of monthly backups. That should cover most possibilities. The
important point is to maintain the number of backups you need, for as long
as you need them, to ensure that you will be able to continue operating, with
minimum downtime, regardless of what might happen.

Another thing you should do is restore a backup occasionally, just to see if you
recover all the data that you backed up. I once went into a company (which
shall remain nameless) as a database consultant. They very proudly showed
me their backup disks and the fireproof safe they kept them in. There was only
one problem. The backup disks were all empty! The employee who dutifully
did the backups every night did not have a full understanding of the backup
procedure and was actually recording nothing. Luckily, I asked them to do a
test restore, and the problem was discovered before they had to do a restora-
tion for real.

Coping with Internet Threats
In addition to all the bad things that can happen to your hardware due to
random failures and human mistakes, the Internet is another potential source
of major problems. People with malicious intent (called crackers) do not have
to get anywhere near your hardware to do great damage to your computer
system and your organization. The Internet is your connection to your cus-
tomers, clients, suppliers, friends, news organizations, and entertainment
providers. It is also a connection to people who either want to harm you or
to steal the resources of your computer. Attacks on your system can take a
number of forms. I briefly discuss a few of the most common ones in the fol-
lowing sections.

Viruses
A virus is a self-replicating piece of software that spreads by attaching itself
to other programs or to documents. When a human launches the host pro-
gram, or performs some other action on it, the virus is activated. After it’s
activated, the virus can propagate by copying itself to other programs.
The virus’s “payload” can perform other actions, such as erasing disk files,
crashing the computer, displaying mocking messages on the user’s screen,
or commandeering system resources to perform a computation for, and send
results back to, the attacker who originated the virus.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 337

Coping with Internet Threats338

At any given time, hundreds of viruses, of varying virulence, are circulating
on the Internet. If one happens to infect your computer, it can be an annoy-
ance or a disaster. Consider these options to protect yourself:

✦ Never connect your computer to the Internet. This is a very effective
technique and a viable idea if none of the work you intend to do on that
computer relies on the Internet’s resources, and it never exchanges files
with any of your computers that are connected to the Internet.

✦ Install antivirus software on your computer and keep it up to date by
maintaining a subscription. New viruses are emerging all the time: To
thwart them, you need the latest in antivirus protection.

✦ Make sure users are aware of virus threats and know how to recog-
nize suspicious e-mails. This is an important defense against viruses.
Caution them not to open e-mail attachments from unknown sources
and be careful about visiting Web sites of unknown character. Set their
browser settings at a high security level.

Even if you do all of the above recommended actions, your computer still
might become infected with a virus. Be on the lookout for any change in the
way your computer operates. A sudden slowdown in performance could be a
sign that a virus has taken over your system, which is now doing the bidding
of some unknown attacker rather than doing what you want it to do.

Worms
Worms are similar to viruses in some respects, and different in others. The
defining characteristic of a virus is that it spreads by attaching itself to other
programs. The defining characteristic of a worm is that it spreads via net-
works. Both viruses and worms are self-replicating; however, viruses typi-
cally need some action by a human in order to become active. Worms have
no such limitation. They can enter an unsuspecting computer via a network
connection at any time of day or night, without any action by a human.

Worms can take over thousands of computers in a matter of hours, as an
exponentially expanding wave of infection flows out from a single initially
infected computer. An infected computer can, for example, send a copy of
the worm to every address in the computer’s e-mail address book. Each of
those computers, which are now infected too, then send the worm on to all
the computers in their respective address books. It doesn’t take long for the
infection to spread around the world. This clogs up communication chan-
nels, as bandwidth is consumed by thousands of copies of the worm, which
are sent from one computer to another. Depending on the worm’s payload,
infected computers may start performing a computation, such as password
cracking, for the originator of the worm, or they may start erasing files or
causing other damage.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 338

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Coping with Internet Threats 339

You can do a few things to protect yourself from being infected, or failing
that, from passing on the infection:

✦ Employ all patches from the vendors of your software as soon as
possible.

✦ Harden your system to prevent bad stuff from getting in. This may
involve closing ports that are normally open.

✦ Block arbitrary outbound connections. By doing so, if you do get
infected, you don’t pass on the infection.

If everyone did these things, worms would fizzle out before they got very far.

Denial-of-service attacks
Worms need not actively perform computations or cause damage to the sys-
tems they infect. Instead, they can lie dormant, in stealth mode, waiting for a
specific time and date, or some other trigger to occur. At the appointed time,
thousands of infected computers, now under the control of a malicious
cracker, can simultaneously launch a denial-of-service attack on some target
Web site. The thousands of incoming messages from the worms completely
overwhelm the ability of the target site to handle the traffic, preventing legit-
imate messages from getting through and bringing the Web site down.

Phishing scams
Scammers send out e-mails to thousands or even millions of people, purport-
ing to be from a legitimate bank, or business such as eBay, saying that your
account has shown unusual activity and you must update your information.
After you input your financial information, the scammer has access to
your bank or business account and can transfer your funds to his offshore
account in a country that does not monitor financial transactions. The next
time you access your account, you receive an unpleasant surprise.

The best defense against a phishing attack is to never respond to an e-mail
with sensitive information. Even though the e-mail sends you to a site that
looks for all the world like the official Web site of your bank, it is a fake,
specifically designed to induce you to surrender your account information
and along with it all the money in the account.

Zombie spambots
Zombie spambots are similar to the worms that engage in denial-of-service
attacks. However, instead of launching an attack on a single Web site, spam-
bots spew unsolicited advertising messages to lists of e-mail addresses that

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 339

Installing Layers of Protection340

the spammers have acquired. Rather than being from a single, relatively
easy-to-trace source, the spam is produced by thousands of computers
that have been taken over by worms to mindlessly pump out spam to their
address lists. If you happen to be one of the people whose computer has
been taken over, you see an unexplained drop in performance, as a signifi-
cant fraction of your computational capacity and Internet bandwidth is
dedicated to sending spam to unlucky recipients around the world. Such
distributed spam attacks are devilishly difficult to trace to their source.

Installing Layers of Protection
The creators of viruses, worms, and bots have become increasingly sophisti-
cated and are perpetually one or two steps ahead of the guys in the white
hats who are trying to stamp them out. As a user, you should do everything
you can to protect your computers and the sensitive information they con-
tain. Because no one type of protection is totally effective, your best hope is
to put several layers of protection between your valuable files and programs
and the outside world.

Network layer firewalls
Communication on the Internet consists of packets of data that conform to
the TCP/IP protocol. A network layer firewall is a packet filter, operating on a
low level, that resides on a computer situated between the Internet and a
local area network (LAN), in what is called the DMZ (demilitarized zone).
The computer that is running the firewall in the DMZ does not contain any
sensitive information. Its sole purpose is to protect the LAN. Rules set up by
the network administrator (or default values) determine which packets are
allowed to pass from the Internet to the LAN and which are rejected.

Application layer firewalls
An application layer firewall operates at a higher (more abstract) level than
the network layer firewall. It can inspect the contents of network traffic and
block traffic that the firewall administrator deems to be inappropriate, such
as traffic from known-malicious Web sites, recognized viruses, or attempts to
exploit known vulnerabilities in software running on the LAN.

Antivirus software
Considering the hundreds of viruses and worms circulating in the wild,
up-to-date antivirus software is a necessity for any computer that is either
directly or indirectly connected to the Internet. Even computers that are not
connected to the Internet are susceptible to infection, if they can receive
software from CD-ROMs, floppy disks, or flash (thumb) drives. Be sure to

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 340

Book IV
Chapter 1

Protecting Against
Hardw

are Failure
and External Threats

Installing Layers of Protection 341

buy a subscription to one of the popular antivirus programs, such as McAfee
or Norton, and then keep the subscription current with regular downloads of
updates.

Vulnerabilities, exploits, and patches
Antivirus software can protect you from viruses, worms, and other malware
that crackers have created to serve their own nefarious purposes. However,
such software cannot protect you from malware that has not yet been
released into the wild and detected by the antivirus software vendors.

Existing software may have vulnerabilities that have not yet been exploited
by malware developers. New software is almost certain to contain vulnera-
bilities that are just waiting to be exploited. When exploits for these vulnera-
bilities appear, all computers are at risk until the vulnerabilities have been
patched.

Sometimes exploits (called zero-day exploits) are released into the wild on
the same day that the vulnerability becomes known. In such cases, the time
between the release of the exploit and the release of the patch that shuts it
down is a period of time during which there is no effective defense against
the exploit.

When a patch does become available, install it immediately on all susceptible
machines. An ongoing problem is the huge number of naive users who are
either not aware of the danger and the associated patch, or who do not real-
ize the importance of hardening their systems against attack. By remaining
vulnerable, they endanger not only their own systems, but also others that
could be attacked if their machine is compromised.

Education
One of the best defenses against malicious attacks on your systems is for all
users to be educated about the threats and the countermeasures that are
available to eliminate those threats. Regular training on security should be
a part of every organization’s defensive arsenal.

Alertness
If you ever sit down at your computer and see something that just strikes
you as odd, beware. You could be seeing the evidence that your computer
has been compromised. Run some checks. If you don’t know what checks to
run, ask someone who does know for help. It could be nothing, but then
again maybe a stranger is sucking value out of your system. It doesn’t hurt
to be a little paranoid.

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 341

Book IV: Data Security342

23 119280 bk04ch01.qxp 5/23/07 10:16 AM Page 342

Chapter 2: Protecting Against
User Errors and Conflicts

In This Chapter
� Discovering even more trouble in paradise

� Keeping the garbage out

� Taking the ACID test

� Preventing mix-ups with transactions

� Getting familiar with lock types

� Tuning locks

� Tuning the recovery system

After you have done everything you can do to minimize the possibility
of problems due to hardware faults and Internet threats, which I dis-

cuss in the previous chapter, you still have to worry about yet other things
that can damage the data in your database or degrade performance.

Several additional potential sources of error exist. Here are a few of the
most important:

✦ The database design could be faulty, leading to modification anomalies
or poor performance.

✦ The database application written to access the data in the database
could be buggy, leading to database corruption, erroneous results, poor
performance, or all of the above.

✦ The data entered into the database could be wrong.

✦ Users accessing the same (or nearby) data at the same time could inter-
fere with each other, impacting performance or even corrupting the data.

Reducing Data Entry Errors
All the things you do to protect your database from harm are to no avail
if bad data is entered into it in the first place. Although nowadays quite
a bit of data is recorded automatically by instrumentation and delivered to

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 343

Reducing Data Entry Errors344

databases electronically, much of the data stored in the world’s databases
was initially entered by hand by a fallible human at a computer keyboard.
Humans are notorious for making typing errors even if they are very consci-
entious and are excellent spellers. Even data collected automatically could
contain errors produced by electronic noise, or a thousand other unpre-
dictable causes. You can’t eliminate all these problems before they put bad
data into a database, but you can discover and eliminate some of them, at
least.

Data types: the first line of defense
SQL is a strongly typed language. That means that if a data entry is sup-
posed to be of a particular type, the database engine will not accept any
entry that does not conform to the rules of that type. For example, the
BOOLEAN type accepts only values of TRUE and FALSE. It rejects any and
all other entries. The INTEGER type accepts only integers, the CHAR type
accepts only valid alphanumeric characters, and so on. The strongly typed
nature of SQL prevents a lot of bad stuff from being accidentally added to
databases. However, strong typing does not prevent data of the correct type
but wrong value from being entered.

Constraints: the second line of defense
By applying constraints to your database tables, you can prevent incorrect
data that is of the correct type from being accepted. I cover constraints in
Chapter 5 of Book I. A number of different kinds of constraints exist, each of
which prevents a certain class of problems. Probably the most flexible is the
CHECK constraint because it enables you to specify exactly what values are
acceptable for entry into a specific database field. Here’s another look at an
example of the use of a CHECK constraint that first appeared in Chapter 5
of Book I.

CREATE TABLE TESTS (
TestName CHARACTER (30) NOT NULL,
StandardCharge NUMERIC (6,2)

CHECK (StandardCharge >= 0.00
AND StandardCharge <= 200.00)

) ;

This code guarantees that any entry into the StandardCharge field is of the
NUMERIC type with two decimal places, and that the value entered into the
StandardCharge field must be no less than zero and no more than 200.00.
This kind of protection can prevent many errors due to a slip of the finger
or the slip of a decimal point.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 344

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Programming Errors 345

Sharp-eyed humans: the third line of defense
Strong typing can assure that data being entered is of the proper type, and
constraints can assure that it is in the proper range of values. However,
these defenses cannot assure that it is right. The only way to make sure that
the data that is entered is indeed the data that was supposed to be entered
is to have a human who knows what the data should be check it. In most
cases, this is too costly and time-consuming, so it is not done. We accept a
certain amount of bad data because to have a human check it is not feasible
in all but the most critical cases.

Unreliable Database Design
In Book I, I talk quite a bit about modeling a database before you start creat-
ing its tables. People who don’t put in a full effort at modeling are likely to
build databases with inherent design flaws. People who do put in a full effort
at modeling still might have problems if their models are not adequately
normalized. Unnormalized or incompletely normalized models are suscept-
ible to modification anomalies that introduce inconsistencies into the data.
Those inconsistencies ultimately lead to incorrect results, which could
snowball into disastrous executive decisions. Database design is a topic
worthy of a book of its own, and many have been written on the subject.

Programming Errors
Even if a database is carefully modeled and designed in such a way that it
accurately and efficiently structures the data, and even if the data entered
into it is one hundred percent correct, you still could draw incorrect conclu-
sions based on information you retrieve from that database. How is that so?

Although you can certainly retrieve the information you want from a rela-
tional database by entering SQL statements at the system console, this is not
the way it is usually done. It is too tedious, time-consuming, and boring, not
to mention error-prone, to think up complex SQL queries and enter them on
the fly while you sit in front of your computer. Instead, people hire people
like you to write database applications that manage and query their data-
bases for them. Those database applications are another potential source
of error.

People who write database applications must not only be masters of SQL,
but they must also be experts in the procedural language that they embed
their SQL statements into. Unfortunately, many people who don’t have the

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 345

Conflicts Arising from Concurrent Operation346

requisite background are drafted into writing such applications, with
predictable results. The applications never really do all the things that the
client expected them to do, and even worse, may even provide misleading
results.

Although you can’t completely eliminate the chance that your database may
have design flaws, or that your database application may contain hidden
bugs, you can do one thing to minimize the chance that such problems will
do you significant harm: Hire experienced professionals who understand
solid database design and database application design, as well as have a
good understanding of the system that you want to build. People with this
kind of expertise do not come cheap, but, in the long run, they are worth
what they cost. You get a system that does what you want it to do and does
it reliably and expeditiously.

Conflicts Arising from Concurrent Operation
Suppose your database is well designed and contains correct data, and all
the applications that access it are bug-free. You still might have a problem.
Databases are typically central repositories of important data for businesses,
government agencies, and academic institutions. As such, they are likely to
be accessed by multiple people at the same time. If two people attempt to
access the same database record at the same time, one could be given prece-
dence, locking out the other. They could even interfere with each other in
such a way that both are locked out and neither gets their job done. Even
more problematic, they could both be given access, and their operations
could be mixed together, corrupting the database.

Protecting the database from corruption is the number-one priority, but
after that, making sure that people are able to get their jobs done even
when traffic to and from the database is heavy, is also very important. In
the upcoming section, I take a look at some of the problems and how they
can be solved.

Here’s a look at how two perfectly legitimate operations, by two authorized
users, can cause a major problem. Suppose you and your friend Calypso
have a joint savings account at Medieval Savings and Loan. Currently you
have a balance of $47.17 in the account. To meet upcoming expenses, you
decide to deposit $100.00 into the account. Coincidentally, Calypso has the
same thought at about the same time. You go to the nearest ATM machine
and Calypso, who works in another part of the city, goes to a different ATM
machine. A problem arises because two operations are being performed on
the same account at the same time. Here’s what happens:

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 346

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Atomicity, Consistency, Isolation, and Durability 347

1. You insert your ATM card into your ATM.

2. Your ATM pulls up your account and notes that you have a balance of
$47.17.

3. Calypso inserts her ATM card into her ATM.

4. Calypso’s ATM pulls up your account and notes that you have a balance
of $47.17.

5. You insert $100.00 in cash into your ATM.

6. Your ATM adds $100.00 to the balance it originally read, giving a total
of $147.17.

7. Calypso inserts $100.00 in cash into her ATM.

8. Calypso’s ATM adds $100.00 to the balance it originally read, giving a
total of $147.17.

If you don’t compare notes with Calypso at a later time, you have just been
victimized to the tune of $100.00. The write of Calypso’s transaction wiped
out the fact that you had previously deposited $100.00.

What is the root cause of this problem? The bank tried to handle two opera-
tions at once and mixed them up. In this case, the mistake was to the bank’s
advantage, but it could just as easily have gone the other way. At any rate,
any bank that loses its customers’ money doesn’t keep those customers
very long. Problems such as the lost update scenario described here caused
database architects to introduce the idea of a transaction. A transaction
is an indivisible unit of work that cannot be mixed up with anything else
the database might be doing. Well-designed transaction architectures
have four essential characteristics: atomicity, consistency, isolation, and
durability.

Atomicity, Consistency, Isolation, and Durability
The four characteristics of an effective transaction, atomicity, consistency,
isolation, and durability, are commonly known by the acronym ACID. To be
sure a transaction will protect your data, no matter what unlucky event
might occur, it should have ACID. What do those four magic words mean?

✦ Atomicity: Database transactions should be atomic, in the classic sense
of the word: The entire transaction is treated as an indivisible unit.
Either it is executed in its entirety (committed), or the database is
restored (rolled back) to the state it would have been in if the transac-
tion had not been executed.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 347

Operating with Transactions348

✦ Consistency: Oddly enough, the meaning of consistency is not consistent;
it varies from one application to another. When you transfer funds from
one account to another in a banking application, for example, you want
the total amount of money in both accounts at the end of the transaction
to be the same as it was at the beginning of the transaction. In a different
application, your criterion for consistency might be different.

✦ Isolation: Ideally, database transactions should be totally isolated from
other transactions that execute at the same time. If the transactions are
serializable, total isolation is achieved. A serializable set of transactions
produces the same results as if they were executed serially, one after
another. Serializable transactions do not need to be executed serially —
they just need to give the same results that they would give if they had
been executed serially. Insisting on serializability can cause performance
problems, so if a system has to process transactions at top speed, lower
levels of isolation are sometimes used.

✦ Durability: After a transaction has committed or rolled back, you should
be able to count on the database being in the proper state: well stocked
with uncorrupted, reliable, up-to-date data. Even if your system suffers
a hard crash after a commit — but before the transaction is stored to
disk — a durable DBMS can guarantee that upon recovery from the
crash, the database can be restored to its proper state.

Operating with Transactions
Any operation that reads data from or writes data to a database should be
enclosed in a transaction. As a result, whenever the database engine encoun-
ters an SQL statement that either reads or writes, it automatically starts a
transaction, called the default transaction. Thus you do not have to explicitly
tell the database engine to start a transaction, but you can do so, if you want
to modify the default parameters. After you start a transaction, it will either
complete successfully or it will not. What happens in either case is dis-
cussed in the following sections.

Using the SET TRANSACTION statement
Whatever DBMS you are using has default settings for how the transaction
will be run. Although the default settings are perfectly fine most of the time,
you can override them if you wish with a SET TRANSACTION statement.
Here’s the syntax:

<set transaction statement> ::=
SET [LOCAL] TRANSACTION <mode> [, <mode>] ...

<mode> ::=

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 348

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 349

<isolation level>
| <access mode>
| <diagnostics size>

<isolation level> ::=
READ UNCOMMITTED

| READ COMMITTED
| REPEATABLE READ
| SERIALIZABLE

<access mode> ::=
READ ONLY

| READ WRITE

<diagnostics size> ::=
DIAGNOSTICS SIZE <simple value expression>

With the SET TRANSACTION statement, you can set the isolation level, the
access mode, and the diagnostics size. Any one of the modes that you do
not specify assume the default value for that mode. If you specify the READ
ONLY access mode, any statements that change the database, such as
UPDATE, INSERT, and DELETE, cannot execute. The default access mode is
READ WRITE, unless the isolation level is READ UNCOMMITTED. When you
are running at the READ UNCOMMITTED isolation level, the default access
mode is READ ONLY. The default isolation level is SERIALIZABLE. (I cover
isolation levels in more detail later in this chapter. I defer discussion of
DIAGNOSTICS SIZE until Chapter 4 of this minibook.)

You can’t start a new transaction while an existing transaction is still active.
If you do execute a SET TRANSACTION statement while a transaction is
active, the modes specified in the statement apply only to the next transac-
tion, not the current one. The LOCAL keyword restricts the mode settings
specified to the local transaction included in a transaction that encompasses
multiple databases.

Starting a transaction
As I mention earlier, a transaction is automatically started when the database
engine senses that the next statement to execute either reads from or writes
to the database. Default modes are assumed unless a SET TRANSACTION state-
ment has been executed. If one has, the modes specified in it are used instead
of the default modes. The modes specified by a SET TRANSACTION statement
are active only for the next transaction to execute. Any following transac-
tions once again use the default modes, unless another SET TRANSACTION
statement is executed or unless a START TRANSACTION statement is
executed.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 349

Operating with Transactions350

With a START TRANSACTION statement, you can specify modes the same
way you can with a SET TRANSACTION statement. The difference is that
a START TRANSACTION statement starts a transaction, whereas a SET
TRANSACTION statement sets up the modes for a transaction, but does not
actually start one.

Access modes
There is not much mystery about the access modes, READ ONLY and READ
WRITE. In either mode, you can read the contents of database records, using
the SELECT statement. However, you can make changes to the database only
in READ WRITE mode.

Isolation levels
In the Medieval Savings and Loan example earlier in this chapter, I outline
one of the potential problems when two database operations are not suffi-
ciently isolated from each other and interact in an undesirable way.
Transactions provide four levels of protection from such harmful interac-
tions, ranging from the fairly weak protection of READ UNCOMMITTED to
the level of protection you would get if transactions never ran concurrently
(SERIALIZABLE).

READ UNCOMMITTED
The weakest level of isolation is called READ UNCOMMITTED, which allows
the sometimes-problematic dirty read. A dirty read is a situation in which a
change made by one user can be read by a second user before the first user
commits (that is, finalizes) the change. The problem arises when the first
user aborts and rolls back his transaction. The second user’s subsequent
operations are now based on an incorrect value. The classic example of this
foul-up can appear in an inventory application: One user decrements inven-
tory; a second user reads the new (lower) value. The first user rolls back his
transaction (restoring the inventory to its initial value), but the second user,
thinking inventory is low, orders more stock and possibly creates a severe
overstock. And that’s if you’re lucky.

Don’t use the READ UNCOMMITTED isolation level unless you don’t care
about accurate results.

You can use READ UNCOMMITTED if you want to generate approximate sta-
tistical data, such as

✦ Maximum delay in filling orders

✦ Average age of salespeople who don’t make quota

✦ Average age of new employees

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 350

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 351

In many such cases, approximate information is sufficient; the extra (per-
formance) cost of the concurrency control required to give an exact result
may not be worthwhile.

READ COMMITTED
The next highest level of isolation is READ COMMITTED: A change made
by another transaction isn’t visible to your transaction until the other user
has committed the other transaction. This level gives you a better result
than you can get from READ UNCOMMITTED, but it’s still subject to a
nonrepeatable read — a serious problem that creates a comedy of errors.

To illustrate, consider the classic inventory example. User 1 queries the
database to see how many items of a particular product are in stock.
The number is ten. At almost the same time, User 2 starts — and then
commits — a transaction that records an order for ten units of that same
product, decrementing the inventory, leaving none. Now User 1, having
seen that ten are available, tries to order five of them. Five are no longer left,
however. User 2 has, in effect, raided the pantry. User 1’s initial read of the
quantity available is not repeatable. The quantity has changed out from
under User 1; any assumptions made on the basis of the initial read are not
valid.

REPEATABLE READ
An isolation level of REPEATABLE READ guarantees that the nonrepeatable-
read problem doesn’t happen. This isolation level, however, is still haunted
by the phantom read — a problem that arises when the data a user is read-
ing changes in response to another transaction (and does not show the
change on-screen) while the user is reading it.

Suppose, for example, that User 1 issues a command whose search condition
(the WHERE clause or HAVING clause) selects a set of rows, and, immediately
afterward, User 2 performs and commits an operation that changes the data
in some of those rows. Those data items met User 1’s search condition at the
start of this snafu, but now they no longer do. Maybe some other rows that
first did not meet the original search condition now do meet it. User 1, whose
transaction is still active, has no inkling of these changes; the application
behaves as if nothing has happened. The hapless User 1 issues another SQL
statement with the same search conditions as the original one, expecting to
retrieve the same rows. Instead, the second operation is performed on rows
other than those used in the first operation. Reliable results go out the
window, spirited away by the phantom read.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 351

Operating with Transactions352

SERIALIZABLE
An isolation level of SERIALIZABLE is not subject to any of the problems that
beset the other three levels. At this level, concurrent transactions can (in
principle) be run serially — one after the other — rather than in parallel, and
the results come out the same. If you’re running at this isolation level, hard-
ware or software problems can still cause your transaction to fail, but at
least you don’t have to worry about the validity of your results if you know
that your system is functioning properly.

Of course, superior reliability may come at the price of slower performance,
so we’re back in Tradeoff City. Table 2-1 sums up the tradeoff terms, showing
the four isolation levels and the problems they solve.

Table 2-1 Isolation Levels and Problems Solved
Isolation Level Problems Solved

READ UNCOMMITTED None

READ COMMITTED Dirty read

REPEATABLE READ Dirty read

Nonrepeatable read

SERIALIZABLE Dirty read

Nonrepeatable read

Phantom read

Committing a transaction
Although SQL doesn’t require an explicit transaction-starting keyword, it
has two that terminate a transaction: COMMIT and ROLLBACK. Use COMMIT
when you have come to the end of the transaction and you want to make
permanent the changes that you have made to the database (if any). You
may include the optional keyword WORK (COMMIT WORK) if you want. If an
error is encountered or the system crashes while a COMMIT is in progress,
you may have to roll the transaction back and try it again.

Rolling back a transaction
When you come to the end of a transaction, you may decide that you don’t
want to make permanent the changes that have occurred during the transac-
tion. In fact, you want to restore the database to the state it was in before
the transaction began. To do this, issue a ROLLBACK statement. ROLLBACK is

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 352

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 353

a fail-safe mechanism. Even if the system crashes while a ROLLBACK is in
progress, you can restart the ROLLBACK after the system is restored, and it
restores the database to its pretransaction state.

Why roll back a transaction?
It may be necessary to roll back a transaction if some kind of system failure
occurs while the transaction is active. There are a number of possible
causes for such a failure. Examples are

✦ Power failure

✦ Application program crash

✦ Operating system crash

✦ Failed peripheral device

✦ Failed processor

✦ System shutdown due to overheating

✦ Hurricane or other weather damage

✦ Electromagnetic storms due to solar coronal mass ejections

✦ Bit flips due to cosmic rays

✦ Terrorist attack

In most of the cases cited, although system operation is interrupted and
everything in volatile main memory is lost, information stored on non-
volatile hard disk is still intact, particularly if it’s stored in a RAID array
that is physically removed from the main system box. The good information
on your hard disk forms the basis for a rollback operation that takes the
system back to the condition it was in before the start of any of the transac-
tions that were active when the service interruption occurred.

How can you roll back changes that have already been made? How can you
undelete records that you have deleted? How can you restore fields that
you have overwritten with new data? How can you remove new records that
you have added? The answers to all these questions lie in the log file.

The log file
Because volatile semiconductor memory is so much faster than hard disk
storage, when changes are made to a data file, they are not immediately writ-
ten to hard disk, which is a relatively slow process. Instead, they are written
to a page buffer in semiconductor memory. If those same logical memory
locations must be accessed again fairly soon, the retrieval is much quicker
from the page buffer than it would be from hard disk.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 353

Operating with Transactions354

Eventually the page buffer fills up and when a new page is needed, one of
the existing pages in the buffer must be swapped out to make room for the
new page. During that period of time when information has been written to
memory, but is still in the page buffer, it is vulnerable to a failure. When a
failure occurs, everything in the page buffer, as well as everything in the
system’s main memory, is lost. The log file is the primary tool for recovering
what has been lost and rendering the system able to redo the incomplete
transactions.

The log file, primarily located on disk, but also necessarily partly in the page
buffer, records every change that is made to the database. Log file entries
pertaining to a transaction are always flushed from the page buffer to disk
before the actual changes themselves. If a failure occurs between the time
the log file entries are flushed to disk and the time the changes themselves
would have been flushed, the changes can be reconstructed from the log file
entries. The main idea is to make the window of vulnerability as short as
possible. By frequently flushing log file entries to disk, that window is open
only a crack. For all but the most ill-timed and severe failures, a minimum of
data is lost, and it can be re-entered without too much trouble.

The write-ahead log protocol
The entries in the log file are made according to a formula known as the
write-ahead log protocol. When a transaction prepares to write to a page con-
taining some target record, it obtains an exclusive lock on the page. I discuss
locks extensively later in this chapter. Before the transaction makes the
modification to a record, it writes a log record containing the contents of the
record both before and after the change. After the log record has been suc-
cessfully written, the modification itself is written. The change is now sitting
in the page buffer, where it is vulnerable to a power outage or other mis-
chance that might require a reboot that erases all volatile storage.

If a failure occurs before the log record and modification are flushed to disk,
they are lost. In that case, you must go back to the last good version on disk
and redo everything from that point on. If a failure occurs after the log file
has been written to disk but before the modification has been, the data in
the log file enables full reconstitution of the change.

After a failure, the log file may contain information on

✦ Transactions that were committed, but not yet written to disk

✦ Transactions that were rolled back

✦ Transactions that were still active, and of course not yet written to disk

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 354

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 355

Transactions that were committed and not yet written to disk need to be
redone. Transactions that were rolled back need to be undone. Transactions
that were still active need to restarted. You can figure out which of these
three actions to do by scanning the log file backwards in time, undoing actions
as you go. When you come to a COMMIT statement, put that transaction into
the redo list. When you come to a ROLLBACK statement, put that transaction
into the undo list. Put the rest of the transactions into the restart list.

When you reach the beginning of the log, you have undone all of the transac-
tions. Now scan forward to redo all the transactions on the redo list. Skip
the transactions on the undo list because you have already undone them.
Finally, submit the restart list to the DBMS to start those transactions from
scratch.

Checkpoints
A log file may accumulate records of transactions for months or years,
becoming quite large in the process. Scanning back through the log file
can be time-consuming. There is no point in scanning back beyond a point
where all transactions are guaranteed to have been safely stored on disk.
To shorten the portion of the log that must be scanned, checkpoints are
established at intervals. These intervals may be fixed units of time, for
example 15 minutes, or they may come after a specific number of entries
have been made in the log. In either case, at a checkpoint, all log entries in
the page buffer are flushed to disk. This establishes a point beyond which
you can be assured that all log entries and all committed transactions are
safely on disk.

When a problem occurs that requires recovery, you need only concern your-
self with transactions that were active at, or that started later than, the
checkpoint. Transactions that were committed prior to the checkpoint will
have been flushed to disk at the checkpoint, if not before. The same is true
for transactions that were rolled back. Transactions that were active at the
checkpoint have to be undone back to the point where they started, and
then restarted.

Implementing deferrable constraints
Ensuring the validity of the data in your database means doing more than
just making sure the data is of the right type. Perhaps some columns, for
example, should never hold a null value — and maybe others should hold
only values that fall within a certain range. Such restrictions are constraints,
as discussed in Book I, Chapter 5.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 355

Operating with Transactions356

Constraints are relevant to transactions because they can conceivably pre-
vent you from doing what you want. For example, suppose that you want to
add data to a table that contains a column with a NOT NULL constraint. One
common method of adding a record is to append a blank row to your table
and then insert values into it later. The NOT NULL constraint on one column,
however, causes the append operation to fail. SQL doesn’t allow you to add
a row that has a null value in a column with a NOT NULL constraint, even
though you plan to add data to that column before your transaction ends.
To address this problem, SQL enables you to designate constraints as either
DEFERRABLE or NOT DEFERRABLE.

Constraints that are NOT DEFERRABLE are applied immediately. You can set
DEFERRABLE constraints to be either initially DEFERRED or IMMEDIATE. If a
DEFERRABLE constraint is set to IMMEDIATE, it acts like a NOT DEFERRABLE
constraint — it is applied immediately. If a DEFERRABLE constraint is set to
DEFERRED, it is not enforced.

To append blank records or perform other operations that may violate
DEFERRABLE constraints, ANSI/ISO standard SQL allows you to use a state-
ment similar to the following:

SET CONSTRAINTS ALL DEFERRED ;

This statement puts all DEFERRABLE constraints in the DEFERRED condition.
It does not affect the NOT DEFERRABLE constraints. After you have performed
all operations that could violate your constraints, and the table reaches a
state that doesn’t violate them, you can reapply them. The statement that
reapplies your constraints looks like this:

SET CONSTRAINTS ALL IMMEDIATE ;

If you made a mistake and any of your constraints are still being violated,
you find out as soon as this statement takes effect.

If you do not explicitly set your DEFERRED constraints to IMMEDIATE, SQL
does it for you when you attempt to COMMIT your transaction. If a violation
is still present at that time, the transaction does not COMMIT; instead, SQL
gives you an error message.

SQL’s handling of constraints protects you from entering invalid data (or an
invalid absence of data — which is just as important) while giving you the
flexibility to violate constraints temporarily while a transaction is still active.

Consider a payroll example to see why being able to defer the application of
constraints is important.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 356

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 357

Assume that an EMPLOYEE table has columns EmpNo, EmpName, DeptNo,
and Salary. EMPLOYEE.DeptNo is a foreign key referencing the DEPT table.
Assume also that the DEPT table has columns DeptNo and DeptName.
DEPT.DeptNo is the primary key.

In addition, you want to have a table like DEPT that also contains a Payroll
column that holds the sum of the Salary values for employees in each
department.

You can create the equivalent of this table with the following view:

CREATE VIEW DEPT2 AS
SELECT D.*, SUM(E.Salary) AS Payroll

FROM DEPT D, EMPLOYEE E
WHERE D.DeptNo = E.DeptNo
GROUP BY D.DeptNo ;

You can also define this same view as follows:

CREATE VIEW DEPT3 AS
SELECT D.*,

(SELECT SUM(E.Salary)
FROM EMPLOYEE E
WHERE D.DeptNo = E.DeptNo) AS Payroll

FROM DEPT D ;

But suppose that, for efficiency, you don’t want to calculate the sum every
time you reference DEPT3.Payroll. Instead, you want to store an actual
Payroll column in the DEPT table. You will then update that column every
time you change a Salary.

To make sure that the Salary column is accurate, you can include a
CONSTRAINT in the table definition:

CREATE TABLE DEPT
(DeptNo CHAR(5),
DeptName CHAR(20),
Payroll DECIMAL(15,2),
CHECK (Payroll = (SELECT SUM(Salary)

FROM EMPLOYEE E WHERE E.DeptNo= DEPT.DeptNo)));

Now, suppose that you want to increase the Salary of employee 123 by 100.
You can do it with the following update:

UPDATE EMPLOYEE
SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 357

Operating with Transactions358

And you must remember to do the following as well:

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

(You use the subquery to reference the DeptNo of employee 123.)

But there’s a problem: Constraints are checked after each statement. In prin-
ciple, all constraints are checked. In practice, implementations check only
the constraints that reference the values modified by the statement.

After the first preceding UPDATE statement, the implementation checks all
constraints that reference values that the statement modifies. This includes
the constraint defined in the DEPT table because that constraint references
the Salary column of the EMPLOYEE table and the UPDATE statement is
modifying that column. After the first UPDATE statement, that constraint is
violated. You assume that before you execute the UPDATE statement, the
database is correct, and each Payroll value in the DEPT table equals the sum
of the Salary values in the corresponding columns of the EMPLOYEE table.
When the first UPDATE statement increases a Salary value, this equality is no
longer true. The second UPDATE statement corrects this and again leaves
the database values in a state for which the constraint is True. Between the
two updates, the constraint is False.

The SET CONSTRAINTS DEFERRED statement lets you temporarily disable
or suspend all constraints, or only specified constraints. The constraints are
deferred until either you execute a SET CONSTRAINTS IMMEDIATE state-
ment, or you execute a COMMIT or ROLLBACK statement. So you surround
the previous two UPDATE statements with SET CONSTRAINTS statements.
The code looks like this:

SET CONSTRAINTS DEFERRED ;
UPDATE EMPLOYEE
SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

SET CONSTRAINTS IMMEDIATE ;

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 358

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Operating with Transactions 359

This procedure defers all constraints. If you insert new rows into DEPT, the
primary keys won’t be checked; you have removed protection that you may
want to keep. Specifying the constraints that you want to defer is preferable.
To do this, name the constraints when you create them:

CREATE TABLE DEPT
(DeptNo CHAR(5),
DeptName CHAR(20),
Payroll DECIMAL(15,2),
CONSTRAINT PayEqSumsal
CHECK (Payroll = SELECT SUM(Salary)
FROM EMPLOYEE E WHERE E.DeptNo = DEPT.DeptNo)) ;

With constraint names in place, you can then reference your constraints
individually:

SET CONSTRAINTS PayEqSumsal DEFERRED;
UPDATE EMPLOYEE

SET Salary = Salary + 100
WHERE EmpNo = ‘123’ ;

UPDATE DEPT D
SET Payroll = Payroll + 100
WHERE D.DeptNo = (SELECT E.DeptNo

FROM EMPLOYEE E
WHERE E.EmpNo = ‘123’) ;

SET CONSTRAINTS PayEqSumsal IMMEDIATE;

Without a constraint name in the CREATE statement, SQL generates one
implicitly. That implicit name is in the schema information (catalog) tables,
but specifying the names explicitly is more straightforward.

Now suppose that, in the second UPDATE statement, you mistakenly speci-
fied an increment value of 1000. This value is allowed in the UPDATE state-
ment because the constraint has been deferred. But when you execute
SET CONSTRAINTS . . . IMMEDIATE, the specified constraints are
checked. If they fail, SET CONSTRAINTS raises an exception. If, instead
of a SET CONSTRAINTS . . . IMMEDIATE statement, you execute
COMMIT, and the constraints are found to be false, COMMIT instead performs
a ROLLBACK.

Bottom line: You can defer the constraints only within a transaction. When
the transaction is terminated by a ROLLBACK or a COMMIT, the constraints
are both enabled and checked. The SQL capability of deferring constraints is
meant to be used within a transaction. If used properly, it doesn’t create any
data that violates a constraint available to other transactions.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 359

Getting Familiar with Locking360

Getting Familiar with Locking
The gold standard for maintaining database integrity is to operate on it
with only serializable transactions. There are two major approaches to
providing serializability: locking and timestamps. In this section, I look at
locking. I cover timestamps in the section later in this chapter, “Enforcing
Serializability with Timestamps.”

If a transaction is granted a lock on a particular resource, access to that
resource by competing transactions is restricted. There are two main kinds
of locks:

✦ Shared locks: Two or more transactions, each with a shared lock, can
concurrently read the contents of a memory location without interfering
with each other. As long as none of the transactions attempts to change
the data at that location, all of them can proceed without delay. The lock
manager portion of the DBMS can grant shared locks to all transactions
that only want to perform read operations. Shared locks are sometimes
called read locks.

✦ Exclusive locks: In order to perform a write operation on a memory
location, a transaction must acquire an exclusive lock. An exclusive lock
grants to its holder the exclusive right to access the resource being
locked. If one transaction holds an exclusive lock on a resource, no com-
peting transaction may acquire either a shared lock or exclusive lock on
that resource until the first transaction releases its lock. Exclusive locks
are sometimes called write locks.

Two-phase locking
Two-phase locking is a protocol designed to guarantee serializability. In the
first phase, a transaction can acquire shared and exclusive locks and may
also upgrade a shared lock to an exclusive lock. It may not, however, release
any locks or downgrade an exclusive lock to a shared lock. In the second
phase, the transaction may release shared and exclusive locks and down-
grade an exclusive lock to a shared lock, but may not acquire a new shared
or exclusive lock, or upgrade a shared lock to an exclusive lock. In the
strictest form of two-phase locking, the second phase, in which locks are
released or downgraded, cannot occur until the transaction either commits
or rolls back. This protects a competing transaction from acquiring a lock
on and reading a value from a resource that the original transaction had
released before aborting. In such a case the second transaction would poten-
tially read a value that no longer existed in the resource. In fact, after a
rollback, it is as if that value never existed.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 360

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Getting Familiar with Locking 361

Granularity
The granularity of a lock determines the size of the resource being locked.
Locks that are coarse-grained take rather large resources out of circulation.
Fine-grained locks sequester relatively small resources. Course-grained locks
deny access to big things, such as tables. Fine-grained locks protect smaller
things, such as a row in a table.

This list describes four different types of locks and the granularity of each:

✦ Database locks: The database lock is the ultimate in coarse-grained
locks. If a transaction puts an exclusive lock on a database, no other
transaction can access the database at all until the lock is released. As
you might imagine, database locks have a disastrous effect on overall
productivity and should be avoided if at all possible. Sometimes a
DBA must apply a database lock to prevent other transactions from
corrupting the database while she is making alterations to the database
structure.

✦ Table locks: Table locks, by locking an entire database table, are not as
restrictive as a database lock, but are still pretty coarse. Generally, you
would only impose a table lock if you were altering the structure of the
table or if you were changing data in most or all of the rows in the table.

✦ Row locks: Row locks are fine-grained in that they only lock a single
row in a table. If you are changing only a value in a single row, there is
no point in locking any rows other than that one target row. The only
transactions that are impacted by a row lock are those that want to do
something to the very same row of the very same table.

✦ Page locks: A page lock — which has an intermediate granularity
between a table lock and a row lock — locks an entire page in the page
buffer. Because information gets transferred between the page buffer
and disk a page at a time, some DBMSs provide locks at the page level.
As processing proceeds, requiring that pages currently residing in the
page buffer be swapped out in favor of pages on disk that are currently
needed, the DBMS will resist, if possible, the urge to swap out any page
that is locked by an active transaction. Swapping it out, and then swap-
ping it back in again soon, would waste a tremendous amount of time.

Deadlock
Deadlock is not a type of lock, or an example of granularity. It is a problem
that can arise in even a well-designed system that uses locking for concur-
rency control. To illustrate how deadlock can happen, look again at the
example where you and your friend Calypso share a bank account. Now that

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 361

Tuning Locks362

you are using transactions with two-phase locking, you don’t have to worry
about the lost update problem any more. However, there is still a potential
problem. Once again, you and Calypso arrive at two different ATM machines
at about the same time.

1. You insert your ATM card into your ATM.

2. The DBMS’s lock manager grants you a shared lock on your account
record, enabling you to read your balance of $47.17.

3. Calypso inserts her ATM card into her ATM.

4. The DBMS’s lock manager grants Calypso a shared lock on your account
record, enabling her to read the balance of $47.17.

5. You insert $100.00 in cash into your ATM.

6. The DBMS’s lock manager attempts to upgrade your shared lock to an
exclusive lock, but cannot because of Calypso’s shared lock. It goes into
a wait loop, waiting for Calypso’s lock to be released.

7. Calypso inserts $100.00 in cash into her ATM.

8. The DBMS’s lock manager attempts to upgrade Calypso’s shared lock to
an exclusive lock, but cannot because of your shared lock. It goes into a
wait loop, waiting for your lock to be released.

9. The machine is deadlocked. Neither you nor Calypso can complete your
transaction.

10. After some period of time, the DBMS recognizes the deadlock situation
and aborts one or both of the deadlocked transactions.

Hopefully instances such as this don’t come up too often. By putting your
account update into a transaction, you have traded the lost update problem
for the deadlock problem. This is an improvement. At least you don’t end up
with incorrect data in your database. However, it is a hassle to have to redo
your ATM transaction. Hopefully you and Calypso don’t both try to redo it at
the same time.

Tuning Locks
Locks perform an important function in preserving the integrity of transac-
tions. They prevent database corruption by making sure changes by one
transaction do not affect the results of another transaction that is operating
concurrently. However, they do so at a cost. Locks consume memory and
also impact performance because it takes time to acquire a lock. Additional

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 362

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Tuning Locks 363

performance is lost while transactions wait for resources that have been
locked by another. In some cases, such lockouts prevent data corruption,
but, in other cases, locks are needlessly placed when harmful interactions
cannot occur.

You can do some things to reduce the overhead burden of locking. Generally,
you apply these measures only if performance becomes unsatisfactory. For
some of the tuning interventions that I discuss here, you may have to trade
off some accuracy in exchange for improved performance.

Measuring performance with throughput
What is performance, anyway? There are many ways of thinking about per-
formance and many system parameters that you can measure to glean infor-
mation about one aspect of performance or another. In this book, when I talk
about performance, I am referring to throughput. Throughput is a measure of
the amount of work that gets completed per unit time. It is an overall meas-
ure that takes into account all the jobs that are running on a system. If one
job is running really fast, but its locks are slowing down all the other jobs
that are running at the same time, throughput may well be lower than it
would be if the first job were reconfigured in such a way that it did not run
quite so fast, but held its locks for a shorter period of time.

Eliminating unneeded locks
Locks are designed to prevent concurrently running transactions from inter-
fering with each other. They are applied automatically by the DBMS so the
application programmer does not have to worry about whether she should
apply a lock. However, at times, such interference is not possible. In those
cases, the locking overhead is a burden on the system but there is no corre-
sponding benefit in data integrity.

This is true when only one transaction is running at a time, such as when a
database is loading. It is also true when all queries are guaranteed to be
read-only; for example, when mining archived information. In such cases,
it makes sense to take advantage of the option to suppress the acquisition
of locks.

Shortening transactions
Long transactions, which do a lot of things, tend to hold locks for a long
time. This, of course, has a negative effect on the performance of all the
other transactions that are running at the same time. If everyone followed
the discipline of making transactions as short as possible, everyone would
benefit by being able to acquire needed locks sooner.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 363

Tuning Locks364

Albert Einstein once said, with regard to physics, “Make everything as
simple as possible, but not simpler.” The same logic applies here. Make
transactions as short as possible, but not shorter. If you chop up transac-
tions too finely, you could lose serializability, which means you could lose
accuracy. For example, if you acquired a shared lock on your bank account,
viewed your bank balance, and then dropped your shared lock before
acquiring an exclusive lock to make a withdrawal, Calypso might have snuck
in while your locks were down and cleaned out your account. This would
have been both surprising and disappointing because you just read that
there was plenty of money in your account.

Weaken isolation levels (but ver-r-ry carefully)
If you weaken your isolation level from serializable to REPEATABLE READ or
perhaps READ COMMITTED, you can increase your throughput. However,
there is a good chance that in doing so, bad data will creep into your
database. In most cases, weakening your isolation level in that way isn’t
worth it.

There are a few scenarios where perfect accuracy in data is not required and
when system response time is very important. In such cases, weakening the
isolation level may be appropriate. Take for instance an airline reservation
system.

Suppose an air traveler goes to an airline’s online Web site that is running
at the READ COMMITTED isolation level and looks up a particular flight.
Checking on available seats is a read-only operation that puts a shared lock
on the entire airplane. As soon as the cabin image is transmitted, the shared
lock is dropped. The traveler decides that she would like to sit in seat 10-C,
which shows as available. She clicks on that seat on her screen image to
indicate that she wants to reserve that seat. The database attempts to put
an exclusive lock on the record for seat 10-C, but fails. In the small interval
of time between the database read and the attempted database write, some-
one else has reserved that seat and it is now unavailable.

This scenario could clearly happen with READ COMMITTED isolation. Is
this a problem? Many airlines would think that it is not. Although such a
sequence of events is possible, it also tends to be extremely rare. When it
does occur, it is not a big deal. The traveler just directs a few choice words
at the computer (the universal scapegoat) and successfully selects another
seat. In exchange, all the travelers who use the reservation system benefit
from faster response to their actions. This might be seen as a reasonable
tradeoff.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 364

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Tuning Locks 365

Be sure to think through the possible problems that could occur if you
weaken the isolation level of your database, and the consequences that
follow from those problems. If you do decide to weaken the isolation level,
it should be with full knowledge of the consequences.

Controlling lock granularity
In most systems, row-level locking, which is fine-grained, is the default. This
is the best choice for maximizing throughput in an online transaction envi-
ronment, such as an airline reservation system or a banking system.
However, it’s not necessarily the best on a system that runs long transac-
tions that involve most of the rows in a table. In that kind of environment,
a table lock, with lower overhead than a large number of row locks, could
well deliver better overall throughput. Concurrent transactions could well
be delayed to a lesser extent than they would be with row-level locking.

Don’t just assume that the finest-grain locking setting is the best. Consider the
types of jobs that are typically run and choose lock granularity accordingly.

Don’t run DDL statements concurrently
with transactions
Data Definition Language (DDL) statements such as CREATE TABLE, DROP
INDEX, or ALTER TABLE operate on the system catalog. Because these
operations are of such a fundamental nature, ordinary traffic comes to a
standstill while they are active. In any normal installation, you are going to
need to run some DDL statements from time to time. Just keep in mind the
way they monopolize system resources and schedule them at a time when
your normal transaction volume is light.

Partitioning insertions
Sequential insertion of records can be a bottleneck. If multiple transactions
are inserting records sequentially onto the tail end of a table, they will all be
hitting the same buffer page at about the same time and running into page
locks. One strategy to relieve the congestion is to partition insertions to the
table across different pages or even different disks. One way to achieve this
is to set up a clustering index that is not based on time of insertion. This
spreads out the inserted records to different pages.

Cooling down hot spots
Hot spots are those records, pages, or tables that everybody wants access to
all at once. When a lengthy transaction acquires a lock on a hot item, every-
body else suffers. You can do a couple of things to lower the temperature of

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 365

Enforcing Serializability with Timestamps366

chronic hot spots. One is to partition transactions as described in the pre-
ceding section. Another is to access hot spots as late as possible in a long
transaction. This makes the overheated resource unavailable for the short-
est amount of time.

Tuning the deadlock interval
Earlier I mention deadlock as a possible problem, even when you are running
with a serializable isolation level. The common solution to the deadlock
problem starts when the system senses that two or more transactions have
not made any progress for an extended period of time. To break the dead-
lock, the system then forces the abort and rollback of one or perhaps all of
the transactions involved. The deadlock interval is the period of time that
the system waits before allowing an aborted transaction to restart. Clearly,
you don’t want to give all the aborted transactions the same deadlock inter-
val. To do so would just be asking for another deadlock. Even if only one
transaction is aborted, restarting it too soon could still conflict with a
lengthy transaction that is still running.

So how do you choose a good deadlock interval? There is no one good
answer, although there should be an element of randomness to it, so that
you don’t assign the same interval to both participants in a deadlock. Make
an educated guess based on the types of transactions that you are running. If
excessive deadlocks ensue, try changing the interval or the degree of vari-
ance between the deadlock interval of one aborted transaction and the
deadlock interval of the other participant in the deadly embrace that started
the whole mess.

Enforcing Serializability with Timestamps
Locks aren’t the only effective mechanism for keeping concurrent transac-
tions from interfering with each other. Another method involves timestamps.
A timestamp is a centrally dispensed number assigned to each transaction in
strictly increasing order. It could be based on the computer’s real-time clock
or it could just be a counter that is continually counting up. This method
enables the system to determine which active transaction is the oldest,
which is the youngest, and the relative positions of all transactions in
between. In a conflict situation, the timestamp solution works by designating
the younger transaction as the winner. To demonstrate this, look again at the
bank account update example:

1. The system sets the timestamp to zero. This is the timestamp for a cre-
ating or updating operation.

2. You insert your ATM card into the ATM.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 366

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Enforcing Serializability with Timestamps 367

3. Your ATM pulls up your account and notes that you have a balance of
$47.17. It sets the timestamp for your transaction to 1, and checks that 1
is greater than or equal to the timestamp of the youngest create or
update operation in the system (0). One is greater than zero, so every-
thing is fine.

4. Calypso inserts her ATM card into the ATM.

5. Calypso’s ATM pulls up your account and notes that you have a balance
of $47.17. It sets the timestamp for her transaction to 2, and checks that
2 is greater than or equal to the youngest create or update operation in
the system (0). Two is greater than zero, so everything is fine.

6. You insert $100.00 in cash into your ATM.

7. Your ATM checks your timestamp (1) against the youngest timestamp in
the system (2). 1 is not greater than or equal to 2, so you lose. There are
no changes to the database to undo, so a new transaction is started for
you with timestamp 3.

8. Calypso inserts $100.00 in cash into her ATM.

9. Calypso’s ATM checks to see if her timestamp (2) is equal to or greater
than the timestamp of the most recent read operation. It, so everything
is fine. The ATM registers a balance of $147.17.

10. Your ATM pulls up your account and notes that you have a balance of
$147.17. It also notes that your timestamp (3) is equal to or greater than
the timestamp of the most recent read (2).

11. Calypso’s transaction commits.

12. Your ATM checks that your timestamp (3) is equal to or greater than the
timestamp of the most recent read (3). It is, so your update is accom-
plished and the account balance goes to $247.17.

13. Your transaction commits.

There was a little hitch in the proceedings, but you probably didn’t even
notice it standing there at the ATM machine. The account updates were per-
formed properly.

The preceding scenario sounds great, but there are potential problems if
timing is just a little bit off. Consider the following example:

1. The system sets the timestamp to zero. This is the timestamp for a cre-
ating or updating operation.

2. You insert your ATM card into the ATM.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 367

Enforcing Serializability with Timestamps368

3. Your ATM pulls up your account and notes that you have a balance of
$47.17. It sets the timestamp for your transaction to 1 and checks that 1
is greater than or equal to the timestamp of the youngest create or
update in the system (0). It is, so everything is fine.

4. Calypso inserts her ATM card into the ATM.

5. Calypso’s ATM pulls up your account and notes that you have a balance
of $47.17. It sets the timestamp for her transaction to 2 and checks that 2
is greater than or equal to the youngest create or update in the system
(0). It is, so everything is fine.

6. You insert $100.00 in cash into your ATM.

7. Your ATM checks your timestamp (1) against the timestamp of the
youngest read in the system (2). 1 is not greater than or equal to 2 so
you lose. There are no changes to the database to undo, so a new trans-
action is started for you with timestamp 3.

8. Your new transaction checks your timestamp (3) against the timestamp
of the youngest update in the system (0). Three is equal to or greater
than zero, so everything is fine. Your transaction reads a balance of
$47.17.

9. Calypso inserts $100.00 in cash into her ATM.

10. Calypso’s ATM checks to see if her timestamp (2) is equal to or greater
than the timestamp of the most recent read operation (3). It is not, so
her transaction is aborted, and a new transaction with timestamp 4 is
started for her.

11. Calypso’s ATM checks to see if her timestamp (4) is equal to or greater
than the timestamp of the most recent update operation (0). It is, so
everything is fine. Her transaction reads a balance of $47.17.

12. Your ATM checks your timestamp (3) against the timestamp of the
youngest read in the system (4). 3 is not greater than or equal to 4, so
you lose. There are no changes to the database to undo, so a new trans-
action is started for you with timestamp 5.

13. And so on, ad infinitum.

This situation is called a livelock, as opposed to a deadlock. In a deadlock,
two or more transactions are stuck in wait states because they cannot con-
tinue without a resource that has been acquired by another one of the dead-
locked transactions. A livelock differs in that the participating transactions
are continually processing, but are moving no closer to completion. They
are stuck in a loop.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 368

Book IV
Chapter 2

Protecting Against
User Errors and

Conflicts
Tuning the Recovery System 369

One way out of this situation is for the DBMS to keep a list of transactions
that have been aborted some fixed number of times. When a transaction
goes over the threshold, the DBMS can halt the normal flow of execution and
execute the livelocked transactions serially.

Tuning the Recovery System
One thing you can do to maximize performance is to put your database log
on a different disk from the disks that contain data. The log is continuously
updated with every command that is performed. It just pours its information
onto the log disk sequentially. This minimizes the amount of time the disk
drive spends seeking because data is written sequentially to a single track,
then to other tracks on the same cylinder, and then a short seek is made to
an adjacent cylinder and the operation continues. In contrast, the data disks
are constantly doing random seeks from one track to another. To mix that
operation with the sequential writing of the log would cause a severe hit on
performance.

Tuning the recovery system is always a balance between maximizing per-
formance and maintaining system integrity. Although disk failures are rare,
they do happen occasionally. Even if your system is protected with a RAID
system, you should at intervals take a copy of your database offline. This
copy, called a database dump, has an effect on performance because it uses
resources while it is being run. The dump gives you a starting point if your
hard disk system fails catastrophically. You must decide how often to per-
form database dumps by weighing the performance hit you take while it is
running against the pain you would suffer if you didn’t run it and a disk fail-
ure were to occur.

Similar considerations apply to checkpoints. At a checkpoint, all committed
transactions are flushed to disk. This is a significant time-consumer because
disk operations are orders of magnitude slower than data transfers to solid-
state memory. Balanced against this is the time that checkpoints save you
when that inevitable failure does occur. A checkpoint limits the distance you
have to go back in the log in order to resynchronize the system after a fail-
ure. So how frequently should you force a checkpoint? Once again, it is a
balance. Compare the overhead cost of a checkpoint to the time it saves
you when you have to go to the log to recover consistency after a failure.
Set the checkpoint interval at that sweet spot where you save more time in
a recovery operation than the overhead of implementing the checkpoints is
costing you.

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 369

Book IV: Data Security370

24 119280 bk04ch02.qxp 5/23/07 10:16 AM Page 370

Chapter 3: Assigning
Access Privileges

In This Chapter
� Controlling operations with SQL

� Identifying users and specifying roles

� Categorizing users

� Granting privileges

� Taking privileges away

� Granting and revoking roles

Because databases are among the most valuable assets that any organi-
zation has, you must be able to control who has access to them, as

well as what level of access to grant. SQL handles access management
with the third of its main components, the Data Control Language (DCL).
Whereas the Data Definition Language is used to create and maintain the
structure of a database and the Data Manipulation Language is use to fill
the database structure with data and then operate on that data, the DCL
protects the database from unauthorized access and other potential
problems.

The SQL Data Control Language
The Data Control Language consists of four SQL statements, and two of
them (COMMIT and ROLLBACK) are discussed in Chapter 2 of this minibook.
The other two DCL statements (GRANT and REVOKE) control who may
access various parts of the database. Before you can grant database access
to someone, you must have some way of identifying them. Some parts of
that, such as the issuing of passwords and other security measures, are
implementation-specific. SQL does however have a standard way of identify-
ing and categorizing users so that the granting and revoking of privileges
can be handled relatively easily.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 371

Identifying Authorized Users372

Identifying Authorized Users
Users may be identified individually with a unique identifier, or they may be
identified as a member of a group. Individually identified users can be given a
customized array of access privileges, whereas group members all receive the
same suite of privileges. Groups are defined by the roles the people in them
play. People who all perform in the same role have the same access privileges.

User identifiers
SQL does not specify how a user identifier is assigned. In many cases, the
operating system’s login ID serves the purpose. A user identifier is one of
two forms of authorization identifier that enables access to a database
system. The other form is a role name, which I discuss in the next section.

Every SQL session is started by a user. That user’s user identifier is called
the SQL-session user identifier. The privileges associated with the SQL-
session user identifier determine what privileges that user has and what
actions she may perform during the session. When your SQL session starts,
your SQL-session user identifier is also the current user identifier. The iden-
tity of the current user is kept in a special value named CURRENT_USER,
which can be queried to find out who is currently in charge of a session.

Getting familiar with Roles
In a small company, identifying users individually does not present any prob-
lem. However, in a larger organization, with hundreds of employees doing a
variety of different jobs, individually identifying users can become a burden.
Every time someone leaves a company or their job responsibilities change
or when a new person is hired, database privileges have to be adjusted. This
is where roles come in.

Although a company may have hundreds or even thousands of employees,
these employees do a limited number of different jobs. If everyone who plays
the same role in the company requires the same database access privileges,
you can assign those privileges to that group of people based on the roles they
play in the organization. For example, one role might be SALES_CLERK. All the
sales clerks require the same privileges. All the warehouse workers require dif-
ferent privileges, which is fine, because they play a different role in the com-
pany. In this way, the job of maintaining authorizations for everyone is made
much simpler. A new sales clerk is added to the SALES_CLERK role name and
immediately gains the privileges assigned to that role. A sales clerk leaving
the company is deleted from the SALES_CLERK role name and immediately
loses all database privileges. An employee changing from one job category to
another is deleted from one role name and added to another.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 372

Book IV
Chapter 3

Assigning Access
Privileges

Classifying Users 373

Just as a session initiated by a user is associated with an SQL-session user
identifier, it is also associated with an SQL-session role name. The value of
the current role name is available in the CURRENT_ROLE special value.
When an SQL-session is created, the current role name has a null value.
At any given instant, either a user identifier is specified and the associated
role name has a null value, or a role name is specified and the associated
user identifier has a null value. A SET ROLE statement can create a situation
where both the user identifier for a session and a role name are both non-
null. In such a case, the privileges assigned to both the user identifier and to
the role name are available to the user.

Creating roles
You can create a role with a single SQL statement. Here is the syntax:

CREATE ROLE <role name>
[WITH ADMIN {CURRENT_USER | CURRENT_ROLE}] ;

When you create a role, the role is automatically granted to you. You are also
granted the right to pass the role creation privilege on to others. When cre-
ating a role, you may identify yourself either as the current user or the cur-
rent role. If you identify yourself as the current user, you are the only one
who can operate on the new role. If you identify yourself as the current role,
anyone who shares your current role with you is also able to operate on the
new role.

Destroying roles
The syntax for destroying a role is really easy to understand:

DROP ROLE <role name> ;

Classifying Users
Aside from the fact that users may be members of a group identified as a
role, there are four classes of users. Each of these classes has associated
privileges that may supersede the privileges accorded to a user by virtue of
her role. The four classes are

✦ The database administrator (DBA): Every database has at least one
and possibly multiple database administrators. It is the responsibility of
the DBA to maintain the database, making sure that it is protected from
harm and operating at peak efficiency. DBAs have full rights to all the

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 373

Granting Privileges374

objects in the database. They can create, modify, or destroy any object
in the database, including tables and indexes. They can also decide what
privileges other users may have.

✦ Database object owners: Users who create database objects such as
tables and views are automatically the owners of those objects. A data-
base object owner possesses all privileges related to that object. A
database object owner’s privileges are equal to those of a DBA, but only
with respect to the object in question.

✦ Grantees: Grantees are users who have been granted selected privileges
by either a DBA or database object owner. A grantee may or may not be
given the right to grant his privileges to others, who thus also become
grantees.

✦ The public: All users are considered part of the public, regardless of
whether they have specifically been granted any privileges. Thus privi-
leges that are granted to PUBLIC may be exercised by any user.

Granting Privileges
The GRANT statement is the tool you use to grant privileges to users. A fairly
large number of privileges may be granted, and they may apply to a fairly
large number of objects. As a result, the syntax of the GRANT statement is
lengthy. Don’t let the length intimidate you! It is all very logical, and fairly
simple when you become familiar with it. Here’s the syntax:

GRANT <privilege list>
ON <privilege object>
TO <user list> [WITH GRANT OPTION]
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}] ;

<privilege list> ::= privilege [, privilege]...

<privilege> ::=
SELECT [(<column name> [, <column name>]...)]

| SELECT (<method designator> [, <method designator]...)
| DELETE
| INSERT [(<column name> [, <column name>]...)]
| UPDATE [(<column name> [, <column name>]...)]
| REFERENCES [(<column name> [, <column name>]...)]
| USAGE
| TRIGGER
| UNDER
| EXECUTE

<privilege object> ::=
[TABLE] <table name>

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 374

Book IV
Chapter 3

Assigning Access
Privileges

Granting Privileges 375

| <view name>
| DOMAIN <domain name>
| CHARACTER SET <character set name>
| COLLATION <collation name>
| TRANSLATION <translation name>
| TYPE <user-defined type name>
| <specific routine designator>

<user list> ::=
authorizationID [, authorizationID]...

| PUBLIC

Whew! That’s a lot of syntax. Look at it piece by piece, so that it is a little
more comprehensible. Not all privileges apply to all privilege objects. The
SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges apply to
the table privilege object. The SELECT privilege also applies to views. The
USAGE privilege applies to the DOMAIN, CHARACTER SET, COLLATION, and
TRANSLATION objects. The TRIGGER privilege applies, logically enough,
to triggers. The UNDER privilege applies to user-defined types, and the
EXECUTE privilege applies to specific routines.

Looking at data
The first privilege in the privilege list is the privilege of looking at a database
object. The SELECT statement retrieves data from database tables and
views. To enable a user to execute the SELECT statement, issue a GRANT
SELECT statement. For example:

GRANT SELECT
ON CUSTOMER
TO SALES_MANAGER ;

This statement enables the sales manager to query the CUSTOMER table.

Deleting data
In a similar fashion, the GRANT DELETE statement enables a user to delete
specified rows from a table.

GRANT DELETE
ON CUSTOMER
TO SALES_MANAGER ;

This enables the sales manager to prune inactive customers from the cus-
tomer table.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 375

Granting Privileges376

Adding data
With the INSERT statement, you can add a new row of data to a table. The
GRANT INSERT statement determines who has the right to perform this
operation.

GRANT INSERT
ON CUSTOMER
TO SALES_MANAGER ;

Now the sales manager can add a new customer record to the CUSTOMER
table.

Changing data
You can change the contents of a table row with the UPDATE statement.
GRANT UPDATE determines who can do it.

GRANT UPDATE
ON RETAIL_PRICE_LIST
TO SALES_MANAGER ;

Now the sales manager can update the retail price list with new pricing
information.

Referencing data in another table
You may think that if you can control who does the seeing, creating, modify-
ing, and deleting functions on a table, you’re well protected. Against most
threats, you are. A knowledgeable hacker, however, can still break in by
using an indirect method.

A correctly designed relational database has referential integrity, which
means that the data in one table in the database is consistent with the data
in all the other tables. To ensure referential integrity, database designers
apply constraints to tables that restrict what someone can enter into the
tables. If you have a database with referential integrity constraints, a user
can possibly create a new table that uses a column in your confidential table
as a foreign key. That column then serves as a link through which someone
can possibly steal confidential information.

Say, for example, that you’re a famous Wall Street stock analyst. Many
people believe in the accuracy of your stock picks, so whenever you recom-
mend a stock to your subscribers, many people buy that stock, and its value
increases. You keep your analysis in a database that contains a table named
FOUR_STAR. Your top recommendations for your next newsletter are in that

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 376

Book IV
Chapter 3

Assigning Access
Privileges

Granting Privileges 377

table. Naturally, you restrict access to FOUR_STAR so that word doesn’t leak
out to the investing public before your paying subscribers receive the
newsletter.

You’re still vulnerable, however, if anyone other than yourself can create a
new table that uses the stock name field of FOUR_STAR as a foreign key, as
shown in the following command example:

CREATE TABLE HOT_STOCKS (
Stock CHARACTER (30) REFERENCES FOUR_STAR
);

The hacker can now try to insert the name of every stock on the New York
Stock Exchange, American Stock Exchange, and NASDAQ into the table.
Those inserts that succeed tell the hacker which stocks match the stocks
that you name in your confidential table. It doesn’t take long for the hacker
to extract your entire list of stocks.

You can protect yourself from hacks such as the one in the preceding exam-
ple by being very careful about entering statements similar to the following:

GRANT REFERENCES (Stock)
ON FOUR_STAR
TO SECRET_HACKER;

Of course, your hacker will not have a user identifier of SECRET_HACKER.
More likely it will be something like JOHN_SMITH. However, beneath that
innocent exterior lies a profiteer or agent of a competitor.

Avoid granting privileges to people who may abuse them. True, people don’t
come with guarantees printed on their foreheads. But if you wouldn’t lend
your new car to a person for a long trip, you probably shouldn’t grant him
the REFERENCES privilege on an important table either.

The preceding example offers one good reason for maintaining careful con-
trol of the REFERENCES privilege. Here are two other reasons for careful con-
trolling REFERENCES, even if the other person is totally innocent:

✦ If the other person specifies a constraint in HOT STOCKS by using a
RESTRICT option and you try to delete a row from your table, the
DBMS tells you that you can’t because doing so violates a referential
constraint.

✦ If you want to use the DROP command to destroy your table, you find
that you must get the other person to first drop his constraint (or his
table).

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 377

Granting Privileges378

The bottom line is that enabling another person to specify integrity con-
straints on your table not only introduces a potential security breach, but
also means that the other user sometimes gets in your way.

Using certain database facilities
The USAGE privilege applies to domains and user-defined types (UDTs).
In order to use or even see a domain or UDT, a user must have the USAGE
privilege for that domain or UDT. Suppose Major League Baseball had a
domain named MLBTEAMS that consisted of the names of all the Major
League Baseball teams. A user holding the role of team owner could be
granted usage of that domain as follows:

GRANT USAGE
ON MLBTEAMS
TO TEAM_OWNER ;

Responding to an event
You can grant a user or a role the privilege of creating a trigger that fires
when a specified change takes place to a table, such as the renaming of a
Major League Baseball team.

GRANT TRIGGER
ON MLBTEAMS
TO TEAM_OWNER ;

Defining new data types
One of the advanced features that was added to SQL in the SQL:1999 version
was the ability of users to create structured user-defined types. Naturally,
the creator of a UDT has all privileges attached to that UDT. Among those
privileges is the USAGE privilege, which allows the type to be used to define
columns, routines, and other schema objects. Also included is the UNDER
privilege, which permits subtypes of the type to be defined.

GRANT UNDER
ON MLBTEAMS
TO LEAGUE_VICE_PRESIDENT ;

Executing an SQL statement
The EXECUTE privilege enables the grantee to invoke SQL-invoked routines.
By restricting the ability to invoke routines, you keep those routines in the
hands of those authorized to run them.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 378

Book IV
Chapter 3

Assigning Access
Privileges

Granting Privileges 379

GRANT EXECUTE
ON PRICECHANGE
TO SALES_MANAGER ;

Doing it all
For a highly trusted person who has just been given major responsibility,
rather than issuing a whole series of GRANT statements, you can take care of
everything with just one statement, GRANT ALL:

GRANT ALL PRIVILEGES
ON MLBTEAMS
TO LEAGUE_VICE_PRESIDENT ;

However, GRANT ALL PRIVILEGES is a pretty dangerous statement. In the
wrong hands it could cause a lot of damage. For this reason, SQL Server 2005
has deprecated this syntax. That means that although it is still supported, it
may be removed in a later release.

Passing on the power
To keep your system secure, you must severely restrict the access privileges
you grant and the people to whom you grant these privileges. But people
who can’t do their work because they lack access are likely to hassle you
constantly. To preserve your sanity, you probably need to delegate some of
the responsibility for maintaining database security. SQL provides for such
delegation through the WITH GRANT OPTION clause. Consider the following
example:

GRANT UPDATE
ON RETAIL_PRICE_LIST
TO SALES_MANAGER WITH GRANT OPTION ;

This statement is similar to the previous GRANT UPDATE example in that the
statement enables the sales manager to update the retail price list. The
statement also gives her the right to grant the update privilege to anyone
she wants. If you use this form of the GRANT statement, you must not only
trust the grantee to use the privilege wisely, but also trust her to choose
wisely in granting the privilege to others.

The ultimate in trust, and therefore the ultimate in vulnerability, is to exe-
cute a statement such as the following:

GRANT ALL PRIVILEGES
ON FOUR_STAR
TO BENEDICT_ARNOLD WITH GRANT OPTION ;

Be extremely careful about using statements such as this one.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 379

Revoking Privileges380

Revoking Privileges
If it is possible to grant privileges to users and roles on a database, it better
be possible to revoke those privileges too. Things change. People’s jobs
change, and their need for data changes too. Sometimes people leave the
company and go to work for a competitor. You definitely want to revoke priv-
ileges in a case like that. The syntax for revoking privileges is similar to the
GRANT syntax:

REVOKE [GRANT OPTION FOR] <privilege list>
ON <privilege object>
FROM <user list>
[GRANTED BY (CURRENT_USER | CURRENT_ROLE)]
(RESTRICT | CASCADE) ;

The privilege list, privilege object, and user list are the same as they are for
GRANT. The major difference for the GRANT syntax is the addition of the
RESTRICT and CASCADE keywords. Note that {RESTRICT | CASCADE} is
not enclosed in square brackets, meaning that it is not optional. One of the
two keywords is required in any REVOKE statement.

If a REVOKE statement includes the RESTRICT keyword, the DBMS checks
to see if the privilege being revoked was passed on to one or more other
users. If it was, the privilege is not revoked, and you receive an error mes-
sage instead. If a REVOKE statement includes the CASCADE keyword, the
DBMS revokes the privilege as well as any dependent instances of this privi-
lege that were granted by the instance you are revoking.

With the optional GRANT OPTION FOR clause, you can revoke a user’s abil-
ity to grant a privilege without revoking his ability to use the privilege him-
self. If you specify GRANT OPTION FOR along with CASCADE, not only is the
grant option taken away, but everyone who obtained the privilege through
that grant loses the privilege. If you specify GRANT OPTION FOR along with
RESTRICT, and anyone had been granted the privilege under consideration,
you get an error message, and the grant option is not revoked.

If the optional GRANTED BY clause is present, only those privileges granted
by the current user or current role (whichever is specified) are revoked.

If none of the privileges you are trying to revoke actually exist, you get an
error message, and nothing is changed. If some of the privileges you are
trying to revoke exist, but others don’t, you get a warning.

Revoking a user’s privileges may not remove those privileges from the user.
If you granted the SELECT privilege to Alice WITH GRANT OPTION, and she
then granted the privilege to Bob, Bob now has the SELECT privilege. If you,

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 380

Book IV
Chapter 3

Assigning Access
Privileges

Revoking Roles 381

at a later time, grant the SELECT privilege to Bob, he now has that privilege
from two sources. If you now revoke the SELECT privilege from Bob, he still
has SELECT access to the table in question because of the GRANT SELECT
he received from Alice. This situation complicates revocation. If you want to
truly be sure that a person no longer has access to a resource, you have to
make sure that all grants have been revoked.

Granting Roles
Just as you can grant a privilege to a user, you can also grant a role to a user.
Granting a role is a more significant action: When you grant a role to a
person, you are granting all the privileges that go along with that role in one
action. Here’s the syntax:

GRANT <role name> [{ , <role name>}...]
TO <user list>
[WITH ADMIN OPTION]
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}] ;

As you can see from the syntax, you can grant any number of roles to the
names on a list of users with a single GRANT statement. The optional WITH
ADMIN OPTION clause is similar to the WITH GRANT OPTION clause that
might be a part of a grant of privileges. If you want to grant a role and extend
to the grantee the right to grant the same role to others, you do so with the
WITH ADMIN OPTION clause. The optional GRANTED BY clause specifies
whether you want to record that this GRANT was granted by the current user
or by the current role. This distinction may become meaningful when the
time comes to revoke the role granted here.

Revoking Roles
The command for revoking a role is very similar to the command for revok-
ing a privilege. Here’s what it looks like:

REVOKE [ADMIN OPTION FOR] <role name> [{ , <role name>}...]
FROM <user list>
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]
{RESTRICT | CASCADE}

Here you revoke one or more roles from the users in the user list. You can
revoke the admin option from a role without revoking the role itself. The
GRANTED BY clause requires a little explanation. If a role was specified
as being granted by the current user, revoking it with a GRANTED BY

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 381

Revoking Roles382

CURRENT_USER clause works, but revoking it with GRANTED BY CURRENT_
ROLE clause doesn’t. The RESTRICT or CASCADE keywords only apply if the
admin option has been used to grant the specified role to other users or
roles. If RESTRICT is specified and this role or list of roles has been granted
to a sub-grantee, an error message is returned, and the revocation doesn’t
take effect. If CASCADE is specified and this role or list or roles has been
granted to a sub-grantee, the role and all the sub-grantee roles are revoked.

25 119280 bk04ch03.qxp 5/23/07 10:16 AM Page 382

Chapter 4: Error Handling

In This Chapter
� Identifying error conditions

� Discovering SQLSTATE

� Handling conditions

� Using the WHENEVER clause

� The diagnostics areas

� Examining a constraint violation example

� Adding constraints to an existing table

� Interpreting SQLSTATE information

� Handling exceptions

Wouldn’t it be great if every application you wrote worked perfectly
every time? Yeah, and it would also be really cool to win $210 million

in the Powerball lottery. Unfortunately, both possibilities are about as likely
to happen. Error conditions of one sort or another are inevitable, so it’s
helpful to know what causes them. SQL’s mechanism for returning error
information to you is the status parameter (or host variable) SQLSTATE.
Based on the contents of SQLSTATE, you can take different actions to
remedy the error condition.

For example, the WHENEVER directive enables you to take a predetermined
action whenever a specified condition (if SQLSTATE has a non-zero value,
for example) is met. You can also find detailed status information about the
SQL statement that you just executed in the diagnostics area. In this chap-
ter, I explain these helpful error-handling facilities and how to use them.
First, however, I show you the conditions that might cause those error-
handling facilities to be invoked.

Identifying Error Conditions
When people say that a person has a “condition,” they usually mean that
something is wrong with that person — he is sick or injured. People usually
don’t bother to mention that a person is in good condition; rather, we talk

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 383

Getting to Know SQLSTATE384

about people who are in serious condition or, even worse, in critical condi-
tion. This idea is similar to the way programmers talk about the condition of
an SQL statement. The execution of an SQL statement leads to a successful
result, a questionable result, or an outright erroneous result. Each of these
possible results corresponds to a condition.

Getting to Know SQLSTATE
Every time an SQL statement executes, the database server places a value
into the status parameter SQLSTATE. SQLSTATE is a five-character field. It
accepts the twenty-six uppercase letters and the numerals 0 through 9. The
value that is placed into SQLSTATE indicates whether the preceding SQL
statement executed successfully. If it did not execute successfully, the value
of SQLSTATE provides some information about the error.

The first two of the five characters of SQLSTATE (the class value) give you
the major news as to whether the preceding SQL statement executed suc-
cessfully, returned a result that may or may not have been successful, or
produced an error. Table 4-1 shows the four possible results.

Table 4-1 SQLSTATE Class Values
Class Description

00 Successful completion

01 Warning

02 Not found

Other Exception

The following list further explains the class values:

✦ 00: Indicates that the preceding SQL statement executed successfully.
This is a very happy and welcome result — most of the time.

✦ 01: Indicates a warning. This means that something unusual happened
during the execution of the SQL statement. This occurrence may or may
not be an error — the DBMS can’t tell. The warning is a heads-up to the
developer, suggesting that perhaps she should check the preceding SQL
statement carefully to ensure that it’s operating correctly.

✦ 02: Indicates that no data was returned as a result of the execution
of the preceding SQL statement. This may or may not be good news,
depending on what the developer was trying to do with the statement.
For example, sometimes an empty result table is exactly what the devel-
oper wanted the SQL statement to return.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 384

Book IV
Chapter 4

Error Handling

Getting to Know SQLSTATE 385

✦ Any class code other than 00, 01, or 02: Indicates an error condition.
An indication of the nature of the error appears in the three characters
that hold the subclass value. The two characters of the class code, plus
the three characters of the subclass code, together comprise the five
characters of SQLSTATE.

The SQL standard defines any class code that starts with the letters A through
H or the numerals 0 through 4; therefore, these class codes mean the same
thing in any implementation. Class codes that start with the letters I through Z
or the numerals 5 through 9 are left open for implementors (the people who
build database management systems) to define because the SQL specification
can’t anticipate every condition that may come up in every implementation.
However, implementors should use these nonstandard class codes as little
as possible to avoid migration problems from one DBMS to another. Ideally,
implementors should use the standard codes most of the time and the non-
standard codes only under the most unusual circumstances.

Because SQLSTATE updates after every SQL operation, you can check it after
every statement executes. If SQLSTATE contains 00000 (successful comple-
tion), you can proceed with the next operation. If it contains anything else,
you may want to branch out of the main line of your code to handle the situ-
ation. The specific class code and subclass code that an SQLSTATE contains
determines which of several possible actions you should take.

To use SQLSTATE in a module language program, where SQL statements are
called from a module by a host program written in a procedural language
such as C, include a reference to it in your procedure definitions, as in the
following example:

PROCEDURE POWERPLANT
(SQLSTATE, :enginename CHAR (20), :displacement SMALLINT,

:hp INTEGER, :cylinders INTEGER, :valves INTEGER
INSERT INTO ENGINES

(EngineName, Displacement, Horsepower, Cylinders, Valves)
VALUES
(:enginename, :displacement, :hp, :cylinders, :valves) ;

At the appropriate spot in your procedural language program, you can make
values available for the parameters (perhaps by soliciting them from the
user) and then call up the procedure. The syntax of this operation varies
from one language to another, but it looks something like this:

enginename = “289HP” ;
displacement = 289 ;
hp = 271 ;
cylinders = 8 ;
valves = 16 ;
POWERPLANT(state, enginename, displacement, hp, cylinders, valves);

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 385

Handling Conditions386

The state of SQLSTATE is returned in the variable state. Your program can
examine this variable and then take the appropriate action based on the
variable’s contents.

Handling Conditions
You can have your program look at SQLSTATE after the execution of every
SQL statement. What do you do with the knowledge that you gain?

✦ If you find a class code of 00, you probably don’t want to do anything.
You want execution to proceed as you originally planned.

✦ If you find a class code of 01 or 02, you may or may not want to take
special action. If you expected the “Warning” or “Not Found” indication,
you probably want to let execution proceed normally. If you didn’t expect
either of these class codes, you probably want to have execution branch
to a procedure that is specifically designed to handle the unexpected,
but not totally unanticipated, warning or not found result.

✦ If you receive any other class code, something is wrong. You should
branch to an exception-handling procedure. The specific procedure that
you choose to branch to depends on the contents of the three subclass
characters, as well as the two class characters of SQLSTATE. If multiple
different exceptions are possible, there should be an exception-handling
procedure for each one because different exceptions often require differ-
ent responses. Some errors may be correctable, or you may find a work-
around. Other errors may be fatal, calling for termination of the
application.

Handler declarations
You can put a condition handler within a compound statement. To create a
condition handler, you must first declare the condition that it will handle.
The condition declared can be some sort of exception, or it can just be
something that is true. Table 4-2 lists the possible conditions and includes
a brief description of what causes each type of condition.

Table 4-2 Conditions That May Be Specified in a Condition Handler
Condition Description

SQLSTATE VALUE ‘xxyyy’ Specific SQLSTATE value

SQLEXCEPTION SQLSTATE class other than 00, 01, or 02

SQLWARNING SQLSTATE class 01

NOT FOUND SQLSTATE class 02

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 386

Book IV
Chapter 4

Error Handling

Handling Conditions 387

The following is an example of a condition declaration:

DECLARE constraint_violation CONDITION
FOR SQLSTATE VALUE ‘23000’ ;

Handler actions and handler effects
If a condition occurs that invokes a handler, the action specified by the han-
dler executes. This action is an SQL statement, which can be a compound
statement. If the handler action completes successfully, the handler effect
executes. The following is a list of the three possible handler effects:

✦ CONTINUE: Continue execution immediately after the statement that
caused the handler to be invoked.

✦ EXIT: Continue execution after the compound statement that contains
the handler.

✦ UNDO: Undo the work of the previous statements in the compound
statement, and continue execution after the statement that contains the
handler.

If the handler was able to correct whatever problem invoked the handler, the
CONTINUE effect may be appropriate. The EXIT effect may be appropriate if
the handler didn’t fix the problem, but the changes made to the compound
statement do not need to be undone. The UNDO effect is appropriate if you
want to return the database to the state it was in before the compound state-
ment started execution. Consider the following example:

BEGIN ATOMIC
DECLARE constraint_violation CONDITION

FOR SQLSTATE VALUE ‘23000’ ;
DECLARE UNDO HANDLER

FOR constraint_violation
RESIGNAL ;

INSERT INTO students (StudentID, Fname, Lname)
VALUES (:sid, :sfname, :slname) ;

INSERT INTO roster (ClassID, Class, StudentID)
VALUES (:cid, :cname, :sid) ;

END ;

If either of the INSERT statements causes a constraint violation, such as
adding a record with a primary key that duplicates a primary key already in
the table, SQLSTATE assumes a value of 23000, thus setting the constraint_
violation condition to a true value. This action causes the handler to undo
any changes that have been made to any tables by either INSERT command.
The RESIGNAL statement transfers control back to the procedure that called
the currently executing procedure.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 387

Dealing with Execution Exceptions: The WHENEVER Clause388

If both INSERT statements execute successfully, execution continues with
the statement following the END keyword.

The ATOMIC keyword is mandatory whenever a handler’s effect is UNDO. This
is not the case for handlers whose effect is either CONTINUE or EXIT.

Conditions that aren’t handled
In the preceding example, consider this possibility: What if an exception
occurred that returned an SQLSTATE value other than 23000? Something is
definitely wrong, but the exception handler that you coded can’t handle it.
What happens now? Because the current procedure doesn’t know what to
do, a RESIGNAL occurs. This bumps the problem up to the next higher level
of control. If the problem does not get handled there, it continues to be ele-
vated to higher levels until it is either handled or it causes an error condi-
tion in the main application.

The idea that I want to emphasize here is that if you write an SQL statement
that may cause exceptions, you should write exception handlers for all such
possible exceptions. If you don’t, you will have more difficulty isolating the
source of the problem when it inevitably occurs.

Dealing with Execution Exceptions:
The WHENEVER Clause

What’s the point of knowing that an SQL operation didn’t execute success-
fully if you can’t do anything about it? If an error occurs, you don’t want
your application to continue executing as if everything is fine. You need to
be able to acknowledge the error and do something to correct it. If you can’t
correct the error, at the very least you want to inform the user of the prob-
lem and bring the application to a graceful termination. The WHENEVER
directive is the SQL mechanism for dealing with execution exceptions.

The WHENEVER directive is actually a declaration and is therefore located in
your application’s SQL declaration section, before the executable SQL code.
The syntax is as follows:

WHENEVER <condition> <action> ;

The condition may be either SQLERROR or NOT FOUND. The action may be
either CONTINUE or GOTO address. SQLERROR is True if SQLSTATE has a
class code other than 00, 01, or 02. NOT FOUND is True if SQLSTATE is
02000.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 388

Book IV
Chapter 4

Error Handling

Getting More Information: The Diagnostics Areas 389

If the action is CONTINUE, nothing special happens, and the execution con-
tinues normally. If the action is GOTO address (or GO TO address), execution
branches to the designated address in the program. At the branch address,
you can put a conditional statement that examines SQLSTATE and takes
different actions based on what it finds. Here are some examples of this
scenario:

WHENEVER SQLERROR GO TO error_trap ;

or

WHENEVER NOT FOUND CONTINUE ;

The GO TO option is simply a macro: The implementation (that is, the
embedded language precompiler) inserts the following test after every EXEC
SQL statement:

IF SQLSTATE <> ‘00000’
AND SQLSTATE <> ‘00001’
AND SQLSTATE <> ‘00002’

THEN GOTO error_trap;

The CONTINUE option is essentially a NO-OP that says “ignore this.”

Getting More Information: The Diagnostics Areas
Although SQLSTATE can give you some information about why a particular
statement failed, the information is pretty brief. So SQL provides for the
capture and retention of additional status information in diagnostics areas.
Multiple diagnostics areas are maintained in the form of a last-in-first-out
(LIFO) stack. Information on the most recent error can be found at the top of
the stack. The additional status information in a diagnostics area can be par-
ticularly helpful in cases in which the execution of a single SQL statement
generates multiple warnings followed by an error. SQLSTATE only reports the
occurrence of one error, but the diagnostics area has the capacity to report
on multiple (hopefully all) errors.

The diagnostics area is a DBMS-managed data structure that has two
components:

✦ Header: The header contains general information about the last SQL
statement that was executed.

✦ Detail area: The detail area contains information about each code
(error, warning, or success) that the statement generated.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 389

Getting More Information: The Diagnostics Areas390

The diagnostics header area
In the SET TRANSACTION statement (described in Chapter 2 of this mini-
book), you can specify DIAGNOSTICS SIZE. The SIZE that you specify is
the number of detail areas allocated for status information. If you don’t
include a DIAGNOSTICS SIZE clause in your SET TRANSACTION statement,
your DBMS assigns its default number of detail areas, whatever that happens
to be.

The header area contains ten items, as listed in Table 4-3.

Table 4-3 Diagnostics Header Area
Fields Data Type

NUMBER Exact numeric with no fractional part

ROW_COUNT Exact numeric with no fractional part

COMMAND_FUNCTION VARCHAR (>=128)

COMMAND_FUNCTION_CODE Exact numeric with no fractional part

DYNAMIC_FUNCTION VARCHAR (>=128)

DYNAMIC_FUNCTION_CODE Exact numeric with no fractional part

MORE Exact numeric with no fractional part

TRANSACTIONS_COMMITTED Exact numeric with no fractional part

TRANSACTIONS_ROLLED_BACK Exact numeric with no fractional part

TRANSACTION_ACTIVE Exact numeric with no fractional part

The following list describes these items in more detail:

✦ The NUMBER field is the number of detail areas that have been filled
with diagnostic information about the current exception.

✦ The ROW_COUNT field holds the number of rows affected if the previous
SQL statement was an INSERT, UPDATE, or DELETE.

✦ The COMMAND_FUNCTION field describes the SQL statement that was
just executed.

✦ The COMMAND_FUNCTION_CODE field gives the code number for the
SQL statement that was just executed. Every command function has an
associated numeric code.

✦ The DYNAMIC_FUNCTION field contains the dynamic SQL statement.

✦ The DYNAMIC_FUNCTION_CODE field contains a numeric code corre-
sponding to the dynamic SQL statement.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 390

Book IV
Chapter 4

Error Handling

Getting More Information: The Diagnostics Areas 391

✦ The MORE field may be either a Y or an N. Y indicates that there are
more status records than the detail area can hold. N indicates that all
the status records generated are present in the detail area. Depending
on your implementation, you may be able to expand the number of
records you can handle by using the SET TRANSACTION statement.

✦ The TRANSACTIONS_COMMITTED field holds the number of transac-
tions that have been committed.

✦ The TRANSACTIONS_ROLLED_BACK field holds the number of transac-
tions that have been rolled back.

✦ The TRANSACTION_ACTIVE field holds a 1 if a transaction is currently
active and a 0 otherwise. A transaction is deemed to be active if a cursor
is open or if the DBMS is waiting for a deferred parameter.

The diagnostics detail area
The detail areas contain data on each individual error, warning, or success
condition. Each detail area contains 28 items, as Table 4-4 shows.

Table 4-4 Diagnostics Detail Area
Fields Data Type

CONDITION_NUMBER Exact numeric with no fractional part

RETURNED_SQLSTATE CHAR (6)

MESSAGE_TEXT VARCHAR (>=128)

MESSAGE_LENGTH Exact numeric with no fractional part

MESSAGE_OCTET_LENGTH Exact numeric with no fractional part

CLASS_ORIGIN VARCHAR (>=128)

SUBCLASS_ORIGIN VARCHAR (>=128)

CONNECTION_NAME VARCHAR (>=128)

SERVER_NAME VARCHAR (>=128)

CONSTRAINT_CATALOG VARCHAR (>=128)

CONSTRAINT_SCHEMA VARCHAR (>=128)

CONSTRAINT_NAME VARCHAR (>=128)

CATALOG_NAME VARCHAR (>=128)

SCHEMA_NAME VARCHAR (>=128)

TABLE_NAME VARCHAR (>=128)

COLUMN_NAME VARCHAR (>=128)

CURSOR_NAME VARCHAR (>=128)

(continued)

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 391

Getting More Information: The Diagnostics Areas392

Table 4-4 (continued)
Fields Data Type

CONDITION_IDENTIFIER VARCHAR (>=128)

PARAMETER_NAME VARCHAR (>=128)

PARAMETER_ORDINAL_POSITION Exact numeric with no fractional part

PARAMETER_MODE Exact numeric with no fractional part

ROUTINE_CATALOG VARCHAR (>=128)

ROUTINE_SCHEMA VARCHAR (>=128)

ROUTINE_NAME VARCHAR (>=128)

SPECIFIC_NAME VARCHAR (>=128)

TRIGGER_CATALOG VARCHAR (>=128)

TRIGGER_SCHEMA VARCHAR (>=128)

TRIGGER_NAME VARCHAR (>=128)

CONDITION_NUMBER holds the sequence number of the detail area. If
a statement generates five status items that fill up five detail areas, the
CONDITION_NUMBER for the fifth detail area is five. To retrieve a specific
detail area for examination, use a GET DIAGNOSTICS statement (described
later in this chapter in the “Interpreting SQLSTATE Information” section)
with the desired CONDITION_NUMBER. RETURNED_SQLSTATE holds the
SQLSTATE value that caused this detail area to be filled.

CLASS_ORIGIN tells you the source of the class code value returned in
SQLSTATE. If the SQL standard defines the value, the CLASS_ORIGIN is ISO
9075. If your DBMS implementation defines the value, CLASS_ORIGIN holds
a string identifying the source of your DBMS. SUBCLASS_ORIGIN tells you
the source of the subclass code value returned in SQLSTATE.

CLASS_ORIGIN is important. If you get an SQLSTATE of 22012, for example,
the values indicate that it is in the range of standard SQLSTATEs, so you
know that it means the same thing in all SQL implementations. However, if
the SQLSTATE is 22500, the first two characters are in the standard range
and indicate a data exception, but the last three characters are in the
implementation-defined range. And if SQLSTATE is 900001, it’s completely
in the implementation-defined range. SQLSTATE values in the implementation-
defined range can mean different things in different implementations, even
though the code itself may be the same.

So how do you find out the detailed meaning of 22500 or the meaning
of 900001? You must look in the implementor’s documentation. Which
implementor? If you’re using CONNECT, you may be connecting to various

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 392

Book IV
Chapter 4

Error Handling

Examining a Constraint Violation Example 393

products. To determine which one produced the error condition, look at
CLASS_ORIGIN and SUBCLASS_ORIGIN: They have values that identify each
implementation. You can test the CLASS_ORIGIN and SUBCLASS_ORIGIN to
see whether they identify implementors for which you have the SQLSTATE
listings. The actual values placed in CLASS_ORIGIN and SUBCLASS_ORIGIN
are implementor-defined, but they also are expected to be self-explanatory
company names.

If the error reported is a constraint violation, the CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME fields identify the con-
straint being violated.

Examining a Constraint Violation Example
The constraint violation information is probably the most important infor-
mation that GET DIAGNOSTICS provides. I discuss GET DIAGNOSTICS in
the “Interpreting SQLSTATE Information” section, a bit later in this chapter.
Consider the following EMPLOYEE table:

CREATE TABLE EMPLOYEE (
ID CHAR(5) CONSTRAINT EmpPK PRIMARY KEY,
Salary DEC(8,2) CONSTRAINT EmpSal CHECK Salary > 0,
Dept CHAR(5) CONSTRAINT EmpDept,
REFERENCES DEPARTMENT) ;

And this DEPARTMENT table:

CREATE TABLE DEPARTMENT (
DeptNo CHAR(5),
Budget DEC(12,2) CONSTRAINT DeptBudget
CHECK(Budget >= SELECT SUM(Salary) FROM EMPLOYEE,

WHERE EMPLOYEE.Dept=DEPARTMENT.DeptNo),
...);

Now consider an INSERT as follows:

INSERT INTO EMPLOYEE VALUES(:ID_VAR, :SAL_VAR, :DEPT_VAR);

Now suppose that you get an SQLSTATE of 23000. You look it up in your SQL
documentation, and it says “integrity constraint violation.” Now what? That
SQLSTATE value means that one of the following situations is true:

✦ The value in ID_VAR is a duplicate of an existing ID value: You have
violated the PRIMARY KEY constraint.

✦ The value in SAL_VAR is negative: You have violated the CHECK con-
straint on Salary.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 393

Adding Constraints to an Existing Table394

✦ The value in DEPT_VAR isn’t a valid key value for any existing row of
DEPARTMENT: You have violated the REFERENCES constraint on Dept.

✦ The value in SAL_VAR is large enough that the sum of the employees’
salaries in this department exceeds the BUDGET: You have violated the
CHECK constraint in the BUDGET column of DEPARTMENT. (Recall that if
you change the database, all constraints that may be affected are
checked, not just those defined in the immediate table.)

Under normal circumstances, you would need to do a great deal of testing to
figure out what is wrong with that INSERT. But you can find out what you
need to know by using GET DIAGNOSTICS as follows:

DECLARE ConstNameVar CHAR(18) ;
GET DIAGNOSTICS EXCEPTION 1

ConstNameVar = CONSTRAINT_NAME ;

Assuming that SQLSTATE is 23000, this GET DIAGNOSTICS sets
ConstNameVar to EmpPK, EmpSal, EmpDept, or DeptBudget. Notice
that, in practice, you may also want to obtain the CONSTRAINT_SCHEMA
and CONSTRAINT_CATALOG to uniquely identify the constraint given by
CONSTRAINT_NAME.

Adding Constraints to an Existing Table
This use of GET DIAGNOSTICS — determining which of several constraints
has been violated — is particularly important in the case where ALTER
TABLE is used to add constraints that didn’t exist when you wrote the
program:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT SalLimit CHECK(Salary < 200000) ;

Now if you insert data into EMPLOYEE or update the Salary column of
EMPLOYEE, you get an SQLSTATE of 23000 if Salary exceeds 200000. You
can program your INSERT statement so that, if you get an SQLSTATE of
23000 and you don’t recognize the particular constraint name that GET
DIAGNOSTICS returns, you can display a helpful message, such as Invalid
INSERT: Violated constraint SalLimit.

Interpreting SQLSTATE Information
CONNECTION_NAME and ENVIRONMENT_NAME identify the connection and
environment to which you are connected at the time the SQL statement is
executed.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 394

Book IV
Chapter 4

Error Handling

Handling Exceptions 395

If the report deals with a table operation, CATALOG_NAME, SCHEMA_NAME,
and TABLE_NAME identify the table. COLUMN_NAME identifies the column
within the table that caused the report to be made. If the situation involves a
cursor, CURSOR_NAME gives its name.

Sometimes a DBMS produces a string of natural language text to explain a
condition. The MESSAGE_TEXT item is for this kind of information. The con-
tents of this item depend on the implementation; the SQL standard doesn’t
explicitly define them. If you do have something in MESSAGE_TEXT, its
length in characters is recorded in MESSAGE_LENGTH, and its length in
octets is recorded in MESSAGE_OCTET_LENGTH. If the message is in normal
ASCII characters, MESSAGE_LENGTH equals MESSAGE_OCTET_LENGTH. If,
on the other hand, the message is in Kanji or some other language whose
characters require more than an octet to express, MESSAGE_LENGTH differs
from MESSAGE_OCTET_LENGTH.

To retrieve diagnostic information from a diagnostics area header, use the
following:

GET DIAGNOSTICS status1 = item1 [, status2 = item2]... ;

Statusn is a host variable or parameter; itemn can be any of the keywords
NUMBER, MORE, COMMAND_FUNCTION, DYNAMIC_FUNCTION, or ROW_COUNT.

To retrieve diagnostic information from a diagnostics detail area, the syntax
is as follows:

GET DIAGNOSTICS EXCEPTION <condition number>
status1 = item1 [, status2 = item2]... ;

Again, statusn is a host variable or parameter, and itemn is any of the 28
keywords for the detail items listed in Table 4-4. The condition number is
(surprise!) the detail area’s CONDITION_NUMBER item.

Handling Exceptions
When SQLSTATE indicates an exception condition by holding a value other
than 00000, 00001, or 00002, you may want to handle the situation by

✦ Returning control to the parent procedure that called the subprocedure
that raised the exception.

✦ Using a WHENEVER clause to branch to an exception-handling routine or
perform some other action.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 395

Handling Exceptions396

✦ Handing the exception on the spot with a compound SQL statement. A
compound SQL statement consists of one or more simple SQL state-
ments, sandwiched between BEGIN and END keywords.

The following is an example of a compound-statement exception handler:

BEGIN
DECLARE ValueOutOfRange EXCEPTION FOR SQLSTATE ‘74001’ ;
INSERT INTO ENGINES

(Displacement)
VALUES
(:displacement) ;

SIGNAL ValueOutOfRange ;
MESSAGE ‘Process the next displacement value.’
EXCEPTION

WHEN ValueOutOfRange THEN
MESSAGE ‘Handling the displacement range error’ ;

WHEN OTHERS THEN
RESIGNAL ;

END

With one or more DECLARE statements, you can give names to specific
SQLSTATE values that you suspect may arise. The INSERT statement is the
one that might cause an exception to occur. If the value of :displacement
exceeds the maximum value for a SMALLINT data item, SQLSTATE is set to
74001. The SIGNAL statement signals an exception condition. It clears the
top diagnostics area. It sets the RETURNED_SQLSTATE field of the diagnos-
tics area to the SQLSTATE for the named exception. If no exception has
occurred, the series of statements represented by the MESSAGE ‘Process
the next displacement value’ statement is executed. However, if an
exception has occurred, that series of statements is skipped, and the
EXCEPTION statement is executed.

If the exception was a ValueOutOfRange exception, the series of statements
represented by the MESSAGE ‘Handling the displacement range
error’ statement is executed. If it was any other exception, the RESIGNAL
statement is executed. RESIGNAL merely passes control of execution to the
calling parent procedure. That procedure may have additional error-handling
code to deal with exceptions other than the expected value out-of-range error.

26 119280 bk04ch04.qxp 5/23/07 10:27 AM Page 396

Book V

SQL and
Programming

27 119280 pt05.qxp 5/23/07 10:27 AM Page 397

Contents at a Glance
Chapter 1: Database Development Environments ..399

Chapter 2: Interfacing SQL to a Procedural Language..403

Chapter 3: Using SQL in an Application Program..409

Chapter 4: Designing a Sample Application ..423

Chapter 5: Building a Sample Application..443

Chapter 6: SQL’s Procedural Capabilities ..459

Chapter 7: Connecting to a Remote Database ..475

27 119280 pt05.qxp 5/23/07 10:27 AM Page 398

Chapter 1: Database Development
Environments

In This Chapter
� Microsoft Access

� Microsoft SQL Server

� IBM DB2

� Oracle 10g

� MySQL

Aside from organizations that locked themselves into a database envi-
ronment before about 1985, anybody who is using a database system

now is probably using a relational database system. Any relational database
system that is still around today uses a version of SQL for communication
between users and data. Although a number of specialty database products
serve specific niche markets, for general use, a relatively small number of
DBMS products have significant market share. These products are Access
and SQL Server from Microsoft, DB2 from IBM, Oracle from Oracle
Corporation, and MySQL from MySQL AB.

In this chapter, I take a brief look at the popular RDBMS products with
regard to how they implement SQL.

Microsoft Access
Microsoft Access, like all relational database management systems today,
uses SQL for communication between the user and the database. However,
it does a really good job of hiding that fact. Access comes with a procedural
language called VBA (Visual Basic for Applications). The normal way of writ-
ing a data-driven application is to write it in VBA and make use of a library
of classes for dealing with the data. The tools for doing that have undergone
a massive upheaval in recent years. The back end database engine part of
Access, called the Jet Engine, has undergone changes and expanded in flexi-
bility. In addition, the recommended method of ‘talking’ to the Jet engine
has gone through one change after another.

28 119280 bk05ch01.qxp 5/23/07 10:27 AM Page 399

Microsoft Access400

The Jet engine
The Jet engine originated in 1992 as the back end of Access 1.0. Initially it did
not support data access via SQL, but in a later version implemented a subset
of SQL-92 functionality. In the early days, connecting to native Access .mdb
files was done exclusively with DAO (Data Access Objects). ISAM drivers
enabled connecting to xBase, Paradox, FoxPro, and Btrieve databases. Later,
ODBC made it possible to connect to SQL Server databases, Oracle data-
bases, or any other ODBC-compliant database.

DAO
The DAO (Data Access Objects) interface to the Jet database engine is an
object-oriented DLL (Dynamic-Link Library) that creates a workspace object
within which all database operations are performed. The DAO DLL, for a
number of years used with other products in addition to Access, has been
superseded and deprecated for those other uses. However, it remains in the
playbook for Access, including Microsoft Office Access 2007.

ADO
ADO (ActiveX Data Objects) was introduced by Microsoft in 1996 as a suc-
cessor to DAO and as yet another alternative to SQL. Developers can create
database applications using ADO without any knowledge of SQL. High-level
procedural languages Visual Basic, VBScript, Delphi, and C++ Builder sup-
port the ADO interface.

ODBC
ODBC (Open Database Connectivity) is a procedural API (Application
Programming Interface) that connects an SQL query to a database. First
developed and released by Microsoft in 1992, ODBC has since come to be
used by many different programming environments to access many different
databases. Hundreds of ODBC drivers exist. Microsoft’s version of ODBC
ships with every supported version of Windows. Open-source implementa-
tions are widely used by Unix and Unix-derived operating systems.

OLE DB
OLE DB (Object Linking and Embedding Database) is a Microsoft API,
designed as a successor to ODBC, for accessing a wide variety of data stores,
including but not limited to SQL-compliant relational databases. OLE DB
interfaces also work with such diverse data sources as object databases,
text files, and spreadsheets.

28 119280 bk05ch01.qxp 5/23/07 10:27 AM Page 400

Book V
Chapter 1

Database
Developm

ent
Environm

ents
IBM DB2 401

MDB
One of the unusual characteristics of Access databases is that they are
entirely contained in a single file. All versions of Access up to and including
Access Office 2007 store data, metadata, and everything else in a file with a
.mdb extension.

ACCDB
Access Office 2007 has a new database engine that operates on a new file
format, with a .accdb extension. This format enables new features, chief
among with is interoperability with Microsoft Office SharePoint Server 2007.
The .accdb format is not usable by earlier versions of Access, so if you read
in a .mdb file, but then write it out in .accdb format, it will no longer run on
older versions of Access.

Microsoft SQL Server
SQL Server is Microsoft’s primary entry in the database arena. Ranging from
the entry-level SQL Server Express 2005 to the unlimited-class SQL Server
2005 Enterprise Edition, SQL Server is based on Microsoft’s Transact-SQL,
which, in contrast to the SQL in Access, is a full-featured robust implementa-
tion of the SQL:1999 international standard that also includes numerous pro-
prietary extensions to the standard syntax. SQL Server runs only under
Microsoft operating systems. You can connect to a SQL Server 2005 database
via the new SQL Native Client. It is compatible with ODBC, OLE DB, and
ADO.NET.

IBM DB2
DB2 is IBM’s full-range relational database management system. Scaling from
a single user to an unlimited-class enterprise DBMS, DB2 also features a
robust implementation of SQL. DB2 operates in a variety of environments,
including Microsoft Windows, IBM mainframe z/OS, Unix, and Linux. DB2
supports a wide variety of interfaces, including

✦ ODBC

✦ OLE DB

✦ ADO

28 119280 bk05ch01.qxp 5/23/07 10:27 AM Page 401

Oracle 10g402

✦ JDBC (Java-based Database Connectivity)

✦ SQLJ (Java-based Embedded SQL)

✦ SQL

✦ DRDA (X/Open Distributed Database Standard)

✦ CLI (X/Open Database Access Standard)

✦ EDA/SQL (IBI’s EDA SQL Standard)

✦ DAL (Apple Relational Database Standard APIs)

✦ Net.Data (Internet Database Access)

Oracle 10g
Oracle 10g is the current version of Oracle Corporation’s full-range database
management system. Oracle Version 2 was the first commercial relational
database product when it hit the market in 1979. Oracle has retained a lead-
ing position in the marketplace ever since. Oracle’s implementation of SQL,
called PL/SQL, is a very complete implementation, conforming to the latest
version of the ANSI/ISO standard, SQL:2003, as well as offering useful propri-
etary extensions.

Oracle Database 10g supports all standard relational data types and can
be connected to in numerous ways, such as with PL/SQL, JDBC, SQLJ,
ODBC.NET, OLE.NET, ODP.NET, XML, XQUERY, and WebDAV. You can write
stored procedures in Java, PL/SQL, or using .NET CLR support.

MySQL
MySQL is an open-source DBMS that has grown in capability over the years
to the point where it is competitive with the other DBMS products men-
tioned here in terms of SQL functionality that it supports. MySQL 5.0 is
a full-featured implementation of SQL. It offers ODBC, JDBC, and OLE DB
connectivity, as well as APIs for most popular languages including C, C++,
Python, Tcl, Perl, PHP, and Eiffel.

28 119280 bk05ch01.qxp 5/23/07 10:27 AM Page 402

Chapter 2: Interfacing SQL
to a Procedural Language

In This Chapter
� Microsoft Access

� Microsoft SQL Server

� MySQL

� Oracle 10g

� IBM DB2

You cannot build a user-friendly database application with SQL alone.
SQL is a data sublanguage and as such lacks many of the facilities

required to build a user interface or even execute a sequence of steps.
Building a moderately sophisticated application that involves the data in a
database requires a procedural language in addition to SQL. Most DBMSs
offer compatibility with several procedural languages. Which ones in partic-
ular are offered depends on the source of the DBMS and its history, as well
as considerations of what capabilities users are most likely to need. In this
chapter, I discuss the most common ways of connecting and interfacing to
the most popular DBMS products, Access, SQL Server, MySQL, Oracle 10g,
and IBM DB2.

Building an Application with SQL
and a Procedural Language

Although languages such as C, Java, and Visual Basic do not intrinsically
support database operations, you can use those languages to write proce-
dures that perform such operations. The vendors of database management
systems, in order to make their products more usable, make available
libraries of such procedures. Some of these procedures perform operations
that SQL cannot perform. Others work with SQL to perform a needed func-
tion. As a result, in some environments, you can create quite complex data-
base operations without ever having to resort to SQL. Read on to find out
how this issue is addressed by the popular database platforms.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 403

Access and VBA404

Access and VBA
VBA (Visual Basic for Applications) is a subset of Microsoft’s Visual Basic
language, specifically designed to be the procedural language to go along
with Microsoft Access. Hundreds of libraries are available to the VBA data-
base programmer. Figure 2-1 shows the References dialog box, accessible
from the Visual Basic Editor’s Tools menu, which in turn is accessible from
the Access Tools menu, under Macro.

Two of the most important libraries for most applications are the ADODB
library and the ADOX library.

The ADODB library
The ADODB library has a small memory footprint and contains basic proce-
dures that just about every application needs. Programs that use this library
are not burdened with having to carry along a bunch of procedures that they
never use. In keeping with the object-oriented nature of the ADO (ActiveX
Data Objects) object model, the library contains objects that perform basic
functions. Those functions include

✦ Making connections

✦ Issuing commands

✦ Retrieving recordsets

✦ The ability to navigate within a recordset

✦ Basic maintenance tasks

Figure 2-1:
Visual Basic
Editor’s
References
dialog box
enables you
to select
libraries
to include
with your
program.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 404

Book V
Chapter 2

Interfacing SQL
to a Procedural

Language
SQL Server and the .NET languages 405

Clearly, any application that deals with a database has to connect to it
before it can do anything else. The ADODB library gives you that capability
with the connection object. In addition the library contains procedures for
retrieving data from a data source, specifying a location within the database,
and setting the type of locking that will be in force. The command object
works with the SQL DML commands to perform SELECT, UPDATE, INSERT,
and DELETE operations.

The ADOX library
ADOX is short for ADO Extensions for DDL and Security. DDL is of course
SQL’s Data Definition Language, which is that part of SQL used to create and
destroy database objects. With the ADOX library, you can create tables,
indexes, keys, groups, user identities, and views. You can also delete any of
those things.

Other libraries
In addition to the general-purpose libraries with broad applicability, there
are many specialty libraries that may be of value to your application. Be sure
to check on what is available from your DBMS vendor or independent third
parties before you go about “reinventing the wheel.”

SQL Server and the .NET languages
Microsoft’s .NET initiative introduces the idea of “managed code” as a way of
eliminating several of the most common sources of programming bugs and
as a way to eliminate the chaos and lack of portability that comes when each
language has its own API that is not compatible with any other. The .NET lan-
guages, such as Visual Basic.NET and C#, among others, all create code that
runs under the control of the Common Language Runtime (CLR). The CLR
provides just-in-time compilation, memory management, type safety enforce-
ment, exception handling, thread management, and security.

Regardless of what .NET language you write in, your code gets compiled
down to Common Intermediate Language (CIL). As a result, the .NET lan-
guages are all essentially equivalent and so anything you can do with any
one of them, you can do with all of them. If you feel more comfortable writ-
ing in Visual Basic.NET, go for it. You can do everything that the people writ-
ing in C# or C++.NET can do. When you are programming in the .NET world,
you can make use of the thousands of classes, structs, interfaces, enumera-
tions, and delegates in the .NET Framework Class Library. Because every lan-
guage uses the same API, after you learn the .NET Framework as it applies to
one language, you have learned it as it applies to any other.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 405

MySQL and C++.NET or C#406

How does this relate to SQL? Microsoft’s implementation of SQL, Transact-
SQL, runs on the database server to operate on data stored there. The man-
aged code you write in VB.NET, C#, or any of the other .NET languages can
run on either the server or the client. This is welcome flexibility when you
want to minimize the computational load on the server. Many of the func-
tions that have traditionally been performed by Transact-SQL can be per-
formed by managed code, in many cases more efficiently. The net result
(no pun intended) is a reduction in the overall use of SQL in applications
that are written in a .NET language.

MySQL and C++.NET or C#
Although .NET technology was developed by Microsoft, it works with non-
Microsoft products such as the open-source database MySQL. You can
access MySQL from C++.NET or C# via an ODBC data provider or the
MySQL.Data.dll connector. In either case, you have the advantages of man-
aged code, but do not need to use a proprietary DBMS such as SQL Server.
All the resources of the .NET Framework are available for you to use against
a MySQL database. This might well enable you to do some data manipula-
tions with MySQL that you could not do by using MySQL’s implementation of
SQL in conjunction with other languages.

MySQL and C
MySQL provides a client library written in C. The library enables you to
access a MySQL database from within an application program written in C.
The library provides an API that defines how clients establish contact with
the database server, and how communication is handled. Other languages,
such as Perl, PHP, Java, Python, C++, and Tcl, all have client APIs that are
built on top of the C library.

MySQL and Perl
Perl scripts connect to MySQL databases through the Perl interpreter. The
Perl interpreter comprises two levels, the database interface (DBI) level and
the database driver (DBD) level. The DBI is generic and can direct com-
mands to a MySQL driver, but also to a PostgreSQL driver or drivers that
connect to other kinds of databases. Perl, an interpreted scripting language,
is probably the most commonly used language for developing MySQL
applications.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 406

Book V
Chapter 2

Interfacing SQL
to a Procedural

Language
DB2 and Java 407

MySQL and PHP
PHP, like Perl, is an interpreted scripting language, but unlike Perl is espe-
cially designed for the development of Web applications. It provides a means
of embedding executable scripts into Web pages. The Web page is processed
by PHP before being sent to the client for display. This enables the script to
generate dynamic content.

Oracle SQL and Java
You can connect to an Oracle database from a Java program using either of
two technologies:

✦ SQLJ: SQLJ statements may appear anywhere in a Java program where
a Java statement may appear. All SQLJ statements begin with #sql to
distinguish them from other Java statements. There are two kinds of
SQLJ statements:

• Declarations: With a declaration, you can establish a connection to a
database. You can also use a declaration to store result sets that
come back from the database.

• Executable statements: Executable statements execute embedded
SQL statements and PL/SQL blocks. PL/SQL consists of extensions to
SQL for performing procedural operations. Executable expressions
may also be used to exchange information between the Java program
and the database, using variables.

✦ JDBC: JDBC is an API, similar to ODBC, for connecting Java programs to
a wide variety of database back ends.

DB2 and Java
IBM’s DB2 database is accessible to Java application programs via SQLJ and
JDBC. JDBC drivers of various types are available on platforms that include
Linux, Unix, and Windows, as well as IBM proprietary operating systems
such as OS/390, z/OS, and iSeries. SQLJ applets and applications contain
embedded SQL statements that are precompiled and bound to a DB2 UDB
database. The SQLJ driver translates the embedded SQL code into Java
code.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 407

DB2 and Java408

SQL user-defined functions (UDFs) can be in the form of Java modules.
Stored procedures can also be created from Java classes. With UDFs, you
can extend the functionality of the “plain vanilla” SQL provided by DB2.
Putting program logic into stored procedures, which reside on the server
improves performance by reducing traffic between the client and the server.
Instead of the client issuing a command and receiving a response for each
operation, the client merely calls the stored procedure, which performs all
the operations and then, at the end, returns the final result to the client.

29 119280 bk05ch02.qxp 5/23/07 10:27 AM Page 408

Chapter 3: Using SQL in an
Application Program

In This Chapter
� Comparing languages

� Determining difficulties getting languages to work with SQL

� Embedding SQL in a procedural program

� Using SQL modules

SQL was originally conceived and implemented with one objective in
mind: to create and maintain a structure for data to be stored in a rela-

tional database. It was never intended to be a complete language that you
could use to create application programs. Application programming was
and is the domain of procedural languages such as Fortran, COBOL, Ada, C,
and Basic.

Clearly, there is a need for application programs that deal with databases.
These require a combination of the features of a procedural language such
as C and a data sublanguage such as SQL. Fundamental differences between
the architectures and philosophies of procedural languages and of SQL
make combining them a challenge. In this chapter, I take a look at the char-
acteristics of and differences between those two very different worlds.

Comparison of SQL to Procedural Languages
SQL is strong in data retrieval. If important information is buried somewhere
in a single-table or multitable database, SQL gives you the tools you need to
retrieve it. You don’t need to know the order of the table’s rows or columns
because SQL doesn’t deal with rows or columns individually. The SQL trans-
action-processing facilities ensure that your database operations are unaf-
fected by any other users who may be simultaneously accessing the same
tables that you are.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 409

Comparison of SQL to Procedural Languages410

A major weakness of SQL is its rudimentary user interface. It has no provi-
sion for formatting screens or reports. It accepts command lines from the
keyboard and sends retrieved values to the terminal, one row at a time.

Sometimes a strength in one context is a weakness in another. One strength
of SQL is that it can operate on an entire table at once. Whether the table
has one row, a hundred rows, or a hundred thousand rows, a single SELECT
statement can extract the data you want. SQL can’t easily operate on one
row of a multirow table at a time, however, and sometimes you do want to
deal with each row individually. In such cases, you can use SQL’s cursor
facility, described in Chapter 5 of Book III, or you can use a procedural host
language.

Speaking of procedural host languages, what are their strengths and weak-
nesses? In contrast to SQL, procedural languages are designed for one-row-
at-a-time operation, which allows the application developer precise control
over the way a table is processed. This detailed control is a great strength of
procedural languages. But a corresponding weakness is that the application
developer must have detailed knowledge of the way data is stored in the
database tables. The order of the database’s columns and rows is significant
and must be taken into account.

Because of the step-by-step nature of procedural languages, they have the
flexibility to produce user-friendly screens for data entry and viewing. You
can also produce sophisticated printed reports, with any desired layout.

Classic procedural languages
Classic procedural languages are the first languages used to program com-
puters and their descendants. The very first languages were machine lan-
guages, in which both instructions and data were represented as ones and
zeros. Digital computers are binary machines and ones and zeros are the
only things they understand. Unfortunately, long sequences of ones and
zeros are not particularly easy for humans to understand, so it was not long
before machine language was superseded by assembly language, and then
by compiled high-level languages such as Fortran and COBOL. C and Basic
are examples of more recent classic procedural languages.

Classic procedural languages such as C and Basic are complete program-
ming languages. They can implement any procedure that can be represented
in algorithmic form. They primarily operate by executing one command after
another in sequence, although they also have flow of control structures that
enable them to branch, either unconditionally or depending on the value of
a condition. They also support loops, which enable a program to execute a
section of code repeatedly. SQL, as defined by the SQL-92 international

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 410

Book V
Chapter 3

Using SQL in an
Application

Program
Comparison of SQL to Procedural Languages 411

standard, did not have these capabilities. Additions to the standard that
became part of SQL:1999 have added some of these capabilities, but not all
implementations of SQL have as yet been upgraded to support them.

Object-oriented procedural languages
Object-oriented programming, whose first incarnation was Simula-67 in 1967,
came into its own in the 1990s when it became the predominant program-
ming paradigm. Large, complex software projects that would have been very
difficult to build with one of the classical procedural languages were more
easily accomplished using one or another of the object-oriented languages
such as C++, Java, C#, Python, or Visual Basic.NET.

The fundamental unit of a program written in an object-oriented language is
the object, whereas the instruction is the fundamental unit of a classic proce-
dural language program. Each object in an object-oriented program can
receive messages sent by other objects, process data, and send messages to
other objects.

Object-oriented code is intrinsically modular, which makes object-oriented
programs easier to develop, understand, and maintain than programs gener-
ated according to the earlier, classic paradigm. Objects are members of
classes. A class has associated attributes and methods. Attributes are char-
acteristics of a class, and methods are actions that members of the class can
perform.

Non-procedural languages
SQL is an example of a non-procedural language. Rather than dealing with
the data in a table one row at a time, it deals with data a set at a time. This
means that a query might return a result set containing multiple rows all at
once. This is in contrast to procedural languages, both classic and object-
oriented, that process tables one row at a time, and return data to the appli-
cation the same way, one row at a time.

In the early days of relational databases, other non-procedural languages
competed with SQL. Among these were QUEL and RDML. QUEL was the data
sublanguage of the Ingres database management system that was initially
developed at the University of California at Berkeley and later commercial-
ized. It is now sold as an open-source product by Ingres Corporation. Due to
the overwhelming acceptance of SQL in the marketplace, SQL syntax has
been added to QUEL. RDML is the data sublanguage for Digital Equipment
Corporation’s Rdb relational database products. Alas, both Rdb and Digital
Equipment itself have passed into history.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 411

Difficulties in Combining SQL with a Procedural Language412

Although SQL was developed by IBM, it was adopted at a very early stage by
the company that was to become Oracle Corporation. Other DBMS vendors
followed suit, and SQL became a de facto standard. The de facto standard
was codified into a recognized “official” standard in 1986. SQL did not beat
out QUEL and RDML because of its technical superiority, which was debat-
able. It won because of IBM’s market clout and because Oracle’s early adop-
tion of it started a “domino effect” of DBMS vendors joining the club and
supporting SQL.

Difficulties in Combining SQL
with a Procedural Language

Any time the database and the programming language that is addressing it
are using different data models, problems are going to occur. Beyond data
models, differences in data types add to the problem. SQL’s data types do
not match the data types of any of the languages that try to communicate
with SQL databases. Despite these challenges, SQL and procedural lan-
guages must be made to work together because neither one by itself can do
the complete job.

Challenges to using SQL with a
classical procedural language
It makes sense to try to combine SQL and procedural languages in such a
way that you can benefit from their strengths and not be penalized by their
weaknesses. As valuable as such a combination may be, some challenges
must be overcome before it can be achieved practically.

Contrasting operating modes
A big problem in combining SQL with a procedural language is that SQL
operates on tables a set at a time, whereas procedural languages work on
them a row at a time. Sometimes this isn’t a big deal. You can separate set
operations from row operations, doing each with the appropriate tool. But if
you want to search a table for records meeting certain conditions and per-
form different operations on the records depending on whether they meet
the conditions, you may have a problem. Such a process requires both the
retrieval power of SQL and the branching capability of a procedural lan-
guage. Embedded SQL gives you this combination of capabilities by enabling
you to embed SQL statements at strategic locations within a program that
you have written in a conventional procedural language. Other solutions to
this problem include proprietary APIs and module language.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 412

Book V
Chapter 3

Using SQL in an
Application

Program
Difficulties in Combining SQL with a Procedural Language 413

Data type incompatibilities
Another hurdle to the smooth integration of SQL with any procedural lan-
guage is that SQL’s data types are different from those of all major procedural
languages. This circumstance shouldn’t be surprising because the data types
defined for any procedural language are different from the types for the other
procedural languages. No standardization of data types exists across lan-
guages. In releases of SQL prior to SQL-92, data type incompatibility was
a major concern. In SQL-92 (and also in subsequent releases of the SQL
standard), the CAST statement addresses the problem. Book III, Chapter 1
explains how you can use CAST to convert a data item from the procedural
language’s data type to one recognized by SQL, as long as the data item itself
is compatible with the new data type.

Challenges to using SQL with an object-oriented
procedural language
The challenges mentioned above with regard to using SQL with classic pro-
cedural languages apply equally when using SQL with object-oriented proce-
dural languages. Added to those however, are additional incompatibilities,
often called the impedance mismatch between SQL and object-oriented lan-
guages. The original context of the term impedance mismatch comes from
electrical engineering. Different parts of an electrical circuit may have differ-
ent impedance values. Connecting two such circuit elements can cause prob-
lems. As a simple example, suppose an audio speaker with an intrinsic
impedance of 8 ohms is connected to a line with a 50-ohm impedance value.
The result is sound that is attenuated, distorted, and noisy. In the context of
SQL and object-oriented procedural languages, similar problems occur. The
row and column organization of relational tables do not mesh well with the
hierarchical class/object paradigm of object-oriented programming.

Database vendors have addressed the impedance mismatch problem by
adding object-oriented features to their relational database products, turn-
ing their hybrid products into object-relational database management sys-
tems. The object-oriented features added to such products as DB2, Oracle,
and SQL Server were codified in the SQL:1999 international standard.

SQL:1999 notwithstanding, the marriage of SQL to object-oriented languages
such as C++, C#, or Visual Basic.NET is not a perfect one. Difficulties remain,
but they are manageable ones.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 413

Embedding SQL in an Application414

Embedding SQL in an Application
The most common method of mixing SQL with procedural languages is
called embedded SQL. The name is descriptive: SQL statements are dropped
into the middle of a procedural program, wherever they’re needed. As you
may expect, an SQL statement that suddenly appears in the middle of a C
program, for example, can present a challenge for a compiler that isn’t
expecting it. For that reason, programs containing embedded SQL are usu-
ally passed through a preprocessor before being compiled or interpreted.
The preprocessor is warned of the imminent appearance of SQL code by a
preprocessor directive such as EXEC SQL.

Embedding SQL in an Oracle Pro*C application
As an example of embedded SQL, look at a program written in Oracle’s
Pro*C version of the C language. The program, which accesses a company’s
employee table, prompts the user for an employee name and then displays
that employee’s salary and commission. It then prompts the user for new
salary and commission data and updates the employee table with it:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR uid[20];
VARCHAR pwd[20];
VARCHAR ename[10];
FLOAT salary, comm;
SHORT salary_ind, comm_ind;

EXEC SQL END DECLARE SECTION;
#include <stdio.h>
main()
{

int sret; /* scanf return code */
/* Log in */
strcpy(uid.arr,”FRED”); /* copy the user name */
uid.len=strlen(uid.arr);
strcpy(pwd.arr,”TOWER”); /* copy the password */
pwd.len=strlen(pwd.arr);
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL WHENEVER NOT FOUND STOP;
EXEC SQL CONNECT :uid;
printf(“Connected to user: percents \n”,uid.arr);
printf(“Enter employee name to update: “);
scanf(“percents”,ename.arr);
ename.len=strlen(ename.arr);
EXEC SQL SELECT SALARY,COMM INTO :salary,:comm

FROM EMPLOY
WHERE ENAME=:ename;

printf(“Employee: percents salary: percent6.2f comm:
percent6.2f \n”,

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 414

Book V
Chapter 3

Using SQL in an
Application

Program
Embedding SQL in an Application 415

ename.arr, salary, comm);
printf(“Enter new salary: “);
sret=scanf(“percentf”,&salary);
salary_ind = 0;
if (sret == EOF !! sret == 0) /* set indicator */

salary_ind =-1; /* Set indicator for NULL */
printf(“Enter new commission: “);
sret=scanf(“percentf”,&comm);
comm_ind = 0; /* set indicator */
if (sret == EOF !! sret == 0)

comm_ind=-1; /* Set indicator for NULL */
EXEC SQL UPDATE EMPLOY

SET SALARY=:salary:salary_ind
SET COMM=:comm:comm_ind
WHERE ENAME=:ename;

printf(“Employee percents updated. \n”,ename.arr);
EXEC SQL COMMIT WORK;
exit(0);

}

You don’t have to be an expert in C to understand the essence of what this
program is doing and how the program does it. Here’s a rundown of the
order in which the statements execute:

1. SQL declares host variables.

2. C code controls the user login procedure.

3. SQL sets up error handling and connects to the database.

4. C code solicits an employee name from the user and places it in a
variable.

5. An SQL SELECT statement retrieves the named employee’s salary and
commission data and stores them in the host variables :salary and
:comm.

6. C then takes over again and displays the employee’s name, salary, and
commission and then solicits new values for salary and commission. It
also checks to see that an entry has been made, and if one has not, it
sets an indicator.

7. SQL updates the database with the new values.

8. C then displays an “operation complete” message.

9. SQL commits the transaction, and C finally exits the program.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 415

Embedding SQL in an Application416

You can mix the commands of two languages like this because of the pre-
processor. The preprocessor separates the SQL statements from the host
language commands, placing the SQL statements in a separate external rou-
tine. Each SQL statement is replaced with a host language CALL of the corre-
sponding external routine. The language compiler can now do its job. The
way the SQL part is passed to the database is implementation-dependent.
You, as the application developer, don’t have to worry about any of this. The
preprocessor takes care of it. You should be concerned about a few things,
however, that do not appear in interactive SQL — things such as host vari-
ables and incompatible data types.

Declaring host variables
Some information must be passed between the host language program
and the SQL segments. You do this with host variables. In order for SQL to
recognize the host variables, you must declare them before you use them.
Declarations are included in a declaration segment that precedes the pro-
gram segment. The declaration segment is announced by the following
directive:

EXEC SQL BEGIN DECLARE SECTION ;

The end of the declaration segment is signaled by

EXEC SQL END DECLARE SECTION ;

Every SQL statement must be preceded by an EXEC SQL directive. The end
of an SQL segment may or may not be signaled by a terminator directive. In
COBOL, the terminator directive is END-EXEC; in FORTRAN, it’s the end of a
line; and in Ada, C, Pascal, and PL/I, it’s a semicolon.

Converting data types
Depending on the compatibility of the data types supported by the host lan-
guage and those supported by SQL, you may have to use CAST to convert
certain types. You can use host variables that have been declared in the
DECLARE SECTION. Remember to prefix host variable names with a colon
(:) when you use them in SQL statements, as in the following example:

EXEC SQL INSERT INTO ENGINES
(EngineName, Displacement, Horsepower, Cylinders, Valves)
VALUES
(:engname, :cid, :hp, :cyl, :valves) ;

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 416

Book V
Chapter 3

Using SQL in an
Application

Program
Embedding SQL in an Application 417

Embedding SQL in an Java application
SQLJ is the tool to use to embed SQL in a Java program. It is similar to the
way SQL statements are embedded in an Oracle Pro*C application, but with
a slight syntactical difference. Here’s an example:

#sql (INSERT INTO ENGINES
(EngineName, Displacement, Horsepower, Cylinders, Valves)
VALUES
(:engname, :cid, :hp, :cyl, :valves)) ;

#sql rather than EXEC SQL is the signal to the preprocessor that what fol-
lows is an SQL statement.

Using SQL in a Perl application
In a Perl application, the SQL statement is passed to the DBMS as a string
rather than embedding an executable statement in the Perl code.

my $sql = “INSERT INTO ENGINES
(EngineName,Displacement,Horsepower,Cylinders, Valves) “ .
“values(‘$engname’,’$cid’,’$hp’,’$cyl’,’valves’)”;

print “SQL => $sql\n” if $DEBUG;
my $sth = $dbh->prepare($sql);
$sth->execute();

This code uses the Perl DBI mentioned in Chapter 2 of this minibook. If an
error is encountered, the offending SQL statement is printed out. If no error
is detected, the SQL statement is prepared, and then the last line actually
executes it.

Embedding SQL in a PHP application
Once again, with PHP and a MySQL database, the operation is basically
the same as with Perl. Only the syntax has been changed to protect the
innocent:

$query = “INSERT INTO ENGINES
(EngineName, Displacement, Horsepower, Cylinders, Valves)
VALUES
(‘engname’, ‘cid’, ‘hp’, ‘cyl’, ‘valves’)” ;

mysql_query($query) or die(‘Error, insert query failed’);

The last line checks to see if the insert was performed successfully. If it was
not, an error message is displayed.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 417

Using SQL Modules with an Application418

Using SQL with a Visual Basic .NET application
Unlike Oracle’s Pro*C and Java, but like Perl and PHP, Visual Basic .NET does
not support embedded SQL. Instead, it passes a string containing the SQL
statement to the ADO.NET data provider to accomplish the same effect as
embedded SQL. Here’s an example of an SQL operation as Oracle’s Pro*C
would do it with embedded SQL, followed by the Visual Basic .NET equiva-
lent using ADO.NET. First the Pro*C:

EXEC SQL UPDATE VENDOR
SET VendorName = :vendorname
WHERE VendorID = ‘PENGUIN’;

Now the ADO.NET equivalent:

Dim strSQL As String
strSQL = “UPDATE VENDOR SET VendorName = @vendorname “& _
“WHERE VendorID = ‘PENGUIN’”
Dim cmd As New SqlCommand(strSQL, cn)
Dim par As SqlParameter
Par = cmd.Parameters.Add(“@vendorname”,SqlDbType.VarChar, 10)
Par.Value = “VendorName”
Dim InsertRecordsAffected As Integer = cmd.ExecuteNonQuery()

ADO.NET is a library of data access procedures in the .NET Framework.

Using SQL with other .NET languages
.NET languages besides Visual Basic .NET, such as C#, C++.NET, COBOL.NET,
Perl.NET, and so on, all use ADO.NET in the same way that Visual Basic .NET
does to provide data access to relational databases. ADO.NET eliminates the
need to embed SQL code within a procedural application program.

Using SQL Modules with an Application
Module language provides another method of using SQL with a procedural
programming language. With module language, you explicitly put all the SQL
statements into a separate SQL module.

An SQL module is simply a list of SQL statements. Each SQL statement is
included in an SQL procedure and is preceded by a specification of the proce-
dure’s name and the number and types of parameters.

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 418

Book V
Chapter 3

Using SQL in an
Application

Program
Using SQL Modules with an Application 419

Each SQL procedure contains only one SQL statement. In the host program,
you explicitly call an SQL procedure at whatever point in the host program
you want to execute the SQL statement in that procedure. You call the SQL
procedure as if it were a host language subprogram.

Thus, an SQL module and the associated host program are essentially a way
of explicitly doing what the SQL preprocessor for embedded syntax does.

Embedded SQL is much more common than module language. Most vendors
offer some form of module language, but few emphasize it in their documen-
tation. Module language does have several advantages:

✦ Because the SQL is completely separated from the procedural language,
you can hire the best SQL programmers available to write your SQL
modules, whether they have any experience with your procedural lan-
guage or not. In fact, you can even defer deciding on which procedural
language to use until after your SQL modules are written and debugged.

✦ You can hire the best programmers who work in your procedural lan-
guage, even if they know nothing about SQL.

✦ Most importantly, no SQL is mixed in with the procedural code, so your
procedural language debugger works — which can save you consider-
able development time.

Once again, what can be looked at as an advantage from one perspective
may be a disadvantage from another. Because the SQL modules are sepa-
rated from the procedural code, following the flow of the logic isn’t as easy
as it is in embedded SQL when you’re trying to understand how the program
works.

Module declarations
The syntax for the declarations in a module is as follows:

MODULE [module-name]
[NAMES ARE character-set-name]
LANGUAGE {ADA|C|COBOL|FORTRAN|MUMPS|PASCAL|PLI|SQL}
[SCHEMA schema-name]
[AUTHORIZATION authorization-id]
[temporary-table-declarations...]
[cursor-declarations...]
[dynamic-cursor-declarations...]
procedures...

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 419

Using SQL Modules with an Application420

As indicated by the square brackets, the module name is optional. Naming it
anyway is a good idea, to help keep things from getting too confusing. The
optional NAMES ARE clause specifies a character set. If you don’t include a
NAMES ARE clause, the default set of SQL characters for your implementa-
tion is used. The LANGUAGE clause tells the module which language it will be
called from. The compiler must know what the calling language is because it
makes the SQL statements appear to the calling program as if they are sub-
programs in that program’s language.

Although the SCHEMA clause and the AUTHORIZATION clause are both
optional, you must specify at least one of them, or both. The SCHEMA clause
specifies the default schema, and the AUTHORIZATION clause specifies the
authorization identifier. The authorization identifier establishes the privi-
leges you have. If you don’t specify an authorization ID, the DBMS uses the
authorization ID associated with your session to determine the privileges
your module is allowed. If you don’t have the privilege to perform the opera-
tion your procedure calls for, your procedure isn’t executed.

If your procedure requires temporary tables, declare them with the tempo-
rary table declaration clause. Declare cursors and dynamic cursors before
any procedures that use them. Declaring a cursor after a procedure is per-
missible as long as that procedure doesn’t use the cursor. Doing this for cur-
sors used by later procedures may make sense. You can find more in-depth
information on cursors in Chapter 5 of Book III.

Module procedures
Finally, after all these declarations, the functional parts of the module are the
procedures. An SQL module language procedure has a name, parameter dec-
larations, and executable SQL statements. The procedural language program
calls the procedure by its name and passes values to it through the declared
parameters. Procedure syntax is as follows:

PROCEDURE procedure-name
(parameter-declaration [, parameter-declaration]...)
SQL statement ;
[SQL statements] ;

The parameter declaration should take the following form:

parameter-name data-type

or

SQLSTATE

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 420

Book V
Chapter 3

Using SQL in an
Application

Program
Using SQL Modules with an Application 421

The parameters you declare may be input parameters, output parameters,
or both. SQLSTATE is a status parameter through which errors are reported.

Modules in Oracle
Oracle’s implementation of module language, named SQL*Module, is specifi-
cally designed to overcome the impedance mismatch between SQL and
application programs written in the Ada programming language. SQL*Module
compiles SQL standard module language files. A module language file con-
tains parameterized procedures that encapsulate SQL statements. The
SQL*Module compiler translates these procedures into calls to the SQL run-
time library on the Oracle server. All the SQL code resides in a separate
module. SQL*Module defines the interface between the SQL module and the
host program written in Ada.

A module is composed of three parts:

✦ A preamble, containing introductory material

✦ Cursor declarations that queries use to return multiple rows of data

✦ Definitions of procedures that are called by the host application

The SQL code that you can put into a module is somewhat restricted.
Statements that are not supported by SQL*Module include

✦ DDL statements

✦ DML statements other than SELECT, UPDATE, DELETE, and INSERT

✦ DCL statements other than COMMIT, ROLLBACK, CONNECT, and
DISCONNECT

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 421

Book V: SQL and Programming422

30 119280 bk05ch03.qxp 5/23/07 10:27 AM Page 422

Chapter 4: Designing a
Sample Application

In This Chapter
� Discovering the client’s problem

� Approaching the problem

� Determining the deliverables

� Building an E-R model

� Transforming the model

� Creating tables

� Changing table structure

� Removing tables

� Designing the user interface

The whole point of learning SQL is to be able to apply that knowledge to
solve some problem. Individuals and organizations need information in

order to conduct their businesses, whatever they may be. At any given time,
the information they need is buried to a huge collection of data that they
don’t need right now. The key to being able to retrieve the information that
you do need is to make sure it is organized in a way that facilitates that
retrieval, regardless of what your specific needs are today. In this chapter, I
go through the steps of creating an application that gives one (fictitious)
organization the information it needs. In the process, you can adapt the
ideas explained here to your own situation.

The Client’s Problem
After several decades of relatively little activity, interest in the Moon is heat-
ing up. Half a dozen nations have expressed interest in or made concrete
plans to send spacecraft to the Moon, either to study from lunar orbit, or to
land and establish bases. This has opened up opportunities for scholarly
organizations that are interested in doing scientific research based on the
terabytes of raw data that will start streaming from those spacecraft and
bases in the near future. One such organization is the fictitious non-profit

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 423

Approaching the Problem424

Oregon Lunar Society (OLS) in Portland, Oregon. The OLS has members who
may or may not be members of one or more of the Society’s several research
teams. The research teams do research and produce scholarly papers, which
they deliver at conferences and submit to prestigious scientific journals.
Members of the teams serve as authors of the papers. The OLS leadership
would like to keep track of members, teams, papers, and the authors of the
papers.

Approaching the Problem
The first thing a developer needs to do when starting a project is to find out
what problem needs to be solved. There must be a problem; otherwise, you
would not have been called in to solve it. Of course, the person who called
you in feels that he knows what the problem is and what needs to be done to
solve it. This person is an important source of information, but not the only
one. In most cases, a number of people are affected by the application you
produce. You need to get the perspectives of each of those people because
they may know things about aspects of the problem that are unknown to
the person who initially gave you the assignment. Anyone who may use
your application or make decisions based on the results it produces is a
stakeholder.

Interviewing the stakeholders
You were called in by the president of the Oregon Lunar Society, a small,
independent research organization. As the person who hired you, she is your
primary client and probably your best source of information initially. She
reveals that the organization presently has two research teams, one focusing
on the Moon and the other on Mars. The organization has broadened its
focus since it was founded and named to include other bodies in the solar
system besides Earth’s moon. She is most interested in keeping up-to-date
records on the members of the society, and the projects in which they are
involved. After telling you her perspective on what is needed, she suggests
you talk to the team leaders of each of the research teams, as well as several
of the members who have authored papers that have either been delivered
at conferences or that have appeared in scholarly journals.

You need to identify and carefully listen to all the stakeholders in the proj-
ect. Your client, the users, the information technology people (if any), and
the recipients of reports all have perspectives and opinions that must be fac-
tored into your design.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 424

Book V
Chapter 4

Designing a Sam
ple

Application
Approaching the Problem 425

Your job in drawing out these people is very important. Because the system
will be performing a new function, stakeholders probably don’t have a well-
defined idea of what it should do, as they would in the case of an upgrade of
an existing system. They don’t have any reference point on which to base
their design ideas. They are also more likely to disagree with each other
about what is needed. After a first round of interviews, you might have to go
back to these people a second time to build a consensus on what is needed.

Drafting a detailed statement of requirements
After you have interviewed all the stakeholders and feel you have a clear
idea of what you will need to deliver, when you will need to deliver it, and
what it will cost you to deliver it in that timeframe, you need to draft a
formal Statement of Requirements. The Statement of Requirements docu-
ment describes in detail exactly what you will deliver, along with a projected
delivery date.

Meet with your client and obtain agreement on the Statement of Require-
ments. If the client wishes to make revisions to what you have drafted, make
sure that the requested revisions are feasible, considering the resources you
are able to apply to the project. Generate a revised Statement of Requirements
document and have the client sign it, signifying agreement with its contents.

Following up with a proposal
Now that you know exactly what the client wants and when she wants it,
decide whether you want to do the job. If you feel the project is not feasible
given the time and budget constraints and the resources you can devote to
it, politely decline and move on to other things. If the time and budget are
adequate, but you do not personally have the expertise to do the job, con-
sider hiring a subcontractor that has the required expertise. This has the
benefit of meeting the client’s needs, while giving you at least a portion of
the income that you would have realized if you had done the job all by
yourself.

If you decide to take the job, write a proposal that takes from the Statement of
Requirements the things you agree to deliver and when you will deliver them.
If you are an outside contractor, include what you will charge to do the job. If
you are an employee of the client, include your estimate of the number of
hours it will take to complete it, along with any materials and staff required.

If your proposal is accepted by the client, it forms the basis of a contract
between the two of you. This contract protects both parties. It protects the
client by guaranteeing that she will receive the functionality and perform-
ance from the system that she expects. It protects you, the developer, by
specifying exactly what you have agreed to deliver.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 425

Determining the Deliverables426

All too often, after a project is underway, a client thinks of additional fea-
tures that would enhance the value of the system. She asks you to add them
to the project, usually with a statement that the new features will not add
significantly to the work. This phenomenon is called feature creep. You might
agree, the first time this happens, that the added feature would not be much
of a burden. After you acknowledge that new features can be added to the
scope of the project, however, additional requests are sure to follow. These
additional features soak up your time and mental energy, and may even
cause you to miss the delivery date on the original project.

Avoid feature creep like the plague! Don’t let it get started. When the client
comes to you with the first small, innocent-seeming request, refer her to the
contract that you both signed. If she wants additional work, it should be con-
sidered a separate job, with a separate budget and a separate schedule for
completion. This significantly lowers your stress level as well as protects
your bottom line. Giving away freebie add-ons to a project can turn a prof-
itable job into a losing proposition.

Determining the Deliverables
The proposal you create in response to the Statement of Requirements
should specify exactly what you will deliver, exactly when you will deliver it,
and what it will cost, either in dollars or in manpower and resources. There
are a few things to keep in mind when you are developing your proposal.
They have to do with what the client organization needs now and what it will
need in the future.

Finding out what’s needed now and later
When you are discussing the assignment with your client after you have
interviewed the stakeholders, but prior to formulating the statement of
requirements, you are both aware of the current needs of the organization.
The project you are planning should meet those needs. It should also pro-
vide some of the features that have been identified as valuable, if not
absolutely necessary, assuming sufficient time and budget is available to
include them.

Sometimes clients are so focused on their current challenges, they do not
think ahead to what their needs might be five years, three years, or even one
year in the future. One thing that has become clear in recent years is that the
business environment is changing rapidly. An organization might succeed
beyond expectations and grow in size. Alternatively, the demand for an orga-
nization’s products or services might diminish drastically or even disappear.
In that case, a rapid shift to new products or services might be necessary. In
either case, the organization’s data handling needs are likely to change. An

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 426

Book V
Chapter 4

Designing a Sam
ple

Application
Determining the Deliverables 427

appreciation of the potential for those changing needs can affect the way
you design your system and the particular DBMS that you choose to build
it with.

Planning for organization growth
A growth in an organization’s business volume can have a major effect on its
database needs. If sales increase, more sales need to be tracked. More cus-
tomers need to be tracked. An expanded product line means more products
must be tracked, and more employees are needed to manufacture, sell, and
ship them. Those employees need to be tracked. A modest expansion in
business volume requires a much larger expansion in data tracking needs.
Even a non-profit organization such as the Oregon Lunar Society could have
similar growing pains. Research activity could expand dramatically as sur-
prising findings increase government interest and funding. Membership
could expand as the public becomes more interested in space.

Most organizations, particularly business endeavors, hope that their busi-
ness grows. If it does, they probably need expanded database capacity,
beyond their current needs. As the developer of their system, you should
design it in such a way that it has a reasonable amount of reserve capacity,
and will be easily expandable after that reserve is used up.

As a business or other organization grows, more employees are needed to
keep things running smoothly. Many of these employees need to access the
database at the same time during the workday. This increases contention for
database access and other system resources. You will base your application
on one of the commercially available database management systems. Some
of these are more robust than others under heavy load conditions. An idea of
the extent of possible organizational growth may guide you in your choice
of DBMS for the project. If substantial growth is possible within the next few
years, you should choose a DBMS that can handle the increased load.

Small organizations generally have a relatively informal management struc-
ture. The company CEO knows all the employees by name. All-company
meetings are held on a regular basis, and everybody has a voice in decisions
that are made. Most transactions between individuals are handled verbally.

As an organization grows, this “high touch” environment becomes harder
and harder to maintain. Gradually, more and more organizational structure
must be put into place. Communication becomes more formal and docu-
mented, and more things come to be tracked in company databases. If you
are developing for a small organization that has expansion potential, you
should design flexibility into your system so that additional functions can be
added at a later date without having to make major alterations to what
already exists.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 427

Determining the Deliverables428

Data security becomes an increasingly important issue as an organization
expands. When you have hundreds or thousands of employees, it is difficult
to have the same level of trust in each and every one of them as you had in
your employees when there were only five or six of them. Some files contain-
ing sensitive data need to be restricted so that only those with a legitimate
need to access them can do so. If the organization you are developing for
has the potential to expand significantly beyond its present size, you need
to consider using a DBMS that has more robust security than might be war-
ranted by the organization as it currently exists.

As an organization grows, its databases grow in value. It becomes more and
more important to protect them from corruption and loss as well as from
misuse. A small organization with growth potential should have a database
system that is based on a DBMS that has strong data protection features.

Nailing down project scope
One of the most important things that you as a developer must do is accu-
rately determine the scope of the project that you are planning. There are a
number of factors that enter into project scope, some obvious and some not
so obvious. The obvious factors are

✦ How many different things need to be tracked?

✦ How much time will the development require?

Some not so obvious factors are

✦ How complex are the relationships between the things that are being
tracked?

✦ What level of expertise is needed to finish the job on time and on
budget?

✦ What development tools are needed and what do they cost?

✦ Where should development be done, at the client site or the developer’s
facility?

✦ What about travel expenses?

✦ How available is the client to answer questions?

More non-obvious factors will probably appear after you have started. It is
wise to build a contingency factor into your proposed price to cover them.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 428

Book V
Chapter 4

Designing a Sam
ple

Application
Building an Entity-Relationship Model 429

As an independent developer, accurate project scoping is critical. If you
underestimate project scope and underbid the project, you may be forced to
spend weeks or months working on a project that is guaranteed to lose you
money. If you overestimate project scope, a competing developer with better
estimating skill will underbid you and land the job.

If you are an employee of your client organization, accurate scoping is
equally important. If you underestimate project scope, you can’t deliver
what you promised, when you promised to deliver it. If you overestimate
project scope, your management may decide to give the project to someone
else, and your ability might be called into question. Whether you are an inde-
pendent developer or an employee of a client organization, your ability to
scope projects accurately is crucial to your success.

Building an Entity-Relationship Model
In Book II, Chapter 2, I explain the E-R model. In this section, I show you how
to apply that model, based on what you found out by interviewing the stake-
holders in the Oregon Lunar Society database. The first step is to determine
what the major entities are that need to be tracked. Following that, you must
determine how these entities relate to each other.

Determining what the entities are
After talking to all the stakeholders you could find, you come to some con-
clusions about what the database should contain. There are clearly things
you want to track:

✦ OLS members, along with some personal information on each

✦ Research teams

✦ Scholarly papers, both conference and journal

✦ Authors of papers, whether members or not

Relating the entities to each other
Interviews with Society leaders and other members lead to the construction
of the E-R diagram shown in Figure 4-1.

This diagram probably seems confusing at first sight, but a little explanation
should make it clearer. First I address the relationships, then the maximum
cardinality, and finally the minimum cardinality.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 429

Building an Entity-Relationship Model430

Relationships
The relationships define how the important elements of the system are
related to each other:

✦ Members serve as Authors

✦ Members serve on Research Teams

✦ Research Teams produce Papers

✦ Authors write Papers

✦ Authors serve on Research Teams

Maximum cardinality
Recall that the maximum cardinality of a side of a relationship is the largest
number of entity instances that can exist on that side. The relationship
between Members and Authors is one-to-one because a Member can only be
one Author and an Author can only be one Member. An Author is a Member.

The relationship between Members and Research Teams is many-to-many
because a Member can serve on multiple Research Teams and a Research
Team may be composed of multiple members.

MEMBERS 1:1

SERVES AS

PAPERS

AUTHORS

RESEARCH
TEAMS

1:1

N:M

N:M

1:N

WRITE

PRODUCE

SERVES ONSERVES ON

Figure 4-1:
An E-R
diagram of
OLS
research.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 430

Book V
Chapter 4

Designing a Sam
ple

Application
Building an Entity-Relationship Model 431

The relationship between Research Teams and Papers is one-to-many
because a Research Team can produce multiple papers, but each Paper is
produced by one and only one Research Team.

The relationship between Authors and Papers is many-to-many because an
Author may write multiple papers, and a Paper may have multiple Authors.

The relationship between Authors and Research Teams is many-to-many
because an Author may serve on multiple Research Teams, and a Research
Team may include multiple people who are Authors.

Minimum cardinality
Minimum cardinality of a side of a relationship is the least number of entity
instances that can exist on that side. The relationship between Members and
Authors is mandatory-to-optional because an Author of an OLS paper must
be a Member of OLS, but a Member of OLS need not be an author of a Paper.

The relationship between Members and Research Teams is mandatory-to-
optional because all Research Team members must be Members of OLS, but
a Member of OLS need not be a member of a Research Team.

The relationship between Research Teams and Papers is mandatory-to-
optional because all Papers must be produced by a Research Team, but a
Research Team may exist that has not yet produced any Papers.

The relationship between Authors and Papers is mandatory-to-mandatory
because a Paper must have a least one Author and a person is not consid-
ered to be an Author until she has participated in the writing of a Paper.

The relationship between Authors and Research Teams is optional-to-
mandatory because for an Author to serve on a Research Team, the
Research Team must exist, but a Research Team can exist that does not
include any Authors.

Business rules
In order to accurately model a system, you must do more than determine the
relevant entities, the attributes and identifiers of those entities, and the rela-
tionships among the entities. You must also capture the business rules that
the organization follows for that system. Business rules vary from one organ-
ization to another, and they can make a big difference in how you model a
system. In an educational context, one school may have a rule that at least
eight students must sign up for a class in order for it to be offered. Another

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 431

Transforming the Model432

school may allow a class to proceed if as few as four students enroll. This
would make a difference in the minimum cardinality of the relationship relat-
ing courses to students. One airline might cancel a scheduled flight if fewer
than five people have bought tickets. Another airline might go ahead with
the flight, even if there are no passengers aboard. These are differences in
business rules.

As a database developer, it is your job to find out what your client’s business
rules are. You have to ask probing questions to the people you interview.
Their business rules are so much a part of their lives that they probably
won’t think to mention them to you unless you ask detailed questions about
them. Every stakeholder in the client organization has a different perspec-
tive on the database system you are building. They are likely to be aware of
different business rules too. That is why it is important to talk to everyone
involved and make sure you flush out all the rules.

With regard to OLS, investigation uncovers several business rules:

✦ Papers may have multiple coauthors, all of which must be a member
of OLS.

✦ An OLS member may be a member of multiple research teams.

✦ Any given paper may be associated with one and only one research team.

Deep thinking
The Oregon Lunar Society example is simple, but it does illustrate the depth
of thinking you must do about the entities in a system and how they relate to
each other.

Transforming the Model
The first step in converting an E-R model into a relational model is to under-
stand how the terminology used with one relates to the terminology used
with the other. In the E-R model, we speak of entities, attributes, identifiers,
and relationships. In the relational model, the primary items of concern are
relations, attributes, keys, and relationships. How do these two sets of terms
relate to each other?

In the E-R model, an entity is something identified as being important.
Entities are physical or conceptual objects that you want to keep track of.
This sounds a lot like the definition of a relation. The difference is that for
something to be a relation, it must satisfy the requirements of First Normal
Form (see Book II, Chapter 2). An entity might translate into a relation, but
you have to be careful to assure that the resulting relation is in 1NF.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 432

Book V
Chapter 4

Designing a Sam
ple

Application
Transforming the Model 433

If you can translate an entity into a corresponding relation, the attributes of
the entity translate directly into the attributes of the relation. Furthermore,
an entity’s identifier translates into the corresponding relation’s key. The
relationships between entities correspond exactly with the relationships
between relations. Based on these correspondences, it is not too difficult to
translate an E-R model into a relational model. The resulting relational model
is not necessarily a good relational model, however. You may have to nor-
malize the relations in it to protect it from modification anomalies. You may
also have to decompose any many-to-many relationships to simpler one-to-
many relationships. After your relational model is appropriately normalized
and decomposed, the translation to a relational database is straightforward.

Eliminating any many-to-many relationships
The E-R model of the OLS database shown in Figure 4-1 contains many-to-
many relationships. Such relationships can be problematic when trying to
create a reliable database, so the usual practice is to decompose a single
many-to-many relationship into two equivalent one-to-many relationships.
This decomposition involves the creation of an intersection entity that is
located between the two entities that were originally joined by a many-to-
many relationship.

To prepare for the decomposition, first look at the entities involved and their
identifiers:

Entity Identifier

MEMBERS MemberID

AUTHORS MemberID

RESEARCHTEAMS TeamID

PAPERS PaperID

Because there is a one-to-one relationship between MEMBERS and AUTHORS,
they can both have the same primary key. MemberID uniquely identifies a
member, and it also uniquely identifies an author. TeamID uniquely identifies
each of the research teams, and PaperID uniquely identifies each of the papers
written under the auspices of the Oregon Lunar Society.

There are three many-to-many relationships:

MEMBERS:RESEARCHTEAMS

AUTHORS:RESEARCHTEAMS

AUTHORS:PAPERS

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 433

Transforming the Model434

You need to place an intersection entity between the two entities of each of
these pairs. You could call them, for example, MEM-RES, AUTH-RES, and
AUTH-PAP. Figure 4-2 shows the data structure diagram for this relational
model.

This relational model includes four entities that correspond to the four
entities in Figure 4-1, plus three intersection entities that replace the many-
to-many relationships. There is one one-to-one relationship and seven one-
to-many relationships. Minimum cardinality is denoted by slashes and ovals.
For example, in the MEMBERS:AUTHORS relationship, in order for a person
to be an author of an OLS publication, that person needs to be a member
of OLS. Thus there is a slash on the MEMBERS side of that relationship.
However, a person can be a member of OLS without ever authoring a Society
publication. That is why there is an oval on the AUTHORS side of the rela-
tionship. Similar logic applies to the slashes and ovals on the other relation-
ship lines.

PaperID

MemberID etc.

MEMBERS

etc.

MemberID etc.

AUTHORS MEM–RES

MemberID TeamID

AUTH–RES

AUTH–PAP

PAPERS

RESEARCHTEAMS

MemberID

MemberID

TeamID

PaperID TeamID

TeamID etc.Figure 4-2:
An E-R
model rep-
resentation
of the
Oregon
Lunar
Society
system in
Figure 4-1.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 434

Book V
Chapter 4

Designing a Sam
ple

Application
Transforming the Model 435

The relations are

MEMBERS (MemberID, FirstName, LastName, OfficeHeld, Email, Phone,
Street, City, State, ZIP)

AUTHORS (MemberID, FirstName, LastName)

RESEARCHTEAMS (TeamID, TeamName, TeamLeaderFirstName,
TeamLeaderLastName, ResearchFocus, MeetingLocation,
MeetingSchedule)

PAPERS (PaperID, TeamID, PaperTitle, PrincipalAuthorID, Abstract,
WherePublished)

MEM-RES (MemberID, TeamID)

AUTH-RES (MemberID, TeamID)

AUTH-PAP (MemberID, PaperID)

When you have an E-R model that accurately reflects the system being mod-
eled, and contains no many-to-many relationships, the next step is to see
that the model is sufficiently normalized.

Normalizing the E-R model
The main reason to normalize a database, as mentioned in Book II, Chapter 2,
is to prevent the appearance of modification anomalies in the data. Such
anomalies can lead to the loss of needed data or the introduction of spurious
data. Normalization usually entails splitting up one table into two or more
tables that together contain the same information. Each table in a fully nor-
malized database deals with only one idea.

The OLS E-R model has four entities: MEMBERS, AUTHORS, RESEARCHTEAMS,
and PAPERS. Look at one of these entities in more detail and consider whether
it is sufficiently normalized.

The MEMBERS entity contains all the relatively stable information that
OLS keeps on its members. It does not say anything about which research
teams they are on or what papers they have written, which could change
frequently. It contains only personal information.

Figure 4-3 diagramatically depicts the MEMBERS entity in the E-R model
and its corresponding relation in the relational model. On the bottom in Fig-
ure 4-3, MemberID is underlined to signify that it is the primary key of the
MEMBERS relation. Every member has a unique MemberID.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 435

Transforming the Model436

The MEMBERS entity maps exactly onto the MEMBERS relation. It is natural
to ask whether the MEMBERS relation is in DKNF (see Book II, Chapter 2).
Clearly it is not. It is not even in 2NF. State is functionally dependent on
PostalCode, which is not a key.

You could normalize the MEMBERS relation by breaking it into two relations
as follows:

MEMBERS (MemberID, FirstName, LastName, OfficeHeld, Email,
Phone, Street, City, PostalCode)

POSTAL (PostalCode, State)

These two relations are in 2NF and also in DKNF. They also demonstrate a
new idea about keys. The two relations are closely related to each other
because they share attributes. The PostalCode attribute is contained in both
the MEMBERS and the POSTAL relations. MemberID is called the primary key
of the MEMBERS relation. It must uniquely identify each tuple in the relation.
Similarly, PostalCode is the primary key of the POSTAL relation.

In addition to being the primary key of the POSTAL relation, PostalCode is a
foreign key in the MEMBERS relation. It provides a link between the two rela-
tions. An attribute need not be unique in a relation where it is serving as a
foreign key, but must be unique on the other end of the relationship where it
is the primary key.

MEMBERS
 MemberID
 FirstName
 LastName
 OfficeHeld
 E-mail
 Phone
 Street
 City
 State
 PostalCode

MEMBERS (MemberID, FirstName, LastName, OfficeHeld, Email, Phone, Street, City, PostalCode

Figure 4-3:
The
MEMBERS
entity (top)
and the
MEMBERS
relation.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 436

Book V
Chapter 4

Designing a Sam
ple

Application
Creating Tables 437

After you have normalized a relation into DKNF as we did above with the
original MEMBERS relation, it is wise to ask yourself whether full normaliza-
tion makes sense in this specific case. Depending on how you plan to use the
relations, you may want to denormalize somewhat to improve performance.
In this example, you probably want to fold the POSTAL relation back into the
MEMBERS relation. Generally, if you need any part of a person’s address, you
need all of it.

Creating Tables
You can create a database, including all its tables from the console, by using
interactive SQL statements, by including embedded CREATE statements in a
host language program, or by putting the CREATE statements in a module
from which they can be called by a procedural language program.

Start building your OLS database by creating the MEMBERS table. Here’s the
DDL code to do it:

CREATE TABLE MEMBERS (
MemberID Integer PRIMARY KEY,
FirstName Char (15),
LastName Char (20) NOT NULL,
OfficeHeld Char (20),
Email Char (50),
Phone Char (20),
Street Char (25),
City Char (20),
State Char (2),
Zip Char (10));

Note: Notice that each line within the outer parentheses (except the last
one) in the statement above is terminated by a comma. The comma tells the
DBMS where one field ends and the next one starts. The DBMS does not pay
any attention to what line something is printed on. The separation of this
single statement onto multiple lines is for the convenience of human read-
ers, not for the DBMS.

The preceding SQL code creates a MEMBERS table. MemberID is the primary
key of the table. Applying the NOT NULL constraint to the LastName attrib-
ute ensures that you know at least a member’s last name even when you
might not have complete information on that member. For each Character
field, you must explicitly specify the maximum length of an entry in that
field. The NOT NULL constraint is an example of a column constraint. A

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 437

Creating Tables438

column constraint applies only to a single column. In contrast, a table con-
straint applies to an entire table. In the following code, I create the AUTHORS
table and illustrate the use of a table constraint in the process:

CREATE TABLE AUTHORS (
MemberID Integer PRIMARY KEY,
FirstName Char (15),
LastName Char (20) NOT NULL,
CONSTRAINT MemFK FOREIGN KEY (MemberID)

REFERENCES MEMBERS (MemberID)
ON DELETE CASCADE);

Note: In the preceding code, there is no comma at the end of the CONSTRAINT
line because the REFERENCES clause is part of that line. There is no comma at
the end of the REFERENCES line because ON DELETE CASCADE is also a part of
the CONSTRAINT line.

The PRIMARY KEY constraint is a table constraint. It applies to the entire
table. In this case, it says that MemberID is the primary key of the AUTHORS
table. I could have applied this constraint to the MEMBERS table too, but I
wanted to show you both ways of applying constraints. It is probably better
to specify the primary key of a table with the PRIMARY KEY constraint
rather than the NOT NULL constraint. That way, there is no doubt which
field is the table’s primary key.

MemFK is a foreign key constraint and is another example of a table con-
straint. It links the MemberID field in the AUTHORS table to the MemberID
field in the MEMBERS table. The ON DELETE CASCADE clause means that if
a person is ever deleted from the MEMBERS table, she is automatically
deleted from the AUTHORS table too. The reverse is not true. A person can
be deleted from the AUTHORS table without affecting her member status.

Note: I have used the convention of naming foreign key constraints by taking
the first several letters of the key field and appending FK to them (for exam-
ple, MemFK). This makes it immediately obvious that we are dealing with a
foreign key.

We can create the rest of the tables in a similar manner. Here’s the SQL state-
ment that creates the RESEARCHTEAMS table.

CREATE TABLE RESEARCHTEAMS (
TeamID Integer PRIMARY KEY,
TeamName Char (30),
TeamLeaderFirstName Char (15),
TeamLeaderLastName Char (20),
ResearchFocus Char (50),
MeetingLocation Char (50),
MeetingSchedule Char (30));

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 438

Book V
Chapter 4

Designing a Sam
ple

Application
Creating Tables 439

The PAPERS table is defined in a similar fashion.

CREATE TABLE PAPERS (
PaperID Integer PRIMARY KEY,
TeamID Integer,
PaperTitle Char (50),
PrincipalAuthorID Integer,
Abstract Char (300),
WherePublished Char (30));

The linking tables MEM-RES, AUTH-RES, and AUTH-PAP, derived from the
intersection relations with the same names in the relational model, are also
defined the same way, but additionally include foreign key constraints.

CREATE TABLE MEM-RES (
MemberID Integer NOT NULL,
Team ID Integer NOT NULL,
CONSTRAINT MemFK FOREIGN KEY (MemberID)

REFERENCES MEMBERS (MemberID)
ON DELETE CASCADE,

CONSTRAINT TeamFK FOREIGN KEY (TeamID)
REFERENCES RESEARCHTEAMS (TeamID)
ON DELETE CASCADE);

The foreign key constraint MemFK establishes the fact that the MemberID
field in the MEM-RES table corresponds to the MemberID field in the
MEMBERS tables. Corresponding fields need not have the same names, but
it reduces confusion if they do. The ON DELETE CASCADE clause has the
effect of removing a person from all research teams when their membership
in OLS expires and they are removed from the MEMBERS table.

The TeamFK constraint operates in a similar manner. When a research team
is disbanded, all references to that team in MEM-RES are deleted. This has
the effect of updating members’ information so that they are no longer
shown as being members of the disbanded team. Their other team member-
ships are unaffected.

The final two linking tables are defined in the same way that MEM-RES was
defined.

CREATE TABLE AUTH-RES (
MemberID Integer NOT NULL,
Team ID Integer NOT NULL,
CONSTRAINT AuthFK FOREIGN KEY (MemberID)

REFERENCES AUTHORS (MemberID)
ON DELETE CASCADE,

CONSTRAINT TeamFK FOREIGN KEY (TeamID)

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 439

Changing Table Structure440

REFERENCES RESEARCHTEAMS (TeamID)
ON DELETE CASCADE);

CREATE TABLE AUTH-PAP (
MemberID Integer NOT NULL,
Paper ID Integer NOT NULL,
CONSTRAINT AuthFK FOREIGN KEY (MemberID)

REFERENCES AUTHORS (MemberID)
ON DELETE CASCADE,

CONSTRAINT PapFK FOREIGN KEY (PaperID)
REFERENCES PAPERS (PaperID)
ON DELETE CASCADE);

AuthFK is a table constraint, so the fact that a constraint in AUTH-RES and
also a constraint in AUTH-PAP both have the same name does not matter.
The DBMS will not confuse the two constraints.

At this point, all the tables have been defined, and they are ready to accept
data.

Changing Table Structure
Suppose after you have created a table, you decide that you need to add
a new column to it, or perhaps remove an existing column that serves no
purpose. The DDL ALTER statement is included in SQL for these purposes.
For example, if you wanted to add a Fax column to the MEMBERS table, you
could do so with the following SQL statement:

ALTER TABLE MEMBERS
ADD COLUMN Fax Char (20) ;

You can remove columns using a similar statement:

ALTER TABLE MEMBERS
DROP COLUMN Fax ;

Removing Tables
It is really easy to get rid of tables you no longer want — perhaps too easy.
For that reason, maintaining a rigorous backup discipline is important. To
remove a table from your database, the DROP statement is all you need.

DROP TABLE PAPERS ;

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 440

Book V
Chapter 4

Designing a Sam
ple

Application
Designing the User Interface 441

There’s no going back after using the DROP statement. SQL doesn’t ask you if
you really want to perform such a drastic act. It just blows away the table,
and then waits for your next instruction.

Designing the User Interface
Every database application has a user interface. This consists of what the
user sees on her screen and the key presses and mouse movements and
clicks that she performs in order to interact with the application. The screen
presents the user with options for actions to perform, queries to process, or
reports to view. SQL is not designed to perform any of these user interface
tasks. In any relational database application, the part created by the proce-
dural language takes care of these tasks. Your job as the application devel-
oper is to make sure that the user interface is intuitive and easy to use,
and of course, that it provides access to all of the functionality that the
application possesses. Chapter 5 of this minibook gives an example of user
interface design.

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 441

Book V: SQL and Programming442

31 119280 bk05ch04.qxp 5/23/07 10:27 AM Page 442

Chapter 5: Building a
Sample Application

In This Chapter
� Top-down design

� Bottom-up coding

� Testing, testing, testing

� Fixing the bugs

� Bringing on the beta testers

� Fixing newly found bugs

� Retesting everything

In Chapter 4, I took the idea of a database system for the Oregon Lunar
Society from an E-R model, to a relational model, to a relational database.

Just as important as the database itself is the user interface. If users cannot
get the information they need out of the database, it is not of much value.
For a simple application such as the one the OLS needs, after you’ve designed
the user interface, you have, for all intents and purposes, designed the
whole application. So, because the database itself is now done, all that is
left is designing the user interface and connecting it to the database.

To make sure you don’t miss anything important, consider the project as a
whole. Think of it as looking down on the project from 20,000 feet. This way,
you view not only the project itself, but also the context in which it oper-
ates. Taking this view often brings concerns to the surface that you might
otherwise not have thought of.

Designing from the Top Down
When you take a top-down approach to design, you consider all the ele-
ments of the system and how they relate to each other. You also consider
elements external to the system that interact with it. In the case of the OLS
system, the primary external element is the users. The user interface should
be designed with the users in mind. How familiar are they with computers in

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 443

Designing from the Top Down444

general and with the kinds of data stored in the OLS database? If they are
fairly sophisticated and comfortable with computers and with OLS, you
would design the user interface differently than you would if they were com-
puter novices who were largely unaware of the type of work that the OLS
does. Placing considerations of the user interface aside for the moment, the
first order of business is to decide what the application should include.

Determining what the application should include
At this point in the process, determining what the application should include
is an easy question to answer. Just look at the proposal that was signed by
the client, which specified exactly what the deliverables would be. Here’s a
list of deliverables, taken directly from a signed and agreed-upon proposal:

✦ Entry/update/view form for members

✦ Membership list

✦ Entry/update/view form for authors

✦ Author list

✦ Entry/update/view form for research teams

✦ Research team roster

✦ Entry/update/view form for papers

✦ Complete papers report

✦ Query: Show all papers by a specified author

✦ Query: Show all papers by a specified research team

Designing the user interface
After you have determined the forms, reports, and queries that you must
support, you can decide how to arrange things so that the user can quickly
specify what she wants and ask the application to deliver it. At this point,
you should create some mock-ups of screens and present them to the users
for feedback. Present two or three alternatives, perhaps one with radio but-
tons, and a second with list boxes and push buttons, as selection mecha-
nisms for whatever function the user wants. The users feel a greater sense of
ownership in the project if they get to choose what it looks like. This helps
tremendously in gaining user acceptance. Figure 5-1 shows a mock-up of the
main screen, using radio buttons.

One key design criterion here is to keep the screen simple. Sometime design-
ers err by cluttering up screens with too many confusing options.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 444

Book V
Chapter 5

Building a Sam
ple

Application
Designing from the Top Down 445

Figure 5-2 shows the same screen, but this time implemented with command
buttons.

After you show the alternatives for the main screen to the users and
obtain their feedback, you can proceed to connect the user interface to
the database.

Connecting the user interface to the database
Design a menu hierarchy to easily take users to the function they wish
to perform. Figure 5-3 shows an example of such a hierarchy for the OLS
application.

Figure 5-2:
The OLS
application
main screen
using
command
buttons.

Figure 5-1:
The OLS
application
main screen
using radio
buttons.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 445

Designing from the Top Down446

The tools for building forms, reports, and queries vary from one DBMS to
another, so I won’t go into detail on how to do it here. As an example of
what one of the forms on the second level of the hierarchy might look like,
Figure 5-4 shows one possible form for selecting one of the four forms used
to view, enter, modify, or delete records from the MEMBERS, AUTHORS,
RESEARCHTEAMS, and PAPERS tables.

Main Menu

Forms Reports Queries

Members

Authors

Research Teams

Papers

Membership list

Author list

Research Team roster

Complete Papers
report

Papers by author

Papers by
research team

Figure 5-3:
The OLS
application
menu
hierarchy.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 446

Book V
Chapter 5

Building a Sam
ple

Application
Coding from the Bottom Up 447

Similar forms for reports and queries would also be on the second level.
The third level consists of forms for viewing or editing table information.
Figure 5-5 is an example of what such a form might look like for the
MEMBERS table. Of course, you are free to lay out the form any way you
wish, put your company logo on it, or follow whatever stylistic conventions
are standard in your organization.

Coding from the Bottom Up
After you have developed mockups of all the forms in the menu hierarchy, all
the reports, and the query result sets, and have obtained approval from the
stakeholders, the real work can begin. You have created the appearance of
an application. Now you must build the substance.

Work to do before starting to build the application
The first thing you must do is build the database itself. The easiest and best
way to do this varies from one DBMS to another. Probably the easiest and
best way will turn out not to be using SQL. However, SQL is always an alter-
native, and it’s the same across all platforms.

Figure 5-5:
The OLS
Members
form.

Figure 5-4:
The OLS
forms menu.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 447

Coding from the Bottom Up448

Create the database
For larger databases, you may want to create catalogs and schemas. You
certainly want to create tables, and you may also want to create views. In
Book II, Chapter 4, I cover table creation using SQL. You can apply what I
discuss there to building tables for the Oregon Lunar Society.

Creating tables
The primary tables of the OLS database are MEMBERS, AUTHORS,
RESEARCHTEAMS, and PAPERS. I describe creating them (using the SQL
CREATE statement) in Chapter 4 of this minibook. However, you might want
to do a little more work in the interest of keeping erroneous data out of the
database — you do that by adding constraints, which I discuss in the next
section.

Adding constraints to avoid data entry errors
When the MEMBERS table was defined in the previous section, the MemberID
attribute was assigned the INTEGER type, and the other attributes were
assigned the CHAR type, with various maximum lengths. These assignments
constrain the data entered into those fields to some extent, but leave a lot of
room for the entry of erroneous data. We can do a better job by applying some
constraints to the attributes:

✦ At this time, OLS leadership cannot imagine a membership in excess of
1,000 members, so MemberID could be capped at that level. Any larger
number entered must be an error.

✦ Only five offices exist: President, Vice President, Secretary, Treasurer,
and Archivist. Any entry in OfficeHeld other than one of those five must
be an error.

✦ State may contain only the two-letter abbreviations for Oregon (OR) and
the three adjacent states: Washington (WA), Idaho (ID), and California
(CA). Membership is restricted to residents of those four states.

✦ ZIP codes for Oregon, Washington, Idaho, and California all start with
either 8 or 9.

Applying these constraints to the MEMBERS table eliminates at least some,
if not all, data entry errors. If we had thought ahead, we could have applied
these constraints when we created MEMBERS with the CREATE statement. If
the table has already been created, but data has not yet been entered into it,
we can drop the existing empty table and then recreate it, this time applying
the constraints. Here’s an example:

CREATE TABLE MEMBERS (
MemberID Integer PRIMARY KEY,
FirstName Character (15),

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 448

Book V
Chapter 5

Building a Sam
ple

Application
Coding from the Bottom Up 449

LastName Character (20) NOT NULL,
OfficeHeld Character (20),
Email Character (50),
Phone Character (20),
Street Character (25),
City Character (20),
State Character (2),
Zip Character (10),
CONSTRAINT max_size

CHECK (MemberID BETWEEN 1 AND 1000),
CONSTRAINT offices

CHECK (OfficeHeld IN (‘President’, ‘Vice President’,
‘Secretary’, ‘Treasurer’, ‘Archivist’)),

CONSTRAINT valid_states
CHECK (State IN (‘OR’,’WA’,’ID’,’CA’)),

CONSTRAINT valid_zip
CHECK (SUBSTRING (Zip FROM 1 FOR 1) = 8

OR SUBSTRING (Zip FROM 1 FOR 1) = 9)
);

If the table has already been created and data has already been added to it,
we cannot add constraints after the fact because they could conflict with
data that is already in the database.

By examining all the table designs before creating them, we can add appro-
priate constraints and thereby minimize the problems that inevitably arise
when erroneous data enters the database.

Fill database tables with sample data
Every database table starts out empty. After you create a table, either by
using SQL’s CREATE statement or a DBMS’s forms-based tools, that table is
nothing but a structured shell containing no data. To make the table useful,
you must put some data into it. You may or may not have that data already
stored in digital form.

✦ If your data is not already in digital form, someone probably has to enter
the data manually, one record at a time. You can also enter data by using
optical scanners and voice recognition systems, but the use of such
devices for data entry is relatively rare.

✦ If your data is already in digital form but perhaps not in the format of
the database tables that you use, you need to translate the data into the
appropriate format and then insert the data into the database.

✦ If your data is already in digital form and in the correct format, it’s ready
for transferring to a new database.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 449

Coding from the Bottom Up450

Depending on the current form of the data, you may be able to transfer it to
your database in one operation using a bulk loading utility, or you may need
to enter the data one record at a time. Each data record that you enter corre-
sponds to a single row in a database table.

Adding data with forms
Most DBMSs support form-based data entry. This feature enables you to
create a screen form that has a field for every column in a database table. Field
labels on the form enable you to determine easily what data goes into each
field. The data-entry operator enters all the data for a single row into the form.
After the DBMS accepts the new row, the system clears the form to accept
another row. In this way, you can easily add data to a table one row at a time.

Form-based data entry is easy and less susceptible to data-entry errors than
is a list of comma-delimited values. The main problem with form-based data
entry is that it is nonstandard; each DBMS has its own method of creating
forms. This diversity, however, is not a problem for the data-entry operator.
You can make the form look generally the same from one DBMS to another.
Although this is great for the data entry operator, the application developer
must return to the bottom of the learning curve every time he changes
development tools. Another possible problem with form-based data entry is
that some implementations may not permit a full range of validity checks on
the data that you enter.

The best way to maintain a high level of data integrity in a database is to
keep bad data out of the database in the first place. You can prevent the
entry of some bad data by applying constraints to the fields on a data-entry
form. This approach enables you to make sure that the database accepts
only data values of the correct type and that fall within a predefined range.
Applying such constraints can’t prevent all possible errors, but it does catch
some of them.

If the form-design tool in your DBMS doesn’t enable you to apply all the
validity checks that you need to ensure data integrity, you may want to build
your own screen, accept data entries into variables, and check the entries by
using application program code. After you’re sure that all the values entered
for a table row are valid, you can then add that row by using the SQL INSERT
command.

Entering data with SQL
If you enter the data for a single row into a database table, the INSERT com-
mand uses the following syntax:

INSERT INTO table_1 [(column_1, column_2, ..., column_n)]
VALUES (value_1, value_2, ..., value_n) ;

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 450

Book V
Chapter 5

Building a Sam
ple

Application
Coding from the Bottom Up 451

As indicated by the square brackets ([]), the listing of column names
is optional. The default column list order is the order of the columns in
the table. If you put the VALUES in the same order as the columns in the
table, these elements go into the correct columns — whether you explicitly
specify those columns or not. If you want to specify the VALUES in some
order other than the order of the columns in the table, you must list the
column names, putting the columns in an order that corresponds to the
order of the VALUES.

To enter a record into the MEMBERS table, for example, use the following
syntax:

INSERT INTO MEMBERS (MemberID, FirstName, LastName,
OfficeHeld, Email, Phone, Street, City, State, Zip)
VALUES (:vmemid, ‘Linda’, ‘Nguyen’, ‘235 Ion Drive’,
‘Titania’, ‘OR’, ‘97110’, ‘(503) 555-1963’) ;

The first VALUE, vmemid, is a variable that you increment with your program
code after you enter each new row of the table. This approach guarantees
that you have no duplication of the MemberID. MemberID is the primary key
for this table and, therefore, must be unique. The rest of the values are data
items rather than variables that contain data items. Of course, you can hold
the data for these columns in variables, too, if you want. The INSERT state-
ment works equally well either with variables or with an explicit copy of the
data itself as arguments of the VALUES keyword.

Adding data only to selected columns
Sometimes you want to note the existence of an object, even if you don’t
have all the facts on it yet. If you have a database table for such objects,
you can insert a row for the new object without filling in the data in all the
columns. If you want the table in first normal form, you must insert enough
data to distinguish the new row from all the other rows in the table. (For a
discussion of first normal form, see Book II, Chapter 2.) Inserting the new
row’s primary key is sufficient for this purpose. In addition to the primary
key, insert any other data that you have about the object. Columns in which
you enter no data contain nulls.

The following example shows such a partial row entry:

INSERT INTO MEMBERS (MemberID, FirstName, LastName)
VALUES (:vmemid, ‘Linda’, ‘Nguyen’) ;

You insert only the customer’s unique identification number and name into
the database table. The other columns in this row contain null values.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 451

Coding from the Bottom Up452

Adding a block of rows to a table
Loading a database table one row at a time by using INSERT statements
can be tedious, particularly if that’s all you do. Even entering the data into a
carefully human-engineered ergonomic screen form gets tiring after a while.
Clearly, if you have a reliable way to enter the data automatically, you’ll find
occasions in which automatic entry is better than having a person sit at a
keyboard and type.

Automatic data entry is feasible, for example, if the data already exists in
electronic form because somebody has already manually entered the data.
If so, there is no reason to repeat history. The transfer of data from one data
file to another is a task that a computer can perform with a minimum of
human involvement. If you know the characteristics of the source data and
the desired form of the destination table, a computer can (in principle) per-
form the data transfer automatically.

Copying from a foreign data file
Suppose that you’re building a database for a new application. Some data
that you need already exists in a computer file. The file may be a flat file or a
table in a database created by a DBMS different from the one you use. The
data may be in ASCII or EBCDIC code or in some arcane proprietary format.
What do you do?

The first thing you do is hope and pray that the data you want is in a widely
used format. If the data is in a popular format, you have a good chance of
finding a format conversion utility that can translate the data into one or
more other popular formats. Your development environment can probably
import at least one of these formats. If you’re really lucky, your development
environment can handle the data’s current format directly. On personal
computers, the Access, xBASE, and Paradox formats are probably the most
widely used. If the data that you want is in one of these formats, conversion
should be easy. If the format of the data is less common, you may need to go
through a two-step conversion.

As a last resort, you can turn to one of the professional data-translation
services. These businesses specialize in translating computer data from
one format to another. They have the capability of dealing with hundreds
of formats — most of which nobody has ever heard of. Give one of these
services a tape or disk containing the data in its original format, and you get
back the same data translated into whatever format you specify.

Transferring all rows between tables
A less severe problem than dealing with foreign data is taking data that
already exists in one table in your database and combining that data with
compatible data in another table. This process works great if the structure of

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 452

Book V
Chapter 5

Building a Sam
ple

Application
Coding from the Bottom Up 453

the second table is identical to the structure of the first table — that is, if
every column in the first table has a corresponding column in the second
table, and the data types of the corresponding columns match. If so, you can
combine the contents of the two tables by using the UNION relational opera-
tor. The result is a virtual table containing data from both source tables. I
discuss the relational operators, including UNION, in Book III, Chapter 4.

Transferring selected columns and rows between tables
Generally, the structure of the data in the source table isn’t identical to the
structure of the table into which you want to insert the data. Perhaps only
some of the columns match — and these are the columns that you want to
transfer. By combining SELECT statements with a UNION, you can specify
which columns from the source tables to include in the virtual result table.
By including WHERE clauses in the SELECT statements, you can restrict the
rows that you place into the result table to those that satisfy specific condi-
tions. I cover WHERE clauses extensively in Book III, Chapter 2.

Suppose that you have two tables, MEMBERS and PROSPECTS, and you want
to list everyone living in the state of Idaho who appears in either table. You
can create a virtual result table with the desired information by using the fol-
lowing command:

SELECT FirstName, LastName
FROM MEMBERS
WHERE State = ‘ID’

UNION
SELECT FirstName, LastName

FROM PROSPECTS
WHERE State = ‘ID’ ;

Here’s a closer look:

✦ The SELECT statements specify that the columns included in the result
table are FirstName and LastName.

✦ The WHERE clauses restrict the rows included to those with the value
‘ID’ in the State column.

✦ The State column isn’t included in the results table but is present in
both the MEMBERS and PROSPECTS tables.

✦ The UNION operator combines the results from the SELECT on
MEMBERS with the results of the SELECT on PROSPECTS, deletes
any duplicate rows, and then displays the result.

Another way to copy data from one table in a database to another is to nest
a SELECT statement within an INSERT statement. This method (a subselect)
doesn’t create a virtual table but instead duplicates the selected data. You

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 453

Coding from the Bottom Up454

can take all the rows from the MEMBERS table, for example, and insert those
rows into the PROSPECTS table. Of course, this only works if the structures
of the MEMBERS and PROSPECTs tables are identical. If you want to place
only those customers who live in Idaho into the PROSPECTS table, a simple
SELECT with one condition in the WHERE clause does the trick, as shown in
the following example:

INSERT INTO PROSPECTS
SELECT * FROM MEMBERS
WHERE State = ‘ID’ ;

Even though this operation creates redundant data (you’re now storing
member data in both the PROSPECTS table and the MEMBERS table), you
may want to do it anyway to improve the performance of retrievals. Be
aware of the redundancy, however, and to maintain data consistency, make
sure that you don’t insert, update, or delete rows in one table without insert-
ing, updating, or deleting the corresponding rows in the other table. Another
potential problem is the possibility that the INSERT might generate dupli-
cate primary keys. If even one pre-existing prospect has a primary key
ProspectID that matches the corresponding primary key, MemberID, of a
member that you are trying to insert into the PROSPECTS table, the insert
operation will fail.

Creating the application’s building blocks
Although you may use SQL INSERT statements to enter a few rows of sample
data to validate that your tables were created correctly, the application
that your production people use must be easier to use and less error-prone.
Similarly, although you can obtain meaningful results to questions about
the data using SQL SELECT statements, doing so is not particularly easy or
error-resistant.

You need to build a user-friendly application that features screen forms
for data entry, data viewing, data modification, and data deleting. You also
need predesigned reports that can be run at regular intervals or whenever
desired.

Developing screen forms
Design your screen forms so that users can quickly and easily understand
them. Make the placement of items on the forms logical and visible. Group
related items together. Make sure that the navigation from one form to
another is easy and logical. Create a navigation map similar to Figure 5-3 that
shows how forms are linked together. Because user communities can differ
widely, have typical users try out your forms and give you feedback on how
easy they are to use and whether they provide all the functionality needed.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 454

Book V
Chapter 5

Building a Sam
ple

Application
Testing, Testing, Testing 455

Developing reports
The discipline required for generating reports is similar to that required for
generating screen forms. SQL is not equipped to handle either function. You
have to write code in Visual Basic, C, or some other procedural language to
create the forms and reports, depend on the tools available in whatever
DBMS environment you are operating in, or use a third party report writer
such as Crystal Reports from Business Objects, Inc. In any case, when you
have completed all the forms and reports that your application needs to pro-
vide, the next step is placing them in an integrated structure that presents
the users with a unified tool that meets their needs in a convenient way.

Gluing everything together
Some development environments, such as Microsoft Access, give you the
integrated structure you need, complete with navigation from one screen to
another, without the need for any procedural programming. These applica-
tions, however, have limited flexibility, and are unable to handle require-
ments that are even slightly out of the ordinary. In most cases, you end up
having to write some procedural code. If you are developing in the .NET
environment, Visual Studio is the tool you use to write the needed proce-
dural code. If you are developing in another environment, you use other
tools, but your task is essentially the same. Any analysis of the data beyond
what SQL can do requires programming, as do responses to events such as
button clicks or error conditions.

Testing, Testing, Testing
After you have finished all your forms, reports, and queries, and written
all the code needed to bind the application together, you are still not done.
In fact, you may be less than halfway to completion of the project. In most
large projects, testing is the most time-consuming part of the entire task —
more time-consuming than the design phase or the creation of all the forms,
reports, queries, and program code. You need to test your application with
the volume and diversity of data that it’s likely to encounter after it goes into
production. This typically reveals problems that didn’t show up when you
were working with a few rows of sample data in each of your tables.

You need to deliberately try to “break” the application by making erroneous
inputs because you can be sure that after the system goes into production,
sooner or later someone will make data entry mistakes. If dates and times
are involved, try entering some nonsensical ones and see how the system
responds. See what happens if you say, for example, that a product has been
delivered before it was ordered. How does the system handle that? How do
you want the system to handle that?

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 455

Testing, Testing, Testing456

Fix the bugs
In the course of testing, you inevitably find things that are not as they should
be. These may be program bugs, or just inelegancies that, now that you look
at them, you know you can improve. Fix them all.

After you have fixed a group of bugs, go back and test the entire application
again. If in this second round of testing you discover more bugs, fix them
and then test everything again. Don’t just test whatever it was that you fixed.
Test everything. Bugs and fixes have a way of interacting in unanticipated
ways. Often what you do to fix one bug creates three or four other problems
in what you would swear are unrelated areas. The only way to make sure
that you have not created additional problems in the course of fixing one is
to test everything all over again every time you fix anything. This discipline
is called regression testing because you regress back to square one every
time you fix a bug.

Turn naive users loose
After you can go through your entire suite of tests without encountering a
single problem, you are ready to go to the next phase of testing, which is
generally called beta testing. In a beta test, you give the application to users
who are no more technically sophisticated than the end users you are target-
ing. Actually, the less technically sophisticated your beta testers are, the
better. They use your application in ways that you would never think of in a
million years. In the process, they uncover bugs that you never came close
to finding.

Bring on the hackers
Another good class of beta testers is people with a hacker mentality. These
people feel challenged to find the weak spots in your application. They try
things that they know they are not supposed to do, just to see what hap-
pens. In the process, they find problems that neither you nor your unsophis-
ticated beta testers had encountered.

Fix the newly found bugs
As new bugs crop up in the course of beta testing, fix them one by one as
they appear. After each fix, run a regression test. If you fix several bugs and
then run the regression test, it’s hard to determine what caused the 17 new
failures that appear. As the hare learned from the tortoise, slow and steady
wins the race. Keep things as simple as possible. Fix one thing at a time and
then retest everything.

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 456

Book V
Chapter 5

Building a Sam
ple

Application
Testing, Testing, Testing 457

Retest everything
Did I say retest everything? Yes. After you think you have tested the applica-
tion to death — after you are sure you have squashed all the bugs that could
possibly exist, it is time for one final test. This time, rather than running the
test yourself, have someone else, someone totally unrelated to the develop-
ment effort, conduct the entire test suite one more time. After you get a
clean run this final time, you can truly say that you are finished. Break out
the bubbly!

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 457

Book V: SQL and Programming458

32 119280 bk05ch05.qxp 5/23/07 10:27 AM Page 458

Chapter 6: SQL’s Procedural
Capabilities

In This Chapter
� Embedding SQL statements in your code

� Compound statements

� Flow of control statements

� Stored procedures

� Triggers

� Stored functions

� Privileges

� Stored modules

In its original incarnation, SQL was conceived as a data sublanguage,
whose only purpose was interacting with relational databases. It was con-

sidered acceptable to embed SQL statements within procedural language
code written in some full-featured language in order to create a fully func-
tional database application. However, users have for a long time wanted
SQL to have procedural capabilities so that there would be less need to
switch back and forth between SQL and some other language in data-driven
applications. To solve this problem, vendors started putting procedural
capabilities into their implementations of SQL. These non-standard exten-
sions to the language inhibited cross-platform portability until a number
of procedural capabilities were standardized with a new section of the
ANSI/ISO standard in 1996. That new section is called Persistent Stored
Modules (SQL/PSM), although it covers quite a few things in addition to
stored modules.

Embedding SQL Statements in Your Code
In Chapter 3, I discussed embedding SQL statements in applications written
in one of several procedural languages. Even with the new procedural capa-
bilities that were added to SQL with the Procedural Stored Modules addi-
tion, embedding is still necessary, but switches back and forth between

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 459

Introducing Compound Statements460

languages are much less frequent. In its current version (SQL:2003 with addi-
tional functionality added in 2005), the ANSI/ISO SQL standard still describes
a language that is not computationally complete.

Introducing Compound Statements
SQL was originally conceived as a non-procedural language that deals with
data a set at a time rather than a record at a time. With the addition of the
facilities covered in this chapter, however, this statement is not as true as it
used to be. SQL has become more procedural, although it still deals with
data a set at a time. Because classic SQL (that defined by SQL-92) does not
follow the procedural model — where one instruction follows another in a
sequence to produce a desired result — early SQL statements were stand-
alone entities, perhaps embedded in a C++ or Visual Basic program. With
these early versions of SQL, users typically did not pose a query or perform
some other operation by executing a series of SQL statements. If users did
execute such a series of statements, they suffered a performance penalty.
Every SQL statement that is executed requires a message to be sent from the
client where the user is located, to the server where the database is located,
and then a response must be sent in the reverse direction. This network traf-
fic slows operations as the network becomes congested.

SQL:1999 and all following versions allow compound statements, made up of
individual SQL statements, that execute as a unit. This capability eases net-
work congestion because all the individual SQL statements in the compound
statement are sent to the server as a unit and executed as a unit, and a
single response is sent back to the client.

All the statements included in a compound statement are enclosed between
a BEGIN keyword at the beginning of the statement and an END keyword at
the end of the statement. For example, to insert data into multiple related
tables, you use syntax similar to the following:

void main {
EXEC SQL

BEGIN
INSERT INTO STUDENTS (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
INSERT INTO ROSTER (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;
INSERT INTO RECEIVABLE (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)
END ;

/* Check SQLSTATE for errors */
}

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 460

Book V
Chapter 6

SQL’s Procedural
Capabilities

Introducing Compound Statements 461

This little fragment from a C program includes an embedded compound
SQL statement. The comment about SQLSTATE deals with error handling.
If the compound statement does not execute successfully, an error code
is placed in the status parameter SQLSTATE. Of course, placing a comment
after the END keyword doesn’t correct any errors. The comment is placed
there simply to remind you that in a real program, error-handling code
belongs in that spot. Error handling is described in detail in Book IV,
Chapter 4.

Atomicity
Compound statements introduce a possibility for error that does not exist
for simple SQL statements. A simple SQL statement either completes suc-
cessfully or doesn’t. If it doesn’t complete successfully, the database is
unchanged. This is not necessarily the case for a compound statement.

Consider the example in the preceding section. What if the INSERT to the
STUDENTS table and the INSERT to the ROSTER table both took place, but
because of interference from another user, the INSERT to the RECEIVABLE
table failed? A student would be registered for a class but would not be billed.
This kind of error can be hard on a university’s finances. The concept that is
missing in this scenario is atomicity. An atomic statement is indivisible — it
either executes completely or not at all. Simple SQL statements are atomic by
nature, but compound SQL statements are not. However, you can make a com-
pound SQL statement atomic by specifying it as such. In the following exam-
ple, the compound SQL statement is safe by introducing atomicity:

void main {
EXEC SQL

BEGIN ATOMIC
INSERT INTO STUDENTS (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;
INSERT INTO ROSTER (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;
INSERT INTO RECEIVABLE (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)
END ;

/* Check SQLSTATE for errors */
}

By adding the keyword ATOMIC after the keyword BEGIN, you can ensure
that either the entire statement executes, or — if an error occurs — the
entire statement rolls back, leaving the database in the state it was in before
the statement began executing.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 461

Introducing Compound Statements462

Variables
One feature that full computer languages such as C or BASIC offer that SQL
didn’t offer until SQL/PSM is variables. Variables are symbols that can take
on a value of any given data type. Within a compound statement, you can
declare a variable and assign it a value. The variable can then be used within
the compound statement. After you exit a compound statement, all the vari-
ables declared within it are destroyed. Thus, variables in SQL are local to the
compound statement within which they are declared. Here is an example:

BEGIN
DECLARE prezpay NUMERIC ;
SELECT salary
INTO prezpay
FROM EMPLOYEE
WHERE jobtitle = ‘president’ ;

END;

Cursors
You can declare a cursor within a compound statement. You use cursors to
process a table’s data one row at a time (see Book III, Chapter 5 for details).
Within a compound statement, you can declare a cursor, use it, and then
forget it because the cursor is destroyed when you exit the compound state-
ment. Here’s an example of this usage:

BEGIN
DECLARE ipocandidate CHAR(30) ;
DECLARE cursor1 CURSOR FOR

SELECT company
FROM biotech ;

OPEN CURSOR1 ;
FETCH cursor1 INTO ipocandidate ;
CLOSE cursor1 ;

END;

Conditions
When people say that a person has a “condition,” they usually mean that
something is wrong with that person — he or she is sick or injured. People
usually don’t bother to mention that a person is in good condition; rather, we
talk about people who are in serious condition or, even worse, in critical con-
dition. This idea is similar to the way programmers talk about the condition
of an SQL statement. The execution of an SQL statement leads to a success-
ful result, a questionable result, or an outright erroneous result. Each of
these possible results corresponds to a condition.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 462

Book V
Chapter 6

SQL’s Procedural
Capabilities

Following the Flow of Control Statements 463

Every time an SQL statement executes, the database server places a value
into the status parameter SQLSTATE. SQLSTATE is a five-character field. The
value that is placed into SQLSTATE indicates whether the preceding SQL
statement executed successfully. If it did not execute successfully, the value
of SQLSTATE provides some information about the error.

The first two of the five characters of SQLSTATE (the class value) give you
the major news as to whether the preceding SQL statement executed suc-
cessfully, returned a result that may or may not have been successful, or
produced an error. Table 6-1 shows the four possible results. A detailed
description of these class values is given in Book IV, Chapter 4.

Table 6-1 SQLSTATE Class Values
Class Description

00 Successful completion

01 Warning

02 Not Found

other Exception

Assignment
With SQL/PSM, SQL finally gains a function that even the lowliest procedural
languages have had since their inception: the ability to assign a value to a
variable. Essentially, an assignment statement takes the following form:

SET target = source ;

In this usage, target is a variable name, and source is an expression. Several
examples are

SET vfname = ‘Brandon’ ;

SET varea = 3.1416 * :radius * :radius ;

SET vhiggsmass = NULL ;

Following the Flow of Control Statements
Since its original formulation in the SQL-86 standard, one of the main draw-
backs that prevented people from using SQL in a procedural manner has
been its lack of flow of control statements. Until SQL/PSM was included in

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 463

Following the Flow of Control Statements464

the SQL standard, you couldn’t branch out of a strict sequential order of exe-
cution without reverting to a host language like C or BASIC. SQL/PSM intro-
duces the traditional flow of control structures that other languages provide,
thus allowing SQL programs to perform needed functions without switching
back and forth between languages.

IF . . . THEN . . . ELSE . . . END IF
The most basic flow of control statement is the IF . . . THEN . . .
ELSE . . . END IF statement. It means that if a condition is true, the
statements following the THEN keyword should be executed. Otherwise, the
statements following the ELSE keyword should be executed. For example:

IF
vfname = ‘Brandon’

THEN
UPDATE students

SET Fname = ‘Brandon’
WHERE StudentID = 314159 ;

ELSE
DELETE FROM students

WHERE StudentID = 314159 ;
END IF

In this example, if the variable vfname contains the value Brandon, the
record for student 314159 is updated with Brandon in the Fname field. If the
variable vfname contains any value other than Brandon, the record for stu-
dent 314159 is deleted from the students table.

The IF . . . THEN . . . ELSE . . . END IF statement is great if
you want to take one of two actions, based on the value of a condition.
Often, however, you want to make a selection from more than two choices.
At such times, you should probably use a CASE statement.

CASE . . . END CASE
CASE statements come in two forms: the simple CASE statement and the
searched CASE statement. Both kinds allow you to take different execution
paths, based on the values of conditions.

Simple CASE statement
A simple CASE statement evaluates a single condition. Based on the value of
that condition, execution may take one of several branches. For example:

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 464

Book V
Chapter 6

SQL’s Procedural
Capabilities

Following the Flow of Control Statements 465

CASE vmanufacturer
WHEN ‘General Motors’
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
WHEN ‘Ford’
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
WHEN ‘Chrysler’
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
WHEN ‘Studebaker’
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
ELSE INSERT INTO FOREIGN (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
END CASE

The ELSE clause handles everything that doesn’t fall into the explicitly
named categories in the THEN clauses.

The ELSE clause is optional. However, if it is not included, and the CASE
statement’s condition is not handled by any of the THEN clauses, SQL returns
an exception.

Searched CASE statement
A searched CASE statement is similar to a simple CASE statement, but it eval-
uates multiple conditions rather than just one. For example:

CASE
WHEN vmanufacturer IN (‘General Motors’,’Ford’)
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
WHEN vmake IN (‘Chrysler’,’Dodge’,’Plymouth’)

THEN INSERT INTO DOMESTIC (VIN, Make, Model)
VALUES (:vin, :make, :model) ;

WHEN vmodel IN (‘Avanti’,’Lark’)
THEN INSERT INTO DOMESTIC (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
ELSE INSERT INTO FOREIGN (VIN, Make, Model)

VALUES (:vin, :make, :model) ;
END CASE

You avoid an exception by putting all cars that are not domestic into the
FOREIGN table. Because a car that does not meet any of the stated condi-
tions may still be domestic, this may not be strictly accurate in all cases. If it
isn’t, you can always add another WHEN clause.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 465

Following the Flow of Control Statements466

LOOP . . . ENDLOOP
The LOOP statement allows you to execute a sequence of SQL statements
multiple times. After the last SQL statement enclosed within the LOOP . . .
ENDLOOP statement executes, control loops back to the first such statement
and makes another pass through the enclosed statements. The syntax is as
follows:

SET vcount = 0 ;
LOOP

SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END LOOP

This code fragment preloads your asteroid table with unique identifiers. You
can fill in other details about the asteroids as you find them, based on what
you see through your telescope when you discover them.

Notice the one little problem with the code fragment in the preceding exam-
ple: It is an infinite loop. No provision is made for leaving the loop, so it will
continue inserting rows into the asteroid table until the DBMS fills all avail-
able storage with asteroid table records. If you’re lucky, the DBMS raises an
exception at that time. If you’re unlucky, the system merely crashes.

For the LOOP statement to be useful, you need a way to exit loops before you
raise an exception: the LEAVE statement.

LEAVE
The LEAVE statement works just like you might expect it to. When execution
encounters a LEAVE statement embedded within a labeled statement, it pro-
ceeds to the next statement beyond the labeled statement. For example:

AsteroidPreload:
SET vcount = 0 ;
LOOP

SET vcount = vcount + 1 ;
IF vcount > 10000

THEN
LEAVE AsteroidPreload ;

END IF ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END LOOP AsteroidPreload

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 466

Book V
Chapter 6

SQL’s Procedural
Capabilities

Following the Flow of Control Statements 467

The preceding code inserts 10,000 sequentially numbered records into the
asteroids table, and then passes out of the loop.

WHILE . . . DO . . . END WHILE
The WHILE statement provides another method for executing a series of SQL
statements multiple times. While a designated condition is true, the WHILE
loop continues to execute. When the condition becomes false, looping stops.
For example:

AsteroidPreload2:
SET vcount = 0 ;
WHILE

vcount < 10000 DO
SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
END WHILE AsteroidPreload2

This code does exactly the same thing that AsteroidPreload did in the pre-
ceding section. This is just another example of the oft-cited fact that with
SQL, you usually have multiple ways to accomplish any given task. Use
whichever method you feel most comfortable with, assuming your imple-
mentation allows both.

REPEAT . . . UNTIL . . . END REPEAT
The REPEAT loop is very much like the WHILE loop, except that the condi-
tion is checked after the embedded statements execute rather than before.
Here’s an example:

AsteroidPreload3:
SET vcount = 0 ;
REPEAT

SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID)

VALUES (vcount) ;
UNTIL X = 10000

END REPEAT AsteroidPreload3

Although I perform the same operation three different ways in the preceding
example (with LOOP, WHILE, and REPEAT), you will encounter some instances
where one of these structures is clearly better than the other two. It is good
to have all three methods in your bag of tricks so that when a situation
like this arises, you can decide which one is the best tool available for the
situation.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 467

Following the Flow of Control Statements468

FOR . . . DO . . . END FOR
The SQL FOR loop declares and opens a cursor, fetches the rows of the
cursor, executes the body of the FOR statement once for each row, and then
closes the cursor. This loop makes processing possible entirely within SQL,
instead of switching out to a host language. If your implementation supports
SQL FOR loops, you can use them as a simple alternative to the cursor pro-
cessing described in Book III, Chapter 5. Here’s an example:

FOR vcount AS Curs1 CURSOR FOR
SELECT AsteroidID FROM asteroid

DO
UPDATE asteroid SET Description = ‘stony iron’

WHERE CURRENT OF Curs1 ;
END FOR

In this example, you update every row in the asteroid table by putting
‘stony iron’ into the Description field. This is a fast way to identify the
compositions of asteroids, but the table may suffer some in the accuracy
department. Some asteroids are carbonaceous chondrites, and others are
nickel-iron. Perhaps you’d be better off checking the spectral signatures of
the asteroids and then entering their types individually.

ITERATE
The ITERATE statement provides a way to change the flow of execution
within an iterated SQL statement. The iterated SQL statements are LOOP,
WHILE, REPEAT, and FOR. If the iteration condition of the iterated SQL state-
ment is true or not specified, the next iteration of the loop commences
immediately after the ITERATE statement executes. If the iteration condition
of the iterated SQL statement is false or unknown, iteration ceases after the
ITERATE statement executes. For example:

AsteroidPreload4:
SET vcount = 0 ;
WHILE vcount < 10000 DO

SET vcount = vcount + 1 ;
INSERT INTO asteroid (AsteroidID) VALUES (vcount) ;
ITERATE AsteroidPreload4 ;
SET vpreload = ‘DONE’ ;

END WHILE AsteroidPreload4

Execution loops back to the top of the WHILE statement immediately after
the ITERATE statement each time through the loop until vcount equals 9999.
On that iteration, vcount increments to 10000, the INSERT performs, the
ITERATE statement ceases iteration, vpreload is set to DONE, and execution
proceeds to the next statement after the loop.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 468

Book V
Chapter 6

SQL’s Procedural
Capabilities

Working with Triggers 469

Using Stored Procedures
Stored procedures reside in the database on the server, rather than execute
on the client — where all procedures were located before SQL/PSM. After
you define a stored procedure, you can invoke it with a CALL statement.
Keeping the procedure located on the server rather than the client reduces
network traffic, thus speeding performance. The only traffic that needs to
pass from the client to the server is the CALL statement. You can create this
procedure in the following manner:

EXEC SQL
CREATE PROCEDURE ForeignOrDomestic

(IN manufacturer CHAR (20),
OUT origin CHAR (8))

BEGIN ATOMIC
CASE manufacturer

WHEN ‘General Motors’ THEN
SET origin = ‘domestic’ ;

WHEN ‘Ford’ THEN
SET origin = ‘domestic’ ;

WHEN ‘Chrysler’ THEN
SET origin = ‘domestic’ ;

WHEN ‘Studebaker’ THEN
SET origin = ‘domestic’ ;

ELSE
SET origin = ‘foreign’ ;

END CASE
END ;

After you have created a stored procedure like the one in this example, you
can invoke it with a CALL statement similar to the following statement:

CALL ForeignOrDomestic (‘Toyota’, origin) ;

The first argument is the input parameter that is fed to the
ForeignOrDomestic procedure. The second argument is the output parame-
ter that the procedure uses to return its result to the calling routine. In this
case, it returns foreign.

Working with Triggers
Triggers are useful tools that you can use to execute SQL statements, when-
ever certain changes are made to a database table. They are analogous to
actions that occur in event-driven programming in modern procedural lan-
guages. If a predefined change is made to a database table, that event causes

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 469

Working with Triggers470

an associated trigger to fire, which in turn causes an SQL statement or block
of SQL statements to execute. The triggered statement could cause another
trigger to fire, as well as performing its stated action. There is no limit to the
number of levels of nesting for triggers.

One reason you might want to use a trigger is to create an audit trail. If a par-
ticular change is made to a table, you may want to record that fact in a log
file somewhere. A trigger could cause an SQL statement to make a log entry.
Another application of a trigger might be to maintain consistency among
tables in a database. A particular change to one table might cause a trigger
to fire that causes corresponding changes to be made to other tables. You
can even use a trigger to affect something outside of the database. For exam-
ple, if a new row is inserted into an ORDERS table, you could fire a trigger
that wakes up and sets into motion a robot that starts to build the ordered
product.

Here’s the BNF syntax for the statement that creates a trigger:

<trigger definition> ::=
CREATE TRIGGER <trigger name>
<trigger action time> <trigger event>
ON <table name>[REFERENCING old or new values alias list]
<triggered action>

<trigger action time> ::=
BEFORE

| AFTER

<trigger event> ::=
INSERT

| DELETE
| UPDATE [OF <trigger column list>]

<trigger column list> ::= <column name list>

<triggered action> ::=
[FOR EACH { ROW | STATEMENT }]
[WHEN <left paren> <search condition> <right paren>]
<triggered SQL statement>

<triggered SQL statement> ::=
<SQL procedure statement>

| BEGIN ATOMIC
{ <SQL procedure statement> <semicolon> }...

END

<old or new values alias list> ::=
OLD [ROW][AS] <old values correlation name>

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 470

Book V
Chapter 6

SQL’s Procedural
Capabilities

Working with Triggers 471

| NEW [ROW][AS] <new values correlation name>
| OLD TABLE [AS] <old values table alias>
| NEW TABLE [AS] <new values table alias>

<old values correlation name> ::= <correlation name>

<new values correlation name> ::= <correlation name>

<old values table alias> ::= <identifier>

<new values table alias> ::= <identifier>

Trigger events
Three different SQL statements, INSERT, DELETE, and UPDATE, can cause
a trigger to fire. A referential action can also cause a trigger to fire. For
example, if a referential integrity constraint is violated, a trigger could
fire, which would then cause some appropriate action to take place. The
optional REFERENCING clause enables you to refer to table values before
the trigger action takes place when the OLD keyword is used, and to refer
to tables values after the trigger action takes place when the NEW keyword
is used.

In the CREATE TRIGGER statement, a table name is specified. If the trigger
event is an INSERT, only an insert operation on the specified table causes
the trigger to fire. Similarly, if the trigger event is a DELETE, only a delete
operation on the specified table causes the trigger to fire. If the trigger event
is an UPDATE on one or more columns in a table, only an UPDATE on those
columns of the specified table causes the trigger to fire.

Trigger action time
A trigger can fire either immediately before the trigger event or immediately
after it, as specified by either the BEFORE or the AFTER keyword.

Triggered actions
There are two kinds of triggers, row-level triggers and statement-level trig-
gers. A row-level trigger is one whose triggered SQL statement is executed
for every row that is modified by the triggering statement. A statement-level
trigger is one whose triggered SQL statement is executed only once, each
time the triggering statement is executed. The default triggered action is FOR
EACH STATEMENT, if neither FOR EACH ROW nor FOR EACH STATEMENT
is specified. The WHEN clause in a triggered action enables you to specify a
condition. The trigger fires only if the condition evaluates to TRUE.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 471

Stored Functions472

Triggered SQL statement
The triggered SQL statement can either be a single SQL statement or a BEGIN
ATOMIC...END block containing multiple SQL statements. Here’s an example:

CREATE TRIGGER notify
AFTER INSERT ON MEMBERS
FOR EACH STATEMENT
BEGIN ATOMIC
CALL send_email (‘President’, ‘New member’) ;
INSERT INTO CHANGE_LOG
VALUES (‘MEMBERS’, :vfirstname, :vlastname) ;

END ;

Whenever a new row is inserted into the MEMBERS table, an e-mail message
is sent to the organization’s president, informing her of the new member. At
the same time, a new row is inserted into the CHANGE_LOG table, which
records all insertions, deletions, and updates to any table in the database.

Stored Functions
A stored function is similar in many ways to a stored procedure. Collectively,
the two are referred to as stored routines. They are different in several ways,
including the way in which they are invoked. A stored procedure is invoked
with a CALL statement, and a stored function is invoked with a function call,
which can replace an argument of an SQL statement. The following is an
example of a function definition, followed by an example of a call to that
function:

CREATE FUNCTION Engine (test_engine_ID Integer)
RETURNS NUMERIC (5,2)

BEGIN ATOMIC
DECLARE vdisplacement NUMERIC (5,2)

DEFAULT ‘’ ;
SET vdisplacement = (SELECT Displacement FROM FORD

WHERE EngineID = test_engine_ID);
RETURN vdisplacement;
END ;

This function definition returns the displacement of the Ford engine whose
engineID is supplied as input. The following SET statement contains a func-
tion call to Engine that retrieves the displacement of the engine identified by
EngineID = 4004:

SET displace = Engine (EngineID)
WHERE EngineID = 4004 ;

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 472

Book V
Chapter 6

SQL’s Procedural
Capabilities

Stored Modules 473

Passing Out Privileges
The various privileges that you can grant to users are discussed in Book I,
Chapter 4. The database owner can grant the following privileges to other
users:

✦ The right to DELETE rows from a table

✦ The right to INSERT rows into a table

✦ The right to UPDATE rows in a table

✦ The right to create a table that REFERENCES another table

✦ The right of USAGE on a domain

SQL/PSM adds one more privilege that can be granted to a user — the
EXECUTE privilege. Here are two examples:

GRANT EXECUTE on ForeignOrDomestic to SalesManager ;

GRANT EXECUTE on Engine to Mechanic ;

These statements allow the sales manager of the used car dealer to execute
the ForeignOrDomestic procedure, and any mechanic in the shop to execute
the Engine function. People lacking the EXECUTE privilege for a routine
aren’t able to use the routine.

Stored Modules
A stored module can contain multiple routines (procedures or functions) that
can be invoked by SQL. Anyone who has the EXECUTE privilege for a module
has access to all the routines in the module. Privileges on routines within a
module can’t be granted individually. The following is an example of a stored
module:

CREATE MODULE mod1
CREATE PROCEDURE ForeignOrDomestic

(IN manufacturer CHAR (20),
OUT origin CHAR (8))

BEGIN ATOMIC
CASE manufacturer

WHEN ‘General Motors’ THEN
SET origin = ‘domestic’ ;

WHEN ‘Ford’ THEN
SET origin = ‘domestic’ ;

WHEN ‘Chrysler’ THEN

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 473

Stored Modules474

SET origin = ‘domestic’ ;
WHEN ‘Studebaker’ THEN

SET origin = ‘domestic’ ;
ELSE

SET origin = ‘foreign’ ;
END CASE

END ;

CREATE FUNCTION Engine (test_engine_ID Integer)
RETURNS NUMERIC (5,2)

BEGIN ATOMIC
DECLARE vdisplacement NUMERIC (5,2)

DEFAULT ‘’ ;
SET vdisplacement = (SELECT Displacement FROM FORD

WHERE EngineID = test_engine_ID);
RETURN vdisplacement;
END ;

END MODULE ;

The two routines in this module don’t have much in common, but they don’t
have to. You can gather related routines into a single module, or you can
stick all the routines you are likely to use into a single module, regardless of
whether they have anything in common.

33 119280 bk05ch06.qxp 5/23/07 10:28 AM Page 474

Chapter 7: Connecting
to a Remote Database

In This Chapter
� Connecting through a remote driver

� Connecting through ODBC

� What really happens when you make a connection

With a standalone desktop database system, communication is never
an issue. The data-driven application you write has only one place

to go for data: the database on your hard disk. Your desktop database man-
agement system provides the interface between your application code and
the database. This simple situation, once very common, has largely been
replaced by client/server database systems that reside on a local area net-
work (LAN) or wide area network (WAN), or Web-based systems that oper-
ate over the Internet. In these more complicated configurations, you must
communicate with different database back ends in different ways.

In this chapter, I discuss client/server systems. A simple client/server
system has one server machine that hosts the database. Multiple client
computers are connected to the server over a LAN. Users sit at the client
machines, which execute your database application program. Larger sys-
tems can have multiple servers, each holding different databases. The
part of your program written in a host language such as C++, C#, or Java is
executed on the client machine, but the SQL is sent over the network to a
server. Before it is sent to the server, the SQL must be translated into some-
thing the database understands. Several different methods of doing this
exist.

Native Drivers
The simplest form of communication between an application and a database
is through a native driver. Figure 7-1 shows how a native driver specific to
Oracle 10g connects your application to an Oracle 10g database.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 475

Native Drivers476

This arrangement is not much different from that of a standalone desktop
database system. The Oracle 10g native driver is specifically designed to
take SQL from the application and translate it into Oracle 10g database
commands. When the database returns a result set, the native driver trans-
lates it into a standard SQL result set and passes it back to the application.

Because native drivers are specifically designed to work with a particular
database, they can be highly optimized for that specific situation and thus
have very good performance. That specificity, which makes possible the
native driver’s greatest strength, is also its biggest weakness. When you
build a database system that uses a native driver to connect to one type of
database, say Oracle 10g, the connection does not work with any other type
of database, such as SQL Server.

When you write a database application, the part of the application that com-
municates with the database is called the Application Programming Interface
(API). When you are communicating to databases through native drivers,
every native driver is different from all the others, so the API is different for
each one, too. This complicates the design and development of applications
that must deal with multiple data sources.

Native drivers are great if you know that the application you are writing will
have to interface with only one specific data source, both now and in the
future. You can’t beat the performance of a well-designed native driver.
However, if there is a possibility that your application may need to pull data
from more than one source, you may want to consider one of the interface
options that are not product-specific.

Front-end
application

Oracle
10g

database

Oracle
10g

native
driver

Oracle 10g
Driver calls

Data

Oracle
10g

database
communication

interface

Oracle
10g

database
engine

Database
interface calls

Data

Database
engine commands

Data

Low-level
commands

Data

Figure 7-1:
A database
system
using an
Oracle 10g
native
driver.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 476

Book V
Chapter 7

Connecting to a
Rem

ote Database
ODBC and Its Major Components 477

ODBC and Its Major Components
An application may need to access data in multiple databases of incompati-
ble types. Incorporating multiple APIs into your code is not a desirable solu-
tion. Happily, there is a better way. ODBC, which stands for Open Database
Connectivity, is a widely accepted standard method of communicating with
most popular database formats. It accomplishes this by adding an extra
layer between the application and the database. Figure 7-2 shows this
arrangement. It is unlikely that you would want to connect any realistic
application to five different data sources, as shown in Figure 7-2, but with
ODBC, you could.

Application

Oracle 10g
data source

ODBC driver
manager

ODBCI
API calls

Oracle 10g
driver

Data

SQL Server
data source

SQL Server
driver

PostgreSQL
data source

PostgreSQL
driver

Access
data source

Access
driver

MySQL
data source

MySQL
driver

Data Data

ODBCI
Driver calls

Database
interface calls

Figure 7-2:
A database
system
using ODBC
API.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 477

ODBC and Its Major Components478

The application communicates directly with the driver manager. The front-
end of the driver manager always presents the same API to the application.
The back end of the driver manager connects to a driver that is specific to
the database on the back end. The driver, in turn, connects to the database.
This arrangement means that the application programmer never has to
worry about the details of how to connect to the database on the back end.
All you have to do is make your program compatible with the ODBC API,
and you will be successful. The driver manager makes sure that the correct
driver is in place to communicate with the database.

ODBC is a direct response to the needs of developers who are designing
applications to run on client/server systems. People designing for stand-
alone PCs running integrated DBMS systems don’t need ODBC. Neither do
people designing for proprietary mainframes. The whole point of ODBC is
to present a common interface to database applications, so that the applica-
tion developer does not have to write code specific to whatever platform
the data is located on. ODBC translates standard syntax coming from the
application into custom syntax specific to the back-end database being
accessed. It even allows an application to access multiple different back-end
databases at the same time, without getting confused. To provide its func-
tion, ODBC can be conceptually (and physically) divided into four major
components.

The four major components are the application, the driver manager, the
driver, and the data source. The application is the component closest to the
user, and the data source is the component that holds the data. Each differ-
ent type of data source has its own driver. The driver manager manages
communication between the application and the data source, through the
driver.

Application
The application is a piece of software that interacts directly with the user,
and that requires access to data. If you are an application programmer, the
application is the one ODBC component that you create. It can be a custom
program written in a procedural language such as C++ or Visual Basic. It
can be a spreadsheet or a word processing package. It can be an interactive
query tool. Just about any piece of software that works with data and inter-
acts with a user can be the application portion of an ODBC system. The
data accessed by the application can be from a relational database, from an
ISAM (Indexed Sequential Access Method) file or from a straight ASCII text
file. ODBC provides a lot of flexibility in what kinds of applications can use it
and in what kinds of data those applications can access.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 478

Book V
Chapter 7

Connecting to a
Rem

ote Database
ODBC and Its Major Components 479

Driver manager
The driver manager is a library (under Windows it is a Dynamic-Link Library)
that provides a common interface to applications, regardless of what data
source is being accessed. It performs such functions as

✦ Determining which driver to load, based on the data source name sup-
plied by the application

✦ Loading and unloading drivers

✦ Calling driver functions

✦ Implementing some functions itself

✦ Performing error checking

A Dynamic-Link Library (DLL) is a library of routines that is linked to an
application at runtime. In the case of a driver manager, the routines perform
the various functions listed above.

The value of the driver manager is that the application can make function
calls to it without regard for which driver or data source is currently in use.
After the application identifies the needed driver and data source by sending
the driver manager a connection handle, the driver manager loads the driver
and builds a table of pointers to the functions in that driver. The application
programmer does not need to worry about maintaining a table of pointers to
functions in the driver. The driver manager does it under the covers.

Driver managers are written and distributed by the companies that write
drivers. Microsoft, Serena, Borland, and OpenLink Software are examples of
companies that provide the driver manager component of ODBC systems.

Drivers
Drivers are libraries that implement the functions of the ODBC API. Each
driver has a common interface to the driver manager, but its interface to its
data source is customized to that particular data source.

Companies that specialize in driver development, such as those listed in the
previous section, have developed and made available drivers for most of the
popular data sources in use today. As a result, most people never need to
write their own drivers. Only those working with unusual data sources, or
those requiring functions not supported by standard drivers, need to write
their own drivers, using a procedural language such as C or Java.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 479

ODBC and Its Major Components480

Two different kinds of drivers exist: file-based drivers and DBMS-based driv-
ers. File-based drivers are used in one-tier configurations, and DBMS-based
drivers are used in two-tier configurations.

File-based drivers
File-based drivers are so named because the driver processes the data source
directly. A file-based driver must be capable of processing SQL statements
and performing the appropriate operations on the database. No DBMS is
involved. File-based drivers apply to desktop databases such as FoxPro as
well as to spreadsheet files and other flat files. You can use a file-based
driver on a standalone PC or on a network. Figure 7-3 shows a typical one-
tier configuration.

In the standalone system, the application, driver manager, driver, and data
storage are all on the same system. In the network case, the application,
driver manager and the driver are on the client, and only the data source is
on the server machine. All the intelligence is on the client.

DBMS-based drivers
DBMS-based drivers operate on multiuser systems operating in true client/
server mode. This mode of operation features a balance between the client
and server machines. Both do significant processing. The application, driver
manager, and driver all reside on the client machine. Together they comprise
the “client” part of the client/server system. The data source is composed
of the DBMS, such as SQL Server, Oracle, or DB2, and the database itself.
These components are located on the server machine. DBMS-based drivers

Front-end
application

Database
files

ODBC
driver

manager

ODBC API
calls

Data

ODBC
single-tier

driver

ODBC
driver calls

Data

Low-level
commands

Data

Figure 7-3:
The
architecture
of one-tier
driver
systems.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 480

Book V
Chapter 7

Connecting to a
Rem

ote Database
ODBC and Its Major Components 481

are generally easier to write than file-based drivers because they only need
to translate ODBC-compatible SQL statements to commands the database
engine understands and handle any results that come back. Figure 7-4 shows
the two-tier configuration.

Front-end
application

Data

Proprietary
database

communication
interface

Data

Database
interface calls

Data

Database
engine commands

Data

Database
Back-end
database

engine

Low-level
commands

Data

ODBC
driver

manager

ODBC API
calls

ODBC
driver

ODBC
driver calls

Client Server

Figure 7-4:
The
architecture
of a two-tier
driver
system.

Can ODBC drivers perform
as well as native drivers?

You may have heard that ODBC is good because
it frees the application developer from having to
customize applications to each potential target
data source. You may also have heard that
ODBC is bad because database access through
an ODBC interface is slower than access
through a database’s native drivers. This criti-
cism makes sense because it seems that going
through an extra layer of processing cannot help
but slow things down. In fact, database access
using ODBC 1.0 was significantly slower than the
same access through a native driver. Going
through an extra layer of processing does slow
things down. However, using ODBC does not
require you to go through that extra layer.

One big reason ODBC 1.0 access was slow was
because the early drivers that implemented it

merely accepted SQL from the application and
converted it to the DBMS’s native API calls.
This has to be slower than a system that gen-
erates the native API calls in the first place.
Performance of ODBC 2.0 and later drivers has
been much better. This is largely due to the fact
that these more recent drivers have been writ-
ten to use the DBMS’s underlying data stream
protocol rather than the native API. Instead of
making an ODBC call that makes a native API
call, that uses the data stream protocol, current
ODBC drivers use the data stream protocol
directly. With this architectural change, ODBC
driver performance has become competitive
with native driver performance, even exceed-
ing it on some benchmarks.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 481

What Happens When the Application Makes a Request482

Data sources
The data source, as the name implies, is the source of the data that is
accessed by the application. It can be a spreadsheet file, an ASCII file, or a
database under the control of a DBMS. The user need not know the technical
details of the data source, such as file type, DBMS, operating system, or
hardware. The name of the data source is all the user needs to know.

What Happens When the Application
Makes a Request

Application development consists of writing, compiling, linking, executing,
and debugging. When you get an application to function the way you want it
to, you can release it to users. Applications that use ODBC are linked to the
Driver Manager’s import library at link time. The import library contains
those parts of ODBC that deal with importing instructions from the applica-
tion. Under Windows, the import library is named ODBC32.LIB. In addition
to ODBC32.LIB, a running application also makes use of ODBC32.DLL and a
driver compatible with the data source. ODBC32.DLL remains loaded in
memory as long as any running application requires it. When the last ODBC-
enabled application terminates, ODBC32.DLL is unloaded from memory.

Using handles to identify objects
ODBC makes extensive use of the concept of handles. A handle is an integer
value that identifies an object used by an application. ODBC uses three types
of handles that are related to each other in a hierarchical fashion:

✦ Environment handle: The environment handle is ODBC’s global context
handle. Every application that uses ODBC must first allocate an environ-
ment handle, and, when it finishes, it must free that handle. Every exe-
cuting application has one and only one environment handle.

✦ Connection handle: An application connects to one or more data sources.
Each such connection is managed by a connection handle. The connec-
tion handle identifies the driver used in the connection for the routing of
the ODBC function calls. The driver manager keeps a list of all connection
handles associated with an environment handle. The application uses the
connection handle to establish and also to break the connection to a data
source. The connection handle also passes error codes for connection
errors back to the application and sets connection options.

✦ Statement handle: A third kind of handle used by ODBC is the statement
handle. Statement handles process SQL statements and catalog functions.
When the application sends a function call that contains a statement
handle to the driver manager, the driver manager extracts a connection
handle from it to route the function call to the correct driver.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 482

Book V
Chapter 7

Connecting to a
Rem

ote Database
What Happens When the Application Makes a Request 483

An application can have one and only one environment handle. Conversely,
each environment handle can be assigned to one and only one application. A
single environment handle can “own” multiple connections, each repre-
sented by a single connection handle. Each connection can “own” multiple
statements, each represented by a single statement handle. Figure 7-5 shows
how to use environment handles, connection handles, and statement han-
dles to establish a connection to a data source, execute some SQL state-
ments, and then to break the connection.

Allocate environment handle

Set environment attribute

Allocate connection handle to Oracle 10g

Connect to data source

Get information about data source

Allocate statement handle

Set statement attributes (optional)

Execute SQL statements

Free statement handle

Disconnect from data source

Free connection handle

Free environment handle

Figure 7-5:
Handles
establish
the
connection
between an
application
and a data
source.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 483

What Happens When the Application Makes a Request484

The six stages of an ODBC operation
An ODBC operation takes place in distinct stages. Each stage builds on the
one that preceded it. Handles provide the mechanism for the exchange of
commands and information. First an environment is established. Next a con-
nection between application and data source is built; then an SQL statement
is sent to the data source for processing. Results are returned from the data
source to the application, and finally the connection is terminated.

Stage 1: The application allocates environment
and connection handles in the driver manager
ODBC-enabled applications communicate with the rest of the ODBC system
by making function calls. The first step in the process is to allocate an environ-
ment handle and a connection handle. Two invocations of the function call
SQLAllocHandle do the job. The driver manager allocates space in memory
for the requested handles and returns the handles to the application. The
first invocation of SQLAllocHandle initializes the ODBC interface, in addi-
tion to allocating memory for global information. If the first SQLAllocHandle
function executes successfully, execution can proceed to the second
SQLAllocHandle function. This invocation of SQLAllocHandle allocates
memory for a connection handle and its associated connection information.
SQLAllocHandle takes the active environment handle as input and returns a
pointer to the newly allocated connection handle as an output. Depending on
which development tool they are using, application programmers may or may
not have to explicitly allocate environment and connection handles.

Stage 2: The driver manager finds the appropriate driver
After environment and connection handles have established a link between
the application and the driver manager, the next step in the process is to link
the driver manager to the appropriate driver. There are two functions for
accomplishing this task, SQLConnect and SQLDriverConnect. SQLConnect
is the simpler of the two, requiring only the connection handle, data source
name, user identifier, and user password as input parameters. When the estab-
lishment of a connection requires more information than SQLConnect pro-
vides, SQLDriverConnect is used. It passes a connection string to the driver
attached to the data source.

Stage 3: The driver manager loads the driver
In a Windows system, after the connection between the driver manager and
the driver has been established, the driver manager obtains a library handle
for the driver. It then calls the Windows function GetProcAddress for each
function in the driver. The function addresses are stored in an array associ-
ated with the connection handle.

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 484

Book V
Chapter 7

Connecting to a
Rem

ote Database
What Happens When the Application Makes a Request 485

Stage 4: The driver manager allocates environment
and connection handles in the driver
Now that the driver has been loaded, environment and connection handles
can be called in it. The function SQLAllocHandle can be used for this pur-
pose, as it was used to call the environment and connection handles in the
driver manager. If the application uses the function SQLSetConnectOption
to set options for the connection, the driver manager calls the driver’s
SQLSetConnectOption function at this time to enable those options
to be set.

Stage 5: The driver manager connects
to the data source through the driver
Now at last, the driver manager completes the connection to the data source
by calling SQLConnect or SQLDriverConnect. If the driver is a one-tier
driver, there is no network connection to make, so this stage is trivial. If it is
a multi-tier driver, the driver now calls the network interface software in the
client machine, which connects to the server machine that holds the data
source. To make this connection, the driver uses information that was stored
in the ODBC.INI file when the data source name was created.

After the connection is established in a client/server system, the driver
usually sends the user name and password to the server for validation. If
the user name and password are valid, the driver returns a standard SQL_
SUCCESS code to the driver manager. If they are not valid, the server returns
an error code to the driver. The driver then translates this error code to
the standard ODBC error code and returns it to the driver manager as
SQLSTATE. The driver manager then returns SQLSTATE to the application.

Stage 6: The data source (finally) executes an SQL statement
With the connection at last established, an SQL statement can be executed.
Even this, however, is a multi-stage process. First a statement handle must
be allocated. The application does this by issuing an SQLAllocHandle call.
When the driver manager receives this call, it allocates a statement handle
and then sends an SQLAllocHandle call to the driver. The driver then allo-
cates its own statement handle before returning control to the driver man-
ager, which then returns control to the application.

After the statement handle has been allocated, an SQL statement can be
executed. There is more than one way to do this, but the simplest is with
the SQLExecDirect function. SQLExecDirect takes a character string
as input and sends it to the server. The character string should be a valid
SQL statement. If necessary, the driver translates the statement from

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 485

What Happens When the Application Makes a Request486

ODBC-standard SQL to commands understood by the data source on the
server. When the data source receives the request for action, it processes
the command and then returns any results to the application via the driver
and driver manager. The exact details of this processing and how the results
are returned to the client application may differ from one data source (DBMS)
to another. These differences are masked by the driver, so that the applica-
tion always sees standard ODBC responses, regardless of what data source it
is communicating with.

The following is a fragment of C code showing the allocation of environment,
connection, and statement handles and connection to a data source.

SQLRETURN cliRC = SQL_SUCCESS;
int rc = 0;
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc; /* connection handle */
SQLHANDLE hstmt; /* statement handle */

char dbAlias[SQL_MAX_DSN_LENGTH + 1];
char user[MAX_UID_LENGTH + 1];
char pswd[MAX_PWD_LENGTH + 1];

/* check the command line arguments */
rc = CmdLineArgsCheck1(argc, argv, dbAlias, user, pswd);
if (rc != 0)
{
return 1;

}

/* allocate an environment handle */
cliRC = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE,
&henv);

if (cliRC != SQL_SUCCESS)
{
printf(“\n--ERROR while allocating the environment
handle.\n”);
printf(“ cliRC = %d\n”, cliRC);
printf(“ line = %d\n”, __LINE__);
printf(“ file = %s\n”, __FILE__);
return 1;

}

/* set attribute to enable application to run as ODBC 3.0
application */

cliRC = SQLSetEnvAttr(henv,
SQL_ATTR_ODBC_VERSION,
(void *)SQL_OV_ODBC3,
0);

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 486

Book V
Chapter 7

Connecting to a
Rem

ote Database
What Happens When the Application Makes a Request 487

ENV_HANDLE_CHECK(henv, cliRC);

/* allocate a database connection handle */
cliRC = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
ENV_HANDLE_CHECK(henv, cliRC);

/* connect to the database */
cliRC = SQLConnect(hdbc,

(SQLCHAR *)dbAlias, SQL_NTS,
(SQLCHAR *)user,
SQL_NTS,
(SQLCHAR *)pswd,
SQL_NTS);

DBC_HANDLE_CHECK(hdbc, cliRC);

/* allocate one or more statement handles */
cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
DBC_HANDLE_CHECK(hdbc, cliRC);

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 487

Book V: SQL and Programming488

34 119280 bk05ch07.qxp 5/23/07 10:28 AM Page 488

Book VI

SQL and XML

35 119280 pt06.qxp 5/23/07 10:28 AM Page 489

Contents at a Glance
Chapter 1: XML/SQL Basics ..491

Chapter 2: Storing XML Data in SQL Tables ..515

Chapter 3: Retrieving Data from XML Documents ..535

35 119280 pt06.qxp 5/23/07 10:28 AM Page 490

Chapter 1: XML/SQL Basics

In This Chapter
� Using XML to bridge communication gaps

� Becoming familiar with XML and XML document parts

� The XML data type

� Mapping SQL to XML

� Operating on XML data with SQL functions

XML stands for Extensible Markup Language, a general-purpose markup
language that, like HTML, is a subset of SGML (Standard Generalized

Markup Language). XML’s primary purpose is to serve as a means of sharing
information between information systems that could have very different
architectures. SQL provides the worldwide standard method for storing
data in a highly structured fashion, which enables users to maintain data
stores of a wide range of sizes, and to efficiently extract from those data
stores the information they want. XML has risen from a de facto standard to
an official standard vehicle for transporting data between incompatible sys-
tems, particularly over the Internet. By bringing these two powerful meth-
ods together, the value of both is greatly increased. SQL can now handle
data that doesn’t fit nicely into the strict relational paradigm that was origi-
nally defined by Dr. Codd. XML can now efficiently take data from SQL data-
bases or send data to them. The result is more readily available information
that is easier to share.

XML has come to be a popular means of sharing data over the Internet, partic-
ularly over the World Wide Web. A number of derivatives of XML designed to
carry specific kinds of data are in use. A few examples are RSS, XHTML,
MathML, Scalable Vector Graphics, and MusicML.

Introducing XML
XML is a markup language that marks up text documents with begin and end
tags. The tags are in some way descriptive of the meaning of the text that
they enclose. Key features are the character data itself, containers called
elements, and the attributes of those elements. The data is structured as a
tree, with a root element playing host to branch elements, which can in turn
give rise to additional branches.

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 491

The Parts of an XML Document492

The fundamental unit of XML is a Unicode character. Both eight-bit and six-
teen-bit versions of Unicode are required by the international XML specifica-
tion. When characters are combined, they form an XML document. The
document consists of one or more entities, each of which holds a portion
of the document’s characters.

The XML specification does not specify the names of the elements, the allow-
able hierarchy, or the meanings of the elements and attributes, as for exam-
ple, HTML does. XML is much more flexible, leaving the specification of
those items to a customizable schema. The XML specification specifies what
syntax is legal, and the schema supplements the syntax rules with a set of
constraints. Such a constraint can restrict element and attribute names, and
the structure of the containment hierarchy. For example, an element named
book could be restricted to contain no more than ten elements named chap-
ter. A different schema could allow up to 20 chapters in a book.

Some of XML’s salient characteristics are

✦ It is readable by both humans and machines

✦ It supports Unicode, so even ideographic languages such as Chinese can
be represented

✦ It can represent a variety of common data structures, including records,
lists, and trees

✦ It is self-documenting

✦ XML elements have a simple structure and thus are easily parsed

✦ It adheres to an international standard

✦ It is platform-independent

The Parts of an XML Document
An XML document contains several different parts. I describe them briefly,
but first here is some sample XML syntax:

<name attribute=”value”>content</name>

Here’s a description of the components of a popular game, expressed in XML:

<?xml version=”1.0” encoding=”UTF-8”?>
<game name=”chess”>
<title>Chess game</title>
<gameboard quantity=”1”>board</gameboard>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 492

Book VI
Chapter 1

XM
L/SQL Basics

The Parts of an XML Document 493

<whitepiece quantity=”1”>king</whitepiece>
<whitepiece quantity=”1”>queen</whitepiece>
<whitepiece quantity=”2”>rook</whitepiece>
<whitepiece quantity=”2”>bishop</whitepiece>
<whitepiece quantity=”2”>knight</whitepiece>
<whitepiece quantity=”8”>pawn</whitepiece>
<blackpiece quantity=”1”>king</blackpiece>
<blackpiece quantity=”1”>queen</blackpiece>
<blackpiece quantity=”2”>rook</blackpiece>
<blackpiece quantity=”2”>bishop</blackpiece>
<blackpiece quantity=”2”>knight</blackpiece>
<blackpiece quantity=”8”>pawn</blackpiece>
<instructions>
<action>Place pieces on their start squares.</action>
<action>Play chess, white moving first.</action>
<action>Play until someone wins or a draw is
declared.</action>
<action>Shake hands.</action>

</instructions>
</game>

XML declaration
The first line of an XML document is usually its declaration. The declaration
is optional, but informative. It states the version of XML that is being used
and may also contain information about character encoding and external
objects that the document depends upon. An XML declaration looks some-
thing like this:

<?xml version “1.0” encoding=”UTF-8”?>

UTF indicates that a version of Unicode is being used that uses as few as one
or as many as four bytes to hold a character. For alphabetic languages such
as English, this is fine. Chinese, for example, would use UTF-16, which uses a
minimum of two bytes per character.

Elements
After the XML declaration, the rest of an XML document consists of ele-
ments. Elements may contain attributes and content, and they may be
nested. An element starts with a start tag consisting of a name enclosed in
angle brackets, and ends with an end tag consisting of the same name pre-
ceded by a slash, also enclosed in angle brackets. The element’s content is
anything that appears between the tags. Here’s an example of an element:

<action>Place pieces on their start squares.</action>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 493

The Parts of an XML Document494

Nested elements
Elements can be nested inside other elements:

<instructions>
<action>Place pieces on their start squares.</action>
<action>Play chess, white moving first.</action>
<action>Play until someone wins or a draw is
declared.</action>
<action>Shake hands.</action>

</instructions>

The instructions element contains the four action elements.

The document element
Every XML document must have one and only one top level element, serving
as the root of the tree structure, called the document element.

Empty elements
An element might exist, but have no content. In such a case it consists of
nothing but its start tag and end tag. There are a couple of alternate syntax
possibilities for an empty element, using a single tag containing the element
name followed by a slash. Here are the three possible syntaxes, which are all
equivalent to each other.

<nothing></nothing>
<nothing />
<nothing/>

Attributes
An element may or may not have attributes. Attributes are pairs of names and
values that are included in the start tag, after the element name. Attribute
values must be enclosed in quotes, either single or double, and each attrib-
ute name should appear only once in an element.

<blackpiece quantity=”2”>rook</blackpiece>

In this example, the blackpiece element has one attribute, named quantity,
which has a value of 2. The quotes show that 2 is a character that repre-
sents the number 2, rather than being the number itself.

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 494

Book VI
Chapter 1

XM
L/SQL Basics

The Parts of an XML Document 495

Entity references
As I discuss later in this chapter, XML is considerably more restrictive than
SQL in terms of the characters it recognizes. Whereas SQL recognizes a large
number of special characters, XML pretty much only recognizes the upper-
and lowercase letters, the integers, and a few punctuation marks. To include
special characters in an XML document, you can use entity references. An
entity reference is a placeholder that represents an entity, typically an
unusual character. An entity reference consists of an ampersand (&), the
reference, and ends with a semicolon (;). In XML there are five predeclared
entity references:

✦ & (&)

✦ < (<)

✦ > (>)

✦ ' (‘)

✦ " (“)

Here is an example of a predeclared XML entity that uses the entity reference
for the ampersand.

<company>Smith & Sons, Plumbing, Inc.</company>

When viewed in a Web browser, this displays as

Smith & Sons, Plumbing, Inc.

In addition to the five predeclared entity references, you can also create
additional ones, using the document’s Document Type Definition or XML
Schema. Here’s an example of the declaration of an entity that has not been
predeclared:

<?xml version=”1.0” encoding=UTF-8”?>
<!DOCTYPE rtm [
<!ENTITY reg “®”>
<!ENTITY registered-TM “ACME® Fireworks, Inc.”>

]>
<rtm>
®istered-TM;

</rtm>

AE is the code in hexadecimal for the registered trademark symbol. When
displayed in a browser, the rtm document appears as

<rtm> ACME(r) Fireworks, Inc. </rtm>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 495

XML Schema496

Numeric character references
Another way of representing a non-standard character is with a numeric
character reference. This method just uses the decimal or hexadecimal code
for a character. For decimal, the code is preceded by a # sign. For hexadeci-
mal, the code is preceded by #x. First decimal:

<trademark>ACME® Fireworks, Inc.</trademark>

and then hexadecimal:

<trademark>ACME® Fireworks, Inc.</trademark>

XML Schema
XML Schema is one of several XML schema languages that are more powerful
and flexible than the DTD (Document Type Definition) used in the earlier
“Entity references” section. A schema is a set of rules that a valid XML docu-
ment must conform to. XML Schema does that, but goes beyond to the extent
of validating information that adheres to specific data types. It is particularly
well suited to validating document processing software.

An XML Schema Definition (XSD) is an instance of XML Schema and usually
has a filename extension of .xsd. Here’s an example of a simple XSD describ-
ing a member of the Oregon Lunar Society:

<xs:schema
xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=”members” type=”Members”/>
<xs:complexType name=”Members”>
<xs:sequence>
<xs:element name=”firstname” type=”xs:string”/>
<xs:element name=”lastname” type=”xs:string”/>
<xs:element name=”officeheld” type=”xs:string”/>
</xs:sequence>
</ComplexType>
</xs:schema>

An XML document that conforms to this schema might look like the following:

<members
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNameSpaceSchemaLocation=”members.xsd”>
<firstname>Bryce</firstname>
<lastname>Thoreau</lastname>
<officeheld>Treasurer</officeheld>

</members>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 496

Book VI
Chapter 1

XM
L/SQL Basics

The XML Data Type 497

An XSD is written in XML Schema and applies constraints on the elements
and attributes that may appear in the XML documents to which it applies.
It also defines the relationships among the elements and attributes, as well
as the types of data that they may contain. XSDs are used to validate XML
documents.

Relating SQL to XML
XML, like HTML, is a markup language, which means it’s not a full-function
language such as C++ or Java. It’s not even a data sublanguage such as SQL.
However, unlike those languages, it is cognizant of the content of the data it
transports. Where HTML deals only with formatting the text and graphics in a
document, XML gives structure to the document’s content. XML itself does not
deal with formatting. To do that, you have to augment XML with a style sheet.
As it does with HTML, a style sheet applies formatting to an XML document.

SQL and XML provide two different ways of structuring data so that you can
save it and retrieve selected information from it:

✦ SQL is an excellent tool for dealing with numeric and text data that can
be categorized by data type and have a well-defined size. SQL was cre-
ated as a standard way to maintain and operate on data kept in rela-
tional databases.

✦ XML is better at dealing with free-form data that cannot be easily catego-
rized. The driving motivations for the creation of XML were to provide a
universal standard for transferring data between dissimilar computers
and for displaying it on the World Wide Web.

The strengths and goals of SQL and XML are complementary. Each reigns
supreme in its own domain and forms alliances with the other to give users
the information they want, when they want it, and where they want it.

The XML Data Type
SQL:2003 introduced a new data type to SQL: the XML type. This means that
conforming implementations can store and operate on XML-formatted data
directly, without first converting to XML from one of the other SQL data types.

The XML data type, including its subtypes, although intrinsic to any imple-
mentation that supports it, acts like a user-defined type (UDT). The XML
type brings SQL and XML into close contact because it enables applications
to perform SQL operations on XML content, and XML operations on SQL
content. You can include a column of the XML type with columns of any of

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 497

The XML Data Type498

the other predefined types covered in Chapter 5 of Book I in a join operation
in the WHERE clause of a query. In true relational database fashion, your
DBMS determines the optimal way to execute the query, and then does it.

When to use the XML type
Whether you should store data in XML format depends on what you plan to
do with that data. Here are some instances where it makes sense to store
data in XML format:

✦ When you want to store an entire block of data and retrieve the whole
block later.

✦ When you want to be able to query the whole XML document. Some
implementations have expanded the scope of the EXTRACT operator to
enable extracting desired content from an XML document.

✦ When you need strong typing of data inside SQL statements. Using the
XML type guarantees that data values are valid XML values and not just
arbitrary text strings.

✦ To ensure compatibility with future, as yet unspecified, storage systems
that might not support existing types such as CLOB. (See Chapter 5 of
Book I for more information on CLOB.)

✦ To take advantage of future optimizations that support only the XML type.

Here’s an example of how you might use the XML type:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30),
Comments XML(SEQUENCE)) ;

This syntax stores an XML document in the Comments column of the
CLIENT table, although not all implementations may support it yet. The doc-
ument might look something like the following:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 498

Book VI
Chapter 1

XM
L/SQL Basics

Mapping SQL to XML 499

<ResponseRequested>Yes</ResponseRequested>
</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the
leopard seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>

</Comment>
</Comments>

When not to use the XML type
On many occasions, it doesn’t make sense to use the XML type. Most data in
relational databases today is better off in its current format than it is in XML
format. Here are a couple of examples of when not to use the XML type:

✦ When the data breaks down naturally into a relational structure with
tables, rows, and columns

✦ When you need to update pieces of the document, rather than deal with
the document as a whole

Mapping SQL to XML
To exchange data between SQL databases and XML documents, the various
elements of an SQL database must be translatable (mapped) into equivalent
elements of an XML document, and vice versa. This translation needs to
happen for several kinds of things, as described in the following sections.

Mapping character sets to XML
In SQL, the character sets supported are implementation-dependent. This
means that IBM’s DB2 may support character sets that are not supported
by Microsoft’s SQL Server. SQL Server may support character sets not sup-
ported by Oracle. Although the most common character sets are almost uni-
versally supported, using a less common character set may make it difficult
to migrate your database and application from one RDBMS platform to
another.

XML has no compatibility issue with character sets — it supports only one,
Unicode. This is a good thing from the point of view of exchanging data
between any given SQL implementation and XML. All the RDBMS vendors
have to define a mapping between strings of each of their character sets and
Unicode, as well as a reverse mapping from Unicode to each of their charac-
ter sets. Luckily, XML does not also support multiple character sets. If it did,
vendors would have a many-to-many problem, requiring many more map-
pings and reverse mappings.

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 499

Mapping SQL to XML500

Mapping identifiers to XML
XML is much stricter than SQL in the characters it allows in identifiers.
Characters that are legal in SQL but illegal in XML must be mapped to some-
thing legal before they can become part of an XML document. SQL supports
delimited identifiers. This means that all sorts of odd characters such as %,
$, and & are legal, as long as they’re enclosed within double quotes. Such
characters are not legal in XML. Furthermore, XML Names that begin with
the characters XML in any combination of cases, are reserved and thus
cannot be used with impunity. SQL identifiers that begin with those letters
have to be changed.

An agreed-upon mapping bridges the identifier gap between SQL and XML. In
moving from SQL to XML, all SQL identifiers are converted to Unicode. From
there, any SQL identifiers that are also legal XML Names are left unchanged.
SQL identifier characters that are not legal XML Names are replaced with a
hexadecimal code that either takes the form _xNNNN_ or _xNNNNNNNN_,
where N represents an uppercase hexadecimal digit. For example, the under-
score _ is represented by _x005F_. The colon is represented by _x003A_.
These representations are the codes for the Unicode characters for the
underscore and colon. The case where an SQL identifier starts with the
characters x, m, and l is handled by prefixing all such instances with a code
in the form _xFFFF_.

Conversion from XML to SQL is much easier. All you need to do is scan the
characters of an XML name for a sequence of _xNNNN_ or _xNNNNNNNN_.
Whenever you find such a sequence, replace it with the character that the
Unicode corresponds to. For example, when you come across _x003A_,
replace it with :. If an XML Name begins with the characters _xFFFF_,
ignore them.

By following these simple rules, you can map an SQL identifier to an XML
Name and then back to an SQL identifier again. However, this happy situa-
tion does not hold for a mapping from XML Name to SQL identifier and back
to XML Name.

Mapping data types to XML
The SQL standard specifies that an SQL data type be mapped to the closest
possible XML Schema data type. The designation closest possible means that
all values allowed by the SQL type are allowed by the XML Schema type, and
the fewest possible values not allowed by the SQL type are allowed by the
XML Schema type. XML facets, such as maxInclusive and minInclusive,
can restrict the values allowed by the XML Schema type to the values allowed
by the corresponding SQL type. For example, if the SQL data type restricts
values of the INTEGER type to the range –2157483648<value<2157483647,

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 500

Book VI
Chapter 1

XM
L/SQL Basics

Mapping SQL to XML 501

in XML the maxInclusive value can be set to 2157483647, and the
minInclusive value can be set to –2157483648. Here’s an example of such
a mapping:

<xsd:simpleType>
<xsd:restriction base=”xsd:integer”>

<xsd:maxInclusive value=”2157483647”/>
<xsd:minInclusive value=”-2157483648”/>
<xsd:annotation>

<sqlxml:sqltype name=”INTEGER”/>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>

The annotation section retains information from the SQL type definition that
is not used by XML but may be of value later if this document is mapped
back to SQL.

Mapping non-predefined data types to XML
In the SQL standard, the non-predefined data types include domain, distinct
UDT, row, array, and multiset. You can map each of these to XML-formatted
data, using appropriate XML code. The next few sections show examples of
how to map these types.

Domain
To map an SQL domain to XML, you must first have a domain. For this exam-
ple, create one by using a CREATE DOMAIN statement.

CREATE DOMAIN WestCoast AS CHAR (2)
CHECK (State IN (‘CA’, ‘OR’, ‘WA’, ‘AK’)) ;

Now, create a table that uses that domain.

CREATE TABLE WestRegion (
ClientName Character (20) NOT NULL,
State WestCoast NOT NULL
) ;

Here’s the XML Schema to map the domain into XML:

<xsd:simpleType>
Name=”DOMAIN.Sales.WestCoast”>

<xsd:annotation>
<xsd:appinfo>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 501

Mapping SQL to XML502

<sqlxml:sqltype kind=”DOMAIN”
schemaName=”Sales”
typeName=”WestCoast”
mappedType=”CHAR_2”
final=”true”/>

<xsd:appinfo>
</xsd:annotation>

<xsd:restriction base=”CHAR_2”/>

</xsd:simpleType>

When this mapping is applied, it results in an XML document that contains
something like the following:

<WestRegion>
<row>
<ClientName>Nootka Enterprises</ClientName>
<State>AK</State>
</row>
<row>
<ClientName>Surfin’ USA</ClientName>
<State>CA</State>
</row>
<row>
<ClientName>Cornelius Semiconductor</ClientName>
<State>OR</State>
</row>
<row>
<ClientName>Orca Inc.</ClientName>
<State>WA</State>
</row>

</WestRegion>

Distinct UDT
With a distinct UDT, you can do much the same as what you can do with a
domain, but with stronger typing. Here’s how:

CREATE TYPE WestCoast AS Character (2) FINAL ;

The XML Schema to map this type to XML is as follows:

<xsd:simpleType>
Name=”UDT.Sales.WestCoast”>

<xsd:annotation>
<xsd:appinfo>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 502

Book VI
Chapter 1

XM
L/SQL Basics

Mapping SQL to XML 503

<sqlxml:sqltype kind=”DISTINCT”
schemaName=”Sales”
typeName=”WestCoast”
mappedType=”CHAR_2”
final=”true”/>

<xsd:appinfo>
</xsd:annotation>

<xsd:restriction base=”CHAR_2”/>

</xsd:simpleType>

This creates an element that is the same as the one created for the preced-
ing domain.

Row
The ROW type enables you to cram a whole row’s worth of information into a
single field of a table row. You can create a ROW type as part of the table defi-
nition, in the following manner:

CREATE TABLE CONTACTINFO (
Name CHARACTER (30)
Phone ROW (Home CHAR (13), Work CHAR (13))

) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=”ROW.1”>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=”ROW”>
<sqlxml:field name=”Home”

mappedType=”CHAR_13”/>
<sqlxml:field name=”Work”

mappedType=”CHAR_13”/>
</sqlxml:sqltype>

<xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=”Home” nillable=”true”

Type=”CHAR_13”/>
<xsd:element Name=”Work” nillable=”true”

Type=”CHAR_13”/>
</xsd:sequence>

</xsd:complexType>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 503

Mapping SQL to XML504

This mapping could generate the following XML for a column:

<Phone>
<Home>(888)555-1111</Home>
<Work>(888)555-1212</Work>

</Phone>

Array
You can put more than one element in a single field by using an Array
rather than the ROW type. For example, in the CONTACTINFO table, declare
Phone as an array and then generate the XML Schema that maps the array
to XML.

CREATE TABLE CONTACTINFO (
Name CHARACTER (30),
Phone CHARACTER (13) ARRAY [4]

) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=”ARRAY_4.CHAR_13”>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=”ARRAY”
maxElements=”4”
mappedElementType=”CHAR_13”/>

</xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=”element”
minOccurs=”0” maxOccurs=”4”
nillable=”true” type=”CHAR_13”/>

</xsd:sequence>

</xsd:complexType>

This would generate something like this:

<Phone>
<element>(888)555-1111</element>
<element>xsi:nil=”true”/>
<element>(888)555-3434</element>

</Phone>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 504

Book VI
Chapter 1

XM
L/SQL Basics

Mapping SQL to XML 505

The element in the array containing xsi:nil=”true” reflects the fact that
the second phone number in the source table contains a null value.

Multiset
The phone numbers in the preceding example could just as well be stored
in a multiset as in an array. To map a multiset, use something akin to the
following:

CREATE TABLE CONTACTINFO (
Name CHARACTER (30),
Phone CHARACTER (13) MULTISET

) ;

You can now map this type to XML with the following schema:

<xsd:complexType Name=”MULTISET.CHAR_13”>

<xsd:annotation>
<xsd:appinfo>

<sqlxml:sqltype kind=”MULTISET”
mappedElementType=”CHAR_13”/>

</xsd:appinfo>
</xsd:annotation>

<xsd:sequence>
<xsd:element Name=”element”
minOccurs=”0” maxOccurs=”unbounded”
nillable=”true” type=”CHAR_13”/>

</xsd:sequence>

</xsd:complexType>

This would generate something like:

<Phone>
<element>(888)555-1111</element>
<element>xsi:nil=”true”/>
<element>(888)555-3434</element>

</Phone>

Mapping tables to XML
You can map a table to an XML document. Similarly, you can map all the
tables in a schema or all the tables in a catalog. Privileges are maintained by
the mapping. A person who has the SELECT privilege on only some table
columns is allowed to map only those columns to the XML document. The

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 505

Mapping SQL to XML506

mapping actually produces two documents, one that contains the data in the
table and the other that contains the XML Schema that describes the first
document. Here’s an example of the mapping of an SQL table to an XML data-
containing document:

<CUSTOMER>
<row>

<FirstName>Abe</FirstName>
<LastName>Abelson</LastName>
<City>Springfield</City>
<AreaCode>714</AreaCode>
<Telephone>555-1111</Telephone>

</row>
<row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
.
.
.
</CUSTOMER>

The root element of the document has been given the name of the table.
Each table row is contained within a <row> element, and each row element
contains a sequence of column elements, each named after the correspon-
ding column in the source table. Each column element contains a data
value.

Handling null values
Because SQL data might include null values, you must decide how to repre-
sent them in an XML document. You can represent a null value either as nil
or absent. If you choose the nil option, the attribute xsi:nil=”true”
marks the column elements that represent null values. It might be used in
the following way:

<row>
<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City xsi:nil=”true” />
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 506

Book VI
Chapter 1

XM
L/SQL Basics

Mapping SQL to XML 507

If you choose the absent option, you could implement it as follows:

<row>
<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>

In this case, the row containing the null value is absent. There is no refer-
ence to it.

Creating an XML schema for an SQL table
When mapping from SQL to XML, the first document generated is the one
that contains the data. The second contains the schema information. As an
example, consider the schema for the CUSTOMER document shown in the
“Mapping tables to XML” section, earlier in this chapter.

<xsd:schema>
<xsd:simpleType name=”CHAR_15”>

<xsd:restriction base=”xsd:string”>
<xsd:length value = “15”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”CHAR_25”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “25”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=”CHAR_3”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “3”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=”CHAR_8”>
<xsd:restriction base=”xsd:string”>

<xsd:length value = “8”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:sequence>
<xsd:element name=”FirstName” type=”CHAR_15”/>
<xsd:element name=”LastName” type=”CHAR_25”/>
<xsd:element

name=”City” type=”CHAR_25 nillable=”true”/>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 507

Operating on XML Data with SQL Functions508

<xsd:element
name=”AreaCode” type=”CHAR_3” nillable=”true”/>

<xsd:element
name=”Telephone” type=”CHAR_8” nillable=”true”/>

</xsd:sequence>

</xsd:schema>

This schema is appropriate if the nil approach to handling nulls is used.
The absent approach requires a slightly different element definition. For
example:

<xsd:element
name=”City” type=”CHAR_25 minOccurs=”0”/>

This element specifies that the minimum number of occurrences of City is
zero. In other words, the City field need not hold a value.

Operating on XML Data with SQL Functions
The SQL standard defines a number of operators, functions, and pseudo-
functions that, when applied to an SQL database, produce an XML result, or
when applied to XML data produce a result in standard SQL form. The func-
tions include XMLELEMENT, XMLFOREST, XMLCONCAT, and XMLAGG. I give
brief descriptions of these, as well as several others that are frequently used
when publishing to the Web. Some of the functions rely heavily on XQuery, a
new, standard query language designed specifically for querying XML data. I
say more about XQuery in Chapter 3 of this minibook.

XMLELEMENT
The XMLELEMENT operator translates a relational value into an XML element.
You can use the operator in a SELECT statement to pull data in XML format
from an SQL database and publish it on the Web. Here’s an example:

SELECT c.LastName
XMLELEMENT (NAME “City”, c.City) AS “Result”

FROM CUSTOMER c
WHERE LastName=”Abelson” ;

Here is the result returned:

LastName Result

Abelson <City>Springfield</City>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 508

Book VI
Chapter 1

XM
L/SQL Basics

Operating on XML Data with SQL Functions 509

XMLFOREST
The XMLFOREST operator produces a list, or forest, of XML elements from a
list of relational values. Each of the operator’s arguments produces a new
element. Here’s an example of this operator:

SELECT c.LastName
XMLFOREST (c.City,
c.AreaCode,
c.Telephone) AS “Result”

FROM CUSTOMER c
WHERE LastName=”Abelson” OR LastName=”Bailey” ;

This produces the following output:

LastName Result

Abelson <City>Springfield</City>

<AreaCode>714</AreaCode>

<Telephone>555-1111</Telephone>

Bailey <City>Decatur</City>

<AreaCode>714</AreaCode>

<Telephone>555-2222</Telephone>

XMLCONCAT
XMLCONCAT provides an alternate way to produce a forest of elements. It
does so by concatenating its XML arguments. For example:

SELECT c.LastName,
XMLCONCAT(

XMLELEMENT (NAME “first”, c.FirstName,
XMLELEMENT (NAME “last”, c.LastName)
) AS “Result”

FROM CUSTOMER c ;

This produces:

LastName Result

Abelson <first>Abe</first>

<last>Abelson</last>

Bailey <first>Bill</first>

<last>Bailey</last>

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 509

Operating on XML Data with SQL Functions510

XMLAGG
XMLAGG, the aggregate function, takes XML documents or fragments of XML
documents as input and produces a single XML document as output in
GROUP BY queries. The aggregation contains a forest of elements. To illus-
trate the concept:

SELECT XMLELEMENT
(NAME “City”,

XMLATTRIBUTES (c.City AS “name”) ,
XMLAGG (XMLELEMENT (NAME “last” c.LastName)

)
) AS “CityList”

FROM CUSTOMER c
GROUP BY City ;

When run against the CUSTOMER table, this query produces:

CityList

<City name=”Decatur”>
<last>Bailey</last>

</City>
<City name=”Philo”>

<last>Stetson</last>
<last>Stetson</last>
<last>Wood</last>

</City
<City name=”Springfield”>

<last>Abelson</last>
</City>

XMLCOMMENT
The XMLCOMMENT function enables an application to create an XML com-
ment. Its syntax is

XMLCOMMENT (‘comment content’
[RETURNING

{ CONTENT | SEQUENCE }])

For example:

XMLCOMMENT (‘Back up database at 2 am every night.’)

This would create an XML comment that looks like:

<!--Back up database at 2 am every night. -->

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 510

Book VI
Chapter 1

XM
L/SQL Basics

Operating on XML Data with SQL Functions 511

XMLPARSE
The XMLPARSE function performs a non-validating parse of a string to pro-
duce an XML value. You might use it like this:

XMLPARSE (DOCUMENT ‘ GREAT JOB! ‘
PRESERVE WHITESPACE)

The preceding code would produce an XML value that is either XML(UNTYPED
DOCUMENT) or XML(ANY DOCUMENT). Which of the two subtypes would be
chosen is implementation-defined.

XMLPI
The XMLPI function allows applications to create XML processing instruc-
tions. The syntax for this function is

XMLPI NAME target
[, string-expression]
[RETURNING

{ CONTENT | SEQUENCE }])

target identifies the target of the processing instruction. string-
expression is the content of the PI. This function creates an XML comment
of the form:

<? target string-expression ?>

XMLQUERY
The XMLQUERY function evaluates an XQuery expression and returns the
result to the SQL application. The syntax of XMLQUERY is

XMLQUERY (XQuery-expression
[PASSING { By REF | BY VALUE }
argument-list]

RETURNING { CONTENT | SEQUENCE }
{ BY REF | BY VALUE })

Here’s an example of the use of XMLQUERY:

SELECT max_average,
XMLQUERY (

‘for $batting_average in
/player/batting_average

where /player/lastname = $var1
return $batting_average’

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 511

XML Predicates512

PASSING BY VALUE
‘Mantle’ AS var1,

RETURNING SEQUENCE BY VALUE)
FROM offensive_stats

This statement returns the batting average for the New York Yankees star
Mickey Mantle stored in the offensive_stats XML document.

XMLCAST
The XMLCAST function is similar to an ordinary SQL CAST function, but has
some additional restrictions. XMLCAST enables an application to cast a
value from an XML type to either another XML type or an SQL type. Similarly,
you can use it to cast a value from an SQL type to an XML type. The restric-
tions are

✦ At least one of the types involved, either the source type or the destina-
tion type, must be an XML type.

✦ Neither of the types involved may be an SQL collection type, row type,
structured type, or reference type.

✦ Only values of one of the XML types or the SQL null type may be cast to
XML(UNTYPED DOCUMENT) or to XML(ANY DOCUMENT).

Here’s an example:

XMLCAST (CLIENT.ClientName AS XML(UNTYPED CONTENT)

The XMLCAST function is transformed into an ordinary SQL CAST. The only
reason for using a separate keyword is to enforce the preceding restrictions.

XML Predicates
Predicates return a value of true or false. Some new predicates have been
added that specifically relate to XML.

DOCUMENT
The purpose of the DOCUMENT predicate is to determine whether an XML
value is an XML document. It tests to see if an XML value is an instance of
either XML(ANY DOCUMENT) or XML(UNTYPED DOCUMENT). The syntax is

XML-value IS [NOT]
[ANY | UNTYPED] DOCUMENT

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 512

Book VI
Chapter 1

XM
L/SQL Basics

XML Predicates 513

If the expression evaluates to a true value, the predicate returns TRUE; oth-
erwise, it returns FALSE, unless the XML value is a null value, in which case
it returns an UNKNOWN value. If you don’t specify either ANY or UNTYPED, the
default assumption is ANY.

CONTENT
You would use the CONTENT predicate to determine whether an XML value
is an instance of XML(ANY CONTENT) or XML(UNTYPED CONTENT). The
syntax is

XML-value IS [NOT]
[ANY | UNTYPED] CONTENT

As is the case with the DOCUMENT predicate, if you don’t specify either ANY
or UNTYPED, ANY is the default.

XMLEXISTS
As the name implies, you can use this predicate to determine whether a
value exists. Here’s the syntax:

XMLEXISTS (XQuery-expression
[argument-list])

The XQuery expression is evaluated, using the values provided in the argu-
ment list. If the value queried by the XQuery expression is the SQL NULL
value, the predicate’s result is unknown. If the evaluation returns an empty
XQuery sequence, the predicate’s result is FALSE; otherwise, it is TRUE.
You can use this predicate to determine whether an XML document con-
tains some particular content, before using a portion of that content in an
expression.

VALID
The VALID predicate is used to evaluate an XML value to see if it is valid in
the context of a registered XML schema. The syntax of the VALID predicate
is more complex than is the case for most predicates:

xml-value IS [NOT] VALID
[XML valid identity constraint option]
[XML valid according-to clause]

This predicate checks to see if the XML value is one of the five XML types,
that is, XML(SEQUENCE), XML(ANY CONTENT), XML(UNTYPED CONTENT),
XML(ANY DOCUMENT), XML(UNTYPED DOCUMENT). Additionally, it might

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 513

XML Predicates514

optionally check to see if the validity of the XML value depends on identity
constraints, and whether it is valid with respect to a particular XML schema
(the validity target).

There are four possibilities for the identify-constraint-option com-
ponent of the syntax:

✦ WITHOUT IDENTITY CONSTRAINTS

✦ WITH IDENTITY CONSTRAINTS GLOBAL

✦ WITH IDENTITY CONSTRAINTS LOCAL

✦ DOCUMENT

If the identify-constraint-option syntax component isn’t specified,
WITHOUT IDENTITY CONSTRAINTS is assumed. If DOCUMENT is specified, it
acts like a combination of the DOCUMENT predicate and the VALID predicate
WITH IDENTITY CONSTRAINTS GLOBAL.

WITH IDENTIY CONSTRAINTS GLOBAL means the value is checked not
only against the XML schema, but also against the XML rules for ID/IDREF
relationships. ID and IDREF are XML attribute types that identify elements
of a document.

WITH IDENTITY CONSTRAINTS LOCAL means the value is checked against
the XML schema, but not against the XML rules for ID/IDREF or the XML
schema rules for identify constraints.

The XML valid according-to clause identifies the schema that the value
will be validated against.

36 119280 bk06ch01.qxp 5/23/07 10:28 AM Page 514

Chapter 2: Storing XML
Data in SQL Tables

In This Chapter
� Inserting XML data into an SQL pseudo-table

� Creating tables that hold XML data

� Updating XML documents

� Getting to know Oracle’s tools for updating tables with XML

� Discovering Microsoft’s tools for updating tables with XML

The latest update to the ANSI/ISO SQL specification (the 2005 update to
SQL:2003) details how to store XML data in an SQL-compliant database

and operate on it with SQL. In this chapter, I cover SQL’s basic data manipu-
lation operations as applied to XML data. Because the primary focus of this
book is SQL, I assume that you are already up to speed on XML.

Inserting XML Data into an SQL Pseudo-Table
Until recently, when thinking about the relationship between SQL and XML,
the emphasis has been on converting SQL table data into XML to make it
accessible on the Internet. The most recent addition to the SQL standard
addresses the complementary problem of converting XML data into SQL
tables so that it can be easily queried using standard SQL statements.
The XMLTABLE pseudo-function performs this operation. The syntax for
XMLTABLE is

XMLTABLE ([namespace-declaration,]
XQuery-expression
[PASSING argument-list]
COLUMNS XMLtbl-column-definitions

where argument-list is

value-expression AS identifier

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 515

Inserting XML Data into an SQL Pseudo-Table516

and XMLtbl-column-definitions is a comma-separated list of column
definitions, which may contain:

column-name FOR ORDINALITY

or

column-name data-type
[BY REF | BY VALUE]
[default-clause]
[PATH XQuery-expression]

Here’s an example of how you might use XMLTABLE to extract data from an
XML document into an SQL pseudo-table. A pseudo-table is not persistent,
but in every other respect behaves like a normal SQL table:

SELECT clientphone.*
FROM

clients_xml ,
XMLTABLE(

‘for $m in
$col/client

return
$m’

PASSING clients_xml.client AS “col”
COLUMNS

“ClientName” CHARACTER (30) PATH ‘clientname’ ,
“Phone” CHARACTER (13) PATH ‘phone’

) AS clientphone

When run, the preceding code gives the following result:

ClientName Phone
------------------------------ -------------
Abe Abelson (714)555-1111
Bill Bailey (714)555-2222
Chuck Wood (714)555-3333

(3 rows in clientphone)

If you want to make it persistent, you can create a table with a CREATE
TABLE statement as follows:

CREATE TABLE clientphone AS
clients_xml ,

XMLTABLE(
‘for $m in

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 516

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Updating XML Documents 517

$col/client
return

$m’
PASSING clients_xml.client AS “col”
COLUMNS

“ClientName” CHARACTER (30) PATH ‘clientName’ ,
“Phone” CHARACTER (13) PATH ‘phone’

)

Creating a Table to Hold XML Data
Although you can create a table to hold XML data using the CREATE TABLE
statement wrapped around an XMLTABLE function, as shown in the previous
section, you can also create a table the old-fashioned way, specifying one or
more columns as having the XML data type, and then, at a later time, insert-
ing XML data into the table. It is just as simple as this:

CREATE TABLE CLIENT (
ClientName CHARACTER (30) NOT NULL,
Address1 CHARACTER (30),
Address2 CHARACTER (30),
City CHARACTER (25),
State CHARACTER (2),
PostalCode CHARACTER (10),
Phone CHARACTER (13),
Fax CHARACTER (13),
ContactPerson CHARACTER (30),
Comments XML(SEQUENCE)) ;

Tables can hold a mix of data of the XML data type and classic SQL data
types, as shown here, or you could create a table in which all columns con-
tain XML data.

Updating XML Documents
At the present time, there is no standard way to update XML documents
that are stored in some form of persistent storage, such as an SQL database.
There is also no standard way to modify transient XML documents, such as
stock tickers. Furthermore, there’s no standard way to add new data to an
existing XML document. Methods for performing these operations have not
been added to the XQuery 1.0 standard because update operations carry
some messy baggage. Such operations can cause side effects that complicate
operations.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 517

Discovering Oracle’s Tools for Updating XML Data in a Table518

Regardless of whether a standard method exists, you still need to be able to
modify XML documents. Some of the required capabilities that you should
be able to do include

✦ Insert new nodes at specified positions in an instance of a data model

✦ Change the value of a node in an instance of a data model

✦ Replace nodes in an instance of a data model

✦ Modify the properties of nodes in an instance of a data model

✦ Delete a node in an instance of a data model

Because you clearly need to be able to update XML documents that reside in
SQL databases, and because no universally recognized standard way of
doing so exists, DBMS vendors have developed proprietary solutions to the
problem. I briefly describe the Oracle and Microsoft solutions.

Discovering Oracle’s Tools for Updating
XML Data in a Table

Oracle provides three distinct methods of updating XML data in an Oracle
database:

✦ One method is based on the Document Object Model (DOM) developed
by the World Wide Web Consortium (www.w3.org). It provides methods
for traversing the DOM representation of an XML document, retrieving
values from individual nodes, inserting nodes, deleting nodes, and modi-
fying the values of nodes.

✦ Another method uses a Java API that defines a class to represent the
XML type, along with methods such as insertXML(), updateXML(),
and deleteXML().

✦ The third method is more closely related to SQL/XML. In SQL/XML, appli-
cations use ordinary SQL statements to access XML data stored as values
of the XML type in tables. The SQL function, XMLQUERY(), discussed in
Chapter 1 of this minibook, evaluates an XQuery expression and returns
the result of that evaluation to an SQL application. Oracle extends SQL/
XML with several update functions. There are three functions for inserting
new data, one for deleting data, and one for updating existing data.

APPENDCHILDXML
Unlike the row and column structure of an SQL database table, XML docu-
ments have a treelike structure. The tree has nodes and branches, with
parent nodes branching out to child nodes. The ultimate parent node, called

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 518

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Discovering Oracle’s Tools for Updating XML Data in a Table 519

the root node, resides at the base of the tree. The APPENDCHILDXML function
adds a child node to an existing node. The node it adds is the very last sib-
ling of the existing node’s current children. Here’s an example, using the
CLIENT table created in the “Creating a Table to Hold XML Data” section
earlier in this chapter:

UPDATE CLIENT SET Comments =
APPENDCHILDXML(Comments, ‘Comments/Comment’,
XMLTYPE(‘<IssueClosed>Yes</IssueClosed>’))
WHERE EXTRACTVALUE(Comments,
‘/Comments/Comment/ResponseRequested’) = ‘No’;

The second argument of APPENDCHILDXML, ‘Comments/Comment’, is the
XPath expression. It specifies a location within the document. The preceding
code makes the following change to the XML document shown in Chapter 1
of this minibook:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
<IssueClosed>Yes</IssueClosed>
</Comment>

</Comments>

The IssueClosed node has been added as the last child of the Comment node
where ResponseRequested has a value of No.

INSERTCHILDXML
Whereas the APPENDCHILDXML adds a new node to the XML document tree,
INSERTCHILDXML inserts a new value into the document at the node speci-
fied by the XPath expression. Following is an example:

UPDATE CLIENT SET Comments =
INSERTCHILDXML(Comments, ‘Comments/Comment’, ‘MessageText’,
XMLTYPE(‘<MessageText>I am only interested in Gentoo
penguins.</MessageText>’))

WHERE EXTRACTVALUE(Comments,
‘/Comments/Comment/CommentNo’) = 1;

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 519

Discovering Oracle’s Tools for Updating XML Data in a Table520

This code adds another instance of MessageText to comment number 1. This
is the result:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<MessageText>I am only interested in Gentoo
penguins.</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
<IssueClosed>Yes</IssueClosed>
</Comment>

</Comments>

INSERTXMLBEFORE
The INSERTXMLBEFORE function inserts a new value before the node speci-
fied by the XPath expression. The following example shows the difference
between INSERTXMLBEFORE and INSERTCHILDXML.

UPDATE CLIENT SET Comments =
INSERTXMLBEFORE(Comments,’Comments/Comment/MessageText[1]’,
XMLTYPE(‘<MessageText>I am only interested in Gentoo
penguins.</MessageText>’))

WHERE EXTRACTVALUE(Comments,
‘/Comments/Comment/CommentNo’) = 1;

This code adds another instance of MessageText to comment number 1,
before the existing instance. The result follows:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>I am only interested in Gentoo
penguins.</MessageText>

<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 520

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Discovering Oracle’s Tools for Updating XML Data in a Table 521

<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
<IssueClosed>Yes</IssueClosed>
</Comment>

</Comments>

The new addition to Comment Number 1 has been placed ahead of the origi-
nal message.

DELETEXML
The DELETEXML function deletes the node matched by the XPath expression
in the target XML document. As an example, I remove the IssueClosed node
from the Comments document. Here’s the document before the deletion:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
<IssueClosed>Yes</IssueClosed>
</Comment>

</Comments>

Here’s the deletion operation:

UPDATE CLIENT SET Comments =
DELETEXML(Comments, ‘Comments/Comment/IssueClosed’)
WHERE EXTRACTVALUE(Comments,
‘/Comments/Comment/ResponseRequested’) = ‘No’;

The result is

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 521

Discovering Oracle’s Tools for Updating XML Data in a Table522

<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
</Comment>

</Comments>

UPDATEXML
The UPDATEXML function updates an existing value in an XML document. To
show this in operation, change the ResponseRequested element of the
Comments document. First, here’s the document before the update:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Yes</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>
<ResponseRequested>No</ResponseRequested>
</Comment>

</Comments>

Next the update operation itself:

UPDATE CLIENT SET Comments =
UPDATEXML(Comments,
‘Comments/Comment/ResponseRequested/text()’, Maybe)

WHERE EXTRACTVALUE(Comments,
‘/Comments/Comment/ResponseRequested’) = ‘Yes’;

This causes the following result:

<Comments>
<Comment>
<CommentNo>1</CommentNo>
<MessageText>Is VetLab equipped to analyze penguin
blood?</MessageText>
<ResponseRequested>Maybe</ResponseRequested>

</Comment>
<Comment>
<CommentNo>2</CommentNo>
<MessageText>Thanks for the fast turnaround on the leopard
seal sputum sample.</MessageText>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 522

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 523

<ResponseRequested>No</ResponseRequested>
</Comment>

</Comments>

Oracle’s extension functions UPDATEXML, INSERTCHILDXML,
INSERTXMLBEFORE, DELETEXML, and UPDATEXML are transformation func-
tions rather than true update functions. They do not update an XML value
“in place,” but rather return an updated copy of the value they have
changed. When used with an SQL UPDATE statement, as shown here, this
difference becomes moot.

Introducing Microsoft’s Tools for
Updating XML Data in a Table

Like Oracle, Microsoft provides more than one way to update XML data in its
SQL Server 2005 DBMS:

✦ Using the modify() method as part of the SET clause of an SQL
UPDATE statement: A parameter determines whether the operation is an
insert, an update, or a delete operation.

✦ Using a set of .NET classes: Some of these classes provide methods for
setting the values of nodes, inserting nodes into specified locations,
deleting nodes, and replacing nodes.

✦ Using the OPENXML function: This function is part of SQL Server’s
Transact-SQL implementation of the SQL language. This approach
works for inserting data into a table that pulls its data from an XML doc-
ument that is part of SQL Server’s Transact-SQL implementation of the
SQL language.

✦ Using updategrams: With an updategram, you can insert, delete, or
update XML data in a database table. An updategram works against the
XML views provided by an annotated XSD or XDR schema. One example
of such a schema is the mapping schema, which has the information
needed to map XML elements and attributes to the corresponding data-
base tables and columns. The updategram uses this mapping informa-
tion to update the database tables and columns.

Updategram namespace and keywords
An updategram contains three keywords: <sync>, <before>, and <after>.
They all exist in the namespace urn:scehmas-microsoft-com:xml-
updategram. You can use any namespace prefix that you want. For the
examples that follow, I use updg as a namespace prefix to denote the
updategram namespace.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 523

Introducing Microsoft’s Tools for Updating XML Data in a Table524

An updategram is a template that contains <sync>, <before>, and
<after> blocks. Here’s an example of the template:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync [mapping-schema= “AnnotatedSchemaFile.xml”] >
<updg:before>

...
</updg:before>
<updg:after>

...
</updg:after>

</updg:sync>
</ROOT>

The code references a mapping-schema named AnnotatedSchemaFile.xml. I
discuss mapping schemas in the following section.

The three keywords are defined as follows:

✦ <before>: The state of a record instance before the update.

✦ <after>: The state the record instance is to have after the update.

✦ <sync>: A block that contains the <before> and <after> blocks.
A <sync> block may contain more than one set of <before> and
<after> blocks, which are always specified in pairs. A sync block is an
atomic item; either all of it is processed or none of it. In that sense, it is
similar to a transaction in SQL. If you specify multiple <sync> blocks in
an updategram and one of them fails, the other <sync> blocks proceed
normally. They are not affected by the failure. Thus, an updategram is
not atomic.

You can do an insert, update, or delete with an updategram. Which opera-
tion is performed depends on the contents of the <before> and <after>
blocks.

If the <before> block is empty, but there is a record instance in the
<after> block, an insert operation is being performed.

If the <before> block contains a record instance, but the <after> block is
empty, a delete operation is being performed.

If both the <before> block and the <after> block contain a record
instance, the record instance in the <before> block is being updated to the
record instance in the <after> block.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 524

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 525

Specifying a mapping schema
Because the structure of an XML document, being a tree, is fundamentally
different than the structure of an SQL table with rows and columns, in order
for XML data to be placed into an SQL table, and vice versa, there must be a
translation from one structure to another. This translation is called a map-
ping schema. In the simplest case, each element in a <before> block or
<after> block maps to a table, and each element’s child element or attrib-
ute maps to a column in its corresponding table. This situation is called
implicit or default mapping. If such simple correspondence between the XML
document and the SQL table does not exist, you must explicitly specify a
mapping schema in which the elements and attributes of the updategram
match the elements and attributes of the mapping schema.

Implicit mapping
In many cases, an updategram can perform an update without an explicit
mapping schema, relying on the default mapping schema instead.

Inserting an element of an XML document into a record in an SQL database
Look at this example of an insert operation, using implicit mapping:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>
</updg:before>
<updg:after>
<OLS.MEMBERS MemberID=”9”

FirstName=”Sam”
LastName=”Shovel”
OfficeHeld=”Investigator”
Email=”hammett@book.com”
Phone=”(503)555-8004”
Street=”154 Polk St.”
City=”Carver”
State=”OR”
Zip=”97003”/>

</updg:after>
</updg:sync>

</ROOT>

This code inserts a new record into the Oregon Lunar Society’s MEMBERS
table. For this to work without an explicit mapping schema, the MEMBERS
element must map to the MEMBERS table in the OLS database, and the
attributes specified in the <after> block must map to the columns of the
MEMBERS table. In an insert operation, the empty <before> block is
optional. You can leave it out if you want to.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 525

Introducing Microsoft’s Tools for Updating XML Data in a Table526

Updating a record in an SQL database from an element of an XML document
Here’s an example of using an updategram to modify the information in an
existing SQL table:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>
<OLS.MEMBERS MemberID=”9” />

</updg:before>
<updg:after>
<OLS.MEMBERS Phone=”(503)555-5643” />

</updg:after>
</updg:sync>

</ROOT>

This code updates the phone number for the person with MemberID=9. The
updategram uses the columns in the <before> block to find the desired
record. Because MemberID is the primary key of the MEMBERS table, by
itself, it is sufficient to identify the desired row.

Deleting a record in an SQL database with an updategram
You can also delete one or more records from an SQL table using an update-
gram. Here’s an example that deletes two records from the MEMBERS table.

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>

<OLS.MEMBERS MemberID=”8”/>
<OLS.MEMBERS MemberID=”9”/>

</updg:before>
<updg:after>
</updg:after>

</updg:sync>
</ROOT>

The fact that this updategram has content in its <before> block but an
empty <after> block tells you that it is a delete operation.

Explicit mapping
If you are using an updategram to make a simple insertion, update, or dele-
tion, implicit mapping using the default schema works well. However, if you
want to perform a complex update, such as inserting records into multiple
tables that have a parent-child relationship, you need to specify a mapping
schema in order to make sure things end up where you want them to. The
mapping schema should be in the same directory as your updategram, or
you will need to specify the path to it. Two different kinds of mapping
schema are in use, either one of which will work.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 526

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 527

Creating an updategram with an XSD schema
XSD stands for XML Schema Definition and is the currently preferred method
of specifying a mapping schema. Following is a mapping schema that maps
the <MEMBERS> element to the OLS.MEMBERS table:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”MEMBERS” sql:relation=”OLS.MEMBERS” >
<xsd:complexType>

<xsd:attribute name=”MemberID”
sql:field=”MemberID”
type=”xsd:integer” />

<xsd:attribute name=”FirstName”
sql:field=”FirstName”
type=”xsd:string” />

<xsd:attribute name=”LastName”
sql:field=”LastName”
type=”xsd:string” />

<xsd:attribute name=”OfficeHeld”
sql:field=”OfficeHeld”
type=”xsd:string” />

<xsd:attribute name=”Email”
sql:field=”Email”
type=”xsd:string” />

<xsd:attribute name=”Phone”
sql:field=”Phone”
type=”xsd:string” />

<xsd:attribute name=”Street”
sql:field=”Street”
type=”xsd:string” />

<xsd:attribute name=”City”
sql:field=”City”
type=”xsd:string” />

<xsd:attribute name=”State”
sql:field=”State”
type=”xsd:string” />

<xsd:attribute name=”Zip”
sql:field=”Zip”
type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

Save this mapping schema in a file named, for instance, MembersUpdate
Schema.xml. Next save the following updategram in a file named
Member9Updategram.xml in the same directory.

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”MembersUpdateSchema.xml”>
<updg:before>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 527

Introducing Microsoft’s Tools for Updating XML Data in a Table528

</updg:before>
<updg:after>
<OLS.MEMBERS MemberID=”9”

FirstName=”Sam”
LastName=”Shovel”
OfficeHeld=”Investigator”
Email=”hammett@book.com”
Phone=”(503)555-8004”
Street=”154 Polk St.”
City=”Carver”
State=”OR”
Zip=”97003”/>

</updg:after>
</updg:sync>

</ROOT>

Creating an updategram with an XDR schema
XDR is an older method of specifying a mapping schema and is being gradu-
ally replaced by XSD. Here is an XDR schema that is equivalent to the XSD
schema given previously:

<?xml version=”1.0” ?>
<Schema xmlns=”urn:schemas-microsoft-com:xml-data”

xmlns:dt=”urn:schemas-microsoft-com:datatypes”
xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>

<ElementType name=”MEMBERS” sql:relation=”OLS.MEMBERS” >
<AttributeType name=”MemberID” />
<AttributeType name=”FirstName” />
<AttributeType name=”LastName” />
<AttributeType name=”OfficeHeld” />
<AttributeType name=”Email” />
<AttributeType name=”Phone” />
<AttributeType name=”Street” />
<AttributeType name=”City” />
<AttributeType name=”State” />
<AttributeType name=”Zip” />

<attribute type=”MemberID” sql:field=”MemberID” />
<attribute type=”FirstName” sql:field=”FirstName” />
<attribute type=”LastName” sql:field=”LastName” />
<attribute type=”OfficeHeld” sql:field=”OfficeHeld” />
<attribute type=”Email” sql:field=”Email” />
<attribute type=”Phone” sql:field=”Phone” />
<attribute type=”Street” sql:field=”Street” />
<attribute type=”City” sql:field=”City” />
<attribute type=”State” sql:field=”State” />
<attribute type=”Zip” sql:field=”Zip” />

</ElementType>
</Schema>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 528

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 529

In these examples, I have made the attribute names in the schema the same
as the corresponding attribute names in the SQL table. This is not necessary.
As long as it is clear which attribute corresponds with which, they can have
different names. The same updategram that was created to work with the
XSD schema will work with this one too.

Creating a mapping schema for tables with a parent-child relationship
In the section on implicit mapping, you don’t really need an explicit mapping
schema for a simple update such as the one shown previously. However, pro-
viding such a schema does no harm. An explicit mapping schema is required
for a more complex update, such as insertions into two tables that have a
parent-child relationship. Here’s an example of an XSD schema for such an
update:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”InvoiceToLine”

parent=”Sales.Invoice”
parent-key=”InvoiceNo”
child=”Sales.InvoiceLine”
child-key=”InvoiceNo” />

</xsd:appinfo>
</xsd:annotation>

<xsd:element name=”Invoice” sql:relation=”Sales.Invoice” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Line”
sql:relation=”Sales.InvoiceLine”
sql:relationship=”InvoiceToLine” >

<xsd:complexType>
<xsd:attribute name=”InvoiceNo”

type=”xsd:integer” />
<xsd:attribute name=”ProductID”

type=”xsd:integer” />
<xsd:attribute name=”UnitPrice”

type=”xsd:decimal” />
<xsd:attribute name=”Quantity”

type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”CustomerID” type=”xsd:string”/>
<xsd:attribute name=”InvoiceNo” type=”xsd:integer”/>
<xsd:attribute name=”InvoiceDate” type=”xsd:date”/>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 529

Introducing Microsoft’s Tools for Updating XML Data in a Table530

</xsd:complexType>
</xsd:element>

</xsd:schema>

After you save this schema as InvoiceUpdateSchema.xml, you can reference
it with an updategram. The following updategram uses this mapping schema
to add a new invoice line record for Invoice Number 1010.

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”InvoiceUpdateSchema.xml” >
<updg:before>

<Invoice InvoiceNo=”1010” />
</updg:before>
<updg:after>
<Invoice InvoiceNo=”1010” >

<Line ProductID=”17” UnitPrice=”$5.95”
Quantity=”2” />

</Order>
</updg:after>

</updg:sync>
</ROOT>

An equivalent XDR schema could look like the following:

<?xml version=”1.0” ?>
<Schema xmlns=”urn:schemas-microsoft-com:xml-data”

xmlns:dt=”urn:schemas-microsoft-com:datatypes”
xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>

<ElementType name=”Line” sql:relation=”Sales.InvoiceLine” >
<AttributeType name=”InvoiceNo” />
<AttributeType name=”ProductID” />
<AttributeType name=”UnitPrice” dt:type=”fixed.14.4” />
<AttributeType name=”Quantity” />

<attribute type=”InvoiceNo” />
<attribute type=”ProductID” />
<attribute type=”UnitPrice” />
<attribute type=”Quantity” />

</ElementType>

<ElementType name=”Invoice” sql:relation=”Sales.Invoice” >
<AttributeType name=”CustomerID” />
<AttributeType name=”InvoiceNo” />
<AttributeType name=”InvoiceDate” />

<attribute type=”CustomerID” />
<attribute type=”InvoiceNo” />
<attribute type=”InvoiceDate” />

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 530

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 531

<element type=”Line” >
<sql:relationship

key-relation=”Sales.Invoice”
key=”InvoiceNo”
foreign-key=”InvoiceNo”
foreign-relation=”Sales.InvoiceLine” />

</element>
</ElementType>
</Schema>

Element-centric mapping
Element-centric updategrams, as the name implies, code items as elements.
Elements contain child elements, which are the properties of the parent ele-
ment. The parent element maps into a table, and the child elements map into
columns in that table. Here’s an example from the OLS database:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:after>
<OLS.MEMBERS>

<MemberID>5</MemberID>
<FirstName>Gus</FirstName>
<LastName>Roderick</LastName>
<OfficeHeld>Webmaster</OfficeHeld>
<Email>hotrod@davenport.net</Email>
<Phone>(503)555-9976</Phone>
<Street>43 Ash St.</Street>
<City>Silverton</City>
<State>OR</State>
<Zip>97078</Zip>

</OLS.MEMBERS>
</updg:after>

</updg:sync>
</ROOT>

Because no mapping schema was specified, this updategram uses implicit
mapping.

Attribute-centric mapping
In attribute-centric mapping, the elements have attributes rather than child
elements. The following updategram, which also uses implicit mapping, is an
example of attribute-centric mapping:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 531

Introducing Microsoft’s Tools for Updating XML Data in a Table532

<updg:/before>
<updg:after>
<OLS.MEMBERS

MemberID=”5”
FirstName=”Gus”
LastName=”Roderick”
OfficeHeld=”Webmaster”
Email=”hotrod@davenport.net”
Phone=”(503)555-9976”
Street=”43 Ash St.”
City=”Silverton”
State=”OR”
Zip=”97078”/>

</OLS.MEMBERS>
</updg:after>

</updg:sync>
</ROOT>

Mixed element-centric and attribute-centric mapping
It’s possible to mix element-centric and attribute-centric mapping in the
same updategram, although why you would want to do so is beyond me.
The difference between the two approaches can lead to confusion. Anyway,
here’s an example:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>
<updg:/before>
<updg:after>
<OLS.MEMBERS

MemberID=”5”
FirstName=”Gus”
LastName=”Roderick”
OfficeHeld=”Webmaster”
Email=”hotrod@davenport.net”
Phone=”(503)555-9976”>
<Street>43 Ash St.</Street>
<City>Silverton</City>
<State>OR</State>
<Zip>97078</Zip>

</OLS.MEMBERS>
</updg:after>

</updg:sync>
</ROOT>

Once again, this code uses implicit mapping.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 532

Book VI
Chapter 2

Storing XM
L Data in

SQL Tables
Introducing Microsoft’s Tools for Updating XML Data in a Table 533

Schemas that allow null values
Sometimes the updategram you are using to insert values into an SQL table
may not have a value for each of the table’s columns. In such a case, you
want to put a null value into the columns for which a value is not specified.
This is an issue because XML, like most computer languages other than SQL,
does not support null values. You can handle this by assigning the xsi:nil
attribute to any element in the updategram that might contain a null value.
In the corresponding XSD schema, you must specify the XSD nillable attrib-
ute. Here’s an example of such a schema:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”MEMBERS” sql:relation=”OLS.MEMBERS” >
<xsd:complexType>

<xsd:attribute name=”MemberID”
sql:field=”MemberID”
type=”xsd:integer” />

<xsd:attribute name=”FirstName”
sql:field=”FirstName”
type=”xsd:string” />

<xsd:attribute name=”LastName”
sql:field=”LastName”
type=”xsd:string” />

<xsd:all>
<xsd:element name=”OfficeHeld”

sql:field=”OfficeHeld”
type=”xsd:string”
nillable=”true”/>

</xsd:all>
<xsd:attribute name=”Email”

sql:field=”Email”
type=”xsd:string” />

<xsd:attribute name=”Phone”
sql:field=”Phone”
type=”xsd:string” />

<xsd:attribute name=”Street”
sql:field=”Street”
type=”xsd:string” />

<xsd:attribute name=”City”
sql:field=”City”
type=”xsd:string” />

<xsd:attribute name=”State”
sql:field=”State”
type=”xsd:string” />

<xsd:attribute name=”Zip”
sql:field=”Zip”
type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 533

Introducing Microsoft’s Tools for Updating XML Data in a Table534

A member of the Oregon Lunar Society might not hold any office, so the
OfficeHeld element is designated as nillable. Here’s an example of an update
gram that uses this schema:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”MembersUpdateSchema.xml”>
<updg:before>
</updg:before>
<updg:after>
<OLS.MEMBERS MemberID=”3”

FirstName=”Tom”
LastName=”Charges”
Email=”waldo@magic.com”
Phone=”(503)555-3211”
Street=”132 22nd St.”
City=”Portland”
State=”OR”
Zip=”97245”>

<OfficeHeld xsi:nil=”true”>
</OfficeHeld>

</OLS.MEMBERS>
</updg:after>

</updg:sync>
</ROOT>

With the schema used here, records can be inserted into the MEMBERS table
from an updategram if the OfficeHeld attribute is absent, but that is not
true for any of the other attributes. They must all contain definite values.

37 119280 bk06ch02.qxp 5/23/07 10:28 AM Page 534

Chapter 3: Retrieving Data
from XML Documents

In This Chapter
� Discovering XQuery

� Finding out about FLWOR expressions

� Comparing XQuery to SQL

Early in the development of XML, one of the primary concerns was the
conversion of data stored in SQL databases into XML so that it could

be transmitted to other, incompatible data stores or so that it could be dis-
played on the Web. In Chapter 1 of this minibook, I describe a number of
SQL functions whose purposes are to perform such conversions. Converting
XML to SQL was also an important endeavor because SQL has traditionally
been the premiere tool for extracting the information you want from a col-
lection of data. This conversion usually took the form of “shredding” in
which an XML document was torn apart and pieces of it flowed into the
columns of tables in an SQL database. Queries could then be made using
normal SQL SELECT statements.

Querying XML documents directly, without shredding them into an SQL
database, is much more complicated, and thus took a while longer to imple-
ment in a standard form. In addition, many common examples of XML
documents are not readily shredded. The tree structure of an XML docu-
ment can be difficult to translate into the row and column structure of a
relational database. Consequently, several years of development of XML
query facilities have been required to produce the XQuery 1.0 standard. It
defines how to query an XML document directly and retrieve the informa-
tion you want.

XQuery, like XML itself, is a vast topic, which I don’t cover in detail here.
However, I describe it briefly, and give some examples of its use. These
examples are in no way comprehensive, but should give you an idea of what
you can do with XQuery. For an in-depth treatment, I recommend Querying
XML by Jim Melton and Stephen Buxton (published by Morgan Kaufmann
Publishers).

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 535

XQuery536

XQuery
XQuery is a non-procedural language specifically designed to retrieve
desired information from XML documents, just as SQL is a non-procedural
language specifically designed to retrieve desired information from relational
databases. Whereas relational databases are highly structured, XML docu-
ments can be characterized as semi-structured. What an XML document
looks like varies a lot more than what a relational database looks like. When
I say it’s a non-procedural language, I mean that a query, whether expressed
in SQL or XQuery, describes what to do, but not how to do it. The “how” is
left up to the engines that process the SQL or XQuery code.

Where XQuery came from
XQuery is the result of combining the best parts of several predecessor lan-
guages. For a long time, it’s been clear that there is great value in being able
to query XQL documents directly. Several groups have worked on the prob-
lem and have come up with query languages. One of those languages was
XQL, written in 1998 by Jonathan Robie, who worked for Software AG at the
time. Another, unrelated, language named XQL was developed at Fujitsu
Labs at the same time, but never developed beyond the prototype stage.

At about the same time, another language named XML-QL emerged from a
collaboration of a number of researchers. Stanford University joined the
game with a project named Lore and a language named Lorel, which had
object-oriented characteristics. At INRIA, the French National Institute for
Research in Computer Science and Control, a research language named YATL
was developed. Rounding out the predecessors, a language named Quilt
was developed by Don Chamberlin, Jonathan Robie, and Daniela Florescu.
Chamberlin had also been one of the authors of SQL.

Although XQuery probably owes more to Quilt than to any of the others, it
also takes ideas from the others and benefits from all that has gone before.

What XQuery requires
The XQuery 1.0 Language Specification defines what must be true of a lan-
guage in order for it to qualify as an XQuery implementation. Actually it
defines three different levels. Some things must be true, others should be
true, and some other things may be true. This is due to the fact that XQuery is
evolving, and it is not yet clear, exactly what will be mandatory in the future.

✦ XQuery is a declarative language, and as such must not mandate an eval-
uation strategy. It describes what the processor should do, not how it
should do it.

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 536

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents

XQuery 537

✦ XQuery may have more than one syntax binding, but it must have one
syntax that is convenient for humans to read and one syntax expressed
in XML that reflects the underlying structure of the query.

✦ XQuery must define standard error conditions that can occur during
execution of a query.

XQuery 1.0 does not have any update capability, which is why vendors such
as Oracle and Microsoft offer proprietary update solutions, as shown in the
previous chapter.

XQuery functionality
The XQuery Requirements document specifies a number of things that an
XQuery implementation must do, as well as things that it should do, and
things that it may do. Here are some of those requirements:

✦ XQuery must support operations on all data types in the XQuery Data
Model.

✦ Queries must be able to express simple conditions on text, including on
text that spans element boundaries.

✦ Operations on collections must include support for universal and exis-
tential quantifiers.

✦ XQuery must be able to combine related information from different
parts of a given document or from multiple documents.

✦ XQuery must be able to compute summary information from a group of
related document elements (aggregation).

✦ XQuery must be able to sort query results.

✦ XQuery must support NULL values.

✦ Queries should be able to operate on literal data.

✦ Queries must be able to perform simple operations on names, such as
testing for equality in element names, attribute names, and processing
instruction targets. Queries may perform more powerful operations on
names.

✦ XQuery should support the use of externally defined functions on all
datatypes of the XML Query Data Model.

✦ XQuery must be able to provide access to environmental information,
such as current date, time, and time zone.

The requirements I have listed are a partial list. XQuery 1.0 meets all the
requirements I have listed as must or should. Other requirements in the
XQuery Requirements may or may not have been met by XQuery 1.0.

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 537

XQuery538

Usage scenarios
The World Wide Web Consortium (www.w3.org) has developed a set of 77
use cases that cover nine different categories of queries. In each case, a
query is applied to supplied input data, and expected results are given. You
can use these use cases as a starting point in testing an XQuery implementa-
tion to see if it is more or less working. An exhaustive test suite, which tests
every possibility, would take thousands of such cases, but these 77 are a
good start. Here, I show you just one such case.

Because this book is about SQL, one category of data that you might want
to query using XQuery is data stored in a relational database. Such a case
can be found at paragraph 1.4.1 of the XML Query Use Cases document,
which is available at www.w3.org/TR/xquery-use-cases/. I reproduce
that case here.

This case takes data from a simplified version of an online auction. There
are three tables: USERS (see Table 3-1), ITEMS (see Table 3-2), and BIDS (see
Table 3-3). The USERS table contains information on buyers and sellers. The
ITEMS table lists items that are currently for sale or that have recently been
for sale. The BIDS table contains all the bids on record. Here are the tables
and the columns they contain:

USERS (USERID, NAME, RATING)
ITEMS (ITEMNO, DESCRIPTION, OFFERED_BY, START_DATE, END_DATE,

RESERVE_PRICE)
BIDS (USERID, ITEMNO, BID, BID_DATE)

USERID is the primary key of the USERS table; ITEMNO is the primary key of
the ITEMS table, and the combination of USERID and ITEMID is the compos-
ite primary key of the BIDS table.

The relational database tables correspond to input documents named
users.xml, items.xml, and bids.xml. The correspondence between the tables
and the XML documents is specified by the following Document Type
Definition (DTD):

<!DOCTYPE users [
<!ELEMENT users (user_tuple*)>

<!ELEMENT user_tuple (userid, name, rating?)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rating (#PCDATA)>]>

<!DOCTYPE items [
<!ELEMENT items (item_tuple*)>

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 538

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents

XQuery 539

<!ELEMENT item_tuple (itemno, description, offered_by,
start_date?, end_date?, reserve_price?)>

<!ELEMENT itemno (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT offered_by (#PCDATA)>
<!ELEMENT start_date (#PCDATA)>
<!ELEMENT end_date (#PCDATA)>
<!ELEMENT reserve_price (#PCDATA)>]>

<!DOCTYPE bids [
<!ELEMENT bids (bid_tuple*)>

<!ELEMENT bid_tuple (userid, itemno, bid, bid_date)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT itemno (#PCDATA)>
<!ELEMENT bid (#PCDATA)>
<!ELEMENT bid_date (#PCDATA)>]>

The input data is contained in Tables 3-1, 3-2, and 3-3.

Table 3-1 USERS
USERID Name Rating

U01 Tom Jones B

U02 Mary Doe A

U03 Dee Linquent D

U04 Roger Smith C

U05 Jack Sprat B

U06 Rip Van Winkle B

Table 3-2 ITEMS
ITEMID Description Offered_By Start_Date End_Date Reserve_Price

1001 Red Bicycle U01 1999-01-05 1999-01-20 40

1002 Motorcycle U02 1999-02-11 1999-03-15 500

1003 Old Bicycle U02 1999-01-10 1999-02-20 25

1004 Tricycle U01 1999-02-25 1999-03-08 15

1005 Tennis Racquet U03 1999-03-19 1999-04-30 20

1006 Helicopter U03 1999-05-05 1999-05-25 50000

1007 Racing Bicycle U04 1999-01-20 1999-02-20 200

1008 Broken Bicycle U01 1999-02-05 1999-03-06 25

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 539

XQuery540

Table 3-3 BIDS
USERID Itemno Bid Bid_Date

U02 1001 35 1999-01-07

U04 1001 40 1999-01-08

U02 1001 45 1999-01-11

U04 1001 50 1999-01-13

U02 1001 55 1999-01-15

U01 1002 400 1999-02-14

U02 1002 600 1999-02-16

U03 1002 800 1999-02-17

U04 1002 1000 1999-02-25

U02 1002 1200 1999-03-02

U04 1003 15 1999-01-22

U05 1003 20 1999-02-03

U01 1004 40 1999-03-05

U03 1007 175 1999-01-25

U05 1007 200 1999-02-08

U04 1007 225 1999-02-12

The XML representation of this tabular data serves as the input to the query.
Following is a truncated version of the XML because the full XML files are
lengthy and there is nothing new beyond the first element in each.

<items>
<item_tuple>
<itemno>1001</itemno>
<description>Red Bicycle</description>
<offered_by>U01</offered_by>
<start_date>1999-01-05</start_date>
<end_date>1999-01-20</end_date>
<reserve_price>40</reserve_price>

</item_tuple>
<!-- !!! Snip !!! -->

<users>
<user_tuple>
<userid>U01</userid>
<name>Tom Jones</name>
<rating>B</rating>

</user_tuple>
<!-- !!! Snip !!! -->

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 540

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents

XQuery 541

<bids>
<bid_tuple>
<userid>U02</userid>
<itemno>1001</itemno>
<bid>35</bid>
<bid_date>1999-01-07</bid_date>
</bid_tuple>

<bid_tuple>
<!-- !!! Snip !!! -->

Here’s one of the queries run against this data: List the item number and
description of all bicycles that currently have an auction in progress,
ordered by item number.

This query is expressed in XQuery as follows:

<result>
{
for $i in doc(“items.xml”)//item_tuple
where $i/start_date <= current-date()
and $i/end_date >= current-date()
and contains($i/description, “Bicycle”)

order by $i/itemno
return

<item_tuple>
{ $i/itemno }
{ $i/description }

</item_tuple>
}

</result>

Assuming that the current date is 1999-01-31, the expected result of the
query is

<result>
<item_tuple>

<itemno>1003</itemno>
<description>Old Bicycle</description>

</item_tuple>
<item_tuple>

<itemno>1007</itemno>
<description>Racing Bicycle</description>

</item_tuple>
</result>

The auctions for the old bicycle and the racing bicycle were active on the
last day of January 1999.

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 541

FLWOR Expressions542

FLWOR Expressions
FLWOR expressions are to XQuery what SELECT expressions are to SQL.
They are the constructs you use to ask questions of an XML document. The
acronym FLWOR stands for For, Let, While, Order by, and Return. A FLWOR
expression must contain a for clause and a return clause, and may option-
ally also include let, while, and order by clauses. Here’s the syntax of a
FLWOR expression:

FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
OrderByClause? “return” ExprSingle

ForClause ::= “for” “$” VarName TypeDeclaration?
PositionalVar? “in” ExprSingle (“,” “$” VarName
TypeDeclaration? PositionalVar? “in” ExprSingle)*

PositionalVar ::= “at” “$” VarName

LetClause ::= “let” “$” VarName TypeDeclaration? “:=”
ExprSingle (“,” “$” VarName TypeDeclaration? “:=”
ExprSingle)*

WhereClause ::= “where” ExprSingle

OrderByClause ::= (“order” “by” | “stable” “order” “by”)
OrderSpecList

OrderSpecList ::= OrderSpec (“,” OrderSpec)*

OrderModifier ::= (“ascending” | “descending”)? (“empty”
“greatest” | “empty” “least”)? (“collation” URILiteral)?

In the preceding code, the following conventions are used:

✦ “A?” means that A is optional.

✦ “A|B” means either A or B but not both.

✦ “A+” means one or more occurrences of A.

✦ “A*” means zero or more occurrences of A.

To see how to use a FLWOR expression on an example XML document that
corresponds to an SQL table, consider this sample document:

<?xml version=”1.0” encoding=”UTF-8”?>
<customer xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance”>
<row>

<FirstName>Abe</FirstName>

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 542

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents

FLWOR Expressions 543

<LastName>Abelson</LastName>
<City>Springfield</City>
<AreaCode>714</AreaCode>
<Telephone>555-1111</Telephone>

</row>
<row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
<row>

<FirstName>Chuck</FirstName>
<LastName>Wood</LastName>
<City>Philo</City>
<AreaCode>714</AreaCode>
<Telephone>555-3333</Telephone>

</row>
</customer>

The for clause
A FLWOR expression must have at least a for clause and a return clause.
For purposes of illustrating the effect of the for clause, I show a for frag-
ment and the result of that much of a FLWOR expression.

for $c in customer/row

This selects the row element in the customer XML document. The result is

$c: <row>
<FirstName>Abe</FirstName>
<LastName>Abelson</LastName>
<City>Springfield</City>
<AreaCode>714</AreaCode>
<Telephone>555-1111</Telephone>

</row>
$c: <row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
$c: <row>

<FirstName>Chuck</FirstName>
<LastName>Wood</LastName>
<City>Philo</City>
<AreaCode>714</AreaCode>

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 543

FLWOR Expressions544

<Telephone>555-3333</Telephone>
</row>

The result includes three instances of the variable $c, each one being bound
to a separate row element in the binding sequence from the original docu-
ment. This result is called a tuple stream. The for clause iterates over the
tuples in the binding sequence, binding the variable to each of the tuples in
the sequence in turn.

The let clause
To show the effect of the let clause, I need a second document example to
go along with the customers example:

<?xml version=”1.0” encoding=”UTF-8”?>
<product xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance”>
<row rating=”0”>

<ProdNo>101</ProdNo>
<Name>Firecracker 1</Name>
<Size>Big</Size>

</row>
<row rating=”1”>

<ProdNo>102</ProdNo>
<Name>Firecracker 2</Name>
<Size>Huge</Size>

</row>
<row rating=”3”>

<ProdNo>103</ProdNo>
<Name>Firecracker 3</Name>
<Size>Tremendous</Size>

</row>
</product>

Where the for clause iterates over the items in the binding sequence, the
let clause binds its variables with the entire sequence. A let clause that
binds multiple variables generates a single tuple containing all the variable
bindings. Here’s an example:

let $c := /customer/row, $p := /product/row/ProdNo

This produces

$c: <row> $p: 101
<FirstName>Abe</FirstName> 102
<LastName>Abelson</LastName> 103
<City>Springfield</City>
<AreaCode>714</AreaCode>

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 544

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents

FLWOR Expressions 545

<Telephone>555-1111</Telephone>
</row>
<row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
<row>

<FirstName>Chuck</FirstName>
<LastName>Wood</LastName>
<City>Philo</City>
<AreaCode>714</AreaCode>
<Telephone>555-3333</Telephone>

</row>

The where clause
The result of a for clause or a let clause contains some data that you want,
but likely also contains some irrelevant data that you don’t want. You can
filter out the data that you don’t want with a where clause. Consider the fol-
lowing XQuery fragment:

for $p at $i in product/row
where $i = $p/@rating

This produces the following result:

$p: <row rating=”3”> $i 3
<ProdNo>103</ProdNo>
<Name>Firecracker 3</Name>
<Size>Tremendous</Size>

</row>

Only in the case of the last product does the element counter equal the
value of the rating attribute.

The order by clause
The order by clause, as you would expect, specifies an order for the items in
the result, according to the ordering specification (OrderSpec). The ordering
specification contains a single expression (ExprSingle) and an optional
ordering modifier (OrderModifier). You can add an order by clause to
one of our previous query fragments and see how it affects the result.

for $c in customer/row
order by $c/LastName descending

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 545

FLWOR Expressions546

This selects the row element in the customer XML document, listing the
tuples in descending order of last name. The result is

$c: <row>
<FirstName>Chuck</FirstName>
<LastName>Wood</LastName>
<City>Philo</City>
<AreaCode>714</AreaCode>
<Telephone>555-3333</Telephone>

</row>
$c: <row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>
<City>Decatur</City>
<AreaCode>714</AreaCode>
<Telephone>555-2222</Telephone>

</row>
$c: <row>

<FirstName>Abe</FirstName>
<LastName>Abelson</LastName>
<City>Springfield</City>
<AreaCode>714</AreaCode>
<Telephone>555-1111</Telephone>

</row>

Because you are ordering by last name in descending order, the record for
Chuck Wood precedes that of Bill Bailey, which comes before the record for
Abe Abelson.

The return clause
The return clause specifies what is returned by the FLWOR expression after
all the other clauses have had a chance to have an effect. The ExprSingle
in the return clause is evaluated once for each tuple produced by the com-
bined activity of the other clauses. The result is a sequence of values. Adding
a return clause to the previous query fragment to make a complete query
results in the following:

<result>
{

for $c in doc(“customer.xml”)
order by $c/row/LastName descending
return

<row>
{ $c/FirstName }
{ $c/LastName }

</row>
}

</result>

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 546

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents
Comparing XQuery to SQL 547

This selects the row element in the customer XML document, listing the
tuples in descending order of last name. It then outputs the first and last
names in the tuples. The result is

<result>
<row>

<FirstName>Chuck</FirstName>
<LastName>Wood</LastName>

</row>
<row>

<FirstName>Bill</FirstName>
<LastName>Bailey</LastName>

</row>
<row>

<FirstName>Abe</FirstName>
<LastName>Abelson</LastName>

</row>
</result

Comparing XQuery to SQL
The data in an XML document is in quite a different form than the data in an
SQL table. However, there are some similarities between the two worlds.
XQuery’s FLWOR expression corresponds to some extent with the SQL SELECT
expression. Both are used to retrieve the data you want from a collection of
data, most of which you don’t want at the moment.

XQuery’s FLWOR expression and
SQL’s SELECT expression
Although XQuery’s let clause has no analog in SQL, the XQuery for clause
is related to the SQL FROM clause in that both specify the source of the data.
XQuery’s order by clause serves the same purpose that SQL’s ORDER BY
clause serves. In both XQuery and SQL, the where clause filters out data
that you do not want to include in the final result. SQL’s GROUP BY and
HAVING clauses have no analog in XQuery.

Relating XQuery data types to SQL data types
Some of XQuery’s data types correspond to SQL data types, but others do
not. XQuery has some data types that do not correspond to any SQL data
types and vice versa. Table 3-4 lists the XQuery data types and, where appli-
cable, the corresponding SQL types. Where there is no corresponding type, a
long dash serves as a placeholder.

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 547

Comparing XQuery to SQL548

Table 3-4 XQuery 1.0 Data Types and Corresponding SQL Data Types
XQuery 1.0 Data Types SQL Data Types

xs:string CHARACTER, CHARACTER VARYING, CHARACTER
LARGE OBJECT, NATIONAL CHARACTER, NATIONAL
CHARACTER VARYING, NATIONAL CHARACTER LARGE
OBJECT

xs:normalizedString --

xs:token --

xs:language --

xs:NMTOKEN --

xs:NMTOKENS --

xs:Name --

xs:NCNAME --

xs:ID --

xs:IDREF --

xs:IDREFS --

xs:ENTITY --

xs:ENTITIES --

xs:BOOLEAN BOOLEAN

xs:decimal NUMERIC, DECIMAL

xs:integer INTEGER

xs:nonPositiveInteger --

xs:negativeInteger --

xs:long BIGINT

xs:int INTEGER

xs:short SMALLINT

xs:byte --

xs:nonNegativeInteger --

xs:unsignedLong --

xs:unsignedInt --

xs:unsignedShort --

xs:unsignedByte --

xs:positiveInteger --

xs:float FLOAT, REAL

xs:double FLOAT, DOUBLE

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 548

Book VI
Chapter 3

Retrieving Data
from

 XM
L

Docum
ents
Comparing XQuery to SQL 549

XQuery 1.0 Data Types SQL Data Types

xs:duration --

xs:dateTime TIMESTAMP WITH TIME ZONE, TIMESTAMP WITHOUT
TIME ZONE

xs:date DATE WITH TIME ZONE, DATE WITHOUT TIME ZONE

xs:time TIME WITH TIME ZONE, TIME WITHOUT TIME ZONE

xs:gYearMonth --

xs:gYear --

xs:gMonthDay --

xs:gDay --

xs:gMonth --

xs:hexBinary BINARY LARGE OBJECT

xs:base64Binary BINARY LARGE OBJECT

xs:anyURI --

xs:QName --

xs:NOTATION --

xdt:dayTimeDuration INTERVAL (day-time interval)

xdt:yearMonthDuration INTERVAL (year-month interval)

xs:anyType XML

xs:anySimpleType --

xdt:untyped --

Node types Structured user-defined types

User-defined complex types Structured user-defined types

-- ROW

-- REF

List types and sequences ARRAY

List types and sequences MULTISET

-- DATALINK

Clearly, there are a lot more XQuery types than SQL types. In most cases,
casting an SQL type to an XQuery type is not a problem, but going the other
way may be a challenge.

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 549

Book VI: SQL and XML550

38 119280 bk06ch03.qxp 5/23/07 10:28 AM Page 550

Book VII

Database Tuning
Overview

39 119280 pt07.qxp 5/23/07 10:28 AM Page 551

Contents at a Glance
Chapter 1: Tuning the Database ..553

Chapter 2: Tuning the Environment..565

Chapter 3: Finding and Eliminating Bottlenecks ..587

39 119280 pt07.qxp 5/23/07 10:28 AM Page 552

Chapter 1: Tuning the Database

In This Chapter
� Analyzing the workload

� Contemplating physical design considerations

� Choosing and clustering indexes

� Co-clustering two relations

� Indexing on multiple attributes

� Tuning indexes, queries, and transactions

� Query tuning in a high-concurrency environment

� Benchmarking

� Separating user interactions from transactions

� Minimizing traffic between application and server

� Precompiling frequently used queries

The word tuning is generally taken to mean optimizing a system that
exists, but is not operating at top capacity. However, tuning doesn’t do

you much good if your initial design is not at least close to optimal in the
first place. Tuning can only take you so far from your starting point. It is a
lot easier to tune a slightly off-pitch B-string on your guitar to a perfect B
than it is to tune a G-string up to a perfect B. (Also, you’re a lot less likely to
break the string.) Tuning for optimal performance should start in the initial
design stage of a database, not at some later time when design decisions
have been cast in concrete.

The performance of a database management system is generally judged by
how fast it executes queries. Two types of operations are important, the
retrieval of data from a database, and the updating of records in a database.
The speed with which records can be accessed is key to both because you
must locate a record before you can either retrieve or update the data in it.
The users’ data model upon which you will base your database design is
almost certainly structured in a way that is not the best from a performance
standpoint. The users are primarily concerned with functionality and may
have little or no idea of how the design of a database affects how well it per-
forms. You must take the users’ data model and transform it into a concep-
tual schema that you actualize in the form of an E-R diagram.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 553

Analyzing the Workload554

Analyzing the Workload
Optimal design of a database depends largely on how the database will be
used. What kinds of queries will it be subjected to? How often will updates
be made, compared to how often queries are posed? These kinds of ques-
tions try to get at what the workload will be. The answers to such questions
have a great bearing on how the database should be structured. In effect, the
design of the database is tuned based on how it will typically be used.

To give you a sound foundation for designing your database to best handle
the workload to which it will be subjected, draft a workload description. The
workload description should include the following elements:

✦ A list of all the queries you expect will be run against the database,
along with an estimate of the expected frequency of each, compared to
the frequencies of all the other queries and update operations.

✦ A list of all the update operations you expect to perform, along with an
estimate of the expected frequency of each, compared to the frequen-
cies of all the other updates and queries.

✦ Your goal for the performance of each of the types of queries and
updates.

Queries can vary tremendously in complexity, so it is important to deter-
mine in advance how complex each is, and how that complexity will affect
the overall workload. You can determine query complexity by answering a
few questions:

✦ How many relations (tables) are accessed by this query?

✦ Which attributes (columns) are selected?

✦ Which attributes appear in the WHERE clause, and how selective are the
WHERE clause conditions likely to be?

Just as queries can vary a great deal, so can update operations. Questions
regarding updates should include

✦ Which attributes appear in the WHERE clause, and how selective are the
WHERE clause conditions likely to be?

✦ What type of update is it, an INSERT, DELETE, or UPDATE?

✦ In UPDATE statements, which fields will be modified?

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 554

Book VII
Chapter 1

Tuning the Database

Considering the Physical Design 555

Considering the Physical Design
Among the factors that have a major impact on performance, few if any have
a greater effect than indexes. On the plus side, indexes point directly to the
desired record in a table, thereby bypassing the need to scan down through
the table until you come upon the record you want. This can be a tremen-
dous timesaver for a query. On the minus side, every time an insertion
update or a deletion update is made to a table, the indexes on that table
must be updated too, costing time. When chosen properly, indexes can be
a great help. When chosen poorly, indexes can waste resources and slow
processing substantially.

Regarding indexes, several questions need to be answered:

✦ Which tables should have indexes and which should not?

✦ For the tables that should have indexes, which columns should be
indexed?

✦ For each index, should it be clustered or unclustered?

I address these questions in this chapter.

After you arrive at a conceptual schema and have determined that you need
to make changes in order to improve performance, what kinds of modifica-
tions can you make?

✦ Often there is more than one way to normalize a schema, and one such
way may deliver better performance than others. You may wish to change
the way tables are defined in order to take advantage of a schema that
gives you better performance than your current schema does.

✦ Although this may sound somewhat heretical, sometimes it pays to
denormalize your schema, and accept a risk of modification anomalies,
in exchange for a significant performance boost.

✦ Contrary to the preceding point, sometimes it makes sense to take nor-
malization a step further than you otherwise would, in effect to overnor-
malize. This can improve the performance of queries that involve only a
few attributes. By giving those attributes a table of their own, retrievals
can sometimes be speeded up.

Queries and updates that are run frequently should be examined carefully to
see if rewriting them might enable them to execute faster. There is probably
not much advantage to applying such scrutiny to queries that are rarely run,
but after you have some history and notice the ones that are being run con-
tinually, it may pay to give them an extra look to see if they can be improved.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 555

Choosing the Right Indexes556

Choosing the Right Indexes
Indexes can dramatically improve the performance of database retrievals.
There are several reasons why this is true. One reason is that an index tends
to be small compared to the size of the table that it is indexing. This means
that the index is likely to be in the cache, which is accessible at semiconduc-
tor memory speed rather than on disk. There is a million-to-one performance
advantage right there. Other reasons depend on the type of query being per-
formed and on whether the index is clustered. I discuss clustering in the
next section.

Avoiding unnecessary indexes
Because there is an overhead cost in maintaining indexes, you do not want
to create any indexes that won’t improve the performance of any of your
retrieval or update queries. To decide which database tables should not be
indexed, consult the workload description you created as the first step in
the design process. It contains a list of queries and their frequencies.

Here’s a no-brainer: If a table has only a small number of rows, there is no
point in indexing it. A sequential scan through relatively few rows executes
quickly.

For larger tables, the best candidates for indexes are columns that appear in
the query’s WHERE clause. The WHERE clause determines which table rows
are to be selected.

It’s likely, particularly in a system where a large number of different queries
are run, that some queries are more important than others. Either they are
run more often, or they are run against more and larger tables, or getting
results quickly is critical for some reason. Whatever the case, prioritize your
queries, with the most important first. Create indexes that give the best per-
formance for the most important query. Then move down the line, adding
indexes that help the progressively less important queries. Your database
management system’s query optimizer chooses the best execution plan
available to it, based on the indexes that are present.

There are different kinds of indexes, each with its own structure. Whereas
one kind of index is better for some retrievals, another kind is better for
others. The most common index types are B+ tree, hash, and ISAM.
Theoretically, for any given query, the query optimizer chooses the best
index type available. Most of the time, practice follows theory.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 556

Book VII
Chapter 1

Tuning the Database

Choosing the Right Indexes 557

Choosing a column to index
Any column appearing in a query’s WHERE clause is a candidate for indexing.
If the WHERE clause contains an exact match selection, such as EMPLOYEE.
DepartmentID = DEPARTMENT.DepartmentID, a hash index on EMPLOYEE.
DepartmentID usually performs best. The number of rows in the EMPLOYEE
table is sure to be larger than the number of rows in the DEPARTMENT
table, so the index is of more use if applied to EMPLOYEE than if applied to
DEPARTMENT.

If the WHERE clause contains a range selection, such as EMPLOYEE.Age
BETWEEN 55 AND 65, a B+ tree index on EMPLOYEE.Age is probably be the
best performer. If the table is rarely updated, an ISAM index may be competi-
tive with the B+ tree index.

Multi-column indexes
If a WHERE clause imposes conditions on more than one attribute, such as
EMPLOYEE.Age BETWEEN 55 AND 65 AND EMPLOYEE.DeptName =
Shipping, a multi-column index should be considered. If the index includes
all the columns that the query retrieves (an index-only query), the query
could be completed without touching the data table at all. This could dra-
matically speed the query, and may be sufficient motivation to include a
column in the index that you otherwise would not include.

Clustering indexes
A clustered index is one that determines the sort order of the table that it is
indexing.

Suppose there are several queries of the EMPLOYEE table that have a WHERE
clause similar to WHERE EMPLOYEE.LastName = ‘Smith’. In such a case,
it would be beneficial to have a clustered index on EMPLOYEE.LastName. All
the employees named Smith would be clustered together in the index, and
they would be retrieved very quickly. Quick retrieval is possible because
after you’ve found the index to the first Smith, you have found them all.
Access to the desired records is almost instantaneous. For any given table,
there can be only one clustered index. All other indexes on that table must
be unclustered. Unclustered indexes can be helpful, but not as helpful as a
clustered index. For that reason, if you are going to choose one index to be
the clustered index for a table, choose the one that will be used by the most
important queries in the list of queries in the workload description.

Consider the following example:

SELECT DeptNo
FROM EMPLOYEE
WHERE EMPLOYEE.Age > 29 ;

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 557

Choosing the Right Indexes558

You can use a B+ tree index on Age to retrieve only the rows where employee
age is greater than 29. Whether this is worthwhile depends on the age distribu-
tion of the employees. If most employees are 30 or older, the indexed retrieval
won’t do much better than a sequential scan. Suppose only 10% of the employ-
ees are more than 29 years old. If the index on Age is clustered, it will give a
substantial improvement over a sequential scan. If it is unclustered, however,
as it is likely to be, it could require a buffer page swap for every qualifying
employee and will likely be more expensive than a sequential scan. I say that
an index on Age is likely to be unclustered based on the assumption that there
is probably at least one column in the EMPLOYEE table that would be more
deserving of a clustered index than the Age column.

You can see from this example that choosing whether to create an index for
a table column is not a simple matter. Doing an effective job of choosing
requires detailed knowledge of the data as well as of the queries that are run
on it. Figure 1-1 compares the costs of using a clustered index, an unclus-
tered index, and a sequential scan to retrieve rows from a table.

Figure 1-1 reveals a few things about the cost of indexes.

✦ A clustered index always performs better than an unclustered index.

✦ A clustered index performs better than a sequential scan unless practi-
cally all of the rows are retrieved.

Co
st

Percentage of rows retrieved
100O

Clustered index

Sequential scan

Unclustered index

Figure 1-1:
The cost of
retrievals,
with and
without an
index.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 558

Book VII
Chapter 1

Tuning the Database

Choosing the Right Indexes 559

✦ When one or very few records are being retrieved, a clustered index per-
forms much better than a sequential scan.

✦ When one or a very few records are being retrieved, an unclustered
index performs better than a sequential scan.

✦ When more than about 10% of the records in a table are retrieved, a
sequential scan performs better than an unclustered index.

That last point disproves the myth that indexing a retrieval key always
improves performance over the performance of a sequential scan.

Choosing index type
In most cases, a B+ tree index is preferred because it does a good job on
range queries as well as equality queries. Hash indexes are slightly better
than B+ tree indexes in equality queries, but not nearly as good in range
queries, so overall, B+ tree indexes are preferred. However, in a couple of
cases, a hash join will do better. One is in a nested loop join where the inner
table is the indexed table and the index includes the join columns. Because
an equality selection is generated for each row in the outer table, the advan-
tage of the hash index over the B+ tree index is multiplied. Another case
where the hash join comes out ahead is when there is an important equality
query and there are no range queries on a table. You don’t need to lose a lot
of sleep over choosing an index type. Most database engines make the
choice for you, and it will usually be the best choice.

Weighing the cost of index maintenance
Indexes slow update operations because every time a table is updated with
either an insertion or a deletion, all its indexes must be updated too. Balance
this against the speedup gained by being able to access table rows more
quickly than would be possible using a sequential table scan. Even updates
are potentially speeded up because a row must first be located before it can
be updated. You may find that the net benefit of some indexes does not jus-
tify their inclusion in the database. You are better off dropping them.

Composite indexes
Composite indexes are indexes on more than one column. They can give
superior performance to queries that have more than one condition in the
WHERE clause. Here’s an example:

SELECT EmployeeID
FROM EMPLOYEES
WHERE Age BETWEEN 55 AND 65

AND Salary BETWEEN 4000 and 7000 ;

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 559

Tuning Indexes560

Both conditions in the WHERE clause are range conditions. An index based
on <Age, Salary> performs about as well as an index based on <Salary,
Age>. Either one performs better than an index based only on Age or only on
Salary.

Now consider the following example:

SELECT EmployeeID
FROM EMPLOYEES
WHERE Age = 57

AND Salary BETWEEN 4000 and 7000 ;

In this case, an index based on <Age, Salary> performs better than an
index based on <Salary, Age> because the equality condition on Age
means that all the records that have Age = 57 are clustered together by
the time the salary evaluation is done.

Tuning Indexes
After the database you have designed has been in operation for a while,
you should re-evaluate the decisions you made about indexing. When you
created the system, you chose indexes based on what you expected usage
to be. Now, after several weeks or months of operation, you have actual
usage statistics. Perhaps some of the queries that you thought would be
important are not run very often after all. Perhaps you made assumptions
about what indexes would be used by the query optimizer, but now you find
that limitations of the optimizer prevent it from using them, to the detriment
of performance.

Based on the actual performance data that you now have, you can tune
your indexes. This may entail dropping indexes that are doing you no good
and merely consuming resources. It may mean adding new indexes that
speed queries that have turned out to be more important than they at first
appeared to be.

For best results, tuning indexes must be an ongoing activity. As time goes on,
the nature of the workload is bound to evolve. As it does, the best indexes to
support the current workload need to evolve too. The DBA must keep track
of performance and respond when it starts to trend downward.

Another problem, which appears after a database has been in operation for
an extended period of time, might be called the tired index. A tired index is
one that is no longer delivering the performance advantage that it did when

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 560

Book VII
Chapter 1

Tuning the Database

Tuning Queries 561

it was first applied to the database. When an index is fresh and new, whether
it is a B+ tree index, an ISAM index, or some other kind, it has an optimal
structure. As time goes on, insertions, deletions, and updates are made to
the table that the index is associated with. The index must adjust to these
changes. In the process of making those adjustments, the structure of the
index changes and moves away from optimality. Eventually, performance is
affected enough to be noticeable. The best solution to this problem is to
drop the index and then rebuild it. The rebuilt index once again has an opti-
mal structure. The only downside to this solution is that the database table
must be out of service while its index is being rebuilt. The amount of time it
takes to rebuild an index depends on several things, including the speed of
the processor and the size of the table being indexed. For some databases,
you may not even experience any downside. The database engine will
rebuild indexes automatically when needed.

Tuning Queries
After your system has been running a while, you may find that a query is
running slower than you expect. There are several possible causes for this,
and several possible things you can do to fix it. Because there are generally
several different ways to code a query, which all give the same result, per-
haps you could recode it, along with an appropriate change of indexes.

Sometimes a query doesn’t run as you expect because the query optimizer
is not executing the plan that you expect it to. You can check on this with
most database management systems by having it display the plan it has gen-
erated. It is quite possible that the optimizer is not finding the best plan.
Here are some possible causes:

✦ Some query optimizers do not handle NULL values well. If the table you
are querying contains NULL values in a field that appears in the WHERE
clause, this could be the problem.

✦ Some query optimizers do not handle expressions well, either arithmetic
or string. If one of these appears in the WHERE clause, the optimizer may
not handle it correctly.

✦ An OR connective in the WHERE clause could cause a problem.

✦ If you are expecting the optimizer to select a fast, but sophisticated,
plan, you could be disappointed. Sometimes the best plan is beyond the
capability of even high-end optimizers to find.

Some database management systems give you some help in overcoming
optimizer deficiencies. They give you the power to force the optimizer to use
an index that you know will be helpful, or to join tables in an order that you

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 561

Tuning Transactions562

know is the best. For the best results, a thorough knowledge of the capabili-
ties and the deficiencies of your DBMS is essential, as is a good grasp of opti-
mization principles.

Two possible culprits in performance problems are nested queries and cor-
related queries. Many optimizers do not handle these well. If a query that is
either a nested query or a correlated query is not performing up to expecta-
tions, recoding it without nesting or correlation is a good thing to try.

Tuning Transactions
In an environment where many users are using a database concurrently,
contention for a popular resource can slow performance for everyone. The
problem arises because a user locks a resource before using it and releases
the lock when she is finished with it. As long as the resource is locked, no
one else can access it. Here are several things you can do to minimize the
performance impact of locking:

✦ Minimize the amount of time that you hold a lock. If you are perform-
ing a series of operations with a transaction, obtain your locks as late as
possible and release them as soon as possible.

✦ Put indexes on a different disk from the one that holds the data files.
This prevents accesses to one from interfering with accesses to the
other.

✦ Switch to a hash or ISAM index. If a table is updated frequently, B+ tree
indexes on its columns lose much of their advantage because the root of
the tree and the pages just below it must be traversed by every update.
They become hot spots, meaning they are locked frequently, becoming a
bottleneck. Making the switch might help.

Separating User Interactions from Transactions
Because computer instructions operate in the nanosecond realm and
humans operate in the second or even minute realm, one thing that can
really slow down a database transaction is any interaction with a human. If
that transaction happens to hold a lock on a critical resource, the applica-
tion the user is interacting with is not the only one to suffer a delay. Every
other application that needs that resource is brought to a screeching halt,
for an interval of time that could be billions of times longer than necessary.
The obvious solution is to separate user interactions from transactions.
Never hold a lock on anything while waiting for a human to do something.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 562

Book VII
Chapter 1

Tuning the Database

Precompiling Frequently Used Queries 563

Minimizing Traffic between Application and Server
If you have a lot of applications, running on a lot of client machines, all
depending on data residing on a server, overall performance is limited by
the server’s capacity to send and receive messages. The fewer the messages
that need to travel between client and server, the better. The smaller the
messages that need to travel between client and server, the better. One
approach to this problem is to use stored procedures. Stored procedures are
precompiled application modules that run on the server rather than the
client. Their primary purpose is to filter result sets so that only the needed
data is transmitted to the client, rather than sending a whole big chunk of
the database. This can reduce traffic between the server and client machine
dramatically.

Precompiling Frequently Used Queries
If you execute the same query repeatedly, say daily, or even hourly, you can
save time by compiling it in advance. At runtime, executing the query is the
only thing that needs to be done. The compilation is done only once and
never needs to be repeated. The timesaving due to this forethought adds up
and becomes significant over the course of weeks and months.

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 563

Book VII: Database Tuning Overview564

40 119280 bk07ch01.qxp 5/23/07 10:28 AM Page 564

Chapter 2: Tuning the Environment

In This Chapter
� Tuning the recovery system

� Tuning the operating system

� Making better use of the hardware you have

� Adding new hardware

� Understanding multiprocessor environments

Computer systems are subject to all kinds of failures — power failures,
hardware failures, operating system failures, application program fail-

ures, and even DBMS failures. These things happen — you can count on it.
The important question you should ask yourself is, “What happens when a
failure occurs?” In critical applications, you don’t want to lose any data, and
you don’t want to lose any more time than absolutely necessary.

Failures aside, you want your system to be running as efficiently as possible.
Inefficiencies can hamper productivity in many ways, sometimes slowing it
to a crawl. In dealing with both failures and inefficiencies, the key to opti-
mizing performance is tuning each of the parts of your total system. Your
recovery system is designed to gracefully handle failures. It must be tuned
in order to operate at top efficiency. Beyond the recovery system, your
operating system and storage subsystem need to be tuned for the work that
you are doing. Settings that would be appropriate for one job mix might be
terrible for another. If you have multiple computers connected on a net-
work, the way they are connected can have a tremendous impact on per-
formance. All these considerations are important, and they tend to interact,
which makes optimizing them even more challenging. I talk about some of
the things that you can do to assure that you are getting the best perform-
ance out of your system that you can reasonably expect, given the limited
budget and staff time that can be devoted to maintaining an acceptable
level of performance.

The performance of a database system can vary dramatically: anywhere
from lightning-fast to molasses-slow. Where your system sits on that
spectrum is largely up to the decisions you make as a developer, the deci-
sions the DBA makes, and the decisions the system administrator makes

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 565

Surviving Failures with Minimum Data Loss566

about how the operating system will run, and what hardware it will
run on. All these levels affect the ultimate performance of a database
application.

Surviving Failures with Minimum Data Loss
Sooner or later, failures occur. That being the case, planning for those fail-
ures can make a big difference. Your plans should be aimed at minimizing
the disruption that would be caused by downtime and loss of data. At any
given time, the “current” copy of your database resides in two places: on
stable storage in the form of hard disk drives, and in a volatile solid-state
memory called the page buffer. The page buffer contains the working set,
which is data that is currently being actively read and written by transac-
tions that have been initiated by the executing program. The pages in the
working set are destined to be written to disk, but that has not happened
yet. If a failure occurs before a transaction commits or aborts, the recovery
system must be able to return the database to a consistent state: either the
state the database would have been in if the transaction had committed suc-
cessfully, or the state the database was in before the transaction started, in
the case of an abort.

What happens to transactions
where there is no failure?
In the absence of a failure, a transaction can end up in one of two ways — it
will either commit or abort. When a transaction commits, it means that it
has completed successfully. This does not mean that the changes made by
the transaction have been written to stable storage, but it does mean that
the changes are recoverable in the event of a failure, thanks to the logging
feature that is discussed later in this chapter. After the recovery operation
is performed, the database is once again in a consistent state.

The other thing that a transaction can do besides committing is aborting.
A resource conflict, for example, may prevent a transaction from committing.
This is not a failure — nothing is broken. It is just a case of trying to do
something at the wrong time. When a transaction aborts, a rollback is initi-
ated. The database transaction log records every operation that takes
place in the course of a transaction. The rollback operation consults the
log and performs in reverse all the operations listed in it. This restores the
database to the state it was in before the transaction started. This is a con-
sistent state. The transaction can be attempted again when conditions are
more favorable. In many cases, conditions are favorable just as soon as
the rollback completes. Whatever concurrent transaction caused the con-
flict has either committed or aborted, and the contested resource is now
available.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 566

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Recovery System 567

What happens when a failure occurs before
a committed or aborted transaction
is written to stable storage?
If a failure occurs before a committed or aborted transaction has been writ-
ten to disk, the database may be left in an inconsistent state. It’s up to the
recovery system to restore consistency. To do so, it makes use of the trans-
action log. The log contains a record of what was done up to the point of the
failure. This information can be used to restore consistency, either by recon-
structing the committed transaction and writing it to disk, or by erasing all
record of the aborted transaction, so that it has no effect on the database
that exists on disk.

Tuning the Recovery System
Because it’s a sure thing that failures will occur, it makes sense to plan ahead
for them. A failure that you have not planned for could result in a data loss
severe enough to jeopardize the continued survival of your organization.
Effective preparation requires that you understand what kinds of failures
could possibly happen, what the impact of such failures would be, and what
can be done to mitigate that impact.

The most damaging failure is the one that causes the irretrievable loss of
data. Data can be irretrievably lost due to a variety of causes, based on the
way it is stored. There are two kinds of storage devices in common use
today: volatile memory and non-volatile memory. They are subject to differ-
ent failure modes. Volatile memory forgets everything if its power is ever
interrupted, even for fraction of a second. Thus any kind of power failure can
cause all data held in volatile memory to be lost. Non-volatile memory, as I’m
sure you have guessed by now, does not lose its contents in the event of a
power outage. Another name for non-volatile memory is persistent storage.
The data persists even in the event of a three-day blackout after a major
storm. When power is restored, the data is still there, just waiting for you.

Modern memory systems are hierarchical in nature, with the fastest memory
devices at the top of the memory hierarchy and the slowest at the bottom.
The fastest devices are also the most expensive in terms of cost per bit
stored. For this reason, it is not feasible to populate a memory system com-
pletely with the fastest memory available. Here’s the hierarchy for a typical
database server:

✦ CPU registers: CPU registers are the fastest because they are fabricated
with the same process as the CPU itself, on the same chip. They are
closest to the processing unit, so transit delays between the two are
minimized.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 567

Tuning the Recovery System568

✦ Level 1 cache: Level 1 cache is a little slower than CPU registers.

✦ Level 2 cache: Level 2 cache is slower yet.

✦ Level 3 cache (if present): Level 3 cache may or may not be present. If it
is, it is a little slower than Level 2 cache.

✦ Main memory: Main memory is much slower than cache.

✦ Hard disk: Hard disk is much, much, much slower than main memory.

✦ Magnetic tape: Magnetic tape is so slow that it is only used for backup
and archiving. You would never keep active data on magnetic tape.

CPU registers, cache, and main memory are all examples of volatile memory.
When you lose power, you also lose all the data stored in those devices.
Hard disk and magnetic tape are persistent storage devices. Data stored in
such devices survives power outages. This is not to say that persistent stor-
age devices are invulnerable to failure. They just have different failure modes
from those of volatile memory devices.

Hard disks and magnetic tape drives are machines that contain moving
parts. Such devices fail catastrophically from time to time. If you use them
long enough, they are sure to fail. When a hard disk fails, you lose all the
data that was stored on it. A regular backup schedule, faithfully followed,
can minimize your losses in such an event.

You might wonder why computers have volatile memory at all. Because
volatile memory forgets everything after a power interruption or processor
reboot, why not use non-volatile persistent storage for all the memory? The
answer has to do with performance. Volatile main memory consists of semi-
conductor RAM chips and non-volatile persistent storage is implemented
with hard disk drives. Semiconductor RAM can be as much as a million times
faster that hard disks in terms of exchanging data with the processor. With
a million-to-one speed advantage, volatile semiconductor RAM earns a place
in every computer where speed is a consideration.

Now you might wonder, if volatile RAM is a million times faster than non-
volatile hard disk storage, and remedies have been developed for recovering
from failures, why would you ever want to use hard disk storage? The
answer is cost. The cost to store a bit on hard disk is much lower than the
cost to store the same bit in semiconductor RAM. A personal computer
might have a 750 GB hard disk, but only 1 GB of RAM. The difference in
capacity reflects the difference in cost per bit.

Because volatile and non-volatile memories are both subject to failure, you
need strategies to cope with those failures. Because the failure modes are
so different, the strategies you use also need to be different. How do you

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 568

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Recovery System 569

protect data against failures in a volatile memory system? For this discus-
sion, I assume that the non-volatile memory system is operating properly
because it’s unlikely that both the volatile and non-volatile memory systems
would fail at the same time. Such a failure is, of course, possible in the event
of a building collapse or other major disaster. There are ways of coping with
even those eventualities, but they are beyond the scope of this book.

Putting logs and transactions on different disks
Volatile memory failures, for whatever reason, are inconvenient, but not
catastrophic, if the information you need to recover to resume operation is
stored on some non-volatile medium such as hard disk. Clearly you can’t
store the results of your computations directly on hard disk as you perform
them. If you did, your processing would be reduced to hard disk speeds
rather than the million-times-faster RAM speeds. There are however, things
you can do to minimize the amount of time that results spend in RAM before
being written to disk. These methods involve transactions and logging.

I discuss transactions and logging in detail in Book IV, Chapter 2. The log is a
record of every operation that alters the database in memory. It resides pri-
marily on disk, but part of it, the page buffer, is in RAM. Writes of log entries
to disk are made before the results of the corresponding transactions are
written to disk. If a system failure or “crash” occurs, you can reconstruct any
transactions that were in progress when the crash occurred. If a transaction
had committed or aborted but had not yet been flushed to disk, the log on
disk holds the information that enables the system to either commit or roll
back the transaction as appropriate. By keeping the log on a separate disk
from the disk or disks that hold the database, performance during normal
operation is maximized because writes to the log are sequential and no time
is lost doing disk head seeks. This being the case, frequent writes to the log
do not exact the same performance penalty that buffer flushes to the data-
base do.

Put logs and transactions on different disks
To understand why you should put a database’s log on its own hard disk
drive, you should understand how a hard disk drive is constructed and how
it operates.

Hard disk drive construction
A hard disk drive contains a sealed enclosure that is protected from particu-
lates in the air by a very effective air filter. Inside the enclosure, a spindle
connected to a motor rotates at speeds on the order of 7,200 revolutions per
minute. Attached to the spindle are several circular platters stacked one
atop another within the enclosure. The platters are aluminum disks coated

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 569

Tuning the Recovery System570

with a magnetic material. On each platter a set of more than a thousand con-
centric tracks are magnetically recorded. These tracks hold the data in the
form of magnetic domains that are either magnetized in one direction or the
other. For example, if a magnetic north pole is up, it represents a binary one;
if a south pole is up, it represents a zero.

An actuator moves an arm, so that its tip, which holds a magnetic read/write
head, can hover over any of the tracks. The read/write head, when reading,
can sense whether it is flying over a north pole or a south pole and thus
reads either a one or a zero. When writing, the head, which is an electromag-
net, can flip the polarity of the domains it flies over, thus laying down a pat-
tern of ones and zeros. On the top and the bottom of every platter is an
actuator arm and its associated read/write head (except on the very top and
bottom platters, which don’t have heads on the outside of the stack). The
set of corresponding tracks on all the platters, for example, all the track
zeros, which are the outermost tracks, constitute a cylinder. All the heads in
the stack are flying over the same cylinder at any given time.

Hard disk drive performance considerations
Because of the way hard disk drives are constructed, and because mechani-
cal movement is involved, there are limits to how fast a given byte or word
can be read or written. The delay involved in a read or write has several
components:

✦ Disk drive controller delay: The time it takes the controller to deter-
mine whether it is being asked to do a read or a write and to determine
the location that is to be read or written.

✦ Seek time: The time it takes for the read/write head to move from what-
ever track it is currently on to the track that it needs to go to next.

✦ Settling time: The time it takes for the “jiggling” to stop after the read/
write head has arrived at the track that it will operate on next.

✦ Rotational latency: Even at 7,200 RPM, it takes a significant amount of
time for a word of data to rotate all the way around the disk and come
under the read/write head. If the desired word has just gone by when the
head settles over a track, there will be a delay of up to 8 milliseconds
before it comes around again.

✦ Read/write time: The time it takes to actually do the read or write
operation.

When you add up all the noted delays, it becomes clear why hard disk stor-
age is so much slower than semiconductor RAM. The natural question that
arises is, “What can be done to minimize the delays that are inherent in the
operation of hard disks?”

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 570

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Recovery System 571

As it happens, a major part of the total delay involved in hard disk operation
is due to the combination of seek time, settling time, and rotational latency.
Minimizing these dramatically improves performance. The best way to mini-
mize seek time and settling time is to do all your writes on the same cylinder,
so that you never have to do a seek. That’s not possible, but what you can
do is make all your writes to the same cylinder until it fills up and then move
to an adjacent cylinder. This minimizes both seek time and settling time.
Furthermore, if you are writing sequentially along a track, rotational latency
is not an issue. You are always writing on the sector that immediately follows
the one you have just written.

Because it is critical that log entries be written to disk sooner rather than
later, dedicating an entire disk drive to the log is an obvious choice.
Sequential writes to the log are as fast as possible because seek time, set-
tling time, and rotational latency are all minimized.

For performance reasons, unless you are dealing with a read-only database,
always locate a database’s log on its own disk, not sharing the disk with any
other function or any other database. This way, log writes are always to
sequential sectors on the same disk cylinder, minimizing access time.

It’s a given that any reasonable system employs transactions and logging.
Transactions and logging are a form of insurance. They protect you from the
worst effects of a failure, but you must pay a premium for that protection.
Clearly, you want the protection, but you don’t want to pay a higher pre-
mium for it than you have to. This is where tuning comes in. There is a
tradeoff between the time it takes to recover from a failure and performance
during normal operation.

To minimize the time to recover from a failure, you should flush log entries
from the page buffer located in RAM to hard disk frequently. However, the
more often you make disk accesses, the greater the impact on performance.
Somehow you must find that “sweet spot” where time to recover from a fail-
ure is tolerable and normal operation performance is acceptable. Finding
that sweet spot is the DBA’s responsibility.

The DBA is the person with the power to determine how often the page
buffer is flushed to disk. The specifics of how to do this vary from one DBMS
to another. Consult the system administrator documentation for whichever
product you are using for details on how to control the timing of buffer
flushes. Keep a detailed history of every time your system goes down for
any reason, and use that knowledge to estimate the frequency of future
failures. Combine that information with the results of the data you have
recorded on the amount of time it takes to recover from a failure, in order
to decide how to set the buffer flush timing parameters.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 571

Tuning the Recovery System572

Tuning write operations
With a performance difference on the order of a million to one between semi-
conductor RAM and hard disk storage, the less frequently you write to disk,
the better your performance is. Balancing that consideration is the fact that
if you don’t write to stable storage, you will lose all your data in the event of
a failure.

There is a substantial difference between the amount of time taken by a
write to the log disk and a write to the data disk. Because writes to the log
disk tend to be sequential writes on the same disk track, with infrequent
short seeks to an adjacent track, such writes are much faster than writes to
the data disk, which tend to be to random locations, requiring frequent large
seeks between distant tracks, and incurring substantial latency delays.

Before a transaction commits, it writes the “after image” of the change to the
log disk. It may be quite a while after the change is made before the change
is transferred from the buffer, which is in solid-state memory, to the stable
storage of the data disk. How long that interval is, affects performance.

If a failure occurs after the log has been updated with the result of a transac-
tion, but before the change has been made to the data disk, recovery is not
a problem. Thus you can wait until a convenient time to store the changed
data to disk. A convenient time would be when the disk read-write head hap-
pened to be located over the track that you want to write to. In such a case,
the delay due to seek time and settling time would be avoided.

Different DBMS products have different procedures for determining when it
becomes advantageous to start looking for opportunities to make conven-
ient writes. The buffer in solid-state memory is divided into a number of
pages. Whenever a change is made to a page, the page is marked as “dirty.”
There is never a need to write a clean page out to disk because its contents
already match the contents of the corresponding disk location. Dirty pages,
on the other hand, differ from their corresponding disk locations and eventu-
ally have to be written to disk, incurring the performance penalty that such
an operation entails. Generally, when the percentage of dirty pages in the
page buffer exceeds a certain threshold, the system starts looking for oppor-
tunities to make convenient writes.

There is a considerable advantage to delaying writes to the data disk, that
goes beyond the difference in speed between a write to buffer and a write to
disk. If a memory location is “hot” in the sense that it is being updated fre-
quently, many of those updates may not need to ever be written to disk.
Suppose a memory location in the page buffer has a value of 4, for example.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 572

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Recovery System 573

In quick succession, it may be updated to 7, 17, 34, and 54. If the page it is on
is not flushed to disk until the last of those writes takes place, the updates to
7, 17, and 34 are never written to disk, and the time that such writes would
have taken is never consumed. This consideration strengthens the case for
extending the amount of time before dirty pages are written to disk as long
as possible, without making recovery from failure unduly onerous.

Dumps
In the preceding sections, I refer to hard disk storage as stable storage. It
earns that description because it is non-volatile. It doesn’t lose its contents
when the power goes out. However, it’s not immune to destruction. Hard
disks do fail, and when they do, all the data on them is lost. To address this
problem, system administrators do periodic database dumps, in which the
entire database is copied to offline media and stored in a safe place.

Database dumps are expensive because it takes a significant amount of time
to copy a large database to offline media. In addition, the offline media itself
has a cost, as does the space that is taken up by it. For these reasons, you
don’t want to do dumps too often. On the other hand, you do want to do
them often enough. If a hard disk dies, all the changes that have been made
to it since the last dump are gone. Can those lost transactions be re-entered?
If they are important, there had better be a way. How much of a hassle would
re-entering the data be? If it would be more than you are comfortable with,
you may need to re-evaluate your dump interval.

If you never dump your database, when your hard disk fails, you will lose all
your data. Clearly, that is not an acceptable outcome. At the other extreme,
if you perform dumps too frequently, you won’t get any work done because
your system is spending all its time doing database dumps. That’s not
acceptable either. Somewhere in the middle is an optimal dump interval.

No perfect dump interval is best for everybody in every situation. There are
several points to consider:

✦ How “hot” is the database? How many changes are being made to it per
second, per hour, per day, or per week?

✦ How painful would it be to re-enter updates that had been made since
the last dump?

✦ How long does a dump take? How much does it impact productivity?

✦ Am I using dumps for anything besides insurance against failure? For
example, am I data mining dumps? If so, how recent does the informa-
tion need to be in order to be useful?

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 573

Tuning the Recovery System574

✦ How much room for storing dumps do I have?

✦ Can I recycle dump media from several generations back and use it again?

In many cases, doing a dump once per day is sufficient, and can be sched-
uled at a time when activity is light. In other cases, doing a dump more or
less frequently is appropriate. Taking all the above-listed points into consid-
eration, decide on the best dump interval for each of the databases for
which you are responsible.

Checkpoints
Hard disk failures are almost always what are called hard failures. In a hard
failure, something physical is permanently and catastrophically damaged. In
the case of a hard disk, this is the infamous disk crash. The term is descrip-
tive, because when a disk crash occurs, you often hear a horrible scraping
sound as one of the flying heads slams into its platter at speeds of up to 75
miles per hour.

Luckily, hard failures are relatively rare. Far more common are soft failures.
In a soft failure, something unexpected has happened and processing has
stopped. Perhaps the dreaded “blue screen of death” appears, featuring an
indecipherable error message. Maybe the system just freezes and refuses to
respond to anything you do. In cases such as this, rebooting the machine
often clears the problem. Unfortunately, it also clears all of your volatile,
solid state memory. Anything that has not already been flushed to disk is
lost. Hopefully the log on disk has been updated recently, and you can recon-
struct some of what was lost. That flushing to disk is called checkpointing.

There are two different methods of writing data in the page buffer to hard
disk stable storage:

✦ Write the buffer contents to disk one page at a time. In this case, when
a page is needed that is not currently in the buffer is read from disk, it
displaces a page that is already in the buffer. If that page is dirty, it must
be written to disk before the new page can be read.

✦ Write the entire contents of the buffer to disk all at once. This is done
at regular intervals called checkpoints. The more frequent your check-
points are, the less data you lose in case of a soft failure, or other failure
of any part of the system other than the hard disk subsystem. For this
reason, frequent checkpoints are a good idea. However, too-frequent
checkpoints are bad because a write to disk of the complete contents
of the page buffer takes time that is not being used productively. Here
again you have a tradeoff between normal operating performance and
the time and effort it would take to recover from a failure.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 574

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Operating System 575

If you have good statistics on the frequency of failures that cause the loss of
the contents of solid-state memory, and the cost, both in lost productivity and
extra expense, of recovery from those failures, you can make an informed
decision on how frequently you should schedule checkpoints. Checkpoints
have a cost in lost productivity, but not as great a cost as a dump. Check-
points should be performed more frequently than dumps, but not so fre-
quently that multiple checkpoints are likely to occur within the execution
time of a typical transaction. Having multiple checkpoints while a transac-
tion is active consumes time, but does not deliver a corresponding reduction
in recovery time.

Optimizing batch transactions
A transaction that causes multiple updates is called a batch transaction.
Batch transactions can be problematical if they are long. If the page buffer
fills up while a batch transaction is in progress, it could initiate a rollback,
and rolling back a lengthy transaction and then rerunning it can have a
major impact on productivity. To address this concern, one option is to
break the batch up into smaller minibatches. This, however, must be done
carefully. If a batch transaction is rolled back, it undoes every change that
was made by the transaction up to the point of the rollback. However, if a
batch is broken up into, for example, two minibatches, and a rollback occurs
while the second minibatch is executing, the changes made by the first mini-
batch will not be rolled back. The database is left in an inconsistent state.
One solution to this problem is to only allow rollbacks during the first mini-
batch of a series of minibatches. Doing so, however, severely limits what can
be done in the subsequent minibatches. If the minibatches are truly inde-
pendent of each other, there is no problem, but such independence must be
guaranteed in order to preserve the integrity of the database.

Tuning the Operating System
Because your operating system controls an application’s access to I/O devices
and to hard disk memory, the OS can affect database application performance
in many ways. Correspondingly, there are at least an equal number of things
you can do to tune the operating system to improve performance. In the fol-
lowing sections, I touch on some of the major areas where you can make a
performance difference by acting upon the operating system.

Scheduling threads
Practically all operating systems these days are multi-threaded operating
systems. Microsoft Windows is an example of one such operating system.
Multi-threading is what makes it possible for you to type text into a Word

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 575

Tuning the Operating System576

document while your Excel spreadsheet is recalculating values and your
Access database is performing a query. Meanwhile, your media player is
piping your favorite song into your headphones. Each one of those tasks is
performed by a thread of execution.

Multiple threads of execution do not all operate simultaneously, although
they seem to. Instead, they are operating concurrently. First a little bit of
one task is executed, and then a context switch suspends that thread of exe-
cution and activates another thread. This swapping goes on so rapidly that
to a human observer, it appears as if all the threads are executing at once.
Operating systems have moved from single-threaded to multi-threaded
because of the great performance boost you get.

Threads improve throughput
You might wonder why multi-threading improves performance. After all,
whether you interleave the execution of five tasks or have them run sequen-
tially, you still have to execute all the instructions involved in those five
tasks. In fact, it seems that multi-threading should be slower than single
threading because there is non-productive overhead involved with every
task switch operation.

Despite task switching overhead, multi-threading does substantially improve
throughput. Throughput is the total amount of work that gets done per unit
time. Suppose you have a typical organizational database system, with a
database server holding the database and multiple client machines making
queries or updates to that database. On the server, some of the database is
in high-speed cache memory; some is in slower dynamic RAM, and some is
stored on very-much-slower hard disk.

If the thread that is currently active needs to access a data item that is nei-
ther in cache nor RAM, a long delay occurs before it can proceed. There is
no point in stalling everybody while that one thread waits for a response
from the hard disk subsystem. As soon as the operating system is asked to
go to hard disk for data, it can initiate that operation and then immediately
suspend execution of the active thread and activate another thread that is
now ready to go. When the needed data becomes available from the hard
disk subsystem, the original thread can be reactivated and run at full speed
again.

Any one application that is operating in a multi-threaded environment with
say, four other applications, is not sped up by the multi-threading process.
However, all five applications will finish sooner than they would have if they
had been run sequentially because as one application is waiting for a slow
operation to complete, the processor can be productively used by another
application that is performing fast operations.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 576

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Operating System 577

The scheduling of threads is a ripe area for tuning. One area where tuning
can make a big difference is in context switching.

Context switching
At any given instant, the data that is being acted upon in the processor is the
context at that instant. All the data in all the processor’s user-accessible reg-
isters make up the context. An instant later, a computation has been per-
formed, and the context is different.

Before making a context switch, the context of an application must be saved,
so that when the application’s thread is reactivated, the context can be
restored, and execution can proceed as if nothing had happened. A context
switch takes time — it takes time to save the context of the thread that is
being replaced, and it takes time to restore the context of the thread that is
replacing it. Some operating systems are more efficient at context switching
than others. That efficiency rating could be a factor in choosing an operating
system, depending on the mix of applications that will be running and on the
number of applications that will typically be running concurrently.

Round-robin scheduling
Round-robin scheduling is the simplest algorithm for selecting which one
of all the threads that are ready to run should run next. The operating
system kernel maintains a queue of pointers to threads that are ready to
run. It grabs the pointer to the next thread from the head of the queue and
places the pointer to the currently executing thread at the tail of the queue.
New threads are placed at the tail of the queue when they become ready
to run.

Round-robin scheduling treats all threads as if they have equal importance.
In a database environment, this is likely to be a valid assumption, so round-
robin scheduling is appropriate.

Priority-based scheduling
In priority-based scheduling, each thread is given a priority number, with
higher priority threads receiving higher numbers. Higher priority threads
are given preference by the scheduler. They run more often and for longer
periods of time. The priority assigned to an application, as well as the
level of service that a given priority level confers, are quantities subject
to tuning.

Priority-based scheduling has a potential pitfall, called priority inversion.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 577

Tuning the Operating System578

Priority inversion
Suppose you have three applications running on three different threads. One
has high priority, one has medium priority, and one has low priority. Suppose
further that the high-priority thread and the low-priority thread both require
the same resource. Here’s what could happen:

1. The low-priority thread starts running and acquires an exclusive lock on
the key resource.

2. The high-priority thread starts running and tries to acquire the key
resource, but fails because the resource is locked by the low-priority
thread. This is a priority inversion, but is not too bad. It is called a
bounded priority inversion because it lasts no longer than the critical
section of the low-priority thread, after which the lock is released.

3. The medium-priority thread pre-empts the low-priority thread during
the inversion. Now both the high-priority thread and the low-priority
thread are idle. The medium-priority thread may even be pre-empted by
another, higher-priority thread. This could delay the high-priority thread
for an unacceptably long time, causing it to fail. This kind of unbounded
priority inversion happened to the Mars Pathfinder spacecraft on Mars
in 1997, halting the exploration of the Red Planet by the Sojourner rover
until NASA engineers could figure out what had happened and upload a
fix to the code.

Here are two possible solutions to the priority inversion:

✦ Priority Inheritance Protocol (PIP): One solution to the priority inver-
sion problem is to institute the Priority Inheritance Protocol. When a
high-priority thread attempts to lock a resource that is already locked by
a lower-priority thread, the priority of the lower-priority thread is auto-
matically raised to match the priority of the high-priority thread. In this
way, it cannot be pre-empted by a medium priority thread, and the prior-
ity inversion is only a bounded one.

✦ Priority Ceiling Protocol (PCP): Another solution is provided by the
Priority Ceiling Protocol. When a thread locks a resource, regardless of
what its priority is, it is immediately promoted to having the highest pri-
ority. It cannot be pre-empted and thus when it exits its critical section
and releases its lock on the resource, the ready thread with the highest
priority can now acquire that resource. This is another case of a
bounded priority inversion.

Clearly, if priority-based scheduling is used, some scheme such as PIP or
PCP should be used also.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 578

Book VII
Chapter 2

Tuning the
Environm

ent
Tuning the Operating System 579

Deadlock
Deadlock is another problem related to resource acquisition. Suppose two
threads both need the same two resources, A and B:

1. Thread 1 acquires an exclusive lock on resource A.

2. Thread 2 acquires an exclusive lock on resource B.

3. Thread 1 attempts to acquire a lock on resource B, but cannot, so it
waits, pending the availability of resource B.

4. Thread 2 attempts to acquire a lock on resource A, but cannot, so it
waits, pending the availability of resource A.

5. Neither resource A nor resource B ever becomes available, and both
applications 1 and 2 are deadlocked.

A common solution to this problem is for the operating system to notice that
neither thread 1 nor thread 2 has made any progress after an interval of time
during which progress should have been made. It drops all locks held by
both threads and delays them for different intervals of time before allowing
them to run again. The delay intervals are tunable quantities. The best inter-
vals are successful at breaking deadlocks practically all of the time.

Determining database buffer size
Earlier in this chapter, I mention that the storage in a computer that runs data-
base applications comes to two varieties, volatile and non-volatile. Volatile
memory is considered unstable storage because a power interruption or
other failure that causes a machine reboot erases everything in it. Non-volatile
memory, in contrast, retains its information when such problems occur. The
reason nobody puts all his code and data in non-volatile storage is because it
is about a million times slower than the slowest form of volatile storage.

Clearly, the less often you have to go out to the non-volatile storage on hard
disk, the better. You enjoy a million-to-one performance advantage if you
operate out of semiconductor RAM. For many applications, it is not feasible
to retain our entire database in RAM. However, you can afford to keep some
of it in RAM (hopefully, that portion of the database that you are most likely
to need to access often). The portion of RAM that holds that heavily used
portion of the database is called the database page buffer. The tuning option
that you have is to decide on the size of the page buffer.

If the page buffer is too small, you will be going out to disk more often than
you need to, and will suffer serious performance degradation. If the page
buffer is larger than it needs to be, you will be paying for expensive RAM
when you could be getting the same performance out of dirt-cheap disk.
Somewhere in the middle is an optimum.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 579

Maximizing the Hardware You Have580

If your hit rate on the page buffer is between 90% and 95%, you are probably
doing about as well as you can expect. That means that nine times out of ten
or 19 times out of 20, when you need to access a data item, it is in the buffer.
If you are not getting a hit rate in that range, perhaps you could do better
with a larger buffer, or perhaps not. Depending on your database, a 70% hit
rate may be the best that you can do. You can test the situation by gradually
adding more RAM to the buffer until your hit rate plateaus. At that point, you
know that adding any additional RAM to the buffer won’t improve your per-
formance, but will only add more to your cost.

Tuning page usage factor
The amount of space on a page that is holding data is called the page’s usage
factor. The higher the usage factor, the more data you can store in fast RAM
as compared to the amount that must remain on slow hard disk. This is a
vote for high usage factors. However, if the usage factor is too high, a prob-
lem arises when you make a number of insertions or when you update
records by replacing NULL values with data. Tuning is important here. You
need to be aware of the kinds of operations that are typically performed on
the database. Are insertions common? If so, a lower usage factor is called for.
If not, you will get better performance by raising the usage factor. Page usage
factor is one of the many places where tuning means trying a setting, taking
data, and then trying something else. After you have a good understanding
of how your workload performs under the various usage factors, you can
pick the one that will serve you the best most of the time.

Maximizing the Hardware You Have
In addition to the tweaks you can make to your recovery system and your
operating system, you can do other things to improve performance by
making better use of your hardware. I look at just a few of these.

Optimizing placement of code
and data on hard disks
You already know from the discussion of hard disk drive construction in the
section above on logging that you can improve performance by locating data
that will be read or written sequentially in sequential locations on the same
track on your hard disk. Keeping the read/write head on the same track elim-
inates the delay due to seek time and settling time. For data transfers larger
than a single track, keeping on the same cylinder on the disk maintains the
performance advantage.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 580

Book VII
Chapter 2

Tuning the
Environm

ent
Maximizing the Hardware You Have 581

When a hard disk is new or has recently been reformatted, you can enjoy
good performance by carefully choosing the way in which you copy data to
it. As time goes on and updates are made, that beautiful organization is grad-
ually degraded, and your performance is degraded with it. One thing you can
do to combat this degradation is to defragment your disks regularly.

Another thing you can do to improve performance is to locate your most fre-
quently used data on the cylinders in the middle of your hard disk. If your
disk has cylinders numbered 0 through 1023, you should put the most heav-
ily used data on cylinder 511, or at least near it. This is due to a statistical
consideration. If the most heavily used data is clustered in the center of the
disk, seeks tend to be short, which also decreases the time it takes for the
heads to settle over a track. Furthermore, on those occasions when the
heads are over either a high number track or a low numbered track, there
is a high probability that they next need to go to one of the heavily used
tracks, which is only half the radius of the disk away. Long seeks from say,
track 5 to track 1020 are rare.

Tuning the page replacement algorithm
The page replacement algorithm is the code that decides which page in the
database page buffer to flush to disk when the buffer is full and a new page
is needed. You want to flush out a page that is highly unlikely to be needed
again soon. The best page to flush is predictable with a high degree of accu-
racy due to the fact that most applications have a key property, called tem-
poral locality. Temporal locality means that a page in the buffer that has been
used recently is likely to be needed again soon. The flip side of this coin is
that a page that has not been accessed in a long time will probably not be
needed any time soon. Such a page is a prime candidate for flushing out to
disk. One page replacement algorithm that follows this line of reasoning is
the least recently used (LRU) algorithm. Whenever a page must be replaced,
the LRU algorithm flushes the page that has been in the buffer the longest
time without being either read or written to. The LRU algorithm works very
well in most cases. However, depending on what the application is doing,
there are other cases where the LRU algorithm is the worst possible one
from a performance standpoint. If you monitor performance and notice
excessive buffer page swapping, changing the page replacement algorithm
may give you a substantial performance enhancement.

Disk controller cache
The disk controller cache is another tunable area. Not only is there a page
replacement buffer located in the system’s main memory, but there is also a
cache located in the hard disk subsystem. How this cache is used can affect

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 581

Adding Hardware582

performance. The performance of read operations is not affected by which
of two protocols you use, but write performance can be affected. These are
the two protocols:

✦ Write-through: When the write-through protocol is in effect, writes to
disk are simultaneously written to both the cache and the disk. This
means that every write to the disk subsystem takes as long as a slow,
disk write operation rather than as short as a fast cache write operation.
When operating under this protocol the cache gives no advantage to
write operations, but reads of data in the cache are fast.

✦ Write-back: When the write-back protocol is in effect, writes to the disk
subsystem go only to the cache, and a “dirty” bit is set to indicate that
the contents of the cache differ from the contents of the corresponding
locations on disk. Dirty pages are flushed to disk when convenient or
when the page replacement algorithm replaces a dirty page with a new
page loaded from disk.

For a lightly loaded system, the write-back protocol will usually give better
performance because disk accesses are rare. For a heavily loaded system
with frequent page swapping and more reading than writing, the write-
through protocol may be better. Depending on your job mix, it may pay
you to try both protocols, taking statistics for both. After you analyze your
statistical data, choose the protocol that performs best.

Adding Hardware
If you hadn’t read the material in the preceding sections of this chapter,
probably the first thought to come to mind when you determine that your
system is not performing the way it should, is “I need new hardware.”
Perhaps that is true, but it should not be your first option. As demonstrated
in the preceding sections, you can try a great many things besides adding
new hardware.

When you have exhausted all the possibilities for improvement, using the
hardware you have, consider adding hardware. If you add hardware before
performing the optimizations discussed above, you could easily be out the
money without having addressed the real problem. Performance may not
have improved at all because your system’s lagging performance was not
due to a deficiency in the hardware after all. If your system is optimized to
the point that it is doing the best that it can with the hardware it has, and
you are still not getting the performance you need, perhaps upgrading your
hardware will help.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 582

Book VII
Chapter 2

Tuning the
Environm

ent
Adding Hardware 583

Faster processor
One obvious choice is to move to a faster processor. This can be an expen-
sive choice because you can’t just plug a faster processor chip into your
existing motherboard and expect a speedup. The support chips on the
motherboard need to match the new processor. This means you probably
need to replace the motherboard and may have to move to faster RAM at
the same time. You might as well buy a whole new box and give your existing
box to your kid to play computer games on. (Wait — that won’t work! Today’s
fast-action computer games with hyper-realistic graphics require the fastest
processors on the planet. Your offspring will probably feel dissed if you try
to palm off your obsolete processor on him.) At any rate, expensive or not,
moving to a faster, more capable CPU may give you a significant perform-
ance boost.

More RAM
A less drastic upgrade than a computer switch-out, which may nonetheless
make a big difference in performance, is to add RAM to your existing system.
Adding RAM may enable you to support a bigger page buffer than you cur-
rently have, enabling you to keep more of your data in fast semiconductor
memory. If this improves your page buffer hit rate, it could be a very eco-
nomical way to improve performance.

Faster hard disks
Hard disk drives do not all have the same performance parameters. Seek
time, settling time, rotational latency, controller cache size, and disk inter-
face bandwidth are all things to look at. If the disks you currently have are
not up to the current state of the art, you might consider replacing them.
Think carefully, however, before spending a lot of money on this idea.
Although processor performance, RAM densities, and hard disk capacities
have been improving at an exponential rate in accordance with Moore’s
Law, hard disk performance specifications have not scaled nearly as rapidly.
Although this year’s hard disks have a lot more capacity than last year’s,
there may be little or no improvement in the speed with which you are able
to read from and write to them.

More hard disks
Although trading up to faster hard disk drives may not give you the perform-
ance boost you are looking for, adding disk drives that are no faster than the
ones you are using now may do it. The advantage of having multiple disks is
that while one disk is busy performing one operation, a second disk can be
performing a second operation. Because the processor is operating so much

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 583

Adding Hardware584

faster than the disk drives, in an operation that entails a lot of disk accesses,
it can keep multiple disks operating at once. This parallelism could translate
into a significant improvement in overall performance.

Performance advantages of RAID arrays
If you are going to spread your database across multiple disks anyway, you
might as well configure those disks as a RAID array. RAID is an acronym for
Redundant Array of Inexpensive Disks. The disks in a RAID array are inex-
pensive because at any given point in time, there is a “sweet spot” in the
hard disk market. The sweet spot is where you get the most bang for your
buck, which in this case means the most megabytes per dollar. If the sweet
spot currently happens to be 400 GB, it is cheaper to buy five 400 GB drives
and configure them as a RAID array than it would be to buy a single 2 TB
drive (if you could even buy a 2 TB drive at any price). The disks in the array
are redundant in that your database information is recorded in more than
one place. This is an important safety feature for critical databases. If one of
your disk drives were to fail and lose all its data, you could keep on operat-
ing, using the remaining disks.

There are several different kinds of RAID, some emphasizing redundancy
more, and some emphasizing performance more. Here is a brief rundown of
the most popular RAID flavors:

✦ RAID 0 is all about performance. Your data is spread across all the
disks in the array in “stripes.” The first disk in the array gets a chunk,
the second disk gets one, and so on to the last disk in the array. When
that stripe is complete, the next chunk starts a new stripe on the first
disk. This version of RAID has no fault tolerance. If a disk fails, you have
lost the information on it, and the data on all the other disks is useless
because it makes no sense without the collection of stripes on the failed
disk. RAID 0 is fast because, if you have chosen your stripe widths cor-
rectly, a read or a write to the array will engage all or a major fraction of
your disk drives in parallel. Because of the lack of fault tolerance, RAID 0
is not a good choice for critical data.

✦ RAID 1 is all about fault tolerance. It doesn’t give you any performance
advantage at all. A RAID 1 array consists of exactly two hard disk drives
that are in a mirror configuration. Writes to disk go simultaneously to
both, so each is a mirror of the other. If one disk fails, the other one con-
tains all the information and operates just as fast as the array did in the
first place. RAID 1 gives you a high degree of fault tolerance, but at the
cost of doubling the number of disks.

✦ RAID 5 uses parity striping to give you a compromise between the
features of RAID 0 and RAID 1. Your data is striped across multiple
disks, but so is parity information. If one of the disks fails, the parity

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 584

Book VII
Chapter 2

Tuning the
Environm

ent
Multiprocessor Environments 585

information on the surviving disks can be used to reconstruct the data
on the failed disk. This level of fault tolerance is not as good as what
RAID 1 gives you because there is performance degradation due to the
time taken to reconstruct the failed disk’s data on the fly. However, you
can keep operating, if at a reduced rate, while replacing the failed disk
and flowing the reconstituted data into it. The fact that the data is striped
across multiple disks gives you much of the performance advantage
of RAID 0, to go along with the fault tolerance that comes from parity
striping.

✦ RAID 10 is a more direct combining of the attributes of RAID 0 and
RAID 1 than RAID 5 is. Half the disks in the array are striped in the
manner of RAID 0, and the other half of the disks mirror what is on the
first half in the manner of RAID 1. This version of RAID gives you high
performance and high fault tolerance, traded off against the requirement
to buy a lot of disks.

Multiprocessor Environments
Until now I have been talking primarily about a system that may have multiple
client computers engaging in transactions with a database stored on a single
database server. For large enough databases where performance is an impor-
tant consideration, a distributed solution may be called for. This means not
only multiple client computers, but multiple servers too. Distributed data-
bases are significantly more complex than single-server databases. I don’t
go into that complexity much here. Instead, I briefly mention three main archi-
tectural choices for such systems. The architecture chosen has a major effect
on overall performance. For some types of applications, one architecture is
clearly superior to the other two. For another architecture, the advantage
goes to one of the other configurations:

✦ Tightly coupled architecture: Several processors all share the same
main memory and disk farm. The processors all operate in parallel upon
the same data.

✦ Shared-disk architecture: All the processors in the system each have
their own private main memory, but the hard disks are shared.

✦ Shared-nothing architecture: All the processors have their own private
main memory and their own private hard disks. This architecture is
appropriate when the application being run can be divided up into inde-
pendent subapplications.

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 585

Book VII: Database Tuning Overview586

41 119280 bk07ch02.qxp 5/23/07 10:48 AM Page 586

Chapter 3: Finding and
Eliminating Bottlenecks

In This Chapter
� Identifying the problem

� Considering possible causes

� Pondering possible fixes

� Investigating bottlenecks

� Judging query efficiency

� Using resources wisely

Databases generally start small and grow with time. Operations that
could be performed in a reasonable amount of time with a small data-

base gradually take longer as the database grows. This slowdown is proba-
bly not due to any general inadequacy of the system, but is probably a
specific link in the chain of operations that leads from a request to a result.
That specific link is a bottleneck. Finding and eliminating bottlenecks is one
of the main jobs of any person charged with maintaining a database. The
ability to determine the cause of a performance shortfall, and to find a
remedy, is valuable in any organization and can be highly rewarding, both
intellectually and financially.

Pinpointing the Problem
Have you heard the old backwoods story about the frog in hot water? It goes
like this:

If you throw a frog into a pot of water that is practically boiling, it will
jump out right away. However, if you put a frog into a pot that is at a
comfortable temperature and gradually turn up the heat, it will not
notice anything is amiss, and swim around contentedly until it is
too late.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 587

Pinpointing the Problem588

Sometimes database users are like frogs. When they start using a new data-
base application, they let you know right away if it’s running slowly. However,
if performance is good at first, but then gradually degrades, they may not
notice it until the difference is truly dramatic. Some problems manifest them-
selves right away, whereas others are slow to develop. As you might expect,
the causes of the immediate problems tend to be different from the causes of
the problems that slowly develop over time. In either case, a database special-
ist needs to know how to track down the source of the problem, and then take
appropriate action to fix it.

After the initial loading of data into a database, only two basic activities
are performed on it: Either you are retrieving a selected portion of the
data that is there, or you are updating the data that is there. I count adding
new data, deleting existing data, or changing existing data all as forms of
updates. Some databases experience many more retrievals, called queries,
than they do updates in a given interval of time. Other databases experience
more updates. Some experience about an equal number of queries and
updates.

Slow query
Users who are responsible for running queries, like the happily swimming
frog, may not notice that their queries are running slower until someone
comes by while one is running and remarks on how long it takes for a
result to come back. At that point, they call you. You now get the chance to
do a little detective work. Somewhere in the application, the DBMS, the net-
work link, the database server, or the storage subsystem, something has
maxed out. Your job is to figure out what it is and restore performance to
acceptable levels as soon as possible, without replacing or upgrading the
parts of the system that are not part of the problem. Your job is to find the
bottleneck.

Slow update
Perhaps the problem is not with queries, but rather with updates. For a
person making adds, changes, or deletes to a database, long waits between
entering a change and having the system being ready to accept the next one
can be frustrating at best, and intolerable at worst. The causes for delays in
updating tend to be different from the causes of slow responses to queries.
Although the bottleneck may be different, your job is still the same: Find the
source of the problem and then fix it. In the next section, I look at some of
the likely causes of bottlenecks.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 588

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Determining the Possible Causes of Trouble 589

Determining the Possible Causes of Trouble
The main candidates for causing bottlenecks can be categorized into three
areas: indexes, communication, and hardware. In this section, I explore each
of these further.

Problems with indexes
Probably the number one cause of less-than-optimal performance is
improper indexing. Improper indexing may mean the lack of one or more
indexes that should be present, but could also mean the presence of indexes
that should not be there.

B+ tree indexes
There are several different kinds of indexes, but the most common is the B+
tree index, also called the B-tree index, where B stands for balanced. A B-tree
has a tree-like structure, with a root node, from which a row of branch nodes
fan out. Another row of branch nodes may fan out from the first row, and so on
for as many rows as the tree has. The nodes at the end of the chain of branch
nodes are called leaf nodes. Leaf nodes have no “children,” but instead hold
the index values. The root node contains pointers to the first row of branch
nodes. The first row of branch nodes contains pointers to the next row of
branch nodes. The last row of branch nodes contains pointers to the leaf
nodes. The leaf nodes contain pointers to rows in the table being indexed.

Index pluses and minuses
Indexes are valuable because a row in a data table can be found after follow-
ing a short chain of pointers, as opposed to scanning the table one row at a
time until you reach the row you want. The advantage is even greater than it
might seem on the surface because indexes tend to be small compared to
the size of the data table they are indexing. This means that the index is
often entirely contained in cache memory, meaning that the target row in the
data table is located at semiconductor RAM speeds rather than mechanical
hard disk speeds, as would likely be the case for a full table scan.

However, the advantages are not all on the side of indexing. Indexes tend to
degrade in tables with frequent inserts and deletes. Deletes create empty
leaf nodes, which fill up space in cache without contributing. This could
cause the index to spill out of cache onto the hard disk with the perform-
ance penalty that goes along with that. Eliminating the empty leaf cells
requires a time-consuming index rebuild, during which no productive pro-
cessing can take place.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 589

Determining the Possible Causes of Trouble590

Updates have an even greater impact on performance than delete opera-
tions. An update that includes at least one indexed column consists of both
a delete and an insert. An index is a table of pointers and updating an index
changes the location of that pointer, requiring its deletion from one place
and its insertion at another. Indexes on non-key columns that contain values
that change frequently cause the worst performance hits. Updates of indexes
on primary keys almost never happen, and updates of indexes on foreign
keys are rare. Indexes that are not highly selective (for example, indexes on
columns that contain many duplicates) often degrade overall performance
rather than enhance it.

Index-only queries
Indexes have the ability to speed up queries because they give near-direct
access to the rows in a data table from which you want to retrieve data. This
is great, but suppose the data you want to retrieve is entirely contained in
the columns that comprise the index. In that case, you don’t need to access
the data table at all: Everything you need is contained in the index. Index-
only queries can be very fast indeed. This may make it worthwhile to include
in an index a column that you otherwise would not include, just because it is
retrieved by a frequently run query. In such a case, the added maintenance
cost for the index is overshadowed by the increased speed of retrievals for
the frequently run query.

Full table scans versus indexed table access
How do you find the rows you want to retrieve from a database table? The
simplest way, called a full table scan, is to look at every row in the table,
up to the table’s “high water mark,” grabbing the rows that satisfy your
selection condition as you go. The high water mark of a table is the largest
number of rows it has ever had. Presently there may be fewer rows because
of deletions, but there still may be rows scattered anywhere up to and
including the high water mark. The main disadvantage of a full table scan
is that it must examine every row in the table up to and including the high
water mark. A full table scan may or may not be the most efficient way to
retrieve the data you want. The alternative is indexed table access.

As I discussed in the preceding section on the B-tree index, when your
retrieval is on an index, you reach the desired rows in the data table after
a short walk through a small number of nodes on the tree. Because the
index is likely to be cached, such retrievals are much faster than retrievals
that must load sequential blocks from the data table into cache before scan-
ning them.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 590

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Determining the Possible Causes of Trouble 591

For very small tables, which are as likely to be cached as an index is, a full
table scan is about as fast as an indexed table access. This means that index-
ing small tables is probably a bad idea. It won’t gain you significant perform-
ance, and adds complexity and size to your database.

Pitfalls in communication
One area where performance may be lost or gained is in the communication
between a database server and the client computers that are running the
database applications. If the communication channel is too narrow for the
traffic, or if it is just not used efficiently, performance can suffer.

ODBC/JDBC versus native drivers
Most databases support more than one way of connecting to client com-
puters running applications. Because these different ways of connecting
employ different mechanisms, they have different performance charac-
teristics. The database application, running on a client computer, must be
able to send requests to and receive responses from the database, running
on the database server. The conduit for this communication is a software
driver that translates application requests into a form the database
can understand, and database responses into a form the application can
understand.

There are two main ways of performing this function. One is to use a native
driver, which has been specifically written to interface an application written
with a DBMS vendor’s application development tools to that same vendor’s
DBMS back end. The advantage of this approach is that because the driver
knows exactly what is required, it performs with a minimum of overhead.
The disadvantage is that an application written with one DBMS back end in
mind cannot use a native driver to communicate with a database created
with a different DBMS.

In practice, there is frequently a need to access a database from an applica-
tion that was not originally targeted at that database. In such cases, a gener-
alized driver can be used. There are two main types, ODBC and JDBC. ODBC
(Open DataBase Connectivity) was originally created by Microsoft, but has
been widely adopted by application developers writing in the Visual Basic,
C, or C++ programming languages. JDBC (Java DataBase Connectivity) is
similar to ODBC, but is designed to be used with the Java programming
language.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 591

Determining the Possible Causes of Trouble592

ODBC consists of a driver manager and the specific driver that is compatible
with the target database. The driver performs the ODBC functions and
communicates directly with the database server. One feature of the driver
manager is its ability to log ODBC calls. This feature can be very helpful in
debugging a connection, but slows down communication, so it should be dis-
abled in a production environment. ODBC drivers may provide slower per-
formance than a native driver that has been specifically designed to join a
specific client with a specific data source. An ODBC driver may also fail to pro-
vide all the functions that a native driver would for a specific data source.

Locking and client performance
Multiple users can perform read operations without interfering with each
other, making use of a shared lock. When an update is involved, however,
things are different. As long as an update transaction initiated by one client
has a resource in the database locked with an exclusive lock, other clients
cannot access that resource. Furthermore, an update transaction cannot
place an exclusive lock on a resource that currently is held by a shared lock.

This is strong motivation for keeping transactions short. You should con-
sider several factors when you find that a critical resource is being locked
too long, slowing performance for everyone. One possibility is that a trans-
action’s SQL code is written in an inefficient manner. This may be due to
improper use of indexes, or to poorly written SELECT statements. However,
hardware could also be the culprit. Most organizations put their limited IT
budget dollars into keeping the servers upgraded because they affect every-
one. This is a good idea. However, you cannot ignore the client computers in
the process. It only takes one obsolete, slow, client computer to slow pro-
cessing for everyone by holding locks too long. If response in a multi-user
environment seems slow even though you have a fast server, check the
clients. For best performance, they should all be operating at comparable
performance levels.

Application development tools making suboptimal decisions
Sometimes an application development tool implements a query differently
than what you would get if you entered the same query directly from the
SQL command prompt. If you suspect lagging performance could be due to
your development tool, enter the SQL directly and compare response times.
If something the tool is doing is indeed causing the problem, see if you can
turn off the feature that is causing extra communication between the client
and the server to take place.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 592

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

A First Step Toward Improving Performance 593

Determining whether hardware is robust
enough and configured properly
Perhaps your queries are running slowly because your hardware isn’t up to
the challenge. It could be a matter of a processor that is too slow, insufficient
memory, a slow bus clock, or a slow hard disk subsystem. Alternatively, your
hardware might be good enough, but is not configured correctly. For exam-
ple, your database page buffer might not be big enough. You might be run-
ning in a mode that is less than optimal, such as flushing the page buffer to
disk more often than needed. Perhaps the system is creating checkpoints or
database dumps too frequently. These are all configuration issues that, if rec-
ognized and addressed, can dramatically improve your performance without
touching your equipment budget.

You may well decide that you need to update some aspect of your hardware
environment, but before you do, make sure that the hardware that you
already have is configured in such a way that you have a proper balance of
performance and reliability.

Implementing General Pointers: A First
Step Toward Improving Performance

In looking for ways to improve the performance of queries you are running,
some general principles almost always apply. If a query is violating any of
these principles, you can probably make it run faster by eliminating the vio-
lation. Check out the suggestions in this section before expending a lot of
effort on other interventions.

Avoid direct user interaction
Among all the components of a database system, the human being sitting at
the keyboard is the slowest by far. At almost a thousand times slower than a
hard disk and more than a million times slower than semiconductor RAM,
nothing brings a system to its knees as fast as putting a human in the loop.
Transactions that lock database resources should never require any action
by a human. If your application does require such action, changing your
application to eliminate it will do more for overall system performance than
anything else you can do.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 593

A First Step Toward Improving Performance594

Examine the application/database interaction
One important performance bottleneck is the communication channel
between the server and a client machine. This channel has a design capacity
that imposes a speed limit on the packets of information that travel back and
forth. In addition to the data that gets transmitted, a significant amount of
overhead is associated with each packet. Thus one large packet is transmit-
ted significantly faster than numerous small packets that contain the same
amount of information. Rather than retrieving a set of rows one at a time, it
is better to retrieve the entire set in one shot. Don’t put an SQL retrieval
statement within a loop in your application program. If you do, you will send
a request and receive a response every time through the loop. Instead, grab
an entire result set at once and do your processing on the client machine.

Another thing you can do to reduce back and forth traffic is to make use of
SQL:2003’s flow of control constructs to execute multiple SQL statements in
a single transaction. In this case, the number-crunching takes place on the
server rather than the client. The result is, however, the same as in the previ-
ous paragraph — fewer message packets traveling over the communication
channel.

User Defined Functions (UDFs) can also reduce client/server traffic. By
including a UDF in a SELECT statement’s WHERE clause, processing is local-
ized in the server, and less data needs to be transmitted to the client.

Don’t ask for columns that you don’t need
It may seem like a no-brainer to not retrieve rows that you don’t need. After
all, to do so shuttles unneeded information across the communications chan-
nel, slowing operations down. However, it’s really easy to type the following:

SELECT * FROM CUSTOMER ;

This retrieves the data you want, along with a lot of unwanted baggage. So
work a little harder and list out the columns you want, and only the columns
you want. If it turns out that all the columns you want are indexed, you can
save a lot of time, as the DBMS makes an index-only retrieval. Adding just
one unindexed column forces the query to access the data table.

Don’t use cursors unless you absolutely have to
Cursors are glacially slow in almost all implementations. If you have a slow-
running query that uses cursors, try to find a way to get the same result
without cursors. Whatever you come up with is likely to run significantly
faster.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 594

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Tracking Down Bottlenecks 595

Precompile queries
Compiling a query takes time, often more than the time it takes to execute
the query. Rather than suffer that extra time every time you execute a query,
it’s better to suffer it once and then reap the benefit every time you execute
the query after the first time. You can do this by putting the query into a
stored procedure, which is precompiled by definition:

Precompilation helps most of the time, but it also has its pitfalls:

✦ If an index is added to a column that is important to a query, you should
recompile the query so that it will take advantage of the new index.

✦ If a table grows from having relatively few rows to having many rows,
you should recompile the query. When compiled with few rows, the
optimizer will probably choose a full table scan over using an index
because for small tables, indexes offer no advantage. However, after the
table has grown to a large size, an index greatly reduces the execution
time of the query.

Tracking Down Bottlenecks
Tracking down bottlenecks is the fun part of database maintenance. You
get the same charge that a detective gets in solving a mysterious crime.
Breaking the bottleneck and watching productivity go through the roof can
give you an exhilarating feeling. So where do you start? Your system is crawl-
ing when it should be sprinting. It is a complex construction with many ele-
ments, both hardware and software. What should you do first?

Isolating performance problems
As long as a wide variety of system elements could potentially be involved in
a problem, it is hard to make progress. The first step is to narrow down the
possibilities. Do this by finding which parts of the system are performing
as they should, thus allowing you to eliminate them as potential sources of
the problem. To paraphrase Sherlock Holmes, “When you eliminate all the
explanations but one as being not possible, then whatever is left, however
unlikely it may seem, must be true.”

Performing a top-down analysis
A query is a multi-level operation, and whatever is slowing it down could be
at any one of those levels. At the highest level is the query code as imple-
mented in SQL. If the query is written inefficiently, you probably need to look

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 595

Tracking Down Bottlenecks596

no further for the source of the problem. Rewrite the query more efficiently
and check to see if that solves the problem. If it does, great! You don’t have
to look any further. However, it you don’t find an inefficient query, or the
rewrite you do doesn’t seem to help, you must dig deeper.

Beneath the level of the SQL code is a level where locking, logging, cache
management, and query execution take place. These functions are all in the
province of the DBMS, and are called into action by the top-level SQL. If
there are inefficiencies here, they can certainly slow down operations.
Locking more resources than necessary or locking them for too long can
slow down operations for everybody. Logging is a vital component of the
recovery system, and also helps you determine exactly how the system per-
forms. However, it also absorbs resources. Excessive logging beyond what is
needed could be a source of slowdowns. Cache management is a major
factor in overall performance. Are the right pages being cached and are they
remaining in the cache for the proper amount of time? Finally, at this level,
are queries being executed in the most efficient way? Many queries could
be executed a variety of different ways and all end up with the same result.
However, the different execution plans for these different ways can vary
widely in how long they take to execute and in what resources they consume
while doing it. All of these possibilities deserve scrutiny when performance
is unacceptable and cannot be attributed to poorly written queries.

The lowest level that could contribute to poor performance is the hardware
level. Look here after you have confirmed that everything at the higher levels
is working as it should. This level includes the hard disk drives, the disk con-
trollers, the processor, and the network. Each one of these could be a bottle-
neck if its performance does not match that of the other hardware elements.

The performance of hard disk drives tends to degrade over time, as inser-
tions and deletions are made to databases and as files unrelated to database
processing are added, changed, or deleted. The disk becomes increasingly
fragmented. If you want to copy a large file to disk, but only small chunks of
open space are scattered here and there across the disk’s cylinders, pieces
of the file are copied into those small chunks. In order to read the entire file,
the drive’s read/write head must move from track to track, slowing down
access dramatically. As time goes on, the drive gets increasingly fragmented,
imperceptibly at first, and then quite noticeably. The solution to this prob-
lem is to run a defragmentation utility. This can take a long time, and because
of heavy disk accessing, reduces the system’s response time to close to zero.
Defragmentation runs should be scheduled at regular intervals when normal
traffic is light, in order to maintain reasonable performance. Most modern
operating systems include a defragmentation utility that will analyze your
hard disk, tell you whether it would benefit from defragmenting, and then,
with your consent, perform the defragmentation operation.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 596

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Tracking Down Bottlenecks 597

The disk controller contains a cache of recently accessed pages. When a
page that is already in disk controller cache is requested by the processor, it
can be returned much faster than is possible for pages that are only stored
on disk. All the considerations I mentioned for optimizing the database page
buffer in the processor apply to the disk controller cache as well. The choice
of page replacement algorithm can have a major effect on performance, as
can cache size.

It goes without saying, but I’ll say it anyway, that the processor has a tremen-
dous effect on overall system performance. The processor is the fastest
component in the entire system. Processors that are just a few years old
are significantly slower than those that are on the market today. Upgrading an
older processor, along with all the ancillary circuitry that must be upgraded to
support it, can make a significant difference in overall performance. Many
organizations have a regular program of replacing computers at regular inter-
vals, such as every three years. The systems that get replaced are moved
down to less critical applications. This domino effect of hand-me-down
computers ends with donation to charitable organizations. If your computer is
more than about three years old, consider replacing it as a possible method of
improving your performance, assuming you have already investigated all the
other sources of slowdown mentioned above.

The network is the final major subsystem that might be causing performance
problems. If the performance of running queries from a client computer on a
network is unacceptable, try running the same queries directly on the server.
If the queries run significantly faster on the server, this may mean the server’s
processor is more powerful. However, it also might indicate that the network
connection between the server and the client is a bottleneck. There are tools
available for analyzing network traffic that can give you some indication
whether your network is slowing you down. As is the case with processors,
network performance has been steadily increasing also. If your network is
starting to get a little old, you might be better served by one with state-of-
the-art speed. It is worth looking in to.

Partitioning
Suppose you have done the top-down analysis advocated in the preceding
section, and have isolated your performance problem to one of the primary
hardware subsystems: the hard disk drive, the disk controller, the processor,
or the network. Suppose further that you have done everything you can
think of. You have defragmented your hard drives. You have optimized
paging in your disk controller. You have optimized paging in your database
page buffer. You have analyzed the traffic on your network. Despite all this,
the problem persists. Partitioning offers another approach that may break
the bottleneck.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 597

Analyzing Query Efficiency598

Partitioning can be helpful if your performance problem is caused by exceed-
ing the capacity of a critical system resource. It is essentially spreading out
the work so that the overstretched resource does not get overloaded. You can
spread the work either spatially, temporally, or both. Spatial partitioning
means doing more things in parallel. This could entail moving to a multi-core
processor, adding additional hard disk drives to your RAID array, installing a
bigger database page buffer, and so on. You get the idea. Wherever the bottle-
neck is, widen the neck to increase the flow rate through it.

The other thing to try is to increase temporal partitioning. In this case, you
don’t make the neck of the bottle any wider. You just schedule workflow so
that it is more evenly distributed in time. Don’t run large update transactions
at the same time that online query activity is high. Give users incentives to
use the system across a broader range of times, rather than everybody
trying to access the same resources at once.

Locating hotspots
Spreading the work away from an overloaded resource presupposes that you
are able to determine which of the many components of your system is caus-
ing the bottleneck. Such resources are called hotspots. When a resource is
hot, it is continually in use. If it is too hot, operations have to wait in line in
order to use it. If the waiting takes too long and results in aborts and roll-
backs, performance is greatly affected. Happily, a number of tools are avail-
able, both at the operating system level and at the database level, that you
can use to monitor the performance of various aspects of your system and
locate the hotspots. After you have located a hotspot, you are well on your
way to solving your performance problem. When you know what the over-
loaded system component is, you can apply the remedies discussed here to
restore performance to an acceptable level.

Analyzing Query Efficiency
Some kinds of problems slow everything that is running on a system. Other
kinds of problems impact the performance of only one or a small number of
queries. For the class of problems that only seem to affect one or at most a
few queries, the major database management systems provide tools that you
can use to track down the source of the problem. These tools come in three
major categories: query analyzers, performance monitors, and event moni-
tors. Each one of these looks at a different aspect of the way a query is run-
ning. Based on what they tell you, you should be able to zero in on whatever
is causing your system to perform less well than it should.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 598

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 599

Using query analyzers
All the major database management systems offer tools to give the DBA or
other person responsible for the efficient operation of the database a way of
analyzing how well queries on the database are performing. In versions of
Microsoft SQL Server prior to SQL Server 2005, the tool for this job was even
named Query Analyzer. However, SQL Server 2005 represents a major break
from the past in a number of ways. The functions that had been the province
of Query Analyzer are incorporated into the new Microsoft SQL Server
Management Studio, along with additional functionality useful for tuning
query performance.

Here’s a brief introduction to SQL Server 2005’s tuning tools (the Database
Engine Tuning Advisor and the SQL Server Profiler) to give you an idea of
what such tools look like and what they do. It differs in detail from the opera-
tion of similar tools for other database management systems, but the overall
functions are the same.

Figure 3-1 shows the main screen of Microsoft SQL Server Management
Studio.

As you can see, I have connected to a database named NorthwindCS. This is
a sample SQL Server database provided by Microsoft. If you do not have it
already, you can download it from www.msdn.microsoft.com. It contains
sample data for a fictitious international trading company.

Figure 3-1:
Microsoft
SQL Server
Manage-
ment Studio.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 599

Analyzing Query Efficiency600

Suppose you are a manager at Northwind and you want to know what cus-
tomers you have in the USA. You can find out with a simple SQL query. To
draft a query in Management Studio, follow these steps:

1. Click the New Query button at the left end of the Standard toolbar.

This opens an SQL editor pane in the middle of the Management Studio
window, as shown in Figure 3-2.

To remind yourself of the names of the tables in the Northwind data-
base, you can expand the Tables node in the tree in the Object Explorer
in the left pane of the Management Studio window.

2. Type your query into the editor pane, as shown in Figure 3-3.

The tree at the left shows that the Country column is a nullable
VARCHAR field, and that the primary key of the Customers table is
CustomerID. The Country column is not indexed. There are indexes on
City, CompanyName, the primary key PK_Customers, PostalCode, and
Region. None of these indexes is of any use for this query. This is an
early clue that performance of this query could be improved by tuning.

3. Execute the query by clicking the Execute button.

The result of the query shows up in the Results tab, as shown in
Figure 3-4.

Figure 3-2:
The
Microsoft
SQL Server
Manage-
ment Studio
SQL editor
pane.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 600

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 601

4. Save your query by name from the File menu.

My example query is named SQLQuery2.sql. You can name yours what-
ever you wish.

Figure 3-4:
The query
result.

Figure 3-3:
A sample
query.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 601

Analyzing Query Efficiency602

The Database Engine Tuning Advisor
The tool SQL Server provides for tuning queries is the Database Engine
Tuning Advisor. To use this tool with the sample query created in the previ-
ous section, follow these steps:

1. From the Management Studio’s Tools menu, select, logically enough,
Database Engine Tuning Advisor.

The Tuning Advisor window, showing the General tab, appears as shown
in Figure 3-5.

2. When you are asked to connect to the server you are using, do so.

3. The system has assigned a default session name, based on your login
and the date and time. Change this session name if you want to.

4. Under Workload, choose File and then click the Browse for a
Workload File button to the right of the long text box.

5. Find and select the query file that you just created.

I have selected SQLQuery2.sql.

6. From the Database for workload analysis drop-down list, select your
database.

I have selected NorthwindCS.

The Browse for a Workload File button

Figure 3-5:
The
Database
Engine
Tuning
Advisor
window.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 602

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 603

7. Select the check box beside the name of your database in the list of
databases toward the bottom of the Tuning Advisor.

8. Make sure the Save Tuning Log check box is selected.

This creates a permanent record of the tuning operation that is about to
take place. Figure 3-6 shows what the Tuning Advisor looks like at this
point.

9. Click the Tuning Options tab to see what the default tuning options
are and possibly to change them.

Figure 3-7 shows the Tuning Advisor’s Tuning Options pane.

The Limit Tuning Time check box is selected by default: Tuning can be so
time-consuming that it severely impacts normal production operation. To
prevent this, you can set a maximum amount of time that a tuning session
can take. When that maximum is reached, whatever tuning recommenda-
tions have been arrived at so far are shown as the result. If the tuning run
had been allowed to run to completion, different recommendations may
have been made. If your server is idle or lightly loaded, you may want to
uncheck this box to make sure you get the best recommendation.

Figure 3-6:
I’m ready to
tune my
query.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 603

Analyzing Query Efficiency604

The three tuning options you can change are

• Physical Design Structures (PDS) to Use in Database: The Indexes
radio button is selected, and other options are either not selected or
not available. For the simple query you are considering, indexes are
the only PDS that it makes sense to use.

• Partitioning Strategy to Employ: No partitioning is selected. Parti-
tioning means breaking up tables physically across multiple disk
drives. This enables multiple read/write heads to be brought into
play in a query, speeding access. Depending on the query and the
clustering of data in tables, partitioning may enhance performance.
Partitioning is, of course, not applicable if the entire database is con-
tained on a single disk drive.

• Physical Design Structures (PDS) to Keep in Database: Here you can
specify which PDSs to keep. The Tuning Advisor may recommend
that other structures, such as indexes or partitioning, which are not
contributing to performance, be dropped.

10. Click the Advanced Options button to see the Advanced Tuning
Options dialog box.

The Advanced Tuning Options dialog box enables you to specify a maxi-
mum amount of memory usage for the recommendations (see Figure 3-8).
In the process of coming up with a recommendation, the Tuning Advisor
can consume considerable memory. If you want to set a limit on the
amount it can commandeer, this is the place to do it.

Figure 3-7:
The Tuning
Options
pane.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 604

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 605

11. Click OK to return to the General tab and then click the Start Analysis
button to commence tuning.

Depending on the size of the tables involved in the query, this could
take a significant amount of time. The Tuning Advisor keeps you
apprised on progress as the session runs. Figure 3-9 shows the Progress
tab at the end of a successful run. It shows up after a tuning run starts.
Figure 3-10 shows the Recommendations tab. It appears after a tuning
run completes.

The Tuning Advisor has concluded that tuning would not improve the
performance of this query. This is a “good news/bad news” result.
The good news is that the database is already optimally configured to
run this query. The bad news is that tuning indexes won’t improve the
performance of this query. You must have decided to run the Tuning
Advisor because you were not satisfied with the performance of the

Figure 3-9:
The
Progress
tab after a
successful
run.

Figure 3-8:
Advanced
tuning
options.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 605

Analyzing Query Efficiency606

query. Now you find that the perceived poor performance is not due
to an indexing problem. You must look elsewhere for the source of the
problem.

After you’ve completed the tuning run, you’ll probably want to have a look at
the Reports tab, which is shown in Figure 3-11.

Figure 3-11:
The Reports
tab after a
successful
run.

Figure 3-10:
The Recom-
mendations
tab after a
successful
run.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 606

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 607

In this report, you see the details of the tuning run. A maximum tuning time
of 36 minutes was allocated, and one minute was actually used. The tuning
advisor expects a 0.00%improvement if you implement its recommendation
to do nothing. Makes sense. A total of 4MB of memory was used, 2MB of it by
the recommendation. Luckily, the maximum space for recommendation was
5MB, so the run did not have a memory shortage problem. If the memory
allocated originally had been too small, it is a simple matter to raise the
limit. Finally, note that 100% of the SELECT statements were in the tuned set.
This is a confirmation that the tuning session ran to completion.

SQL Server Profiler
The Database Engine Tuning Advisor is just one tool that SQL Server pro-
vides to help you optimize your queries. The SQL Server Profiler is another
tool. Rather than operating on SQL scripts, it traces the internal operation of
the database engine on a query, showing exactly what SQL statements are
submitted to the server, which may differ from the statements written by the
SQL programmer, and how the server accesses the database.

After you start a trace in the Profiler by selecting New Trace from the File
menu, it traces all DBMS activity until you tell it to stop. Somewhere amongst
all the things that are going on, actions relevant to your query are recorded.
Figure 3-12 shows the General tab of the Profiler New Trace dialog box you
use to set up a trace.

Figure 3-12:
The Profiler
New Trace
dialog box.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 607

Analyzing Query Efficiency608

Figure 3-13 shows the Events Selection tab of the Profiler New Trace dialog
box. In this example, the default selections are shown, selecting almost
everything to be recorded. In many cases, this is overkill, and you should
deselect the things that do not interest you.

A trace of SQLQuery2.sql dumps everything you ever wanted to know, and
much that you didn’t, about how the query is run. Figure 3-14 is a brief
excerpt from the trace, showing a few recognizable events. Data listed
offscreen to the right include CPU usage, number of reads, number or
writes, and time consumed by every event represented by a row in the
trace file.

Queries aren’t the only things that consume system resources. If you are
experiencing performance problems, the source of the problem might
be somewhere other than in a poorly performing query. Performance
monitors are tools that give you a broader view of how a system is
performing.

Using performance monitors
Whereas a query analyzer reveals the inner workings of a query, hopefully
giving you the information you need to make the query perform better, per-
formance monitors give you global information about how your system is
running. Primary concerns are

Figure 3-13:
The Events
Selection
tab of the
Profiler
New Trace
dialog box.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 608

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 609

✦ What is the processing load on my CPU?

✦ How often do I have to go out to sloooow disk, rather than operating out
of fast cache?

✦ Are disk accesses stacking up, bogging everything down?

Figure 3-14:
Excerpt from
a trace.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 609

Analyzing Query Efficiency610

Figure 3-15 shows the display of SQL Server Management Studio’s
Performance Monitor before, during, and after a brief SQL query.

There are three traces in the graph:

✦ The blue trace gives a relative idea of the number of page swaps per
second that are made between semiconductor memory and disk storage.

✦ The green trace shows the average disk queue length. This correlates with
paging because if you’re not paging, your disk queue length goes to zero.

✦ The red trace shows the percentage of utilization of your processor.

Of course, you can’t see the colors in this book, but if you follow the steps
with your own copy of SQL Server 2005, the Performance Monitor display
will look quite festive.

The actual query starts about halfway across the display. Here are some
notable things:

✦ Prior to the start of the query, the red CPU-usage trace shows spikes of
high activity that correlate with high peaks in the blue page swap trace.

✦ When the query starts, both the blue page swap trace and the green
average disk queue length trace hit the roof and stay there until the

Figure 3-15:
Performance
Monitor
display of a
simple
query.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 610

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 611

query is complete. During that time, the red CPU-usage trace fluctuates
at a relatively low level.

✦ After the query completes, the blue and green traces drop essentially to
zero, and the red trace resumes its normal background behavior.

What does this tell us? It tells us that this particular query hits the disk sub-
system pretty hard. If you run this query frequently, you should look for a
way to maintain its working set in the database buffer as long as the query is
active. One possibility would be to see whether you can convert this to an
index-only query. If the only columns you retrieve are indexed and the
indexes are in cache, your disk will be hit once and then be able to relax.
The action will take place in the buffer.

Finding problem queries
In a poorly performing multi-user, multi-tasking environment, where, at any
given moment, multiple queries are being run, tracking down the source of
the problem may be difficult. Is it systemic? Are there weaknesses in the
server’s processor, memory, or the network that are slowing everything
down? Or is there one problem query that is gumming up the works for
everyone? This is an important question. If you can restore performance to a
satisfactory level by tuning a query, it’s a lot cheaper than making a major
hardware upgrade that may, after all, not solve the problem.

A useful approach is the “divide and conquer” strategy. Find all the jobs that
typically run together when performance is slow and run them individually.
Use your performance monitoring tools to check for jobs that saturate
system resources. Then use your Profiler or other event monitoring tools to
find a query that seems to be consuming more time and resources than it
should.

When you find a suspicious query, use your query analyzer tools to look inside
the query to see exactly where time and resources are being consumed.
When you find a “bad actor,” you can try a number of things to make matters
better. In the next sections, I discuss a few.

Analyzing a query’s access plan
A database management system generates an access plan that describes
how to execute a query. The details of the access plan depend on what the
DBMS knows or can assume about what system resources are available and
what the query needs. This knowledge is largely based on statistics that
show how the system has been running lately on queries similar to the one
for which the access plan is being developed.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 611

Analyzing Query Efficiency612

Understanding the role of statistics
Up-to-date and accurate statistics are critical to the generation of an efficient
access plan. If an access plan is based on statistics that were taken at some
time in the dim past, they may bear little relation to the way the system is
configured and running today. Most DBMS products have a command similar
to SQL Server’s UPDATE STATISTICS statement, which generates the latest
data on how the system is running. It is a good idea to update statistics
before generating an access plan, just to make sure you are giving the query
optimizer the best chance to come up with an efficient plan. SQL Server
enables you to update statistics for indexed columns in tables, as shown in
Figure 3-16.

Checking the access path
After you have run statistics and the query optimizer has generated an
access plan, check the plan to see how the query accesses table rows. Is it
doing a full table scan? If a full table scan of a large table uploads a big chunk
of the table into the database buffer, it could push data out of the buffer that
will be needed soon by other queries running concurrently. This won’t
show up as a performance bottleneck for the query you are looking at, but
impacts the performance of the other queries running at the same time.
Interactions of this type are devilishly difficult to unravel and fix. Some

Figure 3-16:
The
Statistics
Properties
dialog box.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 612

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Analyzing Query Efficiency 613

database management systems are smart enough to recognize this situation
and instead of following the normal practice of flushing the least recently
used (LRU) pages from the buffer, page out the big chunk instead because
it’s unlikely to be needed again soon after the scan.

In most situations, unless you are dealing with a very small table, indexed
access is better than a full table scan. If your query’s access plan specifies a
full table scan, examine the plan carefully to see whether indexed access
would be better. It may make sense to create a new index, if the appropriate
index does not exist.

Here are several reasons why indexed access tends to be better:

✦ The target of an indexed access is almost always cached.

✦ Table blocks reached by an index tend to be “hotter” than other blocks,
and consequently are more likely to be cached. These are the rows, after
all, that you and possibly other users are hitting.

✦ Full table scans are going to cache a multi-block group, whereas an
indexed access retrieves a single block. The single blocks retrieved by
indexed access are likelier to contain the rows that you and other users
need than blocks in a multi-block group that “came along for the ride” in
a full table scan.

✦ Indexed accesses only look at the rows that you want in a retrieved
block, rather than every row in the block, saving time.

✦ Indexed accesses scale better than full table scans, which become worse
as the table size increases.

Full table scans make sense if you are retrieving 20% or more of the rows in a
table. Indexed retrievals are clearly better if you are retrieving a half percent
of the rows in the table or fewer. In between those two extremes, the best
choice depends on the specific situation.

Filtering selectively
Conditions, such as those in an SQL WHERE clause, act as filters. They
exclude the table rows you don’t want and pass on for further processing
the rows that you might want. If a condition specifies a range of index values
for further processing, values outside that range need not be considered and
the data table itself need not be accessed as a part of the filtering process.
This is the most efficient kind of filter because you only need to look at the
index values that correspond to the rows in the data table that you want.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 613

Analyzing Query Efficiency614

If the desired index range is not determined by the condition, but rows to be
retrieved are nonetheless determinable from the index, although index
values that are ultimately discarded must be accessed, the underlying data
table need not be touched.

Finally, if rows to be retrieved cannot be determined from the index, but
require table access, no time is saved in the filtering process, but at least
network bandwidth is saved because only the filtered rows need be sent to
the requesting client.

Choosing the best join type
In Book III, Chapter 4, I discuss several different join types. Although the SQL
code may specify one of the join types discussed there, the join operation
that actually is executed is probably one of three basic types: the nested-loops
join, the hash join, or the sort-merge join. The Query optimizer chooses one
of these join types for you. In most cases, it chooses the type that turns out
to be the best. However, you should understand the three types and what
distinguishes them from each other, as noted here:

✦ Nested-loops join: The nested-loops join is a robust method of joining
tables, which almost always produces results in close to the shortest
possible time. It works by filtering unwanted rows from one table (the
driving table) and then joining the result to a second table, filtering out
unwanted rows of the result in the process, and then joining the result to
the next table, and so on until all tables have been joined, and the fully
filtered result is produced.

✦ Hash join: In some situations, the hash join may perform better than a
nested-loops join. This is typically when the smaller of the two tables
being joined is small enough to fit entirely into semiconductor memory.
Unwanted rows are discarded from the smaller table and the remaining
rows are placed into “buckets” according to a hashing algorithm.
At the same time, the larger, driving table is filtered, and the remaining
rows are then matched to the rows from the smaller table in the hash
buckets. Unmatched rows are discarded. The matched rows form the
result set.

✦ Sort-merge join: The sort-merge join reads two tables independently,
discarding unwanted rows. First, it presorts both tables on the join key
and merges the sorted lists. The presort operation is expensive in terms
of time, so unless you can guarantee that both tables will fit into semi-
conductor memory, this technique performs worse than a hash join of
the same tables.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 614

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Managing Resources Wisely 615

Examining a query’s execution profile
Perhaps you have examined an expensive query’s access plan and found it
to be about as efficient as can be expected. The next step is to look at the
query’s execution profile. This is the “accounting” information generated by
the profiler. Among the pieces of information available are the number of
physical and logical reads and the number of physical and logical writes.
Logical operations are those that read or write memory. Physical operations
are logical operations that go out to disk.

Other information available in the profile includes facts about locking. Of
interest are the number of locks held and the length of time they are held.
Time spent waiting for locks, as well as deadlocks and timeouts, can tell you
a lot about why execution is slow.

Sorts are another performance killer. If the profile shows a high number of
sorts or large areas of memory used for sorting, this is a clue that should be
pursued.

Resource contention between concurrently running transactions can drag
down performance of all involved. This provides excellent motivation to use
resources wisely.

Managing Resources Wisely
The physical elements of a database system can play a major role in how
efficiently the database functions. A poorly configured system performs well
below the performance that is possible if it’s configured correctly. In this sec-
tion, I review the roles played by the various key subsystems.

The disk subsystem
The way data is distributed across the disks in a disk subsystem affects per-
formance. The ideal case is to store contiguous pages on a single cylinder of
a disk to support sequential prefetching. Spreading subsequent pages onto
other similarly configured disks enables related reads and writes to be made
in parallel. A major cause of performance degradation is disk fragmentation
caused by deletions opening up free space in the middle of data files that are
then filled with unrelated file segments. This causes excessive head seeks,
which slow down performance dramatically. Disk fragmentation can accumu-
late rapidly in transaction-oriented environments, but can become an issue
over time even in relatively static systems.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 615

Managing Resources Wisely616

Tools for measuring fragmentation are available at both the operating
system and the database level. Operating system defragmentation tools
work on the entire disk, whereas database tools measure fragmentation
of individual tables. An example of an operating system defragmentation
tool is the tool for Microsoft Windows, Disk Defragmenter, which is on the
Accessories menu under System Tools. Figure 3-17 shows the result of an
analysis of a badly fragmented disk drive.

In addition to being badly fragmented, this drive has very little free space
and none of it is in large blocks. This makes it almost impossible to store a
new database in a fragment-free manner.

With the Windows Disk Defragmenter, not only can you analyze the fragmen-
tation of a disk drive, but you can also defragment it. Alas, this defragmenta-
tion is usually not complete. Files that the defragmenter is unable to relocate
continue to impair performance.

Database management systems also have fragmentation analysis tools, but
they concentrate on the tables in a database, rather than looking at the
entire hard disk. For example, SQL Server offers the sys.dm_db_index_
physical_stats command. It returns size and fragmentation data for the
data and indexes of a specified table or view. It does not fix the fragmenta-
tion; it only tells you about it. If you decide that fragmentation is excessive
and is impairing performance, you must use other tools, such as the operat-
ing system defragmentation utility, to remedy the situation.

Figure 3-17:
A Windows
Disk Defrag-
menter
display of
a badly
fragmented
disk drive.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 616

Book VII
Chapter 3

Finding and
Elim

inating
Bottlenecks

Managing Resources Wisely 617

The database buffer manager
The job of the buffer manager is to minimize the number of disk accesses
made by a query. It does this by keeping hot pages, which have been used
recently and are likely to be used again soon, in the database buffer, while at
the same time maintaining a good supply of free pages in the buffer. The free
pages provide a place for pages that come up from disk, without the need to
write a “dirty” page back to disk before the new page can be brought in.

You can see how good a job the buffer manager is doing by looking at the
cache-hit ratio. This is the number of times a requested page is found in the
buffer divided by the total number of page requests. A well-tuned system
should have a cache-hit ratio of more than 90%. Another useful metric is the
number of free pages. If you check the cache-hit ratio and the number of free
pages frequently under a variety of load conditions, you can see a trend
developing that could lead to poor performance. Addressing such problems
sooner rather than later is wise. With the knowledge you gain with regular
monitoring of system health, you can act in a timely manner and maintain a
satisfactory level of service.

The logging subsystem
Every transaction that makes an insertion, alteration, or deletion in the data-
base is recorded in the log before the change is actually made to the data-
base. This is a recovery feature that enables a reconstruction of what has
occurred prior to a transaction abort or system failure. Because the log must
be written to before every action taken on the database, it is a potential
source of slowdown, if log writes cannot keep up with the transaction traffic.
Use the performance monitoring tools available to you to confirm that there
are no holdups due to delays in making log entries.

The locking subsystem
The locking subsystem can impact performance if there is contention by mul-
tiple transactions to acquire locks on the same object. If a transaction holds
a lock too long, other transactions may time out, necessitating an expensive
rollback. You can track down the source of locking problems by checking
statistics that are normally kept by the DBMS. Some helpful statistics are

✦ Average lock wait time — the average amount of time a transaction must
wait to obtain a lock

✦ Number of transactions waiting for locks

✦ Number of timeouts

✦ Number of deadlocks

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 617

Managing Resources Wisely618

Time spent waiting for locks should be low compared to total transaction
time. The number of transactions waiting for locks should be low compared
to the number of active transactions.

If the metrics cited here point to a problem with locks, you may be able to
trace the source of the problem with an event monitor. Things such as time-
outs and deadlocks appear in the event log and indicate what was happening
when the event occurred.

42 119280 bk07ch03.qxp 5/23/07 6:58 PM Page 618

Book VIII

Appendixes

43 119280 pt08.qxp 5/23/07 10:49 AM Page 619

Contents at a Glance
Appendix A: SQL:2003 Reserved Words ..621

Appendix B: Glossary ..629

43 119280 pt08.qxp 5/23/07 10:49 AM Page 620

ABS

ABSENT

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

AS

ASENSITIVE

ASYMMETRIC

AT

ATOMIC

AUTHORIZATION

AVG

BEGIN

BETWEEN

BIGINT

BINARY

BLOB

BOOLEAN

BOTH

BY

CALL

CALLED

CARDINALITY

CASCADED

CASE

CAST

CEIL

CEILING

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGTH

CHECK

CLOB

Appendix A: SQL:2003
Reserved Words

44 119280 appa.qxp 5/23/07 10:49 AM Page 621

Appendix A: SQL:2003 Reserved Words622

CLOSE

COALESCE

COLLATE

COLUMN

COMMIT

CONDITION

CONNECT

CONSTRAINT

CONVERT

CORR

CORRESPONDING

COUNT

COVAR_POP

COVAR_SAMP

CREATE

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_COLLATION

CURRENT_DATE

CURRENT_DEFAULT_
TRANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_TRANSFORM_GROUP_
FOR_TYPE

CURRENT_USER

CURSOR

CYCLE

DATE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENSE_RANK

DEREF

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

44 119280 appa.qxp 5/23/07 10:49 AM Page 622

Book VIII
Appendix A

SQL:2003 Reserved
W

ords
Appendix A: SQL:2003 Reserved Words 623

DOUBLE

DROP

DYNAMIC

EACH

ELEMENT

ELSE

EMPTY

END

END-EXEC

ESCAPE

EVERY

EXCEPT

EXEC

EXECUTE

EXISTS

EXP

EXTERNAL

EXTRACT

FALSE

FETCH

FILTER

FLOAT

FLOOR

FOR

FOREIGN

FREE

FROM

FULL

FUNCTION

FUSION

GET

GLOBAL

GRANT

GROUP

GROUPING

HAVING

HOLD

HOUR

IDENTITY

IN

INDICATOR

INNER

INOUT

INSENSITIVE

44 119280 appa.qxp 5/23/07 10:49 AM Page 623

Appendix A: SQL:2003 Reserved Words624

INSERT

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

IS

JOIN

LANGUAGE

LARGE

LATERAL

LEADING

LEFT

LIKE

LN

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOWER

MATCH

MAX

MEMBER

MERGE

METHOD

MIN

MINUTE

MOD

MODIFIERS

MODULE

MONTH

MULTISET

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NIL

NO

NONE

NORMALIZE

NOT

NULL

NULLIF

NUMERIC

OCTET_LENGTH

44 119280 appa.qxp 5/23/07 10:49 AM Page 624

Book VIII
Appendix A

SQL:2003 Reserved
W

ords
Appendix A: SQL:2003 Reserved Words 625

OF

OLD

ON

ONLY

OPEN

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

PARAMETER

PARTITION

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

POSITION

POWER

PRECISION

PREPARE

PRIMARY

PROCEDURE

RANGE

RANK

READS

REAL

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

RELEASE

RESULT

RETURN

RETURNS

REVOKE

RIGHT

44 119280 appa.qxp 5/23/07 10:49 AM Page 625

Appendix A: SQL:2003 Reserved Words626

ROLLBACK

ROLLUP

ROW

ROW_NUMBER

ROWS

SAVEPOINT

SCOPE

SCROLL

SEARCH

SECOND

SELECT

SENSITIVE

SESSION_USER

SET

SIMILAR

SMALLINT

SOME

SPECIFIC

SPECIFICTYPE

SQL

SQLEXCEPTION

SQLSTATE

SQLWARNING

SQRT

START

STATIC

STDDEV_POP

STDDEV_SAMP

SUBMULTISET

SUBSTRING

SUM

SYMMETRIC

SYSTEM

SYSTEM_USER

TABLE

TABLESAMPLE

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TRAILING

TRANSLATE

TRANSLATION

44 119280 appa.qxp 5/23/07 10:49 AM Page 626

Book VIII
Appendix A

SQL:2003 Reserved
W

ords
Appendix A: SQL:2003 Reserved Words 627

TREAT

TRIGGER

TRIM

TRUE

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPPER

USER

USING

VALUE

VALUES

VAR_POP

VAR_SAMP

VARCHAR

VARYING

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

XML

XMLAGG

XMLATTRIBUTES

XMLBINARY

XMLCAST

XMLCONCAT

XMLCOMMENT

XMLELEMENT

XMLEXISTS

XMLFOREST

XMLITERATE

XMLNAMESPACES

XMLPARSE

XMLPI

XMLQUERY

XMLSERIALIZE

XMLTABLE

YEAR

44 119280 appa.qxp 5/23/07 10:49 AM Page 627

Book VIII: Appendixes628

44 119280 appa.qxp 5/23/07 10:49 AM Page 628

Appendix B: Glossary
ActiveX control: A reusable software component that can be added to an
application, reducing development time in the process. ActiveX is a Microsoft
technology; ActiveX components can be used only by developers who work
on Windows development systems.

aggregate function: A function that produces a single result based on the
contents of an entire set of table rows. Also called a set function.

alias: A short substitute or nickname for a table name.

applet: A small application, written in the Java language, stored on a Web
server that is downloaded to and executed on a Web client that connects to
the server.

application program interface (API): A standard means of communicating
between an application and a database or other system resource.

assertion: A constraint that is specified by a CREATE ASSERTION statement
(rather than by a clause of a CREATE TABLE statement). Assertions com-
monly apply to more than one table.

atomic: Incapable of being subdivided.

attribute: A component of a structured type or relation.

back end: That part of a DBMS that interacts directly with the database.

catalog: A named collection of schemas.

client: An individual user workstation that represents the front end of a
DBMS — the part that displays information on a screen and responds to
user input.

client/server system: A multiuser system in which a central processor (the
server) is connected to multiple intelligent user workstations (the clients).

cluster: A named collection of catalogs.

45 119280 appb.qxp 5/23/07 10:49 AM Page 629

CODASYL DBTG database model630

CODASYL DBTG database model: The network database model. Note: This
use of the term network refers to the structuring of the data (network as
opposed to hierarchy), rather than to network communications.

collating sequence: The ordering of characters in a character set. All collating
sequences for character sets that have the Latin characters (a, b, c) define
the obvious ordering (a, b, c, . . .). They differ, however, in the ordering of
special characters (+, -, <, ?, and so on) and in the relative ordering of the
digits and the letters.

collection type: A data type that allows a field of a table row to contain mul-
tiple objects.

column: A table component that holds a single attribute of the table.

composite key: A key made up of two or more table columns.

conceptual view: The schema of a database.

concurrent access: Two or more users operating on the same rows in a data-
base table at the same time.

constraint: A restriction you specify on the data in a database.

constraint, deferred: A constraint that is not applied until you change its
status to immediate or until you COMMIT the encapsulating transaction.

cursor: An SQL feature that specifies a set of rows, an ordering of those
rows, and a current row within that ordering.

Data Control Language (DCL): That part of SQL that protects the database
from harm.

Data Definition Language (DDL): That part of SQL used to define, modify,
and eradicate database structures.

Data Manipulation Language (DML): That part of SQL that operates on data-
base data.

data redundancy: Having the same data stored in more than one place in a
database.

data source: A source of data used by a database application. It may be a
database or a flat data file.

45 119280 appb.qxp 5/23/07 10:49 AM Page 630

Book VIII
Appendix B

Glossary

diagnostics area 631

data sublanguage: A subset of a complete computer language that deals
specifically with data handling. SQL is a data sublanguage.

data type: A set of representable values.

database: A self-describing collection of integrated records.

database, enterprise: A database containing information used by an entire
enterprise.

database, personal: A database designed for use by one person on a single
computer.

database, workgroup: A database designed to be used by a department or
workgroup within an organization.

database administrator (DBA): The person ultimately responsible for the
functionality, integrity, and safety of a database.

database engine: That part of a DBMS that directly interacts with the data-
base (serving as part of the back end).

database publishing: The act of making the database contents available on
the Internet or over an intranet.

database server: The server component of a client/server system. It is the
place where the database resides.

DB2: A relational database management system marketed by IBM
Corporation.

DBMS: A database management system.

deletion anomaly: An inconsistency in a multitable database that occurs
when a row is deleted from one of its tables.

descriptor: An area in memory used to pass information between an applica-
tion’s procedural code and its dynamic SQL code.

diagnostics area: A data structure, managed by the DBMS, that contains
detailed information about the last SQL statement executed and any errors
that occurred during its execution.

45 119280 appb.qxp 5/23/07 10:49 AM Page 631

distributed data processing632

distributed data processing: A system in which multiple servers handle data
processing.

domain: The set of all values that a database item can assume.

domain integrity: A property of a database table column where all data
items in that column fall within the domain of the column.

driver: That part of a database management system that interfaces directly
with a database.

driver manager: A component of an ODBC-compliant database interface.
On Windows machines, the driver manager is a dynamic link library (DLL)
that coordinates the linking of data sources with appropriate drivers.

entity integrity: A property of a database table that is entirely consistent
with the real-world object that it models.

file server: The server component of a resource-sharing system. It does not
contain any database management software.

firewall: A piece of software (or a combination of hardware and software)
that isolates an intranet from the Internet, allowing only trusted traffic to
travel between them.

flat file: A collection of data records that contains only data — no metadata.

foreign key: A column or combination of columns in a database table that
references the primary key of another table in the database.

forest: A collection of elements in an XML document.

front end: That part of a DBMS (such as the client in a client/server system)
that interacts directly with the user.

functional dependency: A relationship between or among attributes of a
relation.

hierarchical database model: A tree-structured model of data.

host variable: A variable passed between an application written in a proce-
dural host language and embedded SQL.

45 119280 appb.qxp 5/23/07 10:49 AM Page 632

Book VIII
Appendix B

Glossary

modification anomaly 633

HTML (HyperText Markup Language): A standard formatting language for
Web documents.

implementation: A particular relational DBMS running on a specific hard-
ware platform.

index: A table of pointers used to locate rows rapidly in a data table.

information schema: The system tables, which hold the database’s metadata.

insertion anomaly: An inconsistency introduced into a multitable database
when a new row is inserted into one of its tables.

Internet: The worldwide network of computers.

intranet: A network that uses World Wide Web hardware and software, but
restricts access to users within a single organization.

IPX/SPX: A local area network protocol.

Java: A platform-independent compiled language designed originally for Web
application development, but now used in many contexts.

JavaScript: A script language that gives some measure of programmability
to HTML-based Web pages.

JDBC (Java DataBase Connectivity): A standard interface between a Java
applet or application and a database. The JDBC standard is modeled after
the ODBC standard.

join: A relational operator that combines data from multiple tables into a
single result table.

logical connectives: Used to connect or change the truth value of predicates
to produce more complex predicates.

mapping: The translation of data in one format to another format.

metadata: Data about the structure of the data in a database.

modification anomaly: A problem introduced into a database when a modifi-
cation (insertion, deletion, or update) is made to one of the database tables.

45 119280 appb.qxp 5/23/07 10:49 AM Page 633

module language634

module language: A form of SQL in which SQL statements are placed in mod-
ules, which are called by an application program written in a host language.

mutator function: A function associated with a user-defined type (UDT),
having two parameters whose definition is implied by the definition of some
attribute of the type. The first parameter (the result) is of the same type as
the UDT. The second parameter has the same type as the defining attribute.

nested query: A statement that contains one or more subqueries.

NetBEUI: A local area network protocol.

Netscape plug-in: A software component downloaded from a Web server to a
Web client, where it is integrated with the client’s Netscape browser, provid-
ing additional functions.

network database model: A way of organizing a database to get minimum
redundancy of data items by allowing any data item (node) to be directly
connected to any other.

normalization: A technique that reduces or eliminates the possibility that a
database is subject to modification anomalies.

object: Any uniquely identifiable thing.

ODBC (Open DataBase Connectivity): A standard interface between a data-
base and an application that is trying to access the data in that database.
ODBC is defined by an international (ISO) and a national (ANSI) standard.

Oracle: A relational database management system marketed by Oracle
Corporation.

parameter: A variable within an application written in SQL module language.

precision: The maximum number of digits allowed in a numeric data item.

predicate: A statement that may be either logically true or logically false.

primary key: A column or combination of columns in a database table that
uniquely identifies each row in the table.

procedural language: A computer language that solves a problem by execut-
ing a procedure in the form of a sequence of steps.

45 119280 appb.qxp 5/23/07 10:49 AM Page 634

Book VIII
Appendix B

Glossary

SQL 635

query: A question you ask about the data in a database.

rapid application development (RAD) tool: A proprietary, graphically
oriented alternative or supplement to SQL. A number of such tools are on
the market.

record: A representation of some physical or conceptual object.

reference type: A data type whose values are all potential references to sites
of one specified data type.

referential integrity: A state in which all the tables in a database are consis-
tent with each other.

relation: A two-dimensional array of rows and columns, containing single-
valued entries and no duplicate rows.

reserved words: Words that have a special significance in SQL and cannot be
used as variable names or in any other way that differs from their intended use.

row: A sequence of (field name, value) pairs.

row value expression: A list of value expressions enclosed in parentheses
and separated by commas.

scale: The number of digits in the fractional part of a numeric data item.

schema: The structure of an entire database. The information that describes
the schema is the database’s metadata.

schema owner: The person who was designated as the owner when the
schema was created.

SEQUEL: A data sublanguage created by IBM that was a precursor of SQL.

set function: A function that produces a single result based on the contents
of an entire set of table rows. Also called an aggregate function.

SQL: An industry standard data sublanguage, specifically designed to create,
manipulate, and control relational databases. SQL, dynamic: A means of
building compiled applications that does not require all data items to be
identifiable at compile time.

45 119280 appb.qxp 5/23/07 10:49 AM Page 635

SQL, embedded636

SQL, embedded: An application structure in which SQL statements are
embedded within programs written in a host language.

SQL, interactive: A real-time conversation with a database.

SQL/DS: A relational database management system marketed by IBM
Corporation.

structured type: A user defined type that is expressed as a list of attribute
definitions and methods rather than being based on a single predefined
source type.

subquery: A query within a query.

subtype: A data type is a subtype of a second data type if every value of the
first type is also a value of the second type.

supertype: A data type is a supertype of a second data type if every value of
the second type is also a value of the first type.

table: A relation.

TCP/IP (Transmission Control Protocol/Internet Protocol): The network
protocol used by the Internet and intranets.

teleprocessing system: A powerful central processor connected to multiple
dumb terminals.

transaction: A sequence of SQL statements whose effect is not accessible to
other transactions until all the statements are executed.

transitive dependency: A situation in which one attribute of a relation
depends on a second attribute, which in turn depends on a third attribute.

translation table: Tool for converting character strings from one character
set to another.

trigger: A small piece of code that tells a DBMS what other actions to perform
after certain SQL statements have been executed.

update anomaly: A problem introduced into a database when a table row is
updated.

45 119280 appb.qxp 5/23/07 10:49 AM Page 636

Book VIII
Appendix B

Glossary

XML 637

user-defined type: A type whose characteristics are defined by a type
descriptor specified by the user.

value expression: An expression that combines two or more values.

value expression, conditional: A value expression that assigns different
values to arguments, based on whether a condition is logically true.

value expression, datetime: A value expression that deals with DATE, TIME,
TIMESTAMP, or INTERVAL data.

value expression, numeric: A value expression that combines numeric
values using the addition, subtraction, multiplication, or division operators.

value expression, string: A value expression that combines character
strings with the concatenation operator.

value function: A function that performs an operation on a single character
string, number, or date/time.

view: A database component that behaves exactly like a table but has no
independent existence of its own.

virtual table: A view.

World Wide Web (WWW): An aspect of the Internet that has a graphical user
interface. The Web is accessed by applications called Web browsers, and
information is provided to the Web by installations called Web servers.

XML: A widely accepted markup language used as a means of exchanging
data between dissimilar systems.

45 119280 appb.qxp 5/23/07 10:49 AM Page 637

Book VIII: Appendixes638

45 119280 appb.qxp 5/23/07 10:49 AM Page 638

Symbols & Numerics
& (ampersand), 495
’ (apostrophe), XML entity reference for,

495
* (asterisk) as SELECT wildcard, 79,

227–228, 299
= (equals symbol) in comparison

operators, 230–231
> (greater than symbol)

in comparison operators, 231
XML entity reference for, 495

< (less than symbol)
in comparison operators, 230–231
XML entity reference for, 495

<> (not equal symbol) in comparison
operators, 230

% (percent sign)
as LIKE wildcard, 234
using literally in LIKE predicate,

234–235
“ (quotation marks), XML entity

reference for, 495
; (semicolon) ending XML entity

references, 495
_ (underscore)

as LIKE wildcard, 234
using literally in LIKE predicate,

234–235
0 (zero)

minimum cardinality, 146–147
null values not same as, 69, 110
RAID level, 332, 335, 584
SQLSTATE class value (00), 384, 386

1 RAID level, 334, 335, 584
01 SQLSTATE class value, 384, 386
1:1 relationships. See one-to-one

relationships

1:N relationships. See one-to-many
relationships

1NF (First Normal Form), 104, 151,
152–153

1-tier driver system (ODBC), 480
02 SQLSTATE class value, 384, 386
2NF (Second Normal Form),

152, 153–154
2-tier driver system (ODBC), 481
3NF (Third Normal Form), 152, 154
3-option proposal, 139
4NF (Fourth Normal Form), 152, 155
5 RAID level, 334, 335, 584–585
5NF (Fifth Normal Form), 152, 155
10 RAID level, 334, 335, 585

A
aborting transactions, 566
ABS function, 214–215
absolute fetches, 323
.accdb format, 401
Access. See Microsoft Access
access modes for transactions, 348–349,

350
access plans. See execution plans or

access plans
access privileges. See privileges
ACID (atomicity, consistency, isolation,

and durability), 347–348
ACM Transactions on Database Systems

(Chen), 29
action time for triggers, 471
actions for triggers, 471
ActiveX controls, 629
actual cardinality of arrays, 220
ADD COLUMN clause (ALTER TABLE),

78, 198, 440

IndexIndex

46 119280 index.qxp 5/23/07 10:49 AM Page 639

SQL All-in-One Desk Reference For Dummies640

ADD CONSTRAINT clause (ALTER
TABLE), 394

ADO (ActiveX Data Objects), 400
ADODB library, 404–405
ADO.NET

embedding SQL in, 418
SQL Server support for, 401

ADOX (ADO Extensions for DDL and
Security) library, 405

aggregate or set functions
AVG, 208
COUNT, 207–208, 240
defined, 207, 629, 635
MAX, 208
MIN, 209
overview, 207–209
SUM, 209
for XML documents, 510

aliases
correlated subquery using, 281–282
defined, 306, 629
in equi-joins, 306
mixing with long form, avoiding, 306
ALL keyword

with INTERSECT operations, 301
with UNION CORRESPONDING

operations, 300
with UNION operations, 299
ALL predicate (WHERE)

overview, 238–239
for quantified comparison operators,

272, 275, 276–277
syllogisms illustrating, 236–237

ALTER TABLE statements
adding columns, 78, 198, 440
adding constraints, 394
concurrent access with, avoiding, 365
overview, 78, 198
removing columns, 78, 198, 440

ampersand (&), 495
AND logical connective, 245–246

anomalies
cascading deletes to prevent, 174, 284
dangers of, 151
defined, 47
deletion, 151, 174, 284, 631
eliminating, 152–156, 345
insertion, 151, 633
modification, defined, 17, 151, 284, 633
from transitive dependencies, 154
update, 636

ANSI/ISO SQL standard
development of, 51
indexes in, 178
for Persistent Stored Modules

(SQL/PSM), 459
reserved words, 621–627
this book’s compliance with, 2
variations in compliance with, 2, 52

antivirus software, 338, 340–341
ANY predicate (WHERE)

ambiguity with, 237
overview, 238–239
for quantified comparison operators,

272, 275
syllogisms illustrating, 236–237

APIs (Application Programming
Interfaces). See also specific APIs

Access support for, 400
DB2 support for, 401–402
defined, 629
MySQL support for, 402
native drivers with, 476
Oracle support for, 402
SQL Server support for, 401

apostrophe (’), XML entity reference
for, 495

APPENDCHILDXML function (Oracle),
518–519

applets, 629
application layer firewalls, 340
application (ODBC), 478

46 119280 index.qxp 5/23/07 10:49 AM Page 640

Index 641

approximate numeric types, 97–98
ARRAY type

mapping to XML, 504–505
1NF violated by, 105
overview, 105

array value expressions, 220
ASC keyword, 251, 318
assertions

defined, 71, 115, 629
example, 71–72
support generally lacking for, 72, 115

assignment statements (SQL/PSM), 463
asterisk (*) as SELECT wildcard,

79, 227–228, 299
ATOMIC keyword, 388, 461
atomicity

as ACID characteristic, 347
atomic, defined, 347, 629
for compound statements, 461
in context of transactions, 65

atomicity, consistency, isolation, and
durability (ACID), 347–348

attribute-centric mapping (SQL Server),
531–532

attributes (database). See also columns
defined, 30–31, 141, 629
as fields, 148
functional dependencies, 60–61,

149–150
other terms for, 148

attributes (XML), 494
AUTHORIZATION clause (MODULE),

94, 420
AVG function, 208

B
B+ trees for indexes

hash indexes versus, 559
overview, 181, 589
performance issues, 558

back end, 629
backing up

frequency for, 336
full versus incremental backup, 336
number of backups to save, 337
NYBOT example, 335–336
preparing for the worst, 335–336
testing restore process, 337

Basic language compared to SQL,
410–411

batch transactions, optimizing, 575
BCNF (Boyce-Codd Normal Form),

152, 155
BEGIN keyword for compound

statements, 460
beta testing, 456
BETWEEN predicate (WHERE), 231–232
BIGINT type, 96
binary relationships. See also many-to-

many relationships; one-to-many
relationships; one-to-one
relationships

converting E-R model to relational
model, 164–168

defined, 32, 142, 143
bit data types, BETWEEN predicate with,

232
blank spaces versus null values, 69, 110
BLOB (BINARY LARGE OBJECT) type, 97
BOOLEAN type, 101, 110
Boolean value expressions, 219–220
Borland InterBase, 57, 72
bottlenecks, 587. See also database

tuning; performance; query tuning;
tuning

bounded priority inversion, 578
Boyce-Codd Normal Form (BCNF),

152, 155
buffer manager, 617
buffers, page. See page buffer for

database; page buffer for
transactions

46 119280 index.qxp 5/23/07 10:49 AM Page 641

SQL All-in-One Desk Reference For Dummies642

building database applications
adding constraints, 448–449
creating building blocks, 454–455
creating tables, 448
creating the database, 448–449
developing reports, 455
developing screen forms, 454
filling tables with sample data, 449–454
integrating the structure, 455
overview, 130
preparatory work for, 447–454
testing, 455–457

Bush, Vannevar (database theorist), 9
business rules

Oregon Lunar Society database,
431–432

overview, 40–41, 147
Buxton, Stephen (Querying XML),

103, 535

C
C language

embedded SQL example, 91–93
with MySQL, 406
ODBC connection example, 486–487
Pro*C, embedding SQL in, 414–416
SQL compared to, 410–411
with SQL for Turing-completeness, 51

C# language
challenges using SQL with, 413
with MySQL, 406
SQL compared to, 411

C++ language
challenges using SQL with, 413
SQL compared to, 411

calculated columns, DECLARE CURSOR
statement with, 318

CALL statement (SQL/PSM)
for stored functions, 472–473
for stored procedures, 469

candidate keys, 191
capitalization, conversions for strings,

211
cardinality

actual, 220
of arrays, 220
defined, 34
E-R diagram indications for, 35–36, 145,

146
mandatory, 35, 36, 37, 145–146
maximum, 34–35, 145, 220, 430–431
minimum, 35–37, 145–147, 431
optional, 35–36, 37, 145–146
zero versus one, 146–147
CARDINALITY function

with arrays, 220
overview, 214

Cartesian product
limitations of, 305
overview, 303–305
virtual tables from, 228–229
CASCADE keyword (REVOKE), 380, 382
cascading deletes

defined, 284
deletion anomalies prevented by,

174, 284
ON DELETE CASCADE clause, 174

case, conversions for strings, 211
CASE expression, 221–222
CASE...END CASE statements

(SQL/PSM), 464–465
CAST expression

casting between SQL types, 224
for data type incompatibilities, 224–225,

413, 416
overview, 223–224
XMLCAST function versus, 512

casting between XQuery and SQL types,
549

CATALOG_NAME field (diagnostics area),
391, 395

46 119280 index.qxp 5/23/07 10:49 AM Page 642

Index 643

catalogs. See also schemas
clusters, 629
in database hierarchy, 47, 67–68
defined, 629
overview, 64

CEIL or CEILING function, 216
CHAR or CHARACTER type, 99
CHARACTER LARGE OBJECT (CLOB)

type, 99–100
character sets

collation rules for, 318
converting strings between, 211
data types for, 100
for different languages, 100
mapping to XML, 499
in module declaration, 94, 420
octets required by, 214
privileges applying to, 375
UPPER and LOWER functions with, 211

character string types
BETWEEN predicate with, 232
CHAR or CHARACTER, 99
CHARACTER VARYING, 99
CLOB (CHARACTER LARGE OBJECT),

99–100
NATIONAL CHARACTER, 100
NATIONAL CHARACTER LARGE

OBJECT, 100
NATIONAL CHARACTER VARYING, 100
overview, 99
CHARACTER VARYING or VARCHAR

type, 99
CHARACTER_LENGTH function, 213
CHECK constraints
CREATE DOMAIN statement for, 77–78,

194
for domain integrity, 172
for ensuring data validity, 194
example, 70–71
expressions for, 70
overview, 112–113

checkpoints
flushing the page buffer, 354, 571,

574–575
overview, 574–575
performance issues, 369
for ROLLBACK operation, 355

Chen, Peter (ACM Transactions on
Database Systems), 29

class codes (SQLSTATE)
for compound statements, 463
for implementors, 385
indicating error conditions, 385, 386,

395
overview, 384–385
table summarizing values, 384, 463

classes
entity, 30, 140
relationship, 142

classic procedural languages
challenges using SQL with, 412–413
overview, 410
SQL compared to, 410–411
CLASS_ORIGIN field (diagnostics area),

391, 392, 393
Clear Creek Medical Center (CMCC)

E-R model, 42–46
CLI, DB2 support for, 402
client

defined, 629
locking and performance for, 592

client for project. See also stakeholders
discovering the problem, 423–424
getting approval from, 122, 137–138, 139
keeping informed, 130
proposal for, 425–426
requirements phase dependant on, 123
Statement of Requirements as contract

with, 125, 425
three-option proposal for, 139
upper management, 137–138
your immediate supervisor, 136

46 119280 index.qxp 5/23/07 10:49 AM Page 643

SQL All-in-One Desk Reference For Dummies644

client/server system, 629
CLOB (CHARACTER LARGE OBJECT)

type, 99–100
CLOSE statement, 324
closing cursors, 324
clustered indexes

defined, 181, 557
join conditions with, 314
for multipoint queries, 314
one allowed per table, 182, 557
ORDER BY clause eliminated by, 314
overview, 181–182
performance issues, 557–559
performance of, 558–559
“tired,” rebuilding, 314

clusters, defined, 629
CMCC (Clear Creek Medical Center)

E-R model, 42–46
C++.NET language with MySQL, 406
COALESCE expression, 223
COBOL, 410
CODASYL DBTG database model, 630
Codd, E. F. (database expert)

as IBM employee, 49, 147
normal forms devised by, 152
relational model proposed by, 15, 147
rules of, 20, 22–23
COLLATE BY clause, 317, 318
collation

with cursors, 317, 318
privileges applying to, 375
rules for character sets, 318
sequence, defined, 630

collection types
ARRAY, 105, 504–505
defined, 630
introduction of, 105
MULTISET, 105, 505
1NF violated by, 105

COLUMN_NAME field (diagnostics area),
391, 395

column-name joins, 308–309

columns. See also attributes (database)
adding, 78, 198
averaging values in, 208
calculated, 318
CHAR type for, 99
choosing for indexes, 177–178, 557,

558
constraints, 70–71, 111–113, 193
in database hierarchy, 47, 67–68
defined, 630
deleting, 198
dropping, 78
as fields, 148
finding maximum value in, 208
finding minimum value in, 209
fully qualified names for, 73
identifying values in, 204
INSERT statement for selected, 451
minimizing in retrievals, 594
other terms for, 148
qualifying names in equi-joins, 306
specifying, 68–69
transferring between tables, 453–454
in union-compatible tables, 297
VARCHAR type for, 99
XML types for, 103–104

COMMAND_FUNCTION field (diagnostics
area), 390, 395

COMMAND_FUNCTION_CODE field
(diagnostics area), 390

comments
with APPENDCHILDXML function

(Oracle), 519
creating in XML, 510
with DELETEXML function (Oracle),

521–522
with INSERTCHILDXML function

(Oracle), 519–520
with INSERTXMLBEFORE function

(Oracle), 520–521
with UPDATEXML function (Oracle),

522–523

46 119280 index.qxp 5/23/07 10:49 AM Page 644

Index 645

COMMIT operation
described, 88
ROLLBACK operation versus, 352

committing transactions, 352, 566
comparison operators

correlated subqueries with, 279–281
list of, 230–231
for quantified subqueries, 272, 275–277
tuning subqueries using, 285–289

comparison predicates (WHERE)
ALL, 236–239, 272, 275, 276–277
ANY, 236–239, 272, 275
comparison operators for, 230–231
for correlated subqueries, 278–281
described, 230
DISTINCT, 240–241
EXISTS, 239–240, 278
IN, 232–233, 279
LIKE, 234–235
list of, 230
MATCH, 241–245
NOT EXISTS, 278–279
NOT IN, 232
NOT LIKE, 234
NOT NULL, 236
NULL, 235–236
OVERLAPS, 241
quantified comparison operators,

272, 275
SIMILAR, 235
SOME, 236–239, 272, 275
for subqueries returning a single value,

272–274
UNIQUE, 240, 243

compiling
embedded SQL, 91
precompiling queries, 563, 595

composite identifiers
defined, 31, 141
unique, 142

composite indexes
defined, 559
overview, 182

performance issues, 559–560
query optimizers with, 182–183

composite keys, 191, 630
compound statements (SQL/PSM)

assignment, 463
conditions, 462–463
cursors within, 462
ensuring atomicity, 461
overview, 460–461
variables in, 462

concatenating XML arguments, 509
concatenation operator, 218
conceptual view, 630. See also schemas
concurrent access. See also

serializability
conflicts from, 346
corruption from, 346–347
deadlocks, 361–362, 579
defined, 630
READ UNCOMMITTED isolation allowing,

350–351
scheduling threads, 575–579

condition joins, 307–308
conditional value expressions
CASE, 221–222
COALESCE, 223
defined, 637
NULLIF, 223
overview, 220

CONDITION_IDENTIFIER field
(diagnostics area), 392

CONDITION_NUMBER field (diagnostics
area), 391, 392, 395

conditions of compound statements,
462–463

CONNECT statement, 65
connecting to remote database

JDBC for, 591
native drivers for, 475–476, 591
ODBC for, 477–487, 591–592
overview, 64–65

connecting user interface to database,
445–447

46 119280 index.qxp 5/23/07 10:49 AM Page 645

SQL All-in-One Desk Reference For Dummies646

connection handle (ODBC), 482, 483
CONNECTION_NAME field (diagnostics

area), 391, 394
consistency, as ACID characteristic, 348
CONSTRAINT_CATALOG field

(diagnostics area), 391, 393, 394
CONSTRAINT_NAME field (diagnostics

area), 391, 393, 394
constraints. See also specific kinds

adding to existing table, 394
assertions, 71–72, 115, 629
column, 70–71, 111–113, 193
CREATE DOMAIN statement for, 77–78
data entry errors prevented by, 344
DEFERRABLE, 355–359
DEFERRED, 356, 358, 359, 630
defined, 155, 630
diagnostics area information, 393–394
expressions for, 70
foreign key, 114–115
implicit names for, 359
naming, 70
table, 71, 113–114, 194
uses for, 69, 193

CONSTRAINT_SCHEMA field (diagnostics
area), 391, 393, 394

constructors for UDTs, 107–108
containment hierarchy (DDL), 67–68
CONTENT predicate for XML, 513
CONTINUE action, 387, 389
CONVERT function, 211
converting. See also mapping SQL to XML

case of strings, 211
character set of string, 211
data types with CAST expression,

223–225, 413, 416
data types with XMLCAST function, 512

converting E-R model to relational model
eliminating many-to-many

relationships, 433–435
handling binary relationships, 164–168
normalization, 162–163, 435–437

overview, 161–162
sample conversion, 168–170

correctness. See integrity
correlated subqueries

with comparison operators, 279–281
defined, 277
with EXISTS and NOT EXISTS, 278–279
with HAVING clause, 279–281
with IN, 279
overview, 277–282
relational queries compared to, 290–295
tuning, 290–295

correlation names. See aliases
CORRESPONDING keyword

with INTERSECT operations, 301–302
with UNION operations, 300

corruption. See also anomalies; integrity
avoiding, 174–175
from concurrent access, 346–347
sources of, 174
COUNT function
EXISTS predicate equivalent to, 240
overview, 207–208

CPU or processor
multiprocessor environments, 585
performance issues, 583, 597
performance monitors, 608–611
registers, 176, 567, 568
upgrading, 583
CREATE ASSERTION statement, 71, 629
CREATE DISTINCT TYPE statement,

107
CREATE DOMAIN statements

for CHECK constraints, 77–78
for ensuring data validity, 194
CREATE MODULE statement, 473–474
CREATE ROLE statement, 373
CREATE SCHEMA statements, 77
CREATE TABLE statements
CHECK constraint in, 70–71
concurrent access with, avoiding, 365
distinct types with, 107

46 119280 index.qxp 5/23/07 10:49 AM Page 646

Index 647

for multi-table views example, 75
NOT NULL constraint in, 69–70, 112
Oregon Lunar Society database,

437–440
overview, 68–69
PRIMARY KEY constraint in, 71
syntax, 68–69
for tables holding XML data, 517
using, 192–193

CREATE TRIGGER statement, 470–472
CREATE VIEW statements

fully qualified column names for, 73
for multi-table views, 76–77
for single-table views, 73

cropping strings, 211
cross joins. See Cartesian product
current user identifier, 372
CURRENT_DATE function, 216–217
CURRENT_TIME function, 216–217
CURRENT_TIMESTAMP function, 216–217
CURRENT_USER variable, 206, 372
CURSOR_NAME field (diagnostics area),

391, 395
cursors

absolute versus relative fetches, 323
closing, 324
within compound statements, 462
datetime values fixed by opening,

321, 322
declaring, 316–320
defined, 315, 630
deleting a row, 323
fetching data from single row, 322–324
holdability, 317
for modules in Oracle, 421
naming, 316–317
opening, 320–322
ordering the query result set, 317–318
performance issues, 594
query expression for, 317
returnability, 317
scrollability, 317, 320

scrolling, 320
sensitivity, 317, 319–320
specifying updatability of rows, 319
updating a row, 323
uses for, 315–316
variable values fixed by opening, 322

D
DAL, DB2 support for, 402
DAO (Data Access Objects), 400
Data Control Language. See DCL
Data Definition Language. See DDL
data entry

automatic, 81, 452
copying from foreign data file, 452
errors from, 330–331, 343–345
filling tables with sample data, 449–454
forms for, 81, 450
INSERT statements for, 80–81, 450–451
reducing errors from, 331, 343–345
transferring all rows between tables,

452–453
transferring selected columns and rows

between tables, 453–454
data integrity. See integrity
Data Manipulation Language. See DML
data redundancy, 17, 630
data security. See integrity; security

issues
data sources, 482, 630
data structure diagrams

Honest Abe’s database, 170
many-to-many relationship, 167
one-to-many relationship, 166
one-to-one relationship, 164–165

data sublanguages
defined, 631
limitations of, 315
overview, 411–412
SQL as, 89, 315, 411, 631

46 119280 index.qxp 5/23/07 10:49 AM Page 647

SQL All-in-One Desk Reference For Dummies648

data types. See also UDTs (user-defined
types); specific types

booleans, 101
character strings, 99–100
collection types, 105
converting with CAST expression,

223–225
data entry errors prevented by, 344
datetimes, 101–103
defined, 631
exact numerics, 95–97
host language versus SQL, 90–91
implementation-specific, 94–95
incompatibilities, CAST for, 224–225,

413, 416
intervals, 103
literal value examples for, 204–205
mapping to XML, 500–505
overview, 94–95
REF types, 106
row types, 104, 503–504
SQL implementation support for,

104, 110
strong typing, 344, 345
table summarizing, 109–110
XML, 103–104, 497–499, 513–514
XQuery compared to SQL, 547–549

data validity
determining for XML values, 513–514
domains for ensuring, 194–195
valid, defined, 194

database administrator (DBA), 373–374,
631

database application design
building an E-R model, 429–432
connecting user interface to database,

445–447
in design phase of SDLC, 129
determining deliverables, 426–429, 444
determining project scope, 428–429
discovering the client’s problem,

423–424

interviewing stakeholders, 424–425
planning for organization growth,

427–428
proposal for, 425–426
Statement of Requirements, 425
top-down approach, 443–447
user interface design, 441, 444–445

database applications. See also
embedded SQL; module language

building, 130, 447–455
complexity of, 327
defined, 52, 120
designing, 129
documenting, 131
interaction with database, 594
minimizing traffic between server, 563
overview, 120–121
suboptimal decisions by development

tools, 592
temporal locality, 581
testing, 455–457

database design
as basis for database tuning, 553
converting E-R model to relational

model, 161–170
design phase of SDLC, 128
example conversion, 168–170
handling binary relationships, 164–168
normalizing a relational model,

162–163
physical design considerations, 555
security issues from flaws, 330, 345

Database Development For Dummies
(Taylor), 330

database dumps, 369, 573–574
database engine, 120, 631
Database Engine Tuning Advisor,

185–187, 602–607
database locks, 361. See also locks
database management system. See

DBMS

46 119280 index.qxp 5/23/07 10:49 AM Page 648

Index 649

database object owners, 374
database owner, privileges granted by,

473
database publishing, 631
database server

defined, 631
minimizing traffic between

applications, 563
database tuning. See also performance;

query tuning; tuning
determining query complexity, 554
index considerations, 556–560
index tuning, 560–561
minimizing traffic between application

and server, 563
optimal design as basis for, 553
physical design considerations, 555
precompiling queries, 563, 595
separating user interactions from

transactions, 562
transaction tuning, 562
update operation considerations, 554
workload analysis, 554

databases
defined, 52, 120, 631
DML for retrieving data, 79–80
documenting, 130
dumps, 369, 573–574
enterprise, 631
page buffer for, 579–580, 581, 617
personal, 631
terminology for elements, 147–148
workgroup, 631
DATE type, 101
datetime types
BETWEEN predicate with, 232
DATE, 101
extracting fields from, 213
overview, 101
TIME WITH TIME ZONE, 102
TIME WITHOUT TIME ZONE, 101–102

TIMESTAMP WITH TIME ZONE,
102–103

TIMESTAMP WITHOUT TIME ZONE,
102

datetime value expressions, 218, 637
datetime value functions

fixed by OPEN statement, 321, 322
overview, 216–217

DBA (database administrator), 373–374,
631

DBMS (database management system)
advantages, 12
defined, 52, 631
development of, 13, 14–15
disadvantages, 12
flat file systems versus, 12–13

DBMS-based drivers (ODBC), 480–481
DB2 (IBM)

assertions not supported by, 72
defined, 631
as development environment, 401–402
interfaces supported, 401–402
Java with, 407–408
overview, 56
platforms supported, 56

DCL (Data Control Language). See also
specific statements

defined, 86, 630
granting privileges, 86–87, 371
preserving database integrity, 87–88
revoking privileges, 87, 371
SQL*Module (Oracle) support for,

421
DDL (Data Definition Language). See

also specific statements
ADOX library, 405
containment hierarchy, 67–68
creating domains, 77–78
creating schemas, 77
creating tables, 68
creating views, 72–77

46 119280 index.qxp 5/23/07 10:49 AM Page 649

SQL All-in-One Desk Reference For Dummies650

DDL (Data Definition Language)
(continued)

defined, 67, 630
modifying tables and objects, 78
not supported by SQL*Module

(Oracle), 421
removing tables and objects, 78
running concurrently with transactions,

avoiding, 365
specifying columns, 68–69
specifying constraints, 69–72

deadlocks, 361–362, 579
debugging

database application, 456
embedded SQL challenges for, 91
in maintenance phase of SDLC, 133
DECIMAL type, 96
DECLARE CURSOR statement
COLLATE BY clause with, 317, 318
FOR READ ONLY clause, 319
FOR UPDATE clause, 319
holdability keywords, 320
ORDER BY clause with, 317–318
query expression for, 317
returnability keywords, 320
scrollability keywords, 317, 320
sensitivity keywords, 319–320
specifying calculated columns, 318
syntax, 316

declaring
condition handlers, 387
cursors, 316–320
exception handlers, 396
host variables in Pro*C, 416
modules, 93–94, 419–420
WHENEVER directive, 388–389

decomposing many-to-many
relationships, 167–168, 169, 433–435

defaults
FETCH statement option, 322
ORDER BY clause sort order, 251, 318

schema, 77
transaction, 348

DEFERRABLE constraints
implementing, 355–359
payroll examples, 356–359
setting to DEFERRED, 356, 358
setting to IMMEDIATE, 356, 359
used only within transactions, 359
DEFERRED constraints

defined, 630
setting DEFERRABLE constraints to,

356, 358
setting to IMMEDIATE, 356, 359

definition phase of SDLC, 122
defragmenting hard disks, 615–616
degree-three relationships

E-R diagram, 34, 143
overview, 33, 142

degree-two relationships. See binary
relationships

delegating privileges, 379
DELETE statements

with cursors, 323
deleting a row, 323
granting privileges for, 375, 473
for old transactions, 85
subqueries in, 284
WHERE clause, 284
DELETEXML function (Oracle), 521–522,

523
deleting or removing

columns, 78, 198, 440
data from table, 84–85
index performance degraded by, 589
privileges, granting, 375
privileges, revoking, 87
record using updategram, 526
roles, 373
row that cursor points to, 323
tables, 78, 199
views, 78
XML nodes (Oracle), 521–522

46 119280 index.qxp 5/23/07 10:49 AM Page 650

Index 651

deletion anomalies
cascading deletes to prevent, 174, 284
defined, 151, 631

deliverables
defined, 122
determining for project, 426–429, 444
planning for organization growth,

427–428
denial-of-service attacks, 339
dense indexes, 181
dependencies

functional, 60–61, 149–150, 632
transitive, 154, 636
DESC keyword, 251, 318
descriptor, 631
design phase of SDLC

database application design, 129
database design, 128
documenting, 129
keeping client informed, 130
overview, 127–128

detail diagnostics area
described, 389
fields, 391–393
retrieving information, 395

determinants, 149–150
diagnostics areas

components, 389
constraint violation information,

393–394
defined, 631
detail area, 389, 391–393, 395
GET DIAGNOSTICS statement for,

392, 393–394, 395
header area, 389, 390–391, 395
LIFO order for information, 389
retrieving information, 395
size settings for detail area, 349, 390

dirty reads, 350
disk controller cache, 581–582, 597
disk controller delay, 570
disk mirroring (RAID 1), 334, 335

disk subsystem management, 615–616
DISTINCT keyword

not needed for primary key selects, 252
not needed with EXCEPT, 302
not needed with INTERSECT, 301
not needed with UNION, 299
query tuning for selects using, 252–254

DISTINCT predicate (WHERE), 240–241
distinct types

creating tables using, 107
creating types, 107
mapping to XML, 502–503
overview, 106–107

distributed data processing, 632
DKNF (Domain/Key Normal Form)

all anomalies eliminated by, 155
defined, 152, 155
determining if entity is in, 163
examples, 155–156, 163
normalizing relation into, 163
performance issues, 156–158, 162, 163

DLL (Dynamic-Link Library), 479
DML (Data Manipulation Language).

See also specific statements
adding data to table, 80–81
defined, 78, 630
deleting data from table, 84–85
overview, 78–79
retrieving data, 79–80
SQL*Module (Oracle) support for, 421
updating data in table, 81–84
updating views, 85–86

document element (XML), 494
DOCUMENT predicate, 512–513
Document Type Definition (DTD)

creating XML entity references, 495
XML Schema versus, 496

documentation. See also comments
of database, 130
of database application, 131
in definition phase of SDLC, 122
in design phase of SDLC, 129

46 119280 index.qxp 5/23/07 10:49 AM Page 651

SQL All-in-One Desk Reference For Dummies652

documentation (continued)
in evaluation phase of SDLC, 125, 127
finalizing in SDLC, 130–131, 132
in implementation phase of SDLC, 130

DOM (Document Object Model), 518
domain integrity, 172, 632
Domain/Key Normal Form. See DKNF
domains

creating, 77–78
defined, 155, 172, 632
for ensuring data validity, 194–195
mapping to XML, 501–502
privileges applying to, 375

DOUBLE PRECISION type, 98
DRDA, DB2 support for, 402
driver manager

defined, 479, 632
ODBC, 478, 479

drivers
defined, 632
native, 475–476, 481
ODBC, 479–481

DROP COLUMN clause (ALTER TABLE),
78, 198, 440

DROP INDEX statements, avoiding
concurrent access with, 365

DROP ROLE statement, 373
DROP TABLE statements

dangers of, 199, 441
examples, 78, 199, 440
DROP VIEW statements, 78
dropping. See deleting or removing
DTD (Document Type Definition)

creating XML entity references, 495
XML Schema versus, 496

dumps, 469, 573–574
duplicate rows, preserving with UNION

operations, 299
durability, as ACID characteristic, 348
dynamic SQL, 635
DYNAMIC_FUNCTION field (diagnostics

area), 390, 395

DYNAMIC_FUNCTION_CODE field
(diagnostics area), 390

Dynamic-Link Library (DLL), 479

E
EDA/SQL, DB2 support for, 402
element-centric mapping (SQL Server)

mixed with attribute-centric mapping,
532

overview, 531
elements (XML)

attributes of, 494
document, 494
empty, 494
nested, 494
overview, 493–494
translating relational values to, 508–509
updating record from (SQL Server), 526

e-mail
phishing scams, 339
viruses, 337–338
zombie spambots, 339–340

embedded SQL. See also cursors;
SQL/PSM (Persistent Stored
Modules)

challenges for, 90–91, 412–413
common flow of execution, 316
contrasting operating modes with, 412
cursors for, 316
data type incompatibilities, 224–225,

413
debugging challenges, 91
defined, 89, 91, 636
example, 91–93
impedance mismatch, 413
in Java application, 417
module language versus, 93, 419
in Oracle Pro*C application, 414–416
with other .NET applications, 418
in Perl application, 417
in PHP application, 417

46 119280 index.qxp 5/23/07 10:49 AM Page 652

Index 653

pre-compiler for, 91
UDTs for matching host language types,

106
in Visual Basic.NET application, 418

empty elements (XML), 494
END keyword, 388, 460
enterprise databases, 631
entities. See also E-R (Entity-

Relationship) model; relations
classes, 30, 140
constructing E-R diagram for, 429–432
defined, 30, 140
determining if in DKNF, 163
in E-R model context, 30, 140–141
existence-dependent, 38
ID-dependent, 39
identifying, 429
instances, 30, 140
relations comparable to, 148, 432
strong versus weak, 37–38
supertype and subtype, 39–40
translating into relations, 161–162,

432–433
entity integrity

defined, 171, 632
NOT NULL constraint for, 171
PRIMARY KEY constraint for, 171–172
UNIQUE constraint for, 171

entity references (XML), 495
Entity-Relationship model. See E-R model
environment handle (ODBC), 482, 483
environment tuning

adding hardware, 582–585
importance of, 565–566
maximizing hardware, 580–582
multiprocessor environments, 585
operating system, 575–580
recovery system, 567–575
surviving failures with minimum data

loss, 566–567
ENVIRONMENT_NAME field (diagnostics

area), 394

equality conditions, 178–179
equals symbol (=) in comparison

operators, 230–231
equi-join queries

on multiple tables, 306–307
natural joins, 307, 308
overview, 180, 305–307
qualifying column names in, 306
on two tables, 305–306

equipment failure. See also recovery
system

backups as protection against, 335–337
data integrity dangers from, 87
fault tolerance, 331, 334, 335
hard failures, 574
inevitability of, 565, 568
likely for hard disks, 331, 568
minimizing, 329
RAID as protection against, 331–335
soft failures, 574
sources of, 328
surviving with minimum data loss,

566–567
before transaction written to disk, 567

E-R diagrams
building for database application,

429–432
CMCC system, 45
degree-three relationship, 34, 142–143
degree-two relationship, 142
determining implications of, 45–46
determining relationships, 430
Gentoo Joyce system, 42
Honest Abe’s database, 160, 168, 175
ID-dependent entities, 39
many-to-many relationship, 33, 144, 166
maximum cardinality, 34–35, 430–431
minimum cardinality, 35–37, 38, 145,

146, 431
one-to-many relationship, 33, 144
one-to-one relationship, 32, 143–144, 164
for order entry system, 74

46 119280 index.qxp 5/23/07 10:49 AM Page 653

SQL All-in-One Desk Reference For Dummies654

E-R diagrams (continued)
supertype/subtype relationship, 39–40
weak entities in, 38

E-R (Entity-Relationship) model. See also
E-R diagrams; specific elements

anomalies, defined, 47
attributes (overview), 30–31, 141
basic elements, 30, 140
building for database application,

429–432
business rules, 40–41, 147, 431–432
complex example, 42–46
complex relationship problems, 46–47
converting to relational model,

161–170, 432–437
in database design, 128
determining entities for, 429
drawing diagrams, 34–37
eliminating many-to-many

relationships, 433–435
entities (overview), 30, 140–141
ID-dependent entities, 39
identifiers (overview), 31, 141–142
importance of, 29
maximum cardinality, 34–35, 145
minimum cardinality, 35–37, 145–147
normalization, 435–437
normalization for, 47
relationships (overview), 31–34, 142–144
scalability of, 29–30
simple example, 41–42
strong versus weak entities, 37–38
supertype and subtype entities, 39–40
terminology for elements, 148, 161–162,

432–433
error conditions. See also exceptions

diagnostics area for, 389–395
handler actions for, 387
handler declarations for, 386–387
handler effects for, 387–388
identifying, 383–384
inevitability of, 383

requiring handling, 386
SQLSTATE class codes indicating,

385, 386, 395
WHENEVER directive for, 383, 388–389

escape characters, LIKE predicate with,
234–235

evaluation phase of SDLC
determining project scope, 125,

126–127
documenting, 125, 127
overview, 125
reassessing feasibility, 125, 127

events for triggers, 471
exact numeric types
BIGINT, 96
BLOB (BINARY LARGE OBJECT), 97
DECIMAL, 96
INTEGER, 95
limitations of, 95
NUMERIC, 96, 97
precision for, 95–97
SMALLINT, 96
EXCEPT operations, 297, 302
exceptions. See also error conditions

handling, 395–396
SQLSTATE class codes indicating,

385, 386, 395
WHENEVER directive for, 383, 388–389

exclusive locks, 360. See also locks
EXEC SQL directive, 93, 416
EXECUTE privilege, 473
executing statements. See also

embedded SQL; module language
interactive SQL for, 89, 90, 636
overview, 89
privileges for, 375, 378–379, 473

execution plans or access plans. See also
query tuning

analyzing, 611–614
checking the access path, 612–613
choosing the best join type, 614
DBMS development of, 183

46 119280 index.qxp 5/23/07 10:49 AM Page 654

Index 655

defined, 183–184
filtering selectively, 613–614
Northwinds example, 184–185
robust, 183–184
role of statistics in, 612

execution profiles, 615
existence-dependent entities, 38
existential quantifiers
ANY predicate (WHERE), 236–239, 272,

275
SOME predicate (WHERE), 236–239, 272,

275
EXISTS predicate (WHERE)

for correlated subqueries, 278
equivalent to COUNT comparison, 240
overview, 239–240

EXIT action, 387
EXP function, 215
explicit mapping (SQL Server), 526–531
exponent for floating-point numbers, 98
expressions

array value, 220
Boolean value, 219–220
CAST, 223–225, 413, 416
conditional value, 220–223, 637
for constraints, 70
datetime value, 218, 637
defined value, 637
described, 217
FLWOR (XQuery), 542–547
interval value, 219
numeric value, 217, 637
query optimizer limitations for, 561
row value, 225, 635
string value, 218, 511, 637
XMLQUERY function for (XQuery),

511–512, 518
XPath, 519–521

Extensible Markup Language. See XML
external routines, 65
externally invoked routines, 65

EXTRACT function, 213
extremal queries, 179

F
failure of equipment. See equipment

failure
fault tolerance, 331, 334–335
feasibility

analysis of, 122
reassessing, 125, 127
FETCH statements, 322–323
fields. See also attributes; columns

defined, 203–204
other terms for, 148

Fifth Normal Form (5NF), 152, 155
file server, 632
file-based drivers (ODBC), 480
files, other terms for, 148
filter ratio of tables, 184
final documentation and testing phase

of SDLC
delivering results, 132
documentation, 130–131, 132
testing with sample data, 131–132

firewalls, 340, 632
First Normal Form (1NF), 104, 151,

152–153
5 RAID level, 334, 335, 584–585
5NF (Fifth Normal Form), 152, 155
flat files

advantages, 10–11
DBMS versus, 12–13
defined, 632
disadvantages, 11
overview, 10
terminology for elements, 148

FLOAT type, 98
floating-point numbers

defined, 98
DOUBLE PRECISION type for, 98

46 119280 index.qxp 5/23/07 10:49 AM Page 655

SQL All-in-One Desk Reference For Dummies656

floating-point numbers (continued)
FLOAT type for, 98
REAL type for, 97–98
FLOOR function, 216
flow of control statements (SQL/PSM)
CASE...END CASE, 464–465
FOR...DO...END FOR, 468
IF...THEN...ELSE...END IF, 464
ITERATE, 468
LEAVE, 466–467
LOOP...END LOOP, 466
need for, 463–464
REPEAT...UNTIL...END REPEAT,

467
WHILE...DO...END WHILE, 467

flushing the page buffer, 354, 571,
574–575. See also checkpoints

FLWOR expressions (XQuery)
conventions, 542
for clause, 543–544
let clause, 544–545
order by clause, 545–546
return clause, 543, 546–547
SELECT statements compared to, 547
SQL table corresponding to expression,

542–543
syntax, 542
where clause, 545

fonts in this book, 2
for clause (FLWOR), 543–544
FOR READ ONLY clause (DECLARE

CURSOR), 319
FOR UPDATE clause (DECLARE

CURSOR), 319
FOR...DO...END FOR statements

(SQL/PSM), 468
FOREIGN KEY constraint, 114–115
foreign keys
CLOB type not allowed for, 100
constraints, 114–115
defined, 195, 632

establishing relationships between
tables, 195–198

for referential integrity, 198
forest, 509, 632
forms

for data entry, 81, 450
screen, developing, 454

Fortran, 410
4NF (Fourth Normal Form), 152, 155
fragmented hard disks, 615–616
FROM clause (SELECT)

for Cartesian product, 228–229
for equi-joins, 180
overview, 228–229
specifying single table, 228

front end, 120, 632
full backup, 336. See also backing up
FULL keyword (MATCH), 244–245
full outer joins, 313
full table scans

indexes versus, 183, 590–591
overview, 177, 590

functional dependencies
defined, 60, 149, 632
determinants, 149–150
overview, 60–61, 149–150

functions. See also specific functions
mutator, 108, 634
observer, 108
for operating on XML, 508–512
Oracle, for updating XML data in tables,

518–523
as routines, 65
set or aggregate, 207–209, 510, 629, 635
value, 207, 209–217, 637

G
GET DIAGNOSTICS statement, 392,

393–394, 395
GMT (Greenwich Mean Time), 102
GO TO action, 389

46 119280 index.qxp 5/23/07 10:49 AM Page 656

Index 657

GRANT OPTION FOR clause (REVOKE),
380

GRANT statements
GRANT ALL PRIVILEGES, 379
GRANT DELETE, 375
GRANT EXECUTE, 375, 378–379, 473
GRANT INSERT, 375, 376
GRANT REFERENCES, 375, 377–378, 473
GRANT SELECT, 375
GRANT TRIGGER, 375, 378
GRANT UNDER, 375, 378
GRANT UPDATE, 375, 376
GRANT USAGE, 375, 378, 473
identifying authorized users for, 371,

372–373
objects applied to, 375
overview, 86–87
PUBLIC keyword, 87
for roles, 381
syntax, 374–375
WITH ADMIN OPTION clause, 381
WITH GRANT OPTION clause,

379, 380–381
GRANTED BY clause (REVOKE),

380, 381–382
grantees, defined, 374
granularity of locks, 361, 365
greater than symbol (>)

in comparison operators, 231
XML entity reference for, 495

Greenwich Mean Time (GMT), 102
GROUP BY clause (SELECT)

filtering first, 262–266
for grouping queries, 180
ORDER BY clause with, 249
overview, 228, 247–249

grouping queries, 180

H
handler actions, 387
handler declarations, 386–387, 396

handler effects, 387–388
handles (ODBC), 482–483
hard disks

adding more, 583–584
construction of, 569–570
controller cache, 581–582, 597
controller delay, 570
defragmenting, 615–616
failure likely for, 331, 568
hard failures, 574
indexes’ location on, 562
managing, 615–616
optimizing placement of code and data,

580–581
partitioning insertions, 365
performance considerations, 570–571,

583–585, 596–597
performance monitors, 608–611
RAID technology, 331–335, 584–585
read/write time, 570
rotational latency, 570, 571
seek time, 570, 571
settling time, 570, 571
in storage hierarchy, 176, 568
tuning write operations, 572–573
write-back protocol, 582
write-through protocol, 582

hard failures, 574
hardware. See also equipment failure;

specific hardware
adding, 582–585
managing resources, 615–618
maximizing existing, 580–582
performance issues, 580–585, 593,

596–597
redundant, for fault tolerance, 335
single precision as dependent on, 97–98

hash joins, 614
hash structures for indexes, 181, 559, 562
HAVING clause (SELECT)

correlated subqueries in, 281–282
GROUP BY clause with, 262–266

46 119280 index.qxp 5/23/07 10:49 AM Page 657

SQL All-in-One Desk Reference For Dummies658

HAVING clause (SELECT) (continued)
overview, 228, 249
query tuning for, 262–266

header diagnostics area
described, 389
fields, 390–391
retrieving information, 395

hierarchical database model
defined, 632
development of, 14
diagrams, 16, 18
IMS as, 15
overview, 15–17
relational model versus, 20, 23, 24–25
uses for, 17

hierarchical storage, 176–177
hierarchies

containment (DDL), 67–68
memory, 176–177, 567–568
in relational databases, 47, 67–68

holdability of cursors, 317
Honest Abe’s Fleet Auto Repair

database
avoiding corruption, 174–175
business overview, 160
converting E-R model to relational

model, 168–170
CREATE TABLE statements for, 192–193
data structure diagram, 170
E-R diagrams, 160, 168, 175
establishing relationships between

tables, 195–198
handling binary relationships, 164–168
maintaining integrity, 170–174
normalizing the relational model,

162–163
relationships, 161
tables and attributes, 190–191

host language. See embedded SQL
host variables

declaring in Pro*C, 416
defined, 632

hot spots, 365–366, 598
hot tables, 187
HTML (HyperText Markup Language),

491, 633

I
IBM. See also DB2 (IBM)

Codd employed by, 49, 147
IMS (first DBMS), 13, 14
SQL developed by, 1, 50
SQL/DS RDBMS product, 50

ID-dependent entities, 39
identifiers

composite, 31, 141
described, 31, 141
mapping to XML, 500
non-unique, 31, 141
unique, 31, 141, 142
IF...THEN...ELSE...END IF

statements, 464
impedance mismatch, 413
implementation, defined, 633
implementation phase of SDLC, 130
implementations of SQL. See also specific

implementations
ANSI/ISO compliance of, 2, 52
assertions lacking in, 72, 115
new data types in, 94–95
overview, 52–57
row types lacking in, 104

implicit mapping (SQL Server), 525–526
IMS (Information Management System)

of IBM, 13, 14–15
IN predicate (WHERE)

for correlated subqueries, 279
overview, 232
performance issues, 233
with subqueries, 233

incremental backup, 336. See also
backing up

46 119280 index.qxp 5/23/07 10:49 AM Page 658

Index 659

indexes
in ANSI/ISO SQL standard, 178
B+ trees for, 181, 558, 559, 589
choosing columns for, 177–178, 557,

558
choosing type for, 559
clustered, 181–182, 557–559
composite, 182–183, 559–560
data structures for, 180–181
Database Engine Tuning Advisor for,

185–187
defined, 177, 633
deletes’ impact on, 589
disk location for, 562
effect on joins, 183
excessive, costs of, 178
full table scans versus, 183, 590–591
hash structures for, 181, 559, 562
for hot tables, 187
index-only queries, 590
ISAM, 562
load balancing for, 187
maintenance costs, 559
multi-column, 557
with OR logical connective, 266–267
overview, 177
performance impact of, 555
primary key for, 194
pros and cons of, 589–590
query types for, 178–180
rebuilding “tired,” 314, 560–561, 589
sparse versus dense, 181
table size issues, 183
tuning, 560–561
unnecessary, avoiding, 556
updates’ impact on, 590

Information Management System (IMS)
of IBM, 13, 14–15

information schema, 633
inheritance in supertype/subtype

relationships, 40

inner joins, 309
INSERT statements

for data entry, 80–81, 450–451
granting privileges for, 376, 473
for incomplete data, 81
more efficient methods, 81
partitioning insertions, 365
for selected columns, 451
for single record, 80
subqueries in, 284–285
syntax, 450–451
VALUES clause, 80
WHERE clause, 284–285
INSERTCHILDXML function (Oracle),

519–520, 523
insertion anomalies, 151, 633
INSERTXMLBEFORE function (Oracle),

520–521, 523
instability of platforms, 329–330
instances

entity, 30, 140
relationship, 142
INTEGER type, 95
integrity. See also corruption; referential

integrity
domain, 172, 632
enforcing serializability with

timestamps, 366–369
entity, 171–172, 632
hierarchical model issues, 17
importance of, 170–171
locking for, 360–366
performance tradeoff with, 156–158,

159
preventing transaction mix-ups,

348–359
recovery system tuning issues, 369
system failures damaging, 87
transactions for protecting, 87–88
user interactions damaging, 87

interactive SQL, 89, 90, 636

46 119280 index.qxp 5/23/07 10:49 AM Page 659

SQL All-in-One Desk Reference For Dummies660

InterBase (Borland), 57, 72
Internet, defined, 633
Internet threats

denial-of-service attacks, 339
exploits, 341
phishing scams, 339
protecting against, 340–341
viruses, 337–338
vulnerabilities, 341
worms, 338–339
zombie spambots, 339–340
INTERSECT operations
ALL keyword with, 301
CORRESPONDING keyword with,

301–302
described, 300–301
DISTINCT keyword not needed with,

301
modeled on relational algebra, 297,

300–301
INTERVAL type, 103
interval value expressions, 219
intervals

defined, 103, 219
extracting fields from, 213
OVERLAPS predicate for, 241
range queries using, 179

intranet, 633
IPX/SPX, 633
ISAM indexes, 562
isolation

as ACID characteristic, 348
levels compared, 352
READ COMMITTED level, 351
READ UNCOMMITTED level, 350–351
REPEATABLE READ level, 351
SERIALIZABLE level, 352
SET TRANSACTION statement for, 349
weakening levels for locking, 364–365

italics in this book, 2
ITERATE statements (SQL/PSM), 468

J
Java

defined, 633
embedding SQL in, 417
Oracle support for, 402
SQL compared to, 411

Java-based Embedded SQL (SQLJ),
402, 407

JavaScript, 633
JDBC (Java DataBase Connectivity)

DB2 support for, 402, 407
defined, 591, 633
MySQL support for, 402
Oracle support for, 402, 407

Jet database engine, 399–400
JOIN operations

Cartesian product, 228–229, 303–305
choosing the best join type, 614
clustered indexes with, 314
column-name joins, 308–309
condition joins, 307–308
defined, 633
equi-joins, 180, 305–307
filter ratio and construction of, 184
flexibility of, 297
hash joins, 614
index effect on, 183
inner joins, 309
left and right tables, defined, 310
natural joins, 307
nested-loop joins, 614
ON versus WHERE clause with, 313
outer joins, 310–313
sort-merge joins, 614

K
keys. See also foreign keys; primary key

candidate, 191
composite, 191, 630

46 119280 index.qxp 5/23/07 10:49 AM Page 660

Index 661

defined, 61, 150, 155
as determinants, 150
for indexes, 194
locating rows with, 191
overview, 61–62, 150
required for relations, 62

L
L1 cache, 176, 568
L2 cache, 176, 568
LANGUAGE clause (MODULE), 94, 420
LANs (local area networks). See

networks
leaf nodes (B+ tree), 589
leaf structured types, 108
LEAVE statements (SQL/PSM), 466–467
left outer joins, 310–312
less than symbol (<)

in comparison operators, 230–231
XML entity reference for, 495

let clause (FLWOR), 544–545
Level 1 cache, 176, 568
Level 2 cache, 176, 568
LIKE predicate (WHERE), 234–235
literal values, 204–205
livelocks, 367–369
LN function, 215
load balancing for hot table indexes, 187
local area networks (LANs). See networks
locks

client performance degraded by, 592
database, 361
deadlocks, 361–362
eliminating unneeded, 363
exclusive, 360
granularity, 361, 365
locking subsystem management,

617–618
minimizing time held, 562

page, 361
row, 361
shared, 360
short transactions for, 363–364
table, 361
tuning, 362–366, 562
two-phase locking protocol, 360
weakening isolation levels for, 364–365

log file for transactions
checkpoints, 355, 369, 574–575
flushing the page buffer, 354, 571,

574–575
information in, 354
logging subsystem management, 617
overview, 353–354, 569
page buffer for, 353–354, 569, 571
putting on different disk than

transactions, 569–571
tuning write operations, 572–573
write-ahead log protocol, 354–355

logarithms, 215
logical connectives
AND, 245–246
defined, 633
NOT, 247
OR, 246, 266–267, 561
uses for, 245
with WHERE clause, 245–247

LOOP...END LOOP statements
(SQL/PSM), 466

LOWER function, 211
lowercase, converting strings to, 211

M
magnetic tape, 568
maintenance

costs for indexes, 559
SDLC phase, 132–133

Management Studio (SQL Server),
599–601, 610–611

46 119280 index.qxp 5/23/07 10:49 AM Page 661

SQL All-in-One Desk Reference For Dummies662

mandatory cardinality
defined, 35, 145
examples, 36–37, 145–146
importance of, 37

mantissa for floating-point numbers, 98
many-to-many relationships

in CMCC system, 46
converting E-R model to relational

model, 166–168, 433–435
data structure diagram, 167
decomposing, 167–168, 169, 433–435
defined, 15, 32, 143
E-R diagram, 33, 144, 166
in Gentoo Joyce system, 41
maximum cardinality, 167

mapping, defined, 499, 633
mapping schemas (SQL Server)

allowing null values, 533–534
attribute-centric mapping, 531–532
creating for tables with parent-child

relationship, 529–531
creating updategram with XDR schema,

528–529
creating updategram with XSD schema,

527–528
defined, 525
deleting a record using a datagram, 526
element-centric mapping, 531
explicit mapping, 526–531
implicit mapping, 525–526
inserting an XML element into a record,

525
mixed element-centric and attribute-

centric mapping, 532
updating a record from an XML

element, 526
mapping SQL to XML. See also mapping

schemas (SQL Server)
character sets, 499
creating an XML schema for an SQL

table, 507–508
data types, 500–505

distinct UDTs, 502–503
domains, 501–502
identifiers, 500
null values, 506–507
tables, 505–506

MATCH predicate (WHERE)
FULL keyword, 244–245
general form, 243
overview, 241–243
PARTIAL keyword, 244, 245
referential integrity protected by,

242–245
SIMPLE keyword, 244, 245
UNIQUE keyword, 244–245
MAX function, 208
maxima, extremal queries for, 179
maximal structured types, 108
maximum cardinality

of arrays, 220
in many-to-many relationship, 167
in one-to-many relationship, 164
in one-to-one relationship, 164
Oregon Lunar Society database,

430–431
overview, 34–35, 145

maxInclusive facet (XML), 500–501
McAfee antivirus software, 341
.mdb files, 401
Melton, Jim (Querying XML), 103, 535
memory

adding RAM, 583
descriptor, 631
hierarchy of, 176–177, 567–568
non-volatile, 567, 568–569
volatile, 567, 568–569

MESSAGE_LENGTH field (diagnostics
area), 391, 395

MESSAGE_OCTET_LENGTH field
(diagnostics area), 391, 395

MESSAGE_TEXT field (diagnostics area),
391, 395

metadata, 633

46 119280 index.qxp 5/23/07 10:49 AM Page 662

Index 663

methods
modify() (SQL Server), 523
as routines, 65

Microsoft Access
as development environment, 399–401
Jet engine, 399–400
libraries, 404–405
platforms supported, 53
QBE (query-by-example) interface, 53
SQL editor in, 53–56
SQL implementation, 52–53
VBA with, 399, 404–405

Microsoft SQL Server
assertions not supported by, 72
Database Engine Tuning Advisor,

185–187, 602–607
as development environment, 401
Express Edition, 56
further information, 56
Management Studio, 599–601, 610–611
mapping schemas for XML, 525–534
modify() method, 523
.NET classes, 523
.NET languages with, 405–406
overview, 56
Performance Monitor, 610–611
SQL Server Profiler, 607–608
tools for updating XML data in tables,

523–534
updategrams, 523–524, 526, 527–529,

534
Microsoft SQL Server 2005 Express Edition

For Dummies (Schneider), 56
MIN function, 209
minima, extremal queries for, 179
minimum cardinality

data model’s effect on, 36–37
Oregon Lunar Society database, 431
overview, 35–37, 145–147
ways of modeling, 38
zero versus one, 146–147

minInclusive facet (XML), 500–501

MOD function, 215
modification anomalies

cascading deletes to prevent, 174, 284
dangers of, 151
defined, 17, 151, 284, 633
deletion, 151, 174, 284, 631
insertion, 151, 633
from transitive dependencies, 154
update, 636

modify() method (SQL Server), 523
MODULE declaration
AUTHORIZATION clause, 94, 420
LANGUAGE clause, 94, 420
NAMES ARE clause, 94, 420
SCHEMA clause, 94, 420
syntax, 93, 419

module language
declaring modules, 93–94, 419–420
defined, 89, 93, 634
embedded SQL versus, 93, 419
module procedures, 320–321
modules in Oracle, 421
overview, 93–94, 418–419
SQL procedures in, 418–419
using SQLSTATE with, 385–386

Moore’s Law (Gordon Moore), 24
MORE field (diagnostics area), 390, 391,

395
multi-column indexes, 557
multipoint queries

clustered indexes for, 314
described, 179

multiprocessor environments, 585
MULTISET type

mapping to XML, 505
1NF violated by, 105
overview, 105

multisets, 105
multi-table views

creating tables for, 75
creating views, 75–77
uses for, 73–74

46 119280 index.qxp 5/23/07 10:49 AM Page 663

SQL All-in-One Desk Reference For Dummies664

multi-valued fields, ROW type for, 104
mutator functions, 108, 634
MySQL

assertions not supported by, 72
as development environment, 402
overview, 57
platforms supported, 57
procedural languages supported,

406–407

N
NAMES ARE clause (MODULE), 94, 420
namespace for updategrams (SQL

Server), 523
naming or renaming. See also aliases

avoiding reserved words, 94
columns, fully qualified names for, 73
columns in equi-joins, 306
constraints, 70
cursors, 316–317
implicit constraint names, 359
mapping identifiers to XML, 500
UPDATE statement for, 83–84
NATIONAL CHARACTER LARGE OBJECT

type, 100
NATIONAL CHARACTER type, 100
NATIONAL CHARACTER VARYING type,

100
native drivers

ODBC versus, 481, 591–592
overview, 475–476

natural joins, 307, 308
nested elements (XML), 494
nested queries, 269–270, 634. See also

subqueries
nested-loop joins, 614
.NET languages

embedding SQL in, 418
Oracle support for, 402
SQL Server classes, 523
SQL Server support for, 405–406

NetBEUI, 634
Net.Data, DB2 support for, 402
Netscape plug-in, 634
network database model

defined, 634
development of, 14, 15
diagram, 19
overview, 17
relational model versus, 20, 23, 24–25

networks
connecting to databases over, 64–65,

475–487
firewalls for, 340, 632
performance issues, 597
protecting against worms, 339
worms spread over, 338

New York Board of Trade (NYBOT),
335–336

N:M relationships. See many-to-many
relationships

non-procedural languages
overview, 411–412
SQL as, 411
XQuery as, 536

nonrepeatable reads, 351
non-unique identifiers, 31, 141
non-volatile memory, 567, 568–569
normalization

1NF (First Normal Form), 104, 151,
152–153

2NF (Second Normal Form), 152, 153–154
3NF (Third Normal Form), 152, 154
4NF (Fourth Normal Form), 152, 155
5NF (Fifth Normal Form), 152, 155
BCNF (Boyce-Codd Normal Form),

152, 155
defined, 634
DKNF (Domain/Key Normal Form),

152, 155–158, 162, 163
for eliminating anomalies, 152–156, 345
of E-R model, 435–437
overnormalization for performance, 555

46 119280 index.qxp 5/23/07 10:49 AM Page 664

Index 665

performance tradeoff with, 156–158,
162, 163

of relational model, 162–163
for simplifying relationships, 47

Norton antivirus software, 341
NOT DEFERRABLE constraints, 356
not equal symbol (<>) in comparison

operators, 230
NOT EXISTS predicate (WHERE), 278–279
NOT IN predicate (WHERE), 232
NOT LIKE predicate (WHERE), 234
NOT logical connective, 247
NOT NULL constraint

as column constraint, 70
in CREATE TABLE statement, 69, 112
DEFERRABLE, 356
for entity integrity, 171
for ID columns, 70
overview, 111–112
for primary key, 112

NOT NULL predicate (WHERE), 236
NULL predicate (WHERE), 235–236
null values

blank spaces not same as, 69, 110
with BOOLEAN type, 101, 110
COALESCE expression for bypassing,

223
defined, 69, 110
DISTINCT versus UNIQUE predicate

with, 240–241
FALSE value not same as, 110
mapping schemas allowing (SQL

Server), 533–534
meaningless in comparisons, 236
migrating from databases not

supporting, 222–223
NOT NULL constraint for, 69–70,

111–112
overview, 110–111
query optimizer limitations for, 561
reasons for, 111
XML representation for, 506–507

XSD schema allowing, 533
zero not same as, 69, 110
NULLIF expression, 223
NUMBER field (diagnostics area), 390, 395
numeric character references (XML), 496
numeric data types. See also specific

types
approximate, 97–98
exact, 95–97
NUMERIC type, 96, 97
numeric value expressions, 217, 637
numeric value functions
ABS, 214–215
CARDINALITY, 214, 220
CEIL or CEILING, 216
CHARACTER_LENGTH, 213
EXP, 215
EXTRACT, 213
FLOOR, 216
list of, 212
LN, 215
MOD, 215
OCTET_LENGTH, 213–214
POSITION, 212–213
POWER, 215
SQRT, 215
WIDTH_BUCKET, 216

NYBOT (New York Board of Trade),
335–336

O
Object Linking and Embedding Database

(OLE DB)
Access support for, 400
DB2 support for, 401
MySQL support for, 402
SQL Server support for, 401

object-oriented database management
systems (OODBMS), 15, 23

object-oriented procedural languages,
411, 413

46 119280 index.qxp 5/23/07 10:49 AM Page 665

SQL All-in-One Desk Reference For Dummies666

object-relational databases, 15, 23
objects

defined, 634
owners of, 374
privileges applying to, 375

observer functions, 108
OCTET_LENGTH function, 213–214
ODBC (Open Database Connectivity)

Access support for, 400
application, 478
C code example, 486–487
data sources, 482
DBMS-based drivers, 480–481
DB2 support for, 401
defined, 477, 634
driver manager, 477–478, 479
drivers, 479–481
file-based drivers, 480
handles, 482–483
MySQL support for, 402
native drivers versus, 481, 591–592
one-tier driver system, 480
Oracle support for, 402
overview, 477–478
requests from applications, 482–487
six stages of operation, 484–486
SQL Server support for, 401
two-tier driver system, 481

ODBC.NET, Oracle support for, 402
offline storage, 177
OLAP (online application processing),

216
OLE DB (Object Linking and Embedding

Database)
Access support for, 400
DB2 support for, 401
MySQL support for, 402
SQL Server support for, 401

OLE.NET, Oracle support for, 402
ON clause

for condition joins, 307–308
WHERE clause with joins versus, 313

ON DELETE CASCADE clause, 174. See
also cascading deletes

1 RAID level, 334, 335, 584
01 SQLSTATE class value, 384, 386
1NF (First Normal Form), 104, 151,

152–153
one-tier driver system (ODBC), 480
one-to-many relationships

converting E-R model to relational
model, 165–166

data structure diagram, 166
defined, 15, 32, 143
E-R diagram, 33, 143–144, 165
in Gentoo Joyce system, 41
maximum cardinality, 164

one-to-one relationships
converting E-R model to relational

model, 164–165
data structure diagram, 164–165
defined, 15, 32, 143
E-R diagram, 32, 144, 164
maximum cardinality, 164

online application processing (OLAP),
216

OODBMS (object-oriented database
management systems), 15, 23

Open Database Connectivity. See ODBC
OPEN statement

datetime values fixed by, 321, 322
examples, 321
syntax, 320
variable values fixed by, 322

opening cursors, 320–322
open-source DBMS products, 57
OPENXML function (SQL Server), 523
operating system tuning

determining page buffer size, 579–580
scheduling threads, 575–579
tuning page usage factor, 580

operating systems. See platforms
optimization. See database tuning;

performance; query tuning; tuning

46 119280 index.qxp 5/23/07 10:49 AM Page 666

Index 667

optional cardinality
defined, 35–36
example, 36
importance of, 37
OR logical connective

indexes with, 266–267
overview, 246
query optimizer limitations for, 561

Oracle
defined, 634
as development environment, 402
embedding SQL in Pro*C application,

414–416
functions for updating XML data in

tables, 518–523
initial release of, 49
Java with, 407
modules in, 421
native driver for 10g, 475–476
overview, 56–57
platforms supported, 56
version 10g, 402
order by clause (FLWOR), 545–546
ORDER BY clause (SELECT)
ASC versus DESC keyword for, 251, 318
clustered indexes eliminating need for,

314
COLLATE BY clause with, 317, 318
cursors with, 317–318
default sort order, 251, 318
GROUP BY clause with, 249
with left outer joins, 311
for ordering queries, 180
overview, 228, 249–251
performance issues, 259
query tuning, 259–262

ordering queries, 180
Oregon Lunar Society database

adding constraints, 448–449
building E-R model, 429–432
business rules, 431–432

client’s problem, 423–424
connecting user interface to database,

445–447
converting E-R model to relational

model, 432–437
creating tables, 437–440, 448
creating the database, 448–449
determining deliverables, 426–429, 444
developing reports, 455
developing screen forms, 454
eliminating many-to-many

relationships, 433–435
filling tables with sample data, 449–454
integrating the structure, 455
interviewing stakeholders, 424–425
maximum cardinality, 430–431
minimum cardinality, 431
normalizing the E-R model, 435–437
planning for organization growth,

427–428
proposal, 425–426
scope of project, 428–429
Statement of Requirements, 425
testing, 455–457
top-down approach, 443–447
updategram using nillable mapping

schema, 534
user interface design, 441, 444–445

organization growth, planning for,
427–428

outer joins
described, 310
full, 313
inner joins versus, 309
left, 310–312
left and right tables, defined, 310
right, 312
OVERLAPS predicate (WHERE), 241
OVERLAY function, 211–212
overnormalization for performance, 555
owners of objects, 374

46 119280 index.qxp 5/23/07 10:49 AM Page 667

SQL All-in-One Desk Reference For Dummies668

P
page buffer for database

buffer manager, 617
page replacement algorithm, 581
sizing, 579–580
temporal locality, 581
usage factor, 580

page buffer for transactions. See also
checkpoints

flushing, 354, 571, 574–575
overview, 353–354, 569
tuning write operations, 572–573

page locks, 361. See also locks
parameter, defined, 634
PARAMETER_MODE field (diagnostics

area), 392
PARAMETER_NAME field (diagnostics

area), 392
PARAMETER_ORDINAL_POSITION field

(diagnostics area), 392
PARTIAL keyword (MATCH), 244, 245
partitioning transactions

accessing hot spots, 366
insertions, 365
locating hot spots, 598
for performance, 597–598

patches, security, 341
PCP (Priority Ceiling Protocol), 578
percent sign (%)

as LIKE wildcard, 234
using literally in LIKE predicate,

234–235
performance. See also database tuning;

query tuning; tuning
analyzing query efficiency, 598–615
application/database interaction

issues, 594
avoiding direct user interaction for, 593
bottlenecks, defined, 587
client, locking, 592
communication issues, 591–592

of correlated subqueries versus
relational queries, 290–295

cursor issues, 594
database dump’s impact on, 369
Database Engine Tuning Advisor,

185–187, 602–607
DBMS issues, 12
decisions affecting, 565–566
DISTINCT keyword’s impact on,

252–254
DKNF issues, 156–158, 162, 163
eliminating GROUP BY clause for,

264–266
filter ratio’s impact on, 184
flat file advantages, 11
general ways of improving, 593–595
gradual degradation of, 587–588
hard disk considerations, 570–571,

583–585, 596–597
hardware issues, 580–585, 593, 596–597
of hierarchical model, 17
importance of, 565
IN predicate issues, 233
increased computer speeds for, 12
index issues, 589–591
indexes’ impact on, 555
integrity tradeoff with, 156–158, 159
isolating problems, 595
keys to, 553
lock tuning for, 362–366
managing resources for, 615–618
Microsoft SQL Server Management

Studio, 610–611
monitors for, 608–611
Moore’s Law for, 24
of nested versus relational queries,

285–289
network issues, 597
ORDER BY clause’s impact on, 259–262
ordering HAVING and GROUP BY

clauses for, 262–264
overnormalization for, 555

46 119280 index.qxp 5/23/07 10:49 AM Page 668

Index 669

partitioning for, 597–598
physical design considerations, 555
pinpointing problems, 588
precompiling queries for, 563, 595
query speed as measure of, 553
recovery system tuning for, 369
serializability issues for, 348
SERIALIZABLE isolation costs, 352
slow query issues, 588
slow update issues, 588
storage types’ effect on, 176–177
temporary tables’ impact on, 255–262
throughput, 363, 576–577
top-down analysis for, 595–597
tracking down problems, 595–598
volatile memory used for, 568

Performance Monitor (SQL Server),
610–611

Perl scripts
embedding SQL in, 417
with MySQL, 406

persistent storage, 567
Persistent Stored Modules. See SQL/PSM
personal databases, 631
phishing scams, 339
PHP

embedding SQL in, 417
with MySQL, 407

physical design considerations, 555
PIP (Priority Inheritance Protocol), 578
planning your database, 189
platforms

Access support for, 53
DB2 support for, 56
defined, 329
instability issues, 329–330
InterBase support for, 57
MySQL support for, 57
Oracle support for, 56
PostgreSQL support for, 57
upgrading or changing, 329–330

PL/SQL, Oracle support for, 402
point queries, 178–179
portability

DBMS advantages, 12
flat file issues, 11
NUMERIC type for, 97
POSITION function, 212–213
PostgreSQL, 57, 72
POWER function, 215
precision

for approximate numeric types, 97–98
defined, 634
double, 98
for exact numeric types, 95–97
single, 97–98

pre-compiler for embedded SQL, 91
precompiling queries, 563, 595
predicates. See also specific predicates

comparison, for WHERE clause, 229–245
defined, 512, 634
for XML, 512–514

prefix match queries, 179
primary key
CLOB type not allowed for, 100
defined, 634
DISTINCT keyword not needed for

selects, 252
for indexes, 194
NOT NULL constraint for, 112
PRIMARY KEY constraint

for entity integrity, 171–172
for ID columns, 114
for multiple columns, 113
overview, 71, 113–114
with single-column key, 113
as table constraint, 71

Priority Ceiling Protocol (PCP), 578
Priority Inheritance Protocol (PIP), 578
priority inversion with threads, 578
priority-based thread scheduling,

577–578

46 119280 index.qxp 5/23/07 10:49 AM Page 669

SQL All-in-One Desk Reference For Dummies670

privileges. See also GRANT statements
for adding data, 376
for all actions, dangers of, 379
for changing data, 376
classes of users for, 373–374
DCL statements for, 86–87, 371
for defining UDTs, 378
delegating, 379
for deleting data, 375
for executing SQL statements, 375,

378–379, 473
granted by database owner, 473
granting, 86–87, 371, 374–379, 381
identifying authorized users for,

372–373
for looking at data, 375
in module declaration, 94, 420
objects applied to, 375
overview, 63–64
for referencing data in another table,

376–378, 473
referential integrity issues, 376–378
for responding to events, 378
revoking, 87, 371, 380–382
roles for, 64, 372–373, 381–382
for using database facilities, 378

Pro*C language (Oracle), 414–416
procedural capabilities of SQL. See SQL/

PSM (Persistent Stored Modules)
procedural languages. See also embedded

SQL; module language; specific
languages

challenges using SQL with, 412–413
with DB2, 407–408
defined, 315, 634
with Microsoft Access, 404–405
in module declaration, 94, 420
with MySQL, 406–407
with Oracle, 407
SQL compared to, 409–412
with SQL Server, 405–406
SQL with, 315
using SQLSTATE with, 385–386

PROCEDURE statement, 420–421
procedures, as routines, 65
processing instructions for XML, 511
processor or CPU

multiprocessor environments, 585
performance issues, 583, 597
performance monitors, 608–611
registers, 176, 567, 568
upgrading, 583

programming errors, reducing, 345–346
project team, forming, 122
proposal for database application,

425–426
PUBLIC keyword (GRANT), 87
public users, 374
Python, SQL compared to, 411

Q
quantified subqueries, 272, 275–277
QUEL data sublanguage, 411
queries. See also query tuning;

subqueries; XQuery
defined, 635
determining complexity of, 554
DML for, 79–80
importance of optimizing, 14
index-only, 590
nested, 269–270, 634
precompiling, 563, 595
query analyzers, 599–608
storage and performance of, 176–177
types of, 178–180

query analyzers
Database Engine Tuning Advisor,

602–607
overview, 599
SQL Server Management Studio,

599–601, 610–611
SQL Server Profiler, 607–608

query optimizers
composite indexes with, 182–183
limitations of, 251, 561

46 119280 index.qxp 5/23/07 10:49 AM Page 670

Index 671

query tuning
analyzing access plans, 611–614
analyzing query efficiency, 598–615
for correlated subqueries, 290–295
Database Engine Tuning Advisor for,

602–607
execution profiles for, 615
finding problem queries, 611–615
for GROUP BY clause, 262–266
for HAVING clause, 262–264
importance of, 14
Microsoft Server Management Studio

for, 599–601
need for, 251
for OR logical connective, 266–267
for ORDER BY clause, 259–262
overview, 251–252, 561–562
Performance Monitor for, 610–611
query analyzers for, 599–608
for SELECT DISTINCT, 252–254
SQL Server Profiler for, 607–608
for statements containing subqueries,

285–290
for temporary tables, 255–262
unnecessary columns, avoiding, 594

Querying XML (Melton and Buxton),
103, 535

quotation marks (“), XML entity
reference for, 495

R
RAD (rapid application development)

tool, 635
RAID (Redundant Array of Inexpensive

Disks)
advantages, 331
comparison of levels, 335
fault tolerance with, 331, 334–335
logical disk drives with, 331
overview, 331, 584–585
performance considerations, 584–585
RAID 0 level, 332, 335, 584

RAID 1 level, 334, 335, 584
RAID 5 level, 334, 335, 584–585
RAID 10 level, 334, 335, 585
striping, 332, 333

RAM, adding, 583
range queries, 179
rapid application development (RAD)

tool, 635
RDML data sublanguage, 411
READ COMMITTED isolation level

compared to other levels, 352
for locking, 364–365
overview, 351

READ UNCOMMITTED isolation level
compared to other levels, 352
dirty reads allowed by, 350
uses for, 350–351
warning for, 350

read/write time for hard disk, 570
REAL type, 97–98
rebuilding “tired” indexes, 314, 560–561,

589
records. See also rows; tuples

defined, 635
inserting XML element into, 525
other terms for, 148
updategram for deleting, 526
updating from XML element, 526

recovery system. See also ROLLBACK
operation

backups, 335–337
checkpoints, 355, 369, 574–575
dumps, 369, 573–574
logging subsystem management, 617
optimizing batch transactions, 575
putting logs and transactions on

different disks, 569–571
testing the restore process, 337
tuning the system, 369, 567–575
tuning write operations, 572–573

redundancy, data, 17, 630
Redundant Array of Inexpensive Disks.

See RAID

46 119280 index.qxp 5/23/07 10:49 AM Page 671

SQL All-in-One Desk Reference For Dummies672

REF types, 106
reference types, 635
referential integrity

defined, 172–173, 198, 376, 635
losing, 241–242
maintaining, 172–174
MATCH predicate for protecting, 242–245
privilege issues for, 376–378

registers
as fast storage, 176, 567
overview, 176
in storage hierarchy, 568

relational algebra, 297
relational database model

building, 147–150
Codd’s rules for, 20, 22–23
converting E-R model to, 161–170,

432–437
defined, 20
diagram, 21
dominance of, 24–25
flexibility of, 23
normalizing, 162–163
overview, 20–23
set theory as basis of, 59–60
slow to catch on, 24
SQL concepts, 59–66
terminology for elements, 147–149,

161–162, 432–433
translating users’ data model to, 29–47

relational databases
ANSI/ISO compliance, 2
development of, 49–50
hierarchy in, 47, 67–68
as object-relational, 23

relational operators, 297. See also
specific operations

Relational Software, first RDBMS
released by, 49

relations. See also entities; tables
bad, defined, 150
characteristics of, 60

as collections of tuples, 59
criteria for, 149
defined, 149, 635
entities comparable to, 148, 432
keys required for, 62
other terms for, 148
tables compared to, 60, 149
translating entities into, 161–162,

432–433
relationships. See also E-R (Entity-

Relationship) model; many-to-many
relationships; one-to-many
relationships; one-to-one
relationships

binary (degree-two), 32–33, 142,
143–144

classes, 142
complex (degree-three), 33–34, 142–143
described, 31
determining, 430
establishing between tables, 195–198
functional dependencies, 60–61,

149–150
Honest Abe’s database, 161
instances, 142
normalizing into DKNF, 163
supertype/subtype, 39–40

relative fetches, 323
Remember icon, 5
remote connections

JDBC for, 591
native drivers for, 475–476, 591
ODBC for, 477–487, 591–592
overview, 64–65

removing. See deleting or removing
renaming. See naming or renaming
REPEATABLE READ isolation level

compared to other levels, 352
for locking, 364
overview, 351
REPEAT...UNTIL...END REPEAT

statements (SQL/PSM), 467

46 119280 index.qxp 5/23/07 10:49 AM Page 672

Index 673

reports, developing, 455
requirements phase of SDLC

constructing users’ data model,
124, 139

establishing requirements, 123–124,
135–138

stakeholders, 123, 135–138
Statement of Requirements, 124–125
summary of tasks, 125
three-option proposal, 139

reserved words
defined, 635
list of (SQL:2003), 621–627
using correctly, 94

restoring from backups, testing, 337
RESTRICT keyword (REVOKE), 380, 382
return clause (FLWOR), 543, 546–547
returnability of cursors, 317
RETURNED_SQLSTATE field (diagnostics

area), 391, 392, 396
REVOKE statements
CASCADE keyword, 380, 382
GRANT OPTION FOR clause, 380
GRANTED BY clause, 380, 381–382
overview, 87, 380–381
RESTRICT keyword, 380, 382
for roles, 381–382
syntax, 87, 380

right outer joins, 312
robust execution plans, 183–184
roles

creating, 373
destroying, 373
granting privileges for, 381
overview, 64, 372–373
revoking privileges for, 381–382
ROLLBACK operation

checkpoints for, 355
COMMIT operation versus, 352
described, 87–88, 352–353
log file for, 353–354

reasons for, 353
write-ahead log protocol for, 354–355

root node, 519, 589
rotational latency of hard disk, 570, 571
rounding, functions for, 216
round-robin thread scheduling, 577
ROUTINE_CATALOG field (diagnostics

area), 392
ROUTINE_NAME field (diagnostics area),

392
routines. See also functions

defined, 65
external, 65
externally invoked, 65
overview, 65–66
SQL, 65
SQL-invoked, 65
ROUTINE_SCHEMA field (diagnostics

area), 392
row locks, 361. See also locks
ROW type, 104, 503–504
row value expressions, 225, 635
row values, 203–204
ROW_COUNT field (diagnostics area),

390, 395
row-level triggers, 471
rows. See also records; tuples

defined, 635
deleting row cursor points to, 323
fetching data with cursors, 322–323
finding number in table, 207–208
locating with keys, 191
not satisfying a condition, queries for,

271–272
other terms for, 148
satisfying a condition, queries for,

270–271
transferring between tables, all,

452–453
transferring between tables, selected,

453–454
updating row cursor points to, 324

46 119280 index.qxp 5/23/07 10:49 AM Page 673

SQL All-in-One Desk Reference For Dummies674

S
scale, 96, 635
scheduling threads

context switching, 577
deadlocks, 579
overview, 575–576
priority inversion, 578
priority-based scheduling, 577–578
round-robin scheduling, 577
throughput improved by, 576–577
SCHEMA clause (MODULE), 94, 420
schema owner, 635
SCHEMA_NAME field (diagnostics area),

391, 395
schemas. See also catalogs; XML

schemas
creating, 77
in database hierarchy, 47, 67–68
default, 77
defined, 635
in module declaration, 94, 420
overview, 64

Schneider, Robert (Microsoft SQL
Server 2005 Express Edition For
Dummies), 56

scope of project, determining, 122, 125,
126–127, 428–429

screen forms, developing, 454
scrollability of cursors, 317, 320
SDLC (System Development Life Cycle).

See also specific phases
definition phase, 122
design phase, 127–130
evaluation phase, 125–127
final documentation and testing phase,

130–132
implementation phase, 130
maintenance phase, 132–133
phases of, 121
requirements phase, 123–125

searched CASE statements (SQL/PSM),
465

Second Normal Form (2NF), 152, 153–154
security issues. See also anomalies;

integrity; privileges
ACID as protection against, 347–348
backups as protection against, 335–337
corruption, 174–175, 346–347
data entry errors, 330–331, 343–345
database design flaws, 330, 345
equipment failure, 328–329, 331
fault tolerance, 331, 334–335
for flat files, 11
GRANT ALL PRIVILEGES statement,

379
Internet threats, 337–341
operator error, 331
platform instability, 329–330
programming errors, 345–346
RAID as protection against, 331–335
referential integrity, 376–378
sources of problems, 327–328
tuning the recovery system, 369,

567–575
WITH GRANT OPTION clause, 379,

380–381
seek time for hard disk, 570, 571
SELECT keyword, 87
SELECT statements. See also queries;

specific clauses
FLWOR expressions (XQuery) compared

to, 547
granting privileges for, 375
overview, 227–228
simple form, 79
wildcard with, 79, 227–228, 299

semicolon (;) ending XML entity
references, 495

sensitivity of cursors, 317, 319–320
September 11, 2001, 335–336
SEQUEL, 50, 635

46 119280 index.qxp 5/23/07 10:49 AM Page 674

Index 675

serializability
integrity provided by, 360
locking for, 360–366
performance issues, 348
timestamps for, 366–369
SERIALIZABLE isolation level, 352
SERVER_NAME field (diagnostics area),

391
sessions, 65, 372
SESSION_USER variable, 206
SET clause (UPDATE), 82
SET CONSTRAINTS ALL DEFERRED

statement, 356
SET CONSTRAINTS ALL IMMEDIATE

statement, 356
SET CONSTRAINTS DEFERRED

statement, 358
SET CONSTRAINTS IMMEDIATE

statement, 359
set or aggregate functions
AVG, 208
COUNT, 207–208, 240
defined, 207, 629, 635
MAX, 208
MIN, 209
overview, 207–209
SUM, 209
for XML documents, 510
SET statement (SQL/PSM), 463
set theory, 59–60
SET TRANSACTION statement

access mode settings, 348–349, 350
applied to next transaction, 349
diagnostic size settings, 349, 390
isolation level settings, 349, 350–352
LOCAL keyword, 349
overview, 348–349
START TRANSACTION statement

versus, 349–350
syntax, 348–349

settling time for hard disk, 570, 571

SGML (Standard Generalized Markup
Language), 491

shared locks, 360. See also locks
shared-disk architecture, 585
shared-nothing architecture, 585
SIMILAR predicate (WHERE), 235
simple CASE statements (SQL/PSM),

464–465
SIMPLE keyword (MATCH), 244, 245
single precision, 97–98
single-table views, creating, 72–73
SMALLINT type, 96
soft failures, 574
SOME predicate (WHERE)

overview, 238–239
for quantified comparison operators,

272, 275
syllogisms illustrating, 236–237

sorting. See also ORDER BY clause
(SELECT)

by clustered indexes, 314
COLLATE BY clause for, 317, 318

sort-merge joins, 614
sparse indexes, 181
special variables for logging users, 206
SPECIFIC_NAME field (diagnostics

area), 392
SQL. See also embedded SQL; module

language
casting between XQuery and SQL

types, 549
as data sublanguage, 89, 315, 411, 631
defined, 635
development of, 1, 49–50
dynamic, 635
executing statements, 89
implementations of, 52–57
interactive, 89, 90, 636
limitations of, 51
mapping to XML, 499–508
as non-procedural language, 90

46 119280 index.qxp 5/23/07 10:49 AM Page 675

SQL All-in-One Desk Reference For Dummies676

SQL (continued)
privileges for executing statements,

375, 378–379, 473
procedural languages compared to,

409–412
as Structured Query Language, 50
uses for, 50
XML compared to, 497
XQuery compared to, 547–549

SQL routines, 65
SQL Server. See Microsoft SQL Server
SQL Server Profiler, 607–608
SQLAllocHandle function (ODBC),

484, 485
SQLConnect function (ODBC), 484, 485
SQLDriverConnect function (ODBC),

484, 485
SQL/DS RDBMS product, 50, 636
SQLExecDirect function (ODBC), 485
SQL-invoked routines, 65
SQLJ (Java-based Embedded SQL),

402, 407
SQL*Module language (Oracle), 421
SQL/PSM (Persistent Stored Modules)

ANSI/ISO SQL standard for, 459
compound statements, 460–463
embedding SQL in code, 459–460
flow of control statements, 463–468
granting privileges, 473
stored functions, 472
stored modules, 473–474
stored procedures, 469
triggers, 469–472

SQL-session user identifier, 372
SQLSetConnectOption function

(ODBC), 485
SQLSTATE status parameter

checking after statement execution, 385
class codes, 384–385, 386, 463
for compound statements, 463
diagnostics area information, 394–395
in module language programs, 385–386,

420–421

overview, 384–386
WHENEVER directive for, 383, 388–389
SQRT (square root) function, 215
stakeholders. See also client for project

building consensus, 138–139
identifying, 27–28
interviewing, 28, 136–137, 138, 424–425
lines of authority among, 135
obtaining buy-in from, 29
reconciling conflicting requirements,

28–29, 138
in requirements phase of SDLC, 123
standards organization, 137
upper management, 137–138
users, 136–137
variety of, 135
your immediate supervisor, 136

standard for SQL. See ANSI/ISO SQL
standard

Standard Generalized Markup Language
(SGML), 491

standards, company, 137
START TRANSACTION statement,

349–350
statement handle (ODBC), 482, 483
Statement of Requirements, 29, 124–125,

425
statement-level triggers, 471
storage. See also hard disks

hierarchical, 176–177
persistent, 567
query performance and types of,

176–177
storage requirements

cost of storage, 12
DBMS issues, 12
flat file advantages, 10
in hierarchical model, 17

stored functions (SQL/PSM)
overview, 472
in stored modules, 473–474

stored modules (SQL/PSM), 473–474

46 119280 index.qxp 5/23/07 10:49 AM Page 676

Index 677

stored procedures (SQL/PSM)
overview, 469
in stored modules, 473–474

stored routines (SQL/PSM), 472
string value expressions

defined, 637
overview, 218
parsing to produce XML value, 511

string value functions
CONVERT, 211
departures from ANSI/ISO standard, 210
list of, 209–210
LOWER, 211
OVERLAY, 211–212
SUBSTRING (FROM), 210
SUBSTRING (SIMILAR), 210
TRANSLATE, 211
TRIM, 211
UPPER, 211

striping (RAID), 332, 333
strong entities, 37–38
strong typing, 344, 345
Structured Query Language, 50
structured types

defined, 107, 636
example, 108–109
leaf, 108
maximal, 108
mutator functions for, 108
observer functions for, 108
subtypes and supertypes, 108
SUBCLASS_ORIGIN field (diagnostics

area), 391, 392, 393
subqueries. See also WHERE clause

(SELECT)
comparison operators with, 272–274
correlated, 277–282, 290–295
defined, 269, 636
in DELETE statements, 284
DISTINCT predicate with, 240–241
EXISTS predicate with, 239–240
IN predicate with, 233

in INSERT statements, 284–285
quantified, 275–277
retrieving rows not satisfying a

condition, 271–272
retrieving rows satisfying a condition,

270–271
returning multiple values, 270–272
returning single value, 272–277
tuning statements containing, 285–290
UNIQUE predicate with, 240
in UPDATE statements, 282–284
SUBSTRING (FROM) function, 210
SUBSTRING (SIMILAR) function, 210
subtypes, 108, 636
SUM function, 209
supertype and subtype entities, 39–40
supertypes, 108, 636
System Development Life Cycle. See

SDLC
system failures. See equipment failure
SYSTEM_USER variable, 206

T
table locks, 361. See also locks
TABLE_NAME field (diagnostics area),

391, 395
tables. See also CREATE TABLE

statements; relations; views or
virtual tables

adding constraints to existing, 394
adding data, 80–81
altering structure of, 78, 198, 440
constraints, 71, 113–114, 194
creating an XML schema for, 507–508
creating for XML data, 517
in database hierarchy, 47, 67–68
defined, 636
deleting, 199
deleting data, 84–85
distinct types with, 107
dropping, 78

46 119280 index.qxp 5/23/07 10:49 AM Page 677

SQL All-in-One Desk Reference For Dummies678

tables (continued)
establishing relationships between,

195–198
filling with sample data, 449–454
filter ratio, 184
finding number of rows in, 207–208
full table scans, 177, 183, 590–591
hot, 187
indexes and size of, 183
inserting XML data into SQL pseudo-

table, 515–517
left versus right, in joins, 310
locating rows with keys, 191
mapping to XML, 505–506
modifying, 78
other terms for, 148
privileges applying to, 375
relations compared to, 60, 149
temporary, query tuning for, 255–262
transferring all rows between, 452–453
transferring selected columns and rows

between, 453–454
union-compatible, 297, 303
updating data, 81–84
usage in this book, 60

Taylor, Allen G. (Database Development
For Dummies), 330

TCP/IP (Transmission Control
Protocol/Internet Protocol), 636

Technical Stuff icon, 5
teleprocessing system, 636
temporal locality, 581
temporal partitioning, 598
temporary tables

for multiple selection conditions,
255–256

ORDER BY clause with, 259–262
query tuning for, 255–262

10 RAID level, 334, 335, 585
testing

beta testing, 456
database applications, 131–132, 455–457

restore process, 337
testers for, 456

threads
context switching, 577
deadlocks, 579
overview, 575–576
priority inversion, 578
priority-based scheduling, 577–578
round-robin scheduling, 577
throughput improved by, 576–577

3NF (Third Normal Form), 152, 154
three-option proposal, 139
throughput

defined, 363, 576
improved by threads, 576–577

tightly coupled architecture, 585
TIME WITH TIME ZONE type, 102
TIME WITHOUT TIME ZONE type,

101–102
TIMESTAMP WITH TIME ZONE type,

102–103
TIMESTAMP WITHOUT TIME ZONE type,

102
timestamps

datetime types for, 102–103
defined, 366
enforcing serializability with, 366–369
livelocks with, 367–369
update example, 366–367

Tip icon, 5
“tired” indexes, rebuilding, 314, 560–561,

589
TRANSACTION_ACTIVE field

(diagnostics area), 390, 391
transactions

aborting, 566
access modes, 348–349, 350
ACID characteristics for, 347–348
batch, optimizing, 575
COMMIT operation, 88
committing, 352, 566
for data integrity protection, 87–88

46 119280 index.qxp 5/23/07 10:49 AM Page 678

Index 679

default, 348
DEFERRABLE constraints for, 355–359
defined, 65, 87, 347
enforcing serializability with

timestamps, 366–369
hot spots, 365–366, 598
isolation levels, 350–352
locking, 360–366
log file for, 353–355
page buffer for, 353–354, 569, 571
partitioning, 365, 366
putting on different disk than logs,

569–571
ROLLBACK operation, 87–88, 352–355
running DDL concurrently with,

avoiding, 365
separating user interactions from, 562
SET TRANSACTION statement for,

348–349
starting, 349–352
timestamps for, 366–369
tuning the recovery system, 369
tuning transactions, 562
TRANSACTIONS_COMMITTED field

(diagnostics area), 390, 391
TRANSACTIONS_ROLLED_BACK field

(diagnostics area), 390, 391
transitive dependencies, 154, 636
TRANSLATE function, 211
translation, privileges applying to, 375
translation tables, 636
Transmission Control Protocol/Internet

Protocol (TCP/IP), 636
triage, 27
TRIGGER_CATALOG field (diagnostics

area), 392
TRIGGER_NAME field (diagnostics area),

392
triggers

action time, 471
actions, 471
creating, 470–472

defined, 636
events, 471
overview, 469–470
privileges for, 375, 378
row-level, 471
statement-level, 471
triggered SQL statement, 472

TRIGGER_SCHEMA field (diagnostics
area), 392

TRIM function, 211
tuning. See also database tuning;

performance; query tuning
defined, 553
hardware considerations, 580–585
indexes, 560–561
locks, 362–366
multiprocessor environments, 585
operating system, 575–580
page usage factor, 580
recovery system, 369, 567–575
transactions, 562
write operations, 572–573

tuples. See also records; rows
identified by keys, 61, 150
other terms for, 148
relations as collections of, 59

Turing, Alan (computer expert), 51
Turing-complete languages, 50, 51
02 SQLSTATE class value, 384, 386
2NF (Second Normal Form), 152, 153–154
two-phase locking, 360
two-tier driver system (ODBC), 481
types. See data types; UDTs (user-

defined types)

U
UDTs (user-defined types)

constructors for, 107–108
defined, 637
distinct, mapping to XML, 502–503
distinct types, 106–107

46 119280 index.qxp 5/23/07 10:49 AM Page 679

SQL All-in-One Desk Reference For Dummies680

UDTs (user-defined types) (continued)
for matching host language types, 106
overview, 106
privileges for, 375, 378
structured types, 107–109, 636

_ (underscore)
as LIKE wildcard, 234
using literally in LIKE predicate,

234–235
UNDO action, 387
Unicode, 492, 499
UNION ALL CORRESPONDING

operations, 300
UNION ALL operations, 299
UNION CORRESPONDING operations, 300
UNION operations
DISTINCT keyword not needed with,

299
modeled on relational algebra, 297
overview, 297–299
preserving duplicate rows, 299
for tables not union-compatible, 300
union-compatible tables, 297
wildcard issues with, 299
UNIQUE constraint

for entity integrity, 171
overview, 112

unique identifiers
composite, 142
defined, 31, 141
single-attribute, 142
UNIQUE keyword (MATCH), 244–245
UNIQUE predicate (WHERE)

overview, 240
referential integrity protected by, 243

universal quantifier (ALL predicate of
WHERE)

overview, 238–239
for quantified comparison operators,

272, 275, 276–277
syllogisms illustrating, 236–237

Universal Time (UTC), 102
Universal Turing Machine, 51
update anomalies, 636
UPDATE statements

with cursors, 324
granting privileges for, 376, 473
for merging categories, 83–84
need for, 81–82
for renaming a category, 83
for renaming all categories, 84
SET clause, 82
subqueries in, 282–284
syntax, 82
updating a row, 324
for updating data, 82–83
for views, problems with, 85–86
WHERE clause, 82, 282–284

updategrams (SQL Server)
creating with XDR schema, 528–529
creating with XSD schema, 527–528
deleting record using, 526
keywords, 523, 524
namespace, 523
overview, 523
template example, 524
using nillable mapping schema, 534

UPDATEXML function (Oracle), 522–523
updating data structure

DBMS advantages, 12
flat file issues, 11

updating XML documents
Oracle functions for, 518–523
overview, 517–518
SQL Server tools for, 523–534

upgrading platforms, 329–330
UPPER function, 211
uppercase, converting strings to, 211
user interface

connecting to database, 445–447
designing, 441, 444–445

user-defined types. See UDTs

46 119280 index.qxp 5/23/07 10:49 AM Page 680

Index 681

users
building rapport with, 137
classifying, 373–374
defined, 65, 121
direct interaction, avoiding, 593
identifiers for, 372
importance to database systems,

63, 136–137
interviewing, 27–28, 136–137
overview, 121
roles for, 372–373
separating interactions from

transactions, 562
special variables for logging, 206
for testing, 456

users’ data model. See also E-R (Entity-
Relationship) model

capturing, 27–29
constructing, 124, 139
in database design, 128
interviewing stakeholders, 27–28,

136–137, 138
obtaining stakeholder buy-in, 29
political issues for, 29
reconciling conflicting requirements,

28–29
translating to relational model, 29–47
vague nature of, 27

UTC (Universal Time), 102

V
VALID predicate for XML, 513–514
validity

determining for XML values, 513–514
domains for ensuring, 194–195
valid, defined, 194

value expressions
array, 220
Boolean, 219–220
conditional, 220–223, 637
datetime, 218, 637

defined, 637
interval, 219
numeric, 217, 637
row, 225, 635
string, 218, 511, 637

value functions. See also specific kinds
datetime, 216–217
defined, 207, 637
numeric, 212–216
string, 209–212

values. See also specific kinds
identifying in columns, 204
kinds of, 203
translating to XML elements, 508–509
VALUES clause (INSERT), 80
VARCHAR or CHARACTER VARYING

type, 99
variables

in compound statements, 462
example, 205–206
host, 416, 632
special, for logging users, 206
for SQLSTATE values, 386
uses for, 205

VBA (Visual Basic for Applications),
399, 404–405

views or virtual tables
Cartesian product for, 228–229
defined, 62–63, 72, 637
dropping, 78
fully qualified column names for, 73
multi-table, 73–77
privileges applying to, 375
single-table, 72–73
updating, problems with, 85–86
as virtual tables, 62

viruses
antivirus software, 338, 340–341
defined, 337
options for protection, 338
overview, 337–338

46 119280 index.qxp 5/23/07 10:49 AM Page 681

SQL All-in-One Desk Reference For Dummies682

viruses (continued)
signs of infection, 338
worms versus, 338

Visual Basic.NET
challenges using SQL with, 413
embedding SQL in, 418
SQL compared to, 411

volatile memory, 567, 568–569

W
WANs (wide area networks). See

networks
Warning! icon, 5
weak entities, 39
WebDAV, Oracle support for, 402
WHENEVER directive, 383, 388–389
WHERE clause (DELETE), subqueries in,

284
where clause (FLWOR), 545
WHERE clause (INSERT), subqueries in,

284–285
WHERE clause (SELECT). See also

subqueries
ALL predicate, 236–239, 272, 275,

276–277
AND logical connective, 245–246
ANY predicate, 236–239, 272, 275
BETWEEN predicate, 231–232
comparison predicates with, 229–245
described, 228, 229
DISTINCT predicate, 240–241
for equi-joins, 180, 305, 307
EXISTS predicate, 239–240, 278
for extremal queries, 179
filtering selectively, 613–614
IN predicate, 232–233, 279
LIKE predicate, 234–235
logical connectives with, 245–247
MATCH predicate, 241–245
for multipoint queries, 179
for natural joins, 307

NOT EXISTS predicate, 278–279
NOT IN predicate, 232
NOT LIKE predicate, 234
NOT logical connective, 247
NOT NULL predicate, 236
NULL predicate, 235–236
ON clause with joins versus, 313
OR logical connective, 246, 266–267, 561
OVERLAPS predicate, 241
for point queries, 178–179
for range queries, 179
restricting rows returned, 79–80
SIMILAR predicate, 235
SOME predicate, 236–239, 272, 275
symbols for comparison operators,

230–231
syntax, 229
typical examples, 229
UNIQUE predicate, 240
WHERE clause (UPDATE)

specifying rows updated, 82
subqueries in, 282–284
WHILE...DO...END WHILE statements

(SQL/PSM), 467
wide area networks (WANs). See

networks
WIDTH_BUCKET function, 216
wildcards

issues for UNION operations, 299
for LIKE predicate, 234
for SELECT statement, 79, 227–228, 299
using literally with LIKE predicate,

234–235
Windows Disk Defragmenter, 616
WITH ADMIN OPTION clause (GRANT),

381
WITH GRANT OPTION clause (GRANT),

379, 380–381
workgroup databases, 631
workload analysis, 554
workload descriptions, 554
World Trade Center attack, 335–336

46 119280 index.qxp 5/23/07 10:49 AM Page 682

Index 683

World Wide Web Consortium
DOM developed by, 518
XML Query Use Cases document, 538

worms
denial-of-service attacks, 339
options for protection, 339
overview, 338
viruses versus, 338
zombie spambots, 339–340

write operations, tuning, 572–573
write-ahead log protocol, 354–355
write-back disk protocol, 582
write-through disk protocol, 582
WWW (World Wide Web), 637

X
XDR schema for updategram, 528–529
XML (Extensible Markup Language). See

also XQuery
adding new node to tree (Oracle),

518–519
attributes, 494
characteristics of, 492
creating tables for data, 517
data type, 103–104, 497–499
declaration, 493
defined, 491, 637
deleting nodes (Oracle), 521–522
derivatives of, 491
determining if value exists, 513
determining if value is a document,

512–513
determining if value is an instance, 513
determining validity of values, 513–514
document element, 494
elements, 493–494
empty elements, 494
entity references, 495
flexibility of, 492
inserting data into SQL pseudo-table,

515–517

inserting new value at node (Oracle),
519–520

inserting new value before node
(Oracle), 520–521

mapping schemas (SQL Server), 525–534
mapping SQL to, 499–508
nested elements, 494
numeric character references, 496
Oracle support for, 402
overview, 491–492
root node, 519
as SGML subset, 491
SQL compared to, 497
SQL functions for, 508–512
SQL predicates for, 512–514
syntax examples, 492–493
treelike structure, 519–520
updategrams (SQL Server), 523–524,

526, 527–529, 534
updating data in tables, Oracle

functions for, 518–523
updating data in tables, SQL Server

tools for, 523–534
updating documents, 517–518
updating values (Oracle), 522–523

XML Names, 500
XML Query Use Cases document, 538
XML Schema, 103, 496–497
XML Schema Definition. See XSD
XML schemas

creating for SQL table, 507–508
defined, 496
determining validity of values, 513–514
mapping ARRAY type to XML, 504–505
mapping distinct UDT to XML, 502–503
mapping domain to XML, 501–502
mapping MULTISET type to XML, 505
mapping ROW type to XML, 503–504

XML types
association with XML Schema, 103
for columns, 103–104
determining validity of values, 513–514

46 119280 index.qxp 5/23/07 10:49 AM Page 683

SQL All-in-One Desk Reference For Dummies684

XML types (continued)
further information, 103
overview, 103–104, 497–498
subtypes, 103
uses for, 498–499
uses to avoid, 499
XMLAGG function, 510
XMLCAST function, 512
XMLCOMMENT function, 510
XMLCONCAT function, 509
XMLELEMENT function, 508
XMLEXISTS predicate, 513
XMLFOREST function, 509
XMLPARSE function, 511
XMLPI function, 511
XMLQUERY function, 511–512, 518
XMLTABLE pseudo-function, 515–517
X/Open standards, DB2 support for, 402
XPath expressions

with APPENDCHILDXML function
(Oracle), 519

with DELETEXML function (Oracle), 521
with INSERTCHILDXML function

(Oracle), 519
with INSERTXMLBEFORE function

(Oracle), 520
XQuery

casting between XQuery and SQL
types, 549

data types, SQL correspondences to,
547–549

defined, 536
development of, 536

FLWOR expressions, 542–547
functionality, 537
further information, 535
need for, 535
as non-procedural language, 536
Oracle support for, 402
requirements for implementations,

536–537
SQL compared to, 547–549
usage scenarios, 538–541
XML Query Use Cases document, 538
XMLQUERY function for expressions,

511–512, 518
XQuery 1.0 Language Specification,

536–537
XQuery Requirements document, 537
XSD (XML Schema Definition)

allowing null values in schemas, 533
creating updategram with schema,

527–528
defined, 496
overview, 496–497

Z
zero (0)

minimum cardinality, 146–147
null values not same as, 69, 110
RAID level, 332, 335, 584
SQLSTATE class value (00), 384, 386
01 SQLSTATE class value, 384, 386
02 SQLSTATE class value, 384, 386
zombie spambots, 339–340

46 119280 index.qxp 5/23/07 10:49 AM Page 684

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

47 119280 bob.qxp 5/23/07 10:49 AM Page 685

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

47 119280 bob.qxp 5/23/07 10:49 AM Page 686

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®
• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
Bipolar Disorder For Dummies
0-7645-8451-0
Chemotherapy and Radiation
For Dummies
0-7645-7832-4
Controlling Cholesterol For Dummies
0-7645-5440-9
Diabetes For Dummies
0-7645-6820-5* †
Divorce For Dummies
0-7645-8417-0 †

Fibromyalgia For Dummies
0-7645-5441-7
Low-Calorie Dieting For Dummies
0-7645-9905-4
Meditation For Dummies
0-471-77774-9
Osteoporosis For Dummies
0-7645-7621-6
Overcoming Anxiety For Dummies
0-7645-5447-6
Reiki For Dummies
0-7645-9907-0
Stress Management For Dummies
0-7645-5144-2

HEALTH & SELF-HELP

0-7645-8450-2 0-7645-4149-8

Also available:
The ACT For Dummies
0-7645-9652-7
Algebra For Dummies
0-7645-5325-9
Algebra Workbook For Dummies
0-7645-8467-7
Astronomy For Dummies
0-7645-8465-0
Calculus For Dummies
0-7645-2498-4
Chemistry For Dummies
0-7645-5430-1
Forensics For Dummies
0-7645-5580-4

Freemasons For Dummies
0-7645-9796-5
French For Dummies
0-7645-5193-0
Geometry For Dummies
0-7645-5324-0
Organic Chemistry I For Dummies
0-7645-6902-3
The SAT I For Dummies
0-7645-7193-1
Spanish For Dummies
0-7645-5194-9
Statistics For Dummies
0-7645-5423-9

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-8381-6 0-7645-9554-7

* Separate Canadian edition also available
† Separate U.K. edition also available

47 119280 bob.qxp 5/23/07 10:49 AM Page 687

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Instructional DVDs • Music Compilations
 Games & Novelties • Culinary Kits
 Crafts & Sewing Patterns
Home Improvement/DIY Kits • and more!

47 119280 bob.qxp 5/23/07 10:49 AM Page 688

	SQL All-In_One Desk Reference For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Conventions Used in This Book
	What You Don’t Have to Read
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Book I: SQL Concepts
	Contents at a Glance
	Chapter 1: Relational Database Basics
	Data Files and Databases
	Databases, Queries, and Database Applications
	Competing Database Models
	Why Did the Relational Model Win?

	Chapter 2: Modeling a System
	Capturing the Users’ Data Model
	Translating the Users’ Data Model to a Relational Model
	The Relational Database Hierarchy

	Chapter 3: SQL Overview
	Where SQL Came From
	What SQL Does
	The ANSI/ISO SQL Standard
	What SQL Does Not Do
	Available Implementations

	Chapter 4: SQL and the Relational Model
	Sets, Relations, Multisets, and Tables
	Functional Dependencies
	Keys
	Views
	Users
	Privileges
	Schemas
	Catalogs
	Connections, Sessions, and Transactions
	Routines
	Paths

	Chapter 5: The Major Components of SQL
	The Data Definition Language (DDL)
	The Data Manipulation Language (DML)
	The Data Control Language (DCL)

	Chapter 6: SQL Characteristics
	Executing SQL Statements
	Using Reserved Words Correctly
	SQL’s Data Types
	Handling Null Values
	Applying Constraints

	Book II: Relational Database Development
	Contents at a Glance
	Chapter 1: System Development Overview
	The Components of a Database System
	The System Development Life Cycle

	Chapter 2: Building a Database Model
	Finding and Listening to Interested Parties
	Building Consensus
	The Entity-Relationship Modeling Method
	Building a Relational Model
	Being Aware of the Danger of Anomalies
	The Database Integrity versus Performance Tradeoff

	Chapter 3: Balancing Performance and Correctness
	Designing a Sample Database
	Maintaining Integrity
	Avoiding Data Corruption
	Speeding Data Retrievals
	Indexes and the ANSI/ISO Standard
	Reading SQL Server Execution Plans
	Hot Tables and Load Balancing

	Chapter 4: Creating a Database with SQL
	First Things First: Planning Your Database
	Building Tables
	Setting Constraints
	Keys and Indexes
	Ensuring Data Validity with Domains
	Establishing Relationships between Tables
	Altering Table Structure
	Deleting Tables

	Book III: SQL Queries
	Contents at a Glance
	Chapter 1: Values, Variables, Functions, and Expressions
	Entering Data Values
	Variables Vary
	Special Variables Hold Specific Values
	Working with Functions
	Using Expressions

	Chapter 2: SELECT Statements and Modifying Clauses
	Finding Needles in Haystacks with the SELECT Statement
	Modifying Clauses
	Tuning Queries

	Chapter 3: Querying Multiple Tables with Subqueries
	What Is a Subquery?
	What Subqueries Do
	Using Subqueries in INSERT, DELETE, and UPDATE Statements
	Tuning Considerations for Statements Containing Nested Queries
	Tuning Correlated Subqueries

	Chapter 4: Querying Multiple Tables with Relational Operators
	UNION
	INTERSECT
	EXCEPT
	JOINS
	ON versus WHERE
	Join Conditions and Clustering Indexes

	Chapter 5: Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching Data from a Single Row
	Closing a Cursor

	Book IV: Data Security
	Contents at a Glance
	Chapter 1: Protecting Against Hardware Failure and External Threats
	What Could Possibly Go Wrong?
	Taking Advantage of RAID
	Backing Up Your System
	Coping with Internet Threats
	Installing Layers of Protection

	Chapter 2: Protecting Against User Errors and Conflicts
	Reducing Data Entry Errors
	Unreliable Database Design
	Programming Errors
	Conflicts Arising from Concurrent Operation
	Atomicity, Consistency, Isolation, and Durability
	Operating with Transactions
	Getting Familiar with Locking
	Tuning Locks
	Enforcing Serializability with Timestamps
	Tuning the Recovery System

	Chapter 3: Assigning Access Privileges
	The SQL Data Control Language
	Identifying Authorized Users
	Classifying Users
	Granting Privileges
	Revoking Privileges
	Granting Roles
	Revoking Roles

	Chapter 4: Error Handling
	Identifying Error Conditions
	Getting to Know SQLSTATE
	Handling Conditions
	Dealing with Execution Exceptions: The WHENEVER Clause
	Getting More Information: The Diagnostics Areas
	Examining a Constraint Violation Example
	Adding Constraints to an Existing Table
	Interpreting SQLSTATE Information
	Handling Exceptions

	Book V: SQL and Programming
	Contents at a Glance
	Chapter 1: Database Development Environments
	Microsoft Access
	Microsoft SQL Server
	IBM DB2
	Oracle 10g
	MySQL

	Chapter 2: Interfacing SQL to a Procedural Language
	Building an Application with SQL and a Procedural Language
	Access and VBA
	SQL Server and the .NET languages
	MySQL and C++.NET or C#
	MySQL and C
	MySQL and Perl
	MySQL and PHP
	Oracle SQL and Java
	DB2 and Java

	Chapter 3: Using SQL in an Application Program
	Comparison of SQL to Procedural Languages
	Difficulties in Combining SQL with a Procedural Language
	Embedding SQL in an Application
	Using SQL Modules with an Application

	Chapter 4: Designing a Sample Application
	The Client’s Problem
	Approaching the Problem
	Determining the Deliverables
	Building an Entity-Relationship Model
	Transforming the Model
	Creating Tables
	Changing Table Structure
	Removing Tables
	Designing the User Interface

	Chapter 5: Building a Sample Application
	Designing from the Top Down
	Coding from the Bottom Up
	Testing, Testing, Testing

	Chapter 6: SQL’s Procedural Capabilities
	Embedding SQL Statements in Your Code
	Introducing Compound Statements
	Following the Flow of Control Statements
	Using Stored Procedures
	Working with Triggers
	Stored Functions
	Passing Out Privileges
	Stored Modules

	Chapter 7: Connecting to a Remote Database
	Native Drivers
	ODBC and Its Major Components
	What Happens When the Application Makes a Request

	Book VI: SQL and XML
	Contents at a Glance
	Chapter 1: XML/SQL Basics
	Introducing XML
	The Parts of an XML Document
	XML Schema
	Relating SQL to XML
	The XML Data Type
	Mapping SQL to XML
	Operating on XML Data with SQL Functions
	XML Predicates

	Chapter 2: Storing XML Data in SQL Tables
	Inserting XML Data into an SQL Pseudo-Table
	Creating a Table to Hold XML Data
	Updating XML Documents
	Discovering Oracle’s Tools for Updating XML Data in a Table
	Introducing Microsoft’s Tools for Updating XML Data in a Table

	Chapter 3: Retrieving Data from XML Documents
	XQuery
	FLWOR Expressions
	Comparing XQuery to SQL

	Book VII: Database Tuning Overview
	Contents at a Glance
	Chapter 1: Tuning the Database
	Analyzing the Workload
	Considering the Physical Design
	Choosing the Right Indexes
	Tuning Indexes
	Tuning Queries
	Tuning Transactions
	Separating User Interactions from Transactions
	Minimizing Traffic between Application and Server
	Precompiling Frequently Used Queries

	Chapter 2: Tuning the Environment
	Surviving Failures with Minimum Data Loss
	Tuning the Recovery System
	Tuning the Operating System
	Maximizing the Hardware You Have
	Adding Hardware
	Multiprocessor Environments

	Chapter 3: Finding and Eliminating Bottlenecks
	Pinpointing the Problem
	Determining the Possible Causes of Trouble
	Implementing General Pointers: A First Step Toward Improving Performance
	Tracking Down Bottlenecks
	Analyzing Query Efficiency
	Managing Resources Wisely

	Book VIII: Appendixes
	Contents at a Glance
	Appendix A: SQL: 2003 Reserved Words
	Appendix B: Glossary

	Index

